
RASPBERRY PI Craft a physical interface
out of card and sticky-back plastic

OPEN DATA Government data belongs
to the people – so use it!

PRIVACY ON ANDROID Stop your
mobile phone spying on you

Get stuck into a bunch of Linux
and Free Software projects

How Google is
spreading the
love of code, one
project at a time

Summer of Code
GOOGLE’S GURUS

Build your
own bespoke
desktop
environment

Desktop
EYE CANDY MOBILE LINUX

FOR THE

SUMMER
WRITE

INTERACTIVE
FICTION

116 PAGES OF AWESOME

GENERATE
SPEECH

FROM IRC

HACK
YOUR ALARM

SYSTEM

PLAY
RETRO
GAMES

*Or winter for our antipodean friends.

*

The device
that’s putting
Linux in a
million pockets

Ubuntu Phone

Septem
ber 2015 £5.99 Printed in the UK

TWEAK
THE

KERNEL

ROBOTS LIBREOFFICE ATOM + MUCH MORE!

LV018 001 Cover.indd 1 02/07/2015 16:01

LV018 002 Inside Front Cover.indd 2 02/07/2015 13:43

WELCOME

www.linuxvoice.com

The September issue

Flux and mutability

What’s the best thing about Linux and open source? For
me, it’s the limitless possibilities. As soon as you finish
one project, you can’t help but start thinking of ways to

make it better, or start something new. It’s like a MythTV box I spent
years configuring and fine-tuning: I built an infrared beamer to
switch channels, customised the advertising removal and
squeezed the PC into an old pine sailor’s chest hidden beneath the
television. But when I’d finally sit down to watch something, I’d find
myself creeping towards the remote keyboard, wanting to make a
few changes and tweak a few settings.

To be completely honest, messing around with the configuration
was more fun than watching whatever I’d recorded. And it’s the
same with Linux today. The only difference is that I’ve learnt to
embrace this as one of Linux’s great strengths. It will always keep
evolving and changing, so we’ll never get bored. There will always
be something new to learn, or something new to try.

I wouldn’t want it any other way.

Graham Morrison
Editor, Linux Voice

What’s hot in LV#018

ANDREW GREGORY
“I can’t believe cheap commodity
hardware allows us to build and
program our own robots. But you
can, and we’ve done it.” p96

“Google sometimes get a bad rap,
but its Summer of Code is a
brilliant example of something it’s
done right.” p44

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
“Mayank’s excellent guide to
locking down your Android
devices is a timely reminder that
we still have control.” p30

MIKE SAUNDERS

GRAHAM MORRISON

3

Linux Voice is different.
Linux Voice is special.
Here’s why…

1 At the end of each financial
year we’ll give 50% of our

profits to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after first publication, we will

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers.

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Marco Fioretti, Josette
Garcia, Juliet Kemp, Vincent Mealing,
Simon Phipps, Les Pounder, Mayank
Sharma, Valentine Sinitsyn.

SUBSCRIBE
ON PAGE 64

LV018 003 Welcome.indd 3 03/07/2015 15:33

www.linuxvoice.com4

CONTENTS

FAQ: FIDO U2F
Encrypt
communications
more securely than a
double Irish Dutch
sandwich.

42

20

Se
pt

em
be

r L
V0

18

Hack your life better with five
super summer projects.

BUILD A DESKTOP
Craft a custom
environment that
reflects your needs
(and learn a little
about Linux).

34

SUBSCRIBE
ON PAGE 64

Our doubts are traitors, and make us lose the good we oft might win…

06 DuckDuckGo is doing well –
maybe people don’t like being
spied on?

News

Masterclass
Transfer files with WebDAV
and supercharge your web
server – also with WebDAV.
Clever old WebDAV!

110

My Linux desktop
Gaming editor’s Michel
Loubet-Jambert’s den of geek.

114

Distrohopper
Time to try your new
favourite Linux distro (for the
next month, at least).

08

Gaming
We play the hell ut of the
latest RPGs, shooters and, er,
tabletop simulators.

10

Speak your brains
Vent your spleen, share your
opinions, let us know what
you’re thinking.

12

LV on tour
Adventures in PosgreSQL in
London, and DjangoCon Europe
in the ‘Diff.

16

Open data
The data collected by
governments belongs to us
– so let’s use it!

38

Group test
Six of the best server
distributions, for email,
websites and anything else
that needs to just work.

58

Core technologies
Under Doctor Sinitsyn’s
microsocope today: Linux
processes.

66

Subscribe!
Save money, get Linux Voice
delivered to your door, and
get access to every singe one
of our back issues.

64

FOSSpicks
The free-est, freshest
software on the internet,
corralled into six pages of
pure excellence.

70

REGULARS

ANDROID PRIVACY
Your smartphone
leaks information like
a sieve to any and all.
Sort it out and keep
your privacy.

30

44

The humans behind
Google’s biggest
philanthropic effort

Google Summer
of Code

LV018 004 Contents.indd 4 03/07/2015 15:30

www.linuxvoice.com 5

Se
pt

em
be

r L
V0

18 REVIEWS

Books We’re going futuristic
(unfortunately DRM-crippled)
e-reader. Bah, future!

56

Meizu MX4 Ubuntu Edition
Ubuntu’s march to glory
continues with newer, bigger,
better phone aimed at the
masses of the world.

Atom 1.0
Text editing has never looked
so good, with themable CSS to
prettify your code.

Yubikey Edge
Cheap, easy two-factor
authentication to make the
internet a safer place to be.

Linux Mint 17.2
The love-in between us and
Linux Mint continues. It’s great,
and it’s available right now.

NetBSD 7
The operating system that runs
on just about anything gets a
shiny new release.

53

54

52

50

55

TUTORIALS

84 88

80

Old Code: C and
the birth of Unix
Learn the language
of the Linux kernel.

100 Code Ninja:
Objects
Object-orient
your world.

104 Batch: Platform
independence
Code for Linux
and Windows.

106

FreeOTP: Easy two-
factor SSH logins

Write macros for
LibreOffice

Nginx: serve pages
faster and simpler

Astroplay: Build a
physical interface

Keep your sites safer than they
would be with a password alone.

Automate tedious tasks and
spend more time chillaxing.

Try a web server that –
amazingly – isn’t Apache!

Control your Pi with cardboard
and glue, Blue Peter-style.

Arduino: Make a
walking computer
One small step for a robot, one
giant leap for programming.

Drupal: Configure
a custom CMS
Many users and lots of content
requires Drupal.

78

92 96

LV018 004 Contents.indd 5 03/07/2015 15:31

ANALYSIS

www.linuxvoice.com6

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is ex-president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

Techno-authoritarianism continues
apace in the UK, with the steady
progress of a reborn Snoopers’

Charter threatening to make silent snooping
on every electronic exchange the norm for
the security services. All the usual excuses
are in play, including think-of-the-children
and the-terrorists-will-win.

I wrote previously about the sort of
magical thinking that demands internet
filtering be imposed so that children can’t
read porn and extremists can’t post terror
videos. That magical thinking asserts the
objective is obviously good, so it must be
possible to attain. The fact that it’s simply
impossible to automatically block
subjectively-defined content – even
assuming blocking is possible – is at best
glossed-over and at worst ignored. Magical
thinking involves either technological
ignorance, or a poor grasp of probability, or
an arrogant disregard for the rights of the
majority. Or maybe all three.

The same class of magical thinking is
very much in evidence when politicians call
for bans on encryption. Except that in this
circumstance, it’s much more dangerous
for everyone. British Prime Minister David
Cameron said:

“In extremis, it has been possible to read
someone’s letter, to listen to someone’s call,
to listen in on mobile communications.The
question remains: are we going to allow a
means of communications where it simply
is not possible to do that? My answer to that
question is: no, we must not.”

If you’ve done nothing wrong…
That’s magic thinking, and it’s black magic
to boot. Here are the four horsemen of
Cameron’s digital apocalypse.

 First, to achieve Cameron’s dream means
an end to general-purpose computing. All
the time you are free to install an
operating system of your own choosing,
or to install software that you alone
control, you’re also free to install the
means to encrypt and decrypt securely.
That’s because strong cryptography is
purely algorithmic, so any Turing-complete
system can be used to implement it.
Banning strong crypto would involve
banning the sale and use of computers
that the end-user is free to program.
 Second, it means implementing
intentional weaknesses in any system
that uses cryptography. That includes key
escrow arrangements, defective security
algorithms and secret software. In turn,
that means preventing international
collaboration around software, including
open source, as otherwise the defects will
get fixed somewhere outside the UK’s
jurisdiction. It also means that the
intentional weaknesses can be exploited
by others. If key length is limited, or there
are intentional back-doors, or there’s a
secure store of keys, criminals have a

concrete target for their hacking attempts
that, if reached, enables huge damage to
be imposed on the country. Since use of
the exploits would be secret by design,
these criminals could well go undetected
for a significant length of time.
 Third, it means controlling the import and
export of computing systems and the
software they use. Customs officers will
need to impound any computing
equipment – including phones, games,
USB keys, banking keypads and so on
– that is not reliably certified as being
broken by design so that the user cannot
control it. If that doesn’t happen, crypto
dongles of all kinds can simply be added
into otherwise “secure” systems.
 Fourth, it means imposing controls on
foreign service providers, or banning the
use of their services. That would mean
introducing a Great British Firewall so that
those unwilling to have their services
compromised could be eliminated. It
would also mean tolerating similar
interference by other governments in the
affairs of British businesses.

… you have nothing to hide
Watching for and exposing magical thinking
is important at the best of times as it’s one
of the most common failures in modern
discourse. But this particular madness
needs facing down and challenging by every
technically-aware citizen. Allowing political
expediency to sacrifice the foundations of
privacy in exchange for an unreachable and
false security would be a tragedy.

Another revealing quote from David
Cameron this year was the chilling: “For
too long, we have been a passively tolerant
society, saying to our citizens: as long as you
obey the law, we will leave you alone.” Even
if you obey the law, these measures will
interfere massively with your life. Folly.

Opinion

Think of the children! Again!
The Snoopers’ Charter rises from the grave to stalk our internet.

“To achieve Cameron’s dream means an end to
general-purpose computing.”

LV018 006 News.indd 6 03/07/2015 13:03

ANALYSIS

www.linuxvoice.com 7

 Containers • DuckDuckGo • Ubuntu Phone • Kernel • CrossOver

Summarised: the biggest news
stories from the last monthCATCHUP

Software containers
get standardised
Every man and his dog is

getting on the container bandwagon,
and it’s more than just a fad. Containers
make it easy to ship software and
dependencies in a neat encapsulated
form, that (ideally!) will work in exactly
the same way on your home computer
or on a massive cloud provider. Now
Docker, CoreOS, Intel, IBM, Red Hat,
Microsoft, VMware and other big
names have come together to make a
single standard for containers.
www.opencontainers.org

1
Linux Foundation gives
cash to security efforts
Hoping to avoid another

Heartbleed or Shellshock, The
Linux Foundation has announced
$500,000 in funding for three projects
“to better support critical security
elements of today’s global information
infrastructure”. More specifically, the
cash will go to projects performing
automated testing, reproducible builds
(to confirm that a binary package
matches the source code from which it
was compiled), and fuzzing (seeing how
software handles random data).

2
DuckDuckGo reaches 10
million daily queries
Privacy-centric search engine

DuckDuckGo has now reached 10
million searches per day. It’s still a long
way behind Google, but catching up.
www.duckduckgo.com

3

CrossOver to get support
for DirectX 11
Linux is turning into an

excellent gaming platform thanks to
Steam, but there are still some triple-A
titles that only run on Windows.
CodeWeavers has announced that an
upcoming version of CrossOver, its
Wine-based software that lets many
Windows programs run on Linux and
Mac OS X, will have support for DirectX
11. This will expand the range of
(especially newer) games that can run
on our favourite platform.
www.codeweavers.com

4
Kernel 4.1 released
Version 4.1 of the Linux kernel
arrived at the end of June, and

brought a boatload of improvements
across the codebase. Users of laptops
with Intel chips can expect improved
performance and battery life, while ACPI
has been added for 64-bit ARM devices.
One of the biggest new features is
filesystem-level encryptions support for
EXT4, as developed by Google for
Android. This will not only encrypt data
on the drive, but also filenames for extra
security. Expect kernel 4.1 in the next
round of distro releases.

5
Apple open sources Swift
programming language
Whether the world needs yet

another programming language is open
to debate, but Apple is pushing Swift
as the future for iOS and Mac OS X
development. Its syntax is “concise yet
expressive” and promises apps that are
“lightning fast”. In any case, Apple has
announced that Swift 2.0 will be open
source, and the company has said that
it will contribute a port to Linux. Version
2.0 of the language introduces new
error handling and other features.
https://developer.apple.com/swift

6

New Ubuntu phone, the
Meizu MX4, goes on sale
In the market for a new

smartphone? Don’t want the walled
garden of Apple’s iOS or the lousy
permissions system of Android? It
might be worth considering the Meizu
MX4 Ubuntu Edition, a €299 device
with an octo-core CPU, 2GB RAM and
16GB of onboard storage. It’s equipped
with a 1920x1152 5.3” screen and a 20
megapixel rear-facing camera. Oh, and
it’s only 8.9mm thick and weighs 147g.
Not bad going for the price.
http://tinyurl.com/nu9f7hp

7
Google gets flak for
“hotword” binary blob
If you’re running Chromium,

the open source version of Google’s
Chrome browser, you might think that
your privacy is well guarded. But one
Debian developer found that Chromium
43 was downloading a binary blob
that enabled the “OK Google” speech
recognition facility – without notifying
users. This was clearly a concern
for many in the Linux and FOSS
community, and Google responded
saying that Chromium is not a Google
product but changes will be made.

8

LV018 006 News.indd 7 03/07/2015 13:03

DISTROHOPPER

www.linuxvoice.com8

Mageia 5
All glory to this Mandriva fork.

We have fond memories of
Mandriva (formerly Mandrake
Linux), the newbie-friendly

desktop distro that brought many users into
the Linux fold. Unfortunately, the company
behind it was plagued by financial troubles
and eventually went bust, but we still have
much of the distro’s technology and features
in the form of two forks: Mageia and
OpenMandriva. The former has now issued
a new major release, Mageia 5, after more
than a year of development.

The biggest change here is UEFI support.
Many PCs and laptops built in the last few
years are supplied with UEFI instead of a
traditional BIOS to start up the computer,
and now you can install Mageia on these
boxes (albeit without secure boot).

The other great area of improvement is
Mageia 5’s configuration tools. This release
brings a preview of ManaTools, a collection
of utilities for managing the system – eg
starting and stopping services, updating
packages, setting up a firewall and so forth.

ManaTools is designed to fit in with GTK, Qt
and Ncurses interfaces. Or if you’re SSHed
into a Mageia box to do some admin work
on it, you can use the text-mode option. If all

Devuan Alpha 2
Marching on for init freedom.

We must admit, we were sceptical
about Devuan at the beginning.
This distro got off to a bumpy

start, created as a reaction to Debian’s
switch to Systemd. A bunch of “veteran Unix
admins” decided to make a fork of the
Debian that wouldn’t mandate Systemd. The
name left a lot to be desired, the website
was hastily thrown together, and there
appeared to be no concrete plan in place.

Several months down the line, though,
and things are looking a lot more
respectable. The website (www.devuan.org)
has been tidied up and includes an audio file

explaining how to pronounce the distro. A
more solid long-term plan has been put into
place, and most importantly, you can
download the distro and try it out. As of the
Alpha 2 release, this is a netboot ISO: it
starts up Devuan, launches the installer
(also taken from Debian), and retrieves
packages over the network.

It’s still early days and a lot needs to be
done. Devuan still forces you to install
Systemd, but it’s not active – it’s merely there
because of its interdependency with udev.
However, the Devuan team is working on an
alternative called vdev, which should allow

Mageia 5 eschews the fancy new KDE 5 in favour of the tried-and-tested 4.14 release.

What’s hot and happening in the world of Linux distros (and BSD!).

DISTROHOPPER

Devuan has come a long way in the last couple
of months – you can even install it now!

goes well, we may see ManaTools as the
default configuration suite in the next
release of the distro. In any case, Mageia 5 is
a solid release – well done to all involved.

the complete removal of Systemd. Whether
Devuan will become a fully-fledged Debian
fork or just fade into obscurity remains to be
seen, but we’ll give credit to the team for
actually making something usable rather
than just flaming Lennart Poettering (the
creator of Systemd) on IRC.

LV018 008 DistroHopper.indd 8 02/07/2015 20:14

DISTROHOPPER

www.linuxvoice.com 9

News from the *BSD camps
What’s going on in the world of FreeBSD, NetBSD and OpenBSD.

Many of us in the Linux and *BSD
camps spent a lot of time with
the Amiga range of computers in

the late 80s and early 90s. One of the most
notable Amiga developers was Matt Dillon,
who created the Dice C compiler among
other software. More recently, Dillon has
been working on DragonFly BSD
(www.dragonflybsd.org), a fork of FreeBSD
4.8, which has been in development for the
last decade. Dillon decided to create his own
BSD flavour after disagreements over the
direction of FreeBSD, and especially the
design decisions taken in FreeBSD 5.

One of DragonFly BSD’s most notable
features is its 64-bit B-tree-based Hammer
filesystem. This boasts snapshots,
configurable history retention and
checksums to handle data corruption. It also
supports data block deduplication – so
chunks of data that are identical across
multiple files are only stored once. A port of
Hammer to Linux is in the works, but
currently it’s read-only, and the filesystem
hasn’t been taken up by the other *BSD
flavours yet.

DragonFly BSD 4.2 was released at the
end of June 2015, and brings a bunch of
major changes. Most notably, GCC 5 is now
the standard system compiler, which
improves C++ support and therefore enables
more packages to be built on the OS. As
with FreeBSD, it’s possible to build Dragonfly
BSD using LLVM/Clang, although there’s no
short-term plan to move to this compiler.

DISTROHOPPER

DragonFly is a much smaller project than FreeBSD, but has plenty of its own innovations.

Alternative OS news

We’ve been keeping tabs on ReactOS (www.reactos.org), the open
source Windows clone, for many years now. It’s still a long way from
being ready for widespread production use, and there are questions
about how much Microsoft would be willing to tolerate it if it became
a major commercial success, but the project is making steady
progress. It’s capable of running many Windows programs and
hardware support is growing by the day.

But some big changes could be coming – and from Russia. The
government in Moscow is looking at alternatives to proprietary and
predominantly American software, especially as tensions rise with
the West. It makes a lot of sense, even if we all become good friends
again one day; after all, who knows what backdoors are in Windows
and Mac OS X? Governments want to feel secure with their data, and
while open source is not a silver bullet, it certainly helps.

Consequently, ReactOS has been selected by the IT ministry to
receive further support. Whether this will be direct financial support
or code submissions from government-employed developers remains
to be seen, but it’s great news for the project nevertheless.

Even if ReactOS will inevitably always lag behind recent versions
of Windows in terms of compatibility, there are huge companies
running legacy applications that could save vast sums of money by
switching to ReactOS, rather than staying on the Windows upgrade
treadmill. Give the OS a go by downloading the live CD ISO from the
website and booting it in VirtualBox or Qemu.

Other changes include improved support
for Radeon and i915 graphics chips, while
Sendmail has been replaced by DMA, the
DragonFly Mail Agent. This isn’t a complete
mail transfer agent, but is merely designed
for delivering mail locally – like cron job
reports to root. DragonFly 4.2 is available as
a compressed ISO or USB key image,
weighing in at just over 200MB.

ReactOS is still only at version 0.3.17, but can
run a bunch of older Windows programs.

LV018 008 DistroHopper.indd 9 02/07/2015 20:14

GAMING ON LINUX

www.linuxvoice.com10

Massive Chalice
A very promising XCOM-esque strategy game that unfortunately falls short.

The tastiest brain candy to relax those tired neurons

I t’s incredibly frustrating when a game looks
so great on paper but then fails to deliver
certain elements. Massive Chalice is a

strategy and crisis management game inspired
by the XCOM series, with many new and
innovative mechanics thrown in; it sounds
absolutely fantastic, yet fails to deliver the
immersion other such games are famed for.

The combat and mechanics are well
executed, with a satisfying array of classes
and an excellent breeding system allowing the
positive traits of heroes from great houses to
be passed on to future generations. The flaws
are instead found within the storytelling and
narrative aspects of the game. The game gives
no real reason to care about the world and its
inhabitants or dislike the invaders since not very
much is really said about any of them.

What is also apparent here is that
crowdfunding games can be a double edged
sword. It does mean that such games get to be
made, but the need to reward its backers creates
clutter in the form of needless artefacts which
detract from the experience of other players. The

GAMING ON LINUX
ORIGINAL CONTROL

Pre-orders for the much
anticipated Steam Machines,
Steam Controllers and the

Steam Link streaming devices began
in June, with early customers having
the ability to get these goodies on 16
October, nearly a whole month before
the official release date. Though
there is no information available on
just how many of these were put up
for sale, we do know that within four
days over 33% of them had been sold
and over 80% had been sold by the
end of the summer sale on 22 June
– just 18 days after pre-orders were
announced.

The Steam Machines were limited
to just the Alienware and Syber
models, starting at $449 and $499
respectively (international pricing is
not yet available), while the Steam
Controller and Steam Link were put
on sale at $49.99 (£49.99 in the UK),
the former being priced in the same
range as next-gen controllers. The
release date for the Linux-powered
consoles has been set for 10
November – also the release date for
Fallout 4, which has shown no signs
whatsoever of getting a Linux release
other than sharing this date.

The success of the pre-orders
certainly seems to be an indicator
that the Linux-powered Steam
Machines are already a hit among
existing PC gamers, which is good
news for Linux gaming all round.
However, a few niggling questions do
remain, such as how many people will
buy the hardware and then go on to
install Windows on it, and how will it
fare among console gamers?

Michel Loubet-Jambert is our Games
Editor. He hasn’t had a decent night’s
sleep since Steam came out on Linux.

prime example here are the houses, of which
there are hundreds designed by the game’s
backers, rather than a handful of well crafted
ones with good backstories and detailed designs
which could provide more immersion.

Massive Chalice is a cautious recommend,
and while the game is both fun and challenging,
it won’t leave you on the edge of your seat and
biting your fingernails like other strategy games.

Website http://store.steampowered.com/
app/246110 Price £14.99

The art looks great, but does little
to make the world immersive.

There’s a good selection of classes with innovative
mechanics to hone their skills.

“Massive Chalice is a strategy and crisis management
game inspired by the XCOM series.”

LV018 010 Gaming.indd 10 02/07/2015 20:16

GAMING ON LINUX

www.linuxvoice.com 11

The Masterplan
This well presented top-down tactical heist
game pulls off an immersive atmosphere in its
1970s setting. The lack of multiplayer does
seem like a strange omission, though the
single-player campaign does provide many
hours of gameplay. Its hand-drawn graphics
are also a welcome change from the pixel
graphics found in similar indie games.
http://store.steampowered.com/app/313080

ALSO RELEASED…

Tabletop Simulator
Flip tables when you lose, but without all the broken furniture.

The “Simulator” suffix has become
synonymous with the tonnes of
games designed to gather the

attention of online celebrities rather than
provide good gameplay, but Tabletop
Simulator is far from that. The developers
have managed to create the de facto game
of choice for gamers looking to play an
assortment of different tabletop games on
the PC and online against other players.

Games ranging from checkers and
chess to poker and blackjack are featured
and the sandbox nature of the game also
means that there are no limits in terms
of rules or physical pieces. Ever wanted
to build a tower of cards or domino show
but wish you could rewind time if it all
goes horribly wrong? You can do that in
Tabletop Simulator, along with much more.

The ever-growing list of user-made
mods also means that the possibilities are

almost endless, with users having made
expansions ranging from Warhammer to
Risk. One user has even created a nice
little Tux figurine, so maybe there’s a battle
of the FOSS mascots game on the way?
What is clear is that we’ve seen only the
beginning of this highly versatile game.

The Perils of Man
An aesthetically pleasing point-and-click game featuring time travel!

Point-and-click adventure games
are played for two reasons; an
overwhelming desire to craft

ridiculous contraptions out of unrelated
objects and to experience a good,
character-driven story without all the
needless distractions found in more
modern game designs. Fortunately, The
Perils of Man hits the mark with both.

The story in this game is very well
done, and while including time travel in
stories can often be messy, leading to
deus ex machina or a jumbled plotline, this
game handles it well and moves forward

smoothly. Similarly, the puzzles are
logical and well designed, pacing the plot
well and aren’t just there to pad out the
completion time.

While the game isn’t quite on par with
other Linux adventure games like Deponia
or Book of Unwritten Tales, its low price,
charming visual presentation and
likeable female protagonist make this a
worthy addition to the libraries of point-
and-click fans.

Nightsky
Nightsky is a nice little ambient puzzle-
platformer that conveys a peaceful feeling of
solitude through its rather attractive artwork.
Its use of clever physics-based puzzles and
minimalistic silhouette visuals are worthy of
praise and the game should please casual
gamers as well as other players looking to
relax a bit and play something a bit more
soothing… or who simply want to play a game
as a glass ball.
http://store.steampowered.com/app/99700

Audiosurf 2
This music visualisation game enables you to
“ride your music” by importing your favourite
tracks and navigating a vehicle through its
notes. Though it might look as if it’s only
designed for bassier music, it handled anything
we threw at it with ease; from Tchaikovsky to
Joy Division. The selection of courses and
game modes, as well as the ability to import
other players’ music, make the possibilities
almost endless.
http://store.steampowered.com/app/235800

Website http://store.steampowered.com/
app/347710 Price £6.99

Website http://store.steampowered.com/
app/286160/ Price £14.99

While puzzles and plot are very
well done, the outstanding visuals

outshine them.

Thanks to mods, the game can now transport
players back to the year 1999.

LV018 010 Gaming.indd 11 02/07/2015 20:16

MAIL

www.linuxvoice.com12

BUGFIXES

Got something to say? An idea for a new magazine feature?
Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS

Please could you explain the
rationale behind Linux bugfixes?
Lots of bug reports seem to
be ignored by distribution
developers. Some may be
duplicates, some because
they are “upstream” while
other distros seem to have
fixed them. For example, I
really started getting into Linux
with Fedora and Ubuntu 8.04
(at around the same time) –
Fedora would stop presenting
its hostname on Wi-Fi after a
reboot but Ubuntu would keep
it as expected. There currently
seems to be a problem with
software RAID whereby arrays
where a virtual disk has been
removed to simulate hardware
failure hang during boot when
a new virtual disk is introduced.
In testing with VirtualBox this
seems to affect the latest
versions of Debian, OpenSUSE,
and Ubuntu 14.04.2 LTS, but not
Fedora 22 or CentOS 7, although
Fedora includes software RAID
management tools (mdadm) in
its emergency console, whereas
CentOS , as far as I can see,
doesn’t. I’m not sure if this is a
kernel or a mdadm bug that the
Fedora and CentOS developers
have fixed, or whether it’s just
that the implementations in
other distros are buggy. Please
could you explain the best way
to test and report problems
like that? Is behaviour on
VirtualBox/KVM likely to be a
good indicator of behaviour

LINUX VOICE STAR LETTER

VirtualBox has
improved enormously
in recent years, but if
you’re reporting bugs,
they should rally be
reproducible on real
hardware.

to be expected with physical
hardware and are such issues
worth reporting unless tested on a
real system?
Gareth Thomas

Ben says: Every project has its own
procedure for dealing with bugs, so
there isn’t a single answer to your
question. With hardware issues, it’s
further complicated by the fact that
different distros use slightly different
version of the Linux Kernel. The exact
differences will vary from distro to
distro and reflect what the distro
maintainers think is important.

Distributions should work on virtual
machines, so even if an issue is only
present on a virtual machine, it’s
still a valid bug that should be fixed,
especially for server distributions that
face out onto the internet.

If the problem appears to be
systemic, then you should report it
through the distro. Even if it transpires
that the problem is ultimately with an
upstream package, it’s still a bug that
the distro needs to know about.

Ultimately, the best advice here is
to read the bug reporting docs for the
distro, and don’t be afraid to submit
bug reports.

LV018 012 Mail.indd 12 03/07/2015 14:50

MAIL

www.linuxvoice.com 1313

Avoid the Windows
fandango by buying
with Linux pre-installed,
from a vendor such as
PC Specialist.

I just purchased a new HP desktop
and put my Ubuntu DVD in the
drive and rebooted looking to try
Ubuntu live on my new machine.
I entered the BIOS (UEFI) and
put the CD drive at the top of the
list for booting and disabled fast
boot but still it would not boot.
When I went back and looked at
the boot order the CD drive was
not even listed, although I did see
Windows Boot Manager, which I
am not familiar with. I then had
the idea to just get rid of Windows
8.1 and replace it with Ubuntu
15.04. With a little messing around
it seemed to install correctly

but after removing the disk and
rebooting my machine was a
paperweight. Thankfully I had
the foresight to create a set of
system restore disks and could
restore it to factory settings. I am
not sure whether to dual boot or
replace but I intend to back up my
system and seek assistance. I feel
(correctly or incorrectly) this is
another Windows effort to make it
so hard to use alternate systems
that people stick with Windows
and fear Windows 10 will be the
worst. Any help sure would be
appreciated!
Steve Cox

NOT FIT FOR PURPOSE
Andrew says: Don’t ascribe to malice
that which may be incompetence.
In other words, I’m sure there are
people at Microsoft who are delighted
that the company has made it more
difficult to install Linux, but it’s more
likely that the people who made the
decisions just didn’t think about their
customers’ needs. It could be an idea
to talk to someone at HP and let them
know how commercially dissatisfied
you are with the decision to load
Windows on their products. But before
that, check that you’re saving the
updated settings in the BIOS, probably
with F10 after you’ve changed the
boot order.

LV018 012 Mail.indd 13 03/07/2015 14:50

MAIL

Watch the computer error song
on YouTube.

www.youtube.com/watch?v=
mKkLjJHwRec&feature=youtu
be_gdata_player
Steve Bez

Andrew says: I’ve been re-reading
Graham Greene lately and thought
that this might have been an
important message, hidden in an
innocuous-looking YouTube video by
our man in Havana. Unfortunately
it’s just a waste of time. Thanks for
thinking of us though!

14

As creators and guardians of the
global immune system we all need
for planet survival, please keep
guiding our thinking about the
maker revolution and how it can
best influence say media, health
and infrastructure for the next five
decades.

You in open source and the
musicians in virality hold the
keys: poetry is all. Joy in neat
code, elation in symmetry and
syntax, leverage from rhythm and
syncopation. Feynman found as
much joy in bongo drumming as
in quantum physics; The Cathedral
and the Bazaar riffs with the best
economic thought precisely
because we and the author had
tasted hubris from his code
spreading.

Published or no, this is my
humble appreciation of what you
do. Please just keep aiming high
enough.

May your tribes increase,
Anon

Andrew says: Well, quite. One of the
best things about Free Software

PARTY ON!

people is that they tend to have some
intellectual hinterland that informs
everything else they do, probably
because the software is a means
to an end rather than an end itself.
I always feel a bit odd talking to
people who have only one obsession;
Free Software, contrary to common
perceptions, tends to produce (or
attract) pretty rounded minds with
as much interest in classical music,
sculpture, history or anything else in
addition to computing. We’re pretty
awesome.

Tux is beloved by many, but he’s also
a product of a different century.

Apparently, believing
in your content is a
revolutionary act.

I don’t read magazines. Having
never read them, I just don’t go
into newsagents, so don’t know
much about them. It seems a little
odd, then, that I’m writing to a
magazine’s letters’ page.

I only found out about Linux
Voice a couple of months ago
when I saw a link to an older issue
posted on line. Since it was free, I
thought I’d give it a go. It turns out
that I really like having a monthly
dose of all things Linux. To cut
a long story short, I’m now a
subscriber. Keep up the good work!
Julie

Andrew says: To us, it seems obvious
that releasing older issues for free
(both as in speech and as in beer) is a
good thing, not just from a moral point
of view, but from a business point of
view. By exposing more people to your

FREEDOM

content, you reach more potential
customers. We’re not sure why so few
media companies realise this, or why
mainstream media companies put
so many restrictions on customers
through DRM and the like. Anyway,
that’s a rant for another day. We’re
glad you like it, and we will indeed
keep it up!

Even when played by
a great physicist such
as Richard Feynman,
the bongos are an
abomination.

SHORT AND SWEET

I’ve been using Linux since the
days of text installers, and it’s
been great to see the whole open
source software ecosystem
mature and get better every year.

One thing continues to frustrate
me: Tux. I love the idea of having
a penguin as a mascot, but why
does he have to be overweight
and sitting on his bum? I don’t
wish to denigrate anyone’s choice
of lifestyle, but if we’re to offer
Linux as a fast, efficient system,
shouldn’t we have a mascot that
represents this?
David

Andrew says: Tux is a cuddly bundle
of open source love, but he’s also a
little long in the tooth now. Perhaps
it is time for something new. We’ll
open this up to the community. What
do you think, dear readers, about our
portly penguin?

TUX: TIME UP?

LV018 012 Mail.indd 14 03/07/2015 14:50

MAIL

www.linuxvoice.com 1515

Email andrew@linuxvoice.com to advertise here

LV018 012 Mail.indd 15 03/07/2015 14:50

LUGS ON TOUR

www.linuxvoice.com16

LUGS ON TOUR
Josette Garcia reports on what’s new in Python or how to enjoy a bunch of friends.

F rom 31 May to 5 June,
Cardiff hosted DjangoCon
Europe, six days of talks,

tutorials and code. The talks
were held in City Hall and other
events were distributed in Cardiff
University’s main building and Bute
Building.

I got the train to Cardiff Central
and the reputation of Cardiff proved
to be right: it was raining very hard
and very windy. My umbrella stayed
up for 10 seconds. The University
of Wales is approximately 20
minutes’ walk from the station via
the famous Cardiff castle. Did you
know that Wales is said to contain
more castles per square mile than
any other country in the world?

The event attracted some great
sponsors such as Divio, Opbeat,
Maykin, FanDuel, Pluralsight,
PyCharm, Pusher, 2ndQuadrant,
Reckon Digital and more. With so
many sponsors, the attendees took
home a very interesting goodie bag
which also included a print from the
Cardiff Print Workshop, who also
designed the badges, stickers and
the programmes. Inspired by the
work of the artists, we were asked
to create our own artwork and send
a photo. There will be a prize for the
one that is liked best.

Around 400 people came from
all over the world to listen to some
fantastic talks. The keynotes were
exceptional:

 Baptiste’s adventures in
Djangoland by Baptiste Mispelon.
He described how he tackled
burnout by travelling around
Europe, eating Welsh cakes,
pierogi and stroopwafel.
 Into the rabbit hole by Ola
Sendeck.Ola warned of the
dangers that rabbit holes present

to the programmer, discussed
how to spot them and told a story
about ModelForms.
 The net is dark and full of terrors
by James Bennett.James told
tales of the unexpected, and
described some alarming things
that the Django team have
learned about security in the
process over the past 10 years.

The conference dinner took place
in the National Museum of Wales –
a great venue, and great food if you
enjoy lamb (which, sadly, I do not
– except if it’s in a kebab!). Lamb is
the meat traditionally associated
with Welsh cooking owing to the
amount of sheep farming in the
country.

Django welcomes you
What I liked most about this
conference was the care that was
given to the attendees. As we
all know, the techie community
is largely comprised of middle-
class, white men with very little
representation for people of
colour, women or people of/on low
income. DjangoCon made a lot of
effort to redress this imbalance by:

 Opening registration for tickets
and proposals to members of
under-represented groups a
month before general registration
opening.
 Offering financial aid to people on
a low income with the help of the
Django Software Foundation’s grant committee.

 Offering diversity supporter
tickets.
 Setting up a day-long Django
Girls workshop and offering them
a number of reduced-priced
tickets for the duration of the
conference.

Cardiff Print Workshop did fine work on the design front – far
better than Comic Sans in Microsoft Word.

DjangoCon 2015

“Around 400 people came from
all over the world to listen to
some fantastic talks.”

LV018 016 LUGS.indd 16 03/07/2015 13:06

LUGS ON TOUR

www.linuxvoice.com 17

Aneurin Bevan, Bonnie
Tyler, Hannibal Lecter,
Joe Calzaghe and
Brains beer are among
Wales’ gifts to the world
– and now DjangoCon
Europe.

PGDay UK 2015
Josette Garcia looks forward/back to some top speakers at the PostgreSQL user conference.

The UK’s only dedicated
PostgreSQL user event has
announced an impressive

line up of technology and database
software experts to inform and
educate delegates.

PGDay takes place on 7 July
at 30 Euston Square in London
and is being organised by the UK
PostgreSQL User Group.

Her Majesty’s government’s
chief technology officer, Liam
Maxwell, tops the bill, and will be
speaking about how awareness of

PostgreSQL is growing, predicting
what the future will hold. Database
technologist David Kennaway will
talk about how PostgreSQL is being
used at investment bank Goldman
Sachs, while 2ndQuadrant’s CTO
Simon Riggs will be tackling
PostgreSQL Futures.

Other topics covered include a
look the next version of PostgreSQL
(9.5), the Axle project (Advanced
Analytics for Extremely Large
European Databases), and backup
and recovery.

According to Simon Riggs,
“PGDay UK is the must-attend
event for PostgreSQL users,
developers, fans or even if you’re
simply investigating the best open
source database for the first time.
Delegates will learn about features
added to version 9.4, projects
under development and the future
direction of the world’s most
advanced open source database.”

For more information about
PGDay UK 2015 please see www.
postgresqlusergroup.org.uk.

DjangoCon set the highest
standards for accessibility by
ensuring that:

 All venues were wheelchair
accessible.
 People with visual impairment
were looked after with assistive
technology and guide dogs were
welcome.

 Induction loops for hearing
aid users were provided and
simultaneous speech-to-text
transcription was available.
 A crèche was provided.
Has DjangoCon set the

standards for future conferences?
I cannot finish this article without

asking – did you know that the

original national emblem of Wales
was the leek (cenhinen)? Over the
years this was often confused with
a very similar Welsh word cehhinen
bedr, meaning “daffodils”, so the
daffodil was adopted as the second
emblem of Wales.

Hwyl fawr am y tro!*
*Bye for now!

LV018 016 LUGS.indd 17 03/07/2015 13:06

Linux Voice wants your ideas for tutorials, guides, how-tos and insights from
the hacker world. If you’ve found something you want to tell the world about,
let us know

What material is Linux Voice interested in?
Most of the time we’re more interested in what you can do with software X,
rather than singing the praises of software X itself. Clever software is good
but useful software is better. Proprietary software that works on Linux is
acceptable, but what we’re most interested in is Free Software.

What don’t you want?
We sometime get submissions that go like “I’ve been using Linux for X years;
can I write for you?”. This isn’t very helpful, to us, because what we want to
see is that you:

 Have an idea
 Can explain it clearly

If you can point us to examples of something you’ve written, please do
– we’re not looking for Shakespeare; we value clear communication and
enthusiasm above all else.

What do you want?
Tutorials. We want tutorials, of around 3,300 words in length usually. We pay
money! All tutorials should have a clearly stated aim, so readers know at
first glance why they should follow it. “Get started with XX software” doesn’t
tell you anything; “Build a weather tracker with Python” is much more active
and informative.

These are common reasons why we reject ideas:
 Something which has been covered repeatedly on Linux Voice

and/or elsewhere
 Material not obviously related to Free Software
 Incoherent writing

Email ben@linuxvoice.com
to write for Linux Voice

LV018 018 Ad Write.indd 18 03/07/2015 12:22

A PROGRAM IS

FREE SOFTWARE
IF THE PROGRAM’S USERS HAVE

0) THE FREEDOM TO
RUN THE PROGRAM
AS YOU WISH, FOR
ANY PURPOSE.

1)
 T

H
E

FR
EE

D
O

M
 T

O
 S

TU
DY

 H
O

W

TH
E

PR
O

GR
A

M
 W

O
R

K
S,

 A
N

D

CH
A

N
GE

 IT
 S

O
 IT

 D
O

ES
 Y

O
U

R

CO
M

PU
TI

N
G

A
S

YO
U

 W
IS

H
.

3)
 T

H
E

FR
EE

D
O

M
 T

O

D
IS

TR
IB

U
TE

 C
O

PI
ES

O

F
YO

U
R

 M
O

D
IF

IE
D

V

ER
SI

O
N

S
TO

O

TH
ER

S.

2) THE FREEDOM
TO REDISTRIBUTE
COPIES SO YOU
CAN HELP YOUR
NEIGHBOR.

THE FOUR ESSENTIAL FREEDOMS:

LV018 019 Graphic Stallman.indd 19 03/07/2015 12:23

SUMMER PROJECTS

www.linuxvoice.com20

W ithout a doubt, GNU/Linux is the ultimate
plaything. Sure, it’s a serious OS and
businesses around the world depend on it,

but it’s also endlessly fascinating as a technical toy.
You can take it apart, (try to) put it back together, and
see how it all works. You can study its code, recompile
it, and share your modifications with the rest of the
world. Of all the things we like to tinker with – such as
electronics, cars, and
model aircraft – Linux
has the most to keep us
all busy for many years.
Even those of us who’ve
been using Linux for
decades still discover
new tips, tricks and secrets to explore, and we love
learning more. Few hobbies offer such long-term
enjoyment, and best of all, it’s totally free!

So with summer starting, we decided to put
together a compendium of fun (and quick) projects
that you can do on a sunny evening – or indeed, get
the kids to do during the holidays. Whether you’re up
for some gaming, some coding or some hardware
hacking, or just a bit of everything, there’s something
for you in the next nine pages.

We kick off with compiling your own kernel, a task
that may seem daunting and something that only the

Grab a glass of lemonade, take your laptop into the garden, and do some
very awesome (and hacky) things with Linux. Summer starts here!

“Few hobbies offer such long-
term enjoyment as Linux, and
best of all, it’s totally free!”

SUMMER
HACKS

FOR THE

geekiest of Linux users do, but it’s actually a great way
to customise your system and learn more about the
core component of the OS.

Then we look at interactive fiction, and how to make
your own adventure game. This is a lot easier than
it sounds, thanks to the Inform 7 language, which
lets you create virtual worlds without lots of code.
Following this we’ll be making an IRC bot that uses

speech synthesis to
talk to you, and turning
a Raspberry Pi into a
very cool retro gaming
machine. If you have a
Pi sitting around doing
nothing, give it a go! And

lastly we delve into hacking your house alarm and
make use of the data that it gathers up throughout
the day.

As a final note, some of the projects in this feature,
as with many of the articles in the magazine, are
based on suggestions from you, our readers. If
there’s anything you’d like us to cover in future issues,
just drop us a line and we’ll explore it in depth. Or
if there’s something about which you’re especially
knowledgeable, and you’d like to explain it to other
Linux Voice readers, send us a pitch and we may ask
you to write it up for the magazine!

20

LV018 020 Cover Feature.indd 20 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com 21

Recompile your kernel
Customise your system by rebuilding its very heart.

just created, you should find the file debian.
master/changelog. In here, you can change
the first line to add an identifier to the
version number. For example, we added
-ben to create the line:
linux (3.13.0-56.93-ben) trusty; urgency=low

This version number will appear on the
kernel you build.

Kernel patches
You don’t have to stick with the kernel
you’ve downloaded: some people maintain
extra features that can be added. These are
known as patch sets, and they’re changes to
the source code that you can apply before
you compile the code. To apply a patch set,
unzip it into the root directory of the kernel
source and run:
patch -p1 < <patch-file>

Unless you have very specific
requirements, it’s unlikely that you’ll notice
much difference in the performance when
using a different patch set, but it can make
an interesting experiment.

Once you’ve made your changes, you
need to prepare the build with:
chmod a+x debian/scripts/*
chmod a+x debian/scripts/misc/*
fakeroot debian/rules clean
By default, your kernel will be built using the

configuration your distro has selected.
However, if you want to change this (or
just take a look at the available options),
you can run the following.
fakeroot debian/rules editconfigs

At this point, everything is prepared,
so you can build your kernel. Be warned

though, this make take some time. Start the
build with:
fakeroot debian/rules binary-headers binary-generic

This will create a series of Deb files in the
directory above the build directory. In order
to run your new kernel, you need to install all
of these with:
sudo dpkg -i linux*.deb

When you restart, you should then get
the option to boot into your newly created
kernel. Depending on the version of Ubuntu
you’re using, this may either be in the
Grub screen, or there may be a menu for
Advanced Options. You should be able to
recognise your build from the text appended
to the kernel number. If you have any
problems, you can use this to switch back to
a previous version.

P robably the geekiest thing you can do
with Linux is recompile the kernel.
These days, there’s rarely any need to

unless you’re hacking on the kernel code, but
the process will help you learn a little more
about what’s going on at the lowest level of
your Linux system. We’ll be going through
the process for Ubuntu-based distros, but
much of the process is similar for other
distros. The kernel build system is quite
powerful, and there are several different
ways of doing each task.

