
January 2016 £5.99 Printed in the UK

MR MICROSOFT
GIANUGO RABELLINO

The senior director
of open source
communities at MS
on the importance
of being open

RASPBERRY PI
QUIZMASTER

Build your own
Python-powered
touchscreen
quiz machine for
glorious learning

MYSQL › FEDORA › UBUNTU › PYTHON & MORE!

32 PAGES OF TUTORIALS

HACK A
BLUETOOTH
MONITOR p76

January 2016 www.linuxvoice.com

MODEL
THE GLOBAL

ECONOMY
p84

Try more
Linux distros

Get a prettier
desktop

Keep on top
of updates

Keep tabs on
your system

Streamline the
way you work

Serve your
own website

USE
LINUX

SMARTER

WHEN
DEVELOPERS

FALL OUT!
p28

XMAS BONANZA!

WIN £4,250 OF HACKER SWAG: DETAILS INSIDE

Our festive
gift guide for

the discerning
geek

LV022 001 Cover.indd 1 29/10/2015 14:47

shop.linuxvoice.com

The only Linux magazine available
as DRM-free PDFs and ePub

LV022 002 Inside Front Cover.indd 2 29/10/2015 12:44

www.linuxvoice.com

ISSUE 22 WELCOME

3

The January issue

VOICE OF THE MASSES

On our podcast (which is seven years old in February!), there’s
a section called ‘Voice of the Masses’. This is where we ask
our listeners a question. This question often starts off

innocuous but the answers always surprise us with their insight and
positivity. One of the best examples of this happened recently, when
we asked, “Who is your Linux or Free Software hero?”

What surprised us most was that out of the 60 people proposed in
the replies, there was only one mention of Linus Torvalds, and only
three or four of Richard Stallman. The majority were for the unsung
heroes behind much of the software we all use every day: Fabrice
Bellard,for his work on Qemu and FFmpeg; Martin Gräßlin for
speaking calmly in a KDE storm; and even Mark Shuttleworth for
bringing Linux to the masses. But to even highlight these few is to
miss the point – the best thing about Linux? It’s built by all of us.

Graham Morrison
Editor, Linux Voice

What’s hot in LV#022
ANDREW GREGORY
We haven’t put a number on it,
but our collection of tips is
numerous and diverse, with
people like Matthew Garrett and
Matthias Kirschner contributing
their all-time favourites.
p14

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

GRAHAM MORRISON

 Linux Voice is different.
Linux Voice is special.
Here’s why…

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Andrew Conway, Juliet
Kemp, John Lane, Vincent Mealing,
Simon Phipps, Les Pounder, Mayank
Sharma, Valentine Sinitsyn.

BEN EVERARD
Valentine’s in-depth look at how
Linux works is becoming
compulsive reading. This month,
he deconstructs and reconstructs
the humble executable, which is
something we use every day.
p94

MIKE SAUNDERS
We’ve not run a competition
before, but we can’t help being
excited about the pirate booty
we’ve got from Pimoroni. All
you’ve got to do is find 10
penguins!
p26

SUBSCRIBE
ON PAGE 56

1 At the end of each financial year we’ll
give 50% of our profits to a selection of
organisations that support free
software, decided by a vote among our
readers (that’s you).

2 No later than nine months after first
publication, we will relicense all of our
content under the Creative Commons
CC-BY-SA licence, so that old content
can still be useful, and can live on even
after the magazine has come off the
shelves

3 We’re a small company, so we don’t
have a board of directors or a bunch of
shareholders in the City of London to
keep happy. The only people that matter
to us are the readers.

LV022 003 Welcome.indd 3 30/10/2015 10:03

www.linuxvoice.com

CONTENTS ISSUE 22 JANUARY 2016

4

Contents
Welcome to Linux Voice, the magazine that gives back to the community

News 06
Big money moves in the world of Free
Software, a huge government contract for
LibreOffice, and Raspberry Pis head to the
International Space Station.

Distrohopper 08
Taste 57 varieties of Ubuntu and whet your
appetite for your next rainy weekend of
installing new distros.

Speak your brains 10
Why a free internet is essential (and like
Linux), and the final word on that awful/
loveable penguin.

Subscribe! 12/56
Save money, get the magazine delivered to
your door and get access to 22 issues of
Linux Voice in lovely DRM-free PDFs.

FOSSPicks 58
Software that’s as Free as the migratory
birds that flock to Britain at this time of the
year, driven by the cold Siberian winds that
scourge northern Europe.

Core Tech 94
The intrepid Dr Valentine Sinitsyn goes
inside a Linux executable to discover what’s
really going on when you optimise code at
compile time.

Geek Desktop 98
Inside the geek den (including oscilloscope!)
of Jon Williamson, provider of goodies at
top swag suppliers Pimoroni.

Regulars Cover Feature

Make yourself a better Linux user with our mélange of tips, tricks and
software discoveries, and get more out of Free Software.

Remember the real meaning of Christmas: to spend money
on gadgets. Here are some of the best for your list.

Interview

After years of FUD, Microsoft loves Linux –
and it’s due in large part to this man.

Gianugo Rabellino

Feature

Consume!

FAQ Group Test

Software Defined Networking 32
The tech that’s going to make
networking a lot more flexible,
scalable and adaptable.

Window managers 50
Your desktop isn’t just about eye
candy – it’s a reflection of the
way you work. So work better!

SUBSCRIBE
ON PAGE 56

14

2434

WIN
STUFF
WORTH
£4,250!

TURN TO PAGE 26!

GEEK GADGET
GIFT GUIDE

LV022 004 Contents.indd 4 30/10/2015 12:02

www.linuxvoice.com

ISSUE 22 JANUARY 2016 CONTENTS

5

Shower 66
Give presentations anywhere with HTML.
Death to PowerPoint! Long live Shower!

When developers fall out, the community feels the shockwaves. But why can’t they just get along?
Codes of conflict

Tutorials

28

Ubuntu 15.10 43
Want to get into Linux? Try
Ubuntu 15.10, the latest version
of this beginner-friendly distro.

OwnCloud Server 8.2 44
Love the convenience of Google
services but hate being spied on?
Here’s the solution.

TeamViewer 10 45
Now it’s even easier to share a
screen remotely and provide tech
support for the family…

Bash 68
Save time by entering commands without
typing them. No, this is not telepathy…

Raspberry Pi 72
Build a quiz machine with Python 3, a
touchscreen and a cardboard box.

Hardware 76
Avoid withdrawal anxiety by monitoring
your machine over Bluetooth.

Database 101 80
Enter information into a database with a
fancy web-based interface.

Coding

Minsky 84
Model complex mathematical formulae
without having to learn maths.

Code Ninja 88
Build a (very small, but perfectly formed)
filesytem in userspace with FUSE.

Haskell 90
Programming the functional way, with a
language that was almost called Curry.

Reviews

Try the Linux of tomorrow, today, with
the most advanced Linux distro known
to man. We’ve tried it, and we think it’s
pretty jolly good.

Fedora 23

42

Gaming on Linux 46
Dark graphics, moody plots and acute social
commentary – gaming on Linux is a far cry from the
days of SuperTuxKart.

Books 48
Books: still the best way to read lots of words about
subjects you need to concentrate on, including
cryptocoins and programming.

Feature

LV022 004 Contents.indd 5 30/10/2015 12:02

www.linuxvoice.com6

NEWS ANALYSIS

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is ex-president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

O f late, there seem to have been a
tidal wave of new “open source
foundations” appearing in the

technology industry – there’s the Node.js
Foundation, Cloud Foundry Foundation,
Cloud Native Computing Foundation and the
OpenStack Foundation to name but a few.
What is going on?

The first thing to observe is that there are
two different kinds of entities that call
themselves “open source Foundations”.
Some – like the Apache Software
Foundation or the Document Foundation –
are public benefit organisations, with a
mission and bylaws that drive them to act in
the interests of the public at large. The other
kind – like all the examples I gave above, as
well as better-known bodies like the Linux
Foundation and the Eclipse Foundation –
are actually trade associations, with a
mission and bylaws that expect them to act
in the interests of their members rather than
of the general public. Almost all of the
proliferation is in this latter category.

What is the value of a Foundation? In both
the public benefit and trade association
cases, there are clear benefits when a
project has a large, diverse community. All

the most important freedoms – to use the
software for any purpose, study and improve
it and share with anyone – are secured by
using an OSI-approved open source licence.
Any project that doesn’t clearly point to the
source code and identify how it’s licensed is
definitely a problem. But with that taken as
read, a Foundation offers:

 An “Asset Lock”, guaranteeing that
community assets can only be used in
ways the community approves (including
trademarks and copyrights).
 A “bank”, handling donations, paying staff
and fulfilling tax-reporting obligations.
 An impartiality guarantor, anchoring the
representation of its community and
ensuring decisions are made in the way
that the community wants independently
of any one participant.
 An infrastructure provider, hosting code,
mailing lists, forums and bug trackers and
also hosting events.
So why do companies prefer trade

associations as the vehicle for this, rather
than public benefit charities? I liken it to the
way technology companies responded to
open standards in the 80s. Originally
introduced as a way to stem the control of
monopolistic mainframe companies over
their markets, standards organisations
increasingly became the domain of
corporate politicians. Even nominally
national standards bodies like BSI or
international ones like ISO are actually
occupied by career technology politicians
employed by the largest corporations. The
result has been regulatory capture – the
mechanism invented to regulate the power

of corporations has transformed into a
medium for them to express their
competitive goals and especially to chill new
entrants to their markets.

Corporate interests
Trade associations in open source are
evolving in a similar way. While open source
projects were originally grass-roots
collaborations between individual experts,
their disruptive force has led the corporate
targets of that disruption to invest not just in
technology but in the politics surrounding it.
The new giant open source “Foundations”
are high-stakes political venues with big
entry tickets. Individuals still have a role in
the technical work, but the overall strategy is
a thing of smoke-filled rooms. Open source
trade associations provide the ideal vector
for the equivalent of regulatory capture in
open source.

That’s not to say they are all bad. A
well-designed one (the Eclipse Foundation
for example) keeps a strong separation
between the fiduciary responsibilities and
the technical work, and only allows the
members to buy in to the former, as well as
expecting those requesting higher status to
commit to investing developers in the
technical work. That’s not to say all public
benefit open source charities are perfect.
Even the best designed one – the Apache
Software Foundation – has been
conspicuously gamed by corporate forces
on multiple occasions.

So take care to disambiguate the term
“Foundation”, and encourage your employer
not to start another one if that’s what they
are thinking. Join an existing Foundation –
there are several of both flavours that accept
new projects – or if they really must make a
new one, seek specialist advice and focus
first on software freedom. Remember,
“Simon says ... no new Foundations!”

Opinion

The flood of foundations
Some companies like impartial supervisory bodies so much, they’re creating their own!

A well designed foundation keeps a
strong separation between the fiduciary
responsibilities and the technical work

LV022 006 News.indd 6 29/10/2015 17:26

www.linuxvoice.com 7

ANALYSIS NEWS

 LibreOffice • Kubuntu • Red Hat + Ansible • ZFS • Pis in Space • KDevelop

Summarised: the biggest news
stories from the last monthCATCHUP

New LibreOffice respin
wins government support
The flagship open source

office suite keeps going from strength
to strength. Collabora Ltd has created
a version called GovOffice with extra
migration tools, deployment features
and long term support, and the UK
government has said it will “provide
public sector organisations with savings
on open source office software”. If ODF
file formats become the norm in the
government, we’d be happy pandas.
www.collaboraoffice.com/collabora-
govoffice.php

1
Kubuntu head honcho Jon
Riddell stands down
Jonathan Riddell founded

Kubuntu back in 2005, and has grafted
away over the last decade to establish
it as one of the forefront desktop Linux
distros. But in recent years he has
expressed dissatisfaction with Ubuntu
parent company Canonical for its
handling of IP policies – to the point
that the Ubuntu Community Council
wanted to boot him out. With the
release of Kubuntu 15.10, Riddell has
left the project, deriding Ubuntu as a
project that “won’t obey its own rules”.

2
Red Hat buys Ansible
Enterprise Linux giant Red
Hat has snapped up Ansible,

makers of the eponymously named IT
automation software. Red Hat’s goal
with Ansible is to create “frictionless IT”:
http://tinyurl.com/qjrr8dh

3

ZFS to be included in
Ubuntu as standard
Originally developed by Sun

for its Solaris operating system, the ZFS
filesystem and logical volume manager
has since seen widespread usage in
other Unix flavours, most notably
FreeBSD. It features support for huge
volume and file sizes, data corruption
protection, snaphots and other snazzy
features. Until now it hasn’t been
included as standard in many distros,
but Canonical boss Mark Shuttleworth
has said it will be available for all to try
in upcoming Ubuntu releases.

4
DRM coming to JPEGs?
Officially “Digital Rights
Management”, but more

commonly referred to in the FOSS world
as “Digital Restrictions Management”,
DRM aims to stop people sharing
information. Now the JPEG Privacy and
Security group is investigating ways to
add DRM to JPEG images – stopping
you from copying or saving images you
see on the web. We think DRM is simply
ineffective and a waste of time, and the
Electronic Frontier Foundation has
already started campaigning against it:
http://tinyurl.com/op4lzdw

5
First beta release of
KDevelop 5 available
It’s been over a year in the

making, and KDevelop 5.0 is inching
ever closer to release with the first beta.
The code base has been ported to Qt
5 and KDE Frameworks 5, while the
old C++ parser has been replaced by
a much more powerful one from the
LLVM/Clang project. Semantic language
support for QML and JavaScript has
been rolled in, and we may even see
KDevelop releases on Windows and Mac
OS X at some point.
www.kdevelop.org

6

Raspberry Pis heading to
the Space Station
As if the Pi wasn’t already

popular enough here on Earth, two units
are now jumping onto a rocket for a
stay on board the International Space
Station. The Raspberry Pi Foundation
recently ran Astro Pi, a competition to
give UK school students the opportunity
to develop experiments to run on Pis
aboard the ISS. Seven experiments
have been selected and will be carried
up to the ISS with ESA astronaut Tim
Peake on a shiny Soyuz 45S.
http://tinyurl.com/pisinspace

7
Element14 to build
custom Raspberry Pis
In other Pi news, distributor

Element14 has created a new
Customisation Service for the dinky
single-board computer. If you’re willing
to order at least 3,000 units of your
custom design, you can reconfigure the
board layout, add components such
as Wi-Fi or extra I/O pins, and even add
onboard flash memory. Element14 will
guide you through the process and
show you what’s doable (and what’s
not). See here for more details:
www.element14.com/custompi

8

LV022 006 News.indd 7 29/10/2015 17:26

www.linuxvoice.com8

DISTROHOPPER LINUX DISTROS

(K/X/L)ubuntu 15.10
News from the spin-offs.

Yes, it’s that time of year again: a new
Ubuntu release is here. Ben’s review
over on page 43 focuses on the

main distribution, but here we’ll explore the
spin-offs. Kubuntu 15.10 features a snazzy
KDE Plasma 5.4 desktop along with KDE
Applications 15.08, while LibreOffice 5.0 and
Firefox 41 make up the major non-KDE
software components. It’s available as a
1.3GB DVD ISO download and system
requirements are a minimum of 1GB RAM
and 10GB hard drive space (although we’d
say double the RAM is much more sensible).

Meanwhile, Xubuntu 15.10 arrived at the
same time and has also cranked up its
memory requirements (1GB recommended)
by dropping the lightweight AbiWord and
Gnumeric applications in favour of
LibreOffice. Xubuntu has always presented
itself as a RAM-friendlier alternative to (K)
Ubuntu, but LibreOffice is getting snappier
and lighter. Xubuntu 15.10 also includes
Xfce Panel Switch, making it easier to back
up and restore panel layouts.

Over in Lubuntu land, the new distro
release is an evolutionary affair as the team
prepares to move to the LXQt desktop in
16.04. Some LXDE components have been
updated and artwork has been improved, but
otherwise there’s not a lot to write home
about. Oh, and let’s not forget Ubuntu Mate

CentOS goes 32-bit
No, this isn’t a step backwards – it actually makes a lot of sense.

CentOS, the community-supported
respin of Red Hat Enterprise Linux,
went 64-bit only with version 7. This

made sense for most use cases, as 64-bit
CPUs from AMD and Intel have been the
norm for many years now. But there have
been calls from some CentOS users for a
32-bit version that’s more suitable for older
machines. But it’s not just about decade-old
hardware. 32-bit processors are still doing
the rounds, such as the Intel Quark system-
on-a-chip. We can expect to see more of
these CPUs in everyday life thanks to the
much-hyped “Internet of Things”, so it’s

useful to have modern, mature and stable
distros such as CentOS to run on them.
32-bit CPUs are more than capable enough
for most tasks, especially if you don’t need
access to more than 4GB of RAM.

And then there’s more: supporting a wider
range of CPUs can often make it easier to
finds bugs and security holes, as the
OpenBSD project has found. The 32-bit
CentOS 7 release is the work of the project’s
AltArch Special Interest Group, and you can
find out more information, including
potential bugs, over at https://wiki.centos.
org/SpecialInterestGroup/AltArch/i386.

Here’s Ubuntu Mate 15.10 on a Raspberry Pi 2. Don’t expect stellar performance, but it is usable.

What’s hot and happening in the world of Linux distros (and BSD!).

DISTROHOPPER

CentOS 7’s 32-bit port is a boon for users of
SoC development boards, and could help to
identify tricky bugs too.

15.10, the spin-off that uses the Mate
desktop, a continuation of the Gnome 2.x
codebase. This release includes a version
optimised for the Raspberry Pi 2. The team
has put in a lot of work to make the distro run
smoothly on the Pi, so you can even use the
dinky device as a general-purpose desktop.

LV022 008 DistroHopper.indd 8 28/10/2015 11:30

www.linuxvoice.com 9

LINUX DISTROS DISTROHOPPER

News from the *BSD camps
What’s going on in the world of FreeBSD, NetBSD and OpenBSD.

OpenBSD 5.8 arrived in the middle of
October, sporting an impressive
range of updates all over the

system. Along with the usual set of new
hardware drivers and performance tweaks,
there have also been many improvements to
the miniature httpd web server that replaced
Nginx in the base system. It now supports
pattern matching and redirections via Lua,
along with HTTPS HTTP Strict Transport
Security. A new doas utility replaces sudo
and provides enhanced security by being
much simpler, while OpenSSH is included in
this release and has a new default cipher.

Over in the FreeBSD camp, the team has
produced its latest quarterly status report –
and the longest one ever written, reflecting
the overall good health of the project. Bhyve,
the FreeBSD hypervisor, has seen a lot of
work including support for external firmware,
which allows it to run Illumos (a fork of
OpenSolaris) and Windows in headless
mode. The LLVM/Clang toolchain has been
updated to version 3.7.0, while a handful of
developers have grafted away on support
for the Acer C720 Chromebook. Almost
everything works in FreeBSD now, making
the machine an ideal little laptop for hacking
on the go. See http://tinyurl.com/pdo35u5
for the full report. Finally, we should give a
mention to NetBSD 7.0. Progress towards

this final release has been slow, with RC1
arriving back in June, but 7.0 brings a stack
of new goodies including ARM
multiprocessor support, accelerated
graphics on x86 boxes using Intel and
Radeon chips, and a new port for Psion

Got an old Psion in the loft doing nothing? Get NetBSD 7.0 running on it!
(Image credit: http://tinyurl.com/nojmnpy)

Linux From Scratch 7.8

EPOC PDAs. (Yes, NetBSD will run on almost
anything containing a CPU, or someone is
working on porting it.) Most notably for us
Linux users, NetBSD 7.0 now runs on the
Raspberry Pi, providing an alternative Unix
flavour to our familiar Raspbian.

If you really want to understand how Linux works – and more specifically,
how a distribution is put together – you should spend some time with
Linux From Scratch. As its name suggests, it’s all about creating a Linux
installation from the bare components, with no fancy graphical installers
or setup scripts to help you on your way. Linux From Scratch (LFS) isn’t a
piece of software but rather a book that explains the process step-by-step.

And it’s a fascinating process to follow. You start off by using an
existing Linux installation to create a new LFS partition, into which you
download some low-level toolchain components (such as a C compiler)
and build them. From here you add system tools and libraries to the point
of having a workable – albeit very rudimentary – Linux installation. It
teaches you an enormous amount about how a Linux system boots, what
all of the low-level components do, and of course it provides you with
ample opportunity to tweak settings and customise the result. Expect to
spend many hours working through the various steps, but it’s worth it.

Linux From Scratch 7.8 was released in early October and includes
updates to 30 packages including GCC, Glibc and Binutils. In addition,
there’s a spin-off of the book using Systemd as the init system, although
the main book still currently focuses on Sysvinit. You can read the book
online at www.linuxfromscratch.org or download a bzipped archive for
offline reading. Once you’ve built an LFS system, try some of the other
books on the website, such as BLFS (Beyond Linux From Scratch).

LFS explains exactly what each component does, how much time it
takes to compile, and how to build it.

LV022 008 DistroHopper.indd 9 28/10/2015 11:30

10

MAIL YOUR LETTERS

Got an idea for the magazine? Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS
The simplest test of a search engine’s openness is a
search for ‘sex’. I don’t say it as a prurient interest, just as a
search engines willingness to allow you to find what you’re
looking for unfiltered, unchaperoned if you will.

Much like the differences between Linux and other
operating systems in its willingness to allow you to
change aspects of the OS to suit your needs or interests.
The more adaptable an OS is, the better suited it may be
to one’s specific needs and interests.

Here in America, you go into the library and ask the
reference librarian a question, you get an answer. You do
not get, “Why do you want to know?” or “I’m sorry we don’t
provide that information.” or “Could you be more specific?”.
Maybe search engines are good for the lion’s share of
searches. When it comes to making moral (or market)
choices about what constitutes acceptable, there’s a lot to
be desired. And if they are making moral (or market)
choices, their accuracy as well as usability is in question.

Granted, the morals of the Middle East, Korea, China
and elsewhere around the world (including the US) are as
different as night and day. A search engine that attempts
to please ALL in return for market share ultimately winds
up not really pleasing anyone.

I’m an adult. I’m not telling you how to live your life. I
don’t want a search engine that tries to tell me how to live
mine. If I’m not breaking any laws, I should be able to use
a search engine to the fullest extent possible –
unrestricted. Much the same as the Linux philosophy. Roll
your own.
Mike Moore, USA

Andrew says: Well, quite. I’m open to the idea that
consenting adults can put pictures of themselves
on the internet in various states of undress,
but I don’t want to see it when I haven’t had my
breakfast, so some degree of insulation is probably
OK – Google’s safe search is a good idea for most
people, most of time. But who’s to say what’s
Google’s idea of not safe? Or David Cameron? Or the
Chinese government?

I bought a book a few years ago called How to
Build an Atomic Bomb and Other Weapons of
Mass Destruction. It’s not beyond the realms of
possibility that some people, in certain states,
would have a search for this term filtered, or
monitored, or brusquely investigated by men in
uniform 5 in the morning. Thankfully I paid cash,
so there’s no way the UK security services know I
have it in my possession. It’s very good, but I have
yet to use it to build anything.

ANTI-SEX LEAGUE

STAR
LETTER

Oh, and those dastardly Europeans are interfering with our
sovereignty again by outlawing default internet content
filtering. Perfidious Brussels!

IT’S THAT BIRD AGAIN
This is the second issue of LV where the subject of the
penguin logo has come up. I would like to try and
put this to rest and so I respond to Maurice
George (LV019).

I have been hacking Linux since
1992 when Linux was only a green
cursor blob on the computer
screen. Now I am only going by
memory but I believe that Linus
Torvalds chose the penguin
because they are the only
creatures that do not have a
leader but rely on each other and

the penguin community for survival. They are also
unafraid of humans. Does not the mighty penguin

resemble what Linux is all about? Happy, content,
relying on each other for support… there’s no

boss or leader but a very close knit
community helping each other. Finally,

should not Linus Torvald be the one to
decide if the logo should be changed?
Eugene Wong

Graham says: Right, that’s enough
of this penguin stuff. Please let’s
just move on as a society.

LV022 010 Mail.indd 10 29/10/2015 15:54

www.linuxvoice.com 11

YOUR LETTERS MAIL

I was a little disappointed when I came to the end of your
article on Syncthing as it did not include the idiots’ guide to
setting up on a headless computer/server, however the
Syncthing documentation and forum answers are really
good and, I think, worthy of note.

I wondered if a documentation rating would be a useful
addition to the magazine. Would it prompt some others to
improve their documentation for the benefit of as aspirant
nerds? Also, I would be grateful for the occasional sidebar
of explanation with some of the more advanced articles
and; and what about a small glossary to your interviews
with really clever buggers?

Don’t want much then?
Thanks for the intro to Syncthing, should have it running

this weekend once I have sorted Bug #720.
Paul, Farnham

Andrew says: I’ve always considered it part of
our job to compensate for the often rubbish state
of documentation in Free Software by providing
documentation ourselves. It’s a gap in the market,

if you like, and it’s one reason we’ve never done
a tutorial on developing with Qt Creator, for
example: the documentation is already excellent,
and, crucially, it’s easy to find a definitive guide.
Likewise Syncthing.

Some sort of comparison of documentation
would be a worthwhile feature, if we did it right
– most Free Software developers provide their
work free of charge, and it’s wrong to stamp our
tiny feet when the docs aren’t very good. We need
to remember that, and be constructive. Regarding
glossaries in interviews: I like it. Thanks!

DOCUMENTATION Qt is the gold
standard, the
Rolls Royce,
the Duisenberg
of Linux
documentation.

I was a bright-eyed Linux newbie when picking up your
magazine from #1. Since then I’m now confident enough
to say that “I kinda know what I’m doing on a GNU/Linux
box”, so thanks. I read the Distrohopper section each
month with interest and wonder how I can possibly figure
out the best distribution for my application – because
there are so many out there!

My stack is Python 2, RabbitMQ, MySQL and SOLR, and
I pay a cloud solution for the pleasure of this. This is on a
GNU/Linux server and I have grabbed the most accessible
distro out there for a newbie (Ubuntu) but have never really

WELCOME, COMRADE
evaluated this decision. Is there a more appropriate
distribution for me? How would I go about deciding what
is the most suitable distribution for my application?
noisyboiler

Andrew says: If you’re happy with it, then Ubuntu is
the right platform for you. It’s not for everyone, but
it’s used as a server platform by loads of massive
companies, so you’re in good company. Keep the
faith (but you might as well try Mint, and Mageia,
and Fedora, and Arch…)

LV022 010 Mail.indd 11 29/10/2015 15:54

www.linuxvoice.com

SUBSCRIBE

12

Subscribe
shop.linuxvoice.com

Get many pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

SUBSCRIBE TO

TODAY!

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

1-year print & digital: £95
12-month digital only: £38

 Licenses its content
CC-BY-SA within 9 months

US/Canada subs prices

LV022 012 Subs US.indd 12 27/10/2015 13:49

www.linuxvoice.com

SUBSCRIBE

13

All subscribers get access to every
single digital back issue –
that’s about 1,000,000 words of
tutorials, reviews and free software
hackery at your fingertips

Overseas subs prices
12-month print & digital:
Europe: £85
US/Canada: £95
Rest of world: £99 DIGITAL

SUBSCRIPTION*

ONLY £38
*WHEREVER IN THE WORLD YOU
ARE – IT’S DIGITAL, SO THERE ARE

NO POSTAGE COSTS

LV022 012 Subs US.indd 13 27/10/2015 13:49

Whether you’re a Linux beginner or a certified expert, we’ve put
together a collection of the finest tips known to Gnumankind.

FEATURE USE LINUX SMARTER

14 www.linuxvoice.com

Learning Linux is a lot like learning how to solve
the Rubik’s Cube. In the beginning, It can look
inaccessible and complicated. Even knowing

where to start is a challenge. But after installing your
first distribution and moving on to your second, it
gets easier. It’s the equivalent to the classic
beginner’s strategy to the Rubik’s Cube – solving
one side of the cube followed by another. But the

solution, as with achieving Linux enlightenment, is to
build on layers. When you’ve nailed your first
solution, go back to refine your reflexes, strengthen
your finger muscles and commit new algorithms to
memory. Which is exactly what we’re going to do
here – sending nuggets of speed, efficiency, wisdom
and knowledge back to our former selves, enabling
anyone to level-up their Linux skills.

LV022 014 Cover Feature.indd 14 30/10/2015 12:43

Don’t forget: disable the ‘format’ option
when selecting an old Home partition.

www.linuxvoice.com 15

USE LINUX SMARTER FEATURE

Put back missing features in your desktop
Both Ubuntu and Gnome are well known for
removing options, but you can get back a lot

more control by installing their associated Tweak
Tools. For example, Ubuntu’s will enable you to
disable Amazon searches, switch the window
control buttons to the right or adjust the size and
transparency of the launcher.

Update everything automatically
You only stop being vulnerable to
a security flaw after you’ve

updated your system. Unless you want
to keep abreast of every threat, it’s
easier to turn on automatic updates.
Ubuntu can download and install
them automatically, for instance, and
unlike Windows 8, you’ll always
be notified before an upgrade.

Install/enable SSH

The one essential daemon
that needs to be running on

any machine, whether it’s brewing
beer, a Raspberry Pi or a remote
server, is SSH server. The package
will often need to be installed
separately, as with Ubuntu.

With the SSH daemon/server
enabled, you can fix almost any
problem remotely without
re-installing, or connecting
screens and keyboard, or even
fixing PCs when the video or
display is messed up.

There’s a good reason
Ubuntu displays common

shortcuts when you first get
to the desktop – using them
will transform your experience.
Learning just a few shortcuts for
your desktop, your browser and
the command line will make you
faster and more efficient. More
importantly, you’ll look awesome.
All desktops enable you to change
the defaults, so it’s also worth
making your shortcuts map to the
same keys across all applications.

After a quick office poll,
here are four of our most

commonly used shortcuts:
 Ctrl+C/X/V Everyone knows

these – cut, copy and paste.
 Alt+Left Click With Alt held

down, drag any window without
clicking on the title bar.

 Ctrl+wheel Zoom in/Zoom out.
Works almost everywhere, from
icon sizes in the file manager to
LibreOffice and web pages.

 Ctrl+W/Q. Close windows and
tabs with W; quit apps with Q.

