
BSD
OPERATING SYSTEM

KONRAD ZUSE
OLD CODE

The OS that could
have been Linux

Creator of the Z3 and
writer of Plankalkül

O
ctober 2014 £5.99 Printed in the UK

BASH SCRIPTING Program your machine with the humble terminal
PYUSB Reverse engineer a driver with the power of Python
UDP Use the protocol that underpins the internet

34+ PAGES OF TUTORIALS

Push the limits of your
Pi’s performance

RASPBERRY PI
OVERCLOCKING

Analyse huge data sets
and draw pretty graphs

PYTHON
BIG DATA

Take an early look at the
desktop of tomorrow

KDE 5
DESKTOP ENVIRONMENT

Which Linux flavour is right for you?
Explore the cream of the crop to find

 your next favourite distro!

BEST
DISTRO

2014

October 2014

RASPBERRY PI MODEL B+: UNLOCK THE SECRETS OF THE NEW PI

115 PAGES
OF LINUX
LEARNING

LV007 001 Cover.indd 1 06/08/2014 13:25

October 2014

LV007 002 Inside Front Cover.indd 2 06/08/2014 13:29

WELCOME

www.linuxvoice.com

The October issue

From openness comes literacy

In a recent interview with Edward Snowden, there’s a point at
which the editor of the Guardian newspaper, Alan Rusbridger, is
explaining about when he first sat down with Edward’s leaked

documents. He initially gave them to his most distinguished
journalists – people with years of experience evaluating stories. At
some points, they literally didn’t understand what they were looking
at. Alan then asks Edward, from that context, how are MPs
supposed to understand the technical ramifications of the decisions
they’re taking, when the technical concepts are so complex.

Edward replies by saying this is probably the single most
important factor to explain the failures and oversight that we’ve
seen in almost every Western government, “We need to think
of it in terms of literacy,” he says. And I think he’s absolutely
right. This is why the UK government’s decision to go with
ODF as its documentation format is such a monumental
decision. It’s the correct decision taken from a literate
perspective, and while we’ve still got a long, long, long way to go,
this is one important step in the right direction.

Graham Morrison
Editor, Linux Voice

What’s hot in LV#007

ANDREW GREGORY
We’ve got a scoop on the team
behind the hottest new distro
around, Elementary OS, due to be
released any time now p32

Ben grabbed the entire list of UK
house sales and used his
statistical genius to pull loads of
ace facts from the data p82

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
Our interview with Mir developer
Thomas Voß answers many of
the questions we had about why
Ubuntu didn’t use Wayland p40

MIKE SAUNDERS

GRAHAM MORRISON

3

SUBSCRIBE
ON PAGE 60

Linux Voice is different.
Linux Voice is special.
Here’s why…

1 At the end of each financial
year we’ll give 50% of our

profits to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after first publication, we will

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers.

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Liam Dawe
liam@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Chris Brown, Russell Barnes, Chris
Brown, Mark Crutch, Marco Fioretti,
Josette Garcia, Juliet Kemp, John
Lane, Vincent Mealing, Simon Phipps,
Les Pounder, Valentine Sinitsyn

LV007 003 Welcome.indd 3 08/08/2014 14:27

www.linuxvoice.com4

CONTENTS
Celebrate summer by staying in out of the rain and messing with your Linux machine

ELEMENTARY OS
What once was just
a set of icons is
now the darling of
DistroWatch. Find out
how it got so good.

FAQ: THE BSDs
But for a quirk of fate
you might have been
reading BSD Voice.
But why did BSD end
up the nearly man?

OSCON
Hear from some of
the brightest and
best in Free Software
about how the future
is going to look.

28

32 38 18

06 Governments are saving
money all over the place by
adopting Free Software.

News

My Linux desktop
You may know Thomas
Voß as the Mir engineer we
interviewed on page 40.
Here’s an insight into his
development den.

114

Distrohopper
Cast a covetous eye over
GhostBSD, Siduction, Zorin
and OpenElec.

08

Gaming
One of the true masterpieces
of computer games comes to
Linux: Civilisation V.

10

Speak your brains
Send us your modest proposals
to share with the world (and
give us ideas for the mag).

12

LV on tour
The kids are alright – they’re
busy hacking Minecraft in a
field in North Yorkshire.

16

Interview
Canonical’s Thomas Voß
tells us why Mir is the best X
replacement know to man.

40

Group test
Forget Facebook – we’re
chatting like it’s 1999 on IRC.
Find the best client for you!

54

FOSSPicks
Free Software that’s fresher
and free-er than an unlaid
free-range egg.

68

Core technologies
Get to grips with the glue of
the internet – the essential
UDP protocol.

64

Subscribe!
Never miss another issue –
and get access to our archive
of Linux Learning.

60

Masterclass
A brace of systems for
sharing files with Windows
machines: Samba and SWAT.

110

REGULARS20

Oc
to

be
r L

V0
07

SUBSCRIBE
ON PAGE 60

One dream, one soul. One prize, one goal.
There can be only one best distro 2014!

The Raspberry Pi takes its next
giant leap out of the primordial

soup. Now examine its DNA!

LV007 004 Contents.indd 4 08/08/2014 14:28

www.linuxvoice.com 5

Raspberry Pi model B:
Void your warranty

Python and MySQL:
Big data analysis

Linux 101:
Power up your shell

Sonic Pi: program
electronic music

KDE 5
Desktop, eye candy, and
incubator for some of the finest
software around. KDE is back.

REVIEWSTUTORIALS

Add bits, hack bits, then overclock
it and fry it. It’s fun to be a geek.

Don’t trust the official statistics –
take the data and make your own.

Customise the stock Bash
command line and feel epic.

Code bleeps and beats in a
wonderfully simple syntax.

76

82 86

78

CamJam EduKit
Learn to build and program
circuits for pennies. Next stop:
robot sharks with lasers.

Mathematica 10
A hugely powerful data analysis
tool for professional users and
deep-pocketed individuals.

Stellarium 0.13
Explore the night sky with
this absolutely superb Free
Software observatory.

LibreOffice 4.3
The flagship office suite that’s
saving millions of pounds in
unspent MS Office licence fees.

49

51

50

Books The ethics and
aesthetics of hacking, a
Quixotic search for the internet
and more.

52

48

46

Bash: Beyond the
command prompt
Automate tasks
for more control.

100

Fargo: write and publish
outlines in open formats
Turn the web upside-down with a
simple way to publish content.

90

Write a device driver
with PyUSB
Reverse engineer the software
to control a USB toy car.

94

Oc
to

be
r L

V0
07

Code Ninja:
Programmers’ golf
Show off your
coding skills.

102 Konrad Zuse: The
German Turing
Computing in
1943 Berlin.

106

LV007 004 Contents.indd 5 08/08/2014 14:28

ANALYSIS

www.linuxvoice.com6

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS
Opinion

Simon Phipps
is president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

ODF comes of age
The UK Government’s decision to standardise on ODF means Microsoft has lost.

A t the start of the new millennium, a
team of us at Sun Microsystems
decided we had to do something

about an obvious problem. A decade later,
we’re seeing the fruits of our labour in the
decision of the UK government to prefer
openly-created, openly-maintained open
standards for document formats.

It was clear to us back then that open
source software was being severely limited
by the near-monopoly of Microsoft Office on
the desktop. There were several pretty good
alternatives available, including the StarOffice
product we had just acquired with
StarDivision and then open sourced as
OpenOffice.org. All the same, whenever any
business tried to adopt our product, subtle
incompatibilities with the way it handled
documents would emerge and, as the
newcomer, StarOffice would be blamed
whether it was at fault or not. The need for
Office was transmitted not by superior
functions or performance, but by the need
for an interoperable document format.

Worse, Microsoft kept releasing new
versions with slightly different document
formats, forcing unwanted upgrades on their
customers in order to remain compatible

and ratcheting up the interoperability issues
for competing code. Format lock-in was
what was killing the market. Even worse, it
was one of the factors stifling the open
source desktop, since businesses were loath
to adopt a desktop solution that had no
interoperable document software.

Open standards
We decided that what was needed was an
open standard. If an open document format
existed, every product – including MS Office
– could compete on its merits alone, without
the distortion of format lock-in. We decided
to donate the work we had been doing on a
new, XML-based document format for
StarOffice to a standards body and then
invite everyone else in the industry to use
that as a base to collaboratively evolve a
truly open standard. We selected a
standards body called OASIS, both for its
focus on XML and for the fact that other
large vendors – notably including Microsoft
– were top-level members.

The initiative was well received and a large
group of contributors came together to work
in the new OASIS Open Document Formats
for Office Applications Working Group –
OpenDocument to its friends. Microsoft
were directly invited to participate, but chose
not to. The rest, as they say, is history. Today,
Open Document Format (ODF) is an ISO
standard and is supported in every serious
document application on every platform.

That history is the reason I was so
delighted in July to heard that the UK
Government has chosen to set ODF as the
standard for all documents intended for

further collaboration. They have also chosen
PDF/A and HTML as standard formats for
final-form documents.

Which begs the question: has Microsoft
lost? The answer to that is both yes and no.
Yes, its initial refusal to join the ODF TC at
OASIS and its costly and reputationally
damaging foray into standards
gerrymandering with its own XML-based
OOXML format were definitely a “lose” of
their own making. Even today, despite
having got OOXML accepted as an ISO
standard, Microsoft don’t support the actual
standard itself in its product – only a
non-standard variant. It has even had to
implement full ODF 1.2 support.

We’re not there yet…
But that final compromise is what prevents
the UK Government’s standardisation on
ODF being another “lose” for them. Unlike
Google Docs, Microsoft has good support for
ODF in both Office and 365 that interoperates
well with other software as long as you avoid
proprietary fonts and marginal features in
each product. Moreover, Microsoft has other
layers of lock-in to fall back on – proprietary
support for Sharepoint, for example.
Competing solutions like LibreOffice – the
successor to our original StarOffice work
– don’t have a truly level playing field, but at
least get to enter a team in the league.

All the same, our original vision of a truly
open document format – royalty free, with
no platform dependencies, created and
maintained in the open – has finally fruited.
Arguing against ODF as the preferred format
for citizen collaboration will hopefully be
seen as self-harming by vendors. That’s one
less barrier to the open source desktop and
one more foundation stone for the digital
freedoms of the meshed society. Let’s keep
going – we can do this!

“Our vision of a truly open document format with
no platform dependencies… has finally fruited.”

LV007 006 News.indd 6 08/08/2014 10:20

ANALYSIS

www.linuxvoice.com 7

ODF • Swiss, French & Spanish adoption • OwnCloud • LibreOffice • Kernel 3.16

Summarised: the biggest news
stories from the last monthCATCHUP

British government
adopts open formats
By Jove! This is jolly

good news, eh chaps? Yes, the UK
government has chosen ODF (as
used in Libre/OpenOffice) and PDF/A
as standard formats for sharing and
viewing documents. No longer do
users need to buy proprietary software
to work with files from government
websites, but the use of open formats
will also make it easier to access data
in the future. It’s a slap in the face for
Microsoft and its OOXML format as
well. Time for a cup of tea to celebrate!

1
Valencia saves €36m by
switching to Linux
Another success story: the

autonomous region of Valencia in
Spain has finished the next version of
its customised Linux distribution, as
used on over 110,000 PCs in schools.
The local government claims that using
Linux has saved them €36m over the
last nine years – and more savings are
to come. Linux has also been thriving in
another region of Spain, Extremadura,
where Linux is installed on 70,000 PCs
and laptops in schools.
http://tinyurl.com/lv3pcwe

2
OwnCloud 7 released
OwnCloud keeps going from
strength to strength, and

version 7 brings improved sharing
features, a faster interface, and
support for Microsoft Word files in the
document editing tool. See the full list of
new features here:
www.owncloud.org/seven

3

Linus Torvalds releases
shiny new kernel 3.16
Kernel releases aren’t as

exciting as they were in the last decade,
largely because Linux has matured and
stabilised a lot. Still, 3.16 brings a
bundle of updates, including better ACPI
and power management on Intel CPUs,
improved Radeon graphics support,
and Btrfs fixes galore. If you’re a Dell
Latitude user, your hard drive will now
stop if you drop the machine thanks to
a new Freefall driver. And the best
news? 3.16 is due to be included in
Debian 8, codenamed Jessie.

4
Geneva class rooms
switching to FOSS
Not to be outdone by Spain,

the Swiss canton of Geneva plans to
switch its entire school system over
to GNU/Linux. Specifically, the move
to Ubuntu in 170 primary schools
has already been completed, and
the transition in secondary schools
is planned for later in the year. The
canton’s IT department claims that
Linux is easier to maintain, faster, safer
and more stable than the proprietary
software it was using before.
http://tinyurl.com/o4m9b4w

5
Microsoft concedes:
Windows has just 14%
market share

This can’t be right – surely? Windows is
still dominant on desktop PCs, isn’t it?
Well yes, but the desktop is just one part
of the wider computing world today, and
Microsoft’s very own COO Kevin Turner
has recognised this. As more people are
doing work on tablets and large-screen
smartphones, Windows on the desktop
is looking less relevant, and when you
add up the whole desktop and mobile
market, Windows has a paltry 14%
share. While Android grows and grows…

6

LibreOffice 4.3 released:
“you can’t own a better
office suite”, apparently

That’s quite a bold statement from The
Document Foundation, but we can
attest that LibreOffice 4.3 is packed to
the brim with new features. There’s 3D
models in Impress (the presentation
tool), much better support for
Microsoft’s OOXML formats, and
improved commenting facilities (useful
in collaborative projects). Tons of fixes
have been made as well, and the suite
will be heading to a distro near you
very soon. www.libreoffice.org

7
Toulouse saves €1m by
switching to LibreOffice
And another success story to

end with. The French city of Toulouse
has saved €1m by switching its
PCs from Microsoft software to the
LibreOffice suite. Sure, it isn’t a full Linux
transition and the savings aren’t as
huge as in Valencia, but it’s a great step
in the right direction, especially with the
European economy still in dodgy times.
Plus, the city’s money goes back to local
tech support companies, and not giant
megacorps overseas.
http://tinyurl.com/ovgpj2l

8

LV007 006 News.indd 7 08/08/2014 10:20

DISTROHOPPER

www.linuxvoice.com8

Siduction LXQT
Showcasing a new desktop.

Many, many words have been
written about the shift from
Gnome 2 to Gnome 3, and we

won’t add more here. However, as well as
the desktop shifting, the GTK toolkit also
shifted, and a lot of other desktop
environments relied on that GTK 2. LXDE
was one of those environments, and they
weren’t happy with the direction GTK 3 was
taking, so the developers have decided to
make a clean break and switch to the Qt
toolkit that’s most famously used in KDE.

This new desktop environment, known as
LXQT, is still in development, so not many
distros have included it yet, but Siduction
has. At first it feels a little strange, because
some parts are reminiscent of KDE, such as
the control centre and the notifications area.
However, on the whole, it’s a very different
desktop environment. There’s far less eye
candy, no glow behind the window, no

cashew, and none of the KDE apps are
included. PCManFM is still the file manager
(like the desktop, it’s made the transition to
QT), and Qupzilla is chosen as the web

Zorin 9
Can Zorin 9 help Linux attract new users from Windows?

Zorin pitches itself as the gateway to
Linux, a tagline that sums up its goal
of being a distro for non-technical

users new to Linux. As far as we can see,
this claim is mostly made based on the fact
that it’s themed to look like Windows.

Zorin gives the user three themes to
choose from to customise its look and feel
(though we can’t tell the difference between
Dark and Blue), and three looks (based on
Windows 7, Windows XP and Gnome 2).
That makes a total of nine (or six) different
visual appearances you can have. If one of
them isn’t to your taste, go find another
distro. This might seem an anathema to the
mantra ‘Linux is about choice’, and it

probably is, but that mantra isn’t central to
Linux (see http://islinuxaboutchoice.com).

Zorin is aimed squarely at new users, and
new users don’t always want lots of options
to endlessly tweak the interface. They want
a few choices so they can find a look and
feel that somewhat approaches their natural
style. For these people, Zorin provides a
natural choice.

The easy option
If you’re thinking that this GUI only alters
some config files that you could go in and
change to tweak this or that element of the
interface, you’re probably correct – but
again, Zorin is not the distro for you.

Siduction was also one of the first distros to feature Razor-qt, another Qt-based desktop.

We’ve tapped GCHQ’s communications to find out what’s going on in distro land.

DISTROHOPPER

The Zorin Theme Changer gives a simple way to
tweak the look and feel of the desktop.

browser. Despite the new toolkit, it still
retains the no-nonsense feel of LXDE, and
we suspect it will retain its popularity in
low-end desktops.

Underneath, Zorin is based on Ubuntu 14.04
which makes a solid, if unremarkable, base.

Zorin is probably the best Windows-alike
distro, but we’re becoming less and less
convinced that Windows-alike distros are
really necessary. We’ve found that even
lifelong Windows users take to interfaces
like Mate or Cinnamon without too much
trouble, but for those who can’t cope with
the change, there’s always Zorin.

LV007 008 Distros.indd 8 07/08/2014 19:34

DISTROHOPPER

www.linuxvoice.com 9

GhostBSD 4.0
FreeBSD + Mate = an easy introduction to the mysterious world of BSD.

GhostBSD is a project that builds on
FreeBSD with the aim of making it a
bit more palatable for desktop users.

To this end, it comes with the Mate desktop
environment and a set of tools geared
towards desktops rather than servers.

The basic install leaves you with a fairly
minimal system, but there’s nothing
essential missed out. It’s got LibreOffice,
Firefox and a few other tools, but depending
on what you hope to use it for, you’ll probably
need to install a bit of software to get a
useful desktop. This is quite a surprise, since
the ISO comes in at a fairly large 1.2GB, but
shouldn’t cause any problems.

Privacy enthusiasts will be pleased to see
that SpiderOak is included by default. This is
a cloud file backup service similar to
Dropbox, but the files are encrypted on your
device before uploading, which makes it far
more secure. This backup software has
gained a bit of popularity recently thanks to
a public endorsement by Edward Snowden.

Another slightly unusual program is Fish
as the default shell (others are available).
This works in basically the same way as
Bash (the default shell environment in
almost all Linux distributions), but comes
with far more graphical niceties, which can
come as a bit of a shock to people used to
simpler shells.

GhostBSD is relatively easy to use, though
not quite as beginner-friendly as some Linux
distros. It also has a smaller user base than
common Linuxes, so you’re not likely to find
as much help online should you get stuck
(the Ubuntu and Mint forums are still the

DISTROHOPPER

GhostBSD comes with an IRC client that will connect you straight to a GhostBSD channel – perfect
for when you’re having a little trouble and just can’t find the solution.

OpenElec 4.1.1 Time to take advantage of the new audio on the Raspberry Pi B+

It’s never been a secret that the Raspberry Pi makes a
good media player. In fact, the SoC (system-on-chip) at
its heart was originally intended for set-top boxes.
However, up until now, it’s been let down by the poor
quality of its analogue audio. This hasn’t been a problem
for people plugging Raspberry Pis into TVs, since the
HDMI audio has always been good. However, Pis have
been almost useless for anyone wanting to plug them
into stereos.

With the improved sound on the new model B+, the
situation is a lot better. There’s also a new version of the
OpenElec media player distro, and we took this as a sign
that we should hook our Pi up to our stereo and rock out
in the name of investigative journalism.

Installing was simply a case of downloading a tarball
and running a script that sets everything up. This is a
touch more complex than the Noobs install method
(which is also possible for OpenElec). Once this is done,
you just need to pop the SD card in your Pi and start the
machine. For the initial setup (entering Wi-Fi passwords,
etc), you’ll need a monitor and mouse, though once set
up, these aren’t needed any longer. Just connect the

audio out into your sound system’s line in, and you’re
ready to go.

You can control XBMC (the media player upon which
OpenElec is based) using a smart phone app. There are
several options available for most types of smartphones
including an official one created by the XBMC team.
(XBMC is more commonly used as a video player, and
OpenElec performs admirably at this as well).

The SD card has a partition that mounts at /storage
and contains all the media. Adding new music is just a
case of using the scp command to copy it from another
computer to this location on the Pi.

The whole setup took us less than half an hour, and
then we had a smartphone controlled sound system.

best place to get answers to most questions
that beginners may have). That said, it’s not
hard to use, and anyone with a basic
knowledge of Unix-like systems who is
comfortable on the command-line shouldn’t
have too much trouble.

We found the XBMC remote by Music Pump to be a
little easier to use without a screen than the official
app from the XBMC team, but it’s not open source.

LV007 008 Distros.indd 9 07/08/2014 19:34

GAMING ON LINUX

www.linuxvoice.com10

Civilization V
Civilization’s finally back on Linux!

A large battle is about
to take place

The tastiest brain candy to relax those tired neurons

One of the most popular
PC gaming franchises
ever is back on Linux.

We haven’t seen a Civilization
game on Linux since Loki
Software ported Civilization:
Call to Power in 1999, so it’s
incredible to see it back on
Linux considering how popular
it still is today. The game is
consistently in the top 10 most
played games on Steam and
with good reason, as it can get
a bit addictive.

Civilization V is a strategy
game where you’re tasked
with controlling a single nation
as you fight or make peace
with the other nations in the
world. You build cities, research
new technologies, and it’s

GAMING ON LINUX
BOWLED A GOGLY

GOG.com (formerly Good Old
Games), the biggest DRM-free
gaming store on the internet,

has officially launched support for
Linux games old and new.

This is some of the biggest news
in Linux gaming since Valve started
paying attention to Linux with Steam.
The reason for this is that GOG.com’s
standards closely align with those of
Linux itself in the respect of freedom
and value: if you cannot get your
game to run (and you system is
capable), then you can get a refund.
That is great, as to get a refund from
somewhere like Steam is damn-near
impossible a lot of the time.

DRM is also a major issue for a lot
of Linux gamers and is one of the
reasons many people use Linux
instead of products from a company
like Microsoft or Apple due to the
DRM mechanisms put into it. This is
the same for gaming, as a lot of
games may require nasty things like
an always-on internet connection
even for single-player games.
You won’t find anything like that on
GOG.com, as they hate DRM as much
as we do. GOG also wraps up really
old Windows & DOS games that
would never get a proper native port
using DOSBox and Wine, but unlike
other stores that have some
Wine-wrapped games, GOG.com
clearly label a game using Wine.

We see a fair few complaints from
Linux gamers about games being on
Steam and not DRM-free, so it’s time
for those gamers to put their money
where their mouth is and support this
excellent DRM-free store.

awesome. You get to pick what
nation you play as, which will
affect your starting abilities
and how you progress through
the game.

There isn’t a traditional
campaign mode with a linear
story; instead it’s more of a

do-as-you-please type game.
You could play as a warlord
pillaging towns and cities, or
as the most peaceful nation on
earth – the choice of how you
play is up to you.
http://store.steampowered.
com/app/8930/

Darksiders
Prepare to get brutal with your enemy.

 I’m going to need
a bigger sword.

Now this is exciting!
Darksiders, a popular
action-oriented

hack ’n’ slash type game, is
coming to Linux. It’s all thanks
to Leszek Godlewski (who
previously ported Deadfall
Adventures & Painkiller) of
Nordic Games, so that’s
another big games company
making the transition to Linux
gaming.

Darksiders merges some
excellent graphics with frantic
gameplay as you battle it out
with the forces of good and
evil. The game itself features
around 15 hours of gameplay

as you wield a massive
sword and engage in epic
boss battles. A gamepad is
recommended for this type of

game to really get that button
bashing going.
http://store.steampowered.
com/app/50620

Liam Dawe is our Games Editor and
the founder of gamingonlinux.com,
the home of Tux gaming on the web.

LV007 010 Gaming.indd 10 07/08/2014 19:36

GAMING ON LINUX

www.linuxvoice.com 11

Grim Fandango
I’m sure that name rings a bell for a lot of you!
Grim Fandago is being re-released and updated
for modern platforms, and Linux is go!

Originally released in 1998, Grim Fandango is
quite an old game that many gamers would
have probably missed, so especially for Linux
gamers this is a great chance to replay a bit of
gaming history.
http://bit.ly/U4BK0C

ALSO RELEASED…

Unity of Command
The war isn’t over yet...

Halfway
Beautiful pixel art…

Halfway is easy to
just pick up and play
thanks to its simple
user interface.

Halfway is a fantastic space sci-fi
strategy game recently released
on Steam, and when we say

fantastic, we really mean it. The visuals
and story in Halfway are just amazing, and
that’s without even getting into how good
the gameplay is as well, which is fantastic.

Halfway is much like XCOM in that it pits
humans vs aliens in a turn-based strategy
setting, but that’s where the similarities
end. Halfway is a much more intimate

game as you get to know your characters
a bit more while searching your spaceship
for those pesky aliens.

The battles are all at pretty close
quarters and luckily, if you run out of
ammo (it can and will happen!), then you
can just sit next to a foe and smack them
down melee style.

We can easily recommend this one.
http://store.steampowered.com/
app/253150

Rochard is one of the first games to come
to Linux built with the Unity game engine,
and it’s an absolute treat too. Rochard is
an action platformer with puzzles that pits
you against the familiar threat of alien
invaders aboard your spaceship.

The puzzles can get pretty tricky in this
one, as you bend gravity to your will using
your trusty old ‘G-Lifter’, which doubles up
as a weapon as you throw crates at your
enemy, all while running around a beautiful
cartoon-like backdrop.

 Like Braid or Portal, Rochard isn’t just a
run, jump and shoot game: you need to
engage your grey matter to play it, and
that’s why we like it.
http://store.steampowered.com/
app/107800/

Rochard
Show gravity who’s boss!

Unity of Command is an epic turn-based
strategy game in which you battle it out
against the elements as well as your
enemy. The game is set during the
Second World War, and you play as either
the Axis or the Soviets, rather than the
western allies, as is more common.

The game is quite brutal and not
easy to get into, so it would be a great
game for hardcore strategy fans looking
for something to get their teeth into,
especially those of you looking for a game
with a different setting. We highly suggest
trying out the tutorial first to help you get
to grips with the details – and we don’t
suggest this very often.
http://store.steampowered.com/
app/218090/

Mount & Blade: Warband
Mount & Blade: Warband is an open world
sandbox game that allows you to recruit your
own band of merry men and participate in
medieval battles across the land. You can
travel the country taking quests as you see fit,
but be wary about travelling at night, as
bandits roam the lands and they will try to
capture you. The battles are really fun and you
can even fight while mounted on a horse.
http://store.steampowered.com/app/48700

Terraria
Rumours abound that Terraria, a highly popular
2D sandbox game, is coming to Linux after the
developers have finished working on the Mac
port. It is similar to the game Starbound on
Linux, but not on such a grand scale.

Terraria could be seen as a 2D version of
Minecraft, but with more interesting combat
and boss battles.
http://store.steampowered.com/app/105600/

LV007 010 Gaming.indd 11 07/08/2014 19:36

MAIL

www.linuxvoice.com12

MANY SUGGESTIONS

Got something to say? An idea for a new magazine feature?
Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS

I’m a volunteer at a mental
health charity (www.
contactmorpeth.org.uk) and I
have been encouraging people
there to use LibreOffice and
Gimp. One particular boon was
the End-Of-Lifeing of Microsoft
Windows XP and Office 2003.
I’ve been putting Lubuntu
onto unwanted laptops or
desktops to give away instead
of sending them off to landfill.
Your decision to relicense your
content as Creative Commons
is particularly helpful, because
not everyone can justify
buying a magazine.

There is one more thing
I’d like you to do with your
content, though. Every year or
so, look back at your content
and group related articles
together as a PDF – for

example, a PDF of the “core
technologies” articles would
be good – and put them on
your DVD and website.

Because resources are
always a bit stretched,
it would be helpful if the
“Gaming On Linux” page
included things like cost and
hardware requirements.

Bling would be good too.
Stuff like stickers (to be put on
computers being given away)
or posters (to advertise this
stuff in the activity room). Or
maybe a booklet specific to a
particular topic, similar to the
O’Reilly pocket references or
Addison-Wesley phrasebooks.
Ian Bruntlett

Andrew says: Wow, that’s a
lot to go at! Well done on

spreading the Free Software
gospel – every pound that
doesn’t go to Microsoft is a
pound that can be spent doing
something better, as you
know. It’s always great to see
when organisations realise
this, especially charities
that should be spending it
doing important work in the
communities they serve. We

know that eventually we’ll
have a load of content that
we’re not doing much with,
and that’s why we took the
decision to relicense it as
Creative Commons when
the time comes. But yes, I do
like what you’ve suggested,
and we’ll look into bundling
collections of related articles
for the web.

LINUX VOICE STAR LETTER

We’ll add prices and hardware requirements for games from next issue.

Thanks for the great magazine, I
love the programming tutorials, the
computer science history, the
geeky Group Tests (window
managers! Awesome!), and pretty
much everything (also the
CC-BY-SA licensing, and the
DRM-free download). If it was up
to me the Raspberry Pi stuff would
be out the window, I really don’t
care, but I understand that many
people want it so I can live with it.

Anyway, a suggestion for your
wonderful Group Tests. At the
moment they are sorted first by

feature (accessibility, installation,
whatever), and then each package
is assessed on that criterion. It
would be easier to read if they
were sorted by package (Emacs,
Vim, etc) and then each package
were rated on those criteria.

At present to pick the package
that suits you it is necessary to
read across all the sections and
remember what does what and
what they’re all called, rather than
reading about each piece of
software in one section and
coming to an overall judgement.

GROUP TESTS+
Other than that keep up the

brilliant work, thanks again and I
look forward to the next 6 issues
and beyond.
Chris Beeley, Nottingham

Graham says: A quick defence of the
Pi; if you replace Pi with Debian,
almost everything Pi-ish works on
other Linuxes too. Raspberry Pi
has just become a great standard.
Also, in a twist of wonderful
serendipity, we’ve changed the
format of Group Test exactly as
you suggest. Thanks!

LV007 012 Mail.indd 12 08/08/2014 10:24

MAIL

www.linuxvoice.com 1313

Digital subscribers who want to take our custom version of
Raspbian for a spin: go to www.linuxvoice.com/torrents/lv006.iso.
torrent to download last issue’s cover DVD.

ODF FOR UK

I see that issue six of your
magazine comes with a DVD; so
as a digital subscriber I looked on
your website for a link to download
the corresponding .iso file, but saw
only a message that a link will be
added later. I wondered whether
you might be able to send an email
when this link is available in the
same way that you let me know
when the magazine is available?
I’m particularly interested in your
Raspbian remix.

I had a look at your ‘Intro to
Linux’ videos; it left me wondering
who you saw as your target
audience. I have been reading
Linux magazines since 2009, so
most of the terms you used I was
familiar with, but that wouldn’t
be the case if, say, my sisters had
a go, as they wouldn’t know the
jargon. Having recently set up a
laptop to dual boot Ubuntu 14.04
and Fedora 20, I couldn’t work
out how to set up the installation
such that Grub 2 would be installed
on a /boot partition, while I had a
separate “/” root, /home (one for
each distro) and swap partition.
So is there any chance of a video
tutorial on advanced dual booting?
Galen (AKA YorkshireTyke)

Andrew says: We had some pretty
banal technical problems around

the time issue 6 went on sale, but
these should be fixed in time for
the next issue to have a DVD on
the cover(planned for issue 8).
Sorry about that.

As for the videos, as long as
they are useful to someone out
there, they’re doing their job. Keep
your eyes peeled for a dual-booting
guide soon.

I’d like to send out a hearty
message of congratulations to
The Document Foundation for
pushing open formats for the
UK Government, and the UK
Government for accepting that we
shouldn’t have to spend money
licensing a file format in order to
read data that belongs to us as
taxpayers.

Unlike a lot of commenters,
don’t have a problem with
taxpayers’ money going to a big
US company. If that offends you
so much, then follow it to its
conclusion and you end up paying
British firms whether they do good
workor not, just to keep spending
local. That’s silly. We need the best,
and the best value for money, and
that’s why ODF is the best choice.

Here’s hoping that other
governments go the same way,
and more organisations stop
spending money on a product that
only makes it more difficult for
their customers to interact with
them. Again, well played UK!
Remy Barrett, Worcester

Graham says: In any organisation as
big as Her Majesty’s Government,
there are bound to be at least
some sensible people who know
what’s going on. We too are
immensely chuffed that the wise
heads have prevailed in this issue.

NOM DE MINT PART DEUX

LV007 012 Mail.indd 13 08/08/2014 10:24

MAIL

14

Scribus is excellent software, used by a growing number of quality publications
– including The Oxford Drinker, newsletter of Oxford & White Horse CAMRA.

Why does Linux Voice use
InDesign instead of Scribus?
Has LV tried Scribus and found it
lacking?
PR

Andrew says: A recent InDesign
update followed by half a day
lost due to a corrupt file crashing
a machine has made is ask this
same question. But the answer
is still the same: the number of
freelance designers in and around
Bristol who know how to use
InDesign is far greater than the
number of designers who know
how to use Scribus, so if our art
boss Stacey ever wanted to go on
holiday (perish the thought) we’d
have an extremely small pool from
which to find some cover for her
(NB this is another argument in
favour of open file formats).

However, we do want to keep
our options open in future, and as
such we’ve chosen open fonts that
will enable us to move to Scribus
when the situation changes. We’re
planning ahead.

SCRIBUS

LV007 012 Mail.indd 14 08/08/2014 10:24

MAIL

www.linuxvoice.com 15

Kate won the Group
Test of text editors in
LV002 (now online at
www.linuxvoice.com/
text-editors), but like
all other apps that take
text input, it can be
injurious to your health.

Antivirus vendors do sell software to stop Linux servers spreading
viruses to Windows boxes, but for desktop users this unnecessary.

BORED WITH THE KEYBOARD
I’m enjoying the new mag, but I
feel that you need a counterpoint
to your chant of, “Keyboard,
Keyboard, Keyboard!”

I’ve been an IT pro for 15 years,
and regular computer user for 10
before that, resulting in about a
year of RSI. Note that I’ve done
everything I could in terms of
seating position, quality ergonomic
keyboards, regular stretches and
screen breaks etc, and it hasn’t
been enough.

The biggest culprit is the long
list of Ctrl key chord commands,
which results in your weakest
finger pressing against a spring
with your hand stretched
wide. Ouch. All this to actually
slow you down. (See Bruce
Tognazzini, www.asktog.com/TOI/
toi06KeyboardVMouse1.html)

So here’s some advice I’ve
learned since. Remap your
keyboard. The X.org keyboard
extension has a large set of
options to fine-tune your layout.
The desktop environments –
Enlightenment for me – often put
a GUI in front of them. Otherwise,
put your choices in a file named
/etc/X11/xorg.conf.d/10-
keyboard.conf. Some people set
the Caps Lock to act as Ctrl, but
that is still little finger territory
and not really good enough. I use
altwin:ctrl_alt_win to make Alt
and Alt-Gr act as Ctrl keys, and the
MS Windows key function as Alt.
That puts the most-used modifier
key under my thumb or strongest

finger. (Minor bonus: Win-Tab now
tabs between windows.) Then I
use compose:menu to turn the
MS menu key into Alt-Gr, since I
want to use accented characters
correctly. It only took a short time
to retrain my muscle memory.

Move your hands, both from
keyboard to mouse and around
the keyboard. Only copy typists
are judged by words per minute –
move off the home keys, and use
a stronger finger for the extreme
end keys.

Repeatedly double clicking the
mouse will also hurt eventually.
Many file manglers have a setting
to use a single click to open and
hover to select, which is much
gentler. Sadly the GTK file dialogs
don’t have the option, despite
repeated requests for it in their
bug tracker. (Ever hear about the
origin of the double click? It was a
workaround for The Steve’s decree
that Macs must have just one

I can accept that there are no
computer viruses on Linux, but I’m
baffled as to why. The internet is
full of theories, but the most
persuasive seems to be that there
are so many fewer Linux machines
than there are Windows, that it’s
too much effort for the virus writer
to even bother targetting Linux.
But I’ve also read that Linux is just
inherently safer. So which is it?
Davey McGregor, Perth

THE VIRUS QUESTION

mouse button.) Finally, strengthen
your forearms. I know some
programmers who actually lift
weights, and I use grip squeezers
on days when my arms aren’t
too sore.

I hope you can publish this,
and perhaps keep some of your
readers away from the anti-
inflammatory pills. Those are really
hard on your stomach lining.
Dylan

Mike says: Damn right. Remapping
your keyboard so the most often
used modifier key is under your
thumb rather than your little finger
is the number 1 best thing you
can do for your long-term finger
happiness. I’ve had terrible RSI
in the past, which is largely why
I’m such a fan of tiling window
managers now – it saves you from
having to cripple yourself using
a mouse. Thanks for the tips –
everyone, heed Dylan’s words!

Ben says: People who write malware
probably want to do so to get the
widest exposure for their little scripts
and botnets, so it makes much better
sense to target Windows. It still runs
on the majority of desktops and we’d
guess the average user is less able to
defend themselves against malware
than the average Linux user. Combine
this with some huge (and undisclosed)
security holes, and cracking Linux is
just not worth the comparative effort.

LV007 012 Mail.indd 15 08/08/2014 10:24

LUGS ON TOUR

www.linuxvoice.com16

LUGS ON TOUR

TELL US ABOUT YOUR LUG!

We want to know more about your
LUG or hackspace, so please write
to us at lugs@linuxvoice.com and
we might send one of our roving
reporters to your next LUG meeting

CHAR(14) & PGDay
Josette Garcia gets some serious database action in Buckinghamshire.

CHAR(14) is a ‘must attend’
international conference for
anyone interested in

Clustering, High Availability and
Replication, plus all forms of parallel,
distributed and grid architectures.
The joint conferences were
organised by the UK PostgreSQL
User Group.

Some of the talks included
“Replication in Security” by Magnus
Hagander – Magnus is a member
of the PostgreSQL Core Team and a
developer and code committer in
the PostgreSQL Global
Development Group. He currently
serves on the Core Team and as
President of the Board for
PostgreSQL Europe. I managed to
follow the history of replication up to
replication streaming. Unfortunately
the rest was well above my head
(see: www.2ndquadrant.com/bdr)

There next followed “Logical
Decoding for Auditing and
Replication” by Gianni Ciolli, a
principal consultant for
2ndQuadrant Italia. He has been
working with Free and Open Source
Software for more than 15 years. He
was co-founder and then president
of the Prato Linux User Group

(Plug); he has organised many
editions of the Italian PostgreSQL
day, and in 2013 was elected to the
board of ITPUG, the Italian
PostgreSQL Users Group.

Bi-Directional Replication (BDR)
by Andres Freund. What is BDR? It is
the latest Asynchronous Multi-
Master Replication for PostgreSQL.

BDR is an Open Source project that
follows the same licensc as
PostgreSQL (TPL), which is an early
form of BSD open source licence.

Simon Riggs talked about the
Future of Replication. His views on
the future of Bi-Directional
Replication and its inclusion into the
PostgreSQL core code.

Char(14) was followed by PGDay
– some attendees left, some arrived
but I can say that most people
stayed for both days.

PGDay
Mike Fowler – Migrating Rant &
Rave to PostgreSQL – engaging
with your customer in every
possible way. Mike narrated the
pain of migrating from MySQL to
PostgreSQL. He found that all the
pains were well worth it!

Magnus Hagander presented the
new features of PostgreSQL 9.4,
which is to be made available in
August or September.

Business intelligence with
Window Functions by Gianni Ciolli
– please note the absence of “s”
after Window. Not only has Gianni
got the most beautiful Italian accent
but he is also extremely funny.

Simon Riggs gave an update
on the AXLE project – Advanced
Analytics for Extremely Large
European Databases. The AXLE
project is an EU funded project
to greatly improve the speed and
quality of decision making on real-
world data sets. AXLE aims to make
these improvements generally

Horwood House venue, near Milton Keynes, home of Bletchley
Park – now the National Museum of Computing.

available through high quality open
source implementations via the
PostgreSQL and Orange products
(http://orange. biolab.si/). Do visit
the AXLE website for more details
on http:// axleproject.eu/.

I must admit that the content of
this conference was well above my
understanding. I should have been
bored but the attendees and the
organisers were so kind that I never
felt out of place or not wanted.

The speakers came from Italy,
Switzerland, the USA, Germany,
Czech Republic and Sweden
bringing information, tricks and
latest developments. I believe
PostgreSQL is one of the most used
databases, so why are there so few
attendees at the yearly conference?
It doesn’t make sense. If you are a
PostgreSQL user, I really hope you’ll
come to Char(15) and PGday 2015.

“Speakers came from Switzerland, USA,
Italy, Germany, Czech Republic and Sweden.”

LV007 016 LUGS.indd 16 08/08/2014 14:15

LUGS NEWS

www.linuxvoice.com 17

Deer Shed Festival Science Tent
Andrew Gregory, worried about the future, is pleased to see that the kids are all right.

Music festivals on
television always look
so grubby. Yes, it’s good

to get several bands you like in one
place, but they also attract hippies,
henna, batik and tie-dye. And bongo
drums. Bloody bongo drums. We
were delighted then to learn of the
existence of the Deer Shed Festival,
now in its fifth year of glorious
sunshine near Thirsk in the North
Riding of Yorkshire.

The festival essentials were all
there (beer, Johnny Marr, burgers),
but what piqued our interest was
the festival’s science tent. Deer
Shed is a family-friendly event,
and rather than leave the kids
to pointless displays of tribal
drumming (Which tribe? It’s never
specified!), the organisers had
filled a tent with demonstrations
of science – Python, Arduino,
astronomy and more.

Connor and Paul from Pimoroni
had made the trip to show kids
how to build little shrimp kits –
tiny, functioning circuits made
out of ordinary components. Next
door to them, a crowd of six-year-
olds were drawing circuits on
cardboard, plugging in LEDs and
practically jumping up and down
with excitement when the circuits

dried and they what saw they’d
made. This is a world away from
any electronics lessons we had at
school. Forget the theory, just show
them the blinkenlights and they’re
hooked.

Over on the other side of the
tent, Dan, a Raspberry Pi certified
educator, was giving Python
programming lessons for – you
guessed it – Minecraft. This was so
popular that slots for the weekend
were fully booked within 15 minutes
of the science tent opening, and we
can see why.

The children playing with
Minecraft looked to be around 10
years old, and Dan had them coding
different block types. A few lines of
Python saved into a configuration
file and players were wandering
the Minecraft world leaving a trail
of flowers behind them (perhaps
the hippy nonsense had pervaded
the science tent after all), or flying
through the sky leaving a spiral of
watermelons. After that, you’re only
a variable away from being able to
change block types on the fly from
within the game.

More science
The universities of Teeside and
York brought along a mobile

CHAR(14) & PGDay

Deer Shed Festival is
held in the grounds of
Baldersby Park, built
for communications
technology pioneer
George Hudson.
deershedfestival.com

Far left: The science
tent was packed for the
whole sun-drenched
weekend.

Left: Sebastian Jacques
helps Paul from
Pimoroni out with a
simple circuit.

planetarium each; again, these were
wildly popular. And the Teeside
University representatives excelled
themselves with CST: Teeside, a
mocked-up crime scene complete
with evidence to solve the case.

For parents of small children
who want to let their hair down with
kids in tow, Deer Shed is great. For
the atmosphere, the brilliant local
beer (no flat Carling here, thanks
very much), the performances and
everything else, it’s well worth it.
If you’re at a loose end in late July
next year, come along!

LV007 016 LUGS.indd 17 08/08/2014 14:15

www.linuxvoice.com

SHOW REPORT OSCON

We’ve been going to O’Reilly’s Open Source
Convention – better known as OSCON, for
eight years. Not just because of the

incredible number of fine India Pale Ales on offer, or
the highest concentration of microbreweries this side
of the Orion Spur, but because Portland is a friendly,
warm and creative city host to an incomparable
variety of bars, beards and body art; the perfect
backdrop to a week of geek communion.

And each successive year here helps OSCON
imbibe more of Portland’s spirit. This year’s event was
noticeably less corporate and less ostentatiously

sponsored, for example. Of course, there’s still the
major backers – bluehost.com, PayPal, Citrix, Google
and HP plus a plethora of smaller companies. But
many of the extracurricular functions wouldn’t be
possible without their contributions. Monday night’s
Attendee Party, for instance, with its surreal
combination of oxygen bar, quad-copters, bungee-
trampolines and glittery cupcakes was funded by
three different sponsors. However, this year’s event
felt hackier, more makery and more open source-
friendly than previous events – truer to its roots as a
Perl conference, and we enjoyed the difference. All of

18

Graham Morrison travels almost 5,000 miles from the Shire to the
biggest open source conference on the planet.

Tickets to OSCON are expensive, but one of
the free hall or exposition passes will also get
you into many of the sponsored sessions.

OSCON 2014
4,400 attendees create a buzzing
hive mind of ideas, connections
and possibilities.

LV007 018 Feature OSCON.indd 18 07/08/2014 19:38

www.linuxvoice.com

OSCON SHOW REPORT

19

which gave the many, many corridor meetings, the
Birds of a Feather get-to-togethers, the after-session
parties and the sessions themselves an atmosphere
not unlike a University campus.

This year’s event started unusually on a Sunday
(and singularly; Monday–Friday service resumes in
2015), and one of the most inspirational parts of this
year’s conference was that you saw children in the
halls and corridors, and sometimes, in the sessions
themselves. This was because on the first day,
Sunday, there was the beta version of an experimental
track that O’Reilly called Kids Day. On this track, 70
kids of all ages – and we spoke to attendees who
could have been anywhere between 6 to 16 – got their
hands dirty learning Python, modding a Java game
with a touchscreen Raspberry Pi or hacking Minecraft.