The first thing you need to decide is which
kernel to use. There’s the vanilla Linux kernel,
a long-term support version, and most major
distros maintain their own kernel trees as
well. If you’re grabbing the latest kernel to
access some new features, then the vanilla
kernel may be best. If you just want to have
a play around with the options, it may be
a better option to use your distro’s kernel.
Bear in mind that if you’re building a different
kernel version than the one you’re currently
using, any proprietary drivers (such as
graphics card drivers) may stop working. You
can grab the official Ubuntu version with:
git clone git://kernel.ubuntu.com/ubuntu/ubuntu-
<release name>.git

Or the vanilla version from kernel.org with:
git clone git://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git linux-git
Alternatively, you can browse
www.kernel.org to find other versions.

Once you’ve got the code, you can
make any changes you want. The
first thing to do is make sure you can
easily identify the kernel you’ve built.
Inside the directory that the git command

Kernel.org is the keeper of the true kernel, and offers supported versions going back to 2.6.32.

If you want to try out a different kernel, but don’t
want to go through the hassle of compiling it
yourself, you can install it from a package. Most
popular distros have a few different prebuilt
kernels available. For example, there are
versions of the vanilla Linux kernel packaged
for Ubuntu at https://wiki.ubuntu.com/Kernel/
MainlineBuilds. You can also find details of
Fedora packages at https://fedoraproject.org/
wiki/Kernel_Vanilla_Repositories.

If you’re keen to play with different versions
of the Linux Kernel, Arch is a good distro
to use, as the Arch User Repository (AUR)
contains several packages to automatically
build different versions of the kernel almost
automatically.

Kernel packages

“Recompiling your kernel will
help you learn a little more
about what’s going on.”

SUMMER
HACKS

FOR THE

LV018 020 Cover Feature.indd 21 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com22

Interactive Fiction
Write the next great novel the geeky way.

The summer is the perfect time to
retire to a quiet place and write a
great story. Of course, a story

doesn’t have to be a linear and start at one
point, continuing in the same line until the
end. It can be more interactive, where the
reader makes choices that alter the final
outcome. This is interactive fiction. It blurs
the line between a story and a game, but we
don’t have to get bogged down in etymology:
we can just enjoy the process of writing and
consuming it.

There are many ways of writing interactive
fiction. You can use a regular programming
language, and some have libraries or
modules to help. For example, Python has
the tale module. However, we’re going to use
the Inform 7 language, which is designed
specifically for writing interactive fiction.

The two most important things to know
about Inform 7 is that it’s declarative
and that it’s natural language-like. Being
declarative means that you don’t write code
step-by-step as you do in most languages;
instead you describe what you want the
program to do, and let the compiler figure
out the details of how to implement it. The
language is almost English, but Inform 7
can’t understand arbitrary sentences. They
have to be in a format that it understands.
Let’s take a look at what this means.
“testIF” by “ben”

LinuxVoice Towers is a room. “The office window
looks over central Bristol.”

LinuxVoice Towers contains a stack of magazines. In
the stack is a collection of dog eared copies of
LinuxVoice. The stack is scenery

LinuxVoice Towers contains a bag of coffee. In the
bag is a golden key. The bag is closed and openable.

The office door is south of LinuxVoice Towers and
north of a barren wasteland. It is a door and scenery.
The office door is lockable and locked. The matching
key is the golden key.

A description of the barren wasteland is “Nothing but
bare land and rocks. It looks nothing like the view
out of the office window. You appear to have
travelled through some form of portal. There are
roads going south east and west.”

The barren wasteland contains a broad sword.

The barren wasteland contains a sign.

A description of the sign is “Abandon all hope ye who
head south, east be bad and should be avoided. The
wise should travel west and take protection.”

Hell is south and east of the barren wasteland. “A
sulphur air fills your nostrils so you can’t breath. The
land heats up and bursts into flames. You have
entered the domain of the dark lord himself”.

After going to hell:
 end the story finally;
 say “ A sulphur air fills your nostrils so you can’t
breath. The land heats up and bursts into flames. You
have entered the domain of the dark lord himself.
 You die a painful death.”

A small mountain is west of the barren wasteland.

Before going to the small mountain:
 unless player holds broad sword:
 say “an Ogre appears from behind a rock and
shouts, ‘Did you not read the sign?’ before slaying
you with a single blow.”;
 end the story finally

After going to the small mountain:

 say “Congratulations. You have reached the
arbitrary end of our short adventure. Go forth and
program more.”;
 end the story finally

All art is quite useless
To play, open Inform 7, create a new project,
and put the above code into the source
(you’ll find the code at https://github.com/
linux-voice/issue18-inform if you don’t
want to type it yourself). Then press Go to
start. You can then use instructions such
as open bag’, ‘take key’, ‘unlock door’, ‘go
south’, ‘examine sign’, ‘take broad sword’
and ‘go west’. This series of instructions will
complete the game.

In Inform, the player moves through
rooms (rooms don’t actually have to be
rooms; they’re anything that the user can
move through, such as a barren wasteland
and a small mountain). These can contain
items, and are located though compass
directions from each other. As well as rooms
and items, you can create rules (such as the
final code block in the example). These can
be used to control the world.

You’ll find a complete language manual
and a recipe book on the project website at
www.inform7.com.

The two-pane view in Inform 7 enables you to view the output and the code to perfect your work.

LV018 020 Cover Feature.indd 22 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com 23

Speech synthesised IRC
Make your chat channels talk to you – with real voices!

One of Linux’s great strengths is the
ability to combine individual tools
and programming languages to

make something awesome. In this project
we’re going to create a program that logs
into an IRC channel and speaks out
messages that the users type. The first thing
we need is a speech synthesis tool – that is,
the program that actually converts text into
human-esque sounds – and one of the best
is eSpeak (http://espeak.sf.net). This is
available in most distros; in Debian/
Ubuntu-distros you can get it via the espeak
and espeak-data packages, so dive into
your package manager and grab them.

Once you have eSpeak installed, try it from
a terminal window like so:
espeak “Hello world!”

eSpeak is highly customisable, and you
can change the pitch (0 to 99, default 50)
and speed (words per minute, default 160)
like so:
espeak -p 80 -s 120 “Hello world!”
This produces a higher and slower voice,
which may work better in some cases.

If you’re going to be using non-English
content, you can get a list of alternative
voices with espeak --voices (for instance,
espeak -v de “Hallo Welt” for German).

So, we have our speech engine installed.
The next thing to do is to incorporate it into
some code that interacts with an
IRC channel, and here we’re going to
use Python. As a Linux Voice reader
you’ve probably picked up some
Python already, but don’t worry if
not – we won’t be doing anything too
complicated, and it’s a very readable
and newbie-friendly programming language.

Mind the gap
The Python module to link the language with
eSpeak is, funnily enough, Python-eSpeak.
You can get this via the python3-espeak
package. After installation, create the
following text file as test.py and save it in
your home directory:
from espeak import espeak
import time

espeak.synth(“Python is speaking!”)
time.sleep(3)

Run this from a terminal with python3
test.py and you’ll hear the words “Python
is speaking”. This program is very simple:

the first two lines tell Python that we want
to use the eSpeak and time modules, then
we use the synth routine of eSpeak and
provide some text. We also tell Python to
pause (sleep) for three seconds, to deal
with any latency issues (without this line, we
could only hear the first syllable on our test

machine).
We can also change the pitch and speed

(aka rate) settings by adding these lines
before the espeak.synth line:
espeak.set_parameter(espeak.Parameter.Pitch, 80)
espeak.set_parameter(espeak.Parameter.Rate, 120)

Next, we need to add some code to log in
to IRC and watch for messages. As root, run
pip install irc to add an IRC module to your
Python installation, and then replace the
contents of test.py with this:
from espeak import espeak
import irc.client
import jaraco.logging

def on_connect(connection, event):
 connection.join(“#linuxvoice”)

def on_message(connection, event):
 espeak.synth(event.arguments[0])

reactor = irc.client.Reactor()
c = reactor.server().connect(“chat.freenode.net”,
6667, “SomeRandomName12345”)

c.add_global_handler(“welcome”, on_connect)
c.add_global_handler(“pubmsg”, on_message)
reactor.process_forever()

Here we connect to the chat.
freenode.net IRC server on port 6667
as user SomeRandomName12345
(change that to something else that’s

unlikely to be in use). When the IRC server
responds with a “welcome” message, we
run our on_connect function which joins the
#linuxvoice channel.
And whenever there’s a public message
in that channel, we run the on_message
function, which uses eSpeak to read out the
message (the first element of the event.
arguments[] list).

So there you have it – speech synthesised
IRC in just a few lines of code! Our speech
synthesizer can read out all sorts of
gibberish to us in a friendly computerised
voice. You can add the set_parameter lines
to tweak the voice style, and hit Ctrl+C to
quit. You could even expand it to respond to
other types of IRC event. Have fun!

New to the joys of Internet Relay Chat (IRC)? Visit www.irchelp.org for a getting-started guide, then
join us in #linuxvoice on chat.freenode.net!

“Our speech synthesizer can read
out all sorts of gibberish to us in
a friendly computerised voice.”

LV018 020 Cover Feature.indd 23 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com24

Raspberry Pi retro gaming centre
Play NES, SNES, Game Boy and Mega Drive games on your big-screen TV.

The Raspberry Pi is an acceptable
general-purpose computer –
especially with the power-boosted Pi

2 – but it really shines when doing a specific
job. There are millions of Pis around the
world sharing up files, running network
proxies and operating robots, and they’re
ideal for these tasks: there are no moving
parts, so they’re hard to break, and even if
something does go wrong, you can just pop
out the SD card and drop it into another Pi.
For all these reasons, the Pi makes for a
superb retro gaming centre as well.

Sure, you can configure emulators on
your desktop Linux machine (see p54 of
issue 15) but it can be a tricky job, and
entails the usual fiddling associated with a
desktop operating system. Similarly, you can
customise a standard Raspbian installation
to set up emulators and front-ends – but
again, this takes time and requires lots of
manual work. There is a solution though:
RetroPie. This is a special version of
Raspbian with a razor-sharp focus on retro
gaming. Everything unrelated to games has
been cut out, and the end result is a flavour
of Linux that boots up to an attractive
launcher, in which you choose your games
with the joypad and begin playing them on
your TV. Simple as that!

RetroPie emulates all the classic 8-bit
and 16-bit consoles (NES, SNES, Game Boy,
Game Gear, Master System, Mega Drive/

Genesis) plus some home computers and
lesser-known machines. To get it working,
you’ll need your Raspberry Pi (1 and 2 are
supported), a spare SD card (minimum
4GB), a USB keyboard, a USB joypad
(generic models are available from Amazon
for $/£5) and a HDMI cable. Your first job is
to grab the latest SD card image from http://
blog.petrockblock.com/retropie/retropie-
downloads – at the time of writing, this was
version 3.0 Beta 4, but there may be a newer
Beta (or indeed the final release of 3.0) by
the time you read this.

So, once you’ve grabbed it you should
have a compressed file called retropie-
v3.0beta4-rpi1.img.gz (or similar) in your
Downloads directory. Open a terminal
window and enter the following to extract it:
cd Downloads
gunzip retropie-v3.0beta4-rpi1.img.gz

Change the filename to a newer version if
necessary. Now we need to write this image
to the SD card; you can do this like any other
Raspbian image, by following the official
Raspberry Pi instructions at http://tinyurl.
com/pisdcardlinux. Here’s a quick way to do
it: insert the SD card into your PC or laptop,
and if its icon appears on the desktop, right-
click it and choose unmount.

Go back to the future
Now, in the terminal window, enter dmesg
to see a list of recent system messages.
Look at the last few lines, and you should
see information about the SD card that you
plugged in. For instance, on our machine
(with a 16GB card) we see this line:
[15703.335628] sd 1:0:0:0: [sdb] 30881792 512-byte
logical blocks: (15.8 GB/14.7 GiB)

The sdb bit here is important – it’s Linux’s
name for the card. Hopefully your card will
be easy to spot, but if not, ask on our forums
(http://forums.linuxvoice.com) and paste
the last few lines of your dmesg output into
your message.

Once you’re sure about the right name (it’s
usually sdb or sdc), you’ll need to write the
image to the card as the root (admin) user.

Emulation Station provides a gorgeous front-end for various console and computer emulators.

On first boot, you’ll be asked to configure your USB joypad.

LV018 020 Cover Feature.indd 24 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com 25

In many distros this is:
sudo dd bs=4M if=retropie-v3.0beta4-rpi1.img of=/
dev/sdb

(If this doesn’t work, change sudo to su
-c.) Also change the filename of the image
and the sdb accordingly. This writes the
image data directly to the SD card, so it may
take a while – go and grab a cuppa or a
lovely Weißbier.

Now you’re playing with power
RetroPie on its own is all nice and pretty, but
it doesn’t do much if you don’t have any
games to play on it. (For more on acquiring
games, see the “Where do I get ROMs?”
box.) So, assuming you have some games
ready, remove the SD card and then plug it
back in to your PC or laptop to make it
automatically mount again. You’ll see that
there are two partitions on the SD card now,
BOOT and retropie – go into the latter in
your file manager.

You’ll see that it’s very much like a regular
Linux installation, with /etc, /usr and so
forth. And indeed it is a Raspbian installation
as mentioned, just with most of the usual
Linux desktop components stripped out. Go
into the /home/pi/RetroPie/roms directory
and you’ll see a big list of folders with names
like amiga, c64, gb and so forth. These are
the places to copy your games over. So, if
you have the Tetris.gb Game Boy ROM, for
instance, copy this into the gb folder. If you
have NES games, put them inside
nes, and so forth.

Once you’re done copying your
games over, unmount the SD card
partitions on your desktop or via
your file manager, and remove the
SD card. Pop it into your Pi, attach
the USB keyboard and joypad, connect it to
your TV with a HDMI cable, and power it on.

After a few moments, Emulation Station
will appear: this is the front-end launcher
and configuration tool for the various
console emulators. In this first boot, it will

say it has recognised your USB joypad and
you should press a button to configure it.
Press the buttons to match the ones listed

on screen, or press and hold a button if
there’s an emulated button you don’t want
to use (for example, you won’t need all the
analogue stick inputs if you’re emulating
8-bit consoles). Once this configuration step
is done, you can press left and right on the

joypad to choose between the emulated
consoles and computers. So, choose a
machine for which you added games earlier,

hit the A button on your joypad, and
begin playing! To quit out of a game
and return to the Emulation Station
menu, press Start and Select on your
joypad at the same time.

Because RetroPie only uses a
chunk of the SD card, you’ll want

to expand its installation to fill the card.
Otherwise you’re limited to how many ROMs
you can add to the SD card – around 92MB.
If you’ve installed RetroPie onto an 8GB or
16GB card, that’s a lot of wasted space!
To fix this hit F4 in Emulation Station to
switch to a text screen, and F4 again to get a
command line prompt. Enter:
sudo raspi-config

Choose “Expand Filesystem” to fill out the
installation to the whole SD card and provide
extra space. If you’ve found performance
a bit stuttery with some of your games,
especially with the more demanding
emulators, you can also overclock your Pi
in this menu. It’s best not to go overboard
– just knock it up a notch, reboot and see if
it makes performance smoother. Above all,
enjoy and bask in the awesome retrostalgic
goodness of the 80s and 90s!

Short answer: we won’t say. Longer answer: it’s
a very messy topic in legal terms. Countless
websites offer ROMs – that is, files representing
game cartridges – for download. And occasionally,
Nintendo and the other major players go after
these sites and have them closed down. After all,
these sites are distributing copyrighted material,
so there’s no ambiguity there. It’s against the law.

But there’s also a lot of confusion about
“personal” ROMs. Some argue that it’s perfectly
acceptable to download ROMs for games you
already own in physical format, as you’re not

depriving the game makers of any money. Some
say that it’s still copyright violation, and the only
safe way is to buy a special piece of hardware, plug
your original games into it, and get the ROMs out
that way (like the Retrode). Others claim that such
an act is illegal too.

In late 2014, it became legal in the UK to make
personal backup copies of CDs and DVDs – but
it’s not clear whether that applies to video game
cartridges as well. So ultimately, we won’t give any
legal advice or tell you where to get ROMs. Just be
careful out there, and if in doubt, do nowt.

Here’s Mega Drive Sonic the Hedgehog being played with a SNES joypad connected via a USB
adaptor to a Raspberry Pi running RetroPie. What a time to be alive.

“Emulation Station is the front-end
launcher and configuration tool for
various console emulators.”

Where do I get ROMs?

LV018 020 Cover Feature.indd 25 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com26

Reactions game
Take a first foray into the world of physical computing and check your reaction time.

Physical computing is the process of
creating some way for your
computer to interact with the real

world. It encompasses everything from
home control to robotics, and much in
between. It can require a whole new set of
skills for anyone who’s only worked with
normal computers before, but it’s a fun
branch of computing, and it’s easier than
ever before to get started.

The first thing you need is some
method of inputting and outputting from
your computer. On a Raspberry Pi, you
can use the GPIO headers, but as most
computers don’t come with these, you’ll
need an extra bit of hardware. We’re going
to use an Arduino Uno (though most other
Arduino boards would also work). These
are microcontrollers that contain a very
simple processor and memory that you can
program, and a series of headers that you
can program to be inputs or outputs.

The Arduino project has its own
development environment that you should
find in your distro’s repositories. It’s quite
a simple IDE with just a text area and a
few buttons for the important tasks like
compiling (the tick icon), and uploading to
the board (the arrow that points right). For
the upload to work, you’ll need to connect
your Arduino to the computer via the USB
port. It doesn’t need any additional power.

Our project will be a simple reactions
game that will turn on a light and then see
how long it takes you to press a push-button
switch to turn the light off.

Building circuits
Buttons (also known as momentary
switches) require a little circuitry to make
sure they work properly. There are two parts
to this: firstly they need a resistor that
makes sure that there isn’t too much current

flowing when the button is pressed; then
they need a resistor that connects the pin to
the ground when the button isn’t pressed.
This is shown above.

The Uno does have a built-in LED on pin
13, so we can use that for output by just
setting pin 13 to high (for on) or low for off.

Now the hardware’s sorted, we just need
to write the code to control it all. There
are three important parts to an Arduino
program: declaring
the variables; the
setup; and the
loop. Variables are
declared at the start
of the program. We
only need one in
which to store the score. Declare it as an
integer with the line:
int score;

The setup is a function that’s run once
when the Arduino is first booted. It’s used to
set up the hardware and software. We need
to tell the Arduino which pins we want to use
for input and output, prepare the random
number generator, and connect back to the
computer’s serial port to output the scores.
This is done with the following code:
void setup() {
 pinMode(13, OUTPUT);
 pinMode(12, INPUT);
 randomSeed(analogRead(0));
 Serial.begin(9600);
}

The loop is the bit of code that keeps
running for as long as the Arduino is
powered on. Our loop will do the following:

 Turn the light on.
 Set the score to 1.

 Increment the score by one for every
millisecond delay there is before the user
presses the button.
 Print the score to the serial port.
 Turn the LED off.
 Wait a random amount of time before

restarting the loop.
This is done with the code:

void loop() {
 digitalWrite(13, HIGH);
 score = 0;
 while (digitalRead(12) != HIGH){
 delay(1);
 score++;
 }
 Serial.println(score);
 digitalWrite(13, LOW);
 delay(random(1000, 10000));
}

Bring all this together into the Arduino
IDE and click upload. If your hardware’s set
up properly, you should now be able to play
the reactions game. However, you can’t yet
see your scores. In the Arduino IDE, press
Ctrl+Shift+M to bring up the serial monitor,
and you should now get the output from
the board to let you know how good your
reaction times are.

The exact values of the resistors don’t matter, but the one connected to the positive voltage should
be at least 330Ω, and the one connected to the ground should be larger. We used 330Ω and 6.2KΩ.

To ground To input pin
To positive
voltage

“The Arduino project has a
simple IDE with just a text
area and a few buttons.”

“Physical computing requires a whole
new set of skills for anyone who’s only
worked with normal computers.”

LV018 020 Cover Feature.indd 26 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com 27

Hack your house alarm
Take control of a little-used sensor system to turn your house into a palace of data.

Over the last couple of
years, we’ve often
mentioned passive
infrared sensors, aka
PIR sensors.

These devices
measure changes in
infrared light and are

most commonly used to detect when
something with a higher temperature moves
across a lower temperature background.
Usually, that means detecting the
movements of animals and humans. They’re
also very easy to hook up to something like
a Raspberry Pi, as the detectors require very
little power and send a simple HIGH/LOW
signal when the sensor is triggered. With
just a couple of resistors to safeguard
currents, this signal can be connected
directly to the GPIO pins on a Raspberry Pi
and manipulated using simple Python
commands. It’s the perfect low-cost portable
detection system.

The biggest problem is getting these
sensors into somewhere physically
meaningful. A one-off installation for
detecting badgers in your back yard is easy
enough, but if you want to try something
more ambitious – such as wiring up your
entire house for lighting and heating hacks,
that’s going to take some serious planning
and disruption. What you need is a system
that’s already discretely connected to your
house that you can subvert and hack into
something more useful. And there is –
your house alarm! The backbone of many
domestic alarm systems is the humble
PIR sensor. You’ve seen them, hugging the
corners of rooms and corridors, perhaps
winking their red LEDs when activated.

These systems are often thought of as
black boxes, untouchable by us mortals, and
to an extent this is true. For an alarm system
to be beneficial, it needs to be regularly
serviced and maintained by an engineer. Any
non-authorised interference will trigger the
alarm and maybe alert a monitoring station.

Interference with these systems can also
affect your home insurance.

But equally, in our experience, many of us
live in homes where a previous owner fitted
an alarm system but it no-longer performs a
critical service, or is being used to its fullest
extent. These installations are ripe for a little
modification, and that’s exactly what we’re
going to do here. We’re going to interface
a standard Raspberry Pi with a few wires
and resistors to a home alarm system while
maintaining the alarm’s functionality. Like
an alien parasite, our Pi will piggy back the
signals being sent from the various sensors
around the house and enable us to monitor
their activity and create our own detection
system, whether we use that to turn off
the heating in the kitchen or initiate a Dalek
voice when an intruder is detected.

Every panel is going to be different, but it should still be obvious where the sensors enter and
which wires hold the alarm circuit.

Step 1 Background info

This project is going to need more disclaimers than
usual; it’s a hack in the true sense of the word. It’s
experimental and may not be safe for long-term
use. Please don’t try this if you rely on your alarm
system, or know nothing about electronics and
electricity. It’s likely you’ll need to open a closed
unit that could contain live wires. At worst, there’s
a very real risk of death if you happen to touch
your alarm system’s electricity supply. At best,
you might break a local law or nullify your home

insurance while wrecking a perfectly serviceable
home security system. This is definitely a project
for those who know what they’re doing and know
how to take the necessary precautions. This is
important because our solution is going to need
some adaption for your own configuration, which
is very unlikely to be the same as ours. Having
said all that, there’s nothing intrinsically difficult or
specialised about what we’re attempting, and we
think the end results are worth it.

WHAT YOU’LL NEED
• A home alarm

system
• Engineer codes to

your alarm
• Or your own PIR

sensor array
• Multimeter

Danger! Disclaimer! Danger!

LV018 020 Cover Feature.indd 27 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com28

The control panel is the brains of the alarm
system, and is usually secreted somewhere
difficult to reach. We need to install our
Raspberry Pi close to this location, so you’ll
need to find a way to both power and
connect the Pi to your local network. Luckily
for us, the location of our panel was close to
a power socket, which we used for both
power and network connectivity, thanks to a
powerline adaptor.

The panel will require power too, but this is
usually hidden or, or in our case, wired
directly into a fuse box. It’s also highly likely
that the panel itself, along with all the other
sensors, is protected by a tamper circuit that
will trigger your alarm if the circuit is broken.
Tampering will include opening the panel
– our next step – so you must have access
to an engineer’s code, entered through the
keypad, to be able to disable or reset the
system. If you don’t have this, be prepared to
call out a specialist because even if you cut
the power, alarms are designed to continue
thanks to a rechargeable battery hidden
within the panel’s case.

Panel data
With the panel located we now need to open
it up to get access to the sensor
connections and we’d highly recommend
disabling the power to the panel before
opening. This will trigger a warning as
the alarm will think there’s a power cut,
so you’ll need to be able to disable this.
And as backup power will likely still be
running, albeit at a likely 12V from a
battery, you’ll need to disable the alarm
after you remove the front.

You now need to find where all the
various wired from all your various sensors
enter and are attached to the panel. You
need to count the number of wires coming
from each sensor, and then work out what
each of those wires does and where they
connect. The easiest solution is to find the
engineer’s manual for your hardware. This
will obviously provide plenty of extra
information on voltage and protocols, as
well as the routines you’ll need to go through
when resetting your alarm system after the
tamper circuit has been triggered. But it
should also show exactly what wires need to
be connected and where you can find them.

Our sensors use a six-wire system that’s
eminently hackable. Two wires for power,
two wires for the tamper circuit and two for
the detection circuit. We need to determine

which are the two wires for the detection
circuit and we’re ready for the next step.

We had the engineer’s manual, which
helped, but the tamper wires were
combined with the those from the other
circuits and the power distribution was
obvious, so finding the two we needed was
straightforward without it. Both four- and

seven-wire configurations are also common,
and it should be relatively straightforward
to find the alarm circuit. Another possible
alternative is that rather than separate
inputs for your sensors, the sensors are
wired in series to the detection inputs on the
panel. This chains a series of sensors into a
zone rather than an individual input.

We now need to work out what the
voltage is across the detection circuit when
one of the sensors is triggered. The value
of this will affect the way we protect our
Raspberry Pi. The simplest method is to
connect a multimeter to the positive and
negative sides of the detection circuit. You
don’t have to disconnect the cables, just
make sure the multimeter touches the metal
contact where the circuit ends on the panel.

You may also need to connect the power
back to the panel, so be careful. Watch the
multimeter as you get someone to trigger
the sensor – assuming you know which is
which. If not, you’ll need to go through each
sensor and work it out.

As with our own system, the majority of
the sensors we’ve checked output 5V on

the alarm circuit, and this is a little too
much for the standard GPIO hardware
to handle. The input should be no more
than 3.3V, for example, and all the pins
combined have a 50mA current limit.
The simplest option is to augment your
Raspberry Pi with a cheap expansion
board that protects those pins with

a few diodes. Something like RasPIO’s
Breakout Pro protects each input with a
330Ω resistor and a 3.3V Zener diode.

You then need to graft a connect between
each of the positive sensor inputs on the
control panel and the GPIO inputs on your Pi.
We butchered a spare CAT5 network cable
as these usually contain four twisted pairs
of wires that can be unravelled to provide
eight connections – our alarm has seven
sensors and you need to attach a final wire
to a common ground terminal on the panel.
This connects to the GND on the Raspberry
Pi. On the Pi end we soldered a simple
header that could be easily connected to the
Pi, while on the alarm panel side we simply
connected each wire to the same terminal
as the positive sensor connectors.

You should be able to find the engineer’s manual to your house alarm with a quick search.

“We need to open up the panel
in order to get access to the
sensor conections.”

Step 2 Find the control box

LV018 020 Cover Feature.indd 28 03/07/2015 13:20

SUMMER PROJECTS

www.linuxvoice.com 29

Now that all of the connections are out of
the way you can safely close the alarm panel
and re-instate power (after you know the
connections are working). There are several
DIY alarm applications you can have a look
at – there’s one specifically for the
Raspberry Pi, for example, called
PrivateEyePi. Unfortunately this requires the
use of an external server without source
code. Instead, we’re going to create our own
system to show you how simple it can be, all
with just 20 lines of Python code.

All you need is a recent version of
Raspbian installed on your Raspberry Pi and
either a local screen and keyboard or a
working SSH connection. Fire up a text
editor and enter the following opening
stanza, which imports a few modules we’ll
need later. Most important is RPi.GPIO, a
brilliant module that removes all the pain
from working with the Raspberry Pi’s inputs
and outputs:
import RPi.GPIO as GPIO
import time
import datetime

We next need to tell the the GPIO module
how we’re going to address each of the pins.
As you might already know, this can be a
nightmare, because the pin numbers on the
PCB and they way they’re accessed from the
CPU have changed several times since the
Pi launched. We’re going to use the numbers
assigned by the CPU (Broadcom, or BSM),
because these are labelled on our header

connected to the panel, but this will very
much depend on your Pi and where you’ve
connected the sensors:
GPIO.setmode(GPIO.BCM)

We’re now getting to the logic of our code.
We set up two lists/arrays for convenience,
the first having the locations for our sensors
and the second the GPIO of each input in the
same order as the names list:
NAMES = [“SENSOR: Landing”,”SENSOR:
Lounge”,”SENSOR: Dining”, “SENSOR: Hall”]
GPIOPORTS = [17,21,22,24]

We need a single function to handle what
happens when one of the GPIO inputs is
triggered. It takes a single argument –
channel – which holds the pin number that’s
triggered the alarm circuit. We look up the
position of this pin in the GPIOPORTS list
and use this to find the name for the sensor,
which we then print after adding the date
and time of the event.
def alarm_triggered(channel):
 detected = GPIOPORTS.index(channel)
 now = datetime.datetime.now()
 print now.strftime(“%Y-%m-%d %H:%M:%S.%f
“), NAMES[detected]

Each GPIO port needs to be initialised,
which we do in a simple for loop that goes
through the port numbers and configures
them as GPIO.IN and pull_up_down=GPIO.
PUD_UP. The second argument activates
a resistor on the Raspberry Pi that can be
used to detect a signal when there’s no direct
connection to a voltage, which is needed as

there’s no voltage on our alarm circuits until
the alarm is triggered. The final line here
uses the GPIO module’s threaded callback
system to automatically call the alarm_
triggered function when it detects an input,
or a rising edge. The bouncetime is to make
sure switches don’t trigger more than once:
for PORT in GPIOPORTS:
 GPIO.setup(PORT,GPIO.IN, pull_up_down=GPIO.
PUD_UP)
 GPIO.add_event_detect(PORT, GPIO.RISING,
callback=alarm_triggered, bouncetime=500)

Here’s the final section, which will
instantiate our code and wait for the small
script to be escaped with the Ctrl+C key
combination:
try:
 print “Ready!”
 while True:
 time.sleep(0.1)
except KeyboardInterrupt:
 print “ Quit”
 GPIO.cleanup()

All that’s now left to do is run the above
by typing sudo python script.py, replacing
script.py with your own filename. With a
bit of luck you’ll see the ‘Ready’ prompt and
a notification any time you trigger one of
the sensors in your house, and you can do
almost anything with the data it produces.
Let us know if you come up with any of your
own neat solutions, and watch out for a
followup tutorial in a couple of months with
a more comprehensive script for zones,
notifications and alerts.

We’ve found that a CAT5 cable is perfect for
getting the detection cables from the panel
to your Pi as they contain four paired wires –
enough for seven GPIO inputs and one for GND.

Step 3 Code it up

Here’s our alarm system in action. It simply outputs the date and location of a sensor when it’s
triggered.

LV018 020 Cover Feature.indd 29 03/07/2015 13:20

www.linuxvoice.com

FEATURE PRIVACY ON ANDROID

30

Step out of the Faraday cage and take off the tin hat
as Mayank Sharma shows you tools to prevent your

smartphone from spying on you.

The smartphone in your pockets is a private
citizen’s worst privacy nightmare. It holds your
email addresses and phone numbers from

your contacts, calendar appointments, photos, and
probably even personal financial information. To top it
all, it can continually track your location to build a
detailed profile of your whereabouts as it rides your
pockets from your office to your bedroom.

A critical component of your Android smartphone
is the permissions system. When you install an app,
it notifies you of what it would like to gain access to.
You can then install the app, or not. Unfortunately,
this system puts a lot of responsibility on the users to
know whether these access requests are appropriate.
BitDefender’s free Clueful app helps you identify what
an app is doing, and what it should be doing. Once
installed Clueful will
scan your apps and
categorise them as High
Risk, Moderate Risk,
and Low Risk. You can
browse each list and
click on an app to find
out the feature it can access. You should uninstall any
High Risk apps, as they might be pinching passwords
or reading emails.

Then there’s Malwarebytes’ Anti-Malware mobile app,
which also includes a privacy manager. It scans apps
and divides them into categories based on the phone
feature they have access to, such as Access Calendar
and Access Storage. The app comes in handy when,
for example, you wish to view all the apps that can
track your location or access text messages.

Shield yourself
To keep your device malware-free while traversing the
internet from your mobile device, use the anti-malware
app from Disconnect.me. The app isn’t available in

the Play Store (because it blocks ads) and you’ll have
to sideload it after downloading its APK from the
project’s website at https://disconnect.me/mal. The
app blocks malware and malicious website and ads
by creating a VPN connection between your device
and its servers. Disconnect assures users that it
doesn’t route any browsing data over this connection
and only uses it to parse the list of known malware.

Disconnect (the company) also develops the
Disconnect Search app that you can use to search
popular search engines without passing any of your
personal information. Usually when you submit a
query to search engines like Google, Bing or Yahoo,
the query also sends along various bits of identifying
information. Disconnect Search acts as a proxy and
relays the query to the search engine of your choice

after stripping out any
personal information. The
app ships with a widget
that you can add to your
device’s home screen
instead of the Google
search widget.

In addition to preventing the apps from leaking
info, you should also minimise the personal data
you put out there, even when sharing something as
innocuous as images. Sharing images taken from
your smartphone reveal a lot of information about
you thanks to the EXIF data attached to them,
so if you take an image with a GPS-
enabled camera or a smartphone, it
can reveal your location, the time it
was taken as well as the unique
ID of the device. To strip EXIF
information from pictures
before sharing them you
can use the EZ UnEXIF
app, which has an ad-

“The smartphonephone in your
pocket is a private citizen’s
worst privacy nightmare.”

PRIVACY ON ANDROID

LV018 030 Feature Android.indd 30 02/07/2015 20:18

PRIVACY ON ANDROID FEATURE

www.linuxvoice.com 31

supported free version. Using the app to strip EXIF
information from the images is pretty straightforward.
After selecting the images you wish to rinse, the app
gives you the option to either save a new EXIF-free
version of the image or replace the original.

A safer web
You’re probably registered in more websites than you
can remember unique passwords for. So you’re either
repeating passwords on a couple of them, or worse
still, have trusted your phone to remember your
credentials. The privacy conscious should instead
trust their authentication information to an encrypted
password manager. KeePassX has been a mainstay
on the Linux desktop for a while now, and you can
extend the same benefits to your Android device with
the KeePassDroid app.

The app will create a database file on first launch
that you can encrypt with a password or with a key
file, just like the desktop version. In fact you can even
import the encrypted database password from the
desktop client; just tap on the .kdb file and it’ll be
imported by KeePassDroid. Using the app is also very
intuitive once you’ve imported or created records for
all your online services and websites. When you tap
on a record, you get two new entries in the notification
list; one to copy the username and the other to copy
the password to the clipboard. You can then switch
to the app or website on which you want to use the
credentials and tap on the notification icons to paste
over the username and password.

If you want anonymity, you should switch to the
Orweb browser, which is preconfigured to help you
browse the web anonymously. It’s also loaded with
plugins to disguise your device, gives you control over
cookies, prevents loading of Flash content and keeps
no browsing history. The Orweb browser requires the
Orbot app to work its magic.

The Orbot app enables Android devices to connect
to the Tor network. On initial launch, Orbot runs
through a quick setup wizard. If you are using a stock
Android phone toggle the ‘I understand and would
like to continue without Superuser’ option when
presented. The app will then explain that it’ll only
anonymise traffic for apps that are designed to work
with Orbot, followed by a screen which lists such apps
including the Orweb browser. On the other hand, users
with a rooted phone can enable transparent proxying,
which enables all network apps to automatically run
through the Tor network.

Apps for rooted devices
If you have a rooted Android device there
are several apps that’ll give you access
to advanced privacy controls. You should
definitely install the XPrivacy app, which
is available as a module for the Xposed
framework. With XPrivacy you can control
specific permissions for all installed
apps. The best bit is that once you revoke
a particular permission, say, access to
contacts, XPrivacy will shield the real data
and instead feed a list of bogus contacts to
any app that requests them.

Then there’s the AFWall+ app for
experienced Linux users who can use it to
manipulate the Linux iptables firewall and

get the same level of control on traffic and
apps as on the desktop. The app tracks
your mobile broadband usage and can block
Internet access to selected apps.

Finally there’s the Cryptfs Password app
that lets you specify a password for the data
encryption that’s different from the device
unlock password. The encryption option
in the stock Android install requires the
encryption password to be the same as the
lock password, which forces users to choose
a simple password since they have to unlock
the device several time during the day. With
the app you can disconnect the two and
define a complicated encryption password.

Use Wickr to exchange end-to-end encrypted, self-
destructing messages.

Sideload the F-Droid app
store, which lists only free
and open source Android
apps.

LV018 030 Feature Android.indd 31 02/07/2015 20:18

www.linuxvoice.com

FEATURE PRIVACY ON ANDROID

32

The key to securing your phone against any
sort of surveillance is end-to-end encryption,
and GNU Privacy Guard (GPG) is the de facto

standard for implementing it. To extend the same
benefits to your Android device, you need the Android
Privacy Guard (APG) app. Using the app you can sign
and encrypt email messages on your mobile device.
You’ll also need the K-9 email app, which integrates
seamlessly with APG. To use these apps, first launch
K-9 and configure it to connect to your email server.
Then launch APG and tap the menu button, which
brings up the option to manage private keys and
public keys. You can export these keys from the
desktop and import them into APG. Once the keys are
imported, K-9 will display the option to sign and
encrypt messages when you write a new email.
Conversely it will let you decrypt emails when you
receive a new encrypted message.

If you need a secure email provider, request an
account with the Riseup service (https://riseup.

net). It doesn’t offer GBs of
storage space and instead
advises you to download
your email using any of
the popular email clients.
However, Riseup offers
several privacy strengthening

features such as end-to-end encryption. The service
also doesn’t include your IP address in the emails you
send, nor does it keep a log of it.

Tinker tailor soldier spy
To use end-to-end encryption for instant messaging,
use the ChatSecure app. The app uses the Off The
Record (OTR) protocol to enable secure chat sessions
over XMPP accounts. Using the app you can have
secure chats with your friends over popular networks
including Google Talk on any OTR-compatible client
including Pidgin, Adium and Jitsi. On first launch

ChatSecure gives you the option to set a master
password to prevent access to your contacts and
messages. You can then hook it up to your existing
Google account, or any existing Jabber/XMPP server.
If you have the Bonjour/Zeroconf service running on
the network you can even add users on the same
Wi-Fi network and exchange messages with them
without the internet. The app also helps you create
anonymous one-time only disposable chat accounts
using Tor via the Orbot app. You can send invites to
your contacts to add them to the service or you can
also manually add accounts by scanning QR codes.

Another form of text-based communication that
is on a steady decline but still prefered by many
over internet-based communications is SMS. To
exchange encrypted SMS messages you should
use the TextSecure app, which can even encrypt
messages stored locally on the phone. However, to
send encrypted messages over the air, the recipient
must also have TextSecure or they’ll continue receiving
unencrypted messages. When you run the app first
time, it gives you the option to create encrypted
versions of all local messages. Although it doesn’t
touch the original unencrypted SMS messages, it’s
advisable to delete them after creating encrypted
versions. TextSecure interfaces seamlessly with an

Communicate securely
Shut out the eavesdroppers.

Head to tracemyshadow.org to see what traces you leave
online, and explore ways to mitigate them.

“One of the most popular
VoIP apps that uses the
ZRTP protocol is RedPhone.”

Hide messages in pictures

Steganography is the art of concealing a stream of
data inside another seemingly harmless message
or image. The most common mechanism for
implementing it is by replacing unused data in
regular computer files with bits of information that
aren’t visible when viewing the original piece of
data. Steganography is mostly used to complement
encryption. If you hide a message within another
encrypted message, then even if this message is
decrypted, the hidden message remains a secret.

The freely available PixelKnot app from the
Guardian Project enables you to hide text messages
inside images. Using the app is a three-step process.
Begin by selecting an image either from the gallery or

by clicking one from within the app. Then type your
message in the textbox shown in the second step and
press the padlock icon to set a password. PixelKnot
will then analyse the image and embed your message
inside it. When it’s done, you can share the resulting
image from within PixelKnot itself. The image will
look like an ordinary image, until it’s opened with the
PixelKnot app, in which case the app will prompt you
for the password before it extracts and displays the
hidden image.

PixelKnot uses the F5 steganography algorithm
designed for hiding messages inside JPEG.

LV018 030 Feature Android.indd 32 02/07/2015 20:18

PRIVACY ON ANDROID FEATURE

www.linuxvoice.com 33

Clueful will assess any new
app you install and notify
you about their privacy
risks.

Use the App Permission Watcher app to detect apps with
suspicious permissions.

existing text-message system and automatically
picks out users who use the app as well.

Hide in plain sight
The standard methodology for making voice and
video calls over the internet is Voice over IP (VoIP).
Since the calls are relayed over the open internet, Phil
Zimmerman, the creator of PGP, developed the ZRTP
protocol to ensure the privacy of the connected
parties. This protocol is responsible for negotiating
keys between the connected peers and establishes an
SRTP connection between them which does the
actual encryption. The GNU ZRTP library implements
most of the features. To prevent man-in-the-middle
attacks, ZRTP uses a mechanism called Short
Authentication String or SAS. At the start of the secure
call the parties exchange simple verbal keys, and can
then terminate the call if the software generates
mismatched keys. It’s good practice for one party to
read the first two characters of the string while the
other reads the last two, and then repeat the process
at reasonable intervals during the call.

One of the most popular VoIP apps that uses the
ZRTP protocol is RedPhone. You’ll have to register your
mobile number with RedPhone’s server when you first
launch the app. Once your phone has been verified
you can make secure calls to other contacts who use
RedPhone. The app won’t let you call someone who
isn’t using RedPhone, but does ask you for permission
to invite them to use RedPhone by sending a SMS.

There’s also the Silent Phone app from Phil
Zimmerman’s Silent Circle enterprise. Besides apps
for secure communication, the company also sells the

BlackPhone handsets, which are engineered from the
ground-up with privacy in mind. The company has a
subscription-based model with plans starting at $10.

The major limitation of both these solutions is that
they require the person at the other end of the line to
be using the same app. Also, both the apps from Open
Whisper Systems connect via the developer’s servers.
The Ostel project is working on solving this problem.
It has created a standard known as Open Source
Telephony Network (OSTN) that uses ZRTP and other
open source protocols to create end-to-end encrypted
communication channels over the popular SIP service.

Speak softly
The best thing about this arrangement is that you
can connect with any user on any platform (desktop
and mobile) as long as they are using an app that
supports SIP and ZRTP. There’s the CSipSimple app
for Android, Acrobits for iPhone users, PrivateGSM for
BlackBerry users and the cross-platform Jitsi desktop
app for Linux, Windows and Mac users.

Before you can make calls via OSTN you need to
register with a SIP server. While it’ll work with virtually
every SIP service, for best results you should register
an account with Ostel.co. This SIP service provider
was formerly funded and supported by the Guardian
Project, which develops many of the privacy-centric
apps mentioned in this feature including Orbot and
ChatSecure. Calls made via Ostel are end-to-end
encrypted with ZRTP. The service uses SIP over TLS
for signaling encryption and the TLS certificates are
based on the standard Root CA trust model.

Once you’ve registered wih Ostel.co you can use
the CSipSimple app to make secure audio calls. The
app launches with a wizard that lets you add details
about your Ostel.co account (or any other SIP
provider). After it connects with the service provider
you can call any of your contacts that are registered
with any SIP provider like Ostel. When connected, the
app will display a four-character long SAS.

LV018 030 Feature Android.indd 33 02/07/2015 20:18

FEATURE CUSTOM-BUILT DESKTOP

34 www.linuxvoice.com

What to do if KDE, Gnome and Xfce don’t float your boat?
Build your own desktop, of course! Mike Saunders explains all.

BUILD YOUR OWN

What’s the best thing about Linux? Security,
stability, performance or freedom? It does
a cracking job in all of those areas, but

another feature we’d highlight is its modularity. As an
operating system deeply influenced by Unix, GNU/
Linux is designed to be easy to pull apart – and, all
being well, easy to put back together again. Major
parts of the system are built up from smaller
components that can be omitted or replaced, which is
one of the reasons why we have so many different
Linux distributions.

This modularity adds complexity at times. But it
also adds reliability, as components are designed to
work independently,
and if one crashes,
the other parts
will (ideally) keep
chugging along. So
you can replace Bash
with another shell, or
switch to an alternative SSL library, or even replace
your entire init system – as we’ve seen with the
migration of major distros to Systemd.