Use keyboard shortcuts Our favourite shortcuts

The one thing all of us like to do
is install more than one Linux

distribution, whether that’s by running two
instances of Linux at once, or replacing one
with another release. To make this as hassle-
free as possible, we’d recommend creating
a separate Home partition when you install
your first distribution. Home is where all your
personal data lives, as well as your various
configuration files, caches and libraries, and
putting it on its own partition means you
can share this data across multiple installed
distributions, and keep your data safe when
you install a new distribution or upgrade an
old one.

The process for creating and selecting
a Home partition is different for each
distribution, but in all of the, you’ll need
to select a custom partitioning scheme
from the installer. In Ubuntu, for instance,
select ‘Something Else’ . Add at least a root
partition with a / mount point, followed by
a /home partition/mount point, and a swap
partition. We’d recommend making swap
the same as your RAM, root between
10–100GB (depending on your usage)
and more for home.

Give Home a permanent home

To enable automatic update in Ubuntu,
open the Software & Updates panel.

LV022 014 Cover Feature.indd 15 30/10/2015 12:43

7 Incredible KRunner Shortcuts
Like Gnome Do, KRunner is a
command-driven launcher,

opened from KDE by pressing Alt+F2.
Here are some of our favourite features:

 Web shortcutsType wp: to search
Wikipedia and open the results in your
default web browser.

 Calculator Precede a calculation with
= to see the answer, eg =3*sin(90).

 Pervasive search Type the beginning
of an application or file to open it.

 File manager Typing file:Downloads
opens a file manager for the
Downloads folder.

 Messaging Type the name of a
contact to initiate an IM conversation.

 Amarok remote Control playback
with Play, Pause and Next.

 Desktop control Type desktop 1 to
switch desktops, or try logout and
shutdown.

www.linuxvoice.com16

FEATURE USE LINUX SMARTER

Forgot to type sudo before a
command? sudo !! will re-run

the previous command under sudo.
But not just sudo: it can be used to
precede the previous command with
whatever comes before the !!.

Matthew Garrett
Freedom advocate and security engineer.

Gnome Do is one of those little-known
utilities you’ll wonder how you ever

lived without. It’s a shortcut to launching
applications, searching your desktop and
the web, playing music, updating social
networks, sending email, and doing almost
anything else as long as there’s a plugin
for it. It does all this from a super simple
keyboard shortcut, which is Super+Space by
default (the Super key is usually the one with
the Windows symbol on it).

Perhaps the reason Gnome Do isn’t more
widely used is that it’s not obvious how it
works. After launch, Gnome Do appears as
two large squares. The first will hold the
result of what you start searching for, while
the second holds the action. Search for a
file, for example, and the action will default
to ‘open’. You can page through the list of
results by cursoring down, and you can
change actions by tabbing across to the
other square and using the cursor
keys again. It’s quick, powerful and can
replace your launcher and speed up the way
you work.

Gnome Do everything

Install a different theme/font/icon/colour scheme
We know that appearances are only skin
deep, but giving your desktop a new look is

like putting a fresh lick of paint on your shed: it
gives you a new perspective, and makes you feel
like getting out/in there and making the most of it.
In particular, we love the new Google-inspired
‘Paper’ theme for GTK/Gnome/Unity and ‘Papirus’
for the KDE desktop.

Dynamic backgrounds
In Unity, select images in
Shotwell and select
‘Desktop Slideshow’ from

the File menu. The desktop will
cycle through the slideshow, and
the panel and window colours will
also change.

Gnome Do works brilliantly with the
Conky desktop application launcher.

LV022 014 Cover Feature.indd 16 30/10/2015 12:44

Use a clipboard manager
Copy and paste is fundamental
to the way we use computers.

Linux is already ahead of the game in
the way you can select text with your
mouse and paste it with a simple click
of the middle mouse button, but you
can do so much more.

Install a clipboard manager like
Glipper or KDE’s Clipboard and you can
access any of your previous cuttings,
reselect them, and paste as usual.
But you can also do clever things like
perform an action when you copy
something specific, or use a regular
expression to modify the data
for pasting.

www.linuxvoice.com 17

USE LINUX SMARTER FEATURE

Manage your audio levels with Pavucontrol
Nearly every Linux distribution now
defaults to PulseAudio for audio duties, but

they provide little control over how volumes and
devices are configured. If you need to see what’s
going on, and give yourself more control, install
the sparse but powerful Pavucontrol tool. It lists
every application generating sound and enables
you to change the audio device or output used by
each one, as well as visualising the levels and
giving you control over the volume. You can also
set application-specific default devices.

Vimerise Firefox shortcuts
There are many addons for
Firefox, but the first we install is

VimFx. This will default all Firefox
keyboard shortcuts to keys familiar to
any Vim user, such as O for opening, X
to close, GG/Shift+G for top/bottom
and ‘/’ for searching. Press F and every
link is overlayed with a new shortcut for
easy navigation – mouse free!

On the command line, Alt + . (Alt
and full stop) places the last

argument of the previous command into
your current position. For example, if
you’ve just entered mkdir bob, type cd and
hit Alt + . and your command will now be
cd bob. It’s got history too, so keep hitting
“.” to get the one before.

Ben Nuttall
Education advocate at Raspberry Pi.

LV022 014 Cover Feature.indd 17 30/10/2015 12:44

www.linuxvoice.com18

FEATURE USE LINUX SMARTER

Get a password manager
Passwords have never been
more important, which is why

they should all be random and unique.
But that obviously makes them
impossible to remember. This is what a
password manager is for – it’s a single
repository locked by a strong
memorable password (or two-factor
authentication), which then gives you
access to your other passwords.

All the main desktops integrate their
own, but your passwords are non-
transferable, not available on other
computers, and not on your phone. The
solution is to use a portable password
manager or a remote password store.
KeePass is our favourite, because you
can keep it on a USB drive and there are
open source Linux and Android clients.
You only need a copy of the database
to access your passwords. But we also
really like the pass tool, as it simply
uses GnuPG encruption and the Linux
filesystem to do a similar job.

Dual and triple displays

Linux now mostly works
with second and third

displays thanks to the X extension
for multiple displays configuring
itself correctly. However, we’ve
found nothing to beat the
flexibility and performance of
Nvidia’s proprietary drivers and
their ‘TwinView’ implementation.
Use the nvidia-settings tool that
comes with these drivers to enable
TwinView and edit the settings for
both connected monitors and the
dual display without restarting the
desktop session.

Linux users do a lot of
text editing, and while GUI

editors are great, nothing beats
Vim for being able to edit files
direct from the command line,
whether that’s on a server, your
desktop or a Raspberry Pi.

Vim is one of the most powerful
editors ever created, but it uses
lots of keyboard shortcuts. To
make learning easier and fun,
we highly recommend a website
called Vim Adventures. It makes
you play a game to learn Vim’s
various intricacies!

Here our three essential
tips to getting the most out

of the command line:
 Ctrl+R. <command>. Search

command history and auto-
expand the same command.

Ctrl+A, E Respectively, these
go to the beginning and end of a
command. Meta B and F will also
move between words.

Ctrl+U, P The first will cut from
text before the cursor (great for
mistyped passwords); the latter
will paste this buffer before the
cursor.

Learn Vim, finally Essential Bash shortcuts

Use your desktop’s best feature: Virtual Desktops
Every operating system seems to have
virtual desktops now, but that’s because
they’re awesome, and Linux still has the

most powerful implementations. You can, for
example, configure your setup so that emails
always launch on desktop 3, or use a tiling window
manager to organise each desktop by task – say,
accounts in one desktop, personal in another
desktop, and real work in another. Save yourself
from a having to buy a second screen and work
from anywhere.

If you’ve ever been in the dire
situation of losing your partition

table, perhaps after a wayward dd command,
the testdisk utility is the best way I’ve found
to recover your data. Run it from a live CD/
USB drive and choose the Analyse option.
With a bit of luck it will find and restore your
precious data.

Pro Tip: Graham Morrison
Magazine editor and amateur musician

8) Spell checking. Type ‘define word’ and wait a few
moments. The results will include a definition.

LV022 014 Cover Feature.indd 18 30/10/2015 12:44

www.linuxvoice.com 19

USE LINUX SMARTER FEATURE

Run Windows software on Linux
There’s a great range of software
available on Linux, but every once in a

while we find ourselves needing something
that will only run on Windows. For this scenario
there’s Wine, a compatibility layer that enables
Windows executable files to run on Linux, but it
can be difficult to set up. Fortunately, there’s
also Play on Linux. This is a wrapper for Wine

that has pre-set configuration files for
loads of common programs that make them
really easy to install and run. It was originally
designed for games (hence the name), but
now it includes a range of programs,
including office software and development
tools. Thanks to an intuitive interface,
getting this software on Linux takes just
a few clicks.

Most distros come with plenty of
software in their repositories, but

if you find yourself needing something
that’s not already available (or a newer
version of a piece of software), most distros
have alternative community-maintained
repositories.

Arch has the Arch User Repository (AUR),
which has a frankly mindblowing array of
software. Red Hat and Centos have the
Extra Packages for Enterprise Linux (EPEL)
repositories, which contain mostly server
software that isn’t supported by Red Hat.
Ubuntu has Personal Package Archives
(PPAs) hosted on Launchpad, which are
basically mini repositories that you can add
for each piece of software.

Grab extra software

Relax your mind
Humble Bundles are pay-what-you-want
collections of DRM-free indie games for

Linux, Windows and Mac OS X. They’re a great
value source of entertainment
(www.humblebundle.com).

Often I’ve wanted to look at the
source code for something installed

on my Ubuntu system, but don’t want to
have to go looking for it online in Launchpad,
Bitbucket, GitHub or Sourceforge. With
Debian-based systems you can get the
source package that was used to build
the binary of whatever is on your system,
including patches, like this: apt-get source
firefox. Reading and understanding the
source is of course another matter…

Pro Tip: Alan Pope
Ace community manager at Canonical

You may find that there are certain
commands you end up running very

frequently. You can use aliases to save
shorted versions of these commands to
make them easier to access. The format for
this is:
alias <newcmd>=”<cmd to run>”
So, if you constantly find yourself wanting
to view the full details of all the files in a
directory (ls -la), you can use:
alias la=”ls -la”
Now, whenever you type la, Bash will run
ls -la. If you want this to stay every time
you restart Bash, you need to add the alias
command to the end of your ~/.bashrc file.

Save time with aliases

LV022 014 Cover Feature.indd 19 30/10/2015 12:44

www.linuxvoice.com20

FEATURE USE LINUX SMARTER

Shhh, don’t tell the Windows and Mac
users, but sometime Linux crashes,

and sometimes it crashes hard. Not very
often, but once in a while the screen will lock
up, and nothing you can do with keyboard or
mouse seems to do anything.

The last-ditch option is the magic SysRq
key combination. If you hold down Alt and
Print Screen (also known as SysRq) then
press R,E,I,S,U then B, your system will
restart a little safer than just powering down
(which can corrupt data). These key presses
correspond to (in order):

 Switch keyboard to raw mode.
 Ask all processes except init to finish.
 Kill all unfinished processes except init.
 Sync all mounted filesystems.
 Remount all filesystems as read-only.
 Reboot.
If you’re having trouble remembering this,

some people find the mnemonic ‘Reboot
Even If System Utterly Broken’.

REISUB

Join the web
If you’ve got a spare Linux machine, you can
use it to host a website. Most distros include

a web server (such as Apache) that can easily host
pages, and with a dynamic DNS system you can
get a domain name to point to your home internet
connection. Using these, you can become your
own web master and share your passion with the
world, make your fortune by starting the next
Google, or make some of your data available when
you’re away from home.
Monitor your system

The top command is well known
for providing a real-time overview

of which software is using the CPU and
memory. As well as providing a broad
overview, it gives detailed statistics for
each process. This style has inspired
other commands to monitor
performance . Our four favourite are:

 iftop displays detailed information
about how much data is going
through your network port.
 ptop and mtop help you monitor your
PostgreSQL and MySQL databases.
 virt-top supplies all the latest
information on how your virtual
machines are performing.
 apachetop provides detailed
information about how your Apache
web server is performing.
 iotop keeps an eye on your disk
performance.

You can turn any machine with SSH
access into an instant web proxy

server with this command:
ssh -N -D 0.0.0.0:8888 user@hostname
In your browser, go to connection settings
(eg Advanced > Network > Settings in
Firefox) and use 127.0.0.1 (your local IP)
as the SOCKS host, and 8888 for the port.
Browsing will now be via the SSH machine.

Pro Tip: Mike Saunders
Creator of the famous MikeOS

Report bugs
When you find a bug
in open source

software, don’t ignore it.
Report it to the developers
and help them make the
software even better.

If you need a more whimsical way to
remember the REISUB sequence, try: ‘Raising
Elephants Is So Utterly Boring”.

LV022 014 Cover Feature.indd 20 30/10/2015 12:44

www.linuxvoice.com 21

USE LINUX SMARTER FEATURE

Virtualise new distros
There are hundreds of different
distros out there, so how do you

know which one is right for you? The
best option is to try a few out, this can
be time consuming.

Fortunately there’s a quicker way:
virtualisation. Using a tool like VirtualBox
or KVM you can create virtual machines
that enable you to boot a distro from
within your currently running machine.
The downside of this is that the system
you’re testing won’t be as snappy as it
would if it were running natively, but
sidestepping the need to push the file
onto a USB stick and reboot makes it
much faster to try new distros.

Listen to podcasts
Podcasts are a great way of learning more
about Linux, providing as they do the facility

to pipe information and entertainment directly
into your ears as you commute, or do your weekly
shop. There are loads of options, from the
confrontational Bad Voltage, to the melodic
Ubuntu UK Podcast, to the joyfully stuck-in-the-
mud Linux Luddites – and don’t forget the
fortnightly Linux Voice podcast, which the team
somehow find time to record when they’re not
making this magazine.

Virtual machines are your friends!
The overheads to using them are

practically non-existent these days and mean
you can easily separate your home desktop
with all the things which you critically need
to work from dangerous nonsense – strange
network services, experimental kernel
options, different distros, silly software
which requires at least half a dozen unstable
versions of libraries to run and anything that
Mike had a hand in.

Pro Tip:Nick Veitch
Publishing legend

Find the missing manual
Almost every piece of command
line software comes with a

manual that’s full of information (know
as the man page). You can get the man
pages with the command:
man <command>
There’s a particular style and format for
man pages, which can take a little
getting used to, so it’s a good idea to
become familiar with the manual before
you need it. One of the best features of
the manual is that it doesn’t rely on the
network, so you can always get the help
you need – great for then you’re stuck
with a knotty problem and can’t get
access to the internet.

How do you learn how to use man?
Why with the man page of course!
Get started in your journey to manual
mastery with:
man man

LV022 014 Cover Feature.indd 21 30/10/2015 12:44

www.linuxvoice.com22

FEATURE USE LINUX SMARTER

Use a BSD
 This might sound like an odd tip to help
you become a better Linux user, but it

can be a useful point of comparison. If you’ve
only used Windows, OS X and Linux, then
you’ve missed a whole genre of free software
OSes to help you understand computing.
BSDs, as the other major open source
Unix-alike, provide a really useful counterfoil to

Linux. By using both Linux and a BSD, you can
get a better feel for the decisions Linux distros
make, and decide for yourself if you think
they’re good or bad.

PC-BSD and GhostBSD are great options
for your first try, as they’re both built with
desktop users in mind. FreeBSD is also worth
considering if you’re planning on using your
BSD machine as a server.

Calibre newsfeeds
You can create ebooks automatically from
web pages or RSS feeds. Just point the

Calibre application at the sites you’re interested in
and it will grab content for you to enjoy offline on
your eReader or smartphone.

If you have a lot of photographs,
making edits to them can be time

consuming: resizing them to save space,
correcting for a problem with the camera
or rotating them. It all takes time. Rather
than go through each photo individually in
graphical editing software such as Gimp,
you can so everything from the command
line using the ImageMagick tools. The most
useful of these is the convert program, which
takes a file, edits it and creates a new image.

There are a huge array of options (far
too many for us to cover here), but a simple
example of creating a numbered thumbnail
from every PNG file in a directory is:
convert ‘*.png’ -resize 120x120
thumbnail%03d.png

Edit images with commands

When picking your Linux setup,
remember that cutting-edge distros

force you to update a lot, while stable
distros can have older software. Decide what
balance between the two aspects is right
for your needs and find a distro that makes
the same compromise. Despite what some
zealots might say, there is no perfect choice.

Pro Tip: Ben Everard
Author of the best Raspberry Pi book.

If you’re having trouble with hardware,
the most useful source of information

is the kernel message buffer, which is
displayed with the command dmesg (you
can pipe it into less to enable you to scroll
through, or grep to search for a particular
word). The kernel message buffer includes
all the messages from kernel drivers that
are controlling the hardware, so if there’s
anything awry in this area, you should see
evidence of it in the output from dmesg.

Dmesg is also useful for debugging the
boot sequence. All those messages that
appear on the screen as your distro starts
(when you press Esc to hide the splash
screen) are safely stored here, so you can
find out what happened when you started
your machine.

Dmesg reporting

LV022 014 Cover Feature.indd 22 30/10/2015 12:44

www.linuxvoice.com 23

USE LINUX SMARTER FEATURE

Recover deleted files

We’ve all had that horrible
sensation of a slipped

finger on the mouse, or an
accidental command, and all
of a sudden you’ve deleted an
important file. All is not lost,
however, and with a little luck you
may be able to get the deleted
files back.

First, make sure you don’t write
anything else to disk. Shut down
the machine and reboot with a live
distro if possible, then try either
extundelete or photorec to recover
the lost files.

Copy and paste are two
invaluable commands in

graphical applications, and they
can be useful at the command line
as well. The command xsel can be
used to pipe data in and out of the
clipboard. As a quick example, you
can copy a list of the files in the
current directory with:
ls | xsel --clipboard --input

You can Ctrl+V the list into a
graphical application, or send
data the other way by using the
--output flag.

Want more command
line tips? The website

www.commandlinefu.com has a
list of user-submitted tricks for
your perusal and enjoyment.

There are lots of useful tricks,
as well as some frankly odd
options. Ever wanted to watch
Star Wars in the terminal? Or how
about querying Wikipedia via
DNS? If you have, then you’re in
luck. Whether you’re a terminal
newbie or a greybeard, you’ll find
some new and interesting tricks to
improve your skills.

The clipboard in the CLI Commandlinefu

Meet fellow Linux users
We don’t know of a better way to
experience the Free Software community

than by meeting fellow geeks. There are Linux
User Groups (LUGs), events and meetups around
the world where people come together to chat
Linux and maybe have a beer or two – a couple of
our favourites are OGGCamp in the UK and
FOSDEM in Belgium.

I write as much text as possible in
my preferred editor. I use the same

editor – in my case “the editor of the beast”
(Vim) – for emails, personal notes, press
releases, FSFE briefings/statements, blog
entries, etc; There was a time when this was
impossible to do with with text fields in the
web browser, like editing wiki pages, writing
online comments, or some blog systems.
The Firefox/Iceweasel extension ItsAllText
solved this problem: it adds a button on text
fields in your browser. When you click on it, it
opens your preferred text editor, and you can
edit the text with your beloved shortcutsand
no need to copy and paste.

Pro Tip: Matthias Kirschner
President, FSF Europe.

Remote access
As Linux users, we spend quite a
lot of our time remotely accessing

other Linux machines. Here are our top
five tips for remote access.

 Transfer files using rsync with the
--partial flag and you can resume
failed transfers.
 The MObile SHell (Mosh) is a wrapper
for SSH that’s designed for unstable
internet connections such as via a
cell phone.
 The terminal multiplexer (Tmux) has
many tricks up its sleeve for
maintaining terminal sessions even
when you end a connection and
re-establish it.
 Passwords are insecure, and it’s
far safer to use certificate-based
SSH logins.

LV022 014 Cover Feature.indd 23 30/10/2015 12:44

www.linuxvoice.com24

FEATURE GEEK’S CHRISTMAS

01 Google Cardboard
(from £4)
If you’ve already got an

Android phone, this low-cost virtual
reality headset is an absolute blast. It
relies on your phone for everything
– from the gyroscopes, which are used
for head tracking, to the screen, which
is split into two and focused onto your
retinas through a couple of cheap
plastic lenses.

For something so hackneyed, the
experience is fantastic. Just install any
‘Cardboard’ apps via Google Play and
you’ll find yourself fully immersed in the
Tuscan countryside, standing on
mountaintops, shooting along a roller
coaster or exploring an Egyptian tomb.
Google’s original origami cardboard
hurts your nose and doesn’t hold the
phone adequately, so we’d

You can never have
enough gadgets. Nor
can your friends – and
we’re here to help you
all decide what to get
for each other.

There are certain times of the
year (maybe one is close?),
when a convenient list of

lovely things for any Linux or
open source geek comes in
handy. And as we’ve looked at
rather a lot of this stuff over the
last 22 issues, now is the perfect
excuse to revisit and revise some
of those items, as well as look at a
few new things, for anyone
looking for inspiration. If
you’re not looking for
inspiration, but would like to
inspire someone else, why
not circle a couple and leave
these two pages open
somewhere prominent?

recommending spending a few meagre
pounds more on a proper comfortable
plastic enclosure.

02 Raspberry Pi 2 Model B
(£30)
We’re sure you’ve already

heard about this serious upgrade to the
all-conquering Raspberry Pi, but we’re
even more enamoured by its
capabilities after a few months of using
it in our own projects. In particular, it’s a
brilliant media player, especially with
XBMC/Kodi. For lots of content, you still
need the hardware MPEG-2 decoding
unlocked (this costs a couple of pounds
via raspberrypi.org), but this revision
can easily stream HD material without
hitting the CPU, making it much cooler
and more stable. As always, you’ll also
need a quality power supply, USB hub

and probably a case. And for a chance
to win one, turn the page.
https://www.raspberrypi.org

03 Ubuntu Phone (from £125)
Despite Canonical’s
touch-based portable

operating system not quite hitting the
mark, and facing an uphill adoption
struggle, we can’t help but admire the
company’s young pretender to the
smartphone throne. The OS itself is
doing great things, with the long-
awaited convergence mode making an
appearance, and it’s more open than
Android. We’d suggest an Ubuntu
Phone is ideal of you want an open
source device for tinkering, and we’d
recommend a more
powerful device for this reason.
www.ubuntu.com/phone

GEEK GADGET
GIFT GUIDE

01

02

03

LV022 024 Feature Geeks.indd 24 30/10/2015 10:09

www.linuxvoice.com 25

GEEK’S CHRISTMAS FEATURE

04 BitScope (from £94)
Oscilloscopes are very cool.
They visualise the

intricacies of varying voltages passing
through a circuit, turning what’s
theoretical into something you can see.
They’re also incredibly useful for
synthesizer technicians and musicians,
as those audio voltages will also reveal
the constituent waveforms within an
audio path. BitScope’s headless designs
feature Linux support, using your
desktop or even your Raspberry Pi as
the screen. They’re also excellent logic
analysers – visualising the binary
signals sent from integrated circuits.
For oscilloscopes with this kind of
power, they’re excellent value for money.
www.bitscope.com

05 Kobo Aura H20 (£140)
We love electronic readers.
We read dozens of books

via their silky backlit e-ink screens every
year and we put a lot of love into our
own ePub editions specifically for that
purpose. And while it’s a shame we
know of no open source reader, the
Kobo Aura H20 supports all DRM-free
formats, works with Linux and has a
screen to rival the latest Kindle – plus,
you can read it in the bath. Dare we also
mention it’s the perfect accompaniment
to a new Linux Voice subscription?
http://kobo.com

06Steam Controller (£40)
We’ve not had a chance to
play with one of Valve’s

official boxes yet, although we’ve been
running our own Steam Box since the
launch of SteamOS. We still can’t quite
believe it lets us play AAA games,
natively, on Linux, and the situation is
only going to get rosier now you can
buy officially endorsed Steam PCs. A
central part of this strategy is Valve’s
new controller, which uses two circular
touchpads to emulate the
responsiveness of mouse control. This

works brilliantly with Valve’s own
games but takes some getting used to
for others. Either way, it’s the cheapest
way to join the Linux games revolution.
http://store.steampowered.com/
hardware

07 LibreBoot X200 (from
£290)
This is the most expensive

item we’re looking at here and, as such,
won’t be an impulse purchase. But if
you care about Free Software, it’s
still great value.

The X200 is a reconditioned
Thinkpad overhauled with a
software stack endorsed by the Free
Software Foundation. This includes
LibreBoot as a BIOS/UEFI firmware
replacement, and Trisquel GNU/Linux
as the operating system. Technically,
the machine is more than adequate
with perhaps just the screen falling
below modern HiDPI standards (it’s a
12.1″ 1280×800 TFT LCD display). Even
more impressively, profits from sales
will fund the LibreBoot project.
http://minifree.org

08Henry Audio DAC (approx.
£160)
If you love music, and

listen predominately from CDs or Flacs,
this high-quality digital-audio-converter
(DAC) is a great upgrade over your
computer’s inbuilt audio output. It plugs

into a spare USB port, requires no
external power and no special drivers.
Since our review in issue 9, the price
has been lowere, making it even better
value against its competition, and it’s
the only quality DAC we’ve found that’s
completely open source. Admittedly,
you’ll need some serious DSP
programming skills to make this
relevant, but there’s already a huge
community built around the SDR-
Widget, which is exactly what the USB
DAC 128 Mk II is built around.
www.henryaudio.com

04
05

06 07

08

LV022 024 Feature Geeks.indd 25 30/10/2015 10:09

www.linuxvoice.com26

COMPETITION WIN LOADS OF COOL STUFF

Win! BOOTY
WORTH
£4,250!

We’ve got together with the great folks
at Pimoroni to give away lots of lovely stuff.

Pimoroni’s lovely cases
accomdate their HATs, such
as the Piano HAT and the
Unicorn HAT (both right)

Use the Display-
O-Tron to parse
updates from
linuxvoice.com.

5 x Raspberry Pi 2 + Pibow
Coupe, Picade (including
8-inch screen)
5 x Raspberry Pi 2 + Pibow
Coupe, Picade Console

5 x Raspberry Pi 2 Starter
Kit, Piano HAT, Display-O-
Tron HAT, Unicorn HAT and
Explorer HAT Pro + Parts Kit

We’re good friends with Pimoroni (it stands for
Pirate, Monkey, Robot, Ninja). We spoke to them for
one of our first interviews in 2014, and since then
they’ve moved to new premisies and continued
to be hugely successful. Pimironi’s success has
mirrored that of the Raspberry Pi – the company has
sold over 150,000 of its Pibow Raspberry Pi cases,
and now sells more than 1,000 different products

from its home in Sheffield. Its Picade, the brilliant
Pi-based table top arcade machine, was the UK’s
first Kickstarter project, and the company now
makes lots of other ingenious ‘HATs’ for Raspberry
Pi, augmenting Pis with everything from piano
keyboards to migraine-inducing flashing lights.
Which is why we’ve partnered with them to give
away dozens of their best gadgets!

LV022 024 Feature Geeks.indd 26 30/10/2015 10:09

www.linuxvoice.com 27

WIN LOADS OF COOL STUFF COMPETITION

Competition runs from 9 November 2015 until 11.59pm 31 December 2015. Only one entry per person. No purchase or payment necessary. Winners wil be chosen at
random from entries with the correct page numbers. No cash alternatives. We’ll announce the winners on http://linuxvoice.com and email the winners directly. Prizes
unclaimed after 31 January 2016 will be re-assigned. We reserve the right to modify this promotion and replace items with others of equivalent value. The prize value
is current as of 29 October 2015. We respect your privacy and will only retain your details for the purpose of running this competition.

TERMS & CONDITIONS

We’re giving away five
complete Picade kits, five
console kits and five starter
kits, including everything you
need for Pi-based fun.

We’ve hidden ten penguins
throughout this issue of the
magazine. After you’ve found them,
email their page numbers, with
your name and postal address to:
picomp@linuxvoice.com
(only one entry per person please)

HOW TO ENTER

We’ve got more Pimoroni
swag to give away

throughout November and

December. Follow us on

Twitter @linuxvoice and

listen to our podcast for
more details.

MORE SWAG!

LV022 024 Feature Geeks.indd 27 30/10/2015 10:09

www.linuxvoice.com28

FEATURE CONFLICT IN THE COMMUNITY

Imagine you’ve spent weeks working on a project
in your free time – some code for a popular Free
Software application. You’ve devoted hours to

your work, refined your code, tested it for bugs and
written some documentation. Full of confidence and
optimism, you submit your patch to the program’s
mailing list, hoping that it will be accepted into the
next release – or at least you’ll get some constructive
feedback. But no. Your efforts are instantly
dismissed with these words: “Your code is crap, you
suck, and you should never have been born.”

Sounds extreme, doesn’t it? Fortunately, such
behaviour is rare in the Free Software world. We’ve
observed interaction in all manner of FOSS projects
over the last couple of decades, via mailing lists, IRC
channels and real-life meetups, and most people are
friendly and patient. But as Linux and FOSS grows,
the amount of hostility, abuse and threats on mailing
lists and forums is expanding at an alarming rate
too. Most recently, Sarah Sharp, one of the relatively
few female kernel hackers, said she no longer wants
to contribute due to the “toxic” environment around
the kernel community. She had previously criticised
Linus Torvalds for his acerbic rants and flowery
language on the mailing list.

Meanwhile, Systemd head-honcho Lennart
Poettering has described the FOSS world as “quite
a sick place to be” after receiving an onslaught of
abuse and even death threats. Because of all this,
many projects are now putting into place Codes of
Conduct (or Conflict): documents listing rules to
which the community should adhere, and guidelines
for dealing with disagreements. But will they work?
Is it sad that we need these guidelines in the first
place? And why is the internet so angry?

The answers are complex as we’ll see, and reflect
a history, culture and mindset that goes far beyond
lines of source code. We spend 90% of our time
thinking about technology at Linux Voice, but the
people behind it – with their own sets of views,
problems and quirks – are fascinating as well.

