
hsmag.cc Issue #01December 2017

NEW HACK MAKE BUILD CREATE

HANDHELD
CONSOLES FOR
HACKERS

BOLDPORT:
BUGS, BITS &
BLINKENLIGHTS

Harness the power of artificial intelligence

BUILD
THINKING
MACHINES

BECKY
STERN
How to get paid for
making fun things

SMOKE
YOUR OWN
BACON*

*or anything else.
But mostly bacon

BUILD A
TREBUCHET!

TRANSISTORS 3D PRINTING DUCT TAPE CHANGING THE WORLD

Dec.2017
Issue #01 £6

MAKE
BEAUTIFUL

MUSIC
Unleash your inner

Robert Moog

Small-scale warfare to satisfy
your Napoleon complex

WORLD’S
FASTEST
RASPBERRY PI

TECHNOLOGY IN YOUR HANDS

01

9 772515 514006

http://www.canakit.com

WELCOME

3

Hackspaces (often known as hackerspaces outside the UK)
are community-run groups that enable people to share access
to tools, socialise with like-minded people, and collaborate
on projects. They exist all over the world – the chances are
that there’s one near you that you can get involved with, to
develop your own projects and share your experiences with
other members.

We want to raise the profile of the hackspace movement.
We want to highlight the work that’s being done, and we want
to get involved ourselves. Most important of all, we want

to provide an inclusive
forum for the community,
where everyone can bring
their work together to
learn and be inspired by
the work of others. That’s

why hackspaces exist, and that’s the entire raison d’être of
HackSpace magazine.

As well as endeavouring to support community-run spaces
around the world, any money made by HackSpace magazine
goes to the Raspberry Pi Foundation. This UK-based charity
aims to put computing in the hands of people around the
world through developing low-cost hardware and working
with teachers and students.

To ensure that everyone who wants to build things can get
access, we’re making every issue of HackSpace magazine
available as a free download from our website, hsmag.cc, on
the same day they go on sale.

We’re looking forward to working with everyone in the
hacking and making community to bring skills, knowledge,
and inspiration to as many people as possible. Get in touch
with us at hackspace@raspberrypi.org if you want to help
make this happen.

Welcome to

EDITORIAL
Editor
Ben Everard

 ben.everard@raspberrypi.org

Features Editor
Andrew Gregory

 andrew.gregory@raspberrypi.org

Sub Editors
Phil King, Jem Roberts

DESIGN
Critical Media

 criticalmedia.co.uk

Head of Design
Dougal Matthews

Designers
Lee Allen, Mike Kay

Photography
Brian O’Halloran

Illustrations
Sam Alder

CONTRIBUTORS
Lucy Rogers, Andrew
Huang, Mayank
Sharma, Jenny List, Goli
Mohammed, Jenny Smith,
Cameron Coward, John
Wargo, Eric Coates, Martin
O’Hanlon, Andy Clarke, Will
Kalif, Gareth Halfacree, Les
Pounder, David Crookes,
Graham Morrison

PUBLISHING
Publishing Director:
Russell Barnes

 russell@raspberrypi.org

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London EC1A 9PT

 +44 (0)207 429 4000

SUBSCRIPTIONS
Select Publisher Services
Ltd, PO Box 6337, BH1 9EH

 +44 (0)1202 586 848

Mann Enterprises Ltd,
Unit E, Brocks Business
Centre, CB9 8QP
 hsmag.cc/subscribe

BEN EVERARD
Editor ben.everard@raspberrypi.org

This magazine is printed on
paper sourced from sustainable
forests. The printer operates an
environmental management system
which has been assessed as
conforming to ISO 14001.

HackSpace magazine is published
by Raspberry Pi (Trading) Ltd.,
Station Road, Cambridge, CB1
2JH. The publisher, editor, and
contributors accept no responsibility
in respect of any omissions or
errors relating to goods, products or
services referred to or advertised.
Except where otherwise noted,
content in this magazine is licensed
under a Creative Commons
Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-
SA 3.0). ISSN: 2515-5148.

GET IN TOUCH

 hackspace@
raspberrypi.org

 hackspacemag

 hackspacemag

ONLINE
 hsmag.cc

HackSpace magazine

of the hackspace movement
We want to raise the profile

http://hsmag.cc
mailto:hackspace@raspberrypi.org
mailto:ben.everard@raspberrypi.org
mailto:andrew.gregory@raspberrypi.org
http://criticalmedia.co.uk
mailto:russell@raspberrypi.org
http://hsmag.cc/subscribe
mailto:ben.everard@raspberrypi.org
mailto:hackspace@raspberrypi.org
mailto:hackspace@raspberrypi.org
https://www.facebook.com/HackSpaceMag/
https://twitter.com/HackSpaceMag
http://hsmag.cc
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.apazine.hackspace

4

Contents
06 Top Projects
 Brilliant builds to inspire and invigorate

14 Object 3d’art
 Fabrication for conservation

16 Meet the Maker
 Saar Drimer from Boldport PCBs

18 Columns
 Ruminations from our wise leaders

20 MegaBots
 Let the giant robot battle commence!

22 Hackspaces
 Share your space with us/the world

28 The Intelligence Makers
 Unlock the power of AI in your builds

38 The Arduino: World domination unlocked
 How one microcontroller changed the face of making

44 We Learn Stick welding
 We get burned so you don’t have to

48 One Step Beyond: The world’s fastest Pi
 Finding incredible speed in the deep freeze

54 Helping hands
 Hackers are making the world a better place

58 Interview Becky Stern
 A chat with one of the world’s best-known makers

64 Improviser’s Toolbox Duct tape
 We try, and fail, to find something it can’t do

SPARK LENS2706

28

Th
e INTELLIGENCE

Makers

58

54

CONTENTS

5

72 School of Making Woodworking
 Old meets new with a Raspberry Pi case

78 School of Making 3D modelling
 An introduction to computer-aided design

82 School of Making Arduino code
 Anyone can add processing to their builds

86 Simple circuits
 Get to grips with logic gates

90 Build a cold smoker
 Hack your way to great flavour

94 Arduino synth
 Build your own music machine

98 Go straight with PID
 Keep robots on the straight and narrow

102 It’s (nearly) Christmas!
 Deck the halls with boughs of LEDs

106 Build a trebuchet
 Launch a 90kg projectile 300 metres*
 *Almost

114 Direct from Shenzhen Robot hand
 We test Chinese products straight from the factory

116 Can I Hack It?
 Pull apart a dancing tree to tinker with what’s inside

118 Best of Breed Hacker handhelds
 Four of our favourite DIY games consoles

122 Head 2 Head Fritzing vs Tinkercad Circuits
 Circuit design software on test

124 MeArm Pi
 A controllable robot arm perfect for learning

125 Hologram Nova
 Connect IoT devices over a phone data network

126 Frog Board
 A handy gadget for programming the ESP8266 board

127 Very Useful Circuits
 Simple, one-use circuit boards to add to quick projects

128 EspoTek Labrador
 A small, cheap replacement for your CRT oscilloscope

129 Books: The Design of Everyday Things
 It’s easy to think like a designer: just think like a user

FORGE FIELD TEST71 113

Some of the tools and techniques shown in HackSpace magazine are dangerous unless used with skill, experience and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you
are responsible for your own safety and understanding the limits of yourself and your equipment. HackSpace magazine is intended for an adult audience and some projects may be dangerous for children. Raspberry
Pi (Trading) Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in HackSpace magazine. Laws and regulations covering many of the topics
in HackSpace magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some
manufacturers place limits on the use of their hardware which some projects or suggestions in HackSpace magazine may go beyond. It is your responsibility to understand the manufacturer’s limits.

64 20

118

116

22

Top Projects

REGULAR

6

he idea to create analogue gauges for a bicycle
appeared in my head when I came across an article
on a Polish hackers’ site that described how to
build a desk clock from analogue voltage meters
(hsmag.cc/JBGDAz). I always liked analogue gauges
and when I saw how easy it is to convert voltage meters

into pretty-much-anything meters, I decided to give it a try.
I have an old Peugeot city bike that looks vintage (to some extent),

so I figured that it might even look quite cool with analogue speed
and cadence meters. I wanted to have two gauges, just like on a
motor bike. I had some experience with ATtiny85 and Arduino, so it
seemed like a very simple project. The breadboard prototype was
trivial. The difficult part turned out to be fitting everything together
in the voltage meter’s enclosure and mounting the devices on the
bicycle’s handlebars.

Initially, to mount the gauges, I decided to use worm gear
clamps. They held the gauges quite well but were difficult to use
and often scratched the handlebars. The newest version (not yet
published or even photographed) will use plastic bands taken from
CatEye’s bicycle headlamps – they are much easier to work with
and look better.

Another challenge was power consumption. The CR2032 battery
is small, cheap and light, but it also has very limited capacity
(~200 mAh). It quickly turned out that the ATtiny85 along with a
switching voltage regulator consumed quite a lot of power. I did not
want the meter to have an on/off switch so I needed a way to reduce
power consumption, especially when the bicycle was stationary.
Reducing power consumption of the ATtiny85 was easy – it runs
at 1MHz and is put to sleep when the speed or cadence drops to
zero. The voltage regulator that I decided to use has a shutdown pin
so it can be deactivated. However, even after shutting down it still
consumes power and, in fact, it consumes more than the ATtiny85.
In the end, the gauges should work on a single CR2032 battery for
about three to four months. That’s not bad but not too good either.

The gauges are currently being tested on a new bicycle – a large
and heavy Schwinn cruiser that not only needed some analogue
speed and cadence gauges but could also use some automatic lights
and maybe a security system… More is definitely to come.

T
By Grzegorz Hołdys

Utterly hipster
bicycle speed and
cadence gauges

InsightMachinesLab

http://hsmag.cc/JBGDAz).
https://www.facebook.com/InsightMachinesLab/

SPARK

7

Above
Now find the coolest
bike you can find
to give these
gadgets the wheels
they deserve

SPARK

8

Top Projects

REGULAR

Right
The boards even
change to make the
ghosts an edible blue

9

SPARK

Pac-Man Halloween
’m an architect living in Philadelphia with my family. I have
always been a tinkerer, curious how things work and how
to make them on my own. I mostly work on making things
that both fill that curiosity and apply to my work as an architect,
which is now focused on VR, AR, and writing custom tools for
our 3D software.

Halloween is a good chance to try making something or using
something that I haven’t tried before. Last year we added LED strips
as accents to silver clothes to look like some glowing retro silver
space alien people. The costumes looked great and I liked the addition
of lights to the costumes.

This year we knew we wanted to do something with LEDs again
but we weren’t sure what. While trying to come up with an idea, my
daughter suggested Pac-Man characters. She had just been playing
the Namco classic at a birthday party at a bowling alley. Once she
suggested that, we ran with it.

Since we wanted it to be family costumes, it was perfect since
there are enough characters and we could all be different. I would
be Pac-Man, my wife Ms. Pac-Man, my daughter Pinky, and my
son Blinky.

I wanted the costumes to look like they came right out of the
arcade game. I wanted them to be animated and for each pixel to
be legible.

I designed the framework of the panel in the 3D modelling program
Rhinoceros by McNeel. We have a laser cutter at my office and I used
it to cut out the framework in ⅛” (3 mm) cardboard. The whole panel
comprises the base, the slats, and the cover. The base and slats are
made of the cardboard and designed so they all slide together, which
minimises the need for gluing. The cover is made of drafting vellum,
a type of paper.

The lights are strings of individually addressable 12 mm DC5V
WS2811 LEDs that are more typically used in outdoor signage. They
are inserted into 12 mm holes cut into the base. The slats create the
pixels and the vellum diffuses the light to create each pixel.

The LEDs are driven by an Arduino UNO R3. The code is written,
compiled, and uploaded to the board with the Arduino IDE. I used the
FastLED library (fastled.io) to control the LEDs. It’s a simple and easy-
to-learn library for Arduino that is specifically made for programming
individually addressable LEDs.

The LEDs and Arduino are powered by a DC 5 V battery pack (a
portable phone charger) and a USB to DC adapter. I did tests on two
chargers I had lying around. I got about 12h 40m out of 7800 mAh and
3h 40m out of the 2200 mAh capacity. For most nights out you really
only need the small chargers, which is good news.

The board and chargers are attached to the panel with Velcro and a
strap is added to make it all portable.

I
By Ben Muller @pix3lot

http://fastled.io
https://twitter.com/pix3lot

10

Top Projects

REGULAR

Stranger
Things lights

made the Stranger Things lights project to celebrate the
Stranger Things season 2 premiere, for which I hosted a
viewing party. The project is in two parts and is coded using
Adafruit’s Circuit Python.

The first part is a recreation of the alphabet wall that the
character Joyce Byers uses to communicate with her son Will

while he’s trapped in the Upside Down. I have a cycle of light routines
that loop continuously running on an Adafruit Trinket m0 board to
recreate messages from the show along with some fun light effects.

The second part is a recreation of the lights that Joyce strings
throughout her home to also communicate with the Upside Down. I
have 200 lights strung throughout my apartment that are connected
to an Adafruit Metro m0 board along with a cluster of piezo sensors.
I soldered the piezos together to basically make one giant sensor
that is hidden under a rug. When the rug is stepped on, it triggers the
lights to light up one by one followed by some startling (and strange)
light effects that last for about two minutes.

It was a really fun project to work on and if you’re interested in
making it yourself, I have a write-up on Hackster.io that goes into a
bit more detail and includes the code files.

I’m a female DIY-er on a quest to gather and share knowledge. My
handle, Blitz City DIY, is a reference to two of my favourite bands: the
Ramones and Yeah Yeah Yeahs. I love the open-source community
and how it empowers people, from beginner to expert, to learn and
create. When I’m not working on projects, I can be found hanging out
with my two adopted cats named Winnie and Harriet.

I
By Liz

Right
Prepare your home
for the coming of
the Demogorgon

@BlitzCityDIY

http://Hackster.io
https://twitter.com/BlitzCityDIY

SPARK

11

SPARK

Top Projects

REGULAR

12

SPARK

13

Plotter art

got in to plotter art when a friend in the US got an AxiDraw
plotter and I wanted one. I was worried it would gather
dust so I made a deal with myself that I was only allowed an
AxiDraw if I made at least ten pieces of artwork for it first. I
made ten and didn’t stop.

It turns out making art is great fun! I can’t draw, but I can
do maths and write code, so this is the perfect medium for me.
Watching the plotter draw some cool maths I wrote is hypnotic.

The artworks are made using custom JavaScript. For each
piece, I just write a simple function that returns a list of paths
(lists of points). It turns out you can make lots of cool shapes with
tiny functions – [my] Joy Division-inspired piece is less than 30
lines of code. I hand the paths to some Python code the AxiDraw
team wrote to generate a list of plotter instructions. It’s all open
source, though – I’m tempted to rewrite everything and talk to the
plotter directly.

The most enjoyable part of the process is usually showing off
what I made. And I love the back and forth on Twitter – lots of
my favourite work comes from mushing together other people’s
ideas and playing around.

Its also great coaching my friends through making things.
Apparently we’re all just a little mathematics away from art: no
drawing required!

I
By Seph Gentle

Right
This is Seph’s
heartbeat, on a
name badge

@josephgentle

SPARK

https://twitter.com/josephgentle

Objet 3’d art

REGULAR

14

3D printed artwork to bring more beauty into your life

Objet 3’d art

angolins are the only mammals
with keratin scales to protect
them from attackers. Of the
eight species found across Asia
and Africa, all are classified

as Threatened With Extinction by the
International Union for the Conservation
of Nature, and two are classed as
Critically Endangered.

Thingiverse user Amaochan created this
design to help raise awareness for this
little‑known mammal (hsmag.cc/ZXlYdD).
We printed this using the PolyWood
filament (by Polymaker).

P 3D
PRINTING

Head to 3dhubs.com
for local 3D printing services

Supplied by

http://hsmag.cc/ZXlYdD).
http://3dhubs.com
https://www.3dhubs.com

he interplay of transparent
filament and light can lead
to some great effects. Here
we’ve printed a biologically
inspired lamp holder using Green

Transparent ColorFab PLA/PHA. You can
create your own lamp using the files shared
by Thingiverse user Nervoussystem at
hsmag.cc/wKANqO.

For a similar, but personalised, lamp,
you can tweak this design using the
CellCycle web‑based tool at
n-e-r-v-o-u-s.com/cellCycle. This lets
you alter the parameters that are used to
generate the cell structure in the ring.

T

15

SPARK

http://hsmag.cc/wKANqO.
https://n-e-r-v-o-u-s.com/cellCycle/

Meet The Maker

REGULAR

16

rinted circuit boards are mostly green
rectangles. The copper traces carrying
current to the various components go in
straight lines – and the various resistors,
capacitors, and chips line up in nice
neat rows. Nothing about this is based

on aesthetics. Electrons don’t care what colour your
solder mask is, nor do the components worry about
being lined up. Boldport founder Saar Drimer frees
circuits from this visual monotony.

PCB design software is part of the problem: it helps
users build functional boards, not beautiful ones.
Unsatisfied with the available options, Saar built his
own: PCBModE, which converts between SVGs (which

P

Meet The Maker:
Boldport

can be created using most vector drawing programs)
and Gerbers, which are sent to PCB manufacturers.
Freed from the constraints of CAD software, he’s been
able to unleash his creativity on the boards he makes.

Saar isn’t the only person who appreciates
good‑looking boards. He’s started a subscription club
to share his designs with the world. Each month, he
packs up a board and components into a soldering
kit that he sends out to subscribers. Launching in
2016, the club has already grown beyond Saar’s
expectations and Boldport has had to take on a new
member of staff (Ben Barwise) to help keep up with
demand. You can see all their work (and sign up for
membership) at boldport.club.

Right
An Arduino-
compatible board that
fits in a breadboard …
or a coral reef

The company that melds art and PCB fabrication

www.boldport.club

17

SPARK

Above
The first Boldport Club
project was a tribute to
circuit designer Bob Pease

Above
The MOSTAP project
uses a 40-year-old circuit
to provide a touch-
sensitive input

Below
The Monarch uses a shift
register and logic gates to
make the LEDs flutter

Im
ag

es
 c

ou
rt

es
y

of
 E

rb
sl

an
d

 A
rt

, e
rb

sl
an

d
-a

rt
.c

o
m

http://erbsland-art.com

Lucy Rogers

COLUMN SPARK

ack when I started school,
aged five, everyone had a
hand-knitted jumper. Often
it was made especially and
tailored to fit. By the time
I was ten, you were teased

if you had one – could you not afford to
buy one ready-made? Handmade items
were often seen as second best. People
who made things for a living seemed
to be a dying breed. Making was not a
career path.

When young, we are encouraged to
make things. Give a group of six-year-
olds a pile of junk
(empty washing-
up liquid bottles,
cardboard tubes,
etc.); add some
tape, shiny paper,
and a few pipe
cleaners and the
creations will be
fantastic. Rockets,
castles, robots,
dragons, trains –
children will have
fun and let their
imaginations
run wild.

When it was discovered I had the
genetic make-up and attitude for
academia – which meant I did well
at exams – the opportunities to make
creative things at school diminished.
You were either practical or academic.
Not both.

Fortunately, I gained a lot of practical
skills outside of school. At home I was
surrounded by people who made things.
I was also a member of the Girl Guides

and later Scouts – where using the
available resources to solve a problem
was encouraged. I found that here I
could combine my academic knowledge
with my practical skills. This is when I
became a maker.

Our day jobs can stifle creativity,
and making is limited to only a few
professions. A manager’s role is
often to make sure things are done
to specification – without variation
or improvement.

But making can be a hobby as well as
a profession. Homemade, bespoke, and

artisan products
are becoming
cool. Making
is on TV. There
are local craft
markets. Websites
such as Etsy are
thriving. People
are not only
making things but
others are buying
these things.

From knitters
and potters to
computer and

electronics experts, people now share
skills and ideas on the internet in videos,
blogs, and even social media. Physical
meeting places such as hackspaces and
other community groups allow people to
share tools, skills, and ideas face to face.

Making is something we can all enjoy.
We don’t have to make a junk model to
unleash our inner child – to be open to
ideas, use our imaginations and have
fun – but we could…

How do you celebrate the joy of making?

The joy of making
Making stuff is a form of play
– so let’s break the rules and have some fun

Lucy Rogers
@DrLucyRogers

Lucy is a maker, an engineer,
and a problem solver. She is
adept at bringing ideas to life.
She is one of the cheerleaders
for the maker industry and is
Maker-In-Chief for the Guild of
Makers: guildofmakers.org

B

Making is something
we can all enjoy. We
don’t have to make a

junk model to unleash
our inner child – to

be open to ideas, use
our imaginations, and

have fun

18

https://twitter.com/DrLucyRogers
http://guildofmakers.org

Bunnie Huang

COLUMN

19

SPARK

uct tape is one of those
things you’ll find in
virtually every toolbox. It’s a
jack of all trades but master
of none, so despite being in
every engineer’s workshop,

you’d be surprised to open a consumer
product and find that it’s held together
on the inside with duct tape.

The Raspberry Pi is in many ways
the duct tape of computing. I’ve come
to find it indispensable in the lab –
its a GPIO-to-internet box that’s also
powerful enough to host and compile
complex Git
repositories.
Furthermore, its
native toolchain
can directly
target most ARM-
based embedded
projects. As a
result, I’ve retired
most of my
JTAG dongles:
why carry
around a USB
adapter when I
can get a fully
fledged development environment and
JTAG-over-GPIO (via openOCD) that I
can SSH into?

The Raspberry Pi is also cheap enough
that I can afford the convenience
of a new module for every project,
rather than attempting to extract the
board from the unruly tangle of wires
that inevitably sprouts from its GPIO
headers. And it’s available enough that I
can count on getting a new one almost
anywhere in the world. This last point

is crucial: the friction-free supply chain
for Raspberry Pis mean I can do design
in Singapore, demos in the USA, and
development in China on the spur of the
moment, without spending an arm and
a leg on courier fees.

Like duct tape, the Pi isn’t perfect
for everything – its strength comes
from its versatility and availability. The
turnover rate of new Pi models can be
frustrating; they’re almost but not quite
perfectly cross-compatible between
models. The form factor and connector
layouts are also a bit clumsy, and there

are situations
where I’ve
wished for more
I/O capability.
They also have
a tendency to
fail at the worst
times, which is
why, whether
I’m walking into
a big demo, or
venturing out
to Burning Man,
I’m sure to pack
a spare Pi plus

backup copies of the SD card image.
If the Pi is the duct tape of computing,

Arduinos are like Scotch tape – great for
light applications around the home; and
the industrial SOMs are like specialty
adhesives – perfect for their intended
application, but too specific for the
toolbox. And so, despite being designed
originally for the education market, the
Raspberry Pi’s versatility and ubiquity
has earned it a place in this engineer’s
toolbox, right next to the duct tape.

Raspberry Pi: the duct
tape of computing

Versatility is a feature: why the Raspberry Pi is still useful

Bunnie Huang

Andrew ‘Bunnie’ Huang is a
hacker by night, entrepreneur
by day, and writer by
procrastination. He’s a
co‑founder of Chibitronics,
troublemaker‑at‑large for the
MIT Media Lab, and a mentor
for HAX in Shenzhen.

D

If the Pi is the duct tape
of computing, Arduinos

are like Scotch tape
– great for light

applications around
the home; and the

industrial SOMs are like
speciality adhesives

@bunniestudios

https://twitter.com/bunniestudios

MegaBots

FEATURE

20

Robot battles go super heavyweight

Mecha Death

T his is robot fighting on a scale we haven’t seen
before. Two teams, MegaBots from the USA and
Suidobashi from Japan, have squared off in the first
giant robot duel. The event took place in secret and
was shown to the public on 17 October. While robot
battles are nothing new, these machines were huge

(the biggest being MegaBots’ Eagle Prime at 12 tonnes) and the
machines carried their operators.

While the action wasn’t quite as fast-paced as smaller robot
fights, the sheer scale of everything happening was impressive. The
bots carried both hand-to-hand and projectile weapons, which led to
a range of different tactics as the two teams tried to work out what
strategies could take down machines of this size.

Watch the action for yourself at:
youtu.be/Z-ouLX8Q9UM

SPARK

http://youtu.be/Z-ouLX8Q9UM

21

While this was a one-off battle, MegaBots are looking to start a league
of live giant robot combat events. As we go to press, there aren’t yet
details of what this will entail, but they have aired a test fight between
Iron Glory and Eagle Prime in which they tried out different combat
styles that could be used. Stay up-to-date with the latest developments
at megabots.com.

Robot fighting comes in all shapes and sizes. The most famous are
Robot Wars (in the UK) and Battlebots (in the USA), but there are other
mechanical combat disciplines and fights around the world. Generally,
robot fighting is split into weight classes, with the smaller classes being
more accessible to hobbyists as they don’t require as much metalwork.
Smaller robots such as the antweight class (known as fairyweight in
the US), which have to be under 150 grams, are often 3D printed.

For more details on local rules and competitions take a look at
fightingrobots.co.uk for the UK
or robotbattles.com in the US. Im

ag
es

 M
ic

ha
el

 M
au

lin

http://megabots.com
http://fightingrobots.co.uk
http://robotbattles.com

Hackspace of the month

REGULAR

22

veryone has within them the instinct
to create, as well as the human need
to be around people with similar
interests to us. But not everyone has
a garage, shed or spare room (or the
space and money for a CNC router, laser

cutter, welding equipment etc). And so the ancient
ones created the makerspace: a kingdom where all
could come and unleash their creativity on the world.

Except, it isn’t like that. If you have a place you can
go to solder components together and build whatever
you next project might be, it’s not because someone
else came along and made the space for you. You and
your group have most likely had to beg, borrow and
scrounge tools, made do with cast-offs, and hunted
high and low for a suitable building to work in. And
then there are the arguments about who empties the
bins, who tidies up, who orders more printer filament
when it’s running low… it’s a miracle that maker/
hackspaces exists at all.

Which is why we’re making it our mission to
highlight a makerspace every issue, to inspire others,
to give pointers and to show off. We want to hear
from you, about what you’re doing and why you’re
doing it, but just as importantly we want to know how
you curate the space itself. Here’s what we want to
know about your hackspace…

E

Hackspace of the month:
Your Hackspace!

WHEN DID YOU START?
An obvious one this, but it’s good to kick off with the
basics. What we’ve found is that a lot of makerspaces
with an impressive output, a lot of tools, and some
great-quality builds have only been around for a
couple of years. If you’re new to anything, there can
be a natural reluctance to put yourself forward, but
we want to hear from everyone, no matter whether
you’re just starting or have been around for years.

WHO IS IT FOR?
Some makerspaces spring up in university towns, as
a way to channel the creative direction of ex-students.
Some grow out of a local employer that might have
tools or space to hire cheaply, and some are the
results of random chance throwing the right people
together at the right time.

What all makerspaces have in common is a lot of
hard work. How did your hackspace come to be? Are
you sponsored by any local organisations? It’s easy to
say you’re for everyone, but how do you make sure
you get a mix of people?

23

SPARK

Left
Not every hackspace
is lucky enough to
have such a large
selection of tools at
its disposal (many
thanks to Cambridge
Makespace for letting
us take the photos)

Above
What software do you
use? Do you share your
source files?

Right
‘Obsolete’ hardware
suddenly becomes more
useful if you can acquire
it for free

Left
We love the smell of laser
cutters in the morning.
Stay safe!

Hackspace of the month

REGULAR

24

WHAT EQUIPMENT DO YOU HAVE?
Anyone thinking of joining a makerspace probably
fits into one of two categories: those with a project
in mind, and those who want to make something
but aren’t sure what yet. In the latter case, a large
determinant of what gets made will be what kinds of
tools you have available. It’s a good idea to have an
up-to-date list of the equipment you have, especially
the rarer or more unusual stuff.

HOW DO I BECOME A MEMBER?
Hackspaces usually have open days for non-
members, but how do you go from that to becoming
a full member?

Most hackspaces will charge a token fee, but one
person’s ‘token’ can be someone else’s substantial
investment. Do you have reduced fees for students or
the unwaged?

HOW DO YOU SHARE YOUR IDEAS?
Do you have a mailing list, IRC group, Facebook
group, Twitter, or something else? It’s natural to want
to show off (that’s how we get suggestions to make
our work better), so it’s nothing to be shy about.
Some brave souls even venture out to meet people in
real life. Does your group attend maker meet-ups?

WHAT HAVE YOU MADE RECENTLY?
If you ask anyone from a hackspace what’s going
on there, their first instinct will probably to say “all
sorts!”. Well, be specific, and give us photos! What
is it, who made it, what does it do, how did you make
it? Most importantly of all, how does it make the
world better?

WHAT TRAINING DO YOU DO?
This won’t apply to smaller groups, but if you have
potentially dangerous kit, such as welding equipment
or laser cutters, you’ll need at the very least to have
safety training. After that, it comes down to how
much time you can invest in showing new members
how to make the ideas inside their heads.

Right
Sharing a space gives
everyone a responsibility
to keep it tidy

Some makerspaces
spring up in university

towns, as a way to
channel the creative

direction of ex-students ”

”

25

SPARK

Left
People! The most
important ingredient
of any hackspace

Below
What are you working
on right now? Let
us know!

We’d love you to get in
touch to showcase your
makerspace and the
things you’re making.
Drop us a line on Twitter
@HackSpaceMag or
email us at hackspace@
raspberrypi.org
with an outline of what
makes your hackspace
special and we’ll take it
from there.

CONTACT US

mailto:hackspace@raspberrypi.org
mailto:hackspace@raspberrypi.org

with an annual
subscription

SAVE
25%

Out now for smartphones & tablets
Download the app

or£2.29
rolling subscription

£26.99
subscribe for a year

https://play.google.com/store/apps/details?id=com.apazine.hackspace
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?ls=1&mt=8

LENS
HACK MAKE BUILD CREATE
Uncover the technology that’s powering the future

It’s silver, sticky and
strong, and you need it
in your toolbox

DUCT
TAPE

64
PGPush the Raspberry Pi to the

limits of performance

ULTIMATE PI
OVERCLOCKING

48
PG

44
PG

Burns and bad joints: we get it
wrong so you get it right

WE LEARN
WELDING

Meet the hardware hackers giving life
to humble lumps of plastic and metal.

The machines are learning to think
for themselves!

INTELLIGENCE
MAKERS

PG28

38
PG

How one humble microcontroller
took over the world

THE ARDUINO

54
PG

Use your hacking skills to
make the world a better place

HELPING HANDS

58
PG

How to get paid for
making things without
selling your soul

INTERVIEW
BECKY STERN

FEATURE

28

The Intelligence Makers

this exponential growth of the maker
community. One of the greatest advances
in computing hardware has been the
proliferation of microcontrollers. A
microcontroller consists of a processor
with a small instruction set, some
memory, and programmable
input/output circuitry contained on a
single chip. Microcontrollers are usually
packaged with supporting circuitry
and connections on a small printed
circuit board.

One of the most successful and most
popular microcontrollers is the Arduino
platform, which made its debut in 2005.
It was originally aimed at hobbyists who
needed an affordable microcontroller

to make their projects more interesting.
Thanks to its ease of use and versatility,
the Arduino quickly gained the attention
of a larger audience and a wider variety
of projects. In fact, together these
microcontrollers and single-board
computers like the Raspberry Pi, Banana
Pro, BeagleBone Black, CubieBoard and
others have brought traditional resource-
intensive fields like artificial intelligence
and robotics into the realm of the
scrubby DIYer.

In this feature we’ll look at some
projects that haven’t just used these
embeddable computing platforms
intelligently, but have used them to build
real intelligence into their creations.

hen the Raspberry Pi
was first launched in
2012, it was designed
as a way for kids to
learn to code without

spending oodles of money. It wasn’t
long before tech-minded DIYers realised
that the puny little device has enough
processing power and functionality for
an array of different fun and practical
home projects. Arguably, the explosive
growth of the Raspberry Pi is because of
the hobbyists, who have been hooking up
all kinds of actuators and sensors to build
cool new things.

But the Raspberry Pi isn’t the only
single-board computer (SBC) fuelling

W

Th
e INTELLIGENCE

Makers
An increasing number of DIYers are giving

their projects a mind of their own

29

LENS

Why settle for a smart home when
you can have an intelligent one?

he Internet of Things (IoT) is
pitched as the ultimate upgrade
that’ll turn your house into
a smart home. The everyday

household devices are all connected to the
internet and to each other and together
will automate mundane tasks such as
replenishing the detergent and restocking
the kitchen. While such a level of home
automation isn’t quite yet available to the
masses, you can build upon the work by
the bunch of trailblazers that are building
intelligence into various aspects of their
daily chores.

NURTURING NATURE
When Shenzhen-based hardware
facilitation company Elecrow had
to move out of its old office, it
couldn’t trust its neighbours to take
care of its potted plants. So Elecrow
designed a plant watering system to
keep an eye on the moisture levels in
the pots and automatically water them
when they’re too dry. It has refined its
original design and the new one
(hsmag.cc/HhpgXb) is easier to cobble

together and can water up to four plants
with one node.

The system uses inexpensive
soil moisture sensors in each pot, a
water pump, and a couple of servos
to control the distance and angle of
the water spray. The components are
controlled by the company’s home-
brewed Crowduino Uno, which is an
Arduino-compatible board based on the
ATmega328 microcontroller.

Elecrow has shared the code that you
can push to your Arduino Uno, along with
detailed instructions on how to connect
the soil moisture sensors and the smart
pump shield to the Arduino. Once you
have everything set up, the Arduino
microcontroller will keep an eye on the
readings from the soil sensors. When it
detects a drop in moisture levels in any of
the plants, it’ll move the watering assembly
to the pot that’s dry and activate the pump
to spray the plant. You can tweak the
code to modify the parameters as per the
physical setup of your plant pots.

Saddam Khan has built upon this design
and added the SIM800 GSM module

(along with a voltage regulator) to the
configuration (hsmag.cc/emevVp) to send
regular alert messages with the reading
from the soil sensor along with the status
of the water pump. In true DIYer style, he
has also described the procedure to create
your own simple soil moisture sensor.
In addition, he’s explained the workings
and the code that drives the system in
great detail.

TRICK THE TREAT
We all love our pets and it kills us to
leave them home alone. John Saunders,
who owns the NYC CNC machining and
prototyping shop, cobbled together a
machine (youtu.be/PAHrBA0jYAo) for his
two-year old Vizsla dog named Judd that
dispenses treats whenever Judd receives
an email.

Inspired by John’s design, Walter
Miraglia created a version of his
own (thingiverse.com/thing:2187877)
that is much simpler to put together. In
Walter’s version you send an email to
your pet’s email address. The system
checks for email every ten minutes or
so and if it finds any new unread emails,
it dispenses a treat. It then waits a few
seconds before snapping a picture of
your pet munching the treats. The system
then replies to the yet unread emails and
attaches the recently snapped picture.
Finally, it marks the email as read, to
prevent it from falsely triggering the treat-
dispensing system.

Both John’s and Walter’s systems are
powered by the Raspberry Pi. Walter
combines it with an Arduino Mini to
control the servo motor that drives the
auger to dispense the treats, as well as
some LEDs to signal incoming treats.

T

Intelligent IoT

Right
There’s plenty
of room on the
Arduino to add all
sorts of sensors.
You can check the
level of water in
a dish and refill it
to make sure your
quadruped friends
are never thirsty

Credit
Instructables.com

http://hsmag.cc/HhpgXb
http://hsmag.cc/emevVp
http://youtu.be/PAHrBA0jYAo
http://thingiverse.com/thing:2187877
http://Instructables.com

The Intelligence Makers

FEATURE

30

othing speaks intelligence like
speech itself. Grant Gibson’s
toddler enjoyed Toy Story 3,
but never took a fancy to the

Talking Chatter Telephone that Fisher-
Price reintroduced to coincide with
the release of the movie. So Grant,
like any affectionate maker parent,
prised open the toy and made it come
alive by replacing its internals with a
Raspberry Pi B+, a WiFi dongle, and some
Python code.