Open Source satellites
This refreshing approach continued through to
Tuesday’s keynotes, where you had to pity the
sponsors that followed enthusiastic teenage coder
Shadaj Laddad, after he delivered a talk full of wonder
and the freshly squeezed potential he’s found through
programming. We also loved Wendy Chisholm’s
coming out session for introverts, where she, along
with what appeared to be 95% of the other attendees,
admitted that they’re not super-confident supreme
beings after all, and keeping up appearances can be
exhausting. But it was Will Marshall’s final talk on the
briefcase-sized imaging satellites his company is
launching that got us emailing Planet Labs to ask for
an interview. They’re throwing hundreds of these units
into orbit and creating a system that updates a
complete image model of the Earth every 72 hours,
potentially down to individual fields, houses and trees.
More importantly, they’re going to create an open API
to deliver universal access to this data, and to allow
anyone to perform their own analysis. Each satellite is
also powered by a tiny x86 computer running Ubuntu.

On Wednesday, Simon Wardley’s keynote was
preceded by an impromptu slide informing the
audience of the UK Government’s intention to switch
internal documentation to ODF and PDF/A, which was
greeted by an enthusiastic cheer. In a doubly
surprising UK reference, Tim O’Reilly later talked about
technological and cultural revolutions, and in a part
where he’s referencing the difficulty of recognising

Simon Wardley started his
talk by giving a huge
shoutout to the
UK Government for
committing to open
document formats.

Shadaj Laddad gave an
impassioned talk about
how programming is
shaping his future.

how best to serve your users, he mentioned gov.uk’s
design principles (https://www.gov.uk/design-
principles) document, and how this list is a “fabulous
idea about how you start with [your users’] needs.”

Tim Bray (co-creator of the XML specification and
lots of other good things) is currently concerned about
privacy, and his talk was mostly about pleading with
developers to add proper encryption.

“We don’t want to talk about this stuff because it
involves two really horrible things:” he said, “really hard
math and… politics.” He went on to make what we
think is a vital point, “But I’m going to argue that you
should get interested and here’s why: first of all, you
can ignore the math these days. There’s good libraries
for that. And as for the politics, politics and policy are
reality, and if you want to blow that stuff off then
you’ve just lost the right to complain.”

OSCON is always going to be a difficult proposition
for Europeans and people a long way from the North
West coast of the United States. But if you’re lucky
enough to work for a company with money to spend
on training, we can think of no better way of doing so.
For anyone else who can afford it, it’s without doubt
worth the trip.

Below left Wendy Chisholm
admitted she was an
introvert. Along with
almost everyone else.
Centre Will Marshall is
holding one of his
satellites. It’s tiny, based
on an x86 PC and runs
Ubuntu!
Below right Tim O’Reilly
shares his usual insight
and wisdom into the way
things are going.

LV007 018 Feature OSCON.indd 19 07/08/2014 19:39

20

Is your current Linux distribution really
the best in town, or are you missing something

even better? Graham, Ben and Mike put a
bunch to the test.

BEST
DISTRO2014

www.linuxvoice.com

We’re going to get a lot of flak for writing
these words, but we’re not scared – Linux
Voice drops ice cubes down the vest of

fear. So here we go: you might be using the wrong
Linux distribution. Or to put it more diplomatically,
you might not be running the distro that’s best suited
to you. “What a load of codswallop!”, you respond.
“My distro does
exactly what I need it
to do. I’ve been using
it for years and I’m
happy with it.”

That’s great, but
could it still do a lot
more? Have you really tried all of the big-name
distros in depth? Could there be another distro out
there that’s better than yours in a key area such as
security, performance or documentation? Is your
distro really the best when you’re trying to convert
newbies to Linux? It’s good to settle on a single
distro and learn its ins-and-outs, but given the rapid

pace of development in Linux, it’s always worth
keeping your eyes open for something better.

With all these things in mind, we decided to look at
the current state of play in the Linux distro world. We
wanted to see which distros excel in certain
important areas, to find out who’s leading the charge
here in mid-late 2014.

In tests like these,
it’s often possible to
bundle certain distros
together as they’re so
closely related. In the
Packages section, for
instance, we look at

Ubuntu and Mint together because they share the
same repositories. In any case, we want to give you
all the information you need to make an informed
choice about the best distro for you. So if the one
you’re currently using comes up tops in the
categories important to you – congratulations! And
if not, fire up VirtualBox and start exploring…

“Given the pace of development in
Linux, it’s always worth keeping an
eye out for something better.”

LV007 020 Cover Feature.indd 20 08/08/2014 14:40

BEST DISTRO 2014 FEATURE

www.linuxvoice.com 21

When beginners aren’t beginners

We’ve based this category on the idea that a
beginner is non-technical. This may not be
the case. They could be new to Linux but have
experience configuring Windows systems, in
which case they may be uncomfortable at the
command line and editing configuration files,
but still have a good idea what’s going on. There
is a certain logic to saying that the best distro
for people like this is Arch Linux. Using this,
they’ll have no other option than to learn how
their new Linux system works.

Another option would be Mageia, because it
has the Mageia Control Centre. This enables you
to configure much of the system from within
one unified graphical application. Rather than
having to memorise different commands for
each task, you just fire up the Control Centre
and make any changes that are needed.

The KDE desktop can be confusing at first, but Mageia’s implementation is relatively intuitive.

The Ubuntu Launcher does far more than a typical desktop menu. This can take a bit of getting
used to, and has drawn criticism from privacy groups for its internet searching.

Best for beginners
The ideal gateway into Linux for new users.

good first impression – no one wants their
new operating system to look worse than
their old one.

The biggest difference between Ubuntu
and the others from a beginner’s point of
view isn’t the interface, but the huge amount
of help online in the form of tutorials, forum
posts, and solutions to problems. If you get
stuck on Ubuntu, you’re far more likely to
find a solution online than if you’re using
another flavour of Linux. Of course, an
experienced user will know that if they have
a problem on Mint or Zorin (another distro
aimed specifically at new Linux users, with
an interface designed to look and feel like
Windows), they could look for a solution for
Ubuntu and it would probably work.

However, we can’t really expect a new user
to know this.

Ultimately, we think that the amount of
help available for Ubuntu outweighs the
unfamiliar user interface. However, everyone
is different, and any of these distros would
make a good choice for beginners. We
would recommend Mint (either version) for
beginners who had trouble getting used to
Unity, and Mint Mate edition for people with
lower-powered hardware.

WINNERS
1st Ubuntu
2nd Mint
3rd Mageia

 WINNER

For beginners, two things are
important. One is whether you can
work out how to do something by

yourself. The second is how easy is it to find
a solution if you hit a problem.

For a long time, the standard distro for any
beginner was Ubuntu. However, since the
introduction of the Unity interface, it has
become less popular. The non-traditional
layout of the desktop could lead to
beginners feeling unfamiliar, and the
Launcher and scopes can take a little getting
used to. People coming from Windows may
also get confused by the way the window
menu bar blends into the top menu bar.

The others distros we’ve looked at are all
based on a traditional desktop, and the
layout should be familiar to anyone who’s
used a computer at any time in the last 20
years. They have a task bar along the
bottom and an applications menu in the
lower right-hand corner.

Mint is the most popular of these. Its two
main flavours (Mate and Cinnamon) are
sufficiently similar that we’ll consider them
together. The last of the contenders in this
category is Mageia.

Simple interfaces
Overall, we feel the KDE environment of
Mageia is a bit too cluttered to be ideal for
beginners, though it does have an important
place. Both of the main Mint desktop
environments (Cinnamon and Mate), are
clean with unnecessary detail tucked away.
It also looks really nice, which helps give a

LV007 020 Cover Feature.indd 21 08/08/2014 14:40

www.linuxvoice.com22

FEATURE BEST DISTRO 2014

This category is particularly
contentious for two reasons. First,
what is beauty, and who gets to

define it? Second, since almost any distro
can be made to look like almost any other
distro, how do we decide which is the best
looking? These are both valid questions, but
we will crush them both with an
authoritarian boot. Firstly, we know beauty
when we see it, so we get to define it (if you
don’t like that, start your own magazine).
Secondly, we’ll look at each distro naked,
straight after installing it.

Bodhi Linux is based on Enlightenment,
which bills itself as the original eye-candy
desktop environment. Perhaps the most
impressive thing about Bodhi (and
Enlightenment) is how many graphical
treats it can supply with very little strain on
the hardware. This makes it a good choice if
you’re after a slick distro for a low-powered
machine. However, some of the graphical
niceties feel a bit like they’re there to show
off, rather than to make using the desktop a
more pleasing experience.

Lots of distros come with KDE, but default
KDE is a bit lacklustre. OpenSUSE and
Mageia do quite a good job of improving it,
but they’re not in the top tier. Our favourite
KDE flavour is Rosa Desktop Fresh. As soon
as the desktop loads, you can see it’s not
standard KDE. At the bottom of the screen,

the RocketBar replaces the panel, but looks
a lot nicer. Along with the usual icons and
widgets, there’s a Downloads stackfolder
that enables you to see the contents of
~/Downloads without having to open up the
file manager. Simple Welcome takes the
place of the KDE menu, and works a little like

a souped-up Gnome Dash. All these
enhancements mean it’s not the best distro
if you prefer to use your own KDE
configuration, but for people who want a
good-looking distro on first boot, it’s great.

Mint Cinnamon does a good job of getting
out of the way, while still being pleasing to
the eye. It’s the least ostentatious of the
environments we’ve looked at here, and this
comes from having a clean desktop and a
well-themed set of GTK widgets.

Pantheon – the desktop environment of
Elementary OS – also uses GTK to provide a
clean and elegant look. Elementary takes
this approach further than Cinnamon, and
the environment is stripped down to its bare
essentials. Every icon feels like it’s been
placed for a good reason, and every pixel
tweaked to fit in perfectly.

All of these distros look good. However,
Elementary OS does the best job of carrying
its style through the wide range of apps that
comprise it, and so we’re declaring it the
best-looking desktop distro.

The clean, simple style of Elementary OS flows through the desktop and all of its included
applications to make a beautiful computing environment.

It’s hard for a static picture to capture the eye candy on Bodhi, as it’s all in the movement. But
picture the menu icon spinning, the terminal pulsating, and everything fading in and out.

WINNERS
1st Elementary
2nd Rosa
3rd Mint

Best looking
An attractive environment makes everything better.

 WINNER

LV007 020 Cover Feature.indd 22 08/08/2014 14:40

BEST DISTRO 2014 FEATURE

www.linuxvoice.com 23

The Arch User Repository is huge, and new software ends up here more quickly than in other distros.

B race yourself for some controversial
statistics. Counting the exact
number of packages in a distribution

can be tricky, and different distributions
package up software in different ways. For
instance: imagine you’ve got a program
called FooApp that has support for 10
different languages for its interface. One
distro might bundle everything together into
a single package – whereas another may
give each language its own package.
Multiply this over thousands of programs
with multi-language support, and it
drastically changes the package counts
between distros, even if they have the same
number of applications.

Similarly, many programs support the use
of plugins and extensions; again, these may
be placed into the main package in some
distros, or split out across dozens of extra
packages in others. Quite a few distros
make use of “virtual” packages, so installing,
for example, the package xfce4 actually
pulls in 20+ other packages. And some
distros that provide long-term support
include multiple versions of packages for
maximum compatibility (eg older versions of
SDL, SDL-mixer, SDL-image etc).

So the end result doesn’t necessarily
reflect the range of software in a distro.
Although it has twice the number of
packages in its repositories, Debian doesn’t
simply have twice as many standalone
programs as OpenSUSE. But one thing is for
sure: if you’re looking for a lesser-known or
obscure piece of software, you’re more likely
to find it in the distros with the high package
counts. A big chunk of the programs in Arch
and Debian are old and haven’t been

updated in years, but they’re still being
rebuilt to work with the latest distro versions.

Abaci at the ready
Now, let’s talk about Arch Linux. We
separated its package statistics into two
parts here: one for the main distro
(community, core, extra etc. repositories),
and the other for AUR, the Arch User
Repository. The latter is enormous and
updated at a breakneck pace, but the
packages are not in the “official” distribution
(although they often end up there after
extensive testing). Officially, Arch only had
6,836 packages at the time of writing – not
actually that many, but that’s what you get if
you stick to the main distro.

“But hang on”, you say, scratching your
head. “I’ve just been to www.archlinux.org/
packages, and it says there are 11,459

packages. What gives?” Well, that’s the total
for i686 and x86_64 packages – there’s a lot
of overlap. It’s unfair to count the packages
for all architectures (otherwise Debian’s bar
in the chart below would extend beyond the
top of the page), so in the case of Arch and
other distros, we chose the x86_64 and any/
noarch repositories. Basically, the stats
below show the number of packages you
can install on an x86_64 box.

After all that a caveat: quality does not
mean quantity. If you’re looking for a server
box, packages of synthesizers, games etc
aren’t going to be much use to you.

WINNERS
1st Arch
2nd Ubuntu
3rd Debian

Best for packages
Which distribution has the most software?

Package counts per distro

N
um

be
r o

f p
ac

ka
ge

s

 WINNER

LV007 020 Cover Feature.indd 23 08/08/2014 14:40

www.linuxvoice.com24

 WINNER

Arch’s guides may look excessively long at first glance, because they include absolutely everything.

Quality is a lot more important than
quantity when it comes to
documentation. Over the years

we’ve seen many free software projects that
have reams of guides, tutorials and FAQs,
but if the content is badly written,
unorganised or out of date, it’s not much
use. The same applies to distros: a short,
concise and well-written guide is much more
useful than poorly maintained scraps of
information scattered around the web.

Debian’s official documentation is
generally well crafted, but it suffers from a
lack of centralisation. Go to www.debian.
org/doc and you’ll see that there are plenty
of resources, but it’s not clear where to start
if you’re seeking help about a specific
problem. Should you look at the FAQ? Or
Debian Reference? Maybe the wiki has the
answer… It gets a bit messy, but we have to
give a mention to the separate Debian
Administrator’s Handbook (http://debian-
handbook.info). This is exactly what we’re
looking for as end users and admins:
everything you might need, in one place.

Ubuntu’s docs (https://help.ubuntu.com)
are mainly focused on desktop end-users,
with well categorised mini-guides to
common tasks. The Server Guide has more
advanced user material – but it’s not

exhaustive. Plenty of other tips are scattered
around the wiki at https://help.ubuntu.com/
community, and there’s also
www.askbuntu.com, which is a good way
for getting quick-fire responses to questions.

Many guides for Debian and Ubuntu apply
to Mint, but the latter also has its own PDF
installation guides in various languages:
www.linuxmint.com/documentation.php.
Some of the versions are very out-dated,
however, missing the latest Mint releases.

Mageia, meanwhile, doesn’t really impress
with its limited range of guides at
www.mageia.org/en/doc; there’s some
information on the installer and control
panel, presented in an unwelcoming fashion,
but not much else on the wiki.

Back in the days of dial-up modem
connections, SUSE Linux was our absolute

favourite for documentation. You’d order a
boxed set over the phone, and a few days
later a hefty lump of Linux goodness would
arrive at your door, containing three chunky
manuals. It was bliss. Today, OpenSUSE still
has an excellent set of documentation at
http://doc.opensuse.org: the Startup guide
(for regular end users), Reference (for
administrators) and extra guides for security
and virtualisation. There’s some overlap and
we’d like to see them combined more

effectively, but the information contained
therein is clear and well presented.

Then we have Fedora and CentOS. The
former, at http://docs.fedoraproject.org, is
in a sorry state: you’re told to select a
language and then Fedora version, and read
the docs from there. Our test case was to
find a guide to adding new user accounts –
and for Fedora 20, it wasn’t there. Nothing.
When we opened up the documentation list
for Fedora 18, however, we saw the System
Administrator’s Guide, which had the
information we needed. So lots is either
outdated or badly sorted – it’s hard to
navigate and needs to be cleaned up.
CentOS doesn’t fare much better. The
manuals at www.centos.org/docs don’t
cover the last two major releases, while the
wiki has some useful guides, but they’re

scattered around and would be better
organised into a single reference document.
Of course, CentOS users can read the official
Red Hat documentation at http://tinyurl.
com/rheldocs, which is very thorough,
straightforward, and polished. You can see
the results of Red Hat paying people to work
full-time on documentation.

Super Arch
Finally we come to Arch Linux, and we’ve
saved the best until last here. Arch’s
documentation is almost entirely provided
on the distro’s wiki at https://wiki.archlinux.
org, which has some of the most in-depth
and detailed guides we’ve seen of any
software project. The Beginner’s Guide is
especially good, if a bit long-winded (but
then, Arch is targeted at experienced Linux
users). Then there’s the General
Recommendations page, which is a superb
one-stop-shop for all things administration:
user management, packages, power
management and so forth.

But what makes Arch our winner is this:
for the large part, its information applies to
other distros. In discussions on the web,
we’ve seen users of Ubuntu, Debian, Fedora
and other distros paste links to the Arch wiki,
simply because its guides are so good.

FEATURE BEST DISTRO 2014

WINNERS
1st Arch
2nd CentOS
3rd OpenSUSE

Best for documentation
When you need help, who you gonna call?

“Back in the days of dialup internet connections,
SUSE Linux was our favourite for documentation.”

LV007 020 Cover Feature.indd 24 08/08/2014 14:40

BEST DISTRO 2014 FEATURE

www.linuxvoice.com 25

WINNERS
1st Tails
2nd Ubuntu
3rd CentOS

There are lots of different aspects to
security – enough for eight pages on
its own. Your first step is to

understand your own requirements. If your
first priority is the security of your own data,
for example, you would require a distribution
that’s happy to encrypt your home folder or
root partition and handle the complexity that
that involves. You may also want to extend
that requirement to easy integration of
GnuPG into the default email client, or even
making sure Firefox is pre-configured to
always use HTTPS. But most importantly,
security needs to be easy, because if you
don’t understand what you’re doing, a bad
configuration is worse than no configuration
at all, because it gives you a false sense of
security. This is the problem with Arch. It can
be the quickest distribution to patch a
vulnerability, and it makes an excellent
server, but you need to know what you’re
doing, because a mistake could be costly.

We have to give credit to Ubuntu here.
It took the relatively brave step of moving
its full-disk encryption option from behind
the advanced settings in its installer to the
forefront of the installation processes, giving
many more users the opportunity to encrypt
their data. For a distribution as user-friendly
and as popular as Ubuntu, this was a brave
move. Even the EFF was impressed.

Ubuntu also made a lot of noise when its
shopping scope searches from the dash
sent unencrypted data through its own
servers to Amazon. Many of us had strong

feelings about this, especially as there was
no way of turning it off. But these problems
have been mostly addressed, and while it’s
still turned on by default, there’s a simple
way of turning the shopping scope off. If
you wanted to be certain, for course, we’d
recommend using an Ubuntu derivative,
but Ubuntu is still a good choice for easy,
comprehensive encryption.

Reactive security
The other principal concern is online
security. This always used to mean the
pre-configuration of a firewall blocking
external access to services running on your

machine. This can still be important – you
may only want a web server accessible on
your LAN rather than across the internet, for
instance. But it’s more important to worry
about the services and applications you
run. This is where most problems occur,
and the recent Heartbleed bug in OpenSSL
highlights this issue perfectly. It’s used by
so many applications and services that
many became vulnerable as soon as this
bug was found, and consequently, the best
distribution for security became the quickest
distribution to patch the vulnerability.

But it’s not just speed of deployment
that’s important, it’s the quality of any
patches as well as the testing that goes
into the original distribution. And for that
reason we’d recommend a distribution with
a proven track record of defending itself
online. CentOS, for example, with its Red
Hat provenance is rock solid, although it still
requires some know-how.

However, if security and privacy are of the
utmost importance, nothing can touch Tails,
a distribution designed for anonymity and
secure communication, so we’re putting that
top of our list, followed by more pragmatic
solutions that can be used more as day-to-
day installations.

Booting Tails from a USB stick will keep your connections anonymous through the Tor network.

Best for security
The price of security is eternal vigilance.

Turn on automatic updates

When a vulnerability is detected and the
problems with a package are corrected, you
need to install the update to patch the problem
on your distribution. You can do this manually
by triggering the update procedure, but that
means you also have to be proactive by keeping
an eye on any security issues. This is what
many Arch users do as a matter of course.
But for more general use, you’re better off
turning on automatic updates, and if possible,
limiting those updates to security patches of a
certain severity.

With so many distributions being derived
from the latest Ubuntu release, they can all take
advantage of Canonical’s updates. Just open
the ‘Software & Updates’ control panel, switch
to the updates page and use the drop-down
menu to select an option that works best for
you. We’d recommend the ‘Download and install

Don’t worry about security updates. We’d
suggest installing them automatically.

automatically’ option, because then you can simply
forget about it – it takes any hassle out of staying up
to date.

 WINNER

LV007 020 Cover Feature.indd 25 08/08/2014 14:40

www.linuxvoice.com26

Performance benchmarksBack in the olden days, when every
megahertz was sacred and PCs
were beige, the performance of your

distribution was important. It would make
the difference between a system being
snappy and usable, or a system being
re-installed or consigned to the bin.

Nowadays it’s the case that in some ways,
especially for desktop use, performance has
plateaued. Multi-core CPU cycles, storage
and memory are cheap, and most of us
barely touch their limits. Your choice of
distro normally has much more to do with
package provision and the default desktop
environment than whether it’s making best
use of your hardware. And because that
hardware is always so different from one
user to the next, it’s almost impossible to
provide a comparative metric that’s going to
have any meaning.

Therefore, if you care about performance
it’s because you need to get the best out of
limited hardware, and we can, sort of, test
for that. In a completely unscientific way, we
installed six diffeent distros alongside
Windows 8 on the same PC and onto the
same (large) hard drive. This is a real
working computer (3.3GHz Core i5 with

16GB RAM) with dozens of devices
connected, so it was a good real-world test.
It also meant that the test was unfair on
some distributions, as they made a much
better job of parsing the many USB devices
than others while taking longer to load for
their trouble. This is why Arch does well at
boot time – we haven’t installed anything to
make it do otherwise.

Take it with a pinch of salt
 All of which is a long way of saying
benchmarking and tests say very little about
the performance you can expect on your
own hardware, but there are three lessons

we’ve learnt from these tests:
1 Firefox runs almost identically, regardless

of your distribution or desktop. If all you do
is browse, don’t worry about it.

2 GUI tools for file management can have
an effect on file operations, especially if
you’re installing third-party applications.
Use the command line if you can. If not,
take the time to configure a cut-down
window manager or desktop.

3 If you’re looking for a distribution for
low-powered hardware, use a low-
powered distribution. Slacko Puppy 5.7.0
easily won nearly all the performance
tests, only failing on the GUI compression.
That’s mosty because its creators
wouldn’t imagine the typical user not
using the command line.
That makes Slacko Puppy our choice

of distro if you need something to run on
limited hardware. It’s also pretty addictive
running it on fast hardware, as you suddenly
realise the reason why the window isn’t
moving immediately after you click it is
because your desktop is drawing shadows
and wobbly windows. Everything else
suddenly feels sluggish.

But we also have to say that Lubuntu, the
LXDE-based derivative, did remarkably well,
which makes it our recommendation if
you’re looking for modern fittings on a frugal
desktop, and one that still looks fantastic.
Our third place goes to Arch simply because
it’s the easiest way to build your own
minimal distribution for your own hardware,
only installing exactly what you need.

If you want the best performance from your system, use a low-power window manager and the CLI.

In a comparison of the amount of RAM and storage used after installation. Slacko wins easily.

FEATURE BEST DISTRO 2014

Best for performance
Forget upgrading your hardware – get a new distro!

WINNERS
1st Puppy
2nd Lubuntu
3rd Arch

Resource usage

Megabytes

Scientific beta

 WINNER

Mint 17

Slacko Puppy 5.7.0

Arch KDE

Lubuntu 14.04

Ubuntu 14.04

0 1500 3000 4500 6000

RAM Used
Storage Used

Times are in seconds unless otherwise stated

LV007 020 Cover Feature.indd 26 08/08/2014 14:40

BEST DISTRO 2014 FEATURE

www.linuxvoice.com 27

Best for beginners: UBUNTU

Best looking: ELEMENTARY

Best for packages: ARCH

Best for documentation: ARCH

Best for security: TAILS

Best for performance: PUPPY

BEST DISTRO 2014
Just as the sports team with the best

stats doesn’t simply win the game,
the distro with the best scores in six

areas doesn’t simply get awarded the best
distro status. To come up with an ultimate
winner, we stared deep into each distro, and
drew on our personal experience. We looked
into every option, and meditated on the
concept of distro nirvana.

We were looking for a distro that performs
well in every area, and excellently in many,
making it a good all-round distro. However
this alone isn’t enough. It needs to have
something that pushes it ahead of the
competition – and the competition is getting
better every year. It needs that certain X
factor to make it stand out. It should be a
distro people want to install; a distro that
people get passionate about; a distro that
makes you remember why you love Linux.

Arch Linux does all this and more. The two
things that make it stand out aren’t fancy
bits of software, or slick user interfaces, but
its philosophy and its community. Arch is
built around the simple principle that the
user should control the system. Instead of
fancy graphical tools to autoconfigure
everything you need, it provides you with just
the bare essentials you need to build your
own system.

Just as a mountain climber becomes one
with the raw mountain in order to climb it
without technical assistance, and a surfer
needs just a carved plank to harness the
power of a wave, so a computer user needs
just the basic tools that Arch Linux provides
to get the most out of their system.

The community keep the documentation
up to date, and build the Arch User
Repository – one of the largest collections
of software in the world.

All this doesn’t mean that we think
everyone should stop here while they go and
install Arch on every computer they have.
While we think it’s the best Linux distro
currently available, it’s not perfect for every
situation. For example, Tails is still the best
distro for online anonymity, and the
cutting-edge nature of Arch means that only
the bravest sysadmins will use it on
public-facing servers.

There are hundreds of Linux distros for a
reason, and that reason is the hundreds of

different uses people have for Linux. It’s an
endlessly flexible system, so there will never
be just one form that is perfect for everyone.

That said, we think that Linux users
should try Arch at least once. Even if you

don’t fall in love with the distro, you’ll learn a
lot about how Linux works, and get a better
understanding of why other distros do the
things they do. It’s not just for super-geeks
– it’s a distro for the masses.

Arch: Linux that doesn’t disguise itself

OUR CHAMPIONS

LV007 020 Cover Feature.indd 27 08/08/2014 14:40

www.linuxvoice.com

FEATURE RASPBERRY PI B+

28

On Monday 14 July, The Raspberry Pi
Foundation officially announced the biggest
change to the design of the Raspberry Pi

model B since its launch at the start of 2012: the
model B+. In a surprise
to some, the new Pi
doesn’t have a new
processor or any more
memory than the
previous revision.
However, many things
around the System on a Chip (SoC) have changed.

The new version is almost exactly the same size as
before, but again there have been a number of
important tweaks to the physical design. The corners
are now rounded; the connectors only lead off two

sides; the USB ports no longer stick out; and the
mounting holes are now in a rectangle. These
mounting holes are also used to support expansion
boards, making a far more secure attachment than

relying on GPIOs alone
(as most did
previously).

These are all cosmetic
changes, but together
they do make the device
nice to use. Perhaps the

biggest beneficiary of these changes aren’t normal
users, but the people making boxes and enclosures
for the Pi.

If you’re used to thinking about computer
performance in terms of the usual metrics of

Two computers, one SoC. Ben Everard
takes a look at the new Raspberry Pi

that ships with the old processor.

RASPBERRY PIB+
“The differences between the B
and B+ are important, and add
up to a much better computer.”

LV007 028 Feature RPi.indd 28 08/08/2014 14:45

RASPBERRY PI B+ FEATURE

www.linuxvoice.com 29

processing power or amount of memory, it would be
easy to pass over the differences between the B and
the B+. This is a mistake. The differences are
important, and add up to a much better computer
despite the fact that, underneath it all, it still has the
same engine.

The key to the new board is the new regulator. A
regulator is a device that adjusts the voltage from a
higher voltage down to a lower one. There are several
on the Pi, but the main one converts the 5V that
comes in from the micro USB power supply into 3.3V
that’s used on many of the components. The original
model B had a linear regulator, which is basically a
device that converts the difference between the input
voltage and the output voltage into heat. This is highly
inefficient, but linear regulators are cheap and simple
to use.

The B+ has a switching regulator. This actually
converts the input energy at one voltage to a new
output voltage. They still waste a little power, because
no component is 100% efficient, but far more power
makes it through than does with linear regulators.

The 40 GPIOs on the B+
feature 15 PWM channels,
one UART, one SPI, one
I2C, and one connection
to header flash, plus 26
programmable pins.

Side by side The changes mapped out

1 Status LEDs The Power and ACT LEDs have
moved to a new position on the board and the
network LEDs on the B+ are on the network port.
2 Power Supply The B+ is still powered by the

same micro USB power supply; however it uses the
power more efficiently, so it’s less prone to
power-related problems than the model B.
3 USBs Thanks to the improved power supply, the

USBs on the B+ are capable of running higher-
powered peripherals, though a powered USB hub is
still recommended if you’re using anything with a
significant power draw.

4 Ethernet The B+ still connects Ethernet through
the USB hub, so speeds can be affected by heavy
USB usage. The network status LEDs are now on
the Ethernet port.
5 GPIO Pad 1 This has been expanded from 26 to

40 pins. The top 26 pins are identical on both the B
and B+, so and boards that connect to them should
work on both. However, some boards designed for
the B (such as the PiFace) fit closely around the
raised components may not physically fit onto the
B+ unless you add something to raise the GPIOs.
6 Audio The audio output on the model B isn’t very

good. The B+ improves this dramatically, and is
good enough for most applications.
7 SoC and Memory These are exactly the same on

the B and B+, so performance should be identical.
8 Composite Video On the B this had its own

connector, but on the B+ it’s on the fourth pole of
the audio jack. This means you’ll need the
appropriate cable to connect it to a TV.
9 HDMI HDMI video and audio is unchanged.

10 SD Card The B+ uses a micro SD card rather than
the full sized SD card. A micro SD card will work in a
model B as long as it’s inside an adaptor.

2

9

7

8

6

1

3

4

5

2

10
1

57

9

6

4 3
3

10

LV007 028 Feature RPi.indd 29 08/08/2014 14:45

www.linuxvoice.com

FEATURE RASPBERRY PI B+

30

USB to Ethernet chip with a Lan9514. The bad news is
that this still sends Ethernet and USB traffic over the
same bus to the SoC, so if you connect high-
bandwidth USB devices and a network connection,
you will notice the speeds slowing down.

The good news is that the improved power supply
on the B+ means that the USB ports are quite usable
for low-power devices without an external powered
hub. We had no problems at all with just a mouse
and keyboard. A mouse, keyboard and USB memory
stick also worked fine. A mouse, keyboard and two
memory sticks did work, though the power to the
mouse dropped out when both the memory sticks
were active. We had some success with a USB web
cam, though for this and anything higher power (such
as a USB hard drive) we’d still recommend using a
powered hub.

The exact number of devices you can drive will
depend on the power supply your using. The above
was tested with a supply rated at 1A. More powerful
supplies are available and these will be able to pass on
the extra power to the USB ports.

We can’t give any hard-and-fast rules, but previously
we advised anyone getting a Pi to get a powered USB
hub as well (unless it was for an embedded project).
Now, our advice has changed to: only get a powered
USB hub if you find you need one.

Making music
Let’s be honest, the analogue audio on the model B
was terrible. It was okay if you just wanted to make a
few noises and didn’t really care what they sounded
like, but for anything more than that, you needed
something extra.

The audio over HDMI worked fine, so home theatre
systems didn’t have a problem. However, many
monitors don’t have inbuilt sound (or at least not very
good inbuilt sound). With the Pi Foundation pushing
the musical programming language Sonic Pi
(www.cl.cam.ac.uk/projects/raspberrypi/sonicpi/
index.html – and indeed on page 78 of this
magazine) as a way to get children interested in
programming, the poor audio performance over the
headphone port needed to be addressed.

To test the audio, we’ve had a B+ plugged into our
stereo running XBMC (see Distrohopper on page 8) for
the past two weeks. So far, we haven’t noticed any
difference between the quality of the B+ and the
quality of the sound out of the CD player. Of course,
true audiophiles seeking top-quality sounds aren’t
going to get them from the audio output of a Pi (or
anything else that sells for £30, for that matter). The
Wolfson Audio Card for the B will no longer work on
the B+, because it relies on the P5 GPIOs, which are no
longer available.

The B+ has 14 more pins in the GPIO header, but
that doesn’t mean there are 14 extra programmable
outputs. Only nine of these pins are programmable,
three are ground and two are reserved for
communicating with HATs (see boxout, left).

As well as producing better
sound, the B+’s new AV
jack looks a lot better
than the hulking black
monstrosity that was on
the Model B.

The new regulator saves between half a watt and
one watt of power. This, by itself, isn’t very important
– it’s not a big enough difference that you’ll notice
lower electricity bills. It will, however, have an impact
on anyone running their Pi off solar power or batteries,
but this isn’t the main reason we’re excited about the
lower power usage. Most USB power supplies can
deliver between one and two amps at 5V, with many
of the more common ones being much closer to 1A
than 2A. At 1A, this means there’s 5 watts of power for
the Pi, so the saving is equivalent to 10–20% of the
total power available.

By wasting less power, the model B+ effectively
makes more power available for peripherals. This
10–20% increase is the difference between the model
B not being able to handle and unpowered hub with a
mouse keyboard and USB memory stick and the B+
being able to.

Making connections
On the board itself, the thing that stands out more
than anything is the addition of two USB ports. This
has been made possible by replacing the Lan9512

Hardware Attached on Top (HATs) A new way to configure add-ons
The Raspberry Pi’s GPIOs allow programmers
access to pins that they can both write to
and read from. They also allow hardware
manufacturers to create add-ons that use
these GPIOs to communicate with the
processor. There are a number of additional
functions – such as I2C and SPI
communications channels – that can be
accessed through these pins. However, at
present, the process of setting these up is a
little awkward.

With the B+, the Raspberry Pi Foundation
has introduced what it calls HATs (Hardware
Attached on Top). For a device to be
classified as a HAT, it has to conform to a set
of standards designed to make sure it
behaves itself when communicating with the
Pi. Expansion boards don’t have to conform
to the HAT standard to work on a Pi, but they
can’t call themselves HATs if they don’t.

The most important of these standards is
that devices must contain an EEPROM (a bit
of memory that the Pi can read). This can be
used to tell the Pi a bit about what the device

does, and how the GPIO pins should be
configured to work properly with the Pi. In
technical terms, the EEPROM should contain
a device tree that can be loaded by the kernel
and will set up the GPIOs correctly. At the
time of writing, no HATs are available, though
manufacturers will of course be working on
them. It’s too early to say if they will become
popular. We suspect that there will continue
to be a significant market for B-style 26-pin
boards without EEPROMs. These will be
significantly cheaper to manufacture because
they won’t need as much PCS space if they
only cover 26 pins (PCBs are surprisingly
expensive, especially for small production
runs). The more advanced capabilities won’t
be needed by many, especially if they only
rely on turning GPIOs on and off rather than
using a communications protocol. Though
the most persuasive reason for hrdware
manufacturers to keep making devices for
the Model B is that there are around
3,000,000 model B’s in circulation and they
aren’t going to be replaced overnight.

LV007 028 Feature RPi.indd 30 08/08/2014 14:45

RASPBERRY PI B+ FEATURE

www.linuxvoice.com 31

A few extra GPIOs aren’t usually that important,
especially as they don’t include any additional support
for low-level communications protocols. There’s still
one each of serial, I2C and SPI. It’s easy enough to use
the existing I2C or SPI busses to add more GPIOs
anyway should you need to, and this is what many
add-ons do, as it also protects the Pi from damage
due to electrical problems in the circuit they’re
connected to. Boards like the Protect Your Pi by My Pi
(www.modmypi.com/protect-your-pi) use these to
provide more GPIOs than the Pi actually has.

However, using these port expanders slows down
the speed at which you can turn the GPIOs on and off.
This is almost imperceptible if you’re just using them
to turn LEDs on, or get input from a button, but if
you’re using them to connect to some other
electronics, the delay can be too much. An extra nine
GPIOs is enough to be able to implement some
communications protocols that require 26 channels,
such as those to drive some LCD displays, so it
increases the Pi’s potential enormously.

Shrinking storage
Of all the changes, perhaps the most superficial is the
switch from full-sized to micro SD cards. The two
formats are the same from an electrical point of view,
so it shouldn’t have any impact on speed. In fact, it’s
perfectly possible to use a micro SD card with a model
B if you put it in an
adaptor (which many
micro USB cards come
with). These adaptors
also make it possible to
copy data onto the
small cards from
computers that only have full-sized SD card slots.

The only real difference between the two (other
than size of course) is that micro SD cards have a
barb that can be used to hold the card in place, which
should make it a bit more reliable if the Pi’s being
moved around.

There’s now a connector
labelled as the display
waiting for the official
display module.

The B+ gives us a number of improvements, but still
keeps almost complete compatibility with the older
device. We used the word almost because of the lack
of Pad 5 GPIO, but this didn’t get much use anyway.
We’re sure that a few people will be disappointed by
lack of a new processor or more memory, but in a

way, we’re not.
The Raspberry Pi
is great because
it’s a stable
platform we can
build projects on
and know they’ll

work when recreated by other people. As model B
owners, we’re delighted to know that all the software
from the Foundation and community will still run on
our devices, and as B+ owners we’re pleased that
some of the niggling problems of the Model B have
been solved. Now let’s get building!

What’s next?

Eben Upton, founder of the Raspbery Pi
Foundation, has confirmed to us that the
Foundation is looking into a model A+, which
will do to the model A what the B+ has done
to the B. We haven’t heard exactly what form
this will take yet, but we suspect that some
people are particularly interested in a model
A with a switching regulator, since this will
be even more power efficient than the B+,
making it the ideal device for running on
batteries (the Model A is used in many
embedded projects).

Beyond this, many people are waiting for a
version of the Raspberry Pi with more
processing power or memory than those
currently available, sometimes called the
Model C (though people inside the Raspberry
Pi Foundation refer to this as the Raspberry
Pi 2). It should be obvious by now that the
brains at the Pi Foundation aren’t interested
in constantly chasing the latest hardware

– they are more concerned with providing a
stable base and developing software to use it
efficiently. Schools – which are the primary
target of the Raspberry Pi – don’t want to
have to spend time and money to change
their hardware every year or two just to be
able to follow the latest projects.

Having a slow release cycle also helps
companies making add-on boards. It enables
them to spend time understanding a product,
learning what the users want, and designing
something properly rather than just rushing
to market because it may be obsolete soon.

The next version of the Pi is expected in
2017, but don’t expect it to be the most
powerful ARM board on the market. However,
it will be well supported with a large number
of add-ons, it will have a large community
behind it, and it will be developed by an
organisation with the resources to make sure
it runs well.

“We’re delighted that all the software
from the Foundation and community
will still run on the Model B+.”

LV007 028 Feature RPi.indd 31 08/08/2014 14:45

www.linuxvoice.com

FEATURE MAKING ELEMENTARY OS FREYA

In many respects elementary OS is the perfect
microcosm of the open source scene. It’s
designed and built by a disparate team working on

a project considerably greater than its parts. Unlike
many modern Linux distros, though, Elementary OS
isn’t a hodgepodge of different elements drawn in
from different corners of the ecosystem. While it’s built
on Ubuntu’s solid back-end, every other aspect of the
distro is entirely custom made. Everything from the
desktop environment to the file manager, the

application launcher and even many of the
applications themselves have been developed
especially for Elementary OS.

As we discover from talking to the core
development team, this is probably why it’s being
embraced by the open source community. But as we
also find out, Elementary OS’s biggest market isn’t
Linux at all and as such, they’re not afraid to sidestep a
few open source norms in their quest to reach the top
of the distro pile…

32

Elementary OS started out as a collection of attractive icons, but now
a small team has taken the ethos and turned it into a completely

bespoke top ten distro… Russell Barnes investigates.

Name: Daniel Foré
Location: Sacramento, California
Career: Design and marketing
manager
Project role: Founder and UX
designer
Quote: “I started the project drawing
icons. My role has evolved from
visual design to UX design.”

Name: Cassidy James
Location: Denver, Colorado
Employment: Front-end web dev and
UX designer at System 76
Project role: Director of Operations
& UX Designer
Quote: “I manage the legal and
financial side… and help manage the
community and guide the project.”

Name: Cody Garver
Location: Jackson, Mississippi
Career: IT Consultant for SMBs
Project role: Project and Release
Manager
Quote: “I do the packaging and the
ISO builds. I help out with the road
maps and bug triage among other
things.”

Elementary,
my dear Freya

The core elementary OS team
They’re separated by thousands of miles, but the core elementary OS team is a tight-knit bunch…

LV007 032 Feature Elementary.indd 32 08/08/2014 10:29

www.linuxvoice.com

MAKING ELEMENTARY OS FREYA FEATURE

33

Why do you think the Linux community
embraced Elementary OS in the way it did?

Cody Garver: I think it’s pretty clear that Elementary
as a project has a strong sense of design and a focus
on simplicity. So the strong reaction to it shows there’s
an appreciation of design in open source software.
The nature of open source development is that
anyone can make anything and just give it away. This
type of creation has typically not had a particularly
strong design process. There’s definitely a growing
community of users who enjoy something that is well
designed and open source.

Were you surprised when Luna (Elementary
OS version 0.2, released in August 2013)

took off the way it did?
Daniel Foré: Personally, I was pleasantly surprised. I
think it goes to show that an exceptional user
experience can be something that differentiates you
regardless of whether you’re an open source or
commercial project – having a good user experience
is something that users want.
Cassidy James: We saw an opportunity in the open
source space for a top-to-bottom solution. With most
Linux-based distros someone else builds the
environment and other people integrate the apps, the
packages and so on… For us, not only do we do the
integration, but we build all the apps and we build the
desktop environment. Having that approach is
something that’s really pushed us ahead. You have to
expect a certain level of acceptance when you’re
doing something so different.

So who, in your opinion, is downloading
Elementary OS? Are we talking about

creative types, beginners or is it a broad cross-
section?
CJ: I think the majority of the downloads come from
non-Linux users. They’re mostly from Windows,
several from OS X. I think there’s a dissatisfaction with
proprietary operating systems out there like Windows
8 and OS X. People are looking for an alternative and
the simplicity of Elementary draws them in.

Did you see a bump in the numbers when
Windows 8 stumbled so spectacularly on the

start line or when Windows XP shut-up shop?

Freya’s bare desktop has a cleaner look to it than that of
most Linux distros.

CG: I know there was a lot of chatter on social media
sharing Elementary: “I’m switching my/my
grandparents computer from XP to elementary so
they can get security updates”. Or “My school is
installing Elementary on the lab computers”. We’ve
got a lot of those kinds of stories shared with us since
then, which is cool.
DF: Someone shared a photo on Google+ of a prep
school in China and kids using Elementary on
computers there. That was amazing, and it’s really
validating. We’re making something that not only
friends and family are going to use, but that people
around the world and
are passionate about.
It’s an incredible feeling.
CJ: Some of the most
rewarding stories are
the ones related to the
accessibility of
computing in general. We get Tweets that say things
like: “My mum was using Windows and was having a
hard time doing what she wanted... Now she can get
on Facebook and send email.” Where technology
before was a blocker, we’re enabling people to
communicate, connect and do things.

What about the other side of the coin? Luna
did a lot of things really well, especially in

terms of user experience, but what areas were
you less pleased with that you’re addressing with
Freya in September?
CG: File management wasn’t optimal. We suffered
from a lack of developers in that space. It was a bit
crashy but we’ve rectified it since then, and I’m really
excited about it.
CJ: In a lot of ways Luna was the first release for a lot
of those apps. It was the first release of our desktop
environment too. There were a lot of unexpected
things and users threw a lot of cases at us that we
hadn’t considered throughout the development cycle.
As with any new software the first release wasn’t
jam-packed with features, so we’ve been working on
putting in a lot of new features and dealing with those
issues that we hadn’t encountered ourselves.

Freya’s top panel is now
mildly intelligent, deciding
on the fly if it needs to be
visible at all

“Where technology before was
a blocker, we’re enabling people
to communicate and do things.”

LV007 032 Feature Elementary.indd 33 08/08/2014 10:29

www.linuxvoice.com

FEATURE MAKING ELEMENTARY OS FREYA

34

what you want’ approach for software, like the
Humble Bundles. With digital software you don’t have
to pay significants amounts of money for distribution.
If you were sending out physical CDs, that’s expensive,
but as something that’s available for free or cheap
– pay what you want – people really latched onto that
and enjoyed it. We set a default payment of $10 and
people could change it to whatever they want, but
several of those payments come through at the
default amount.

I think it’s exciting that you can be creating open
source software and producing revenue at the same
time. People think it’s worth paying for.

We had 1.5 million downloads of Luna alone. That’s
exciting. I’ve watched payments come in and a lot of
times people either pay £10 or they’ll pay $1 or $2.
Most download for free, but if they’re going to pay it’s
either a small payment or the default $10.
DF: None of us really know what to expect as far as
numbers go. There are so many people in the world it
could be anything, or it could be nothing. I had no idea
what to expect. I’m looking at the site we have up and
it’s showing 1.45 million. That’s based on figures we
can accurately track – how many people have directly
downloaded from SourceForge. Then we have a
percentage of how many people decided to download
from torrents. We can only estimate downloads from
that. In theory it could be far more – we can’t track
downloads from outside either direct or by torrent.

With anything between 1.5 to 3 million
downloads it doesn’t take much napkin

mathematics to realise you’ve made a reasonable
amount of money from Luna in the last twelve
months. What have you been spending it on and
could elementary become your full-time job?
CG: We obviously incur operating costs like running
servers, paying for the website, but beyond that we
just have small stuff like office supplies and costs for
doing in-house shipping of merchandise. Aside from
those kinds of operating costs all the money is being
invested back into fixing elementary OS with bug
bounties. We’ve been to a few hackathons and
meetings too.
CJ: No one takes home a pay cheque. It’s all directed
straight to goods and services to benefit the project.