(SHE)BANG
OUT OF ORDER
Flamewars and insults on mailing lists are driving
developers apart. Mike Saunders asks: can
Codes of Conduct/Conflict save the day?

www.linuxvoice.com28

LV022 028 Feature Conduct.indd 28 29/10/2015 13:40

www.linuxvoice.com

CONFLICT IN THE COMMUNITY FEATURE

29

It might seem easy to pinpoint the crux of the
problem: Free Software developers are 99% antisocial
male nerds who live in their parents’ basements and
don’t understand anything about human interaction,
right? Well, this argument might have held some
water back in the early 1990s, but even then, it wasn’t
all about reclusive shut-ins. Even when GNU, Linux
and FOSS was largely the domain of hobbyists, many
contributors were university students, retired Unix
admins with families, and other “normal” developers.

Does a fish rot from the head down?
Fast forward to today: a large chunk of development
work – even the majority in some projects like the
Linux kernel – comes from full-time developers
working 9–5 jobs in offices around the globe. Even
for those hackers who work from home, the vast
number of conferences, meetups and hackathons
mean that developers meet up in person very
regularly. Writing FOSS code is a respectable, social
job, so we can’t simply ascribe negative behaviour
to the FOSS world being a load of socially inept
übergeeks who never see the light of day.

Lennart Poettering has remarked that on the Linux
kernel mailing list, “the fish rots from the head down”.
In other words: Linus Torvalds has set the standard
for communication, and it only gets worse from there.
Long-time kernel developers are used to Linus’s epic
rants, in which he thoroughly lambasts other hackers
for their failures, mincing no words when he wants to
get his point made.

One argument in favour of the Torvalds-style
response is that it saves time in the long run. Take
these two scenarios:
Dev: Hi Linus. Here’s a patch that adds feature X to
the kernel. What do you think?
Torvalds: Hi there Dev. Thanks for sending the patch.
Well, kudos for giving it a try, but I’m not really sure it’s
the right approach. Maybe you could try it slightly
differently?
(Two weeks later) Dev: Hi Linus. I’ve reworked the
patch and made it slightly different…

Torvalds: Hi Dev. Thanks again, but it still doesn’t fit
into the way we do things in the kernel. etc. etc.

This back-and-forth exchange of emails and patches
could drag on for months. Contrast it with this:
Dev: Hi Linus. Here’s a patch that adds feature X to
the kernel. What do you think?
Torvalds: This is completely broken and entirely
unsuitable for the kernel. Throw it away.

This response is more brash – and arguably
impolite – but it gets the message across much more
quickly. The developer in question may feel hurt that
Torvalds doesn’t like his/her code. but at least he/she
won’t spend weeks or months trying to ‘fix’ something
that will never be accepted any way.

Who’s your daddy?
However, the problem runs deeper. Many developers
have said they don’t object to this level of directness,
but the insults go too far. In one of Torvalds’s famous
tirades, he said that developers who write code in a
certain way “should just be retroactively aborted”.
Some would argue that such statements are so
clearly over the top that they’re not meant to be taken
literally – Torvalds doesn’t actually want to kill people.
And others have noted that Torvalds’s quips always
focus on a person’s abilities as a coder, and not
personal aspects.

The big issue here is: Torvalds is a role model for
many younger and less experienced hackers. We
may accept the odd hyperbolic rant when he’s deeply
disappointed in another (senior) developer, but what
happens when others try to emulate his ways?
Some greenhorn developers may assume that it’s
perfectly normal to post abuse to the mailing list –
and the more abuse, the more they’ll be seen like
their hero. They don’t understand how Torvalds
thinks, how such outbursts are extremely
rare, and how they’re about code. No, they
think it’s cool and trendy to hurl around
obscenities and abuse.

Lennart Poettering
is no stranger to online
abuse, but says he looks
beyond it and focuses on
code.

‘‘

‘‘

‘‘

Linus Torvalds is a
role model .We may

accept the odd rant, but
what happens when
others try to emulate

his ways?

LV022 028 Feature Conduct.indd 29 29/10/2015 13:40

www.linuxvoice.com30

FEATURE CONFLICT IN THE COMMUNITY

In early March 2015, 60 kernel developers signed off a
patch that could remedy the situation. The ‘Code of
Conflict’ – a short 223-word text file – was created by
long-time kernel hacker Greg Kroah-Hartman and
accepted into the mainline source tree by Linus
Torvalds. For such an important project like the Linux
kernel, you might expect this document to be very
specific in its demands and expectations of the
community, but it’s actually rather vague. For starters,
it alludes to the fact that you need a thick skin as a
kernel developer:

“Your code and ideas behind it will be carefully
reviewed, often resulting in critique and criticism. [...]
This development process has been proven to create
the most robust operating system kernel ever, and
we do not want to do anything to cause the quality of
submission and eventual result to ever decrease.”

So in other words: you won’t be handled with kid
gloves, we will be harsh if your code is bad, and the
system has worked so far. But this doesn’t sound like
much progress, does it? If we can carry on as before,
what’s the point of having a Code of Conflict in the
first place? Well, the second section deals with that:

“If however, anyone feels personally abused,
threatened, or otherwise uncomfortable due to this
process, that is not acceptable. If so, please contact
the Linux Foundation’s Technical Advisory Board.”

Theo de Raadt founded
OpenBSD after being
expelled from NetBSD for
abusive behaviour, and
has since gone on to run a
successful project.

This isn’t a silver bullet solution, but it provides
something that never existed before: an official way
to report and register bad behaviour. If you’re on the
receiving end of personal abuse, no longer do you
have to suck it up or simply quit kernel development,
but you actually have an avenue to (hopefully) get the
situation resolved. The Code of Conflict also signs off
with this positive thought:

“We are all humans, and frustrations can be high on
both sides of the process… keep in mind the immortal
words of Bill and Ted, ‘Be excellent to each other.’”

So there are very few specifics in the document that
actually define what abuse is or what the acceptable
level of communication should be. Some may find the
Code of Conflict deeply lacking in that respect, but we
think it’s a good start. By and large, the Linux kernel
has been an enormous success, so let’s try to fix the
problem with a general solution, rather than requiring
everyone to read a 5,000-word document and sign it
off before contributing – like some kind of tiresome
End User Licence Agreement.

The LLVM approach
Since the Linux kernel got its own Code of Conflict,
some other notable FOSS projects have adopted one
as well. LLVM, the development toolchain providing
some healthy competition to GCC, took a different
approach to the kernel’s document with a whopping
1,361-word file (http://tinyurl.com/llvmcoc) that goes
into many more specifics. It describes in depth how
mailing list posters should be patient, welcoming and
respectful, and gives concrete examples of behaviour
that should be avoided, including: violent threats;
discriminatory jokes; personal insults; unwanted
sexual attention; and personal information (“dox”).

CODES OF CONFLICT
‘‘

The solution may lie in carefully crafted guidelines...‘‘

‘‘

‘‘

LLVM’s Code of
Conflict gives

concrete examples of
behaviour that should
be avoided, including

violent threats and
unwanted sexual

attention

LV022 028 Feature Conduct.indd 30 29/10/2015 13:40

www.linuxvoice.com 31

CONFLICT IN THE COMMUNITY FEATURE

former. Trusting developers to use their
intuition and know what’s right or wrong
seems more fitting to the open and
diverse community around FOSS – but
maybe some people will simply still not

get it, and a more precise set of guidelines
will be necessary in the future.

It’s not all bad…
One of the most famous forks in Free Software
history is OpenBSD, the operating system that
forked from NetBSD back in 1995. A year
earlier, the NetBSD Core Team had expressed
concerns that one of its most prominent developers,
Theo de Raadt, was being abusive to other hackers
on the mailing list and dissuading others from
contributing to the project. The problem was
described to de Raadt in private:

“Your abusive actions have seriously impaired the
success of the NetBSD project in several ways. Your
actions have driven away developers or potential
developers, and have alienated many users. They
have also squandered much of the good will that
various people have directed at the project.”

Meanwhile, on the public netbsd-users mailing list,
the Core Team expressed their decision with regret:

“On December 20, Theo de Raadt was asked to
resign from the NetBSD Project by the remaining
members of ‘core’. This was a very difficult decision
to make, and resulted from Theo’s long history of
rudeness towards and abuse of users and developers
of NetBSD. We believe that there is no place for that
type of behaviour from representatives of the NetBSD
Project, and that, overall, it has been damaging to the
project. This decision was difficult to make because
Theo has a long history of positive contributions.”

What followed was an epic series of mailing list
posts and private mails, all of which de Raadt has
archived at www.theos.com/deraadt/coremail.html.
The file contains over 52,000 words – so not some
light bedtime reading – but we spent a few days going
through it all. In summary: de Raadt had behaved
extremely inappropriately, using personal abuse and
sexual references to other developers.

In the end, de Raadt left NetBSD, forked it into
OpenBSD, and now has a more popular project today
(with a different focus: full-on security rather than
portability). Despite his abrasive personality, de Raadt
took many NetBSD developers with him and runs
a successful project today – arguably for the same
reasons that makes the Linux kernel a success under
Torvalds. (And de Raadt himself has said that he’s
“not as angry” as he was 20 years ago.)

Of course, the OpenBSD community is tiny in
comparison to Linux, so there aren’t as many eyeballs
watching how developers interact. Maybe one day
OpenBSD will expand enough that the developer base
is diverse enough to require a Code of Conflict. And
who knows – maybe someone will fork OpenBSD into
another project, and the cycle will continue forever…

Similarly, the LLVM guide provides a much more
detailed set of steps for reporting bad behaviour and
how it will be resolved. The LLVM Advisory Committee
will get together and review the incident, suggesting
possible resolutions: the misbehaving developer could
be given a private reprimand if the incident is minor, or
asked to make a public apology. If it’s a more serious
case of threats or personal abuse, that developer
could be asked to take a week off to cool down, or be
permanently expelled from the project (with a chance
to appeal the decision).

So we have two types of Code of Conflict: the Linux
kernel’s short-and-vague approach, and LLVM’s very
detailed document. Which one will be more effective
in the long run remains to be seen, but we prefer the

Those of us who’ve grown up in the western world get
used to a certain amount of ‘banter’: jokes, jibes and
even the odd spate of personal insults here and there.
We don’t want to hurt anyone’s feelings, but we also
don’t get deeply offended by such natter at the pub or
between friends. Consequently, we carry a lot of this over
to our communications online – often with liberal use of
emoticons to make it clear that we don’t mean anything
truly offensive.

But for many cultures – especially in the Far East – the
concept of ‘face’ plays a much bigger role. People carry
a sense of dignity based on their position in a social
group, and if that sense is scuffed or damaged by abusive
criticism, the effects can run deep. Imagine a Chinese or
Japanese kernel hacker being told on the mailing list that
they are utterly rubbish, their work is worthless, and they
should turn off the computer forever.

Many of us would find such remarks unpleasant, but not
care what that person thinks and carry on with our work.
We’ll then joke about that person at the pub. Whereas the
Chinese or Japanese developer may feel deep shame in
being humiliated in public, and lose face among colleagues
or friends who also happen to be on the list. Of course,
some of this is a stereotype and there are developers in
every country who respond differently. But if we want
to bring talent from around the world to Free Software
development, we need to be aware of cultural differences,
‘saving face’, and craft our criticism correspondingly.

Saving face

LLVM has adopted a detailed Code of Conflict, whereas
the Linux kernel’s essentially says “just try to be nice”.

LV022 028 Feature Conduct.indd 31 29/10/2015 13:40

www.linuxvoice.com

FAQ SOFTWARE DEFINED NETWORKING

32

Software Defined Networking
Redefine your infrastructure on the fly with the latest network technologies.

Networking’s all about
hardware. Cables, routers,

interfaces, that sort of thing. Where
does the software come into it?

Things like routers and firewalls
have networking hardware, but

they also all have software that controls
the hardware. This software does
things such as decide where packets
should be sent (if indeed they should be
sent at all).

Ah, I think I’ve seen that. At
home, I’ve got a Wi-Fi router

with a HTML control panel that
enables me to block ports, forward
data and that sort of thing.

That’s exactly the sort of thing
we’re dealing with. In Software

Defined Networking (SDN), we talk
about the control layer (which is the
software that manages the hardware),
and the data layer (which is the actual
networking hardware itself).

On most current networking
equipment both of these things run on
the same device, so in the case of your
home Wi-Fi router there’s one box that
has both the networking hardware and
the software that provides you with the
configuration options. In an SDN setup,
these two aspects are separated, so the
control layer runs on a separate
machine to the data layer.

What, so instead of one router,
I’d have to have a hardware

router and a server to run the
control software? What’s the point in
adding that complexity?

Well, if you’re just running a single
router, there’s not much point in

SDN. However, if you run more than one
router or switch then a single machine
can be the control layer for all of them.
This means that rather than managing
a single piece of hardware, the control
software can handle all of the hardware
at the same time. As well as being able
to manage multiple pieces of hardware,
the control software will also be able to
see the whole network, so will be able
to make more intelligent decisions
about how the network should be
configured.

The end goal of SDN is a network
that can quickly and easily adapt as the
uses of the network change. This goes
hand-in-hand with things like
virtualisation technology, which enables
you to quickly and easily change the
software stack running on hardware.
SDN isn’t a silver bullet to solve all a
businesses IT problems, but a more
flexible IT setup should enable a
business to be more flexible in its
operations.

That makes sense. I guess this
means that you need a way for

the control layer to communicate
with the data layer. Is there a
standard for this, or does each

hardware manufacturer do it
differently?

The most popular way of
controlling data layer hardware is

with the OpenFlow protocol. This works
in exactly the way we’ve just described.
There’s an OpenFlow controller that
handles the control layer, and hardware
that handles the data layer. Using this,
you can combine hardware from any
manufacturer and any controller
provided they all support OpenFlow.
This is known as the southbound
protocol.

The SDN controller should also
enable software to run on it from above.
This software is know as the
applications layer, and the idea is that
the setup will enable standard software
in the control layer to run software in
the application layer to run on any
physical hardware in the data layer.

The software running in the
application layer can then take
advantage of the controller’s power to
configure the network in different ways.
This could include, for example, a web
app to handle levels of Quality of
Service (QoS) across all nodes on the
network or an algorithm for
automatically balancing the load on the
network. The connection between this
higher-level software and the controller
is known as the northbound protocol.
There isn’t yet a standard for
northbound protocols, and different
SDN controllers allow different software
to run on them.

Northbound? Southbound?
What’s any of this got to do

with a compass?
Some of the terminology can be
a bit confusing. Typically,

BEN EVERARD

The end goal of Software Defined Networking is
a network that can quickly and easily adapt as
the uses of the network change

LV022 032 FAQ.indd 32 27/10/2015 13:35

www.linuxvoice.com

SOFTWARE DEFINED NETWORKING FAQ

33

whenever someone draws a diagram,
SDN infrastructure has the data layer at
the bottom of the page, the control
layer in the middle and the applications
layer at the top. The protocols are all in
relation to the control layer, so the
protocols going downwards from the
control layer are called southbound, and
the protocols going upwards are called
northbound.

This SDN thing sounds useful.
Are most corporate networks

run on SDN now?
The concept of SDN has been
around since the late 90s, but it’s

only been a practical solution to
enterprise tech needs since around
2013. Since it requires new hardware,
SDN is only slowly catching on.
However, many are suggesting that it
will become a serious player in the
technology scene in 2016 and 2017.
Industry analysts IDC, for example,
expect the worldwide SDN industry to
be worth $8 billion by 2018. If you’re an
early adopter, or like to get ahead of the
tech curve, you need to start
investigating SDN now.

What’s all this SDN stuff got to
do with Linux anyway?
There’s nothing inherently Linuxy
about SDN; however, given the

prevalence of Linux in the data centres
where many of these SDNs are running,
and the flexibility of the Linux stack, it
should come as no surprise to learn
that a lot of the SDN hardware runs
Linux. This includes things like
OpenvSwitch and Microsoft’s Azure
Cloud Switch (ACS).

Hang on just one second. Did
you just say that Microsoft

runs its SDN on Linux?
Yep! We were equally surprised.
Microsoft’s ACS is used in its

Azure cloud data centre to control the
hosted environment. If that’s not a
ringing endorsement for Linux as the
base platform for SDN, then we really
don’t know what is.

If all these SDN systems are
built on Linux, does that mean

I can build my own SDN setup on my
Linux box?

First off, we’ll just repeat what we
said at the start, slowly and

clearly: there’s no point in using SDN if
you only have one or two pieces of
network hardware (eg routers or
switches). The chances of you having a
home network that would actually
benefit from SDN is pretty small. Of
course, just because there’s no
technical benefit in something, that
doesn’t mean you shouldn’t dive in and
do it anyway for the geeky fun of
learning something new! SDN is both
an interesting area and a rapidly
growing aspect of system
administration.

Assuming you don’t want to go out
and buy expensive enterprise-level
networking hardware, you’ve got
basically two options if you want to
experiment with SDN. The simplest
option is to use virtual machines. Using
visualisation software such as KVM or
VirtualBox, you can start machines with
virtual network interfaces.

These interfaces connect to virtual
networks. Usually, the visualisation
tools you’re using will connect them
together in a fairly straightforward
manner, but you don’t have to use the
technology that comes out-of-the-box.
Instead, you can use more powerful
virtual networking software such as
OpenvSwitch (http://openvswitch.org),

which understands the OpenFlow
protocol.

Isn’t there a less heavy-duty
way of giving it a go?
An alternative approach is to
build some networking hardware

using a Linux-based machine. You’ll
need a computer to build it on, which
could be more or less any machine that
can run Linux (including a small ARM
device such as a Raspberry Pi or an
Odroid). You’ll need to add more than
one network interface, which is easily
and cheaply done using USB Ethernet
interfaces, and then you’ll need some
form of SDN driver running on it, such
as LINC (https://github.com/
FlowForwarding/LINC-Switch).

Either of these methods (and indeed,
both simultaneously) can be used to
create the data layer of an SDN. On top
of this, you’ll need to create a control
layer. There are a few open options here
including Pox (www.noxrepo.org),
Floodlight (www.projectfloodlight.org/
floodlight), or Maestro (http://
zhengcai.github.io/maestro-platform).

The process of setting up an SDN
isn’t completely straightforward, but if
you go through it, you’ll end up learning
a lot about this emerging technology.

The Open Networking Foundation sets the standards for SDN, including OpenFlow, and its members
include Google, Facebook, HP, Intel and almost anyone else who’s anyone in the tech world.

LV022 032 FAQ.indd 33 27/10/2015 13:35

INTERVIEW GIANUGO RABELLINO

Saved from a career in law by a career
at Microsoft, Gianugo Rabellino has
played a huge role in Microsoft’s

burgeoning interest in open source.
Microsoft is now a significant contributor
to many projects, including the Linux kernel

and a partner in five initiatives with the
Linux Foundation. Thanks to customer
demand and the prevalence of Linux in
everything from phones to the cloud, along
with the wiser stewardship of its new CEO,
Satya Nadella, Microsoft has released a

version of Office running on Android, and
has even been working on its own internal
Linux distribution – both things that were
completely unimaginable 10 years ago. But
how real is this change? We find out what’s
going on at the heart of Microsoft.

Why did you take on the job at
Microsoft?

Gianugo Rabellino: This October is
my fifth anniversary at Microsoft. I
joined in 2010, coming all the way from
Europe. I had an open source services
company, and before that, and after
that of course at Microsoft, I spent all
my life in open source.

I’m a member of the Apache
Software Foundation, contributed to
various projects, founded the first
official Linux organisation in Italy in
1994, so I go back to Linux 0.99 and a
big pile of floppies. I had a C64 when I
turned 14. My parents had a company
and they had one of the first PCs.

So from a C64 to a PC, so not
through the Amiga then?

GR: No, I missed the Amiga stuff and
that’s one of my regrets, but what can
you do?

PCs are probably a much wiser
choice anyway.

GR: In a number of ways, yes. So I
found myself thinking that I almost got
this degree in law but I don’t want to be
a lawyer, what am I going to do? I didn’t
have the time or the money to pursue
another degree and then I found myself
back in computing, stumbled into open
source, fell in love with it. Luckily that
was when the internet had started.

What was it that you liked
about open source? You could

have had Windows on your PC?
GR: I could have except that I was

utterly broke. And I got into the BBS
world. And at the centre point, I wanted
to run my own BBS but I could only
have one computer. And that was quite
a luxury. I saved and bought a 386
because I heard that those things could
run more than a program at a time, so I
could run my BBS and use the
computer at the same time, and lo and
behold Windows 3.1 didn’t do that. So I
got into [IBM’s] OS/2. I loved everything
about it.

Yeah, it had multitasking.
GR: Yes, exactly. And then they

did OS/2 3.0 and it was like OK, no that
was a mistake. Friends brought a pile of
floppies with Linux and it was like, oh
wow, look at that – that’s interesting!
And then I thought, you know what,

Graham Morrison simply walks into Mordor to discuss open source strategy with
Microsoft’s senior director of open source communities. But is all as it seems?

GIANUGO RABELLINO
MICROSOFT’S GNU WHISPERER

Like a lot of the high-rollers we
speak to, Gianugo got his first
taste of Linux using a stack of

Slackware floppy disks.

34 www.linuxvoice.com

LV022 034 Interview.indd 34 30/10/2015 10:41

www.linuxvoice.com 35

GIANUGO RABELLINO INTERVIEW

“The only way to achieve
interoperability is by building
open protocols, open formats, open
standards – and that gets coupled
more and more with open source”

LV022 034 Interview.indd 35 30/10/2015 10:41

36

INTERVIEW GIANUGO RABELLINO

www.linuxvoice.com

instead of running a BBS, I really want
to spread the word about this Linux
stuff, so I’m just going to open up
access. Dial up a number, get a login
prompt, no password, you’re in and you
can play around.

And I would be on another terminal
doing stuff while other people were
absolutely tearing my machine to
shreds. And one day, just by accident, I
get a talk request. Do you remember?

Ah, the days of FidoNet.
GR: Exactly. And it turned out to

be a professor at a university who was
looking for help to set up a lab, and he
said it looks like you know Unix why
don’t you come and help me out. I still
had to prepare for my final exam, but a
few months later I was pretty much a
teacher’s assistant of Computer
Science managing a lab in my small
town. And that’s what got me into it,
and it was a combination of “hey I got
this operating system for free, wow
that’s awesome”, and then I was lucky
enough that I could actually dial into the
university and I had the internet, which
is something you couldn’t afford back
then. There was no web, those were the
days of Gopher [a protocol that
pre-dated HTTP]. And I remember
sending my first traceroute and being
amazed that my first traceroute went to

Vienna, and I was like I’m in a small
town in Italy and now my stuff is
getting to Vienna. And then this guy told
me, yeah but this is actually Vienna
USA, it’s not Vienna Austria. My mind
was blown, and I realised I could just
use IRC, back in those days where you
could just use IRC.

We still put our magazine
together through IRC.

GR: So then I came on IRC and I found
people from HP, people from IBM,
people from Sun and I understood that I
had another shot at a career. I could
actually learn because there’s so many
resources that I could use. And I started
hacking and I never looked back.

That’s really good.
GR: Yeah. I owe everything to

open source software. This is the
beginning and the end of it.

Microsoft were doing their first forays
into open source and back then they
were actually involved in OpenXML,
which you might recall was quite
controversial at that time. And my
impression as an open source person
was that Microsoft was not getting
credit for what they were trying to do.
Everyone was second guessing that
Microsoft was coming from the angle
that these guys were not right.

You mean in a general IT
sense, nothing to do with open

source?
GR: It was the attitude towards
Microsoft. I really thought that they
deserved more credit, and were genuine
in their efforts to do more open stuff.

When was this?
GR: We’re talking 2008, which is

when I started (Sourcesense). Then
when I decided for other reasons to
leave Sourcesense and take a
sabbatical, I sent an email to my
contacts at Microsoft saying I’m leaving
the company, going somewhere else, it
was fun working with you, and they said
hey do you want to come have an
interview. So that’s how I joined.

So Redmond has realised it
needed some help because its

open source work was very isolated?
GR: They were doing some bits of open
source here and there. They were
dipping their toes. But then it came to a
point that there was clearly an
executive mandate to do more, to
explore. So I joined in 2010 and had 23
interviews to get the job, and I asked for
those because I really wanted to talk to
as many people as I could before
making a big decision such as moving
a family of four, including a two-month-
old, to the USA and also taking a career
that was built on open source, on my

open source reputation, and joining
Microsoft. But at the time I signed up, I
was positive that there was a genuine
willingness to turn this company
around and make it become more
open. And it wasn’t just… lip service,
they wanted to change the company.
So that was a challenge that was really
exciting for me.

Can you say who at Microsoft
wanted that change to happen?

GR: I have to give a lot of credit to my
hiring manager, Jean Paoli, whom I’ve
worked with for the last five years. He
clearly had that vision, but he was also
backed by a lot of executives at

Gianugo talks a good game,
but the proof of the pudding is
in the eating (and he was part
of the team that open sourced
.NET, so that’s a tasty pudding).

I owe everything to open
source software. That’s the
beginning and the end of it

LV022 034 Interview.indd 36 30/10/2015 10:41

37

GIANUGO RABELLINO INTERVIEW

www.linuxvoice.com

Microsoft, including for a number of
years Satya Nadella, the current CEO.
He was the one who approved of our
first big plan to build open source for
Azure. There was a lot of executive
backing behind this effort.

Did everybody understand the
advantages and why it was

important internally? All we saw was
the outside image presented by
people like Steve Ballmer.
GR: Steve Ballmer was 2001 and floppy
drives. So fast forward a few years and
what we got was probably the tail end
of that phase when Microsoft was very
reluctant towards open source. The ‘no
way’ phase. And then, pretty much
when I joined or shortly thereafter, we
started a phase of genuine, open and
honest asking of ourselves why. I mean,
I’m open to the view of using open
source, but give me a good reason. And
of course there’s a spectrum. It went
from people who were highly sceptical
to people who were very open, but I
never met anyone at Microsoft who
was under the idea that we are not
doing it just because it was open
source. I never saw that in my five years
at Microsoft.

Recently, I think we squarely entered
the age of ‘why not’, so give me a good
reason not to. We’re going to default
to openness. At the same time, what
I think happened, and I think it’s as

important as this Microsoft changes, is
that open source changed as well. The
Microsoft of floppy drives and the open
source of floppy drives had become
the Microsoft and the open source of
the internet era, where everything is
connected, products are shipped to
the cloud. The software that runs your
phone is coupled with your device.
Those are new things and so openness
has become a more nuanced concept.

Today, I don’t like just talking about
open source. It’s important – it’s
absolutely crucial – but if you talk about
open source alone, you don’t bring open
standards into the picture. If you don’t
bring interoperability into the picture,
I mean, we need to see the same
webpage and access the same email.
It looks like magic, but there’s a lot of
technology behind it.

Wouldn’t you say that
Microsoft wasn’t too worried

about interoperability and open
standards up until 2005–2006?
GR: I think it’s interesting to see how
Microsoft got interested in
interoperability and, subsequently, went
into open source – into openness in
general. Because the only way to
achieve interoperability is by building
open protocols, open formats, open
standards – and that gets coupled
more and more with open source. Right
now there are so many projects out

there where it’s really hard to say
whether they are a standard or an open
source project. What is the new
container initiative? It’s based on
Docker. They have these four
components that I care about: open
source, open standards, interoperability
and community development, because
that’s the other part.

What we learn about over the years is
that open source is stuff that you throw
at the wall. I mean, it’s nothing. You’re
building the ‘whole of the garden’ code.
It doesn’t matter. Code by itself rocks.
But I’m an Apache guy, to me it’s
community over code always.

Have you built a community
within Microsoft so that those

open projects will remain open?
GR: Absolutely, yes. And again, that
maps to something that changed in the
market. Gone are the days of five years
until the next version of Windows or the
next version of Office. The turnaround
needs to be faster: Azure updates every
day. Your Windows devices update
nearly every day or on a weekly basis.
We need that fast turnaround. And we
need to make sure our products and
technologies can embrace that model.

When you say open source, is
it more important for the

source to be open and readable with
more of an emphasis on permissive,

Linux is no longer a cancer that
attaches itself to everything
it touches (cf Ballmer, 2001).
Rejoice, oh my brothers!

LV022 034 Interview.indd 37 30/10/2015 10:41

38

INTERVIEW GIANUGO RABELLINO

www.linuxvoice.com

or is it that it becomes more of a
community project?
GR: An open source license gives you
all of that. So I can read it, I can modify
it, I can redistribute my modification.
But the real value comes when those
modifications get merged back in.
When I talk about open sourcing
products or technologies at Microsoft, I
always say if you don’t intend to accept
contributions there’s little point in what
you’re doing.

But initially Microsoft had
quite specific Microsoft open

source licences. Thankfully, these
seem to be fewer.
GR: Yes, absolutely, they’re gone now.
We haven’t been using them for years.

Coming from the Apache side
of things, did you have

anything to do Microsoft’s new
licensing regime?
GR: Marginally, but by the time I joined
there was already very very little use of
MS-PL [the Microsoft licences]. If
anything, I nudged towards Apache 2.0,
being an Apache guy, and recently
we’ve switched more and more to the
MIT Licence. But we realised that there

was very little advantage in building our
own licences, but back when Microsoft
did that, I wasn’t at the company then.
It kind of made sense. That was the
time when everybody was doing their
own licences. And then it became a
problem and we understood at
Microsoft that we need to go where the
community is and the community
wants to coalesce and consolidate on a
handful of licences. We don’t need so
many, we just need a few. And that is
why today we have five or six licences
and everything else is really in the long
tail. We just follow that trend.

What would you say has
changed the most at Microsoft

since you joined in its attitude to
open source, and also how does the
wider world of computing outside of
Microsoft feel about the company?
GR: When I look back at these five
years, my impression is that we did
everything organically and that’s
probably one of the reasons why we
were successful at changing the
company so much. We didn’t jerk, we
took it little by little. Small steps with a
bit of a bottom-up, grassroots approach
with executive coverage from the top,

and always focused on ‘the code talks’.
It’s a useless conversation about the
specific open source project or
technology without showing code,
that’s the whole idea. We have been
consistently pushing on the same
strategy for five years and little by little
we made this stuff change.

When I interview people who want to
work at Microsoft, want to work in my
team, I always tell them you cannot be
successful in changing a big company
if you take a speedboat approach.
You’re not on a lake in a speedboat
doing zig zags. You’re actually the tug
boat that needs to steer the container
ship. And the only way you can do it is
by using a lot of torque. And little by
little, slowly but surely – it looks like
you’re not making progress – but then
you look back and you see that the ship
is turning.