Grant’s version of the telephone
(hsmag.cc/VLTZAA) retains the original
rotary dial, but he’s added a sensor to
detect when the receiver is off the hook
and a servo to animate the toy’s eyes.
The chatter smartphone uses JSON
format APIs to pull data from various
online services such as Rotten Tomatoes
and Forecast.io. He’s also configured a
push notification system that takes input
from a Twitter account via IFTTT. Thanks
to this, Grant’s phone automatically
announces when the International Space
Station is about to pass overhead and
when he’s left the office.

While his son has outgrown the toy in
the three years since the build, the project
still gets used, shares Grant: “Just last
month I was invited to give a talk and
demonstration to his school classmates
about this and other Raspberry Pi projects
we’ve worked on together.”

Noting the importance of cheap
SBCs and microcontrollers to the DIY
community, Grant says: “Arduino was
revolutionary for me, giving me the tools
to connect an internet-connected PC to
the physical world. What started as a
hobby – my first project was connecting
my door-bell to an SMS gateway – turned
into a career, building physical games
and machines rather than conventional

Converse with your projects

N software and websites. Raspberry Pi
took that to the next level, effectively
replacing both the PC and Arduino with a
single SBC.”

SMART COOKING
If we had a penny every time we put
the tea on to brew and forgot about it,
we’d have bought our own tea estate.
James Pavur probably had the same
problem, which is why he designed
the TeaPi to automate the process of
brewing tea (hackaday.io/project/156-
tea-pi). You just tell TeaPi for how long
and at what temperature you want your
tea brewed, and the Raspberry Pi will
activate the connected kettle, measure
the temperature, and lower the tea in
with a servo motor. Once the tea leaves
have been in for the desired time, it’ll lift
them out again.

Coffee drinker Bastian Slee took
another approach. He ripped open his
Philips Senseo coffee machine and
hooked it up to a Raspberry Pi 3
(hsmag.cc/HqFkXx). He then used Alexa
together with the AWS Lambda compute
service and the AWS IoT platform to
send voice commands to the Raspberry
Pi, which interprets the commands and
works the machine to prepare a perfect
cup of coffee.

There’s no dearth of voice recognition systems
available for the Raspberry Pi. One of the
newest and most popular is the open source
artificial intelligence system Mycroft AI. You
can run Mycroft on a Linux desktop, your
Android smartphone, and of course on the
Raspberry Pi.

The Raspberry Pi flavour of Mycroft is
called Picroft, and you can grab the .img
file and transfer it onto an 8GB microSD
card, power up the Pi, and then follow brief
instructions (hsmag.cc/glUdky) to pair it with
an online account.

You’ll also need to hook up a pair of
speakers and compatible microphones
(hsmag.cc/fTwdmS). This shouldn’t be much
of a problem since, according to the project,
Picraft works with microphones based on the
CM108 chip, which you can find inside a large
number of cheap off-the-shelf mics.

Perhaps the best thing about Mycroft is
that it’s easily extensible and you can teach it
a new skill writing some code in Python. You
can find a detailed tutorial on coding a new
skill (docs.mycroft.ai/skill.creation) and can
also look at the existing skills for inspiration
(github.com/MycroftAI/mycroft-skills).

Credit
Grant Gibson

Converse with
the Raspberry Pi

Right
Grant commissioned
a voice actor to
record the voice
options for the
smartphone
in the voice of
Teddy Newton

Auditory Intelligence

http://hsmag.cc/VLTZAA
http://Forecast.io
http://hackaday.io/project/156-tea-pi
http://hackaday.io/project/156-tea-pi
http://hsmag.cc/HqFkXx
http://hsmag.cc/glUdky
http://hsmag.cc/fTwdmS
http://docs.mycroft.ai/skill.creation
http://github.com/MycroftAI/mycroft-skills

31

LENS

They’ve got an eye on you

O

Makers have utilised the power of vision on a variety of projects built with SBCs like the Raspberry
Pi. Intel recently unveiled the Movidius Neural Compute Stick (NCS) (developer.movidius.com) that
reduces the wizardry to a plug-and-play USB stick. Just plug the NCS stick into the USB port of
the Raspberry Pi to give it the ability to identify the objects it sees through the camera. The image-
recognition task is offloaded to the stick, which frees up the processing power of the Raspberry Pi
for other tasks. The £69.99 stick consumes very little power and has 12 SHAVE processor cores in the
Myriad 2 Vision Processing Unit (VPU) at its disposal for lightning-quick object recognition.

While initially the stick’s SDK only supported a 64-bit Ubuntu 16.04 desktop installation, in
August 2017, Neal Smith, Senior Software Engineer at Intel, announced support for the Raspberry
Pi and also uploaded a video and a guide for users to sample the NCS’s image recognition
capabilities (hsmag.cc/jTlQIF).

ne of the most popular
applications of artificial
intelligence is the detection
and recognition of faces.

SBCs like the Raspberry Pi have enough
horsepower to run the Open Source
Computer Vision library (OpenCV) which
is a collection of programming functions
that allow computers to see.

Tony DiCola combined the Pi and
OpenCV to build a treasure box that
unlocks only when it detects a known
face (hsmag.cc/TZOYiU). The treasure
box uses the official Raspberry Pi Camera
Module to capture your image when you
press a button to unlock the box. If it
recognises the face, the box will ask the
small servo to rotate the latch and unlock
the box.

Instead of a camera and OpenCV, Sam
Brown uses the Walabot sensor that can
look through walls and track moving
objects to prank trick-or-treaters
(hsmag.cc/duWxRG) as they approach
your house. Using the Walabot Pro,
he designed the tracker to peer right
through the front door and look out for
the Halloween visitors. As they make
their way to the front door, it’ll pounce on
them with scary sounds and customised
messages depending on their number and
how close they’ve come.

EYE SPIES
You can take the image recognition skills
up a notch with the Clarifai API, which
helps computers recognise images. Greg
Voronin paired the Clarifai API with Mycroft
to build a Smart Eye atop a Raspberry Pi 3
that can recognise the objects placed in
front of it. He built the project in two stages.
Initially he used Picroft, Mycroft’s version
for the Raspberry Pi, to invoke the camera
and snap a picture of the object. It was then

sent to Clarifai for processing and Picroft
subsequently spurted out any associated
tags and concepts.

Buoyed by the success of the project,
Sam then read about natural language
generation (NLG) and used Python’s
Pattern module to turn those tags into a
simple sentence. So the second version
of the Smart Eye (hsmag.cc/quEyNT) can
describe the objects placed in front of it
in simple sentences, like “I see a watch”.
You can also ask it whether it sees a
particular object, like “Do you see a cat?”
For this task, it first separates the nouns
and adjectives from your query and then
compares them with the ones it received
from Clarifai.

While there are other image processing
libraries, Greg chose Clarifai because of
its ease of use. “With Clarifai you can
concentrate on the application, and not
have to work out the AI details unless
you want to, [which makes it] ideal for
makers,” he explains.

Capitalising on the computer’s ability
to replicate the behaviour of the human
eye, a group of four engineers and makers
are working on a project to help visually
challenged folks navigate the world
independently. While they aren’t the

first to use technology to assist disabled
people, the team have been able to
miniaturise the entire system to fit on a
pair of sunglasses thanks to off-the-shelf
SBCs. Their prototype, called Visioneer,
uses a couple of cameras, and sensors
such as accelerometers, to enable blind
people to sense their environment via
a bone conductor that doesn’t interfere
with their ability to hear. The captured
raw data is first processed through a local
neural network and OpenCV before being
turned into vibrations, and the entire
operation is managed by the minuscule
Raspberry Pi Zero.

The group has published Visioneer’s
entire build process (hsmag.cc/xSYeUy)
and is competing for this year’s
Hackaday Prize.

Above
If the Visioneer team win the Hackaday Prize,
they plan to use the award money to improve the
prototype and even market it as a visual aid

Credit
Debbie Leung,
Visioneer

Plug and play AI

Visual Intelligence

http://developer.movidius.com
http://hsmag.cc/jTlQIF
http://hsmag.cc/TZOYiU).
http://hsmag.cc/duWxRG
http://hsmag.cc/quEyNT
http://hsmag.cc/xSYeUy

The Intelligence Makers

FEATURE

32

lugging sensors into the
projects and interpreting their
results is a more rudimentary
type of intelligence when

compared to interpreting sights and
sounds, which represent a more complex
source of sensory input.

At the Maker Faire 2010, Steve
Hoefer programmed a gumball machine
(hsmag.cc/KgNcIP) to dispense treats
only when someone knocked a particular
pattern, which in this case was the
popular ‘Shave and a Haircut’ pattern.
The machine uses a piezo sensor to pick
up the sounds from a knock-panel, that
are then interpreted by the Arduino.
When it detects the correct rhythm
(ignoring tempo, so the speed of the
pattern makes no difference), the Arduino
asks a servo motor to release the treat.

Who knows when, where and what

Spatial Awareness

P PATTERN RECOGNITION
In the same vein as the secret knock
gumball machine, Zack Schollz trained
his Raspberry Pi to recognise patterns
as well. But it did so while he played the
piano and after a while Zack’s PianoAI
(rpiai.com/piano), true to its name,
automatically started filling in style-
appropriate tunes as Zack’s duet partner!
In the video he’s posted, Zack jams on
the piano for about 20 seconds before
the PianoAI takes over the melody in
between Zack’s pauses.

Zack has detailed the process of
writing the AI in great detail. He initially
used Python but then moved on to Go
because of its speed. He also tried using
neural nets and then experimented
with a few different pattern-recognition
algorithms before settling on a modified

Markov chain algorithm that he tweaked
as per his own style of playing the piano.
He has also posted several videos to
give us a sense of the evolving skills of
the PianoAI.

Staying on the theme of picking
up patterns, when Nikodem Bartnik
became interested in robotics, he
built an object-tracking robot
(hsmag.cc/LwBgwf) that picks its target
based on a colour (red in this case). He
placed an Android smartphone on the
robot that passes everything its built-in
camera sees via a custom app to the
OpenCV library for processing. The
app calculates the arithmetic average
to home in on the colour it’s tracking.
This information is then sent to the
on-board Arduino that guides the robot
to the object.

Below
Debashish believes
that SBCs and
microcontrollers are
helping hobbyists
and DIYers become
active participants
in the evolution
of technology

Credit
Debashish Buragohain

http://hsmag.cc/KgNcIP
http://rpiai.com/piano
http://hsmag.cc/LwBgwf

33

LENS

 Other people have adapted this
into object-tracking robots of their
own. One created by Rohan Juneja
(hsmag.cc/UqYvvn) uses the official
Raspberry Pi Camera Module instead of
the Android phone and processes the
image with a Raspberry Pi.

Karl Kangur, along with fellow
students Marcel Starein and Chun Xie,
used OpenCV’s image recognition
capabilities to build a litter-collecting
bot (hsmag.cc/IpPEDk) as part of their
Master’s degree semester-end project.

Their autonomous robot is capable of
exploring the area while avoiding any
obstacles. It can also detect bottles and
then use the simple bottle storage system
designed by the trio to retrieve and bring
the bottles to a designated storage area.
Their recycling bot uses four infrared

sensors to detect obstacles and the
PiCamera Python module to detect
discarded bottles. Karl and his team
won the competition – between five
teams of students – and have also
published a detailed paper on their
project (hsmag.cc/taJITy).

FIST BUMP
In his quest to get to grips with
Arduino, Debashish Buragohain
built a robot car (hsmag.cc/wOdSlA)
that understands voice commands,
can answer simple questions, and is
equipped with the HC-SR04 sensor to
avoid obstacles.

The HC-SR04 emits ultrasonic sound
waves and records the time it takes for
them to bounce back from an object
like a wall. The Arduino then calculates
the distance to the obstruction and asks
the robot to stop moving if the distance
is less than 30 cm. It then changes
direction towards the left or the right
depending on which side has the greater
obstruction-free space.

Below
Using OpenCV
image recognition,
Nikodem’s robot is
able to track and
follow red objects

Credit
Nikodem Bartnik

Below
Nikodem has made
minor modifications
to his original
design, such as
the aluminium
smartphone
holder, but plans
to implement
more substantial
changes soon

Their autonomous robot is capable of exploring the
area while avoiding any obstacles. It can also detect
bottles and bring them to a designated storage area

http://hsmag.cc/UqYvvn
http://hsmag.cc/IpPEDk
http://hsmag.cc/taJITy
http://hsmag.cc/wOdSlA

The Intelligence Makers

FEATURE

34

The robot can also be controlled
through an Android smartphone
over Bluetooth by using the phone’s
built-in accelerometer.

The 13-year-old maker wants to
install a PCB in order to make the
batteries last longer.

He also wants to give his robot new
capabilities such as the ability to find
its way around a maze, track faces and
more, but is restricted by the lack of GPIO
pins on the Arduino Uno. Debashish
says he’ll first have to switch to “a more
capable board like Arduino Mega 2560 or
Raspberry Pi” before he can implement
other features while still keeping the price
of the robot within reasonable limits.

 Another teenager, Tamas Imets
has been building things for over
a decade and has created several
ground as well as aerial robots. His
latest is the intelligent flying robot
drone (hsmag.cc/tBxoWa) that can

track faces and objects and can even
avoid obstacles.

Tamas’s inspiration for the quadcopter
came from a nasty bike accident in 2016 in
which he lost a lot of blood before he was
spotted by a couple who called emergency
services. His drone uses the Pi Camera
Module to follow a red ball or his face. A
Python script, running on a Raspberry Pi
Zero W on board the drone, captures the
different shapes and then controls the
flight path depending on what it’s been
trained to spot. Tamas hopes one day
his drone will be able to rescue people
stranded in the mountains. He’s also
shared code for using an Arduino-based
MultiWii controller in case you want to
control the drone manually.

FINDING THEIR FEET
Then there’s Renee Glinski. She’s
a prolific roboticist, but her right of
passage to robotics was the self-

Teenager Tamas Imets
has been building
things for over a
decade and has created
several ground as well
as aerial robots

Inexpensive yet powerful single-board
computers have reshaped the robotics
landscape not just for the hobbyists but for
researchers and educators as well. “When I was
in graduate school (late 1990s and early 2000s),”
says Brian Gerkey, CEO of Open Robotics,
”getting a decent computer on a mobile robot
meant using expensive industrial hardware
like PC-104 stacks, building a custom machine
around a smallish desktop system board and
then figuring out how to power it, or using a
laptop that would inevitably be borrowed for
another purpose. Now you can build a robot
like the TurtleBot 3 Burger around a low-cost
but very capable computer like the Raspberry
Pi 3 and power it with a USB cable. This trend
will accelerate as robotics continues to benefit
from the descendants of technology originally
designed for the mobile device market.”

Open Robotics produces the Robot Operating
System (ROS) which is one of the most popular
open source middlewares. While you can write
some Python code to automate certain simple
tasks, complex robotics needs a middleware
software ‘glue’ that binds the hardware and
makes it easier for robot builders to program
their creations. ROS came to life in 2007 at
Stanford University and then matured in the
Willow Garage incubator before the team
handed over the BSD-licensed code to
Open Robotics.

Juan Miguel Jimeno heads the
Linorobot project (linorobot.org), which
publishes specifications for a collection
of open source ROS-compatible robots
to students, developers, and researchers.
Juan believes that the affordable computing
platforms “allow DIY roboticists to run their
own robot application on a homebrew
platform and leverage ROS’s powerful robotics
development framework. This breaks a lot of
barriers, especially for students, in accessing
sophisticated and complex software applications
that run some of today’s advanced robots like
Atlas and NASA’s Robonaut.”

Fuelling the growth of
open source robotics

Right
This Linorobot has an
Ackermann steering
geometry and runs on
a Raspberry Pi 3 and
XV11 lidar sensor

Credit
Juan Miguel Jimeno,
Linorobot

http://hsmag.cc/tBxoWa
http://linorobot.org

35

LENS

balancing robot she named Eddie
(thingiverse.com/thing:694969). She
built it using SparkFun Blocks and it’s
powered by the Intel Edison Compute
Module. Eddie runs Yocto Linux and you
can clone its balancing code from GitHub
(github.com/r3n33/EddieBalance). The
self-balancing robot can carry a variety of
loads and adjusts accordingly. Renee has
also posted impressive videos of Eddie
going up and down slopes without losing
balance. You can drive your Eddie via
remote control over WiFi, or even out of
sight with a first-person view camera that
streams to a web browser.

A bunch of engineering students
have also created a self-balancing
robot (hsmag.cc/yDPchl) that uses an
accelerometer and a gyroscope to feed
data to the on-board Arduino, which
also drives the motors to keep it upright.
To keep their two-wheeled Segway-like
robot from toppling over, they need to
measure the roll or the angle of inclination
of the robot, and then drive the motors
in the opposite direction to negate the
roll and maintain a vertical position.
They’ve described the advantages and
disadvantages of using the accelerometer
and the gyroscope to measure the angle
and how they’ve used them both with two
algorithms. The guys want to extend this
to a self-balancing bicycle.

GAME ON
Programming an autonomous robot to
traverse a maze and then retracing the

shortest path is a wonderful example
of artificial intelligence. It took Patrick
McCabe three attempts to finally design
a robot that could find its way around a
non-cyclic line maze (hsmag.cc/aNqOyw).
His robot uses the well-documented ‘left
hand on the wall’ algorithm to traverse
the maze. However, it was the second
trick of optimising and shortening the
path it travelled which was a bit trickier
to implement. Patrick’s explanation
of the algorithm makes for a nice,
informative read.

The robot is driven by an Arduino
microcontroller that uses a reflectance
sensor, which emits an analogue
voltage based on the amount of
infrared light that is being reflected
from the surface. The Arduino interprets
the voltage feedback from the sensor

Left
The bottle-recycling
bot’s project report
makes for an
informative read
as it discusses
various strategies for
aspects of the build,
such as movement
and object detection

Credit
Karl Kangur

and controls the motors to keep the robot
on the straight and narrow.

If you want an AI you can go up against,
follow Juan Pedro and Jose Julio’s guide
to put together an air-hockey-playing
robot (hsmag.cc/rXlvDO). Their robot
‘sees’ through a custom app that’s
running on an Android phone mounted
over the air hockey table. The app helps
it analyse and predict the trajectory
of the puck and also makes decisions
to either attack or defend in real time.
Once the app has made its decision, it
communicates with an Arduino Leonardo
mounted on the table, which in turn
drives the two stepper motors to control
the movement of the robotic pusher. The
robot is capable of both attacking and
defending and you can use the Android
app to adjust its difficulty level.

At the start of 2017, Google announced its plans to bring its artificial intelligence, machine learning,
and other developer tools to the Raspberry Pi. In early May the firm released the Voice HAT (Hardware
Attached on Top) board that adds AI voice recognition to the Raspberry Pi 3. In essence it allows
you to interact with a Raspberry Pi 3 in pretty much the same way you do with the Amazon Echo or
Google Home.

Initially launched as a free accessory with the print edition of The MagPi issue #57, the Voice HAT
leverages Google Assistant’s SDK along with the Cloud Speech API. The issue’s kit included the Voice
HAT add-on module, a speaker, microphone, cables, button, and a cardboard enclosure to put it in.

The Voice HAT is part of a bigger Google initiative dubbed AIY, or Artificial Intelligence Yourself,
and Google has announced that it is working on more artificial intelligence projects to follow its Voice
Kit for Raspberry Pi. The Voice HAT allows tinkerers to familiarise themselves with a voice interface.
“We’ll soon bring makers the ‘eyes’, ‘ears’, ‘voice’ and sense of ‘balance’ to allow simple, powerful
device interfaces,” wrote Billy Rutledge, director of AIY Projects at Google in a blog post. In the same
post, he shared some of the ways DIYers were extending Voice HAT into their own projects.

A hat tip to Google

http://thingiverse.com/thing
http://github.com/r3n33/EddieBalance
http://hsmag.cc/yDPchl
http://hsmag.cc/aNqOyw
http://hsmag.cc/rXlvDO).

The Intelligence Makers

FEATURE

36

achine learning helps
whatever implementation of
artificial intelligence you’re
using to improve its own

algorithm by processing a large amount
of data. One of the most popular tools for
helping computers decipher what they
are looking at in a way that’s intelligible
to machine learning is TensorFlow. It’s an
open source library released by Google
in 2015 to build and train deep learning
models. TensorFlow has been trained
by Imagenet, which catalogues several
million images.

 It takes an awful lot of computing
power to create a machine learning
model to do something like recognise
images. To assist makers, however,
Google has released several reference
models that ship with the TensorFlow
library, and makers can then use these in
their builds.

John Naulty, whose San Francisco
neighbourhood has a two-hour parking

To boldly go where no program has gone before

Learning Machines

M limit, used TensorFlow to keep an eye on
the meter maids whenever he’s working
from home.

He wrote the Meter Maid monitor
(peoplesparking.space) during the
TechCrunch Disrupt Hackathon,
to combine TensorFlow’s image
classification capability along with a
motion detection and speed measuring
program running on a Raspberry Pi.

When the Pi’s camera detects an image
of a moving car in its field of view, it
snaps it and passes it to TensorFlow
for analysis using its trained data to
recognise the meter maid vehicles. If
the snapped image is a valid match, it
uses Twilio to send a message to John’s
phone with the image of the captured
vehicle for verification.

EYES ON THE ROAD
When Asad Zia bought a Honda Civic
that lacked the company’s proprietary
driver assistance system, he decided
to create his own with the help of
TensorFlow. Asad’s implementation
(hsmag.cc/SknPfC) provides pre-collision
alerts and can also detect pedestrians. It

relies on images snapped
from both the car’s

camera as
well as from
a Walabot,
and alerts
the driver if it

encounters an object of interest in the
same spatial coordinates. Walabot has
several scan profiles or modes for different
use cases. This project uses the sensor
profile that takes high-resolution images at
a slower capture rate. This mode provides
image data in the spherical coordinates
that his script first converts to Cartesian
coordinates. The entire system is
powered by a Raspberry Pi while the alert
mechanism runs on a Raspberry Pi Zero.
Asad has explained the functioning of the
hardware components and the system’s
implementation in great detail.

You can also use TensorFlow to build
a robot that’s capable of recognising
objects. Lukas Biewald has detailed
the process in an easy-to-follow guide
(oreil.ly/2d2FBZL) along with the code
(github.com/lukas/robot). His robot
is built atop a cheap £6.58 chassis by
SainSmart coupled with the Adafruit
Motor HAT mounted on a Raspberry Pi 3.
He has detailed the hardware assembly
in the guide. Lukas installed TensorFlow
and hooked it up with the Flite (Festival
Lite) text-to-speech package to allow the
robot to vocalise what it sees. The robot
includes some cheap sonar sensors to
keep it from bumping into things, but isn’t
autonomous and is controlled via a simple
custom web server written in Python.

Above
Before you enable the Donkey Car’s autopilot, you’ll
first have to train it by SSHing into the car and
driving for about ten minutes using a virtual joystick
in a web browser

Credit
Adam Conway, Donkey Cars

Below
Both Ogma
autonomous
SDCs use the
Steam controller
for initial training
and correction

Credit
Ogma Intelligent
Systems

http://hsmag.cc/SknPfC
http://oreil.ly/2d2FBZL
http://github.com/lukas/robot

37

LENS

On the other hand, Adam Conway
and Will Roscoe have put together an
easy-to-follow guide to building yourself
a self-driving racing car powered by a
Raspberry Pi (hsmag.cc/qopEcK). Their
DIY autonomous racing cars are dubbed
Donkey Cars and instead of selling
pre-built kits, the duo encourage you to
assemble your own.

Adam initially wanted to build an
OpenCV-based rover, but Will insisted on
leveraging machine-learning techniques.
Their robocar now uses TensorFlow via
the simplified Keras interface. You first
have to train the Donkey Car by driving
it around a track via a browser-based
remote control. The Raspberry Pi records
images and the steering angles, which
are then sent to an Amazon EC2 instance
that trains a TensorFlow model. It takes
several laps of data accumulation to fully
train the autonomous driving model, after
which it can be loaded onto the car for
hands-free laps around the track.

LEARNING
“Adding the words ‘DIY’ in front of
established industries requires them to
be 1) cheap, 2) easy, and 3) capable. Only
with single-board computers (first Arduino
for drones, and now RPi for cars, which is
a much harder problem due to it requiring
computer vision), can you get all three,”
says Chris Anderson, who’s the CEO of
3D Robotics and organises the popular
DIYRobocars meet-up. Autonomous car
enthusiasts come together in these events
to race their AI-powered robocars. The
idea behind DIY Robocars is to improve
AI without spending too much money.

In fact, Chris himself has also put up
a guide to building an autonomous
racing car (hsmag.cc/uWxQbj)
which runs with a Raspberry Pi.

Developing autonomous models
for training the robocars requires
quite a bit of processing power. But
technology firms are now working to
squeeze the learning aspect into tiny
SBCs as well. To this end, AI research
firm Ogma Intelligent Systems has
created a couple of self-driving cars
(SDCs), one built around the Raspberry
Pi 3 and another based on the Pi Zero.
“The Ogma SDCs differ from other
autonomous Pi-powered cars, like the
Donkey Cars, by doing all learning and
subsequent inference/prediction only on
the Pi (3/Zero),” explains Ogma’s Senior
AI Research Engineer, Richard Crowder.

The secret sauce that powers the SDCs
is the company’s open source EOgmaNeo
library. You can build autonomous
robocars based on the EOgmaNeo
library following the in-depth guides
(github.com/ogmacorp/EOgmaDrive)
that detail both the hardware assembly and
the software installation for both the SDCs.

To further illustrate the unique
ability of the company’s SDCs, Richard

says that the
“Donkey Cars, and

others that use neural
networks, all rely on

more powerful compute
devices to take sensory data from the car
and pass that data into more powerful
hardware to train a neural network model.
Those neural networks require more
power-hungry computing due to the
‘offline supervised learning’ techniques
that they use. Once their neural network
model has been trained, the model
learning/training is stopped and the frozen
model is uploaded to the self-driving car.”

CLEVERER THAN TOP GEAR
These robocars can now only use the
uploaded training model to find their way
around the track. The Ogma SDCs are
different in that they use what Richard
calls ‘online unsupervised learning’
techniques that help them learn and
make corrections as they drive around.
“The neural network model that we
use can perform all the online learning
and inference processing on a SBC,”
stresses Richard.

Despite their original objectives,
boards like the Raspberry Pi and
Arduino have cultivated an ecosystem
that nourishes a maker’s interest in
advanced computing subjects like
artificial intelligence. With new add-ons
and sensors, and growing support from
technology bigwigs, we wouldn’t be
surprised if the next big AI development
comes from the garage of a maker
like you.

Left
Karl Kangur has
written a tutorial
(hsmag.cc/dYjaAl)
on using V-REP to
simulate a robot
before building it

Right
Karl built another
bot, the ATOM
(hsmag.cc/Teacfp), to
get a hang of ROS

Credit
Karl Kangur

http://hsmag.cc/qopEcK
http://hsmag.cc/uWxQbj
http://github.com/ogmacorp/EOgmaDrive
http://hsmag.cc/dYjaAl
http://hsmag.cc/Teacfp

The Arduino, A Really Special Little Board

38

FEATURE

Right
The Arduino R3, the
latest version of the
‘classic’ Arduino

From an Italian student watering hole,
to conquering the world

By Jenny List

39

LENS

f you were to walk into a typical
hackspace as one new to the world of
making and ask for help with automating
your project, the chances are you’d
receive a unanimous suggestion.
Use an Arduino, they’d say, and show you
a small blue circuit board with a couple of

rows of headers and a USB socket. Such has been
the success of this board and its stablemates, that
a decade plus of more able competitors haven’t
displaced it from its position as the go-to single-board
computer for maker projects. To understand something
about why that has been the case, it’s worth looking
back at the start of the project that spawned it.

In the early 2000s, as a reaction to the limitations
of previous simple microcontroller boards, a group
of Italian postgraduate students and a lecturer at the
Interaction Design Institute in Ivrea came together
to create the first version of what would become
the Arduino project. They were lucky: they had the
Wiring platform that had been the work of their fellow
student Hernando Barragán to work with, a simple-

to-use open-source integrated development
environment and microcontroller board.

They created a fork of Wiring ported to
the inexpensive Atmel ATmega line of
microcontrollers, and the hardware they
evolved became the ancestor of today’s
Arduino boards. It featured an ATmega8

microcontroller in what is now a familiar
form factor with its I/O lines brought

out to a set of headers designed to accept
expansion boards known as ‘shields’. The ease

of programming from the Arduino IDE and on-chip
bootloader coupled with the flexibility of the shield
boards compared to the relatively small prototyping
area found on previous boards proved to be a hit, and
the years since have seen an ever-increasing range of
official successors.

If at the moment you’re wondering where the name
‘Arduino’ comes from, it may come as a surprise to
find that a 21st-century microcontroller prototyping
board has a name derived from an Italian king of the
11th century. Arduin of Ivrea was Margrave of Ivrea
from about 990 until 1015, and King of Italy from 1002
until 1014. He was defeated and forced to abdicate
by the German King Henry II in 1014 and would be
the last King of Italy until the restoration of the Italian
monarchy in the 19th century. The Arduino is a project
with its origins in a university, and as with graduate
students everywhere, the team had a favourite bar.
Theirs was named after Arduin of Ivrea, and their
project took its name from it.

The open-source nature of the whole Arduino project
has been a crucial factor in its success as a platform,
meaning that instead of being a single hardware
product line from one Italian source, it has become
a global phenomenon with an astonishing array of
products claiming some level of Arduino compatibility.
In that sense, while an Arduino is generally understood
as one of the official boards or a direct clone, it is safe
to say that the Arduino project now transcends its
origins and has instead become a platform ecosystem.
When you buy an Arduino, you are not merely buying
it for the board itself, because the descendants of
the original 8-bit ATmega-based boards are now

I

Above
An early Arduino board from 2005, featuring a serial port
where today’s Uno has a USB socket

THE LILYPAD, AN ARDUINO
FOR WEARABLES
Not all Arduino boards follow an official form factor.
The Lilypad from Sparkfun for example takes the
low-power version of the ATmega processor
from the Uno and incorporates it into a
circular printed circuit board designed for
incorporation in wearable electronics.
Special attention has been given to
ensuring that it does not snag on fabric,
and instead of header sockets for I/O lines
it has large circular pads designed for
sewing conductive thread to. It has even been
designed to survive clothes washing.

The Lilypad’s sewable contacts
are ideal for conductive thread

The Arduino, A Really Special Little Board

40

FEATURE

rather technically outdated. Instead you are buying
into the ease of the Arduino IDE and access to the
Arduino community with its huge array of software
libraries and support, and it is these resources which
continue to make Arduino the obvious choice for so
many projects.

Aside from the official Arduino boards, you’ll also
see a huge number of non-official ones described
as ‘Arduino compatible’. These range from variants
that incorporate extra hardware such as a wireless
module or a motor interface, to boards with different
architectures that maintain the expansion header
format of an Arduino for shield compatibility. You

will also find direct clones of an Arduino Uno or
similar, and even outright fakes bearing sometimes
comically bad reproductions of the official branding.
Arduino lead Massimo Banzi has gone on record as
welcoming the variant boards as bringing something
extra to the project, while deploring the clones and
fakes. You may find a Chinese Arduino Uno clone
to be a cheap way to get started, but aside from
supporting the project, when you buy a genuine

board you are also guaranteeing that your board
has, of course, genuine components. In 2014 the
manufacturer of the USB-to-serial chip found on
most Arduinos issued a driver update designed to
disable counterfeit copies of its devices; among those
caught were many of the cheaper non-official Arduino
clones. So your cheap board will work and will run
your compiled sketches, but the extra money for the
genuine article really does buy quality.

CHAIRMAN OF THE BOARD
So, given that you now know some of the history
behind the Arduino project and you have some idea of
the ecosystem, which of the many boards should you
buy, and what can you do with an Arduino?

The ‘classic’ Arduino, in fact the board that earns
the generic title of an Arduino, is any member of the
line of descendant boards from that original one with
an ATmega8 microcontroller and the signature two
rows of header sockets to accept shield boards. Over
the years the microcontrollers have been upgraded to
the ATmega168 and then ATmega328 to give more
storage capacity, but broadly the same functionality
has been maintained from the earliest serial-port
Arduino to the latest USB-equipped Arduino Uno.
This is the board that you should buy if you are new
to the world of Arduino hardware, because it is the
one with the most support, software, and libraries
available for it. There are many clones of the Arduino
Uno, but in the range of official boards it is available
in variants with either a surface-mount CPU or one
in a dual-in-line package mounted in a socket. Either
board will give you the full Arduino experience, but
of the two it’s the dual-in-line version which is a little
more versatile because the CPU can be removed and
placed on a breadboard or other project.

Beside the Uno, there’s a variety of official boards
with special capabilities. The Arduino Leonardo
for example looks like an Uno, but can become a
fully fledged USB device in its own right, capable
of emulating for instance a keyboard, or a mouse.
Meanwhile, the Mega 2560 is an Arduino with a
hugely expanded interface, useful for complex CNC
projects. Then, beyond the ATmega line of processors
is a huge array of boards that can be programmed
with Arduino software. Of the official boards, there
are several that use ARM processors, including the
Due, which brings raw computing power to the Uno
form factor, and the Yún, which has a 32-bit MIPS
system-on-chip that runs a custom Linux distribution
and incorporates WiFi connectivity.

If you are shopping for Arduino boards, you may
also notice a variety of smaller PCBs: the Arduino

Above
The Arduino
IDE screen

A CHEAP BOARD WILL WORK AND RUN
YOUR COMPILED SKETCHES, BUT THE
EXTRA MONEY FOR THE GENUINE ARTICLE
REALLY DOES BUY QUALITY

41

LENS

Micro, Mini, and Nano. These can be available
either as official boards or as clones with startlingly
cheap prices, and with a set of pins fitted, can be
used on a breadboard or similar. They contain the
rough equivalent of a full-sized Arduino Uno on a
smaller PCB, but care should be exercised by those
new to the Arduino world as they are not physically
compatible with Arduino shields, they are not all
current designs, and different programming cables
may be needed to use them.

When you have your shiny new Arduino, whatever
model you have bought, your next step will be to do
something with it. Write some code, see it running.
If you go to the Arduino website, download and
install the IDE, and then plug your Arduino into your
computer with the appropriate cable, you should be
ready to go.

FIRST STEPS
Opening the Arduino IDE puts you straight into a
code editor, and if you are an experienced Arduino
user, you could just start typing C code. Fortunately,
in the event that you are not, the IDE ships with a
library of demo code which you can load from the
File menu: simply find the ‘Examples’ option and
pick one. The easiest one to start with can be found
in the ‘Basics’ submenu: ‘Blink’ simply flashes the
on-board LED. If you look at the code, you’ll see two
main sections: setup(), which initialises whatever
pins the code will use, and loop(), which contains

the guts of your work and, as its name suggests,
loops continuously through it. Arduino programming
in depth is beyond the scope of this article, but there
is plenty of information online if you are willing to
spend a minute with a search engine. If you have
perfected your code, or if you merely want to see the
Blink example flash the LED, there are a couple more
steps. The IDE must recognise the Arduino board
you have, and then you must compile it to a sketch

and upload it to the hardware. To perform the first
step, on the ‘Tools’ menu select your board model
from the ‘Board’ submenu, and then select the port
it is plugged into on the ‘Serial port’ submenu. Then,
to see it running on the board, select ‘Upload’ from
the ‘File’ menu. You will see some status messages
scroll past at the bottom of the IDE window; then,
if all is well, the on-board LED will start to flash at
one-second intervals. Congratulations, you have just
run your first Arduino sketch!

Left
An Arduino
thermometer with
LM35 sensor and
LCD display

IF YOU ARE SHOPPING FOR ARDUINO
BOARDS, YOU MAY ALSO NOTICE A
VARIETY OF SMALLER PCBS: THE ARDUINO
MICRO, MINI, AND NANO

ARDUINO, GENUINO,
WHAT’S ALL
THAT ABOUT?