The addition of online
accounts will help
integrate popular web apps
into the Elementary OS
experience.

DF: Another of our weaker areas with Luna was
networking. There were some issues there that we’ve
gone through and done a lot of work on. One of the
most popular requests was Google Calendar sync in
our calendar app, so that’s another thing we’ve been
working on. There are literally hundreds of issues
we’ve closed during the current release cycle that
were reported by users.

Does it pile on the pressure? You’re ranked
in the top 10 on DIstrowatch now... are you

feeling the heat?
CG: No, but now you mention it I feel like I should!
DF: There’s so much that we have in our vision of
where we want to be, that we’re not really concerned
with ‘how are we possibly going to continue to
compete?’. We know where we’re going and we’ve got
such a huge plan for the future that it should naturally
keep us there and keep us pushing towards the top.
CJ: The only thing I get nervous about is the next
release, because I look at all the bugs we closed in the
current one and I wonder how can we find anyone
else or ask anyone to complete something like that,
yet again.

Has the development process changed since
the last release?

DF: The end of the Luna cycle was about learning
how to work together as a team and focus on our
goals. Before then everyone was doing their own
thing, and at the end we’d try to tie them all together.
Now other developers are more likely to be aware
about what everyone else is doing.
CG: We do 100% code reviews now too. Any code that
changes is peer-reviewed by other members of the
team. It slows things down a little, but we find we’re
clearing up after ourselves much less now.

When you released Luna, it came with the
option to donate. How was that received by

the community, and did it work for you as a
source of income for the project?
CJ: Yeah, it’s worked really well for us. I think there’s
this cultural thing that’s been popularised by the ‘pay

The core software offering has expanded and the team
have finally introduced the ability to set applications to
start with the system.

LV007 032 Feature Elementary.indd 34 08/08/2014 10:29

www.linuxvoice.com

MAKING ELEMENTARY OS FREYA FEATURE

35

Snap, the new webcam app, couldn’t be simpler, and while
Midori wouldn’t be our first choice for browsing, the team
are investing heavily in its development.

In terms of it becoming a full-time job… that’s a
direction we’d like to go in, but currently the money
we’re making doesn’t support full-time employment.
We want to work towards that and we want to put
money into open source developers’ hands. I think
getting involved in doing bounties has been a huge
first step for that.

We’ve posted over $8,000 in bounties and so far
we’ve paid out $2,500 of that. It’s been a tremendous
help, not only in attracting new developers, but
keeping our current developers engaged and making
sure they feel appreciated. It’s hard work and a lot of
what we do is really boring stuff that nobody’s ever
going to know we did. Having that incentive makes it
better, because you say “Hey, this is hard work, it’s not
a lot, but buy yourself something nice”. It’s a small
token of our gratitude.
DF: Our average bounty size at www.bountysource.
com has grown with time. We started out offering $5,
$10 and $15 dollar bounties on things, but now we
have several at $100 or more for single bugs. As we
generate more income through people donating or
paying for the download, that’s an area we’re going to
keep investing more and more money into.

You’re currently working towards the latest
release, called Freya, of Elementary OS.

Since your focus is on simplicity and cleanliness,
have you been finding it hard to add features
without adding mess and bloat?
DF: That’s one thing we talked about a lot when we
started working on the new search back-end. As we
introduce new features we want to make sure that
– no matter what happens – we don’t ever encroach
on that original experience of launching apps really
quickly. It’s the primary purpose of the UI after all.
While we want to introduce interesting and useful little
features, if it gets in the way of the primary purpose
we don’t want to add it.

Our app launcher – Slingshot – has a new back-end
for its search view. For now that doesn’t mean
anything for users, but going forward it means we’ll be
able to add different kinds of plugins. We’ve added a
calculator plugin, so you can just open Slingshot and
do some math. Little convenient things like that. It will
sort all your results by most used too, which is nice.

CJ: We’ve got a new video app too, called Audience, a
web camera app and a refreshed UI. We’re introducing
the ability for apps to use a dark theme, like the
terminal or media-centric apps. And we’re introducing
HeaderBar. It’s a new widget created in GTK that
enables the applications title bar and tool bar to be
just one line. It’s space saving for things like
notebooks especially.
DF: HeaderBar was something that was introduced in
either GTK version 3.10 or 3.12. Typically you have this
area above your toolbar that just shows the app’s
name, and that’s it. You’re adding 16 vertical pixels for
this completely useless area. So it just enables us to
compact that area and
save that space. In
general, GTK apps now
are using what are
called client-side
decorations. That kind
of goes hand in hand
with HeaderBar. What that means on the themeing
side is that the window borders are being drawn by
GTK instead of a separate window manager. There’s
no tearing when you re-size, because it’s part of the
contents. Shadows look nicer. We get all the
advantages of GTK 3-like transparencies, we can
animate things – it’s just really nice.
CG: We’ve also rebuilt our multitasking view in the
window manager. We have a much more interactive
and clearer distilled multitasking experience. It’s really
hard to describe it, but when you see it and use it it’s
just intuitive. You can move things around and it feels
really good.

You mentioned earlier that you’re finally
bringing Google calendar synchronising to

Elementary OS. Will you be offering similar online
account integration elsewhere in Freya?
CJ: We are introducing an online accounts service so
apps can tie into that, much like you see in Mobile,
Ubuntu and OS X 10. We’ve added a firewall
configuration, start-up apps configuration. Every time
you boot up you can start your Twitter client or web
browser, for example.
CG: We currently support Facebook, Google,

The team put a lot of stock
in Elementary as a brand.

“We’ve posted over $8,000 in
bounties and so far we’ve paid
out $2,500 of that.”

LV007 032 Feature Elementary.indd 35 08/08/2014 10:29

www.linuxvoice.com

FEATURE MAKING ELEMENTARY OS FREYA

36

Microsoft and FastMail, and there’s work going on for
general IMAP support. The idea is that apps on the
desktop can plug in to the online accounts. You don’t
have to sign in to everything. It’s perfect for things like
Twitter clients and email clients.

There’s clearly a lot of work going into Freya
and there’s a lot to be excited about, but do

you agree with people who say you’re being very
protective by not publicly sharing your alpha
builds?
CJ: Absolutely we have! There’s this interesting thing
with open source… because the code is open and
available to everyone, people expect to be able to
download and try it out every step of the way. Even
with Luna we ran into this.

Even if we provided a preview to our developers and
it would get leaked out to a publication or a website
and they would review it as a finished product and
say; “This is buggy, this didn’t feel complete, such-and-
such doesn’t work well.” Well of course not – it wasn’t
complete. It’s really hard when you put so much time
and effort into a product we want it to be the best
representation of all our work, people judging it early
can be a big problem.

It seems that brand management is very
important to you, and that’s the driving

factor here, not secrecy.
DF: It really does comes down to brand management.
When people hear Elementary OS or see our logo it
needs to make them feel like this product is well
thought out, it’s stable and easy to understand. When
people see others say ‘hey, this is Elementary’s next
release and it’s broken and unstable’, then it really
hurts our potential growth.

On the other side of the coin though, do you
not worry that the lack of crowdsourcing

and testing on the fly is hurting development in
some way?

CJ: The people who contribute to Elementary on a
regular basis and people who are new to contributing
to Elementary can get in touch with the dev team and
we can help them get started and give them access to
pre-release versions so they can work on their apps.

If you’re involved in development, or want to be
involved in development and you’re committed to it
you’ll definitely get the opportunity to run the pre-
release software. It’s mostly about people who are
less involved and are just going to report everything
we can see already. It creates a lot of extra bug
triaging and creates a lot of extra work at our end.
CG: We know things are broken and we know what
we’re focussed on – it hurts our focus.
DF: Throughout Freya’s cycle we’ve picked up quite a
few new developers. I don’t think the availability of an
ISO test image really relates to the ability to hack on
the source code at all. All the source code is publicly
available. Running Elementary isn’t really a
requirement to build the apps in most cases, so a lot
of people are doing dev work in Ubuntu or Arch or
whatever before they’re working with us with Slack or
running these test images. People can contribute
code without having ever run Elementary OS.
CJ: Release early, release often… we kind of do the
opposite of that!
DF: I think it’s the way that big commercial projects
work. They may have a yearly release cycle, but they’re
not held to a specific date – it comes when it’s ready.
You expect a new Android every 6–12 months, or a
new OS X every year, but they could be working on
something really cool and don’t deliver until it’s ready.

Open source has had this other model of release on
a really strict schedule – whatever’s ready, just release
it. That doesn’t work as well for us, because when
you’re building an entire OS you’re not going to be
ready in just six months.
CG: It has to do with target market too. Typically open
source software developers are releasing to other
open source software developers, but like we said
earlier, the majority of people downloading Elementary
aren’t coming from Linux.

We’re seeing a different kind of consumer. Our
consumers don’t necessarily know how to deal with
this stuff. We can’t expect them to run through an
unstable system and use commands at a terminal –
we can’t release a product like that.

Collaboration made easy
How do the core developers manage to stay
on the same page when they’re all at least
1,000 miles apart?
Cody Garver: It’s a necessary evil when
you’re working with open source. We have
people in all different locations, timezones
and languages. We’ve adapted really well
because we’re all of the age that we’ve grown
up with the internet, so we make heavy use
of it. We use tools like Launchpad to manage
code, but we recently switched over to Slack
[www.slack.com] from IRC – it’s actually a
pretty effective way of collaborating.
Cassidy James: One of the things that
was important as we moved from Jupiter and
into the Luna cycle was learning how to work
remotely. We’re still learning and evolving. It

was just in this cycle that we started using
Slack as opposed to IRC. It’s been huge. In
IRC we had to have all these different
services to paste code snippets or share
images and we built bots to log the channel
and view history… things like that. All these
things come built-in with Slack so we’ve been
able to take a lot of tools and have them in
one place.
Daniel Foré: One area we’re still facing
some challenges is in animation and motion
design. I’m making prototypes in CSS and
HTML and trying to hand those off to the dev
team, but it can be hard when you’re trying to
do sound or motion and you’re trying to
design something like that remotely. You
can’t use your hands to gesticulate meaning.

The app launcher, Slingshot, is adding applications slowly
but surely – software only gets included when it’s ready.

LV007 032 Feature Elementary.indd 36 08/08/2014 10:29

www.linuxvoice.com

MAKING ELEMENTARY OS FREYA FEATURE

37

There’s no escaping the fact that Freya, like
Luna before it, has taken its lead from Apple.
While Apple has continued to build, add and

augment its proprietary operating system until it’s just
as complex and bloated as Windows, Elementary has
been incredibly sparing with extensions to Luna’s
lightweight mix of software and features.

This theme continues elsewhere with brilliant use of
GTK’s HeaderBar. They haven’t wasted a pixel in any
open window, and it adds a new edge to Elementary’s
visual appeal and utility. By removing the title bar
there’s much less wasted vertical space, and that’s
sure to go down well with users in the mobile space.

This visual zen doesn’t end there – it’s also
transformed the top panel too, which works
particularly well when combined with one of the few
new applications to appear in Freya, the Audience
video player.

Zen minimalism
Like everything else in Elementary OS, it’s built from
scratch in Vala and offers the barebones of media
playback in a very modern, minimalist package.
Audience has been in development since version 0.2
Luna and draws inspiration from online players like
YouTube and Vimeo as opposed to standalone media
applications. Using GTK 3 for the UI and GStreamer for
its back-end, Audience offers animated overlay
controls and preview pop-up that lets you scan
around to find the start of a scene.

Another new application for this release is Snap. As
the name suggests it’s a simple webcam application,
very much in the style of OS X’s Photo Booth. Like
Audience, there’s very little to say other than it allows
users to quickly snap pictures, videos or screencast.

With these new applications the team are clearly
fleshing out the core offering to ensure all the major

Hands-on with elementary OS Freya
How is the latest release shaping up?

bases are covered, but they’re resisting community
pressure to include third-party applications in the mix
like Birdy and the popular podcast app, Vocal.

You certainly get a sense of a more mature
Elementary from our early preview of Freya. Features
are getting polished, the basic application offering is
being refined and it’s all happening on the reliable
backbone of Ubuntu 14.04.

The only missing piece of the puzzle is App Centre.
Development here, it seems, is going to take much
more than one release cycle to flesh out, and it’s clear
the team plans to take a firmer grasp of the reins than
your average package
manager. While this is
sure to upset more than
a few in the community,
as the team explain in
the boxout below, they
find unlimited freedom
has a tendency to lead to a lesser user experience.
We’ll just grab the popcorn, retreat to a safe distance
and let that last statement sink in.

With development timed to coincide with the
release of GTK 3.14, it’s very likely that Freya will see a
final release during September.

The absence of App Centre
One of the big banner features people have been waiting for is
App Centre, Elementary’s bespoke app store. Its not
happening this year, and here’s why…
DF: Unfortunately it won’t be in Freya. The thing about App
Centre is that when you’re looking at building a new app store
the easiest part of that is writing a new client. Gnome has a
really great client already. When you open up Gnome Software
it looks new and shiny… but when you dig into it – all the
content – is all the same content you had before in the old
one. You’re not really moving forward. We’re still getting the
same selection of apps written in a billion different toolkits
with really horrible descriptions. Some of them are crashy and
half complete – it’s not curated at all.

The most difficult part in building a new app store is firstly
a proper app submission process. That’s something we talk
about all the time. When we have third-party developers

making cool apps like Birdy or Vocal, how do they get them to
elementary OS users?

A big piece of making it successful is some kind of curation
process. We need to have some kind of rules for apps that we
present to users... some kind of standard. People in the open
source community aren’t going to be super-happy about that
concept at first, but from our experience unlimited freedom
leads to a lesser user experience in the end. Instead of
browsing through a collection of all these really nice native
apps that are presented well and integrated with the OS, you’re
just looking at everything everyone ever posted to the internet.
CJ: There was an app in the Ubuntu repos for quite a while
called PornView. We used to use that as our example of how
anything can get in there. App Centre is a big project and we
think it’s a very necessary one. It’s just not something we’ll be
able to complete in just one release cycle.

It came as quite a surprise
to learn that most
Elementary OS users aren’t
Linux users at all – the
vast majority of Luna
downloads come from
Windows and Mac OS X.

Windows
Linux
Unknown
Macintosh
Android
Others

“The team plan to take a firmer
grasp of the reins than your
average package maintainer.”

LV007 032 Feature Elementary.indd 37 08/08/2014 10:29

FAQ BSD

www.linuxvoice.com

BSD
Had history been slightly different, you’d be reading FreeBSD Voice today...

So what’s the deal with this
Birsa Seva Dal then? Isn’t it a

political group in India?
Very funny – you looked up the
“BSD” disambiguation page on

Wikipedia just to make that joke, didn’t
you? Here we’re talking about the
Berkeley Software Distribution, a family
of operating systems that are much
more widely used than you might think.

Sorry, I couldn’t help myself.
OK, so what’s the deal with

these OSes?
There are three main BSD
operating systems in use today.

They are based on Unix, they are open
source, they tend to be used in server
roles, but can also make good desktops
and workstations as well. They run KDE,
Firefox, LibreOffice, Apache, MySQL and
pretty much any open source
application you can name. They’re
reliable, secure and support a lot of
different hardware.

Congratulations – you’ve just
described GNU/Linux…
True. Linux has all of the things
I’ve just mentioned, and that’s

why a lot of people never investigate
BSD. In day-to-day usage, there isn’t a
lot of difference between the BSD family
and Linux, largely because they all have
Unix underpinnings, and also because
they share a lot of software. You could
be logged into a remote machine,
hacking some Python code in Vim, and
checking your email in Mutt, and you
wouldn’t know you were running BSD.
Or you could be using an internet
terminal in a cafe somewhere and not
know it’s BSD.

The biggest differences are in the
development model and licence, and to
understand this, we need to step back
in time. The B in BSD refers to the
University of California, Berkeley, which
was a hotbed of open source Unix
development back in the 1980s. As the
90s came, x86-based PCs were
becoming popular and many people
were interested in having a Unix-like OS
on their home computers. A project
called 386BSD was released in 1992 to
provide just that.

And where were all the Linux
distributions at this time?
Good question! You might know
that one year before, Linus

Torvalds had announced his kernel,
which, when paired with the GNU
project, formed a complete open source
operating system. Linus had been
following GNU’s own kernel (Hurd) and
386BSD, and said that had either of
them been ready for daily use, he
probably wouldn’t have created Linux.
So the first few years of the 90s were
tremendously lively for open source
operating systems, and nobody was
really sure which ones would succeed.

Then it got messy for BSD. AT&T, the
original developer of Unix, was trying to
monetise its work on the operating
system and claimed that BSD infringed
its intellectual property rights. This
culminated in a lawsuit in 1992 which
severely held back BSD development. In
the end, various chunks of the BSD
source code had to be rewritten – while
all this time, GNU/Linux was gaining
features, stability and popularity.

BSD was arguably in a more mature
state than GNU/Linux in the early
1990s, and without these legal
complications it could have become the
standard on x86 PCs. We could all be
using it today instead of Linux.

But you said earlier that BSD
is still widely used, so things

improved after that?
Yes. 386BSD development
stagnated, but two teams of

38

“The BSDs are developed
as complete projects from
centralised source code trees.”

MIKE SAUNDERS

LV007 038 FAQ.indd 38 07/08/2014 20:46

BSD FAQ

www.linuxvoice.com

developers working over the internet
created separate successor projects.
FreeBSD became the most widely used
flavour of BSD, and is now the closest to
Linux as a desktop and server operating
system, while NetBSD focused on
portability (today it runs on over 50
platforms, all built from the same
codebase). The third flavour, OpenBSD,
forked off from NetBSD just a few years
after NetBSD started due to a developer
spat, and today it’s well known for its
concentration on security. Over the
years, OpenBSD has created many
programs that have become standard
on Linux, such as OpenSSH – and now
we have LibreSSL too.

So these three flavours of BSD
are like Linux distributions?
Yes and no. Each BSD has a
separate codebase and separate

development teams, although there is a
lot of code-flow between them
(especially for hardware drivers). But
they are standalone operating systems
with their own features, pros and cons.

We mentioned that the development
model of the BSDs is one feature that
really distinguishes them from GNU/
Linux. There’s nobody in charge of
GNU/Linux as a whole: some teams are
working on the GNU components,
some are working on the kernel, some
on boot scripts, some on manual pages,
some on libraries, and so forth. The
development model is often called “wild
west”, with a lack of central authority,
and distributions do all the hard work of
fitting everything together.

The BSDs, in contrast, are developed
as complete projects from centralised
source code trees. The kernel, the
libraries, the system utilities and the
manual pages are all stored and worked
on in the same place. Many BSD fans
argue that this gives the operating
systems more coherency and stability,
and from our years of dabbling with
BSD we can attest that the manual
pages are largely superb.

Don’t the BSDs use anything
from GNU/Linux?
Yes, especially GCC. The GNU
Compiler Collection has been the

de-facto standard compiler on free Unix
systems for decades, although
FreeBSD has recently moved to LLVM/
Clang. It’s important to note that the

BSDs also use other open source
projects that aren’t specifically GNU or
Linux, such as the X Window System
(XFree86 and X.org), Perl and so forth.
And thanks to standards such as
POSIX, most programs that run on
Linux can be recompiled to run on the
various BSD flavours.

So, you could replace the L in a LAMP
(Linux, Apache, MySQL and PHP) stack
with FreeBSD, and get pretty much the
same environment, with a different set
of features (eg variations in filesystem
and driver support). And there are some
mega, super, huge users of FreeBSD,
such as Netflix, which serve up
ridiculous amounts of data every day.
While FreeBSD makes a good desktop
OS, its strengths really lie in the server
room, with exceptional reliability and
network performance.

OpenBSD tends to be used in smaller
web serving, file hosting, firewall and
gateway roles where security is
imperative. NetBSD is the least popular
of the main BSD flavours – it can run on
almost anything though, including old
Amigas and Acorn boxes, and
sometimes finds itself inside closed-
source network devices.

Hang on – how can someone
close the source code? That

ain’t kosher in Linux!
Correct, and here we come to the
other major difference with GNU/

Linux. The licence for the BSD flavours
(called, funnily enough, the BSD
Licence) is very different to the GPL that

we know. For starters, it’s much shorter.
The BSD Licence essentially says: do
what you want with this code, but give
the original developers credit for writing
it, and don’t try to sue them if it blows
up your computer.

So there’s nothing in the licence that
forces the code to stay open, unlike with
the GPL, which requires that users of
the code also make their modifications
freely available. This crucial difference
has sparked countless flame wars over
the years, with BSD fans saying that
their licence is more free (because it’s
less restrictive), while GNU/GPL fans
say that their licence is actually more
free (because it preserves freedom
down the road).

Blimey. Anyway, now that
you’ve piqued my interest,

where can I try out all these lovely
BSD flavours?

You can probably guess the
websites – www.openbsd.org,

www.freebsd.org and www.netbsd.org
– where you can download ISO images,
boot them in VirtualBox, and play
around. If you’ve been using Linux for a
while, you won’t find any of them too
difficult, although you’re expected to
know your way around the command
line. If you’re looking for something
more newbie-friendly, PC-BSD
(www.pcbsd.org) is a customised
version of FreeBSD focused on the
desktop, with a fancy graphical installer
and super-simple management of
software. Have fun exploring!

39

If all of the open source
mascots met up for a
big scrap, we reckon
OpenBSD’s Puffy would
be the last, er, fish
standing.

LV007 038 FAQ.indd 39 07/08/2014 20:46

THOMAS VO INTERVIEWINTERVIEW THOMAS VO

www.linuxvoice.com

ß

40

Not since the days of 2004,
when X.org split from XFree86,
have we seen such exciting

developments in the normally prosaic
realms of display servers. These are
the bits that run behind your desktop,
making sure Gnome, KDE, Xfce and
the rest can talk to your graphics
hardware, your screen and even your
keyboard and mouse. They have a
profound effect on your system’s
performance and capabilities. And
where we once had one, we now have

two more – Wayland and Mir, and both
are competing to win your affections
in the battle for an X replacement.

We spoke to Wayland’s Daniel
Stone last month, so we thought it
was only fair to give equal coverage
to Mir, Canonical’s own in-house X
replacement, and a project that has so
far courted controversy with some of
its decisions. Which is why we headed
to Frankfurt and asked its Technical
Architect, Thomas Voß, for some
background context...

Let’s go right back to the
beginning, and look at what X

was originally designed for. X solved
the problems that were present 30
years ago, where people had entirely
different needs, right?
Thomas Voß: It was mainframes. It
was very expensive mainframe
computers with very cheap terminals,
trying to keep the price as low as
possible. And one of the first and
foremost goals was: “Hey, I want to be
able to distribute my UI across the
network, ideally compressed and using
as little data as possible”. So a lot of the
decisions in X were motivated by that.

A lot of the graphics languages that X
supports even today have been
motivated by that decision. The X
developers started off in a 2D world;
everything was a 2D graphics language,
the X way of drawing rectangles. And it’s
present today. So X is not necessarily
bad in that respect; it still solves a lot of
use cases, but it’s grown over time.

One of the reasons is that X is a
protocol, in essence. So a lot of things
got added to the protocol. The problem
with adding things to a protocol is that
they tend to stick. To use a 2D graphics
language as an example, XVideo is
something that no-one really likes today.
It’s difficult to support and the GPU
vendors actually cry out in pain when
you start talking about XVideo. It’s
somewhat bloated, and it’s just old. It’s
an old proven technology – and I’m all
for that. I actually like X for a lot of
things, and it was a good source of
inspiration. But then when you look at
your current use cases and the current
setup we are in, where convergence is
one of the buzzwords – massively
overrated obviously – but at the heart of
convergence lies the fact that you want
to scale across different form factors.

And convergence is big for
Canonical isn’t it?

TV: It’s big, I think, for everyone,

especially over time. But convergence is
a use case that was always of interest
to us. So we always had this idea that
we want one codebase. We don’t want
a situation like Apple has with
OS X and iOS, which are two different
codebases. We basically said “Look,
whatever we want to do, we want to do
it from one codebase, because it’s more
efficient.” We don’t want to end up in the
situation where we have to be
maintaining two, three or four separate
codebases.

That’s where we were coming from
when we were looking at X, and it was
just too bloated. And we looked at a lot
of alternatives. We started looking at
how Mac OS X was doing things. We
obviously didn’t have access to the
source code, but if you see the
transition from OS 9 to OS X, it was as if
they entirely switched to one graphics
language. It was pre-PostScript at that
time. But they chose one graphics
language, and that’s it. From that point

MIR VS WAYLAND:
THE BATTLE TO
REPLACE THE X
WINDOW SYSTEM
Mir was big during the space race and it’s a big
part of Canonical’s unification strategy. We talk to
one of its chief architects at mission control.

LV007 040 Interview.indd 40 08/08/2014 10:58

THOMAS VO INTERVIEWINTERVIEW THOMAS VO

www.linuxvoice.com

ß

41

on, when you choose a graphics
language, things suddenly become
more simple to do. Today’s graphics
language is EGL ES, so there was
inspiration for us to say we were
converged on GL and EGL. From our
perspective, that’s the least common
denominator.

Obviously there are disadvantages to
having only one graphics language, but
the benefits outweigh the
disadvantages. And I think that’s a
common theme in the industry. Android
made the same decision to go that way.
Even Wayland to a certain degree has
been doing that. They have to support
EGL and GL, simply because it’s very
convenient for app developers and

toolkit developers – an open graphics
language. That was the part that
inspired us, and we wanted to have this
one graphics language and support it
well. And that takes a lot of craft.

So, once you can say: no more weird
2D API, no more weird phong API, and
everything is mapped out to GL, you’re
way better off. And you can distill down
the scope of the overall project to
something more manageable. So it
went from being impossible to possible.
And then there was me, being very
opinionated. I don’t believe in
extensibility from the beginning –
traditionally in Linux everything is super
extensible, which has got benefits for a
certain audience.

If you think about the audience of the
display server, it’s one of the few places
in the system where you’ve got three
audiences. So you’ve got the users, who
don’t care, or shouldn’t care, about the
display server.

It’s transparent to them.
TV: Yes, it’s pixels, right? That’s all

they care about. It should be smooth. It
should be super nice to use. But the
display server is not their main concern.
It obviously feeds into a user experience,
quite significantly, but there are a lot of
other parts in the system that are
important as well.

Then you’ve got developers who care
about the display server in terms of the
API. Obviously we said we want to
satisfy this audience, and we want to
provide a super-fast experience for
users. It should be rock solid and stable.
People have been making fun of us and
saying “yeah, every project wants to be
rock solid and stable”. Cool – so many
fail in doing that, so let’s get that down
and just write out what we really want
to achieve.

And then you’ve got developers, and
the moment you expose an API to them,
or a protocol, you sign a contract with
them, essentially. So they develop to

“We want to provide a super
fast experience for users.
It should be rock solid.”

“Mir will be significantly
more relevant than
Wayland in two years.”

LV007 040 Interview.indd 41 08/08/2014 10:58

THOMAS VO INTERVIEWINTERVIEW THOMAS VO

www.linuxvoice.com

ß

42

your API – well, many app developers
won’t directly because they’ll be using
toolkits – but at some point you’ve got
developers who sign up to your API.

The developers writing the
toolkits, then?

TV: We do a lot of work in that arena,
but in general it’s a contract that we
have with normal app developers. And
we said: look, we don’t want the API or
contract to be super extensible and
trying to satisfy every need out there.
We want to understand what people
really want to do, and we want to
commit to one API and contract. Not
five different variants of the contract,
but we want to say: look, this is what we
support and we, as Canonical and as
the Mir maintainers, will sign up to.

So I think that’s a very good thing.
You can buy into specific shells sitting
on top of Mir, but you can always
assume a certain base level of
functionality that we will always provide
in terms of window management, in
terms of rendering capabilities, and so

on and so forth. And funnily enough,
that also helps with convergence.
Because once you start thinking about
the API as very important, you really
start thinking about convergence. And
what happens if we think about form
factor and we transfer from a phone to
a tablet to a desktop to a fridge?

And whatever might come!
TV: Right, right. How do we

account for future developments? And
we said we don’t feel comfortable
making Mir super extensible, because it
will just grow. Either it will just grow and
grow, or you will end up with an
organisation that just maintains your
protocol and protocol extensions.

So that’s looking at Mir in
relation to X. The obvious

question is comparing Mir to
Wayland – so what is it that Mir
does, that Wayland doesn’t?
TV: This might sound picky, but we
have to distinguish what Wayland really
is. Wayland is a protocol specification,

which is interesting because the value
proposition is somewhat difficult.
You’ve got a protocol and you’ve got a
reference implementation. Specifically,
when we started, Weston was still a test
bed and everything being developed
ended up in there.

No one was buying into that; no one
was saying, “Look, we’re moving this to
production-level quality with a bona fide
protocol layer that is frozen and stable
for a specific version that caters to
application authors”. If you look at the
Ubuntu repository today, or in Debian,
there’s Wayland-cursor-whatever, so they
have extensions already. So that’s a bit
different from our approach to Mir, from
my perspective at least.

There was this protocol that the
Wayland developers finished and back
then, before we did Mir and I looked into
all of this, I wrote a Wayland compositor
in Go, just to get to know things.

As you do!
TV: And I said: you know, I don’t

think a protocol is a good way of
approaching this because versioning a
protocol in a packaging scenario is
super difficult. But versioning a C API, or
any sort of API that has a binary stability
contract, is way easier and we are way
more experienced at that. So, in that
respect, we are different in that we are
saying the protocol is an
implementation detail, at least up to a
certain point.

I’m pretty sure for version 1.0, which
we will call a golden release, we will
open up the protocol for
communication purposes. Under the
covers it’s Google buffers and sockets.
So we’ll say: this is the API, work
against that, and we’re committed to it.

That’s one thing, and then we said:
OK, there’s Weston, but we cannot use
Weston because it’s not working on
Android, the driver model is not well
defined, and there’s so much work that
we would have to do to actually
implement a Wayland compositor. And
then we are in a situation where we
would have to cut out a set of
functionality from the Wayland protocol
and commit to that, no matter what
happens, and ultimately that would be a
fork, over time, right?

It’s a difficult concept for many
end users, who just want to see

Whether Mir will dominate over
Wayland remains to be seen,
but Thomas is confident.

LV007 040 Interview.indd 42 08/08/2014 10:58

THOMAS VO INTERVIEWINTERVIEW THOMAS VO

www.linuxvoice.com

ß

43

something working.
TV: Right, and even from a developer’s
perspective – and let’s jump to the
political part – I find it somewhat
difficult to have a party owning a
protocol definition and another party
building the reference implementations.
Now, Gnome and KDE do two different
Wayland compositors. I don’t see the
benefit in that, to be quite frank, so the
value proposition is difficult to my mind.

The driver model in Mir and Wayland
is ultimately not that different – it’s GL/
EGL based. That is kind of the
denominator that you will find in both
things, which is actually a good thing,
because if you look at the contract to
application developers and toolkit
developers, most of them don’t want
Mir or Wayland. They talk ELG and GL,
and at that point, it’s not that much of a
problem to support both.

So we did this work for porting the
Chromium browser to Mir. We actually
took the Chromium Wayland back-end,
factored out all the common pieces to
EGL and GL ES, and split it up into
Wayland and Mir.

And I think from a user’s or
application developer’s perspective, the
difference is not there. I think, in
retrospect, if there would have been

something like a full reference
implementation of Wayland, where a
company had signed up to provide
something that is working, and
committed to a certain protocol version,
our decision might have been different.
But there just wasn’t. It was five years
out there, Wayland, Wayland, Wayland,
and there was nothing that we could
build upon.

The main experience we’ve had
is with RebeccaBlackOS, which

has Weston and Wayland, because,
like you say, there’s no that much
out there running it.
TV: Right. I find Wayland impressive,
obviously, but I think Mir will be
significantly more relevant than
Wayland in two years time. We just keep
on bootstrapping everything, and we’ve
got things working across multiple
platforms. Are there issues, and are
there open questions to solve? Most
likely. We never said we would come up
with the perfect solution in version 1.
That was not our goal. I don’t think
software should be built that way. So it
just should be iterated.

When was Mir originally
planned for? Which Ubuntu

release? Because it has been pushed
back a couple of times.
TV: Well, we originally planned to have it
by 14.04. That was the kind of stretch
goal, because it highly depends on the
availability of proprietary graphics
drivers. So you can’t ship an LTS [Long

Term Support] release of Ubuntu on a
new display server without supporting
the hardware of the big guys.

We thought that would be quite
ambitious anyway – a Long

Term Support release with a whole
new display server!
TV: Yes, it was ambitious – but for a
reason. If you don’t set a stretch goal,
and probably fail in reaching it, and then
re-evaluate how you move forward, it’s
difficult to drive a project. So if you just
keep it evolving and evolving and
evolving, and you don’t have a
checkpoint at some point…

That’s like a lot of open source
projects. Inkscape is still on

0.48 or something, and it works, it’s
reliable, but they never get to 1.0.
Because they always say: “Oh let’s
add this feature, and that feature”,
and the rest of us are left thinking:
just release 1.0 already!
TV: And I wouldn’t actually tie it to a
version number. To me, that is
secondary. To me, the question is
whether we call this ready for broad
public consumption on all of the
hardware versions we want to support?

In Canonical, as a company, we have
OEM contracts and we are enabling
Ubuntu on a host of devices, and
laptops and whatever, so we have to
deliver on those contracts. And the
question is, can we do that? No. Well,
you never like a ‘no’.

Usually, when you encounter a
problem and you tackle it, and you start
thinking how to solve the problem, that’s
more beneficial than never hearing a no.
That’s kind of what we were aiming for.
Ubuntu 14.04 was a stretch goal –
everyone was aware of that and we
didn’t reach it. Fine, cool. Let’s go on.

So how do we stage ourself for the
next cycle, until an LTS? Now we have
this initiative where we have a daily
testable image with Unity 8 and Mir. It’s
not super usable because it’s just
essentially the tethered UI that you are
seeing there, but still it’s something that
we didn’t have a year ago. And for me,
that’s a huge gain.

And ultimately, before we can ship
something, before any new display
server can ship in an LTS release, you
need to have buy-in from the GPU
vendors. That’s what you need.

“We never said we would
come up with the perfect
solution in version 1.”

Thomas is based on Bochum, but
ventured out to Frankfurt-am-
Main to talk to us.

LV007 040 Interview.indd 43 08/08/2014 10:58

Back issues are now available at
http://shop.linuxvoice.com/products/single-issues

LV007 044 Ad Ubuntu.indd 44 08/08/2014 14:30

 INTRO REVIEWS

www.linuxvoice.com 45

The latest software and hardware for your Linux box, reviewed
and rated by the most experienced writers in the business

REVIEWS

Andrew Gregory
The riddle of the broken DVD drive is solved:
there was a broken DVD in it.

This issue we’ve tested two
products that cost money. One
is cheap as chips at £5, while

the other starts at £195 and goes all the
way up to £5,965. Which of these offers
the most freedom, the most potential to
empower intellectual growth? Of
course, it’s the one that uses Free
Software. TheCamJam Edukit is limited
in function, but it can be the gateway to
a world of experimentation and
burnt-out motors. Mathematica is also
a superb product, but its licensing
makes it feel like a gatekeeper rather
than a gateway; you can do more, you
can unlock more features, as long as
you pay more money and accept that
you’ll only be able to program what the
makers want you to program.

Freedom!
I must admit that I take free software
for granted these days, and it’s only
when I come up against a licence
imposition that I stop to think about
how lucky we are. You don’t get the
basic Python interpreter for free and
have to pay extra for the most useful
modules. Our only responsibility is that
we have to do something with all this
great stuff that we have to play with,
show others how much fun it is and
helo everyone to learn. Now, import
RPi.GPIO…
andrew@linuxvoice.com

KDE 5

On test this issue...

Ardent KDE admirer Graham Morrison
really hopes that the latest version has
learned the lessons of the 4.0 debacle…

48

CamJam Edukit
This tiny beginner’s kit has taught
Andrew Gregory more about electronics
than 13 years in English schools did.

BOOKS AND GROUP TEST
Facebook is a vampire squid, sucking the vitality out
of our interpersonal relationships and reducing
lifelong friendships to a tap of the F5 key or a
downward swipe of the smartphone. Also, all your
data are belong to Facebook, so don’t try to delete
anything ever again, because it’s not yours anymore.
We can’t change Facebook, but we can recommend a
better alternative: IRC. This ancient chat protocol is
as open as they come, and there are about a million
clients to choose from – we help you find the best
one. Also in old but proven technology – books!

46

Mathematica 10
If you want to analyse,
visualise or program with
some data (and Ben Everard
often does) this tool is
aimed at you. Oh, you
should be rich too.

LibreOffice 4.3
Mike Saunders doesn’t use
the 1% of MS Office’s
features that make it worth
paying money for. If you
don’t either, you really
should be using LibreOffice.

Stellarium 0.13
This wonderful piece of
Free Software makes
Ben Everard’s dark stumble
home from the pub a far
more astronomically
educational experience.

50 5149

LV007 045 Reviews Intro.indd 45 08/08/2014 14:32

KDE 5 REVIEWSREVIEWS KDE 5

www.linuxvoice.com46

KDE Frameworks and Plasma 5 (aka KDE 5)
Previous major updates of this desktop environment have been as popular as the
apocalypse. Fortunately, Graham Morrison is wielding Andúril this time.

Everything in KDE 5 moves
very elegantly, from the
window transitions to the
icon resizing.

W riting two pages on the latest release of
KDE 5 is a tough proposition. But this is a
good thing. Were we to step into Bill and

Ted’s telephone box outside the Circle K and take
ourselves back to 2008, surrounded by the fallout
from the release of KDE 4, we’d be in a rather different
situation. There would be so much to write about,
nearly all of it negative, that we wouldn’t know where
to start. KDE 4.0 didn’t work, because its users
expected a fully fledged desktop upgrade and the first
major release should have been an early alpha release
instead. It took years before the sum of all the new
technologies that were tested in 4.0 became a viable
replacement for 3.x.

This should never have happened, and we think
that the KDE team and many other open source
projects learned from the experience – even though
the Gnome team initially seemed to follow the same
path with Gnome 3.0. KDE 5 avoids making the same

mistakes, but not
in the way you may
be expecting. It’s
not a fully fledged
desktop but nor is it
a direct replacement
for KDE 4, and

that’s the difference. KDE 5 is being developed as
a framework from which KDE 4 applications and
technologies can migrate from their old systems to
the new systems without stunting the development or
progress of either and in a way that shouldn’t cause
any disruption.

KDE Frameworks 5 was released on 7 July. It
contains around 50 different libraries that have
been designed to be as modular and as portable
as possible. These are split into four tiers, with

the majority of frameworks (21) falling into tier 1.
This means their only dependency is Qt 5, which
itself brings many, many performance and feature
enhancements. Tier 1 frameworks include those
that deal with archives, codecs, hardware integration
and specific GUI additions, and developers can now
include these without any further KDE dependencies,
basically as a KDE-flavoured extension to the
considerable features already offered by Qt. This will
help many developers appeal to an audience who
don’t want to install the entire KDE desktop just to get
hold of an application or two, and this should lead to
the development of more KDE applications that run
independently of the desktop.

What’s waiting under the tree
This is all great for developers, we hear you say, but
what about us humble users? Is there anything in
KDE 5 we can click on now? The answer is yes, but
it’s far from ready. Released a week after frameworks
5, Plasma 5 is the beginnings of the KDE 5 desktop
experience. At the moment, Plasma 5 consists of a
new theme called Breeze, a new panel and notification
system, a window and widget management system
that’s accelerated through OpenGL (ES), a new
application launcher and a new interface to the Alt+F2
powerhouse known as KRunner. With the exception of
the graphics acceleration, all of this could be done
with KDE 4, and Breeze can already be made to run on
older versions of KDE. The advantage with recreating
these wheels for KDE 5 is that the design team can
play to KDE 5’s advantages, and that’s exactly what
they’ve done.

Breeze is a flat theme in the same style as Windows
7/8 with a default background that seems to borrow
a triangular motif from the latest Ubuntu. The
window borders are minimal and we like the pastel
vs solarized colour palette. The system tray widgets
look fantastic on our display, and we love the new
notification system. As the KDE team themselves say,
“interaction patterns are left intact”, which we think
means you interact with Plasma 5 in exactly the same
way you interact with KDE 4. And we think is a very
good thing indeed; KDE 4 works brilliantly, and there’s
no reason to mess around with the formula.

With its dependence on a launch menu and panel,
some commentators accuse KDE of being stuck in
the middle of the previous decade, but we’re yet to see
a convincing argument for doing things differently.
The Windows 8 user interface is a disaster, both
Gnome 3 and Unity are still trying hard to convince
their users, and Apple’s OS X hasn’t really changed
in over a decade. KDE’s window management is

DATA
Web kde.org
Developer KDE developer
community
Licence GPL

“KDE 5 avoids making the same
mistakes as KDE 4, but not in
the way you may be expecting.”

LV007 046 Review KDE5.indd 46 08/08/2014 11:02

KDE 5 REVIEWS

www.linuxvoice.com 47

LINUX VOICE VERDICT

“It won’t be long until Plasma 5
improves to the point where many
people will be able to switch.”

peerless, the desktop can be as minimal as you want
it to be and you have access to an unrivalled number
of configuration options. This is a desktop that can
still be made to look and operate exactly how you
want it to, but it takes effort.

High DPI
This initial release is supposed to support high-DPI
screens, but we suspect this is coming for free from
Qt 5. Its support in Plasma 5 suffers in the same way
Qt does; it’s very good at scaling GUI elements when it
knows the pixel density of your screen, but there’s no
automatic way of telling it. And as you still need to use
other applications, such as those from KDE 4 and
those using GTK, it all quickly becomes a non-
standard mess of changing font sizes and hoping for
the best. As Aaron Seigo recently posted on Google+,
“Fonts and screen DPI and scaling and kittens crying.
Trust me, it all comes together.”

The good news is that the KDE 5 high-DPI rendering
looks fantastic on screens with a high pixel count –
much better than KDE 4, and with more developers
using laptops with unfathomable resolutions, this
problem will hopefully receive some much-needed
attention. And not too soon, in our opinion. This is
a long overdue problem for Linux, and one where
Ubuntu’s Unity is currently leading the pack.

Don’t upgrade yet!
As you might expect from an early release, there are
enough teething problems with Plasma to stop us
from recommending it now, especially on a machine
you rely on. ‘plasmashell’ crashed five times over two
weeks, and always restarted gracefully. We couldn’t
use the window manager’s effects configuration page
because there was an incredibly long delay whenever
it loaded. It took many minutes to enable a single
option, for example. Many of KDE’s settings panels are
missing, in particular the panel that configured a
touchpad, which we found tricky. On our laptop,

brightness control worked when you pressed the
button twice, while the buttons to control audio
volume didn’t work at all until we’d loaded the KDE 4
mixer. Both then had different on-screen display
themes, and integration with KWallet didn’t seem to
work. Some apps were fine, whereas others – most
importantly KMail – became unusable as they asked
for a password every time they accessed the network.

KRunner has been humbled, not offering as many
plugins at its KDE 4 counterpart, but hopefully that
will come, and we can’t believe the new battery applet
looks so good and
yet still doesn’t tell
you how much time
is remaining, only a
useless percentage.
Convergence has
also been mentioned,
and there are different plasma shells for different form
factors, but we’ve yet to see the point.

For everything else, there’s KDE 4, and we don’t
think it will be long until Plasma 5 improves to the
point where many people will be able to switch over.
It will then be a case of waiting for apps to be ported
to KDE 5 for the full native experience, a process that
looks quite complex to our untrained eyes but not as
difficult as KDE 3 -> KDE 4, and the process will be
worth the transition.

KDE 5 looks good. It’s faster and more efficient and
it’s the future. But until then, there’s no disadvantage
to sticking with KDE 4 and waiting a while before
making the jump.

Plasma 5 in details

Launcher The launch menu now
has pervasive search and a new
flat look tied to your settings.

For developers, the upgrade is worth
the effort. For users, it’s going to take
some time before this patient strategy
pays off.

App switcher App and activity
switching, and Plasma widgets,
have all become more discreet.

Notifications One area now
holds all notifications and the
network manager settings.

KRunner The Alt+F2 launch
system is now simpler and has
had a graphical overhaul.

LV007 046 Review KDE5.indd 47 08/08/2014 11:02

REVIEWS CAMJAM EDUKIT

48

CamJam EduKit
Andrew Gregory dips his toe into the ocean of robotics and
GPIO programming with this cheap and cheerful beginner’s kit.

Is it a kid’s spy kit? It could
be... It’s an EduKit, ready
for the making!

The documentation is fantastic – everything is clear, even
if you haven’t played with electronics before.

When the Raspberry Pi launched in 2012 it
was clear that it would rise or fall on the
strength of the supporting material. And so

it has proved; there are more powerful and cheaper
devices out there, but the Pi has grown a huge
community providing how-tos and projects, and
several third-parties have popped up selling add-on
equipment.

One of these is the CamJam EduKit. A collaboration
between Michael Horne and Tim Richardson of
Cambridge Raspberry Jam in partnership with The Pi
Hut. The CamJam EduKit is a cheap (£5.00) box of
components and a complementary set of worksheets
downloadable from camjam.me/edukit.

The components in the box comprise a breadboard,
three LEDs, some jump leads, a handful of resistors,
a buzzer and a switch. Using these elements, you
can make a simple circuit powered by the GPIO pins

on the Raspberry Pi,
gradually adding more
functions until you’ve
got a little device that
responds to input from
the command line
and from the included

switch. And that’s it. At the time of writing, there are
six worksheets, which start with the very basics and
move up to importing Python modules and accepting
input from the user.

From the ground up
When we say that the EduKit starts with the basics,
we mean the absolute basics. The first worksheet
describes the process of plugging in the Pi, booting
it and writing a Hello World script in Python. This

assumes a Raspbian installation, but we used our
brand new B+ with the Noobs kit. This is no big
deal, as Noobs clearly identifies Raspbian as the
recommended choice of OS.