So you’re able to look back and
see the difference between

people at Microsoft five years ago
and people now?
GR: It’s consistent. It just took this
much time. It was a journey. We had to
demonstrate business value. We had to
validate. So when I joined there was a
hypothesis that we need to change, we
need to become more open because it’s
good for us, it’s good for our customers,
it’s good for the company.

Was there any pressure from
outside Microsoft?

GR: Oh there was tons of pressure. We
always listen to customers, that’s one
of the main reasons why. And it was a
changed landscape. Imagine how the
world has changed since, as an
example, the inception of XML. XML
meant that all of a sudden you could
have a heterogeneous data centre in a
number of technologies and still have
those machines communicate with one
another. And that brought our
customers to say, you know what, we
love your technology but we also love
this other technology now and they can
talk together and we want to keep it
that way, we want to use both. So that
was the pressure that started it all off.

Was there a change in attitude
at Microsoft?

GR: There was a big shift in the market.
The market went from a single-vendor

The Microsoft Open Source Programs
Office has a small team of four
people – if you fancy working to help
Microsoft use more Free Software
open source, why not apply for a job?

LV022 034 Interview.indd 38 30/10/2015 10:41

39

GIANUGO RABELLINO INTERVIEW

www.linuxvoice.com

“Right now, we are at a point from
an executive trajectory point of
view, we are where we want to be:
the era of the ‘why not?’. We need
to default to being open.”

Being more open is good
for our customers, and
it’s good for the company

market, where you are married to your
customer for a decade because of
lock-in, to a much more dynamic
market where customers could mix and
match. They told Microsoft and they
told all the other companies, “hey this is
the way we want to operate going
forward. We’re going to have a

heterogeneous set of technologies that
can interact with each other, and we’re
going to keep you accountable for that”.
So we have an interoperability executive
council, which is part of what my team
has been doing for the past few years
and we have large companies and
startups coming to us and telling us to
fix this, you ought to fix this.

How far have you got in your
mission at Microsoft?

GR: From this standpoint in turning the
ship around, I think we’ve done it, we’re
done. To me, there were two major
milestones: open sourcing of .NET –
open sourcing of one’s crown jewels if
you like – and the second major
milestone for me was folding MS Open
Tech back, which meant taking open

source to the next level, realising that
open source is across the company.

Were you involved in the open
sourcing of .NET?

GR: I absolutely was. I actually sit on
the board of the .NET foundation.

It’s probably one of the biggest
and most positive things

Microsoft has done for open source
in that it’s genuinely useful.
GR: And a few months after we
announced open sourcing .NET, we
announced Visual Studio Code. It’s about
meeting developers where they are. It’s
the ultimate evolution of the mixed IP
idea. We went from “I want to have a
little bit of everything in my data centre”
to “I will need to have a little bit of
everything because I’m in the cloud and
that’s what I’m running today”; it may
not be what I’m running tomorrow, it
may not be what I’m running next
month. It may not be with this particular
provider, it may be with somebody else.
And I also have my private cloud and I
need to connect everything. So
interoperability is supremely important.

Don’t get me started with devices,
with the idea that, hey I build apps or
web sites. Take a random room of five
or six people and you will find a mix of
probably twelve different operating
systems, devices, screen sizes etc. And

we still have to deliver a consistent
experience. So the fact that we can do
it, thanks to the work the Microsoft and
many others did at places like the W3C,
just thoroughly amazes me.

So what’s next?
GR: Right now the mission of the

Open Source Programs Office is to
enable, simplify and promote open
source across the company. We
managed to turn the ship around and
now we need to sail it.

Where are you sailing to?
GR: We’re sailing to where the

market wants us to sail. We know that
there’s going to be a lot of openness
down the road, so we’re heading in that
direction. Now it’s about taking all those
little stumbling blocks that are still
there, making sure the process is
smooth. Making sure that when you
ingest an open source package, you do
your own due diligence, you make sure
it’s an appropriate thing to do and we
need to make sure that the process
doesn’t take much [effort].

Right now my major concern is
making sure that we will need to create
a process to manage resources
internally and I want that process to be
as frictionless as it can possibly be
because we are doing these things to
speed us up.

LV022 034 Interview.indd 39 30/10/2015 10:41

LISTEN TO THE PODCAST

WWW.LINUXVOICE.COM

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com
LV022 040 Ad Merchandise.indd 40 27/10/2015 13:50

www.linuxvoice.com 41

INTRO REVIEWS

REVIEWS
The latest software and hardware, rigorously bashed against a wall by our crack team.

Andrew Gregory
Is building a scale model of Harlech castle out
of abandoned laptops.

By the time you read this
magazine, the world will have
forgotten about the TalkTalk

data leak/hack, in which a telecoms
company in the UK mislaid a load of its
customers’ data (including bank
details). That’s a shame, because there
are lessons to be learned.

The most important of these is that
you always need someone to blame.
TalkTalk’s share price fell from the day
the hack was announced, a slide that
was only arrested when police arrested
a 15-year old from County Antrim in
connection with the attack.

Always blame someone else
Are you keeping your customers’ data
unencrypted? Fine, carry on. Do you
know of a breach, but doing nothing,
hoping it’ll go away? Also fine. But find
someone to blame, pronto.

No doubt once this child has been
prosecuted the CEO will leave for
another gold-plated salary and they’ll all
pat themselves on the back for riding
out the storm. But really, if a 15-year-old
can hack your network, it’s not the
15-year old that should be arrested.
andrew@linuxvoice.com

On test this issue . . .

Behind the scenes, Fedora
is just about the most
technologically advanced
Linux distribution there
is. Combine that with an
attractive desktop and a
solid community you’ve got
a great system.

Fedora
23

Ubuntu 15.10 43
Beware the moon! The beginner-
friendly distro is so simple even
werewolves can use it.

OwnCloud Server 8.2 44
All the convenience of Google
Docs/Mail/Calendar, with none of
the privacy issues. Excellent.

TeamViewer 10 45
Pay money for a proprietary
remote desktop? When it’s as
good as this, you just might.

Group test – window managers 50
For more control, more power, or more speed – if
you like to tinker with your setup, give one of these
window managers a try today.

Books 48
Exercise for programmers, inside the tech of Bitcoin
and evaluating your code as if it were a crime scene.
That’s some esoteric reading right there.

Group test and books

42

LV022 041 Reviews Intro.indd 41 30/10/2015 10:51

REVIEWS GNU/LINUX DISTRO

www.linuxvoice.com42

Fedora 23
Slightly later than expected, Fedora 23 is here to delight Mike Saunders.

Gnome 3.18, the default
desktop in Fedora 23,
sports two new programs
(Calendar and Characters)
and Google Drive
integration – see p43 of
last issue for our review.

Fedora 23 was due to be released a few days
before we went to press, but some last-minute
spanners in the works meant that it was held

back by one week. That’s fair enough, we feel – time-
based releases are a great way to ensure that
software gets shipped at some point and doesn’t
languish in development hell, but it’s worth being a bit
flexible to ensure the final release is of decent quality.

As with the last few releases, Fedora 23 is available
in multiple flavours: Workstation (for typical desktops
and office environments), Server and Cloud. One
major change that affects all versions is package
hardening: where possible, binary executables are built
as PIC (position independent code), which means they
can be placed anywhere in the operating system’s
memory address space. Using ASLR (address space

layout randomisation), the OS can make security
holes less damaging, as crackers can’t assume that
certain bits of code are at specific points in RAM.

Waiting for Wayland
Desktop-wise, Fedora 23 ships with Gnome 3.18,
and while many improvements have been made to
Wayland, the X Window System still provides the
default graphical layer. LibreOffice 5.0 made it into the
release just in time as well. In the Server flavour of the
distro, there’s a new role to set up Fedora as a cache
server for web applications (using memecached),
while the Cockpit administration interface now
supports SSH key authentication and can work with
Kubernetes to manage clusters of Linux containers.

Other changes include Docker 1.8 in the Cloud
flavour, a migration from Mono 2.10 to 4.0, and
Unicode 8.0 support. Along with the standard Gnome
version of the Workstation release, there are “spins”
featuring other desktops such as KDE, Xfce, LXDE,
Mate and Cinnamon. On the whole it’s a worthy
upgrade: the switch to PIC binaries should have a
positive impact on the distro’s security in the long run,
and easy access to the latest Gnome and LibreOffice
releases make it a no brainer.

A shiny new desktop, updates to LibreOffice and
more security – there’s plenty to like here.

Web www.fedoraproject.org
Developer Red Hat and
Fedora Project
Platforms IA32, x86-64, PPC,
ARM

LV022 042 Review Fedora.indd 42 29/10/2015 13:44

UBUNTU 15.10 REVIEWS

www.linuxvoice.com 43

Ubuntu 15.10 (aka Wiley Werewolf) Desktop and Server
Ben Everard’s purple werewolf costume left some people confused at Halloween.

Ubuntu still includes online
results in local searches,
but it’s easy to disable if
you want to increase your
privacy.

F ire up Ubuntu 15.10 desktop and you could be
forgiven for thinking you’re running 15.04, or
14.10. Not much has changed in quite some

time. There’s a purple-ish geometric background, a set
of blocky icons on the left-hand side and the same
Unity experience that you’ll either love or hate. As
you’d expect, Werewolf comes with the latest
upstream software, but otherwise, there’s no reason
to upgrade.

Let’s now move swiftly on to the Server edition
of Ubuntu 15.10, where there are some pretty big
changes afoot. The biggest of which is the new
OpenStack installer (Autopilot). It’s a little bit of a
shame that in 2015 an easy installer for software can
be considered a feature. However, OpenStack isn’t
an easy system to set up, and having a simple path
to running a private cloud will make Ubuntu a much
more attractive option for people taking their first
foray into this system.

LXD, Canonical’s container management tool, is
now shipped by default. This isn’t a huge change,
since LXD has already been available for some time,
but by pushing it into every installation, Canonical
is trying to get people into its own tool rather than
alternatives such as Docker.

Users with heavy network loads may be interested
to see the inclusion of the Data Plane Development Kit
(DPDK) in the latest version of Ubuntu. This set
of drivers and libraries enables users to handle

network packets far more quickly than with traditional
kernel drivers.

Like all regular versions of Ubuntu, 15.10 will
only be supported for nine months, which isn’t long
enough for many organisations. However, these new
technologies are a show of strength from Canonical
six months before the release of the next LTS version
(which will be supported for five years). If the new
technologies prove to be stable, it will pave the way for
the next release (16.04) to further cement Ubuntu’s
position as the leading OS for modern data centres.

Not much new on the desktop, but a strong sign
of things to come in Ubuntu server.

Web www.ubuntu.com
Developer Canonical
Licence Various free
software licences

LV022 043 Review Ubuntu.indd 43 28/10/2015 11:31

REVIEWS FILE SHARING

www.linuxvoice.com44

OwnCloud Server 8.2
Thanks to this great update, Graham Morrison has [almost] managed to drop Google.

The best thing about the
new desktop client is that
you can use it with more
than one account and
OwnCloud server at the
same time.

We use OwnCloud every day to put this
magazine together. It’s a fantastic piece of
software that turns anything capable of

being a server into the closest open source gets to
Dropbox or some of Google’s cloud-bases services.
It’s also rapidly evolving, and 8.2 is the second major
update since 8.0 was released in February 2015. After
manually updating our old 7.x servers, we’ve been able
to use the automatic internal update feature for both
8.1 and 8.2, making the upgrades effortless.

Many changes for this release are visual. There’s a
small new menu adjacent to each file that provides
download, delete and rename duties, for instance,
while upload and file creation moves to a new ‘+’
menu at the top. These replace the slightly clunky
icons that appeared when you hovered over files and

folders in previous versions. Clicking on the Details
menu item also opens a new panel on the right
where you can easily see the sharing status of your
selection, along with a preview of its contents – and
brilliantly, access to each version if the file has been
modified. We love the way you no longer have to save
a text file when you edit it, as all changes are saved
automatically. But our favourite visual upgrade is to
the Gallery view, replacing the old Pictures mode.
You can sort your images by creation date, and
the update time for us was much faster than with
previous versions. You can also zoom and pan around
your photos, making this the first time we’ve felt
comfortable sharing a folder link with someone rather
than using another online photo repository.

Administrators get a lot more control from the
command line, including the ability to modify the
number of versions and the amount of trash kept by
the system, and the ability to encrypt and decrypt
everything. And while it’s not specifically part of the
server package, we have to mention that the recent
upgrades to the Linux desktop standalone client
are brilliant. It no longer sucks CPU cycles and can
connect to multiple servers at once. OwnCloud is a
project that just keeps getting stronger.

Nothing touches OwnCloud for its feature set, or
for its development speed.

Web https://owncloud.org/
Developer OwnCloud Inc.
Licence AGPLv3

LV022 044 Review OwnCloud.indd 44 29/10/2015 13:47

TEAMVIEWER 10 REVIEWS

www.linuxvoice.com 45

TeamViewer 10
Ben Everard may be about to become the technical support team for his social circle.

You can try if you like, but
these login details won’t
let you take over the Linux
Voice network.

L inux has a surfeit of remote access tools, from
the command line SSH to the graphical VNC.
Many video chat tools also have screen-

sharing capabilities. With all this, is there really a need
for a proprietary option?

To answer that question, we have to look into the
two things that TeamViewer does. First, as you may
expect, it shares a computer’s screen with a remote
computer. The remote user can then take over the
mouse and keyboard and use this as they wish. The
most common usage for this is fixing problems.
TeamViewer performs this task perfectly well, but so
do other tools. TeamViewer’s real advantage comes in
the second task it performs: managing these remote
connections simply without needing an inbound TCP
connection to the machine being controlled.

That all sounds a little technical, so let’s go back
for a minute. Imagine your friend calls you up and
says they’re having a problem with their computer.
How do you connect to it? With SSH or VNC, you need
an IP address to contact. This is fine for a server;
it’s probably even possible over a home internet
connection, but it won’t be easy to set up.

With TeamViewer, they’ll just get a few numbers
displayed on their screen which you need to enter
into your machine, and you have access to their
desktop. It’s simple enough for you to be able to talk
a technically inept person through the installation
and setup in a few minutes; then you’ll have access

to their machine and can fix their problem for them.
That alone is worth the full five stars from us. There
are only two problems we can see: it’s closed source;
and if you make it too easy for people to come to
you with their problems, they may never fix anything
themselves again. We’ll leave it up to you to decide
how serious these problems are.

As well as Linux, TeamViewer works on Windows,
Mac, Android, Windows Phone and Blackberry, so you
can help people of any computer denomination.

The easiest way of fixing other people’s
problems on just about any computer.

Web www.teamviewer.com
Developer TeamViewer
Licence Free for personal use
or from £449

LV022 045 Review TeamViewer.indd 45 28/10/2015 11:32

www.linuxvoice.com46

REVIEWS GAMING

Soma
Atmospheric sci-fi horror from the makers of Amnesia: The Dark Descent.

The tastiest brain candy to relax those tired neurons

Penumbra and Amnesia are often
considered to be among the scariest
games of all time, but Soma focuses

more on story than horror. It’s far more mature
than its predecessors, using philosophy as an
theme to its sci-fi exploration-focused story.

The game’s predecessors were considered
terrifying due to the lack of self defence abilities,
but also for their atmosphere and excellent
sound design. Soma does these things well,
though by this point the formula has been
imitated to the extent where it has almost
become a genre of its own.

As a sci-fi story-focused game, Soma is hugely
successful, though the horror aspects can be
half-baked. At times, it feels as if more could
have been achieved if the game stopped doing
what was expected of it and concentrated on
the excellent plot. That said, the atmosphere
achieved through the traditional means of horror
really adds to the experience.

The story deals with some intriguing themes
such as human consciousness and unfolds
at an excellent pace as the mysteries of the
underwater facility and its former occupants
are steadily revealed. The loneliness of the

GAMING ON LINUX
DEAR SAINT NICHOLAS…

The first Steam Controllers –
on which much of the viability
of Linux as a mainstream

gaming platform hangs – have been
shipped, and those lucky enough to
have pre-ordered have given their
thoughts online. At the same time,
Valve has pushed back the official
release closer to Christmas to iron
out some of the kinks.

Responses have been positive,
though the unusual double trackpad
design has been reported to work
better on some types of games than
others, and it’s expected that later
versions will attempt to do more to
make it a more viable option for FPS
games. The controllers also had
issues with running out of the box on
some major Linux distros, though this
has now been patched up.

Meanwhile, contracts have been
secured in the UK, US and Australia
to bring the Linux-powered consoles
and their controllers to the biggest
bricks-and-mortar game retailers in
those countries, bringing PC gaming
back to store shelves alongside
consoles after a long absence. The
sheer variety of hardware and pricing
will be a challenge for vendors.

Having gotten a chance to try out
SteamOS on a home made Steam
machine, it’s certainly impressive. As
a gaming distribution, it takes
plug-and-play to a whole new level,
without having to wrestle with pesky
graphics drivers or fine-tune things
after installation. There is no doubt
as to the ease of use to potential
Linux newcomers, though its
acceptance by the gaming
community will remain to be seen.

Michel Loubet-Jambert is our Games
Editor. He hasn’t had a decent night’s
sleep since Steam came out on Linux.

experience and constant second-guessing as
to the goings-on really pull the player into the
game’s world, and in effect also serve to bolster
the horror aspects, which Soma does more
effectively. It is these aspects that make the
game undoubtedly better than its predecessors.

We recommend Soma – it’s one of those
games that create conversations between
people who have played it, albeit in this case far
more about the story and the issues it raises
than the jumpscares.

Website http://store.steampowered.com/
app/282140 Price £29.99

The story takes place after waking
up in an abandoned facility under
mysterious circumstances.

Soma’s mysterious underwater facility feels very
much alive and is full of decay.

The atmosphere achieved through the traditional
means of horror really adds to the experience.

LV022 046 Gaming.indd 46 28/10/2015 11:34

www.linuxvoice.com 47

GAMING REVIEWS

Wasteland 2: Director’s Cut
Just over a year after the critically acclaimed
Wasteland 2 was released, it has received a
complete graphical overhaul and a few very
welcome additions. Among the additions to
this Fallout-esque RPG are controller support,
extra voice acting and more character
customisability. Needless to say, the Director’s
Cut is a huge improvement on a game that was
already extremely impressive.
http://store.steampowered.com/app/240760

ALSO RELEASED…

Grand Ages: Medieval
A pleasant trading simulator which could have been far more.

When Grand Ages was
announced, it looked to be
an exciting combination of

the best aspects of 4X strategy games
like Civilization, with the complex empire-
building aspects of a grand strategy
game. However, it turned out to be a
somewhat superficial trade simulator with
limited combat and building mechanics,
and no political mechanics whatsoever.

Nonetheless, Grand Ages is by no means
a bad game. It is fun and satisfying, while
providing many hours of gameplay – even
if it does feel like a missed opportunity at
times. The campaign is well put together,
with a story that takes place in the latter
days of the Byzantine empire.

The gameplay often lacks balance,
ranging from it being near impossible
to turn a profit, to being incredibly
overpowered and there being little

challenge. However, a number of patches
have already addressed some of these
issues, and progression feels pretty solid
most of the time. The game would suit
fans of the Patrician series and other trade-
oriented games the most, while grand
strategy fans may also enjoy it.

Sword Coast Legends
A well polished RPG set in the Forgotten Realms universe.

There have been many successful
attempts at reinvigorating the RPG
genre and Sword Coast Legends

pulls it off exceptionally well. Rather than
lazily relying on the success of Icewind
Dale and Baldur’s Gate and drowning in
a sea of nostalgia, the game delivers 3D
visuals that look great even when zoomed
incredibly close to the characters.

There’s still plenty of standard fantasy
tropes of bustling towns and huge caves
filled with monsters and bandits alike.
Many of the Dungeons & Dragons crowd
claim that the game’s multiplayer mode is

not true to the rulesets and have criticised
it pretty extensively. Not knowing the
least bit about D&D, I can only speak for
the campaign, which has high production
values, a solid story and excellent voice
acting. That said, the combat and skill
trees are somewhat superficial, which
need not be a bad thing in order to attract
a new generation of players, but seasoned
RPG fans may be somewhat disappointed
in this regard.

The Beginner’s Guide
From the makers of The Stanley Parable comes
another equally fascinating experience, which
diverges from the traditional mechanics of
video games. The player explores the
numerous creations of a game developer,
taking them on an emotional journey that
touches upon aspects of the human condition.
The story is mostly driven by the narrator, who
is also the creator of the levels, and it lasts a
couple of hours at most.
http://store.steampowered.com/app/303210

Skyhill
This fun roguelike/adventure/survival game
meshes together some seemingly different
genres, with the player getting to enjoy the
best of each. The challenge here is making
your way down the 100 floors of a hotel by
scavenging for food, crafting items and
battling mutants to get through to the exit.
There’s also good narrative thrown in to add
intrigue and remove repetition.
http://store.steampowered.com/app/382140

Website http://store.steampowered.com/
app/325600 Price £32.99

Website http://store.steampowered.com/
app/310470 Price £29.99

The move away from 2D
backgrounds has helped bring the

RPG genre into the 21st century.

Grand Ages clearly has an impressive engine
and a good base for a solid franchise.

LV022 046 Gaming.indd 47 28/10/2015 11:34

www.linuxvoice.com

REVIEWS BOOKS

48

Ben Everard changes out of his Lycra – these are different exercises.

Musicians practise scales, so perhaps
programmers should practise the routine parts
of their craft as well.

How long does it take to learn a
new language? The answer to this
question really depends on what

you mean by learn a language. A decent
programmer can probably pick up the
syntax and basic usage of a new language
in a weekend. After a month, they should
be fairly comfortable. However, it can take
a long time to really get you head around all
the little bits that you need to know.

Exercises for Programmers is a set of
challenges that are designed to cover every
area of a language so that when you’ve
covered them, you’ll be able to program
comfortably in that language. The tasks are
there to test your knowledge of a language,
not your skill as a programmer, so you won’t

need to come up with any novel algorithms
or tricks to get through this book. The result
is a slightly pedestrian set of exercises
which didn’t really excite us.

Exercises for Programmers takes you
through everything from creating user
interfaces to using web services for the
purpose of getting data, all to force you to
search through all the features, libraries and
modules of your chosen language. These
exercises should work with any language
regardless of paradigm.

A useful, but slightly dull, workout to help
you make sure you have a complete grasp
of a new language.

Author Brian P Hogan
Publisher Pragmatic Bookshelf
Price £15.99
ISBN 978-1680501223

You Code as a Crime Scene
Ben Everard’s code always looks like a crime scene.

I t doesn’t matter how good your code
is, there are bugs in it, and one of the
challenges of programmers is finding

where they’re hiding. In Your Code as a Crime
Scene, Adam Tornhill introduces the idea
of using forensic techniques to work out
where they’re most likely to be. The process
is based on geographic offender profiling,
which attempts to locate the likely location
of a criminal based on the pattern of their
crimes. Tornhill uses tools and techniques
that attempt to locate likely places for bugs
based on the location of complexity in and
changes to the code base. This spatial
mapping produces visualisations that
highlight a series of ‘hotspots’ where bugs
are likely to occur.

By identifying these hotspots, you can
focus your bug squashing activities in
the most fruitful places, and also use this

knowledge to inform your development
practices (should this code be re-factored?)
and human resources (should more people
know how this code works?). In small
projects, developers can easily keep track
of the whole codebase, and so identifying
hotspots isn’t very useful, but as projects
get larger, it becomes more useful to know
where problems may arise. Adam Tornhill
takes the reader through a series of real
open source projects to demonstrate the
techniques. This isn’t a failsafe approach
guaranteed to leave your software spotless,
but could be a useful weapon in the endless
battle for software quality.

The deerstalker and pipe aren’t essential
accessories to this book, but we highly
recommend them.

Exercises for Programmers

A novel approach to software analysis that
could prove useful for managing large
projects.

Author Adam Tornhill
Publisher Pragmatic Bookshelf
Price £23.99
ISBN 978-1680500387

LV022 048 Reviews Books.indd 48 29/10/2015 14:09

www.linuxvoice.com

BOOKS REVIEWS

49

Also released…
Blockchain
Graham Morrison finds the first example of currency gentrification

Let’s hope the future of Bitcoin doesn’t
include the NSA running its own mines.

This is a book that covers
classic O’Reilly territory:
it takes a technically

challenging new area that could lead
to a revolution, and explains why that
technology is important. O’Reilly has
done this in the past with both social
networking and the smartphone
economy, and Bitcoin is ripe for
similarly skilled divination, especially
as we’ve yet to see a practical analysis
of the algorithms and the potential
outside of digital currency. However,
this isn’t the book we’re looking for.
It’s going to appeal to readers who
want a more academic exploration
of how blockchains (the indivisible
list of all transactions behind crypto-
currencies like Bitcoin) are likely to
operate outside of the darknet.This
isn’t surprising when you look at the
author’s background: Melanie Swan
is the Founder of the Institute for
Blockchain Studies and is currently
studying for a Contemporary
Philosophy MA.

But everyone already knows
about Bitcoin. The ongoing drama
surrounding the bankruptcy of
the Mt. Gox Bitcoin exchange is
still making headlines, even in the
general press, and the alleged theft
of Bitcoins by a US secret service
agent while investigating the Solk
Road black market portal is even more
newsworthy, as is the plight of Silk
Road’s creator, Ross Ulbricht, who was
given a life sentence for his crimes.

With these kind of magnetic back
stories, it’s surprising that this book
does very little to pull in casual
readers who have discovered Bitcoin
through this coverage. After a lengthy
preface, the book wastes no time
on technicality by diving into second
guessing what the algorithms behind
Bitcoin might lead to – the reinvention
of financial services, for example, or
self-signing contracts. It does a good
job of putting all predictions into one

Author Melanie Swan
Publisher O’Reilly
Price £15.54
ISBN 978-1491920497

place, even expanding into the future
with Blockchain 3.0, and what different
kinds of blockchains might lead to.
This is where the book succeeds, and
where potential readers will get the
most.

Open University
But for us, it reads like a pre-peer
reviewed research paper for potential
investors, even finishing with scholarly
sections on challenges, limitations
and the classic ‘Conclusion’. It’s not
what we were expecting, and we
think says something about who
the book is targeted at. Certainly not
people interested in the specifics of
the algorithm and how it could be
subverted into different roles.

A description of the algorithms
does appear in the first appendix,
titled ‘Cryptocurrency Basics’. It
could be that Bitcoin makes sense
without these technical foundations,
but not for us. And we also found
the complete lack of any diagrams
disappointing, especially when
blockchain transactions can be visual
in a way that dramatically helps with
comprehension. It left us mostly with a
feeling of missed potential for anyone
but a Bitcoin student.

An academically written and dry look at
the potential of blockchains.

We know the current craze
for virtual reality is likely
to go the same way as 3D
movies, and be little more
than a footnote in a
couple of years, but we’re
genuinely excited by its
revival (we loved playing
the Virtuality arcade
machines of the 1990s).
This book is an
introduction to developing
for VR, featuring Oculus,
WebVR and the ultra-
cheap Google Cardboard.

We can’t wait for Super
Tuxcart in virtual reality.

Learning Virtual Reality

Data science is becoming
mainstream, and is being
used everywhere from
manufacturing to
journalism. This book is a
sobering appraisal of its
potential, complete with a
few case studies. It’s
likely a good read for
anyone in the position to
try and do clever things
with big data, which in the
age of citizen journalism
and open data, means
almost anyone.

We thought all science
was based on data.

Learning to Love Data Science

We love the idea of this
book. It’s full of small
projects that showcase
Lego’s various Technic
moving elements in
modular re-usable forms.
It’s exactly what Lego is
good at, and the reason
why we all still enjoy
messing around with the
stuff. That the functions
in the book have value in
the real world of
construction is an added
bonus. We promise.

Build anything with Lego.
Except political works.

Lego Power Functions

December 2015

LV022 048 Reviews Books.indd 49 29/10/2015 14:09

www.linuxvoice.com

GROUP TEST WINDOW MANAGERS

50

Changing just one
component in your Linux
installation can have a

massive impact on your
productivity. Just think about how
much time you spend managing
windows: moving them around,
maximising and minimising them,
and placing them side-by-side to
work on two tasks at the same
time. Perhaps you also use virtual
desktops, keyboard shortcuts and
other features for managing your
activities. Dealing with these things
may only seem like a small part of
your daily work, but it all adds up
over the months and years.

Even if you’ve gotten used to
your regular desktop environment
– be it Gnome, KDE, Xfce, Mate,
Cinnamon or something else – you
could be working much smarter
and faster. We have nothing against
those desktops, but they have their
downsides. They’re generally heavy
on the RAM banks, they often tend
to limit customisation, and they lack

some power-users’ features that
can save a huge amount of time in
the long run.

We’re going to look at six of the
most useful alternative lightweight
window managers (WMs).
Compared to the likes of Gnome
and KDE, they provide relatively
few features – just the ability
to manage windows and start
programs. You can add the other
features of a desktop environment
(such as a file manager) via your
distro’s package manager, with
the end result being something
that uses much less RAM, runs
at a blistering pace, and offers
customisation and features way
beyond the big-name desktops.

The six WMs we’re testing here
all offer their own unique sets
of features and are available in
pretty much every distro, so you
can try them today. We’ll help you
to explore them, point out their
benefits, and show you some tricks
to get the most out of them.

Speed up your Linux box by switching away from a heavy desktop to a
lightweight window manager. Mike Saunders weighs up your options.

Window managersOn test
URL www.fvwm.org
Licence GPL
Latest release 2.6.5
It’s almost as old as the Linux kernel,
and it’s insanely configurable.

FVWM

URL www.icewm.org
Licence GPL + LGPL
Latest release 1.3.8
Like the traditional Windows 9x layout?
This dinky WM will float your boat.

IceWM

URL www.windowmaker.org
Licence GPL
Latest Release 0.95.7
This takes a more novel approach and
apes the design of Next/OpenSTEP.

Window Maker

URL www.i3wm.org
Licence BSD
Latest release 4.11
A tiling window manager designed to
maximise screen real estate usage.

i3

URL www.fluxbox.org
Licence MIT
Latest release 1.3.7
Very small, very fast, and – with the
right themes – very good-looking too.