If you are shopping around for
Arduino boards, you may see
genuine boards labelled ‘Genuino’
as well as ‘Arduino’. This relates

to a trademark dispute between different members of
the Arduino team, with ownership of the Arduino mark in
Europe resting with one camp and with another for the rest
of the world. As part of the resulting legal battle, the rest-
of-world trademark camp registered the name ‘Genuino’
for their boards when sold in Europe. The resulting
confusion caused at least one retailer to stop selling the
official boards entirely. Fortunately for all concerned, the
competing factions were able to settle their differences
earlier in 2017. So if you should find a Genuino-branded
Arduino, don’t worry. It’s still an official Arduino, albeit one
with another name on it.

The Arduino, A Really Special Little Board

42

FEATURE

Of course, while flashing an LED makes a good
simple demo of an Arduino it’s obvious that the
boards are capable of so much more. If you are
looking for ideas for what to connect to your board,
there is a huge range of shields and breakout boards
on the market, often complete with software libraries
and example sketches of their own. Companies
such as Sparkfun and Adafruit maintain extensive
catalogues, if the official range of Arduino shields
were not enough.

GETTING SENSITIVE
A common Arduino project, once a first-time user has
moved on from flashing LEDs, is to interface one to
the real world by reading from a sensor. And since
temperature sensors are among the most readily
available and easy to interface with, many people
create Arduino thermometers and thermostats. The
simplest of these temperature sensors are three
terminal chips which take a 5 volt power supply
from the Arduino and return a voltage on their other
terminal proportional to their temperature. This can be
connected to one of the Arduino’s analogue input pins
and read using the Arduino’s analogRead() function
for your code to calculate a reading from. Since any
measurement project including a thermometer is
relatively useless without a display, you will also find
a lot of Arduino projects featuring LCD displays. The
commonly available LCD displays using the venerable
Hitachi HD44780 driver chip will interface directly with
an Arduino, and can easily be controlled using the
LiquidCrystal Arduino library. The example on page 41
shows an Arduino wired to an HD44780 display and
an LM35 three-terminal temperature sensor to make a
complete thermometer project.

Below
An Arduino twinned with
a motor controller shield
from Adafruit

THE ARDUINO MEGA 2560,

There are plenty of applications for which the Uno form
factor can not provide enough connectivity. For example,
a large robotic or CNC device will have multiple
sensors and servos to connect to it. To address this
problem, there is a range of Arduino boards with many
more I/O lines and a much larger shield form factor to
accommodate them. The Arduino Mega 2560 uses an
ATmega2560 microcontroller with all those extra lines.

AN ARDUINO WITH MORE I/O LINES

43

LENS

Of course, the uses for an Arduino extend far
beyond a simple LED flasher or a thermometer, and are
far too numerous to cover in this article. But it’s worth
looking at one more common use for an Arduino: its
ability to produce a pulse-width-modulated (PWM)
output allows it to control servos, and motors when
paired with a suitable shield. You’ll find motor controller
shields from multiple manufacturers; one of the most
commonly found comes from Adafruit. And once
you have a motor shield, you can bring it to a host of
robotic projects, from simple two-wheeled crawlers
such as the Ardubot, to fully functioning robot arms
such as the inexpensive and easy-to-build MeArm.

It has been over ten years since the Arduino first
saw the light of day, and the mainstay of the hardware
range is now based on very outdated hardware when
compared to more recent competitors such as the
Raspberry Pi or the BeagleBone. This might be the cue
for it to fade into insignificance, as has been the case
for other darlings of the electronics hobbyist world, but
for two things. First, the Uno and its ancestors may
use old chips, but they still do the same job that they
did in 2005 very well, namely providing an extremely
accessible microcontroller platform for beginners and
experts alike. Secondly, the Arduino project is not
simply a collection of boards. The open-source IDE and
bootloader model has outgrown the hardware, and it
is this that makes Arduino special in 2017. Whenever
a new and exciting processor or board enters the
market, it will always be only a matter of time before
someone brings it to the Arduino environment.

If those Italian postgraduates had never met in a bar
all those years ago and Arduino had never happened,
it’s certain that we would still have had affordable
microcontroller boards. What is in doubt is whether we
would have had so many that are as accessible through
the same open-source development environment.
Instead we would probably have had a plethora of
competing incompatible IDEs from board and chip
manufacturers, many of which would have been
difficult to use, or closed-source and proprietary. If
you were that hackspace newbie we mentioned at
the start, it’s likely that whichever board you would
have used would have had a much steeper learning
curve, and if you weren’t extremely dedicated to your
project, you might have given up. It’s fortunate then
that we have the Arduino, and that its story is far from
over. The future will see an ever-expanding range of
boards bearing the name, with as-yet-undreamed-of
capabilities. So if you’ve never used one, we hope
you’ll now have the confidence of knowing a bit more
about the project to help you pick up your first Arduino
and work with the platform as it further evolves.

ARDUINO TIMELINE

Above
The pinout diagram of an Arduino Uno R3

1997 Atmel brings the first AVR microcontroller product to market.

2001 Processing computer language/IDE developed by Casey Reas and Benjamin Fry, at
the MIT Media Lab.

2003 Wiring development platform developed by Hernando Barragán at the Interaction
Design Institute Ivrea, Italy.

2003 Wiring ported to Atmel AVR8 processor architecture by Massimo Banzi, David
Mellis, and David Cuartielles, again at the Interaction Design Institute Ivrea, Italy.
This becomes a fork of the Wiring project, to be named Arduino.

2005 The first boards in the recognisable Arduino form factor are produced featuring an
ATmega8 processor, after a succession of other prototypes.

2006 The Arduino NG gains an ATmega168 processor, featuring 16kB of storage.

2008 The tiny Arduino Nano appears, and the Duemilanove gains an ATmega328 with
32kB of storage.

2010 The ‘classic’ ATmega328 Arduino becomes the Arduino Uno.

2011 The Leonardo, boasting USB device capability, is launched.

2012 The 32-bit ARM Cortex M3-based Arduino Due is launched.

2013 The Arduino Yún is launched, featuring a MIPS processor and a custom Linux
distribution.

2014 Beginning of split between Arduino LLC and Arduino SRL, leading eventually to
creation of Genuino brand.

2015 Arduino/Genuino 101 launched, based upon the Intel Curie microcontroller.

2016 Reconciliation and merger between the two rival Arduino companies.

2016 Launch of Arduino MKR1000, featuring a 32-bit ARM Cortex M0 and on-board WiFi.

We Learn: Welding

FEATURE

44

From beginners to slightly burnt beginners: learn from our mistakes as we take on a new skill

We Learn

WELDING
acking things isn’t so much a skill as
the intersection of a lot of skills. You
may have to be able to design things,
do some coding, solder bits together,
and build something to hold it all
together. The more skills you have, the

wider the range of projects you can take on.
Personally, I have a strong background in

computing. I can whip up code to solve most
problems I encounter. Need a virtual machine set
up and managed to handle the back end of a task?
I’m your man. I can have a decent crack at digital
electronics, and have a large stack of boards that
I’ve soldered together over the years. However,

Below
Our very first attempt
to control the arc.
You can tell from the
welding splatter and
occasional balling
that we still need
some practice

H
when it comes to physically building stuff, my
skills leave a bit to be desired. When pressed, I can
assemble something out of wood that serves the
purpose. When it comes to metalwork… well, let’s
just say I have to start from scratch. I’m always keen
to find new ways of expanding my repertoire, so I
set out to see how far I could get learning to weld
in a day. To be more specific, can I learn enough
welding to make a small stick man from a metal
bar? Equipped with only rudimentary equipment
(an AC welder and appropriate safety equipment)
and a little instruction, I set about the task.

Electric ‘stick’ welding is, in principle, a simple
thing. You connect one bit of metal to a power

By Ben Everard

45

LENS

supply capable of creating a large current, and
attach the other side of the power supply to a
flux-covered rod known as an electrode. Hold an
electrode close to the metal you want to join and a
spark arcs between the two. This arc is hot enough
to melt both the metal you’re welding and the
electrode. This all pools together to form a cohesive
mass that forms the joint you’re welding. The first
step, then, is to learn to create this arc.

The beginner’s approach to this is to run the
electrode along the metal briefly, then just move
it away slightly – an action not unlike striking
a match. I have a plate of scrap metal clamped

to the bench in front of me on which to practise
striking an arc. The view through the welding mask
is completely black at first, so I line up the electrode
with the mask up. I flip the mask down and strike.
Nothing. I try again. Nothing. A few sparks splutter
out and the welding rod is stuck firm to the
surface. A few wiggles pull it free, but it’s a fairly
unimpressive start.

HELLO WELD!
Frustrated, I run the electrode along the surface
again. There are a few sparks, and this time, as I
pull the electrode away, there’s a dull yellow glow
emanating from the gap between the rod and the
metal plate. In my excitement, I pull away and the
arc dies almost as soon as it was created. It’s not
a great arc, but it was definitely an arc. After a few
more tries, I can create an arc, if not consistently, at
least regularly.

Just as generations of programmers have started
coding by getting the computer to utter ‘Hello
World’, so novice welders often start by guiding
the arc around in their name. This gets us used to
not just holding an arc, but also manoeuvring it
through the dull, almost black world that we view
through the welding mask.

I line up, flick my mask down, and begin the
B. The arc melts both the plate of metal the arc
hits and the electrode. As the electrode melts, it’s
deposited on the plate and I leave a ridge shaped
in the letters of my name. I flick my mask up as the
tail of the N is still glowing slightly from the heat.
Initially the letters are black and slightly crusty, but
a swift bang from the hammer and scour

LEARNING TO WELD
Basic welding isn’t hard, but it does require quite a bit of kit
that can be a little expensive (expect to pay around £100 for
a basic welding setup), and it’s best used (at first) with some
guidance from someone who knows what they’re doing.
Vocational schools often have short courses to help you learn
the basics, or you might find a willing instructor in your local
hack/hacker/maker space. Some vocational schools will
let you use their equipment after you’ve gone through the
training, which can be easier and cheaper than trying to set
up on your own.

Left
By the end of the day,
my joints still had some
problems, but were strong
enough for many purposes

WELDING VS SOLDERING
When thinking about welding, it’s sometimes useful to compare it to something it’s not, such
as soldering. When you solder a joint, you heat up the things to be joined, then add a filler
metal (the solder) which melts into the joint. When it cools down, the solder hardens and
everything is held together.

The difference between this and welding is that at the end of it, there are still three distinct
things: the two objects being joined and the solder. The joint holds together because it’s all
stuck together, but they’re still different things and could be removed from one another.

When you weld, you melt all three things and mix the resultant pool of molten metal. As
such, there’s no clear line between one thing and the other, they just blend together. There’s
no such thing as unwelding (as there is with unsoldering). You can cut the joint, but you can’t
separate out the constituent parts.

A few sparks splutter out and the welding rod is
stuck firm to the surface. A few wiggles pull it free,

but it’s a fairly unimpressive start
”

”

We Learn: Welding

FEATURE

46

with a metal brush removes the burnt flux, leaving
just the letters raised up in metal.

That’s not really welding, it’s just depositing
metal, but I feel hugely satisfied by the feeling
that metal – which in my imagination is solid and
immutable – has bent to my will.

Stage one of learning to weld is done, it’s now
time to join some bits of metal together.

In principle, this is simple. Using exactly the
same technique I used to write my name on the
metal, I need to melt both sides of the joint and
deposit a little metal into the gap between them.
If all goes to plan, this should cool and solidify to
a single piece of metal with the three parts mixed
together in the middle.

LET’S BUILD SOMETHING
Mask down, arc struck, I begin to move down the
joint. Immediately I see where the skill in welding
comes in. The instant the arc is established, the
metal starts to melt. Move it too soon and nothing’s
melted enough to stick together. Leave it too long
and it’s too melted, leaving a hole in the metal.
I need to carefully glide it down, gently moving
the electrode between the two surfaces to be
joined as it travels down the seam. Of course, I fail
spectacularly at that. I move in jerky motions, and
try to cheat by moving back up the seam to a part
where I’d moved too fast.

The welding rods are coated in flux that protects
the joint from oxidisation (it serves a similar
purpose to the gas in MIG and TIG welding – see

OTHER TYPES OF WELDING
We tried to learn AC stick welding. Equipment-wise at least,
this is the simplest form of welding. You just have a coil that
converts 240 V (or whatever your local mains voltage is) to
a lower voltage but a much higher current than is usually
available through a socket (it can be well over 100 amps). The
welding electrode is surrounded by flux that keeps the joint
clean, but can also cause problems. It’s a bit of a rough-and-
ready type of welding that can be great for hackers but isn’t
always the best choice. Here are some other options:

DC – Stick
Similar to the AC welding that we did, but this time using DC
electricity. The equipment needed is slightly more complex,
but the general process is exactly the same as with AC.

MIG
Metal Inert Gas welding also uses an electric arc to melt the
metal, but rather than flux, it uses an inert gas (such as argon,
carbon dioxide or helium) to protect the weld, which can
result in a neater join. The filler rod is automatically fed into
the joint as you weld.

TIG
Tungsten Inert Gas welding also uses an inert gas to
protect the joint, but unlike MIG welding, the filler rod isn’t
automatically fed in and it’s up to the welder to apply this as
and when it’s needed. TIG welding is the most versatile form of
welding, but it’s also the slowest and most difficult to learn.

Spot
Very easy to do, but limited in what it can achieve. Spot
welding uses two electrodes close together (typically on
opposite sides of the joint) to create a point of heat as well as
pressure to hold the objects in place. There’s no filler rod, and
the two objects are just melted and pressed together. This is
usually used to join two flat surfaces.

Oxyacetylene
Unlike the others we’ve covered, this one uses gas to heat up
the metal. A combination of oxygen and acetylene is burned
in a welding torch which melts metal. A filler rod can then be
used where necessary.

Brazing
This one isn’t really welding, but more like high-strength
soldering: you heat up the bits of metal you want to join and
use this heat to melt a brazing rod into the joint.

Below
My equipment for
the day was an aging
Weldmate that used
to belong to my
grandfather. Basic
equipment is fine for
basic welding

47

LENS

boxout). This should melt and rise to the surface of
the joint; however, if you move back up the weld,
this flux gets embedded in the joint and you get a
stick-shaped hole.

Ugly welding is acceptable, though. The question
is, how strong is it? Time to give it a bend and see if
I can break it.

Arrghnnn!
The freshly welded metal holds quite a bit of heat

and even through hefty gloves, it singes my fingers.
Only slightly though. After waiting another minute
for it to cool down, I try to snap the joint. My first
joint is ugly, but surprisingly strong. Despite it

looking like someone tried to nail-gun two bits of
jelly together, I can’t break the joint with my hands,
so I’m chalking that up as a win.

We wanted to find out if you could learn to weld
in a day, and for that we needed a test. For us,
it was whether or not we could weld together a
simple stick-man sculpture (Maybe sculpture is a
little too grand a term, but you get the idea).

The welding here is harder as it’s at strange
angles, and the clamps holding things in place can
get in the way a little, but it’s all the same basic
process: strike an arc, position the arc in the seam,
and move the arc to blend the metal together
to create a solid joint. Some are, ahem, more
successful than others, but the end result, after only
a few hours from the first time I held a welding rod,
is a solid structure.

The essence of hacking is expanding your skills
range, and welding is a great area to move into. It
doesn’t take too much time to grasp the basics and
even basic skills can be useful. I can’t claim to be a
competent welder, but I do feel that I now have a
new skill that I can bring to bear on things I make.
It might be a while before I’m doing anything load-
bearing or which has to look good, but a custom
robot frame or a jig to hold things in place is now
within my repertoire – just.

Right
The finished product.
Metal sculptors may
not be fearing the
competition just yet,
but I’m proud of it

HACK YOUR OWN WELDER
In essence, an AC arc welder is just something that can supply a lot of current (generally a
minimum of 50 A). There’s nothing particularly complicated in this, and we’ve seen plenty of
home-made welding setups, both by using coils to increase the current in mains power or by
amalgamating enough batteries to supply current.

It’s a fascinating project if (and this is a big if) you have the skill and experience to do
it safely. Remember that you need to create enough current to melt steel. That means that
there’s enough current to do a lot of damage to just about anything that gets in its way,
including a human.

One thing that you should never attempt to make yourself is goggles. Eye damage in
welding comes from ultraviolet light, so it can be hard to know if protection is adequate until
after any damage has been done. Look after your eyes – invest in good quality goggles.

FEATURE

verclocking can take many
forms and shapes, from a
useful everyday boost of
a few hundred MHz (think
of tuning a car engine to
get better acceleration

performance) to insane cryo-cooled
rigs for international OC competitions
(drag-racing cars with jet engines, no
less). Overclocking is not limited just to
personal computers: the same concept
applies well for nearly any digital system,
including mobile processors and embedded
SOC (system-on-chip) devices, such as the
Raspberry Pi 3.

One of the common ways to get
performance gains is by increasing the
running frequency of the processor, memory
and storage interface. More frequency =
faster computation. That comes at a price:
increased power consumption and possibly,
reducing stability, as an erroneous operation
is more likely under stress.

OVERCLOCKING THE PI
Where do we start? First, we study the
overall system design: what components
are present on computer’s PCBA and how
we can increase their performance.

The heart of the Pi is the Broadcom
BCM2837 SoC, which has a quad-
core Cortex-A53 ARM processor and a
VideoCore IV GPU.

A separate 1GB LPDDR2 SDRAM
memory chip – EDB8132B4PB-8D-F
from Elpida (Micron) – is located on the
underside. Memory is allocated dynamically
between CPU and GPU use, depending on
the settings in the raspi-config tool.

How much extra speed can we wring out of a Raspberry Pi Model B?

Ultimate
Overclocking

O

CRAZY STUFF
Kingpincooling.com

Done by

Ultimate Overclocking

48

http://Kingpincooling.com

Table 1
On-board voltage topology with used controllers spec

FREQUENCY AND VOLTAGE
CONTROL SETTINGS
To adjust clocks and voltages in a traditional
computer, you have a special BIOS Setup
interface. Boot settings, low-level device
configurations, various memory settings,
and power management settings are often
available in the PC BIOS. The Pi has much
less room and power in its internal bootloader,
so actual overclocking settings, like clocks,
are set by a special kernel configuration file,
located on the FAT section of the Pi’s SD card:
/boot/config.txt.

All these clocks are separate with their own
clock generation, so they can be adjusted
independently. There are also a few additional
settings that can be tweaked.

 arm_freq_min – Minimum value of
arm_freq used in low power state.
Default is 600 for Pi 3.

 core_freq_min – Minimum value of
core_freq used in low power state.
Default is 250 for Pi 3.

 sdram_freq_min – Minimum value of
sdram_freq used in low power state.
Default is 400 for Pi 3.

 temp_limit – Thermal limit protection
threshold. Sets clocks/voltages to default
once reached. Default limit is 85°C.

Ultimate
Overclocking VOLTAGE SOURCE USAGE CONTROLLER NOTE

+5 VDC Input External PSU Main power
input

Can be
alternatively
sourced from
pin header J8

+3.3 VDC +5 VDC Main I/O
voltage

Diodes
PAM2306

Switching VREG
Channel 1

+1.8 VDC +5 VDC DRAM/CPU/
GPU voltage

Diodes
PAM2306

Switching VREG
Channel 2

PLL, +3.3 VDC|
SOC LDO

Internal PLL
voltage

Internal from
BCM2837

Linear regulator
for PLL clock
power

CPU, +1.0 VDC|
+5 VDC

Main CPU
voltage

Richtek
RT8088A

Switching VREG

 sdram_schmoo=0x02000020 – Memory
training tweak.

 over_voltage - Processor logic
voltage offset, in 25 mV/bit steps.
Allowed range from -16 to 8
(8 * 25 = 1.200 VDD_CORE(DEFAULT)
+ 0.2 = 1.400 V).

 over_voltage_sdram_p – memory cell
level voltage offset. Same range maths
as over_voltage.

 over_voltage_sdram_i – memory I/O
voltage offset. Same range maths as
over_voltage.

 over_voltage_sdram_c – memory logic
level voltage offset. Same range maths
as over_voltage.

 force_turbo – Disable dynamic low
power states for RPI SoC. This setting
also voids your warranty.

 boot_delay – Some owners have
reported this to be helpful in the case
of SD card data corruption when used
with force_turbo.

Warning: Overriding the temp_limit and
force_turbo settings will void the warranty
on a Raspberry Pi 3 computer.

Connectivity is provided by the Broadcom
BCM43438 WiFi/Bluetooth chip and SMSC
LAN9514 USB/LAN hub. This is only important
to us because we need to keep these chips
alive during overclocking so we can keep
communicating with the Pi.

Now it’s time to check the nominal clocks
and voltages for each of the components. The
nominal max CPU clock speed is 1200MHz
with active power management; the nominal
max GPU 3D- core clock is 300MHz (200MHz
for the 2D clock); and the LPDDR2 memory
clock is 400MHz (800 MT/s), 2.5 ns cycle time.

All clocks are generated internally by the
PLL section of the SoC, which takes the
19.2MHz input clock from a tiny oscillator on
the back of the board and multiplies that to get
a higher frequency.

The Pi takes all its power from a single input
– micro-USB connector ‘PWR IN’ – and has
on-board regulators to generate low voltages
required by the CPU, GPU, LPDDR2 memory,
and peripherals. It’s important to know what
these voltages are, as higher clocks may
require higher voltages to maintain stability
and error-free operation.

Now, with this knowledge about Pi 3
clocks and voltages, the first step would be
to install some benchmarks to establish the
baseline performance, after which we can
try to use existing knobs to increase clocks/
voltages to compare how much performance
difference we gain. It’s important to test actual
performance, not just reported MHz speed,
because if the CPU overheats it could reduce
actual running clock to lower values and we’d
get worse performance than expected, often
even lower than a non-overclocked result. The
very same methods apply to ‘traditional’ PC
overclocking and benchmarking.

An important note on the actual
used sample results: due to variation in
manufacturing processes, every piece of
silicon, be it processor core or memory,
has a different margin (overclocking ability
before data gets corrupted). This means that
theoretical chip A may overclock to 1400MHz,
but chip B of the same model and in the same
condition could reach only 1350MHz. Chip C
on the other hand may be capable of running
1450MHz. To test this in practice, we’ll use
not just one Pi 3 module, but five of them to
find the best specimen!

49

LENS

50

Linux rpi-oc1 4.9.41-v7+ #1023 SMP Tue
Aug 8 16:00:15 BST 2017 armv7l GNU/Linux

It’s worth setting the CPU power
governor to performance mode, to favour
less switching from idle state to full-
performance state:

echo "performance" | sudo tee /sys/
devices/system/cpu/cpu0/cpufreq/scaling_
governor

A handy script to measure current CPU
frequency and report die temperature:

root@rpi-oc1:/home/pi# cat ./check_cpu_
speed_temp.sh
cat /sys/devices/system/cpu/cpu0/
cpufreq/scaling_cur_freq
/opt/vc/bin/vcgencmd measure_temp

It is also working well to report negative
temperatures (below 0 °C), which is very
handy for extreme overclocking.

root@rpi-oc1:/home/pi# ./check_cpu_
speed_temp.sh
600000
temp=-35.1’C

The first number shown is the CPU
frequency; the second, temp value is the
SoC thermal sensor reading. The frequency
drops to 600MHz when the Pi 3 is idle, to
save energy, but will jump to the max value
once a workload is running. Now we’re
ready to install the benchmarks.

HWBOT PRIME BENCHMARK
There is also an overclocking guide for
HWBot Prime on the HWBOT.org website,
which we can use to measure performance
in prime numbers calculation. To set up the
benchmark, download the JAR file:

wget http://downloads.hwbot.org/
hwbotprime.jar

To execute this Java-based benchmark,
we need to pre-install the openJDK from
openjdk.java.net.

apt-get install openjdk-8-jre

Starting the benchmark is just a simple call
for .jar from a Java environment:

java -jar hwbotprime.jar
--------- HWBOT Prime 0.8.3 ----------
Processor detected:
ARMv7 Processor rev 4 (v7l) BCM2835
Estimating speed... 4x 1,200MHz @ 61.224 C
970 MB memory
Running benchmark using 4 threads.
Starting benchmark...
Warm up phase: done!
Benchmark phase: done!
All done! Current CPU temperature: 72.522

C
Score: 440.96.

Here, our example score is 440.96. The
utility also reports CPU temperature, which
can be handy for checks.

Note that the OpenJDK library build
version can have a very big impact on the
score, so test results can be compared only
when using the same package versions. You
may see many faster results online, obtained
using a different JDK version.

It’s a good idea to run the benchmark
multiple times to make sure that scores are
consistent. Some small variation, of a few
percent, is normal.

If the module is unstable, you can get
random locks or kernel panic messages,

Let’s download some benchmarks and
run them to see if we can get the Pi to go
fast, using these adjustment knobs.

Due to a PLL maximum clock range
limitation at 3200MHz on the Pi 3, there
is no known way of pushing real CPU
frequency past 1600MHz. If one were to
configure a higher value, it would result
in the processor running with a much
lower clock speed, as shown by a simple
performance test:

--------- HWBOT Prime 0.8.3 ----------
Processor detected:
ARMv7 Processor rev 4 (v7l) BCM2835
Estimating speed... 4x 1,650MHz @ -86.187
C
976 MB memory
Running benchmark using 4 threads.
Starting benchmark...
Warm up phase:
Benchmark phase:
All done! Current CPU temperature:
-84.035 C
Score: 304.56.

The score here should be around 520,
if the clock 1650MHz were correct, but
it’s even 44% slower than the nominal
1200MHz clock – about equal to half of the
desired frequency, 825MHz CPU clock.

BENCHMARK SOFTWARE SETUP
First, download the latest Raspbian Stretch
image. For all testing presented here, we
used the version from 7 September 2017
with kernel 4.9.41.

Left
The thermal camera shows the impact
of an aluminium heat-sink

Ultimate Overclocking

FEATURE

LENS

51

or just bad scores. A few examples are
presented in the logs below:

Message from syslogd@rpi-oc1 at Oct 25

17:41:40 ...
kernel:[97.266669] 7fe0: 62442dfc
62442e08 00000000 76f19950 80000010
63208a94 55555d80 55555547
Message from syslogd@rpi-oc1 at Oct 25
17:41:40 ...
kernel:[97.296319] Code: 0a00000a
f57ff05b e2853028 f593f000 (e1932f9f)
............................... done!
All done! Current CPU temperature: 9.576 C

Score: 260.77.

In this case, the score is half what it’s
supposed to be. Often tests just crash due to
processor instability.

SYSBENCH BENCHMARK
The benchmark utility sysbench
(wiki.gentoo.org/wiki/Sysbench) allows
you to benchmark processor, memory,
file I/O, and mutex performance on Linux
platforms. It runs in a command-line interface
as a console tool. To install this benchmark in
the Raspbian OS, we use the apt-get tool:

apt-get install sysbench

Once installation is successful, it can be
executed using a single command with the
desired test parameters. In this article, this
benchmark will be used to test memory
speed. Our test will allocate a memory
buffer and then read/write from it. This is
then repeated until the provided volume

(--memory-total-size) is reached. Users can
provide multiple threads (--num-threads),
different sizes in buffer (--memory-block-
size) and the type of requests (read or write,
sequential or random).

sysbench --test=memory --num-threads=4
--memory-access-mode=rnd --memory-total-
size=800M run
sysbench 0.4.12: multi-threaded system
evaluation benchmark
Running the test with following options:
Number of threads: 4
Doing memory operations speed test
Memory block size: 1K
Memory transfer size: 800M
Memory operations type: write
Memory scope type: global
Threads started!
Done.
Operations performed: 819200 (2263497.25
ops/sec)

800.00 MB transferred (2210.45 MB/sec)

For comparison reasons, it’s important
to keep the same settings across the
benchmark, so we know we’re comparing
apples with apples.

OPENQUAKE GRAPHICS TEST
The graphics core in a Raspberry Pi is
powerful enough to run a special version of
the famous Quake 3 FPS! So we can use
it to benchmark combined processor and
graphics core performance.

wget http://www.berryterminal.com/dl/
ioquake3_99.1.36-rpi01_armhf.deb
sudo dpkg -i ./ioquake3_99.1.36-rpi01_

armhf.deb
sudo apt-get install openarena
sudo apt-get clean
cp /opt/vc/lib/libbrcmEGL.so /lib/libEGL.
so
cp /opt/vc/lib/libbrcmGLESv2.so /lib/

libGLESv2.so

Make sure you have set a GPU memory
size of at least 224 MB in raspi-config,
otherwise the game won’t start.

To start the benchmark, just run
/usr/games/openarena.

The Raspberry Pi 3 gets rather hot running
bare metal, without any heat-sinks in still air.
A few thermal images taken with a Fluke
Ti32 camera reveal temperature gradients
well. The memory does not get hot at all,
barely differing from the board surface
temperature. However, the Broadcom SoC
runs around +47°C at idle, going up to a
scorching +75°C under full load.

Based on these images, there is no need
to have dedicated heat-sinks for the memory
chip, as it would be cooled from PCB thermal
conduction once we get main the SoC colder.

OVERCLOCKING RESULTS
Our initial check was to see what max
frequency the Pi can boot into console.
To perform all CPU and memory speed
benchmarks, a plain headless configuration
was used. That means the Pi was
connected to a network over the Ethernet
port, with sshd running to provide access to
the console remotely.

To avoid limitations from power supply
input, a high-end EVGA NEX 1500W PSU
was used as a power source, which

Clock domain Parameter in /
boot/config.txt

Minimum Default Maximum

CPU/logic clock arm_freq

100 1200 1600

2D GPU/L2 cache clock core_freq 250 400 600+

Video decoder clock h264_freq 300

Imaging pipeline clock isp_freq 300

3D engine clock v3d_freq 300

LPDDR2 memory clock sdram_freq 200 450 600+

Table 2
Available clocks and
kernel parameters
for adjustment

52

FEATURE

headroom. The design of the PCB is quite
friendly to this simple modification, as there
are no tall components in close proximity to
the processor. A thin sticky thermal pad for
the heat-sink attachment will do the job.

With this simple heat-sink treatment,
our Pi was able to run around 1500MHz
in loops, stable enough to pass any
performance benchmarks multiple times.

Thermals are now much better, with the
SoC area reduced to around +57 °C, instead
of over +90 °C.

Our best score in the HWBot Prime
benchmark was around 15% faster, and
the memory benchmark yielded a 26%
performance increase. Can it go further?

VOLTAGE MODIFICATION
To improve stability under extreme
operation with a 1600MHz processor
clock, VDD_VCORE voltage was supplied
externally from an EVGA EPOWER V
module, programmed to 1.500 V. The EVGA
EPOWER V can supply up to 2.000 V, which
is plenty of headroom for our purposes.

This way we are also not limited by the
over_voltage range 1.400 V maximum limit

(setting 8) and can apply arbitrary high
voltages. To connect an external power
source, you’ll need to hook thick enough
wire to the C163 positive terminal. It’s easy
to spot by looking at the connection with a
little power inductor. This is confirmed by
the schematic section as well.

The external source is connected to this
point by AWG18 wire. Since nominal current
is barely a few amps, just one wire would
work well enough. Also, return ground wire
is important, so we’ve used a large HDMI
connector body to get a low-resistance
ground connection.

Another benefit of using an external
core voltage supply is that this voltage is
not controlled by the Pi’s dynamic power
management, so we will have constant and
stable voltage on the rail, no matter whether
the CPU is idle or busy crunching numbers.

EXTREME COOLING
- LIQUID NITROGEN
Now the heat-sink was replaced with a
massive Kingpincooling.com F1 extreme
cooling evaporator block. To make it fit
the Raspberry Pi, we had to remove the
J8 pin header and the J3 and J4 FPC and
the J7 A/V connector. We also coated both
sides of the PCBA with petroleum jelly to
avoid water condensation and ice shorting
components on the board.

Thermal grease was applied on top of the
CPU and heavy copper was just standing on
top of it. The bottom side was supported by
a small rubber mat to keep everything flat
and steady.

The benefit of using a massive copper
block for LN2 cooling instead of a smaller
tube is the thermal response time of such a
system. It will take minutes for a small CPU
to warm such a large block of cold copper,

can supply a serious 25 A on +5V output.
Measured voltage was +5.120 V at the Pi
pins. The connection between the Pi and
PSU was made using a short cable with
AWG18 wires.

Now we know which Pi is the best, we
can take that one for a full modification
and cooling workout. So all further testing
was performed on the promising unit #4.
The thermal image of a Pi overclocked to
1500MHz reveals a hot spot at +92°C! With
default throttling settings, that is 7°C over
the throttle limit temperature, when the
CPU speed drops to reduce stress.

IMPROVING COOLING – AIR
During typical operation without
overclocking, the Raspberry Pi 3 does not
require special heat-sinks or additional
cooling. However, with the overclocked
settings, especially with increased voltage
for the processor, it will get too hot for
reliable operation.

Attaching a simple aluminium-finned
heat-sink and additional airflow from a fan
can provide much better thermal conditions,
securing better stability and overclocking

Benchmark test CPU Frequency GPU/L2
Frequency

DRAM
Frequency Result Temperature

HWBot Prime Default Default Default 440 +69.3

Sysbench memory
800MB

Default Default Default 2025.5 MB/sec +49.3

Table 3
Baseline benchmark
results without
overclocking

Left
Some serious cooling is needed to achieve
the highest CPU clock speeds

Ultimate Overclocking

LENS

53

so the operation of the whole jig is simple:
no need to pour liquid nitrogen all the time
to keep a stable temperature. Instead just
give it a splash to keep temperatures within
the desired window. Extreme overclockers
use the same method to cool traditional PC
processors and graphic cards, but at a faster
rate, as thermal loading of a modern multi-
core Intel/AMD CPU or Nvidia/AMD GPU can
reach hundreds of watts.

Since the thermal image camera cannot
capture temperatures below -30°C, we will
have to use software temperature reporting
as a base measure, together with a Fluke
52-II thermometer, to stabilise container
temperature during the benchmark runs.

The Broadcom SoC chip has a cold-bug
around -100°C (by software-monitoring value),
which means that it will stop working once
the temperature drops below that. Since the
boiling point of liquid nitrogen is -196°C, we
need to maintain variable temperature control.
This can be done manually, by pouring an
amount of liquid nitrogen onto the evaporator
block. Experimentally, it was determined
to keep the copper block temperature at
around -120 to -140°C, maintaining a stable Pi
temperature close to -80 to -90 °C.

Getting 1550MHz stable didn’t require very
cold temperatures: the chip was functioning
fine even at just -20°C. 1600MHz was stable
once temperatures were below -45 to -50°C.

The Quake 3D game demo also ran
flawlessly at the maximum CPU frequency.
However, due to software configurations,
there was no benchmark data to compare
with. Fastest run logs are presented below.

HWBOT PRIME TEST
This test completed without issues at
the maximum 1600MHz clock, at a pretty
impressive temperature of -88.34°C,
and gave an overall score of 514.53. The
memory test yielded 819 200 operations
performed (2 839 246.15 ops/sec) with a total of
800.00MB transferred (2772.70 MB/sec).

Are these numbers worth the nitrogen
used? Not really, but it was fun to see
how can it run and what the limits are of
ARM-based computer overclocking. If the
CPU clock frequency could be increased
higher than 1600MHz, we would be likely
to see a much bigger impact from going to
extreme overclocking.

But until then, that’s all for now.

SUMMARY AND CONCLUSION
Overclocking is fun as hobby, but it can
also be useful in practical applications.
Jack Zimmermann (hsmag.cc/heFhWO)
demonstrates an excellent example of
how overclocking a Raspberry Pi 3 in
the role of a Stratum-1 NTP time server
helps to reduce the uncertainty of GPS
time synchronisation. Another possible
use for an overclocked Raspberry Pi is
various cross-platform emulators and game
console emulators, where performance is
never enough.