But what about desktop environments? Aren’t KDE,
Gnome and Xfce giant, monolithic projects? Not really.
They’re built up of smaller programs and libraries that
are highly dependent on one another, but it’s possible
to strip out certain components or replace them with
alternatives. And taking this even further, it’s possible
to create a desktop environment entirely from scratch,
by cherry-picking a selection of programs, tying them
together and making them run simultaneously.

It’s a great learning experience to create a desktop
environment from scratch, so that’s what we’ll do
over the next few pages. You’ll be able to choose
the components that fit your workflow, and the end
result will be considerably lighter and faster than the
heavyweights of Gnome and KDE. Plus, you can brag
to your friends at the next Linux User Group meeting
that you don’t use some generic pre-packaged
desktop environment, but you created your own

custom setup and have levelled up on the journey to
Linux enlightenment.

What is a desktop environment?
Fire up your regular desktop and look around: there
are probably panels, notification areas, window
titlebars and other bits of furniture. These are all
things that the desktop environment (from here
onwards, DE) provides, but if we look deeper, we can
find other functionality as well. The DE also handles
keyboard shortcuts for switching between
applications and closing them, along with desktop
wallpaper, applets (such as CPU monitors) and fancy

window effects.
These features are

provided by a bunch
of programs. In Xfce,
for instance, running
ps ax | grep xfce in
a terminal shows all

processes that have “xfce” in their name – and there’s
quite a lot of them. Most of the names are obvious,
so you can see that xfce4-panel provides the panels
that sit around the screen edges, while xfce4-power-
manager monitors your battery and handles power
events (such as closing the lid).

It might be tempting to create some kind of
insanely awesome hybrid desktop by using individual
components from each desktop and mixing them
together, but the end result won’t be very pretty. The
programs in each DE are designed to work together,
so if you use a panel from KDE, a power manager
from Xfce and a window manager from Gnome, you’ll
end up with libraries and other processes from each
DE loaded, so it’ll be like running all three at the same
time, chewing up your RAM banks.

No thanks. What we’ll do is choose small and
memory-friendly standalone components that don’t
rely on anything else, but work well together. As usual
in free software, there’s a huge range to choose from,
so let’s look at some of the top contenders.

“It’s a great learning experience to
create a desktop environment from
scratch, so that’s what we’ll do.”

DESKTOP
ENVIRONMENT

LV018 034 Feature Desktop.indd 34 02/07/2015 20:25

CUSTOM-BUILT DESKTOP FEATURE

www.linuxvoice.com 35

Even though we’ll be using individual and
standalone programs to make up our custom
desktop environment, there are some

standards in the X Window System (the base
graphical layer of the desktop) that ensure they work
together correctly. First off, let’s look at some window
manager options.

Openbox www.openbox.org
Designed to be small and fast, Openbox is arguably the
best all-round standalone window manager. It’s
perfectly possible to use it on its own, but typically it’s
combined with other tools. Take LXDE for instance:
this is a lightweight desktop environment that uses
Openbox to manage windows, and is the desktop of
the popular Lubuntu distribution. Openbox is also the
default window manager in the now-defunct
CrunchBang distro (which is coming back to life as
CrunchBang++), and also ArchBang. It’s even possible
to use Openbox inside Gnome or KDE. Openbox is
available in almost every major distro’s repositories,
and can be started from a script with the command
crunchbang (as we’ll see later on).

i3 http://i3wm.org
While Openbox is a traditional mouse-operated
window manager, i3 is all about keyboard shortcuts.
This makes it a bit hard to grasp early on, as you have
to spend a bit of time with the documentation to get
used to it, but once you have the keystrokes
memorised, you could be hooked. i3 is popular among
coders who want to keep their hands on the keyboard
– and not keep reaching for the mouse.

Additionally, i3 is a tiling window manager. Instead
of a traditional window manager, where you have
windows scattered around the screen, some
overlapping others, in i3 you organise windows into
varying sized tiles (areas) on the screen. So on a
widescreen monitor, you could have Firefox occupying
exactly 50% on the left-hand side, with two terminal

windows occupying the top and bottom sections of
the right-hand side. If you have a large screen, you’ll
find that the tiling approach works really well.

Awesome http://awesome.naquadah.org
Awesome is another lightweight window manager
that’s designed with keyboard usage in mind. It also
aims to be compatible with various X standards, and
is extensible via the Lua scripting language. The
developers describe it as a “framework window
manager” – in other words, a base on which you can
build a more powerful window manager with Lua
customisations and other add-ons.

JWM www.joewing.net/projects/jwm
JWM is written in plain C and uses the base X libraries,
so it has very few dependencies and is easy to
compile. It’s designed to get the most out of older
computers with limited RAM, but is a good choice
when you just want something that gets out of your
way. JWM includes its own simple panel, but you may
want something more configurable and pretty, as we’ll
explore in a moment…

If none of the window managers we’ve looked at
appeal to you, you could always roll up your sleeves,
fire up a text editor, and write your own. This isn’t
the easiest programming task in the world – but
nor is it especially hard when you understand how
the X Window System (aka X) works. Essentially,
X is the intermediate layer between your graphical
programs and your graphics card. It provides a level
of abstraction, so a program (or graphical toolkit
such as GTK) can say to X: “Draw a line from A to B”
and X does the grunt work.

Now, you can run X without a window manager,
although you won’t get very far. If you manage to
launch a program, it will appear in the top-left corner
at its default size, and you won’t be able to move or

resize its window. In X, a window manager is just
like any other program, but it adds titlebars and
keyboard operations to windows, so that you can
move them around.

You can find an excellent introduction to the inner
workings of X window managers at http://tinyurl.
com/writeawm, and if you want to be inspired by
some code, take a look at https://github.com/
mackstann/tinywm. This is a “ridiculously tiny”
window manager that provides all of the basics
(move, resize and raise windows to the top) in
around 200 lines of commented C, so you can step
through the code and see how it all works. It doesn’t
do a great deal, but it does shows you how to
perform the most important operations.

Choosing a window manager

The X Window System provides a layer of
abstraction between the graphics layer and
your application – it’s there to make life easier.

Write your own window manager!

Cairo-Dock is loaded
with pretty effects and
apes Mac OS X rather
closely.

Application

GUI
Framework

Window
Manager

X Server

Mouse Keyboard

Application

GUI
Framework

Video Card

LV018 034 Feature Desktop.indd 35 02/07/2015 20:25

36 www.linuxvoice.com

FEATURE CUSTOM-BUILT DESKTOP

Once you’ve chosen a window manager, you’ll
want to spruce it up with some extras such as
a pretty panel (for launching and managing

programs), along with a file manager. If you’re an
experienced Linux user you may be happy with doing
all your file work in a terminal, but we’ll still look at a
couple of options.

Cairo-Dock http://glx-dock.org
Cairo-Dock provides a panel that looks rather like Mac
OS X’s dock – at least, before the flattening that
arrived in 10.10 (Yosemite). Its “3D Plane” mode looks
gorgeous, with smooth icons sitting on a glass tray,
and as you mouse over the icons they grow slightly in
size. By right-clicking an icon you can customise it, or
choose the ever-present Cairo-Dock submenu, which
lets you configure the panel as a whole. By default,
Cairo-Dock presents icons for the most popular FOSS
programs (providing you have them installed): Firefox,
Thunderbird and so forth.

If you’re going to test your custom desktop in a
virtual machine, note that on first startup, Cairo-Dock

will ask if you want
to use OpenGL.
This is useful on
real hardware and
makes the dock’s
effects smoother,
but inside VirtualBox

it can cause trouble so it’s best to leave it disabled.

Docky http://wiki.go-docky.com
Docky is very similar to Cairo-Dock, although it uses the
Mono language, which adds a bit of extra overhead.
But it’s also very polished and snazzy, and is capable
of the aforementioned OS X-esque 3D look. Docky is
available in all major distros, and after installation you
can start it simply by entering docky at the command
prompt. Its default configuration is rather minimal;
you’ll see an anchor icon for configuring Docky, along
with icons for running programs. You can, however,
turn these icons into launchers by right-clicking them
and choosing to pin them to the dock. Then they will
remain even when the programs are not running.

With Docky it’s also possible to add extras like
weather applets and battery monitors – click the
anchor icon to bring up the configuration box, and
then choose the Docklets tab for a list. Find one you
like and then click the plus (+) button to add it to the
right-hand side of the dock.

PCManFM http://wiki.lxde.org/en/PCManFM
File managers are ten-a-penny in the Linux world, and
most of them provide very little functionality.
PCManFM, as used in the LXDE desktop, is one of the
most notable: it’s lighter than the heavyweights used
in Gnome and KDE, but still packs plenty of punch and

does 99% of the jobs
you need. It also doesn’t
try to be too avant-
garde with its design,
opting for a familiar layout that anyone can get to
grips with very quickly. Plus, it’s pretty much
ubiquitous and so is available in all major Linux
distributions.

XFE http://roland65.free.fr/xfe
This isn’t related to Xfce; rather, it’s a very lightweight
file manager that uses the Fox graphical toolkit
(www.fox-toolkit.org). Its developers describe it as
the “file manager of choice for all light thinking Unix
addicts”, and while it doesn’t offer a great deal of
features over other similarly low-resource programs, it
has one benefit: it’s still in development. Consequently,
it’s not hard to compile or find in mainstream Linux
distributions.

Extras: compositor, background and more
It’s possible to add spit-shine to some of the window
managers we’ve mentioned (such as Openbox) using
themes, but if you really want lots of eye candy to
drool over, it’s worth adding a compositing manager.
This enables effects such as drop shadows and
subtle animations when windows appear, and one of
the best is Compton (https://github.com/chjj/
compton). It’s really easy to use as well: just start your
window manager, and then start Compton to turn on
the special effects.

Another thing to consider is your desktop wallpaper.
Most lightweight window managers don’t provide a
way to do this directly, so you’ll need to find another
tool to do it. One especially useful tool for this purpose
is Feh (http://feh.finalrewind.org), a command-
line driven image viewer that can also set the “root
window” image. Yes, this is another use of “root” in
Unix parlance, along with the super-admin user and
top level of the filesystem. In X terms, the root window
is effectively the background, so if you apply an image
to it you set the desktop wallpaper.

Panels, file managers and extras

“Docky is polished and snazzy,
and is capable of producing the
OS X-esque 3D look.”

XFE is a solid little file
manager that doesn’t
look super flashy but
gets the job done.

LV018 034 Feature Desktop.indd 36 02/07/2015 20:25

37

CUSTOM-BUILT DESKTOP FEATURE

www.linuxvoice.com

So, let’s do the fun part! We’re now going to turn
this collection of components into a fully
functioning desktop environment. In this case,

we’ll use Openbox as the window manager, Docky as
the panel, PCManFM as the file manager, and throw in
a bit of Compton and Feh to make it look pretty.

Because these are all separate programs, we need
to create a script to run them all in the correct order.
Create a text file in /usr/local/bin/mydesk as root, eg:
sudo nano -w /usr/local/bin/mydesk

Enter the following contents, and use Ctrl+O to
save, followed by Ctrl+X to exit the Nano editor.
#!/bin/sh
docky &
pcmanfm &
feh --bg-fill /home/user/desktop.jpg
compton -c --shadow-exclude ‘n:e:Docky’ &
openbox

You’ll also need to make this file executable, with
sudo chmod +x /usr/local/bin/mydesk. This script
starts a bunch of programs, starting with Docky and
PCManFM. The & symbol after those programs says
that we want to run them in the background, and
not have the script wait for each one to close. With
Feh, you’ll want to change the location of the desktop
image to match a picture in your home directory, and
note that the Compton line excludes drawing shadows
on Docky windows (because they already have their
own special effects).

Now, in a normal Linux desktop session we can’t
just run this script and expect everything to work,
because we already have a window manager, panel
and other things running. Instead, we need to tell
the login manager (the screen where you enter your
username and password) that our script starts its
own desktop environment, which we’ll call MyDesk.
As root, create the text file /usr/share/xsessions/
mydesk.desktop with the following contents:
[Desktop Entry]
Name=MyDesk
Comment=Custom desktop
Exec=/usr/local/bin/mydesk
TryExec=/usr/local/bin/mydesk

Type=XSession
Now log out of your current desktop, and at the login
screen, choose MyDesk as your session. Enter your
username and password, and voilà – your custom
desktop environment will appear! See the example
screenshot: in this case, we’ve clicked on the anchor
icon in the bottom-left, chosen “Panel Mode” in the
options (to make it use up the full width of the screen),
and applied the Matte theme. We’ve also added a
workspace switcher Docklet to the right-hand side.

Time to test
Note that Docky doesn’t include a traditional “Start”
menu of programs; instead, you can right-click on the
desktop and choose Terminal to open a command
line window. Enter a program you want to add to the
panel (eg firefox), and when the program starts, its
icon will appear on the panel. Right-click it and choose
Pin to keep the launcher there even when the program
is not running. And to log out of your custom desktop,
right-click anywhere on the desktop and choose Exit.

And that’s just the beginning! This is merely one
example of a desktop that you can create. You could
try running cairo-dock & instead of docky & in the
/usr/local/bin/mydesk script to try another dock,
or change the window manager. It’s important that
the window manager is the last line in the script and
doesn’t end with an & symbol, so that when you exit
the window manager, it also exits the entire session
and returns you to the login screen.

Have fun experimenting with different combinations
of window manager, panel, file manager and other
tools, and if you create something spectacular, pop

by our forums at http://forums.linuxvoice.com
and share your screenshots with the world. Who
knows, maybe there’ll be a whole Ubuntu spin-off
based around your desktop one day…

Putting it all together

Once you’ve created
a startup script and
.desktop file for your
session, it will appear in
the login manager.

And here’s our custom desktop in all its
glory! Openbox, Docky, PCManFM and
Compton doing a fine job together.

LV018 034 Feature Desktop.indd 37 02/07/2015 20:25

www.linuxvoice.com

FEATURE OPEN DATA

38

A free world needs everything to be open, not just source code.
Ben Everard mines gold from free data.

Open data follows the same principals as open
source: that people should be able to remix
and reshare content. However, instead of

software (which is remixed by editing source code),
open data is provided in CSV, JSON or XML files that
can be analysed or
combined to provide
new insights.

Most open
data comes from
governments. Public
organisations tend
to have large data sets that can be useful, and unlike
companies, they have no economic incentive to keep
them closed – on the contrary, there is an economic
incentive for governments to open data.

Open data helps the economy in a few ways.
It can help businesses run more efficiently, and
consumers make smarter choices. It can also create
opportunities that new companies spring up to
take advantage of. A 2013 study by consulting firm

McKinsey estimated the
value of open data to
the world economy at
between three and five
trillion US dollars.

It can be hard to track
exactly where this value

comes from, but in some areas it’s easier than others.
Better access to transport information has resulted
in very tangible benefits for commuters, for example.
Transport for London (TfL) opened its data on train

“A 2013 study estimated the
value of open data to the world
economy at 3–5 trillion dollars.”

LV018 038 Feature OpenData.indd 38 02/07/2015 20:28

OPEN DATA FEATURE

www.linuxvoice.com 39

and bus times as well as information on the current
state of the roads, for instance. This meant people
could build services that used the data to help people
move around more efficiently. For example, you can
see all the trains in real time at http://traintimes.
org.uk/map/tube or live information on the state
of the traffic in the capital with www.londontraffic.
org. This better information means people can travel
more efficiently, and by wasting less time travelling,
they have more work or leisure time. A study by
consultants Deloitte for the Department for Business,
Innovations and Skills in May 2013 estimated the
annual value of time saved to customers through TfL’s
open data at up to £58m – and that’s only for travel
within a single city.

Sunlight is the best disinfectant
Opening up data can pay off in unusual ways. The
increased transparency can force a department to
improve its performance. Perhaps the best known
example of this is in heart surgery data. In the UK, the
Guardian newspaper used the Freedom Of Information
Act to access data on the survival rates following
cardiac surgery, and published the results. Following
this opening of the data, death rates from cardiac
surgeries dropped dramatically (by as much as 30%
for some surgeries).

The exact cause of this improvement isn’t known,
but it possible that the increased transparency forced
surgeons to improve. Initially, there was some concern
that it could push some surgeons to avoid risky
procedures, but this doesn’t appear to have happened.
John Black, the president of the Royal College of

Surgeons, told the Guardian, ““All of medicine should
take note of the findings that full audit has not
resulted in risk-averse behaviour.”

Open data worldwide
The UK government helps citizens access open data
through the data portal at http://data.gov.uk, but this
country isn’t alone in releasing data. The European
Commission highlighted the EU’s advocacy of this
approach in a 2011 communication entitled “Open
Data: An Engine For Innovation, Growth And
Transparent Governance”. In this, the Commission
urged member states to act based on the economic,
social and scientific impact of opening data. On the
other side of the pond, the US government maintains
its own data portal, www.data.gov, and following the
Open Government Directive of 2009, all government
agencies are required to share their data there. For
global information, you can access data from the UN,
IMF and World Bank at https://data.un.org, http://
elibrary-data.imf.org and http://data.worldbank.org
respectively. To put it another way, there’s enough
open data available to satisfy all but the most ardent
data fanatics, and it’s all just a few clicks in a web
browser away.

With government spending very much under
pressure at the moment, opening data is proving to be
a cheap way of improving services, so expect to see
more and more open data in the future.

Zero cost vs open Not everything that’s free is free
Providing data for free isn’t the same as
providing open data. For data to be open,
it has to come with a licence that enables
users to manipulate and re-release it as they
see fit. A good example of this is in maps.
There are several online maps services (such
as Google Maps or Bing Maps) that enable
you to overlay data onto their map tiles.
However, crucially, users can’t access the
map data directly, so they can’t host their
own versions of the maps, or combine the
map data with other data except in the few
ways specifically allowed by the map vendor.

The alternative is an open store of map
data, such as OpenStreetMap, or boundary

data provided by most governments. With
data such as this, users are free to do
almost anything with the data. A trivial
example is that with open map data, users
can download as much data as they want
to use offline, while most proprietary online
maps only allow very limited downloading.
The open data sources also allow a much
larger range of visualisation options because
they’re limited only by the developer’s skill.

Many businesses provide free access to
closed data sets, even getting people to build
their closed data sets (such as review sites).
These services can have a value, but they’re
not as important as the open data revolution.

Licences Know your rights

Different governments open their data under different
conditions. For example, the US government releases most
documents into the public domain. This means that they
forego the usual privileges granted under copyright, and
anyone can do whatever they wish with the data. Other
governments have a slightly different process.

When the UK government first started sharing open data,
it required users to register for a licence to use the data.
Fortunately, sense has prevailed, and it now uses a far more
liberal licence called the Open Government Licence (OGL). OGL
states that you can use the information in any way you wish
as long as you attribute the data to the appropriate place. It’s

very similar to the creative commons by attribution (CC-BY)
license. Note that this does permit commercial, closed source,
usage as long as it’s properly attributed. Full details are in the
national archives at http://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3.

The EU data portal uses a licence roughly similar to the
OGL, but individual EU member states are free to adopt
their own licences. Other governments may have different
restrictions on how their data is used, so be sure to check
exactly what you’re allowed to do with it before starting a
project – you shouldn’t assume that you are permitted to use
data you want just because you can access it.

The UK government provides 25,548 open datasets
through its data portal at data.gov.uk

LV018 038 Feature OpenData.indd 39 02/07/2015 20:28

www.linuxvoice.com

FEATURE OPEN DATA

40

While almost all cities in developed countries
collect a large amount of data, there’s a
growing trend towards so-called smart

cities. These are cities that put data use at the heart of
city planning. By harnessing this data, planners, city
workers and ordinary citizens can find ways to make
their city a more pleasant place to live. Not all smart
cities make their data open, but given that many
countries have legislation or government guidance on
making most data open, many do.

Chicago is one of the leading smart cities. Not
only has it made the data open, but it has a GitHub
account where it hosts many of the tools used to
analyse it (https://github.com/Chicago). You can
contribute to the source code for the city, though you
will have to sign a contributor licensing agreement
before your pull requests are accepted.

The vast amount of open data for the city of
Chicago has enabled a community to develop to
make sure this data is fully utilised. Chi Hack Night is
a weekly event at which data geeks gather to share
what they’ve done with all the open data available
about Chicago. In May 2015 some staff from the
City of Chicago demonstrated a model they’d built

for predicting
the results of
food hygiene
inspections. The
model itself is on
GitHub at https://
github.com/
chicago/food-

inspections-evaluation. Using this model, hygiene
inspectors can focus their efforts on establishments
that are most likely to have hygiene problems, and as
the model is open source, people can improve upon it
and enable other cities to modify it to suit their needs.

Another project presented at Chi Hack Night
followed an investigation from a local newspaper
showing that on occasion, the city’s traffic cameras
were incorrectly issuing tickets. The newspaper

created an interactive database that enabled
Chicagoans to find out if they were among the
incorrectly charged (http://apps.chicagotribune.com/
news/local/red-light-camera-tickets).

All the talks from Chi Hack Night are available to
view online for anyone who want to see how a smart
city can benefit the inhabitants (http://chihacknight.
org/events/index.html).

Back in Blighty
Chicago is the poster child of how a smart city can
use open data to make life better for the people who
live there, and the approach it has taken has
encouraged other cities to go down the same path.
Here in the UK, Bristol is embarking on its own smart
adventure. Since the 90s, Bristol City Council has been
developing a network of fibre optic cable that
encompasses much of the city centre. This enables
very high speed data transfer within the city centre,
and the connectivity is being expanded with a wireless
mesh network build using streetlights. The project
(run in conjunction with the University of Bristol) is
looking into ways to use this infrastructure to
maximise the benefits to the people of the city.

Smart cities
When open data goes into overdrive.

RouteRisks.co.uk uses open data on UK road safety to
highlight the dangerous parts of any road journey.

Every train on the London Underground at the time of
writing. Thanks to apps like this, thousands of man hours
are saved every year due to more efficient transportation.

“The vast amount of open data for
the city of Chicago has enabled a
community to develop.”

Playable City The world’s largest games machines.

Much of the time, smart cities generate
data that can then be used to improve the
city, but that’s not the only way of using
the processing power and connectivity of
a smart city. Another option is to turn the
entire city into one giant games console
and enable citizens to interact with it for no
purpose other than pure enjoyment. These
projects are known as playable cities.

Since 20013, the Watershed in Bristol
has held an annual competition for playable
city projects. In 2013, the Hello Lamp Post

game enables people to send text messages
to inanimate objects (such as post boxes
and lamp posts) and they would respond.
In 2014, the Shadowing game invited
participants to try to find secret lamp posts
and create shadows that were then recorded
and played back. 2015’s winner (which will
be implemented in September and October)
will see people searching out street art,
which will be interactive.

Unfortunately, playable cities rarely use
open source code or produce open data.

LV018 038 Feature OpenData.indd 32 02/07/2015 20:28

OPEN DATA FEATURE

www.linuxvoice.com 41

Like many smart cities,
Bristol provides much of
its data in a web app that
enables you to perform
simple analyses in your
browser. Here we made a
chart showing river water
quality in Ashton Vale.

PykCharts has a range of chart styles to suit most data
visualisation needs.

Manipulating data is easier than ever, and
there’s more data than ever to manipulate.
The only thing missing are the people to do

the manipulating. Fortunately there’s a growing crowd
of data geeks that are only too willing to get stuck in
and help. Why not join them?

There are a whole host of ways to manipulate open
data. Generally, the data will come in CSV, XML or
JSON format, each of which has different advantages
and disadvantages. Occasionally, some government
official will try to pass off a PDF file (often containing
tables of information) as open data, but this is often
fairly useless.

CSV files can be used with spreadsheets. Although
programmers often look down on the humble
spreadsheet, with a few formulae, functions and pivot
tables, you can often extract useful information. The
charting functions are also very good for prototyping
graphs to see what is useful and what is not.

While they’re good for simple manipulations,
spreadsheets do have their limitations. The range of
graphs possible is often quite limited with few (if any)
interactive or geographical options. They can’t deal
with really big data sets, and complex manipulations
can require an unmaintainable tangle of formulae (and
sometimes macros). Spreadsheets also can’t handle
custom XML or JSON data.

If you’re serious about open data, you’ll need to
use a real programming language. The NumPy and
SciPy Python modules can perform just about any
manipulation you care to think of (including complex
procedures with machine learning), and they’re highly
optimised so don’t incur the performance penalty
of pure Python programs. iPython is one of the best
IDEs for interactive manipulation, and ideally suited to
working with open data. This can be a very different
process from programming, since you don’t always
have an end goal in mind when you start. Instead, you
explore the data to find out what secrets it holds.

The project that started out as iPython now works
with more languages, and R stands out among them
as a language that’s built from the ground up as an
environment for statistical analysis and data mining.
If you’re serious about understanding data, then
learning R is a great place to start.

Sharing your discoveries
Once you’ve poked and prodded the data until it’s
released all its information, you then need to find
some way of sharing your discoveries with the world.
A picture, as they say, is worth a thousand words,
and a good chart can be the thing that makes people
take notice of your analysis. All major languages have
some form of graphing library or module. In Python,
the most popular option is MatPlotLib, while R has
built-in capabilities. Bash scripts can use Gnuplot.

In today’s always-online world where everything
seems to be provided as a service, there are some
great options for hosted web charts into which you
just have to feed your data. Google Charts and Plotly
are a couple of popular choices that both work well.
Plotly in particular has a huge range of options and
bindings for many languages that make generating
online charts easy. However, like most online services,
both Plotly and Google Charts are closed source, so
aren’t ideal if you want to keep your project open.

To get around this you can host your own online
charts with a bit of JavaScript magic. This is a little
more involved than using a hosted option, but there
are a few libraries that make it fairly straightforward
for anyone familiar with JavaScript. The best library
for you will depend very much on the data you want to
visualise, but some useful options are chart.js (www.
chartjs.org), PykCharts (http://pykcharts.com) and
dygraphs (http://dygraphs.com)

If you really need the ultimate control over your
image, web browsers enable you to interact directly
with SVG images from JavaScript. Using this, you can
create endlessly varied charts.

Working with open data
How to make sense of the vast amounts of open data.

LV018 038 Feature OpenData.indd 33 02/07/2015 20:28

FAQ FIDO U2F

www.linuxvoice.com

FIDO U2F
Mark Crutch looks at an emerging authentication standard.

My Aunt Doris had a guard dog
named Fido. It means

“faithful”, right?
In this case it’s an acronym for
Fast IDentification Online and

refers to the Fido Alliance, a group of
over 150 companies trying to improve
online security and authentication. The
member list includes hardware
companies, such as ARM, Intel and
Samsung; software companies such as
Google and Microsoft; and financial
organisations including PayPal,
MasterCard and Visa.

What about the “U2F” part?
Don’t tell me Bono’s involved!
Thankfully this isn’t another
attempt to force an unwanted U2

album onto innocent bystanders.
Rather “U2F” is an abbreviation for
“Universal Second Factor”, one of
FIDO’s standards. “Universal” refers to
the idea that it’s independent of the
websites and hardware vendors that
will support it, so rather than requiring
one type of second factor device for

your Google account and another for
PayPal, you should eventually be able to
use a single device across a large
number of sites.

Back up a bit there… what’s a
second factor device?
Authentication systems can be
split into three classes, or

“factors”. The first is “what you know”,
and typically refers to passwords or
memorable questions about your aunt’s
dog’s name. Your username or email
address also falls into this category.
The second is “who you are”, and
covers biometric data such as
fingerprints or retinal scans. The third
factor is “what you have”, and describes
an object that you own, such as your
mobile phone or a USB device that you
keep on your keyring.

Most websites authenticate you with
a username or email address, and a
password. That’s two things from the
same class, so only one “authentication
factor” is used. Best security practice is
to use two or even all three factors,
though. That way, even if your
username and password fell into the
wrong hands your accounts would be
safe unless the criminals also acquired
your phone and fingerprints, or USB
device and eyeball. In that case you’ve
got bigger things to worry about!

The Fido U2F specification defines a
protocol to allow a “what you have”
device to talk to a website, providing a
second factor over just usernames and

passwords. There are already many
other second factor authentication
systems available, but this is the first to
have backing from so many high-profile
companies.

So I need to buy a new device
of some sort?
Not necessarily. The U2F
specification is just based on

protocols over a normal web
connection, so could potentially be
implemented via some software on
your phone or computer.

So how does this protocol
work?
When setting up an account on a
website, or when you first enable

U2F on an existing account, you’ll be
prompted to register your second-
factor device – by plugging it into a
USB port and pressing a button, for
example. The device generates a
private/public keypair, and sends the
public key and an identifying “key
handle” to the website. The key handle
also encodes information about the
website’s address.

Later, when logging in to the website,
you’ll first be asked for a username and
password as usual. The website uses
this information to retrieve your key
handle from its database, and this will
be sent back to your browser, together
with a “challenge” - a unique text string.
The browser then prompts you to insert
and activate your U2F device.

42

“If someone finds your device
there’s no way to tell what
sites it has been used on.”

MARK CRUTCH

LV018 042 FAQ.indd 42 02/07/2015 20:31

FIDO U2F FAQ

www.linuxvoice.com

At this point the U2F device will
confirm that it created the key handle,
and that the address encoded in the
handle matches the one that is
requesting authentication. This helps to
protect against man-in-the-middle
attacks. Next, the device uses the
private key to sign the challenge, and
returns the result to the website. The
website can validate this signature
using the public key it stored during
registration, confirming that it was
produced by the same U2F device that
you originally registered.

What if a site is hacked, and
their database of user

credentials is stolen?
The key handle and public key are
uniquely generated for each

separate website. Stealing one set
won’t allow an attacker to impersonate
your U2F device on any other site. The
attacker will have your username and
password, but that shouldn’t be a
problem, because no reader of Linux
Voice is foolish enough to use the same
password on multiple websites... right?

What if I lose my U2F device?
Am I locked out forever?
If someone finds your device on
the street there’s no way to tell

what sites it has been used on, or with
which accounts. So unless it’s been
stolen by someone who also has your
usernames and passwords, your
accounts should be safe.

Nevertheless, you should probably
revoke the device on each website
you’ve authenticated with. But without
the device how do you log in, in order to
revoke it? That will vary from site to site,
and may entail a confirmation email to
your registered address, or answering a
question about your aunt’s dog.

Another possibility is that sites may
let you register more than one U2F
device to an account, so you can log in
with the second device in order to
revoke the first one. Because the U2F
design specifically allows for sharing a
single device among multiple users, you
could get together with a friend to each
register your keys against the other’s
accounts. Without your username and
password your friend won’t be able log
into your account, but if you lose your
key you would be able to borrow theirs
to log in and revoke the missing device.

Can a U2F device be used to
track my movements online?
No, that shouldn’t be possible.
Remember that the website only

receives your public key and your
generated key handle – and both of
these are different for every site. There’s
no unique device ID exposed to the
website that could be used to track you.

You keep mentioning websites
and browsers. Will this work

with Lynx?
Erm… no. To use U2F on a
website requires your browser to

talk directly to your device. Currently
only Chrome (and Chromium) has the
necessary code built in, but there is an
open bug about adding it to Firefox.
Yubico, a U2F device vendor, has even
donated 200 USB keys to Firefox
Nightly users to help test the code.

Outside of the browser there is a
PAM module that lets you use U2F to
secure terminal logins, and Microsoft
has announced Fido support for
Windows 10 – though it’s not clear if
that will work with current U2F devices.

And what about website
support?
Right now not many sites work
with U2F, but a notable one that

does is Google. You can add U2F as a
second factor authentication option to
help secure your Google account
against unauthorised access to Gmail,
Google Drive and so on.

There are also plugins available for
WordPress, Joomla, Django and Ruby on

Rails, with authentication libraries
available for common server-side
languages, including PHP, Ruby and
Python. That list should grow over time
as developers produce libraries and
plugins allowing more sites to easily
add support.

So provided I use Google
Chrome, a U2F device will

work across platforms, right?
The USB keys that are currently
available are intended to work

cross-platform, but you’ll need to add a
udev rule for the device to work on a
Linux box. Check out the website of
your device manufacturer for the
details. As these devices become more
widespread it’s likely that these rules will
be present by default in future distros.

Where can I get more
information?
The Fido Alliance website is a
good place to go for a general

overview of the protocol, or to
download the specifications with all the
gory technical details:
https://fidoalliance.org.

Yubico also has a lot of good
information on its site, as well as links
to plugins, libraries and even a BSD-
licensed validation server:
https://yubico.com. And if you just
want to buy a U2F device, head to
Amazon. That’s the main outlet for
Yubico’s products, but it also sells other
vendors’ devices starting from only £5,
which is a small price to pay for extra
security on your Google account.

43

With slogans like this, someone’s bound to mistake the FIDO website for a dogs’ home!

LV018 042 FAQ.indd 43 02/07/2015 20:31

CAROL SMITH & CAT ALLMAN INTERVIEWINTERVIEW CAROL SMITH & CAT ALLMAN

www.linuxvoice.com44

It’s been 10 years since Google
started its Summer of Code
project. Back then, 419 students

were selected to be mentored by
leaders in a wide variety of open
source projects, working on significant
chunks of code during what’s
traditionally a summer hiatus in the
northern hemisphere. The results
weren’t always successful, especially
in that first year, but the idea gained
momentum, and Summer of Code

has gone from strength to strength.
Over the last decade, Summer of Code
has made a huge contribution to the
software many of us use every day.
And with more than 1,000 students,
Google’s 11th Summer of Code in
2015 is going to be no different. We
met the project’s program manager,
Carol Smith (pictured here on the
right), along with Cat Allman of
Google’s open source team as they
were celebrating their 10th GSoC.

There’s a huge rage of software
that benefits from Summer of

Code. Is it roughly the same group
of mentors every year, or do you get
a turnover?
Carol Smith: Give or take, it’s the
same. One of the things that we do
every year with the program is that we
focus on trying to accept at least a
good portion of organisations that have
never participated before, that are either
small, or new burgeoning organisations,
someone in a niche space, people doing
stuff on the fringes of things, to try and
get a lot of diversity among our
organisations. Having said that, we do
have organisations that have
participated all 10 years in a row. But
we also try to get new faces as well.

With the 10-year emphasis,
how do you think the original

vision for the project has changed?
CS: We’ve definitely heard from a few
organisations – OpenMRS comes to
mind [a software platform for the
creation of open medical records].
We’ve heard from a few organisations
who have felt GSoC really changed the

face of their project. They went from
being small to feeling like they were
really established in the open source
community – I’ve heard that from a few
organisations.
Cat Allman: The OpenMRS guys have
gone on to say that without Google’s
Summer of Code, the project really
wouldn’t have taken off and become
something at all. Which I actually find
hard to believe. I don’t think they’re
giving themselves enough credit!
CS: And we also have organisations
that started out a few years ago
mentoring a couple of students and
they now have more contributors, more
mentors and they’re now mentoring
more students and they’ve gotten
bigger. That’s certainly happened to
quite a few organisations.

Have the types of projects
changed in the last 10 years?

CS: In some ways, we’ve had the same.
For example, we’ve had the Apache
Software Foundation in the program
the whole time. One of the things I’ve
seen is that we have trends in open
source that seem to ebb and flow, and

so we kind of have the organisations
sort of ebb and flow with that. The last
couple of years, for example, we’ve
seen a lot of organisations applying in
the bio-informatics/biology field.
CA: More civic organisations...
CS: Yeah, open government, ...
CA: People trying to build out open
source applications to help their
community, sometimes disaster relief,
sometimes, economic development.
CS: Two years ago we had an
organisation in New Orleans that just
wanted some students to work on their
levee system, which is open source. We
also have an organisation in
Bloomington, Indiana, that has
participated the last couple of years. In
other civic stuff, we’ve had Code for
America participate.

And none of these
organisations existed 10 years

ago – there was very little open

SUMMER OF CODE:
GOOGLE’S
CAROL SMITH &
CAT ALLMAN
Graham Morrison meets the small team behind
Google’s hugely successful open source
mentoring project.

“We look for healthy,
functional communities that
are going to teach students
not just good coding
practices, but how to
behave as responsible
citizens on the internet.”

LV018 044 Interview.indd 44 03/07/2015 13:56

CAROL SMITH & CAT ALLMAN INTERVIEWINTERVIEW CAROL SMITH & CAT ALLMAN

www.linuxvoice.com 45

data, no immediate responses via
social networks. But we’ve also
looked for data on projects hosted
by Debian, for instance, but can’t
find that information.
CS: We have a lot of what we call
umbrella organisations that either end
up mentoring many different kinds of

students or they’ll even mentor many
subprojects within their organisation,
and so Apache might fit into one
category but they’re ‘umbrella-ing’ many
and varied. And then a lot of
organisations pivot. They might have
started out in one field and become
another. We certainly see a lot of
diversity. We have folks participating

working on open source DJ software,
there’s an open lighting project that’s
basically all of the lighting for concert
venues, which is all open source.
CA: We try and accept a wide enough
variety so that kids who are particularly
interested in open source DJ software
have the opportunity to work on it.
Something that we… struggle is too
strong a word, but with the whole open
hardware movement, that’s such a grey
area. You can’t really do much of
anything without software, but we’re
not set up to make sure that students
have the hardware they would need to
participte for an organisation that’s
about open source hardware.
CS: BeagleBoard has participated, and
Catroid [now called Catrobat – visual
programming for tablets], which is
actually like open source Android stuff.
They focus on having the students
work on the software. And there’s Liquid
Galaxy as well. Liquid Galaxy used to be

a Google project but it became an open
source project that other folks outside
used, which is basically all LED
monitors that they can outfit with map
software, for example, so you can do a
3D tour of the ocean, or of Barcelona, or
whatever. But they don’t expect the
students to buy all the LED monitors,
obviously, so they just have the
students work entirely on the software.

We’ve managed to do it, but it’s
definitely one of those things like we
can’t expect a student in Sri Lanka to
buy open hardware to work on your
particular project all the time.

Do you have any editorial remit
when guiding the selection of

student applicants?
CS: We focus so heavily on being very
careful which organisations we accept.
We spend a week sequestered in a
conference room reviewing all of the
applications and we’re very diligent
about it and so we take a bit of a leap of
faith. Basically, if you’re accepted into
Google Summer of Code as a
mentoring organisation, we believe that
you’ve met a certain calibre of
organisation and the students that you
accept are going to put a lot of diligence
into which students you accept. We
sort of say, “Do a good job!”
CA: And we do, not just the project, not
just that the code has to be good, but
we look for healthy, functional
communities that are going to teach
students not just good coding practices
but how to behave as a responsible
citizen on the internet. And I’m not
going to tell you who it was but we have
kicked an organisation out of a program
because they were encouraging
unethical behaviour.
CA: But once an organisation is
accepted into Summer of Code, they’re
the best arbiter of what projects are
going to work best for them. We try not
to decide about that process for them.
We assume that if you think that this is
a project that’s really important, and
you think that this student fits really
well for this project, then we trust you to
make that decision.

Has it always been that
hands-off when it comes to

projects and students?
CA: It’s a remarkably effective, original
idea. I started in 2007 – the project

“The OpenMRS guys have said
that without GSoC, the project
wouldn’t have taken off.”

LV018 044 Interview.indd 45 03/07/2015 13:56

CAROL SMITH & CAT ALLMAN INTERVIEWINTERVIEW CAROL SMITH & CAT ALLMAN

www.linuxvoice.com46

started in 2005 – but my
understanding is that the original germ
of the idea continues to be successful.

And that came from Google’s
founders?

CS: The apocryphal story is that Chris
[diBona, the Director of open source at
Google] and I think Larry [Page] sat in a
room and said basically, I think, we’re
seeing so many of the same faces at
conferences and we want to keep
supporting open source software, why
don’t we do something with university
students to encourage them to work in
open source. I think Chris took the idea
and ran with it.
CA: I had actually heard it was more
casual than that. Larry saw Chris in the
hall and said, “Hey, Chris, what about
these students that have to take the
summer off from coding to work for a
living. Why don’t we come up with
something so that they stay coding and
get more involved in open source.”

Flipping bits instead of flipping
burgers?

CA: Exactly. Either way, it’s a good story
and so far it has worked. We do, from
my perspective, we maintain that kind
of hands-off attitude towards picking
the students and projects specifically
because the program works because of
the orgs and all of the volunteers.
CS: And the reason we’re able to accept
1,200–1,300 students a year is
because we select 190 organisations
and then they select the students, and
so that’s one of the reasons why it can
be so large and international. We sort

of divvy out the work to the
organisations.

Because there’s just 1.5 of
you?

CS: Basically, yes. It’s pretty much my
80% job and then my colleagues
obviously help quite a bit, but then our
whole team is the four of us and then
we kind of sort it out.

It sounds to us sort of like an
altruistic project, but do you

ever get cynical comments?
CS: Oh, yes! But it’s not just ‘sort of’ an
altruistic project. It is philanthropic. It is
entirely designed to get more students
working in open source software
development.
CA: If you squint and stare off into the
distance you could say that Google
exists because the internet exists and
the internet exists because of Free and
open source software. By encouraging
more people to get involved in Free
Software, that furthers the health of the
internet which in turn furthers the
health of Google. But it’s not exactly a
direct one-to-one money in/money out
situation. It’s a longer-term thing.
CS: And Google has a lot of efforts like
that. We don’t necessarily have to see
one-to-one correlation to know that
these are good initiatives to have.

Has Google’s attitude towards
open source changed over the

last 10 years? 10 years ago,
perhaps, something needed to be
done for open source to help keep it
going, and to help momentum.

Whereas now, open source is
accepted.
CA: My first open source job was in the
early 80s before the term came about
It’s one of those 30-year overnight
successes.
CS: I think many things have changed
with regard to the way open source is
viewed in society overall in those last
ten years. One of the nice things, one
thing in a very large ecosystem, is that I
think Summer of Code has helped.
CA: I’m going to wax poetic. I really
believe that open source can be a
positive force in the world, above and
beyond technology. I was so tickled to
see an article in Al Jazeera – it was an
article criticising the US government’s
trade embargoes against Iran. But one
example they used of how economic
opportunity was stifled for young
people was that students in that
country couldn’t participate in Summer
of Code.

We don’t think Summer of
Code gets much publicity at

all, considering its age and what it’s
been able to achieve.
CA:CS: We agree, thank you!
CS: I was at South by Southwest [Carol

“I believe that open source can
be a positive force in the world,
above and beyond technology.”

Summer of Code students live
all over the world, including
Singapore, Brazil, Poland, India
and the good old UK.

Students who successfully
complete their Summer of
Code project are funded to the
tune of $5,500.

LV018 044 Interview.indd 46 03/07/2015 13:56

CAROL SMITH & CAT ALLMAN INTERVIEWINTERVIEW CAROL SMITH & CAT ALLMAN

www.linuxvoice.com 47

is referring specifically to the 2014
conference on emerging technology]
and I realised that no one I talked to
there had heard of either of our
programs, either Summer of Code or
our program for high school students
[Google Code-in]. Which made me really
glad I was there, but talking to 3,000
people who are directly in education on
the ground – why haven’t people heard
about these programs?

Why haven’t people heard
about these programs?

CS: I think part of the reason is that
you’re looking at the team [gesturing to
both herself and Cat], and we can’t be in
all places at once. One of the things
that we’ve relied upon for the program
is word of mouth. And we rely on the
students to talk to their universities and
say, “Hey, I participated in this program,”
and to do meetups in their areas.

The most important part is that
the code is being written and

the projects are being supported.
You’re not having any difficulty
finding projects or mentors.
CS: We’ve started hearing that we’re
getting a little bit of mentor burnout, the
last couple of years I think. Well, the last
couple of years we’ve been running two
programs simultaneously. We run
Google Summer of Code in the
Northern hemisphere summertime and
then we run Google Code in in the

winter time. We pull from the same
organisations for both things and,
granted, we do have a wider variety of
organisations that apply for Summer of
Code, but I can understand if you’re a
10-person open source project and
you’re mentoring five students in GSoC
and you immediately go into mentoring
a whole bunch of high school students
in winter. After a while, it’s going to start
wearing down on you.

Mentorship is hard. This is not just
sitting at a computer and hacking out
code. You have to walk people through
the program and a lot of the
organisations have weekly meetings
with their students. You have to help
these students out. It’s a lot of work.

But many of the things these
people are working on are

features that people have been
asking for for years. Most people
would assume that’s the prize.
CS: Every year we have applicants, we
have organisations that apply that
really, really have their hearts in the right
place. They really think Summer of
Code is an awesome program. But they
really don’t understand that it’s not just,
“Oh, we’re accepted into the Summer of
Code,” and then three months later this
project appears. You have to spend
three months really hands-on with this
person and you’re probably going to
spend more time mentoring a project
than it would for you to just make that

project itself. And you not only want the
code, you have to want the developer
who comes out the other side having
had three months’ experience with your
organisation to say, “Not only do I have
this great project, but now I want to
keep contributing to your organisation.”
CA: That is really the prize for the orgs,
is new contributors. We, every year,
have orgs that say, “We don’t want the
money, but we want to participate in
the program so that more people will
learn about our project and we’ll get
new contributors.”