Fluxbox

URL http://awesome.naquadah.org
Licence GPL
Latest release 3.5.6
For maximum productivity, you want to
keep your hands on the keyboard.

Awesome

GROUP TEST

The agony of choice
There are hundreds of window managers
out there on the internet, most of which
aren’t in active development any more
or were simply forks of other window
managers with a few tweaks made. The
Arch Linux wiki is a great resource for
information on other WMs, so take a look
at https://wiki.archlinux.org/index.php/
Window_manager to explore further.

And if you don’t find a WM to scratch
your itch, and fancy getting started with
a new project, why not write your own?
There’s a lot to learn, but it’s not as
difficult as you might think. Getting the
basics done requires just a small amount
of code, and Chuan Ji has written an
excellent introduction with concepts and
code at http://tinyurl.com/njlkhkp.

The window managers we’re testing
here all offer speed, features, and the
potential for customisation.

LV022 050 Group Test.indd 50 28/10/2015 11:36

www.linuxvoice.com

WINDOW MANAGERS GROUP TEST

51

Back in the early 90s, as the Linux
kernel was paired with GNU software
and we had a fully Free Software OS,

FVWM was the window manager of choice.
Actually, there wasn’t a huge amount of
choice back then, with most people running
this or its predecessor, TWM. GNU/Linux
was very much the domain of übergeeks
back then, so FVWM didn’t have much in the
way of fancy wizards or step-by-step setup
tools – no, you were expected to spend a
few days working through a configuration
file, exploring hundreds of options to craft
your desktop to perfection.

To try it out, install it from your package
manager, log out of your current session,
and choose FVWM from the list of desktops
or window managers when logging back in.
(Unfortunately the location of this list varies
with all the login screen setups out there, so
you’ll just have to click around until you find
it. Time for some standards, we think!)

Once you’re logged in you’ll see a
grand total of nothing. Left-click on the
desktop, however, and a small menu will
pop up; click on Setup Form to bring up
a dialog box that can be used to create a
more sane configuration. Select ‘Create a
starting .fvwm2rc’ file and the buttons for
FvwmWinList, FvwmButtons, FvwmPager,
FvwmIconBox and FvwmTaskBar, then
click the F2 button at the bottom followed
by F3. Now you’ll have a more usable setup
with various components including a virtual
desktop manager and window list at the
bottom. Also, when you now left-click on a
blank part of the desktop, you’ll see a more
detailed menu from which you can launch
software.

For new Linux users who’ve come over
from Windows or Mac OS X, the
different layers that make up the

end-user environment in Linux can be
bamboozling. But it’s this modularity that
makes our operating system so flexible. At
the lowest level we have the X Window
System, which talks to graphics hardware
and renders pixels to the screen. It provides

FVWM
As old as the hills.

Layers upon layers
The modularity of the graphical stack on Linux/Unix can be confusing.

VERDICT
Has virtually every
customisation option you
can imagine, but requires
a lot of patience to set up.

As mentioned, FVWM is insanely
configurable – just look at the manual page
(man fvwm). It’s a mind-boggling 58,000
words long. If you look at your configuration
file in ~/.fvwm/.fvwm2rc you’ll find plenty of
options to play around with, so you can edit
this file in a text editor, save and restart to
view your changes. To get some inspiration
for what’s possible, try doing a web
search for “fvwmrc” – many people have
uploaded their configurations (with plenty of
comments) so you can nab ideas and create
a setup perfect for your liking.

TOO MUCH CHOICE!
It’s quite tough to make FVWM look pretty,
but one spin-off called FVWM-Crystal
(http://fvwm-crystal.sf.net) does a decent
job here, and is available in a separate
package in many distros. This is then
presented as another option in the login
screen, and provides more sensible defaults

than the vanilla FVWM package. It works in
very much the same way – left-click on the
desktop to bring up a menu – but with
attractive program launchers, workspace
switchers and taskbars out of the box.

FVWM is a fascinating project rich with
history, but we can only recommend it if
you’re willing to put in the hours poring
through the manual page and configuration
file. If you’ve never been satisfied with
any other window manager or desktop,
maybe you can finally create your dream
environment with FVWM. Plus, of course, it’s
a very mature project, so once you’ve built
up your ideal .fvwm2rc file, you know it will
work long into the future.

a rudimentary API (application programming
interface) so that programs can say “draw a
line” or “turn these pixels a different colour”.

Very few programs interact directly with
X, however. Most software uses a graphical
toolkit that does the hard work of talking
to the X software (the X server), such as
Qt or GTK. These toolkits provide a layer
of abstraction and make porting software

to other platforms, such as Windows,
much easier. The next layer is the window
manager, which talks to the X server and
provides mechanisms for moving windows
around, resizing windows and closing them.
It’s possible to run programs without a
window manager, but they’ll be fixed in size
and position, making it impossible to work
with multiple apps at once.

For a prettier and more user-friendly introduction to FVWM, try its shiny FVWM-Crystal spin-off.

LV022 050 Group Test.indd 51 28/10/2015 11:36

www.linuxvoice.com

GROUP TEST WINDOW MANAGERS

52

Well, when we say glory days
we mean that in jest of
course – Windows 95 was a

big improvement over 3.11, but it was
still a horribly unstable stack of
software trying desperately to cover up
its DOS roots. Nonetheless, for all its
faults (and we were clinging on to our
Amigas back when it came out), its
interface had a certain amount of
charm. The Start menu and taskbar
combo worked well enough that it has
been copied endlessly over the years.

IceWM is one of the older window
managers here, and has been in
development since the late 90s.
Consequently it has a rather retro
appearance, although a handful of
fresher themes are included. Once
you’ve installed it and logged in, you’ll
see a familiar taskbar and Start menu
panel along the bottom. It also contains
a clock and system tray on the right,
along with workspace switcher buttons.

IceWM
Harking back to the glory days of Windows 9x.

Click the IceWM button in the
bottom-left to open a program menu
– and note especially the Settings
submenu where you can change the
theme. But here you’ll encounter a
problem: IceWM isn’t very clever at
picking up what software is installed on
the system. So in the program menus
you’ll see launchers for programs that
you probably don’t have installed.

To fix this, you’ll need to run a
separate utility and feed the results
to IceWM’s configuration file. One
such option can be found at https://
github.com/gapan/xdgmenumaker.
It’s annoying that this extra step is
required, but on the upside IceWM’s
system requirements and memory

usage are tiny in comparison to
desktop environments. It’s fast, and it’s
ridiculously stable – this author used it
for five years without any crashes.

IceWM is supplied with themes emulating Windows and
OS/2, along with some unique ones, such as Infadel2.

Fluxbox has a lot in common with IceWM, but with a more
imaginative design and working menus out of the box.

F luxbox is a fork of an older
window manager called
Blackbox, and dates back to

2001. It was hugely popular for a while
among power users, before tiling
window managers really reached their
prime, although it’s still in development
and has an army of hardcore fans.
Fluxbox boasts extremely low
requirements and RAM usage thanks to
its minimal dependencies – it uses the
X Window System’s own libraries for
rendering and therefore doesn’t need
external toolkits hogging up RAM.

When you first start it, you’ll notice
a thin panel along the bottom with
various elements contained therein.
From left to right these are: a virtual
desktop (workspace) switcher, taskbar
and system tray area. Buttons are
provided to switch between desktops
and windows, but you can do the
former with Ctrl+Alt and the left/right
arrow keys, and the latter with good old

Fluxbox
Dark and moody, this WM does its best to get out of your way.

Alt+Tab. Fluxbox is very minimal and
low on effects – so there are no pretty
transition effects when you switch
between desktops.

Right-click on the desktop to bring
up the main menu. Unlike with IceWM,
this is automatically populated with
software on the system, and it also
provides a great deal of configurability
without the need to poke around inside
text files. Try searching in particular
inside the Styles and Configuration
submenus. If you look at the Window
Manager submenu, you’ll see that
you can switch to another WM from
Fluxbox without having to return to the
login screen – a handy bonus if you’re
trying various WMs.

Fluxbox has a few extra features
such as tabbed grouping of windows
(drag titlebars with the middle mouse
button together to join them), but
by and large it’s a simple, sleek and
attractive window manager for those

who need the basics but with no extra
fluff. As it uses little screen space, it’s
ideal for reviving an old netbook with a
fresher distro.

VERDICT
A joy to use if you want to
save RAM and don’t need
tiling facilities.

VERDICT
Screamingly fast but
requires some fiddling to
get the menus set up.

You’ll see a familiar
taskbar and Start menu
panel along the bottom

LV022 050 Group Test.indd 52 28/10/2015 11:36

www.linuxvoice.com

WINDOW MANAGERS GROUP TEST

53

Once you’ve settled down with your new
choice of window manager, you may
find your setup a bit lacking in

comparison to a desktop environment. After
all, the likes of Gnome and KDE provide
integrated file managers, text editors and other
tools – whereas your window manager serves
primarily as a launcher for anything you
happen to have installed. So you’ll first want to
install a good file manager, and for this
purpose we can recommend PCManFM
(http://wiki.lxde.org/en/PCManFM). It’s used
in the lightweight LXDE desktop, and does a
great all-round job. Another alternative is XFE
(http://roland65.free.fr/xfe), based on the FOX
toolkit, which has fewer features but runs at
light speed.

Another tool worth adding – especially if
you care about eye-candy – is a compositing
manager. This lets you add effects like drop-
shadows and animations to windows, and
the one we recommend is Compton (https://
github.com/chjj/compton). It’s available
in almost every major distro, and once you
have it installed, run it from a terminal with
compton -c to get pretty shadows underneath
windows and menus. See the manual page
(man compton) to get an overview of all the
available options.

For some WMs you may want to add a dock
for your most commonly used applications.
Cairo Dock (http://glx-dock.org) is a superb
choice here, and while it’s clearly heavily
inspired by Mac OS X, it has plenty of features
in its own right. To learn more about using
these extra tools, and piecing them all together
to create your own desktop environment, see
our tutorial at www.linuxvoice.com/create-
your-own-desktop-environment.

Beefing up your WM

Here’s Window Maker again, but with lurvely drop
shadows around windows and menus thanks to
the Compton compositor.

Note that you can tear off menus and keep them separately on the screen by clicking their top
bars, as we’ve done with Themes here.

S teve Jobs isn’t the most popular
figure in the Free Software world,
but there’s no denying that he had a

massive impact on computing history.
After being kicked out of Apple – the
company he co-founded – back in 1985,
Jobs created Next, which developed a
high-end (and extremely expensive at
$10,000) computer. This machine ran the
NextStep operating system, which later
morphed into OpenStep and became part
of Mac OS X when Jobs returned to Apple
in 1997.

Window Maker is an open source
window manager that recreates much of
the classic look and feel of NextStep, while
still providing the ability to run modern
FOSS programs. Unlike the other window
managers on test here, Window Maker
is a slightly larger project incorporating a
widget set and extra libraries.

To get it running, install it via your
distro’s package manager, log out of your
current session and choose it from the
list of desktops at the login screen. The
first thing you’ll see is a pair of icons in
the top-right corner – this is the Dock,
and it contains program launchers. You
can start a program by double-clicking its
launcher, so try it with the default Terminal
icon. Next, right-click on an empty part of
the desktop to bring up the applications
menu, which provides access to the
software installed in your distro.

Window Maker
NeXT/OpenSTEP comes back to life.

Try launching a program and you’ll
notice that its icon appears in the bottom-
left corner of your screen. If you drag
this icon onto the Dock – ie next to the
Terminal icon – you’ll see that you can
add it to the Dock permanently. In this way
you can quickly build up a set of launchers
for your most commonly-used tools.

Add usefulness
The button in the top-left is the Clip. This
lets you switch between workspaces
(virtual desktops), of which by default there
is only one, so right-click on the desktop
and go to Workspace > Workspaces > Add
New To Add More. You can add launcher
icons to the Clip for specific workspaces,
so you can use the Dock for general apps
and the Clip for apps you only want to
launch on certain workspaces.

Window Maker includes a
comprehensive setup tool (double-
click the uppermost icon in the Dock)
and various themes (See WorkSpace
> Appearance > Styles in the desktop
menu). It’s a mature, reliable and attractive
desktop with a unique way of working, and
we’ve spent many months hapily using it
as our daily driver in the past.

Useful apps and tools to add.

VERDICT
Well tested, refined and a
refreshing alternative to
the typical approach.

LV022 050 Group Test.indd 53 28/10/2015 11:36

www.linuxvoice.com

GROUP TEST WINDOW MANAGERS

54

T iling WMs are becoming
increasingly popular, especially
among power users running

large displays, and they can help you to
work much more efficiently. But what is
a tiling WM?

The best way to explain is by
demonstrating. Install i3 from your
distro’s package manager and then
select it at your login screen. You’ll see
two things when the WM starts up:
a thin panel along the bottom of the
screen (called the i3bar) and a “first
configuration” box asking you if you
want an automatically generated config
file – hit Enter here and choose Alt as
the default modifier when prompted.

And you’re ready to go. Alt+Enter and
a terminal window will appear, filling the
whole screen. Now hit the same key
combination again to spawn another
terminal – and you’ll see that they’ve
automatically been placed side-by-side
(or one above the other, depending on
your display ratio).

Save space with tiling
This is the tiling aspect of i3; it
automatically places and resizes
windows to make the best use of your
screen space. To switch between
windows, use Alt with the J, K, L and

i3 vs Awesome
Tiling WMs go head-to-head.

; keys for left, down, up and right
respectively (a bit like in the Vi editor).
To switch between horizontal and
vertical splitting, use Alt+E. And to close
a window, use Alt+Shift+Q. To resize
a window, hit Alt+R and then use the
arrow keys followed by Enter when
you’re done – or use the mouse to grab
the handle between windows if you
don’t want to say goodbye to the rodent

completely. i3 is capable of much
more, so see https://i3wm.org/docs/
userguide.html for the complete guide.

Awesome, meanwhile, shares
many of the same features as i3: it’s
a tiling window manager designed
to maximise screen space usage
and make you less dependent on the
mouse. Unlike i3, however, it’s a bit
more friendly to mouse users out of the
box, as you’ll see if you right-click on the
desktop (a program menu appears). To
open a terminal, use Mod4 (usually the
Windows key) and Enter – by default
windows are in floating mode, so use
Mod4+Space to switch to tiled mode,
like i3. A full list of keybindings can be
found at http://awesome.naquadah.
org/doc/manpages/awesome.1.html.

Awesome is a hugely configurable
WM with support for Lua extensions
to add tabs, popup menus and even a
Space Invaders game. Once you’ve spent
a few days learning the keybindings
for Awesome or i3, you’ll never want to
waste your life shoving windows around
on your desktop ever again.

A typical i3 session, with vertical and horizontal splits in use. To exit the WM use Alt+Shift+E.

Awesome has a lot in common with i3, and is also extensible thanks to Lua scripting support.

VERDICT
AWESOME More
complex than i3 but
more versatile thanks
to Lua extensions.

I3 Simple, clean and
effective – the perfect
introduction to tiling
window managers.

LV022 050 Group Test.indd 54 28/10/2015 11:36

rodent (or trackpad), Window Maker
is well worth getting to grips with.
Its use of the Dock and Clip creates
an alternative workflow to the usual
taskbar-and-system-tray setup, and
the ability to dock menus around
the screen can be highly useful as
well. Plus, some of the in-built styles
look great – they can be rather dark
and stony, but look far better than
the extreme flatness that’s being
adopted elsewhere these days.

So while we recommend that
everyone gives i3 and Window
Maker a go, there’s still plenty
worth investigating in the others.
We’d choose IceWM if we were
upgrading someone’s old Windows
XP machine, in that it provides a
familiar layout and runs like the
clappers even on dated hardware.
Fluxbox’s conservative use of
screen real estate makes it ideal for
old netbooks, while Awesome has
plenty to sing about as well.

And if you want to create the WM
of your dreams without hacking
away on code, just spend a few
months meticulously crafting an
FVWM configuration file and live
forever in peace.

Everyone has their own way
of working, so we can’t say
which one of the six window

managers here is perfect for you –
but hopefully you’ve found a few
that have whetted your appetite to
try out for a couple of days or
weeks. Just a few small changes in
your working habits can have a
huge effect on your productivity as
time goes by.

From our perspective, i3 and
Window Maker come out at the
top of the bunch. i3 just makes so
much sense for the type of work
that many of us Linux geeks do,
and while it takes a while to master,
the learning curve is worth it. If you
have plenty of screen space and
want to neatly divide your display
into sections so that you can work
on multiple projects side-by-side
– or just keep tabs on an htop
session on a remote machine –
then i3 is bliss. You’ll wonder why
you ever wasted so much time
manually shuffling windows around
with the mouse.

Of course, constant keyboard
usage isn’t for everyone, and if you
have a good relationship with your

www.linuxvoice.com

WINDOW MANAGERS GROUP TEST

55

1st i3

Killer feature: Tiling heaven
www.i3wm.org
If you have a big monitor, you absolutely must try this – don’t be
put off by the learning curve.

2nd Window Maker

Killer feature: NextStep goodness
www.windowmaker.org
A great alternative to taskbar-based window managers, with
some lush themes included.

3rd Awesome

Killer feature: Lua extensions
http://awesome.naquadah.org
More tiling fun, with the ability to customise and add heaps of
extra functionality via extensions.

4th IceWM

Killer feature: Familiarity for Windows 9x users
www.icewm.org
Blazingly fast and providing a comfortable environment for those
used to old-style Windows releases.

5th Fluxbox

Killer feature: Perfect minimalism
www.fluxbox.org
Keeps out of your way but still provides just enough to make you
feel at home.

6th FVWM

Killer feature: Taking up your life
www.fvwm.org
It provides pretty much every customisation option you could
imagine – if you’re willing to read the giant man page.

Everyone should try a tiling window manager at least once in their
lives, we reckon – you have nothing to fear but fear itself!

OUR VERDICT
Window managers

Tmux: a window manager for your terminal
Yes, WMs even exist for command line
programs. Tmux (https://tmux.github.
io) is the best example, and is included
by default in many major distros. Simply
enter tmux to start it, and you’ll see a
green bar along the bottom. Hit Ctrl+B
followed by C to create a new (full
screen) window, and Ctrl+B followed by
N or P to switch between windows. In the
panel at the bottom, you’ll see the names
of programs running in each window.

Tmux provides a tiling option so you
can have multiple programs running

in the same terminal window next to
each other. Even better, Tmux lets you
detach from sessions to reconnect
to them later. If you’re SSHed into a
system and running some programs
inside Tmux, hit Ctrl+B followed by D to
detach and return to the Bash prompt.
You can now close the terminal window
– the programs running on the remote
server will continue. SSH back in to the
server and run tmux a to reconnect, and
everything will show up as it was when
you detached.

i3 makes so much sense for geeks
– while it takes a while to master,
the learning curve is worth it.

LV022 050 Group Test.indd 55 28/10/2015 11:36

Get 100 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

Subscribe
shop.linuxvoice.com

www.linuxvoice.com

SUBSCRIBE

56

LV022 056 Subs UK.indd 56 30/10/2015 10:13

www.linuxvoice.com

NEXT MONTH

57

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

EVEN MORE AWESOME!

There are forces out
there that want to
take control of your
computer away from
you. Don’t worry
though: Bradley
Kuhn has got your
back. Cheers Bradley!

Bradley Kuhn

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, 2nd
Floor, 5 Churchill Place, Canary Wharf,
London, E14 5HU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until July 2016 when all content (including
our images) is re-licensed CC-BY-SA.
©Linux Voice Ltd 2015
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

The old technologies
from the dawn of
Web 2.0 are not
dead; they are only
resting. Reanimate
RSS, and get your
websites to talk to
each other.

Automate RSS

The good, the bad
and the ugly of Linux
documentation
– and what you can
do to make Free
Software better and
more accessible for
everyone.

Documentation

Frankly, we were unimpressed with the
Internet of Things buzzphrase – until we
realised that we could hack everything!

THE INTERNET OF THINGS

ON SALE
THURSDAY

17 DECEMBER

LV022 056 Subs UK.indd 57 30/10/2015 10:13

www.linuxvoice.com

FOSSPICKS

58

Use Zget to quickly transfer files from one machine on a network
to another.

Sparkling gems and new
releases from the world of
Free and Open Source Software

Out benevolent editorial overlord Graham Morrison tears himself away
from updating Arch Linux to search for the best new free software.

How many times have you
been sitting with your
laptop and needed to

quickly and instantly transfer a file
to another computer? If you’re
anything like us, you’ve lost count.
The answer is typically to find a
USB thumbdrive, or use web-based
email, or even a quick installation of
SSH so that SFTP works. But
thanks to a tip from @nlswrnr,
we’ve got a solution which we’ve
found to be far simpler to use and
particularly well suited for when
someone else is using your
computer. Zget uses the magic of
zero-configuration networking to

FOSSpicks

automatically negotiate a
connection across your network,
so you don’t need to worry about IP
addresses or how your clients
connect with one another. After
installing the tool through Pip, the
Python package manager, and a bit
of configuration, transferring files is
as simple as typing zget filename
on one machine, and zget filename
on the other. The two clients should
find one another and instigate the
transfer without any further user
interference.

Zget
Simple file transfer

PROJECT WEBSITE
https://github.com/nils-werner/zget

You can upload 50,000
of your own music files
to Google Play for free,
and access them from
anywhere.

Please forgive us. We’ve
become smitten by online
music services, mostly

because they’re so convenient and
using them means you don’t have
to worry about taking your files with
you, or synchronising your music
before making a trip. Nuvola Player
specialises in being a single portal
to several of these cloud-based
services, encapsulating their web
interfaces into a single window on
your desktop. We’ve used the old
2.x version before, especially on
Ubuntu, and there’s a major new
update on the horizon, with the
betas of version 3 now considered
relatively stable.

You’ll need the player and
additional plugins for whichever

providers you want to use. Nuvola
currently supports 15 different
streaming services, including
Spotify, Google Play Music,
Amazon, Deezer, Rdio, Plex, Tunin
and even Logitech’s Media Server,
which could be useful for accessing
your own local collection.

Simple sounds
With the plugins installed and the
app running, you select one of the
services to get started. The
experience is exactly like using a
web browser, because that’s
essentially what’s running within
the application window. Desktop
integration includes notifications,
Scrobbling, and lyrics. We’d love to
see some of Banshee’s collection

cross-referencing, where a playlist
can be created from different
sources, but Nuvola keeps things
simple. And there’s a lot to like
about that.

Nuvola Player 3 (beta)
Cloud music player

PROJECT WEBSITE
https://tiliado.eu/nuvolaplayer

LV022 058 Fosspicks.indd 58 27/10/2015 13:40

www.linuxvoice.com

 FOSSPICKS

59

Terminology is part of
Enlightenment, but
works brilliantly on any
desktop.

The multiple promises of
future computing interfaces,
as seen in films like Minority

Report, or perhaps the positronic
brains of Asimov’s robots, seem to
make an anachronism of the
manual command line. And yet it’s
2015, and many of us use it daily.

But the command interpreter is
only one part of the interface, with
the other part being the host for the
terminal session. Unless you still
access Bash through a late 1970s
video terminal, these host
applications are called terminal
emulators, mostly because they
emulate the function of those late
1970s video terminals.These all
provide a similar feature set, and
integrate well with your chosen
environments. But one thing they
don’t do is emulate the physical
characteristics of those early
terminals. But experiencing a few of

those physical attributes is quite
good fun, especially when they
don’t impede on function, and this
is where Terminology comes in.

Terminology is a smooth,
feature-packed terminal emulator
that takes the emulator part
seriously. By default, its simple
X-Term startup configuration glows
from the strip lighting of your virtual
1981-era computing laboratory.
Right-click, and smooth scrolling
menus let you change everything
about its appearance. Behind the
scenes it can work with the latest
technology, such as OpenGL or
Wayland, and some of the oldest,
like the framebuffer, and it can act

on files, URLs, email addresses and
music just like a desktop would.
There’s even a visual virtual
‘session’ mode. But the best thing
about Terminology is that it remains
quick and responsive, turning what
could have been a rudimentary
Bash session into a modern
terminal session with some neat
references to the past.

Terminology 0.9

KDevelop is just like a
version of KDE’s
excellent Kate text
editor augmented for
developers, which is
exactly what an IDE
should be.

KDE has just celebrated its
19th birthday and for many
of those years, it was its

integrated development
environment, KDevelop, that made
KDE as accessible as possible to
new developers. Like KDE itself,
KDevelop lost its way when a major
update was quickly followed by a
long-promised code overhaul that
eventually led to a complete rewrite.

At the same time, the Qt project
– used heavily by all KDE
developers – released its own
much more functional development
environment, the wonderful Qt
Creator. Qt Creator benefited from a
full-time team and the official
backing of the Qt project, quickly
making it slick, stable and just as
capable as the older KDevelop.

Qt Creator is still a great open
source development environment,

but Qt’s recent emphasis on touch,
mobile and proprietary modules
has meant KDevelop is just as
important as ever. Thankfully, with
over five years since the first
re-written 4.0 release, KDevelop has
come successfully through its dark
period, with this latest release being
another strong revision to the major
4.7.0 update that appeared in 2014.

KDE made easy(er)
Help integration, code completion,
huge performance improvements,
PHP support and a powerful plugin
system make it a must-try for KDE
developers, and even other
programmers looking for a modern
IDE. There’s Gnome and wxWidgets
support, for example, along with
support for languages like Python,
Perl, Ada, Java and Ruby alongside
the perennial C++. We like the way

you can have multiple sessions
open, which is useful if you’re using
one project to learn from while
coding into another, but the best
thing about KDevelop is that it’s
remained relatively lightweight and
straightforward, unlike its previous
incarnation.

KDevelop 4.7.2
Development environment

PROJECT WEBSITE
https://www.enlightenment.org/
about-terminology

PROJECT WEBSITE
https://www.kdevelop.org

Terminal emulator

Terminology is a smooth,
feature-packed terminal
emulator for Linux

LV022 058 Fosspicks.indd 59 27/10/2015 13:40

www.linuxvoice.com

FOSSPICKS

60

Bring a riot of colour to
your garden room in
complete and immersive
3D.

Hell has indeed frozen over.
Not only has Microsoft
created its own Linux

distribution, but we‘re now covering
interior design software in the
pages of a Linux and open source
magazine! But fear not. Thanks to
open source, we’re already ahead of
the game. We can reveal, for
instance, that we’ve reached peak
Château Grey and French Linen for
colouring, and that next season’s
hues will be more vibrant, with
yellow-based neutrals and velvet
flocked paper coming back into
style. We know this because we’ve
experimented with our own
palettes, textures, layouts and
furniture, transforming our
bedroom offices without spilling a
drop of paint. And we’ve done this
thanks to Sweet Home 3D.

Sweet Home panorama
Despite initially sounding like an
add-on for the popular life
alternative, The Sims, Sweet Home
3D is a serious design tool that
combines draughtsmanship, 3D
modelling, texture mapping and
rendering with a sense of homely
belonging taken directly from

Maslow’s hierarchy of needs. You
start by creating the floor plan,
dragging the mouse to generate
walls with satisfying angles. You
can even add skirting boards and
vary the thickness of your
partitions, perfect for the slanted
walls of a gym or swimming pool.

The background grid snapping
and the distance/angle annotations
make it easy to recreate a real
environment – you’ll just need to
take a few measurements. You
then drag and drop doors and
windows into your scene, before
moving on to the huge variety of
furniture and fittings listed in the
hierarchical list.

When you’re happy with the
layout, you get to play with colours
and textures, and every surface can
be modified and adapted according
to your creative whimsy. We were a
little disappointed that the palette
selection tool didn’t include the
latest collection from Farrow & Ball,

but it does include both the RAL
and Creative Commons colour
matching lists, and dialling in your
isn’t a problem. When you’re
finished, you can stroll around the
real-time 3D view using WASD keys,
or by dragging a symbol around the
plan, and you can even render a
‘photo’ within the application, with a
surprisingly photo-realistic quality
(although it takes a long time), or
output the entire scene as an object
file for Blender. We found the entire
process hugely enjoyable, and that’s
without any kind of motivation to
tidy-up the place or get on
makeover TV.

Sweet Home 3D 5.1
Interior design

PROJECT WEBSITE
www.sweethome3d.com

Sweet Home 3D combines
3D modelling, texture
mapping and rendering

1 Use the ‘Create walls’ and ‘Create rooms’
modes to drag your layout into existence,
using either your imagination or real-word
coordinates from your own property.

2 Add the doors, windows, furniture and
furnishings. Import external models if
required. All colours, textures and materials
can be changed according to taste.

3 The final output can be rendered within
the application, or exported as an object file
that can be processed or raytraced in a 3D
application like Blender.

How it works: Build your perfect home

LV022 058 Fosspicks.indd 60 27/10/2015 13:40

www.linuxvoice.com

 FOSSPICKS

61

Even Dillo’s cache is
cleared when you quit
the browser, helping
both speed and your
privacy.

Although all of us on the
team still love Firefox, and
consider it one of the most

important open source projects out
there, there are murmurings of
disillusioned after recent
developments. In particular, Firefox
is no longer a lightweight web
browser, requiring significant
amounts of RAM and CPU if you
open more than a dozen tabs at
once. This has left us eager to find
an alternative, at least for the
majority of browsing we do, which
is searching for our own names and
keeping abreast of
/r/ToasterRights.

This is one of the reasons we
found Qutebrowser so effective –
the combination of low resource
usage, good rendering and Vim-like
shortcuts revolutionised our
browsing behaviour. And it’s also
another reason we’re taking a look

at Dillo, which has recently been
upgraded to version 3.

Dillo is lightning fast, which is the
first thing you notice after launching
its 725k binary. Its page loading
speed takes you back to a time
before the irony of responsive web
design, before JavaScript and even
before image maps.

But so too does its rendering,
which is sparse, often appearing
broken and the opposite of what
many modern browsers would
expect. However, as it should
always be, the words are always
legible and navigation remains
clear. Like a Formula 1 racing car
that’s unsuitable for roads, Dillo’s

compromises are all made for
speed. We really enjoy using Dillo,
and while it’s slightly too minimal
for day-to-day use, it’s brilliant on
devices like the Raspberry Pi, or on
an older machine that rarely needs
to render a web page.