With the help of a little liquid nitrogen,
we managed to overclock a Raspberry Pi 3
Model B to its maximum 1600MHz limit
without much trouble. This article reveals a
few basic bits about overclocking theory and
methods. It’s not rocket science, so anyone
can do it, and getting hold of cryogenic
liquids is far from mandatory. In the end,
it’s another way to have some fun with this
capable little microcomputer.

Benchmark test CPU
Frequency

GPU/L2
Frequency

DRAM
Frequency Result Temperature

HWBot Prime 1550 MHz 450 MHz 550 MHz 504 -49.0

HWBot Prime 1600 MHz 450 MHz 550 MHz 512 89.9

HWBot Prime 1600 MHz 500 MHz 550 MHz 514 -86.8

Sysbench CPU

20000

1550 MHz 450 MHz 550 MHz 71.5 sec -25.2

Sysbench CPU
20000

1600 MHz 450 MHz 550 MHz 69.3 sec -77.4

Sysbench memory

800MB

1550 MHz 450 MHz 550 MHz 2582.1 MB/sec -21.0

Sysbench memory

800MB

1600 MHz 500 MHz 600 MHz 2772.7 MB/sec -86.3

Table 4
Extreme
overclocking results
with maxed out
CPU frequency

Right
Crank up the cooling, and the clock speed,
to play the Quake 3D demo

hsmag.cc/heFhWO

54

Helping hands

FEATURE

hough worldwide statistics on the
number of amputees are hard to
come by, consider that there are
currently roughly 2 million people
who’ve lost a limb in the USA alone,
with about 185,000 cases added each

year. When we take into account naturally higher
statistics in developing countries and map that to
the global population, the numbers are staggering,
and the price tags on replacement limbs are
always daunting.

The causes for amputation are as varied as the
cases. Naturally congenital medical conditions are
among the stats, but one of the leading causes is
diabetes, followed by injury from accidents and
combat. Now imagine what you’d do without one of
your limbs, whether a hand, arm, foot, or leg. While
humans are incredibly adaptable creatures, daily
tasks would be infinitely more challenging, if not
impossible, depending on the specific amputation.

Enter the vast field of prosthetics, artificial
replacements for missing body parts, including

Above
Even the Food and Drug Administration in the US is researching
low-cost 3D-printed prosthetics, like this hand that was printed
in a Center for Devices and Radiological Health (CDRH) lab

T

Makers use their skills and networks to lend a hand

HANDS
Helping

Goli Mohammadi

@snowgoli

Goli Mohammadi is a
word nerd, highlighter
of makers, and lover of
mountains. When she’s
not staring at glowing
screens, she’s romping
around nature. Find her
at snowgoli.com.

https://twitter.com/snowgoli
http://snowgoli.com

LENSE

55

Left
Open Bionics collaborated
with ILMxLAB, Lucasfilm’s
lab for immersive
entertainment, to create a
series of bionic hands for
young amputees, featuring
designs from Iron Man,
Disney’s Frozen, and this
Star Wars one

hands, arms, legs, feet, eyes, and teeth. The ancient
Egyptians are largely credited as having created the
first prosthesis, evidenced by a wooden toe found on
a mummy thousands of years old. Varied prostheses
have been found around the globe, including an
artificial leg made of bronze and iron with a wooden
core, dating back to 300 BCE, discovered in Italy.

Interestingly, though popular sentiment relegates
the creation of prostheses to professionals in the
medical field, in the Dark Ages, making artificial limbs
was the work of all kinds of tradesmen, including
woodworkers, metalsmiths, and even watchmakers,
who would apply their knowledge of gears and
mechanisms to add functionality to the limbs.
Sometimes replacement limbs lacked any function,
other than being a placeholder of the missing limb.
Sometimes they were made with the bare essentials,
nothing more than the infamous metal hook arm and
wooden peg leg.

MAKING STRIDES
But as materials and technologies advanced over
thousands of years, so too did the functionality and
comfort of prostheses, as well as the price. While we
could go on about the specific strides that the field of
prosthetics has taken over the course of history, this
story instead focuses on how these advancements
are being made more accessible to people who
need them, through the collaboration, ingenuity, and
generosity of makers.

Just as in much of the field of medicine, the
availability of advancements doesn’t mean they’re
within reach of the average person. And because in
many cases, having access to good prostheses is not
a matter of ‘life or death’, the kind and calibre of limb
your health insurance will cover (if you even happen
to have it) depends on the type of amputation and the
deemed daily needs of the patient.

Among upper and lower extremity prostheses,
some partial and some full, the average price tag is
anywhere from $5,000 to $80,000 and beyond. Plus,
they normally need to be replaced or repaired every
few years for mechanical reasons. What’s more,
if the patient is a child, the prosthesis will need to
be regularly upsized as the child grows. So while,

A SHOW OF HANDS

There’s currently a vast and growing array of readily available, low-cost,
open-source hand designs made by interdisciplinary teams. Sample a few here
and explore online for many more.

FABLE is an acronym for ‘fingers activated by low-
cost electronics’, and this electromechanical hand
offers precise finger movements generated by
electrical signals from the muscles. FABLE is a project
of the Open BioMedical (OBM) Initiative, a global
non-profit dedicated to affordable, 3D-printed medical
solutions, with a founding team based in Italy.

openbiomedical.org/fable

TINA is a different offering from the OBM Initiative,
this one strictly mechanical, using a unique system of
rods that move in response to movement in the wrist.
A prime example of the fresh solutions devised by
collaboration between disciplines, TINA was designed
by the Polish jewellery designer Justyna Stasiewicz,
who did the 3D modelling, while biomedical engineer
Cristian Currò lent expertise on the biomechanics and
3D printing.

openbiomedical.org/wil

OpenBionics’ prosthetic hand is designed with a focus
on anthropomorphism, based on the belief that it’s an
important factor in success of use and adoption. The
core structure, 3D-printable and made with readily
available off-the-shelf parts, features an impressively
opposable thumb comprised of a selectively lockable
toothed mechanism capable of nine different opposition
configurations. The bio-inspired finger actuation and
transmission system can attain superior flexion and
extension, and the fingers even have soft tips.

openbionics.org/affordableprosthetichands

Handiii, from the HACKberry open source community,
originated in Tokyo as a project of Exiii, with the
express purpose of solving three problems in existing
myoelectric prosthetic hands: too expensive, not easily
repairable, and few design choices. Handiii uses the
electrical signals in the arm to intuitively control the
hand and keeps cost down through 3D-printed parts,
using a smartphone for the electromyography (EMG),
and improving the design of the mechanisms in the
hand. The arm is less than $300.

exiii.jp/projects/#handiii

http://openbiomedical.org/fable
http://openbiomedical.org/wil
http://openbionics.org/affordableprosthetichands
http://exiii.jp/projects/#handiii

56

yes, the future has arrived in terms of fully functional
robotic arms and legs, they’re also incredibly cost-
prohibitive to the average person.

SOLUTIONS WITHIN REACH
Now let’s overlay this scenario with the maker
movement – with its massive brain trust and ethos
of sharing, collaboration, and open source ideals.
Add the proliferation of desktop manufacturing and
affordable electronics, and you get a much brighter
picture. While the traditional process for creating a
custom prosthetic is generally to mould, cast, vacuum
form-fit, assemble, adjust, and repeat, the maker
answer is to scan, print, and adjust.

Much of the cost of manufactured prosthetics is
rooted in medical mark-up and proprietary designs.
But as one maker-made organisation, Limbitless
Solutions, espouses, “We believe no family should
have to pay for their child to receive an arm.” There’s
now a virtual cornucopia of freely available open
source designs for prosthetics online, most being
3D-printable hands, some robotic, others not. In
the burgeoning realm of democratised prosthetics,
making hands and arms is perhaps more accessible
than feet and legs for the time-being, both in form
factor and functionality.

There are a number of organisations, including
the originator e-Nable, that encourage, support,
and organise teams of interdisciplinary (and often
international) makers to tackle the need for low-cost,
easily reproducible prostheses. And the beautiful
thing about collaborative digital design is that it can
be made, shared, and iterated upon across the globe.
Teams can work across national borders, and digital
files can be made freely available to download and
print from anywhere. These agile teams also enable
rapid iteration and intelligent design.

The future looks much brighter when there are
entire networks of makers, health care professionals,
designers, and technologists dedicating time and
talent to furthering the field of low-cost prosthetics,
and they’re showing no sign of slowing down. What’s
more, most are actively looking for volunteers to get
involved. Maybe you can consider lending your skills
and 3D printers to the cause…?

MAKERHEALTH:
BRINGING DIY TOOLS TO THE FIELD
While touring medical facilities in Nicaragua, MIT’s Jose Gomez-Marquez and Anna K.
Young made an important observation: Even though nurses there and around the world
may not recognise themselves as ‘makers’, they most certainly are.

Often equipped with only off-the-shelf solutions that either don’t serve the needs of
the patient or do so in an ill-fitting fashion, nurses regularly perform customisations and
repurpose materials to better suit each patient’s unique needs. From hacking prescription
bottles for visually impaired patients to modifying grips to create better walker handles,
nurses have been innovating creative makeshift solutions to aid patient comfort and
safety for at least the last century.

The problem is that a brilliant solution that one nurse devises may never make it
past the walls of that hospital. Imagine the progress that could be made in health care
if providers, nurses and beyond, were deputised to create custom solutions in their
in-hospital makerspace and were encouraged to share solutions with the greater
community through online project repositories. Welcome to MakerNurse and the
umbrella organisation MakerHealth, projects of MIT’s Little Devices Lab.

One of their initiatives is to open makerspaces in hospitals, and the very first of its
kind was opened at the University of Texas Medical Branch, posing the question, “What
if we gave creative people better tools to innovate?” The goal is to follow this space up
with many more. In addition, the network offers online tutorials, a repository of medical
hacks and projects, as well as workshops. As the mission statement reads, “We believe
everyone can be a medical maker.”

Above
MakerHealth co-founder Jose Gomez-Marquez helps nurses at the Mayo Clinic
prototype patterned floor lights to assist fall-risk patients

The beautiful thing about collaborative
digital design is that it can be made, shared,
and iterated upon across the globe

Helping hands

FEATURE

57

LENSE

hat started with a steampunk mechanical
hand prop documented on YouTube has
become one of the largest volunteer
networks of makers of 3D-printed
upper limbs, mostly hands. Back in

2011, Ivan Owen posted a video of an oversized
mechanical hand he made as a costume prop for a
steampunk convention. He received many requests
for blueprints, but one request in particular changed his
life. The mother of a five-year-old boy named Liam in
South Africa reached out to see if Owen could create a
miniature version of his hand for her son, who was born
with no fingers on his right hand.

Owen began doing research, and using the National
Library of Australia’s online archive, Trove, he drew
inspiration from a prosthetic hand design developed
by an Adelaide dentist in 1945 for a corporal who had
lost most of his hand to a gun accident. The hand was
made using whalebone, cables, and metal pulleys, and
reportedly served the wearer for 30 years until his death.

The first version of Liam’s hand was modelled
after this classic, but Owen realised Liam would

et’s put functionality aside here for a
minute and talk about aesthetics. Most
traditional, standard prosthetics are devoid
of character, intentionally designed to
detract attention. Industrial designer

McCauley Wanner and architect Ryan Palibroda of
Canada’s Alleles Studio set out to flip that paradigm
on its head – or rather leg.

They make incredibly stylish 3D-printed and hand-
painted prosthetic leg covers designed to complement
the wearer’s wardrobe and serve as outlets of self-
expression, offering a robust colour palate and healthy
variety of designs to choose from. Their noble mission
is to “do for prosthetics what a previous generation of
fashion designers did for the eyeglass industry.”

W

L

quickly outgrow it, so he began looking into creating a
3D-printed version. With the help of some collaborators,
the first 3D-printed prosthetic hand was born, giving
Liam an impressive amount of new-found dexterity.

Owen posted a video of Liam and his new hand on
YouTube and offered the design files on Thingiverse
with the hope that the community would help
streamline the hand and that anyone anywhere
in the world could make one for someone who
needed it. From those humble beginnings,
the e-Nable community was born. In the first
year, they amassed 3,000 volunteer members
and collectively built hands for more than
750 people around the globe. The second year
roughly 2,000 people from 45 countries got a hand
from the e-Nable community, and the movement has
continued to grow.

On their site, you can sign up to be the recipient of
a hand or to volunteer to help make hands. There are
also how-tos and other resources if you want to build
your own hand, with nine designs to choose from,
with names like Raptor Reloaded and Osprey Hand.

Enabling the future

Leg bling

PROJECT

Above
The first 3D-printed
prosthetic hand
opened up a world
of possibility to five-
year-old Liam

Left
Leg covers come in
many designs, or your
own custom artwork

PROJECT

Becky Stern

INTERVIEW

58

 HackSpace meets…

or the past decade, Becky
Stern has been one of the
leading American voices in
the maker subculture. She’s
made light-up trainers (OK,
fine, sneakers), maintained a

1975 Honda CB200T motorcycle, created
a jumper to turn off errant TVs… well,
she’s made far too much to go through
here. What’s more, she’s meticulously
documented almost all of these builds so
you can craft your own projects using the
same tools and techniques. In case you
need more evidence of her commitment
to inspiring other makers, she teaches
Making Studio at the School of Visual
Arts (New York) as part of its Products of
Design Masters of Fine Arts (MFA).

This former Director of Wearable
Electronics at Adafruit has been featured
on CNN, BBC, Forbes, Vice, Engadget
and just about every other major tech
news outlet. When lunar legend Buzz
Aldrin needed an illuminated jacket for
an appearance on The Late Show With
Stephen Colbert, there was only one
woman for the job.

HackSpace’s Ben Everard caught up
with Becky Stern to chat about what it
means to be a professional maker in the
modern world, and see how she’s getting
on with her current job at Instructables.

F

Electronics, knitting and how to be a professional maker
BECKY STERN

59

LENS

Left
“This old camera
brings something fun
and personal with
your own interests
rather than just being
a piece of consumer
of technology”

Becky Stern

INTERVIEW

60

You make things from a huge range of
disciplines. Do you have a favourite tool
or technique among them?

There’s not a favourite, there’s just
familiar and less familiar. I learned
how to knit when I was about 15 and I
learned how to sew when I was eight,
so those types of handcrafts always
make me think of my family and being
a kid, whereas I only learned how to do
some motorcycle repair in the last two
years – they all have different types of
endearing qualities.

I guess I like things where I don’t have
to get too messy. I like getting dirty
with jewellery and stuff, but I don’t like
getting oil on my hands. Working with
luxurious materials always feels good.
Wool and leather, yarn and fabric are
always nice to touch whereas
when you have to wear
protective gear or get toxic
chemicals on your hands …
it’s a different mindset.

Protective gear can feel like
a barrier between us and
the thing that we’re making
– it changes the feel of the
process. Do you make stuff
because you want things that
you can’t get another way or is it the
process of making things that you like?

I really like making and sharing. Often,
I could just as easily buy something but
I’m interested in having a conversation
about how that thing is made or how
it works. [For example] it’s an IoT
device and you want to talk about the
security vulnerabilities – making an IoT
device yourself is a great way to have
a discussion on the internet about the
security issues.

I think most of the things I make
you can get, but some things you can’t.
This is a vintage camera [see images].
I have a collection of vintage cameras
because I’ve always been interested in
photography. I don’t take film photos
any more – they’re expensive to develop
and this camera never took good film

photos in the first place – and so I
upgraded it with a Pi camera. It takes
three photos, makes a GIF and then
uploads it to Tumblr. Of course that’s
something you can’t get in the store (a
camera that uploads GIFs to Tumblr) but
you can take GIFs on your phone and
upload. The novelty is that you made it
yourself and it’s ultra custom – it’s not
so much about the object as how you
feel after having built it. How do you feel
after you build something compared to
how you feel after you buy something.
Yes, there are multiple ways to use
your phone for the same net effect, but
it doesn’t bring a smile to your face to
have your picture taken by a phone any
more, whereas this old camera brings
something fun and personal with your
own interests rather than just being a

consumer of technology. There’s some
empowerment there that I think is the
point, more so than finding features
that don’t exist yet because features will
always exist soon.

Do you think that you got a dramatically
different set of photos (OK, GIFs) from
that camera than you would have done
with a phone?

I think so because the subjects were
performing for a special purpose. The
audience is different than for a typical
phone. It’s like oh, they don’t know quite
how it works because I’m the one who
programmed it to do what it does. You
kind of have to have a more personal
relationship with discovering it so for
sure I got more smiles and more people
had their photos taken.

One thing we’ve always found interesting
about your work is that you bring a
really wide variety of skills into your
makes. You said before about sewing and
knitting from when you were young and
you were working at Adafruit for a while
working with electronics. Many people
come to making from the programming
side of things. What skills would you
recommend are worth learning for
someone with a computing background?

I see a lot of computer scientists and
people who know Linux really well, but
are just dipping their toe into electronics.
They should certainly learn more about
electronics and physical computing,
and I would say even try out Arduino
stuff just for comparison’s sake because
it really helps understand the low-level

logic for components and
sensors and stuff.

It’s clichéd to say now, but
the knowledge transfer density
is high when electronics
folks try their hand at 3D
printing. If you can make an
enclosure for your project,
it makes your project more
real. To that end, I would say
vector drawing skills – Adobe
Illustrator or Inkscape – are

really important even before you learn
CAD tools. There are simple tools like
Tinkercad that I think are really useful for
people who are doing coding stuff.

Also, call it Product Design for lack of
a better word, although that term is also
being used now for apps and that sort of
thing, but I mean old-school industrial
design – usability. If you’re going to
design a device that someone’s going to
hold in their hand, the shape of the object
is affected by all sorts of psychological
factors that are subject to the [content]
of whole PhD degrees and Don Norman’s
Design Of Everyday Things [see review,
page 129] and how our intuition affects
our ability to interact with the everyday
world. How do you know to push on
a door? That sort of thing is really
important. It’s not just one skill. It’s a
whole discipline of interaction design.

”

Making an IoT device yourself
is a great way to have a

discussion on the internet
about the security issues

”

61

LENS

I would also say woodworking is really
important, laser cutting is really important.
Instructables has free classes on all of these
skills. You can go to Instructables.com and
find an intro electronics class, an intro
Raspberry Pi class, an intro Arduino class, a
woodworking class, a table saw class.

One thing we’ve noticed is that you’re often
described as a DIYer rather than a maker or
a hacker. Do you prefer this?

DIY, maker, whatever! Look it up on Google
Trends and whichever one is higher is the
one people are searching for more. I’ve
never been into labels – they’re both fine. I
think DIY is a more old-school term. I gave
myself a title before the word ‘maker’ really
caught on.

I’ve been trying get across to people
what I’m doing recently and it’s a little
hard to get across to anyone outside of
the subculture what it’s about. “It’s kind
of about making stuff”, but that seems
too broad unless you’re used to the term
‘maker’. A lot of people don’t get the word
‘hacker’. Maybe I’ll adopt DIY.

It’s the ’70s term. That’s when my parents
were starting to do home improvements,
so to them it’s always been DIY. My parents
have renovated an old farmhouse into a bed
and breakfast and they do all the framing
and the plumbing and the electrical and
the tile work, so I’ve always been in a house
of the do-it-yourself attitude. Growing up
watching TV shows like This Old House,
that kind of home improvement stuff
was always called DIY. The kind of thing
I was working on up through college was
always an extension of that. I don’t know
if ‘maker’ resonates more with a younger
audience because they know what the
scene is now, but I’m sticking with ‘DIY’. It’s
fewer characters.

You can see some of the images
taken with the camera here:
hsmag.cc/kBcNMt

Above
“My advice to
anyone who wants
to be a professional
maker of anything
is to be constantly
publishing stuff”

http://Instructables.com
http://hsmag.cc/kBcNMt

Becky Stern

INTERVIEW

62

In your career, you’ve been involved with
quite a few of the major organisations
in the maker scene. Do you have any
advice for people coming in who’d like
to be a professional maker or follow in
your footsteps?

My advice to anyone who wants to be a
professional maker of anything is to be
constantly publishing stuff – not to wait
for someone to ask you to do something.
It’s to be constantly pushing out something
that you believe in, even if
you’re not being paid for it at
first. I was hired as a media
manager, or a video producer,
at Make and Adafruit and
my skills in video production
and photography and project
management were what set
me apart from someone who
was just making a tutorial.
I could manage others who
were doing the same work as
me, and also see how my work fitted into a
larger editorial vision, but that’s because I
had a strong point of view.

I think it’s important to not let potential
sponsors [control what you do]. Just be
genuine to what you want to make and
shape the opportunities for […]. I don’t know
if it’s product sponsorship or freelancing
for some of these publications. Let your
ideas drive the relationship and see how
things could fit in, rather than saying, “I

have these skills as a maker, what do you
want?” because often when you’re being
hired for your social influence it’s because
you have good ideas, not because you’re
special and unique in the way that you
make a video. Anyone can make a video or
a tutorial; it’s about consistency, breadth,
and vision.

Logistically, it can be hard to get a job
at these big companies now. I see the
industry and the market changing a little
as there are more independent makers

like Bob Clagett (I Like to Make Stuff) and
The Sorry Girls on YouTube (the Toronto-
based duo). There’s a lot more single
entrepreneurs – individual people not
working for a large company – trying their
hand at the business of being a maker. It
really comes down to what you have to say
and your ability to produce high-quality
[content], and frequently. I got offered the
opportunities, I think, in my career mostly
because of my tenacity in publication. I

was just relentlessly always publishing
something. I was never taking a six-month
long hiatus, I was never taking a year off to
write a book, I was constantly publishing
all the time. If you want to make a living
doing maker projects, you have to be able
to show people that you have a workflow
that’s going to be sustainable.

You mentioned the way that individuals
are creating opportunities for themselves.
Is that how you see the future of
professional makers – where you may
have a partnership with a company but
it’s much more about your personal brand
and the things you’ve built up?

My observation has been that more
individual personalities are succeeding
in the maker space as their own
business entities through private
product sponsorships rather than my
situation, which is becoming a full-time
employee of a maker company. I’ve just

seen it happen a lot more
this decade compared to
last decade. I don’t know if
that’s because the maker
subculture is bigger now.

There’s also a bigger
overlap with the bigger non-
maker culture of observing
makers as entertainment.
A lot of non-makers are
observing makers and
thinking, ‘oh, I want to do a

project someday.’ I feel like that audience
has grown by orders of magnitude in
the last ten or so years, which enables a
platform along with regular social media
influencer marketing where the future of
marketing has changed. People looking to
do marketing with young people who are
excited about making things are reaching
out to people who are influencers in the
community already and sometimes it’s
easier for those companies to have a direct

”

The change in the marketing industry and
the blowing up of the maker subculture
have really changed the landscape for

what it means to be a professional maker

”

Left
You can just see the
Raspberry Pi Zero
in Becky’s smart
camera peeking out
of the case

63

LENS

sponsorship with those people than it is to
buy a big campaign with a big magazine
or a huge booth at Maker Faire. They could
support sponsorships for YouTubers who
are already going to have that embedded
audience who will show off their product
to exactly the right demographic. But it
also means that there are a lot more people
trying to be just that. Who wouldn’t like to
be their own boss and do whatever projects
we want to? I think that there’s a lot more
people with that goal now too but at the
same time, it’s never been easier.

You’re now at Instructables. I don’t want
to call it a social network, but it’s sort of
a network of people showing off what
they’ve done. There are a few companies
in this sector: Instructables, Hackster,
YouTube, etc. What is it that you think
makes Instructables the best place?

It’s the breadth of subject matter that
makes it unique. You go to a site like
ravelry.com – it’s the internet’s pre-
eminent site for knitting and crochet
patterns and it’s a great community. It’s a
great website, but anyone who doesn’t knit
or crochet has never heard of it. There’s
not a lot of bleed-through of people who
are just interested in simply making stuff
on that site. On Instructables, you could go
there because you’re interested in knitting
and crochet and see somebody’s project
that includes electronics and get inspired
to try a whole new genre of making things
that you never knew that you would have
been interested in. The community is
really nice. There’s a team at Instructables
whose job it is to enforce the ‘be nice’
comment policy that’s been there for all of
Instructables’ more than 15-year history. I
think the quality of the community coming

to look at each other’s projects and support
each other is really huge.

I think the ‘classes’ content there
that’s still relatively new – it’s just gone
up in the last couple of years – has more
honed, curated, and introductory-level
classes for individual maker skills.
Those cross over really well, so if you’re
dipping into a really cool project but you
don’t know how it was even conceived
of, you can do a class that can give you
the background information to then pull
off that cool project that inspired you in
the first place.

Do you have any tips for people looking
to win Instructables competitions?

The contests are judged both by user
votes and by a judging panel, so the user
votes impact which projects get selected
for review as finalists for the judges, and
anyone can become a judge as well. If

you go to the site footer, you can write in
about becoming a contest judge and that
could potentially be a good way to see
what projects are coming in as finalists.
There’s no secret to winning a contest
when you just have to create good
content, so writing good instructions
with good photos and with empathy
for the person who’s reading – who’s
trying to create your project. That’s
how you create a good Instructable,
and good Instructables win contests. It
doesn’t hurt to campaign among your
friends and get them to vote for you or
to write into big sites and blogs that talk
about projects like yours to get them to
look at your project during the voting
window, so that any spikes in traffic
you get would allow you to get people
to vote for your projects. So if it’s a
technology project, sites like Hackaday,
BoingBoing, and Engadget. Those
kinds of places garner a lot of traffic
for DIY-type technology projects [and]
could really help you move the needle
on votes, but you have to have a good
quality Instructable to start with. I did
an Instructable recently called Five Tips
for Better Build Videos and it included
tips about scriptwriting and how you
can turn the script into the draft for
your Instructable, and just some tips on
documenting your projects in general.

Left
You can see all of
Becky’s creations at
hsmag.cc/xJVxsk

Left
An internet weather
station is a great
way of helping you
decide what to wear
in the morning

http://ravelry.com
http://hsmag.cc/xJVxsk

Improviser’s Toolbox: Duct Tape

FEATURE

64

espite the fact that duct tape, in its
current incarnation, wasn’t even invented
until the mid-twentieth century, it’s hard
to imagine what the world did without it.
The winning combination of water-resistant

layer plus fabric plus adhesive makes it a wonder
material, equally capable of repair and creation.

In the early years, its predecessor, adhesive-backed
duck cotton fabric, was used primarily for medical
purposes. As the story goes, in 1943, during the tail
end of World War II, a woman named Vesta Stoudt was
working at the Green River Ordnance Plant in Illinois,
inspecting and packaging rifle grenades. A mother of
two Navy soldiers, she worried that the thin paper tape
and waterproofing wax used to seal the ammo boxes
was too difficult and potentially time-consuming to open
in the field. She suggested creating and using a water-
resistant adhesive-backed cloth tape, but when her
words fell on the deaf ears of her supervisors, she hand-
wrote a letter to then-President Franklin D Roosevelt,
whose own sons were also fighting in the war.

Much to her delight and relief, her suggestion
was received and deemed important enough by the
American leader for the government to call in the
Johnson & Johnson company, known for its fabric
medical tapes, charging them with inventing what was
to be the first duck tape, named for its ability to repel

D water like a duck and for the fact that it was made
from duck cotton. It was originally army green. Quickly
recognised for its versatility, it also became dubbed
‘100 mile an hour’ tape because it could be used on
virtually anything, including vehicles, aircraft, and guns,
not to mention its emergency medical usages in the
field. So in this case, the mother of invention was
actually somebody’s mother.

After the war, the sticky wonder was promoted for
civilian purposes, notably as a way to hold ventilation
ducts together. It was then offered in silver to match
the ducts and referred to as duct tape. Ironically, the
standard variety has since been deemed unsafe for
use on HVAC ducts because of its flammability and
toxicity when heated, but it has found plenty of uses
the originators could never have imagined, from building
kayaks and clothing to repairing spacecraft. As the old
saying goes, if you can’t fix it with duct tape, you haven’t
used enough. But before we get to that, let’s unpack
this magic tape and take a look at what makes it work.

Sealing the duct tape sandwich is a top coat of
low-density polyethylene (LDPE), the most common
plastic on earth, which provides its resistance to water,
abrasion, and friction, all while staying flexible. Below
that, duct tape gets its superior tensile strength from
its fabric mesh foundation. The tighter the weave and
higher the thread count of the mesh, the stronger the

DUCT TAPE
No toolbox should be without this ubiquitous fix-all

Goli Mohammadi

@snowgoli

Goli Mohammadi is a
word nerd, highlighter
of makers, and lover of
mountains. When she’s
not staring at glowing
screens, she’s romping
around nature. Find her
at snowgoli.com.

https://twitter.com/snowgoli
http://snowgoli.com

65

LENS

tape and the higher the rip strength. No longer restricted
to just cotton, thread options now include nylon, rayon,
and polyester. Lastly, the adhesive is applied as the base
layer, unique in that it’s made with rubber compounds
and caked on to the mesh in a much thicker coat than
used on most other tapes.

Duct tapes are classified in grades, determined by
the type of adhesive and strength of the fabric. An

inexpensive, standard duct tape may have a 9 kg (20 lb)
rip strength, while military grade could easily be twice
that. The varieties and grades are as varied as the uses.
There’s even a nuclear-grade duct tape that’s certified
for low leachable halogens and sulphur, can withstand
temps up to 93°C (200°F), is UV-resistant for up to a
year, and doesn’t leave a residue when removed.

Worth mentioning is the disambiguation between
duct tape and gaffer tape. Though the words are
commonly used interchangeably, these are two
different products with key differences. Typically used
by theatre, film, and photography professionals, gaffer
tape (named for the chief electrician on television
and motion picture crews) is matte to deter light
reflection, has a cloth top layer, and employs a heat-
resistant adhesive that is easily removed without
leaving stickiness.

Get the grade
With many grades to choose from, how do you pick
the right duct tape for your project? Even though there
are lots of classifications, such as ‘all purpose’ and
‘advanced strength’, each manufacturer has its own
way of defining these. Basically, you want to look at
these four specs.

Thickness
Generally, duct tapes range from 3 mils to 17 mils. Thicker
tapes are naturally stronger but also less flexible, which
affects how they wrap around objects. A good general-
use tape should be about 11 mils. You can also layer
thinner tapes to increase their strength.

Adhesive
Quality duct tapes all have adhesive made of natural
rubber. The more natural rubber, the better the
performance of the tape. There’s also the ‘hot-melt’
adhesive variety, but these tend to be less reliable in
extreme temperatures and are weaker.

Threads
Looking at the threads of the cloth grid (or scrim) can
give you an idea of the tape’s quality. Threads that run
the length of the tape lend strength, while threads that
run across show how easily it is to tear by hand. So, the
closer those threads, the stronger it is and the easier to
tear by hand.

Manufacturing Technique
Duct tapes are either made by co-extrusion or lamination,
with the former being far superior. In co-extrusion, the scrim
is melted into backing, forming a cohesive whole, before
the adhesive is added. With lamination, all three layers are
pressed together, causing a risk of bubbles and weakness.

Price can also be a good indicator of how high-quality
the tape is, and consequently, how long it will last and
keep its structural integrity. You really do get what you
pay for here. There are also classifications such as
consumer, industrial, and military grades. Industrial is
the variety that professionals use for actual HVAC ducts,
and is more waterproof, heat-resistant, long-lasting, and
adherent to metals than
the consumer variety.
Military grade then
ups the ante to
the next level of
strength and
durability,
often
reflected in
the price.

Duct tapes are classified in
grades, determined by the

type of adhesive and strength
of the fabric

“
”

Above
Duct tape, shown
here attached to
some reinforced
concrete rebar, is
ridiculously versatile

Improviser’s Toolbox: Duct Tape

FEATURE

66

elson Yepez always wanted to make
a hydraulic robot arm, but most of the
projects he saw online required a way
to cut wood or metal. Having neither, he

decided to go super low-tech by using reclaimed
pizza boxes reinforced with duct tape, giving the bot
a “cool metal-like look” as well as added durability.
Yepez’s cutting template makes the build a breeze,
and if the cardboard you use is on the thin side,
you can easily reinforce with another layer or two
of duct tape. The hydraulic system is cleverly made
using drug store oral syringes, clear tubing filled with
water, and a few machine screws. The hardest part
might be filling the tubes with water. Each push of a
syringe moves a different part of the bot arm. This
project is an ideal low-cost build for teaching the
basics of hydraulics and is sure to wow at any
science fair. Who says robotic arms need to
be high-tech?

BOTS & BOTS
OF TAPE

N

Right
When you don’t have
metal, fake it with
duct tape

NELSON YEPEZ
Project Maker

Build Your Own
hsmag.cc/EqnXPe

http://hsmag.cc/EqnXPe

67

LENS

e’d be remiss to not take a moment
to appreciate how duct tape has been
aboard every major spacecraft mission
in recent history. It’s not only the

fastest way to keep floating items secure in zero
gravity, but it’s saved missions and lives in a pinch.
When a fender on Apollo 17’s Lunar Roving Vehicle
accidentally got caught on a hammer in the shin
pocket of astronaut Gene Cernan’s spacesuit, half of
it ripped off. Normally, a broken fender would be no
big deal, but on the moon’s surface, the rover was
kicking up plumes of dark, abrasive moondust. Crew
members used duct tape, lunar maps, and clamps
from the optical alignment telescope lamp to create
a makeshift fender. Apollo 13 astronauts also used
it to MacGyver a carbon dioxide filter modification.
When an explosion occurred on the Apollo 13 service
module, all three crew members had to transfer to
the lunar module, which was only designed to contain
two astronauts for 36 hours. With carbon dioxide

nspired by Craftsman and AWG
tool bags, Tristan Laughlin designed
this duct tape version with many of
the same useful features. The only

ingredient is cardboard, which makes this project
so inexpensive that you can save your money for
the tools to fill it. This handy little carrier is water-
resistant, full of useful side pockets, and is a prime
example of how strong cardboard and duct tape can
be when they join forces.

W

I

Right
Like getting soup in a
bread bowl, the container
may end up being as useful
as the contents

Left
Duct tape on this
makeshift fender
repair seems
somehow right at
home on the moon

TRISTAN
LAUGHLIN

NASA

Project Maker

Project Maker

Build Your Own
hsmag.cc/iNKdMj

Build Your Own
hsmag.cc/FtkRBo

hsmag.cc/aCcOmx

levels rising at an alarming rate, they had to find a
way to make the square filters they had work with the
lunar module’s round holes. Using found objects and
duct tape, they were able to modify and survive.

SPACE TAPE

TOTING TOOLS IN STYLE

http://hsmag.cc/iNKdMj
http://hsmag.cc/FtkRBo
http://hsmag.cc/aCcOmx

68

on the cover price

SAVE
35%

UP
TO

SUBSCRIBE

Visit: hsmag.cc/subscribe Call: +44(0)1202 586848

AND SAVE!

FROM JUST

£4
per month

http://hsmag.cc/subscribe

SUBSCRIPTION

69

FREE DELIVERY TO YOUR DOOR

GET YOUR COPY BEFORE STORES
EXCLUSIVE OFFERS AND GIFTS

SAVE UP TO 35% ON THE PRICE

SUBSCRIPTION

Visit: hsmag.cc/subscribe Call: +44(0)1202 586848

SUBSCRIBER
BENEFITS

Rolling subscription
from £4 a month:

12-month subscription
from £55:

Quick and easy to set up

No long-term commitment

Cancel anytime

No large one-off cost

UK: £55 per year

US: £99 per year

EU: £80 per year

RoW: £100 per year

Digital subscriptions from £2.29 per monthPLUS

http://hsmag.cc/subscribe
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.apazine.hackspace

DON’T MISS THE BRAND NEW ISSUE!