Another consequence of using a B+, rather than
the model B that the worksheets were written for, is
that the B+ has an extra 14 GPIO pins. This could be
enough to confuse an absolute beginner, but a quick
Google search reveals that the first 26 pins are laid
out in exactly the same configuration as they always
were, so any old guides are going to be compatible
with the new Pi. Actually, forget that: while we were
writing this review, Michael Horne updated the
(excellent) documentation to include a reference to
the model B+.

For our money, the EduKit is an unqualified
success. There are no moving parts; you won’t be
building a robot out of an ice cream tub with this kit,
or anything more advanced than a traffic light system,
but that’s not the point. What it does do is open up the
door, just a crack, into the possibility that you might
build these things in the future, and that’s what makes
it brilliant.

Like the Pi itself, it’s cheap enough to be a stocking
filler for a curious child, and if they don’t like it, you’ve
only wasted a few quid. But if it takes root and fires
something in your imagination, that £5 becomes
the best value possible. If you want to have a go at
robotics but don’t know where to start, the answer just
got a lot simpler: start here.

LINUX VOICE VERDICT
A perfect introduction into the
complicated world of electronics
tinkering. Our appetite is whetted.

DATA
Web
www.camjam.me/edukit
Developer
Tim Richardson, Michael
Horne & Jamie Mann
Price
£5.00

“If you want to have a go at
robotics but don’t know where
to start, start here.”

www.linuxvoice.com

LV007 048 Review Camjam.indd 48 07/08/2014 20:50

MATHEMATICA 10 REVIEWS

www.linuxvoice.com 49

Mathematica 10
Ben Everard wonders whether the new version of Mathematica is more intelligent
than he is. Mathematica knows but won’t tell him.

As well as its own
programming language,
Mathematica can take
input in normal English.

The new tools in geovisualisation and machine learning
are especially exciting, and incredibly easy to use.

I t’s a little hard to say exactly what Mathematica is.
It’s a programming language, IDE, data source,
natural language processing toolkit, equation

solver and data visualiser all wrapped up into one
piece of software. If you want to do something, and it
involves data, Mathematica can probably do it.

Prices start at £195 + VAT for an individual (or £80
for students), but quickly rise if you want more
advanced features (including technical support). The
top level costs £5,695 and includes (among other
things) support for up to 16 processing cores, phone
support, upgrades, Wolfram Workbench and
WebMathematica Amateur.

That’s quite a lot of money, but there is a one-month
free trial available to help you find out if Mathematica
suits your needs. Be warned, though, the trial version
is crippled to the point that most of the example code
on the Mathematica website won’t run. The trial will
also give you access to the Wolfram Cloud
(https://programming.wolframcloud.com/app),
which is able to run most things, but the trial account
is limited there as well, and some of the more
processor-intensive tasks exceed the trial limits.

Version 10 brings three new areas to Mathematica:
machine learning, geographic computation and
geometric computation, as well as improvements in
just about every area, including many in the
Connected Device Framework. There’s a list of new
features at http://reference.wolfram.com/language/
guide/SummaryOfNewFeaturesIn100.html.

Geographic computation is largely based on
geovisualisation, which is just a fancy word for
colouring in maps. This is something that’s becoming
increasingly popular as a method of visualising data.
The integration of the map data and the graphing
functions with the language are make the new version
of Mathematica probably the easiest tool to do this
available today.

The best feature of the new machine learning area
is its ease of use. Mathematica can handle almost all
of the algorithm selection and configuration – tasks

that can take experience to get right if you have to do
them manually – leaving the user with just the task of
linking in the data set.

Enormous data processing power
The Connected Device Framework has also seen
some improvements. This is the toolset that’s
designed to bring data from external sensors into
Mathematica so that you can analyse it, and Wolfram
is targeting this at hobbyists with example code for
Arduino. Although this is very powerful, most sensor
data is quite simple, and analysing it in Mathematica
would be like using a sledgehammer to crack a nut.
It’s very rare to need this level of processing power
outside of industrial settings.

We’re pleased to see improved testing libraries in
version 10. These are part of a push from Wolfram to
make Mathematica a more attractive environment for
software engineering, and are something that’s been
lacking in previous versions.

Mathematica is a uniquely powerful piece of
software that, when used well, can help you perform
incredibly powerful computations very easily.
However, the price of using it is tying your work up
with proprietary software. While we do use closed
source software, we’re uncomfortable with the idea of
intertwining our programming this closely with
software that we can’t control.

LINUX VOICE VERDICT
Very powerful and easy to use, but
hampered by a lack of freedom.

DATA
Web
www.wolfram.com/
mathematica
Developer
Wolfram Research
Price
£195 +

LV007 049 Review Mathematica.indd 49 08/08/2014 11:04

REVIEWS LIBREOFFICE 4.3

www.linuxvoice.com50

LibreOffice 4.3
The Document Foundation claims “you can’t own a better office suite” than this.
Mike Saunders gets out his Truthometer 9000™…

And here it is again in
LibreOffice 4.3, with
everything in its right
place.

Here’s an OOXML file containing DrawingML, rendered
completely broken in an earlier version of the suite.

On the desktop, LibreOffice is arguably the most
important free software project in existence.
Sure, we all love Linux and sing its praises

from the rooftops, but there’s still a long way to go
before every home user and business running
Windows makes the switch. It’s easier to give people
their first taste of open source by recommending
applications to them, and LibreOffice is a great
example: it does 99% of the jobs that 99% of people
do in Microsoft Office, for zero cost. Home users and
businesses can see that free software is more than
capable of replacing proprietary applications, saving
huge amounts of money along the way.

It’s a 215MB download (for the 64-bit .deb
packages), and an empty Writer window consumes
98MB of your RAM banks, in contrast to 85MB for the
previous version. So it’s slightly heavier, but much

work is being done to
make the overall
program smaller and
more suitable for use on
mobile devices.

But the big changes in
LibreOffice 4.3 are the

end-user-facing new features. OOXML documents
that previously looked broken in LibreOffice should
now render much more correctly, especially those that
use DrawingML (see the screenshots). Other import
filters have been added for Microsoft Works
spreadsheets and files from ClarisWorks on the Mac.

Calc, the spreadsheet, has been boosted in various
areas: 30 formulas have been added to enhance

compatibility with Excel, and in-cell formulas are
displayed with better highlighting. When you select a
bunch of cells, the status bar now shows the number
of rows and columns. Collaboration, meanwhile, has
been made easier with improved commenting
features, including nested comments and the ability to
export these comments in various file formats.

Shiny new toys
Impress has seen its share of updates too.
Presentations can be made prettier with 3D models
(created in the emerging glTF format), while initial
support for COLLADA and .kmz files has been
incorporated. Then there’s a mountain of bugfixes,
GUI improvements and documentation updates
covering every aspect of the program.

LibreOffice is miles ahead of Microsoft Office in many
key areas: file format import and export; support for
many different operating systems; cost of ownership;
and so forth. The advancements made in the OOXML
import filters make it increasingly viable as a drop-in
replacement for Microsoft’s products.

But then, we don’t use MS Office and don’t rely on
some of its obscure or rarely used features. Home
users and businesses will have to try LibreOffice 4.3 to
see if it finally does everything they need, and opens
all their files without problems. One thing’s for sure:
there’s never been a better time to switch.

LINUX VOICE VERDICT
New features are good, but it’s the
improved Microsoft Office
compatibility that really makes this a
worthwhile upgrade.

DATA
Web
www.libreoffice.org
Developer
The Document
Foundation
Licence
GNU GPLv3/MPL

“LibreOffice does 99% of the
jobs that that 99% of people
do in MS Office, at zero cost.”

LV007 050 Review LibreOffice.indd 50 08/08/2014 11:06

STELLARIUM REVIEWS

www.linuxvoice.com 51

Stellarium 0.13
View the infinite glory of the night sky through your computer monitor.
Now Ben Everard has another reason not to go outside.

A view of the heavens from the surface of the moon.

Stellarium can show you
the position of the stars –
and constellation artwork
– at any time of day or
night.

I f you haven’t used Stellarium before, you’re in for a
treat. It creates a skymap of stars, planets,
comets, and most other astronomical

phenomena. If, like us, you live in a city, and the night
sky is washed out by a sheen of light pollution that
only a few of the brightest stars can break through,
then Stellarium gives you the chance to see what the
sky should look like. If, on the other hand, you’re lucky
enough to live somewhere with a dark sky, Stellarium
provides the tools to learn the different stars and
constellations. If you already know the constellations,
then it gives you the chance to view past and future
astrological events from any position.

When you start Stellarium, it takes over your screen
and provides an OpenGL-rendered view of the sky at
the current time. You can set the location to anywhere
you want on earth, or you can set off on a virtual tour
of the galaxy and see the night sky from the surface
of other planets, moons and stars without needing a
NASA-sized budget.

If a real-time rendering of the sky isn’t exciting
enough for you, you can speed it up and watch the
stars move at super-speed, or start a meteor shower
to add a little graphical delight. There are options to
tweak just about every aspect of the scene, including
which astrological objects appear and how bright they
are, what projection is used to compress the universe
onto a 2D screen, and the amount of twinkle the stars
have. This might sound like pointless clutter, but as
you play with the settings, you get a feel for how the
real physical objects and effects interact to create the
night sky.

Aside from the graphical rendering, Stellarium also
has a great user interface, which manages to be both
powerful and unobtrusive. Unobtrusive in this context
means that it both stays out of the way and gives the
whole screen to the sky map, and that it works well

in low-light conditions so that it won’t ruin your night
vision if you use it in the dark. This makes it perfect for
running on a laptop outside on a clear night. You can
also get Stellarium Mobile for Android and iOS devices
(a port by the original author of Stellarium), but this
isn’t free software.

Planets in your pocket
Version 0.13 comes with lots of new graphical
wizardry, though none of it changes the basic way
Stellarium works. Comets and meteors are now a bit
prettier, and there are new plugins to help with field of
view and time settings. If you’re hoping to be the next
Bear Grylls, then you may find the new plugin with
navigational stars useful. It should also hog fewer
resources now, so is a useful upgrade for people
running older hardware. All in all, it’s a gradual –
though not particularly exciting – improvement on the
previous version.

Don’t be put off by the low version number:
Stellarium is a great, stable application that’s been
around since 2001, and has been widely used for
much of the past 13 years. It’s fascinating as a
curiosity, but you can also delve deeper and use it as
a tool to learn more about the universe and our place
in it. Be careful though: it will make you want to buy a
telescope, travel to the desert and stare at the white-
flecked darkness above.

LINUX VOICE VERDICT
Even the least astronomically-
inclined person is likely to have fun
with Stellarium. It’s wonderful.

DATA
Web
www.stellarium.org
Developer Stellarium
development team
Licence GPL

LV007 051 Review Stellarium.indd 51 07/08/2014 20:52

REVIEWS BOOKS

www.linuxvoice.com52

Tubes: A journey to the center
of the internet
Ben Everard is now wondering if he can spend his next holiday on a guided tour.

The looks like some form of abstract PCB
routing that has nothing to do with the internet.

What is the internet? Think about
that question for a moment. Is it
an abstract concept that doesn’t

exist in physical space? Or is it a tangible,
finite thing that you could reach out and
touch if only you knew where to find it?

In Tubes, Andrew Blum takes the view that
it’s a set of computers and routers, and the
high-bandwidth cables that connect them. In
this case, then, the internet must exist, and
since it exists, it must be possible to see it.
Tubes is a book documenting his quest to
find the internet, or at least the physical
things that comprise it.

Where is your mind?
Blum manages to get access to a surprising
amount of infrastructure, and he takes the
reader along with him as he tours internet
exchanges and cable landing points, and
meets the people who keep them running.

This isn’t a detailed book about the structure
of the internet, though it does leave the
reader with a basic overview of this. Instead,
this is a book that adds colour to the bland
network topographies that comprise most
descriptions of the internet.

The reader is left with gives a splendid
overview of what goes on behind the scenes
of the defining engineering accomplishment
of our age and one we often don’t give
ourselves the space to think about.

Discover the wondrous locations your data
visits after you send it down the intertubes.

LINUX VOICE VERDICT
Author Andrew Blum
Publisher Ecco Press/Penguin
ISBN 978-0-061-99493-7/978-0-141-04909-0
Price £9.99

Great North Road
It took a year, but Graham Morrison finishes a book about Newcastle upon Tyne.

There have been times when we’ve
really enjoyed Peter F Hamilton,
most recently with the completion

of the Void trilogy in 2010. This was a
fantastic series of multithreaded yarns that
weaved medieval adventure into a possible
future where fictionalised versions of Larry
Page and Sergey Brin ruled the ultimate
philanthropic corporate universe. It had
moments of brilliance, even if its length
meant the thrill of those original themes
became a little jaded. But it was another
reason why Hamilton is still one of the best
current proponents of ‘the space opera’ – the
literary equivalent to listening to Bohemian
Rhapsody by yourself in the car.

The same could be said of Great North
Road, currently a rare one-off title from the
same author. It features many characters
in different environments that may or may
not come together at some pivotal point
in the story. The setting for most of these

characters is rain-sodden Newcastle upon
Tyne circa 2142. There are wormholes,
invisible alien threats and lots of Geordie
accents, but this is essentially a crime
drama. Hamilton is also trying to highlight
carbon emissions, sustainability and the
unforeseen consequences of taking from
the environment. These elements do feel
awkward, and the book never quite feels
as harmonious as his other work, which is
perhaps why we finished many other books
before finally completing this one.

Hamilton’s usual mix of grandiose themes with
many characters, but lacking his usual impact.

LINUX VOICE VERDICT
Author Peter F Hamilton
Publisher Macmillan
ISBN 978-0-230-75005-0
Price £6.99

Even with wormholes and awesome computing
power, those silly humans are still wreaking
havoc on unsuspecting environments.

SCI-FI

LV007 052 Reviews Books.indd 52 08/08/2014 14:34

REVIEWS BOOKS

www.linuxvoice.com 53

Data Algorithms
After reading Ben’s excellent data analysis
tutorial in this very issue (p82), we’ve got a
genuine taste for big data, which is why this
book looks rather excellent. It promises to give
you the super-powers to crunch through
petabytes of data. Excellent!

ALSO RELEASED…

One day soon,
we’ll all need
big data tools
to search our
photos.

The birds on the front
cover are made up
of the text of a Perl
script to remove
encryption from
DVDs.

Have you ever watched National
Geographic as an anthropologist
describes the customs of a tribe

and wondered what the tribe thought
about the film? If you have, and you’re a
free software coder, this might be your
chance to find out.

Gabriella Coleman is an anthropologist
who studies us. By us, I mean the elusive
tribe of people that work on open source
software. In Coding Freedom she takes a
scholarly approach to analysing what it
means to be someone who develops free
software, and she’s taken the time to
understand this properly. In doing so, the
book also covers the concept of free
software, what it means to the community,
and why people within the community are
so attracted to it.

Coding Freedom is heavy going,
especially to someone not familiar with the
languages of the social sciences. If you
make the effort to read it, it’s quite

A detailed, informative, but hard-to-read
guide to the people behind free software.

LINUX VOICE VERDICT
Author E Gabriella Coleman
Publisher Princeton University Press
ISBN 178-0-691-14461-0
Price £16.95

Mastering Autodesk Maya 2015
Blender is incredible, but we often forget that
there’s a tier 1 3D application available for
Linux that many studios already use, and that’s
Maya. It may be expensive, but it’s a native
application capable of Hollywood-quality
rendering. This books takes it up a level.

Create the
next Inception
from the
comfort of
your Linux
box.

Design for Kids
It’s lovely that there’s a renaissance in teaching
technology to kids, but developing interfaces
for children is a completely different challenge
to the ones we’re used to. This is why this
ebook looks useful. It helps designers deal
with the emotion, ego and impatience of the
average child, while helping them learn.

Think of the
children.

interesting, but in its current format, it’s
more suited to reading by social scientists
than computer scientists.

We’ve been studied, and Ben Everard has the results.

Coding Freedom: The Ethics and
Aesthetics of Hacking

Dealing With Disrespect
Graham Morrison learnt long ago to never read the comments.

We’re on a road to
nowhere.

Jono Bacon has fought more than
his fair share of flamewars online,
and he’s not the only one who has

noticed the vehemence of commentators
increasing. And we completely agree.
Disagreements can reach disproportionate
levels of hate, and this can be a real
problem to the average sensitive and
introverted geek. Not only can it lead to
depression and diminished self-worth, but
it’s also pushing valuable contributors out
of the community. We’ve seen more than
one insightful mind turn their back on a
project simply because of too much bile.

The message behind Jono’s short
book is simple; you’re not alone. Using
anecdotes and a personal style, the book
walks the reader through the mental
journey we’re assuming Jono went
through in learning to come to terms with
disrespect, and how to turn any knock in
confidence and uncertainty into a positive
force. That the book is also available for
free is also rather noble, and while it won’t

be for everybody, we suspect there’s a
considerable number who will take quiet
solace from its publication.

There’s too little written about this subject,
and it’s great to see Jono highlighting the
seriousness of a growing problem.

LINUX VOICE VERDICT
Author Jono Bacon
Publisher self-published
Price CC BY-NC or $2.99 on Kindle

LV007 052 Reviews Books.indd 53 08/08/2014 14:34

GROUP TEST IRC CLIENTS

www.linuxvoice.com

 WHAT MAKES A GOOD CLIENT?
IRC is a contentious platform, a little like
email. Old-school users will swear by
their command-line tools, while others
will like the cuddly ease of a nice GUI.
As far as we’re concerned, it doesn’t
matter as long as it gets people using
IRC instead of Facebook Messenger or
Google Hangouts. But a client does

need to be reliable, transparent and
flexible, and if possible, accommodate
as wide a spectrum of users as possible.
It’s these attributes that we’ve focused
on, so that whichever client you end up
using, you should be able to use
indefinitely until something better
comes along.

We’ve become so used to
the idea that newer is
better that it’s difficult to

envisage anything old competing
with anything new. Web browsers,
desktops, laptops and even distros
are overhauled so often that
running an old version feels difficult
and anachronistic.

But there’s one significant
exception, and that’s something
called Internet Relay Chat (IRC).
To the uninitiated, it’s like chatting
in Google Talk or Facebook
Messenger with more than one
person at the same time. IRC is a
child of the BBS-era (Bulletin Board
Systems), predating the world
wide web, the first SMS messages,
hashtags and the rise of social
media. And because you’d often
have to dial into a BBS from a
low-bandwidth modem, efficiency
was everything. Even the fastest
modems of 1988, when IRC was
created, connected at a mere 2400
baud – that’s only 2400 bits per
second in the technology of the
time. JPEGs might take 30 minutes

to load, video conferencing and
voice was impossible, and that left
text, and the initial rise of IRC.

That IRC has survived and thrived
in the 21st Century is a testament
to its original design and simplicity.
Get a client, connect to a server and
join any channel you find
interesting. Channels in this sense
are a little like the channels on
Citizens Band radio of the 80s, and
there are channels for everything,
from exploring your Arch fetish or
early masterpieces of the Ultima
franchise with the Exult channel, to
3D printed psycho robots
(#robotics) and your very own Linux
Voice (look us up on Freenode).

IRC use is also growing, not just
because it’s an open platform out of
the control of big corporations; it’s
also mature, secure (if you want it
to be), and globally accessible. Now
that more of us are working
remotely, IRC has become the
perfect medium for both informal
chat and serious planning. Which is
why finding the perfect client has
never been so important.

Graham Morrison Experiences the old world charm of a group
chat technology that predates Facebook by a generation.

GROUP TESTIRC CLIENTS

“IRC has become the perfect medium for
both informal chat and serious planning.”

54

FIND US ON IRC!
#linuxvoice is on Freenode, and it’s a friendly and welcoming channel
for everyone interested in Linux, Free Software and beer.

URL konversation.kde.org
Version 1.5
Licence GPL
The strongest of several KDE IRC clients
with more config options per pixel.

Konversation

IRC Clients

On Test

URL xchat.org
Version 2.8.8
Licence GPL
Perhaps the mostly widely used default
IRC option for most distributions.

XChat

URL https://smuxi.im
Version 11.0.0
Licence GPL
Super powerful, despite its austere GUI
(which is currently being upgraded).

Smuxi

URL www.quassel-irc.org
Version 0.10.0
Licence GPL
A lovely GUI for power users with the
best server/client split we tested.

Quassel

URL irssi.org
Version 0.8.16
Licence GPL
Lots of script and a great console GUI,
but lacking recent development.

Irssi

URL weechat.org
Version 0.4.3
Licence GPL
It’s difficult to use, and its command-
line based, but it’s soo powerful.

WeeChat

LV007 054 Group Test.indd 54 07/08/2014 20:57

 IRC CLIENTS GROUP TEST

www.linuxvoice.com

If this group test were about the number of configuration options, Konversation would win.

F irstly, we like Konversation’s GUI
because it’s both minimal and utterly
configurable. The list of users within

a channel can be discreetly slid over to the
side of the main window, and while it’s a
difficult option to find, you can expand the
input box to use multiple lines. Font support
is excellent and you can change the colours
for everything. We wish these options could
be encapsulated into a theme engine to aide
easy import, export and sharing, or take
some hint from the global colour scheme,
because we like to change between dark
and light themes depending on the time of
day, but it can be made to look exactly how
you want it to.

Server logs and messages for each
channel are tabbed. Tabs can be moved to
the lower, upper or left borders of the main
window, and the clever Watched Nicks, URL
catcher service and the DCC status panel
can exist within their own tabs too.You get
on-screen notifications containing new
messages, and the system tray icon flashes
with new updates. A channel list can also be
opened on a separate tab, and kept open,
which is a better solution than the pop-up
windows offered by most other IRC
applications. Entering messages themselves
is easier with the multi-line input, and we rely
on the excellent auto-spellchecking. As with
other clients, pressing Tab will complete a
nickname, and you can right-click on various
GUI elements to create shortcuts to a variety
of IRC commands. Right-click on a nick, for
example, and you can enter message mode
or perform a ‘whois’ on a user. All useful
stuff for people without IRC in their DNA.

Finally, this wouldn’t be a KDE application
if it didn’t enable you to open another tab

As we’ve mentioned on the first page,
IRC is a form of group messaging
where the groups are hosted on a

server. You can create your own server
using something like UnrealIRCd, but the
majority of users connect to servers that are
already running. The most popular is a

network with a Free Software bias called
Freenode (it’s not really a single server, but a
portal to a network that’s automatically
load-balanced and managed).

Freenode peaks at around 80,000
consecutive users, it’s still growing, and it’s
where you’ll find our own channel,

#linuxvoice. Other networks include IRCNet,
Efnet and QuakeNet. Channels are usually
moderated by one or more operators who
have the power to kick (or ban) people from
the channel if they’re not adhering to the
rules. Any rules will appear when you
connect to a network or to a channel.

Konversation 1.5
The KDE Kontender is a tough act to beat.

55

Get started with IRC
If none of what we’re writing about here makes any sense, read this first

VERDICT
A excellent option for KDE
users, and worth the KDE
library install for everyone
else.

containing the excellent KDE terminal
console, Konsole. We also like the way
Konversation handles multiple connections
and servers, although it’s a little counter-
intuitive. This is because, to add a new
server, you need to link a server with an
identity. We think this is to facilitate KDE’s
global identity functionality, so that your
name and contact details are set in one
place and used in many. If you use multiple
servers with the same nick, you can simply
add them from the identity dialog.

You can also have more then one nick per
identity (this is getting complicated), but the
separation between identities, servers, nicks
and channels is useful if you use IRC for

both work and for social networking. There
are plenty of options that enable you to
connect to channels automatically, register
your nicks or accomplish almost anything
else through a script. A separate field for
identities is useful if you use ZNC for multiple
servers and need different login values, but
you’ll need different identities for different
servers as there’s only one field per identity
(and not per nick).

LV007 054 Group Test.indd 55 07/08/2014 20:57

GROUP TEST IRC CLIENTS

www.linuxvoice.com56

“XChat is the first client many
people go to when they start
experimenting with IRC.”

XChat is a great application if you use lots of desktops and
require the same interface.

I f there’s an Old Pretender to the IRC
client crown, it’s XChat. It’s been
around since 1999 and it’s also one

of the most portable graphical clients
we’re looking at. There are versions for
Windows, Linux and OS X, and it’s also
possible to run the client as both a
graphical application and a command-
line utility.

XChat is also the default IRC client for
many distributions, and the first client
many people go to when they start
experimenting with IRC. This isn’t a bad
thing at all. XChat is stable, functional
and easy to use. When you first launch
the application, for instance, it’s one of
the few clients that gives you a list of
servers and a pre-configured username
based on your login name (albeit one
that will change to Guest??? when
you’re connected to a server where that
nick is already taken).

Clicking on a server will connect, and
you can easily join a channel you know

XChat
This is the client you’ve probably already got installed.

or download a searchable list from
the server. It’s easy and works well,
although we wish it cached the channel
list for a while.

We really like the hierarchical view of
connections over on the left. This lists
the servers and channels you’re
connected to, and if you’re connected to
a few, takes up less space than a
tabbed view. But you can also choose a
tabbed view if that’s what you prefer.
The GUI is drawn using an older version
of GTK, and this gives the application
something of an old Unix feel. This isn’t
bad – and it also means you’ll be able
to use XChat wherever you install it, but
neither is its appearance going to
satisfy the eye candy brigade (if there is

one). We also miss proper desktop
notifications and a system tray icon
that highlights unread or missed
messages. And while there is a plugin
system in XChat, it’s little more than a
scripting engine.

Smuxi is perfect for the power user or anyone who wants
a single application for GUI, console and remote work.

Smuxi is an unassuming IRC
application that can also connect
to Twitter, Facebook and several

other instant messaging protocols. But
this in no way diminishes its IRC
credentials, unlike in Pidgin, for example,
where its inclusion is more of a
convenience. It can also be launched in
console-only mode, in server mode
(referred to as the engine) and with a
straightforward Gnome-based GUI. It’s
one of the most powerful applications
in this group test, while remaining easy
to use.

On launch, it will helpfully connect
to its own support IRC channel while
also asking which server you’d like
to connect to. Its interface is XChat-
like, and you can start using IRC
immediately without any further
familiarisation. We like any application
that includes presets for servers, as
most of us will only be browsing for

Smuxi 11.0.0
Ignore the name and there’s lots to like here.

groups on a small selection of well
known addresses, and the ‘Find Group
Chat’ function lets you quickly search
through the channel list (and caches
that list for a time), which feels very
intuitive. Despite a GTK-based GUI
that’s in transition to version 3, and
still looking like a throwback to the
late 1990s, we love the nick colouring
that keeps the same colours across
channels, and it’s definitely an upgrade
from XChat. System tray notifications
also work across desktops,

We also love the inclusion of a
powerful filter interface that can be
used to cut almost anything out of your
chat windows, from ‘join’, ‘left’ and ‘quit’
events through to only highlighting
conversations you may be interested in.
It’s not simple to confgure, but it is
powerful and it’s a feature unrivalled in
any of the other graphical clients we’ve
looked at. All of which makes Smuxi a

brilliant option if you’re not fussed
about austere GUIs. It’s perfect for the
power user or the new user who knows
they’re going to need room to grow.

VERDICT
An good option if you’ve
never used IRC before. It’s
uncomplicated, but also
unimaginative.

VERDICT
A decent upgrade to
XChat, and worth keeping
an eye on for a GTK3+
overhaul.

LV007 054 Group Test.indd 56 07/08/2014 20:57

 IRC CLIENTS GROUP TEST

www.linuxvoice.com 57

There are many guides to getting
started with IRC, but to help with the
demystification, here’s our tips to

getting started. Anything you type will appear
to everyone else in the channel unless it’s a
command preceded by the / character. Typing
/help will give you some hints from the server
on getting started. /connect SERVER will
connect from the command-prompt, while
/join #CHANNEL will join the channel. /nick
changes your nickname, but this will need to
be unique to your network. You can send a
private message to someone with /msg Mike
MESSAGE, and you can connect peer-to-peer
to someone using the /dcc command (ie not
through the server). /dcc chat Mike will open a
chat session with Mike, for example, or we can
ask to send a file to him using /dcc send Mike
file.odt. Though not necessary, many people
animate their chat with /me (/me has another
glass of wine will appear as Graham has
another glass of wine), and /describe. Finally,
if you step away from your machine for a
while, use /away (your client may do this
automatically), or /quit to leave.

IRC Commands
Our 200 word guide to
interacting with IRC

If you start spending more time on a network, it’s
worth reading its policy guide.

The split between the core and the client versions of Quassel makes it a powerful option.

I f you include Konversation (and Kirc,
though we’re not covering it) via KDE’s
dependency on Qt, the Qt tookit is

doing rather well in our group test. Quassel
is another Qt application, similar to the
other two but without the dependency on
KDE. It uses a similar array of identities,
servers and nicks to Konversation, which
can make configuration a little tricky, but
it’s also easier to install and more portable.
Like XChat, you can find Quassel on both
Windows and OS X, as well as your
favourite Linux distribution.

It’s also an application that borrows
its visual style from XChat – there’s a
hierarchical server and channel panel on
the left, the chat window in the middle and
the nick panel on the right. Any of these
elements can be moved around, giving
you maximum flexibility in how you like
your IRC sessions organised. There’s even
an option to remove the input field, which
could be useful if you’re only monitoring a
channel, although we missed the option
for multi-line visualisation even when the
input lines can be increased.

There are some great GUI touches.
Hover over an image URL, for example,
and you get an image preview. You can
also configure custom chat lists, which is
useful if you want to limit a list to a
specific server or a specific number of

Quassel
It’s powerful and good looking. Just like us.

VERDICT
Looks fantastic, and
almost matches
Konversation for
configurability.

channels, and a channel will turn green
when a new message is posted. Senders
can have a different colour (as they can in
Konversation) and the search highlighting
is very easy to see. There are also plenty
of notification options including a working
event for the system tray.

But we’ve kept Quassel’s best feature
until last. While you can run it as a
standalone application just like any other
IRC client, Quassel also provides two split
components – a core and a client, which
can be run separately. It can split the core
and the client components so that the
core connects to your servers and
channels while the client(s) provides the
input and interface. This has one huge
advantage – create a core user from the
command line and you can run the core
on a server that’s always connected to
your channels. Connecting from a client
will then play back messages while you’ve
been away. It’s a simple way to get offline
buffering of your channels, which can be
essential if you use IRC for work, but it
also integrates perfectly with the client.

LV007 054 Group Test.indd 57 07/08/2014 20:57

GROUP TEST IRC CLIENTS

www.linuxvoice.com58

Don’t be put off my the console colours: Irssi is simple
enough for anyone to use.

WeeChat has some extra features, such as split views, that can become essential.

We’re about to dive into a
couple of command-line
clients, which means we’re

heading into contentious territory.
Users typically invest so much time
getting terminal clients exactly how
they like them, and the command-line is
perfect for such modification, that they
become wedded to their favourite. And
we’re particularly fortunate because
there are two awesome command-line
tools that are both brilliant and probably
good enough to tempt many of us
away from the padded luxury of point
and click.

Irssi is the one to beat. It’s been
around for a long time and is the default
choice for many CLI users.
Development has been slow over the
last few years, but in June, the project
moved over to GitHub in the hope of
attracting a new developer community.
It’s not even difficult to get started with.
Install the package, run irssi and the
example config command, then
connect to Freenode and join your
favourite channel. Servers and
networks can easily be added through
further commands (type /help to see a
list) and you can switch between them
and servers and channels using Ctrl or
Alt shortcuts. It’s quick, powerful and
easy to use. More importantly, most
users download and install third-party
Perl scripts to extend Irssi in any way

Irssi vs WeeChat
It’s the battle for the command-line!

they choose, from custom highlights
and showing a nick list alongside the
chat view, to themes and music
playback. There are already hundreds,
and it’s quite easy to write your own.

WeeChat
WeeChat has become a popular
alternative to Irssi, as it’s been able to
capitalise on Irssi’s development
doldrums over the last few years. It’s
what we’ve run on our VPS for a couple
of years, and while complex to start

with and somewhat unforgiving, we’ve
not found a better client.

At its core is the idea of a buffer.
You can have many buffers, and each
buffer can host and cache a server and
session, as well as multiple sessions.
You can switch between buffers and
sessions using the function keys
and split the views horizontally or
vertically many times between buffers.
This means that you can configure
WeeChat to show many channels at
once, usually more efficiently than you
can with a GUI application, and switch
between them using the function keys.

You can enable some to show the nick
list, and some to not, and save multiple
screen layouts and configurations with
the same commands you use within
the app itself. We also love the instant
keybinding and the spellchecking that
can highlight spelling errors on the
editing line, and the Tab command
completion that works for internal
parameters. It all works brilliantly.

Many of the IRC clients we’ve looked
at support scripting, but WeeChat has
taken this to a new level. Type /script
and the display lists hundreds of scripts
that have been written and can be
installed and activated in-place. Almost
everything has been thought of. There’s
a variety of different notification
systems, which is important as there’s
no desktop integration. You can run
shell commands from within your IRC
sessions, and even play Snakes or Tetris.

Working with both Irssi and WeeChat
are a little like working with Emacs and
Vim – you have to go through a
considerable learning curve and use
IRC regularly enough to keep what
you’ve learnt in your local cache. But if
you do, you’ll find both more productive
and efficient than their GUI equivalents.

These applications are always going
to be a tough proposition for GUI users
as beginners to IRC, but they’re also a
reminder of why the terminal is still so
important even today, and why, in many
ways, it’s likely to outlast the desktop in
its usefulness.

VERDICT
WeeChat …then if you
find yourself needing
more control, perhaps
level-up to WeeChat.

“Irssi has been around for a
long time and is the default
choice for many CLI users.”

Irssi Smart and simple
to use. If you think you
might like CLI IRC, try
this first…

LV007 054 Group Test.indd 58 07/08/2014 20:57

 IRC CLIENTS GROUP TEST

www.linuxvoice.com

W ithout exception, each
client we’ve looked at
has a reason for it to be

chosen as our favourite. Quassel, for
example, has the best no-fuss
separation option for client and
server. It means you could run the
core on a Raspberry Pi, for example,
and catch up with your channels
whenever you’re connected. Several
other clients offered similar
features, but only Quassel combined
this with what we consider a
powerful GUI.

If we were to choose a GUI
application, and we should to try to

encourage new people to use IRC,
we’d go with Konversation. Apart
from a lack of scripts and
extensions, we found it to be the
most powerful desktop application.
It did everything we asked for, and
after getting our heads around the
identities for networks, we found it
easy to configure in even complex
and bespoke IRC setups (which we
use for putting the magazine
together). The GUI can be
subverted into almost any
appearance, and there were easily
accessible functions for filtering the
most common chat annoyances,
as well as watching nicks for

1st WeeChat
Licence GPLv3 Version 0.4.3

weechat.org
Yep, it’s a terrible name. But whenever have we let that get in
the way of great software?

OUR VERDICT
activity – which is something we
often want to do. The tabbed
interface also makes it great for
managing a large number of
channel connections at once.

But we’re not going with
Konversation. We have to admit
we’re smitten by WeeChat. In our
opinion, it’s the Arch of IRC clients.
Its forums are not friendly to
newbies, and it’s slightly bewildering
to get started with. But we think it
offers enough of an advantage on
the command line that it’s worth
ditching the desktop for.

When you add all the advantages

that the terminal brings for free –
such as persistent screen sessions
on a Raspberry Pi server, or
low-bandwidth access from almost
any SSH client, we think WeeChat is
the best client to grow into. It’s got
the same feeling of liberation you
get if you switch from a GUI email
client to Mutt, or start using Bash
more, but without sacrificing any
function. Let us know if we’ve
missed your favourite client out and
we’ll make sure we mention it next
time. Why not let us know on our
own IRC channel? You can find us
as #linuxvoice on Freenode. See
you there!

2nd Konversation
Licence GPLv2 Version 1.5

konversation.kde.org
This is our favourite option if you’re looking for the most
powerful GUI client.

3rd Quassel
Licence GPLv3 Version 0.10.0

quassel-irc.org
If you want to experiment with a simple graphical client–server
setup, try this option first.

4th Irssi
Licence GPL Version 0.8.16

irssi.org
If WeeChat is over-engineered and you need something on the
terminal, Irssi is the best.

5th smuxi
Licence GPL Version 11.0.0

smuxi.im
It’s incredible that such a brilliant app can come fourth in our
list, but that’s only because they’re all so good.

6th XChat
Licence GPL Version 2.8.8

xchat.org
The same can be said for XChat. It’s a great little app that works
perfectly and is perhaps the best place to start with IRC.

59

A splittable view, in-line spell checking, inotify and hundreds of
hot-pluggable scripts – WeeChat is difficult to beat.

IRC Clients

“WeeChat offers enough of an advantage
that it’s worth ditching the desktop for. ”

YOU MAY ALSO WISH TO TRY…
There are so many IRC clients, it’s
difficult to know where to start.
You can coerce Pidgin into talking
IRC, for example, and if you’re a
KDE user, KVirc is rather excellent.
It will already be included in many
KDE-centric distributions, so you
won’t need to do anything more to
try it out. We missed this out purely

because we were already looking at
two KDE-based applications and we
thought three would be too many.
Also worth a look is the old Mozilla
client, ChatZilla, which works
perfectly well and is very easy to
use, especially alongside Firefox.
It’s still being developed and needs
to be installed as a Firefox addon.

LV007 054 Group Test.indd 59 07/08/2014 20:57

www.linuxvoice.com

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

60

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

LV007 060 Subs.indd 60 07/08/2014 21:03

NEXT MONTH

www.linuxvoice.com

Whatever your level of technical ability, you
can create a Linux distribution tailored to
your exact needs. Do it – feel the power, the
mastery, and build the perfect Linux for you.

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

BUILD YOUR OWN DISTRO

EVEN MORE AWESOME!

Without Reduced
Instruction Set
Computing (RISC)
and ARM, the
smartphone enabled
world would not
exist. Thanks,
Sophie WiIlson…

The birth of ARM

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, Blue
Fin Building, 110 Southwark Street, London,
SE1 0SU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until May 2015 when all content (including
images) is re-licensed CC-BY-SA.
©Linux Voice Ltd 2014
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

Be inspired by the
clever, creative
things that people
just like you are
doing right now with
free software. Damn,
us humans are
brilliant sometimes.

Get your hack on

Tiny Linux-powered
satellites are in
low-Earth orbit,
building up an open
data map of the
globe. Find out who,
how and why they’re
running Ubuntu.

Space

ON SALE
THURSDAY

25 SEPTEMBER

LV007 060 Subs.indd 61 07/08/2014 21:03

LV007 062 AD Matrix.indd 62 08/08/2014 11:07

LV007 062 AD Matrix.indd 63 08/08/2014 11:07

CORETECHNOLOGY

www.linuxvoice.com64

Last issue we implemented a simple
server using the TCP protocol, which
turned any string you typed into it into

upper case letters. While the following
examples should make sense on their own,
we’ve put that article up as a PDF at
www.linuxvoice.com/coretech06/ so you
can read it alongside this month’s.

This month I want to re-cast this server to
use UDP. In some ways it’s simpler than TCP
– there are no connect or accept operations.
I’ve drawn a flowchart that shows the typical
sequence of operations for a UDP-based
service. Here we see a single server

interacting with two clients. The server has a
single endpoint (UDP socket) and may well
find itself retrieving datagrams from several
clients in an arbitrary, interleaved order. If the
server is stateless (that is, if it does not need
to remember anything from one client
interaction to the next) then this does not
present a problem. The server simply reads
a request, formulates a reply, returns it to the
client, then forgets about it. Classic UDP-
based services such as DNS are stateless in
this sense.

Things get more complicated for servers
that maintain state. One approach is to

UDP: Get plugged in
Peek inside your machine to find out how it transmits data packets.

A connectionless server interacts with multiple clients using a single socket.

CORE
TECHNOLOGYA veteran Unix and Linux

enthusiast, Chris Brown has
written and delivered open
source training from New Delhi
to San Francisco, though not on
the same day.

parcel up the per-client state information
into a structure, and place them into some
sort of indexed data structure that uses as
its search key a composite value formed
from the client’s IP address and port
number. Another approach is for the server
to create a child process for each client it
finds itself dealing with. Each child can
create a new UDP socket, whose port
number is duly reported back to the client,
and which is used by the client for the
remainder of the interaction. The TFTP
(Trivial File Transfer) server works this way,
for example.

The power of Python
Most of our code examples this month are
in Python, because Python hides some of
the fiddly data structures that would be
exposed if we wrote them in C. So here’s a
UDP version of our upper-case server:
import socket
port = 4444
s = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)
s.bind((“”, port))
while 1:
 data, addr = s.recvfrom(1024)
 s.sendto(data.upper(), addr)

Pretty simple, huh? We create a socket
and bind our “well-known” port to it. Then we
enter our service loop, retrieving messages
from clients, converting them to upper case,
and sending them back. Last month, in
showing the equivalent code for a TCP
server, I briefly made the point that the
server doesn’t really need to know the
address of the client, unless it wants to use
it for logging or access control. Here it’s
different -- we definitely need the address of
the client’s endpoint (addr in the example) so

Dive under the skin of your Linux system to find out what really makes it tick.

Server

Client 1

Create
socket

Create
socket

Bind a port number
to the socket

Receive datagram

Send reply

Send datagram

Receive reply

Receive datagram

Send reply

Receive reply

Send datagram

Client 2

Create
socket

Peer-to-peer architecture using UDP broadcasts

LV007 064 Core Tech.indd 64 08/08/2014 11:10

CORETECHNOLOGY

www.linuxvoice.com 65

that we know where to send the reply.
Python’s dynamic typing is hiding a little
complexity here, because addr is actually a
(host, port) pair. See the box above if you
would like to build and test this server. We
could write a little Python program to act as
a client to our upper-case server, but let’s
switch to a different example. There is an
ancient UDP-based service called daytime,
which listens on port 13 and simply sends
back a string with the current time and date.
It’s a sort of speaking clock but without the
speaking. This service is implemented by a
daemon called xinetd; the box below shows
how to install and enable it.

Once the daytime service is up and
running, we can write a client for it. Again
using Python, it looks like this:
#!/usr/bin/python
UDP daytime client
import sys
import socket
Get server host name from command line
host = sys.argv[1]
port = 13
s = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)
Send an empty datagram to wake the server up
s.sendto(“”, (host, port))
data, addr = s.recvfrom(1024)
print “time from”, addr, “ is “, data

And we can run it like this:
$ chmod u+x daytimeclient.py
$./daytimeclient localhost
time from (‘127.0.0.1’, 13) is 01 JUL 2014 10:26:42
BST

Notice how Python automagically
converts the client address into a printable
(host, port) representation.

Broadcasting
One thing that you can do with UDP sockets
that you cannot do with TCP is
broadcasting. That is, you can send a single
copy of a message and have it received by
many listeners. The constraints are that all
the listeners must be using the same port,

and they must all be on the same network,
because routers and gateways are almost
never configured to pass broadcast traffic.
There isn’t a lot to it really; you have to
explicitly enable broadcasting on the socket,
and use a special destination host address
of “all ones”, or 255.255.255.255 in dotted
decimal notation.

The example presented here is both a
client and server all rolled into one. The idea
is that the client piece periodically generates
an item of data, which it broadcasts. The
server piece receives the broadcasts and
displays the item of data. For simplicity the
‘item of data’ is a simple randomly generated
integer, but could be something more
interesting in the real world – a weather
forecast or a stock price, perhaps.

The code here is in C, and it looks more
complicated than the Python examples
we’ve seen so far, but conceptually it’s
not really any harder. As always, the line
numbers are for reference; they are not part
of the code:
 1 #include <stdlib.h>
 2 #include <netdb.h>
 3 #include <stdio.h>
 4 #include <arpa/inet.h>
 5
 6 #define UPDATE_PORT 2066
 7
 8 void main ()
 9 {

10 int sock; /* Socket descriptor */
11 struct sockaddr_in server; /* Broadcast address
*/
12 struct sockaddr_in client;
13 int client_len, yes = 1;
14 int value;
15
16 /* Create a datagram socket and enable
broadcasting */
17 sock = socket (AF_INET, SOCK_DGRAM, 0);
18 setsockopt (sock, SOL_SOCKET, SO_BROADCAST,
(char *) &yes, sizeof yes);
19
20 /* Bind our well-known port number */
21 server.sin_family = AF_INET;
22 server.sin_addr.s_addr = htonl (INADDR_ANY);
23 server.sin_port = htons (UPDATE_PORT);
24 bind (sock, (struct sockaddr *) &server, sizeof
server);
25
26 server.sin_family = AF_INET;
27 server.sin_addr.s_addr = 0xffffffff;
28 server.sin_port = htons (UPDATE_PORT);
29
30 /* Create an additional process. The parent acts
as the client,
31 periodically broadcasting values to anyone who
happens to be
32 listening on port 2066. The child acts as the
server,
33 receiving the broadcasts and displaying the
data.
34 */

Try It Out – Create a UDP server
To create and test the upper-case server, place its
code in a file called ucserver.py.

To test the server, start it in one terminal window:
$ python ucserver.py

Now we can open a second terminal and test
server using the the jack of all trades nc (network
client) command:
$ nc -v -u localhost 4444
Connection to localhost 4444 port [udp/*] succeeded!
XXXXXThis is a test
THIS IS A TEST

it works!
IT WORKS!
^C

The XXXXX string appearing in the output above
is an artifact resulting from a series of probe
datagrams that nc apparently sends to the server
(and which our server duly echoes back). The
connection suceeded message is a little confusing;
this is UDP and there is no connection as such.
If you omit the -v (verbose) command option you
won’t see the X’s or the message. But we can

clearly see that messages we enter are returned in
upper case – our server is working.