Has that worked?
CA: Somewhat. We’re very light

weight in terms of the information that
we collect because a) we’re very
concerned about people’s privacy, and
b) because it’s a lot of work.
CS: On the other hand, I have heard a
lot of organisations say that the student
finished their Summer of Code project,
went back to school, and then they
ended up coming back either after they
graduated or in later Summer of Code
projects. But they’re anecdotes. We
hear anecdotes that organisations have
grown because of their participation in
the Summer of Code.
CA: My personal favourite is the guy
who’s with the Blender project. And in
2005 he was one of our first students
and in 2013 he got an Academy Award
for work that he started as a Summer
of Code student.

1,051 sudents have been
accepted onto the 2015
program, and will be mentored
at 137 organisations.

LV018 044 Interview.indd 47 03/07/2015 13:56

LISTEN TO THE PODCAST

WWW.LINUXVOICE.COM

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com
LV018 048 Ad Merchandise.indd 48 03/07/2015 12:26

 INTRO REVIEWS

www.linuxvoice.com 49

The latest software and hardware for your Linux box, reviewed
and rated by the most experienced writers in the business

REVIEWS

Andrew Gregory
Wow, the Human Rights First logo is familiar.
Can’t think from where…

F rom Germany comes the tragic
news that a factory worker has
been killed by a robot. Is this the

beginning of the end? Thankfully, no:
the BBC reports that “human error” was
most likely to blame. Thanks for
clearing that up, BBC.

I can almost imagine people sitting at
home, worrying about the rise of
artificial intelligence, not realising that
robots do what they’re programmed to
do and nothing more. I wonder whether
the robot in question was programmed
with open source software? It would
certainly make it easier to find out what
went wrong. Maybe the ultimate
takeover of Free Software in the
internet of things won’t be brought
about by the makers, but by insurance
departments keen to shield themselves
from blame after programming failures.

Computer says whatever
You’ll still hear people using the phrase
“the computer does it all”, or a variation
thereon, even though all that a
computer does is process instructions.
It would be nice to think that in a few
years, when schools start churning out
kids who know that programming
exists, this kind of thinking will fade and
we’ll realise that every error is a human
error, and every brilliant service comes
from human brilliance.
andrew@linuxvoice.com

On test this issue...

BOOKS AND GROUP TEST
If you’re running essential services – which you
should be, rather than relying on Google for
everything – you need a proper distro on which to
run your website/email server/calendar. You could
do this on any old Linux distro, but Free Software is
all about using the best tool for the job, so we
present a bunch of he best server distros.

In the world of books there’s Home Automation
with Raspberry Pi and Arduino, which is full of fun
things to do after you’ve finished with this issue’s
cover feature of summer projects.

Meizu MX4 Ubuntu
The third Ubuntu phone to pass though
Graham Morrison’s grasp is a huge
upgrade – we just wish there were one
equally good for less techie users.

52

Atom 1.0
Ben Everard hates working with CSS and
HTML – which makes it ironic that he
likes this CSS-themable text editor so
very much.

50

Yubikey Edge
Mark Crutch examines a
two-factor authentication
solution for people who like
cheapness, security and
convenience.

NetBSD 7
It runs on a thousand and
one platforms, but with X86
unassailably dominant,
Mike Saunders wonders
what the point is of NetBSD.

Linux Mint 17.2
The best Linux ever created
for normal, non-computer
obsessed people?
Ben Everard thinks so. Or
does he? Find out on p55!

54 55

52

53

50

LV018 049 Reviews Intro.indd 49 03/07/2015 13:59

MEIZU MX4 UBUNTU EDITION REVIEWSREVIEWS MEIZU MX4 UBUNTU EDITION

www.linuxvoice.com50

Meizu MX4 Ubuntu Edition
Graham Morrison gets his hands on Canonical’s third Ubuntu phone.

Building a mobile operating system to carve a
chunk out of Android and iOS dominance is
going to take courage and time. But one of the

ways we’ve theorised that Canonical’s Ubuntu Phone
platform could become successful is if Canonical is
able to find some partnership with a Chinese
manufacturer and somehow tap into the ginormous
Chinese market. This new phone isn’t that. But it could
be the beginning of the beginning of that. Meizu is one
of China’s biggest smartphone manufacturers, and
the Ubuntu Edition of its MX4 handset is the first time
the company has ventured outside its geographical
comfort zone (the Ubuntu MX4 is only available in the
EU) and its own Android-based ecosystem.

The original MX4 was released in September 2014,
and while it was quickly superseded by the MX4 Pro,
increasing its screen DPI and upping the RAM from
2GB to 3GB, we’d still consider this old MX4 an
upper-middle class device. It’s light (147g), powerful
(Quad-core 2.2 GHz Cortex-A17 plus a quad-core 1.7
GHz Cortex-A7) and oversized – the screen is 1152 x
1920 pixels spread across 5.36 inches, giving it a DPI
of around 418. The rear camera boasts a 5248 х 3936
resolution and dual-tone LED flash. It’s a huge upgrade
over the original Ubuntu Phone, which we looked at in
issue 15, and is available for €299, only €130 more.

Despite being large when used in one hand, the
MX4 feels fantastic. Gorilla Glass and a substantial

aluminium surround gives the phone a high-quality
rigidity, and while the back is plastic, it’s nicely textured
and non-slip. The screen in particular is perfectly
suited to Ubuntu’s operating system, as there’s barely
any bevel at the edges. This makes it easier and more
intuitive when perfuming Ubuntu’s essential sliding
gestures from the edge.

Software purity
Meizu is very controlling with its own software, and it’s
impressive that Canonical has been able to negotiate
terms for installing Ubuntu unhindered on its devices.
In one way this is good. If you’d bought this device
with Android, for example, you’d still be limited to the
base 4.4 version (although there are alpha versions of
5 available), and a version of Android hidden behind
Meizu’s Flyme OS skin.

But the lack of any input from Meizu is also a bad
thing. There’s nothing we can find in the operating
system that’s specific for this device, other than the
now-lost capacitive button support. You can’t reduce
the size of the icons or fonts because the screen is
now bigger, and the recovery partition is non-existent.
This means you’re going to be stuck if an upgrade
breaks your phone. You should theoretically be able to
install a new version using Android’s fastboot, which
remains functional, but we couldn’t get this to work at
the time of writing. To be fair, this problem seemed to
be the lack of builds rather than the device itself, so it’s
likely this will work in future. But these are reminders
that using these devices remains the domain of
enthusiasts rather than a mainstream audience.

Performance appraisal
In hardware, the MX4 is an excellent upgrade over the
BQ E4.5. The all-but-essential side-swipes to switch
between scopes are 95% smooth, compared to 80%
smooth on the BQ (we’ve just invented this metric).
Apps are quicker to load, input is faster and the screen
size feels a more natural home when interacting with
the on-screen keyboard or the gestures input. There’s
a huge battery in the MX4 (3100mAh, non-
removeable, but it looks easily hackable with the back
off) and we had the phone with us through two days
of moderate use before having to charge.

A couple of neat features in the Meizu’s Flyme
OS version are the ability to turn the phone off
overnight and to turn the phone on and off with touch
gestures. It would be great to see some of Meizu’s
ideas make it into their incarnation of the Ubuntu
Phone, but we can understand why Canonical wants
to keep the phone restricted to a single, standard
operating system.

DATA
Web
www.meizu.com/en/
ubuntu
Developer
Meizu
Price
€299

The design and
performance of the MX4 is
a significant upgrade over
the BQ Aquarus E4.5

LV018 050 Review MX4.indd 50 03/07/2015 13:24

MEIZU MX4 UBUNTU EDITION REVIEWS

www.linuxvoice.com 51

LINUX VOICE VERDICT

Camera performance is a big upgrade over the BQ
E4.5 too, but it’s not as great as the pixel count would
suggest. Ubuntu isn’t to blame here, as we were able
to compare photos taken with the same hardware on
Android. Brightly lit images are colourful and detailed,
whereas even with the flash, low-light images can
lack clarity. This is unlike the Nexus 5, for example,
where its much more modest sensor is capable of
generating fantastic looking photos. We also miss
the dual-sim capabilities of the BQ E4.5 – excellent
when travelling – but even more importantly, there’s
no SD card expansion on the MX4. That means you’re
stuck with the storage soldered into the device, and
for consumer units, that’s a measly 16GB. We’ve been
sent a 32GB version, which also differs in the colour

of the back panel, but depending on how you use
storage, this could become a deal breaker.

In an ideal world, at least while Ubuntu phones
become established, we’d like to be able to dual-boot
with Android. We understand why this is unlikely to
happen officially, but we do wish Canonical would
attempt to persuade Meizu to open up its platform.
There isn’t the same commitment to open source that
we can see with BQ, for example, and if you head into
uncharted territory to
try to partition and flash
your phone, there’s
isn’t any information
that hasn’t been
reverse engineered
from an Android ROM.
Unlike many MX4 devices, our bootloader/fastboot
was unlocked, which meant we could theoretically
dual-boot or install Android – and we did get Meizu’s
recovery.img booting live from fastboot,which would
allow you to install Flyme OS if Ubuntu got the better
of you. But each step could brick your phone, and
without access to an official recovery partition or
scatter files (similar to a partition table description),
we can’t recommend this strategy for anyone other
than confident Android hackers. However, if you
are an enthusiast and you’re looking for a new kind
of Linux phone, the MX4 is such a huge step up
over the original BQ that we’d have no hesitation in
recommending it. Just keep your old phone handy.

Fabulous hardware for a decent price.
Just don’t expect Ubuntu’s OS to
compete with Android just yet.

The camera in the MX4 works brilliantly when the scene is
well lit, but it’s not so great in the dark.

Updates to Ubuntu Touch

There’s plenty to like in Ubuntu
Touch – scopes are a unique idea
that genuinely frame the Ubuntu
experience, and we love the use of
gestures and the on-screen visuals.
The app store itself is still lacking,
both in the interface and in what you
can install. The interface often mixes
languages, and the return results can
be random. A search for ‘screenshot’
returns ‘tsu’, for example. There
has been a trickle of new apps, but
nowhere near enough, and many are
little more than HTML5 wrappers
around a webpage. However, one
obstacle to web apps feeling more
native is going to improve soon, with
the implementation of the W3C Push
API. This will enable web apps to send
system notifications just like your
native apps, and a release of this is
reportedly near.

We’re also still very excited by the
convergence idea. Turn your phone
around, turn on a Bluetooth keyboard,
and the display turns into a window
manager. Connect your phone to a
screen and you’ve got a PC. It would
be a great way of getting real work
done with a single device – and we’ve
seen demos of this running, but the
update has yet to materialise. We’re
slightly disappointed that the MX4
lacks both the SD card upgrade and
a micro-HDMI connector for an
external display, so it’s still not going
to be the best convergence device,
even if its performance is more than
up to the task.

“The MX 4 is such a huge step
up that we have no hesitation
recommending it.”

We like scopes a lot, and the user
interface shows great promise.
But it lacks apps.

LV018 050 Review MX4.indd 51 03/07/2015 13:24

REVIEWS ATOM 1.0

52

Atom 1.0
Ben Everard’s hair is beautiful – as is this lovely text editor.

By default, Atom comes
with a dark theme, but
there are a number of
others including the
Solarized Light theme
(shown). You can also
customise the CSS to
whatever you want.

The inbuilt package manager allows you to turn Atom into
a powerful development tool.

G itHub primarily concerns itself with project
hosting, so it came as a bit of a surprise to us
when the project released a text editor.

According to the Atom release announcement, Atom
exists because GitHub cofounder Chris Wanstrath
wanted a text editor built using modern programming
techniques, “His dream was to use web technologies
to build something as customisable as Emacs and
give a new generation of developers total control over
their editor.”

There are some undeniably cool web technologies
available, but are they really suited to creating a text
editor to run locally as a desktop application? We
downloaded version 1.0 to find out.

Atom is built on Electron, which is a JavaScript
platform made by combining the Chromium rendering
engine with the io.js back-end. The result is a really
good looking interface that’s completely customisable
through CSS (which can be bundled into themes). The
downside of this architecture is that it is a little slower

than compiled code. This
is an area that the developers
have dedicated time to
improving, and while we
found that it wasn’t quite
as snappy as a fast native
text editor, it didn’t feel

particularly slow at any point.
As well as looking really good, Atom has most of the

text-editing features that you’d expect in a
programmer’s text editor. Syntax highlighting
automatically detects the language you’re using, and
code-folding can be used to wrap portions of your
code so that it’s easier to read. One feature we
particularly liked is the ability to use multiple cursors
at once. If you Ctrl+click at several points in a file,
Atom will place multiple carets, and any typing you do
will go to all of these simultaneously. There’s also a
good set of keyboard shortcuts, so most editing can

be done without lifting your hands off the keyboard.
Outside of text editing, Atom has (as you may expect)
good integration with Git, but that’s about it. There
aren’t many features that allow anything other than
text editing – there’s not even a terminal pane.
However, while the core editor of Atom may be limited,
it does have a saving grace: packages. These enable
third-party developers to extend the functionality of
the core editor. Despite the fact that version 1 has only
just been released, there are already a wide range of
packages available on http://atom.io. These can be
installed both in the editor or via a command line tool
(apm, the Atom Package Manager).

God times ahead
Looking at the available packages, it seems Python
and JavaScript are the most popular languages for
Atom developers, and there are linters, debuggers and
other tools for these languages. In time, there will
probably be more packages to support programmers
using less common languages.

We’re still skeptical of the modern trend to build
everything using web tech rather than native toolkits,
but this technological choice hasn’t detracted from
this text editor Ultimately, Atom is a good basic text
editor, but it needs a good selection of quality
packages in order to elevate itself enough to compete
with the range of excellent editors that are already
available. So far, the range of packages is already
good for popular languages, and expanding for less
common options. If this continues, Atom will soon
become an essential part of the modern
programmer’s toolbox.

LINUX VOICE VERDICT
A promising program that could mature
into a great text editor.

DATA
Web
atom.io
Developer
GitHub
Licence
MIT

www.linuxvoice.com

“Atom has a good-looking
interface that’s completely
customisable through CSS.”

LV018 052 Review Atom.indd 52 03/07/2015 13:51

YUBIKEY EDGE REVIEWSREVIEWS GOOGLE CARDBOARD

www.linuxvoice.com 53

Yubikey Edge
Mark Crutch tries to improve the security on several cloud services
with just one handy little device.

The configuration tool is powerful, but presents too many
options for most users.

After two years’ use, the
worst scratches on our
classic Yubikey (left) came
from removing the keyring
for this photo!

S ites get hacked and password databases
stolen, so it’s wise to take additional steps to
secure your logins with “second factor”

authentication wherever you can. The trouble is that
there are a wealth of second factor options available,
and you need to make sure you have the right one for
the site you’re using. The Yubikey Edge is one such
option, and it has some limited configurability that
might enable it to do the job of several other devices.

Physically the Edge looks like a slimline USB
memory stick. It’s a couple of millimetres thick, but
with enough rigidity to survive life alongside keys and
coins in an average purse or pocket. There’s a small
touch-sensitive panel on one side, which acts as a
button to trigger its operations.

The Edge has two software “slots” for holding
different authentication protocols, and comes
preconfigured with Yubico’s proprietary OTP (one-time
password) authentication system in Slot 1. This works
on a limited number of sites, most notably LastPass.
com (provided you subscribe to its Premium tier
for $12 per year). In this mode the Edge behaves
like a USB keyboard, so it works across operating
systems without the need for drivers. After supplying
your username and password you’re prompted to
touch the button on the device, at which point a
one-time password is “typed” into the computer and
authenticated against Yubico’s servers.

Secure your own site
Several plugins and libraries are available that can be
used to add support to other sites, including those
built on Django, Drupal and WordPress. There’s also a
PAM module that can be used to add an extra layer of
login security to your computer – ideal if you expose
an SSH connection to the world. If you don’t want to

use Yubico’s authentication servers for your projects,
Yubico has a GitHub repository containing the source
for a BSD-licensed authentication server.

A graphical configuration tool is used to set either
slot to support Yubico’s one-time password, a static
password, OATH or a challenge–response protocol.
Note that some of these modes require support
applications to be installed on your machine, which
isn’t always as simple as it should be. Nevertheless,
having a choice of protocols means that the Edge can
be used across many more websites than a single-
protocol device. Installing the configuration tool was
easy on Linux Mint, thanks to Yubico’s use of a PPA
for Ubuntu-based machines, but the tool is perhaps a
little too comprehensive, and could do with a simpler
“Wizard” mode to step through the setup for some
mainstream websites.

All these features are also available on the classic
Yubikey at a lower price, but the Edge offers one more
protocol that doesn’t occupy either of the two slots:
Fido U2F. You can read more on p42, but suffice to
say that you can already use it with Google accounts.

In a world of cloud services it makes sense to use
two-factor authentication when you can. With support
for two protocols plus U2F there’s bound to be some
way in which the Yubikey Edge can be used to help
secure the computers or websites you use.

LINUX VOICE VERDICT
For Google and LastPass this works
brilliantly, but for other sites it’s more
complex than it should be.

DATA
Web
www.yubico.com
Developer
Yubico Inc.
Price
£25

LV018 053 Review Yubikey.indd 53 02/07/2015 20:34

REVIEWS OPERATING SYSTEM

54

NetBSD 7
Mike Saunders tries an operating system that will run on just about anything.

Pretty much every open
source program you can
name runs on NetBSD,
including Xfce. On desktop
PCs you’re better off with
FreeBSD, though.

LINUX VOICE VERDICT
Some bold changes and much broader
support for ARM boards make NetBSD
7 a worthy release.

DATA
Web
www.netbsd.org
Developer
NetBSD Project
Licence
FOSS licences

www.linuxvoice.com

In a world dominated by x86-64 and ARM
processors, NetBSD’s portability may not be
something to shout from the rooftops. Sure, it

runs on a whopping 57 platforms, from generic
white-box PCs and the Raspberry Pi through to
Amigas and fridge-like VAX beasts from the 1980s.
But what does all this matter when 99% of users are
running x86 or ARM boxes?

Well, porting code to other architectures often
makes it easier to find subtle bugs and security
issues. The OpenBSD team maintains ports for some
rather old and obsolete hardware for this purpose.
But NetBSD is also positioning itself as a research
project – a place to try new innovations. Running

Linux on a home PC is great,
but it doesn’t win as many
geek points as writing driver
code in Lua inside NetBSD
running on the same SGI
computers used to render
bad guy in Terminator 2.

But anyway: NetBSD 7 just hit release candidate
stage, after three years of development, and brings
various new goodies. Its installer hasn’t changed
much since previous releases, being a text-mode
menu-driven tool that’s somewhat easier to use than
OpenBSD’s entirely command-line installer, but not
quite as versatile as BSDInstall (as used in FreeBSD).

Our main gripe with NetBSD’s installer is the lack
of time-saving options. Sure, this operating system
isn’t designed for newbies, but if the installer asked a
few extra questions (eg what hostname to use, and
whether you want to enable DHCP on boot) it’d save
a lot of fiddling around with the (admittedly excellent)
‘afterboot’ manual page. Yes, it’s good that NetBSD

doesn’t try to hold your hand and makes you pay
attention instead, but it could all be smoother.

After installation NetBSD boots quickly, the
documentation is superb, and it’s not hard to spruce
it up into a more usable desktop or server system.
Point the PKG_PATH environment variable at an FTP
package mirror, run pkg_add xfce4, and you have
a good-looking desktop environment. The usual
favourites are available too in the repository of over
15,000 packages (x86-64): Firefox 38, LibreOffice
4.4, KDE 4.14 and almost any open source desktop,
development or server program you can name.

Shiny new toys
So, what’s new in NetBSD 7? Desktop users will
welcome improved support for recent Intel and
Radeon graphics chips, thanks to a port of the Linux
DRM/KMS drivers. X.Org has been updated as well.
NetBSD lags behind Linux and FreeBSD when it
comes to PC hardware support and performance, but
with the right kit it makes a usable workstation OS, so
this is another good step forward.

As you’d expect from a much-ported OS, this
release also brings support for the myriad ARM
boards that have cropped up in the last couple of
years. NetBSD 7 not only works on the Raspberry
Pi (including version 2), but also the Odroid-C1,
Banana Pi, Cubieboard 2 and various models of
the BeagleBone. Meanwhile, Lua scripting support
has been added to the kernel – something of a
controversial move, but the goal is to make it easier
to prototype new features and drivers before writing
them in C for better performance. Improvements
have been made to the USB stack on multiprocessor
platforms, along with the network packet filter, and the
base system is built with GCC 4.8.4.

Is there any reason to use NetBSD over the other
*BSD flavours, or indeed Linux? If you’re running
standard x86 PC hardware, the answer is: not really.
FreeBSD and OpenBSD (especially on ThinkPads)
do a better job there. But if you have some really old
or obscure hardware that you’d like to revive, like an
ancient Acorn box, it’s your only choice. Plus, the in-
kernel scripting is a daring move, and we’d like to see
NetBSD position itself as an experimental OS which
doesn’t shy away from innovations that more “reliable”
OSes turn down.

“NetBSD is positioning itself
as a research project – a
place to try new innovations.”

LV018 054 Review NetBSD.indd 54 03/07/2015 13:29

LINUX MINT REVIEWSREVIEWS GOOGLE CARDBOARD

www.linuxvoice.com 55

Linux Mint 17.2 aka Rafaela
Ben Everard looks for some cool refreshment to counteract the fiery
heat of the British summer.

The new settings application is better than its
predecessor, but isn’t a game-altering change.

The Cinnamon (shown
here) and Mate versions of
17.2 came out in time to be
first, followed by KDE and
Xfce versions.

In May 2014, the Linux Mint project changed the
way it builds its distro. Previously, it had released a
version every six months, and each distro was

built upon the latest version of Ubuntu. Since Mint
came out around a month after the Ubuntu release,
and the majority of Ubuntu releases are only
supported for nine months, most Mint releases only
got support for eight months. Both Ubuntu and Mint
released a Long Term Support version once every two
years, but this only received security updates.

Starting with version 17, Linux Mint bases all its
releases on the previous Ubuntu LTS. This means that
17.2 is based on Ubuntu 14.04, which was already
well over a year old at the time of Mint’s release.
Rafaela (as 17.2 is known) is the third release in the
17.x series, all based on the same version of Ubuntu.
There will be one more release in the 17.x line before
development switches to a more recent base. After
this, 17.x won’t be abandoned, but will continue to get
security updates until 2019. This should mean that
updates go much more smoothly both from previous
installs in the 17 line, and to the next release.

A little more is changing at the lowest level than we
were expecting. Rafaela comes with kernel version
3.16 rather than 3.13 (which powered 17.1). This is
still quite a bit behind the most recent kernel, but it
should give some improvements for newer hardware.

Rafaela comes with new versions of most of the
key pieces of software. LibreOffice 4.4, Cinnamon 2.6
and Firefox 38 all feature in the latest release. Less
common pieces of software don’t get updated, and
will still be the version from a year ago.

The new release process and the focus on providing
up-to-date software is A Very Good Thing for regular

computer users – the sort of users who doesn’t
take great pleasure in frantically grabbing the latest
software as soon as it comes out, and the sort of user
who doesn’t care too much about endlessly tweaking
their machine.

Considerate refinement
These regular users will also appreciate the
redesigned system settings that make it easier to
find and change the basic properties of the operating
system. There are also some other tweaks and
performance improvements, but for most people, the
biggest advantage of this release will be the newer
software that comes with it.

Of course, if you’re reading this, there’s a good
chance you’re a tinkerer who likes to have control of
the heart of the system. For people like this, Mint’s
slick exterior can present a bit of a road block, and
the slow updates to the core could be frustrating.
However, if you think these are problems, then you’re
not the sort of person targeted by Linux Mint.

Previously, Mint has done a great job of building
software to target ordinary computer users, but
has been forced to follow the release pattern of its
parent distro. By loosening the ties with Ubuntu, it
has been able to focus its whole system on the key
demographic, and has created a distro with a long,
slow release cycle that has built up into a slick release
that has both the stability of a long-term release and
the latest software of faster releases. The result is
probably the best version of Linux for regular users
that’s ever been created.

LINUX VOICE VERDICT
If you want a stable, easy-to-use sytem,
Linux Mint 17.2 is the distro for you.

DATA
Web
www.linuxmint.com
Developer
Clement Lefebvre
and the Linux Mint
community
Licence
Various

LV018 055 Review Mint.indd 55 03/07/2015 13:32

REVIEWS BOOKS

www.linuxvoice.com56

Ben Everard dons his pink spectacles and tie-dyed t-shirt and travels in time.

The third edition brings the book up-to-date
with the latest trends in computing.

F ire in the Valley purports to be a
book on the history of the personal
computer (hence the sub title).

It’s not. It’s a book on the history of the
personal computer told through the myopic
viewpoints of American technologists. While
Silicon Valley plays an important role in the
history of the computer, many important
parts of the story happened elsewhere. Take,
for example, the part played by Acorn and
ARM in the UK. While these may not have
been huge players on the world stage during
their first act in the 90s, the technology that
started with British computers came back
to form the heart of most mobile systems.
Likewise, the story of the smartphone is told
from the perspective of Apple and Steve
Jobs, but in reality RIM’s BlackBerry created
the mobile computing revolution long before
the iPhone came out.

By skirting round the computing
revolution that was happening around the
world, Fire In The Valley tells only half the
story of the personal computer. It does,
however, tell that half of the story quite well.
Swaine and Freiberger have take the time to
speak with many of the people who made
Silicon Valley what it is. If only it looked a
little further afield, this could have been a
great book on the computer.

Excellent coverage of half the story of the
personal computing revolution.

LINUX VOICE VERDICT
Author Michael Swaine and Paul Freiberger
Page
Publisher Pragmatic Bookshelf
Price $34.00
ISBN 978-1937785765

Raspberry Pi Home Automation
with Arduino (second edition)
Ben Everard fears the day that his house will be more intelligent than him.

The problem with home automation
is that it’s hard. Not the sensors or
the processing side of things, but the

part that actually enables you to make some
difference in your house. The first project in
this book, for example, is about monitoring
and controlling temperature. However,
interacting with a heating or aircon system
is difficult. This project neatly sidesteps this
by turning a fan on or off. This makes the
hardware far easier to control, but at the
same time means it’s not really very useful
for most people’s home automation.

Thus the book goes on with projects that
are interesting in their own right, but that
don’t provide any meaningful automation for
your home (you’ll get an email when a parcel
is delivered or if the level of damp in your
shed rises too much).

If you’re looking for a book on sensing the
environment, and providing a web interface
to this data, then you should find Raspberry
Pi Home Automation with Arduino a good
read. It’s a well-written and engaging book,
but won’t help you build the house of the
future. In some projects, the author uses the
Cooking Pi addon to allow Arduino shields
to connect to the Pi, but this could easily be
replaced by just using an Arduino Uno.

Be very afraid – a giant CPU is trying to devour
your home.

Fire In The Valley: The Birth and Death
of the Personal Computer (3rd Edition)

Good information on sensing and reporting the
environment, but little about home automation.

LINUX VOICE VERDICT
Author Andrew K Dennis
Publisher Packt
Price £18.99
ISBN 9781784399207

LV018 056 Reviews Books.indd 56 03/07/2015 14:17

REVIEWS BOOKS

www.linuxvoice.com 57

It’s a little on the short side, but it’s excellent.

I f you’re willing to spend some time
looking, there are vast libraries of
free books available. Of course,

there’s the huge range of out-of-copyright
classics curated by Project Gutenberg,
but there are also sources you might
not expect. O’Reilly, for example, makes
out-of-print titles available for free, as well
as hosting The Cathedral and the Bazaar
and Stallman’s Free as in Freedom. It also
regularly releases transcriptions and other
content as ebooks, such as Tim O’Reilly’s
recent conversation with Cory Doctorow.

Python in Education is one such title.
We’ve picked it out because it’s a brilliant,
slow-paced non-technical primer that will
help to get people interested in
programming, whether they’re in education
or not. It’s only short, but it’s the part of a
programming book that’s often omitted.
And because it’s free, it’s perfect for
sharing or sending to people you think
may be interested, but don’t know how or
where to start.

Perfect for programmers, teachers and
students who need a good primer.

LINUX VOICE VERDICT
Author Nicholas H Tollervey
Publisher O’Reilly
Price $0
ISBN 978-1-491-92462-4

After splashing out on a Kindle, Graham Morrison finds books for free
Python in Education

Bioinformatics Data Skills
Blade Runner’s Roy Batty has an incept date of
8th January 2016, so we’d better get our
skates on if we’re going to upgrade our Nexus
5s in time. This is the book that’s going to help,
providing data skills that turn large datasets
into reproducible biological findings.

ALSO RELEASED…

This book
contains nothing
the god of
biomechanics
wouldn’t let you
into heaven for.

Hadoop Application Architectures
Keeping it in the realm of large data sets,
Hadoop is one of those technologies that can
add serious kudos to your CV, and there aren’t
that many books that tackle the subject. This
is a huge volume with some excellent authors
that should give you the job interview edge.

Learn all the
essential
keyowrds.

Python Games Development
There are few things more enjoyable than
writing your own game, and the combination of
Python and PyGame makes it easier than ever.
This is the second edition of a book that
promises to help beginners tap into their
gaming potential.

Amazon Kindle Paperwhite 2015
Graham Morrison just can’t resist the force of the dark side .

The battery lasts
weeks, even with
the excellent
and subtle LED
backlighting.

We know. This is a book review
section and this isn’t a book.
Also, Amazon is one of

the worst offenders when it comes to
binding its digital books with DRM. But
we love reading, and its Paperwhite range
of e-readers are some of the best in a
shrinking market. They’re light, good value,
long lasting, and most importantly, very
comfortable to read from – light years
ahead of glossy tablets and smartphones.
The latest version is also a very worthwhile
upgrade. The screen is now 300dpi,
making the text very close to print, and
more impressively for us, the new font,
word spacing and kerning algorithms fix
Kindle’s longstanding rendering flaws.

We’re also happy to report that we
tested the latest device with the awesome
Calibre application, which we use to
manage our collection of ebooks. We were
able to remove DRM and migrate our
reading list to the new device, and Calibre
did a great job converting Linux Voice

epubs into Kindle’s specific formatting,
removing our major issue with Amazon’s
locked-in hardware. If you’re happy to live
with this compromise, it’s brilliant.

If it weren’t for the DRM, we’d give Amazon’s
e-reader 5/5. It’s perfect for avid readers.

LINUX VOICE VERDICT
Author Amazon
Manucturer Amazon
Price from £109.99
ISBN na

Learn how to
write a game
in Python!

LV018 056 Reviews Books.indd 57 03/07/2015 14:17

GROUP TEST SERVER DISTROS

www.linuxvoice.com

Thanks to the loaded
software repositories of the
popular Linux distros, you

can easily convert a standard
desktop distro into a server distro in
no time. While these might serve
well for a limited time or a limited
number of users, they cannot
replace a dedicated server distro.
These specialised distributions are
designed from the ground up with a
rock-solid foundation to cover all
the infrastructure requirements of
a network.

Between the single-use web
server and a prolific data centre
lies a huge segment of users and
use cases that require a server to
manage and allocate resources and
services to its workforce. These
setups need a well-integrated
solution to manage their network
services, such as internet access,
network security, network
infrastructure monitoring and share
resources among its users.

While the idea of running all
services on a single server is a
hair-raising thought for admins of

large companies, we are looking for
server distros for non-critical setups
that can be managed by someone
with good enough network
management skills.

One stop shop
This is why we’ll be keeping an
eye out for distros that are easy
to deploy, configure and manage.
We have on test distros with a
proven track record as far as
stability is concerned and the only
distinguishing element between
them is their ease of configuration.
Although configuring a server distro
isn’t for the faint of heart, some go
the extra mile to help you tweak
the various components to your
satisfaction without mucking about
with configuration files.

Configuration aside, managing
and monitoring a server distro is an
ongoing process. While it’s possible
to install tools that will help you
keep an eye on your server, distros
that come with these tools pre-
installed are rated higher than those
that aren’t.

Mayank Sharma is on the lookout for an easy-to-deploy server to
manage his small home office.

GROUP TESTSERVER
DISTROS

“We’re testing distros with a proven track
record as far as stability is concerned.”

58

Server distros

The Raspberry Pi server
The Raspberry Pi has always been
popular as a single-purpose home server
due to its minuscule size and power
requirements. The new Pi v2 with
fleshed-out specs makes even more
sense for home servers that serve a
limited number of users. Many people
use the Pi as a personal web server with

a lightweight web server like lighttpd
instead of Apache. You can even use
distros like DietPi that install a minimal
base that you can then flesh out as a
seed box, a FTP server, a media
streaming server and more. There’s also
the upcoming ArkOS distro that converts
the Pi into your own secure cloud.

On test
URL www.centos.org
VERSION 7.1
LICENCE GPL and others
How does the popular no-frills distro
stack up against the competition?

CentOS

URL www.clearos.com
VERSION 6.6
LICENCE GPL and others
Can the CentOS-based distro beat the
master at its own game?

ClearOS

URL www.getfedora.org
VERSION 22
LICENCE Various free software licenses
A bleeding-edge server? Really?

Fedora Server

URL www.nethserver.org
VERSION 6.6
LICENCE GPL
Will this relately unknown contender
prove to be a darkhorse?

NethServer

URL www.ubuntu.com/server
VERSION 14.04 LTS
LICENCE GPL and others
Can it replicate the success of its
desktop sibling on the server?

Ubuntu Server

URL www.zentyal.org
VERSION 4.1
LICENCE GPL and others
Does this popular alternative to
Windows Server still have what it takes?

Zentyal

LV018 058 Group Test.indd 58 02/07/2015 20:37

SERVER DISTROS GROUP TEST

www.linuxvoice.com

CentOS delivers the promise of an
enterprise-grade operating system
without any cost. Over the years the

distro, built using open source SRPMs from
the Red Hat Enterprise Linux distribution,
has become popular with hosting
companies and businesses that have
in-house Linux expertise and don’t want to
pay for RHEL support. The project backs up
the software with 10 years of support, which
makes CentOS particularly attractive for any
kind of server rollouts.

From the installation up to the desktop,
CentOS mimics RHEL, as the CentOS
developers only strip RHEL-specific branding
and artwork, and strive to maintain 100%
binary compatibility with the upstream
release. The distro uses the Anaconda
installer and can be used with Kickstart to
run installations across multiple machines.

During installation you can customise
the package selection and pick one of
the predefined server types including
infrastructure server, web server, file and
print server, and even a server with a GUI.

All about choice
Each category of server has customisable
add-ons that you can install. For example,
the Infrastructure server option offers a
Backup Server option as well as a File and
Storage server. One useful option is the
‘Compatibility Libraries’ that help you run
apps built for previous versions of CentOS.

Aside from the normal install-only
images, the project also occasionally
releases special ISO images including an
installable live CD. You’ll find all popular open
source server software under the official

In addition to the server platforms
covered in this group test there are
several specialised flavours of Linux that

serve a single purpose. These distros are
aimed at providing a specific functionality
and are not intended to be used on the
desktop or as a multi-purpose server.

While most Linux distros let you configure
iptables to setup firewalls and protect

CentOS
Worth every cent.

59

One job servers
For specialised deployments.

VERDICT
One of the best open
source server platforms
that offers stability at the
expense of ease of use.

CentOS repositories. Besides the primary
repositories the project provides several
additional repositories, and you can also
use the EPEL (Extra Packages for Enterprise
Linux) repository, which includes several
additional third-party apps to flesh out the
installation as an enterprise desktop.

CentOS tracks the development of RHEL
and its releases are influenced by the
release schedule of the upstream distro. The
distro has received some flak in the past
for delays, but last year’s partnership with
Red Hat, which now has some key CentOS
developers on its payroll, will negate that
factor and bring some formal structure to
the project.

One of the key developments has been
the formation of special interest groups
(SIGs) that focus on particular projects
within CentOS. Although these SIGs haven’t
released any variants as of now, there are
some interesting ones that have been
approved. Of note are the Cloud instance
SIG and the Atomic SIG, which according

to the project target use cases that haven’t
been addressed by the CentOS project till
date. There’s also a Simplified Linux Server
SIG awaiting approval.

The server distro is one of the few popular
ones that doesn’t have a formal paid support
structure yet, although there are a number of
companies that support CentOS. Thanks to
its mature community the project has loads
of documentation to help you assemble
your own server, besides the regular
avenues of interaction and troubleshooting,
such as forums, mailing lists and IRC. Also,
while the distro is 100% binary compatible
with RHEL and should work on all hardware
that’s certified by Red Hat, as of CentOS v7
the project only puts out releases for the
x86-64 architecture.

you from the internet, firewall distros are
designed to set up a secure gateway
between the internet and their home or
office machines. IPFire is one of the most
popular firewall distros that’s quite easy
to configure and deploy. Another popular
choice is Smoothwall Express, which
offers a web-based GUI and doesn’t require
familiarity with Linux to set up.

Several commercial options are available
as well including the Debian-based Untangle
distro. It supports pluggable modules for
network applications such as spam blocker,
web filter, virus blocker, bandwidth control
and more. You can install all of these from
the browser-based interface with a single
click. The default configuration for these
apps should suffice for most users.

Once they start delivering, the Special Interest Groups releases will help break the massive CentOS
project into easily deployable chunks.

LV018 058 Group Test.indd 59 02/07/2015 20:37

GROUP TEST SERVER DISTROS

www.linuxvoice.com60

S tarting with Fedora 21, the
project has split its offerings into
three separate releases, with one

dedicated to crafting servers. Unlike
usual server distros with long term
release cycles and stable software,
Fedora Server bucks the trend by
putting out releases every six months
with bleeding-edge software.

Installing Fedora Server isn’t much
different from installing a regular
Fedora Workstation release. You do
however get the option to choose
the kind of server you wish to roll out.
The install offers four broad-base
environments for the server including
a minimal server and an infrastructure
server. You can also optionally install
add-on servers for the selected
environment such as a directory server,
an FTP server, a load balancer and a lot
more. The latest release, Fedora Server
22, defaults to the XFS filesystem.

One of the two components

Fedora Server
A hat trick.

that stand out in Fedora Server is
the Cockpit server management
application. The app enables an admin
to manage and administer Fedora
Server deployments via a web browser.
Using Cockpit you can inspect the
filesystem and manage services, like
a small-scale version of Red Hat’s
Spacewalk server management effort.

The other standout feature of the
release is the rolekit daemon, which
enables the server to easily spin up
a service or an application on top of
the base server offering. As of Fedora
Server 22, the distro only supports
two roles: a FreeIPA-based domain
controller that interoperates with
MS Windows environments; and a

PostgreSQL-based database server role.
The Fedora family of releases also

includes a Fedora Cloud product that’s
available in two flavours; a base version
and an Atomic version optimised for
Docker container deployment.

Use Cockpit to manage the Fedora deployment with ease.

“Fedora Server puts out
releases every six months
with bleeding-edge software.”

Ubuntu Server is also popularly used for deployment on
Amazon’s Elastic Computing Cloud (EC2) service.

A t first glance, Ubuntu Server
just looks like a streamlined
version of the desktop version.

It uses the same repositories as the
desktop offering, doesn’t ship a
graphical desktop and uses a text-
mode installer instead of a graphical
one. But the distro starts to come into
its own during installation.

If you’ve got Ubuntu’s Metal as a
Service (Maas) controller you can
provision Ubuntu Server on multiple
computers at once. During installation,
the server displays a software selection
screen that lets you install various
servers including OpenSSH Server,
DNS Server, LAMP Server, Mail Server,
PostgreSQL Server, Tomcat Java
Server, Virtual Machine host and more.
If you want more control, the installer
also lets you select packages manually.

Ubuntu Server is released every
two years along with the Long Term
Releases and is supported for five

Ubuntu Server
Coming up a cloud.

years. While it can function as a
standalone infrastructure server,
Ubuntu Server has made a name
for itself for building and managing
OpenStack-based cloud computing
platforms. Canonical also has
specialised tools such as Juju for
managing OpenStack installations.
Ubuntu Server images are published
directly into AWS, though it’s certified
as a guest on other cloud computing
platforms as well, including Microsoft
Azure, Joyent, IBM and HP Cloud.

Paid-for support
Canonical also offers commercial
support services around Ubuntu Server
as part of its Ubuntu Advantage
program, which caters to both
standalone and cloud deployments.
The support package includes technical
support as well as its Landscape
system management and monitoring
tool and a library of technical articles.

With Landscape you can automate
updates and manage physical, virtual
and cloud-based systems. The project
also works with hardware vendors and
has a list of certified hardware on its
website.

VERDICT
A popular platform for
deployment on certified
cloud platforms.

VERDICT
The newest entrant that’s
still finding its feet.

LV018 058 Group Test.indd 60 02/07/2015 20:37

SERVER DISTROS GROUP TEST

www.linuxvoice.com 61

S tability is the most celebrated and
sought-after quality when hunting for a
server distro. There are some distros,

like Debian and Slackware, which have
established themselves as incredibly stable
since time immemorial. While Debian has
made considerable effort over the past several
releases to be also seen as a competent
desktop distro, the two old hands of the Linux
community remain the ideal choice for hosting
servers for most experienced administrators.
Package management and the densely
populated software repositories are another
reason for Debian’s enormous popularity. The
debian-security repository ships critical
updates and ensures maximum uptime for
Debian-powered servers.

Rolling release distros aren’t everyone’s
first choice for a server distro. This is because
even a single update can break a rolling-
release distro. And yet Arch and Gentoo, two
of the most robust rolling-release distros
on offer today, are also popular choices for
hosting Linux servers. This is because these
two distros provide users a huge degree
of control over what runs on their system.
Their minimalist credentials and ability to
be moulded to serve any use case makes
them a popular choice for administrators
who are dissatisfied with the default software
selection on most server distros. With the
powerful Portage and Pacman tools, Gentoo
and Arch respectively enable experienced
administrators to flesh out their installations
with ease.

Ye olde server
distros

If you need configurability, try Arch as a server
distro (read the wiki first!).

Use NethServer’s Software Centre to flesh out your server.

A lthough server deployments
require a certain level of expertise
and understanding of the base

technologies, sometimes you need to
deploy servers in a snap. Setting up the
popular server platforms is an involved
process and involves pulling server
software and manually editing the
configuration files in a text editor. While
there are deployments that require this
kind of meticulous involvement, most can
use some level of automation.

The NethServer distro started as a fork
of SME Server with the goal of easing the
configuration of the servers. The distro is
based on CentOS and helps you roll out all
kinds of servers without mucking about
with configuration files. You can deploy
and configure just about every aspect of
your deployed servers through a browser-
based interface.

Like CentOS, NethServer is available
only for 64-bit machines as an
installable ISO. After going through its
straightforward installation process
you’re left with a base system. From
here on you’ll have to log into its web
interface to flesh out the installation.
The distro’s Software Centre lists all the
supported servers. This list can be filtered
by category, such as ‘base system’ and
‘firewall’. Using the Software Centre you
can easily convert the base NethServer
installation into a file server, an email
server, a XMPP-based instant messaging
server, an OwnCloud server, an Apache
web server and more in a couple of clicks.

NethServer
Point-and-click deployments.

Once you’ve installed a module, you
can browse through and install any
of its optional modules. The Software
Centre also keeps tracks of any updates
available for the installed modules, which
will only be installed after you explicitly
ask them to. In addition to the various
servers, NethServer also lets you install
localisation strings for popular languages
which makes the server accessible to non-
English speaking users as well.

Hut-two-three-four
The web interface also gives you access
to the tools to manage your NethServer
installation, such as the dashboard, which
gives you an overview of various
parameters including disk usage. Then
there’s the Log Viewer that lists log files
for all installed services. You can also
tweak several aspects of the server
including its network settings from under
the Configuration section of the interface.

NethServer is developed by Nethesis,
which offers commercial services and
support packages for the server. It also
has a very active engagement with its
community of users. The next version
of the distro will be based on CentOS 7
and will including support for Docker and
several new modules including one on the
Asterisk open source PBX.

For servers, older is very
often better.

VERDICT
Includes essential servers
in an easily deployable
package.

LV018 058 Group Test.indd 61 02/07/2015 20:37

GROUP TEST SERVER DISTROS

www.linuxvoice.com62

C learOS and Zentyal are two
distros that have made a name
for themselves among users

who’d rather defer the complexities of
setting up a server to an expert and
swap the nuances for the convenience
of a point-and-click interface and the
promise of quick deployment.

Both offer no-cost freely
downloadable community-supported
editions, and also offer commercial
services based on their products.
The projects also have ample
documentation, user manuals and
support options, and both distros let
you test their commercial offerings for
30 days.