Buy online: store.rpipress.cc

magpi.cc/Subs1
PLUS! FREE

CASE, THREE

COVERS &

CABLES

FREE PI ZERO W
With your 12-month subscription to the print magazine

http://store.rpipress.cc
http://magpi.cc/Subs1

86
PG

First step, logic gates – second
step, designing your own CPU

SIMPLE CIRCUITS

Start your journey to craftsmanship
with these essential skills

SCHOOL OF
MAKING

PG72

72 Woodworking
78 3D CAD modelling
82 Coding for Arduino

102
PG

CONTROL
CHRISTMAS

106
PG

BUILD A
TREBUCHET!

HACK MAKE BUILD CREATE
Improve your skills, learn something new, or just have fun
tinkering – we hope you enjoy these hand-picked projects

90
PG

BUILD A
COLD SMOKER
Make almost any food infinitely
tastier with a home smoker

94
PG

ARDUINO SYNTH
Make beeps and beats with an
Arduino and the Mozzi library

98
PG

GOING STRAIGHT

WITH PID
Make sure your robots are going
in the right direction

Nothing says holidays
like remotely controlled
flashing lights

Siege weapons should
be used responsibly, not
to destroy castle walls

FORGE

72

SCHOOL OF MAKING

s a woodwork tutor teaching
traditional joinery using hand
tools, I meet a lot of people from
the technology industry looking to
take time out away from the screen
and gain a more balanced skill set.

This Raspberry Pi box project brings woodwork and
technology together. Being small, it is fairly fiddly to
make, but the end result is hugely satisfying. The
corners of the box are joined with a whole and half
dovetail, and the lid and base sit in grooves. The
half dovetails enable the top grooves to continue to
the ends of the box so that the top can slide in and
out. This box is for a home server, so there’s only a
hole for the power cable and we’ve used the WiFi
network connection.

I like to use reclaimed timber, and the maple and
mahogany of my box are floorboards planed down

Woodworking 101

A
to 10 mm and 5 mm thick respectively. Commonly
available 10 mm pine for the sides and thin plywood for
the base and lid would work just as well but if using
pine, add an extra millimetre to the internal box height
to allow for it to shrink across the grain as it dries out.
Glue narrow lengths of pine together edge to edge to
create wider lengths.

MARK OUT
Accurate marking out is essential to well-fitting joinery
so take your time with it. Use the try square to score
knife lines straight across the grain of the length of
wood you are using for the box sides to show the ends
of the sides, the shoulder lines of the joints, and the
sides of the power source hole. Position any knots or
defects in between the sides.

Run the marking gauge along the edges to show
the edges of the grooves that the base and lid will sit TOOL LIST

ESSENTIAL
TOOLS

Ruler

Try square

Pencil

Fine-tooth tenon/
dovetail saw

Marking gauge

Narrow bevel-
edge chisel

Clamps

DESIRABLE
TOOLS

Marking knife

Wide bevel-edge
chisel

Plough plane

Block plane

Screwdriver

Sliding bevel

Coping saw
Above
Who doesn’t want to give their Raspberry Pi a snazzy new home?

Bring traditional techniques to your Raspberry Pi setup

School of making:
Woodworking 101

Jenny Smith

hsmag.cc/msbristol

Jenny is a woodworking
enthusiast with a
background in bespoke
furniture making,
particularly reclaimed
woods. She tutors at
The Makershed Bristol.

http://hsmag.cc/msbristol

73

FORGE

in and the top and bottom of the power source hole.
The grooves should be as wide as the thickness of
your plywood.

When marking out the position of a saw cut, score
two lines, 1 mm apart. You can then scratch out the
fibres in between those lines to create a channel for
the saw teeth to sit in. This will help to keep your saw
on track when you make the cuts.

Tips for accuracy:
 Maintain firm consistent pressure on the stock

of the try square and the marking gauge,
pushing it against the edge of the wood

 Place the flat side of the marking knife against
the blade of the try square

DRILL THE HOLE AND RECESSES
Carefully drill holes (on a low speed setting to avoid
splitting the wood) inside the lines around the edges
of the power supply hole to remove some of the
waste wood. Then, deepen your knife lines across
the fibres with a narrow chisel before paring away
the waste wood that remains layer by layer. Have
a piece of hardwood or laminate underneath the
box side to support the fibres of the wood as you
remove the last layers and stop tear out underneath.

Use the chisel to also remove the waste wood
from the HDMI and audio recesses. When chiselling
in line with the grain of the wood, take care to use
light pressure on the chisel to avoid splitting.

Now cut the lengths for your box, placing your
wood on top of a scrap piece that you’re happy to
sacrifice to stop the wood tearing out underneath
as you cut.

MARK OUT THE DOVETAILS
Mark out the shape of the dovetails onto the end
grain and inside/outside faces of the long box sides
using a pencil, try square, and sliding bevel or ruler.

Don’t yet mark out the dovetails sockets/pins –
you will do this to precisely match the shape of your
dovetails once they have been cut. Mark the waste
side of all of your lines with a pencil cross so that it’s

Above
Carving out holes for
the Pi’s sockets

Above
Chisel across the grain to cut the wood fibres

Below
Before you pick up
your chisel, saw
along the lines
you marked

74

SCHOOL OF MAKING

really clear which sections of wood you are keeping
and which you will remove.

Use a dovetail or fine tenon saw to cut on the
waste side of all of the lines. Use a try square to
position the lines you are cutting at 90 degrees to the
bench – it’s far easier to saw straight down than to try
and lean a saw to the correct angle.

Remove the waste wood from between the
dovetails, either with a coping saw or narrow blade
(that can turn the corner at the bottom of one of your
saw cuts) or by using a series of chisel cuts.

CHISEL THE DOVETAILS AND SHOULDERS
Use a bevel-edge chisel to pare away thin slices of
wood from first the shoulders (the gaps in between

the dovetails) and then the cheeks (sides) of the
dovetails, back to your pencil lines.

Use the try square to check that all your surfaces
are flat and square, marking high points in pencil to
be chiselled away – squareness is more important
than paring exactly back to your lines of the dovetail
shape, as you will mark out the sockets to fit the
resulting dovetails.

A good way to chisel square shoulders is to use a
scrap piece of wood (fence) clamped in line with the
shoulder line to position your chisel. Clamp the box
side and fence flat to the bench and slide the chisel
down the fence. It’s difficult to check if the shoulder
in between two dovetails is square using a try square
due to the restricted view. If the blade of the try
square touches the edge of the wood when the stock
is held against both inside and outside faces, though,
you can deduce that the shoulder is square.

When paring the cheeks, position the surface at
90 degrees to the bench so that you are chiselling
straight down.

MARK OUT AND SAW THE SOCKETS
Label both sides of each corner with the same letter
A/B/C/D so that you can be certain that you are
always putting the same ends together. Then, draw
the shape of your dovetails onto the end grain of each
matching piece, making sure that the inside faces are
correctly positioned facing each other and the edges
of both pieces are flush.

Continue those pencil lines straight down to
the shoulder lines on both the inside and outside

Above
Mark pencil crosses
on the waste side of
each line to clearly
show the areas to be
removed

Right
Cut on the waste
side of all the lines
you’ve marked

Woodworking 101

75

FORGE

faces. As with the dovetails, position the saw cut at
90 degrees to the bench, saw on the waste side of
the pencil lines, and remove material from between
the pins with a coping saw.

CHISEL THE SOCKETS
Chisel the shoulders and then the cheeks of the
sockets flat and square, as you did with the dovetails.

Make sure that you don’t chisel away the pencil
lines on the end grain – these lines were marked on
the outside of your dovetail shapes and if you lose
them, your joint will be loose.

Keep trying to fit the two sides of the joint together
as you chisel back to the lines – it will often go
together before you think it is ready.

PLOUGH THE GROOVES
FOR THE BASE AND LID
On the dovetail sides, the grooves for the base and
lid can be cut using a plough plane. This plane has a
narrow cutter and a moveable fence that can be set at
the required distance from the cutter. When pressed
against the edge of the wood, the fence ensures the
groove is straight.

Mark the depth of the groove in pencil on the end
grain at both ends of the dovetail sides.

Above
This is a plough
plane: use it to carve
grooves for the box
lid to slide into

Left
A strong joint
depends on
corresponding
surfaces touching
each other on
assembly so that
the glue can form
a bond

Above
Marking out the sockets, following the lines of the dovetails

SCHOOL OF MAKING

76

You’ll need to set up a jig using offcuts of your
wood screwed down onto a base to surround the
box side and hold it in position, as it is too small
to use clamps directly – they would be in the path
of the plane.

Set the distance between the plane fence and
the cutter to 3 mm. If the plane has a depth stop,
set this also to 3 mm. Press the fence firmly against
the edge of the wood
to ensure accuracy and
try and remove even
layers along the whole
length. The lid grooves
will run through the
half dovetails.

If you don’t have
a plough plane,
you can pare away
the waste wood from inside the groove with a
narrow chisel. Be careful!

The base grooves of the socket sides need to be
chiselled out, as opposed to plough-planed, because
they need to stop short of the end. Ensure you
chisel across the fibres first to break them and then
gradually pare away thin layers to minimise the risk
of splitting. A depth of 1 mm is sufficient to hold the
base in position.

MAKE THE LID AND BASE
We chiselled a rebate into the edges of the base
and positioned the raised section inside the box in
order to reduce the internal dimensions. This meant
that the power source hole could be positioned
further away from the bottom edge, giving it more
support from the surrounding wood. If you’re using
solid wood, mark the rebates out with the marking

gauge set to 3 mm and
use a wide bevel-edge
chisel to pare away thin
layers down to the line.
Make sure the inside
corners are clear of all
fibres so that the lid
runs smoothly inside
the grooves.

If you’re using
plywood, you can build up a rebated lid and base by
gluing two layers together, with one layer slightly
smaller than the other.

The base needs to extend into grooves on all
four sides. The lid only needs to fit into grooves
along the dovetail sides and can be cut flush at
either end.

The socket sides of the box need to be reduced
in height to allow the lid to pass over the top of

If you’re using plywood, you
can build up a rebated lid and

base by gluing two layers
together, with one layer

slightly smaller than the other

”

”

Right
Assemble the box
once before you
glue it together, just
to make sure it all
fits together

Woodworking 101

77

FORGE

them. Assemble your box and mark the required
height. You can remove the unwanted sections with
saw cuts and then sand or plane to a smooth finish.

GLUE UP
Before you glue up any project, you should fit all
the pieces together without glue to make sure
there are no adjustments to be made.

Once you’re happy with the fit, lay out your
pieces and apply wood glue to the inside faces,
cheeks, and shoulders of the dovetails only – no
glue is required on the socket sides or the base
and lid.

Clamp the box together in both directions, using
small sections of scrap wood to protect it from
being damaged by the clamps. Allow 24 hours for
the glue to dry.

FINISHING
Your box will need to be either planed, scraped or
sanded to clean up the surfaces ready for finishing.
If you use a plane, take care not to plane off the
edge of any areas of end grain, as they will splinter
out. If you use sandpaper, always sand in the
direction of the grain to disguise scratches. Start
out with a coarse paper to remove marks and then
work up through the grades to a fine finishing

paper, removing the scratches of the previous
coarser grade as you go.

Danish oil is a quick, easy, and durable finish.
Apply this sparingly with a soft lint-free cloth, using
a small brush to get into corners. Remove any
excess Danish oil, particularly in the grooves and
the edges of the lid. This will ensure that the box
opens and closes smoothly after finishing. Well
done! Now your Raspberry Pi projects can have a
nice new home.

Above
Here are the
measurements if you
want to make your
own Pi box

Left
The finished article:
lending gravitas to
our Pi web server

78

SCHOOL OF MAKING

ou’ve had that 3D printer for a little
while now; it was so exciting when
it showed up in the mail, chock-full
of gleaming metal and possibilities,
wasn’t it? But, like most people, you’ve
likely started to get bored with printing

pencil holders, coasters, and figurines that you find
online. Those trinkets are fun for a little while, but
the real potential of your 3D printer is in printing your
very own designs.

Designing your own 3D models means using CAD
(computer-aided design) software. Unfortunately,
CAD software has a very steep learning curve, and
is difficult for beginners to get started with. After all,
there are entire college degree programmes devoted
to becoming proficient in CAD. But, that doesn’t
mean there isn’t hope! Learning to use CAD is much
less about where all of the individual commands are,
and more about understanding the concepts involved.

In this article, you’ll learn how to use those basic
concepts to model your own smartphone stand. With
these skills, you’ll be able to design your own ideas.
But, more importantly, you’ll gain an understanding
of how to approach 3D modelling so that you can
continue to expand your knowledge. Everyone needs
a starting point, and if you’ve been looking to get
started with 3D modelling, this is it!

The first thing you’ll need to do is download
Autodesk Fusion 360, which can be found with a
Google search. Fusion 360 is on par with professional
CAD software, but is free for students and hobbyists
to use. Unlike 3D sculpting programs, like Blender
or Maya, parametric CAD software is intended for
engineering purposes and all of the modelling is
handled mathematically.

With a 3D sculpting program, you mould your
design like you’re working with digital clay – it’s a
visual process. Parametric CAD software requires that
you define features with dimensions and relationships
(the parameters). The benefit is twofold: the resulting
model maintains the precise dimensions that you

3D CAD modelling for beginners

Start printing your own designs with this phone stand modelling tutorial

3D CAD modelling
for beginners

Y

YOU’LL NEED

Windows, Mac, or
Linux computer

An internet
connection

Autodesk
Fusion 360
(free for students or
hobbyists)

Callipers, a
measuring tape,
or a ruler

Access to a 3D
printer (if you’d like
to print your design)

specify, and it stores the entire design history so you
can modify individual features later.

CAD LOOKS SCARY; TAKE YOUR TIME
Once you’ve downloaded Fusion 360, take some time
to familiarise yourself with the layout of the interface.
The primary part of the window is the viewport, where
you’ll interact with the model. The viewport is fully
three-dimensional, and the model can be rotated and
viewed from different angles while you’re working on
it. The View Cube at the top right of the viewport lets
you quickly rotate the model to predefined angles.

The main toolbar along the top of the viewport
contains all of the tools you’ll need for modelling.

Below
This guide will walk
you through how to
design and model
your very own
phone stand

Cameron Coward

cameron_coward

Cameron Coward is a
mechanical designer,
writer, and author
specialising in hacker
and maker tech.
Find out more about
him and his work at
cameroncoward.com

https://twitter.com/cameron_coward
http://cameroncoward.com

79

FORGE

On the left-hand side of the main toolbar is a
drop-down for switching workspaces. Each
workspace is set up for different tasks; for instance,
you use the Render workspace to set up a realistic
rendering of your model for presentation purposes.
You’ll find everything you need for this guide in the
Model workspace.

Running down the left-hand side of the viewport
is the component browser, which has information
and settings for units, views, and buttons for toggling
object visibility. The bottom of the window will show
the design history as you create features, and you
can access each step to modify it. Finally, the top
left-most button opens the Data Panel, where you can
manage your projects and design files.

You’re modelling this stand for your actual phone,
so you’ll need to take some measurements of it.
A pair of callipers are going to give you the most
accurate measurements. If you don’t have callipers,
a ruler or measuring tape will work. You’ll need to
measure the length, width, and thickness of your
phone. This tutorial will use millimetres, but you can
work with inches if you’d prefer.

BREAK THE DESIGN DOWN INTO PARTS
The key to CAD modelling is breaking the model
down into a series of individual features. For
instance, if you were modelling a cup you might
make the first feature a cylinder, and use a second
feature to make that cylinder hollow. While there is
no right way to model something, there are some

best practices. Multiple simple features are generally
better than a single complex feature, as there is less
opportunity for error and the features are easier to
modify later on if need be.

We’ll cover a good way to break the phone stand
down into a series of features. But, first try to
visualise the stand as a 3D object, and consider how
it can be reduced down into simple steps. Looking at
the end result might make the model seem complex,
but each individual feature is actually quite simple.
Think of it a bit like building a LEGO set: each block is
very basic, but when added together they can make
an intricate design.

The first modelling step is to create an extrusion to
act as the base of the model. The Extrude feature is
definitely the most commonly used tool for the vast
majority of designers. It takes a 2D sketch profile and
give it thickness to form a 3D solid. It can also do the
opposite, and cut that sketch profile out of an existing
solid. If you picture the phone stand from the side,
you’ll notice that it has a consistent silhouette, so
starting from that angle is a good idea.

KEEP SKETCHES SIMPLE
Sketching that entire silhouette, however, would
make this first feature pretty complex. Instead,

Above
Keep individual
sketches and
features simple.
Overreaching
by trying to put
everything in a single
feature will only
make the process
more difficult

Often, when
modelling for 3D
printing, it’s a good
idea to take into
account the need
for supports and to
avoid overhangs
when possible.

QUICK TIP

Above
When you begin modelling a new design, start by finding the
angle that gives you a basic feature for your first sketch

80

SCHOOL OF MAKING

start with only the base of the stand and the upright
support. Click the Create Sketch button from the
main toolbar, and select YZ (side) plane as the
sketch plane. Then, use the drawing tools under
the Sketch menu to draw lines to form the outline
of this first feature. Both the base and upright
should be 3 mm thick, the base should be about
62 mm long, and the upright should be about 75 mm
tall. The angle between the two should be roughly
75°. These dimensions can be set using the Sketch
Dimension tool.

Adding fillets to the corners where the angled lines
of the upright meet the horizontal lines of the base
is a good idea. Fillets round
those edges, making the
model stronger and more
professional-looking. Unless
you have a reason to leave
them sharp, you should
round most corners and
edges with fillets, or blunt
them with chamfers. A fillet
is defined by the radius
of the arc connecting two lines, while a chamfer is
defined by the length and angle of the chord.

Your sketches should always be fully defined,
which means the lines can’t be moved. Geometric
constraints can help with this, and are in the Sketch
Palette. The bottom line of the base, for example,
needs to be horizontal. So, to lock that, you’ll
select that line and then click the Horizontal/Vertical
constraint. When a line is fully constrained, it will
change from blue to black. Make sure all of your
lines are black before continuing, and the sketch
should be constrained to the Origin point.

EXTRUDE IS A POWERFUL TOOL
Once you have completed the sketch, choose the
Extrude tool from the Create menu to give it thickness.
This is where the width measurement you took of
your phone comes in. You’ll select the closed profile
that you sketched, and extrude it to match the width
of your phone. It’s best to make this Symmetric, so
that the part is centred on the origin. Make sure the
Measurement option is set to overall distance, and
make the Distance equal to the width of your phone.

The next feature is an extruded cut through the
upright support. This will reduce the amount of
material in the final model, and adds visual appeal. The
sketch for this feature needs to be perpendicular to the
last one, so choose the XY (front) plane as the sketch
plane. Then, draw a shape to cut out (like a triangle),
making sure to leave enough material on all sides
of the upright to keep it strong. When you extrude
your sketch, set the operation to Cut, and make the

Distance Through All.
To make the actual

platform that your phone
will rest on, you’ll create
yet another extrusion. This
will be on the same plane
as your first extrusion, and
needs to form a J shape to
hold your phone. The angle
of this platform should be

around 60° from horizontal. Make the height about
half the length of your phone, and the space between
it and the front flip should be slightly larger than the
thickness of your phone. This will allow you to easily
rest your phone on the stand, while still keeping
it good and secure.

The final feature, to finish the base structure, is a
cut-out for your phone’s charging port. Cut this out of
the bottom support and lip of the platform. Sketches
don’t have to be on the predefined planes, and the
sketch for this extruded cut can be the outer face of the
lip. Simply draw a rectangle that’s the same height as

3D CAD modelling for beginners

Almost every feature will have a dialogue box that
contains a variety of options that affect the resulting
3D solid body. The most common options are the
selection (like what you use to choose the sketch
profile), and the primary dimension (like the distance
of an extrusion). Try changing these options to see
what change they make. And, if a feature ever gives
you an error or acts unexpectedly, check these
options to see if they fix the issue.

Above
Don’t settle for just
‘functional’ in your
designs. Take the
time to give it some
finishing touches to
make it look good!

Your sketches should
always be fully defined,
which means the lines

can’t be moved

”
”

TRIAL AND ERROR

A number of
predefined
references are
automatically
created when you
start a new model.
The centre of all of
these is the Origin,
which everything
else references.
The X, Y, and Z
axes all intersect
at the Origin, and
three planes are
created by these
axes. In Fusion
360 the XY plane is
usually called the
Front plane, the
XZ plane is called
the Top plane, and
the YZ plane is
the side (or right/
left) plane. These
correspond to the
views named on
the View Cube.

ORIGIN
THE

81

FORGE

the slip, make it wide enough to access the charging
port, and extrude the cut to the face of the platform.

There is one more cut to consider, and that’s
from the platform. There is no reason to have a big,
bulky rectangle for your phone to rest on. Removing
material will speed up the printing process and reduce
how much filament is needed. Create a sketch on
the platform, and cut out the superfluous material.
The shape can be whatever you’d like, so make it
aesthetically pleasing to you.

AESTHETICS ARE IMPORTANT
Now add some finishing touches, which will be fillets
and/or chamfers. The most important ones are where
the platform meets the upright support, to give the
stand rigidity and strength. When you’re adding this
to an existing solid, there is no need to draw a sketch.
Just choose the Fillet or Chamfer tool from the Modify
menu, and select the edges you want to smooth out.

For visual appeal, it’s good practice to add a fillet or
chamfer to any edge that doesn’t need to be sharp.
Breaking these edges gives the model a more finished
appearance, and removes sharp edges that might be
uncomfortable to handle. Keep adding fillets until you’re
satisfied with the overall look of your phone stand.

PRINT THAT MODEL!
With the model done, you can prepare it for 3D
printing. From the Make drop-down menu, click 3D
Print to bring up the STL settings dialogue box. Select
the model, and set the options to your liking. Unless
you’re trying to make the STL file small, it’s a good
idea to use the High settings to make the resulting
STL mesh as detailed as possible. You can then either
output the STL to your 3D printing software, or save it
somewhere on your computer.

And that’s it, you’re done! While there are lots of
other types of features and tools that weren’t covered
in this guide, you can do a great deal of modelling
with what you’ve learned here. The next time you
want to 3D-print something, try using these tools to
create the model yourself!

FILLETS AND CHAMFERS
The radius of a fillet (pronounced ‘fill-it’) cannot be larger than the space available,
so if you get errors, try making the fillet smaller. A well-placed fillet can make all the
difference in the perceived quality of the final design. Chamfers work well in place of
fillets when a more modern and angular aesthetic is desired. Most designs will probably
benefit from some combination of both fillets and chamfers.

Always consider
how your creation
will be used. For
instance, you might
want to add a small
clip or guide to keep
your charging cable
in place.

QUICK TIP

Left
Once you’re done
modelling your
design, saving an
STL for 3D printing
is trivial. For
quality, keep the
refinement high

82

SCHOOL OF MAKING

o you want to start programming
microcontrollers and doing some
cool projects with the hardware.
You’ve selected Arduino as your
starting platform, purchased a popular
Arduino board, and you’re ready to

get started. What’s next? In this short article, we’ll
show you how to get started coding for Arduino.

Arduino (arduino.cc) is a very popular hardware
platform for computer-controlled hardware projects.
Arduino is a small, inexpensive, programmable
microcontroller that exposes a multitude of
input and output (I/O) connections you can use
to create computer-controlled circuits, wiring in
switches, lights, sensors, and more. It’s an open
hardware platform, which means that the hardware
specification is open source, so anyone with
the means can design and distribute their own
Arduino-compatible hardware. Therefore, there’s a
series of devices made by arduino.cc and a bevy of
‘compatible’ devices from other vendors as well.

To program an Arduino device, you’ll code
applications in a language similar to very old
programming language called C; these applications
are called sketches. Because the Arduino is
basically a small computer system, although with
limited processing speed and memory, the platform
supports a subset of the capabilities of C. You’ll
code your Arduino applications in an integrated
development environment (IDE); Arduino offers
both a locally installed IDE or a cloud IDE to use
for your projects. There are alternative IDEs
available as well; you can find a list of options
at hsmag.cc/aQJqkJ.

Coding for Arduino

Get started with coding for the Arduino platform

Add Arduino power
to your projects

S
When creating sketches, you’ll code your sketch

in an IDE, then connect your Arduino compatible
device to your PC using an USB cable. With that in
place, the IDE compiles your sketches into executable
code, then downloads them to the Arduino device
over the cable. As your sketch runs, you can pass
data between the IDE and your Arduino device over
a serial communication channel enabled in the IDE
(shown in Figure 1). Once compiled code is deployed
to the device, the device resets and, once the device
completes initialisation, it executes the sketch.

 An Arduino sketch consists, at a minimum, of
two parts: code that runs once, and code that runs
repeatedly. Let us show you.

In the Arduino IDE (described later), an empty
Arduino sketch looks like this:

SERIAL COMMUNICATION
The serial communications capabilities of the
Arduino platform expose additional capabilities
for your sketches. At a minimum, you can use
serial communication to send data back to the
IDE while you’re troubleshooting your sketches.
To do this, open the IDE’s Tools menu and select
Serial Monitor. A new window opens, and any data
written using the Serial commands (described at
arduino.cc/en/Reference/Serial) will appear in the
monitor window.

You can also use serial communications to
transfer collected data (from sensors connected
to the Arduino board) to another computer system
like a Windows PC or a Raspberry Pi. Makers often
do this since the Arduino supports analogue inputs
and the Raspberry Pi does not. In this scenario,
the Arduino becomes merely a data collection
device, and the Raspberry Pi does whatever
number crunching is appropriate for the project,
potentially even displaying data on a connected
screen or uploading the data to a remote server
for processing.

Figure 1
Arduino
development
architecture

Development
Workstation

USB CABLE

Sketch Download

Serial Communication

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

http://arduino.cc
http://arduino.cc
http://hsmag.cc/aQJqkJ
http://arduino.cc/en/Reference/Serial)
https://twitter.com/johnwargo
http://johnwargo.com

83

FORGE

/*
*/
void setup() {
}
void loop() {
}

The first part of the sketch is a comment
block. Anything, absolutely anything you enter
between the /* and */ characters is ignored by the
Arduino compiler.

/************************************
 My First Arduino Sketch

 by John M. Wargo
 December, 2017

Meatloaf meatball pork ground round fatback
kielbasa cow porchetta pork loin ball tip. Spare
ribs picanha drumstick pork jerky cupim alcatra
meatball beef ribs. Ball tip ground round
pastrami pancetta shank kevin.
*************************************/

In your sketches, you’ll use this commenting
approach when you have multiple lines of content
you want displayed
within the sketch.
At a minimum, use a
comment block at the
beginning of the sketch
to describe the sketch,
as we’ve done in the
example, using dummy
content from the Bacon
Ipsum generator (at
baconipsum.com).
You should also use block comments like this to
describe important parts of your sketches.

You can also add single-line comments to your
sketches. To do this, start any line in your sketch
with double forward slash characters (//) or after
any of your code. All content following the double
forward slashes is ignored by the Arduino compiler.
In the following example, a single-line comment
precedes the definition of the numCols variable. The
comment and the executable code are on separate
lines, so we started the comment line with the
double forward slashes.

//Number of columns in the table
int numCols;

Or something like this where the comment
follows the definition of the relayStatus variable:

bool relayStatus; //The current status of
the relay (on/off)

The sketch’s setup function is defined with the
following code:

void setup() {
}

Any code you add to this function (you’ll add your
code between the curly braces {}) is executed by
the Arduino device as soon as you power it up and
the hardware finishes initialising. This function is
executed only once; you’ll use this function to set
up your sketch and execute the things that only
need to be done when the sketch starts.

You’ll normally use this to define the
configuration of your hardware; as many input/
output (I/O) connectors on the Arduino can be used
for either input or output, you’ll have to tell your
sketch how you intend to use them. We’ll show
you an example of this in a little while.

The final component of a minimalist sketch is the
loop function:

void loop() {
}

In this function, put any
code that you want to run
repeatedly on the Arduino.
The Arduino executes
the setup function once,
then executes the loop
function over, and over, and
over again until either the
Arduino explodes (it won’t,
we’re just kidding) or you
disconnect power from

the device. You can put all your code in the loop,
or break your code into smaller functions and call
those functions from the loop function.

To see all of this in action, look at the following
example. By default, the Arduino developer tools
include a simple sample sketch called Blink.

YOU’LL NEED

An Arduino-
compatible board
An actual Arduino
device is preferred
as there’s extra
setup required
for many Arduino
compatible boards.
The recommended
starter board is the
Arduino Uno
(hsmag.cc/QKaKXM)
or the newer, and
more capable,
Arduino Zero
(hsmag.cc/KGJbVd)

Microsoft
Windows, Apple
macOS, or Linux

Universal serial
bus (USB) cable
To connect the
Arduino device
to your computer
system. Arduino
on‑device connectors
vary; most use
a micro‑USB
connector, but the
Uno uses a USB
A/B cable

Arduino is a small,
inexpensive, programmable
microcontroller that exposes

a multitude of input and
output (I/O) connections

”

”

Figure 2
Opening the Arduino
Blink sketch

http://baconipsum.com
http://hsmag.cc/QKaKXM
http://hsmag.cc/KGJbVd

84

SCHOOL OF MAKING

Most Arduino devices include an LED on board,
hard-wired into one of the Arduino’s I/O ports.
The included Blink sketch enables you to quickly
accomplish something with the Arduino – turning
that on-board LED on and off repeatedly.

Note: The Blink sketch starts with a long and
thorough introductory comment block that we’re
omitting here for brevity’s sake. We’ll show you
how to open the sketch soon, so you’ll be able to
study the whole sketch in detail.
// the setup function runs once when you press
reset or
// power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again
forever
void loop() {
 // turn the LED on (HIGH is the voltage level)
 digitalWrite(LED_BUILTIN, HIGH);
 // wait for a second
 delay(1000);
 // turn the LED off by making the voltage LOW
 digitalWrite(LED_BUILTIN, LOW);
 // wait for a second
 delay(1000);
}

In the setup function, there’s only one
executable line:

pinMode(LED_BUILTIN, OUTPUT);

Calling pinMode sets the configuration for one of
the Arduino’s I/O pins. In this case, its configuring
the I/O pin defined in LED_BUILTIN for output mode.
Remember, most Arduino boards have an on-board
LED; the Arduino team has preconfigured the
Arduino development environment to store the I/O
pin associated with each Arduino board in a variable
called LED_BUILTIN. Any time the sketch references
LED_BUILTIN, the compiler replaces the reference
with the actual pin number to which the LED is
connected. The Arduino Zero has its LED wired to
I/O pin 13, so for the Zero, the code is essentially:

pinMode(13, OUTPUT);

With this in place, the sketch knows that when
working with pin 13, it will be outputting (sending a
voltage) to the pin, not receiving input.

In the loop function, the code completes the
following steps:

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to HIGH. This means
that the pin gets a voltage equivalent to the current
operating voltage of the Arduino. Some Arduino
devices operate at 3 V and others at 5 V; all that’s
important to know here is that with execution of
this code, the Arduino is now powering the LED
connected to the I/O pin at its brightest.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to LOW. This
translates to no voltage (0), essentially turning the
LED off.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

Above
The Arduino Blink
sketch

Below
Configuring the IDE
for the connected
Arduino board

Coding for Arduino

85

FORGE

When the code runs, it will turn the LED on for
1 second, then off for 1 second, repeating the
process until you remove power from the device or
deploy a different sketch.

Now it’s time to see the sketch in operation. To
do this, you’ll start by
installing the Arduino IDE
on your computer system.
Open your browser of
choice and navigate
to arduino.cc. On the
site’s top menu, click the
Software link, then, on the
page that opens, download
the latest version of the
Arduino IDE for your
system’s operating system. Once the download
completes, launch the downloaded file to begin the
software installation.

Once the installation completes, start the Arduino
IDE. In the Arduino IDE, open the File menu, select
Examples, then 01.basics, then Blink, as shown in
Figure 2 (page 83).

Archiving built core (caching) in: C:\
Users\JOHNWARGO\AppData\Local\Temp\arduino_
cache_950966\core\core_arduino_avr_uno_
c3bfe3f79ffbeab93536a1a484b588d9.a
Sketch uses 928 bytes (2%) of program storage
space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic
memory, leaving 2039 bytes for local variables.
Maximum is 2048 bytes.

If the verification fails, the IDE will display
information about any errors and reference the sketch
line number where the error was found. You’ll need to
fix any errors before continuing to the next step.

Finally, click the Upload button; the IDE will repeat
the verification step, then deploy the compiled
sketch to the connected Arduino device. When

the upload process completes, the Arduino device
will immediately reset, then begin executing the
new sketch. In this example, the Arduino will turn
its on-board LED on and off repeatedly until power
is removed from the board or a different sketch

is uploaded.
Now it’s time to play

around with the code. If
you remember from earlier,
the sketch uses delay
statements to control the
amount of time the LED
is on and off. Right now,
they’re coded to pause 1
second (1000 milliseconds);
modify the code so the

LED stays on for half a second (500 milliseconds)
and pauses for two seconds (2000 milliseconds) in
between. Upload the modified code to the board and
see what happens.

NEXT STEPS
We’ve only lightly brushed the surface of what you
can do with the Arduino platform. To make it easier for
Arduino developers to get started, the IDE includes
a whole catalogue of example applications you can
study and use to expand your skills. To access these
examples, in the Arduino IDE, open the File menu,
select Examples, then look for a sketch category that
appeals to you. The Basics category offers some
simple sketches you can use to expand from where
we’ve started here. There’s a simple sketch to fade
the on-board LED up and down (instead of turning it
on and off, as in the Blink example). There are also
sketches for reading analogue or digital signals; you’d
use these with the appropriate analogue or digital
output device connected to the Arduino. The other
sketch categories offer more sophisticated sketches
that work with different hardware devices and more.

To program an Arduino device,
you’ll code applications in a
language similar to an old
language called C; these

applications are called sketches

”

”

Below
Setting the IDE’s communication port

Below
Compile and Deploy buttons

http://arduino.cc

86

TUTORIAL

Making things add up

Eric Coates explains the basic electronic circuits used in computer arithmetic

Making things add up

omputers can carry out an awesome
amount of mathematics; we all know
that. So how come all of this can be
performed on a machine that can only
add 1 and 1; no subtraction as we know
it; no multiplication and no division?

The answer is that an electronic adder circuit that just
adds 1 + 1 and uses a few tricks of the binary system
can, with some help from a little firmware code, carry
out any arithmetic we need at an amazing speed. The
simple electronic calculator circuit at the heart of this
wizardry is known as the Half Adder and is shown,
made from just a couple of logic gates (an Exclusive
OR gate and an AND gate), in Figure 1.

The ‘half’ in its name is because, while it can add
1 plus 0 and even add 0 plus 1 to get the correct
answer of 1, as shown in the ‘Sum’ column of the
truth table in Figure 1, if it adds 1 plus 1 in binary, this
produces the (decimal) answer of 2, which in binary
notation is 10, so a second column is needed in the
form of a ‘Carry’ output to hold double the value of

Eric Coates

Eric Coates,
BSc (Hons) MA has
lectured on electronics
in technical colleges
and acted as examiner
and moderator for
several UK technical
educational boards.
He is the founder and
CEO of learnabout-
electronics.org

the single-digit sum output, producing the answer
of 10 (decimal 2). This is fine if we only need to add
a single column of binary, but the half adder cannot
cope with multi-column numbers where a carry may
be produced.

THE HALF ADDER’S BIG BROTHER
Because the half adder can only add two 1-bit
numbers in a single column, it does not usually work
alone. However, if the carry output produced by
the half adder can be used as one input to another

Right
The complete half
adder circuit built on
a breadboard

Figure 1
The half adder is at the heart of all electronic calculators

C

A

B
SUM

CARRY

A B Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

hsmag.cc/cabTmd

http://learnabout-electronics.org
http://learnabout-electronics.org
http://hsmag.cc/cabTmd

87

FORGE

is the approach we shall use in our transistor/resistor
version of the half adder.