We can extend the experiment. Leave the nc
program running in the second terminal window,
open a third terminal window and run the same
nc command there as well. You should find that
you can interact with the server via both windows.
That’s the simplicity of a connectionless service;
you don’t need any multi-processing or multi-
threading or other fancy tricks in the server to get
concurrent operation with multiple clients.

Try It Out – Install the daytime service
To get the daytime service running we first need
to install xinetd (this is on Ubuntu, but the story
should be similar on other distros):
$ sudo apt-get install xinetd

Even if xinetd were already installed, the
daytime service is probably disabled. So, edit
the file /etc/xinetd.d/daytime, find the stanza
that relates to the UDP version of the service and
change the line disable = yes to read disable = no.
Now restart xinetd:
$ sudo invoke-rc.d xinetd reload
(On a Red Hat-style system you would need

service xinetd restart instead.) Now verify that the
daytime server is listening:
$ sudo lsof -i | grep daytime
xinetd 27465 root 5u IPv4 165011 0t0 UDP
*:daytime

If you don’t see an encouraging line of output
here, you’ll need to investigate before moving
forwards. We can test this service using nc again:
$ nc -u localhost daytime
01 JUL 2014 10:16:20 BST

You will need to send the daytime server a
datagram of some sort (just enter a blank line).

LV007 064 Core Tech.indd 65 08/08/2014 11:10

CORETECHNOLOGY

www.linuxvoice.com66

35 if (fork ())
36 { /* PARENT (client) here */
37 while (1)
38 {
39 value = rand () % 1000;
40 /* Broadcast update packet to servers */
41 sendto (sock, (char *) &value, sizeof value, 0,
42 (struct sockaddr *) &server, sizeof
server);
43 sleep (1);
44 }
45 } /* End of parent (client) code */
46
47 /* ---
*/
48
49 else
50 { /* CHILD (server) here */
51 /* Enter service loop, receiving values and
displaying them */
52 while (1)
53 {
54 /* Receive an update packet */
55 client_len = sizeof client;
56 recvfrom (sock, (char *) &value, sizeof value,
0,
57 (struct sockaddr *) &client, &client_len);
58
59 /* Display the broadcast value and where it
came from */
60 printf (“got %3d from %s\n”, value, inet_ntoa
(client.sin_addr));
61 }
62 } /* End of child (server) code */
63 }

Now there’s quite a bit of code here,
and some of it is messy. So grab a brown
paper bag (so that you can breathe into it
for a bit if you start to panic) and let’s work
through it. First, the declarations at lines
11 and 12 refer to the endpoint addresses
used for sending and receiving. (The
name sockaddr_in means ‘internet socket

address’. When I first met this years ago
I thought that the “in” meant “input”, and
spent some time looking for a sockaddr_out,
which my sense of symmetry told me must
be there, like the Higgs Boson. But I digress.)

At line 17 we create our socket and at line
18 we set the SO_BROADCAST option on
it. Just look at the hoops we have to jump
through to pass in a Boolean TRUE value.

Lines 20–24 bind our chosen port number
(2066) to the socket. At lines 26–28 we
re-use the ‘server’ structure to hold the
broadcast address. Notice the 0xffffffff
value, which is the “all ones” of the broadcast
address.

Now we get cunning, rolling the client
and server pieces of the application into
one program by creating another process.
The parent process (lines 37–45) is the
client. Once a second, it generates a
random integer value, and broadcasts it in
a tiny 4-byte datagram. The child process
(lines 52–62) is the server. It receives the
broadcast packets and prints out each value,
along with the IP address of the client that
sent it. The important thing to keep in mind
here is that this loop is not only receiving
the broadcasts from its own client, it will
also receive the broadcasts from all other
instances of the client running elsewhere on
the network.

Raw sockets
I won’t inflict any more code on you this
month, but I wanted to wrap up by
mentioning two more socket types. First,

raw sockets enable an application program
to reach right down to the IP layer and
‘hand-craft’ the headers of whatever the
overlying protocol is. For example, the port
scanner Nmap uses raw sockets to build
non-conformant TCP headers for its own
special purposes. As another example, ping
(which sends and receives ICMP packets)
also uses raw sockets. On Linux, the rule is
that only processes running with root
privilege can use raw sockets. This is a
security precaution, because a program
using raw sockets can intercept all traffic
entering the system. A common way to deal
with this is to have the program run “set UID
to root”. This enables it to create its raw
socket, then drop its privilege back to a
non-root user. If you look at the ping
program for example, you’ll find it runs
setuid for this reason:
$ ls -l /bin/ping
-rwsr-xr-x 1 root root 44168 May 7 22:51 /bin/ping

Notice the s in the permissions.

Staying in the Unix domain
We’ve focussed here on sockets in the
internet domain, which means that (among
other things) the socket is identified by an IP
address and a port number. But there are
other naming domains for sockets; in

The Berkeley sockets library, dating from 1983,
remains the standard sockets API to this day.

Get the code
A tarball of the programs used in this tutorial
can be downloaded from www.linuxvoice.com/
mag_code/lv07/coretech007.tar.

Create
socket

Multiple instances of our ‘update’ program broadcast
to each other in a peer-to-peer relationship.

update

update

update

Parent (client)
Generate
 update

Child (client)
Receive and

display update

Local
Network2066

2066

2066

Timeline for connectionless server

LV007 064 Core Tech.indd 66 08/08/2014 11:10

CORETECHNOLOGY

www.linuxvoice.com 67

particular, the so-called “Unix domain
sockets” are identified by a name within the
filesystem. You can find all of these with the
command:
$ sudo find / -type s

A classic example is /dev/log, which
syslog (or rsyslog) uses to collect log
messages from local applications. But you
will probably find many others.

There’s no command for creating a
named socket analogous to mkfifo for
creating named pipes. Your server creates
the socket and binds the name to it, and
your client needs to know that name in
order to connect. Unix domain sockets only
support communication between processes

running on the same machine. There are
also anonymous Unix domain sockets
created with the socketpair() system
call; these are somewhat similar to good
ol’anonymous pipes (see Core Technologies

in LV005) but unlike pipes, which are
unidirectional, a socket pair is bidirectional.
Also, you can create both stream and
datagram socketpairs, whereas pipes are
inherently stream-oriented.

My command of the month is dig.
According to its man page it stands for
“domain information groper”, though that
sounds like a retrofitted acronym if ever I
heard one! Anyway, dig is a command-line
tool for performing DNS queries.

In my view, dig has two main uses. First,
you can use it to test your DNS service.
Second, you can use it as an exploration
tool. It’s this second use we’ll focus on here.
We’ll use Linux Voice’s own site as a target
for our exploration. First let’s just find the IP
address of the website; this is the simplest
type of lookup:
$ dig www.linuxvoice.com
;; QUESTION SECTION:
;www.linuxvoice.com. IN A
;; ANSWER SECTION:
www.linuxvoice.com. 600 IN CNAME linuxvoice.
com.
linuxvoice.com. 600 IN A 213.138.101.172

I’ve edited a lot of detail from this output
but you’ll see it shows that we requested
an ‘A’ record from DNS for the name www.
linuxvoice.com. (‘A’ records are the records
in DNS that map machine names to IPV4
addresses.) What we actually got was a
CNAME record (an alias, in effect) pointing
to the name linuxvoice.com. Dig then kindly
looked up the A record for linuxvoice.com,
finally reporting the IP address.

There are command-line options for dig
that control how much output we see. For
example, +noquestion suppresses the
question section from the output. You can
turn off other output sections using options
such as +nocomments, +noauthority,
+noadditional and +noanswer, or you can
turn everything off using +noall and then

explicitly enable the sections you want
to see. For example, this shows just the
ANSWER section:
$ dig ubuntu.com +noall +answer
; <<>> DiG 9.9.5-3-Ubuntu <<>> ubuntu.com +noall
+answer
;; global options: +cmd
ubuntu.com. 577 IN A 91.189.94.156

If there are options you always want to
specify, just put them into ~/.digrc. For
example, if you put this line into the file:
+noall +answer
then by default your dig queries will only
show the ANSWER section.

The +short option really cuts to the chase
and shows just a bare-bones response:
$ dig +short linuxvoice.com
213.138.101.172

Dig deeper
Next let’s investigate who handles mail for
the linuxvoice.com domain. For that we
need to get the MX (Mail Exchanger) record:
$ dig +short linuxvoice.com mx
10 smtp.linuxvoice.com.
$ dig +short smtp.linuxvoice.com
213.138.101.172

So… mail is handled by a machine called
smtp.linuxvoice.com, and it turns out that
this is the same machine (same IP address)
as the web server. So, Linux Voice apparently
hosts its own web and mail servers on a
single machine. No surprises there.

Let’s try a reverse lookup on that machine.
That is, let’s look up the PTR record for that
IP address and convert it back to a machine
name. The PTR records are stored under
the in-addr.arpa domain, and because DNS
names are written in a “little endian” form,

Command of the month: dig
we end up with the four octets of the IP
address reversed. So here’s the hard way to
do the lookup:
$ dig +short 172.101.138.213.in-addr.arpa ptr
mainsite.default.linuxvoice.uk0.bigv.io.

An easier way is to use the -x option of
dig, which lets us enter the IP address in the
usual format:
$ dig +short -x 213.138.101.172
mainsite.default.linuxvoice.uk0.bigv.io.
What’s interesting is that the IP address is
allocated to a machine in the bigv.io
domain. A quick search reveals that BigV is
a virtual machine hosting provider – now we
know who Linux Voice uses to host its site.

A handy tool for stalkers
Let’s try something a little different, by
asking DNS where its root name servers are:
$ dig +short . ns
f.root-servers.net.
i.root-servers.net.
d.root-servers.net.

Here, ns means we’re looking for name
server records and . refers to the top level
domain. It is analogous to / in a filename,
which names the root directory (the top-level
directory) in a filesystem. I’ve cut the output
down again; there are actually 13 root name
servers, I’ve shown only three.

By default, dig consults the file /etc/
resolv.conf to figure out which name server
to consult, just as normal DNS lookups
do. But we can direct dig to a specific DNS
server like this:
$ dig @8.8.8.8 +short jamieoliver.com
85.233.160.22

Here, 8.8.8.8 is the IP address of Google’s
public DNS service.

Try It Out – Build a peer-to-peer update service
If necessary, install the gcc compiler:
$ sudo apt-get install gcc

Enter the code into a file called update.c and
compile it:
$ gcc update.c -o update

Run it like this:
$./update
got 383 from 192.168.1.69
got 649 from 192.168.1.73

got 886 from 192.168.1.69
got 421 from 192.168.1.73

To do a meaningful test you’ll need to copy the
executable across onto at least one other machine
on the same network, and run it there as well. (You
can’t run multiple instances on the same machine
-- why not?) In the output above, you’ll see that
we’re receiving interleaved broadcasts from two
machines.

LV007 064 Core Tech.indd 67 08/08/2014 11:10

FOSSPICKS

www.linuxvoice.com68

Here’s the standard output for vmstat – not very interesting, right?

With Web VMStat,
resource usage is
shown in a much clearer
and prettier manager.
Look at the smooth
curves!

Sparkling gems and new
releases from the world of
Free and Open Source Software

Mike Saunders has spent a decade mining the internet for free
software treasures. Here’s the result of his latest haul…

Many distros, especially
those targeted at
advanced users, ship

with shiny system monitoring tools
on the desktop. Conky is one such
tool, while GKrellM was all the rage
in the last decade, and they are
genuinely useful for keeping tabs
on your boxes, especially when
you’re an admin in charge of
various servers.

Now, pretty much all major
distros include a useful command
line tool for monitoring system
resource usage: vmstat. Enter
vmstat 1 in a terminal window and
you’ll see a regularly updating (once
per second) bunch of statistics,
showing CPU usage, free RAM,
swap usage and so forth. It’s all
very useful, but it has one major
problem: it’s ugly. Very ugly. Sure,
most admins don’t care about
fancy bells and whistles, but the
information could be presented in a
more readable and clean fashion.

FOSSpicks

Here’s where Web VMStat comes
in. It’s a system monitor that runs
an HTTP server, so you can connect
to it via a web browser and see
fancy CSS-driven charts. Before you
install it, you’ll need to get the
websocketd utility, which you can
find at https://github.com/
joewalnes/websocketd. Helpfully,
the developer has made pre-
compiled executables available, so
you can just grab the 32-bit or
64-bit tarball, extract it and there
you have it: websocketd. (Of course,
if you’re especially security
conscious, you can compile it from
its source code.)

Next, clone the Web VMStat Git
repository (or grab the Zip file and
extract it). Go into the directory and

copy the aforementioned
websocketd into the same place.
Then just enter:
./run

And that’s it – Web VMStat has
started an HTTP server on port
9231, so you can access that in
your browser (eg http://
localhost:9231). Straight away,
you’ll see that the charts are
smooth and silky, with processes,
CPU, memory, IO and swap usage
depicted. Hover your mouse over
the numbers for more detailed
descriptions.

In all, Web VMStat is a simple way
to keep an eye on servers on your
network without having to log in to
them. You could create a bookmark
group for a bunch of machines, for
instance, and open them up in tabs
for a quick glance of how they’re
performing. And all the information
is gathered by the ‘real’ vmstat tool,
so you know it’s legit.

Web VMStat
Shiny statistics in a browser

PROJECT WEBSITE
https://github.com/joewalnes/
web-vmstats

“Web VMStat is a way to keep an
eye on servers on your network
without having to log into them.”

LV007 068 Fosspicks.indd 68 07/08/2014 21:54

FOSSPICKS

www.linuxvoice.com 69

NetBSD 6.1.4

Although NetBSD’s base
system is very minimal,
you can spruce it up
with most common
desktop apps included
in Linux distributions.

Back on page 38, our FAQ
looked at the BSD family of
operating systems, so

hopefully that has whetted your
appetite sufficiently to try one. We
thought we’d look at NetBSD here.
It’s the most ported of the BSDs,
running on over 50 hardware
platforms (www.netbsd.org/ports).
“Big wow”, you might say. “Linux
runs on everything from
supercomputers to wristwatches”.

True – but many of these ports
are in unofficial source code
branches, not always remaining
up-to-date with the mainline kernel.
In NetBSD, everything is built from
the same source tree, and this often
helps with the overall stability and
security of the OS.

Anyway, NetBSD for x86 and
x86-64 is available in CD ISO (eg
NetBSD-6.1.4-i386.iso) and USB
flash drive (NetBSD-6.1.4-i386-
install.img.gz) formats. For the
former you can write it to a CD-R
and boot it on a real machine, or try
it in VirtualBox. The latter can be
written to a flash drive with the
usual dd command (see http://
tinyurl.com/bsdusbinstall).

When you boot it up, you’ll see a
text mode installer akin to those of
Debian and Slackware. It’s menu
driven, so it’s a bit simpler to
navigate than the installer in
OpenBSD, and experienced Linux
users won’t have major troubles

understanding it. Some terminology
in the BSD world is considerably
different though: for instance, hard
drive devices tend to be called wd0
(for the first), wd1 (for the second)
and so forth.

Also, NetBSD installations
normally use one large primary
partition on the hard drive, which is
then split up into sub-partitions for
root (/), the home directories, swap
space and so forth. The installer
provides plenty of help about this,
but if you’re unsure, run through the
installation in a virtual machine
before trying it on a real box!

Bare-bones setup
After the first boot from the hard
drive, you can log in as root with no
password. NetBSD is in a very bare
state here, but fortunately there’s an
excellent manual page describing
the next steps to take. Enter man
afterboot and you’ll see a helpful
guide to changing the root
password, setting up a normal user
account, configuring the network
(enabling DHCP on boot) and so on.
Documentation in the BSD family is
largely superb, and if the afterboot
page doesn’t help you with

something, it’s almost certainly
covered in the extensive guide at
www.netbsd.org/docs/guide/en/
index.html.

Try entering startx to fire up the X
Window System; if that fails, these
commands (as root) should help by
providing a fresh X configuration:
X -configure
mv xorg.conf.new /etc/X11/xorg.conf

After running startx now, you’ll
land at a completely unremarkable
TWM desktop. NetBSD doesn’t try
to second guess what you want,
however, so you can start adding
applications like so:
export PKG_PATH=”http://ftp.netbsd.org/
pub/pkgsrc/packages/NetBSD/i386/6.1.4/
All/”
pkg_add -v xfce4 firefox24

Again, check out the superb
online guide for more information.

Operating system

“In NetBSD everything is built from
the same source tree, which helps
with stability and security.”

How it works: Installing NetBSD

Boot
Boot your PC or VM from the CD or USB key,

and a bunch of green NetBSD kernel messages will
whizz by. After a few moments, you’ll arrive at the
installer; use the cursor keys and Enter to navigate.

1 Choose sets
You’ll be asked which ‘sets’ should be installed.

These are groups of software, such as development
tools and the X Window System – in most cases, it’s
best to choose Full Installation.

Finish
After you’ve partitioned the drive (you can give

NetBSD the whole disk for simplicity’s sake), the OS
files will be copied over, and you can reboot into your
shiny new installation.

2 3

PROJECT WEBSITE
www.netbsd.org

LV007 068 Fosspicks.indd 69 07/08/2014 21:54

FOSSPICKS

www.linuxvoice.com70

FVWM-Crystal takes the
ultra configurability of
FVWM and puts a shiny
layer on top.

Rant mode activated: there’s
a lot of NIH (Not Invented
Here) syndrome in the

software development world. Too
many programmers would rather
write something from scratch just
to say they’ve done it, than use or
improve a mature and existing
project. Nobody has the right to
dictate how FOSS developers
spend their time, but we like to see
people working more constructively,
reducing duplicated effort.

So we love FVWM-Crystal: it’s a
gorgeous, shiny and functional
desktop that hasn’t written
everything from the ground up. No,
instead it uses FVWM, one of the
oldest (and ugliest) window
managers in existence.

FVWM-Crystal takes this
venerable WM and adds layers of
polish. When you start it, you’ll
notice (in the default configuration)

that there’s a program launcher bar
in the top-left, workspace switcher
in the top-middle, and taskbar along
the bottom. Right-click on the
desktop and a terminal window will
appear. The program launcher has
a series of icons that open
submenus for different categories
of applications, while the crystal
button in the far top-left has a menu
for tweaking FVWM’s settings.

If you’re used to graphical dialogs
for configuring every part of your
desktop, you might find FVWM-
Crystal somewhat limiting – you
have to spend a lot of time poking
around in text files. On the other
hand, this makes it somewhat
easier to back up and move your
configuration across multiple
machines, so once you’ve fine-
tuned everything to perfection, you
can keep your desktop pixel-perfect
regardless of your distro.

Much of the documentation for
the FVWM applies to FVWM-Crystal,
and on the FVWM-Crystal website
you’ll see that the Documentation
tab holds some resources such as
an FAQ and tips page. (If you want
to see what a standard FVWM setup
looks like, just choose it from your
login screen, it will be installed via
the FVWM-Crystal package.)

FVWM-Crystal 3.3.2
Prettified classic window manager

Copying a file in one terminal and seeing its progress with Cv in
another – we see that it’s 74.2% complete.

You might not have heard of
Coreutils before, but it’s an
essential part of every major

Linux distribution. It’s a software
bundle from the GNU project that
provides all the little tools you use
at the command line – ls, rm, cp
and so forth. While the GNU
Coreutils programs are regarded as
the most featureful in the Unix
world, they still have some
limitations. It’s not easy to see the
progress of some commands, for
instance, which can be annoying
when you’re performing a large file
operation and want to know how
much time is remaining. Cv, the
Coreutils Viewer, is a tiny program
that fixes this, showing statistics for
running commands.

To install it, clone the Git
repository (or just download the Zip
file from the project’s website) and

run make and make install (the
latter as root) inside the directory.
Now run a few commands that will
take a while to execute, such as
copying a multi-gigabyte file. In
another terminal, run cv and you’ll
see the PID (process ID) of the
command, along with a percentage
value showing how close it is to
completion.

Cv can probe running instances
of these tools: cp, mv, dd, tar, g(un)
zip, cat, grep, cut and sort. If you add
the -w flag to the cv command, it
will try to work out the I/O
throughput of the file operation and
show an estimated time for
completion – but, of course, this

can vary depending on your system
load. Another useful flag is -m,
which runs cv in monitoring mode;
this shows updated statistics every
second, until the file operation
completes.

Cv 0.4
Command progress viewer

“Cv is a tiny program that shows
statistics for running commands.”

PROJECT WEBSITE
http://fvwm-crystal.sourceforge.net

PROJECT WEBSITE
https://github.com/Xfennec/cv

LV007 068 Fosspicks.indd 70 07/08/2014 21:54

FOSSPICKS

www.linuxvoice.com 71

Here’s the output of ps
aux being piped through
Percol – we’ve entered k
here to narrow the list
down a bit.

Last issue, we looked at a
classic tome called The Unix
Programming Environment. At

the start of this book, the authors
outline the Unix philosophy, stating:
“Many Unix programs do quite
trivial things in isolation, but,
combined with other programs,
become general and useful tools.”

Percol adheres to this philosophy
– it doesn’t appear to do anything
useful on its own, but combined
with other tools it turns out to be
rather useful. It’s essentially an
interactive filter for text, so you pipe
some data into it, type some letters
to narrow down the selection, and it
spits out the resulting selection to
stdout. You can install it with pip
install percol, or if you grab the
code from GitHub, sudo python
setup.py install.

To get a feel for how Percol
works, use it to view a text file, eg:

percol /boot/grub/grub.cfg
This will show the entire contents

of the file, with a prompt at the top.
Start typing some characters,
though, and you’ll see that the
display is narrowed down to lines
containing the text that you’ve
entered. Use the cursor keys to
select a line, hit Enter, and you’ll see
that the line’s text is printed at the
shell prompt.

By combining Percol with other
commands, we can provide a level
of interactivity. Look at this:
ps aux | percol | awk ‘{ print $2}’ | xargs kill

Here we’re generating a list of
processes with the ps command,
and piping them into Percol (as in
the screenshot). In the percol part,

we can type the name of a process
and use the cursor keys to select a
specific line. After you hit Enter, awk
pulls out the PID (process ID) part of
the text, and passes it on to the kill
command via xargs. So ultimately
you have an interactive process
killer, without any coding – just by
linking tools together. If you do a lot
of Bash scripting, you’ll find plenty of
ways to add interactivity to your
scripts with this.

Percol
Interactive filtering

“Combined with other tools, Percol
turns out to be rather useful.”

Web application
frameworks – such as
Django and Zope – can
be daunting for
beginners, but Bottle is
a friendly way to get
started.

If you’re new to web
development and want to give it
a try without all the layers of

complexity – then Bottle is a sound
choice. It’s a “micro web
framework”, helping you to create
small web apps with relatively few
lines of code.

To install it, just run pip install
bottle and Python’s built-in package
manager will retrieve the code.
Failing that, you can grab the
source code from https://pypi.
python.org/pypi/bottle. Bottle has
no dependencies other than the
standard libraries that ship with
Python, so you don’t need to bloat
your system with piles of extra
cruft. Once you have it installed, test
it out with this Python script:
from bottle import route, run, template
@route(‘/hello/<name>’)
def index(name):

 return template(‘Hello {{name}}!’,
name=name)
run(host=’localhost’, port=8080)

Now visit http://localhost:8080/
hello/you in your browser, and you’ll
see a message. There you have it
– a web application in just 5 lines of
code! OK, so this is totally trivial
right now, but it shows you how to
get started.

Bottle has a built-in template
engine and can also use Mako,
Jinga2 and Cheetah templates. It
provides easy ways to access and
manipulate data from forms, file
uploads, cookies and HTTP
headers. And along with the
supplied web server, it can also use
other WSGI-capable servers such
as Python Paste, Bjoern and Google
App Engine.

Of course, one of the most
important features of any

framework is the documentation,
and Bottle does a very respectable
job here. The PDF at http://
bottlepy.org/docs/dev/bottle-
docs.pdf includes tutorials and
reference guides, with plenty of
sample code, and the text is clear
and well-written. Even though Bottle
is only at version 0.12/13, it’s
showing a lot of potential.

Bottle 0.12
Python web framework

PROJECT WEBSITE
https://github.com/mooz/percol

PROJECT WEBSITE
www.bottlepy.org

LV007 068 Fosspicks.indd 71 07/08/2014 21:54

FOSSPICKS

www.linuxvoice.com72

Different urgency levels
have different colours,
and you can see for how
long a notification has
been displayed.

Most desktops (and many
window managers)
include a notification

system, allowing applications and
background daemons to pop up
important information. The system
might show you when your laptop
battery is getting low, for example,
or when someone comes online in
your instant messaging service.

Now, if you’re happy with your
desktop’s notification system, great.
But if not, or you’re interested in
dabbling in a tiling window
manager (as covered in last issue’s
group test), then you’ll need an
alternative. Dunst is one of the best
we’ve seen, due to its low resource
requirements and customisability.

Extract the tarball, check out the
INSTALL file for the list of
dependencies, and then run make.
All being well, you can then run
./dunst to start the notification

daemon – or if you have one
already running, get its PID with ps
aux first, and then kill it. Now you
can create notifications like so:
notify-send -t 0 -u low “This is a test”

The -t flag here determines for
how long the notification should
appear (zero = forever), while -u
chooses the urgency level (low,
normal, critical). You might find that
the default Dunst configuration
doesn’t look very good; in this case,
copy dunstrc into ~/.config/dunst/
and edit it to your liking.

Dunst includes a bag of features
such as multiple monitor support, a
history of previous notifications,
and custom scripts that can be run
when notifications match a certain

text pattern. You can left-click to
disable a single notification or
right-click to disable all – and there
are keyboard shortcuts too. You
can even add some formatting to
your notifications, using , for
example, <u>underline tags
for a bit of variety.

One day we plan to create the
Ultimate Mega Linux Voice Desktop
Turbo Championship Edition, with a
tiling WM and various other tools,
and Dunst is sufficiently awesome
to be included.

Dunst 1.0.0
Notification daemon

“Dunst is one of the best
notification managers we’ve seen.”

Here’s MikeOS (x86)
running in Qemu on a
Raspberry Pi (ARM) in a
terminal window over an
SSH connection. It’s the
future!

Here at Linux Voice HQ, we
tend to use VirtualBox for
testing Linux distros and

other x86 operating systems, but
we’re big fans of Qemu as well. It
includes emulation for a wide range
of CPUs, including ARM, MIPS,
SPARC and PowerPC, so you can
use it to try out some very obscure
and esoteric OSes.

Qemu 2.1 was released as we
were finishing this issue, but we
managed to find time to take it for a
spin thanks to an Ubuntu PPA.
While it’s certainly possible to
compile Qemu from source, the
large range of CPU architectures
and emulated devices make the
process a long one – it could take a
few hours on older machines. (And
code that emulates processors is
always a good stress test for the
compiler.) The main dependency is

SDL to provide graphics; it’s
possible to run Qemu solely in text
mode, though, if you’re planning to
run a text-based operating system.

To run the x86 version of Qemu
with a hard drive image, enter:
qemu-system-i386 -hda drive.img -m
1024

This uses drive.img as the virtual
hard drive, and provides 1024MB
RAM to the emulated PC. Enter
qemu-system at your shell prompt
and hit Tab to see the other
platforms that are supported. Note
that on x86 systems, when
emulating an x86 machine, Qemu
can use KVM for a performance
boost – it then uses virtualisation to
pass the grunt work on to the host
CPU, rather than emulating every
CPU instruction in code.

New features in Qemu 2.1 include
support for memory hotplugging on

x86 guests, full support for USB3
passthrough devices, and AArch64
(64-bit ARM) SHA and Crypto
instruction support.

It’s a major release with many
changes all over the codebase; see
http://wiki.qemu.org/
ChangeLog/2.1 for the full list. Now,
time to dig out that old version of
Coherent Unix from 1994…

Qemu 2.1.0
Machine emulator

PROJECT WEBSITE
www.knopwob.org/dunst

PROJECT WEBSITE
www.qemu.org

LV007 068 Fosspicks.indd 72 07/08/2014 21:54

FOSSPICKS

www.linuxvoice.com 73

https://launchpad.net/pybik/

PROJECT WEBSITE
https://code.google.com/p/
micropolis/

Hooray – Tux Racer lives!
Back in the early 2000s,
this was one of the

flagship 3D games for Linux. It
was smooth, polished and had
you controlling a penguin sliding
down a mountain collecting fish…
what’s not to love?

Things are very different today
in the Linux gaming world, with
Steam and GOG providing a
stunning range of triple-A titles to
explore. So we thought that Tux
Racer had long been abandoned
and the code was suffering from
excessive bitrot, but with Extreme
Tux Racer it’s still going strong.

To compile it, you’ll need
version 1.2 of SDL and its related
mixer and image libraries; then the
standard ./configure, make and
make install (as root) procedure

will get it installed. After that, run etr
to start the game. There are two
main gameplay modes: event and
practice. In the former, you
compete in a series of cups, making
progress in Mario Kart-style. The
practice mode lets you try courses
in a less competitive environment.

Left turn, Clyde
Control-wise it’s simple stuff: use
the arrow keys to turn left and right,
press up to race faster, and down to
dig your flippers into the snow (to
slow down). It’s also possible to
jump by holding Space until the
gauge in the bottom-right is full –
you don’t get a great deal of lift
though. The 18 courses range from
very tame to full-on crazy, with
some hairpin turns, spiky
mountains and chasmic jumps

livening things up. It doesn’t have
the depth or complexity of most
commercial racing games, but it’s
still good fun, especially for kids.

FOSSPICKS Brain Relaxers

The Path of Daggers is an especially hairy course to navigate...

Extreme Tux Racer 0.6
Penguin-based slippy-slider

SimCity has been a hugely
popular franchise over the
years, with each release

adding more complexity and
variation to the gameplay. But we
still have a soft spot for the
original – and especially the
Super NES conversion which
added cheerful music and
Mario-themed add-ons. It seems
quite primitive compared to the
later games, but still has its
charms and is enjoyable to play.

Micropolis was the original
working title for SimCity, and
today it refers to a freely GPLed
version of the original source
code. This has been rewritten in
various languages; the version
we’re looking at here uses Java.
Grab the micropolisj-1.6.zip file

from the project’s website, but note
that it doesn’t extract into a
subdirectory – just the current one.
(All Zip files should extract into their
own subdirectories in our opinion
– write in if you disagree!)

But anyway. Run:
java -jar micropolisj.jar

In the middle of the screen you
have icons for building commercial,
residential and industrial zones,
along with power lines and roads/
railways to connect them. Just like
in the original, your goal is to keep
growing the population, keeping
people safe, happy and free of
pollution.

You can add natural disasters for
an extra challenge, and under the
Windows menu you’ll find
Evaluation, which shows you what

your virtual inhabitants think of
your city. They’re always
moaning about something
though: even if your city is
heaven to live in, they’ll say it’s too
expensive. Humans, eh?

Only 61% of Mikeville’s
residents are happy with
the mayor. Let’s see how
they fare when we close
the police stations…

Micropolis 1.6
City construction romp

PROJECT WEBSITE
http://sourceforge.net/projects/
extremetuxracer/

LV007 068 Fosspicks.indd 73 07/08/2014 21:54

LV007 074 Ad Privacy.indd 74 08/08/2014 14:36

TUTORIALS INTRO

www.linuxvoice.com 75

PROGRAMMING

Dip your toe into a pool full of Linux knowledge with eight
tutorials lovingly crafted to expand your Linux consciousness

TUTORIALS

Ben Everard
is wondering what the best way of sneaking an
arcade machine into his new house is.

I ’m currently packing up to move
house. This is an exciting time for a
geek because it means I’ll have a

blank canvas on which to wire my
geeky thoughts. In my current place, we
have cable TV, which doesn’t allow
much hacking, but I’ve already got the
hardware ready for a DVB-based
TV-Headend box to control the TV in my
new place.

Of course, if I’m going to have a
system set up to record TV shows, then
it may as well have NAS functionality. I
mean, it’s basically there already isn’t it?

And if I’m going to be running a
machine 24/7 for a NAS/TV tuner, well,
it would be sensible to get as much
functionality out of it as possible
wouldn’t it? I’ve got a few adaptors to
control sockets so I can turn things on
and off. It may as well include a security
camera – one that uploads footage to
an external server obviously.

Oh, and I think I’ve got a servo that
could control the cat flap quite nicely –
the cat gets in fights if he stays out at
night. Of course, the cat’s a fluffy little
Luddite and scared of anything
technological, so he might never leave
the house anyway.

If you notice my absence for a few
issues, it’s nothing to worry about.
Moving house can take a little time, as
I’m sure you can appreciate.
ben@linuxvoice.com

Data analysis
There are lies, damn lies,
and statistics. Ben Everard
doesn’t trust anyone, so
makes his own statistics
from raw data.

PyUSB
Valentine Sinitsyn rolls up
his sleeves and gets elbow
deep in some hardware
as he reverse-engineers a
device driver.

94

In this issue…

Extreme Pi
Now he’s got a new model
B+, Ben Everard’s started
conducting experiments
on his older model B to see
just how far he can push it.

Sonic Pi
Les Pounder introduces
a musical programming
language designed to
prevent the next generation
liking Justin Bieber.

76 78 82

Beginning Bash
Power up your shell, as
Mike Saunders guides
you through creating a
swanky custom prompt,
multiplexing and more.

86

Fargo 2
What’s an outliner, and why
do you need one? Marco
Fioretti introduces Fargo 2,
which helps you structure
your writing better.

90

Bash scripts
100

There’s more to Bash than
just an interactive shell. It’s

also a programming language in
its own right. However, some of
the syntax is a little archaic, and it
can get confusing. Fear not! We’re
here to help – with this beginner’s
guide to Bash Scripting, you’ll be
writing your own programs in no
time at all.

Programmer’s golf
104

It’s a simple game to see
who can write a program in

the shortest amount of code.
However, completing this task can
be fiendishly complex as you try
even more obscure methods to
shave just one or two bytes off.
Read this tutorial to find out more,
but be warned, it can be addictive.
Don’t say we didn’t warn you!

Konrad Zuse
106

As Alan Turing and his
colleagues were developing

computers for the Allied military’s
code breaking effort during World
War II, the Germans had their own
electrical engineer. Konrad Zuse,
working alone, also managed to
build calculating machines and
the first programmable computer
in continental Europe.

LV007 075 Tutorials Intro.indd 75 08/08/2014 11:12

TUTORIAL RASPBERRY PI

www.linuxvoice.com

WHY DO THIS?
• Learn the limits of your

Raspberry Pi.
• Let an old model B go

out in a blaze of glory.
• Add new features and

personalise your Pi.

Now the Raspberry Pi B+ has come out, we’ve
found ourselves with some of the original
model B’s that we’re not going to use any

more. These are still fully functional computers, so it
seems a waste to let them rot in a drawer, or worse,
throw them out. Instead, we decided to use one as a
test bed for some riskier experiments.

We didn’t break a Pi while researching this article,
but we certainly could have done. We accept no
responsibility should you slip and fry your Pi, but what
better way is there to get to know a device than to
push it to its limits?

Overclocking
Raspbian comes with raspi-config, a tool that lets you
set various configuration options for your Raspberry
Pi. One of which is the overclocking level. It has a
series of safe levels that can give you a bit of a speed
boost without damaging your Pi (though not all Pis
will work at the highest speeds). This is useful for
getting a bit more oomph, but it obviously raises the
question of just how fast you can push your Pi.

To take things further than raspi-config’s menu will
allow, you’ll need to edit the config.txt file on the boot
partition of the SD card. It’s easiest to do this after
you’ve set the Pi to Turbo overclocking (one of the
options in the config tool) since this makes most of
the options visible. You can edit this file either by
putting the SD card in another computer, or from
within the Pi with:
sudo nano /boot/config.txt

RASPBERRY PI MODEL B:
VOID YOUR WARRANTY
Now we have a shiny new B+, it’s time to try some dangerous
experiments on our old Raspberry Pi model B.

 TUTORIAL

76

BEN EVERARD

Before going any further, we should say that there’s
a chance that following this tutorial will void your Pi’s
warranty, and there’s a small chance that it’ll explode
in a shower of sparks (and a slightly larger – but still
small – chance that it’ll break in a less spectacular
way). In other words, don’t try this if you’re not
prepared to accept the risk that your Pi will stop
working permanently.

If you’re already in Turbo mode, you should find the
following options set:
arm_freq=1000
core_freq=500
sdram_freq=600
over_voltage=6

You can mess with these to boost the performance.
The three frequency settings are all in MHz, so this
configuration has the main ARM processor running at
1GHz, the GPU running at 500MHz, and the SD RAM
running at 600MHz. We found that we couldn’t
squeeze any more speed out of the GPU or the SD
RAM. However, there does tend to be a little headroom
in the ARM frequency.

In order to take advantage of this, though, you’ll
need to increase the voltage. The voltage for the core
defaults to 1.2V, and each increase in the over_voltage
setting sends an extra 0.025V. With a setting of 6, the
core is running at 1.35V. Increasing the voltage
enables you to increase the speed, but it can also
decrease the life expectancy of the chip. Since we’re
seeing how much speed we can get, we whacked this
up to its maximum setting of 8 (1.4V).

There’s another option that you’ll need to set if you
want to take it beyond the normal overclocking levels:
force_turbo = 1
Just add this line to the config.txt file, and it’ll let you
push the performance up.

There are a couple of things you need to be aware
of as you increase the clock speed. The most obvious
is that it will become more prone to crashing, so don’t
use a heavily overclocked machine for any important
work. The second important thing is that it will tend to
run hotter than at slower speed, so you need to keep
an eye on the temperature to make sure it doesn’t get
too hot.

You can check the temperature at any time with the
command:
cat /sys/class/thermal/thermal_zone0/temp

This gives the temperature in 1000ths of a degree
Celsius, so 45000 is 45°C. As a general rule of thumb,

The de-soldering pump we
used. The orange button
triggers the suction and
pulls the molten solder off
the board.

LV007 076 Tutorial Pi Mods.indd 76 08/08/2014 11:14

RASPBERRY PI TUTORIAL

www.linuxvoice.com 77

you want to keep the temperature below 70000, but
again this depends on how much you’re willing to risk
breaking your Pi. We gradually increased the clock
speed in 50MHz increments, and performed a simple
benchmark of unzipping an archive.

We found that we could run our Pi at 1.2GHz,
though it wasn’t very stable. At this speed, our
benchmark ran about 40% faster than at non-
overclocked speeds, and about 20% faster than Turbo
overclocking, with a core temperature of around 60°C.
This was, however, quite a simple benchmark. A more
complex task may well have proved too much for the
SoC at this speed. However, we did find that our Pi
was reasonably stable at around 1.1GHz.

Modifying the board
You may think that, unlike desktop PCs, you can’t
change much on single-board computers like the
Raspberry Pi. You may think that the Raspberry Pi
Foundation choose what goes on the board and you
just have to go with it. This isn’t necessarily true.
They’re certainly not as flexible as desktop PCs, but
with a little soldering, you can certainly tweak them to
your needs. We stripped off a component we didn’t
need, and added one we did.

The analogue video output may be useful to some
people, but not for us. It just takes up space and
makes the board look cluttered. This wasn’t enough
for us to risk removing it before, but now we’ve had
enough, and decided to take it off. It’s only attached by
three soldered points that are quite large and easy to
access, so it’s easy to remove.

You will need either a desoldering pump or wick –
we used a pump. This is a device that looks a bit like a
synringe from a sci-fi film. It has a spring-loaded
plunger that you press down, then a button that
releases the plunger. As the plunger shoots up, it
sucks air in through the nozzle. If the nozzle is placed
near molten solder, it’ll suck the solder off the board.

The trick of desoldering is to heat the solder up until
it’s molten, then use the pump or wick to remove it
before it cools. If you get enough off, you should find
that the component slides out. Be careful not to heat
up the board too much, or pull too hard on the
component, or you could damage the board. It’s made
of several layers stuck together, so there could be
wiring you can’t see.

This might seem a bit pointless, and on its own it is
a bit, but for some projects where size or weight is
important, removing unnecessary components can
be useful.

Extra features
You may have noticed that there are loads of extra
holes in model B Pis that don’t seem to be used. The
two larger ones are mounting holes. Some of the
others are used for manufacturing and testing, but
some of them allow access to extra features. One
mildly annoying feature of the Raspberry Pi is the fact
that there’s no power button. You can halt it from

software, but to turn it on you have to unplug the
power cable, then plug it back in. That’s not the most
user-friendly way of doing things, and it could be
awkward in embedded settings. Fortunately, there’s
an alternative. Between the HDMI and power
connectors, you should see two holes labelled P6.
These are mounting points for a reset switch.

All you have to do is make a connection between
these two points and the Pi will reset. You can test
this out using a flat-head screwdriver. This will reboot
your Pi whether it’s switched on or off.

In order to be able to reset your Pi, you simply need
to add a normally-open push switch between these
two points. The best way to do this will depend on
how your Pi is set up. We use ours without a case, so
we simply soldered the switch straight onto the board.
However, if your Pi is inside a case or some other
enclosure, you may find it easier to solder wires onto
the board and attach those wires to a switch in a
more convenient location. On the B+, the connections
for the reset button are labelled Run, and are located
next to the micro SD card slot.

Not many of the holes in the model B are useful.
There are a couple of extra GPIOs on the P5 header
that you could find functions for. If you really want to
modify your Pi, you could replace components on
there with better ones. For example, it is possible to
take off the linear regulator from a model B and
replace it with a switching reg. In doing this, you’ll gain
one of the best features of the B+. It’s not a
particularly simple process, but there’s some guidance
on Dave Akerman’s excellent blog at
www.daveakerman.com/?page_id=1294.

Despite being superseded by the B+, there’s still
plenty of fun left to be had with model B’s, so don’t let
yours rot in a drawer. Get it out and void its warranty
– and learn more about it in the process.

The board after our modifications. If nothing else, it now feels like it’s truly our board and
not just another Raspberry Pi model B that’s rolled off the production line.

LV007 076 Tutorial Pi Mods.indd 77 08/08/2014 11:14

TUTORIAL SONIC PI

www.linuxvoice.com

In this month's tutorial we will take a break from
Scratch and Python and try something new. Let’s
jam with Sonic Pi! Sonic Pi v1 is the creation of

Sam Aaron, with the full support of the Raspberry Pi
Foundation. Sonic Pi v1 comes as a pre-installed
application available to all Raspbian Raspberry Pi
users and enables anyone to make music using a
programming language called Ruby. Ruby is a simple
to learn language that has some similarities to Python,
so it's handy for those already competent in Python.

For this tutorial we will be using the latest version of
Sonic Pi, v2, which at the time of writing is still a
release candidate but fully up to the task at hand.

Using Sonic Pi we will first create a basic song and
then use programming logic to refine our work. The
song chosen is the classic nursery rhyme 'London
Bridge is Falling Down', but any song can be played
with Sonic Pi, so feel free to experiment. During the
course of this project we will learn some important
programming concepts:
Sequences In order for our tune to play correctly we
need to understand how we can translate the musical
sequence into code, otherwise our tune would not
sound very good.
Loops Using a loop introduces recursion into our
programming and with it comes the art of creating the
correct structure so that our loops are seamless, as a
note in the wrong place can ruin our tune.
Data storage Computers have a great memory and
can remember lots of things, but only if we tell them
to. Variables are used to temporarily store data for use
in our project.

Configuring audio
By default the Raspberry Pi will use the HDMI
connection to your television for audio and video. But
if you would like to use the headphone socket, say to
connect to your Hi-Fi, speakers or headphones then
you will need to tell your Pi that you would like to.

The best way to accomplish this is by using the
raspi-config menu. Open a terminal and type in:
sudo raspi-config

In the menu that appears, look for 'Advanced
Options', navigate to it using the cursor keys and press
Enter to select it.

Inside the Advanced Options menu there will be an
Audio option; select this option and a new menu will
appear. This new menu enables you to choose the
output method, select the analog audio output and

then exit out of raspi-config. For best results reboot
the Raspberry Pi

Once the reboot is complete, plug in your
headphones/speakers and test that they are working.
If you need to fine-tune the general volume settings,
open a terminal and type in the following:
alsamixer

Alsa Mixer is a terminal application that enables a
user to control the volume level; you can alter the
volume by pressing the up and down arrows on your
keyboard. Once you're happy with the levels, press Esc
to exit.

Installing Sonic Pi v2
To download, install and start Sonic Pi, open a terminal
and type in each line followed by Enter at the end of
each line:
wget http://sonic-pi.net/sonic-pi-RC11.tar.gz
tar -xvzf sonic-pi-RC11.tar.gz
./sonic-pi/bin/sonic-pi
With Sonic Pi started, let's take some time to
familiarise ourselves with the layout.

Towards the top of the screen there's an area that
contains buttons to handle the following actions.

 Run/Play our tune.
 Stop playback.
 Save our tune in the Ruby file format.
 Record the tune as a WAV file so that we can share
it with others.
Moving further along we can see some more

buttons in the row.
 Size – and Size + decrease and increase the size of
the text in the project window.
 Align is a tool to automatically align any indented
code, helping to format the project correctly and

At the end of this project you will have created your own
version of the 'London Bridge' nursery rhyme.

SONIC PI: PROGRAM
ELECTRONIC MUSIC
Learn a new style of coding and get instant musical feedback with
this great tool for the Raspberry Pi.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Programming is much

more than logic and
control, and creating
music shows us how
simple logic can be
used with creativity to
make music. Musicians
around the world have
learnt how to create
music using logic and
maths and to sequence
their compositions for
better sounding tunes.

TOOLS REQUIRED
• Raspberry Pi, any model

will do.
• Keyboard, mouse

and screen for your
Raspberry Pi.

• Sonic Pi v2 installed, we
will show you how to do
that later in this tutorial.

• Headphones / Speakers
if using the 3.5mm
headphone socket.