While there are many similarities
between the two, both stem from
different underpinnings. ClearOS is
based on the CentOS distribution, and
Zentyal uses Ubuntu Server as its base.

Like most server distros, setting
up Zentyal and ClearOS is a rather
straightforward affair. Once installed
Zentyal boots to a minimal graphical
desktop, and if you have a headless
server, you can also bring up Zentyal’s
web interface on any computer and
configure the server remotely.

You can easily convert a base
Zentyal installation into a domain
controller and file sharing server, a mail
and groupware server, a DNS server, a
DHCP server or a Firewall server. You
can also use this server to filter email,
scan for viruses, manage printers,
VPNs, and issue and manage secure

ClearOS vs Zentyal
Servers in a jiffy.

certificates. Once installed, you can
configure these services from the web
interface itself. The components are
nicely integrated: for example, if you
install the OpenVPN server and go
straight ahead to configure it, you’ll be
asked to first create a CA certificate
using the certification module that
was installed automatically. You can
also use Zentyal to host other kinds of
servers, such as the Apache web server.

The clear advantage
One of the biggest advantages of
ClearOS is its larger repository of
supported server software. During
installation, you’ll be asked to select
whether your ClearOS installation will

be used inside a protected network
(like an office), in a publicly accessible
network (like a hotspot or a data center)
or as a Gateway server. Also, unlike
Zentyal, ClearOS requires you to create
an account and register your installation
with ClearOS HQ before you can access
its server apps and services.

ClearOS supports over 82 free
services for various roles including a
network server, a gateway server, a
cloud server and more. In addition to
common servers such as a directory
server, database server, mail server,
web server, FTP server, content filter
and more, you can use the installation
as a seedbox and a Plex Media Server.

There are also several system and
network management tools for creating
backups, managing bandwidth,
RAIDs, access control lists and more.
New admins who aren’t sure of the
components they should install can
use the Feature Wizard, which helps
pick services depending on the type of
server they wish to roll out. Like Zentyal,
the components are tightly integrated
and direct you to configure other
services they depend on.

You can buy individual modules or take out a support subscription which includes all paid modules.

Zentyal’s dashboard is made up of several widgets that you can move as per your needs.

VERDICT
CLEAROS Packs a
wide range of servers
in an easily accessible
interface.

ZENTYAL Delivers
everything it promises.

LV018 058 Group Test.indd 62 02/07/2015 20:37

SERVER DISTROS GROUP TEST

www.linuxvoice.com

P icking the best server distro
isn’t as simple or
straightforward as picking

the best desktop distro. That’s
because a server can mean
different things to different people.
For some it could be as simple as a
file sharing server that’s used by a
dorm full of students, while for
others it could be a complex
combination of email and instant
messaging server for a building full
of white collar workers. Also, unlike
other tools and distros we really
couldn’t properly shakedown a
server distro (let alone six) in the
limited time we have between

issues – it takes months to get
under the skin of a server distro if
you do it properly.

Some old school admins who
still prefer to build their servers
from the ground up wouldn’t be too
impressed by the conveniences
offered by the likes of Zentyal,
ClearOS and NethServer. However,
using these distros you can roll
out complex server solutions in a
fraction of the time it requires to set
them up by hand.

That said, although CentOS
doesn’t include any GUI tools to
help you set up the server (and
you’ll have to be comfortable with
the command line and brush up

your Yum package management
skills), the new SIGs initiative
will help churn out fine-tuned
versions of the distro for particular
purposes. Similarly, while you
can use Ubuntu Server for any
kind of server deployment, the
distro’s infrastructure is focused
on supporting rollouts on cloud
platforms. The latest entrant to
the list is Fedora Server, which
offers the opportunity to roll out
special-purpose servers, pretty
much like CentOS. However, its
implementation too is still in early
stages and only offers limited
deployment targets.

The real fight for the top spot
is between Zentyal, ClearOS and
NethServer, because of their lower
entry barriers and the expansive
list of supported servers. Since
they are all equally easy to use, it
really comes down to the number
of servers and services they offers.
Zentyal comes at the bottom for
offering the fewest server options,
followed by NethServer and topped
by our winner, ClearOS. While
ClearOS does offer the maximum
number of possibilities for fleshing
out the base installation, it isn’t
suitable for all – most notably
OwnCloud, which is best rolled out
on top of NethServer.

63

“The real fight for the top spot is between
Zentyal, ClearOS and NethServer.”

1st ClearOS
Licence GPL and others Version 6.6

www.clearos.com
Offers the most number of servers but has some peculiarities
such as mandatory registration.

2nd NetServer
Licence GPL Version 6.6

www.nethserver.org
Offers the most common and popular servers for a SOHO
deployment.

3rd Zentyal
Licence GPL and others Version 4.1

www.zentyal.org
An easy-to-manage distro that works great as a gateway server.

4th CentOS
Licence GPL and others Version 7.1

www.centos.org
Designed for environments that value stability more than
anything else.

5th Ubuntu Server
Licence GPL and others Version 14.04 LTS

www.ubuntu.com/server
Makes sense on the cloud with its commercial deployment and
management tools.

6th Fedora Server
Licence Various free software licences Version 22

www.getfedora.org
A new release designed for setups that need the newest features.

CentOS

ClearOS

Fedora Server

NethServer

Ubuntu Server

Zentyal

Ease of setup/rollout Management tools Release cycle Paid services

Involved

Easy

Involved

Easy

Involved

Easy

N

Y

N

Y

N

Y

Follows upstream

Follows upstream

Every 6 months

Follows upstream

Every 24 months

Every 3 months

N

Y

N

Y

Y

Y

ClearCenter offers support options starting from $60, including the
ability to back up your configuration to its remote servers.

OUR VERDICT
Server distros

LV018 058 Group Test.indd 63 02/07/2015 20:37

www.linuxvoice.com

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

64

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

LV018 064 Subs.indd 64 03/07/2015 15:47

NEXT MONTH

www.linuxvoice.com

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

EVEN MORE AWESOME!

Make things fall,
bounce and collide
with the most
powerful (and most
complicated) 3D
rendering suite you’ll
ever need.

Physics in Blender

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, Blue
Fin Building, 110 Southwark Street, London,
SE1 0SU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until April 2016 when all content (including
our images) is re-licensed CC-BY-SA.
©Linux Voice Ltd 2015
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

The Open Rights
Group does good
things on our behalf;
lobbying politicians,
campaigning and
fighting the good
fight. Here’s what
they’re up to now.

Inside ORG

The power behind
Kanye West’s blog
can be in your
hands. All you need
to supply is the
inspired talent to fill
it with the greatest
content in the world.

WordPress

ON SALE
THURSDAY
20 AUGUST

SCIENCE

From the ISS up in space to the Large
Hadron Collider under Switzerland, Free
Software is used in all the best projects. Find
out how and why scientists love Linux.

SCIENCE IS AWESOME!

LV018 064 Subs.indd 65 03/07/2015 15:47

CORETECHNOLOGY

www.linuxvoice.com66

Being Linux users, we often spawn
process in their dozens without really
noticing it. An innocent command

like cat /var/log/file | grep something
creates two, and the Ubuntu laptop on which
I’m typing these words runs about 150
concurrent processes. Processes in Linux
are a commodity we rarely think about. Yet
they are fundamental OS entities, and how
well the kernel handles them directly affects
how we work.

It’s time to get to know processes better,
and this Core Tech we’ll glimpse how they
look from inside. It’s not solely about gaining
brownie points: with new tools and tricks in
your arsenal, you could troubleshoot many
systems problems much faster.

Elves of Linuthlorian
If I ask: “How do you create a process?”,
most of you will probably answer: “I just start
a program”. That’s true, however not all
processes begin at the disk. Strictly

speaking, Unix processes are born in what’s
called “forking”: a parent process does a
fork(2) system call to create an exact but
independent copy of itself. Process
identifiers (or PIDs) for the parent and its
newborn child are different, and Linux is
smart enough not to copy process memory
(which could be costly) unless absolutely
necessary. Later, the child process can
do exec(2) to run a new executable code
inside itself.

Linux (and most Unices) store compiled
binary programs in ELF, which stands for
“Executable and Linking Format”. It derives
from the older Common Object File Format
(COFF) and is thus a cousin to the Portable
Executive (PE) format, which Windows uses
for its .exe/.dll files. ELF is ubiquitous: the
object files that compilers create, shared
libraries, and even the Linux kernel itself and
its modules are ELF binaries. As a result,
there are many tools (and libraries) to work
with ELF. Here, we’ll stick to one: readelf(1).

Anatomy of a Linux process
If Linux were a living body, processes would be its cells. Prepare yourself for some cyberbiology!

Consider a simple command, say, pwd(1).
Usually, it is implemented by /bin/pwd (on
an embedded system, it could be a BusyBox
symlink). What can we learn about it?
$ readelf -h /bin/pwd
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00
00 00
 Class: ELF64
 Data: 2’s complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices
X86-64
 Entry point address: 0x401917

What you see is an ELF file header.
You can already say it’s x86 64-bit binary
executable (EXEC). (Dynamic shared
libraries have a type of DYN, and kernel
modules or object files manifest themselves
as REL (relocatable)). The entry point is
where the system starts executing the
program. By the way, it’s not the main()
C function, as you may think, but some
common code residing in a C runtime library.

Internally, an ELF file consists of
“sections”. Sections may contain program
instructions, data, or even trickier stuff
like symbols (see below). You can dump
sections with readelf --sections /bin/
pwd. This will produce a lot of output, so
piping it to less is feasible. Section names
usually begin with a dot. Say, .text stores
a program’s code, and .data is, well, data.
There’s also a .rodata section that stores
constant values. .bss is a placeholder for
your program’s non-initialised data, like
global variables. It occupies no space on
disk and is zero-initialised in memory.

htop(1) is a very powerful process viewer. Note how avahi-deamon changes its name (argv[0]).
Everything below the selected entry is a kernel-mode thread.

CORE
TECHNOLOGYValentine Sinitsyn develops

high-loaded services and
teaches students completely
unrelated subjects. He also has
a KDE developer account that
he’s never really used. Prise the back off Linux and find out what really makes it tick.

LV018 066 CoreTech.indd 66 02/07/2015 20:40

CORETECHNOLOGY

www.linuxvoice.com 67

Symbols are just names for given
locations. They are very useful at the
link stage but are usually discarded (or
“stripped”, see strip(1)) from the resulting
binary. One exception is symbols that come
from dynamic libraries and are resolved in
runtime. They live in .dynsym, and you can
dump them with:
$ readelf --symbols /bin/pwd

Symbol table ‘.dynsym’ contains 70 entries:
 Num: Value Size Type Bind Vis Ndx
Name
 ...
 3: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND free@GLIBC_2.2.5 (2)
 ...
 41: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND malloc@GLIBC_2.2.5 (2)

You see that even a simple command like
pwd references several dozens of symbols.
They come from GNU libc library (glibc). The
listing shows malloc(3) and free(3), which
are standard ways to allocate and release
memory in C programs. Note that symbol
values are zero as they are resolved in
runtime. With a C++ program, the output will
look slightly different:
$ readelf --symbols hellocpp

Symbol table ‘.dynsym’ contains 35 entries:
 Num: Value Size Type Bind Vis Ndx
Name
 ...
 18: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND _ZNSsC1EPKcRKSaIcE@GLIBCXX_3.4
(2)
 19: 0000000000601780 272 OBJECT GLOBAL
DEFAULT 25 _ZSt4cout@GLIBCXX_3.4 (2)

Note the names. They don’t look
human readable due to the
name mangling that C++
uses to implement function
overloading and other
language features. Pipe the
output to c++filt to “decode”
the names.

You may also note sections like .got
(Global Offset Table) or .plt (Procedure
Linkage Table). They are also used in
dynamic linking: .got stores offsets to
external locations (like library-defined
functions or variables) and .plt contains
code to lazily bind and call them.

Where does the dynamic linker come
from? (Usually, it’s /lib/ld-linux-x86-64.
so.2 in 64-bit Linux.) The .interp section
references it. The kernel notices this fact
when doing exec(2) and maps the linker
before your code. Static binaries don’t

have a .interp section. “Interp” is short for
“interpreter”, so ld-linux-x86-64.so.2 is
technically an interpreter for dynamic ELF
binaries. Don’t confuse it with high-level
language interpreters, like Python or Perl
(see the boxout).

The dynamic linker is mostly invisible,
but you can influence its operation with
environment variables. Perhaps the most
popular of these is LD_LIBRARY_PATH,
which contains colon-separated names
of directories in which to search shared
libraries. Another noteworthy thing is LD_
PRELOAD: the linker will look for symbols
in the library you list here first, before
proceeding to the usual ones. This way, you
can write a custom library to intercept, say,
socket operations, and force the application
to use a proxy. It’s a so called “LD_PRELOAD
trick”; www.inet.no has a real-world
example. Finally, let’s mention LD_BIND_
NOW. By default, the linker resolves symbols
lazily, only when your program accesses
them. However, if this variable is set, all
symbols are resolved on the program’s
startup. It takes longer to launch, but after
that is more predictable to run (every
function call has the same overhead).

How do you know if the binary is dynamic
and which libraries it uses? Run ldd:
$ ldd /bin/pwd
 linux-vdso.so.1 (0x00007ffed147d000)
 libc.so.6 => /usr/lib/libc.so.6
(0x00007f7678c2e000)
 /lib64/ld-linux-x86-64.so.2
(0x00007f7678fd0000)

This shows libraries, the actual files that
the linker has found on your system, and
also load addresses (see next section).
If some library wasn’t found, it will be

reported, so you can easily guess what your
program is missing. For static executables,
ldd will simply complain: “not a dynamic
executable”.

Picturing their memories
Now, when we know how the programs we
use daily are organised on disk, let’s see
what they look like in memory.

Linux processes are organised in
segments. Each segment encompasses
one or more ELF sections. By the way,
readelf can already dump the segments

structure for you:
$ readelf --segments /bin/pwd
...
 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.
hash .dynsym .dynstr .gnu.version .gnu.version_r .
rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_
frame_hdr .eh_frame
...

As you see, section to segment mappings
are far from being one-to-one. Segments

we discuss here are not to be
confused with x86 ones, like CS
or DS as seen in assembler. The
segments you’ll encounter most
often are text, data and stack. The
first one stores a program’s code;
data is for global program data;

and stack is used to store local variables
and to return from function calls.

Each segment has an associated
set of permissions. For example, text is
usually mapped read-only, as there are few
legitimate reasons to modify a program’s
code on the fly. As the kernel knows text is
read-only, it can keep only one physical copy
of a shared library in memory, and simply
map this single instance to all processes
requiring the library.

On the other hand, data and stack are
usually mapped as non-executable. This

A typical address space layout for a Linux
process. The arrows show which direction the
area grows. Accesses to empty space results in
a segmentation fault.

“Linux processes are organised in
segments; each segment encompasses

one or more ELF sections.”

Highest addresses

Kernel space
(here be dragons)

Program name
Environment strings

Command-line arguments
...

envp pointers
argv pointers

argc

Dynamic Linker
Some library

Memory-mapped file

Heap

BSS
Data

Program text

Lowest addresses

M
em

m
ap

 S
ta

ck

LV018 066 CoreTech.indd 67 02/07/2015 20:40

CORETECHNOLOGY

www.linuxvoice.com68

makes common vulnerabilities – such as
buffer overflows – harder to exploit. It’s still
possible though, so other mechanisms are
deployed to keep our systems safe.

One such mechanism is Address Space
Layout Randomisation, or ALSR. All Linux
processes have a predictable memory
layout that we’ll discuss shortly. Knowing
that, for instance, the stack bottom is at
0xbfffffff, a cracker can make an exploit
simpler and more reliable. So, starting
with Linux 2.6.12, the kernel adds
random offsets to these positions.
Again, this measure alone doesn’t
make vulnerabilities impossible to
exploit, but it reduces the risk.

Process address space is split
between userspace and kernel
space. 32-bit x86 systems use a so-called
3/1 split: out of 4GB available, 3GB is left
for the user and 1GB (shared between
processes) is for the kernel. Kernel memory
is inaccessible to user code for security
reasons. This means that no valid pointer in
userspace code can store addresses above
0xc000000. On 64-bit x86 systems, address
space is split evenly. Both userspace and
kernel space are 128TB in size, and kernel
memory starts at 0xffff800000000000.

Now, you can see the userspace part of
a process’s virtual memory layout in the
diagram. Stack occupies the top of address
space (the highest addresses) and grows
down. The default stack size is 8MB, but you
can adjust this with ulimit -s <new value>.
At the bottom of the stack, the program’s

name, command line arguments and the
environment are stored. Your program’s
main() function receives pointers to these
strings that the kernel also puts on the
stack. Officially, main() has the following
prototype: main(int argc, char **argv, char
**envp) – and I bet you never encountered
it with the third argument. By convention,
argv[0] is treated as the program name. So if
you carefully strncpy() anything there, ps(1)
and similar will show your process under a

different name.
The next area is knows as “memmap”, and

it’s where mmap(2) puts anonymous and
file-backed memory maps, including shared
libraries. It grows either top-down (default
on x86-64) or bottom-up. As you know, the
program interpreter (or dynamic linker) is
usually mapped first, so you typically see
it at the end of this area. Now, let’s look at
the lower part. This is better done on an
example. Open the terminal and run:
$ cat /proc/self/maps
00400000-004ef000 r-xp 00000000 08:02 7212425
/bin/bash
006ef000-006f0000 r--p 000ef000 08:02 7212425
/bin/bash
006f0000-006f9000 rw-p 000f0000 08:02 7212425
/bin/bash

006f9000-006ff000 rw-p 00000000 00:00 0
01fc5000-023b3000 rw-p 00000000 00:00 0
[heap]
...

/proc/self is a symlink that refers to the
calling processes entry in /proc. As you
can see, the first “inhabitant’ here is text
[segment]. Note the permissions: text
is read-only and executable. On x86-64
systems, program code is usually mapped
at address 0x400000; 32-bit x86 systems
use 0x08048000.

The non-executable segment of /bin/
bash is read-only data (constants), and the
writable one is simply global data (including
BSS). Then follows the heap: an area where
dynamic memory is allocated when Bash
does malloc(3) (which is again imported
from glibc). There are several different
memory allocators in existence, but the
classical way is to do the brk(2) system call
when you need the heap increased (it grows
bottom-up).

Now, please take some time to see
how different processes on your system
organise their virtual memory space. Simply
dump /proc/<PID>/maps for the process
of interest, but keep in mind you’ll need
root permissions to do it for the process
not owned by your current user. To make
similarities bolder, consider disabling ASLR
temporarily. To do this system-wide, run
echo 0 > /proc/sys/kernel/randomize_
va_space. You can also disable ASLR per
process, if you run it as setarch $(uname

-m) -R program. Don’t forget to
enable it back when you’ll be done.

The /proc filesystem has much
more information on running
processes: you can see opened
files, command-line arguments, or
the environment, to name just few

things. All of this is accessible under the
/proc/<PID> directory, and is described well
in proc(5) manpage.

Watching in the wild
So far we discussed static views of
executable files. All these things are worth
knowing, but there are times you need to
peek into processes live.

Consider the following scenario. You’ve
got some third-party application, maybe
even as prebuilt binary image. When you try
to run it, the only thing you get is a vague
message like “The program made a boo
boo” – then it terminates with exit code 1.
You suspect it can’t locate some data or
configuration file, but how do you know
what exactly it is looking for?

“Take some time to see how different
processes on your system organise

their virtual memory space.”

pmap(1) prints exhaustive information on the memory map of a selected process.

LV018 066 CoreTech.indd 68 02/07/2015 20:40

CORETECHNOLOGY

www.linuxvoice.com 69

There are two main tools that may
help. They are similar both in naming and
operation. The first one is strace (LV016),
and it traces system calls that the program
makes. The second is ltrace, which traces
dynamic library calls.

Both tools rely on a single tracing
mechanism, ptrace(2), which is also the
main workhorse behind debuggers like GDB.
strace instructs it to trigger on a system call.
ltrace is a bit trickier. It installs breakpoints in
the .plt section. Calls to functions in shared
libraries are dispatched via .plt, so next time
it happens, ltrace has a chance to intervene.
It is possible to start the process you need
to trace, or attach any of these tools to the
running one (root permissions required).

When the call is trapped, strace and
ltrace need to decode it before printing
anything back to you. System calls have
known signatures, so it’s tedious but rather
straightforward. For an arbitrary third-
party library, a special configuration file
(usually /etc/ltrace.conf) is recommended.
Otherwise ltrace won’t be able to decode

call arguments and will print them as
hexadecimal numbers. We introduced
strace as our Command of the Month back
in LV016, so let us concentrate on ltrace
today. With the -S command line switch, it
can also trap system calls, so you get best
of both worlds. It can also demangle C++
names with the -C switch. Let’s use it to
see how our guinea-pig, pwd, is doing under
microscope:

$ ltrace /bin/pwd
getenv(“POSIXLY_CORRECT”) = nil
strrchr(“/bin/pwd”, ‘/’) = “/pwd”
setlocale(LC_ALL, “”) = “LC_CTYPE=ru_
RU.utf8;LC_NUMERIC=r”...
bindtextdomain(“coreutils”, “/usr/share/locale”) = “/
usr/share/locale”
textdomain(“coreutils”) = “coreutils”
getopt_long(1, 0x7ffe40024088, “LP”, 0x404fc0, nil)
= -1
getcwd(0, 0) = “”
puts(“/home/val”) = 10
free(0x1cbc100) = <void>
exit(0 <unfinished ...>
(Functions including underscores are glibc
service routines, and we omitted most them
for brevity.) There’s nothing too surprising
here: pwd(1) calls getcwd(3) and puts the
result on the console. However, with the -S
argument you’ll get much more elaborate
output. It’s lengthy and we won’t reproduce it
here, so please try it yourself. System calls
begin with the SYS_ prefix. You may note
how localisations are mapped (check that
they are really in /proc/<PID>/maps), and
how the heap is extended via brk(2). All
these actions are done in glibc, so you can
program without worrying about low-level
details too much.

Sharp + Bang = Shebang
Today, many applications are written in high-
level interpreted languages like Python or Ruby.
Still, you can execute them the same way as ELF
binaries. You may type /usr/bin/soffice to start
LibreOffice without even noticing that it’s a shell
script. How does the kernel know to call the right
interpreter in such cases?

Shebang is the answer. The shebang is `#!`,
and if an executable starts with these two
characters, the kernel knows it should really run
the program whose absolute path follows them,
passing the name of the script as a command-line
argument. This is not limited to interpreters: #!/

bin/cat is probably one of the shortest programs
that prints itself. Dennis Ritchie, “the father of
Unix”, introduced the shebang back in 1980. Note
that # denotes a comment for many interpreters,
so shebang doesn’t prevent scripts from being
executed directly, like python script.py.

Different systems may have interpreters
installed at different locations, so you often
encounter a #!/usr/bin/env python construct that
achieves portability, at least in Linux. The shebang
is in virtually every Unix, but not in the POSIX
standard: www.in-ulm.de/~mascheck/various/
shebang summarises existing portability issues.

Even GUI debuggers like the one in Qt Creator rely on ptrace(2) for their core functionality.

This issue, we discuss on-disk and in-
memory structures. So it feels natural to
nominate two commands that cover both
aspects.

Let’s start with objdump. This tool was
originally intended for compiler developers,
but appears to be also useful for the rest
of us. In this Core Tech context, objdump
can be seen as an advanced version of
readelf. It reads symbols (-t), sections (-h)
or segments (-p) from ELF, but it can also

demangle C++ names (-C) or disassembly
sections contents. If the program was
compiled with debugging information, and
you have the sources ready, it will even show
which line each bit of assembly comes from
(-S).

Our second nominee is pmap. It dumps
memory map for the selected process, but
does it smarter than mere cat /proc/<PID>/
maps. You can switch between three
different views: extended view, device view,

and the default one. The latter is much
like /proc/<PID>/maps pretty printer, but
it already shows anonymous maps (ie
areas present but not baked by any file)
explicitly. Extended view (pmap -x) shows
how big each mapping is, and which pages
are currently resident in memory (ie not
swapped out). The device view (pmap -d)
dumps file offsets and device numbers
for the file backing the mapping. pmap -X
<PID> brings the best of two worlds.

Command of the month: objdump & pmap

LV018 066 CoreTech.indd 69 02/07/2015 20:40

FOSSPICKS

www.linuxvoice.com70

SocNetV, as it’s known, maps social networks and gets all kinds of
cool statistics from the spacing between the relationships.

Sparkling gems and new
releases from the world of
Free and Open Source Software

Our editor Graham Morrison is a fearless explorer of the internet – look,
he’s found some excellent Free Software on his travels!

Despite us being a little
cynical about social
networks, especially when it

comes to the wanton abandonment
of privacy they promote, their rise
is an incredible phenomenon. Social
Network Visualizer isn’t a tool that’s
going to help you use either of
these services. It’s a step back in
time from both the implementation
and the scale of these modern
networks, back to when social
network analytics was about
dissecting a network’s topography
and constituent parts. Social
Network Visualizer is for these
researchers rather than users, but it

FOSSpicks

can teach you about modern ones
too, and it’s a mature and polished
application built on the latest
version of Qt.

You might start by mapping your
contacts, creating nodes for people
linked together by their
interrelationships. Social Network
Visualizer not only enables you to
visualise these, it can give you all
kinds of stats and mathematical
properties about the distance,
clusterability, connectivity and
prominence of these connections.

Social Network Visualizer 1.8
People mapping

PROJECT WEBSITE
http://socnetv.sourceforge.net

As soon as you start
copying new music to
your filesystem you get
a notification that
Lollypop is updating.

It wouldn’t be FOSSPicks if we
didn’t have at least one kind of
music player.

This month it’s the turn of the
neatly named Lollypop, and it shares
some of the same ideas as
Tomahawk. This is primarily in the
way it presents your music
collection. In the olden days, music
players would be an interface to
your music collection, which was
itself either a huge blob of files or a
well organised system of files and
folders. Either way, you’d navigate
to whatever you wanted to listen to
just as you would in a record shop
– through an alphabetical list, an
artist category or browsing by
genre. Lollypop works this way too,
and it’s a great option for regular

playback. But there’s also an
emphasis on dynamic and
contextually generated playlists. It’s
a little like how other services
suggest music you may be
interested in by analysing your
listening or purchase history.

Rather than the advanced
heuristics of Amazon, Lollypop
achieves a similar effect using
album, artist, genre and playlist
metadata to create this context.
Rather than the static list of
albums, a contextual playlist fills up
with songs that Lollypop thinks you

may like. And as the playlist is filled
with music you’ve already collected,
it’s a great way of listening to your
music in a different context. We
also have to give it extra point for
looking so lovely.

Lollypop 0.9.37
Music player

PROJECT WEBSITE
http://gnumdk.github.io/lollypop

“We have to give Lollypop an extra
point for looking so lovely.”

LV018 070 Fosspicks.indd 70 02/07/2015 20:42

FOSSPICKS

www.linuxvoice.com 71

We’ve put a cheat sheet
of commands inside the
back cover. Despite
being designed for
keyboard-only control,
you can still use a
mouse to navigate the
web.

For open source and open
standard advocates, both
Firefox and Chromium had a

contentious few months in early
2015. Firefox furthered its
commitment to harvesting
advertising revenue with targeted
ads and blog posts that wept
phrases like “build better
personalised experiences”,
“focusing on engagement” and
“value exchange”. At the same time,
Chromium was discovered secretly
downloading a binary blob created
by Google that listened to the input
from your microphone.

These and similar events left
many of us looking for alternatives
to our humble web browser, and
Qutebrowser is our current favourite.
What makes Qutebrowser unique is
that it’s designed to be interacted
with purely through key commands,
many of which are the same as
those used in the Vim text editor.
You can search through a page
with the ‘/’ key, for example, move to
the top and bottom with ‘gg’ and ‘G’
and copy URLs with Y . Many of the
other shortcuts are similarly based
on Vim’s equivalents.

Also like Vim, there’s a normal/
command mode and an insert
mode. In normal mode, you
navigate about the web using either
your mouse or the keyboard
shortcuts. Pressing ‘:’ opens the

command prompt, and one of the
best things about Qutebrowser is
the tab completion. This makes
finding and using the commands it
supports really easy.

Intuitive keyboard action
The help system is also a great way
to find out about commands, and
because all options list their default
values alongside those you change,
it’s easy to experiment and change
your browsing experience as you go
along. You can then save these
settings – or any session – with
another couple of commands. You
can set the default zoom, for
example, change all the fonts and
sizes, execute shell scripts and view
a page’s source code. Pressing I for
insert mode lets you interact with
forms on a page, and there’s an
option to automatically trigger this
when an appropriate pages loads.

Thanks to the Qt 5 API and its
WebKit web rendering engine,
Qutebrowser looks fantastic. The
vast majority of sites render exactly
as they do in Firefox or Chromium,
and you can easily change the user
agent to help with compatibility.
Navigation itself is easy enough to

master, even without Vim
experience. While in command
mode, press O to open a link and
either choose from the history, type
a URL or a search term – the
browser defaults to DuckDuckGo.
Press F to display quick shortcuts
to all the links visible, and these can
be switched between letter and
numbers with an option. Shift+J
and Shift+K switch tabs and D
closes the current one. Double
tabbing the square brackets will
even emulate selecting ‘previous’
and ‘next’. It took us only a few
hours to become proficient, and
consequently, totally hooked.

Qutebrowswer (git 23/06/2015)
Web browser

PROJECT WEBSITE
https//qutebrowser.org

How it works: Navigating with Qutebrowser

Press ‘:’ to enter command mode and change
the font size for the hints that enable you to
navigate the web.

1 Pressing F displays shortcuts that can be
pressed to follow a link. Shift+F will open links
in a new tab.

Typing two keys can add new keybindings (SK),
download a link (;D) move tabs (GM) and even
open a web inspector (WI).

2 3

“Qutebrowser is designed to be
interacted with purely through.”

LV018 070 Fosspicks.indd 71 02/07/2015 20:42

FOSSPICKS

www.linuxvoice.com72

FocusWriter is another application built atop the latest version of
Qt. This lends it excellent font rendering and scalability, making it
beautiful to look at and use.

There are more writing tools
to choose between than
almost any other category

of application. This is probably
because there’s no common
approach to writing. We all have a
different processes and inspiration,
from Roald Dahl’s old wing-back
chair and chocolate wrappings
silver ball to Dylan Thomas’
boathouse. And it’s no different in
the computer age, whether you take
your inspiration from Emacs or
LibreOffice, your writing tool and its
arrangement reflects your purpose
and personality.

For example, we know that some
of our contributors write everything
in a simple command line, tapping
without soft word wrap, spell check
or word count. Can we blame them
for the typos? At the other end of
the scale, a quick straw-poll
suggests most of our contributors
prefer the luxury of an application
like LibreOffice precisely because it
does all those things for you,
complete with decent font
rendering with copy and paste that
actually makes sense.

Fjord focus
But fully fledged office applications
are themselves an added
distraction when all you need to do
is write some words. None of us
need the address or date support,
the styles, illustrations and 3D text.

This is why so-called distraction-
free text editors have become so
popular – they allow you to focus
on the art of putting one word after
another, rather than gorging
yourself on cute cat videos. They’re
the modern equivalent to the
humble typewriter.

And our absolute favourite is this,
FocusWriter. FocusWriter is brilliant
because it focuses on what’s
important and nothing more. Font
rendering is exceptional. Text input
and editing is noticeably faster than
with LibreOffice. Real-time spell
checking with red underlined
highlighting is quick and
unobtrusive, if you want it, and the
editor can grey-out sentences and
paragraphs the further away they
are from the cursor (we don’t use it,
but it might help some writers.)

 Another feature that falls into a
similar category is the option to
enable ‘typewriter’ sounds. This can
add a genuine hipster feel to your
typing, but it’s not especially
authentic. There’s some dynamism
in the character sounds, but the
occasional bad sample and
line-printer output of the carriage
return breaks the effect, diminishing
slightly the general professionalism

in the remainder of what
FocusWriter offers.

You have oodles of control over
layout, from the font and margins
used to display the text, to the
border and colouring. This really
does help, as everyone will have a
different preference. And like
terminal appearances, these can be
switched between according to
mood or what you’re typing on. The
application is also designed to be
run full-screen, and the menus and
the status bar hide themselves
while you’re typing. We still prefer
the windowed mode, but we know
this goes against the mantra of
distraction-free writing.

Either way, all you see are your
words without comprising the
ability to tab between multiple open
documents or the regular menu
structure you’d expect from a word
processor. Additionally, you can set
yourself writing targets. These
appear when you mouse over the
lower part of the screen or window.
Documents are saved as ODT, and
after a couple of years of use, we
can attest to its stability and ability
to recover unsaved documents.
We’ve never had a problem using
FocusWriter, which is why it
remains, for writing content at least,
our editor of choice.

Focuswriter 1.5.4
Word processor

PROJECT WEBSITE
http://gottcode.org/focuswriter

The theme engine
allows you to change
almost any aspect of
the user-interface, and
switch between your
configurations quickly
and easily.

“You have oodles of control over
FocusWriter’s layout.”

LV018 070 Fosspicks.indd 72 02/07/2015 20:42

FOSSPICKS

www.linuxvoice.com 73

Powerful trimming and
clip positioning make
Flowblade another
awesome video editor
for Linux.

We wrote about a couple
of video editors last
month and made the

comment that we had never has so
many to choose between. Perhaps
it’s because we’re all recording our
lives through a smartphone, or
perhaps the average laptop has
become powerful enough. Either
way, video editors are becoming
popular and we’re grateful to have
the choice.

Flowblade has been in
development for a couple of years,
but the project has been brave
enough to label its 14 June 2015
release with the milestone 1.0
version number. This puts it ahead
of projects like Mame (because
there will always be more arcade
games) and behind less (at version
471 on our desktop), but it’s still a
significant indication that a piece of
software is ready for general use.

Flowblade is a GTK-based non
linear editor with a great looking
grey design and layout. It doesn’t
work too well on high DPI displays,
but you can still work within its
interface. Its design doesn’t diverge
too far from the trinity of clip bin
panel in the top left, video preview in
the top-right, and video timeline
beneath both of these. This means
if you’ve used Adobe Premiere or
Apple’s Aftershot Pro, you’ll be able
to start editing quickly.

What we really like about the
editing is that you can move the
start and end point points of clips
very effectively, much like Aftershot
Pro, which we find a more intuitive
way of editing shots together into a

final render. There’s also a good
‘bread and butter’ selection of blend
effects and basic fading – more
than enough to get you started. The
only problem we found was stability
as despite this being a 1.0 release
we did have a few problems with
instant crashes and huge memory
and CPU consumption over time.

Flowblade 1.0
Non-linear video editor

“You can move the start and end
points very effectively.”

There are many themes
and addons that can be
installed within Atom,
just as you might with
the Chromium web
browser. Atom is
important enough to get
our review treatment on
page 52.

If you spend time coding, you’ll
have a close working
relationship with the tools you

use to enter your code. Many
Whether it’s making your code look
pretty or catching mistakes before
a compile, the editor has become
the gateway to coding success.
Atom is one of these editors with a
rather special provenance – it’s
been developed by GitHub Inc., the
company behind the world’s most
popular code hosting and
management service, after a staffer
initially started work on the project
in 2008.

Proving that it’s a small world
after all, Atom is based on code
from the Chomium browser,
hopefully devoid of microphone
snooping, which makes it ideal for
web-centric languages like
JavaScript with Node.js, but it also

has ambitions to be used with
almost any other language. Core to
its usability is its own
programmability, despite its simple
user interface and beautiful font
rendering. This puts it into the same
league as commercial editors, such
as TextMate for OS X, which we’ve
used and loved. If you need
something done a specific way, the
ability to code your own hooks into
an editor is fundamental.

Your hair is beautiful
But Atom also succeeds as an
editor. The themes and syntax
highlighting are the best we’ve seen,
and many other editors have
attempted to copy the feel of Atom
since it first appeared. So too is the
code completion, powered by its
‘autocomplete-plug’ engine, with
hints before you select a template

and easy to navigate code after.
And befitting its sponsor, it’s also
got great integration with GitHub.
It’s likely that Atom will only grow
into more of a fully fledged IDE as
the editor’s prowess spreads.

Atom 1.0
Text editor

PROJECT WEBSITE
https://github.com/jliljebl/flowblade

PROJECT WEBSITE
https://atom.io

LV018 070 Fosspicks.indd 73 02/07/2015 20:42

FOSSPICKS

www.linuxvoice.com74

Inox is a synonym for
stainless steel. See
what they’ve done
there?

You’ve tried the awesome
keyboard-driven
Qutebrowser from the

second page of FOSSPicks, right?
It’s brilliant. OK, we accept that
interacting with a web browser
using keyboard commands alone in
the age of touchy/feely
smartphones isn’t for everyone. So
here’s another alternative.

If you’re still concerned about
your privacy and you’re looking for a
fast, intuitive alternative to Chrome/
Chromium, Inox is a good choice.
Primarily because it is Chrome/
Chromium, only with the naughty
bits taken out. However, this isn’t a
fork. The developer wants the
source to remain primarily the
same as Chomium’s and easily
patcheable to accommodate
security patches and new features,
notwithstanding the binary blobs
that listen to your private

conversations. It’s for this reason
that Inox is called a ‘spinoff’ rather
than a fork.

It accomplishes this trick by
implementing a carefully selected
brace of patches and enabling or
disabling compile-only flags, such
as the spookily named ‘Google’s
Instant Extended API’, ‘Cloud
Messaging status check’ and our
favourite ‘EnableHyperLinkAuditing’.
The end result is an excellent,
ultra-fast and compatible browser
without any nefarious spying
potential. We found no real
discernible difference between Inox
and Chromium when we tried it out
– even down to plugins and
themes. Of course, this means you

need to trust the single developer
who’s putting it all together, but at
least the patches are easy to view
and there’s already been plenty of
feedback. If you’re running Arch,
there’s even a binary package,
which is helpful as Chromium takes
half a lifetime to build manually.

Inox 43.0.2357
Web browser

There’s a minimal and a
Qt app for Linux, and an
F-Droid repository for
Android installation.

There can’t be many
messaging applications
that can trace their roots to

a discussion on the infamously
anarchical 4chan. But this is exactly
where Tox started after Edward
Snowden revealed the extent of the
NSA’s activities and raised the ire of
4chan’s proactive tech subculture.

Tox has since left its roots behind,
gaining semi-respectable status
thanks to Google’s sponsorship
through 2014 and 2015’s Summer
of Code, and a wider acceptance
that we all need to be more
proactive about privacy and
security. Tox itself refers to the
protocol, and the clever part – the
part you’d expect with a client
birthed at 4chan – is that there’s no
central server for anyone to hack or
subvert. This is peer-to-peer
messaging, and the vital

authentication and encryption is
handled by public and private keys,
which are generated when you first
run the client. You can use the
same keys on multiple clients too,
which is handy, as alongside the
command line and GUI Linux
clients, there’s also an excellent app
for Android. Messaging also works
across Tor IPv6 and Tor, so it really
does give you the best chance to
stay secure.

You don’t need an account or
even a name to start chatting; you
simply share your public key with
your contact. There’s a DNS search
function if you need to find people
through the internet, and after both

of you have accepted each other as
a contact, communication is just as
you’d expect. Voice, video and
binary exchange is also supported
and works well. Assuming you can
trust its developers and their source
code, Tox is an excellent option for
those of us who value our privacy.

uTox 0.3.2
Secure video and messaging

PROJECT WEBSITE
https://aur4.archlinux.org/inox.git

PROJECT WEBSITE
http://utox.org

“Tox is an excellent option for those
of us who value our privacy.”

“An excellent browser without any
nefarious spying potential.”

LV018 070 Fosspicks.indd 74 02/07/2015 20:42

FOSSPICKS

www.linuxvoice.com 75

https://launchpad.net/pybik/

Even in the pantheon of
famous bedroom games
programmers from the

1980s, there are few to compete
with Geoff Crammond. With
1983’s Aviator, he was one of the
first to master vector graphics,
creating a new realm of
mathematical complexity while
the majority of his peers were still
pushing pixels.

Using vectors enables the
screen to represent the player’s
eye view, and his early
masterpiece, 1984’s Revs, put the
player directly behind the steering
wheel of a Formula Three racing
car. This was revolutionary for
home computers, and his
obsession with racing eventually
led him to create the hugely
successful F1GP franchise.

Crammond created a couple of
other classics that weren’t
shackled to the realism of
simulation. Stunt Car Racer is one;
but the one that completely
defies genre or definition is The
Sentinel, from 1986. This has
been recreated as Free Sentinel
GL in glorious OpenGL by Markus-
Hermann Koch, using textures
from smartphone photos and
taking less than a month to

complete in April 2015. The game is
a series of procedurally generated
three dimensional landscapes from
which your avatar has to escape.
The floor of each landscape is a
chequerboard of squares arranged
at different heights, littered with
trees and summits.

At the highest point stands the
sentinel, a sinister force that looks a
little like Supreme Chancellor
Palpatine. The sentinel looks in one
direction with a narrow field of view,
and if it spies the platform on which
your avatar is standing, or a boulder
(which you can generate after
absorbing the energy of two trees),
the sentinel starts absorbing your
energy. Every few seconds, the
sentinel moves its gaze a few more
degrees in one direction.

Anger is an energy
Energy is your life force, and you
accumulate it by absorbing the
trees when you can see the squares
they’re standing on. Run out of
energy and you die. You move by
transferring your avatar to any
square you can see, and you slowly
climb from your starting position by
first surveying your surroundings
and absorbing any trees, and then
placing a boulder or two for your

new avatar to start on. Only when
you’re above the sentinel’s square
can you absorb it and transfer to
its location, completing the level.

What makes the game so
compelling is the malevolent
presence of the sentinel. It’s
always turning and always
looking. In later levels, its joined
by one or more lower lieutenants,
or meanies that attempt to suck
your energy when the sentinel
can only see part of you. Coming
up with a strategy to move
across and up a landscape while
remaining out of sight is hugely
challenging, and we’re overjoyed
to see Geoff Crammond’s classic
brought into the 21st Century.

FOSSPICKS Old Games

Currently only available
as source code,
Free Sentinel GL takes
around 45 minutes to
build. The only
prerequisite is Qt 5.4.

Free Sentinel GL

PROJECT WEBSITE
http://tinyurl.com/p4jtpde

Update of an 1980s classic

How to play

 Use your mouse to look around and
point your cursor at a square with a tree/
mushroom/monolith (this depends on planet
type). Press A to absorb its energy.

1 Decide on where you want to climb, point the
cursor at a blank square and place one or
more boulders by pressing B. Create a new
avatar by pressing R.

2 Transfer to the new avatar by pressing Q and
quickly turn around with U and re-absorb your
old avatar. Now make your way to the highest
point and absorb the sentinel.

3

LV018 070 Fosspicks.indd 75 02/07/2015 20:42

LV018 076 Ad Code Club.indd 76 03/07/2015 12:28

TUTORIALS INTRO

www.linuxvoice.com 77

PROGRAMMING

Dip your toe into a pool full of Linux knowledge with eight
tutorials lovingly crafted to expand your Linux consciousness

TUTORIALS

Ben Everard
is dreaming of a freer world.

This month, I took a look at Atom,
a new text editor from GitHub.
It’s just one in a long line of open

source releases from major tech
companies in 2015 including big
released from Microsoft (.Net) and
Apple (Swift). These three releases, you
may note, are all bits of code that target
programmers.

Sysadmins’ distaste for existing
proprietary solutions forced many
server rooms to move over to open
source software in the late 90s and
early 2000s, and these days, most new
server rooms are completely open
source. Since then, we’ve seen some
smaller areas of software go open
source: most web browsers have been
based on open source code since the
mid 2000s, and most smartphones
have been based on open source since
the early 2010s. While these have been
important precedents, they’ve been
driven by the quality of the products on
offer, not a desire for software freedom.

If developers’ pressure to use open
source products can force behemoths
like Apple and Microsoft to release their
code, then users can force other
companies to go open if we act
together. We just need to speak out
with one voice. If companies want our
business, they need to provide us with
the code.
ben@linuxvoice.com

Ben Everard fulfils a
boyhood dream of making
a computer walks. With
an Arduino, a chassis and
some code, you can too!

In this issue…

Need a high performance
web server? Ditch Apache
and use Nginx instead. Get
started wit Marco Fioretti’s
detailed guide.

Create a powerful web
platform the easy way.
Marco Fioretti takes you
through the basics of
Drupal.

C
100

The language of the kernel
holds a special place in the

heart of many Linux users, but its
association with Unix goes back
much further. The history of the
language is inextricably linked
with the history of Unix. It may not
be as popular as it once was, but
for low-level programming, there’s
no better option.