So why, when logic gates are readily available in
integrated circuit form, and you can easily simulate
their operation on a computer screen, would you want
to build them from basic electronic components such
as resistors and transistors? Well, these days when
the Internet of Things is becoming more and more
important, the skill of combining computers such as
the Raspberry Pi or Arduino with external electronic
circuits and devices is becoming vital. It’s one thing
to move things about on a computer or smartphone
display, but different skills are needed to drive output
devices and make things change in the real world.
Therefore it’s more vital than ever to understand the
operation of electronic circuits at component level,
and to develop the knowledge and skills needed for
constructing working circuits such as the half adder.

THE AND GATE
Our half adder circuit will contain two AND gates,
both working to produce the truth table in Figure 4.

YOU’LL NEED

Transistors
8× 2N3904

Resistors
4× 4.7 kΩ (4K7)
for R1, R10, R11 & R12

8× 6.8 kΩ (6K8)
for all other resistors

Switches
2× Mini push to close

2× 5 V LEDs
1× Kingbright L-53GD
(5 mm green) and
1× Kingbright L-53ID
(5 mm red) are
ideal and need no
limiting resistors

Breadboard and
wire links

5 V Power supply
(only 20 mA current
needed)

Figure 2
Two half adders make
one full adder that
can cope with multi-
column addition

Figure 4
The AND gate output
produces a logic 1
when, and only when,
both inputs are at
logic 1, otherwise the
output is at logic 0

Figure 3
Equivalent half adder circuit using standard logic gates

half adder, the two circuits combine to form the
full adder shown in Figure 2, which will now have
three inputs and so can add two binary bits in any
one column using inputs A and B, plus any ‘carry
in’ from a previous column, making multi-column
addition possible.

So, the half adder may not carry out an impressive
amount of arithmetic, but as it only takes around 30
nanoseconds to produce its answer, this basic adder
could therefore carry out around 100 million similar
calculations per second, which is how, when coupled
with another half adder and other bits of electronic
circuitry, many simple 1+1 additions are made to
look like powerful maths, when it’s really simple
arithmetic, only at a blazing speed!

THE HALF ADDER DISSECTED
The most complex part of the half adder is an Exclusive
OR (XOR) gate, which produces an output of logic 1
when its two inputs are different (01 or 10), but an
output of 0 when the two inputs are the same (00 or
11). XOR gates comprise rather more electronics than
the other more standard gates, which makes them
slower, therefore less popular and more expensive
than the other standard gates. However, the Exclusive
OR logic function can be, and very often is carried
out by a combination of more regular logic gates, as
shown in Figure 3 where the XOR gate is replaced by
a combination of AND, OR and NAND gates, and this

A

B

A

B

SUM 1

CARRY 1

SUM 2

CARRY 2

SUM
OUT

CARRY
OUT

CARRY IN

A

B

SUM

CARRY

Sw A

Sw B

R8

R9

+5V

Tr5

Tr6

Out

R12

AND
A B Out
0 0 0
0 1 0
1 0 0
1 1 1

88

TUTORIAL

Notice in this circuit that the two transistors Tr5 and
Tr6 are effectively connected in series; that is, the
same current will be flowing through Tr5 (collector
to emitter) and through Tr6 (collector to emitter).
Therefore, for this current to develop a voltage
across R12, both transistors must be conducting. All
the transistors in the whole of the half adder circuit
are operated in switch mode; that is, they will either
be switched on, by a
large enough current
flowing into their base
connection to cause the
transistor to conduct
heavily, or switched off
by removing the base
current and therefore
preventing any collector/
emitter current. The
base current for Tr5 and Tr6 depends on the values
of R9 and R8, which are both 6.8 kΩ, and the
switches Sw A and Sw B are used to simply connect
R9 and R8 to the +5 V supply.

So, when both transistors are switched on, the
current through Tr5 and Tr6 will develop an output
voltage across R12 (4.7 kΩ) equal to the supply
voltage, minus a small voltage drop due to the
voltages across the PN junctions in Tr5 and Tr6.

As shown in Figure 3, one AND circuit will be
used to drive the Sum output of the half adder and
the other AND circuit will drive the Carry output.

THE OR GATE
As in the AND gate, the transistors here are being
used as electronic switches and are activated by
the currents flowing into their bases from Sw A and
Sw B via the 6.8 kΩ resistors R4 and R5 (Figure 5).
However, in this circuit the transistors Tr3 and
Tr4 are connected in parallel, with the collector
of Tr3 connected directly to the collector of Tr4

and the emitters of
both transistors also
connected together.
Therefore if either Tr3 or
Tr4 is made to conduct,
a voltage almost equal
to the +5 V supply will
be developed across
the output resistor R10.
This therefore produces

what we shall call logic 1 at the output if Tr3, Tr4 or
both transistors are made to conduct, fulfilling the
requirements of the OR truth table and in the total
half adder circuit, driving one of the inputs of the
Sum AND gate as part of Figure 3’s XOR function.

THE NAND GATE
Comparing the truth tables for the NAND gate in
Figure 6 and the AND gate in Figure 4, it can be
seen that the output columns of each table are the
opposites of each other. This tells us that the circuit
for the NAND gate will be similar to that of the AND

Making Things Add Up

The half adder does not carry
out an impressive amount of
arithmetic, but it only takes
around 30 nanoseconds to

produce its answer

”

”

Before you build
the circuit shown in
Figure 7, it’s a good
idea to build each of
the individual gate
circuits in Figures
4 to 6 separately to
begin with, so you can
test each circuit to
make sure they give
the results shown in
their respective truth
tables. If you fit the
two input switches to
the breadboard first,
you can use these
to test each of the
gate circuits. You’ll
also need to include
the two output LEDs.
Building these three
logic gate circuits
separately will enable
you to find the best
layout for each gate
circuit and help you to
understand how each
gate circuit works
before attempting the
complete half adder.

QUICK TIP

OR
A B Out
0 0 0
0 1 1
1 0 1
1 1 1

NAND
A B Out
0 0 1
0 1 1
1 0 1
1 1 0

Sw A

Sw B R5

R4

+5V

Tr4

Tr3

Out
R10

Sw A

Sw B R3

R2

R1

+5V

Tr1

Tr2

Out

Figure 5 (Right)
The OR gate output
produces logic 1
when either input or
both inputs are at
logic 1, otherwise the
output is at logic 0

Figure 6
(Far Right)
The NAND gate
output produces
logic 1 when both
inputs are at logic 0,
otherwise the output
is at logic 1

89

FORGE

gate, but the outputs will have opposite logic values.
Compare the circuits in Figure 4 and Figure 6 to
see how this is done. The 4.7 kΩ output resistor R12
connected from Tr6 emitter to ground in Figure 4
is simply moved to become R1 in Figure 6. Now if
both transistors in Figure 6 are made to conduct at
the same time, the voltage at the bottom of R1 will
be almost 0 V so producing logic 0 at the output;
if either one or both transistors are switched off,
however, the current path from R1 to ground will
be interrupted and the output terminal will remain
at logic 1, fulfilling the logic requirements of a
NAND gate.

Figure 7 illustrates how two AND functions
(shaded green), as well as the OR function (shaded
blue) and NAND (shaded pink) logic functions
needed for a half adder can be interconnected
to drive two 5 V LEDs representing the Sum and
Carry outputs. The LEDs used in this project are
designed for +5 V supply circuits and have built-in
current-limiting resistors so extra current-limiting
resistors are not needed – unless you decide to
use standard LEDs, in which case you will need to
fit an appropriate current-limiting resistor in series
with the LED.

The photograph (page 86) shows a practical layout
of the half adder circuit on a dual breadboard. You
can follow this layout to make a working half adder
circuit or develop your own layout, depending on the
breadboard and wire links you have available. Notice
that only one half of the double board space has
been used, so if you are feeling brave why not build
a second half adder in the remaining board space
and link the two circuits using another OR circuit, as
shown in Figure 2, to make a full adder?

The half adder may not be as familiar as other
more recognisable parts of a computer system such
as disk drives, sound cards and touchscreens, but
computers can work quite well without these, as
proved by devices such as the Raspberry Pi and
Arduino. However, no computer – not the Raspberry
Pi, not the Arduino, nor even your pocket calculator
– can work without the half adder, one of the unsung
heroes of computing!

If studying adders in this article has inspired you to
find out more about them, and how binary arithmetic
really works to give the basic adders described here
the power to carry out some awesome arithmetic,
take a look at hsmag.cc/qnFyCp, where millions of
people dedicated to learning about electronics go to
study these fascinating combinational logic circuits
essential to computing, as well as many more digital
and analogue topics.

Sw A

Sw B

R1

Tr1

Tr2

Tr3

Tr4

Tr5

Tr6

R2

R3

R4

R5

R8 R9 R10

R12

+5V

Tr7

Tr8

R7

R11

D1
SUM

D2
CARRY

R6

Figure 7
This is the complete
half adder circuit,
combining Figures
4 to 6

HSMAG.CC/QNFYCP

90

TUTORIAL

Build a cold smoker

Add delicious flavours and create unique dishes

Build a cold smoker

T
here are few things that you can turn
your hacking skills to that can give
you as much enjoyment as food.
Most people eat around a thousand
meals a year, so that’s a thousand
chances to use your knowledge and

skill to increase your happiness. To us, that sounds
like a great area to focus on. We’ll start with a
brilliant way of adding flavour to a wide range of
foods such as meat, cheese, and fish: cold smoking.

The three main things you need your smoker to
do are produce smoke, cool the smoke, and apply
the smoke to the food. None of these things is
especially difficult, and the hardest thing for many
DIY smokers is just getting them all into a limited
amount of space. In most cases, this is done best
by splitting the three tasks up into three separate
physical parts.

The rough layout of our design is widely used
for small-scale smokers. You have a firebox, which

YOU’LL NEED

Kettle BBQ
with lid

Heat-proof
ducting

Hardboard
(4× 610 mm ×
550 mm and 2×
610 mm × 610 mm)

Thermometer

Galvanised
fencing wire

200 mm ×
300 mm sheet
of 1 mm stainless
steel mesh

Aluminium
foil tape

2.5 mm × 20 mm
screws

18 mm × 38 mm ×
1200 mm planed
pine

8× M6 50 mm
bolts with nuts

contains some smouldering wood that’s used to
generate the smoke; there’s then some ducting that
the smoke travels along, cooling as it goes. This duct
deposits the smoke into a smoke chamber that holds
whatever it is you want to smoke.

First, let’s take a look at the firebox. This obviously
needs to be fireproof, it needs to be fairly well sealed
(so the smoke doesn’t leak out everywhere), and
it needs to connect to the ducting; but other than
that, it can be almost anything that’s large enough.

Below
Our finished smoker. Smoke likes to rise, so it’s best to place
your smoke chamber above your firebox

Ben Everard

@ben_everard

Ben Everard is the
editor of HackSpace
magazine and a maker
whose projects always
seem to lead to food,
including an irrigation
system that waters his
vegetables and a 1947
radio (converted to
a Bluetooth speaker)
that keeps the music
flowing in his kitchen.

https://twitter.com/ben_everard

91

FORGE

We’ve used a barbecue (because last year’s miserable
summer in the UK led to lots of discounts at garden
centres). Garden incinerator bins are a popular
alternative, and almost anything metal that you can
attach a duct to will work.

The trick with producing smoke is to control the burn
properly. If the wood burns too well then you’ll get
flames but not much smoke and you’ll burn through
your wood quickly. If it burns too slowly, it’ll go out.
There are maze smoke generators commercially
available that are just tracks that allow wood to burn,
but, unlike hacked-together options, these don’t allow
you to adjust the width of the burning sawdust, so it’s
hard to control the amount of smoke.

There are a few options for building your own smoke
generator, but the easiest is to create a long, thin pile
of sawdust that you light at one end and it slowly burns
along. How long this pile should be is defined by the
length of time for which you want to generate smoke,
and how thin it is depends on how much smoke you
want. There aren’t any formulae for calculating this,
as it also depends on the airflow of the smoker, the
moisture content of the wood, and a myriad other
factors. Essentially, getting the right size comes down
to trial and error.

We’ve created our pack of sawdust using 1 mm
wire mesh. You can buy this in sheets and it’s easy to
work with. Fold it into an M shape by hand and pile
the wood dust in the middle groove. We found that
1 mm mesh was fine enough to hold commercial cold-
smoking wood dust, but we wouldn’t recommend
anything with larger holes than this. Our 30 cm-long
sheet of mesh burned for about four hours. If you
need a longer burn time, you can either refill it or get
a longer mesh.

We found that we needed a pile of wood dust
about an inch and a half (38 mm) deep and about the
same width to sustain a smouldering fire, and two
inches (51mm) deep provided a thicker smoke.

To get smoke, just set fire to one end of this dust
trail. A blowtorch is the easiest option, but a candle
underneath also works (just remember to remove

Above
The joints holding the smoke chamber together. The bolt through
the long side makes it easy to take apart for easy storage

HOT
SMOKING

There are two
types of smoking
possible: hot and
cold. In most
of this article,
we’ve looked at
cold smoking,
where the smoke
is chilled and
applied to the
food without it
cooking. The
alternative is hot
smoking, where
the smoke is
applied to the
food as it cooks.
This is as simple
as chucking
some damp wood
on the burning
coals of a BBQ,
then using some
form of lid to
stop too much
steam escaping.

You smoke the
food as it cooks,
which means that
the smoking time
is more limited,
as is the range
of foods you
can smoke.

Left
We bent the corners
of our M-shaped
smoke generator to
make it fit closer to
the ducting taking
the smoke out of
the firebox

TOOLS

Drill

Jigsaw

Wood saw

Metal saw

TUTORIAL

92

the candle before smoking the food). A cigarette
lighter can work, but you’re likely to burn your fingers
once or twice.

We were able to hacksaw a square hole in the metal
lid of the BBQ and attach the duct (see below) to the
firebox using heat-resistant tape. It wasn’t the neatest
join, but we found that this was a situation where a
neat finish would have taken much more time for very
little gain. It does, however, need to be fairly smoke-
proof, so you might need to pile on the tape. If anyone
asks, tell them you were aiming for the rustic look. The
bigger the hole you create, the better the smoke will
flow through into the duct (provided you haven’t made
it bigger than the duct, of course).

DUCT TALES
You’ll be glad to know that the firebox is the most
complex part of the build. Now we’ve dealt with that,
everything gets easier. The duct just needs to be long
enough for the smoke to cool down sufficiently. There
aren’t any hard-and-fast rules on this as it depends on
your firebox design, the amount of heat produced by
the smouldering wood, and the ambient temperature
in the smoke chamber. The end result we’re looking
for is a chamber under 26°C (79°F). As a general rule

SELECTING
WOOD
There are a few different types of wood you can buy
for smoking. Larger chunks (often around a centimetre
cubed) are for hot smokers as they won’t smoulder in
the right way for cold smokers. There are also various
types of pellets and pucks that are designed for specific
commercial smokers. For a home-built cold smoker, you
want to get wood dust or fine wood chips designed for
cold smoking. There are a few different sources available,
but make sure you get some that are for food.

There are loads of different tree species available
and some people will make you think that it’s essential
that everything gets smoked in exactly the right species.
Different woods do have different flavours, but the density
of the smoke in the chamber and the length of time it’s
smoked for has a far bigger effect. We’d recommend
starting with a fruit wood like apple or cherry. These are a
bit milder than some woods such as oak, which means it’s
a little more forgiving of oversmoking so you’re less likely
to end up with something that tastes like an ashtray.

If you create your own wood for smoking, remember
that it has to be uncontaminated with oil. This means no
chainsaws or other mechanical devices that use oil. Cold
smokers don’t get hot enough to cleanly burn this oil, so
you’ll just end up with an oily taste in your food.

Above
The lit smoke
generator will
provide several
hours of smoke
from a single trace

Build a cold smoker

93

FORGE

of thumb, we’d say around 1 to 1.5 metres should
be fine, but we’ll use a thermometer to ensure that
the smoke chamber is at the correct temperature
when smoking.

Provided that you control the burn in your smoke
box well, the duct shouldn’t get too hot, but it’s always
best to err on the side of caution and make sure that
it’s heat-proof. There are a few options here. Solid
metal pipe can work provided it has a large enough
diameter to let the smoke flow freely, but it can be
a little awkward to work with. Perhaps the easiest
option is a flexible chimney liner. There are also other
flexible high-temperature ducts available. Remember
that plastics can give off toxic chemicals even if they’re
not burning, so we’d highly recommend staying away
from anything non-metallic. We used metallic ducting
designed for channelling smoke in oven hoods.

CHAMBER MADE
The final part of the build, the smoke chamber, can
be as simple or as complex as you like. It just has to
be reasonably (though not completely) airtight and be
connected to the duct. Many people reuse something
they have spare. We’ve come across folks using tea
chests, wardrobes, cider barrels, fridges, and filing
cabinets (do be careful that there aren’t any toxic
paints or other substances, though).

We opted to build our own because we want
it to be collapsible for easy storage. The design is
about as simple as it’s possible to be. We used four
sides of 61 cm × 55 cm hardboard with the top and
bottom made of 61 cm × 61 cm hardboard (the sizes
were determined by the stock available at our local
hardware store).

The four sides were joined with sections of 18 mm
× 38 mm planed pine cut into roughly 150 mm
lengths. The 18 mm wide edge was screwed into
one of the box sides, leaving a slight lip where the
hardboard poked out beyond the wood by about
1 mm. We joined the adjacent hardboard side to this
by drilling a 7 mm hole through both the hardboard
and pine and bolting it in place. Two of these joints
in each corner held the box together. With this style
of joint, you can simply unbolt the sides and the box
comes apart. The small lip on the side pulls the sides
together and minimises any gaps, though if you do
find a little leakage, you can always tape the sides
shut. It’s worth numbering the corners and writing
this on both sides so you can reassemble it easily.

You’ll need some venting on the top of the smoke
chamber to allow the smoke to escape, because
if it can’t escape, then it won’t pull through from
the firebox. We found that three 7 mm holes were

sufficient to ensure a good airflow. Unfortunately, we
discovered this after we’d drilled six 7 mm holes. If,
like us, you find yourself over-ventilated, a little tape
will solve the problem.

Beyond the bare box, the only things you need in
your smoker are the thermometer, somewhere to
put the things you’re smoking, and the end of the
smoke duct. We pushed our thermometer through a
3 mm hole drilled into the side of the chamber
to allow us to read it without opening the
chamber (which lets a lot of smoke
out). We made a rudimentary rack
using galvanised fencing wire
threaded through holes in
the chamber, and placed an
oven rack on this. Finally,
we used a jigsaw to cut a
circular hole for the duct.
We made this larger than
the duct, pushed the duct
through and taped it on
the inside. This was neater
and more secure than
taping to the outside, as we
had to do with the firebox.

That was all there was to it.
It took a little experimentation
to get the right amount of wood
dust and airflow holes, but within
an hour of finishing the build, we were
cold-smoking our first batch of food.

WHAT TO SMOKE
Now you’ve got your smoker, the next
question is what to put in it. Unlike a
hot smoker (which is hot enough to kill
bacteria), a cold smoker carries some
risks. Essentially, you’ll be holding the
food at around room temperature for a
few hours, which can allow bacteria to
grow, so you need to make sure that what
you smoke isn’t going to harbour nasties
that can cause problems.

Cheese is a great option to start with,
and the flavours of different types of
cheese with different types of smoke can
be fantastic. It tastes best a few days
after it’s smoked, as this gives the flavour
time to mellow. Most vegetables can be
smoked, and smoked garlic, onions or
peppers give a great depth of flavour to
cooked dishes.

Meat can be safely smoked if it’s been
properly salted first. This salting slows

down the bacteria enough for it to be
smoked without becoming contaminated.
In principle, properly made bacon is safe
to smoke, but we would stay away from
commercial bacon as it’s hard to know
what preservatives have been used. A
good butcher will be able to tell you if
their products are safe to cold-smoke.
Alternatively, you can make your own.
The process takes a little time (up to two
weeks), but the results are delicious.
Our favourite recipe comes from River
Cottage: hsmag.cc/cGAzON. Just be sure
to cure it for around four to five days
before smoking.

There’s nothing to stop you smoking
many different things at a time, provided
they all fit into your smoker of course.
The best way of finding out what smoked
things you like is to try lots of different
things out!

Below
Meat thermometers
are simple and
cheap, but you could
hook up a digital
sensor and collect
the data

http://hsmag.cc/cGAzON

94

o, you’ve got your first Arduino, and
you’ve tried a few basic projects.
Maybe you’ve got an LED blinking and
now you’re struggling to find a project
that’s a little more creative. Look no
further, we’ve got you covered! You may

have achieved some basic bleeps and bloops with the
built in Tone() function, but we’ll be doing some much
more advanced digital synthesis.

Digital synthesizers are very different from
their analogue counterparts. Instead of a complex
collection of diodes, amplifiers, oscillators, and other
esoteric audio electronics, they mainly use processing

TUTORIAL

Getting started with the Mozzi library to get your Arduino wailing

Make your own 8-bit
synths with Arduino

S
power to generate waveforms and effects. Digital
synths have other benefits too, but their main
strength is that once set up, they’re extremely
reconfigurable; you don’t need to rebuild your synth
to change its sound, just reprogram it.

Throughout this tutorial we’ll be using the Mozzi
library to create a variety of sounds. The library is
capable of generating complex waveforms, audio
effects, and playing short samples, all from the
modest hardware in an Arduino. We’ll be using it to
create a basic FM (frequency modulation) synthesizer.

We’ll get started with the absolute bare minimum
for a Mozzi-based sketch. Make sure you’ve installed

YOU’LL NEED

An Arduino
(Preferably Uno,
although others
are possible)

Breadboard

470 Ω resistor

Tactile button

4 × 10 kΩ linear
potentiometers
(usually marked
B10K)

Right
Our final synth,
with the four
potentiometers we
need to play with to
create the sound of
the future

8-bit Synths With Arduino

Chris Ball

@ChrisBallMidi

Chris Ball is a
technologist working
in Manchester, UK.
He has worked on a
variety of interactive
art installations. You
can visit his site at
chrisballprojects.co.uk

http://chrisballprojects.co.uk

95

FORGE

the Mozzi library, then start your Arduino environment
and open the example under File > Examples > Mozzi
> Basics > Sinewave. This is a sine wave generator,
which is pretty much the digital audio equivalent of a
‘Hello, World!’ program.

Here you’ll see the basics of a Mozzi program,
and you might notice it has a slightly more complex
structure than your usual Arduino sketch. Let’s ignore
that for now, and get making some sound. Upload the
code to your Arduino. If all is well, a sine wave will be
generated on pin 9, and we just need to listen to it.

To connect the Arduino to our amplifier/earphones
we need to connect the following:

Arduino pin 9 470 Ω resistor Audio jack tip (the
resistor is to help protect pin 9)
Arduino GND Audio jack base

If all’s well, you should hear a sine wave at 440 Hz. If
you have no sound, check your volume, connections,
and that the sketch has uploaded successfully.

If you’ve had some success, we’d recommend at
this point that you take a look at some of the other
examples the Mozzi library has to offer. This will give
you an idea of what it’s capable of, but bear in mind
that some examples expect extra hardware.

Back to the sine wave generator: we’ll be breaking
down the elements of this sketch fairly thoroughly, as
knowing the basics of how Mozzi works will enable
you to make more exciting changes later.

First, we’ll take a look at the includes. This is where
we add in the required files from the Mozzi library,
and you should see three includes: ‘MozziGuts.h’,
‘Oscil.h’, and ‘tables/sin2048_int8.h’.

MozziGuts.h is the main library required for doing
anything with Mozzi. This file will adapt your Arduino
for use as a synth, by taking over some timers and
setting up some fast sampling methods.

Oscil.h is simply a template for an oscillator. Any
sound requires a repeated change in voltage, or air
pressure; an oscillation. This file tells Mozzi how to
create an oscillator from a lookup table.

tables/sin2048_int8.h is the lookup table we’ll be
using to make a sine wave. A lookup table is often
used where calculating the values of a function (in this
case, a sine wave) would take too long. We simply
pre-calculate all the values and store them in memory.

When we need them, we can simply ‘look them
up’, hence the name lookup table.

We then have a line:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin(SIN2048_DATA);

This is a little like saying, “Create a sine wave
oscillator called aSin, using the table I mentioned
before.” We also have the line:

#define CONTROL_RATE 64

Which means we intend to update our controls (our
potentiometers and buttons) 64 times per second.
Mozzi asks for control rates to be powers of two (e.g.
2, 4, 8, 16, …)

To continue to our main functions: in setup() you’ll
see two commands. The first, startMozzi(CONTROL_
RATE), will start the Mozzi engine, and the second,
aSin.setFreq(440), will set the frequency (or pitch) of
our oscillator. 440 Hz is middle A (so if you only get
this far, at least you can get your band in tune).

Typically, when writing a Mozzi sketch, you’ll
avoid putting anything in loop(), except the function
audioHook(). This function will calculate samples (little
chunks of audio data) ready to be written to our output.
So where do we put our code? You’ll notice, apart from
the usual setup() and loop() functions that we have
two more: updateControl() and updateAudio().

updateControl() is where we put the changes
we want to happen at our control rate (64 times
per second). This will be things like reading our
potentiometer values, button states and other tasks
that don’t need to happen too often. In this sketch,
nothing like this is required, so the function is empty.

updateAudio() is the function that audioHook()
will run repeatedly – it calculates our audio samples
and stores them in a buffer to be sent to pin 9
later. You can see within this sketch the code:

To 470 Ω resistor
and Arduino pin 9 To Arduino GND

INSTALLING
THE MOZZI LIBRARY
From sensorium.github.io/Mozzi you can click on the download link. This will take you to
an optional donation page where you can help the author of the library out, if you choose.
You’ll then be taken to the GitHub project page for Mozzi. Click the ‘Source Code .zip’ link,
download the zip file, and extract the contents to your Arduino/libraries directory (this is
usually in your documents folder).

Your file structure should then look like this:
Documents/Arduino/Libraries/Mozzi-1.0.3 (although you may have a different version).

Above
How to connect
crocodile clips to
an audio jack

http://sensorium.github.io/Mozzi

TUTORIAL

96

return aSin.next(); which simply means to send the
next sample for this oscillator to the buffer.

Let’s make a couple of changes to the way this
works. We’ll add one pot (potentiometer) to control
frequency, and a second pot to control volume.

Connect two pots to your Arduino (Figure 1). Each
pot will have one side connected to 5V, the other
side connected to GND and the middle (wiper) to an
analogue input. We’ll use analogue inputs A0 and A1.

Add the following lines of code before void setup():

int pot0, pot1;
int volume,frequency;

These will be the variables where we’ll store the
pot values, and the frequency and volume values they
will control.

Add the following lines of code inside your
updateControl() function:

pot0 = mozziAnalogRead(A0);
pot1 = mozziAnalogRead(A1);
frequency = pot0 + 50;
volume = map(pot1, 0, 1023, 0, 255);
aSin.setFreq(frequency);

The first two lines will store our pot voltages as
variables, pot0 and pot1.

The third stores the value of pot0 + 50 to a variable
called frequency. We’ve added the +50 to prevent the
frequency becoming too low to hear.

The fourth line will store the value of pot1 to a
variable called volume, but will scale it in the process
to be between 0 and 255 (instead of 0 and 1023).

The last line will set the frequency of our oscillator
to the value in the frequency variable

This covers changing our frequency, but we need
to make one last change in updateAudio() for the
volume control to work.

Change the line:

return aSin.next();

to:

return (aSin.next()*volume)>>8;

This line may look confusing, but it’s very similar
to multiplying the output by a value between 0 and
1. It’s good to get used to calculating this way as it’s
significantly faster with integer values on an Arduino,
and we need speed to calculate all our sample values.

If you upload these changes, you now have a basic
synthesizer! You should be able control pitch with pot
0 and volume with pot 1.

So perhaps you’ve played that for a while and
become bored already. This was bound to happen –
it’s only a simple synthesizer. Let’s try adding another
sine wave oscillator, and another potentiometer to
control it. To add another potentiometer, you can
repeat the connection pattern as before, with our
middle wiper pin wired to A2 on the Arduino. We
already have the sine wave lookup table we need, so
we can do this simply by duplicating the line:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin(SIN2048_DATA);

You’ll need to give our oscillators distinct names, so
we should change this to:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin1(SIN2048_DATA);
Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin2(SIN2048_DATA);

We’ll add and change some variables too:

int pot0,pot1,pot2;
int frequency1,frequency2,volume;

Our updateControl() function will become:

pot0=mozziAnalogRead(A0);
pot1=mozziAnalogRead(A1);

Figure 1
Connecting two pots
to your Arduino

DIGITAL TO ANALOGUE
WITH PWM
You might have realised that we are using pin 9, a digital pin, to do the job of an analogue
output – how does this work? We are using pulse-width modulation (PWM). Simply put, if
we want to approximate 2.5 V with a 5 V digital output, we switch the digital pin high for 50%
of the time. 1 V would be 20%, 2 V 40%, and so on.

PWM is most commonly used for making lights (particularly LEDs) appear at different
brightnesses or motors run at different speeds, all by switching a constant voltage on or off.

This approach does have significant downsides, though – mainly that it will introduce a
lot of noise at your modulation frequency. Not a problem for motors or LEDs, but your ears
will probably notice straight away.

Desired Output PWM Output

V
o

lt
ag

e

V
o

lt
ag

e

Time Time

The ‘>>’ and ‘<<’
symbols are called
bitshift operators,
and they are a very
fast way of dividing
or multiplying by 2.
The ‘>>8’ is a little like
saying “divide by 2, 8
times”. If our volume
value was 200, you
could think of this line
as Output × (200/256).

QUICK TIP

8-bit Synths With Arduino

97

FORGE

pot2=mozziAnalogRead(A2);
frequency1=pot0+50;
frequency2=pot1+50;
volume=map(pot2, 0, 1023, 0, 255);
aSin1.setFreq(frequency1);
aSin2.setFreq(frequency2);

And our updateAudio() code will be changed also:

return volume*((aSin1.next()+aSin2.next())>>1)>>8;

Our two sine waves, when added together, could
add up to a number higher than our PWM output can
reproduce. In audio circles this is called ‘clipping’ and
is generally avoided (unless you’re intentionally after
a distorted sound). We’ve prevented this here by
dividing the output by two.

The above changes should result in two controllable
sine waves on pots 0 and 1. You may even be able to
get some interesting ‘throbbing’ if you pitch the notes
close together – this is called ‘beating’ and is caused
by interference between the two frequencies.

To develop the synth further, we’ll introduce
frequency modulation (FM). This means we’ll use the
output of one sine wave to control the frequency of
another, resulting in varied timbres.

We’ll also be making some changes to our
hardware: adding another potentiometer; and
introducing a push button to trigger the audio.

If you make these changes to the circuit, and
upload the code from hsmag.cc/JPNNBP, you should
have yourself an FM synthesizer!

The magic happens in two lines. This one, in
updateControl():

aSin2.setFreq(frequency2);

And this line, in updateAudio():

aSin1.setFreq(frequency1+(amount*(aSin2.
next())>>8));

The first sets the frequency of our modulation, and
the second uses that to control the frequency of our
main waveform. There is also an amount control that
will multiply our modulation, with some interesting
effects. Remember, now you’ll need to push the
trigger button to hear sound! Try changing some of
the numbers in this code and see how they affect
the output.

So, you should have a basic 8-bit synthesizer,
but more importantly, an idea of how to use the
Mozzi library to develop it further. Mozzi has a huge
selection of basic waveforms, some audio effects,
and it’s extremely well documented, with great
examples. If you feel lost at any point, you can always
check on the website.

OTHER ARDUINO AUDIO PROJECTS
ElectroSmash PedalShield: This is a kit designed to sit on top of an Arduino Due and turn
it into a general-purpose guitar effects pedal. It has some basic examples available, and a
forum with many more. Electrosmash.com/pedalshield

Ardutouch: International hacker Mitch Altman has created an Arduino-based synth
project called Ardutouch, built on a fantastic library by himself and Bill Alessi. The library
by itself is great to mess around with, although it may require an experienced Arduino
user. cornfieldelectronics.com/cfe/projects.php

Teensy Audio Board: This hardware for the Teensy 3.1/3.2 and the accompanying audio
library get an honourable mention simply because it’s so fully featured. Not strictly
Arduino, but Arduino-like. pjrc.com/teensy/td_libs_Audio.html

There are many more useful libraries in the Arduino Library List (playground.arduino.cc/
Main/LibraryList) under the ‘audio’ section.

Left
The final circuit
diagram for
the breadboard

G
N

D
G

N
D

5V

D2

SW1

A0

A1

R1
POTENTIOMETER

R2
POTENTIOMETER

A2

R3
POTENTIOMETER

A3

R4
POTENTIOMETER

+

Having problems
getting the first
example working?
There’s a much
more thorough
walkthrough at
hsmag.cc/AwksSP

QUICK TIP

http://Electrosmash.com/pedalshield
http://cornfieldelectronics.com/cfe/projects.php
http://pjrc.com/teensy/td_libs_Audio.html
http://playground.arduino.cc/Main/LibraryList)
http://playground.arduino.cc/Main/LibraryList)
http://hsmag.cc/AwksSP

98

TUTORIAL

Going straight with PID

How to make your Raspberry Pi robot drive in a straight line

Going straight with PID

T
here is more to making a robot go in
a straight line than just turning the
motors on full power – in this tutorial
you’ll learn how to add encoders
to your robot and implement a PID
controller to regulate the power.

Anyone who has ever built a wheeled robot will know
that driving in a straight line is a lot more difficult than
you first think. Sure, holding a true heading for 1, 2 or
maybe 3 metres is possible, but keeping it up past 10
or 20 metres without a veer to the left or right becomes
astonishingly tricky.

There are many reasons why this happens – uneven
surfaces, differences in wheel size, bent axles and, most
significantly, the fact that no two motors turn at the
same speed! Minor differences in manufacturing and
materials result in minor differences in output, and as a
result, one motor will spin more quickly than the other.
This difference may well be very small, but over time (or
distance), it will show as your robot beginning to veer. If
the right motor is moving quicker, your robot is going to
turn in an arc to the left, and vice versa.

To counter this problem, a solution is required that
can accurately measure how fast each motor is moving

YOU’LL NEED

Raspberry Pi
wheeled robot

Two motor/wheel
encoders

and then use this feedback to adjust the motor’s
speed at run-time so that each motor spins at the
same rate.

Encoders are typically used to measure motor
speed; these devices provide an output (or pulse)
multiple times per revolution.

A PID (proportional-integral-derivative) controller is
then used to continuously monitor and adjust motor
speed to keep them in sync.

This tutorial steps through adding encoders to a
Raspberry Pi-powered robot, using Python to create
a PID controller, tuning it to work with your robot,
and using the GPIO Zero (gpiozero.readthedocs.io)
library to interact with the hardware.

ENCODERS
Encoders come in all shapes, sizes and accuracy. They
can be incorporated into motors themselves or as
add-ons that connect to the motor shaft or the wheel,
but fundamentally they all work in the same way – a
consistent signal is provided as the motor turns; the
faster the motor is turning, the faster the signal.

A typical robot setup includes a motor controller (or
maybe a dedicated HAT), two motors, and a battery
pack. In addition, you will need an encoder per motor
connected to your Raspberry Pi.

Most encoders will have three or four pins (power,
ground, and one or two signal pins); typically the power
and ground pins will be connected to a 3.3 V and a
ground (GND) pin on your Pi; one of the signal pins
should be connected to a spare GPIO pin. It’s important
to check the specifications of your encoders before
connecting them up to the Raspberry Pi.

Any Python IDE will do
1. Open up a Python 3 editor (e.g. Thonny) and create
a new program.