Dillo 3.0.5

Telegram’s encryption
reportedly uses
Diffie-Hellman key
exchange – we hope
this has been updated in
teh wake of the NSA’s
supposed learning how
to crack this method.

We’ve covered quite a few
secure instant
messaging platforms in

the past, but Cutegram has become
one of our favourites. As its name
implies, this is a Telegram client
built atop the Qt framework
(pronounced ‘cute’ by developers).

Telegram is a well established
platform for messaging securely
and privately. There are official
clients for nearly every device –
including another Qt-based offering
for Linux, and even a client that can
be driven from the command line.
They’re all open source, but the
server software that binds clients
together is closed – however, many
users trust Telegram enough to
make it their default
communications tool, and with a
reported 60 million users sending
12 billion messages every day, it

has become the go-to application
for many. This is the other side of
the Faustian pact in secure
messaging. You need to use a client
the other person is using too.

Always compromises
Ignoring the almost-impossible-to-
certify security, Telegram is still a
great platform, and there are
several features specific to
Cutegram that make it our favourite.
The QML design is lightweight and
fast, fitting in well with almost any
desktop. Transitions are smooth
and give a very modern style to the
user-interface, and you can send
and receive messages from more
than one account too, even with
‘emoticons’, whatever they are.
Telegram’s best privacy/security
feature is also easily accessible,
providing end-to-end encryption

with your contacts, theoretically
making it very difficult for a
third-party to crack the data.

We all now send many messages
today, and it’s very likely that all the
protocols you use are insecure (look
at SMS, for instance). Telegram isn’t
perfect, but it is a great application
that’s more open than most.

Cutegram 2.7.0
Secure messaging

PROJECT WEBSITE
www.dillo.org/screenshots/index.html

PROJECT WEBSITE
http://aseman.co/en/products/
cutegram

Minimal browser

Dillo is lightning fast, which
is the first thing you notice
on launching its 725k binary

LV022 058 Fosspicks.indd 61 27/10/2015 13:40

www.linuxvoice.com

FOSSPICKS

62

At the very beginning of Tom
Cruise’s classic 1980s
movie, Top Gun, Harold

Faltermeyer’s soundtrack begins
with a very distinctive low chiming
sound, and it’s a sound that can be
heard across many other
recordings of the era. This sound is
a preset from the most
revolutionary synthesizer of the
time, Yamaha’s DX7, and the sound
was called ‘TUB BELLS’ in reference
to the instrument made famous by
Mike Oldfield over a decade before.

The DX7 was revolutionary for
two reasons. Firstly, its sound
generator was driven by frequency
modulation. This is where a simple
‘carrier’ waveform has its frequency
modulated by another waveform
operating within the audio range,
creating almost infinite complexity.
The sounds it generates are
incredibly distinctive, especially for
brass, bass, string and bell-like

timbres, and they’re quite different
from the classic subtractive sounds
of older synths.

Oxe grinding
The second reason the DX7 was
revolutionary was because it was
digital. Yamaha cannily bought the
rights to the algorithms in the
1970s, and by the 1980s, advances
in integrated circuits meant it could
finally implement in software what
other synths were doing in
hardware. They built a synthesizer
that was technically superior while
costing considerably less than the
competition. The DX7 was cheap,
robust, duo-timbral and polyphonic,
unlike almost any other synth. This
is why the sound of Yamaha’s FM
synthesis is all over the 80s. While
early FM sounded fresh and
modern, its ubiquity soon left it
feeling cheap. You’ll have heard
them in almost every game from

the mid-90s, for example, as a
single chip of an FM synthesizer
was nearly always bolted on to
every soundcard and console.

As you’d imagine from one of the
first digital synthesizers, there have

been many recreations in software.
But good ones are rare, which is
why when one of the best Windows
FM synths became open source
and then started bundling a Linux
version, we had to take notice.

Oxe FM is a VST synth plugin that
recreates the sound of the DX7.
There’s even an optional skin to
make it look like one. To install it,
you’ll need a VST-compatible host
such as QTractor or Ardour. You
then place the pre-compiled .so
binary into a location that you add
to the plugin path of your host. The
plugin should then appear just like
any other. FM synthesis is still
complicated, and this makes the
Oxe GUI look more intimidating than
you might expect. There are six
operators, just like the original DX7,
plus a noise generator and a filter.
These are all mixed together in a
huge bank of knobs known as a
modulation matrix. This cleverly
allows you to mix the input from
one source into another, as well as
the final output. But you don’t need
to understand anything about FM
to use the synth. It comes with a
couple of banks of excellent
presets, revealing the 1980s in all
their Day-Glo glory, and you can
obviously change and adapt these
sounds to suit your own purposes.
We think it sounds fabulous, and
with FM making a retro-comeback,
there’s never been a better time to
get re-acquainted with the DX7.

Oxe 1.3.3
Software synthesizer

1

2
3

4

5 6

7

8

PROJECT WEBSITE
www.oxesoft.com

1 Display For parameter feedback and preset names 2 Presets Switch between the 2 banks of 127 presets
3 Effects Add excellent delay and reverb effects 4 Operators These generate sound from a preselected waveform
5 Noise/Envelopes Each operator has control of amplitude over time, plus pitch, except this noise generator
6 Filter Mix outputs from the other operators into a simple filter 7 Mod Matrix Set modulation levels for each operator,

and mix values for filter, noise and outputs 8 LFO Add repeating modulation and change mix levels.

Oxe FM is a VST synth
plugin that replicates the
sound of the DX7 synth

LV022 058 Fosspicks.indd 62 27/10/2015 13:40

www.linuxvoice.com

 FOSSPICKS

63

https://launchpad.net/pybik/

PROJECT WEBSITE
http://sol.azurasun.com

If you read our tutorial in issue
20 on the Godot games
creation engine and were

intrigued by what kind of results
might be possible, Tanks of
Freedom is a perfect example. It’s
a excellent old-school turn-based
strategy game, where you move
and upgrade units to take best
advantage of your resources. Its
design is gorgeous and soaked in
nostalgia thanks to its isometric
pixel art, fabulous chip-tune
music and artefact-laden speech
synthesis. The 16-bit pixel art of
older versions has been updated
to 32-bit, but its isometric layout
and the movement of the units
very much feels like an old game.
The gameplay will feel familiar to
anyone who’s played Westwood’s
old Dune II game, and you can
play a campaign, or a one-off

skirmish, and battle against other
humans. There’s even a map
editing mode for creating your own
scenarios, which is great fun in
itself. Despite the game’s beta
status, we found performance was
excellent, with the game already
playable and addictive enough to
keep you playing.

Without packages for our
distribution (Arch) we needed to
first grab the Godot games engine,
which needed to be built, and then
download the latest Tanks of
Freedom files from the code
repository. These totalled only
12MB and included the game logic,
artwork and sound. All we then
needed to do was add the
configuration file as a new project
within Godot, pressing Play to the
launch the game. Launching from
the Godot engine also means you

can make your own contribution,
or just dive in to see how it works.

Overall, this is a well thought
out and designed game that
genuinely brings that old-school
RTS feeling to your Linux desktop,
and definitely worth a look if
you’ve got some time to fill.

FOSSPICKS Brain Relaxers

We love the original
soundtrack that comes
with the game, complete
with speech synthesized
title screen effects.

Tanks of Freedom 0.3-7 beta

Sol is a brilliant platformer
that’s a little different to the
games we usually feature

in this section. That’s because it’s
being sold for $14.99. But what’s
especially impressive is that the
game really is open source, and
you can still download, copy and
build your own version from the
GPLv3-licensed source code.
However, as the website says,
“We trust you to support us.” is
also what we do here at Linux
Voice, so we’d highly recommend
downloading the demo, playing
the first three levels and buying
the game if you like it.

The game itself is 18 levels of
tough platform action.
Graphically it reminds us of Alex
Kidd, an arcade game from the
80s, but game mechanics are

also borrowed from perennial
classics like Mario. The game is
bright, colourful and challenging.
The visual style is primitive, but the
level design is absolutely top-notch.

The toughness of the levels is
countered by unlimited lives, which
seems like an unusual choice for a
game like this. It means you spend
more time experimenting and
simply enjoying the levels, but it
removes much of the tension and
stress that goes with a platform
game, especially a game with
aspirations for 1980s nostalgia.
However, properly designed

platformers (especially ones with
properly thought-through story
arcs) are difficult to find, and Sol
is a great example. We’d love to
see the game become successful
enough that the developers write
another, and release that as open
source too.

Sol is a game you can
buy and download; but
you can also download
the GPLv3 licensed
source code and build it
yourself.

Sol 1.2
Platformer

PROJECT WEBSITE
http://w84death.itch.io/tanks-of-
freedom

Strategy game

The visual style is primitive,
but the level design in Sol is
absolutely top notch

LV022 058 Fosspicks.indd 63 27/10/2015 13:40

LV022 064 Ad Code Club.indd 64 27/10/2015 13:52

www.linuxvoice.com 65

INTRO TUTORIALS

TUTORIALS
Warning: excessive Linux knowledge may lead to fun and more efficient computing.

Ben Everard
Makes mistakes, but tries to learn from them.
You should too.

I ’ve been battling hand pain for a
little over a year now, and I finally
feel like I’ve found the right

combination of exercises, computer
peripherals and medication to work
comfortably again. It’s not been a fun
experience. You should learn from my
mistakes: don’t ignore twinges; don’t
put off going to the doctor because you
feel you’re too busy and don’t wait until
it’s too late to make changes to your
work setup.

We should consider using a
computer to be a dangerous activity
because, well, it is. There’s a good
chance that sitting at a desk for work
will, at some point, leave you in pain.

This isn’t something you can
abdicate to your employer’s health and
safety team, because you’ll suffer a lot
more than them if anything goes
wrong. Take a little time now to
research the best posture and
ergonomics. Be prepared to spend a
little on a decent keyboard and mouse.
Think very carefully before committing
to using a laptop long term. They may
be convenient, but do they enable you
to sit in a safe position? Don’t wait until
it becomes a problem: take action now.

ben@linuxvoice.com

In this issue . . .

HTML is the one universal language, so
Valentine Sinitsyn uses it for presentations and
doesn’t get caught out by software mismatches.

Give presentations
anywhere with HTML

Build a quiz machine 72
Motors, cardboard and glue are
the only things Les Pounder
needs to start a game show.

Monitor over Bluetooth 76
Ben Everard never likes to be
away from his computer, so he
stays in touch with Bluetooth.

Database 101 80
Find out how web apps work
with part two of Mike Saunders’
database series.

Coding

66

Economic modelling 84
Andrew Conway models
mathematical equations with his
drag-and-dropping finger.

Build a filesystem 88
Writing to files is for wimps.
Ben Everard builds an entire
filesystem to save his data.

Functional programming 90
Juliet Kemp enters the world of
Haskell with only functions to
guide her.

John Lane is too lazy to type commands. Join him
as he delves deep inside his terminal to automate
the process of entering text.

Type without touching
the keyboard.

68

LV022 065 Tutorials Intro.indd 65 30/10/2015 10:17

TUTORIAL SHOWER

www.linuxvoice.com66

Whatever job you do, you're likely to do
presentations from time to time. A de-facto
standard slide maker is Microsoft

PowerPoint. It's certainly powerful (perhaps too much
for an occasional presenter), but non-free, and
provides no support for Linux to date. LibreOffice
Impress is a close free alternative, and it can even
handle PowerPoint documents, up to a point.

The trouble is that quite often PowerPoint
documents are rendered differently on different
machines. You know what we mean: fonts could
be different shapes and sizes, equations missing or
garbage and so on. Impress can always export your
slides to PDF: this way, you gain fidelity but lose much
of the interactivity. Modern web browsers are quite
powerful and flexible, too – so, why not use a browser
as a presenter tool?

Shower is a JavaScript library that makes it easy
to create presentations with plain HTML and CSS.

There's no visual editor as in PowerPoint/
Impress, but if you already use HTML
or Markdown for your blog, everything
should go smoothly.

To start a presentation, download
http://shwr.me/shower.zip and unzip it.
Now, open your favourite text editor and

start making changes. The archive already contains
many "lorem ipsum" slides of varying layouts you can
use as templates or for reference. Usually, this is more
effective than starting from scratch.

After you finish a slide or two, save your work and
preview the presentation (index.html) in a browser.

Shower recognises several hotkeys: Space/➝/
moves to the next slide, Shift+Space/➝/ / brings
you back, and F5 toggles presentation mode, as in
Impress. For that reason, you can't use F5 to reload
a page. If this bothers you, use browser add-ons, like
Auto Reload for Firefox.

Laying out slides
Shower treats everything with a slide class as a slide.
Usually, it's <section/>, and the slide body goes
wrapped in a <div> inside it. You can use any HTML
markup you like, but as usual, avoid being too noisy.
Better stick to lists, paragraphs, headings and images.

For starters, give your presentation a title. Simply
edit the contents of <title/> in the page head, and
<header/> in the body. Now, proceed to slides. Text
goes in <p>, and headings use <h2>. Bullet ()
and ordered () lists, hyperlinks (<a>), quotations
(<blockquote>) and even tables are readily supported
and styled appropriately. Each slide has an ID (either
explicitly assigned or an automatically generated
ordinal: 1, 2, 3...), so you can create cross-references
via . Sometimes, a slide may carry just
a few words, like "Questions?". In these cases, use the
shout class to style it. Non-default Shower themes
may define additional classes.

The <footer> tag is somewhat special. Its contents
are hidden in presentation mode, but shown on a
mouseover in the slides view, which is convenient for
leaving notes to self:
<section class="slide"><div>
 <footer>Remember the milk</footer>
</div></section>

VALENTINE SINITSYN

Your slides may include
not only images, but also
equations, thanks to the
MathJax library.

Simply toggle the browser window to full-screen, and
press F5 to begin the presentation.

SHOWER: BUILD HTML-
BASED PRESENTATIONS
Making a presentation should be no harder than writing a blog post.

WHY DO THIS?
• HTML is a standard

that renders the same
everywhere

• Focus on content, and let
the system handle styling

• Easily publish your slides
online or export them
to PDF

PRO TIP
When you copy-paste a slide, remember
to change its ID, otherwise Shower may
behave oddly.

LV022 066 Tutorial Shower.indd 66 27/10/2015 13:41

SHOWER TUTORIAL

www.linuxvoice.com 67

You can also define your own custom styles with
<style/>. Usually you do it straight in a slide's body.
Styles are reusable across slides, and they come
handy to position images, for example:
<section class="slide centred"><div>

 <style>
 .centred img {
 width: 60%;
 margin-left: 20%;
 margin-right: 20%
 }
 </style>
</div></section>

This works best for scalable image formats, like
SVG. Alternatively, the cover class stretches an inner
image across the slide like background.

Shower doesn't sport funky animations like Impress
or PowerPoint, but it does provide some interactivity.
If you add the next class to any slide fragment, it will
remain hidden until you advance to it with Space or
another shortcut. This way, you can reveal contents
as you proceed with your speech.

Going further
As you can see, Shower's feature set is rather basic.
Still, your presentation is just a web page, so there are
many ways to enrich it.

Say you want to show a code snippet. Shower can
do it out of the box, but that doesn't look particularly
impressive. There are more capable JavaScript syntax
highlighters available, and I usually choose Prism for
simplicity and language support.

Start with downloading minified JavaScript and
CSS files from www.prismjs.com. Use a configurator
to select the theme and languages you need, then
put the files, say, under the prismjs folder next to the
presentation's index.html.

Now, include Prism's CSS in <head> and JS – in the
bottom of <body>:
<head>
 ...
 <link rel="stylesheet" href="prismjs/prism.css">
</head>

<body>
 ...
 <script src="prismjs/prism.js"></script>
</body>

That's it! Now, wrap your code snippet like this:
<pre><code class="language-python">print('Hi')</code></
pre>
and it should render highlighted. Don't forget to
escape HTML special characters like <, > or &. Also,
Shower's slides aren't big, so be picky and show
relevant lines of code only.

If you're making a scientific report, it's equally easy
to embed beautifully looking formulas. The MathJax
library renders Tex, MathML or even ASCII math
straight inside a browser. Grab it from www.mathjax.
org, but this time it'd be a big download: the library
spans more than 30,000 files counting towards 150
megabytes when unpacked. This can make syncing
your slides to Dropbox or unzipping them rather slow.

Two solutions are possible. First, you can use
MathJax CDN, and I'd opt for this unless you are
unsure about internet availability. Or, you can trim
MathJax locally, either with Grunt or a Python script
(https://github.com/yuexue/small_mathjax). The
former is an official option, but it relies on particular
web developer tools. If you don't have them installed,
the latter would probably be simpler.

Final touches
So far, we've covered all aspects of a typical
presentation. But before you start a show, there are
some minor issues to address. You may not like a
progress bar going along the bottom of a slide, or you
may not want the "Fork me on GitHub" ribbon, if your
slides aren't really on GitHub.

Both are easy to remove. To get rid of the
progress bar, delete <div class="progress"/>. <p
class="badge"/> renders the ribbon, and you can
remove it as well.

Finally, you may want a PDF version of your slides
for 100% fidelity, or for hand-outs. Shower handles this
easily: just open your presentation in list mode and
use the "Save as PDF" option available in Chromium-
based browsers. Alternatively, you can do it from the
command line with the wkhtmltopdf tool.

Jekyller
You may not like or know HTML, but in a blogging era
you are almost certain to use some other markup, like
Markdown. If so, you can still run Shower thanks to Jekyller.
As the name suggests, it's based on Jekyll (www.jekyllrb.
com), a free static website generator written in Ruby.

Jekyller is especially handy if you have a GitHub account.
Just fork it from https://github.com/shower/jekyller,
make changes as needed, commit them, and push back to
GitHub. In a minute, your slides will be translated to GitHub
Pages and made available at http://your_name_here.
github.io/jekyller for free! You don't even need to carry your
presentation around on a USB stick anymore. Still, if you
want to, you can convert your Markdown presentation to
plain HTML locally with the jekyll command.

Shower even makes your
tables look stylish.

Dr Valentine Sinitsyn teaches physics, develops high-loaded
services and does other clever things with Python.

LV022 066 Tutorial Shower.indd 67 27/10/2015 13:41

TUTORIAL FAKING INPUT

www.linuxvoice.com68

Imagine a really complicated command – one
that's far too complicated to type and one that
differs every time it's used. One that even

keyboard-junkies would baulk at. One that you still
need to edit and use interactively. A lot.

You think to yourself "I know, I'll write a script to
generate the command line for me and write it at the
prompt ready for me to edit before pressing Enter to
run it".

Fantastic! It should be easy, right? You get writing
and suddenly realise that your echo and printf output,
although looking pretty good, isn't showing at the
prompt. Then the penny drops: standard output is the

wrong place. What about writing to standard input ?
But how? Surely there must be a way? Well there is,

kind-of. In fact there are a few ways, and this month,
we'll share them with you.

One of the defining features of Unix is that
"everything is a file" and files can be read and written.
Every process gets three of them by default that we

know as the standard input, output and error. But
they're actually the same thing. See this:
$ ls -l /dev/fd/
lrwx - - 1 john users 64 Jul 9 09:33 0 -> /dev/pts/22
lrwx - - 1 john users 64 Jul 9 09:33 1 -> /dev/pts/22
lrwx - - 1 john users 64 Jul 9 09:33 2 -> /dev/pts/22

These files (technically they're "file descriptors"
rather than real files) are for standard input (0), output
(1) and error (2) but they're all just symbolic links to
the same thing: a file representing the terminal that
you're using. This is most likely a terminal window on
your desktop (a pseudo-terminal, or pts, implemented
in software) rather than being a real one. If you
aren't running a graphical environment then you'll
see something like /dev/tty1, which is the terminal
implemented in the Linux kernel that displays text on
your monitor and accepts input from your keyboard.

It's also possible, although less likely these days,
that your terminal is separate hardware connected to
your computer via a serial line (this remains a popular
way to connect to embedded or ARM-based small-
board computers). Whatever kind of terminal you're
using, you can see its file:
$ tty
/dev/pts/22

What you type on your keyboard can be read from
this file and anything written to it will be output. You

JOHN LANE

The route from terminal
to process always goes
through the kernel.

FAKING INPUT – TYPE
WITHOUT A KEYBOARD
Fed up with typing? Write a script to inject keystrokes into any terminal.

WHY DO THIS?
• Learn how terminals work
• Automate keyboard input

One of the defining features of Unix is
that everything is a file, and files can be
read from and written to

Display

Keyboard

Physical

VGA
Driver

Keyboard
Driver

Terminal
Emulator

Line
Discipline

Linux Kernel Space

TTY
Driver

PTY Master

User Space

Shell
(or other process)

Terminal
(xterm, etc)

tty
pts

LV022 068 Tutorial Bash.indd 68 30/10/2015 12:56

FAKING INPUT TUTORIAL

www.linuxvoice.com 69

can try this: open another terminal and type
$ echo -e "ls\n" > /dev/pts/22

The command will appear in the other terminal
but it won't be executed. Why? What you've done is
effectively the same as writing to standard output:
what gets written to the terminal gets displayed on
the terminal. Think of that file as one end of a pipe.
What you put in comes out the other end and you can
only take out what's been put in at the other end. The
other end is the terminal: if it's a pts then it's a desktop
application such as Gnome Terminal, Konsole or maybe
just Xterm. If it's a tty then we're talking about code
inside the kernel. Remember that a shell like Bash is
a separate process to the terminal. It's connected to
the end of the pipe represented by the pts file; the "s"
means "slave" and the "master" is the terminal's end.

To send data to the shell we need to put it in the
master end of the pipe that's inside the terminal. Can
we get the terminal to send something that didn't
come from its keyboard?

Escape sequence initiated…
Since the days when most terminals were devices
connected to serial ports, they have supported escape
sequences. These are sequences of one or more
characters that can be sent to the terminal that aren't
displayed but are instead interpreted as commands.
They were originally used to configure connection
parameters but now have many purposes such as
cursor positioning and colour. Try this:
$ echo -e "\e[31mThis is RED"

The \e is interpreted as the escape character (Esc,
ASCII code 27). You should see some text displayed
in red. What's interesting about this is that there are
some escape sequences that cause the terminal to
return other escape sequences – characters that
didn't come from the keyboard! We can send a device
status request and the terminal will respond that it's
OK by sending four characters: <ESC>[0n.

We can then use a feature built in to Bash that
replaces input characters with others. The bind

command sets this up:
$ bind '"\e[0n": "ls"'

Now, whenever the terminal sends an OK status,
the shell will output ls instead. It will appear at the
prompt and you can hit Enter to execute it. We just
need to request a device status from the terminal:
$ echo -e '\e[5n'

You'll see ls appear after the prompt with the cursor
after it, just as if you'd typed it.

There are limitations to this approach, not least that
the shell needs to support key binding. It won't work
in sub-processes, which means that it won't work in
scripts unless they are sourced instead of executed.
It may suffice for some applications and relies solely
on Bash internals and a terminal that plays along
(practically all do). But there's a better way…

Tap the pipe
Let's go back to the pipe. It leaves the
terminal at its master end and ends up
with its slave end in the shell. The route it
takes to get there goes through the
kernel, as the diagram illustrates,
passing the Line Discipline, which
implements device semantics such as
control characters (interrupt, kill, etc),
and the TTY Driver.

The TTY driver is a kernel device driver and, like
all device drivers, has a control interface that is
accessible via the kernel ioctl system call – a generic
function for sending commands to device drivers.
The commands supported by the TTY driver are
documented on the tty_ioctl man page and one of
them is of interest to us.

The TIOCSTI (Terminal ioctl Send-Terminal-Input)
command is used to inject characters into the input
stream – they go straight into the pipe and come out
in the userspace process when it reads its standard
input. When the shell does this it displays the received
characters at its prompt.

There is no command built into the shell for this;
doing so requires an external command. There
isn't such a command in the typical GNU/Linux
distribution, but it isn't difficult to achieve with a little
programming. Here's a shell function that uses Perl:
function inject() {
 perl -e 'ioctl(STDIN, 0x5412, $_) for split "", join " ", @
ARGV' "$@"
}

You can then do:
$ inject ls -l
which prints ls -l after the prompt and followed by the
cursor, ready to be executed when the user hits Enter.

You may prefer to create standalone scripts in your
favourite language. Here's one in Perl (inject.pl):
#!/usr/bin/perl
ioctl(STDIN, 0x5412, $_) for split "", join " ", @ARGV

0x5412 is the value of the TIOCSTI constant
defined in the standard C header file. You can

Other ways to inject keystrokes
If your environment meets certain prerequisites then you
may have other methods available that you can use to
inject input.

If you're in a desktop environment, xdotool is an X.Org
utility that simulates mouse and keyboard activity, but your
distro may not include it by default. You can try:
$ xdotool type "ls"

If you use tmux, the terminal multiplexer, you can do this:
$ tmux send-key -t session:pane ls
where -t selects which session and pane to inject. GNU
screen has a similar capability with its stuff command:
$ screen -S session -p pane -X stuff ls

If your distro includes the console-tools package then
you may have a writevt command that uses ioctl like our
examples. Most distros have, however, deprecated this
package in favour of kbd, which lacks this feature.

PRO TIP
The origin of tty, which is an abbreviation
of teletype, can be traced back to the
invention of the stock ticker in the 19th
century.

Shell
(or other process)

Terminal
(xterm, etc)

LV022 068 Tutorial Bash.indd 69 30/10/2015 12:56

TUTORIAL FAKING INPUT

www.linuxvoice.com70

John Lane types a lot but he has a script that takes over
when he's tired.

generate the equivalent Perl header, sys/ioctl.ph and
then use TIOCSTI instead of using the numeric value:
$ (cd /usr/include; sudo h2ph -a -l sys/ioctl.h)

Now the script can be written a little more legibly:
#!/usr/bin/perl
require "sys/ioctl.ph";
ioctl(STDIN, &TIOCSTI, $_) for split "", join " ", @ARGV

If you don't like Perl, perhaps Python is your thing
(inject.py):
#!/usr/bin/python
import fcntl, sys, termios
del sys.argv[0]
for c in ' '.join(sys.argv):
 fcntl.ioctl(sys.stdin, termios.TIOCSTI, c)
or, perhaps Ruby (inject.rb):
#!/usr/bin/ruby
ARGV.join(' ').split('').each { |c| $stdin.ioctl(0x5412,c) }
or even C (inject.c):
#include <sys/ioctl.h>
int main(int argc, char *argv[])
{
 int a,c;
 for (a=1, c=0; a< argc; c=0)
 {
 while (argv[a][c])
 ioctl(0, TIOCSTI, &argv[a][c++]);
 if (++a < argc) ioctl(0, TIOCSTI," ");
 }
 return 0;
}

Compile the C code to a binary
$ gcc -o inject inject.c

Control other terminals
Using ioctl to do this works in subshells. It is also
possible to inject characters into another terminal,
subject to having the appropriate permissions.
Normally this means being "root" but we'll explain
some other ways too. The only difference is that the
relevant terminal file needs to be used. So, instead of
using file descriptor zero (our own standard input)
when calling ioctl, we need to open the relevant

terminal file and use its file descriptor instead:
 fd = open(f, O_WRONLY|O_NONBLOCK);
where f is the required file (eg /dev/pts/25), and then
 ioctl(fd, TIOCSTI, &c);

It defaults to the current terminal but accepts a
command line argument to specify another one. It
also sends a newline by default but, similar to echo, it
provides an option to suppress it. The GNU ArgParse
library is used to process the command line options.

Compile it with gcc -o inject inject.c. Prefix the text
to inject with -- if it contains any hyphens to prevent
the argument parser misinterpreting command-line
options. See ./inject --help for an explanation of the
command line options and use it like this:
$ inject --tty /dev/pts/25 -- ls
or to inject the current terminal:
$ inject -- ls

We mentioned that injecting into another terminal
requires an administrative privilege and this can be
obtained by:

 Running the command as root,
 With sudo,
 giving it the CAP_SYS_ADMIN capability or
 setting its setuid bit.
To assign CAP_SYS_ADMIN:

$ sudo setcap cap_sys_admin+ep inject
To assign "setuid":

$ sudo chown root:root inject
$ sudo chmod u+s inject

Keep it clean
You may have noticed that injected text appears
ahead of the prompt as if it were typed before the
prompt appeared (which, in effect, it was) but it then
appears again after the prompt.

One way to hide the text that appears ahead of
the prompt is to prepend the prompt with a carriage
return (\r, not line-feed) and clear the current line
(<ESC>[M):
$ PS1="\r\e[M$PS1"

However, this will only clear the line on which the
prompt appears. If the injected text includes newlines
then this won't work as intended. Another solution
disables echoing of injected characters. A wrapper
uses stty, a tool that uses ioctl, to do this:
saved_settings=$(stty -g)
stty -echo -icanon min 1 time 0
inject echo line one
inject echo line two
until read -t0; do
 sleep 0.02
done
stty "$saved_settings"

where inject is one of the solutions described
above, or replaced by printf '\e[5n" if you're using the
escape sequence method instead of TIOCSTI.

With the right permissions
it's possible to control
another terminal.

LV022 068 Tutorial Bash.indd 70 30/10/2015 12:56

FAKING INPUT TUTORIAL

www.linuxvoice.com 711515

Email andrew@linuxvoice.com to advertise here

LV022 068 Tutorial Bash.indd 71 30/10/2015 12:56

TUTORIAL EDUCATION

www.linuxvoice.com72

Learning to code is a great experience but how
can we make it more fun? In the past coding
has been a rewarding, if daunting experience

that comes with many successes and failures. With
the rise of the Raspberry Pi we see a new era of
physical computing, merging software with
homebrew hardware, which is a great method to
teach children as there are many physical outputs to
keep interest high and reward learning. But what if we
could build a machine that could test the knowledge
of our children and be a great source of fun and
tinkering? Well we have: it's called the Vend-A-Python.

For this project we shall be using the latest
Raspbian image from the Raspberry Pi website.
Jessie, the latest release, now comes with a new
method to access the GPIO pins. Previously only the
root user or a user using sudo was able to access the
GPIO, but with Jessie any user can access the GPIO
and hack hardware. Raspbian Jessie also comes with
four of the five Python libraries that we shall be using,
these are RPi.GPIO, Time, Random and Pygame, and
we'll need to install one more, which is Easygui. In a
terminal type the following, then press Enter.
sudo pip-3.2 install easygui

Easygui, as its name suggests, is an easy library to
create menu and interfaces with Python, but more on
that later.