Objects
104

A computer programming
technique invented by a

bunch of psychologists may
sound like a recipe for disaster,
but when used properly, objects
can make code easier to read,
easier to maintain and easier to
share. Perhaps those head-
shrinkers can come up with the
odd good idea after all.

Scripts
106

Shell scripts are usually
only designed to work on

Linux. Some people design them
to run on other Unixes as well, but
not many people expect more than
that. It needn’t be this way. Follow
us down the road to cross-
platform utopia as we write one
script that runs successfully on
both Linux and Windows.

Macros in Calc
Build a game in a
spreadsheet and pretend
that you’re working. Just
don’t blame Ben Everard if
you get caught.

Robots that walk

96

Two-factor auth
Graham Morrison doesn’t
trust anyone, and neither
should you. Get double
protection on your sever
with FreeOTP.

Pi input
The world can be your
input device. Les Pounder
creates a custom interface
with the contents of an arts
and crafts box.

78 80

Nginx

88

Drupal CMS

92

84

LV018 077 Tutorials Intro.indd 77 03/07/2015 13:35

TUTORIAL TWO-FACTOR AUTHENTICATION

www.linuxvoice.com

WHY DO THIS?
• Add two-factor

authentication to SSH
• Instantly make your

system secure
• Then start using it on

other sites

Passwords are intrinsically insecure. Not only
are the vast majority far too simple, making
them easy to brute-force or guess, they’re easy

to copy and steal. One excellent solution is two-factor
authentication. This provides an additional security
check, meaning that any intruder will need to break
both to get access. Banks commonly use two-factor
authentication, asking you for both an item of
personal information and a pin from a digital key.
Google too has long taken two-factor authentication
seriously, and you’ve been able to log in to many of its

GOOGLE AUTHENTICATOR:
EASY TWO-FACTOR SSH LOGINS
Passwords are never enough. But there’s an easy way to super-
secure your systems with a little hacking and a mobile app.

 TUTORIAL

78

GRAHAM MORRISON

1 Install the authenticator
We’re going to install a PAM module on the machine
you want to protect. PAM, Pluggable Authentication
Modules, is responsible for granting and denying
access to your system. It’s used by almost everything,
including your login manager and SSH, and these
modules can enable extra security such as fingerprint
scanners or extra passwords. They need to be
installed and configured before they become effective,
so that’s what we’re going to do first.

On a Debian-based system, like Raspbian or
Ubuntu, you can install Google Authenticator by typing
sudo apt-get install libpam-google-authenticator.
The authenticator will never connect to anything
directly; instead it shares a common key that
generates a secret value against the current time. For
that reason, it’s also important that any devices you
use have clocks that are reasonably synchronised, so
you might want to look into enabling NTP (Network
Time Protocol) on your distribution too.

Step by step: Install and configure Google Authenticator
2 Configure PAM

With the new module installed, we now need to tell
both PAM and SSH to use it. If you’re doing this
through SSH, don’t allow that connection to quit. You’ll
be able to make all the changes needed and even
restart the SSH service without losing this connection
and it will continue to work in the state you had before
making any changes. This is important, especially if
you’re working on a remote server, because it’s the
only way you’ll be able to fix something if it goes
wrong – you don’t want to be left unable to log in. To
add the module to SSH’s PAM configuration, type
sudo nano /etc/pam.d/sshd and add the following to
the bottom of the file:
auth required pam_google_authenticator.so

All this line is basically saying is that the Google
Authenticator module will become a requirement for
all successful logins through SSH. By making this
module required, rather than sufficient, we’re saying
the user needs to satisfy this requirement.

services this way since 2010. The power behind
Google’s authentication was the appropriately named
Google Authenticator, a project that Google open
sourced and subsequently abandoned. But like any
open source project worth its salt, Google
Authenticator lives on (thanks Red Hat!). We’re going
to use it to secure SSH, the essential remote terminal
that runs on everything from a Raspberry Pi to a
server. It’s often the only service you might run that’s
visible from the internet, making this additional
authentication an essential upgrade.

LV018 078 Tutorial FreeOTP.indd 78 02/07/2015 20:44

TWO-FACTOR AUTHENTICATION TUTORIAL

www.linuxvoice.com 79

6 Login with FreeOTP
Don’t close the original SSH connection yet. We need
to make sure the new connection regime is going to
work first. Open a new terminal and SSH to your
server normally. You’ll first be asked for your regular
SSH password.

After entering the password successfully, you’ll be
prompted for a verification code. Pick up your phone,
launch the FreeOTP app and click on the entry for your
server. A six-digit numerical code will appear alongside
a 30-second timer to indicate how long this code will
remain valid. Enter this code into the SSH terminal
and, with a bit of luck, you should find yourself
connected. If not, refresh the token and make sure the
times and dates on both your phone and computer
are correct. Before you close the SSH connection,
make a note of the scratch codes – ideally by printing
them out. They’re also saved on the server in the
~/.google_authenticator file, just in case.

5 Install the app
After Google moved to proprietary development, the
community created an open source app that could be
used in its place. The result is FreeOTP, which is
compatible with both the TOTP or HOTP protocols.
TOTP and HOTP are used by many different sites and
systems and the app can manage all of these
credentials and provide authentication tokens for each
connection. Before this will work, we need to add the
key that we generated previously, and the easiest way
to do this is to launch the app, click on the QR icon in
the top border and point your device’s camera at the
screen. The secret key should be immediately added
and listed in the app.

3 Configure SSH
We now need to make a similar change to the SSH
configuration. Save and close the edited PAM
configuration file and type the following to open the
configuration file for the SSH daemon:
sudo nano /etc/ssh/sshd_config

Search for a line that says ChallengeResponse
Authentication no and change the no to yes.
ChallengeResponse is an additional authentication
system where the valid answer is authenticated by an
external system. For our configuration, this is going
to be the Google Authenticator module we’ve loaded
into PAM. Save the config file and restart SSH. On an
older Debian system or a Raspberry Pi, you can do
this by typing sudo service ssh restart. On everything
else, this can be done through systemd by typing sudo
systemctl reload sshd.

4 Run Google Authenticator
We’re now going to run Google Authenticator to
generate the keys that are going to be needed by the
app so that both the PAM module and the app that
runs on your phone can be synchronised and generate
working authentication. This needs to be done from
the user account you’re going to use to connect via
SSH, and you’ll need to do this for any other users who
may want to connect to. From the command prompt,
type google-authenticator. The first thing you’ll see is
that the terminal is filled with a large QR code. This is
just a way to transfer the secret key to the app you’ll
install on your phone. When the Android app has the
key it will be able to generate working tokens. Finally,
answer ‘Y’ to restrict multiple uses of the same
authentication token, to keep the time limit at 30
seconds and to limit login attempts to three.

LV018 078 Tutorial FreeOTP.indd 79 02/07/2015 20:44

TUTORIAL EDUCATION

www.linuxvoice.com

Space… the final frontier. These are the voyages
of the USS Raspberry Pi. Right now the folks at
the Raspberry Pi Foundation has gone space

crazy with its AstroPi Sense HAT. They are sending
two of these boards, along with two of the Raspberry
Pi Model B+, up to the International Space Station
where European Space Agency (ESA) astronaut Tim
Peake will conduct experiments written by children in
the United Kingdom.

But how can we fuel children's interest for space?
Typically in class we would use a wall board full of
pictures and information that children curate and build
as a class project, but what if we made it interactive
with videos, audio and images? Using a Raspberry
Pi and some cost-effective tinkering we can make
our very own wall board interface that uses content
from ESA and NASA to engage pupils. We will use
components such as wires, paperclips and foil to
create a low-cost circuit that can be easily removed
ready for the next class project. This project is not
limited to space; it can be themed to meet the needs
of your class projects, perhaps even demonstrate the
components of a computer using a similar style wall
interface. You can see a video demo of our project at
http://bit.ly/LV18-AstroPlayVideo.

Setting up the user interface
Our interface for this project is a playmat that has
three objects to interact with: the Earth, the
International Space Station and the planet Mars. Each
of these objects is constructed from coloured card.
On to each of our objects we need to attach a
paperclip; this will fit in a discreet manner and provide

an electrically conductive contact on to which we can
attach a female-to-female jumper cable. So at one end
of each object we have the paperclip, and at the other
end we attach the female connection to a GPIO
(General Purpose Input Output) pin. In this tutorial we
have used pins 14,15 and 18 (Broadcom pin layout). It
is advised that any connections to the GPIO should be
made while the power is off, as a short circuit, where
pins are connected incorrectly, could cause your Pi to
reboot or as a worst case scenario it could damage
the pins of your Pi. The paperclip for each object
should be easy to reach and not obscured by layers of
card or plastic, as this will act as an insulator and
prevent a clean connection.

With our planets and space station built and
connected to the GPIO our attention shifts to the
rocket that will boldly take us on our journey to the
stars. The rocket is constructed using card and glue
and uses the same paperclip and female-to-female
header wire as our objects, but it's connected to a
Ground pin on the GPIO. In order to increase our
chances of making a good contact we stuck a strip
of aluminium foil and ensured that the paperclip and
the foil have good contact. We used a few blobs of
blutack to help position the strip correctly.

Setting up the software
For this project we have used the very latest Raspbian
image, dated 5-5-2015. This comes with the
improvements to the user interface, such as a Wi-Fi
applet in the taskbar and volume control and output
selection. It also includes Pygame for Python 3,
enabling us to move away from Python 2 and move
forward with Python 3.

Connecting a paperclip to
the female jumper cable is
easy – they simply push on
with a gentle click.

Our playmat depicts the adventures to be found in space
and costs less than £10 to build.

ASTROPLAY – BUILD A CUSTOM
INTERFACE
Forget swishy Minority Report gestures – create your own
interface to the Raspberry Pi using cardboard, glue and paper clips.

 TUTORIAL

LES POUNDER

80

WHY DO THIS?
• Learn about new types

of inputs
• Build your own interface

TOOLS REQUIRED
• A Raspberry Pi Model Pi

2 or B+
• Raspbian operating

system
• 4 x paperclips
• 4 x male to female

jumper cable
• 4 x female to female

jumper cable
• Arts and crafts

materials
• Tin foil
• Blutack/glue

LV018 080 Tutorial Education.indd 80 02/07/2015 20:46

EDUCATION TUTORIAL

www.linuxvoice.com 81

The software for this project is mainly a Python 3
script that will constantly look for input via the
physical hardware, and when triggered it will play a
media file using the Pygame library. To write our
Python code we shall use the Idle editor, but we will
need to use it with root access, as only root can use
the GPIO pins of the Raspberry Pi. To open Idle with
these powers you will need to open a terminal; you
can find the icon for which in the taskbar at the
top-left of the screen for versions of the Raspbian
distribution from December 2014 onwards.

With the terminal open type in the following
command and press Enter at the end of the line. It
will launch Idle 3, the Python 3 editor, and put the
command into background freeing up the terminal for
further use, if we wish.
sudo idle3 &

With Idle open we are immediately presented with
a Python shell. The shell is where logic and code can
be tested in an interactive environment that provides
an immediate response. For this project we do not
need to use the shell, and we should click on File >
New Window to open an editor window. In the editor
window we can create large projects, but in order to
run them we first need to save them. As good practice
you should instantly save your work as space.py by
clicking on File and Save. With your work saved you're
free to run your code when complete by clicking on
Run > Run Module from the menu. At this stage in
the project we do not need to run the code, but it is
advisable to save your work often to minimise any
data loss.
import pygame
import os, sys
from time import sleep
import RPi.GPIO as GPIO

We start the code by importing a number of
libraries. Libraries are collections of pre-written code
that help you develop larger projects in an easy-to-use
manner. Python comes with a number of libraries
installed, but to install more libraries you can use
Pip, the Python package manager. In this project
we import the Pygame library to handle our media
playback, which is much simpler than writing our
own code to handle this activity. We then import the
os and sys libraries to enable our Python script to
interact with the underlying Linux OS. We then import

the sleep function from the time library, and lastly
we import the RPi.GPIO library and rename it to the
easier to use GPIO.
GPIO.setmode(GPIO.BCM)
GPIO.setup(14, GPIO.IN, GPIO.PUD_UP)
GPIO.setup(15, GPIO.IN, GPIO.PUD_UP)
GPIO.setup(18, GPIO.IN, GPIO.PUD_UP)

Our next block of code uses the GPIO library and
sets up the GPIO pins to use the Broadcom pin
mapping (BCM); this is the Raspberry Pi Foundation's
supported configuration. We then set up three GPIO
pins (14,15 and 18) to be inputs and set their state to
be pulled high, with power flowing to the pin, so when
we later briefly touch this pin with a Ground pin, our
rocket, it will pull the pin low, changing its state and
triggering the media to play.
def player():
 os.system('omxplayer -o local Pioneering.mp4')

We next define a function that will handle the
playback of video media in this project. We give the
function a name for reference, and we can trigger
the function to run by calling that name. Our function
has only one line, and uses the OS library to make a
system call to the Raspbian OS. It will ask to open
the Omxplayer video player application and open the
Pioneering.mp4 file.
def picture(img,w,h):
 pic = pygame.image.load(img)
 background = (255, 64, 64)
 screen = pygame.display.set_mode((w,h))

NASA provides its
resources for free under
the standard YouTube
licence. You can download
their videos using
youtube-dl, a terminal tool
in Raspbian.

Pygame

Pygame is a library of modules that were designed to enable
Python to be used in the creation of video games. It was first
released in 2000 by Pete Shinners and was written to replace
PySDL, a previous game creation library written by Shinners.

Pygame provides a rich resource that coders can utilise
in their games. The library is multi-platform, so it can be
used on many different operating systems. Pygame handles
media such as video, audio and images. It can also capture
user input in the form of keyboard, mouse and joystick input.
But where Pygame excels is in the way that it is easy to

use but jam-packed full of functionality. Take, for example,
constructing the visuals for a game. In this tutorial we used
blitting to rapidly update the screen. This is a common
method used in 2D platforms and fast-paced shooter games
where we have a large number of identical enemy sprites on
screen. Pygame has grown to incorporate the tools that game
designers need for their work and now we see excellent games
such as Frets on Fire (http://fretsonfire.sourceforge.net),
which uses Pygame to create a Guitar Hero-style game played
with a conventional computer keyboard.

LV018 080 Tutorial Education.indd 81 02/07/2015 20:46

TUTORIAL EDUCATION

www.linuxvoice.com82

 screen.fill((background))
 screen.blit(pic,(0,0))
 pygame.display.flip()
 sleep(10)
 pygame.display.quit()
 pygame.quit()

Our second function handles displaying images on
the screen. Unlike our first function, this has a number
of arguments inside of its brackets. These arguments
are used to pass information to the function; in this
case we pass the filename of the image via img and
the width and height of the image via w and h. Moving
inside the function we next create a variable into
which we store the output from loading the image
into pygame. Next we set the background colour
of the screen using three values of 0 to 255 each.
These values represent the red, green and blue mix
of colours, so 255,0,0 would be a bright red. We use a
mix of full red and 25% of green and blue respectively
to produce a subtle shade of raspberry. Next we
create a variable called screen and use that to store
the display properties of our screen (in this case, the
resolution of the image that we will be displaying).
We then use the screen variable along with the fill
function to change the background colour of the
window. It's unlikely that we will ever see this on
screen, but it is there to hide any image display errors

that we may come across. To update the screen
we first have to load the data into memory, and for
that we use a blitting technique to rapidly update
the contents of memory with the image data. This
has been used in the games industry to update the
screen for shoot 'em ups such as R-Type and Midnight
Resistance. We then use the flip function to complete
the screen update before waiting 10 seconds and
then close the window and our pygame session is
removed from memory.
def picture_with_audio(img,w,h,audio):
 pygame.mixer.init()
 pygame.font.init()
 pygame.mixer.music.load(audio)
 pygame.mixer.music.play(1)
 screen = pygame.display.set_mode((w,h))
 pic = pygame.image.load(img).convert()
 background = (0, 0, 0)
 screen.fill((background))
 myfont = pygame.font.Font(None, 15)

Our third and final function is an extension of the
previous picture function, in that we now add an
audio argument to enable audio playback. In order to
playback audio with Pygame we first must initialise
the audio mixer. Our next line is similar to initialising
the audio mixer, but this time we initialise the use of
fonts. With the audio mixer initialised we now load the
audio file, which has been passed as an argument via
the function. With the audio ready to play we trigger
it to play once. We repeat the screen variable we saw
in the picture function and use it once again to set up
the screen to match the size of the image used. We
then load the image ready for use and then set the
background colour to 0,0,0, which represents black.

With the screen set up we move to the pygame.font
functions. We instruct Pygame to use its default font
and set the size to 15pt.
 info1 = myfont.render("The International Space Station (ISS)
is a space station,",1,(0,255,0))

We next create six variables and into each of them
we store text taken from the Wikipedia entry for the
International Space Station. Again we use the RGB
colour values to set the colour of the first five entries
to 0,255,0 which is bright green; our sixth variable is
used to store the source of the information and is
coloured blue 0,0,255 to highlight this.
 screen.blit(info1, (0,0))
 screen.blit(info2, (0,20))
 screen.blit(info3, (0,40))

We then use the blit function to update the
information to memory, which we do for each of the
six lines of information. We start at the top-left of the
screen (0,0) and then move down 20 lines (0,20) each
time to provide sufficient spacing.
 pygame.display.flip()
 sleep(10)
 screen.blit(pic,(0,0))
 pygame.display.flip()

We repeat the use of the flip function to update the
contents of the screen before waiting 10 seconds

Our rocket is really
a hidden link to the
Raspberry Pi GPIO ground
pin, which when connected
to a pin that is high will
pull that pin low, changing
its state.

Pygame can render text
and images into a window
on the desktop. This
window can be any size
and scaled to meet the
needs of the application.

LV018 080 Tutorial Education.indd 82 02/07/2015 20:46

EDUCATION TUTORIAL

www.linuxvoice.com 83

Les Pounder divides his time between tinkering with
hardware and travelling the United Kingdom training teachers
in the new IT curriculum.

to enable the user to read the screen. When the 10
seconds is up the screen is updated to show a picture
of the ISS in orbit above Earth.
 sleep(5)
 pygame.display.quit()
 pygame.mixer.music.stop()

We again display the image for a short length of
time before quitting the Pygame display, effectively
closing the screen, and we then stop the playback of
the audio. With our functions defined we now move
on to the main body of code that will control the flow
of the project.
while True:
 if GPIO.input(14) == False:
 player()
 elif GPIO.input(15) == False:
 print("ISS Chosen")
 picture_with_audio('./iss.jpg',640,421,'./eva.mp3')
 elif GPIO.input(18) == False:
 picture('./mars.jpg', 1280,720)
pygame.quit()

We use a while True loop to constantly run an if..
elseif...else conditional statement, which looks for
a change in state on one of our three inputs. Input
14 is attached to planet Earth and has its GPIO pin
pulled high, meaning that it has been turned on. If we
touch the rocket, which is connected to a ground pin,
onto any of the inputs, their state will change from
high to low and will register False. If that is the case
then the corresponding pin will trigger the execution
of one of the functions that we created earlier. So for
planet Earth it will trigger the player() function and
play a video of NASA's quest to explore space. The ISS
connected to pin 15 will play an audio excerpt from
the station, along with some Wikipedia text describing
the purpose of the station, followed by a picture of the

ISS. Triggering the Mars object will set pin 18 low and
display an image of NASA's Mars project. The very
final line is used to quit the Pygame library if needed.

With the code complete save it as space.py. Ensure
that all the media referenced in your code is in the
same directory as where you save this code. If you've
downloaded the code from our GitHub repository then
this will already be the case. If you would like to source
your own media, ensure that you update the files
referenced in this tutorial with your own.

With the code saved and your AstroPlay mat
constructed, click on Run > Run Module to start your
project. Once ready, land your rocket on to one of the
destinations and learn more about NASA and their
space missions.

So what have we created?
We have built an interactive wall board that engages
with children and enables them to illustrate their class
projects in new and inventive ways. By completing
this project the class have learned.

 How to connect components to the Pi's GPIO pins.
 How to modularise an abstract by de-constructing
the project into stages.
 How to use a loop.
 How to use conditional statements and
comparisons.
 How to import extra libraries of code.
 How to create functions with arguments.
 How to use Pygame to handle media.
 How to use the OS library to execute shell
applications.
All of the code for this project along with the media

files and a high-resolution circuit diagram can be
found at our GitHub repository: https://github.com/
lesp/LV_Issue18_Education and you can download
the project as a Zip file from https://github.com/lesp/
LV_Issue18_Education/archive/master.zip.

Adding extra libraries

Python comes with a number of libraries installed, but what
if the library that you want to install is not among them?
Well Python has its own software package manager in the
form of Pip.

Pip handles the installation of libraries and any
dependencies that they may have. Pip for Python 2 can be
installed via the terminal by typing:
sudo apt-get install python-pip

You can then search for libraries by using the syntax:
sudo pip search NAME OF LIBRARY
sudo pip install NAME OF LIBRARY

Pip comes pre-installed with Python 3 onwards and can
be used from the terminal as follows:
sudo pip3 search NAME OF LIBRARY
sudo pip3 install NAME OF LIBRARY

Also note that pip3 can also be referred to as pip3.2 on
certain operating systems so a top tip is to type Pip into
your terminal and press the Tab key to show the versions of
Pip installed for your system.

Not every library that is available in Python 2 has been
ported to 3, so if your project depends on a key library then
you may have to base your project on Python 2 and perhaps
make a request to the library owner to update their code for
Python 3.

Our planets, rocket and
space station attach to the
GPIO as per this diagram, a
larger version of which can
be downloaded from our
resources.

Ground: this attaches
to your rocket

Input 14: connects to
planet Earth

Input 15: connects to
the ISS

Input 18: connects to
Mars

LV018 080 Tutorial Education.indd 83 02/07/2015 20:46

TUTORIAL LIBREOFFICE MACROS

www.linuxvoice.com

There are precisely two reasons for using
LibreOffice Calc to write a game: to learn
LibreOffice BASIC, or to hide the fact that you’re

playing games when you should be working. Both are
perfectly good reasons, and if you’re an accountant
who spends all your day elbows-deep in spreadsheets,
we won’t judge you for taking a little time off.

Conway’s Game Of Life isn’t like other games.
There’s no winning or losing. There’s not really any
playing, just a series of shapes shifting about on the
screen, but despite that, it’s incredibly addictive.

The game takes place on a square grid where each
square can either be empty or alive. At the start of
the game, the player sets any squares they want to
be alive, and then the game progresses through a
series of iterations where the state of the squares are
determined by the state of its neighbours (vertical,
horizontal and diagonal) in the previous iteration:

 If a square has fewer than two alive neighbours, it
dies of loneliness.

 If a square has
two or three alive
neighbours, then it
stays alive if it’s
currently alive.

 If a square has three alive neighbours and is empty,
then it becomes alive due to reproduction.
 If a square has more than three alive neighbours
then it dies due to overcrowding.
By applying these three simple rules, surprisingly

complex patterns emerge over time. It’s even been
shown that, with a very complex starting pattern, you
can build a Turing-complete computer in Conway’s
Game of Life.

The game first appeared in the October 1970 issue
of Scientific American in the ‘Mathematical Games’
Column. It grabbed the attention of mathematically
minded scientists and many people in the new field
of computing. The computers of the time were
the ideal test-bed for the game. It’s fairly simple
from a computational point of view, so can run in
environments with limited resources, and it provides
interesting graphics even on systems with very limited
output capabilities.

Make macros fun
The very aspects that drew programmers to the game
of life in the 70s make it attractive to macro
programmers today. The grid-based layout is ideal for
spreadsheets, and macros aren’t the most efficient
programming languages, so the simplicity works well.

You can write LibreOffice macros in a variety of
languages including JavaScript and Python. However,
BASIC is the best documented and easiest to get
started with. It’s very heavily based on Visual Basic for
Applications (VBA), the macro language for Microsoft
Office; however, the links between the office suite and
the programming language are a little different, so
VBA macros usually won’t run without modification.

Macros can run in all the programs in the LibreOffice
suite, but we’ve found that they’re usually most
useful in spreadsheets, so we’ll be using Calc for this
tutorial. Let’s start in the normal place with a simple
hello world. Create a new macro by going to Tools
> Macros > Organise Macros. This will open a new
dialog where you need to expand the list items for My
Macros, then click on Standard and press the New
button. This will create a new macro called Macro1

CREATE A GAME WITH
LIBREOFFICE MACROS
When everyone in the office thinks you’re sorting out the accounts,
you can actually be playing games. Games 1, Accounts 0!

 TUTORIAL

84

WHY DO THIS?
• Master the office suite

and make it do your
bidding.

• Discover the weird world
of cellular automaton.

• Play games while
pretending to work.

BEN EVERARD

The LibreOffice macro development environment has
many more features, including breakpoints and the ability
to watch values as the code executes.

Other Game of Life implementations

Programming the Game of Life in LibreOffice is a great way
of learning about macros, but it’s not the most efficient
way of running the game. In fact it’s a very slow way to run
the Game of Life. For basic exploration, the easiest way of
getting started is with the JavaScript implementation at
pmav.eu/stuff/javascript-game-of-life-v3.1.1. This runs
much faster than our implementation, is easier to adjust,
and comes with some pre-set patterns.

If you want to explore the Game of Life (and the general
area of cellular automata, which are systems like the Game
of Life but with different rules), then Golly (http://golly.
sourceforge.net) is a far more capable program. It runs
quickly, and is more powerful than the JavaScript version,
though at the same time, it’s a bit more complex to use.

“You can write LibreOffice
macros is a variety of languages
including JavaScript and Python.”

LV018 084 Tutorial LibreOffice.indd 84 02/07/2015 20:49

LIBREOFFICE MACROS TUTORIAL

www.linuxvoice.com

and open the editor where you can enter this code:
Sub Macro1
REM Hello World!
 print “Hello World”
End Sub

This will look familiar to anyone who’s used any
form of BASIC before. Lines that start with REM
are ignored by LibreOffice, so you can use them to
add comments to your code. Sub is short for Sub
Procedure and is used to group code into blocks.
When you run a particular macro, LibreOffice will
execute everything between the Sub line and End
Sub. In this case, that’s just the line with the print
statement.

Once you’ve entered this, and saved it, go back to
the main Calc window. You can run this macro by
going to Tools > Macros > Run Macros, then finding
Macro1 in the list. You should find that you get a
popup with ‘Hello World’.

Hello all the worlds
LibreOffice Basic contains most of the features you’d
expect in a programming language. In the next
example, we’ll use variables, for loops and objects.
We’ll use these to interact with the Calc spreadsheet
to display the phrase ‘hello world’ on 10 cells. In order
to do this, we to interact with Calc.

This is done by first getting the object for the first
sheet in the spreadsheet by calling ThisComponent.
Sheets(0). The object this returns has a function
called getCellByPosition(x,y) that returns an object

for the cell at the given coordinates. We can use this
to set the text in the cell with the following:
Sub Macro2
dim xSheet, i
xSheet = ThisComponent.Sheets(0)
for i = 0 to 9
 xSheet.getCellByPosition(0,i).String = “Hello World”
next I
End Sub

As you can see, the cell object has a property
named String that can be used to set the contents
of a cell. There’s also a property named Value, which
we’ll use later on to give a cell a numerical value.

If you’re familiar with spreadsheets, you may be
wondering what the point of macros is. After all, most
spreadsheets allow for quite complex functions to be
put into cells without the need for macros. Conway’s
Game of Life, however, can’t be calculated with
functions, because it requires us to calculate the next
state based on the current state, then change to the
next state. Spreadsheet functions alone can’t handle
this form of iteration. Macros, however, have no
problem with it. To code this game, we’ll use two sets
of for loops. The first will populate an array with the
values of the neighbours, and the second will rebuild
the grid with the new values. The basic structure of
our code is:
sub gameoflife
dim xSize, ySize, total, xSheet
xSize = 50
ySize = 50

85

Drawing pretty patterns Some starting grids have unusual properties

Patterns where every live
cell has two or three live
neighbours will stay exactly
the same through multiple
generations.

Blinkers are patterns that
alternate between two or more
states, but will always return to
their initial state at some point.

These patterns are known as
gliders, and they move through
the grid.

LV018 084 Tutorial LibreOffice.indd 85 02/07/2015 20:49

TUTORIAL LIBREOFFICE MACROS

www.linuxvoice.com86

dim outArray(xSize, ySize)

total = 0
xSheet = ThisComponent.Sheets(0)

for x = 2 to xSize
 for y = 2 to ySize
 REM [1] calculate outArray(x, y) depending on neighbours
 next y
next x

For x = 2 to xSize
 for y = 2 to ySize
 xSheet.getCellByPosition(x,y).value = outArray(x,y)
 next y
next x

This creates a 48 by 48 grid that starts at the cell
B2 (leaving a two-cell perimeter to enable us to add
values around the grid without skewing the results).
This is a bit wasteful of memory, since the array
outArray is a little bigger than needed, but it leaves the
code simpler and less prone to mistakes.

To finish the program, we need some code to
replace the REM [1] line:
total = xSheet.getCellByPosition(x-1,y).value + xSheet.
getCellByPosition(x-1,y-1).value + xSheet.getCellByPosition(x-
1,y+1).value + xSheet.getCellByPosition(x,y-1).value + xSheet.
getCellByPosition(x,y+1).value + xSheet.
getCellByPosition(x+1,y+1).value + xSheet.
getCellByPosition(x+1,y).value + xSheet.
getCellByPosition(x+1,y-1).value

if total < 2 then
 outArray(x,y) = 0
endif

if total = 2 and xSheet.getCellByPosition(x,y).value = 1 then
 outArray(x,y) = 1
endif

if total = 3 then
 outArray(x,y) = 1
endif

if total > 3 then
 outArray(x,y) = 0
endif

This sets the value of outArray based on the rules
given at the start of this tutorial.

It’s easiest to view this if you adjust your
spreadsheet so that the first 50 columns are all quite
narrow. Once you’ve written this macro, you can enter
some 1’s into the play area (ie the square grid between
the (2,2) cell and (50,50), then run the macro. This
will run a single iteration of the game. You can run
multiple iterations to see how your life evolves. It can
be tiresome to keep running the macro like this, so
let’s make it easier to run multiple generations at once.

Time… to die
We’ve given ourselves a two-cell buffer around the
edge of the game to enable us to add some text. We
can use this to both provide details to the macro, and
add an extra bit of information. Specifically, we’ll use it
to tell the macro how many iterations of the game we
want to play, and we’ll also use it to let the macro tell
us what iteration it’s currently displaying. This is
simply a case of wrapping an extra for loop around
the above.
dim xSize, ySize, total, xSheet
xSize = 50
ySize = 50
dim outArray(xSize, ySize)

Uno A unified interface for many languages

In the macros we’ve looked at in this tutorial, we’ve
interacted with Calc using the properties of objects, but
that’s not the only way. Uno, or Universal Network Objects,
is a language-agnostic way of interacting with the office
suite. There are bindings for Python, JavaScript and many
other languages as well as BASIC. Uno works by creating
a service that can then be used to execute actions. As a
simple example, here’s the 10 times hello world from the
main tutorial using Uno. This macro is a little different
because it enters Hello World in the 10 cells below the
currently selected cell, not a pre-determined range.
sub test3
dim document , dispatcher, i
dim args1(0) as new com.sun.star.beans.PropertyValue
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService(“com.sun.star.frame.
DispatchHelper”)
for i = 1 to 10
 args1(0).Name = “StringName”
 args1(0).Value =”Hello World”
 dispatcher.executeDispatch(document,”.uno:EnterString”,””, 0,
args1())
 dispatcher.executeDispatch(document,”.uno:JumpToNextCell”,””,
0, Array())
next I
end sub

By adjusting the layout of
your spreadsheet, you can
make it much easier to
watch the game unfold.

LV018 084 Tutorial LibreOffice.indd 86 02/07/2015 20:49

LIBREOFFICE MACROS TUTORIAL

www.linuxvoice.com 87

total = 0
xSheet = ThisComponent.Sheets(0)
for z = 0 to xSheet.getCellByPosition(1,0).value
 xSheet.getCellByPosition(3,0).value = z
 REM Both of the for loops from previous code section
next z

This will now run the for as many times as you
enter into cell B1, and output the current iteration in
cell D1. We haven’t put a delay or any form of timer
in there, so this will run as fast as it can. However,
LibreOffice macros aren’t particularly efficient, so you
shouldn’t find this is a problem.

Looks are everything
If you’ve been following along, you’ll find that you now
have a grid of 1’s and 0’s that move about. This does
show what’s going on, but it’s not very easy to watch
because our eyes don’t naturally see groups of 1’s and
0’s. We can solve this problem without any changes to
the macro at all by using the conditional formatting
feature in LibreOffice.

To use this, highlight the region in which the Game
of Life is playing, and go to Format > Conditional
Formatting > Add. This will open a dialog box in which
you can adjust the conditional formatting rules. You’ll
need to create two. First set Condition 1 to “Cell Value
is equal to 0”, then click on the style drop-down and
scroll to new style, and in the new dialog set the
background colour to white. Once you’ve set this, click
on Add to create a new rule, and set the condition to
“Cell Value is equal to 1”. This time, set the background
colour to black.

When you run the macro now, you should find it
much easier to see what’s going on. However, there’s
a problem. The performance, which was a little slow
before, will now have ground to a halt. This is because
LibreOffice has to calculate the conditional format for
every cell as it updates. However, most of the time,
only a few of the cells will actually change value. We
can optimise our macro to only write a value to the
cell if its content actually changes.

To do this, change the contents of the second for
loop to:

if outArray(x,y) > 0 then
 if xSheet.getCellByPosition(x,y).value <> 1 then
 xSheet.getCellByPosition(x,y).value = 1
 endif
else
 if xSheet.getCellByPosition(x,y).value <> 0 then
 xSheet.getCellByPosition(x,y).value = 0
 endif
endif

This now runs better, but it’s not perfect. There’s
still a rolling shutter effect that happens as the macro
updates the screen one cell at a time rather than all
in one go. We can fix this by locking updates to the
screen while the macro is calculating the results, and
only unlocking it once everything has been calculated.
This has the double effect of both stopping the rolling-
shutter effect, and improving performance. This is
done by adding the following line immediately below
the Sub gameoflife declaration:
myDoc = ThisComponent

The locks can be applied at the start of the main for
loop by adding the following immediately below the
for z line:
myDoc.lockControllers()

myDoc.addActionLock()
The lock also needs to be removed to enable the

screen to update with the following lines immediately
before the next z line:
myDoc.removeActionLock()
myDoc.unlockControllers()

This completes our game of life, although there are
plenty of extra features you could add if you want.
Better timing control, multiple generations in a single
screen update and improved performance are all
potential enhancements.

Ben Everard is the best-selling co-author of the best-selling
Learning Python with Raspberry Pi

The Gosper glider gun is a starting pattern that will
produce gliders as it runs through the generations.

Recording macros Programming without programming

LibreOffice enables you to record macros.
That means you don’t program anything,
but start recording, perform a sequence
of actions in the office suite, then stop
recording. It will convert the series of actions
you’ve performed into a macro that you can
run again and again – at least, that’s the
idea. We’ve found that the macro recording
facility is quite poor, and the recorded macro
isn’t the same as the sequence of actions
that you performed. Usually, there are steps
missed out, which can lead to radically
different results.

We shouldn’t complain too much
about this, because the ability to record
macros is disabled by default and listed as

experimental in the options dialog. Despite
its poor accuracy, the ability to record
macros can be useful. For example, if you
want to know how to perform a particular
action using a macro, and can’t find out how
to do it, you can record yourself doing it, and
then take a look at the macro that’s produced
(which will be in LibreOffice Basic).

If you want to make use of this, you’ll
first need to enable support. This is done
by opening the options dialog by going to
Tools > Options then going to LibreOffice >
Advanced and checking the Enable Macro
Recording check box. Once you’ve done this,
you’ll see a Record Macro option in the Tools
> Macros menu.

LV018 084 Tutorial LibreOffice.indd 87 02/07/2015 20:49

TUTORIAL NGINX

www.linuxvoice.com

Nginx is the second most used open source
HTTP server after Apache. It can wear several
hats: for example, Nginx can serve as an

email proxy server, but we only cover its HTTP usage
here. The main reason for using Nginx rather than
Apache is encapsulated in this quote by Chris Lea:
“Apache is like Microsoft Word: it has a million options
but you only need six. Nginx does those six things, and
it does five of them 50 times faster than Apache”.

Nginx uses less disk space and memory than
Apache, and is appreciably faster (some say up
to 50%) both when serving static content and in
several, common CMS scenarios. Besides, Nginx
performances, from speed to memory consumption,
change much less than those of Apache when the
load increases. All this makes Nginx a great choice

wherever hardware resources
are scarce, from embedded
systems to entry-level Virtual
Private Servers, especially if
the HTTP administrator and
the webmaster(s) are the
same person. On the down

side, Nginx makes it harder than Apache to writing
third-party extensions and to shared hosting to
“customers” who want to configure and run their own
websites all by themselves.

Under the hood of Nginx
If HTTP servers were restaurants, Apache would be a
place where each party (browser) gets not only its
own reserved table (connection) but also a reserved
waiter (process), who cannot serve any other table
until that party leaves – even if it needs to interact
with him, as it always happens, no more than 5% of

the total time spent at the table. Wonderful customer
service for sure, but also a huge waste of resources,
that may eventually bankrupt the owner. Nginx,
instead, would be a restaurant where all waiters do
the only thing that 99% of patrons really care about:
“Just bring what I ordered, quick, then go away to earn
the rest of your salary by somebody else”.

Nginx uses four different kinds of processes: the
master one loads the configuration and starts the
other processes as needed. Two of them take care of
the on-disk Nginx cache: one just loads it at startup,
then exits; the other makes sure that the cache size
never exceeds the predefined threshold.

The Nginx “worker” processes do all the actual
HTTP work: they wait for socket events that signal
new incoming connections, or new data from already
established ones, and react accordingly, fetching the
requirement documents from disk or other servers
(more on this later), or writing logs. Just like its Apache
equivalents, an Nginx worker is a practically monolithic
software object that intrinsically consumes much
more CPU cycles and memory than the software
object representing one HTTP connection. The big
difference is that an Nginx worker operates in a non-
blocking fashion. Each single event (like “I’d also need
this other file as soon as possible, please”) from each
connection is handled by itself, as soon as it happens,
obviously taking into account the previous status of
that connection. But as soon as any event has been
processed, the worker jumps to the next one in line,
regardless of which connection it belongs to.

This event-driven architecture is the reason why
Nginx can handle a thousand simultaneous requests

SERVE WEB PAGES FASTER
WITH NGINX
Content management systems such as Drupal are great, but to
serve up the pages, you need an HTTP server.

 TUTORIAL

88

MARCO FIORETTI

WHY DO THIS?
• Improve the

performance of your
self-hosted websites

• Simple websites,
especially static copies
of closed websites, have
a simpler configuration
than Apache

Here’s how Nginx loads
configuration updates
without even restarting:
just type nginx-s at the
prompt, and a new master
will step in, its workers
gradually taking over all
the new connections.

This section of the official Nginx infographic shows all the
main, low-level components of Nginx: a master process
that coordinates everything, two cache managers (on the
left, and one or more “workers” that actually handle the
HTTP connections.

“Nginx uses less disk space
and memory than Apache,
and is appreciably faster.”

MASTER PROCESS

CM

Child Processes

Shared memory is used for cache, session persistence, rate limits, session log

Cache Manager

CL W W W W

Cache Loader Worker processes handle HTTP
and other network traffic

LV018 088 Tutorial Nginx.indd 88 02/07/2015 20:50

NGINX TUTORIAL

www.linuxvoice.com

at more or less the same speed that serves just one.
This approach also eliminates the need for context
switches. In fact, by default Nginx runs only one
worker process per CPU core, even when it has plenty
of RAM available: if it used two or more, they would
waste time jumping on and off the processor that
could be spent handling more events.

Configuration
Nginx runs following directives written in its
configuration file(s). With the exception of those that
apply to the whole server, directives are normally
partitioned in a hierarchy of logical blocks. Common
sense, and the way Nginx is packaged by various
distributions, lead to split blocks and directives across
different files, as in the example of here:

1 This is nginx.conf (the main file)
2 Yes, everything after a # is a comment
3 All server-level directives go here
4 Include mime.types;
5 Include fastcgi.conf;
6 Include sites/*.conf;

After the first three, self-explaining lines, we find
the first (meta) directive of Nginx: include just loads
and executes all the directives contained in the file, or
files, that follow it. Our sample Nginx first loads MIME
types, then FastCGI configuration, and finally website-
specific directives. In Listing 1, they will be found, one
set per domain, in the files inside the sites folder.

Let’s describe a website. An example Nginx
configuration for a website, listing 2, is shown below:

1 http {
2 gzip on;
3 server {
4 server_name *.example.com;
5 listen 443 ssl;
6 root /var/www/html/example
7 access_log /var/log/example.log;
8 location /images/ {
9 alias /var/www/html/images/;

10 gzip off;
11 error_page 404 /image_404.html;
12 access_log off;

Line 2 means that all files should be compressed
before sending them to a browser, to save bandwidth.
Each domain, or group of related subdomains, is
described in one server block.

Lines 5 to 7 tell Nginx to answer all requests for all
domains ending in example.com (www.example.com,
blog.example.com, archive.example.com, etc), using
encrypted (SSL) connections on TCP port 443 and /
var/www/html/example/ as the “home” directory
(that is, a request for the web page www.example.
com/info/contacts.html should get the file
/var/www/html/example/info/contacts.html.
Besides, Nginx should log all the visits to these
websites to /var/log/example.log.

Any time a section of a website requires custom
treatment, you can put the corresponding directives
inside a “location” block, which may itself contain
other location blocks for more specific configuration.
Line 9 means that a browser asking, for example, to
see the image www.example.com/images/logo.jpg
should not receive the file /var/www/html/example/
images/logo.jpg (even if it exists!), but the one at
/var/www/html/images/logo.jpg.

Directives defined in one block automatically apply
inside all the blocks that it contains, recursively. When
it is necessary, you can turn off this behaviour, called
“inheritance”, as you see in line 10: no compression
for anything inside the images folder, where it would
be useless because almost all graphic file formats
are already compressed. Finally, lines 11 and 12 set a
different error notice file (image_404.html) to send to
browsers that request non-existant images and turn
off logging for the images folder.

Here’s a tip: when you build your first Nginx
configuration, verify any major change you make by
running the command nginx -t, which will tell you if
you made any mistake.

Rewriting the world wide web
Continuous, ubiquitous, on-the-fly rewriting of URLs is
what makes the modern web work. Why do two
different users, or even the same user coming back

89

Most dynamic Content
Management Systems
these days, especially the
Free Software ones, use
PHP as their scripting
language. To make them
run under Nginx, you
must install the PHP-FPM
auxiliary server, which will
process all the PHP source
files and pass the result to
Nginx.

PRO TIP
There still is a lot of
(non-official!) Nginx
documentation based
on if statements. Don’t
go that route unless you
are sure there really is
no other way. Solutions
based on try_files are
almost always more
robust and better
performing.

Installation and updates/upgrades
Nginx can be installed from binary packages on all the
major Linux distributions, unless you need the most recent
version, or some non-standard module that must be
compiled from sources. Nginx configuration updates and
software upgrades are as smooth as they can get. There’s
no restart and consequent downtime; not in the usual sense
anyway. Whenever you run the nginx –s command, the
master process first tells all the active worker processes
to exit as soon as they have finished with the connections
active when the order came. Then it starts new workers to
take care of new connections, using the new configuration.
Software upgrades work in a similar way, again without
any service interruption. A new Nginx master process
starts alongside the original one, and takes all the new
connections for its own workers, until it remains the only
master running.

Requests www.example.com/contacts.php

Nginx

Fast CGI protocol

PHP-FPM servercontacts.php
source file
on server PHP interpreter

Browser

LV018 088 Tutorial Nginx.indd 89 02/07/2015 20:50

TUTORIAL NGINX

www.linuxvoice.com90

after a few days, never see exactly the same content
even if they always type or click on exactly the same
URL? Because, right behind the HTTP server that gets
that request, there’s a Content Management System
that recreates that “same” page, (potentially) every
time. All HTTP servers make CMSes work like this by
means of so-called URL-rewriting rules. The same
mechanism is used when a page, or a whole website,
is moved to some other address.

In the Apache world, the two main directives used
for rewriting are called RewriteCond and RewriteRule.
The first specifies which URLs should be rewritten;
the second describes how. Some installations of
WordPress under Apache, for example, may only work
with “rewrite rules” similar to these:
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php

The first two lines mean “do what follows only if
the requested URL does not correspond to the name
of an actual file (!-f) or folder (!-d) in the document
root”. The rewriting rule below says that the HTTP
server should call index.php (which is an executable
file), tell it which URL was requested (the REQUEST_
FILENAME variable) and pass to the browser
whatever index.php outputs as result of that call.