2. Import the required Python modules:

from gpiozero import Robot, DigitalInputDevice
from time import sleep

3. Create a constant for sample time – this is how
often (in seconds) your program will read the values

Right
A typical Raspberry
Pi robot setup with
controller, battery,
two motors, and
two encoders

Encoder Encoder

Martin O’Hanlon

@martinohanlon

Martin is the co-author
of Adventures in
Minecraft, a Raspberry
Pi trainer, and blogger
at stuffaboutco.de

http://gpiozero.readthedocs.io
https://twitter.com/martinohanlon
http://stuffaboutco.de

FORGE

99

from the encoders – it’s likely that you will need to
change this value later to get the best result from
your setup:

SAMPLETIME = 1

4. Create an Encoder class to monitor your encoders;
this will increment a value each time the pin turns on
and off.

class Encoder(object):
 def __init__(self, pin):
 self._value = 0

 encoder = DigitalInputDevice(pin)
 encoder.when_activated = self._increment
 encoder.when_deactivated = self._increment

 def reset(self):
 self._value = 0

 def _increment(self):
 self._value += 1

@property
 def value(self):
 return self._value

5. Use the gpiozero Robot class to connect to your motor
hardware; each motor will connect to two GPIO pins
(one forward, one back), specified as ((left_forward,
left_backward), (right_forward, right_backward)) – our
robot uses the pins ((10,9), (8,7)):

r = Robot((10,9), (8,7))

6. Create two Encoder objects passing the GPIO pin the
signal connects too; we’ve used GPIO pins 17 and 18:

e1 = Encoder(17)
e2 = Encoder(18)

7. Start the robot by making the value of both motors
1.0 (forward at full speed):

m1_speed = 1.0
m2_speed = 1.0
r.value = (m1_speed, m2_speed)

8. Start an infinite loop and print the encoder values:

while True:
 print("e1 {} e2 {}".format(e1.value, e2.value)
 sleep(SAMPLETIME)

9. Run the program.

View the complete encoder.py code listing at
github.com/martinohanlon/RobotPID.

The SAMPLETIME value should be changed to reflect
your hardware; you need to find a balance between
reading it frequently enough to get good results and
slow enough to capture sufficient encoder ticks – try
values between 0.1 and 1.0 seconds and aim to capture
more than 20 ticks per sample.

Make a note of approximately how many encoder
ticks per sample your robot makes.

PID CONTROLLER
A PID controller continuously calculates an error
and applies a corrective action to resolve the error;
in this case, the error is the motor spinning at the
wrong speed and the corrective action is changing
the power to the motor. It is this continuous testing
of the motor’s speed and adjusting it to the correct
speed which will make your robot’s motors spin at the
correct speed and go straight.

PID is a ‘control loop feedback’ mechanism
The controller will have a target motor speed that it
wishes to maintain; each time the encoder values
are sampled, it will calculate the difference (or error)

TWO-PIN
ENCODERS
Your robot maybe fitted with ‘quadrature’ encoders;
these encoders use two pins, significantly increase the
resolution, and allow the direction the motor is spinning
to be determined.

This tutorial assumes you are using simple one-pin
pulse encoders, but there is a code example at
github.com/martinohanlon/RobotPID which should allow
you to modify it. There’s also an excellent write-up at
robotoid.com/appnotes/circuits-quad-encoding.html
which explains how they work and how to interpret the
signals from them.

Above
As the right motor
spins quicker than
the left, the robot
always turns left

Below
The PID controller
adjusts the speed
over time and may
take a while to settle
to the target speed

Too fast

Too slow

Time

Motors with built-in
encoders tend to be
more expensive, but
they also have much
greater accuracy
and precision
than add-ons.

QUICK TIP

https://github.com/martinohanlon/RobotPID
http://github.com/martinohanlon/RobotPID
http://robotoid.com/appnotes/circuits-quad-encoding.html

100

TUTORIAL

between the target speed and the actual speed
and apply an adjustment to the motor speed. If the
adjustment overshoots the next time the encoders
are sampled, a smaller opposite adjustment will be
made. Over time, the adjustments will even out and
the motors will run at a constant speed (or at least
that’s the theory!).

You will be changing the program you created to
read encoder values to calculate an error and apply
an adjustment using proportional, derivative, and
integral control.

PROPORTIONAL
Proportional control is adjusting the motor speed
by adding the value of the error – the value of the
error (the difference in encoder ticks between
the target and the actual speed) will need to be
converted to the motor speed (a value between
0 and 1) by multiplying a constant (KP) to get a
‘proportional’ change:

adjustment = error x KP

Time for maths
Modify the program you created earlier to read
encoder values:

1. Add a constant for the target of encoder ticks you
want the motors to achieve; make this value about
75% of the ‘encoder ticks per sample’ value you
made a note of earlier (in our case 60 × 0.75 = 45):

TARGET = 45

2. Add a constant (KP) for the proportional change
which will be multiplied by the error to create the
motor adjustment. This constant will need tuning,
but a good starting point is 1 divided by the ‘encoder
ticks per sample’ (e.g. 1 / 60 = 0.0166~)

KP = 0.02

Going straight with PID

3. At the start of the infinite loop, calculate the error
for each motor by subtracting the encoder value from
the target:

while True:
 e1_error = TARGET - e1.value
 e2_error = TARGET - e2.value

4. Calculate the new motor speed by adding the error
and multiplying it by the proportional constant:

 m1_speed += e1_error * KP
 m2_speed += e2_error * KP

5. The motor speed needs to be between 0 and 1, so
clamp the value using max and min:

 m1_speed = max(min(1, m1_speed), 0)
 m2_speed = max(min(1, m2_speed), 0)

6. Update the robot’s speed to the new motor values:

 r.value = (m1_speed, m2_speed)

7. Add some debugging code to print the motor
speed after the encoder values; this will be useful
for tuning:

 print("e1 {} e2 {}".format(e1.value, e2.value))
 print("m1 {} m2 {}".format(m1_speed, m2_speed))

8. Before the program sleeps for the sample time, you
need to reset the encoders:

 e1.reset()
 e2.reset()
 sleep(SAMPLETIME)

9. Run your program – you will see the motor’s speed
being adjusted each time the encoders are sampled,
based on the error.

How different are your motors?
View the complete proportional.py code listing at
github.com/martinohanlon/RobotPID.

Proportional control should be enough to stabilise
your motors’ speed and keep them turning at about
the correct speed, but when there is a large error or
you want the speed to adjust quickly, you will get a
large overshoot and your robot will react erratically,
swinging left to right – this is where derivative
control helps.

DERIVATIVE
Derivative control looks at how quickly or slowly the
error is changing, creating a larger error if it’s changing
quickly and a smaller one if slowly. This will help to
smooth out the rate of change and prevent erratic
changes in speed.

OTHER
PID USES

The input and
outputs of a PID
controller don’t
have to be an
encoder and
a motor; the
controller can
be applied to any
situation where
something needs
to be constantly
monitored and
adjusted. This
could be:

 Using a
magnetometer
to make a
robot move in a
certain direction

 Keeping a
camera on a
powered mount
pointing at the
same place

 Making a robot
follow a wall by
measuring the
distance to it with
ultrasonic sensors

PID controllers are
universal devices
and the rules
can be applied
to solve many
different problems.

Right
Our encoders tick
about 50 to 60 times
per sample and
motor 2 runs slightly
faster than motor 1

https://github.com/martinohanlon/RobotPID

FORGE

101

This is achieved by taking the previous error into
account when calculating the adjustment and again
multiplying by a constant (KD):

adjustment = (error × KP) + (previous_error × KD)

Modify the program to implement derivative control…

1. Create a new constant (KD) for the derivative
control. Again, this value will need to be changed to get
the best results for your setup; a good starting value is
half the value of KP:

KD = 0.01

2. Create two variables to hold the previous errors and
set them to 0:

e1_prev_error = 0
e2_prev_error = 0

3. Modify the code which calculate the speeds for
motor 1 and 2 to taken into account the previous error:

 m1_speed += (e1_error * KP) + (e1_prev_error
* KD)
 m2_speed += (e2_error * KP) + (e1_prev_error
* KD)

4. At the end of the loop, set the previous error
variables to be that of the current error:

 sleep(SAMPLETIME)
 e1_prev_error = e1_error
 e2_prev_error = e2_error

5. Run your program. Again you will see the motor
speed change in relation to error and over time, it
should stabilise to a more consistent speed.

Proportional and derivative (PD) control should
provide a good level of performance but may not
provide consistency of speed over time – integral
control can help to bring this stability.

INTEGRAL
Integral control helps to deliver steady state
performance by adjusting for slowly changing errors.
It does this by keeping a sum of all the previous errors
and applying a constant (KI) to the adjustment:

adjustment = (error × KP) + (previous_error × KD)
+ (sum_of_errors × KI)

Modify the program to implement integral control:

1. Create a constant for the integral control (KI); a
good starting point is half the value of KD:

KI = 0.005

2. Create two variables to hold the sum of all previous
errors and set them to 0:

e1_sum_error = 0
e2_sum_error = 0

3. Modify the speed calculation to take into account
the sum:

 m1_speed += (e1_error * KP) + (e1_prev_error *
KD) + (e1_sum_error * KI)
 m2_speed += (e2_error * KP) + (e1_prev_error *
KD) + (e2_sum_error * KI)

4. At the end of the loop, increment the sum variables
by the current error value:

 sleep(SAMPLETIME)
 e1_sum_error += e1_error
 e2_sum_error += e2_error

5. Run the program. You should see over time that the
motor speeds start to stabilise.

TUNING YOUR SETUP
To get PID control working for your setup, it will need to be tuned; this will involve modifying the
constants KP, KD, and KI. There is no exact science to this and there will be a certain amount of
trial, error, and intuition required before you find the right setup for your robot.

The following tips however should improve your tuning:
1. Start by modifying the KP constant and get the performance as good as you can before

moving onto KD and then finally KI.

2. If the motor adjustments are too aggressive, swinging between too fast and too slow, reduce
the constant.

3. If the motor speed isn’t changing fast enough, increase the constant.

4. Make any change in small increments; even a very small change can have a dramatic effect.

Once tuned, each motor should settle down to a speed which is close to the encoder target.

Left
Thanks to a pair of
controllers and PID,
our robot now runs in
a straight line

You may not have
to implement
proportional, integral
and derivative (PID)
control to get your
robot to go straight:
P or PD might be
good enough.

QUICK TIP

TUTORIAL

Control Christmas Decorations

Dreaming of a
multicoloured Christmas

T
his project combines simple
woodworking with electronics to
produce a remote control Christmas
decoration. So you can get yourself in
the Christmas spirit from the comfort of
your own armchair!

The decoration is in the form of the four letters of
XMAS (yes, we know that’s cheating, but it saves on
the number of LEDs we needed to buy). These are
filled with green and red LEDs which are controlled by
an Arduino.

The first step is to build the backboard. You will need
a piece of 6 mm plywood sized 300 mm by 100 mm.
Use paper templates to transfer the shapes of the
letters on to the board, then mark out the positions of
the LEDs, remembering to leave space between each
of them and the edges of the letters. Drill a 10 mm hole
for each LED. For best results, use a piece of scrap
wood below and clamp your work to the bench. Use
sandpaper to clean up the front face and holes. The
sides of the letters are made from 3 mm plywood. Use

Build a Bluetooth remote-controlled Christmas light show

a knife and metal ruler to score a line on the wood.
Repeat this many times until you have cut all the way
through. Cut strips 15 mm wide, then cut each of them
to length with a junior hacksaw.

For the complex curves of the ‘S’, you will need to
use many short pieces. Use sandpaper to form a bevel
on each piece so that they fit together in a curve.

Glue your strips in place with wood glue and hold in
place with pins and tape. Glue a block of wood 300 mm
× 20 mm × 10 mm along the bottom edge of the back,
ensuring that the narrow edge is attached. Wood glue
is best left overnight to dry.

NOW IT’S TIME FOR THE ELECTRONICS
Fill any holes with a light-coloured filler and paint with
white paint to reflect the light. Try to keep the paint out
of the holes so that the LEDs will fit.

To give our decoration some Christmas pizazz, we
are using red and green LEDs. These can’t be run
straight from our 12 V supply, so we are using resistors
to limit the current. Solder a short length of wire to the

Andy Clark

@workshopshed

After an aerospace
apprenticeship and
electronics degree at
Imperial College, Andy
took a job as a software
engineer. For the last
ten years he’s been
making and repairing
in a shed at the bottom
of the garden. You can
see more of his exploits
at workshopshed.com

102

https://twitter.com/Workshopshed
http://workshopshed.com

FORGE

103

The setup section configures the pins 2 through 5
as outputs.

void setup() {
 // Configure all of the pins that control the LEDs
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 // Initial variable values
 sequence = 0;
}

The loop sets the values of the outputs based on
each row in the pattern array. Then, on the next iteration
of the loop, the next row will be used. When it gets
to the last row it resets back to 0, the first row. This
tests that our wiring for the LEDs and Darlington array
is working correctly. You can change the values in the
matrix and see how it affects the LEDs.

void loop() {
 for (int ledpin=0; ledpin <= 4; ledpin++){
 digitalWrite(ledpin + 2, pattern[sequence]
[ledpin]);
 }
 sequence = (sequence + 1) % 4
 delay(500);
}

YOU’LL NEED

Arduino Uno

HC05 Bluetooth
module

ULN2003
Darlington Driver

20 × Red LEDs

20 × Green LEDs

43 × 2K2 resistors

9 × Header pins

Wire

Solder

9-12 V power
supply 1 A

6 mm plywood

3 mm plywood

Paint

Wood filler

Wood glue

Left
Forming the S

Below
Wiring the letters

Above
Marking out the backboard

anode (long leg) of the LED and a 2.2 kΩ (2K2) resistor
to each of the cathodes (short legs). Solder a short
length of wire to each of the resistors.

For each letter, solder all of the anode wires
together, then attach the resulting bundle to a long
wire. Solder each of the resistor wires together and
attach that to a long wire. Now connect up each of the
anode wires to a single wire. Use heat-shrink or tape to
stop the wires shorting on each other.

To test this has worked, connect the anode wire to
the positive connection on the power supply and the
cathode/resistor to the negative.

DO YOU WANT CHIPS WITH THAT?
The Arduino Uno is not capable of providing enough
current to drive all of the LEDs. However, luckily for
us there’s a handy chip called the ULN2003, which
contains an array of seven Darlington transistors; this
often comes on a breakout board with four channels,
designed for stepper motors. We can use this chip to
switch or drive the LEDs.

Connect one of the GND connectors to the GND on
the Darlington array chip. Connect up four of the inputs
of the chip to the Uno’s pins 2, 3, 4, and 5. Connect
the corresponding output to the cathode wires for our
four letters. The anode wire connects to the Uno’s
Vin connection.

We can test that the light works before continuing
with the Bluetooth module later. The test program
below demonstrates turning the lights on and off.

The first section sets up the variables.

int sequence;
//Pattern of LED outputs
unsigned char pattern[4][4] = {
 {HIGH,LOW,LOW,LOW},
 {LOW,HIGH,LOW,LOW},
 {LOW,LOW,HIGH,LOW},
 {LOW,LOW,LOW,HIGH}
 };

104

TUTORIAL

UNPLUG THE POWER
The Bluetooth module acts as a wireless serial
port for the Arduino Uno data sent from the phone,
which arrives at the Uno one character at a time.
Although the Uno supports a hardware serial port,
this is shared with the programming cable. So that
we don’t have to keep disconnecting the Bluetooth

DARLINGTON TRANSISTORS
A bipolar transistor uses a small signal current to
switch a load current hundreds of times larger. In 1953
Sidney Darlington from Bell Labs realised that if two
transistors were put together then combined they could
switch currents that were thousands of times bigger
than the signal.

module to change the programming, a software serial
library is used. This allows us to define pins 7 and 8
and receive RX and transmit TX.

The Bluetooth module requires a 5 V power
connection, GND, and two data lines – RX and
TX. However, the data lines use 3.3 V logic while
the Arduino Uno employs 5 V logic. Therefore, a
simple level shifter will be required; it is possible
to build this using a simple combination of
resistors. The TX output of the Uno connects to
a 2K2 resistor and this, in turn, connects to the
pair of 2K2 resistors in parallel that are connected
to GND. The RX input of the Bluetooth module
connects to the junction of these two resistors
– see the schematic below. The TX output of the
module connects straight to the RX input of the Uno.
The Uno will correctly process the lower logic levels
of the module.

To connect your phone to the Bluetooth module,
we need to pair them. This process uses the unique
identifiers of the devices and a pin number so that
the module trusts your phone to send commands.
When you turn on Bluetooth, you can scan for nearby
devices and select the correct one; you should find
this is called ‘HC-05’.

The other thing needed is some kind of remote-
control software. There are hundreds of Bluetooth
remote-control applications available in the Apple App
Store and Google Play store. Here are two that work
with this project:
iPhone – Handy Bluetooth Arduino Controller by Paul
Shelley: hsmag.cc/RxvIXA

TOOLS

10 mm drill

Saw

Junior hacksaw

Soldering iron

Sharp knife

Steel ruler

Sandpaper

Collector

Base

Emitter

Below
Schematic

Sawdust mixed with
glue makes a good
substitute for filler.

QUICK TIP

Control Christmas Decorations

http://hsmag.cc/RxvIXA

FORGE

105

Android – Arduino Bluetooth controller by
Giumig Apps: hsmag.cc/wCRMha

You only need three buttons to control the speed
and turn the lights on and off. Configure the app to
send a single letter when the buttons are pressed:
F = Faster, S = Slower, H = Toggle Halt/Run.

We can use these single-letter instructions to
determine how our lights flash. The second code
example expands on our first. The first part now
includes the library for the software serial port and
defines a variable that uses that library. There are
also variables for the speed and to determine if the
sequence is running.

#include <SoftwareSerial.h>
char command;
bool running;
int speed;
int sequence;
// software serial RX = digital pin 7, TX =
digital pin 8
SoftwareSerial BTserial(7, 8);
//Pattern of LED outputs
unsigned char pattern[4][4] = {
 {HIGH,LOW,LOW,LOW},
 {LOW,HIGH,LOW,LOW},
 {LOW,LOW,HIGH,LOW},
 {LOW,LOW,LOW,HIGH}

 };

The setup section also gains a new command,
BTserial.begin, which tells the serial port to
communicate with the BlueTooth module at a speed
of 9600 bits per second.

void setup() {
 // Configure all of the pins that control the
LEDs

 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 // Initial variable values
 waitTime = 200;
 running = true;
 sequence = 0;
 // Configure serial port for BlueTooth module
 BTserial.begin(9600);
}

The loop code adds logic in order to check whether
there is data from the Bluetooth module and,
depending on the value, to speed up, slow down or
stop the flashing.

void loop() {
 if (BTserial.available() > 0) {
 char command = BTserial.read();
 switch (command) {
 case ‘S’:
 if (speed < 1000) {
 speed += 20;
 }
 running = true;
 break;
 case ‘F’:
 if (speed > 50) {
 speed -= 20;
 }
 running = true;
 break;
 case ‘H’:
 running = false;
 Break;
 }
 }
 if (running) {
//Write the pattern to the LEDs
 for (int ledpin=0; ledpin <= 4; ledpin++){
 digitalWrite(ledpin + 2, pattern[sequence]
[ledpin]);
 }
 delay(speed);
 sequence = (sequence + 1) % 4;
 }
}

FINISHING UP
It is a good idea to secure all of your components to
the backboard. We used hot glue and also added a
piece of insulating foam to stop the Uno shorting on
the LED wiring. Enjoy your programmable, remote-
control Christmas decoration! Happy Xmas!

There are smaller
and cheaper
Arduino-compatible
boards that can
work with this
project. Check
first that they have
enough pins for
the lights and a
serial port.

QUICK TIP

IDEAS FOR
ENCHANCEMENT

 Use PWM
to control
the light’s
brightness

 Add more
flashing
sequences,
try using a
3-dimensional
array

 Build your
name in lights

 Bigger letters,
more LEDs

Above
Pairing the HC-05

Above
Configure the buttons

http://hsmag.cc/wCRMha

106

TUTORIAL

Besiege A Castle With A Trebuchet

Makers – dust off your drill and prepare for glory!

Build a three-foot
trebuchet

FORGE

107

E
veryone knows what a catapult is. It
throws stones and flaming projectiles
at castles. It is famous – and rightfully
so. But for some reason the trebuchet,
which is a different type of siege
engine, is not so famous. Yet, it is much

more powerful than a catapult. It can launch heavier
projectiles longer distances and is much easier to
build! Rather than using complicated twisted ropes,
a trebuchet uses the power of gravity to launch its
projectile. In this tutorial you will learn how to build
one that is 3 ft (91 cm) tall and capable of launching
projectiles at some pretty amazing distances.

Everything in this build is very common except for
two small parts: a welded ring and several push-on
external retaining rings. However, even these are
easy to get and you can even improvise something
as a replacement for them. We will take a closer
look at them as they are needed in the build. And we
will offer you possible alternatives.

This build is well within reach of a person who
has minimal DIY skills. Can you use a drill and
a hammer? Then in about six hours you will be
launching tennis balls at your neighbour’s house. But
don’t do that! Your neighbour might also read this
tutorial and build one for themselves. Then you will
have a right proper medieval warfare campaign right
in your own back yard...

We purchased all the parts at a local (US) home
improvement store. The wood cost $44.62; the
various other parts, paracord, steel bar, nails,
screws and everything else cost $28.26, for a total
of $72.88. You can reduce this price significantly if
you have some of the materials on-hand. A good
example is the screws: if you buy full boxes, you’ll

have plenty for future projects. If you already have
an assortment of nails and screws, you can reduce
the cost of this project by $15.

A trebuchet works the same way as a see-saw.
If you sit down very quickly on one end of a see-
saw, the other end pops up equally quickly. And the
heavier the weight, the faster the pop-up. If you shift
the fulcrum closer to where you push, the other end
will travel even faster. A trebuchet capitalises on
this. It uses the principle of a fulcrum and the power
of gravity to launch projectiles rapidly into the air.

We will build this trebuchet in four major parts:
the base, the swing arm, the ballast box, and the
string/pouch assembly.

PART 1
THE BASE OF THE TREBUCHET
Measure and cut the 1 × 4s to form a base for the
trebuchet. It is 48˝(122 cm) in length and 12˝ (30 cm)
wide. Notice that the 1 × 4s are on their sides. Screw
them all together using #8 wood screws that are
2˝(51 mm) long. Cut one of the sheets of plywood
in half and nail or screw these halves to the base.

Will Kalif

@willkalif

Will Kalif is an amateur
siege engineer who
has built all types
of siege engines,
ranging from 1ft (30 cm)
miniatures to 10ft (3 m)
behemoths. He is
the webmaster and
owner of the website
StormTheCastle.com

Above
The swing arm is mounted
onto the trebuchet

Left
Creating a sturdy base for
the trebuchet is important.
It keeps it stable during the
strong centrifugal force that
shoots the projectile

YOU’LL NEED

2 × sheets of
plywood 2´ × 2´
(61 × 61 cm),
7/16˝ thick

12´ (366 cm) pine
wood 1˝ × 4˝
(25 × 101 mm)

12´ (366 cm) pine
wood 1˝ × 3˝
(25 × 76 mm)

12´ (366 cm pine
wood 1˝ × 2˝
(25 × 51 mm)

1 × length of steel
rod 3/8˝ (9.5 mm)
thick × 36˝ (91 cm)

8˝ × 16˝ (20 × 41 cm)
piece of leather
or cloth

8´(2.4 m) paracord

1 × 6d (51 mm) nail

1 × 1˝ (25 mm)
eyebolt

Ballast
Anything heavy,
such as stones, sand
or weights

1 × 7/8˝ (22 mm)
Welded ring (a
keyring will work as
a substitute)

8 × 3/8˝ (9.5 mm)
push-on external
retaining rings
(optional)

https://twitter.com/willkalif
http://StormTheCastle.com

TUTORIAL

108

It is important to have this smooth and flat surface
because the sling will ride on top of this when the
trebuchet fires.

Measure and cut two lengths of 1 × 3 to 30˝ (76 cm)
in length and screw them vertically to the base, one
on each side and each right in the middle of the base.
Drill a 3/8˝ (9.5 mm) hole 1 inch (25 mm) from the top
of each of these. Cut your steel bar to 14˝ (35.5 cm)
and insert it through these two holes right across the
trebuchet. This is the axle (fulcrum) for the swing arm.
These vertical supports are not strong enough to
sustain repeated use of the trebuchet because there
is significant centrifugal force applied in a front-to-back
direction. We brace against this force by adding four
support pieces that are at an angle to the uprights.
Measure and cut four of your 1 × 2s to 30˝ (76 cm) then
cut an angle on the ends of each. All four pieces are
identical and each piece has a 30-degree angle cut on
one end and a 60-degree angle cut on the other end.
Screw these to the uprights.

PART 2
THE SWING ARM
To make the swing arm, cut one of your 1 × 3s to
a length of 521 /4˝ (133 cm). At one end of it, drill a
3/8˝ (9.5 mm) hole 1 inch (25 mm) from the end. This
hole is for the ballast basket we will make. Drill a

second hole 12˝ (30 cm) from that same end of the
swing arm. This hole is for the fulcrum. Mount the
swing arm onto the structure of the trebuchet using
the fulcrum hole and the steel rod.

PART 3
THE BALLAST BOX
Our final piece of wood is the second piece of
plywood. Measure out a box to make. The box is
made up of five pieces and it has a 3/8˝ (9.5 mm) hole
1 inch (25 mm) from the top. When making this box
you should be aware that it needs to swing freely
without hitting anything on the trebuchet, including
the swing arm and the base of the trebuchet. Attach
it to the swing arm hole one inch from the end. Cut a
piece of your 3/8˝ (9.5 mm) steel bar for this.

The house shaped ballast box is 10˝ (25 cm) wide
and 12˝ (30 cm) tall. You can trim the top 4˝ (10 cm)
of it to form the triangular roof of the house shape.
Measure and cut two of these. The sides of the box
hold those house shapes 6˝ (15 cm) apart. You have
a lot of freedom in making a ballast box. Just be sure
it doesn’t rub on any part of the trebuchet base or
swing arm throughout its full swinging motion.

PART 4
THE STRING AND SLING
This is the most important part of the build, but also
the easiest. The sling itself is a piece of cloth or soft
leather 8˝ × 16˝ (20 × 41 cm), folded in half. You can
trim the cloth of the sling so the top of each end is
triangular, similar to the house shape of the ballast
box, but triangular-shaped on both ends of it. Cut
two lengths of paracord each to 48˝ (122 cm) and
tie them to the tips of the sling. Then attach one
to an eyehook at the end of the swing arm. And on
the other length of paracord, attach a metal ring.
We used something called a welded ring, bought
at a hardware store for about a dollar. You can use
a keyring for this. It is important to use a metal ring
that will easily slide over the nail without catching or
getting stuck.

In the final picture you can see a nail sticking out
of the end of the swing arm. This nail is critical. Use

KEEP THE BUILD
CLEAN
Always drill pilot holes before putting in screws. This
will ensure that the screw goes into the wood straight,
and will help prevent any cracking or splitting of the
wood. Use a 1 /8˝ (3 mm) drill bit for pilot holes.

Above
The ballast box should
be sturdy and strong in
order to hold the weight of
the ballast

The plywood is thin. Use
1˝ (25 mm) finish nails for
assembly of the ballast box.

QUICK TIP

FINE
TUNING

Want to improve
the look of your
trebuchet?
There are a few
things you can
do, including
tapering down
the swing arm
so it's thinner at
the string/pouch
end. This will
also increase
the efficiency.
We tapered the
swing arm down
to a width of
1½˝ (38 mm) at
the end. You can
also paint or stain
your trebuchet
any colour or
theme you desire.

TOOLS

Electric drill

1 /8˝ (3 mm) drill bit
for pilot holes

3/8˝ (9.5 mm) drill
bit (match this
drill bit size to the
diameter of your
steel rod)

Screwdriver or
screwdriver bit
for drill

Hand saw

Hack saw

Hammer

Measuring tape

30/60 triangle
(optional)

Besiege A Castle With A Trebuchet

FORGE

109

a 6d (51 mm) nail and file the head off of it. Hammer
it into the end of the trebuchet so it sticks out.

Locking things in place
For this project we use two lengths of 3/8˝ (9.5 mm)
steel rod. You can just feed these lengths through the
holes and the trebuchet will work. But with repeated
use, things will start to slip. To prevent this you should
secure the parts in place on the rod with washers and
some kind of locking rings. The easiest and cheapest
way to do this is with push-on external retaining rings.
They are simple little metal rings that you push by hand
right over the steel bar. They have small internal teeth
on them and stay locked onto the bar wherever you
place them. We purchased some at a hardware store
for 40 cents each.

FIRING THE TREBUCHET
Fill the ballast box with weight, put a projectile in the
sling and pull the swing arm down. Place the ring
over the release pin. Inspect everything to ensure
the paracord is laid out straight on the base of the
trebuchet and not twisted. Fire it by letting go of the
swing arm. As the swing arm moves in its arc, it pulls
both strings evenly, bringing the pouch along the base
of the trebuchet. At a point in its swing near vertical,
the ring will slide right off the nail/pin. This opens the
sling and releases the projectile.

This trebuchet is a simple machine with only two
moving parts. If you have trouble launching projectiles,
here are some things to look for:

First, you should look to the ballast basket. Is it
rubbing or hitting on something? Does it not allow for
smooth motion of the swing arm? Adjust it, resize it,
or trim it as needed. If your trebuchet fires its projectile
straight up or backwards, your nail needs to lean more
forward. If your trebuchet fires its projectile at the
ground or not too far then your nail needs to lean less
to the front. But just make these adjustments to the
nail very slightly – and test it.

MORE POWER!
One of the best things you can do to make your
trebuchet even more powerful is to add a bearing

around the steel rod at the fulcrum of the swing arm.
This will take a lot of the friction out of the motion.

How heavy your ballast is depends on your
trebuchet. Start with 10 lb (4.5 kg) of weight and
give it a try, then add more weight. It will get to a
point where adding more weight will not throw your
projectile further. Want to control the distance it
shoots? You can do this by controlling the weight
in the ballast box. An easy thing to do is pre-make
bags of sand and label them. Then you can just
add or remove bags of sand to the ballast box,
keeping track of the weight inside and the distance
it throws.

THE GOLDEN RATIO
Want to build a larger, or smaller, trebuchet? The most
important thing to consider is the ratio of the swing arm
on both sides of the fulcrum. Keep this at 3.75 to 1 and you
will get maximum efficiency. The length on the sling side
is the 3.75 and the length on the side of the ballast is the 1.

Above
This photo shows
you the shape of
the sling, where to
put the eyebolt, how
to install the pin,
and how to tie it all
together with the two
pieces of paracord

Below
The completed
trebuchet as built
in this tutorial.
Be careful where
you launch
your projectiles!

http://www.pi-top.com
https://twitter.com/GetPiTop
https://www.facebook.com/GetPiTop/
WWW.PI-TOP.COM

http://www.pi-top.com
http://www.pi-top.com
https://twitter.com/GetPiTop
https://www.facebook.com/GetPiTop/
WWW.PI-TOP.COM

Orientation With Sense HAT

TUTORIAL

112

THE Official

PROJECTS BOOK
Amazing hacking
& making projects

from the creators of

 magazine

Inside:
 How to get started coding on Raspberry Pi

 The most inspirational community projects

 Essential tutorials, guides, and ideas

 Expert reviews and buying advice

plus all good newsagents and:

store.rpipress.cc

200 pages of
Raspberry Pi

£12.99

RASPBERRY PI

https://itunes.apple.com/us/app/the-magpi-magazine/id972033560?ls=1&mt=8
http://swag.raspberrypi.org

113

FIELD TEST
HACK MAKE BUILD CREATE
Hacker gear poked, prodded, taken apart, and investigated

BEST OF
BREED

PG118

Make your own games and take them
everywhere with these consoles

designed for hackers

For when your robots
need to play paper,
scissors stone

114
PG

DIRECT FROM SHENZHEN:

ROBOT
HANDS

Even Christmas
decorations don’t escape
our desire to tinker

116
PG

CAN I
HACK IT?

Discover the best
beginner circuit design
software available

122
PG

HEAD 2 HEAD

REVIEWS
 MeArm Pi

 Hologram Nova

 Frog Board

 Lectrify

 Labrador

 Book Review

124 127

125 128

126 129

REGULAR

Direct From Shenzen

here’s something iconic about a
robotic hand. It seems far more
technologically advanced than, say, a
wheeled robot, despite the fact that you
don’t really need that much technology
to build one. The hand straddles the

border of human and robot in a way that few other
body parts do. It’s a staple of science fiction, both
utopian and dystopian. Naturally, we wanted one, so
we bought one direct from China.

Buying things from Chinese manufacturers is a
quite different process from getting things from
a supplier in Europe or America. For starters,
brand names are often non-existent and shops
come and go. The actual stock is often put
together by an unnamed factory and then sold via
several distributors on several websites. Without
a brand-name, it’s impossible to know for sure
whether you’re getting the same item, but if they
look the same, they probably are. We bought ours
from the XuQi Hobby Store on AliExpress, but you
can get the same item from several Chinese-based
sellers: hsmag.cc/CNLYCC.

These direct-from-China stores are an integral part
of the hacking world because they offer products that
either aren’t available elsewhere, or at vastly lower
prices. They provide individual hobbyists with a range
of stock that, just a few years ago, was only available
to large corporations.

YOUR BOOTS. GIVE THEM TO ME
Shipping from China is rarely quick, but it is cheap.
Our hand was £44.78 including free shipping, and it
arrived in about three weeks. Before it arrived we
got a message on AliExpress linking to details of how
to download the instructions from Baidu – not an
entirely trivial process for an English speaker as the
website was in Chinese, but the instructions worked.

The package arrived as a slightly battered
box containing a few metal plates, a myriad of
screws and connectors, and six small servos. The
instructions were easy to follow and assembling the
hand took a couple of hours of quite fiddly work.

Right
There’s too much
slack in the system
for complicated
control, but it can
manage open
and closed

DIRECT FROM
SHENZHEN

T

Ben Everard looks further afield in his
quest to build a robotic army

Robotic hand

114

http://hsmag.cc/CNLYCC

115

It could have been easier if all of the screws had
been magnetic.

Robotic hands come in many different forms,
and one of the key differentiators is the number of
degrees of freedom (DOF). Essentially, each DOF is
a part that can be moved independently. The most
basic hands have one DOF, which means that they
can be opened or closed, but everything opens or
closes at the same time.
5 DOF means that each
finger can be moved
independently, but there’s
only one movement in
each finger. Actual human
hands have far more
DOF than this since each
finger can be moved side
to side and forwards
and backwards as well as opened or closed. There
isn’t a ‘best’ number of DOF, and it all depends on
your needs. Plenty of useful robotic hands have
1 DOF, and this enables them to pick up objects and
manoeuvre them. Perhaps the biggest advantage of
5 DOF is that it allows more human-like gestures.

COME WITH ME IF YOU WANT TO LIVE
The finished result is quite wobbly, but each servo
does control a finger, and it does legitimately have
5 DOF. With quite a lot of slack in the system,
accurate positioning isn’t really possible, but you can
broadly open and close each finger (and the thumb)
independently. It takes about 50 degrees movement
of the small servos driving the hand to move a finger
from closed to open. This is easy to control from

any standard servo driver (though one isn’t supplied
with the hand), but bear in mind that your power
supply will have to be sufficiently powerful to drive
all servos at once.

There’s no feedback system in the hand, so
there’s no sense of touch. If you tell a servo to
move a finger to a certain position, it will use all its
power (which is very little) to try to do this. If you

try to use this hand to pick
things up or manipulate
objects, you’ll most likely
just stretch all the linkages
in the hand or burn out
the servos.

Without accurate control,
any sort of feedback about
pressure on the fingers,
or a more powerful grip,

this hand isn’t really useful for picking things up.
Some gestures, however, are quite possible. The
hand can manage a passable thumbs up, fist, open
hand, and a few other simple gestures. The lack
of side-to-side movement in the fingers does limit
the sign-language potential, particularly for vulgar-
minded Brits.