LV007 078 Tutorial Education.indd 78 08/08/2014 11:16

SONIC PI TUTORIAL

www.linuxvoice.com 79

The simple, uncluttered
layout of Sonic Pi V2 is
a credit to the team
behind it.

minimise any potential bugs.
 Info opens an about window, telling us who made
this great application.
 Help will change the bottom left of the screen and
introduce a series of tabs which contain information
on how to use Sonic Pi and its instruments.
 Prefs is the preferences menu, where volume levels
can be adjusted.
Underneath these buttons there are three main

sections of the screen. To the top-left is a project area
where we write the code that makes our tune. To the
top-right there is an output window, which will show
the progress of our project. Finally, to the bottom-left
are the workspaces, numbered 1 to 8. Sonic Pi can
work with eight projects at once, so we can have one
workspace to contain our main piece of work, and
others to try out new ideas and logic.

First tune
For our first project we will create the nursery rhyme
'London Bridge Is Falling Down'. We will be using the
MIDI (Musical Instrument Digital Interface) number for
each of the notes. In this notation, G is 67, A is 69 and
so on (see the boxout over the page for more
information on MIDI numbers).

Nursery rhymes are a great way to introduce music
theory and Sonic Pi due to their simple melodies and
limited use of notes and chords. Once we understand
the basics we can then tackle much larger
compositions, indeed if you can find the notes for your
favourite song then you can easily recreate it in Sonic
Pi. Sam Aaron has used Sonic Pi to recreated 'Blue
Monday' by New Order – take a look at his video
http://bit.ly/LVSonicPi.

'London Bridge Is Falling Down' is a simple melody
that starts in the key of G, and the opening motif goes
as follows

London G, A
Bridge G
Is F
Falling E, F
Down G
So how can we code this in Sonic Pi?
To play a note we first need to understand how we

instruct the computer to do so. Sonic Pi can play a
single note via the play function. So to play a G we will
need to do the following in Workspace 1:
play 67

And to play the other notes we would need to add
the following after play 67:
play 69
play 67
play 65
play 64
play 65
play 67
With this code in our workspace, click on the run
button to play your tune.

How does your tune sound? Is the speed wrong?
We didn't tell the computer to play the notes one after

another, so Sonic Pi will try and play all at once, leaving
us with a horrible noise rather than beautiful music. To
fix this we can insert a delay using the sleep function.
This function adds an element of control to our code.

Between each of the notes that we used previously,
insert the following:
sleep 0.3
This uses a float value of 0.3 seconds to delay the
playback of the notes. Listen for yourself, and it should
sound much better.

Now that we have our basic code, let's improve it
and make it more compact.

Sonic Pi has a great feature which enables you to
play a pattern of notes much more simply than
playing each note individually. The function play_
pattern can take multiple MIDI notes and play them in
succession. So let us rewrite our code to use this new
function:
play_pattern [67,69,67,65,64,65,67]
When it's completed, play the code. It should sound a
little slow, so let's speed it up a bit using a tempo.

To introduce tempo into our project we need to use
a BPM (Beats Per Minute) value. Go back to your code
and make sure that the following is the first line of
code, with all other lines being underneath.
use_bpm 120

Now click on the run button, and the music should
sound a lot better. Congratulations: you've taken the
code from a simple line-by-line sequence and using
the play_pattern function created a more compact
and robust project.

Using variables
Variables are a temporary method of storing data, and

 There are three choices
in the audio output menu,
auto, force 3.5mm and
force HDMI. If you are
listening via headphones
connected to your Pi
choose the second option.

LV007 078 Tutorial Education.indd 79 08/08/2014 11:16

TUTORIAL SONIC PI

www.linuxvoice.com80

Midi notes

Sonic Pi uses numbers to represent the notes played in
music. These numbers are MIDI representations of those
notes. MIDI (Musical Instrument Digital Interface), has
long been used in the professional music community as a
method of working with computers and external musical
instruments, commonly keyboards. With MIDI you can
easily make a change to a song without having to re-record
the instrument, as the data is saved in the MIDI format.

Sonic Pi has access to the full range of MIDI numbers,
but to keep things simple we're using just seven of them:
C,D,E,F,G,A,B. These are more than enough for simple tunes.

To use these notes in our project, we must learn their
MIDI value – below is a table of this information.
 C 60
 D 62
 E 64
 F 65
 G 67
 A 69
 B 71

There's a great resource for MIDI notes included in the
readme file on the GitHub repository for this project at
https://github.com/lesp/LinuxVoiceSonicPi.

they can greatly improve our coding. So far we have
been using the MIDI numbers that represent the notes
in our tune. But it can be difficult to remember what
number is for which note. Using a variable we can
store the MIDI number and label the variable to match
the pitch of the note, so you don't have to remember
the MIDI values. At the top of your code, create the
following variables:
c = 60
d = 62
e = 64
f = 65
g = 67
a = 69
b = 71

Now, using the variables instead of their MIDI
numbers, let's rewrite our code to reflect this and write
the rest of the song. Once written, try out your code.
play_pattern [g,a,g,f,e,f,g]
play_pattern [d,e,f]
play_pattern [e,f,g]
play_pattern [g,a,g,f,e,f,g]

play_pattern [d,g]
play_pattern [e,c]

That sounds better, but how can we make this code
even better? By adding a delay between each of our
patterns. Sonic Pi uses the sleep function to delay a
step in the sequence of code. If we use the sleep
function with another variable we can set a universal
delay to our code.

On a line below our previous variables, create the
following:
delay = 1

Now insert the following in between each of the
play_pattern lines of code, then run your code:
sleep delay

How does it sound? Perhaps a little slow in between
each of the play_patterns? In that case, reduce the
delay value by using a float instead of an integer. This
will enable you to use fractions of a second. Try a few
lower numbers and see what works for you.

Taking our music to the next level
Our tune sounds great – all of the timings and logic
we used have sharpened our tune to perfection, but
something is still missing. Perhaps we could add an
instrument or two? As Sonic Pi uses MIDI, we can
introduce new instruments to our project relatively
easily.

Currently we use the default tone for our tune, but
we can investigate some other instruments.

Sonic Pi comes with a plethora of instruments that
we can use in our project. From simple pretty bell
chimes to dark and melodious “fm” which at times
can sound like playing a Beatles record backwards.

To introduce an instrument into our project we
must first tell Sonic Pi that we wish to use it and the
best place to do so is underneath where we said
use_bpm 120 like so:
use_bpm 120
use_synth :pretty_bell

Now play your tune – instead of the standard
sound you should now hear a bell like chime.

Looping
Looping is the practice of repeating a section of code
either many times or infinitely. For our tune we will use
it to repeat the sequence of code that makes up our
tune.

play_pattern is a handy function that can considerably
reduce the number of lines in our code, making it much
easier to read.

Our simple melody should
look like this to start with,
but over the course of the
tutorial we will alter and
re-work the code.

LV007 078 Tutorial Education.indd 80 08/08/2014 11:16

SONIC PI TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

To use a loop we use the following line of code
2.times do
 #What code would you like to repeat?
end

You can see that the second line is indented; this
shows that this is the code to be repeated, under our
instruction of 2.times do. This indentation is not as
restrictive as Python, which requires 4 spaces to
signify indentation. Sonic Pi will accept a single space
or a tab indentation, but don't mix the two together, or
you will have a headache debugging your code.

If we wanted to play a C note twice using the
looping method we could approach it like this:
2.times do
 play 60
end

To use the code in our tune we must do the
following:
2.times do
 use_synth :pretty_bell

 play_pattern [g,a,g,f,e,f,g]
 …. all of the code to play our tune.
End
After all of our coding, your program should look this
#Variables to contain our notes
c = 60
d = 62
e = 64
f = 65
g = 67
a = 69
b = 71
2.times do
 use_bpm 120
 use_synth :pretty_bell
 play_pattern [g,a,g,f,e,f,g]
 sleep 0.5
 play_pattern [d,e,f]
 sleep 0.5
 play_pattern [e,f,g]
 sleep 0.5
 play_pattern [g,a,g,f,e,f,g]

 sleep 0.5
 play_pattern [d,g]
 sleep 0.2
 play_pattern [e,c]
end

Congratulations, you have now created your first
piece of music using Sonic Pi. Using what you have
learnt, try the following extension activities:
1 Add a drum beat to the London Bridge project by

using another function called in_thread. This
function will enable you to have two or more
independent threads of code running at once. Code
in a thread runs completely isolated from the main
body of code. For example to play a G note every
half a second we would write the following:

in_thread do
 play 67
 sleep 0.5
 end

Have a play with this code and see what works for
you.

2 Find a song that you like on YouTube and then use
a search engine to find the sheet music to play it,
then convert the tune into something that Sonic Pi is
familiar with. Remember that any piece of music
can be written using Sonic Pi.
Finally, a great resource of Sonic Pi material is

provided by Dan Aldred's blog www.tecoed.co.uk/
sonic-pi.html – head over and take a look.

What is Ruby?
Ruby was designed and developed in the
mid-1990s by Yukihiro "Matz" Matsumoto in
Japan to be a general-purpose programming
language. Ruby can be used in both a
functional capacity, where code happens in
a sequence, such as our project, and in an
object-oriented capacity, where code can be
written using objects and classes.

Ruby is an excellent language to learn due
to its very clear syntax and legibility. The
programming logic learnt via Scratch and
Python can be applied to Ruby, and in turn
can be applied to Sonic Pi. If you would like
to learn more about Ruby, there is a great
interpreter called IRB, which can be installed
via the terminal.

For Raspberry Pi- and Debian-based
distros you can install as follows:
sudo apt-get install ruby

And for yum-based systems.
sudo yum install ruby

Using Ruby is remarkably simple, and the
best way to get started is to open a terminal
and type irb followed by Enter.

We are now in an interactive session of
Ruby and can write Ruby code line by line.

First of all, let's print “Hello” on the screen.

In Ruby the function to do that is called puts
and you would use it like this:
puts “Hello”

So now let's use a loop to print hello twice:
2.times do
 puts “Hello”
end

Can you see how the loop works? That's
right – exactly the same way as the loop in
our project does.

The official 20-minute guide to Ruby
is available at www.ruby-lang.org/en/
documentation/quickstart, and is a fantastic
resource for learning this great language.

Variables enable us to store the MIDI numbers inside a
container which, for ease of use, have been labelled to
match the note.

Like Python, Ruby is designed to have a
simple, easy-to-read syntax.

LV007 078 Tutorial Education.indd 81 08/08/2014 11:16

TUTORIAL PYTHON AND MYSQL

www.linuxvoice.com

In recent years, governments around the world
have been opening up their information archives
to the public, and now there’s more data available

than ever before. However, the raw data is hard to
digest, and it’s often analysed by people with an
agenda, whether that’s newspapers trying to make a
story sound exciting to sell more copies, or a company
trying to make their product look better than the
competition. It’s hard to know whether data is being
properly represented, so the solution is to dive in and
analyse the figures for yourself. Let’s take a look at
how to do this using UK house prices.

You can get a complete list of every house sold in
the UK along with its location, type (eg terrace,
semi-detached) and price from data.gov.uk. The data
goes back to 1994, and is licensed under the Open
Government Licence, which is allows us to manipulate
the data and publish it – so that’s what we’ll do.

Spreadsheets, such as LibreOffice’s Calc, can easily
handle small data sets. However, this data set is too
big and needs something a little more capable. We’re
going to use Python and MySQL, though you could
use most programming languages and most
databases for the task.

The data comes in a CSV file, which is a text file
containing the values separated by commas. These
are usually used with spreadsheets, but are also fairly
easy to upload into databases. Databases enable us

much better access to the data from programming
environments, and can also handle much larger data
sets than spreadsheets.

First you need to grab the software we’ll be using.
That’s MySQL (both a client and server), and two
Python modules (MySQLDB and Matplotlib). These are
all quite common, and should be in your package
manager. To get them in Debian-based systems, use:
sudo apt-get install mysql-client mysql-server python-mysqldb
python-matplotlib

If your package manager hasn’t asked you to set up
a root password for MySQL, you can do that now with:
sudo mysqladmin -u root -p password newpass
Replace newpass with a password of your choice.

Get the data
Now you’ve got the software, you just need to grab the
data. The easy way to do this is to download our
database dump from www.linuxvoice.com/house-
price-analysis.

This is an xzipped SQL file, so you can load it with:
unxz house_prices.sql.xz
mysql -u root -p < houseprices.xz

This will create a database called houses, and a
table within it called house_prices that contains all the
information we’re going to work with.

That’s the easy way. The hard way (which you’ll
need to do if you want to load data other than UK
house prices), is to download the raw CSV files and
load them into MySQL. This isn’t too hard, but it can be
a little fiddly.

First you need to get the CSV files. The ones we’ve
been using are from data.gov.uk. However, there are
loads of sources of open data you may wish to use
(see the boxout over the page for more details). CSV
files are often created with Windows encoding rather
than Unix. There’s a utility called dos2unix that can fix
this, which you use with:
dos2unix <filename>

MySQL is really designed as a server tool, not a
desktop one. This means that it has a few security
features that you may not expect. One such feature is
that by default, it won’t usually load local files. You can
get around that by starting the client with the --in-file
flag:
mysql --u root -p --in-file

This will drop you into the MySQL commandline.
First you need to create a new database to use:
create database houses;

DATA ANALYSIS USING
PYTHON AND MYSQL
Graphing data makes it easier to understand, and graphing lots of
data is easy with a script and a database.

 TUTORIAL

82

WHY DO THIS?
• Pull out the information

that’s pertinent to you
from a swarming mass
of numbers.

• Improve your Python
and SQL skills.

• Get your computer to
draw pretty pictures that
make you seem smart
to friends, family and
co-workers.

If you’re using SQL for
more than a few basic
queries, there are some
SQL clients (such as
Emma, shown here) that
can make your life a little
easier.

BEN EVERARD

LV007 082 Tutorial Data.indd 82 08/08/2014 11:19

PYTHON AND MYSQL TUTORIAL

www.linuxvoice.com

use houses;
Now you need to create a new table to store the

data. This has to have the same layout as the CSV
files that you want to upload. For example:
create table house_prices (id varchar(50), price int, date
datetime, postcode varchar(10), type varchar(1), newbuild
varchar(1), leasefree varchar(1), address1 varchar(50), address2
varchar(50), address3 varchar(50), address4 varchar(50),
address5 varchar(50), address6 varchar(50), address7
varchar(50), dontknow varchar(1));

With all this set up, you can load the files with the
following SQL statement:
load data local infile “file_name.csv” into table house_prices
fields terminated by ‘,’ enclosed by ‘”’;

The UK house price data comes in separate files for
each year. You can use the cat command to join them
together into one big file, or import them individually
(which makes it easier to identify problems).

Getting started with SQL
Now you’ve got everything in the database, you can
use SQL to pull out the information you want.

The basic usage of SQL to pull information out of a
database is in the form:
select <something> from <table> where <condition>;

This is quite simple, but it enables you to get almost
anything you need from the data store, and gives you
a quick way of getting data (although complicated
queries on large bodies of data can be slow).

For example, to get all of the price and house
numbers for a particular postcode, you can use:
select price, address1 from house_prices where postcode = “XX1
1XX”;
where XX1 1XX is the postcode. As well as getting
specific bits of data, you can aggregate it using
functions such as avg(), which returns the average.

For example, the following line returns the average
price for houses in Bristol:
select avg(price) from house_prices where address6 =
“BRISTOL”;

You’ll see a few more SQL techniques as we go
through the article, but they all follow this same basic
process. If you’re unsure of anything, MySQL has
excellent documentation at dev.mysql.com/doc.

Drawing pictures with Python
SQL is great for pulling out bits of information, but it’s
not great at combining and comparing it. That’s were
Python comes in. We’re going to use it to compare

and graph the information we pull out of MySQL to
make everything easy to understand.

In this case, our Python program will be acting as a
glue between a module that access the database and
a module that outputs graphs. Let’s first look at
MySQLdb, which we’ll use to access the database.

Using the MySQLdb module is a fairly
straightforward process. You have to connect to the
database, and then create a cursor object. This cursor
can then be used to execute queries and fetch the
results. Take a look at the following example, which
prints out the average house price in the data set.
import MySQLdb

db = MySQLdb.connect(host=”localhost”, user=”root”,
passwd=”xxxx”, db=”houses”)

cur = db.cursor()
cur.execute(“select avg(price) from house_prices;”)

result = cur.fetchone()
print str(result[0])
You’ll need to change the password and possibly user
in the connect command, depending on how your
database is configured.

Once the connection to the database is set up, you
can call execute() with a string containing an SQL
query, and then get the result with fetchone(). This
returns a tuple containing an entry for each column
returned by the SQL (in this case, there’s just one). If
you expect the query to return more than one result,
you can loop through them with:
for row in cur.fetchall():
 #do what you need to here

Since you just need to pass a string to cur.
execute(), you can build this up with the usual Python
tools. For example, if you want to get the average

83

MariaDB
We decided to do this tutorial using MySQL, because it’s
probably still the most widely used database for Linux.
However, we know that a lot of people aren’t happy with
Oracle’s handling of the project, and so may wish to use
MariaDB instead, a fork of MySQL led by the original creator
of MySQL, Michael “Monty” Widenius.

It should be completely compatible with MySQL, and so if
you’d rather use this database, you should be able to follow
along with this tutorial without any problems.

The MatPlotLib project
maintains a gallery of
different chart types, and
examples of how to use
them at http://matplotlib.
org/gallery.html.

LV007 082 Tutorial Data.indd 83 08/08/2014 11:19

TUTORIAL PYTHON AND MYSQL

www.linuxvoice.com84

prices for a few different counties, you could use:
for county in [‘GREATER MANCHESTER’,’GLOUCESTERSHIRE’]:
 query = “select avg(price) from house_prices where
address7 = ‘” + county + “’;”
 cur.execute(query)
 result = cur.fetchone()
 print “Average house price in “ + county + “ : “ +
str(result[0])

Alternatively, you could see how the house prices
have changed over the 20 years we have data for
using the following. You’ll need to include the previous
code to connect to the database as well.
years = range(1995, 2015)
data = []

for year in years:
 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) +
‘-12-31”;’
 cur.execute(query)
 result = cur.fetchone()
 print str(year) + “ : “ + str(result[0])
 data.append(int(result[0]))

If you’re an SQL user, you’ll probably notice that this
could be done in a single query. We’ve done it this way
to make the code a bit easier to follow.

This code stores the data in a list as well as printing
it on a screen. This list (rounded to whole numbers),
can be used to create graphs. One option is to output
it to a file in CSV format. CSVs can be loaded into
most spreadsheets (such as LibreOffice Calc), and
from there you can generate any graphics you need.
This can be a good way to experiment with different
types of graph, because it enables you to quickly try
various visualisations on the data. However, it’s bad if
you need to produce lots of graphs based on the data,
because it requires quite a bit of manual intervention.
For this, it’s much easier to use the MatPlotLib module
to automatically draw any charts you want.

Get Matplotlib
To use this, you’ll need to import it. We’ll pull it in with
pylab, which provides some other functions as well as
chart drawing. You’ll need to add the following to the
start of your program:
from pylab import *

The following two lines can then be added to the
end of the previous program to plot the data, and
show the chart:
plot(years, data)
show()

This is the most basic use of the plotting module,
and it can do far more than this. Let’s take a look at a
slightly more complicated example. This time, we’ll
see how the average price of houses has changed for
detached and semi-detached houses. First we need to
pull the appropriate information from the database
with the following code (this will also need the code to
connect to the database):
def get_value(cur, query):
 cur.execute(query)
 row = cur.fetchone()
 return int(row[0])
val_of_semi = []
val_of_detatched = []
years = range(1995, 2015)
for year in years:
 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) + ‘-12-31”
and type=”S”;’
 val_of_semi.append(get_value(cur, query))

You can change some
parameters of the figure
after it’s created using the
Configure Subplots button
(second from the right).

Big data and NoSQL

Big data is one of the industry’s current buzzwords. Like most
tech buzzwords, there aren’t any hard-and-fast rules to define
it, but loosely speaking, it refers to any chunk of data that’s
too big to process on an ordinary computer, meaning you need
some special setup to handle it efficiently. That could be a
high-powered server, or a cluster of servers.

It is possible to use SQL databases to handle huge data
sets, but specialist tools have sprung up to make it easier,
and one common type is the so-called NoSQL variety of
database. These are databases that don’t use tables to hold
structured information; instead they hold all the data in one
non-structured mass. This means that for some processes,
they can be quicker than SQL databases, and it can be easier

to share the load across many machines. They tend to process
data using the map-reduce method, which goes through each
item in turn and maps it to a value. These values can then be
combined (or reduced) to a result.

The data set we’ve used here is 19 million items big. We’ve
certainly heard people calling much more mundane analyses
than this big data, but in our view, it doesn’t qualify. MySQL
handles the task perfectly well, and it’s a technology that’s far
more useful in most circumstances than NoSQL.

However, if you happen to be in the job market at the
moment, NoSQL is one of the hottest skills around (according
to www.indeed.com/jobtrends, MongoDB – a NoSQL database
– is the second hottest skill to have after HTML5).

LV007 082 Tutorial Data.indd 84 08/08/2014 11:19

PYTHON AND MYSQL TUTORIAL

www.linuxvoice.com 85

 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) + ‘-12-31”
and type=”D”;’
 val_of_detatched.append(get_value(cur, query))

Now you have two lists; you just need to put them
in the plot. The following code does this:
fig = figure()

fig.set_size_inches(10,4,forward=True)
ax = subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height*0.80])
semi_line = ax.plot(years, val_of_semi, label=”Price of average
semi-detached”)
detached_line = ax.plot(years, val_of_detached, label=”Price of
average detached”)

ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), ncol=2,
prop={“size”:7})
suptitle(‘Average price of houses sold in UK by type between
1995 and 2014’)

show()
First, this code creates a figure, and resizes it to

1000 pixels by 400 pixels (it defaults to 100 pixels per
inch). The parameter forward=True allows you to
re-size the window.

Instead of just calling plot() like we did in the
previous example, this time we create a subplot and
shrink it down to 80% of its original height. This gives
us space to put a title and legend above it.

The value returned by plot() is a line object that we
can manipulate to alter the way the line will be
displayed. Although we don’t do it in this example, you
can use this object to alter the way they’re displayed.

For example the following (placed before show())
would make the lines red and green (by (r,g,b) values),

and dashed (linestyle “--”).
setp(semi_line, “color”, (1,0,0))
setp(detached_line, “color”, (0,1,0))
setp((semi_line, detached_line), “linestyle”, “--”)

Other line styles are “-” (solid line), “:” (dotted), and
“-.” (dash-dot). You can also use setp to change the
alpha (transparency) settings. In fact, there is a
mind-boggling set of different options you can set to
make the graph look exactly how you want. If you
want to create your own graphs, it’s best to spend a
little time perusing the set of examples at http://
matplotlib.org/gallery.html to see what’s available.

Once you’ve got everything for the subplot
organised, you need to make sure your graph is
labelled properly. Adding a title is easy, as you can see
in the above call to suptitle(). Adding a legend is a bit
more complex, because positioning in Matplotlib is
something of a dark art.

If you want to save figures rather than just
displaying them, you can use:
savefig(‘filename’)

There are loads of ways you can drill down to
almost any level of detail, and pull out whatever you
want. Of course, this does require an ability to
program, and the time to do it.

The end goal, of course, isn’t to draw pretty pictures,
but to get a better understanding of what the data
means. In this case, we’ve been looking at how the
prices of houses have changed over the past 20
years. We won’t tell you exactly how to do this
because it would defeat the point of this tutorial
(which is to learn how to analyse the data for
yourself), but we looked into how the house prices
changed across different locations and different
values of house.

You can see our results at www.linuxvoice.com/
house-price-analysis. This challenges the view that
house prices are rising in the UK. In fact, our analysis
shows that in most places house prices are quite
static, but that rapid rises in London are pushing the
average price up across the UK, distorting the picture.
Don’t take our word for it though. Dive into the data
and see what it tells you.

Ben Everard is the co-author of the best-selling Learn Python
With Raspberry Pi, and is working on a best-selling follow-up
called Learning Computer Architecture With Raspberry Pi.

Data sources
There are loads of other sources of data that are crying out
for analysis. Here are a few places to start looking:

 Data.gov.uk The official source of all UK government
data (this is where the housing data for this article
comes from).
 www.data.gov The US government’s data sets.
 bitly.com/bundles/bigmlcom/i A bundle of links to
the data websites for many governments from around
the world.
 data.worldbank.org The world bank publishes financial
data on the state of the world economy.
 epp.eurostat.ec.europa.eu Eurostat is the directorate
general of the European Commission, and is responsible
for compiling and publishing statistics about the
European Union.
 www.eea.europa.eu/data-and-maps The European
Environment Agancy publishes a lot of data about the
state of Europe.
 aws.amazon.com/datasets A list of some of the most
popular data sets from around the world.
 www.reddit.com/r/datasets A subreddit dedicated to
seeking out data on all topics.

Hartlepool (among other
towns and cities) hasn’t
seen the same rise in
house prices as south-
eastern England. See
www.linuxvoice.com/
house-price-analysis for
the rest of our analysis.

House prices by percentile in Hartlepool between 1995 and 2014
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000

50,000

1995 2000 2005 2010 2015
0

Hartlepool 10%
UK 10%
Hartlepool 30%
UK 30%
Hartlepool 50%
UK 50%
Hartlepool 70%
UK 70%
Hartlepool 90%
UK 90%

LV007 082 Tutorial Data.indd 85 08/08/2014 11:19

TUTORIAL GET A BETTER CLI

www.linuxvoice.com

WHY DO THIS?
• Make life at the shell

prompt easier and
faster.

• Resume sessions after
losing a connection.

• Stop pushing around
that fiddly rodent!

LINUX 101: POWER UP
YOUR SHELL
Get a more versatile, featureful and colourful command line
interface with our guide to shell basics.

 TUTORIAL

86

MIKE SAUNDERS

As a Linux user, you’re probably familiar with
the shell (aka command line). You may pop
up the occasional terminal now and then for

some essential jobs that you can’t do at the GUI, or
perhaps you live in a tiling window manager
environment and the shell is your main way of
interacting with your Linux box.

In either case, you’re probably using the stock Bash
configuration that came with your distro – and while

it’s powerful enough for most jobs, it could still be a lot
better. In this tutorial we’ll show you how to pimp up
your shell to make it more informative, useful and
pleasant to work in. We’ll customise the prompt to
make it provide better feedback than the defaults, and
we’ll show you how to manage sessions and run
multiple programs together with the incredibly cool
tmux tool. And for a bit of eye candy, we’ll look at
colour schemes as well. So, onwards!

MAKE YOUR PROMPT SING1

Most distributions ship with very plain prompts – they
show a bit of information, and generally get you by,
but the prompt can do so much more. Take the
default prompt on a Debian 7 installation, for instance:
mike@somebox:~$

This shows the user, hostname, current directory
and account type symbol (if you switch to root, the $
changes to #). But where is this information stored?
The answer is in the PS1 environment variable. If you
enter echo $PS1 you’ll see this at the end of the text
string that appears:
\u@\h:\w\$

This looks a bit ugly, and at first glance you might
start screaming, assuming it to be a dreaded regular
expression, but we’re not going to fry our brains with
the complexity of those. No, the slashes here are
escape sequences, telling the prompt to do special

things. The \u part, for instance, tells the prompt to
show the username, while \w means the working
directory.

Here’s a list of things you can use in the prompt:
 \d The current date.
 \h The hostname.
 \n A newline character.
 \A The current time (HH:MM).
 \u The current user.
 \w (lowercase) The whole working directory.
 \W (uppercase) The basename of the working
directory.
 \$ A prompt symbol that changes to # for root.
 \! The shell history number of this command.
To clarify the difference in the \w and \W options:

with the former, you’ll see the whole path for the
directory in which you’re working (eg /usr/local/bin),
whereas for the latter it will just show the bin part.

Get customising
Now, how do you go about changing the prompt? You
need to modify the contents of the PS1 environment
variable. Try this:
export PS1=”I am \u and it is \A \$”

Now your prompt will look something like:
I am mike and it is 11:26 $

From here you can experiment with the other
escape sequences shown above to create the prompt
of your dreams. But wait a second – when you log
out, all of your hard work will be lost, because the
value of the PS1 environment variable is reset each
time you start a terminal. The simplest way to fix this
is to open the .bashrc configuration file (in your home
directory) and add the complete export command to
the bottom. This .bashrc file will be read by Bash every
time you start a new shell session, so your beefed-up

Here’s our souped-up
prompt on steroids. It’s a
bit long for this small
terminal window, but you
can tweak it to your liking.

LV007 086 Tutorial Bash.indd 86 08/08/2014 11:21

GET A BETTER CLI TUTORIAL

www.linuxvoice.com

LINUX 101: POWER UP
YOUR SHELL

87

Shell essentials
If you’re totally new to Linux and have just picked up this
magazine for the first time, you might find the tutorial a bit
heavy going. So here are the basics to get you familiar with
the shell. It’s usually found as Terminal, XTerm or Konsole in
your menus, and when you start it the most useful
commands are:

ls (list files); cp one.txt two.txt (copy file); rm file.txt
(remove file); mv old.txt new.txt (move or rename);
cd /some/directory (change directory); cd .. (change to
directory above); ./program (run program in current
directory); ls > list.txt (redirect output to a file).

Almost every command has a manual page explaining
options (eg man ls – press Q to quit the viewer). There you
can learn about command options, so you can see that ls
-la shows a detailed list including hidden files. Use the up
and down cursor keys to cycle through previous commands,
and use Tab after entering part of a file or directory name to
auto-complete it.

prompt will always appear. You can also spruce up
your prompt with extra colour. This is a bit tricky at
first, as you have to use some rather odd-looking
escape sequences, but the results can be great. Add
this to a point in your PS1 string and it will change the
text to red:
\[\e[31m\]

You can change 31 here to other numbers for
different colours:

 30 Black
 32 Green
 33 Yellow
 34 Blue
 35 Magenta
 36 Cyan
 37 White
So, let’s finish off this section by creating the

mother of all prompts, using the escape sequences
and colours we’ve already looked at. Take a deep
breath, flex your fingers, and then type this beast:
export PS1=”(\!) \[\e[31m\][\A] \[\e[32m\]\u@\h \[\e[34m\]\w \
[\e[30m\]\$ “

This provides a Bash command history number,
current time, and colours for the user/hostname

combination and working directory. If you’re feeling
especially ambitious, you can change the background
colours as well as the foreground ones, for really
striking combinations. The ever useful Arch wiki has a
full list of colour codes: http://tinyurl.com/3gvz4ec.

TMUX: A WINDOW MANAGER FOR YOUR SHELL2

A window manager inside a text mode environment
– it sounds crazy, right? Well, do you remember when
web browsers first implemented tabbed browsing? It
was a major step forward in usability at the time, and
reduced clutter in desktop taskbars and window lists
enormously. Instead of having taskbar or pager icons
for every single site you had open, you just had the
one button for your browser, and then the ability to
switch sites inside the browser itself. It made an awful
lot of sense.

If you end up running several terminals at the same
time, a similar situation occurs; you might find it
annoying to keep jumping between them, and finding
the right one in your taskbar or window list each time.
With a text-mode window manager you can not only
run multiple shell sessions simultaneously inside the
same terminal window, but you can even arrange
them side-by-side.

And there’s another benefit too: detaching and
reattaching. The best way to see how this works is to
try it yourself. In a terminal window, enter screen (it’s
installed by default on most distros, or will be available
in your package repositories). Some welcome text
appears – just hit Enter to dismiss it. Now run an
interactive text mode program, such as nano, and
close the terminal window.

In a normal shell session, the act of closing the
window would terminate every process running inside
it – so your Nano editing session would be a goner.
But not with screen. Open a new terminal and enter:
screen -r
And voilà: the Nano session you started before is back!

When you originally ran screen, it created a new
shell session that was independent and not tied to a
specific terminal window, so it could be detached and
reattached (hence the -r option) later.

This is especially useful if you’re using SSH to
connect to another machine, doing some work, and
don’t want a flaky connection to ruin all your progress.
If you do your work inside a screen session and your
connection goes down (or your laptop battery dies, or
your computer explodes), you can simply reconnect/
recharge/buy a new computer, then SSH back in to
the remote box, run screen -r to reattach and carry on
from where you left off.

Here’s tmux with two
panes open: the left has
Vim editing a configuration
file, while the right shows a
manual page.

LV007 086 Tutorial Bash.indd 87 08/08/2014 11:21

TUTORIAL GET A BETTER CLI

www.linuxvoice.com88

Zsh: an alternative shell

Choice is good, but standardisation is also important as
well. So it makes sense that almost every mainstream Linux
distribution uses the Bash shell by default – although there
are others. Bash provides pretty much everything you need
from a shell, including command history, filename
completion and lots of scripting ability. It’s mature, reliable
and well documented – but it’s not the only shell in town.

Many advanced users swear by Zsh, the Z Shell. This is a
replacement for Bash that offers almost all of the same
functionality, with some extra features on top. For instance,
in Zsh you can enter ls - and hit Tab to get quick
descriptions of the various options available for ls. No need
to open the manual page!

Zsh sports other great auto-completion features: type cd
/u/lo/bi and hit Tab, for instance, and the full path of /usr/
local/bin will appear (providing there aren’t other paths
containing u, lo and bi). Or try cd on its own followed by
Tab, and you’ll see nicely coloured directory listings – much
better than the plain ones used by Bash.

Zsh is available in the package repositories of all major
distros; install it and enter zsh to start it. To change your
default shell from Bash to Zsh, use the chsh command. And
for more information visit www.zsh.org.

Now, we’ve been talking about GNU screen here, but
the title of this section mentions tmux. Essentially,
tmux (terminal multiplexer) is like a beefed up version
of screen with lots of useful extra features, so we’re
going to focus on it here. Some distros include tmux
by default; in others it’s usually just an apt-get, yum
install or pacman -S command away.

Multiplexing magic
Once you have it installed, enter tmux to start it. You’ll
notice right away that there’s a green line of
information along the bottom. This is very much like a

taskbar from a
traditional window
manager: there’s a list
of running programs,
the hostname of the
machine, a clock and
the date. Now run a

program, eg Nano again, and hit Ctrl+B followed by C.
This creates a new window inside the tmux session,
and you can see this in the taskbar at the bottom:
0:nano- 1:bash*

Each window has a number, and the currently
displayed program is marked with an asterisk symbol.
Ctrl+B is the standard way of interacting with tmux, so
if you hit that key combo followed by a window
number, you’ll switch to that window. You can also use
Ctrl+B followed by N and P to switch to the next and
previous windows respectively – or use Ctrl+B
followed by L to switch between the two most
recently used windows (a bit like the classic Alt+Tab
behaviour on the desktop). To get a window list, use
Ctrl+B followed by W.

So far, so good: you can now have multiple
programs running inside a single terminal window,
reducing clutter (especially if you often have multiple
SSH logins active on the same remote machine). But
what about seeing two programs at the same time?

For this, tmux uses “panes”. Hit Ctrl+B followed by %
and the current window will be split into two sections,

one on the left and one on the right. You can switch
between them Using Ctrl+B followed by O. This is
especially useful if you want to see two things at the
same time – eg a manual page in one pane, and an
editor with a configuration file in another.

Sometimes you’ll want to resize the individual panes,
and this is a bit trickier. First you have to hit Ctrl+B
followed by : (colon), which turns the tmux bar along
the bottom into a dark orange colour. You’re now in
command mode, where you can type in commands to
operate tmux. Enter resize-pane -R to resize the
current pane one character to the right, or use -L to
resize in a leftward direction. These may seem like
long commands for a relatively simple operation, but
note that the tmux command mode (started with the
aforementioned colon) has tab completion. So you
don’t have to type the whole command – just enter
“resi” and hit Tab to complete. Also note that the tmux
command mode also has a history, so if you want to
repeat the resize operation, hit Ctrl+B followed by
colon and then use the up cursor key to retrieve the
command that you entered previously.

Finally, let’s look at detaching and reattaching – the
awesome feature of screen we demonstrated earlier.
Inside tmux, hit Ctrl+B followed by D to detach the
current tmux session from the terminal window, which
leaves everything running in the background. To
reattach to the session use tmux a. But what happens
if you have multiple tmux sessions running? Use this
command to list them:
tmux ls

This shows a number for each session; if you want
to reattach to session 1, use tmux a -t 1. tmux is hugely
configurable, with the ability to add custom
keybindings and change colour schemes, so once
you’re comfortable with the main features, delve into
the manual page to learn more.

In tmux, hit Ctrl+B followed
by ? to get a list of the
default key bindings.

“Tmux enables you to have
multiple programs running
inside a single terminal window.”

LV007 086 Tutorial Bash.indd 88 08/08/2014 11:21

GET A BETTER CLI TUTORIAL

www.linuxvoice.com 89

Mike Saunders remembers using a mouse once. On the
Amiga. Now he just wants kids to get off his damn lawn.

PRO TIP
Many command line and
text-based programs
match their GUI
equivalents for feature
parity, and are often much
faster and more efficient
to use. Our
recommendations: Irssi
(IRC client); Mutt (mail
client); rTorrent
(BitTorrent); Ranger (file
manager); htop (process
monitor). ELinks does a
decent job for web
browsing, given the
limitations of the
terminal, and it’s useful
for reading text-heavy
websites such as
Wikipedia.

Xiki aims to be both a more welcoming shell for new
users, and a step-up for experienced CLIers.

The Solarized colour scheme might not look so swish on paper, but it works brilliantly
on the screen to reduce eye strain during long coding sessions.

Fine-tune your colour scheme
We’re not obsessed with eye-candy at Linux Voice, but we
do recognise the importance of aesthetics when you’re
staring at something for several hours every day. Many of
us love to tweak our desktops and window managers to
perfection, crafting pixel-perfect drop shadows and fiddling
with colour schemes until we’re 100% happy. (And then
fiddling some more out of habit.)

But then we tend to ignore the terminal window. Well,
that deserves some love too, and at http://ciembor.github.
io/4bit you’ll find a highly awesome colour scheme designer
that can export settings for all of the popular terminal
emulators (XTerm, Gnome Terminal, Konsole and Xfce4
Terminal are among the apps supported.) Move the sliders
until you attain colour scheme nirvana, then click on the
Get Scheme button at the top-right of the page.

Similarly, if you spend a lot of time in a text editor such
as Vim or Emacs, it’s worth using a well-crafted palette
there as well. Solarized at http://ethanschoonover.com/
solarized is an excellent scheme that’s not just pretty, but
designed for maximum usability, with plenty of research
and testing behind it.

THE TERMINALS OF THE FUTURE3

You might be wondering why the application that
contains your command prompt is called a terminal.
Back in the early days of Unix, people tended to work
on multi-user machines, with a giant mainframe
computer occupying a room somewhere in a building,
and people connected to it using screen and keyboard
combinations at the end of some wires. These
terminal machines were often called “dumb”, because
they didn’t do any important processing themselves
– they just displayed whatever was sent down the
wire from the mainframe, and sent keyboard presses
back to it.

Today, almost all of us do the actual processing on
our own machines, so our computers are not
terminals in a traditional sense. This is why programs
like XTerm, Gnome Terminal, Konsole etc. are called
“terminal emulators” – they provide the same facilities
as the physical terminals of yesteryear. And indeed, in
many respects they haven’t moved on much. Sure, we

have anti-aliased fonts now, better colours and the
ability to click on URLs, but by and large they’ve been
working in the same way for decades.

Some programmers are trying to change this
though. Terminology (http://tinyurl.com/osopjv9),
from the team behind the ultra-snazzy Enlightenment
window manager, aims to bring terminals into the
21st century with features such as inline media
display. You can enter ls in a directory full of images
and see thumbnails, or even play videos from directly
inside your terminal. This makes the terminal work a
bit more like a file manager, and means that you can
quickly check the contents of media files without
having to open them in a separate application.

Then there’s Xiki (www.xiki.org), which describes
itself as “the command revolution”. It’s like a cross
between a traditional shell, a GUI and a wiki; you can
type commands anywhere, store their output as notes
for reference later, and create very powerful custom
commands. It’s hard to describe it in mere words, so
the authors have made a video (see the Screencasts
section of the Xiki site) which shows how much
potential it has.

And Xiki is definitely not a flash in the pan project
that will die of bitrot in a few months. The authors ran
a successful Kickstarter campaign to fund its
development, netting over $84,000 at the end of July.
Yes, you read that correctly – $84K for a terminal
emulator. It might be the most unusual crowdfunding
campaign since some crazy guys decided to start
their own Linux magazine…

LV007 086 Tutorial Bash.indd 89 08/08/2014 11:21

TUTORIAL FARGO 2

www.linuxvoice.com

When you look at it closely, much written text
has the same basic structure. Newspaper
articles, philosophy essays, novel

summaries, courseware, recipes… are all outlines –
that is, hierarchical trees of topics and sub topics. If
this is true, the more a software editor takes it into
account, the more efficient it is, right?

Fargo is an outliner – that is a text editor designed
to handle outlines in the most efficient way. Any
outliner program provides tools to quickly navigate the
elements of an outline and rearrange them at will, with
the smallest possible effort. Above all, outliners can
instantly hide certain levels or branches of an outline,
so that at any moment you only see the exact amount
of content and level of detail that you want to see.

Outliners are nothing new. In fact, the real value of
Fargo is not in what it does, but in how and where it
does it. This tutorial explains how Fargo works and
how to use it, mainly from the point of view of a Linux
user who would like to integrate it with their other
online and desktop activities.

Now, the Fargo user interface is deceptively simple.
It’s easy to find the menus and buttons that perform
an action, but to work with this tool (rather than
against it) you must first understand the Fargo
philosophy and what it does under the hood. We may
even say that assimilating where the hood is is the
hardest part here. Consequently, we will devote more
space to explaining what Fargo provides, and how,
than to explain how to actually use single menus or
panels.

There are three points that were the origin, and still
are at the core, of the Fargo proposal. The first is the
observation that modern JavaScript-capable
browsers are very powerful and run on hardware, even
including mobile devices, much more powerful than

10 or even just five years ago. No question about that,
but the other points deserve more reflection.

Fargo also works on the assumption that today “the
cloud is ubiquitous and reliable” (not to mention, we
may add, affordable). Residents in rural areas of
Western countries, plus almost everybody else, may
disagree on this. The final point is about lock in and…
let’s discuss it at the end of the tutorial.

Fargo architecture and requirements
Installing Fargo is really simple: there is nothing to
install! The only requirements are a browser that can
handle JavaScript and HTML5 and a Dropbox
account. Log in to Dropbox, point your browser to
http://fargo.io and accept the request to let the Fargo
app work in a dedicated subfolder of your account. If
you don’t see that request, it is because you’ve already
been there. Tell your browser to erase all the cookies
from the fargo.io domain and reload.

Thirty seconds later, you will be able to start writing
outlines and publishing them online using an
interface, and with a final result, already close to what
you could get at Tumblr.com or WordPress.com, but
without the lock-in.

This happens because, while Fargo is a static
JavaScript app that runs entirely in the browser of
your own computer or smartphone, it behaves as if it
were a traditional CMS engine and produces the same
results: you can always write and archive outlines in
the same way from any device and location. From the

FARGO: WRITE AND PUBLISH
OUTLINES IN OPEN FORMATS
Turn the web upside down with this text outliner – without
installing a single piece of software.

 TUTORIAL

90

WHY DO THIS?
• Prepare yourself for the

open, distributed web
of tomorrow, in an easy
and fun way.

• Publish a nice-looking
personal blog for free,
in five minutes, without
installing anything.

• Get familiar with OPML.
You may need it again
some day. Trust us.

We see two very important
things here: first, text
written in Fargo looks very
clean and easy on one’s
eyes. Second, that all your
works remain available in
open source formats.

Eye candy and formatting functions in Fargo are limited to
the bare minimum, and there are two powerful menus for
viewing and managing outlines.

MARCO FIORETTI

LV007 090 Tutorial Fargo.indd 90 08/08/2014 14:57

FARGO 2 TUTORIAL

www.linuxvoice.com

viewer’s point of view it’s the same too: everybody can
access all the outlines that you made public as if they
were a traditional website. Fargo can also generate
static HTML versions of your outlines and upload
them to a web server whenever you want.

This is why Fargo has the potential to turn the web
upside down. The current model of web self
publishing and working “in the cloud” is based on
central CMS servers doing all the really heavy work,
from database queries to page rendering, for many
thousands of authors and visitors simultaneously.
This architecture demands servers and data centres
with very high costs and environmental impacts.

In the Fargo model, as much as possible is
decentralised. Only sensible data such as passwords
are stored in your device. Raw outlines are still stored
on servers; that is, in a private folder of your Dropbox
account, but all the processing happens in the
browsers that run Fargo, or in those that display its
static HTML pages.

For authors, Fargo has another big advantage on
server-based publishing systems like WordPress:
since all the CMS logic runs in a browser, it can have a
much more flexible and responsive interface, and
provide a structure that naturally matches the
structure of most writing.

Structure of Fargo content
At the low level, each Fargo outline is a separate OPML
file stored in your Dropbox account (see the OPML
box below to understand what OPML is, and why it is
great regardless of Fargo). Using Dropbox as
filesystem also provides automated backups and
versioning for free, even if you still have to backup
everything outside Dropbox regularly.

The single elements of each outline, which can be
nested at will, are called headlines (or even summits, if
at the top level). We would have preferred terms like
node or paragraph, because each Fargo headline can
be as long as you want, and each time you press
Enter, you create a new one, but headline it is.

Besides its unique position in the hierarchy, which
of course you can change as you want, each headline
can have attributes like identification code, creation

date or author-defined data, or be commented out. In
the latter case, the headline will remain in the OPML
file, but out of sight, and it will never be included in the
HTML versions. We will explain how to comment or
assign attributes in a moment.

All your Dropbox files are private, until you ask Fargo
to create public, but read-only links to them. An outline
can even embed content from external websites, if
you pass them to Fargo with the browser Bookmarklet
linked from the right bar.