Rewrite, the Nginx way
Rewrite rules are needed for most real-world uses of
Nginx, both for brand-new websites, and for ones
migrating from Apache. The main tool to implement
them are the try_files and rewrite directives, but
before looking at them we need to introduce URIs. In
web lingo, a Uniform Resource Identifier is the path in
the local filesystem that corresponds to some
document accessible by browsers. A directive like
try_files $uri $uri/ index.php tells Nginx, whenever a
browser asks for the document www.example.com/
somepage and root is set as in Listing 2:

 If the file ($uri) /www/html/example/somepage
exists, send that;
 Otherwise, if the folder ($uri/) /www/html/
example/somepage/ exists, send the index file of
that folder;
 If neither a file nor a folder with that name actually
exist, redirect the request to the executable file
/www/html/example/index.php, passing it the

requested URI as an argument (we’ll see how to
“execute” PHP files under Nginx later).
An alternative (but suboptimal) way to achieve the

same result in Nginx is combining several if, set and
rewrite directives as follows:
if (!-f $request_filename) { set $check “A”;}
if (!-d $request_filename) { set $check “${check}B”; }
if ($check = “AB”) { rewrite . /index.php last; }

This weird syntax is a consequence of the limited
implementation of if in the Nginx configuration
language: you cannot nest if statements, or combine
several tests in one of them.

Where do you put rewrite rules for Nginx?
Much of Apache’s flexibility comes from its .htaccess
files. These are extra configuration files that a
webmaster, especially in shared hosting scenarios,
can place in every single folder of their own website or
websites. The two simplest uses of these files are
protection of some directories (website sections), with
dedicated passwords, and storing rewrite rules.

As far as Apache is concerned, each folder and
subfolder can have its own .htaccess file: settings are
applied in the order in which they are found, starting
from the document root of Apache itself.

Nginx cannot, unfortunately, use such a distributed
configuration. First of all, you can put files with Nginx
“server” or “location” blocks wherever you want, but
they would have to be all explicitly “included”, by name
or wildcards, in the main configuration file.

Secondly, .htaccess files are automatically found
and used by Apache as soon as a browser actually
requests anything below the folder they are in. In
other words, any webmaster working under Apache
can update his websites independently of all the
others, whenever he wants, without asking the Apache
administrator to do anything.

Nginx, instead, needs to reload its whole
configuration every time something changes. And it
will fail to reload, if even one of those files contains
even one error. This is by no means an issue, if you
happen to be the only webmaster using your own
Nginx server, since in that case you can trust all your
users (we hope so, at least). But this limitation is one
big reason why Apache is by far the first choice when
it comes to shared hosting.

When Nginx meets PHP: FASTCGI
The try_files directive and its alternatives are how
Nginx figures out which executable files should run,
and how, in order to produce certain pages, but that’s
only half of the job. The other half consists of actually
talking to those executable files, and making them run
as intended.

Back in the 90s, the main way to serve dynamic
web pages was the Common Gateway Interface
(CGI). This protocol enables an HTTP server to ask a
separate application to generate a web page on the
spot, according to data received from the browser,
and then pass the result back to the same browser.

Don’t install any PHP-
based CMS until your
Nginx and PHP-FPM
configuration has passed
the simple test described
in the tutorial: create a
test.php page that shows
the variables passed by
Nginx and load it!

PRO TIP
Before you install the
Nginx files, do yourself
a favour and carefully
run the “Pitfalls” page
at http://wiki.nginx.org/
Pitfalls. Then compare
it with the current Nginx
documentation for your
Linux distribution.

LV018 088 Tutorial Nginx.indd 90 02/07/2015 20:50

NGINX TUTORIAL

www.linuxvoice.com 91

Under CGI, a server receiving a request for a
PHP page such as contacts.php would run the
PHP interpreter, eg /usr/bin/php, with contacts.
php as first argument. Of course, this would spawn
a separate PHP process for every page request,
leading to the same performance issues seen with
Apache. The answer to this problem, FastCGI, was a
big improvement from many points of view. Unlike its
predecessor, FastCGI often requires an extra “server”,
but it’s worth it: this new protocol can connect HTTP
servers and scripts running on different computers, to
share the load, and above all works in the same, non-
blocking way as Nginx itself.

With the right configuration, PHP scripts could
directly “speak” FastCGI with Nginx, or any other
software. However, it’s much more common to use
an intermediary. The mini-server written just to handle
PHP processes via FastCGI is called PHP-FPM (PHP
FastCGI Process Manager).

In practice, this means that in order to host any
Content Management System written in PHP (that
is WordPress, Drupal, Joomla, Moodle and many
more), you must first install the PHP-FPM package,
then tell Nginx to let it handle all PHP requests, using
the FastCGI protocol. After installation, the second
step is accomplished with the directives provided
by the Nginx FastCGI module, of which we provide a
simplified example below:

1 root /var/www/html/example/myblog;
2 include fastcgi_params;
3 fastcgi_pass unix:/var/run/php5-fpm.sock;
4 try_files $uri =404;
5 fastcgi_index index.php;
6 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_

script_name;
Line 1 has the usual meaning, and line 2 simply

tells Nginx where to find all the server-wide FastCGI
configuration parameters. The next line says that the
PHP-FPM process is listening on the local Unix socket
/var/run/php5-fpm.sock. The final three directives
mean, in this order:

 If there is no file at the requested location ($URI),
return the 404 HTTP response code.
 If a browser wants to see www.example.com/
myblog/, that is the blog index, ask PHP-FPM to run
/var/www/html/example/myblog/index.php.
 Requests for any other existing PHP script
(assuming for the sake of simplicity that /var/www/
html/example/myblog/ only contains such files!)
should make PHP-FPM use the file with the same
base name ($fastcgi_script_name). As an example,
a URL like www.example.com/myblog/contacts.
php will make PHP-FPM load /var/www/html/
example/myblog/contacts.php.
You can test if your Nginx/PHP-FPM setup is correct

by creating a PHP page containing only this PHP
command: <pre><?php var_export($_SERVER)?></
pre> and loading in your browser. If everything is OK,
you’ll get a listing of all the PHP variables passed by
Nginx to PHP-FPM.

Online converters for Apache .htaccess files,
such as http://winginx.com/en/htaccess or www.
anilcetin.com/convert-apache-htaccess-to-nginx
are convenient starting points to migrate from Apache.
Much of the power of Nginx is in only two features –
try_files and PHP-FPM. At this point you know enough
to make the best of the extensive documentation on
those topics, especially if you start from the official
wiki (http://wiki.nginx.org) and its “Pitfalls” page. The placement and layout of the Nginx config files and

folders may change from distro to distro (this is on
Fedora 20). Try to stick to it, otherwise the next system
update may break your setup!

Marco Fioretti is a Free Software and open data campaigner
who has evangelised FOSS all over the world.

PRO TIP
Test your Nginx
installation in these three
steps: first serve yourself
a static “Hello World”
HTML page, then a PHP
test page as in Figure 4,
and only after that try to
run WordPress, or similar
CMS software.

How Apache works
Software programs run as sets of processes (or threads, which
are practically the same as far as we are concerned here). A
process is a self-contained set of instructions, running on one
CPU core. A single CPU core can only handle one process at a
time. Different processes on the same or different computers
can communicate in several ways, including local or, in the
second case, network sockets. These are sorts of bidirectional
mailboxes, where a process can drop chunks of data to wait
until the other process picks them.

Modern microprocessors pretend to “run” several programs
simultaneously by continuously moving the corresponding
processes in and off their cores, according to a scheduling
algorithm. This operation, called context switching, has a
cost. First, each process keeps at least part of the RAM for
itself, without sharing it with any other process. Second, each

context switching consumes a certain amount of CPU time.
Performance degrades seriously once memory is exhausted,
or when high I/O load causes too many context switches.

Apache spawns several processes to listen for new
connections from browsers on “listen sockets”. When a
connection arrives, the process that gets it serves it all by
itself, blocking after each step to wait for the browser’s
response. Once the transaction is finished, it waits for a little
while to see if the same browser comes back with another
request. Only when that “keepalive” timeout expires, the
process returns to listening for new connections.

This architecture is simple to implement and extend.
However, every active HTTP connection requires a dedicated
process, which remains 100% “blocked” on that connection
until it ends, even if it spends 90% of the total time waiting.

LV018 088 Tutorial Nginx.indd 91 02/07/2015 20:50

TUTORIAL DRUPAL

www.linuxvoice.com

Maybe you want to build a real website, just
for the fun of it. Or maybe your boss jut told
you to build one. In both cases, by “real

website” we mean something that is really yours: a
permanent online place where you set the rules, from
looks to permissions, and one that stays, untouched,
even when Facebook disappears or goes the way of
Geocities, Friendster, MySpace or Posterous.

This tutorial is about building such a website with
version 7 of the Drupal software, even if you have
no former experience with Drupal, or with website
administration for that matter. We’ll cover what you
need to know to start building from scratch and
manage, with Drupal, a website that may also be a
highly interactive online community for all its authors,
editors and simple visitors.

Why Drupal? And when?
Modern, dynamic websites are all created and
managed with Content Management Systems, or
CMSes for short: software that, running behind a web
server, lets people create the overall structure of a
website, and then publish and organise content inside
it from any browser without programming or writing
raw HTML.

Drupal (http://drupal.org) is one of the most
popular Free Software CMSes for highly structured,
highly interactive community websites. It has
hundreds of extensions, good online support and lots
of documentation. It is usable, and worth using, even
by novice webmasters. At the same time, Drupal is
modular, to a fault. Some people say that it is not a
CMS, just a framework to build one. When you “install
Drupal”, you are only installing its core; that is, the
smallest bunch of PHP files without which nothing
would happen.

Consequently, things that, with other CMSes, are
doable out of the box right after installation, like
posting articles with embedded pictures but without
using HTML, require initial setup in Drupal.

If you only need a mostly “unidirectional” website,
where you or a few peers can publish stuff, with little
interaction with visitors, come back next month for
a better solution. But if you want a full multi-user
environment, completely multilingual if needed, with
flexible access control, content categorisation, page
configuration and integrated forums, Drupal is for you.

Main Drupal concepts
Good CMSes keep raw content, the structure of a site
and the look and feel of the site as independent as
possible. Drupal applies this rule through modules,
blocks, themes, and views. Modules are sets of
(mostly) PHP files that provide a specific functionality.
Their official directory (http://drupal.org/project/
modules) lists modules for almost anything you might
need, from maintenance to pictures galleries.

Blocks are independent boxes that can contain
anything you might find on a website: menus,
links, picture galleries, help text and so on. A Drupal
administrator can activate as many blocks as they
want, telling each one to appear only in certain
pages, or just to some users. Blocks may display
static content, or a different one every time, maybe
depending on who the user is.

Similar to blocks, but only at first sight, is the
functionality provided by the Drupal module “Views”,
which you really want to install: it has a narrower
scope than blocks, but within that scope it is
really powerful. Blocks may contain anything from
anywhere, for example a YouTube clip. The Views
interface, instead, provides commands to build both
custom queries of the Drupal internal database and
the instructions on how to display their result.

Without any coding (unless you really want it!), you
can pick any combination of fields, and then filter
and sort them as you want. You may use Views,
for example, to dynamically display all the last X
comments from user Y, sorted by modification date.
The ways to display the result of a Views query are
equally flexible: Drupal can output it as a table, list or
grid, either as a custom page, with a custom URL, or
as a block to be placed wherever you want.

Looks and layout are controlled by Drupal themes.
Just like modules, themes are small bundles of files.

DRUPAL: CONFIGURE
A CUSTOM CMS
If your site has many users, lots of content and different types of
media, you might need this mighty content management system.

 TUTORIAL

92

MARCO FIORETTI

WHY DO THIS?
• For the same reason

that buying a house can
make more sense than
renting: a place that’s
really yours

• Provide a fully
customised online base
to a community you
belong to

• Acquire competence and
skills that may be useful
on the job some day

A partial snippet of the
Drupal control centre for
modules. As you can see
on the right, each module
can have links to separate
pages for controlling who
can see it (“Permissions”)
and/or configure its
behaviour.

LV018 092 Tutorial Drupal.indd 92 02/07/2015 20:53

DRUPAL TUTORIAL

www.linuxvoice.com

Their PHP parts tell the Drupal core how to extract,
process and format the content of the database, in
order to build each page. Themes also contain CSS
files that specify colour, font and other typesetting
features of each element of a page, from titles to
background and block borders. At a higher level,
Drupal themes can implement things like drop-down
menus, but above all they partition the pages in
regions; that is, predefined areas where you can place
any available block.

Number, size and behaviour of regions, that is
whether they automatically resize to fit the screen
size, can greatly differ from theme to theme. Besides,
each block can appear in all the themes installed
by the administrator, but only once per theme. The
bottom line is that the same Drupal installation can
change look completely by simply switching theme.
Check the demos at www.drupal.org/project/project_
theme out, and you’ll see what we mean.

Vocabularies and taxonomies
Taxonomy is “the practice of classifying things”. By
assigning taxonomy terms to your Drupal content, you
can both index it more efficiently, and control who can
see or edit it, and how. By assigning the right
taxonomy terms to each page, you can build custom
URLs for each section of your website (eg mysite.
com/catalog/, mysite.com/employees and so on),
and give different access rights to each of them. To
make things easier you can create many Vocabularies
– separate groups of terms, each of a different type. A
Linux community website, for example, may have one
Vocabulary for “Distributions” (with terms like Debian,
Ubuntu, Fedora, Centos…) and one for Use Cases
(Web Server, Desktop, Router…).

Content and users
In Drupal, each piece of content is called a node, and
belongs to one of the available content types. The
latter are sets of predefined fields (Title, Author, Date,
Content...) and management settings (formatting
instructions, editing permissions and so on). The
built-in content types are Articles and basic Pages, but

you can create your own ones with the fields that
you need.

User management is equally flexible: you can give
each user one or more roles, each with different
privileges. By default, a fresh Drupal installation only
knows the roles of Administrators, Authenticated
Users and “Anonymous”. Users in the first class can
do pretty much everything: create other users, delete
pages, rewrite vocabularies, whatever. Authorised
users will only have lower privileges, like creating
or commenting on articles, and anonymous ones
may be limited to
read-only access,
or even none at
all. Of course,
Administrators can
create new user
roles, and fine-tune
the related privileges, as they want.

Distributions
Just like Linux, which is only a kernel, Drupal can come
in Distributions (www.drupal.org/project/project_
distribution), that is bundles of Drupal core and

93

LAMP and Drupal-friendly servers, AKA: where do I install Drupal?
All the pages of a Drupal website are generated on the fly by
PHP code, executed on a server permanently connected to
the Internet and using raw data stored in a MySql database.
Technically speaking, both the database and the PHP code
interpreter may run on any operating system that supports
Mysql and at least one Web server. Almost everything in
this tutorial is valid even on a Web server different than
Apache and/or running on Windows. In practice, though, the
combination which is by far the most common (and 100% Free/
Open Source software to boot!) is the so-called Lamp Stack,
that is PHP and MySql running with an Apache Web server, on
Linux.

 You can install Drupal and everything else on a physical or
virtual, but complete, Linux server that you fully control as root,
or just lease one database and one single folder for the Drupal
files, on the server of some commercial hosting provider.

The second option is cheaper and requires no server-level
maintenance by you, but also comes with limits and gotchas.
Available RAM, that is performance, will surely be less than on
your own server, for example, and the same goes for privacy.

Another, potentially very annoying difference, may be
in the configurations of PHP and Apache. Drupal works
without problems with their default settings in most Linux
distributions. Certain providers, instead, for performance and
other reasons, tweak those parameters in way that will confuse
Drupal and waste your time, until you compensate them with
other changes in your Drupal installation.

The conclusion? If you have the skills and can afford the
price, just lease a virtual Linux server and use it. If you need
to go for a basic hosting account, that can be fine too... as
long as you get it from a provider already well known for being
“Drupal-friendly”!

“In Drupal, each piece of content is
called a node, and belongs to one
of the available content types.”

PRO TIP
All main Linux
distributions include, or
can install with a few
clicks, a MySQL server (or
its MariaDB replacement)
and a web server. Take
advantage of them to
learn and test Drupal on
your own laptop first!

This is the part of the
Views interface to create a
calendar view of time-
sensitive content. You can
have several displays (the
Month/Week/etc tabs), and
how they look, from the
order of the fields to the
page footer.

LV018 092 Tutorial Drupal.indd 93 02/07/2015 20:53

TUTORIAL DRUPAL

www.linuxvoice.com94

selected themes, modules and settings, all integrated
and optimised for a specific purpose. There are, to
give just a few examples, OpenScholar, which is made
for academics and their research activities, and also
OpenPublic (Public Administrations) and OpenPublish,
for online media outlets of all sorts.

The hard part: figuring out what you want
Once all the concepts above are clear, it’s time to plan
what your Drupal site will need and how to put it
together. Use these pages and the Drupal website as a

starting point to draw on
paper the layout of your
future website, and its
main characteristics.
What must it do? Should
the theme be optimised
for mobile devices? How

many types of content and user roles do you need?
How do you want to index and display everything?
Which interactions are needed among users? How
can Drupal do each of these things?

Stick to the smallest possible number of themes
and modules you can live with, even if it means
downsizing your initial wishlist a bit. Adding more
components than you really need slows Drupal down,
unless you spend more for the server. Besides, more
components means more frequent updates and
more maintenance work for you. More modules also
means you increase your chances of bumping into
some undocumented incompatibility. So, unless you
really want them, stick to modules listed at Drupal.org
that have an open licence, few dependencies, active
maintainers and lots of other users.

Installation
Drupal.org describes the basic installation procedure
very well, with all the boring details: follow them all,
and everything will be fine. Assuming your website is
mydrupal.example.com, your base web folder is /var/
www/html, the web server is Apache and the Drupal
version to install is 7.38:

1 Create a MySQL database and user, if you own the
web server, or get them from your web hosting
provider.

2 Unpack the Drupal archive inside /var/www/html,
renaming the resulting folder to reflect the version

number, so that the Drupal “home” will be
something like /var/www/html/drupal-7.38 (we’ll
explain why later).

3 Inside that folder, copy the sample file called
default.settings.php to another named
settings.php.

4 Open the latter file and write inside it, as shown on
Drupal.org, your MySQL database, username and
password.

5 Tell your web server that the “home directory” of
mydrupal.example.com is /var/www/html/
drupal-7.38 and restart it.

6 Point your browser to http://mydrupal.example.
com and follow the instructions you’ll see.

7 If you get some error page about access
permissions of files or folders, don’t worry: change
them as requested, then reload the page in the
browser.
During this procedure, you will also define the site

name, and create the Drupal equivalent of “root” under
Linux: the main, almighty system administrator.
Later on, you may give administration powers to
other users, but only the first one will be the ultimate
master: use that account only when really necessary,
eg for upgrading or installing modules.

A useful feature of Drupal is that you can install it
just once, and then run many independent websites
with it. You also want to run myotherdrupal.example.
com? Then get a new MySQL database for it and
create a folder named /var/www/html/drupal-7.38/
sites/myotherdrupal.example.com. Next put inside it
another folder, named files, and another settings.php
with the new MySQL credentials and the $base_url
variable set to http://myotherdrupal.example.com.
Finally, repeat the procedure above, with the new
parameters, starting from step 5.

Post- installation work
Managing Drupal mainly consists of a lot of clicking
through the administration interface. Drupal tutorials

Here’s the “block region-
demonstration” screen that
Drupal produces to show
you in how many different
places (Highlighted,
Sidebar, Footer columns…)
you may put your blocks.

This window is where you tell each block where to go,
either by drag-and-drop or drop-down menus.

“Adding more components than
you really need slows Drupal
down, unless you spend more.”

PRO TIP
Before any update or
upgrade, make a full
backup and check its
status. Also, write down
all the modules you had
installed, in order to
reactivate them all right
after the update.

LV018 092 Tutorial Drupal.indd 94 02/07/2015 20:53

DRUPAL TUTORIAL

www.linuxvoice.com 95

and forums are full of instructions like “Go to admin/
structure/taxonomy/add”, which corresponds to “log
in as administrator, then click on Structure, then on
Taxonomy, then on Add…”. Drupal does have a
command line control tool called Drush (www.drush.
org), but it’s beyond the scope of this tutorial.

Our advice is to go install or activate the WYSIWYG
editor CkEditor and the graphical file manager IMCE.
In order to install a module, unpack its compressed
archives in the sites/all/modules subfolder of your
Drupal installation. Next, browse to admin/modules:
that page will list the new module, but “disabled”.
Click on the checkbox to enable it, then on “Save
Configuration” at the bottom of the same page, and
the new module will now be running in Drupal.You
may have to click a bit more to configure its access
permissions or other parameters, but that’s it, really.
The procedure to install themes is very similar, but of
course you must put the files in sites/all/themes, and
configure them by going to admin/appearance.

Backups and updates
All kinds of software activities need regular backups,
but in our case they are a bit trickier than usual,
because all Drupal pages are built on the fly by mixing
database content, Drupal source files and images or
other documents uploaded by users. In order to
migrate your website to another server, or to restore it
after a system crash, you need to back up all that data
and the related configuration. We can’t give you all the
details, but this means that, unless your Hosting
Provider takes care of everything for you, your regular
backup script must collect and save, for every website
that you are running off your Drupal installation:

 The whole content of its MySQL database, with the
mysqldump command.
 Its settings.php file and the whole files subfolder.
 All the .htaccess files that Drupal puts in its
subfolders, for access control and other reasons.
 The configuration file(s) of the web server that tell it
to call Drupal when someone wants to visit your
website. (The basic Drupal files may be just
reinstalled).
As far as updates and upgrades go, the first

term indicates the passage from one minor version
number to another in the same major series, and
the second a major version change: moving from
Drupal 7.38 to Drupal 7.40 would be an update, and
from Drupal 7.xx to Drupal 8 an upgrade. Now, do you
remember that we suggested you install Drupal in a
folder named after its version number, like /var/www/
html/drupal-7.38? Here’s why. If you do that, when
it’s time to update (upgrades are a trickier business,
see Drupal.org for them), you can “reimplement” the
official procedure as follows:

1 Log in as the master administrator and put the
website in maintenance mode (admin/config/
development/maintenance).

2 Change the theme to one of those included in
Drupal core, and temporarily disable all non-core
modules.

3 Unpack the new version to a whole new folder, with
the new version number, eg /var/www/html/
drupal-7.40.

4 Clone the MySQL database, that is make a perfect
copy of it.

5 Point the settings.php file inside the drupal-7.40
folder to that new database.

6 Point the web server to the drupal-7.40 folder and
restart it.

7 Point your browser to http://yoursite.example.
com/update.php to run the actual update, and
follow the instructions.
See the trick? The steps from 3 to 6 can be run

by a shell script in a few seconds, to minimise both
downtime and risk of errors. Above all, if anything
goes wrong, you can just point the web server back
to the old Drupal folder, and everything will return as
before, using the original database. Neat, isn’t it?

Marco Fioretti is a Free Software and open data campaigner
who has evangelised FOSS all over the world.

PRO TIP
Can’t decide which
theme you prefer?
Install the Switchtheme
module! You will get a
block with a drop-down
menu containing all the
installed themes, that will
let you switch to any of
them, very quickly, from
any page.

What to read next!
The official documentation at Drupal.org does not cover
everything, but all the guides about the essential issues,
from installation and upgrades to module management,
are up to date and pretty thorough. Many useful tricks and
tutorials, however, are hosted on other sites. Hopefully,
with this tutorial you should now be able to quickly make
sense of the guides, and also know the right search terms
to find the tutorials you need. There are plenty of very good
books too, but even they will be more useful, in our opinion,
if you get them after a quick read of the online documents.
So get out there, and study them! Final advice: even
before installation, keep an eye on the Drupal.org forums,
to understand both what is possible, and how to ask for
help when the moment comes: with Drupal, this is more
necessary than with other tools.

Standard Pages and Articles are too dull? No problem. You can create new types of
contents with all the fields you want, and rearrange them with your mouse.

LV018 092 Tutorial Drupal.indd 95 02/07/2015 20:53

TUTORIAL ARDUINO ROBOTICS

www.linuxvoice.com

There are lots of robots that roll around on
wheels and an increasing number that fly, but
for those of us who grew up on science fiction,

these will never be as cool as robots that walk around
on two legs. It’s not a particularly effective method of
moving, but we’re going to ignore this, and build a
two-legged walking robot for the sheer geekery of it.

Before we go too far into this, we need a note of
caution. Unless you have a lot of time and money, it’s
very unlikely that you’ll be able to create a robot that
can walk well on uneven ground, or even walk quickly
on flat ground. Don’t be put off though: with a modest
budget and a bit of persistence, walking is possible.

The capabilities of a biped chassis can broadly be
described using the number of degrees of freedom
they have. Each degree of freedom is equivalent to
a single joint that can move in a single axis (such as
a knee or elbow). A joint that can move in two axes
(such as a hip or shoulder) counts as two degrees of
freedom, though these sort of joints are rarely found
on simple robots.

Legs with one degree of freedom can’t really do
anything except flail around. It is just about possible
to get a robot with two degrees of freedom per leg to
walk, but it’s very slow and ungainly.

For something that loosely resembles human
walking, you’ll need at least three degrees of freedom
per leg. The more degrees of freedom you have, the

more complex the walking you can do (human legs
have about five degrees of freedom depending on
exactly what you count).

We opted to go for a chassis with three degrees of
freedom per leg (this is often expresses per chassis
as 6 six degrees of freedom). Each of these degrees
of freedom is controlled by a servo. These are motors
that move in a circular motion, but enable the user to
specify the exact angle they want the motor to rotate.

Lynx Motion is the most trusted brand of robot
chassis, and its Brat model has three degrees of
motion per leg. It’s available from Robotshop for £153
(www.robotshop.com/uk/lynxmotion-biped-brat-
no-electronics-brat-blk.html). This is quite cheap
for a named-brand biped chassis (they can cost
thousands of pounds), but it’s also quite a lot to spend
if you just want something to play with. The Brat has
inspired a whole range of imitators that are available
directly from Chinese manufactures. We found a lot of
options on AliExpress.com (search for “robot 6dof”).
We bought one for just under £60.

Even a cheap chassis is likely to be fairly sturdy, but
servos are another matter. There are a lot of cheap
servos on the internet, many of which are fakes (that
is, they are real servos, but they’re not made by the
company they claim to be). The Tower Pro brand
seems to be commonly faked. Cheap servos aren’t as
accurate or as hardwearing as better manufactured
models. However, a walking robot isn’t a particularly
taxing role for a servo: accuracy isn’t as important as
it is in, say, a model airplane. The load on them isn’t
that big, and there aren’t any vibrations to damage the
internal circuitry.

Another issue is that cheap chassis may not come
with assembly instructions, so you may have to
construct it based on an image of the assembled bot.

Building brains
Once you’ve acquired and built your chassis, the next
thing you need to do is set up the control electronics.
Servos are quite easy to control. They don’t require
any complex driver circuits like regular motors.

You should find that each servo has three wires: a
positive, a negative and a control (often coloured red,
brown/black and orange/yellow respectively). The
control takes a pulsing signal, and places the motor
depending on the duration of the pulse. It can be
controlled from almost any controller board that has
GPIO pins. The two obvious options to control it are an

ARDUINO: PROGRAM A
COMPUTER TO WALK
At the boundary between robotics and science fiction are Androids.
We take a first step towards making one.

 TUTORIAL

96

BEN EVERARD

WHY DO THIS?
• Become the commander

of your own robot army
• Learn more about

robotics and controlling
servos

• Take your QWOP
mastery to the next level

The circuit showing a
single servo connected.
The other five are powered
in the same way, but
connected to different pins
on the Arduino.

LV018 096 Tutorial Robot.indd 96 03/07/2015 09:43

ARDUINO ROBOTICS TUTORIAL

www.linuxvoice.com

Arduino or a Raspberry Pi, both of which have libraries
to help you control the servos, and both would work
well. We opted to use an Arduino Uno because it’s a
slightly tougher board and should cope better with
the inevitable stumbles that come with learning to
walk, and because it made it easier to control from our
laptop. You should be able to use any board with the
ability to control six servos, and that includes the Pi.

Since servos only need a pulsed signal, the circuitry
for controlling them is very simple. You just need to
connect the control wires from the servos directly
to the output pins on the Arduino. We did this by
removing the female connector that came attached to
the servo, and soldering on a length of single-core wire
that could be used as a male connector to attach to
the female headers on the Arduino.

We also connected together all the positive leads
from all the servos to a single positive connection for
the bot, and likewise with the negative leads.

Mobile or mains power?
Servos suck up more power than the Arduino can
supply, so you can’t connect these power leads
directly to the board. Different servos require different
amounts of power, but 4.8–6V is common. Four
rechargeable AA batteries will deliver 4.8V, but as soon
as they start to lose charge, they can drop below this,
and we found that we only got around 15 minutes of
power out of rechargeables. Some cheap non-
rechargeables didn’t fair much better. C or D cells may
work, as may Lipo or Li-ion batteries (but you’ll need
some form of regulator to make sure the power is
supplied at the right voltage).

After experimenting with batteries, we opted to run
our walking robot tethered to the mains using a 5V 2A
adaptor, and this worked without any problems. This
obviously doesn’t have the same appeal as running it
independently, but it makes the system much easier
to use, especially for testing.

Whichever method you choose to power the
servos, it’s best to use a separate power supply for
the control board. This is because the servos have
very variable power demands that can cause the
power supply to fluctuate, and this can cause the
Arduino to occasionally reset itself if they’re on the
same supply. Since we were tethering the robot to the
mains anyway, we powered the Arduino from a laptop
USB port. However, if you’re powering the servos from
batteries, Arduinos run well off 9V batteries.

The final bit of circuitry needed is a connection
between the Arduino’s ground pin and the negative
wire from the servo power supply. This is needed
because some of the power from the Arduino is sent
to the servos via the signal wire. This common ground
is needed to complete the circuit.

Now you’ve got everything wired up, the first task is
to find the mid-point of each servo. This is the position
they need to be set to for your chassis to stand up
perfectly straight. In an ideal world, it would be the
same for every servo, but in reality, it won’t be because

they may have been attached at a slightly different
orientation.

There are a few options to do this, but a simple
method is to use trial and error. You can upload code
to your Arduino to set the servo at a particular point
(using the pos variable in the code below), and keep
trying different values until you get it right.
#include <Servo.h>
Servo myservo;
int pos = 100;
void setup() {
 myservo.attach(9);
}
void loop() {
 myservo.write(pos);
 delay(15);
}

In our code, we created servo objects for each joint,
and named them left_ankle_servo, right_ankle_servo,
left_knee_servo, right_knee_servo, left_hip_servo
and right_hip_servo. We’ll store everything in variable
names according to
the joint it refers to.
We could have saved
space by using arrays,
but for testing at least,
we found it easier
to see exactly which joint a piece of data or object
relates to. Whenever you see the line in the code
//for all joints
it means the previous line is repeated once for every
servo.

The variable declarations are as follows:
#include <Servo.h>
int move_speed = 20;
int inter_move_delay = 800;
Servo left_ankle_servo;
// for all joints
int right_knee_pin = 8; //wire 1
// for all joints
int left_ankle_middle = 68;
// for all joints

97

Tilting at the ankles allows
one leg to come off the
ground and make a step

“However you power the servos,
it’s best to use a separate power
supply for the control board.”

LV018 096 Tutorial Robot.indd 97 03/07/2015 09:43

TUTORIAL ARDUINO ROBOTICS

www.linuxvoice.com98

int left_ankle_current = 68;
// for all joints

As well as creating servos and specifying the
middle, this also creates a current variable for each
joint which holds the current position. Initially, we set
this to be the middle position, and we ensure that this
is right by calling the function stand_straight in the
setup loop:
void setup() {
 left_ankle_servo.attach(left_ankle_pin);
// for all joints
 stand_straight();
 delay(inter_move_delay);
}
void stand_straight(){
 left_ankle_servo.write(left_ankle_middle);
// for all joints
}

You may also have notices two variables, inter_
move_delay and move_speed. The first of these is

used after each movement
to keep everything controlled.
Without this, the robot can
start to rock, or not complete
a movement before starting
with another movement. The

second is used to control the speed of movement, as
we’ll see in the next bit of code. You can play about
with these to see what works best. Some chassis and
servos will be able to walk faster than others.

In the function stand_striaght(), we set the servos
to the desired position. This means they will move as
fast as they can to that state. In this case, we had no
alternative because we didn’t know what position the
joints were in at the start. However, from this point
onwards, we can track the position of the joints, and
using this knowledge, we can move more smoothly
to the desired state by changing the position of the
servo in increments rather in one go. The function
move_to() does just this:
void move_to(int left_ankle_to, int right_ankle_to, int left_knee_
to, int right_knee_to, int left_hip_to, int right_hip_to, int
actual_move_speed){

 //any negative values are ignored.
 if (left_ankle_to < 0) { left_ankle_to = left_ankle_current; }
 // for all joints
 while (left_ankle_current != left_ankle_to |
 right_ankle_current != right_ankle_to |
 // for all joints
){
 if (left_ankle_current < left_ankle_to) { left_ankle_
current++; }
 // for all joints
 if (left_ankle_current > left_ankle_to) { left_ankle_
current--; }
 // for all joints
 left_ankle_servo.write(left_ankle_current);
 // for all joints
 delay(actual_move_speed);
 }
}

As you can see, this function takes a parameter for
each joint. If the value is negative, we leave the servo
where it is currently; if it’s a positive number, we run a
loop that adjusts the position of the servo by one each
time until it reaches the desired position.

We declared the variable move_speed as a global
variable, but it’s passed to this function because
there might be some movements that we want to run
slower or faster than others.

The hardest part of making a robot walk isn’t
building the chassis or the technicalities of
programming a controller board, but figuring out the
sequence of motions that have to come together
to actually make something walk. There are a few
different ways the sequences come together, but we
found the best option to be:

1 Rock onto the correct foot.
2 Balance by leaning backwards.
3 Move leg forward and put it down.

These actions can then be repeated with the robot
balancing on the other foot. There’s a slight problem
because you need to do a slightly different set of
moves to start from a standing position than you
need to loop through to continue walking. To solve
this, we have a sequence of moves to get started
which is in the function middle_to_left(), and another
function that can continue running in a loop which is
called pace_from left(). We’ve included comments
that link to the numbers in the above list to show what
each movement is doing.
void middle_to_left_foot(){
 //ensure middle
 move_to(left_ankle_middle, right_ankle_middle, left_knee_
middle, right_knee_middle, left_hip_middle, right_hip_middle,
move_speed);
 delay(inter_move_delay);
 //1
 move_to(left_ankle_middle-20, right_ankle_middle-25,
-1,-1,-1,-1, move_speed);
 delay(inter_move_delay);
 //2
 move_to(-1, -1, left_knee_middle -25, -1, -1, -1, move_speed);

Leaning backwards stops
the robot losing balance
as it extends the other leg
forwards.

“The hardest part of making
something walk is figuring
out the series of motions.”

LV018 096 Tutorial Robot.indd 98 03/07/2015 09:43

ARDUINO ROBOTICS TUTORIAL

www.linuxvoice.com 99

 delay(inter_move_delay);
}
void pace_from_left()
{
 //3
 move_to(-1, -1, left_knee_middle + 20, right_knee_middle-20,
left_hip_middle+15, right_hip_middle+25, move_speed);
 delay(inter_move_delay);
 //1
 move_to(left_ankle_middle+25, right_ankle_middle+20,
-1,-1,-1,-1, move_speed);
 delay(inter_move_delay);
 //2
 move_to(-1, -1, left_knee_middle, right_knee_middle - 25, -1,
-1, move_speed);
 delay(inter_move_delay);
 ///3
 move_to(-1, -1, left_knee_middle - 20, right_knee_middle + 30,
left_hip_middle-10, right_hip_middle-20, move_speed);
 delay(inter_move_delay);
 //1
 move_to(left_ankle_middle-20, right_ankle_middle-25,
-1,-1,-1,-1, move_speed);
 delay(inter_move_delay);
 //2
 move_to(-1, -1, left_knee_middle -25, -1, -1, -1, move_speed);
 delay(inter_move_delay);
}

The code to walk forward 10 paces is therefore:
middle_to_left();
for(int i=0; i<10) i++){
 pace_from_left();
}

There’s no particular reason that we start our bot
moving with the left foot. It would work equally well by
starting with the right foot down instead.

Turning around
The biggest flaw in robot chassis with six degrees of
freedom is that they can’t turn elegantly. Humans use
the extra flexibility in their legs and feet to spin around
on the spot, but our simplified bot can’t do this. The
cludge required is to drag the feet across the floor.
Pulling one foot backwards, while pushing the other

forwards will introduce a slight rotation. The sequence
of movements for a left turn is:

1 Rock onto left foot.
2 Balance.
3 Move right leg forward.
4 Flatten feet so resting on both of them.
5 Bring legs together.

This is done with the following code:
void turn_left(){
 move_to(left_ankle_middle-20, right_ankle_middle-25,
-1,-1,-1,-1, move_speed);
 delay(inter_move_delay);
 move_to(-1, -1, left_knee_middle -25, -1, -1, -1, move_speed);
 delay(inter_move_delay);
 move_to(-1, -1, left_knee_middle + 20, right_knee_middle-20,
left_hip_middle+15, right_hip_middle+25, move_speed);
 delay(inter_move_delay);
 move_to(left_ankle_middle, right_ankle_middle, -1,-1,-1,-1,
move_speed);
 delay(inter_move_delay);
 move_to(left_ankle_middle, right_ankle_middle, left_knee_
middle, right_knee_middle, left_hip_middle, right_hip_middle,
move_speed);
 delay(inter_move_delay);
}

Because this relies on the friction of the surface,
this won’t make the robot turn a uniform amount.
On one surface, the robot may turn 10 degrees; on
another, 20. It may also cause the robot to stumble
on uneven ground. If you want a more precise turning
system, you’ll need a robot chassis with eight or more
degrees of freedom.

This is all the code you need to make your walking
robot move. We haven’t included any controls; it’s left
as an exercise for the reader to decide how you want
to communicate with your walker. You could leave
it as a series of pre-programmed steps, you could
hook up a joypad and use that to steer, or if you’re
ambitious, you could add some sensors and attempt
to program it to move independently.

Ben never writes this bit, so we can make up whatever we
want. For example, he wrestles wild penguins!

Raspberry Pi A brain transplant
You could easily use a Raspberry Pi as the brains of your
walking robot instead of an Arduino. The GPIOs can control
servos using a number of methods:

 Servo blaster is a kernel module that enables you to
control servos from the command line.
 Pigpio is a C library that includes servo control as well as
other GPIO manipulations.

 You can control servos by manipulating Pulse Width
Modulation duty cycles. There’s more information about
how to do this at https://learn.adafruit.com/adafruits-
raspberry-pi-lesson-8-using-a-servo-motor.
Whichever method you choose, the circuitry should be

the same, as will the process of walking, so it should be
fairly easy to translate the Arduino code to your Raspberry
Pi language of choice.

Pivoting at both knees
completes the stride, and
the robot is ready to rock
onto the other foot.

LV018 096 Tutorial Robot.indd 99 03/07/2015 09:43

CODING C

www.linuxvoice.com

In an earlier tutorial in this series, we talked about
the development of Unix at Bell Labs starting
around 1968, with Ken Thompson and Dennis

Ritchie taking the lead. When, in 1970–1, the team
began porting Unix to a new machine, a PDP-11, it was
still written in assembler. Assembler can be very
efficient in that it can be tweaked closely to machine
architecture, but it’s very inefficient to write. A single
task can take many pages of code, and debugging is a
nightmare. High-level languages (where you write code
which is then compiled into assembler by the
computer) allow much faster, easier programming.
Thompson had already created a language called B,
which they considered using to rewrite Unix, but B had
limitations… so Ritchie took on the creation of a new
language: C. C was based on B, but added structures,
data types (loosely based on the concepts established
in Algol 68), and a set of other improvements.

Ritchie started work in 1972, and C evolved very
rapidly during this first year. Operators such as &&
showed up within months, and by the end of the
year, a big chunk of Unix (version 2, at the time) had
been rewritten in C. In 1973, that was extended to
include most of the Unix kernel, and an optional pre-
processor was introduced. It was the first time that
any operating system had been written in anything
other than assembler, and was a pretty convincing
demonstration of the usefulness of C.

In the next years, the language grew bit by bit. The
Unix team began to recode their utilities and tools in C,
and then to experiment with portability, trying to move

them across to other systems. As part of this, the type
system became more stringently enforced, though
many older programs written in a less type-safe
manner still existed; Steve Johnson produced lint to
help coders tidy up these older programs. Once Unix
was ported to a DEC VAX 11/780, the new portability
made both Unix and C much more popular, first within
AT&T, and then outside.

The C bible
You may well already have heard of the book
commonly known as K&R. This is The C Programming
Language, by Brian Kernighan and Dennis Ritchie,
whose first version, in 1978, created an informal
specification for C. The book was intended to be
a concise, comprehensive introduction to C, and
covered programming style as well as technical
information, with plenty of working-program
examples. It also introduced the “Hello, World”
program -- an ultra-basic working program, now the
common standard for introducing pretty much any
language. (See below for a real example!). The book
had an immense impact on a generation of coders,
even in minor ways like brace style.

By 1982, C had moved on enough that the first
edition no longer even described the language
accurately (it didn’t include void, for example). And
besides that, K&R C might be a de facto standard,
but it wasn’t an official one. The American National
Standards Institute (ANSI) set up a committee that
spent nearly six years (1983–1989) developing a clear
standard for C. The ANSI C standard introduced very
few real changes, but codified the existing language
more carefully. (Ritchie, in the paper mentioned above,
speaks very highly of it.) Most of this was done by

BUILDING BLOCKS OF UNIX: THE
C PROGRAMMING LANGUAGE
In embedded systems and at the heart of the Linux kernel, C is the
powerhouse making it all work.

 TUTORIAL

100

JULIET KEMP

Brian Kernighan speaking
at a tribute to Dennis
Ritchie at Bell Labs.

Dennis Ritchie and Brian Kernighan, Unix titans.

LV018 100 Tutorial Olde Code.indd 100 03/07/2015 09:46

C CODING

www.linuxvoice.com

1985, and writers of compilers began implementing
their recommendations; but the committee also spent
the next few years designing a standard library, to
cover things like I/O and other interactions with the
outside world. The final standard thus wasn’t issued
until 1989 (and is known as C89 or C90 as well as
ANSI C). The second edition of K&R covered this ANSI
C standard, although in practice many programs
continued to be written in the older style while the
compilers slowly caught up with the new standard.

Since ANSI C, there have been two further
standards revisions, C99 and C11. C99 introductions
included some new data types, variable length arrays,
and inline functions. Most of the major compilers
support C99, and it’s largely backwards compatible
with C90. C11 improves C++ compatibility and adds
multi-threading, anonymous structures, and better
Unicode support, among other things. Some features
of C11 are supported by GCC and Clang, but not yet all.

If you’re writing C today, ANSI C is considered to be
the most portable option. Different projects may have
different standards. I’ve used GCC C in the examples
below, which includes features from C99.

Before you can write your first C program, you need
to check you have a compiler, and the standard C
libraries. The standard Linux compiler is GCC:
$ gcc --version
gcc (Debian 4.7.2-5) 4.7.2
... some copyright stuff ...

If this doesn’t run, install GCC via your package
manager (eg sudo apt-get install gcc). The C libraries
are found in libc6, again, best installed via your
package manager. You want both libc6 and libc6-dev
(or your system’s equivalents).

Once you have a compiler and the libraries, it’s time
for Hello World. Open up a file hello.c in your text
editor of choice and enter:
#include <stdio.h>
/* Hello World program */

int main()
{
 printf(“Hello World!\n”);
 return 0;
}

The first line includes a standard library in your code
-- in this case, the standard I/O (input/output) library.
The core C language doesn’t have any I/O functions,
so a standard library exists to provide them. The
second line is a comment, set off with /* */.

int main() is the main function, or entry point, to your
program; where the executable will start. int refers
to the fact that it returns an integer at the end of the
function, and main() is the function name. The body of
the function calls printf() (from the stdio library), and
returns zero, indicating success. Since the function
definition says on the first line that it returns an integer,
you have to make sure it does in fact do that.

Now compile the code with gcc -o hello hello.c.
The -o hello part tells gcc what to call the compiled

output; without this flag, the executable will be saved
as a.out, which isn’t terribly identifiable. (It is, however,
a link back to C’s origins: a.out referred to the output
of the assembler that Thompson first wrote on the
PDP-7 on which Unix was first developed.) Run the
executable with ./hello and admire the output of your
very first C program.