That isn’t necessarily a problem because at this price
there’s plenty of possible uses for it, from costumes
or props to novel ways of visualising data (a finger-
counting clock, anyone?). Grasping of small items just
about works, but only if the item is the correct shape
and in the right place. It you actually want to move
things, you’ll have more success with a simple pincer,
but let’s be honest, no one actually wants a robotic
humanoid hand because it’s practical.

Below
The screws poke
through each finger.
This can increase
grip, but may also
cause problems

FIELD TEST

Robotic hand

The finished result is quite
wobbly, but each servo does
control a finger, and it does

legitimately have 5 DOF

”
”

D
IR

ECT FR
O

M
 S

H
E

N
Z

H
E

N

116

CAN I HACK IT?

Novelty Christmas Tree

Learn how to hack Christmas decorations to do your bidding!

Les Pounder
@biglesp

Les Pounder is a maker
and author who works
with the Raspberry Pi
Foundation to deliver
Picademy. He also
helps teachers/learners
to become creative
technologists. He blogs
at bigl.es

YOU’LL NEED
Christmas
Decorations
Xmas Tree
Battery-operated
dancing Xmas tree
30 cm

COST
£11.49

WHERE
hsmag.cc/QcqgNg

hristmas is here and with it comes
a slew of lights, musical cards,
and animated figures that dance
to holiday songs. So what can we
hack and is it worth it? We take a
look at a dancing Christmas tree

that spins, shakes and sings… for a very long time!
We look at the components and the circuit board
that connects them to understand how it works and
offer suggestions as to how this cheaply purchased
decoration can be hacked using boards such as the
Raspberry Pi and Arduino. Let’s start with the most
accessible part of the tree, the batteries!

BATTERY BOX
Powering the tree we have
three AA batteries (1.5 V per
AA) in a common battery
compartment, which has
a space for an on/off
switch but sadly none
is present. This can
be easily hacked
in place using a
common sliding
switch, and this
may just save your
family’s Christmas!
Powering the unit
from an external supply
is possible as the 4.5 V
battery connection is
direct to the main PCB
(red and black wires.)
So using a USB supply
is possible, either
through a computer
or a power bank. USB
is 5 V so a little over
0.5 V difference to the
stock voltage, not
too different to fresh

alkaline batteries which can be up to 1.6 V each. You
can either create a voltage dropper or run the risk of
running the unit at 5 V, which may shorten the life of
the tree, but not by much.

CONTROLLER PCB
The controller PCB is quite small, but it contains the
chips for motor control and music playback. The input
that triggers the motor drivers to power the motors
occurs when the user presses one of the tree’s
hands (cunningly labelled ‘Press Here’). The button
is connected on one side of the PCB to the 4.5 V
VCC connection and when the button is pressed, the

button connects to a Ground pin, which drops
the voltage briefly to 0. This input is

processed by an anonymous chip
on the circuit board, sadly, and as

is common with many cheap
mass-produced electronics

of this kind, the chip
is covered in

epoxy which
protects the
identity of
the chip.

This is called
‘COB’, ‘Chip

On Board’ and is
used to protect the
investment made in
the board. You can

dissolve the epoxy,
but for this object it isn’t
worth the time as we
can see how the input
and output works from

the PCB.
As mentioned

before, the board
also controls music

playback, and we
get a ‘lovely’

Right
This Christmas tree
may not look like
much, but inside
there are plenty of
components that
we can hack and
control using boards
such as Raspberry
Pi and Arduino

Novelty Christmas tree

C

Can I Hack It?

https://twitter.com/biglesp
http://bigl.es
https://www.amazon.co.uk/Christmas-Decorations-Xmastree-Battery-Operated/dp/B005VPRRS2

117

rendition of ‘Jingle Bell Rock’. The speaker is directly
soldered to the PCB which means that the COB has
an amplifier built in, lowering the cost of production.

MOTORS
The Christmas tree has two DC motors and across
the terminals of the motors are a 100 nF capacitor
(printed 104 on the capacitor) used to smooth the
current going to the motors. Each motor is offset
using plastic guides. The motor at the top controls
the ‘wiggle’ and ‘shake’ of the tree; this includes a
90 degree connection that converts vertical motion to
horizontal. The lower motor is also offset and is used
to spin the tree around; it connects to a central point
using a gear. These plastic guides provide simple
movement for simple motors.

The motors are controlled by two NY9M006A
single-channel motor drivers in an 8-pin plastic SOP
(Small Outline Package) chip, and a quick look at their
data sheet shows that they are capable of driving
motors up to 6 V at an absolute max output current
of 1.2 A; ideally these chips would never be pushed
that hard and from the data sheet, the typical output
current at 4.5 V is 0.11 milliamps. If the chips are
pushed too hard then they will generate heat, but
luckily the chip has a thermal shutdown circuit that
will protect it from harm.

HACKING
So can this board be hacked? Short answer: yes. If
using an Arduino or another board with 5 V logic, you
can connect straight up to the PCB and independently

control all aspects of the Christmas tree. So,
triggering the tree using an ultrasonic distance sensor,
PIR or photo resistor is possible, which would be
great for an embedded ambush trap to scare your
friends, or for interactive displays that run on demand.

If you are using a board with 3.3 V logic, such as
Raspberry Pi, micro:bit or ESP8266 then you cannot
directly connect to the PCB, as using 5V logic with
the 3.3 V GPIO will cause damage to the pins, and
possibly the board itself. To use a 3.3 V board with
this Christmas tree we will need to use a bidirectional
logic level converter, which can be found online very
cheaply. Place one in the path between the PCB
and your 3.3 V board and it will buffer and forward
on the signal at the correct voltage. Using the tree
with boards such as the Raspberry Pi opens up the
possibility of internet-enabled Christmas decorations,
employing technologies such as Node-RED, MQTT,
Python, and even Scratch.

So now that you have the knowledge, and the
tools, to hack a Christmas tree, have a great holiday
time bringing your tree to life using technologies that
you already have in your workshop/home.

INTERNET
OF TREES

There is plenty of
space inside the
Christmas tree
for us to install
a Raspberry Pi
Zero W and a
USB power bank.
Using a remote
connection (SSH),
you can control
the tree using
Python and MQTT,
a lightweight
message system
that enables
devices to send
and receive
data over vast
networks. Or you
can use Node-
RED to control
the tree over
the internet!

Above
The circuit board
that controls the tree
is easy to interface
with: all you need
is a soldering iron
and some hot
glue to hack this
simple decoration

FIELD TEST

1

2

3

4

5

6

7

8

Bottom motor

Torso motor

Battery GND

Battery VCC & button

Speaker connection

Button
(in hand of tree)

1, 2

3, 4

7, 8

5

6

9

9

118

Handheld console for hackers

BEST OF BREED

ONLYTHE

BEST

aming gets a bad rep. Despite
numerous studies disproving links
to increased violence and others
demonstrating how regular gaming
sessions can boost hand-eye
coordination and problem-solving skills,

there are those who still think that a go on an Xstation
or PlayBox will rot your mind.

Learning to build electronic equipment or write your
own computer programs, though, are endeavours
against which nobody could argue – which is why it’s
great to see the two worlds combine in the form of
do-it-yourself console kits.

Ranging from compact, low-cost devices which
encourage you to write your own games to more
complex kits that need to be carefully soldered from
individual components, DIY consoles are a great way to

G
learn new skills and to get younger makers interested
in electronics and coding. Now, too, is a great time to
get started: over the last few years a wide range of
devices and kits have hit the market, and none requires
anything in the way of prior experience.

THE FUN FACTOR
Boasting low-resolution displays and kilobytes, rather
than gigabytes, of memory, the consoles on test aren’t
going to give the latest triple-A titles a run for their
money. They will, though, guide you through making
the most of the hardware to produce some impressive
creations which can then be shared with the world.

With four of the most impressive kits on test – the
Gamebuino, MAKERbuino, Arduboy, and Creoqode
2048 – it’s time to see which machine is king of the hill
and which are nothing but cannon fodder.

Build yourself a portable boredom eradicator

Handheld console
for hackers

Below
If you want to
exercise your brain
as well as your
thumbs, why not
build your own
games console?

119

FIELD TEST

t’s near-impossible not to compare the
Gamebuino and the MAKERbuino, for
at their hearts they are one and the
same. Based on an Atmel ATmega328P
microcontroller running at 16MHz and an
84 × 48-pixel single-colour front-lit liquid

crystal display (LCD) salvaged from old Nokia mobile
phones, the two devices are designed to be entirely
interoperable: a game written for the Gamebuino will
work unmodified on the MAKERbuino and vice versa.

The Gamebuino is the original design, and the
brainchild of Aurélien Rodot. An easily pocketable
design measuring just 95 mm by 49 mm and 19 mm
in thickness in its bundled casing, the Gamebuino
comes ready-to-use out of the box.

The MAKERbuino came later, when tinkerer Albert
Gajšak approached Rodot to discuss a spin of the
open-source design which would turn it into a truly
do-it-yourself console soldering kit. The most obvious
result of the change in design, aside from receiving
it as a box of loose components: a major increase in
size at 139 mm by 66 mm and 26 mm in thickness.

HANDS-ON
As a soldering kit, the MAKERbuino works well. The
instructional webpage is clear and the through-hole
components easy for a beginner to handle, though
mounting the charger board for the bundled lithium-
polymer battery can be a little tricky. The design
benefits from a few other changes, too, including a
headphone jack for private listening and double the
battery capacity – enough for around 24 hours of
active play time, compared to 12 for the Gamebuino.

The two consoles operate in exactly the same
manner. Games are written in the Arduino Integrated
Development Environment (IDE) using a framework
written by Rodot, then compiled and stored on an
SD card. This SD card – full-size in the case of the
MAKERbuino, microSD for the Gamebuino – is

I

Gamebuino vs
Makerbuino

BESTOF
BREED

GAMEBUINO £49.72 gamebuino.com MAKERBUINO £43.47 makerbuino.com

inserted into the console and a loader running on the
microcontroller allows you to pick which game you’d
like to play next.

The loader is the key feature of the -buino family:
as well as allowing you to carry your entire game
collection in your pocket and switch between them
at will, it is smart enough to support save files –
dumps of the electrically erasable programmable
read-only memory (EEPROM) portion of the ATmega
microcontroller – allowing progress and high scores
to remain even as you load and unload games
from memory.

As for which of the two consoles deserves
your attention, it entirely depends on the sort of
experience you’re after. If you want something
truly portable and are looking to concentrate on the
coding side of things, the Gamebuino is the obvious
choice; if you want to flex your soldering muscles,
the MAKERbuino is a better option at the cost
of pocketability. In either case, you’re unlikely to
be disappointed.

Gamebuino
Neat, quick to
get started, and
plenty of hacking
potential.

Makerbuino
All the fun of the
Gamebuino, but
for DIYers.

5

5

/5

/5

VERDICT

http://gamebuino.com
http://makerbuino.com

Handheld console for hackers

BEST OF BREED

120

Arduboy

f your key consideration in a handheld
games console is portability, the Arduboy
is about as small as you’re likely to find
and still be able to use. Measuring 53 mm by
85 mm and just 6 mm thick, the Arduboy is like
a small stack of credit cards -– but credit cards

you can use for some on-the-go gaming.
As with the other devices on test, the Arduboy

uses an Arduino-compatible microcontroller, the
Atmel ATmega32U4. This is connected to an
impressive 128 × 64 single-colour organic light-
emitting diode (OLED) display which looks best in
the dark but, sadly, does suffer from banding effects
when displaying horizontal lines – as demonstrated in
the bundled platform game Mystic Balloon.

There’s no assembly to worry about with the
Arduboy, and once charged via a micro-USB cable,
a simple flick of a switch is enough to get you
started. The device holds a single game at a time, a
major disadvantage over the larger Gamebuino and
MAKERbuino, and new games are loaded directly
from the Arduino IDE. There’s no permanent storage
here, either: any progress you’ve made in a game is
lost when you load a new game in its place.

Writing your own games for the Arduboy is similar to
doing so for the Gamebuino and compatibles: libraries
are provided to handle things like sprites and sound
effects – though this is limited to single-channel beeps
and boops, a disappointment compared to the four-
channel polyphonic capabilities of the Gamebuino family
– and development takes place in the Arduino IDE.

Given its small stature, there’s little surprise to see
that the Arduboy is missing some of the features of
its larger stablemates. In addition to the disappointing
single-channel audio, the Arduboy lacks any easily
accessible expansion headers to make use of the
spare pins on the ATmega microcontroller, and there’s
no way to connect multiple Arduboys together for
multiplayer gaming.

The biggest issue, though, is with the single-game
nature of the device. While a Gamebuino compatible
will allow you to carry your entire library wherever you

BESTOF
BREED

ARDUBOY £50.50 arduboy.com

I

go, switching games on an Arduboy takes a laptop or
desktop with a copy of the Arduino IDE installed – a
major hit to an otherwise extremely portable pocket-
size device.

The Arduboy can’t be faulted on quality, however.
The chassis includes an acrylic front which protects
the circuit board and OLED screen and a metal
back, giving it surprising heft and a very solid feel.
The buttons are responsive and the layout will be
immediately familiar to anyone who remembers
Nintendo’s classic Game Boy machines.

As a device to impress your friends, the Arduboy
can’t be beaten; as a tool for learning electronics and
programming, though, the Gamebuino family is a
better choice.

If you’re looking
for something
to slip into a
pocket, the
Arduboy is a
great choice.

4/5

VERDICT

As a device to impress your friends, the
Arduboy can’t be beaten; as a tool for learning
electronics and programming, though, the
Gamebuino family is a better choice ”

”

Left
The Arduboy is highly
pocketable, taking
up the same space
as a small stack of
credit cards

http://arduboy.com

121

FIELD TEST

obody could ever accuse the
Creoqode 2048 of being pocket-
friendly. Measuring 293 mm by
108 mm and 33 mm thick with an
overall weight of 538g, the 2048 is an
absolute beast of a machine in an eye-

catching smoked acrylic finish.
The size of the 2048 is almost entirely down to its

choice of display, a 64 × 32 matrix of programmable
red, green, and blue (RGB) light-emitting diodes
(LEDs) originally designed for use in industrial
signage applications. Once assembled, the display is
an incredible thing to behold: such a low resolution
as to make each individual pixel highly visible, but
bright and colourful as it shines through the front
acrylic panel.

Sadly, getting to that stage is a painful process.
The 2048 is supplied as a self-assembly kit, which
should supposedly require no soldering. Before our
sample proved stable, however, we were forced
to follow a guide on the Creoqode website to
remove the too-thin wires from the battery holder
and replace them with thicker-gauge versions – an
extremely fiddly process no beginner should be
expected to carry out.

Even ignoring this issue, the 2048 is an awkward
kit to put together. The bundled instruction manual

N

Creoqode 2048

BESTOF
BREED

Poor design, poor
documentation,
and a sky-high
price put the
2048 at the
bottom of
the league.

2 /5

VERDICT

2048 £200.90 creoqode.com

has black and white assembly pictures which are too
low-quality to be of use, and the web-based version
isn’t a whole lot better. A wire loom is provided
which proves to be too short to connect all the
components, and although extensions are included
it’s never clear when they should be used – meaning
you reach the end with extensions to spare and
some very taut wiring.

The heart of the 2048 is a rebadged Arduino-
compatible microcontroller based around the
Atmel ATmega2560, and unlike the other devices
on test it’s full size: you can easily remove the
microcontroller and use it for other projects, should
you so choose, and accessing the spare pins is
a breeze.

With 256kB of program memory to the 32kB of
the rival devices, you’d expect the 2048’s games
to be the most impressive. Sadly, they’re not: The
sample games available from Creoqode’s website
are simply demonstrations of its rough capabilities.
You’ll find no high score tables, no levels, nothing
but simple animations you can control with the six
face-mounted buttons, and no framework around
which to build your own games.

The buttons, too, disappoint. Sturdily made from
metal, the anti-vandal style buttons look absolutely
stunning but are extremely difficult to use thanks

to their metal collars. The four on the left,
arranged to form a four-way

direction control, are
particularly awkward

to trigger.
It’s the price that

finally does the
2048 in: at £200.90
delivered to a UK

address, you could
easily purchase all

three of the other
devices on test and have

cash left over.

Left
While eye-catching,
the Creoqode 2048
would be a terrible
first introduction
to programming
or electronics

http://creoqode.com

Tinkercad Circuits vs Fritzing

HEAD 2 HEAD

122

or a long time there was one bit of
software leading the field in beginner’s
circuit design: Fritzing. However,
there’s now a pretender to the throne:
Tinkercad Circuits (formerly circuits.io).

Tinkercad Circuits is a web-based
tool that helps you design circuits by dragging
and dropping components and wiring them up

F
in different ways. Previous versions of Circuits
(hosted on circuits.io) included the ability to edit the
schematics and PCB layout of the design, but these
have been removed and there’s only the physical
view left. If you want to take your project to PCB,
you’ll need to export the Eagle files and open them
in that (more complex) design tool.

The main feature of Circuits is the simulation
mode that allows you to see what would happen
if you built the circuit and powered it up. This is
complete with multimeter readings, oscilloscope
outputs, and code running on programmable
devices (such as Arduinos). This is impressive and,
in our experience, worked well. Perhaps we’re just
curmudgeonly sticks-in-the-mud, but we feel that the
best way to learn electronics is by doing electronics
with real components. Surely it’s better to build the
circuit and see what happens, rather than simulate
it and see what a computer tells you it should do?
Still, this simulation is a quick and easy way of trying
things out.

There’s a reasonable range of components for
basic projects, but pretty soon you’re likely to find
yourself searching for something that’s not there,
and this is perhaps the biggest let-down of Circuits.

Plan circuits with Ben Everard’s pick of beginner’s software

Tinkercad Circuits
VS Fritzing

Below
The simulator in
Circuits allows you to
push buttons and see
what would happen
without actually
building the circuit

HEADHEAD2

http://circuits.io
http://circuits.io

123

FIELD TEST

You will probably hit the limit of what you can do
with it quite quickly.

Tinkercad is far more than just Circuits, and the
3D object design tool has a wide variety of objects
that other users have built and shared to help
inspire you. As yet,
the number of circuits
shared is quite limited,
but if this increases,
this could be a useful
resource for people
learning electronics.

BACK TO BASICS
Fritzing is a much more clear-cut design tool. You
can take components and place them in a schematic,
breadboard or PCB design, and see if these three
views are showing the same circuit. You can choose

Left
Despite its simple
interface, Fritzing
allows you to
develop some quite
advanced circuits

from an almost endless supply of components to
do this with (and many more third-party component
libraries are available online). You can order PCBs
directly from the application, or export Gerber files
that can be fabricated by most PCB manufacturers.

The one thing you
can’t do is see what
the circuit does – you’ll
have to actually build it
to do that.

There is a code
editor as part of
Fritzing, but since
there’s no simulation,

this is for writing code to upload to other boards.
It’s not very powerful and is most useful for
keeping projects tidy by including the code in the
same set of files as the design.

There is also a sharing platform on Fritzing, but it’s
a little hard to use. There’s no web-based view, so
you have to download a project before you can see
what it looks like, and comments aren’t widely used,
so there’s not much feedback on what is there.

With the demise of the schematic and PCB
modes in Circuits, the latter becomes a much
weaker proposition as Eagle is a significantly more
complex tool for a beginner to use. We’re also a
little uncomfortable relying on a web-based tool for
what is fundamentally an offline activity. Despite
all these weaknesses, the simulation mode could
be a boon in some circumstances, and the fact that
it’s available on any machine with a web browser
is a plus.

However, if you’re actually interested in
designing and building real circuits using physical
components, Fritzing is a far more capable tool, yet
still accessible for beginners.

OTHER OPTIONS
When it comes to PCB design, there are two tools
that really stand out for serious users: KiCad and
Eagle. KiCad is open source and free for any use.
Eagle is free for personal use with some restrictions.
They’re both serious, professional-grade tools that are
powerful enough for most uses, but that power comes
with a far more complex user interface and a much
steeper learning curve. We’d strongly recommend
getting to grips with the basics using a simpler tool
such as Fritzing before moving on to one of these.

There’s a wide range of circuit simulation tools;
however, almost all of them focus on schematics
rather than physical layout (as Tinkercad Circuits
does). Circuitlab.com is a good online option,
KTechLab works well offline on Linux systems, and
iCircuits works on Windows.

Tinkercad Circuits
A good circuit
simulator, but
less useful now
the schematic
and PCB tools
have been
removed.

Fritzing
The definitive
beginner’s tool
for designing
circuits.

3

5

/5

/5

VERDICT

The main feature of Circuits is the
simulation mode that allows you to
see what would happen if you built

the circuit and powered it up

”
”

http://Circuitlab.com

MeArm

REVIEW FIELD TEST

124

ome say the robots are coming, if
not quite to take over the world then
perhaps to snaffle a few human jobs
at the very least. Certainly, if you’re in
the market for a mechanical arm, you’ll
find yourself rather spoiled for choice.

Whether or not you’ll get one of this quality for this
price is an entirely different matter.

We’ve been impressed by the MeArm Pi – an
affordable, open-source robot arm brought to life
with the aid of £56,376 worth of Kickstarter cash
earlier in the year. Aimed at children aged 11 and
over, it has been designed to be simple to assemble
and a cinch to operate. In reality it’s a tad fiddly, yet
the resulting build is quite robust and there’s no
doubting that it’s a lot of fun.

Everything you need is in the box. That’s the
acrylic pieces, the screws, a Raspberry Pi HAT
complete with twin-joysticks, and even a small hex
key for connecting many of the parts together. Okay,
you need a Raspberry Pi and a power supply too,
but if you’re buying something with the Pi name in
it, then the assumption is you’ll already have these
knocking around.

So what is it like? Well, the pieces initially feel a
little brittle as you snap them out of their holdings,
but you soon realise they’re actually rather sturdy.
They’ve been cleverly created so that they generally
fit only one way, making the build more intuitive and

S

MeArm Pi

The easiest
robotic arm for
hacker projects.
Suitable for
beginners and
masters alike.

5/5

VERDICT

Above
The MeArm showing
off its neat cable
management

Above
The construction is
simple yet robust

£70 mime.co.uk

the potential for
forcing them
together much
less nail-biting.
That said,
there is a bit of
second-guessing
involved, mainly
because the paper
instructions can feel a little
confusing. Fortunately, explanatory videos online
help clear up any misunderstandings. Two pairs of
hands come in handy, too.

Mostly, though, the build is straightforward.
The servos are pre-calibrated so they only need
to be slotted into place (a great step forward from
previous MeArms). Meanwhile, tight moving parts
can be rectified by simply loosening the screws. The
fiddliest part, for us at least, was screwing the arm
assembly to the centre of its base. But we liked how
neatly the servo cables wrap through the parts and
the end result was entirely worth the effort.

Bringing the arm to life is satisfyingly
straightforward. You only need to set up the SD card
with a special OS image based on Raspbian, insert
it into the Pi or Pi Zero, connect the HAT, and make
use of a tool called Headless Pi which lets you get
going simply by plugging in the power.

It takes just over a minute to twitch into action,
and the basic setup allows you to use the twin
joysticks to open the claw and move the arm up,
down, left, and right. More fun can be had by
connecting the arm to its local web server using a
computer or tablet, however. This lets you directly
program it using a range of languages including
Snap! and Blocks, but Python will probably be the
most popular for HackSpace magazine readers.

This programmable control takes it from a toy
to a hackable tool that could find its way into our
projects. Alternatively, you can also get the arm
without the HAT and control the servos directly
using any hardware. The hackability and robustness
mean it’s a great choice for any time you need to
pick things up and move them about.

http://mime.co.uk

REVIEW

Hologram Nova

125

FIELD TEST

Right
The Nova is supplied as a
bare board to allow you to
attach an antenna, but it
comes with a plastic case
to protect the finished setup

he Hologram Nova is two products
combined into one. There’s the
hardware itself, and the back-end
platform that supports data transfer
to various different services. The
hardware is a 2G and 3G USB modem

based on the u-blox wireless module. In principle,
this should work with most single-board computers,
but it’s designed for and tested using Raspbian
on the Raspberry Pi. It also comes with a pair of
external antennae that should make it easier to get
a connection in a remote area (other U.FL antennae
can be used as well).

The software runs via a command-line Python tool
that enables you to publish messages to a topic.
These messages can then be managed through
the Nova back end, where they can be routed on to
other places such as Amazon’s S3 storage, HTTP
POST requests, and email.

Part of this back end is the SIM card, which
enables you to connect the device in many countries
around the world through a single account. The
pricing structure works well for small quantities of
data such as periodic sensor readings (you get 1MB
of data free per month), but can quickly add up if you
need to send a lot of data ($0.60 per MB thereafter).
This might sound expensive, but if you’re sending a
few bytes of data at a time, it can go a long way.

T

Hologram Nova

The Nova
provides an easy
and affordable
way to pull
small amounts
of data from
remote devices.

4/5

VERDICT

$49.99 hologram.io

The end result works really well if you want to
aggregate sensor data in a way that’s supported by
the back end. It’s far less versatile than some other
options for connecting to the mobile network, and
this lack of versatility allows Hologram to focus on
doing what it does in a simple and straightforward
manner. A single command run on the terminal
can send data straight into your back end with no
additional setup required. What’s more, you can
manage multiple devices in multiple countries from a
single webpage.

If you’re after a general mobile web connection
for a single device, the Nova is probably not the best
option. However, if you’re looking to pull in data from
lots of devices to a single back end, then the Nova is
a great choice.

http://hologram.io

Frog Board

REVIEW

126

FIELD TEST

hen it comes to wireless
microcontrollers, there’s
nothing quite as small,
connected and cheap as the
ESP8266 module. The most
basic versions of this board –

the 12E and 12F – are typically under £2, but they
can be hard to use, as they come without USB
connectors or pins and aren’t breadboard-friendly.
There are loads of boards built up around this to
make it easier to connect to and use, but all of these
add size and cost. The Frog Board is designed to
take a simple ESP8266 module and add all the bits
you need to make it easy to program. It can then be
detached and used again and again.

You just need to press a 12E or F into the flexible
pins and you can then program it via the USB
connector and use the broken-out I/O pins. Once
it’s set up, you can pop it out of the Frog Board and
solder it into your project. For your next project, you
just need a new ESP8266 module and you can pop it
into the Frog Board to program/prototype it.

The USB connector for communication, power
and pin breakouts are all quite standard. What really
sets this product apart are the spring-loaded pins
that both hold the module in place and create an
electrical connection. It really is as simple as pushing
the module in and out.

The Frog Board comes bundled with a 12E
module so you can get started straight away, but
it really comes into its own as a reusable tool for
when you have multiple 12E modules that can all be
programmed from the same Frog Board.

The Frog Board PCB is mounted on an acrylic
base and feels sturdy. We’ve been busy popping the
module in and out of the Frog Board and, while the
pins probably won’t stand up to abuse, they should
last well if treated kindly.

Once mounted in the Frog Board, the ESP module
can be programmed from the Arduino IDE (provided
you download the ESP8266 addon – details are
available on the Frog Board web page) or one of the
other tools available for the board as easily as fully-
integrated boards.

W

Frog Board

The Frog
Board makes it
trivial to use
ultra-low-cost
microcontrollers
in projects.

4/5

VERDICT

Right
The board is mounted
on a solid base for
extra strength

Below
The springy pins
create a reliable
but temporary
connection for
programming
and prototyping

$13.20 tindie.com

http://tindie.com

REVIEW

Lectrify

127

FIELD TEST

hile there are loads of ways of
adding electronics to projects,
Arduinos and Raspberry Pis
to name but two, the vast
majority use programmable
chips to provide the

functionality. These work well, but are often far
more complicated than they need to be when you
just need a simple LED controller.

What we love about the Very Useful Circuits
boards is that they strip a feature down to the bare
minimum of essential components. The Blinker,
for instance, works using just two transistors, two
capacitors and four resistors, while the NiteLight
is a transistor, potentiometer, phototransistor and
resistor wired together. There is also a touch sensor
and a whetstone bridge. These circuits are simple
enough that you can see what’s going on. There’s
nothing hidden inside silicon chips or obfuscated
with code. The schematics are printed on each board
so you can compare what’s on the board with what
the circuit looks like.

The counterpoint to this simplicity is that each
board does exactly one thing: the Blinker only blinks,
the NightLight is only a night-light, and so on. You
can’t program them to do anything else.

Each project comes as a set of modules on a
single board. In this setup, everything is connected
via PCB traces so that it all ‘just works’. However,
if it’s not the right shape for your project, you can
snap out the modules and wire them in different
orientations, for example if you want the light sensor
further away from the LED or the dimmer of the two
blinking lights further apart. These modules are easy
to connect with crocodile leads or soldered wires.
They’re even compatible with LEGO, so you can
connect them into your plastic brick-based projects.

Each Very Useful Circuit comes with a card
telling you how to assemble the circuit (they’re
available both as kits and pre-built) and with a

W

Lectrify:
Very Useful Circuits

A great way
for beginners
to incorporate
electronics into
their projects,
but more
documentation
would be useful.

4/5

VERDICT

Below
The snap-out
modules make it easy
to get started, but are
still flexible enough
for physical projects

$10 lectrify.it

basic explanation about how everything works. We
would have appreciated a little more information
about how the circuits work, though. For example,
the Blinker circuit is based on a multivibrator with
two transistors. This is quite a common circuit,
but it’s not immediately obvious how it works
to someone not familiar with electronics. A little
more detail would go a long way to helping people
understand the circuit (and to potentially expand it
with their own designs).

If you have an interest in electronics, the Very
Useful Circuits provide an alternative to the
programmable controller route for adding some
electronics to your projects. They’re achievable
projects for almost anyone, and easy to integrate
with physical builds.

http://lectrify.it

EspoTek Labrador

REVIEW

128

FIELD TEST

n oscilloscope displays variations
in a voltage over time, usually
within a two-dimensional plot.
Back in the ’70s, ’80s and ’90s, they
were huge and heavy and the two-
dimensional plot was beamed onto

a CRT screen, set alongside chunky knobs to dial in
a suitable set of values. Size and weight changed
dramatically when LCD replaced CRT, and they’re
changing again with computers replacing the screen,
the knobs, and the logic circuitry.

EspoTek’s Labrador is one such device, only it’s
not just a dual-channel oscilloscope, but also a logic
analyser, multimeter, power supply, and waveform
generator built from a handful of surface-mount
components sitting atop a 35 mm × 37 mm PCB. It’s
about the same size and weight as a pastry canapé,
and metaphorically speaking, tastes just as good.

SIMPLE SOFTWARE
Getting started is as simple as downloading, installing
and running the accompanying software, followed by
connecting a micro-USB cable (included) between the
PCB and your computer. The application software is
available for Linux, Windows, Mac OS and Android,
and like the hardware, it’s 100% open source.
With the PCB connected, a red LED flickers into
life and the main output area within the application
will update to show random noise going from the
oscilloscope input channels. You can test everything
is working correctly by connecting the DC output
from channel 1 of the signal generator to the DC
input of channel 1 of the oscilloscope. As soon as
you ramp up the amplitude in the
signal generator section of the
software interface, the random
noise will transform itself into
your chosen waveform.

The application itself is easy to
use and well designed, especially
if you’ve not used an oscilloscope
or made electronic measurements
before. It doesn’t fill the screen
with too many details, and limits

A

EspoTek Labrador

Tiny and
inexpensive,
the Labrador
really is an
‘electronics lab
in your pocket’.

4/5

VERDICT

Above
The accompanying
software is well
designed, quick, and
easy to use

Below
Yes, that is a
Labrador dog on the
back of the PCB

$29 espotek.com

settings and configuration options to the most useful
and common. However, it’s also capable of some
serious circuit and microcontroller analytics; various
trigger values can be used to synchronise waveforms,
serial messages can be decoded in real time from the
logic analyzer, and grabbed values can be saved as a
CSV text file.

Labrador’s PCB is designed to be connected to a
breadboard. The ten pins beneath the long header will
fit nicely into the tenth column of a standard board,
enabling the horizontally oriented power supply pins
to connect to the negative and positive rails running
the length of most boards. These rails can then be
used to power your own components, from 4.5
volts to 12 volts, in 50 millivolts increments, which
is brilliant for powering devices such as an Arduino.
When tested with a multimeter, the output was also
reasonably accurate, going from 4.67 V to 12.13 V. The

long header provides convenient access
to the four digital outputs (3.3 V), great
for turning on LEDS, alongside the signal
generator and the separate 3.3 V output.
Not all of these functions can be used
at once, such as the multimeter
and the oscilloscope, but many can
be. The only thing really missing is
PCB annotations, but creating your
own solution with a breadboard
is perfectly in fitting with both the

device and its remarkable price.

http://espotek.com

FIELD TESTREVIEW

The Design Of Everyday Things

129

n our interview with Becky Stern, she
mentioned that a key skill for hackers and
makers is industrial design, and we agree.
As makers of things, we want it to be as easy as
possible for other people to understand how to
use the things we create.

In The Design Of Everyday Things, Don Norman
looks at the various psychological factors that influence
how our puny brains try to comprehend the objects
around us. The more you understand how this process
happens, the easier your users will find your devices.
The aim is to make things instinctive to use so that
people can just pick the thing up and know how to get
it to do what they want. This isn’t very noticeable when
it works properly, but it’s glaringly obvious when this
process fails: people get stuck trying to pull or push a
door that actually sides or a user gets frustrated pushing
a button that they should be turning… It’s the sort of
thing that makes us feel stupid when it happens to us,
but in reality is a failure of design.

BUILDING FRIENDLY MACHINES
This isn’t a new book (the first edition came out in
1969, and the revised and expanded version in 2013),
but that doesn’t matter because although various
technologies have come and gone in that time, people’s
understanding of physical things hasn’t changed.

As well as being packed with useful information,
The Design of Everyday Things is an interesting and
enjoyable read for anyone who builds physical objects.
You don’t need to be a designer to understand what the
problems are or to benefit from a better understanding
of the subject matter. This is a book for anyone who
builds things that people use.

If you’re building stuff for yourself, you probably
instinctively understand how to use your creations
anyway. However, for anyone building things for other
people to use,The Design of Everyday Things will
help you understand the finer points of transferring
information between the squishy meat brain and the
engineered perfection of your device.

I

The Design of
Everyday Things

The definitive
book for
understanding
the interface
between people
and machines.

5/5

VERDICT
The aim is to make

things instinctive to use
so that people can just
pick the thing up and

know how to get it to do
what they want

”

”

£14.95 jnd.org

http://jnd.org

Got an idea for an article? Want to write for us?

GET IN TOUCH

We want your tips, comments, and questions!

WE
NEED

Y U
hackspace@raspberrypi.org

@HackSpaceMag

mailto:hackspace@raspberrypi.org
https://twitter.com/search?q=%40HackSpaceMag&src=typd

hsmag.cc

http://hsmag.cc

http://www.canakit.com

	002_HS#1
	003_H#1
	004-005_HS#1
	006-013_HS#1
	014-015_HS#1
	016-017_HS#1
	018_HS#1
	019_HS#1
	020-021_HS#1
	022-25_HS#1
	026_HS#1
	027_HS#1
	028-037_HS#1
	038-043_HS#1
	044-047_HS#1
	048-053_HS#1
	054-057_HS#1
	058-063_HS#1
	064-067_HS#1
	068-069_HS#1
	070_HS#01
	071_HS
	072-077_HS#1
	078-081_HS#1
	082-085_HS#1
	086-089_HS#1
	090-093_HS#1
	094-097_HS#1
	098-101_HS#1
	102-105_HS#1
	106-109_HS#1
	110-111_HS adverts #1
	112_RPI_HS#01
	114-115_HS#1
	116-117_HS#1
	118-121_HS#1_BestBreed
	122-123_HS#1
	124_HS#1
	125_HS#1
	126_HS#1
	127_HS#1
	128_HS#1_Review_Labrador_AG_PK_JR_BE_RB_LA
	129_HS#1
	130_HS#1_HSNeedsYou_BE_PK_JR_RB_LA_PK2
	131_HS#1
	132_HS#1