Setting up the hardware
We'll start by setting up our stepper motor, which is a
motor with a high degree of precision (512 steps,
which control a full revolution). Using these steps we
can precisely control the position of the motor, and
later in our code we shall divide the faces of our wheel
into four sections, effectively creating four zones each
with 128 steps.

Our stepper comes with a controller board with four
pins labelled IN1–IN4. Using female-to-female jumper
cables, connect these as follows to the GPIO.

 Stepper GPIO
 IN1 17
 IN2 10
 IN3 9
 IN4 11
We're using the Broadcom (BCM) pin mapping for

the GPIO pins, which is the standard supported by the
Raspberry Pi Foundation in all of its resources. For
further reference please see http://pi.gadgetoid.com/
pinout.

Also present are two pins labelled 5–12v. These
two pins are + and -, and are power (+) for the motor
and Ground (GND, -). From the GPIO of your Raspberry
Pi connect 5V to the + and GND (Ground) to -. If you
wish you can also connect these pins to an external
power source. Next let's connect a button to the GPIO.
The button is used to trigger the process and is easy
to connect. We used an arcade button, as we had it

Our finished project combines motors, buttons, screens
and crafting into one project. This project could also ask
questions from other subjects.

LES POUNDER

PYTHON 3:
BUILD A QUIZ MACHINE
Programming logic meets cardboard and sellotape in our latest Python/Pi project.

WHY DO THIS?
• Learn how to control a

stepper motor
• Learn Python 3
• Control hardware using

the GPIO
• Interface a touch screen
• Learn logic

TOOLS REQUIRED
• A Raspberry Pi
• A touchscreen
• Speaker
• Stepper motor http://bit.

ly/LV22-Stepper-Motor
• Arts and crafts materials

With the rise of the Raspberry Pi we see
a new era of physical computing, which
is a great way to teach children

LV022 072 Tutorial Education.indd 72 30/10/2015 13:00

EDUCATION TUTORIAL

www.linuxvoice.com 73

lying around, a simple micro switch can be used in
its place. Connect one side of the button to pin 23,
remember we are using the BCM numbering, and the
other to GND. Refer to the diagram, below, for details.

For the touchscreen we used the Adafruit 5-inch
HDMI backpack, which required an extra step to
configure the touchscreen for use. However, we'd
recommend picking up the new official Raspberry Pi
display screen as the touchscreen and display work
out of the box with Raspbian Jessie. Assemble the
screen and mount it as you see fit.

Connect your speaker to the 3.5mm port on your Pi;
you can change the output method by right-clicking
on the speaker icon in the top-right of the screen.

Coding!
Before we commit any code, let's step back and look
at the logic that will control our project.

The project starts waiting for the user to press
the push button. Once it is pressed, music is played
while the stepper motor rotates around the wheel,
which is split into four areas, with each area covering
a particular Python topic. How far it travels is handled
via a function that uses a randomly generated number
between 1 and 512. Once the stepper returns to the
top of the wheel, the user is asked a Python question
based upon the topic where the stepper motor
stopped on the wheel. The topic of the question is
chosen by using the randomly generated number
and a series of conditional statements that check the
value against hard-coded values. The user answers
the question by pressing the correct answer on the
touchscreen, which triggers another conditional
statement to check their answer. If correct, the player
is rewarded, if incorrect the player is chastised. The
project then resets and is ready to play again.

For this project we shall be using Python 3 via the
Idle editor. As we're using Jessie we do not have to
invoke Idle via the terminal using sudo, but can open it
from the Programming menu.

With Idle open click on File > New Window to open a
new blank document, and save it as Vend-A-Python.
py before proceeding.

As always we start coding our project by importing
a few libraries. First we import the RPi.GPIO library
and rename it to GPIO for easier use. Next we import

the time and random libraries. We import easygui and
rename it to eg before finally importing the pygame
library.
import RPi.GPIO as GPIO
import time, random
import easygui as eg
import pygame

Now we setup the GPIO pins. We instruct the Pi
that we shall be referring to them using the Broadcom
layout (GPIO.BCM) we also instruct the Pi to turn off
any warning messages.
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

In this project we use variables to contain
references to the GPIO pins and to control the delay
used for our stepper motor. Here we can see the
pins IN1–IN4 referenced on the stepper motor board
and the pin used for the push button. We use their
reference to store the GPIO pin used on the Pi.
IN1 = 17
IN2 = 10
IN3 = 9
IN4 = 11
button = 23
delay = 0.01

We store the values of the variables IN1–IN4 in a
list and then use a for loop to iterate through each of
the values stored in the list, the pins of the GPIO used
for the stepper motor, and configure each of them to
be an output. This means that current will flow from
the GPIO to the pins on the stepper motor controller
board.
outputs = \[IN1,IN2,IN3,IN4\]
for pin in outputs:
 GPIO.setup(pin, GPIO.OUT)

We now set up the push button to be an input and
set the GPIO pin to be turned on. So when the button
is pressed it will momentarily connect the pin, pulled
high, to the Ground pin. This will cause the state of the
GPIO pin to be pulled low, which will form the trigger

Our stepper motor came
from eBay and cost less
than £2. It provides a
handy controller board that
can be easily interface with
a Raspberry Pi, Arduino
or other single-board
computers.

PYTHON 3:
BUILD A QUIZ MACHINE
Programming logic meets cardboard and sellotape in our latest Python/Pi project.

LV022 072 Tutorial Education.indd 73 30/10/2015 13:00

TUTORIAL EDUCATION

www.linuxvoice.com74

used to start this project.
GPIO.setup(button, GPIO.IN, GPIO.PUD_UP)

We now move on to the functions that will be used
to contain more complex aspects of the project.
Our first function is used to play audio. We define
the name and then give the function an argument,
denoted by the word in the brackets. In this case, the
argument is the file name of the audio file to play. We
then write the code that is to be run when the function
is called. First we initialise the audio mixer. Next, we
create a variable called sound to contain loading the
audio file into the mixer. Finally we trigger the mixer to
play the music once.
def audio(file):
 pygame.mixer.init()
 sound = pygame.mixer.music.load(file)
 pygame.mixer.music.play(1)

Our next function, called cw (short for clockwise),
is used to control the stepper motor so that it moves
in a clockwise direction. This function takes two
arguments: the number of steps to move; and the
delay between each part of the step. Inside the
function we use the number of steps to create a for
loop that will repeat for that number of steps. In the
for loop we turn on each of the stepper pins, IN1 to
IN4 in order, by using True to turn the pin on and False
to turn it off. So for IN1 we turn it on, and the others
are turned off. The code waits for the delay of 0.01
seconds, before turning the next pin on and turning
the others off. This repeats for all of the pins IN1 to
IN4 and causes the motor to spin once. Once the
number of steps has been reached the code will wait
for 5 seconds before calling another function.
def cw(steps,delay):
 for i in range(steps):
 GPIO.output(IN1, True)
 GPIO.output(IN2, False)
 GPIO.output(IN3, False)
 GPIO.output(IN4, False)
 time.sleep(delay)
 GPIO.output(IN1, False)

 GPIO.output(IN2, True)
 GPIO.output(IN3, False)
 GPIO.output(IN4, False)
 time.sleep(delay)
 GPIO.output(IN1, False)
 GPIO.output(IN2, False)
 GPIO.output(IN3, True)
 GPIO.output(IN4, False)
 time.sleep(delay)
 GPIO.output(IN1, False)
 GPIO.output(IN1, False)
 GPIO.output(IN1, False)
 GPIO.output(IN1, True)
 time.sleep(delay)
 time.sleep(5)
 ccw(steps,delay)
For the next function, ccw (short for counter
clockwise) we reuse the same structure as cw(), but
change the pin sequence so that the stepper moves
in reverse.

This ends the functions, and now we move to the
main body of code. We now start using Easygui to
greet the player using a messagebox dialog. This
function has three arguments: the title of the dialog
box; an image to decorate the dialog; and finally the
message to the user.
eg.msgbox(title="Welcome to the Python Quiz",image="./
python.gif",msg="So you think you know Python? Press
the Green button to start")

We use a while True loop to constantly check via
an if conditional statement that the push button has
been pressed. When the button is pressed its state
changes from high to low, True to False. So when the
pin reports False we call the audio function with the
name of an audio file to play. When calling the audio
file it is important to provide the path to the file as a
string – simply wrap the file path in "". We can use
an absolute file path which will precisely show the
location of the file, or we can use a relative file path
that will show the location of the file in relation to
where our project code is.

Next we create a variable called steps and in there
we use the random integer function from the Random
library to pick an integer between 1 and 512, 512
being one full rotation of the stepper motor. Finally we
call the cw() function and pass it the arguments steps
and delay to control how far to rotate the stepper and

The official Raspberry Pi
screen can easily hold
a Raspberry Pi upon its
back. It also offers a power
passthrough, reducing the
number of power supplies
required.

Installing Easygui via the terminal is easy. Just remember
to connect to the internet before trying to install…

LV022 072 Tutorial Education.indd 74 30/10/2015 13:00

EDUCATION TUTORIAL

www.linuxvoice.com 75

Les Pounder divides his time between tinkering with
hardware and travelling the United Kingdom training teachers
in the new IT curriculum.

how quickly to do so.
while True:
 if GPIO.input(button) == False:
 audio("./tilburg.mp3")
 steps = random.randint(1,512)
 cw(steps,delay)

Next we create an if conditional statement, which
is used to compare a condition against a value. In
this case we compare the value stored in the variable
steps with two hard-coded values. For the if condition
we check to see if steps is greater than 0 and less
than 128, effectively covering the first quarter of the
wheel similar to a clock face 12 to 3.
if steps \>0 and steps < 128:

If this condition is true, and the stepper stops
between 0 and 128, we ask the user a question
based upon the subject area, which in this case is all
about variables. To ask the question we first create
a variable called answer and we use that to store the
answer to the question posed via EasyGUI's choice
dialog. We use the choicebox function and give it
three arguments: the title of the dialog; the message
to the user; and the choices that can be made. When
the user makes a choice it is stored in the variable for
later use.
answer = eg.choicebox(title="Question",msg="Which
variable is storing a string?",choices=("a='Hello World'","b
= 5","c = 2.0"))

Next we compare the answer given to the correct
answer, and if it is correct we reward the player with a
pleasant piece of audio and use a message dialog box
to inform the player of the achievement.
if answer == "a='Hello World'":
 audio("./correct.mp3")

 eg.msgbox(title="CORRECT",image="./tick.
gif",msg="RIGHT ANSWER")

If the player chooses a wrong answer a different
audio clip is played and the text for the message
dialog box is changed to reflect their status.
else:
 audio("./wrong.mp3")
 eg.msgbox(title="INCORRECT",image="./cross.
gif",msg="WRONG ANSWER")

This process repeats using a series of elif, else if
conditions to compare the position of the stepper
motor for the other sections of the wheel. With all of
the elif conditions complete we now break from this
conditional statement and return to the main if...else
conditional statement, which handles waiting for the
button to be pressed. While it waits for input it simply
prints "Waiting" to the Python shell before sleeping
for 0.1 seconds, then repeating the process until the
button is pressed.

This ends the code for this project. Remember to
save your work and when ready click on Run > Run
Module to run the code via Idle. The Python shell will
now print "Waiting" to the shell. Press the push button
and the stepper motor will come to life and start the
quiz. At present this project only has one question
per topic but it can be easily extended to add further
questions, which can be chosen at random using the
random.choice function from the random library. Use
this tutorial as a platform to craft your own version of
the project.

By completing this project we have learnt more
about stepper motors, how connect a push button to
the GPIO and the flow of the project has introduced
loops, conditional logic and multimedia.

All of the code for this project can be found via our
GitHub repository at http://bit.ly/LV22Code, or you
can download a Zip file containing all of the project
files from http://bit.ly/LV22CodeZIP.

The EasyGUI library
enables use of a simple
GUI creation system that
can be integrated into
any Python project. It is
compatible with Python 2.x
and 3.x.

We used an old cardboard box to house our project.

LV022 072 Tutorial Education.indd 75 30/10/2015 13:00

TUTORIAL HARDWARE

www.linuxvoice.com76

A lmost all smartphones, most laptops and
quite a lot of desktops have Bluetooth
hardware, yet it's rarely used beyond sending

audio to wireless speakers. This is a shame, because
it's powerful enough to send any data you want
between devices, and gives you endless opportunities
for hacking together new features.

In this tutorial, we're going to take a look how to use
standard Linux tools to stream real-time data about
our PC to our phone to give us an extra, portable
screen to use to monitor our computer. We'll do this
by using Bluetooth to create a serial port between our
phone and our Linux machine. Serial ports fit very well
with the Unix mantra that 'everything is a file', because

they're created as files in the /dev folder and you can
write data to them (to send) and read data from them
(to receive). Using this, we can communicate with just
the standard command line tools.

Before we get to this, though, we have to set up the
software. First, you'll need a Bluetooth terminal app on
your Android phone. There are a few options for this.
The best open source option is Bluetooth Terminal,

which is available via F-Droid at https://f-droid.org/
repository/browse/?fdid=ru.sash0k.bluetooth_
terminal. If you would rather install via the Google Play
store, BlueTerm by pymasde.es also works.

Install the software
You'll also need some software on your machine,
which your distro may have installed by default. This
will include some software to handle the initial
connection between the phone and the computer, and
some software to set up a serial connection. To
handle the initial connection between the two
machines (known in Bluetooth terminology as
pairing), you should find some graphical software on
your desktop. In Gnome, this is Gnome Bluetooth
Manager; in KDE this is Blue Devil; and in Unity this is
the Bluetooth option in the Ubuntu Settings Manager.
The process for all these is roughly the same.

First you need to make sure that Bluetooth is turned
on in your phone's settings and that the phone is
discoverable. This is done by going to the Bluetooth
page in the settings app (you need to keep this page
open to make the phone discoverable). Once this is
open and turned on, open your Bluetooth manager on
your Linux machine and make sure that Bluetooth is
turned on, then select the option to add a new device.
This should scan and find your phone. Follow the
settings on the Bluetooth manager, and it should set
up everything you need.

The pairing process sets up a general connection
between the two device that can be used to create
specific connections to share audio, send files or
stream serial data. In order to send the data we want,
we need to create a serial connection. This is a two-
stage process where we first set up a Bluetooth serial
port on the computer, and then connect the phone to
it. You'll need the rfcomm tool, which you may have
already installed – if not you'll need to get it from your
package manager (in Debian-based systems, this is in
the bluez package).

Due to an outstanding bug, the rfcomm software
only runs if the user is root, so you'll notice that we
have to run a lot of commands as root. The command
to create a new Bluetooth serial port is:
sudo rfcomm listen 0
Now your PC is listening, you just need to point your

Pairing in Bluetooth is the process of setting up two devices in anticipation of creating a
connection. It only needs to be done once for each combination of devices.

BEN EVERARD

KEEPS TABS ON YOUR PC
WITH BLUETOOTH
Monitor your computer when away from your desk with a wireless link to your phone.

WHY DO THIS?
• Gain an extra mini screen
• Keep an eye on processes

when you're away from
your desk

• Learn to use serial ports
for easy communication

We're going to use standard Linux tools
to stream real-time data to our phone, to
create an extra, portable screen

LV022 076 Tutorial Hardware.indd 76 27/10/2015 13:45

HARDWARE TUTORIAL

www.linuxvoice.com 77

phone at the appropriate Bluetooth connection (which
should already be set up since the devices are paired).
This is just a case of opening the Bluetooth terminal
app on your phone and in the connection options,
select the PC. This will create the file /dev/rfcomm0
on your PC (you can create more than one Bluetooth
serial port at a time by increasing the number on the
rfcomm command to create /dev/rfcomm1, 2, etc).

Anything you write to this file is sent to the
Bluetooth terminal on the phone, so a simple test that
everything's working is:
sudo bash -c 'echo “hello world” > /dev/rfcomm0'

The echo command outputs the text “hello world”,
and the 'greater than' sign tells the shell to send
that text to the /dev/rfcomm0 file (which is our

serial connection). This command is a little more
complicated than a regular sudo command, because
we need the output redirect to run as root. If we'd run
the command with just sudo as follows, it wouldn't
have worked.
sudo echo “hello world” > /dev/rfcomm0

In this case, the echo command is run as root,
however, the output (> /dev/rfcomm0) runs as the
normal user. Instead, we need to use sudo to start
a new Bash session running as root, and run the full

Blueman is a little more
capable than Unity's
Bluetooth settings, so can
be useful for Ubuntu users
looking to set up audio or
file transfers.

Turn your PC into a Bluetooth speaker
Ok, so using a PC as a Bluetooth speaker isn't exactly a
great way to save money, but there are some occasions
where it can be useful. Perhaps you have a home theatre
PC set up already and you want to use it to play music off
your phone as well. Perhaps you just need a way to play
music on your PCs speakers for a one-off event. Whatever
the reason, the method is straight forward. Firstly, you need
to pair the phone and the PC in the way described in the
main text. Once this is done, you need to tell the PC to treat
the connection as an audio source. Using the Blueman-
manager graphical Bluetooth management software, this
is done by right-clicking on the connection and selecting
Audio Source. After this, and audio from the phone will go
through the PC rather than the phone.

A few lines of Bash script
is all you need to send
diagnostic information to
your phone.

LV022 076 Tutorial Hardware.indd 77 27/10/2015 13:45

TUTORIAL HARDWARE

www.linuxvoice.com78

echo and redirect in this root session. We did this in
the first command by running bash -c.

There is a simpler option: tee. This command takes
standard input and does two things. Firstly, it writes
the input to a file and secondly it passes the input
onwards to standard output. Since the file is written
by the command itself, we can just run that as sudo.
The above command can then be run as:
echo “hello world” | sudo tee /dev/rfcomm0

Getting interactive
Since tee sends the input to both the output and
the file, you will see 'hello world' appear on both the
Linux terminal and the phone's Bluetooth terminal.
This is the first way we'll use our phone to monitor
our machine. It's particularly useful if you want to set
a long command running, and want to leave your
machine unattended until it finishes. Pipe the output
to sudo tee /dev/rfcomm0, and you can leave your
machine alone, and make sure that it's still running by
checking the Bluetooth terminal on your phone.

There is a slight problem with this approach – if the
command doesn't give any output, you don't know
when it's finished. You can solve this by running two
commands one after the other, which is done using
the semicolon. For example, the following will update
a Debian system (sending the output to both the
terminal and the phone), and then end with the word
'finished':
sudo apt-get upgrade | sudo tee /dev/rfcomm0 ; echo
“finished” | sudo tee /dev/rfcomm0

So far, we've used our Bluetooth serial port as a sink
into which we've poured data, but haven't gotten
anything back from it. If you look at the app on your

phone, you'll see that you have the ability to send lines
of text; however, because of the way we've used the
connection so far (with commands that only write
data out and not read data in), anything you send this
way will be lost.

The simplest way to read the data you send is with
the tail command. This just outputs the end of a file,
and if you use the -f (follow) flag, it will continually
monitor the file and output anything that gets written
to the end of it. Usually, this is used to monitor log files
as new data comes in, but it's also useful here. Since
we want to show the whole file, not just the end, we
also have to use the -n +1 argument, which tells tail
to show the lines starting with the first. The command
to output the text sent from the phone to the
computer is:
sudo tail -fn +1 /dev/rfcomm0

This in isn't itself very useful, because all it enables
us to do is send text from the phone to the computer.
In principal, you could create a very rudimentary chat
system by using echo to send data one way and tail
to receive it the other way, but this is fairly pointless.

Pipes are useful
Fortunately, we don't have to limit ourselves to just
spitting text out onto a screen. Instead, we can pipe
this data into other commands. A simple way to use
this is to read the data from /dev/rfcomm0, evaluate
it in Bash, and then pass the output back to the serial
port. This can be done with the following script:
while read -r line < /dev/rfcomm0; do
 $line > /dev/rfcomm0
done

This uses the read command to step through
the data that comes in the serial port. The first line
starts a while loop that will continue to operate until

Some Bluetooth serial
terminal phone apps
expect Windows-style line
endings and can behave
a little odd with the newer
Linux line endings. This
doesn't affect the content
though.

ObexFTP: Send files back and forth
The easiest way to send files over Bluetooth is using the
ObexFTP protocol. You may find that you need to install
additional software for this to work. On your phone, you'll
need an app that understands the protocol, and there are
quite a few options in the Google Play store. We used
Bluetooth File Transfer, but others should work. On your
Linux machine, you'll also need software to handle the
communication.

Most graphical Bluetooth tools have some options for
sending files, but it's often useful to be able to incorporate
file transfer into scripts. For example, you could create a
script that runs at a certain point every day (when you'll be
at your desk) and backs up the data on your phone.

There's a command line tool called ObexFTP, which is in
most distro's repositories. You can use it to get a list of all
the files on your phone from your PC with:
obexftp -b -l

The result comes in a slightly awkward XML file, but you
should be able to see what's going on. The general format
for getting files is:
obexftp -c <directory> -g <file>

There's some code and examples of how to do more
complex things with ObexFTP at the tool's website: http://
dev.zuckschwerdt.org/openobex/wiki/ObexFtp.

LV022 076 Tutorial Hardware.indd 78 27/10/2015 13:45

HARDWARE TUTORIAL

www.linuxvoice.com 79

In an unusual twist, Ben Everard is also monitoring GCHQ's
machines from his Android phone.

it reaches the end of the file, and since serial port files
don't have an end (that is, they never return an end
of file, they just don't always have data to return), this
loop will keep going until the serial port is closed. The
second line just evaluates the contents of the line in
the shell, and passes the output of this back to the
serial port. If you save this as a file called serialterm.
sh, you can launch it with:
sudo bash -c "bash serialterm.sh 2> /dev/rfcomm0"

The last part of the command (2> /dev/rfcomm0)
is needed to redirect any errors that occur in the
execution of the script on to the serial port. Discretion
is advised here as this will create a root terminal on
your phone (though only when within Bluetooth range
of your machine).

Top dog
One particularly useful thing to do with our serial
Bluetooth connection is monitor how much load there
is on the CPU when we can't see the screen. This
could be, for example, when using full-screen
graphical applications. You could just pipe the output
of the top command straight to the phone, but the
different layout of the screen on the phone makes it a
little awkward to read the data. Instead, we're going to
create a stripped-down version of top that just
outputs the CPU usage and the process that's using
most of the CPU.

We'll use the mpstat command to get the processor
utilisation and ps to get the CPU utilisation per
process. The full script is:
while true; do
 echo -n "% cpu: "
 bc <<< "100 - $(mpstat 2 1 | grep 'Average:' | cut -c 92-)"
 echo "top process: "
 ps -eo pcpu,args | sort -g -k 1 -r | head -1
done

In the third line, we use grep to select just the line
of the mpstat output that contains the average data,
then cut to return just the characters that contain the
percentage of time the CPU is idle. The bc command
is a calculator, so we just send the input of 100 – the
idle time to get the CPU utilisation.

The per-process utilisation from ps is piped into

sort (the -g flag uses numeric sorting), and then
into head to get the line with the highest processor
utilisation.

There is a little difference between the figures
returned by the two commands. Mpstat will calculate
the CPU utilisation over a short period (in this case,
two seconds), while ps will calculate the average
processor utilisation over the life of the process.

To run the data from this to your phone, just pipe
the data through like we have done before. If you save
the script as serialtop.sh, this is done with:
sudo bash -c "bash serialtop.sh > /dev/rfcomm0"

After this, everything should be piped through to
your phone and you can keep an eye on your CPU
usage even when the main screen is taken over by
other programs.

These, of course, are just a few examples of what
you can do with Bluetooth serial connections between
your phone and your computer. If you want to take
things further, you can make a serial connection

from inside a custom-written application on your
phone, which can take a particular format of data
and process it in any way you wish. For example, you
could easily take the output from our final monitoring
script and visualise it, perhaps as something like a
speedometer to show you how fast the computer is
running at a particular time. Serial connections are
almost endlessly flexible to allow a huge range of
uses, but at the same time, as you have seen, they can
be very easy to use.

Most popular langages,
including Python, have
libraries for dealing with
serial connections if you
need more control over the
data sent.

A very brief history of Bluetooth
Bluetooth is a set of specifications created by the Bluetooth
Special Interest Group (SIG). The SIG came into being on
20 May 1998, and since then has continued to develop
the standard as the technology has improved, and as
the technology landscape changes to require different
features. The latest incarnation (Bluetooth 4) includes a
new specification for low-power devices that run off small
batteries, and is designed with the internet of things in
mind. There's also a version of the protocol designed for
devices where data transfer rates are more important than
power usage (Bluetooth High Speed), which can send data
at up to 24Mb/s. These new technologies are helping to
make sure that the wireless protocol is still relevant today
despite being over 15 years old.

You could easily take the output from
our final monitoring script and visualise
it as something like a speedometer

LV022 076 Tutorial Hardware.indd 79 27/10/2015 13:45

TUTORIAL DATABASES

www.linuxvoice.com80

Last issue we looked at the basics of databases:
why they're important, how they work, and how
to set up one from scratch. We also explored a

handful of vital SQL commands to manipulate data
and search for results. (If you're missing issue 21, grab
it from http://shop.linuxvoice.com – or take out a
subscription and get free access to every single one
of our digital back issues!)

In this second part of the tutorial we'll delve
further into SQL with commands to modify data,
perform more advanced searches, and link search
results across multiple tables. We'll then move on to
accessing databases with the PHP programming
language, providing you with the building blocks to
make websites. By the end you'll have the skills to
poke around inside web apps such as OwnCloud,
PhpBB, and many others that are written in PHP and
make extensive use of databases.

Advanced SQL
Let's continue with the database and table we set up
last issue. Log in to MariaDB like so:
mysql -ulvuser -p

Enter pass123 when prompted for the password.
Switch to the lvtest database and list the tables it
contains:

use lvtest;
show tables;

In the previous tutorial we used select * to retrieve
all fields of a database entry, but it's important to note
that we can narrow them down like so:
select ID, Name from login_dates;
This just shows the ID and Name columns, and omits
anything else. We can restrict the results further:
select ID, Name from login_dates where ID > 1;

To change the data inside an existing row in a table,
we use the update command, providing the name
of the column we wish to change, its new value, and
a reference to the specific row. For instance, if we
want to modify the third row in our table, and change
Graham to Ben, we would use this:
update login_dates set Name = 'Ben' where ID = 3;

Here are some other commands worth knowing.
The first deletes a row from a table, while the second
and third add and remove columns respectively.
Remember that MySQL and MariaDB don't hold your
hand when you're working – they'll happily delete vast
amounts of data with just a few keystrokes! You get
no chance to confirm, so when you're working with
real-world data, tread carefully...
delete from login_dates where ID = 3;
alter table login_dates add Shell varchar(20) after Name;
alter table login_dates drop column Shell;

In the first alter command here, we add a column
called Shell, which contains a string of up to 20
characters, and place it after the Name column. (If
we omitted the after part, the column would simply
be added on to the end of the table.) The second alter
command removes this column and any data that it
may contain.

Turning the tables
When we explored the concepts behind relational
databases last issue, we used an example of a second
table to go alongside the one we've set up, containing
a command that was executed and its exit code.
These tables both use the ID columns as primary
keys, so we can cross-reference data between them.
Let's create and populate this second table:
create table commands(ID int auto_increment primary
key, Command varchar(255), ExitCode int);

Screenshot 1: Here's
the results of our 'join'
operation, combining the
Name column from one
table with the Command
column from another.

MIKE SAUNDERS

SERVER 101: BRUSH UP
YOUR DATABASE SKILLS
Part 2: Learn how to interact with a database using PHP, and build the killer web
apps/tax dodging walled gardens of tomorrow.

WHY DO THIS?
• Discover how web apps

work under the hood
• Explore data stored by

WordPress, OwnCloud
and co.

• Learn SQL to perform
powerful search queries

LV022 080 Tutorial Databases.indd 80 27/10/2015 13:46

DATABASES TUTORIAL

www.linuxvoice.com 81

insert into commands values(0, 'df -h', 0);
insert into commands values(0, 'crontab -e', 1);
insert into commands values(0, 'shutdown', 1);

If you now enter select * from commands; you'll
see the data we've just inputted. And if you look at
each table separately, you can work out that for ID 2,
Ben logged in at 2015-04-25 and ran the command
crontab -e, which exited with code 1 (failure). But how
do we pull this data together with SQL? What happens
when we want some columns from one table, another
set of columns from another table, but everything
together in a single set of results?

This is where the mightily useful join command in
SQL comes into play. Let's say we want to generate
results showing the ID column, the name from
the login_dates table, and the command that was
executed from the commands table:
select login_dates.ID, login_dates.Name, commands.
Command from login_dates join commands on login_
dates.ID = commands.ID;

Phew – that was a mouthful! Let's go through it
bit-by-bit. We start off by saying we want to generate
results in three columns: ID and Name from the login_
dates table, and Command from the commands
table. We use join to insert data from the commands
table into the results, and want results where the ID
column matches in both tables.

Got that? See screenshot 1 for the results. SQL
syntax – and especially join instructions – can get
very complicated, which is why some admins use
uppercase for commands, as noted last issue, to
distinguish them from table and column names.
When you're working with large data sets across
multiple tables, join operations are immensely useful
for narrowing down the information that you need.

Onto the web
Interacting with your data via the command line is
rather tedious and completely unsuitable in the long
run, so what are some alternatives? You could build a
native application that talks to a database – eg to
make a collection manager, human resources system
or similar program. But a quicker (and more cross-

platform) approach is to make a website that hooks
up to a database. Thanks to the PHP programming
language, this is rather easy, and involves just a
smattering of HTML and coding knowledge.

To get started, you'll need to install the Apache web
server, the PHP language and a module that links both
together. In Debian and Ubuntu-based distros you can
grab the packages with:
sudo apt-get install apache2 php5 libapache2-mod-php5
php5-mysql

(If you're using a different family of distros, search
through your package manager to find packages of
the same or similar names.) Once the software is
installed, visit http://localhost (or http://127.0.0.1)
in your web browser to view Apache running on the

NoSQL: databases done differently
Relational databases power the web. MySQL/MariaDB,
PostgreSQL, Oracle, Microsoft SQL Server and others chew
through vast amounts of data every day, and they'll be with
us for decades to come. But a new breed of databases that
eschew the familiar table and relational models are coming
up – and receiving a lot of attention. NoSQL is the moniker
given to database software that takes a different approach.