Programming
To get a bit further into C, let’s make a basic calculator.
This very first version just adds numbers up as you
enter them. Save this as calc.c:
#include <stdio.h>
#include <stdlib.h>
/* Calculator program */

main()
{
 int value_mem = 50;
 double total = 0;
 char *value;
 value = (char *) malloc(value_mem + 1);

 while (getline(&value, &value_mem, stdin) > 0) {
 total += atof(value);
 printf(“sum: %g\n”, total);
 }
 return 0;
}

This time we need to include two libraries: the I/O
library and the standard library. The first part of the

101

Hello, World! Note the
editor syntax colouring;
useful in any language so
make sure you set it up.

C: pros and cons
As with any language,
there are pros and cons to
choosing C for a project.
Pro

 Very fast at run-time.
 Popular for fairly low-level
stuff: operating systems,
device drivers, etc.
 Large user base.
 Not object-oriented.
 Can be highly portable; C
compilers are available on
almost all platforms.

Con
 Very easy to create
security problems.
 By modern standards,
pretty low-level as ‘high
level’ languages go, which
can make it harder, and
slower, to learn and write.
 Bad C programming can
be really bad.
 Not object oriented.
 Portability relies on
sticking to the standard

and not using compiler-
specific extensions.
 Weak string handling.
Bluntly: if you don’t care

about run-time speed, and
if you’re not working on
fairly low-level applications,
you probably want to find
another language. If you do
care about run-time speed,
or you’re working on OSes
and utilities, C still reigns
supreme.

PRO TIP
For a more detailed view
of the early development
of C, Ritchie’s paper
(http://heim.ifi.uio.no/
inf2270/programmer/
historien-om-C.pdf) is a
fascinating read. There’s
also a 2012 interview with
Kernighan online (www.
informit.com/articles/
article.aspx?p=1960359).

LV018 100 Tutorial Olde Code.indd 101 03/07/2015 09:46

CODING C

www.linuxvoice.com102

main() function is where we set up our variables. int
and double are fairly normal variables; value_mem
is how many bytes we will allow for each number
entered (an integer), and total is the running total (a
double precision variable). *value, however, is not a
character, as you might expect from the type char:
that * at the front makes it instead a pointer to a
character. See the boxout for more on pointers.

The next important
line allocates a chunk
of memory to that
character pointer.
malloc() (from
“memory allocation”)
assigns a chunk

of memory. It takes one argument, the size of the
memory to allocate, and returns a void pointer. So
here, malloc() assigns a block of memory that is one
byte longer than our longest allowable entry (the extra
byte is for the null at the end of the entry), and returns
a void pointer to this memory block. We turn that into
a char pointer, with the (char *) cast, and assign it to
value. (To ‘cast’ a variable is to turn it into a different
type of variable. Not all variable types can be cast to
all other variable types.)

Now we have a block of memory for each entry to
our calculator, and we can get to the functional part.
getline() takes three arguments: the address of the
start of the character memory buffer, the address of
the size of that buffer, and where to get the input from
(in this case, stdin). Then we add this integer input to
total, and print the current value of total. Note that to
perform the addition, we have to turn our character
array (string) value input into an integer, using the
atof() function from the standard library. This simply
turns strings into doubles.

Note: getline() is a very new function, introduced
around 2010. GCC supports it, but for maximum
portability you might not want to use it. There’s a
DIY getline() function in K&R (available from various
places online) if you want to have a look at it.

If the program didn’t end here, we might want
to free up the memory used by malloc() by calling
free(value), but there’s no need here as all memory is
automatically freed up at the end of a program.

Compile it with
gcc -o calc calc.c

and try running it.

More complicated
Now let’s improve our calculator so we can specify
the required operation. We’ll enter operations as x + y
or x - y, hitting return between each element, so each
operation will have three elements to collect. Here’s
the code:
#include <stdio.h>
#include <stdlib.h>
/* Calculator program */

main()
{
 int value_mem = 50;
 char *value;
 char type[1];
 type[0] = ‘\0’;
 double first = 0;
 double second = 0;
 double result = 0;

 value = (char *) malloc(value_mem + 1);

 while (getline(&value, &value_mem, stdin) > 0) {
 if ((*value == ‘+’) || (*value == ‘-’)) { type[0] = *value; }
 else if (type[0] == ‘\0’) { first = atof(value); }
 else {
 second = atof(value);
 if (type[0] == ‘+’) { printf(“Result: %g\n”, first + second); }
 else if (type[0] == ‘-’) { printf(“Result: %g\n”, first - second); }
 else { printf(“Something odd happened; try again\n”); }
 first = second = 0;
 type[0] = ‘\0’;
 }
 }
 return 0;
}

Adding numbers. Hit Ctrl+C
to stop and return to the
command line.

C compiling
There are several steps to compiling a C program, although
all you really need to know is which command to issue. But
here’s what happens when you hand your file.c source code
file to the compiler:

The preprocessor cpp runs through it. This looks for
commands beginning with #. The most common ones are
#define, which defines a constant, and #include, which
includes extra function libraries. With a #define directive,
the preprocessor substitutes each example of the constant
name with the constant value, throughout the file. With an
#include directive, the preprocessor basically pastes the
included file at the top of your source code file.

The compiler compiles the pre-processed source code,
by turning it into an object code file, file.o, with the binary
version of the code.

The linker links together your code’s object file with any
object files required from the pre-compiled library files –
such as the I/O library file. (The header files, dealt with by
the pre-processor, only have function declarations, not the
actual function code; the library object files have the binary
code.) It links them all into a binary file, called either a.out,
or whatever you’ve told it on the command line.

“C is fast, it’s flexible, and it’s
suprisingly small for a language
with that much power.”

LV018 100 Tutorial Olde Code.indd 102 03/07/2015 09:46

C CODING

www.linuxvoice.com 103

As well as a character pointer for the input, our
variables now include some new doubles, and a set-
length character array to contain the type of operation.
This is 1 characters long, and we set that character
to the null character \0. Note that the character
array is indexed from 0: so a single-character array
has length 1, but that single character is referred to
with characterarray[0]. An array containing the word
HELLO would need to have length 6 (5 characters plus
the null character to mark the end of the string), so
would be declared and set up like this:
char hello[6];
hello[0] = ‘H’;
hello[1] = ‘E’;
...
hello[5] = ‘\0’;

The while() loop still revolves around getline().
This time, though, we’re expecting three elements:
a number, an operation, and another number, in that
order, and we need to work out which is which. This is
what the if/else if/else structure does:

 Check to see whether the input is + or -. In this case,
we set type to the type of operation we want.
 Otherwise, the input is a number, and it is either the
first number in the operation, or the second number
in the operation.
 If the type is still null, this must be the first number,

so we allocate it to first.
 Otherwise, this must be the second number. We
allocate it to second, then we perform either an
addition or a subtraction as type indicates (with a
little bit of error-checking), and print the total. We
reset all the variables to zero/null, and start over.
It might be tidier to use functions to add or subtract,

and pass first and second in:
main()
{
 ...
 if (type[0] == ‘+’) { add(first, second); }
 else if (type[0] == ‘+’) { subtract(first, second); }
 ...
}
add(double first, double second)
{
 printf(“Result: %g\n”, first + second);
}
subtract(double first, double second)
{
 printf(“Result: %g\n”, first - second);
}

As you can see, functions in C are straightforward.
If you wish to return something from a function,
you have to start with a return, type in the function
header (eg int add(int first, int second) might add two
integers and return their total as an integer). Here, with
no return type, void is assumed.

If you’re used to newer, higher-level languages,
C can feel a bit daunting; but it’s still a vital part of
modern software on all sorts of hardware. It’s fast, it’s
flexible, and it’s surprisingly small for a language with
that much power. At the very least, a little knowledge
of C means you can take a look at utility and kernel
code and have some chance of working out what’s
going on; and it’s always nice to be able to take a look
at the guts of the system you’re using.

Juliet Kemp is a scary polymath, and is the author of
Apress’s Linux System Administration Recipes.

In the code, you’ll see some extra printf lines commented
out; those were for bugfixing.

Pointers and addresses
Pointers are ubiquitous in C. Once you have the hang of
them they’re straightforward, but they can initially be a bit
confusing for newbies.

Let’s create a variable:
int my_integer;

my_integer is a variable of type int, and it occupies a
specific memory address. Let’s say the address is 2000. Now,
let’s create a pointer:
int *my_pointer = &my_integer;

my_pointer is a variable of type int *, which means that it is
a pointer to an int. As well as declaring it, we’ve also assigned
it: &my_integer means the memory address of my_integer
(the & symbol is known as the address-of operator). If the
address of my_integer is 2000, the contents of my_pointer will
be 2000. You can think of a pointer as a box, storing a Post-It
note which tells you where the thing it points to can be found.
int integer_a = 6;
int *pointer_a = &integer_a;

int integer_b = *pointer_a;
int *pointer_b = pointer_a;
*pointer_a = 8;
printf(“integer_b: %d, integer_a: %d”, integer_b, integer_a);
printf(“pointer_b: %d, pointer_a: %d”, pointer_b, pointer_a);
printf(“*pointer_b: %d, *pointer_a: %d”, *pointer_b, *pointer_a);

If you run this, you’ll get output something like this below
(your pointers will differ each time you run it):
integer_b: 6, integer_a: 8
pointer_b: -1074985552, pointer_a: -1074985552
*pointer_b: 8, *pointer_a: 8

integer_b is set to the value that pointer_a points to, which
at the time is 6 (the initial value of integer_a). pointer_b is
an int pointer, and is set to the actual address contained in
pointer_a, not to what it points to. *pointer_a = 8 alters the
value at the address pointed to, which is integer_a. Since
pointer_b and pointer_a contain the same memory address,
they both point to the same value, which is now 8.

LV018 100 Tutorial Olde Code.indd 103 03/07/2015 09:46

CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• Improve the structure of

your code
• Make it easier to work

on large projects
• Get the most out of

object-based modules

Rather than waving our hands around trying to
explain what objects are, we’re going to jump
right in to some example code for a student

database. It’s going to do nothing more than store
students’ results and print them out. This can be done
in Python with the following code:
students = [[“Ben”, [[“Maths”, 80], [“Science”, 70], [“English”,
60]]],
 [“Andrew”, [[“Maths”, 60], [“Science”, 70], [“English”, 80]]]]

def report():
 for student in students:
 print student[0]
 for subject in student[1]:
 print subject[0] + “: “ + str(subject[1]) + “%”
report()

This code contains two parts: the data (which is
defined in the first line), and an operation on it (which
is contained in the function report). These two bits of
the program are intimately connected. The data is
useless without some function to perform an
operation on it, and the operation is useless without
the data to perform it on.

They’re also connected at a technical level. The data
is set out in a particular format. It’s a list of lists. The
inner list always contains two items, the first of which
is the student’s name, the second is a list of his or her
grades. The idea behind objects is that whenever you
have data and code that are intimately connected like
this, you should combine them to create an object.
Python enables us to use objects, so we could rewrite
the above as:

class Student:
 def __init__(self, name, scores):
 self.name = name
 self.scores = scores

 def report(self):
 print self.name
 for score in self.scores:
 print score[0] + “: “ + str(score[1]) + “%”

students = [Student(“Ben”, [[“Maths”, 80], [“Science”, 70],
[“English”, 60]]),
 Student(“Andrew”, [[“Maths”, 60], [“Science”, 70], [“English”,
80]])]

for student in students:
 student.report()

Here, the keyword class is used to create an object
definition. By convention, class names always start
with a capital letter so they’re easy to distinguish. Our
class, student, contains two methods that are defined
in a very similar way to functions. They have to have
at least one parameter (self).

The class is a little like the blueprint for the object.
By itself, it does nothing until an object is created from
the blueprint. Objects are created as follows:
Student(“Ben”, [[“Maths”, 80], [“Science”, 70], [“English”, 60]])

This returns an object of the type Student (which is
similar to the way a variable may have a type of string
or integer). The things that can be done to this object
depend on the methods that are included in the class.
The __init__() method is called when the class is
created, so when you create an object with the
parameters Student(“Ben”, list), it passes “Ben” and
list to the __init__ method. Whenever you call a
method in a class, Python also passes another
parameter first that’s used to define the namespace.
We’ve called this self, and it’s used to create variables
that are local to just one object.

In this example, each Student object has two
variables that are local to just one particular instance
of the object, name and scores. If you create two
different Student objects, they will have two different
variables for name and scores. This is why, when we
call the report() method, it prints the variable self.
name, and this always prints the right name for the
student. Likewise with self.scores.

At this point, you may well be wondering what the
whole point of objects is. After all, we’ve taken a

CODE NINJA: ENCAPSULATE
YOUR CODE IN OBJECTS
Objectify your code and make it cleaner to write and read,
easier to share and easier to maintain.

 TUTORIAL

104

BEN EVERARD

Which version of the code
is this? There’s no way to
tell because despite the
structural differences, they
all work.

LV018 104 Coding Ninja.indd 104 03/07/2015 09:47

NINJA CODING

www.linuxvoice.com 105

simple program that was easily understandable, and
turned it into a more confusing one that’s 50% longer.

We mentioned earlier that objects enabled us to
encapsulate data and the functions that operate on
that data. When your entire program fits onto your
screen at once, there’s not that much point in
encapsulation because it’s always easy to see what’s
going on. However, as your code becomes more
complex, the structure of your program becomes
more important, and the main reason for objects is to
make your code clean, readable and easy to maintain.
The bigger your codebase, the more important this
structure is.

Adding to the database
Let’s extend our simple databases with the ability to
add a new student to the list. In the non-object version
of our code, this is done with:
students.append([“Mike”, [[“Maths”, 70], [“Science”, 70],
[“English”, 70]]])

As you can see, this requires intimate knowledge of
the data structure that’s storing the students. If this
changes in any way, every bit of code that interacts
with students in any way will have to be rewritten.

There are a few ways we could do this in the code
with objects. We could simply create a function that
creates a new student object, and adds it to the list,
however, this is building more into a data structure
that isn’t encapsulated (the list of students). Another
option is to encapsulate this list of students into a
new class called Student_Body:
class Student_Body:
 def __init__(self):
 self.students = []

 def add(self, name, scores):
 self.students.append(Student(name, scores))

 def report(self):
 for student in self.students:
 student.report()

student_body = Student_Body()
student_body.add(“Ben”, [[“Maths”, 80], [“Science”, 70],
[“English”, 60]])
student_body.add(“Andrew”, [[“Maths”, 60], [“Science”, 70],
[“English”, 80]])

student_body.report()

Creating objects, as you can see, can require a few
more lines of code (at least in very small programs),
but the result is code that’s far easier to read and
therefore much easier to debug.

What’s more, by encapsulating the data and the
functions, we’re presenting a clear interface to the rest
of our program. It can interact with objects through
the methods defined in our class, and it will all work.
As we develop the program, we may decide to change
the way the class works internally, or the way it stores

data. However, as long as methods stay the same,
this shouldn’t affect the rest of the program.

In truly object-oriented programming languages,
every bit of code has to be inside an object, but
Python isn’t this fastidious about the use of objects.

So far, we’ve only looked at interacting with objects
through methods, but you
can also change particular
properties (local variables)
directly. For example, we can
create the following method
in the Student_Body class to
rename a student.
 def rename(self, old_name, new_name):
 for student in self.students:
 if student.name == old_name:
 student.name = new_name

Here, student.name is the variable name that’s local
to just that instance of the Student class.

Inescapable objects
If you’re using Python, you’re probably using objects
already even if you don’t realise it. The benefits of
encapsulation that we’ve covered are particularly
useful in modules. For example, urllib can be used to
create objects that contain web pages:

import urllib2
page = urllib2.urlopen(“http://www.linuxvoice.com”)
print page.read()

Here, urllib2.urlopen() returns an object that we
store in the variable page. One of the methods of this
object is read(), which returns the HTML contents of
the web page. Because all the data is encapsulated in
this object, we don’t have to worry about keeping track
of anything other than that object, and knowing what
the available methods are. Using objects like this
makes reusing code like this easy.

A good text editor (like
Atom, shown here) allows
you to roll up objects to
make the code easier to
read.

“In truly object-oriented
languages, every bit of code
has to be inside an object.”

LV018 104 Coding Ninja.indd 105 03/07/2015 09:47

CODING CROSS-PLATFORM SCRIPTING

www.linuxvoice.com

Imagine a scripting language that runs
everywhere, across all your Linux, *BSD and
Windows machines. A language that’s clear,

concise and gets the job done without any fluff. A
language that saves you time, rather than having to
deal with the foibles of each individual platform. Well,
it exists! “Big deal”, you might be saying. “Python, Perl
and other languages run across pretty much every
major operating system you can name.” That’s true,
but those are not installed as standard in every OS.
Plus, while they’re great programming languages, for
quick admin jobs they can be overkill.

This is where Batsh comes in. It’s a language that
compiles to both Bash and Windows .BAT files –
in other words, you write your script in the Batsh
language, then a compiler generates equivalents in
Bash and .BAT formats. In this way, if you need to do
the same job across Linux and Windows boxes, you
only have to write one script. You don’t need to learn
the intricacies of Windows batch files – which is a
blessing, as they’re not pretty at the best of times.

Batsh has its own syntax, but it’s not especially
difficult to learn, and you can get started without
having to install anything by visiting the project’s site
at www.batsh.org. Type your code in the left-hand
panel, then click the buttons on the top-right to
compile to Bash or Windows .BAT formats. Let’s get
started with a classic:

println(“Hello world”);
Here you can see that Batsh syntax is fairly similar

to C and related languages: println is a function that
takes a text string as an argument, and prints the
string to the screen, followed by a newline character.
(You can use print on its own to print text without
a newline.) Statements need to be terminated with
semi-colon characters. If you click on the Compile To
Bash button you’ll see this output:
“echo” “-e” “Hello world”

There are a few more quotation marks here than
you might expect, but the result is still valid code you
can use in a Bash script in Linux. Click on Compile To
Windows Batch, however, and you’ll get this result:
@echo off
setlocal EnableDelayedExpansion
setlocal EnableExtensions

echo Hello world
The first three lines here are boilerplate code for

Windows, so you’ll see them in most .BAT scripts
generated by Batsh, and the action only begins
with the echo Hello world line. (The first @echo line
prevents each command from being printed as it is
executed, and ensures that you only see the output of
the commands.)

So creating platform-independent scripts is as
simple as that: type your code in, click the appropriate
button, and you have a usable result on the right. You
can download the compiler and run it offline, which
might help if you want to automate some things, and
we’ll look at that later. For now though, we’ll focus on
using the website version.

Juggling numbers
Let’s delve further by looking at variables and
conditionals. Here’s a Batsh program that assigns the
number 15 to the variable myvar, and then performs a
test on it. If myvar contains a number bigger than 10,
it prints myvar is followed by the value it contains – or
if it’s smaller than 10, it prints a different message:
myvar = 15;

if (myvar > 10) {
 println(“myvar is”, myvar);
} else {
 println(“Smaller than 10”);
}
Again, note the C-like syntax here. Code blocks are

BATSH: WRITE PLATFORM
INDEPENDENT SCRIPTS
Write once, run anywhere – at least, on Linux and Windows
machines. Batsh does all the magic.

 TUTORIAL

106

MIKE SAUNDERS

The Batsh website includes
some code examples
showing how language
features such as recursion
work.

WHY DO THIS?
• Run your scripts on

multiple OSes
• Save time doing admin

chores
• Relive the glory (or not)

days of .BAT files

LV018 106 Coding Batsh.indd 106 03/07/2015 09:49

CROSS-PLATFORM SCRIPTING CODING

www.linuxvoice.com

contained within curly braces, so you could add more
lines for the if and else sections. Also, the comparison
(is myvar bigger than 10) is contained within
parenthesis. Other comparisons you can do include:

 < less than.
 >= greater than or equals to.
 < less than or equals to.
 == is the same as.
The == (same as) requires two equals signs,

because otherwise it would just be an assignment.
Let’s look at the Bash code that this generates:
myvar=$((15))
if [$(($myvar > 10)) == 1]; then
 “echo” “-e” “myvar is” “$myvar”
else
 “echo” “-e” “Smaller than 10”
fi

If you haven’t done much Bash scripting before,
you may find the syntax rather odd – but that’s not
a problem any more, as you can use Batsh’s more
familiar syntax! Here’s the .BAT version:
set /a myvar=15
if !myvar! GTR 10 (
 echo myvar is !myvar!
) else (
 echo Smaller than 10
)

Arithmetic is very simple in Batsh; all of the
following are allowed:
a = 3;
b = 10;
c = 999;

d = a + b * c;
println(d);

The result here is 9993 (10 multiplied by 999, and
then 3 added on top.) You can use arrays in Batsh,
specified by square brackets, and include multiple
data types inside them:
arr = [1, “ciao”, true];
println(arr[0]);

Here we set up a three element array with a number,
a string, and a Boolean value inside. When we print an
element, note that the index of the array starts from 0,
so in this case it prints the number 1. If we change the
second line to arr[1], that refers to the second element
in the array, which means ciao is printed instead.

Strings are easy to deal with, but note that you need
to use ++ to join them together:
str1 = “hello”;
str2 = “world”;
str3 = str1 ++ str2;
println(str3);

Loops are also familiar in their syntax, and note
the use of a comment here, preceded by two forward
slash characters:
a = 1; // Set a to one

while (a <= 10)
{
 println(a);
 a = a + 1;
}

This prints the numbers 1 to 10. To make your
scripts more modular, you can create functions that
take numbers or strings as parameters, and return
a value back. Consider
this example, which
creates a function
called double, which
takes a number and
returns back the same
number multiplied by
two. Also note the use of global and local variables
here – the x we create at the start is in the global
scope, and therefore is not affected by the change to
the local x inside the function:
x = 10;

function double(a)

107

.BAT files date back to
the early days of MS-DOS,
hence their rather clunky
syntax.

Windows: the PowerShell alternative

While .BAT files are rather ugly and clumsy remnants of
the past, they’re still occasionally useful for doing quick
admin jobs, as we’ve mentioned. However, if you’re forced
to spend a lot of time working on Windows machines,
it’s worth noting that there’s an alternative in the form of
PowerShell. In the early 2000s, Microsoft realised that .BAT
files couldn’t be taken seriously for any large-scale jobs, so
the company developed a new scripting language with deep
hooks into the .NET framework and rest of the OS.

We won’t spend much time on it here, as this is a Linux
magazine after all, but we understand that many readers
have to deal with Windows boxes in their daily work.
PowerShell doesn’t magically fix everything and has its
own set of problems, but for users who spend most of their
time at the command line, it makes life a lot simpler. See
Microsoft’s crash course for a quick guide to the basics:
https://technet.microsoft.com/en-us/magazine/hh551144.
aspx.

“If you need to do the same job
on Linux and Windows you only
have to write one script.”

LV018 106 Coding Batsh.indd 107 03/07/2015 09:49

CODING CROSS-PLATFORM SCRIPTING

www.linuxvoice.com108

{
 x = 999;
 return a * 2;
}

ret = double(x);
println(ret);

Putting it all together
So, those are the fundamentals of the language. Batsh
is capable of some other things as well, such as
recursion, as you can see from the examples on the
website. But for the most part, it’s a neat and simple
little language to learn.

It’s time to use them it something practical! Batsh
includes a handful
of routines to read
lists of files from a
specified path, check
if a file exists, and
execute commands
accordingly. For

instance, this prints all files in the current directory,
and then checks to see if foo.txt exists. If so, it prints
a message:
files = readdir();
print(files);

if (exists(“foo.txt”)) {
 println(“foo.txt exists”);
}

You can check to see if a file doesn’t exist by adding
an exclamation point before the call to the exists
routine, eg !exists(“foo.txt”). Another way to go about
this is to store the result as a Boolean variable, for
instance: res = exists(“foo.txt”);.

Of course, you’ll often need to run external
programs as well, and this is possible with the call()
function. Obviously the method to run programs will
often differ hugely between Linux and Windows, but

let’s take Java as an example, as it works cross-
platform:
progname = “minecraft”;
call(“java”, “-jar”, progname ++ “.jar”);

Here we run the java binary, followed by a bunch of
parameters including -jar and the filename minecraft.
jar. You can add as many parameters as you need, or
omit them entirely.

Sometimes you won’t be able to avoid the
differences between platforms, however, in which
case Batsh has a neat solution. Using the bash() and
batch() routines, you can specify code that should
only appear in Bash and .BAT scripts respectively.

For instance: let’s say you want to check if the file
foo.txt exists in the current directory, and if so, delete
it. Linux and Windows use different commands and
parameters for removing files, but you can make sure
that the appropriate command for each platform is
used with:
if (exists(“foo.txt”)) {
 bash(“rm foo.txt”);
 batch(“del foo.txt”);
}

When you translate this to Bash, you’ll get:
if [-e “foo.txt”]; then
 rm foo.txt
fi

So the del command isn’t executed, as it’s specific
to Windows. Likewise, when you convert to .BAT,
the del command is included in the script and the
rm is left out. With some careful coding, you can
create Batsh scripts where the primary logic is kept
in platform-independent code, but the bits that are
very specific to Windows and Linux are encapsulated
neatly within bash() or batch() calls.

Wrapping up
Batsh is in the early stages of development, and there
are clearly lots of things still missing, but it’s already
usable enough for doing simple scripts with loops,
conditions, tests for file existence, calls to external
programs, and platform-specific commands. We’d like
to see some more inbuilt functions to handle things
like input and Windows’ odd use of backslashes, so if
you’re looking for a programming project to sink your
teeth into, you could help the developer out.

Ideally, more and more of the Windows and Linux-
specific parts could be moved into generic routines,
so instead of needing separate bash() and batch()
calls for deleting files, there could be a single remove()
call that works out the differences itself.

The full source for downloading Batsh (and running
it offline) can be found on GitHub at https://github.
com/BYVoid/Batsh, although it’s written in OCaml, a
language that not everyone is familiar with. Still, you’ve
already gone to the effort to learn Batsh, so another
language won’t do any harm!

Mike Saunders is a man with many machines. He still loves
his Amiga 1200 above everything else, though. Bless.

Want to boost Batsh with
extra features? Learn a
bit of OCaml and help the
developer out!

“We’d like to see some more
inbuilt functions to handle
things like input.”

LV018 106 Coding Batsh.indd 108 03/07/2015 09:49

SUBSCRIBE

www.linuxvoice.com

SUBSCRIBE

www.linuxvoice.com/shop

SUBSCRIBE

109

Payment is in Pounds Sterling. If you are dissatisfied in any way you can cancel your subscription at any time and receive a refund for all unmailed issues.

Did you know that you can subscribe to Linux Voice from
just £10 per quarter with Direct Debit? Get every issue
straight to your mailbox (or inbox) and spread the costs!

UK READERS!

 116 pages each month
of the best tutorials,
features and interviews

 Access to all back issues
in DRM-free digital formats -
over 1,500 pages

What you get

Yearly Direct Debit prices
UK print subscription – £55
Digital subscription – £38

Quarterly Direct Debit prices
UK print subscription – £15
Digital subscription – £10

 Take part in our yearly
profit donating scheme,
and help FOSS projects

Go here now to subscribe!

LV018 109 Direct Debit.indd 109 03/07/2015 12:39

www.linuxvoice.com

MASTERCLASS WEBDAV

110

F rom the beginning the web was visualised as
both a browsable and an editable medium. In
fact when Sir Tim Berners-Lee wrote the first

web client it was intended as a tool for scientists to
collaborate and put text online and to link to each
others’ works bypassing the need for a centralised
database of any kind. To that end, the first client could
edit pages just as easily as it could display them.

However, the popularity of accessing content led to
the standardisation of a HTTP protocol that lacked
important authoring features. This changed in 1996
when Jim Whitehead engaged the World Wide Web
consortium (W3C) to discuss the problem of
distributed authoring on the World Wide Web. The
discussion led the W3C to form an IETF working
group to design a new protocol to address the lack of
collaboration. Their efforts led
to RFC 2518, which defined
the first version of the
WebDAV protocol in 1996.

WebDAV, which stands for
Web-based Distributed
Authoring and Versioning,
builds on and extends HTTP to bring the same
benefits to authoring that the web has already
brought to viewing content.

The WebDAV protocol includes a whole set of
remote document accessing capabilities, including file
storage, directory management, and support for
collaborative editing. Before WebDAV it was difficult
for people to collaborate on web-based documents
because there was no standard way to coordinate the

TRANSFER FILES WITH WEBDAV
The protocol can teach FTP a thing or two about file transfers.

changes. WebDAV solved this problem with the
introduction of locks, which prevents others from
editing the same content you’re working on.

However, the developers
who were working on
WebDAV had goals that
extended beyond simple web
page authoring. Thanks to
their efforts, many started
viewing WebDAV as a

network filesystem suitable for the internet.
Today you can think of WebDAV as an FTP-like

protocol that you can use to remotely access and
share files over the internet. However, WebDAV offers
several benefits over FTP. For starters, WebDAV works
better through firewalls and can be password-
protected and encrypted. It’s also a bit faster than FTP,
especially when transferring many small files, since it
doesn’t need to make a data connection for each file.

Extending WebDAV
There have been several other popular extensions to
the WebDAV protocol. There’s the Calendaring
Extensions to WebDAV, popularly known as CalDAV,
using which clients can access scheduling
information on a remote server. The access protocol
uses the iCalendar format for the calendaring data,
which is also supported by major apps and services
such as Google Calendar, Evolution and Thunderbird.
Then there’s the vCard Extensions to WebDAV, more

BEN EVERARD

MAYANK SHARMA

OwnCloud (and other
PIMs) can import and
export calendars and
contacts via CalDAV and
CardDAV.

Popular backup apps can access and backup to a remote
WebDAV share.

Ferry files like a master with an oft-overlooked protocol that
changed the nature of the web when it debuted.

MASTERCLASS

“WebDAV includes a whole
set of remote document
accessing capabilities.”

LV018 110 Masterclass.indd 110 03/07/2015 09:51

WEBDAV MASTERCLASS

www.linuxvoice.com 111

PRO TIP
The popular proprietary
service Dropbox doesn’t
have built-in support for
WebDAV but you can use
the DropDAV service to
access your content via
the protocol.

PRO TIP
You can find a list of
online backup services on
ownCloud’s website that
use the open source
software and allow
access via WebDAV.

commonly known as CardDAV. This protocol is
designed to enable users to access and share contact
data, stored in the vCard format, on a server. Just like
CalDAV, the CardDAV protocol is also supported by
virtually all popular open source and proprietary apps.

A lesser known extension of WebDAV is GroupDAV,
which is a protocol for connecting open source
groupware clients to groupware servers. It’s supported
by groupware servers such as SOGo (earlier known as
OpenGroupware.org) and Citadel as well as a host of
clients including KDE’s Kontact and Thunderbird.

Using WebDAV
One of the most popular uses of WebDAV is for taking
backups. To this end, the protocol has several
advantages over other mechanisms designed for
transferring files such as FTP. WebDAV gives you
access control and the ability to extend reading and
editing files to a limited list of users. This is especially
useful for setups that have a central repository
accessed by several users. Also, unlike FTP backups,
using WebDAV you can back up multiple files at once.
You can in fact simultaneously initiate several backup
tasks using the same WebDAV server. The biggest
advantage however is the protocol’s ability to transfer
data securely. WebDAV is basically an extension of
HTTP, and you can access it over HTTPS and do your
backups over a SSL connection.

Because of these advantages, many online backup
services support WebDAV and let you interact with
your online account using the protocol. Once you
enable the WebDAV extension on these services (if it
isn’t already enabled by default), you can then mount

the online backup drive in your filesystem and interact
with it as any other local drive. You can drag-and-drop
files into it and even save files directly inside it. The
biggest convenience, however, is the ability to directly
edit files on the remote drives mounted via WebDAV
without downloading them first.

If you’ve deployed your own file hosting service or a
pooled storage server you can even access these via
WebDAV. DIY file hosting solutions such as OwnCloud
and Seafile both support WebDAV. After years of
requests, the popular NAS server FreeNAS also now
supports WebDAV, and the Debian-based
OpenMediaVault server also allows WebDAV access
via a plugin.

To top it all, WebDAV lets you remotely manage
your files from any computer or smartphone, without
downloading any software. Linux, Microsoft Windows
and Apple OS X all have built-in support for WebDAV.
You can use the file managers in these operating
systems and follow the prescribed procedure to
mount remote WebDAV shares.

For example, in Gnome-based distros, fire up the file
manager and head to File > Connect To Server. Then
key in the location of the WebDAV drive in the Server
Address field in the following format: davs://
user:password@host.name/path. Similarly, in KDE
fire up Dolphin and enter the WebDAV address in the
location bar, such as webdav://myhost.mydomain.
net/webdav. Even the Firefox web browser recognises
WebDAV folders, and you can access them simply by
entering their location in the address bar. You can do
the same with the Android web browser as well, which
also has built-in support for WebDAV.

That said, while you can easily access WebDAV
folders without any specialised tools and apps, using a
third party WebDAV client app has some advantages.
You’ll find several WebDAV apps in the Google Play
store offering features such as the ability to upload
images straight from the device’s gallery to the online
drive and automatically sync files and folders as per a
schedule. You’ll also need an app to sync calendars
and contacts list between all your devices.

Now that you’re well versed with WebDAV, go ahead
and switch all your online and offline backup and file
transfer utilities to work their magic via this magical
protocol. In the next section we’ll help you set up your
own WebDAV-enabled web server.

Specialised apps let you
upload files to the WebDAV
share.

Mount WebDAV from the CLI
Use your distro’s official repositories to install DAVfs, which
is the Linux filesystem driver that enables you to mount a
WebDAV server as a disk drive.

Users of Debian-based distros can use sudo apt-get
install davfs2 while Fedora-based distros can install the
driver with yum install davfs2. Then create a folder to
mount the WebDAV shares, such as mkdir ~/webdav. Now
add your user to the davfs2 group with sudo usermod -a -G
davfs2 <username>. Make sure you log out and back in after
adding yourself to the davfs2 group. Then edit /etc/fstab
and add the following line for each user who wants to
mount the folder:
<WebDAV address> /home/<username>/webdav davfs
rw,user,noauto 0 0

To avoid being prompted for the password every time
you mount the remote WebDAV share, create a secrets
file with your credentials under the ~/.davfs2 directory,
such as:
$ nano ~/.davfs2/secrets
<WebDAV address> <username> <password>

Save the file and ensure it belongs to your user and
group with
udo chown <username>:<groupname> ~/davfs2/secrets
and is only writable by you with
chmod 600 ~/.davfs2/secrets

You can now mount the remote WebDAV share with
mount ~/webdav

LV018 110 Masterclass.indd 111 03/07/2015 09:51

MASTERCLASS WEBDAV

www.linuxvoice.com112

If you are an admin and wish to extend the benefits
of WebDAV to the users of your network, you can
do so with ease. We’re assuming you’ve already

set up the Apache web server, which is dead simple
these days. You can then disable the default page, if
you haven’t already, with
sudo a2dissite 000-default
and then reload the web server’s configuration with
sudo service apache2 reload

You can then configure an Apache virtual host
called webdav.local that’ll give access to files under
the /var/www/webdav directory. For this, head to
/etc/apache2/sites-available/ and create a new site
configuration file with the following content:
$ sudo nano webdav.local.conf
<VirtualHost *:80>
 Servername webdav.local
 DocumentRoot /var/www/webdav
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 Alias /webdav /var/www/webdav
 <Directory /var/www/webdav/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

Now create the WebDAV share with
sudo mkdir /var/www/webdav
and give it the proper permissions and ownership with
sudo chown www-data.www-data /var/www/webdav

Then enable the new website with
sudo a2ensite webdav.local

You can test the new website by creating a simple

SUPERCHARGE YOUR
WEB SERVER

index.html inside /var/www/webdav, which should be
displayed when you point your web browser to http://
webdav.local. After you’ve set up the new directory,
you can enable the WebDAV module with
sudo a2enmod dav_fs
and then restart Apache
sudo service apache2 restart
This lays the groundwork for a basic WebDAV server.
To set up a share, create a directory such as /var/
www/webdav/data and hand it over to Apache with
sudo chown www-data:www-data /var/www/webdav/data/

Then edit the webdav.local.conf file and add the
following lines to the <VirtualHost> block:
Alias /data /var/www/webdav/data
<Location /data>
 DAV On
</Location>

The above tells Apache that the WebDAV enabled
directory (/var/www/webdav/data) will be accessible
via http://webdav.local/data. You can access this
new share, after restarting Apache, from your distro’s
file manager or even the Firefox web browser as
shown in the previous section. You can also use the
popular Cadaver CLI client that’s available in the repos
of virtually all distros. Once you’ve installed it you can
access your WebDAV:
$ cadaver http://webdav.local/data
dav:/svn/> put somefile.gz

This will upload somefile.gz to your WebDAV share.

Abracadabra
While it doesn’t take much effort to set up a quick and
dirty WebDAV share, you’ll probably want to add some
basic authentication mechanism. Again this is rather
straightforward with the htpasswd command. Begin
by creating the WebDAV password file, like
sudo htpasswd -c /var/www/webdav/passwd.dav mayank
The command will prompt you for a password which
will then be associated with the mayank username.
We’ll use this username and password combo to
connect to the WebDAV share.

Repeat this command for creating multiple users.
The -c switch creates the file if it does not exist, so
make sure you omit it when using the command to
create more users, or it will overwrite the existing file.

When the authentication file is ready, you need to
point to it by editing the WebDAV config file (/etc/
apache2/sites-available/webdav.local.config) like so:
<Location /data>
 DAV On

Light the LAMP with WebDAV.

MAYANK SHARMA

PRO TIP
Use sudo apache2 to test
Apache’s configuration for
any syntax errors.

Despite its rather morbid
name, the command line
Cadaver tool is a wonderful
utility for interacting with
WebDAV shares.

LV018 110 Masterclass.indd 112 03/07/2015 09:51

WEBDAV MASTERCLASS

www.linuxvoice.com 113

Mayank Sharma has been finding productive new ways to
mess about with free software for years now.

 AuthType Basic
 AuthName “webdav”
 AuthUserFile /var/www/webdav/passwd.dav
 Require valid-user
</Location>

From now on, whenever you try to access your
WebDAV server you’ll be asked to authenticate
yourself first.

To switch to HTTP Digest Authentication rather
than transmitting unencrypted passwords, first enable
the module with
sudo a2enmod auth_digest
Now create a digest authorisation password file with
sudo htdigest -c /var/www/webdav/digestpasswd.dav
webdavdigest mayank

The command will prompt you for the password for
the mayank username. The webdavdigest option is
the name of Authorisation Realm to which the
username belongs. Remember to give the proper
permissions to the /var/www/webdav/digestpasswd.
dav file so that it’s only accessible by the Apache user.

Just like before, you can repeat the htdigest
command to add authentication details for more
users, remembering to take out the -c option to avoid
zapping the earlier details. When you’re done, bring up
the WebDAV configuration file (/etc/apache2/
sites-available/webdav.local.conf) and replace the
earlier authentication details with this:
<Location /webdav>
 DAV On
 AuthType Digest
 AuthName “webdavdigest”
 AuthUserFile /var/www/webdav/digestpasswd.dav
 Require valid-user
 </Location>
If you’re providing access to private files over the

internet, access control may not be enough. In this
day and age, it makes sense to transfer content over
secure encrypted channels using Secure Sockets
Layer (SSL). Enabling this with Apache again doesn’t
take much effort.

Begin as usual by enabling the SSL module with
sudo a2enmod ssl
and then restart the web server. SSL requires a key
and a certificate to validate the encrypted channel.
First create a directory to house them with
sudo mkdir /etc/apache2/ssl

Then use the following command to create the key
and the certificate in one go:
$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048
-keyout /etc/apache2/ssl/apache.key -out /etc/apache2/ssl/
apache.crt

That’s quite a terminal full. Let’s break down the
command. Here we’re using the openssl command to
create a certificate and the key. The req -509 option
specifies that we’d like to create a self-signed
certificate. The -nodes option asks Apache not to
secure the key file with a passphrase otherwise we’d
be forced to enter a passphrase every time we bring
up the Apache web server. The -days 365 parameters
define the validity period of the certificate (one year in
this case). With -newkey rsa:2048 we ask the
command to create us a new RSA key that’s 2048 bits
long. Finally we have the -keyout and -out option,
which point to the output location and name of the
key and certificate, which in this case is the directory
we just created.

The command will prompt you for various bits of
information. Keep an eye out for the question
requesting the Common Name, which you should
respond to by entering your domain name or the IP
address of the server. Once it’s done it’ll place the keys
and certificate in the /etc/apache2/ssl directory.

Now that we have our certificate and key available,
we can configure Apache to use these files in a virtual
host file. You can either use the default SSL virtual
host or create your own. Make sure to use port 443 in
the VirtualHost directive and include the directives to
turn on SSL and specify the location of the certificate.
The easiest way is to make a copy of the default-ssl
virtual host file (/etc/apache2/sites-available/
default-ssl.conf) and edit the names and paths as per
your setup, namely SSLCertificateFile and
SSLCertificateKeyFile. As per our setup these should
point to /etc/apache2/ssl/apache.crt and /etc/
apache2/ssl/apache.key respectively.

Once you’ve configured the SSL-enabled virtual
host, enable it with
sudo a2ensite default-ssl.conf
and restart Apache to bring it online. You’re now all set
to serve encrypted content using the SSL certificate
you created and can now access your site and your
WebDAV folder over a secure https connection.

You can use an Android app to sync data between a
mobile device and the remote WebDAV share.

PRO TIP
If you have multiple
directories and users, you
can restrict access with a
.htaccess file under each
directory. But it’s safer to
put all the access rules in
the global WebDAV
configuration file (/etc/
apache2/sites-enabled/
webdav.local.conf) .

LV018 110 Masterclass.indd 113 03/07/2015 09:51

www.linuxvoice.com

/DEV/RANDOM/

Final thoughts, musings and reflections

My Linux Setup Michel Loubet-Jambert

114

In some recent perusal of Linux-related news,
I came across an item about this Linux-
powered device (http://tracking-point.com).

To save you bandwidth, it is an intelligent
rifle-scope that enables you to effectively paint a
target and track it easily, controlling the trigger
until you are sure of a hit. Apparently, from one of
the promotional slides: “You hold a tremendous
advantage over an intruder. No perpetrator can
overcome your dominant ability”

The immediate thought that sprung to my
mind was – “Hmm, if you attach some image
recognition to that, maybe cloud-backed (it
already has Wi-Fi/data), and some fairly primitive
robotics, you have a pretty good assassination
droid”. Granted, perhaps other people don’t think
like me. Perhaps other people think “gosh, this is
exactly what I need to combat my rabbit/crow/
immigration problem”.

Leaving aside that in a country that tried to
criminalise people sharing basic security
software (https://goo.gl/431H9T), it is
apparently OK to sell software that can help you
shoot things better.

Anyway, I can imagine some contributors to
Linux not being overjoyed that they have
contributed in some small way to this
development (I don’t think my own text and 3D
image munging software has been involved, so I
will sleep like a babe), but of course, they don’t
get to judge. The nature of a free open source
licence means you very specifically can’t tell
someone what they can use it for, and any
“non-gun-toting-Texan” clause would exclude it
from OSI approval.

So, my question for you all this week is: is this
agnosticism the price we have to pay for free, or
are there some things for which freedom should
not be an excuse? Answers on a postcard…

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

Editor of our Gaming on Linux section.

An official XBox 360
controller. This will
go once the Steam
Controller comes out.

The fridge-like
gaming case houses
an FX 6300, GTX 960,
8GB RAM and an
underwhelming SSD.

Steam is my digital distribution
platform of choice.

Andeor SADES gaming
headset. It looks a bit silly,
but has great sound quality
and good value for money.

What version of Linux are you
currently using?
 Xubuntu 15.04. An Ubuntu
distribution is the most practical for

gaming, as it’s the only distro universally
supported by game developers, along with
SteamOS. It’s also really easy for devices
and drivers (most of the time).

And what desktop do you
currently use?
Xfce. It’s a solid workhorse of a
desktop environment: very stable

and not too much clutter. The only major
change I have done to it is enable
compositing through Compton to avoid
screen tearing in games.

What was the first Linux setup
you ever used?

I installed Ubuntu 8.04 back in 2008
and got hooked on all those silly

Compiz effects and widgets that were all
the rage then. The effects are gone now,
but I haven’t used another OS since.

What Free Software/open source
can’t you live without?
Firefox is a pretty boring choice but
has to be the obvious one. I usually

have two windows with an average of 20
tabs open on each and the browser
doesn’t slow down one bit.

What do other people love but
you can’t get on with?
Wine. I don’t know if people love it,
but I never got on with it. With all the

native games on Linux these days, it’s a
relief never having to use it again.

LV018 114 Geek Desktop.indd 114 03/07/2015 13:38

Source: https://github.com/The-Compiler/qutebrowser (GPLv3)

LV018 115 Inside Back Cover.indd 115 02/07/2015 13:44

LV018 116 Back Cover.indd 116 02/07/2015 13:45