When an outline grows unwieldy, you can archive all
its headlines that you don’t need to edit anymore, and
still make them show up (and render) in the outline. To
do that, you have to archive those headlines as
“includes”. Do do this, place the cursor on them, select
File > Archive Cursor, and they will be moved to the
archive sub-folder of your Fargo folder in Dropbox.

Images and interactive content? Of course!
In case you were worrying that a system optimised
for outlines doesn’t support anything but static text,
relax! You can tell Fargo to keep an eye on a Dropbox
subfolder for generic media (images, audio, PDFs,
whatever). Then, any time you upload something
there, Fargo will notice it and give you a URL for it in a
pop-up window. You can add as much interactivity as
you want to your Fargo outlines… as long as you write

91

Fargo would be very useful even as a purely private editor, but it couldn’t be easier to
transform content in to a blog.

PRO TIP
If you have a lot of texts
on your hard drive that
you would like to import
in Fargo, don’t worry.
It’s very likely, you can
automate much of that
work. One of the best
tools for the is Pandoc
(http://johnmacfarlane.
net/pandoc): a very
versatile converter that
can transform any of
dozens of formats into
any of the others.

What is OPML?
Really open file formats and communication standards are
arguably even more important than free software. If somebody
else sends you files in one of those formats, you can merrily
ignore if they use proprietary software, and open those files
with whatever application you prefer, directly on Linux.

In the open formats family, the Outline Processor Markup
Language (OPML – http://dev.opml.org/spec2.html), was
developed specifically to process and exchange outlines.
You have probably already seen it, or at least one of its
applications: the list of links on the side of many websites
known as “blogrolls” are just that: outlines that under the hood
are most probably OPML files.

The most frequent application of OPML, at least on the web,
is the automatic exchange of lists of RSS feeds between the

websites and software programs that generate, process and
syndicate such feeds.

From a technical point of view, OPML is nothing other than
another application of XML. In practice, this means that an
OPML file, while terribly verbose, is just plain text that you
can generate, parse and process automatically with many free
software tools, from custom scripts to specialised editors.

It is equally important to realise that there’s nothing to
limit OPML to handling lists of headlines and relative links
and abstracts. Formally speaking, OPML can handle anything
whose structure is a hierarchic tree of nodes, each containing
named attributes in text format. If you think about it for just
a moment, you will realise that even your family tree, or your
company’s organisation chart, match this description.

LV007 090 Tutorial Fargo.indd 91 08/08/2014 14:57

TUTORIAL FARGO 2

www.linuxvoice.com92

it in JavaScript, as Fargo itself. In general, the
developers have already started to think about
JavaScript “verbs” for Fargo that would make such
tasks easier. See http://docs.fargo.io/fargoScripting/
for details.

You can already add snippets of JavaScript to a
headline (including calls to internal Fargo functions)
and run them by pressing Ctrl+/. It is also possible to
run some JavaScript code automatically, every time
you reload Fargo or publish an outline.

The Fargo user interface
The first thing you want to do in your Fargo outliner is
click on ‘Cribsheet’ in the right sidebar, to get a
cheatsheet with all the main commands. Next, you
should take a look at the many resources in the Docs
top menu. Just remember that whenever those pages
say “Cmd”, (as in the Command key on OS X) what
they mean on Linux is the Control key.

Now, let’s talk configuration. To access the Fargo
configuration tabs, click on your name in the top-right
corner of the browser window and select “Settings”.
Besides a multimedia folder here, you can set a
password to encrypt all your private outlines, the

autosave behaviour and your contact information
(profile page, email, Twitter and Facebook accounts).
In the same place, you can define separate CSS styles
for each level of your outlines, or a background image.

Fargo can handle multiple outlines simultaneously,
each in a different tab. The editor marks each headline
with a wedge on the left, which will be black if there is
unexpanded test underneath it, or grey otherwise. The
actual content of a headline can be formatted with
HTML or Markdown syntax.

Setting the standard attributes of a headline, or
giving it custom ones, is easy: select the headline,
click on the suitcase icon (or select Outliner > Edit
Attributes) and enter the attribute name on the left
and its value on the right. Click on the + button if you
also need to add custom attributes, and repeat.
Headlines can also be individually commented by
pressing Ctrl+\. When you do that, their wedges will
become chevrons. To uncomment them, press
Cmd+\ again.

Working with Fargo
Looking at Fargo as just an editor, its two main
features are the ‘Outliner’ and ‘Reorg’ top menus. The
first is used to control how much you see of the
current outline and toggle between Non-Render and
Render mode: use the first mode to write or edit raw
markup inside an outline, and the other to see what
the results looks like.

As the name suggests, the ‘Reorg’ menu helps to
reorganise your writings. The entries to move one or
more headlines up or down the outline they are in, or
to change their indentation levels, are all there.

The main functions found in both those top menus
are also available in ‘Pad’ format, to work faster on
touchscreen devices. The Fargo ‘Arrow Pad’ (Outliner >
Show Arrow Pad) has two buttons, one to collapse or
expand parts of the hierarchy, and the other to toggle
Navigate and Reorg mode. Depending on the mode
the four arrow icons in the pad will let you move
headlines around, or navigate from one to another.

On devices with real keyboards, you can use
shortcuts for almost all menu entries. Tab and
Shift+Tab, for example, increase and decrease the
indentation level of a headline. Remember that in
Fargo pressing the Enter key does not enter a newline,
or split the current text in two. It just add one more
empty headline below the current one, regardless of
where the cursor was when you typed.

Once you have acquired familiarity with the
outline-oriented interface of Fargo, you will also be
able to use it to build a public, simple blog. The post
shown in the image above-left was created in four
main steps (the extra, really simple details are all at
http://fargo.io/docs/blogging/firstPost.html):
1 Create a new outline (File > New).
2 Give it a name (File > Name Outline), let’s say

‘golinuxvoice’.
3 Write some content in the usual way.
4 When you are done, put the cursor on the top

What looks just like very well structured text, automatically becomes a simple blog,
complete with Disqus comments, with just a few clicks.

PRO TIP
Take advantage of Fargo
to reorder all those
disorganised folders that
you likely have in your
Dropbox account! This
will make it much easier
to keep stuff you want
to publish through Fargo
from everything else, and
you should already be
doing it anyway.

Integration with WordPress

Many bloggers simply cannot give up their WordPress
accounts for Fargo, because they need some special plugin
or, much more simply, they are just (co-)authors, not the
owners of those blogs. What should they do, if they find the
Fargo authoring interface much better than the WordPress
one? Post to WordPress from Fargo, of course (only one
blog per Fargo account, sorry!). The “Blog” tab of the Fargo
settings interface is there just for that purpose: enter the
URL of your blog, your username and password.

If you need to format your blog posts in ways that Fargo
doesn’t support, just check the Markdown box, and all the
markup you add in your headlines will automatically be
converted to HTML before sending it to the blog. After this
initial configuration, every time you want to post create a
new headline for the title, another right below it with the
content, and click on the WordPress icon in the left sidebar.

LV007 090 Tutorial Fargo.indd 92 08/08/2014 14:57

FARGO 2 TUTORIAL

www.linuxvoice.com 93

headline, and click the Eye icon in the left bar.
The last action will create a new subdomain,

golinuxvoice.smallpict.com (Small Pict is the
company that develops Fargo). All visitors of that
domain will be transparently redirected to static HTML
copies, organised like a blog, of all the posts that you
add to that named outline. The documentation also
explain how to add WordPress-like categories or
generate RSS feeds.

If you plan to use Fargo just for private outlines, but
occasionally want to share one of them with others, in
read-only mode, select File > View In Reader: this will
produce a public URL of your outline that you can
distribute to your friends, students or colleagues.

Desktop integration and automation
What you have learned so far is enough to make most
aspiring authors of outliners and personal blogs
happy, but we Linux users are more demanding than
the average bear.

Writing outlines and optionally publishing them
online with Fargo is easy and efficient, but could we do
more? For example, would it be possible to reuse
Fargo content in other publishing systems, with as
little manual work as possible?

Or what about writing outlines locally (even when
there is no connectivity), and uploading them
automatically when you connect to the internet?

The first activity – re-use – is pretty easy. Set up the
Linux client for Dropbox to automatically copy all the
raw outlines onto your computer in OPML format,
then play with tools like Pandoc to convert them to
other formats, as in these two examples:
 #> pandoc -f opml -t html outline.opml > outline.html
 #> pandoc -f opml -t markdown outline.opml > outline.md
In other words, it’s easy to avoid being locked into
Fargo as an outline-based editor.

The reverse path – that is, generating OPML
outlines on your computer and using them in Fargo –
is not possible yet. Not directly, at least. If you put
OPML files in your Fargo folder at Dropbox.com
nothing will happen. The only available workaround so
far seems to be uploading those files somewhere else,
and then to tell Fargo to include them. This location
can even be another subfolder of your Dropbox
account, as long as you share it to get a publicly
accessible URL usable by Fargo.

Control, and alternatives
All this finally leads us back to the final basic point of
Fargo, the one that we only hinted at in the beginning,
and to the future developments of this technology.

One of the official announcements of Fargo proudly
points out that using it “you have a lot more freedom
about where you host your website”. In reality, as you
should have already noticed, things are quite different
from that, at least now and for average users.

On one hand, you have to have a Dropbox account
and let them “see” your private documents, which is
not all that comfortable in this post-Snowden era. On

the other, if you want to use Fargo for blogging, your
online presence will only be as stable as the smallpict.
com domain name, and the willingness of its owners
to let you use it for free.

Wouldn’t be great if all the servers Fargo needed
were a Raspberry Pi under your desk, and it could use
any domain name of your choice?

Truth be told, Dave Winer and the other developers
of Fargo do see all the limitations, and are more than
willing to overcome them. In fact, we already have
some alternatives today, and a road ahead to solve
the problem for good.

The already existing, but radical solution to the
problem just mentioned is to not use Fargo. If you
think about it, a desktop-based outline editor coupled
with a static blog engine like Mynt or Jekyll already
provides most of what you may get from Fargo.
Especially on Linux, which gives you the ability to
couple it with the right set of shell scripts.

At the same time, it is hard to beat the ease of use
and device independence of Fargo. And the
companion free software of Fargo called Fargo
Publisher (https://github.com/scripting/
fargoPublisher) can already transfer HTML versions
of Fargo outlines to any server of your choice, solving
the domain name problem for good. The process is
quite complex, but Chris Dadswell, who is already
using it, made a great job of documenting all the steps
at http://scriven.chrisdadswell.co.uk/articles/
howtofargoselfpublishingstorageoptions.html and
http://scriven.chrisdadswell.co.uk/articles/
howToSelfPublishingFargoBlog.html.

The Dropbox dependency remains, but with any
luck we’ll also get over it. Stay tuned for another
tutorial when that day comes!

Marco Fioretti is a Free Software and open data campaigner
who has advocated FOSS all over the world.

PRO TIP
Markdown (http://
daringfireball.net/
projects/markdown/) may
be the most popular, if
not the most versatile,
markup system for
plain text available
today. Learning to write
and convert text with
Markdown, regardless of
Fargo, would be a very
smart move if you want
to publish lots of text
regularly.

PRO TIP
You can transform
your outline in online
presentations as
explained at
http://fargo.io/docs/
presentations.html.

This is where all your raw content, obviously in open formats, ends up in Fargo: inside
dedicated folders and subfolders of the Fargo app space of your Dropbox account.

LV007 090 Tutorial Fargo.indd 93 08/08/2014 14:57

TUTORIAL USB CAR

www.linuxvoice.com

Have you ever been enticed into a Windows
versus Linux flame war? If not, you are lucky.
Otherwise, you probably know that Windows

fanboys often talk as though support for peripherals
in Linux is non-existant. While this argument loses
ground every year (the situation is incomparably
better than it was in around 2005), you can still
occasionally come across a device that is not
recognised by your favourite distribution. Most of the
time, this will be some sort of a USB peripheral.

The beauty of free software is that you can fix this
situation yourself. The effort required is obviously
dependent on how sophisticated the peripheral is, and
with a shiny new 3D web camera you may be out of
luck. However, some USB devices are quite simple,
and with Linux, you don’t even need to delve into the
kernel and C to write a working driver program for it. In
this tutorial, we’ll show you how it’s done step by step,
using a high-level interpreted language (Python, you
guessed it) and a toy USB radio controlled car I
happen to have lying around.

What we are going to do is a basic variant of a
process generally known as reverse engineering. You
start examining the device with common tools (USB is
quite descriptive itself). Then you capture the data
that the device exchanges with its existing (Windows)
driver, and try to guess what it means. This is the
toughest part, and you’ll need some experience and a

bit of luck to reverse engineer a non-trivial protocol.
This is legal under most jurisdictions, but as usual,
contact a lawyer if in doubt.

Get to know USB
Before you start reversing, you’ll need to know what
exactly USB is. First, USB is a host-controlled bus. This
means that the host (your PC) decides which device
sends data over the wire, and when it happens. Even
an asynchronous event (like a user pressing a button
on a USB keyboard) is not sent to the host
immediately. Given that each bus may have up to 127
USB devices connected (and even more if hubs are
concerned), this design simplifies the management.

USB is also a layered set of protocols somewhat
like the internet. Its lowest layer (an Ethernet
counterpart) is usually implemented in silicon, and
you don’t have to think about it. The USB transport
layer (occupied by TCP and UDP in the internet – see
page 64 for Dr Brown’s exploration of the UDP
protocol) is represented by ‘pipes’. There are stream
pipes that convey arbitrary data, and message pipes
for well-defined messages used to control USB
devices. Each device supports at least one message
pipe. At the highest layer there are the application-level
(or class-level, in USB terms) protocols, like the
ubiquitous USB Mass Storage (pen drives) or Human
Interface Devices (HID).

Inside a wire
A USB device can be seen as a set of endpoints; or,
simply put, input/output buffers. Each endpoint has
an associated direction (in or out) and a transfer type.
The USB specification defines several transfer types:
interrupt, isochronous, bulk, and control, which differ
in characteristics and purpose.

Interrupt transfers are for short periodic real-time
data exchanges. Remember that a host, not the USB
device, decides when to send data, so if (say) a user
presses the button, the device must wait until the host
asks: “Were there any buttons pressed?”. You certainly
don’t want the host to keep silent for too long (to
preserve an illusion that the device has notified the
host as soon as you pressed a button), and you don’t
want these events to be lost. Isochronous transfers
are somewhat similar but less strict; they allow for
larger data blocks and are used by web cameras and
similar devices, where delays or even losses of a
single frame are not crucial.

DRIVE IT YOURSELF:
A USB CAR
Ever wondered how device drivers are reverse engineered?
We’ll show you with a simple yet complete example.

 TUTORIAL

94

VALENTINE
SINITSYN

WHY DO THIS?
• Get to know USB.
• Earn some geek

points with reverse
engineering.

• Practice with the PyUSB
library.

Fun to play and also simple: this is the device we will write a driver for.

LV007 094 Tutorial Pyusb.indd 94 08/08/2014 14:18

USB CAR TUTORIAL

www.linuxvoice.com

Bulk transfers are for large amounts of data. Since
they can easily hog the bus, they are not allocated the
bandwidth, but rather given what’s left after other
transfers. Finally, the control transfer type is the only
one that has a standardised request (and response)
format, and is used to manage devices, as we’ll see in
a second. A set of endpoints with associated
metadata is also known as an interface.

Any USB device has at least one endpoint (number
zero) that is the end for the default pipe and is used
for control transfers. But how does the host know
how many other endpoints the device has, and which
type they are? It uses various descriptors available on
specific requests sent over the default pipe. They can
be standard (and available for all USB devices),
class-specific (available only for HID, Mass Storage or
other devices), or vendor-specific (read “proprietary”).

Descriptors form a hierarchy that you can view with
tools like lsusb. On top of it is a Device descriptor,
which contains information like device Vendor ID (VID)
and Product ID (PID). This pair of numbers uniquely
identifies the device, so a system can find and load
the appropriate driver for it. USB devices are often
rebranded, but a VID:PID pair quickly reveals their
origin. A USB device may have many configurations (a
typical example is a printer, scanner or both for a
multifunction device), each with several interfaces.
However, a single configuration with a single interface
is usually defined. These are represented by
Configuration and Interface descriptors. Each
endpoint also has an Endpoint descriptor that
contains its address (a number), direction (in or out),
and a transfer type, among other things.

Finally, USB class specifications define their own
descriptor types. For example, the USB HID (human
interface device) specification, which is implemented
by keyboards, mice and similar devices, expects all
data to be exchanged in the form of ‘reports’ that are
sent/received to and from the control or interrupt
endpoint. Class-level HID descriptors define the report
format (such as “1 field 8 bits long”) and the intended
usage (“offset in the X direction”). This way, a HID
device is self-descriptive, and can be supported by a
generic driver (usbhid on Linux). Without this, we
would need a custom driver for each individual USB
mouse we buy.

It’s not too easy to summarise several hundred
pages of specifications in a few passages of the

tutorial text, but I hope you didn’t get bored. For a
more complete overview of how USB operates, I
highly recommend O’Reilly’s USB in a Nutshell,
available freely at www.beyondlogic.org/usbnutshell.
And now, let’s do some real work.

Under the hood
For starters, let’s take a look at how the car looks as a
USB device. lsusb is a common Linux tool to
enumerate USB devices, and (optionally) decode and
print their descriptors. It usually comes as part of the
usbutils package.
[val@y550p ~]$ lsusb
Bus 002 Device 036: ID 0a81:0702 Chesen Electronics Corp.
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root
hub
...

The car is the Device 036 here (unplug it and run
lsusb again to be sure). The ID field is a VID:PID pair.
To read the descriptors, run lsusb -v for the device in
question:
[val@y550p ~]$ lsusb -vd 0a81:0702

Bus 002 Device 036: ID 0a81:0702 Chesen Electronics Corp.
Device Descriptor:
 ...
 idVendor 0x0a81 Chesen Electronics Corp.
 idProduct 0x0702
 ...
 bNumConfigurations 1
 Configuration Descriptor:
 ...
 Interface Descriptor:
 ...
 bInterfaceClass 3 Human Interface Device
 ...
 iInterface 0
 HID Device Descriptor:
 ...
 Report Descriptors:
 ** UNAVAILABLE **

95

Fixing permissions

By default, only root is able to work with USB devices in
Linux. It’s not a good idea to run our example program
as a superuser, so add a following udev rule to fix the
permissions:
SUBSYSTEM==”usb”, ATTRS{idVendor}==”0a81”,
ATTRS{idProduct}==”0702”, GROUP=”INSERT_HERE”,
MODE=”0660”

Just insert the name of a group your user belongs to and
put this in /lib/udev/rules.d/99-usbcar.rules.

No, you can’t control this
car from a PC – it’s a
mouse and misses Output
reports.

LV007 094 Tutorial Pyusb.indd 95 08/08/2014 14:18

TUTORIAL USB CAR

www.linuxvoice.com96

 Endpoint Descriptor:
 ...
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 3
 Transfer Type Interrupt
 ...

Here you can see a standard descriptors hierarchy;
as with the majority of USB devices, the car has only
one configuration and interface. You can also spot a
single interrupt-in endpoint (besides the default
endpoint zero that is always present and thus not
shown). The bInterfaceClass field suggests that the
car is a HID device. This is a good sign, since the HID
communication protocol is open. You might think that
we just need to read the Report descriptor to
understand report format and usage, and we are
done. However, this is marked ** UNAVAILABLE **.
What’s the matter? Since the car is a HID device, the
usbhid driver has claimed ownership over it (although
it doesn’t know how to handle it). We need to ‘unbind’
the driver to control the device ourselves.

First, we need to find a bus address for the device.
Unplug the car and plug it again, run dmesg | grep
usb, and look for the last line that starts with usb
X-Y.Z:. X, Y and Z are integers that uniquely identify
USB ports on a host. Then run:
[root@y550p ~]# echo -n X-Y.Z:1.0 > /sys/bus/usb/drivers/
usbhid/unbind

1.0 is the configuration and the interface that we
want the usbhid driver to release. To bind the driver
again, simply write the same into /sys/bus/usb/
drivers/usbhid/bind.

Now, Report descriptor becomes readable:
Report Descriptor: (length is 52)
 Item(Global): Usage Page, data= [0xa0 0xff] 65440
 (null)
 Item(Local): Usage, data= [0x01] 1
 (null)
 ...
 Item(Global): Report Size, data= [0x08] 8

 Item(Global): Report Count, data= [0x01] 1
 Item(Main): Input, data= [0x02] 2
 ...
 Item(Global): Report Size, data= [0x08] 8
 Item(Global): Report Count, data= [0x01] 1
 Item(Main): Output, data= [0x02] 2
 ...

Here, two reports are defined; one that is read from
the device (Input), and the other that can be written
back to it (Output). Both are one byte long. However,
their intended usage is unclear (Usage Page is in the
vendor-specific region), and it is probably why the
usbhid driver can’t do anything useful with the device.
For comparison, this is how a USB mouse Report
descriptor looks (with some lines removed):
Report Descriptor: (length is 75)
 Item(Global): Usage Page, data= [0x01] 1
 Generic Desktop Controls
 Item(Local): Usage, data= [0x02] 2
 Mouse
 Item(Local): Usage, data= [0x01] 1
 Pointer
 Item(Global): Usage Page, data= [0x09] 9
 Buttons
 Item(Local): Usage Minimum, data= [0x01] 1
 Button 1 (Primary)
 Item(Local): Usage Maximum, data= [0x05] 5
 Button 5
 Item(Global): Report Count, data= [0x05] 5
 Item(Global): Report Size, data= [0x01] 1

The original KeUsbCar
application under Windows
XP.

A bonus value

Most RC toys are quite simple and use stock receivers and
other circuits that operate at the same frequencies. This
means our car driver program can be used to control toys
other than the car that comes bundled. I’ve just discovered
that I can play with my son’s tractor from my laptop. With
some background in amateur radio, you’ll certainly find
more interesting applications for this.

LV007 094 Tutorial Pyusb.indd 96 08/08/2014 14:18

USB CAR TUTORIAL

www.linuxvoice.com 97

 Item(Main): Input, data= [0x02] 2
This is crystal clear both for us and for the OS. With

the car, it’s not the case, and we need to deduce the
meaning of the bits in the reports ourselves by looking
at raw USB traffic.

Detective work
If you were to analyse network traffic, you’d use a
sniffer. Given that USB is somewhat similar, it comes
as no surprise that you can use a sniffer to monitor
USB traffic as well. There are dedicated commercial
USB monitors that may come in handy if you are
doing reverse engineering professionally, but for our
purposes, the venerable Wireshark will do just fine.

Here’s how to set up USB capture with Wireshark
(you can find more instructions at). First, we’ll need to
enable USB monitoring in the kernel. The usbmon
module is responsible for that, so load it now:
[root@y550p ~]# modprobe usbmon

Then, mount the special debugfs filesystem, if it’s
not already mounted:
[root@y550p ~]# mount -t debugfs none /sys/kernel/debug

This will create a /sys/kernel/debug/usb/usbmon
directory that you can already use to capture USB
traffic with nothing more than standard shell tools:
[root@y550p ~]# ls /sys/kernel/debug/usb/usbmon
0s 0u 1s 1t 1u 2s 2t 2u

There are some files here with cryptic names. An
integer is the bus number (the first part of the USB
bus address); 0 means all buses on the host. s stands
for ‘statistics’ t is for ‘transfers’ (ie what’s going over
the wire) and u means URBs (USB Request Blocks,
logical entities that represents a USB transaction). So,
to capture all transfers on Bus 2, just run:
[root@y550p ~]# cat /sys/kernel/debug/usb/usbmon/2t
ffff88007d57cb40 296194404 S Ii:036:01 -115 1 <
ffff88007d57cb40 296195649 C Ii:036:01 0 1 = 05
ffff8800446d4840 298081925 S Co:036:00 s 21 09 0200 0000
0001 1 = 01
ffff8800446d4840 298082240 C Co:036:00 0 1 >
ffff880114fd1780 298214432 S Co:036:00 s 21 09 0200 0000
0001 1 = 00
Unless you have a trained eye, this feedback is
unreadable. Luckily, Wireshark will decode many
protocol fields for us.

Now, we’ll need a Windows instance that runs the
original driver for our device. The recommended way
is to install everything in VirtualBox (theOracle
Extension Pack is required, since we need USB
support). Make sure VirtualBox can use the device, and
run the Windows program (KeUsbCar) that controls
the car. Now, start Wireshark to see what commands
the driver sends over the wire. At the intial screen,
select the ‘usbmonX’ interface, where X is the bus that
the car is attached to. If you plan to run Wireshark as a
non-root user (which is recommended), make sure
that the /dev/usbmon* device nodes have the
appropriate permissions.

Suppose we pressed a “Forward” button in
KeUsbCar. Wireshark will catch several output control

transfers, as shown on the screenshot above. The one
we are interested in is highlighted. The parameters
indicate it is a SET_REPORT HID class-specific
request (bmRequestType = 0x21, bRequest = 0x09)
conventionally used to set a device status such as
keyboard LEDs. According to the Report Descriptor we
saw earlier, the data length is 1 byte, and the data
(which is the report itself) is 0x01 (also highlighted).

Pressing another button (say, “Right”) results in
similar request; however, the report will be 0x02 this
time. One can easily deduce that the report value
encodes a movement direction. Pressing the
remaining buttons in turn, we discover that 0x04 is
reverse right, 0x08 is reverse, and so on. The rule is
simple: the direction code is a binary 1 shifted left by
the button position in KeUsbCar interface (if you count
them clockwise).

We can also spot periodic interrupt input requests
for Endpoint 1 (0x81, 0x80 means it’s an input
endpoint; 0x01 is its address). What are they for?
Except buttons, KeUsbCar has a battery level indicator,
so these requests are probably charge level reads.
However, their values remain the same (0x05) unless
the car is out of the garage. In this case, there are no
interrupt requests, but they resume if we put the car
back. We can suppose that 0x05 means “charging”
(the toy is simple, and no charge level is really
returned, only a flag). If we give the car enough time,
the battery will fully charge, and interrupt reads will
start to return 0x85 (0x05 with bit 7 set). It looks like
the bit 7 is a “charged” flag; however, the exact
meaning of other two flags (bit 0 and bit 2 that form
0x05) remains unclear. Nevertheless, what we have

Wireshark captures
Windows driver-originated
commands.

LV007 094 Tutorial Pyusb.indd 97 08/08/2014 14:18

TUTORIAL USB CAR

www.linuxvoice.com98

figured out so far is already enough to recreate a
functional driver.

Get to code
The program we are going to create is quite similar to
its Windows counterpart, as you can easily see from
the screenshot above. It has six arrow buttons and a
charge level indicator that bounces when the car is in
the garage (charging). You can download the code
from GitHub (https://github.com/vsinitsyn/usbcar.
py); the steering wheel image comes from
www.openclipart.org.

The main question is, how do we work with USB in
Linux? It is possible to do it from userspace (subject to
permission checks, of course; see the boxout below),
and the libusb library facilates this process. This library
is written for use with the C language and requires the
user to have a solid knowledge of USB. A simpler
alternative would be PyUSB, which is a simpler
alternative: it strives to “guess” sensible defaults to
hide the details from you, and it is pure Python, not C.
Internally, PyUSB can use libusb or some other
backend, but you generally don’t need to think about it.
You could argue that libusb is more capable and
flexible, but PyUSB is a good fit for cases like ours,
when you need a working prototype with minimum

effort. We also use PyGame for the user interface, but
won’t discuss this code here – though we’ll briefly visit
it at the end of this section.

Download the PyUSB sources from https://github.
com/walac/pyusb, unpack them and install with
python setup.py install (possibly in a virtualenv). You
will also need the libusb library, which should be
available in your package manager. Now, let’s wrap
the functionality we need to control a car in a class
imaginatively named USBCar.
import usb.core
import usb.util

class USBCar(object):
 VID = 0x0a81
 PID = 0x0702

 FORWARD = 1
 RIGHT = 2
 REVERSE_RIGHT = 4
 REVERSE = 8
 REVERSE_LEFT = 16
 LEFT = 32
 STOP = 0

We import two main PyUSB modules and define the
direction values we’ve deduced from the USB traffic.
VID and PID are the car ID taken from the output of
lsusb.
def __init__(self):
 self._had_driver = False
 self._dev = usb.core.find(idVendor=USBCar.VID,
idProduct=USBCar.PID)
 if self._dev is None:
 raise ValueError(“Device not found”)

In the constructor, we use the usb.core.find()
function to look up the device by ID. If it is not found,
we raise an error. The usb.core.find() function is very
powerful and can locate or enumerate USB devices by
other properties as well; consult https://github.com/
walac/pyusb/blob/master/docs/tutorial.rst for the
full details.
 if self._dev.is_kernel_driver_active(0):
 self._dev.detach_kernel_driver(0)
 self._had_driver = True

Next, we detach (unbind) the kernel driver, as we did
previously for lsusb. Zero is the interface number. We
should re-attach the driver on program exit (see the
release() method below) if it was active, so we
remember the initial state in self._had_driver.
 self._dev.set_configuration()

Finally, we activate the configuration. This call is
one of a few nifty shortcuts PyUSB has for us. The
code above is equivalent to the following, however it
doesn’t require you to know the interface number and
the configuration value:
 self._dev.set_configuration(1)
 usb.util.claim_interface(0)

def release(self):
 usb.util.release_interface(self._dev, 0)

This may not look as good
as KeUsbCar, but it runs
under Linux.

No more toys: writing a real driver (almost)

Having a custom program to work with a
previously unsupported device is certainly
a step forward, but sometimes you also
need it to integrate with the rest of the
system. Generally it implies writing a driver,
which requires coding at kernel level (see
our tutorial from LV002 at www.linuxvoice.
com/be-a-kernel-hacker/) and is probably
not what you want. However, with USB the
chances are that you can stay in userspace.

If you have a USB network card, you
can use TUN/TAP to hook your PyUSB
program into Linux networking stack. TUN/
TAP interfaces look like regular network
interfaces (with names like tun0 or tap1) in
Linux, but they make all packets received or

transmitted available through the /dev/net/
tun device node. The pytun module makes
working with TUN/TAP devices in Python a
breeze. Performance may suffer in this case,
but you can rewrite your program in C with
libusb and see if this helps.

Other good candidates are USB displays.
Linux comes with the vfb module, which
makes a framebuffer accessible as /dev/fbX
device. Then you can use ioctls to redirect
Linux console to that framebuffer, and
continuously pump the contents of /dev/
fbX into a USB device using the protocol you
reversed. This won’t be very speedy either,
but unless you are going to play 3D shooters
over USB, it could be a viable solution.

LV007 094 Tutorial Pyusb.indd 98 08/08/2014 14:18

USB CAR TUTORIAL

www.linuxvoice.com 99

Dr Valentine Sinitsyn edited the Russian edition of O’Reilly’s
Understanding the Linux Kernel, has a PhD in physics, and is
currently doing clever things with Python.

 if self._had_driver:
 self._dev.attach_kernel_driver(0)

This method should be called before the program
exits. Here, we release the interface we claimed and
attach the kernel driver back.

Moving the car is also simple:
def move(self, direction):
 ret = self._dev.ctrl_transfer(0x21, 0x09, 0x0200, 0, [direction])
 return ret == 1
The direction is supposed to be one of the values
defined at the beginning of the class. The ctrl_
transfer() method does control transfer, and you can
easily recognise bmRequestType (0x21, a class-
specific out request targeted at the endpoint),
bRequest (0x09, Set_Report() as defined in the USB
HID specification), report type (0x0200, Output) and
the interface (0) we saw in Wireshark. The data to be
sent is passed to ctrl_transfer() as a string or a list;
the method returns the number of bytes written. Since
we expect it to write one byte, we return True in this
case and False otherwise.

The method that determines battery status spans a
few more lines:
def battery_status(self):
 try:
 ret = self._dev.read(0x81, 1, timeout=self.READ_TIMEOUT)
 if ret:
 res = ret.tolist()
 if res[0] == 0x05:
 return ‘charging’
 elif res[0] == 0x85:
 return ‘charged’
 return ‘unknown’
 except usb.core.USBError:
 return ‘out of the garage’

At its core is the read() method, which accepts an
endpoint address and the number of bytes to read. A
transfer type is determined by the endpoint and is
stored in its descriptor. We also use a non-default
(smaller) timeout value to make the application more
responsive (you won’t do it in a real program: a
non-blocking call or a separate thread should be used
instead). Device.read() returns an array (see the ‘array’
module) which we convert to list with the tolist()
method. Then we check its first (and the only) byte to
determine charge status. Remember that this it is not
reported when the car is out of the garage. In this
case, the read() call will run out of time and throw a
usb.core.USBError exception, as most PyUSB
methods do. We (fondly) assume that the timeout is

Resources

 USB in a Nutshell: www.beyondlogic.org/usbnutshell
 USB Capture Setup at the Wireshark wiki:
http://wiki.wireshark.org/CaptureSetup/USB

 Tutorial code: https://github.com/vsinitsyn/usbcar.py
 PyUSB homepage: https://github.com/walac/pyusb
 “Programming with PyUSB 1.0” tutorial: https://github.
com/walac/pyusb/blob/master/docs/tutorial.rst

the only possible reason for the exception here. In all
other cases we report the status as ‘unknown’.

Another class, creatively named UI, encapsulates the
user interface – let’s do a short overview of the most
important bits. The main loop is encapsulated in the
UI.main_loop() method. Here, we set up a background
(steering wheel image taken from OpenClipart.org),
display the battery level indicator if the car is in the
garage, and draw arrow buttons (UI.generate_arrows()
is responsible for calculating their vertices’ coordinates).
Then we wait for the event, and if it is a mouse click,
move the car in the specified direction with the USBCar.
move() method described earlier.

One tricky part is how we associate directions with
arrow buttons. There is more than one way to do it,
but in this program we draw two sets of arrows with
identical shapes. A first one, with red buttons you see
on the screenshot, is shown to the user, while the
second one is kept off-screen. Each arrow in that
hidden set has a different colour, whose R component
is set to a direction value. Outside the arrows, the
background is filled with 0 (the USBCar.STOP
command). When a user clicks somewhere in the
window, we just check the R component of the pixel
underneath the cursor in that hidden canvas, and
action appropriately.

The complete program with a GUI takes little more
than 200 lines. Not bad for the device we didn’t even
had the documentation for!

That’s all folks!
This concludes our short journey into the world of
reverse engineering and USB protocols. The device for
which we’ve developed a driver (or more accurately, a
support program) was intentionally simple. However,
there are many devices similar to this USB car out
there, and many of them use a protocol that is close
to the one we’ve reversed (USB missile launchers are
good example). Reversing a sophisticated device isn’t
easy, but now you can already add Linux support for
something like a desktop mail notifier. While it may
not seem immediately useful, it’s a lot of fun.

With PyUSB we could also
control this toy digger,
so you may find that the
drivers you write will
have more uses that you
imagined.

LV007 094 Tutorial Pyusb.indd 99 08/08/2014 14:18

CODING BASH

www.linuxvoice.com

WHY DO THIS?
• Chain commands

together to create
flexible scripts.

• Get more from the
command line.

• Learn a new way of
working.

Most Linux users will know Bash as the
command line prompt. But it is also a
powerful programming language – a lot of

the code that glues the various parts of your system
together is written in Bash. You may have looked at
some of it and seen seas of parentheses, braces and
brackets. This less-than obvious syntax helps make
other languages, such as Python, more attractive to
beginners. But Bash is ubiquitous in the Linux world,
and it’s worth taking the time to learn how to go
beyond the prompt.

A good introduction to Bash programming is to put
frequently issued command sequences into a file so
that you can replay them at the command prompt
instead of typing each one. Such a file is called a
script, and we often hear “scripting” instead of
“programming”. Bash is nonetheless a language with
its own syntax, capabilities and limitations.

The basics
Bash programs, like Python and Ruby, are not
compiled into binary executables, but need to be
parsed by an interpreter. For Bash, this is an
executable called bash that interprets commands
read interactively from its command prompt or from a
script. If you’re at a Bash prompt, it’ll be provided by a
running bash process, and you can feed a script
straight to it:
$ source myscript

But you may not be at such a prompt (you might
use another shell, such as csh or ksh, or you may be at
the Run dialog of your desktop). If you set the execute
bit on your script:
$ chmod +x myscript
then you can execute it:
$ myscript
which causes your shell to ask the operating system’s

program loader to start it. This creates, or forks, a
child process of your shell.

But the script isn’t a binary executable, so the
program loader needs to be told how to execute it.
You do this by including a special directive as the first
line of your script, which is why most bash scripts
begin with a line this:
#!/bin/bash

The first two characters, #!, known as a shebang,
are detected by the program loader as a magic
number that tells it that the file is a script and that it
should interpret the remainder of the line as the
executable to load – plus, optionally, any arguments
to pass to it along with the script itself. The program
loader starts \bin\bash in a new process, and this
runs the script. It needs the absolute path to the
executable because the kernel has no concept of a
search path (that is itself a feature of the shell).

Scripts that perform specific tasks are usually
executed so they run in a predictable environment.
Every process has an environment that it inherits from
its parent, and contains so-called environment
variables that offer its parent a way to pass
information into it. A process can alter its own
environment and prepare that of its children, but it
cannot affect its parent.

Scripts specifically written to alter the current
environment (like rc files) are sourced and usually
don’t have their execute bit set.

One line at a time
Bash reads input one line at a time, whether from a
command prompt or a script. Comments are
discarded; they start with a hash # character and
continue to the end of the line (bash sees the shebang
as a comment). It applies quoting rules and parameter
expansion to what remains and ends up with words
– commands, operators and keywords that make up
the language. Commands are executed and return an
exit status, which is stored in a special variable for use
by subsequent commands.

Words are separated by metacharacters: a space or
one of |, &, ;, (,), < or >. Operators are character
sequences containing one or more metacharacters.

Metacharacters can have their special meaning
removed by quoting. The first form of quoting
removes special meaning from all characters
enclosed by single quotes. It is not possible to enclose
a single quote within single quotes. Double quotes are

BASH: BEYOND THE
COMMAND PROMPT
Speed up repetitive tasks, get more power out of the command line
or just make life easier – welcome to the world of Bash scripting.

 TUTORIAL

100

JOHN LANE

POSIX

An IEEE standard for a portable operating
system interface, POSIX is frequently
mentioned in texts about shell scripting. It
means being compatible with something
called the Shell Command Language, which
is defined by an IEEE standard and
implemented as the shell on all Unix-like
systems by the /bin/sh command.These days
/bin/sh is usually a symlink to a shell that

can run in a POSIX-compliant mode. The
bash command does this when launched in
this way or if given the --posix command-
line option.

In POSIX mode, Bash only supports the
features defined by the POSIX standard.
Anything else is commonly called a bashism.
See http://bit.ly/bashposix for what’s
different in Bash’s POSIX mode.

LV007 100 Coding Bash 6gm.indd 100 08/08/2014 11:25

BASH CODING

www.linuxvoice.com

PRO TIP
You can use a “.” instead
of “source” to run a
script in the current
environment.

101

similar, except some metacharacters still work, most
notably the Dollar sign, which performs parameter
expansion, and the escape \, which is the third form of
quoting and removes special meaning from the
following character only.

Parameters pass information into the script.
Positional parameters contain the script’s argument
list, and special variables provide ways to access them
en-masse and also provide other information like the
script’s filesystem path, its process ID and the last
command’s exit status.

Variables are parameters that you can define by
assigning a value to a name. Names can be any string
of alphanumeric characters, plus the underscore (_)
but cannot begin with a numeric character, and all
values are character strings, even numbers. Variables
don’t need to be declared before use, but doing so
enables additional attributes to be set such as making
them read-only (effectively a constant) or defining
them as an integer or array (they’re still string values
though!). Assignment is performed with the = operator
and must be written without spaces between the
name and value. Here are some examples that you
might see:
var1=hello
var2=1234
declare -i int=100 # integer
declare -r CON=123 # constant
declare -a arr=(foo bar baz) # array

Variables default to being shell variables; they aren’t
part of the environment passed to child processes.
For that to happen, the variable must be exported as
an environment variable:
export $MYVAR

Names can use upper- and lower-case characters
and are case-sensitive. It’s good practice to use lower

case names for your own variables and use upper
case names for constants and environment variables.

Parameter expansion happens when a parameter’s
name is preceded by the dollar sign, and it replaces
the parameter with its value:
echo $1
which outputs the script’s first argument. These
so-called positional parameters are numbered
upwards from 1 and 0 contains the filesystem path to
the script. Parameter names can be enclosed by { and
} if their names would otherwise be unclear. Consider
this:
$ var=1234
$ echo $var5678
$ echo ${var}5678
12345678

The first echo receives the value of a non-existant
variable var5678 whereas the second gets the value of
var, followed by 5678. The other thing to understand
about parameters is that bash expands them before
any command receives them as arguments. If this
expansion includes argument separators, then the
expanded value will become multiple arguments. You’ll
encounter this when values contain spaces, and the
solution to this problem is quoting:
$ file=’big data’
$ touch “$file”
$ ls $file
ls: cannot access big: No such file or directory
ls: cannot access data: No such file or directory

Here, touch creates a file called big data because
the file variable is quoted, but ls fails to list it because
it is unquoted and therefore receives two arguments
instead of one.

For these two reasons, it is common to quote and
delimit parameters when expanding them; many
scripts refer to variables like this:
“${myvar}”

Braces are also required to expand array variables.
These are defined using parentheses and expanded
with braces:
$ myarr=(foo bar baz)
$ echo “${myarr[@]}” # values
foo bar baz
$ echo “${!myarr[@]}” # indices

Chain of command

Special Variables

Bash expects one command per line, but this can be a
chain: a sequence of commands connected together with
one of four special operators. Commands chained with &&
only execute if the exit status of the preceding one was 0,
indicating success. Conversely, commands chained with
|| execute only if the preceding one failed. Commands
chained with a semicolon (;) execute irrespective of how
the prior command exited. Lastly, the single-ampersand
& operator chains commands, placing the preceding
command into the background:
command1 && command2 # perform command2 only if
command1 succeeded
command1 || command2 # perform command2 only if
command1 failed
command1 ; command2 # perform command1 and then
command2
command1 & command2 # perform command2 after starting
command1 in the background

Chains can be combined, giving a succinct if-then-else
construct:
command1 && command2 || command3

The exit status of a chain is the exit status of the last
command to execute.

0 The name of the shell (if interactive) or script.
1 .. n The positional parameters numbered from 1 to the

number of arguments n. Braces must be used when
expanding arguments greater than 9 (eg ${10}).

* All the positional parameters. Expanding within
quotes gives a single word containing all parameters
separated by spaces (eg “$*” is equivalent to “$1 $2
... $n”).

@ All the positional parameters. Expanding within
quotes gives all parameters, each as a separate word
(eg “$@” is equivalent to “$1 $2 ... $n”).

? The exit status of the most recent command.
$ The process ID of the shell.
! The PID of the last backgrounded command.

LV007 100 Coding Bash 6gm.indd 101 08/08/2014 11:25

CODING BASH

www.linuxvoice.com

PRO TIP
The Advanced Bash
Scripting Guide contains
an unofficial style guide
http://bit.ly/bashstyle.

102

0 1 2
$ echo “${#myarr[@]}” # count
3

Arrays are indexed by default and do not need to be
declared. You can also create associative arrays if you
have bash version 4, but you need to declare them:
$ declare -A hash=([key1]=value1 [key2]=value2)
$ hash[key3]=value3
$ echo ${hash[@]}
value3 value2 value1
$ echo ${!hash[@]}
key3 key2 key1
$ echo ${hash[key1]}
value1

Braces are also used for inline expansion, where
///:a,b\///1 becomes a1 b1 and ///:1..5\/// becomes
1 2 3 4 5. Braces also define a command group: a
sequence of commands that are treated as one so
that their input and output can be redirected:
{date; ls;} > output.log

A similar construct is the subshell. Commands
written in parentheses are launched in a child process.
Expanding them enables us to capture their output:
now=$(date +%T)

Although our example used a child process, the
parent blocked; it waited for the child to finish before
continuing. Child processes can also be used to run
tasks in parallel by backgrounding them:
(command)&

This enables your script to continue while the
‘command’ runs in a separate process. You can wait,
perhaps later on in your script, for it to finish.

Unlike the subshell, the command group does not
fork a child process and, therefore, affects the current
environment. They cannot be used in a pipeline and
they cannot be expanded to capture their output.
Subshells can do these things and are also useful for
running parallel processes in separate environments.

Do the maths
You’ll also encounter double parentheses; these are
one way to do integer arithmetic (bash doesn’t have
floating-point numbers); let and expr are others:
profit=$(($income - $expenses))
profit=$((income - expenses))
let profit=$income-$expenses
profit=$(expr $income - $expenses)

The double parentheses form allows spaces to be
inserted and the dollar signs to be omitted from the
expression to aid readability. Also note that the use of
expr is less efficient, because it’s an external
command. Arithmetic expansion also allows operators
similar to those found in the C programming language,
as in this common idiom to increment a variable:
$ x=4
$ let x++
$ echo $x
5

Finally, we have square brackets, which evaluate
expressions and expand to their exit status. They’re

used to test and compare parameters, variables and
file types. There are single- and double-bracket
variants; the single bracket expression is an alias for
the test command – these are equivalent:
 “$myvar” == hello
test “$myvar” == hello

The double bracket expression is a more versatile
extended test command (see help [[), which is a
keyword and part of the language syntax. test is just a
command that has the opening bracket as an alias
and, when used that way, expects its last argument to
be a closing bracket. This is an important difference to
understand, because it affects how the expression is
expanded. test is expanded like arguments to any
other command, whereas an extended test
expression is not expanded but parsed in its entirety
as an expression with its own syntax, in a way that’s
more in line with other programming languages.

It supports the same constructs as test (see help
test or man test), performs command substitution
and expands parameters. Values don’t need to be
quoted, and comparison operators (=, &&, ||, > and <)
work as expected, plus the =~ operator compares
with a regular expression:
$ [[hello =~ ^he]] && echo match
match

Like any command, both single- and double-bracket
expressions expand to their exit status and can be
used in conditionals that use it to choose the path of
execution:
if c; then c; fi
if c; then c; else c; fi
if c; then c; elif c; then c; else c; fi
where c is a command. The semicolons can be
omitted if the following word appears on a new line.
Each command can be multiple commands but it is
the exit status of the final conditional command that
determines the execution path. Conditionals can be
nested too:

Internal and external commands

Some commands are implemented within Bash and are
known as builtins. They are more efficient than other
external commands because they don’t have the overhead
of forking a child process. Some builtins have equivalent
external commands that pre-date them being implemented
within bash. Keywords are similar to builtins but are
reserved words that form part of the language syntax. You
can use type to see what a word means in bash:
$ type cat
cat is /usr/bin/cat
$ type echo
echo is a shell builtin
$ type /usr/bin/echo
/usr/bin/echo is /usr/bin/echo
$ type if
if is a shell keyword

You can get help on builtin commands and keywords:
$ help {
{ ... }: { COMMANDS ; }
 Group commands as a unit.

LV007 100 Coding Bash 6gm.indd 102 08/08/2014 11:25

BASH CODING

www.linuxvoice.com

PRO TIP
test is both a built-in
and external command
(/usr/bin/test).

PRO TIP
Try to always use double
bracket expressions
unless POSIX compliance
is important.

103

if condition
then
 if nested-condition
 command
 else
 command
 fi
fi
while and until loops are also controlled by exit status:
while c; do c; done
until c; do c; done

The for loop is different – it iterates over a series of
words:
for i in foo bar baz
do
 something
done
but you can use brace expansion to simulate a
counting loop:
for i in {1..10}

Function definition
No programming language would be complete
without some way to group and reuse code, and bash
has functions. A function is easy to define, either:
function myfunc {
}
or (preferably, and POSIX compliant):
myfunc () {
}

Functions have the same naming rules as variables
but it’s conventional to use lower-case words
separated by underscores. They can be used
wherever commands can, and are given arguments in
the same way, although the function definition doesn’t
define any (the parentheses must be empty). The
function sees its arguments as positional parameters.

Variables defined outside a function are visible
inside, and variables defined inside are accessible
outside, unless declared as local:
function f() {
 in1=456
 local in2=789
 echo outin1$in2
}

out=123
f # 123456789
echo outin1$in2 # 123456

You can be caught out by local variables. Here’s an
example: if a function f1 defines a local, then calls
another function f2, that local is also visible inside f2.
When a function defines local variables, they are visible
to any functions that it calls. Also, you can define one
function inside another but you might not get what
you expect. All functions are names and have similar
scope. Function definitions are executed – that means
that a function defined inside another function will be
redefined every time that function is called.

Functions return an exit status, which is either the
exit status of the last command to be executed within
the function, or explicitly set with “return”. Exit status is
a number between 0 (meaning success) and 255. You
can’t return anything more complex than that.

There are, however, tricks that you can use to return
more complex data from a function. Using global
variables is a simple solution, but another common
one is to pass the name of a varaible as a parameter
and use eval to populate it:
myfunc() {
 local resultvar=$1
 local result=’a value’
 eval $resultvar=”’$result’”
}
myfunc foo
echo $foo # a value
eval enables you to build a command in a string and
then execute it; so, in the example above, the function
passes in foo and this gets assigned to the local
resultvar. So, when eval is called, its argument is a
string containing foo=’a value’ that it executes to set
the variable foo. The single quotes ensure that the
value of result is treated as one word.

These are the main parts of the language, and
should be sufficient for any Bash script to make sense,
but there are many nuances and techniques that you
can still learn. Your journey beyond the prompt has
just begun…

John Lane is a technology consultant. He doesn’t know where
our jetpacks are, but he does help businesses use Linux.

A question of truth

A Boolean expression is either true or false. In Bash, true and
false are shell builtins (you may also find equivalent external
commands in /usr/bin) and, like all commands, they return an
exit status where zero indicates success and a non-zero value
indicates failure. So, ‘true’ returns 0 and ‘false’ returns 1.

You may be tempted to write something like this:
var=true

This assigns a variable called var with the value of the
four-character string true, and has nothing to do with the true
command. Similarly,
if [[$var == true]]; then...
compares the value of var with the four-character string true,
whereas

if true; then...
always succeeds. Here true is the command and its exit statis
is 0, indicating success.

To confuse things further, arithmetic expansion sees 1
as true and 0 as false, and sees the words “true” and “false”
as (potentially undefined) variables rather than the builtins
described above.
$ echo $((true == false))
1

That happens because both true and false are undefined
variables that expand to the same value (nothing) and are
therefore equal. This makes the expression true which,
arithmetically, is 1.

LV007 100 Coding Bash 6gm.indd 103 08/08/2014 11:25

CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• Show off your 1337

programming skillz.
• Push yourself to learn

more about your
language of choice.

• Save minuscule
amounts of disk space.

People are naturally competitive. There’s just
something in human nature that makes us
want to find out who’s the best at something,

whether it’s who’s the fastest runner, who can jump
the furthest or who’s the best at kicking balls between
goalposts. Sometimes we geeks like to think we’ve
transcended this base desire. Perhaps you have, but
many of us have just transferred this competitive
instinct from physical exploits to mental ones.

Linguists have crosswords, mathematicians have
number puzzles, and techies have programmer’s golf.
Programmer’s golf in case you’re wondering, is the
challenge of taking a particular problem and coding it
in as small a number of characters as possible.

There aren’t any fixed rules for this other than the
result must be accepted by the interpreter or compiler
as a valid program, and sometimes there are
restrictions on the modules or libraries that can be
used. Beyond that, anything is permissible.

A good understanding of the language being used
is essential, especially as it’s often the language’s
more esoteric features that can result in saved space.

Let’s take a look at a simple example, printing the
numbers 1 to 6 at one per line in Python. Done
normally, this might look something like this:
for number in range(1,7):

 print number
This is 40 characters. It’s easy to see we’ve wasted

quite a bit on the variable name, so we can shrink this
down to 30 characters by simply replacing it with a
single letter:
for i in range(1,7):
 print i

If you’re familiar with Python, you might know that
there are two extra characters that we can get rid of
quite easily.
for i in range(1,7):print i

It’s clear that we need the print statement, because
there’s no shorter way of outputting text onto the
screen. Of the remaining code, the range call takes up
8 characters, so it seems like a good place to look for
further shrinking. We need something that Python can
iterate over that returns the 1 to 6. It’s important to
realise that in this case, it doesn’t matter if it’s the
numbers 1 to 6 or the characters 1 to 6, because
Python’s print statement can work with either.

How short is a piece of string?
Once you’ve realised that it can be the characters 1 to
6, it’s fairly obvious that we can iterate the for loop
over a string instead:
for i in ‘123456’:print i

This has managed to claw back another couple of
characters. What’s more, it now uses the string type,
which has quite a few powerful methods that perhaps
we can make use of.

We’re confident that print is the shortest way of
outputting something to the screen, and we think that
the string is the shortest way of encoding the
numbers we need. The only place left to look is the for
loop. Here, we need to think back to what the original
challenge was: print the characters 1 to 6 with each
character on a separate line. So far, we’ve been using
a separate print statement for each line, and this has
required us to use a loop to call the print statements
on each number in turn. However, we could get rid of
the loop if we printed them all with the same print
statement, but put a new line character in-between
each number.
print’\n’.join(‘123456’)

This uses Python’s join method on the string ‘\n’.
This iterates through the argument and outputs every
item in the argument with the original string between
it. Since strings are iterated through on individual
characters, this outputs:

CODE NINJA:
PROGRAMMER’S GOLF
Sometimes you just have to prove, without a doubt, that you’re
the best programmer in the room.

 TUTORIAL

104

BEN EVERARD

The source code to the
main engine of this
simplified game of Tetris
is: function(a,b,c,d,e)
{return d+=c,e=a|b<<d,d<0|
a&b<< d&&(a=e=parseInt
((a|b<<c).toString(d=32).
replace(/v/,””),d),b=new
Date%2?1:3),[a,b,d,e]}

LV007 104 Coding Ninja.indd 104 08/08/2014 11:27

NINJA CODING

www.linuxvoice.com

105

1\n2\n3\n4\n5\n6
Since \n is the new line character, printing this results
in each number being printed on a separate line.

There is another way of getting the code this short.
In Python, you don’t need to separate bits of text with
spaces if the interpreter can distinguish between
them, so you can remove the space between in and
the start of the string. In other words, with:
for i in’123456’:print i

Is this as short as it can go? Possibly not. There’s
no way to know for sure that there definitely isn’t a
shorter way of doing something. If you find a way to
remove a few characters, drop me an email at
ben@linuxvoice.com. I’d love to hear it.

Some people may wonder why bother with this at
all. After all, the resulting code is almost always an
unreadable, unmaintainable mess. Wouldn’t it be
better to focus our competitive instincts on more
useful aspects of programming like readability or
performance? No decent programmer would focus
their efforts on squeezing every last byte out of their
code without a very good reason.

However, aside from the competitive aspect of the
challenge, there are some skills to be learned in
shrinking file sizes. For one, it forces you to learn more
about your chosen language. For example, it’s
perfectly possible to program in Python for years, yet
never really get to grips with lambda functions.
However, if you’re looking to squeeze a few characters
out, they can be a fertile source of reductions. The
features you learn may well help you program better
in ways other than file size.

Many times, the tricks that you use to remove
unnecessary bloat are quirks and edge cases of the

language, and these can sometimes lead to bugs or
other unexpected behaviour. Learning to exploit these
means learning to understand them, and this means a
better understanding of the language.

Now, let’s see how good you are with a little
competition. Fore!

COMPETITION
Write ridiculously small code, win an attractive garment!

This month, the Linux Voice challenge is a game of
Python programmer’s golf. Your challenge is to
write the smallest possible Python program that
takes a number as input, and prints the value in
Roman numerals. To get you started, here’s a
sample program that does just this:
symbols = [(‘M’, 1000), (‘C M’, 900), (‘D’, 500),
 (‘C D’, 400), (‘C’, 100), (‘X C’, 90), (‘L’, 50),
 (‘X L’, 40), (‘X’, 10), (‘I X’, 9), (‘V’, 5),
 (‘I V’, 4), (‘I’, 1)]

def romannumeral(number):
 while number > 0:
 for symbol, value in symbols:
 if number - value >= 0:
 print symbol,
 number = number - value
 continue

number_in = raw_input(“Enter a number: “)
romannumeral(int(number_in))

This is obviously not optimised for size, so you
shouldn’t have too much trouble stripping some fat
off it. The question is, how much?

There are a couple of things to point out about
this code. It puts a space in between each
character. This is for simplicity, and any spacing
between characters other than new lines is
acceptable as long as it’s consistent.

There is also some contention about what the
Roman numerals for certain numbers are. For
example, should 1999 be MIM or MCMXCIX?
Without wanting to get into a historical argument
about how people would have written numbers
thousands of years ago, we’ll simply say that your
program should match the form of Roman numerals
given by our program.

Beyond this, there are
just a few rules:

 The length of the code
will be the total length of the submitted code in
characters, and the person who submits the
shortest code will win an exclusive Linux Voice
winner’s T-shirt.
 No modules can be imported. That would just
make it too easy.
 Either Python 2 or 3 is acceptable.
 Email your entries to ben@linuxvoice.com by the
end of the day on 15th October 2014.
 In the event that more than one person has an
entry the same length, they will both be
considered winners, but the first entry received
will win the T-shirt.
 All code must be released under an OSI approved
open source licence, and GPL v3 is preferred.

The code used to create this 3D render is small enough to fit on a business card, and
perhaps more impressively, is 1337 bytes long. For more details see
www.fabiensanglard.net/rayTracing_back_of_business_card

LV007 104 Coding Ninja.indd 105 08/08/2014 11:27

CODING KONRAD ZUSE

www.linuxvoice.com

WHY DO THIS?
• Discover an under-

appreciated pioneer of
computer science.

• Plan your next trip to the
technical museums of
Germany.

If you have any interest in computer history, and
possibly even if you haven’t, you’ll have heard of
two of the early computer pioneers: Alan Turing

and John von Neumann, who were involved with the
machines being developed during World War II. But
there’s a fair chance that you haven’t heard of Konrad
Zuse, in Germany — despite the fact that he was
achieving very similar things over four years earlier.

Unlike both Turing and von Neumann, Zuse was
working in isolation — he had no similarly able
colleagues in Germany, and did not of course have
any contact with the leading computer scientists and
mathematicians working for the Allies. Nevertheless,
in the Z3 he built the world’s first fully operational
electromagnetic programmable computer, in 1941;
and came up with the theory of stored-program
computation in 1937, several years before von
Neumann proposed it.

Z1 and Z2
In 1935, a young Zuse was working as a design
engineer at an aircraft factory near Berlin. Much of his
time was spent in doing large numbers of calculations
by hand, and Zuse, understandably, found this
massively tedious. He began to wonder whether he
could construct a machine to calculate for him.
Working in his parents’ flat, he began building the Z1 in
1936, from bits of metal plate and pins. The Z1 wasn’t
a computer, but a floating-point binary mechanical
calculator. It had some programming capacity, and
read instructions from holes punched in 35mm film.
Zuse filed two patents in 1937, which most
importantly included the idea of stored-program
computation and what has become referred to as
“von Neumann architecture”, years before von
Neumann himself proposed it. The Z1 was finished in
1938, but it never worked particularly well, as its
30,000 metal parts were not precise enough. It was

destroyed in an air raid in 1944, although a replica is
now in the German Museum of Technology in Berlin.

Zuse’s next attempt was the Z2, which he built in
1939–40. He had been called into military service, and
so had a research subsidy, but initially at least was still
working in his parents’ flat. The Z2 took up several
rooms of the flat when he presented it to the
Deutsche Versuchsanstalt für Luftfahrt (DVL, the
German Research Institute for Aviation), which rather
makes you wonder how big the flat was and how
tolerant Zuse’s parents were! T

The Z2 was basically an improved version of the Z1,
but using 600 telephone relays rather than the metal
plates of the Z1. It had a 64-word mechanical memory,
and electrical relay circuits for the arithmetic and
control logic. It weighed 300kg. It worked better than
the Z1, but was still very unreliable — though it worked
well for the presentation to the DVL and impressed
them enough that they coughed up further funding.

Z3
In 1941, with subsidies from the DVL, Zuse was able
to start a company and (finally!) hire a lab to work on
his next machine, the Z3. This was a programmable
calculator with a memory, which had loops but no
conditional jumps (so no if/then logic). Like the Z2, it
was relay-based, using 2,000 relays and 22-bit words,

Replica of the Z1 in
the German Museum
of Technology in
Berlin. Image: CC-SA,
ComputerGeek.

Konrad Zuse in 1992 (he died in 1995). Photo: CC-SA,
Wolfgang Hunscher, Dortmund.

KONRAD ZUSE:
(NEARLY) THE GERMAN TURING
Try a programming language designed amid the rubble of post-war
Germany before there were any computers on which to run it.

 TUTORIAL

106

JULIET KEMP

LV007 106 Tutorial Olde Code.indd 106 08/08/2014 14:21

KONRAD ZUSE CODING

www.linuxvoice.com 107

but it was far more reliable. Zuse’s co-worker Helmut
Schreyer had suggested vacuum tubes to Zuse, as
were used in Colossus in 1943, but he dismissed
them as a crazy idea. (IBM’s Harvard Mark II, built in
1947, used relays, so they were by no means
obsolete.) As with the previous machines, the Z3 used
punched film for code and data input; it also had a
terminal and lamps for input and output. It was
Turing-complete (see boxout, right), and as such was
the world’s first fully operational electromechanical
computer. However, Turing-completeness was not of
interest to Zuse or his backers the DVL, who were
interested only in automating calculations. (It was a
similar story with the ENIAC in the US, which was
originally intended to calculate artillery firing tables;
but the wider possibilities were quickly realised by US
mathematicians and scientists. ENIAC wasn’t ready
until 1945, though, several years after the Z3.)

Like the Atanasoft-Berry Computer in the US (tested
in 1942, but not programmable, being designed to
solve linear equations), but unlike ENIAC and IBM’s
early machines (which were decimal), the Z3 was
binary. The punched tape system was also ahead of
other early computers — Colossus and ENIAC were
both programmed with plugs and switches. It was an
eminently practical machine, for the time, thanks
undoubtedly to Zuse’s engineering background. His
main aim was to automate engineering calculations,
and the Z3 did this admirably. Its primary use at the
DVL was analysing wing flutter (vibration in certain
flying conditions, which can damage or destroy
aircraft). Zuse did ask for funding to replace the relays
with electronic switches, but this was considered “not
war-important” and denied.

Meanwhile, Zuse was also working on the S1 and
S2, which were special-purpose computing machines
to calculate corrections to the wings of radio-
controlled flying bombs – the precursors to the
modern cruise missile.

Z4 and afterwards
The Z3, along with Zuse’s workshop, was destroyed in
an air raid in 1943, but the successor Z4 (also
relay-based) was in a different workshop, and was not
affected. It was eventually packed up and moved,
half-finished, to Berlin in February 1945, then
evacuated to Göttingen where it was completed, after
which it was moved again to Bad Hindelang in
Bavaria, near the Austrian border, where it was hidden
in a shed to avoid its capture by the Allies.

For the next couple of years, Zuse’s priority was
survival — he sold woodcuts to farmers and US
troops to earn money. He began working on the Z4
again in 1948, but electricity was only intermittently
available and there was only rarely enough of it to run
the Z4. A visit from Prof Stiefel from Zurich led to the
Z4 eventually being delivered to the Swiss Federal
Institute of Technology in Zurich in July 1950. At the
time, it was the only working computer in continental
Europe. Zuse formed the company Zuse KG, which

went on to build a further 250 computers before being
sold to Siemens in 1967.

IBM bought an option on his patents in 1946 (Zuse,
it seems, might have preferred to work for them
directly, but they weren’t interested).
The exact influence of this on IBM’s work is unknown,
but it is possible that information from Zuse’s binary
machines were part of IBM’s move from decimal and
analog to binary and digital computers.

Simulators
There’s a really nice Z3 simulator available online (note
that the site is in German). It runs there as an
in-browser applet, which I wasn’t able to get running
on my Linux browser. (I could run it on Mac, which is
usually pickier about Java, so the applet definitely
does work; a different hardware and software setup
may be all that’s needed.) Alternatively, I was able to
run it on Linux by downloading the file Z3.zip from the
simulation overview page, unzipping it, and running
appletviewer simulation.html from the resulting
folder. I couldn’t initially see the film tape part of the
main window, but it did reappear after I resized the
window, choose Programm > Neu, and hit Ende. (And
in fact you can program the simulation without seeing
the film tape, although it’s nice to see your instructions
appear!). If you only have a big purple box in the
middle of the top and no ‘film’ picture, this is the
‘Speicherauswahl’ box referred to below. Enter your
memory locations in here and use the right-hand
buttons for operations just as detailed below.

The Z3 is labelled in German. Some of the labels are
immediately obvious, but here’s a quick translation of
some of the others:
 German English
Vorzeichen Sign (positive/negative)
Ziffern Numbers
Komma Comma
Wurzel Root
Einlesen Read in
Ausgeben Output
Eingabe Input
Mantisse	 Mantissa	(significand)
Speicher Memory
Rücksetzen Reset
Fortsetzen Resume/continue

Turing-completeness

A Turing-complete machine is one that can
simulate any single-taped Turing machine.
In practice this basically means that it can
(in theory and approximately) simulate any
other general-purpose computer; so it can
do anything you expect a “computer” to be
able to do. It might, however, take a very
long time!

Since the Z3 had no conditional branching
(if/then), it is not straightforwardly obvious
that it is Turing-complete. In 1998 Raúl Rojas

proved that it was, by proposing a program
that instead of branching, would compute
both sides of every branch. It would therefore
calculate all possibilities, and cancel out the
unnecessary ones. In an abstract theoretical
sense, then, the Z3 was Turing-complete.
In practice, this doesn’t mean that it was
in any real sense the same as a modern
computer, or even a 1940s/50s computer
with branching capability. However, the Z4
did have conditional branching.

LV007 106 Tutorial Olde Code.indd 107 08/08/2014 14:21

CODING KONRAD ZUSE

www.linuxvoice.com108

The registers R1 and R2 are the working registers,
and the memory (Speicher) has 64 words available.
You can set this manually by clicking the circles. I
found the mantissa/exponent setup a little confusing
but each line has a decimal translation at the end so
you can play around until you have the idea.

The mantissa (or significand)/exponent is a way of
describing floating point numbers. For example, a
significand of 1234 and an exponent of -1 would
describe the decimal number 123.4.

You can either enter a calculation directly, using it in
effect as a desk-top calculator, or enter a program.
(Sadly, you can’t save programs.) As with other
computers of a similar age, to run a calculation, you
first enter two numbers. These will be loaded into the
two working registers R1 and R2; the next instruction
is then applied to those registers, and the output
stored in R1, ready for the next calculation.

Here’s an example of manually adding two
numbers, 11 and 2:

 Enter 11 with the top set of buttons (Eingabe).
 Hit the Einlesen button, and watch the circuitry
change. Notice that the R1 circle on the bottom left
will now be lit.
 Enter 2 with the top set of buttons (Eingabe).
 Hit the Einlesen button again. Both R1 and R2 are
now lit.
 Hit Addition, then Ausgeben. The output, 13.0, will
appear in the very bottom left.

You can also use the ‘film’ to enter a program. When
you first load the applet, there’s a program provided on
the film. To run this, go to the applet’s Programm
menu and choose Start. To enter your own new
program, go to Programm > Neu (new). You’ll then get
an extra three buttons: Laden (load/read from
memory); Speichern (store to memory); and Ende
(end). You use the purple Speicherauswahl box to
enter a memory location, and the buttons to enter an
operation code (such as addition, multiplication, read
from storage, etc).

Here’s how to enter a program to add two numbers:
 Enter 0 in the purple Speicherauswahl box, and hit
Laden. This reads from memory location 0.
 Enter 1 in the Speicherauswahl box, and hit Laden,
to read from memory location 1.
 Hit Addition. This will add the last two numbers that
were read in.
 Hit Ausgeben. This will output the result.
 Hit Ende to finish the program.
 Go to the Speicher window and enter a number in
the 0 location and in the 1 location.
 Choose Start from the Programm menu. Your
program will run, and you’ll see the result (the sum
of your two numbers) at the bottom-left.
 To start again, you’ll need to hit Fortsetzen (Reset).
 To store the result in a specific memory location,
say location 6, you can replace the Ausgeben
instruction with

Speicherauswahl 6, Speichern.
Run this (you’ll have to re-enter the whole thing), and
keep an eye on the Speicher window. You’ll see your
result show up in memory location 6.

Here’s a program to calculate 4! (4*3*2*1):
 In the Speicher box, enter values 1, 2, 3, 4 in memory
locations 0, 1, 2, 3.
 In the main window, start a new program.
 Speicherauswahl 0, Laden.
 Speicherauswahl 1, Laden.
 Multiplikation.
 Speicherauswahl 2, Laden.
 Multiplikation.
 Speicherauswahl 3, Laden.
 Multiplikation.
 Ausgeben.
 Ende.
Run the program to get the output 24. Note that

multiplication steps take a while! You’ll see here the
advantage of having the output of each calculation
stored in R1 ready to be used. By rewriting memory
addresses it should be possible to construct a loop;
have a go and see what you can manage.

If you want more information about the simulation,
there is an article by Raúl Rojas which discusses the
construction of the simulation and includes the
instruction set. There are also instructions for using
the simulator (in German, but Google Translate does a
reasonable enough job) on the Zuse project webpage.

While building the Z4, Zuse concluded that an
alternative was needed to programming in machine

Replica of the Z3 at
the German Museum in
Munich. Image: CC-SA,
Venusianer.

Zuse and Turing

Zuse and Turing may have met briefly after
the war, in 1947, at a colloquium in Göttingen
which included a few other British and
German researchers. (‘Colloquium’ is a polite
way of describing a discussion which has
also been described as “an interrogation”.
The participation of the German scientists
was almost certainly not optional.) However,

this meeting is only described in Heinz
Billing’s memoirs, and no details survive. The
historical detail is discussed in a paper by
Herbert Bruderer. If Zuse and Turing did meet
it is likely, due to the secrecy of the war and
post-war period, that neither of them was
familiar with the achievements of the other,
which seems more than a little sad.

LV007 106 Tutorial Olde Code.indd 108 08/08/2014 14:21

KONRAD ZUSE CODING

www.linuxvoice.com 109

code, to make programming more straightforward. In
1945/6, when he was living in the rural Allgäu and
couldn’t work on hardware, he designed Plankalkül
(“Plan Calculus”), which was the first high-level
programming language. However, this only existed in
theoretical form during his lifetime; a team finally
implemented a compiler in the year 2000, five years
after his death. Plankalkül has been compared to APL
and relational algebra, but it did not in practice have an
impact on future languages, since it wasn’t
implemented at the time. It is, however, the first
theoretical description of high-level programming.

Programming in Plankalkül
Zuse’s original notation for Plankalkül was two-
dimensional, although a linear notation was devised
when implementing it in the 1990s. The full report
from the Free University of Berlin team is a fascinating
read, but here are a few of the basics:

There are three basic types of variables:
 V variables (V0, V1…), read-only, used to pass
parameters into programs.
 Z variables (Z0, Z1…), read/write, used for
intermediate results.
 R variables (R0, R1…), write-only, used to pass the
final results of a program.
Loop variables are also used, written i0, i1, i2, etc.
Variables have one of the following types:

 One bit, written 0.
 n bits, written n.0.
Tuples of other types, written (n.0, m.0, ...). So (3.0,

4.0) would be a tuple with two members, one 3-bit
variable and one 4-bit variable. Tuples can have two or
more elements.

Vectors of a single type: so m.n.0 is a vector (or
array) with m members each of which has n bits.
Vectors are used for arrays of the same type, tuples
for arrays of different types.

Here’s a quick example that adds two numbers:
P1 (V0[:8.0], V1[:8.0]) => R0[:8.0]
 V0[:8.0] + V1[:8.0] => R0[:8.0]
END
Note that the report would have R(V0[:8.0]...) in that
first line, but the online compiler at the Zuse Project
website doesn’t like that.

After Zuse KG was bought, Zuse wrote the book
Calculating Space, in which he suggested that the

universe itself is running on a cellular automaton. (Von
Neumann had an interest in cellular automata, too.)
There’s no physical evidence against this thesis, and
other scientists have expanded on it since. After
retirement, he spent his time painting; he died in 1995.

Looking at Zuse’s history, it’s hard not to make
comparisons with Turing, von Neumann, or Hopper,
working at the same time in other countries; and to
wonder what might have happened if Zuse had been
taken more seriously in his own country. Or, more
cheerfully, if all of them had been truly able to
collaborate in a peaceful world across international
boundaries. What would programming languages
look like today if Plankalkül had been implemented
before COBOL? Would things have moved faster if the
Z3 hadn’t been destroyed (or if Colossus, in the UK,
had been an open project)? Or, on the other hand, did
the war drive developments that would otherwise
have been much slower? The ethics on all sides are
difficult, too; all the pioneers of this time were working
on war projects. Zuse, while he was working for the
Nazi regime, was never a member of the Nazi Party
(unlike many other German scientists of the time). In
later life he suggested that scientists and engineers
usually have to choose between working for
questionable interests (commercial or military), or not
working at all.

What is clear is that Zuse was working at the very
top of his field, even if he wasn’t able to work
alongside the others doing the same. His machines
were at least two–three years ahead of the teams in
the UK and US. Although the Z4, his ‘final’ version, was
finished at roughly the same time as ENIAC and a little
after Colossus, it was more programmable than both
and genuinely general-purpose. Zuse was an
immensely talented scientist whose contribution to
computing has gone unfairly unnoticed.

Juliet Kemp is a programming polyglot, and the author of
O’Reilly’s Linux System Administration Recipes.

Z4 (the real thing!) on
display in the German
Museum in Munich. Image:
Clemens Pfeiffer, CC-G.

The Z3 window and memory window, in the middle of
entering a program.

LV007 106 Tutorial Olde Code.indd 109 08/08/2014 14:21

MASTERCLASS SAMBA

www.linuxvoice.com110

PRO TIP
Apple’s OS X uses the
same Samba as Linux and
can therefore interoperate
in the same way.

The ‘guest’ user
When you connect to a Samba share, you do
so as a specific user that, unless you specify
otherwise, will be the same as your local
username. The server can be configured, like
our example is, to provide a guest user and
to map unrecognised users to it. This allows
access to permitted shares without
authenticating. Shares are accessible to
guests when their configuration includes:
guest ok = yes

A quirk of the protocol requires recognised
users to authenticate even when accessing
shares that are accessible to guests without
doing so. You can get around this by
mounting with the guest option:
$ mount -t cifs -o guest //myserver/public_
share /mnt

Our example configuration sets the
ownership of files written by guests to the
nobody user and nogroup group.

Even the most die-hard Linux fan will at some
point find themselves on a network alongside
users of other operating systems and will want

to share files with them.
Samba is an open-source implementation of the file

and print sharing protocol that Windows computers
use. It was originally part of the networking suite that
Microsoft implemented before they adopted TCP/IP,
the networking standard that we all use today, and
this legacy brings a certain quirkiness to the
interaction between Linux and Windows, one of which
is having to deal with two name resolution services.

There are two ways that you can exchange files
with a Windows system. You can, as a client, connect
to another resource on the network to access files or
you can set up a server to allow others to connect to
you. You’ll hear network-accessible filesystems being
called shares and, in the Linux world, Samba shares.

Connecting to one of these as a client is very easy
these days, because the drivers that you need are now
part of the Linux kernel, but you may still need to
install the command-line tools:
$ apt-get install cifs-utils
CIFS is the Common Internet File System, and is what
Microsoft calls Samba. It was originally called Server
Message Block, or SMB, which led to the Linux
implementation being called Samba.

So, if all you want to do is connect to a Windows
server to read and write files, it’s a simple mount:
$ mount -t cifs -o username=myuser,password=mypass //
myserver/myshare /mnt

SAMBA: SHARE WINDOWS FILES
Set up file sharing and co-exist in harmony with Windows users.

You’ll need to be logged in as root to use mount like
that, or you can add an entry to /etc/fstab to mount
automatically upon boot:
//myserver/myshare /mnt cifs username=myuser,password=myp
ass,users 0 0

We use the username and password options to
specify the credentials needed to connect to the
remote share. You can omit these if you’re connecting
to a publicly-accessible guest share. The users option
allows members of the users group to mount and
unmount the share without needing root privileges.

smbclient
While you may prefer to mount shares that you
frequently use, there is another way to access them
that may suit for occasional use or in situations where
you aren’t permitted to mount. This is the smbclient
tool, and you’ll need to install it from your repository:
$ apt-get install smbclient

It works a bit like an FTP client; you connect to a
host and then use put and get to send and receive
files. You can give the help command to see the list of
commands available. Here’s an example session
$ smbclient //myhost/public
Enter john’s password:
Domain=[WORKGROUP] OS=[Unix] Server=[Samba 3.6.4]
smb: \>ls
testfile N 6 Wed May 15 19:32:07 2013
smb: \> get testfile
getting file \testfile of size 6 as testfile (0.1 KiloBytes/sec)
(average 0.1 KiloBytes/sec)
smb: \> quit

With these methods you can read and write files
shared by others, but to share yourself, you need a
server – and that’s where Samba comes in. There are
two versions in popular use: the 3.6 series and the
newer 4.x series. The major difference is that version
4 can work as an Active Directory Domain Controller,
but that’s overkill if all you want to do is share some
files. Either version is fine for that purpose and one of
them will be easily installable from your distribution’s
repositories:
$ sudo apt-get install samba

BEN EVERARD

JOHN LANE

Work with Windows users, using the Samba and the Samba
Web Administration Tool.

MASTERCLASS

LV007 110 Masterclass.indd 108 08/08/2014 15:06

SAMBA MASTERCLASS

www.linuxvoice.com 111

PRO TIP
You can ask Samba to
reload its configuration
without restarting. Use
smbcontrol all reload-
config.

What is NetBIOS ?
When Microsoft implemented Windows, it
used a networking API called NetBIOS
(Network basic Input/Output System) that
ran over various protocols, but TCP/IP wasn’t
used until Windows 95 and, with Windows
2000, Active Directory began to lessen the
requirement for NetBIOS, although the My
Network Places browser still uses it and it
allows older versions of Windows to co-exist
on the same network.

NetBIOS includes several parallels to TCP/
IP networking, such as the Windows
Internetworking Name Server (WINS) that
provides name resolution services to
NetBIOS clients in a similar way to DNS. If
you want to be able to resolve NetBIOS
names when mounting shares, you’ll need to
install winbind
$ sudo apt-get install winbind

and configure your systems /etc/nsswitch.
conf to use it by adding wins to its hosts
entry:
hosts: files wins dns

Samba implements the SMB/CIFS
protocol over TCP/IP, either with (on port
139) or without NetBIOS (port 445). The
nmbd daemon provides the NetBIOS services
including WINS server.

The Samba suite gained full Active
Directory compatibility in version 4, including
the ability to be a domain controller, but it is
unnecessary for simple file- and print-
sharing.

Samba allows NetBIOS to be disabled, but
doing so is only practical if Active Directory
is implemented instead. Our examples keep
NetBIOS, because this configuration is more
likely to suit home or other small networks.

SAMBA: SHARE WINDOWS FILES

You configure Samba by editing its configuration
file, usually /etc/samba/smb.conf. It is formatted
similarly to the .ini found on Windows systems, so
any text editor will do. Here is an example that
provides a public share:
global
 server string = Samba Server Version %v
 # Treat unknown users as a guest (where permitted)
 security = user
 map to guest = Bad User

 # For Windows network browsing
 workgroup = LVSAMBA
 netbios name = MYSERVER
 name resolve order = wins bcast

tempfiles
 path = /tmp
 read only = No
 browsable = Yes
 guest ok = Yes
 force user = nobody
 force group = nogroup
 create mask = 0755
 directory mask = 0755

homes
 comment = %U home directory
 read only = No
 browsable = No

Inside the Samba config file
The global section is for system-wide settings. Its
server string is a description that is displayed to
clients browsing the network for shares. The
“security = user” and “map to guest” settings cause
any unknown users to be treated as a guest. Finally, it
configures the NetBIOS Workgroup. This is where the
Samba server should appear in the Windows network
browser (My Network Places) on Windows clients.

The tempfiles section describes a share called
tempfiles, which gives access to the local /tmp
directory. The attributes we’ve used in the example are
self-explanatory; they are a few of the many available
and are documented at http://bit.ly/smbconf. You
create sections like this for each local directory that
you want to share.

The homes section in our configuration is special
because it shares users’ home directories when they
authenticate using their username and password. For
a user to be recognised by Samba, it needs to be
created with smbpasswd:
$ smbpasswd -a myuser

Note that this sets up a separate password to that
stored used by passwd. You can then use home
directories
$ mount -t cifs -o username=myuser,password=mypass //
myserver/myuser /mnt

It’s a good idea to test your configuration for errors

using Samba’s testparm command:
$ testparm
Load smb config files from /etc/samba/smb.conf
rlimit_max: increasing rlimit_max (1024) to minimum Windows
limit (16384)
Processing section “[tempfiles]”
Loaded services file OK.
Server role: ROLE_STANDALONE

Samba runs two daemons, called smbd and nbmd.
The former provides the sharing services and the
latter provides the NetBIOS name services necessary
for your Samba server to appear in My Network
Places. Start the Samba daemons with:
$ service smbd start
$ service nmbd start

You should then be able to browse for the new
share from a Windows machine (remember to use
backslashes: \\myserver\tmp). Or, from a Linux (or
other Unix-like) machine, you can use findsmb to list
servers on the network and smbclient to view their
shares.
$ findsmb
IP ADDR NETBIOS NAME WORKGROUP/OS/VERSION
 - - - - - - - - - - - - - - - - - --
10.0.2.6 MYSERVER +[LVSAMBA] [Unix] [Samba 3.6.9]
$ smbclient -L MYSERVER
Domain=[LVSAMBA] OS=[Unix] Server=[Samba 3.6.9]
 Sharename Type Comment
 - - - - - - - -
 IPC$ IPC IPC Service (Samba Server
Version 3.6.9)
 tempfiles Disk

We’ve covered what is necessary to access shares
and provide your own. But Samba enables you to do
much more, including auto-configuring home
directories and sharing printers. With version 4 you
can participate fully in an Active Directory network,
and this is something that we will cover in a tutorial in
the near future.

LV007 110 Masterclass.indd 109 08/08/2014 15:06

www.linuxvoice.com

MASTERCLASS SAMBA

112

If you prefer to use a graphical configuration tool
instead of manually editing files, there are various
tools available that enable you to administer

Samba and access remote shares without opening up
a terminal window or text editor.

The first of these that we will look at is called Swat,
or the Samba Web Administration Tool. It’s part of the
Samba suite but your distribution may package it
separately from the Samba server suite. To install it
on Ubuntu:
$ apt-get install swat

Before using Swat, bear in mind that it will rewrite
Samba’s configuration file /etc/samba/smb.conf. So,
if you have carefully crafted a nicely laid out and
well-commented configuration file that you don’t want
to be overwritten, make a backup before using Swat.
Another thing to note is that, although it is still part of
the Samba suite, Swat isn’t actively maintained any
more and there have been discussions about
dropping it completely. That said, it remains a popular
choice for Samba administrators because it is useful
as a learning tool and as a reminder of what the
available options are and their default values.

Swat runs as a web service on port 901 of the
Samba server. Point your web browser at, for example,

THE GUI WAY TO SAMBA
Can configure and use Samba without the command prompt.

http://myserver:901 to see Swat’s main page. You will
need to have a login on the Samba server and use
those credentials to log in to Swat (Samba credentials
created with smbpasswd are not used).

The options available to you after logging in will
depend on your ability to write to the Samba
configuration file. The usual way to gain this right is to
be a member of the admin group and for that group to
have write access to the file. This will need to be
preconfigured by a user with root privileges:
$ sudo usermod -a -G admin myuser
$ sudo chgrp admin /etc/samba/smb.conf
$ sudo chmod g+w /etc/samba/smb.conf

A user without write access can browse the Samba
documentation, see server status, view the server
configuration and change the Samba password for
any user that they know the current password for.
They can do this on remote Samba servers as well as
the local one where Swat is running.

The Swat wizard
Users with write privileges also get access to the
options used to configure Samba. There are screens
to edit the global configuration, shares and printers.
There is also a wizard to build configuration for you.

Aimed at “the Microsoft-knowledgeable network
administrator”, the wizard has two options: the first,
‘Rewrite smb.conf file’, rewrites smb.conf with the
existing settings, ignoring any changes made but not
written; the rewritten file will lack any comments or
settings that were already Samba defaults. The
documentation calls this a ‘fully optimised format’.
What this means is that it removes all unnecessary
comments and any settings that are unnecessary
because they are the defaults values anyway.

The other option that the wizard offers allows you
to configure a new server, either standalone or as a
domain member or controller (Swat doesn’t offer
options for the new Active Directory functionality
introduced with version 4). You can select a WINS
configuration and choose whether you would like to
create per-user home directory shares. After selecting
your desired options, click the commit button to write
a new smb.conf file.

Using Swat can help you become familiar with the
many available Samba configuration options because
its pages display many of them along with their
current or default values as well as hyperlinks that
take you directly to the relevant part of the
documentation. A button on each setting allows
resetting to its default. Settings with their default
values don’t get written to the configuration file.

Because Swat exposes many of Samba’s
configuration options, it can be more overwhelming

JOHN LANE

PRO TIP
if you log in to Swat as
root, its status page will
give you buttons to start
and stop the Samba
daemons.

Swat allows limited access
to users without write
privileges. They can view
the server status and its
configuration, browse
documentation and
change Samba passwords.

LV007 110 Masterclass.indd 110 08/08/2014 15:06

www.linuxvoice.com

SAMBA MASTERCLASS

113

for those with little knowledge of them. For basic
configuration tasks, other tools may be more
appropriate and one such tool is system-config-samba.

This is a Python GUI application from Red Hat that
enables you to manage shares and users. It has some
integrated help pages. You may find it in your
distribution’s repositories, or you can obtain the
source from Red Hat (http://bit.ly/sysconfsamba).
$ apt-get install system-config-samba

If system-config-samba is too basic, another option
is gadmin-samba, part of the GAdminTools project.
It needs to be run as root and also overwrites the
smb.conf file, but it does warn about this when it
starts. It contains lots of options and overwrites any
existing configuration with a more comprehensive
one that contains lots of settings, the reasons for
which may not be clear if Samba configuration is new
to you. You may find the resulting configuration is
more complicated than you require (which may not be
an issue if you only view it through a GUI application!).

File access
Once Samba is configured, your main interaction with
it will be for accessing files shared on the network by
remote servers. Samba integrates well into desktop
environments and allows shares to be browsed as
easily as local filesystems.

Popular file managers like Nautilus, Thunar and
PCManFM support virtual filesystems that can directly
open remote Samba shares without the need for a
separate step to mount them. They use a URI syntax
to represent shares, and opening a share is as easy as
using its URI, for example:
smb://myserver/myshare

What makes this possible are the virtual filesystem
libraries like the Gnome Virtual Filesystem (GVFS) and
the KIO library on KDE. Each file manager also allows
you to create shortcuts to frequently used paths, for
example by dragging them from the location bar into
Places or adding bookmarks.

There are also GUI tools that can help if you have a
large number of shares to manage. These often
support multiple protocols, smb:// being one of them.
Two examples of these
kind of tools are Gigolo
and PyNeighborhood,
available in many
distros’ repositories.

They offer a network
browser to locate,
select and mount shares. Alternatively, they allow
remote server, user and share details to be specified
manually. Gigolo supports multiple filesystem types,
whereas PyNeighborhood specialises in SMB/CIFS
browsing.

Most modern desktop environments have the
integrated capability to browse Samba/Windows
shares through their file managers and may include
graphical administration tools as well.

PRO TIP
After changing the
configuration, Samba
must reload it: the
smbcontrol all reload-
config command
performs this task.

System-config-samba has
the basic tools to manage
shares and users.

“Most desktop environments
can browse Samba shares
through their file managers.”

The Swat Wizard provides some basic options that can
get you up and running quickly.

LV007 110 Masterclass.indd 111 08/08/2014 15:06

www.linuxvoice.com

/DEV/RANDOM/

Final thoughts, musings and reflections

My Linux setup Thomas Voß

114

Everyone really is out to get you. Well, a
statistically significant number of people
are anyhow.

Many many years ago, when i set up my first
Wi-Fi network and went out down the road, trying
to see how far I could get and retain a
connection, I also managed to spy two other
networks. One which belonged to a local
business and one whose owners (still to be
identified) seem to be Star Wars geeks (SSID:
Dantooine). Now I can see 14 networks without
leaving the front door. A tempting target.

Since those early days, I have always carved
off a bit of network as open access. Anyone can
log in and take advantage of some meagre
bandwidth (I have benefited from individuals
opening their access in the past, most notably in
Cornwall, where it used to be harder to get a
decent signal than to find a dry patch of grass).
But last week, someone tried to break in.

Fortunately, they never actually managed to
actually achieve anything, so far as I can see, just
used the open access to point a bot at the router
for 10 minutes or so, trying a dictionary attack.
My router is a bit, erm, non-standard, so I am
guessing that helped; I don’t know what they
would have found if they even HAD got access to
the main network. I guess they could have
printed me out a note on the LaserJet. But my
guess is that it wasn’t industrial espionage trying
to find out what my next feature for Linux Voice
was, but some l33t idiots on their summer break
looking for mischief.

Anyhow, the moral is that you don’t have to be
in charge of the Iranian nuclear programme to be
the target for “cybercrime”. With drive-bys like
this, and the modern equivalent of kidnapping
(http://goo.gl/zDBNn3) already in play, it pays to
lock the doors.

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

The chief architect of the Mir display manager (see p40)
shows us where he does his coding.

N10 tablet used
for compilation
purposes mostly

Beloved x220 sitting
on a docking station Main monitor, only

used for doing mails

Nexus 4 I use for
development and
testing purposes

Spare laptop
charger, in case I
want to step out
for a coffee

What version of Linux are you
using at the moment?
Ubuntu 14.10.

Which desktop do you prefer,
and why?
Unity – it’s nice and easy, and does
not get in my way.

What was the first Linux setup
you ever used?
Some SUSE version installed from a
CD that was supplied with a

computer magazine. I have no idea about
the exact version, but I remember that I
used FVWM2 back in the day. The
installation was far from flawless, and the
package manager (I think Yast) was
horrible to use, but still: I spent days
setting up the system to my own liking,
fiddling around with configuration files…
and really enjoyed the experience! I stayed
with SUSE for some time, but finally

switched to Debian and then Ubuntu.

What Free Software/open source
can’t you live without?
Linux, Unity, GCC and Clang, cmake,
the usual set of command line tools,

and Chromium. XChat is part of my daily
workflow, too. As for editors: I’m
pragmatic, I use both Emacs and Vim. For
some of my coding work, Qt Creator is my
tool of choice.

What do other people love but
you can’t get on with?
Some people seem to love
flamewars/trolling, but I personally

could very well live without them. The
other thing is playing computer games!
I’m totally into the technology driving
those games, and I can spend hours and
days reading the code of game engines.
However, I hardly ever play a computer
game in my free time and I stopped
considering consoles after the SNES.

LV007 114 Geek Desktop.indd 114 08/08/2014 14:23

CC-BY 2.0 Sacha Chua http://sachachua.com

LV007 115 Inside Back Cover.indd 115 06/08/2014 13:44

LV007 116 Back Cover.indd 116 06/08/2014 13:31