MongoDB (www.mongodb.org) is one of the most famous
NoSQL databases, and stores its information inside JSON
(JavaScript Object Notation) documents rather than tables.
JSON uses attribute-value pairs, and is somewhat like XML
but designed to be easier to parse in JavaScript. Here's an
example:
{
 "ID": 1,
 "Name": "Graham",
 "Commands": ["crontab -e", "shutdown"]
 "ExitCodes": [0, 1]
}

This shows a login entry with ID 1 for Graham, and in
the Commands and ExitCodes fields you can see arrays
denoted by square brackets. Potential benefits of the
NoSQL approach include simpler database designs and
better performance when scaling up to large clusters of
computers, and many startup websites are going the NoSQL
route. (Note that despite the name, some NoSQL databases
still let you interact with data using SQL-like commands,
making the transition easier.)

Screenshot 2: It only takes
a few lines of PHP to
extract information from a
database and render it as
HTML.

MySQL and MariaDB will happily delete
vast amounts of data with just a few
keystrokes, so tread carefully…

LV022 080 Tutorial Databases.indd 81 27/10/2015 13:46

TUTORIAL DATABASES

www.linuxvoice.com82

local machine. All being well, you'll see an "It works"
message, so you can start using PHP.

Switch into the /var/www/html directory and create
a file called test.php with the following contents:
<?php
 echo "PHP works!";
?>

If you've never used PHP before, it has a C-like

syntax and all code must be supplied between <?php
and ?> tags, to differentiate it from HTML. So, open
http://localhost/test.php in your browser, and if the

language was installed correctly, you'll see the "PHP
works" message. We're ready to go!

To work with the database, first we need to initiate
a connection and associate that connection with an
object. If the connection fails, we need to quit out (die)
before doing anything else; otherwise we perform
a query on the connection and store its results in a
variable. Then we go through the results, parsing out
the individual fields from the database. So let's use
PHP to grab the data from our login_dates table and
display it – save this again as test.php:
<?php
 $conn = mysqli_connect("localhost", "lvuser",
"pass123", "lvtest");

 if(!$conn)
 die("Couldn't connect");

 $result = $conn->query("select * from login_dates");

 while($row = $result->fetch_assoc())
 echo $row['ID'] . ", " . $row['Name'] . ", " .
$row['Login'] . "
";
?>

Most of this should be self-explanatory. The mysqli_
connect() function is provided by the php5-mysql
package that we installed earlier, and we pass four
parameters to it: the hostname or IP address of the
server to which we want to connect, a username, the
password for that username, and then the database
that we want to use. This function returns an object,
which we store in $conn. We then check to see if
$conn contains anything – if not, it means that the
connection failed for some reason (such as invalid
login details, or the database isn't running), in which
case we quit with an error message.

If everything works, we then perform an SQL query,
just like we would at the command line, passing the
results back into the newly created $result variable.
The last two lines may faze you a bit: essentially, after
doing the database query, $result contains a number
of rows. So in the while loop we go through each row
and extract its contents into an associative array – in
other words, an array where each element has its
own name. In our case, these element names are the
columns from our table, so we have ID, Name and
Login.

Using PHP's echo command we spit this out as
text, joining the three elements together with commas
and spaces, and tacking a
 tag onto the end to
make the results more readable. The end result will
be like in screenshot 2 – a (very rudimentary) HTML
version of our login_dates table!

Of course, if you're a dab hand with HTML and CSS,
you could now improve the output by using proper
tables, divs and other fluff to make everything look
nice. We're not going to focus on that here, as we have
other things to do, but now you know how websites
connect to and extract information from databases.

So that's displaying data – but what about feeding

Screenshot 3: The command line is fiddly, so we've provided a method for adding data
via a HTML form. You can tart this up with a spot of CSS.

Back up your data!
When you start to build up a lot of data, you'll want to make
regular backups. MariaDB is a pretty robust database, but it
can't save your hide if you suffer a major hardware failure
or your hard drive throws in the towel. While MariaDB stores
its data in rather complicated binary files, you can generate
text versions for backup purposes using the mysqldump
utility (at the command line) like so:
mysqldump -ulvuser -p lvtest > backup.sql

If you now look at backup.sql in a text editor, you'll see
all of the SQL commands required to recreate and populate
the tables inside the lvtest database, so you can gzip this
up and store it somewhere as a backup. Later on, if you
need to recreate the tables you use the regular mysql tool
with the database name and filename:
mysql -ulvuser -p lvtest < backup.sql

You could, of course, automate the backup step by
placing it inside a Cron job and running it every day (or
multiple times a day, if you have enough disk space).

Now you have all the skills required to
create interactive websites that use
databases as back-ends

LV022 080 Tutorial Databases.indd 82 27/10/2015 13:46

DATABASES TUTORIAL

www.linuxvoice.com 83

Mike Saunders is working on his own database, MikeSQL,
written entirely in 16-bit x86 assembly language.

new data back into the database? What's the best
way to go about this? There are a few options, but
the simplest is to use a HTML form and some PHP to
handle the results. At the end of test.php, after the ?>
(which terminates the PHP code), add this HTML:
<hr />
<form action="test.php">
Name: <input type="text" name="Name" />

Login: <input type="text" name="Login" />

<input type="submit" />
</form>

This is a simple HTML form that calls back to
the same file (test.php) when the Submit button is
clicked, and it has two text fields: Name and Login,
as per our login_dates table. So this HTML table now
appears under the information we extract from the
database. In order to process the information when
we submit the form, however, we need to do some
work in the PHP section at the top. Underneath the
"die" line, add these two lines:
if($_GET['Name'])
 $result = $conn->query("insert into login_dates
values(0, '$_GET[Name]', '$_GET[Login]')");

By default, when a HTML form is submitted its form
fields are passed to the "action" file (in our case, the
same test.php file) in an array called $_GET. This also
means that the fields are supplied as part of the URL,
as you'll see when you submit the form.

So we first check to see if anything was entered
into the Name field – ie if it's not blank – and then
we perform an SQL query, inserting the data as we've
explained previously. Note that this is an extremely
quick and simple way to perform the SQL query; in
a real-world scenario, you'd want to perform many
more validation and security checks against the data
to make sure someone isn't craftily trying to submit
executable PHP via the form! That's worth a whole
other tutorial though...

So test.php now does three things: it shows the
contents of the login_dates table, it provides a form
for adding new data, and it processes the data and
adds it to the database if the form is filled out. Give it a
try – enter some text in the Name box and a suitably
formatted date (eg 2015-10-04), click the Submit
button, and you'll see the new row in the database
when the page reloads as in screenshot 3.

And that's all the weather!
So now you have the basic skills required to create
interactive websites that use databases as back-ends.
And more importantly, you understand exactly how it
works, down to the raw SQL instructions. There are
countless web frameworks and abstraction layers out
there that do all the hard work for you, and completely
separate you from the gritty job of talking to the
database – and they're hugely useful if you're making
the next big Web 3.0 (or are we at 4.0 now?) website.

But as with assembly language or the build-it-
yourself Linux From Scratch project, nothing beats
knowing what's going on under the hood. Next time

you're using a website with forms and data, you'll have
a pretty good idea of how the website works and what
it takes to store and retrieve such information.

PHP, databases and related topics are all huge
beasts themselves, so if you'd like us to dedicate
some pages to one of them, just drop
us a line. In particularly, if you'd like
to explore other databases such as
PostgreSQL, or try interacting with
databases using other programming
languages, let us know.

In the meantime, here are a few tasks
you can try with your new skills – if you
get stuck, someone should be able to
help at http://forums.linuxvoice.com:

1 Use tables or divs to make the
login_dates HTML look much better
– maybe spruce it up with some CSS too.

2 Check that the user has filled in the Login field as
well as Name in the form. You can combine multiple
tests together into the same if operation.

3 Provide a way for a user to delete an item. For
instance, you could achieve this using a drop-down
list, performing a separate SQL query if a number is
selected in the list.

4 Check that the dates in the Login field are of a valid
format. This is where PHP's string handling facilities
come into play.

Some of these may require more PHP knowledge
than we've gone over here, so have a look at the
excellent tutorials at www.w3schools.com/php for
ideas. Happy hacking!

The Vim editor has syntax highlighting for almost everything under the sun, including
SQL (useful if you're rummaging around in backups).

PRO TIP
You may have come across the term
'LAMP' before: this refers to a stack
of software typically used to serve up
websites. The letters stand for Linux,
Apache, MySQL/MariaDB and PHP –
although the latter can be replaced by
Perl or even Python in some instances.
Similarly, some sites have moved
away from Apache and are using more
lightweight alternatives like Nginx.

LV022 080 Tutorial Databases.indd 83 27/10/2015 13:46

www.linuxvoice.com

CODING MINSKY

84

In many disciplines – science, engineering,
medicine and economics – models are used to
predict behaviour to save on costly, dangerous or

impossible real-world experiments. Computers are
used to run numerical models that describe
everything from fish populations to the behaviour of
the Universe in its first moments.

Building these models requires skills in
mathematics and programming in addition to an
understanding of the particular subject involved.
For some disciplines that are already very reliant on
mathematics, such as physics, this sits well, but for
others a different approach is needed.

This is where Minsky comes in – it's a FOSS tool
than enables you to construct complex dynamic
numerical models using a graphical interface. Rather
than formulate equations, then writing code, you
drag and drop icons to see the results in a graph. Not
only can you share this with mathematically minded
friends, but you'll probably find yourself learning a lot
about mathematics in an agreeably intuitive fashion.

Minsky is released under GNU GPL v3, so you
can build it from the source code available from
sourceforge.net/projects/minsky, but be warned:
it does have a few fiddly dependencies. It probably
won't be available in your distro's package manager,
but it can be found in the OpenSUSE build service.
Check for specific instructions provided for your
distro, but on Xubuntu 15.04 the installation involved
the following commands:
sudo sh -c "echo 'deb http://download.opensuse.org/
repositories/home:/hpcoder1/xUbuntu_15.04/ /' >> /etc/
apt/sources.list.d/minsky.list"

sudo apt-get update
sudo apt-get install minsky

We're using version 1.D037, which was available
from the OpenSUSE build service, but there's a more
recent beta if you don't mind building it yourself.

All the screenshots produced for this article have
a corresponding .mky you can load up for yourself,
though we recommend you try to wire up at least the
most basic models. You can grab the .mky files from
https://github.com/mcnalu/linuxvoice-minsky and
load them using the Open item under the File menu.

Simple building blocks
Minsky's interface is straightforward. There's a menu
bar, controls for playing, stopping and adjusting
simulation speed, a palette of components, and the
main canvas.

Let's start with something simple: plotting a straight
line. See the boxout for detailed instructions, but in
short we create a time component and wire it to the
graph, then start the simulation.

Now let's plot the sine function. Right-click on the
wire connecting t to the graph and select Delete Wire
from the context menu. Now click on the icon with sin
inside it and place it between t and the graph. Connect
a wire from t to sin and from sin to the black port on
the graph. Run the simulation and you'll see the sine
function being plotted. If you don't see the sine wave
shown in the screenshot, hit the square Stop button to
reset the simulation and try again.

You can speed up or slow down the simulation
using the slider at the top of the screen, or move it

Here's a sine wave plotted in Minsky.

Plot sin against cos and
you end up with a circle –
odd, but true.

ANDREW CONWAY

MINSKY: DYNAMIC
SYSTEMS MODELLING
Get stuck into some complex maths, without having to learn complex maths.

WHY DO THIS?
• Do mathematics without

equations
• Program without coding
• Hack the economy!

LV022 084 Coding Economics.indd 84 27/10/2015 13:47

www.linuxvoice.com

MINSKY CODING

85

Add a constant to our
graph of sin aganst cos
and you get an ellipse
(really, it is, look closely at
the axes!).

forward just one step at a time using the button to the
left of the slider. You can zoom in and out using the
mouse wheel and resize a graph by right-clicking on it
and selecting Resize.

Let's now plot a second curve on the same graph.
Drag the cos component and place it beneath the
sin one, and wire it to the t component and to the red
arrow on the graph. Run the simulation and you'll see
that cosine has the same shape as the sine function,
but shifted to the left.

Going in circles
Now delete the wire from cos to the graph and move
it underneath the graph, then connect the cos
component to the black arrow at the bottom of the
graph, as shown in the image above.

Before this example we didn't connect anything to
the horizontal axis of the graph, so Minsky assumed
we wanted to plot our function against time. But now
we're telling Minsky to plot sin against cos. In other
words, at each time step t, the y co-ordinate of the
graph will be sin(t) and x co-ordinate will be cos(t). As
you can see, the result is that we've made a circle.

Let's now combine components. Delete the wire
from the cos component to the graph. Next, place
the multiplication (×) component to the right
of cos. Then place the component labelled const
above cos. This represents a constant. Set its value
to 2 in the window that appears, or you can do so via
the Edit item in the context menu by right-clicking
afterwards. Now drag wires from the constant, which
will be labelled 2, and from cos, to the left-hand side of
the multiplication symbol. Then join its tip to the black
port at the bottom of the graph.

When you run the simulation you'll see a circle
again, but notice that the horizontal scale is no longer

-1 to 1, but -2 to 2. We now have an ellipse that's
4 units in width and 2 units high. If you're keen to
see something on the graph that's less round, feel
free to experiment. For example, move the 2 and
multiplication constants before cos so that it receives
two times t as its input.

Making equations
In the screenshot for the ellipse we've
placed two red components containing
x and y. These are variables that we
placed using the var item in the
component palette. These appear to be
handy labels, but there's more to them
than that: we can use them to output
some equations like the ones shown.

Go to the File menu, select Output
LaTeX and enter a filename which, by
convention, should end in .tex. Let's call
it ellipse.tex.

Now outside Minsky, either on the command line or
using your favourite text editor, open up ellipse.tex.
Inside are LaTeX commands for formatting equations.
To see the equations themselves you'll need to
process them within LaTeX. Open up a terminal, cd to
the appropriate directory and on the command line
type:
latex ellipse.tex

If the latex command isn't recognised then you'll
need to install LaTeX. On Ubuntu you can do so as
follows:
sudo apt-get install texlive-latex-base

The first time we ran the latex command we got
an error about breqn.sty not being found. To work
around this bug we had to go into the Options-
>Preferences menu in Minsky and check and then
uncheck the 'Wrap Long Equations In LaTeX Export'
option and then perform the export again.

The latex command will produce a file called
ellipse.dvi, which should open if you click on it in your
file manager – both Evince and Okular will open a DVI

Simple line
 Click once on the graph icon, then click anywhere on the
canvas to place it.
 Click on the triangular icon with a t inside it and place it
to the left of the graph on the canvas.
 Drag from the tip of t's triangle to the port (black arrow)
on the left-hand side of the graph – this wires it to the
graph.
 Click on the square Stop button to reset the simulation.
 Click the Play button underneath the menu bar.

PRO TIP
There is some innate complexity in
modelling dynamic systems that no GUI
can hide away. Also, as an evolving FOSS
project that's grown from grants and a
Kickstarter crowdfunding, Minsky is not
complete nor is it bug-free. But despite the
odd glitch and its rather basic appearance,
Minsky's core functionality has been well
established and we found it surprisingly
intuitive to use.

LV022 084 Coding Economics.indd 85 27/10/2015 13:47

www.linuxvoice.com

CODING MINSKY

86

file. If you'd like to turn it into a PDF file, do this:
dvips ellipse.dvi

Area under the graph
Let's go back to our first graph – the very exciting one
that plotted time against time. Click the component
that's to the right of const, the one that's got a strange
flattened S symbol with dt next to it. If you hover the
tool tip over it you'll notice it's called integrate. We'll
explain why in a bit. Place the integrate component

between t and the red port on the
left-hand side of the graph and connect
up the wires.

When you run the simulation you'll
see the black straight line and a new red
curve. Pause the simulation (press the P
button again) after it has just passed 4
units of time. You may want to slow the
simulation down. Now right-click on the

graph and choose Expand and a window will appear
with a clearer version of the graph with a finer grid.

The value of the red curve at any value of t is the
area under the black line up to that value of t. Let's
check this. At t=4 the black line has value 4 on the
vertical axis, and area under the graph is half of the
square with corners at (0,0) and (4,4), ie half of 4 x 4 (=
16), which is 8. And the value of the red curve at t=4 is
indeed 8.

To integrate a function just means to calculate
the area under the curve of the function plotted on a
graph. It has many uses in practice, for example, if the
black line were the speed of an accelerating car, then
the red curve tells you the distance travelled since t=0.
Alternatively, if the black line is the amount of money
saved into a bank account each day, then the red
curve would be the total amount saved.

Derivatives
Let's now use Minsky to take the derivative, a process
known as differentiation. In this example we multiply t
by itself to make t squared, then divide by 2 and plot
the result of that as the red curve. But we also take the
result and pass it through the differentiate
component to produce the black line.

If you run the simulation you will find that it
produces the same graph as before. This is not
an accident. What we have demonstrated is that
integrating the function t (black line) gives you
t²/2 (red curve), and differentiating
that gives you t. In other words, differentiation is the
reverse of the integration process.

Integration and differentiation are the basic tools
of calculus, much like addition and subtraction are
the basic operators in arithmetic. They are needed
in almost any situation in which we want to build a
model of something changing over time (or space).

Constants and variables
We've already met constants: they are values that do
not change during the run of a simulation, unless you
want to intervene and alter them. Load up the ellipse
simulation, then right-click on the 2 and choose Edit
from the context menu. Set its value to 1 and the
Slider Bounds to have Max 1 and Min 0. Next, right
click, choose Slider and you will see a little slider
appear above the constant. Start the simulation and
reduce the value slightly with the slider and you'll see
that the ellipse's width decreases. Sliders are handy
for changing constant values on the fly.

We saw above that variables can be used to
output LaTeX equations, but they have a much
more important use. Again, starting with the ellipse
simulation, place a new graph below the existing one.
Right click on x and choose Copy and you'll be able to
place a copy of x. Put it to the left of the new graph.
Do the same for y and put it below the copy of x. Now
place a plus symbol to their right and wire it up so that
x+y is sent to the black port on the left-hand side of
the graph. When you run the simulation you'll see that
this new graph displays something like the sin or cos
graphs we saw earlier.

Delete the wires from x and y to the plus
component. Now create another x and another y
and use times components to make x squared and y
squared. Then wire them to the plus component as
before. You should end up with what is shown in the
screenshot below. Notice that we could have done
this without variables by running four wires (two from

Integration: about all we
remember from A-level
maths.

Constants and variables, shows the variation of x squared
plus y squared in the bottom graph.

PRO TIP
Minsky is named after economist Hyman
Minsky and its creation was motivated by
a desire by economist Prof. Steve Keen
and the code's main author, Prof. Russell
Standish, to open up the field of economic
modelling.

LV022 084 Coding Economics.indd 86 27/10/2015 13:47

www.linuxvoice.com

MINSKY CODING

87

Andrew Conway watches the solar system, but also keeps a
keen eye on Free Software and global macroeconomics.

sin, two from cos) down to the times components,
but that would be messy and hard to read. Instead we
define the x and y variables as outputs from cos and
sin respectively, and use them when constructing an
input to the bottom graph.

Now use the slider to put the constant back to a
value of 1 and run the simulation. It may not seem
tremendously exciting, but the graph will show a
constant value of 1. If you slow the simulation down
and watch the moving dot on the first graph you
should be able to tell what's going on. The second
graph is showing the distance of the current point on
the first graph from the centre (0,0). For a circle this
distance is equal to the radius, which in this case is
1. For an ellipse the distance to the centre varies with
time. Try varying the slider as the simulation runs to
verify this.

What we've shown here is that the distance of
a point from the origin (0,0) is x squared plus y
squared. In fact, we've used Minsky to illustrate a
mathematical theorem originally stated by the Greek
chap Pythagoras. We've also proved what's called a
trigonometric identity: the square of cos(t) plus the
square of sin(t) is equal to 1 for any value of t.

Let's bring this incidental tour of fundamental
mathematics to an end for now and turn to generating
some chaos.

The Lorenz Attractor
The Lorenz Attractor may sound like a long lost
episode of Star Trek, but it's actually a feature of a
famous chaotic system first described by Edward
Lorenz. To produce it only involves the components
we introduced above, but as it's a little more complex
you might want to load up the file lv8_lorenz.mky via
the GitHub link above.

If you load up the lv8_lorenz.mky file, the system
has the "classic" parameter values mentioned in the
boxout and starts with x=1 and y=z=0. When you run

the simulation it will soon settle down into an orbit on
the x-y plot, but notice that it's not periodic – it's not
repeating the orbit exactly. You can see this also in
the graph of all three parameters at the bottom. After
some time the system will break out of the first orbit
to the lower left and enter another orbit that's above
and to the right. These two orbits gives the Lorenz
attractor its distinctive figure-of-eight shape as shown
in the image.

A parameter that determines chaotic behaviour is
ρ (Rho) and if you reset the simulation and change
its value to 10 then you'll see the system is no longer
chaotic but spirals into the centre of the lower-left

orbit. If you set ρ to 350, you'll find that the system
starts out appearing chaotic but eventually settles
down into what appears to be periodic behaviour, ie
repeating the same orbit.

And there's more
We've covered the basics of Minsky but haven't yet
touched on its raison d'être – economic modelling.
We'll get stuck into this in part 2, but in the meantime
you can learn more about Minsky at
www.debtdeflation.com/blogs/minsky and we
recommend Prof. Steve Keen's video tutorials that
you'll find there. The later ones do involve a bit of
economic theory, but the first few will nicely
complement what we've described in this article and
show you a few more tips and tricks.

The Lorenz Attractor was originally dreamed up to model convection.

What is the Lorenz Attractor?
In the 1960s Edward Lorenz was using numerical models
to describe motions of air in the atmosphere, but he soon
realised they exhibited some surprising behaviour. This
prompted a swell of interest from mathematicians to work
on what is now known as chaos theory. Lorenz was the
person who coined the term 'butterfly effect', referring to
the fact that a small change in a chaotic system can lead
to dramatic consequences in how it evolves: a butterfly
flapping its wings (so the theory goes) could cause a
hurricane at the other side of the world.

The state of the Lorenz system is described by three
variables (x, y and z) and how it evolves from one time step
to the next is determined by three equations, represented
by the three main blocks in Minsky that end in x, y and z.
These equations have three parameters represented by
Greek letters: ρ, σ and β. Many values exhibit chaos, though
the "classic" ones originally used by Lorenz are ρ=28, σ=10
and β=8/3. The Lorenz attractor is the shape shown on the
x-y plot. This is actually a 2D projection of it (or shadow),
because the attractor is a 3D object (x, y and z).

We've used Minsky to illustrate a
mathematical theorem originally stated
by the Greek chap Pythagoras

LV022 084 Coding Economics.indd 87 27/10/2015 13:47

CODING NINJA

www.linuxvoice.com88

Most of the time, filesystems are data
structures stored on some physical storage
(such as a hard disk) that enable us to save

and read data. That's actually not the whole story
though, since files and directories are just a way for
our computers to organise information for us to use.
As well as the sort of disk filesystems we're used to,
we can create filesystems that return any type of data
to us.

Traditionally, filesystems were created by the kernel,
but now we can use Filesystems in USErspace (Fuse)
to write programs that can create filesystems from
outside the kernel. In this tutorial, we're going to create
a filesystem in Python. Our really simple filesystem
will just include just one file, called date, and the
contents of this file will be the current date.

First, make sure you have Fuse installed. In Ubuntu,
this is done with:
sudo apt-get install fuse

Then you'll need to install the Python module we'll
be using to create our filesystem:
sudo pip install fusepy

Now that we have everything we need, we can write
the code. The majority of our code is taken up by a

class that defines our filesystem. The outline for this
class is:
class Context(LoggingMixIn, Operations):
 def getattr(self, path, fh=None):
 #code

 def read(self, path, size, offset, fh):
 #code

 def readdir(self, path, fh):
 #code

 access = None
 flush = None
 getxattr = None

 listxattr = None
 open = None
 opendir = None
 release = None
 releasedir = None
 statfs = None

As you can see, there are 12 operations that users
could perform on the filesystem, although only three
are relevant to our simple program. We've assigned
all the others a value of None to avoid any problems if
they're called by the user. The three operations we're
interested in are get attributes, read file and read
directory. Each of these methods will need fleshing
out to return the right results when they're called.

Our attributes
First, let's take a look at getattr. The operating system
will call this function when it needs the attributes of
a file. It'll pass two pieces of information; the path
and the file handle (we only use the path). The OS will
expect this function to return a dictionary containing
all the relevant attributes for the file. Our simple
filesystem will only have two different paths: /, which
is the root of the filesystem, and /date, which is the
file containing the current date. Our code to process
these is:
 def getattr(self, path, fh=None):
 if path == '/':
 attr = dict(st_mode=(S_IFDIR | 0755), st_nlink=2)
 elif path == '/date':
 attr = dict(st_mode=(S_IFREG | 0444), st_size=30)

 attr['st_ctime'] = attr['st_mtime'] = attr['st_atime'] =
time()

Our very own filesystem running and displaying the date.

BEN EVERARD

CODE NINJA: MAKE A
FILESYSTEM WITH FUSE
Combine Python and Fuse to build a new directory structure into your distro.

WHY DO THIS?
• Understand the Fuse

method for building
filesystems

• Integrate your data with
your operating system at
a fundamental level

• Add another string to your
Python bow

Our really simple filesystem will include
just one file, and the contents of this file
will be the current date

LV022 088 Coding Ninja.indd 88 29/10/2015 10:59

NINJA CODING

www.linuxvoice.com 89

 return attr
Since / is a directory and /data is a file, they

require slightly different attributes. They both need
to have a mode which is calculated using the flags
imported from the stat module and the number that
corresponds to the Linux permissions for the file. They
both also have a created time, modified time and an
access time. For our filesystem, these aren't really
relevant, so we've just set them to the current time.

The directory also needs an attribute with the
number of hardlinks pointing to the directory. This, for
a directory with no subdirectories, is 2. The file also
needs a size. We've cheated a bit on this one and just
hard coded in a size of 30, but it could vary depending
on the actual date.

The second method we need is read. This will be
called whenever the OS wants the content of a file.
In our case, there's only one possible file, so we only
need to check that that's the file being read and then
return a string with the current date:
 def read(self, path, size, offset, fh):
 if path == '/date':
 return datetime.datetime.now().strftime("%B %d,
%Y") + '\n'

The final method is called whenever the OS wants
the content of a directory. Again, we only have one
directory, so all we do is return a list of the contents of
a directory:
 def readdir(self, path, fh):
 return ['.', '..', 'date']

That's our main class complete. Now we just need
the rest of the program to wrap this class up and
launch the new filesystem.
from stat import S_IFDIR, S_IFREG
from sys import argv, exit
from time import time
from fuse import FUSE, Operations, LoggingMixIn
import datetime
class Context(LoggingMixIn, Operations):
 #code from above
if __name__ == '__main__':
 if len(argv) != 2:
 print('usage: %s <mountpoint>' % argv[0])
 exit(1)

 fuse = FUSE(Context(), argv[1], foreground=True,
ro=True)

The first block imports all the modules we need.
The line if __name == '__main__:' looks a little odd, but
is a useful Python snippet for any code that can both
be run from the command line and called from other
pieces of code. The expression evaluates to True if
the file is the main program being run. In our case, we
use it to launch the Fuse filesystem if we're running
this as a program, but also enables our Python file to
be included as a module in other programs. The final
line uses the imported FUSE function to launch the
filesystem. The first two arguments are our new class
and the location to mount the filesystem (this is taken
from the argument passed across on the command
line when the filesystem is launched. The others just
set the standard filesystem parameters.

With all this code in place, you can launch the
filesystem from the command line. The permissions
needed to launch a filesystem vary from distro
to distro. For testing purposes, it's easiest to run
everything as root. You'll need two terminal sessions.
In the first terminal session, get everything ready with:
mkdir fuse-test
sudo python fusedate.py fuse-test

In the second session, you can then navigate the
new filesystem and read the current date:
sudo bash
cd fuse-test
cat date

That's all there is to creating filesystems. Obviously
ours is very limited, but the basic techniques are
exactly the same regardless of how many files or
directories there are.

The fusepy documentation
is a little lacklustre, so if
you need more information
about what a particular
operation does, check out
the documentation for
the main version of Fuse:
fuse.sourceforge.net.

CODE NINJA: MAKE A
FILESYSTEM WITH FUSE
Combine Python and Fuse to build a new directory structure into your distro.

Ben Everard is the best-selling co-author of the best-selling
Learning Python With Raspberry Pi.

Fuse filesystems
Fuse isn't just for creating toy filesystems. It can also be
really useful as it lowers the barrier to entry and makes it
possible for non-kernel hackers to create new filesystems.
This also makes it easier to distribute new filesystems
as they don't require the user to compile them as kernel
modules. Here are a few of our favourite:

 SSHFS Mount remote filesystems using just SSH with
no other software required on the remote server.
 EncFS Create encrypted filesystems to keep your
data safe.
 Archivemount Use compressed archives such as
tarballs as though they were normal directories without
unzipping them.

LV022 088 Coding Ninja.indd 89 29/10/2015 10:59

www.linuxvoice.com

CODING HASKELL

90

Haskell wasn't the first functional language,
but it was the one that consolidated
functional programming, and if you're looking

for a pure functional language today, it's your best
choice. Haskell has also become a bit more popular
lately as functional ideas come into wider usage. It's
quite different from imperative or OO languages, and,
as with some of the other languages we've looked at,
wrapping your head round it can be a challenge. (It
doesn't, for example, have a for loop.) But it's fun to try
out, and the excellent interactive interpreter makes it
easy to experiment with.

History
Lambda calculus, developed by Alonzo Church long
before modern computers existed, is basically a way
of thinking about functions and computability (we
looked at Lambda functions in LV008's Code Ninja).
Unsurprisingly, it was a major part of thinking about
computer languages in the 1950s and 1960s. Lisp
development owed quite a bit to lambda calculus, and
Robin Milner used the same ideas when developing
the functional language ML in the early 1970s.

There was quite a bit of interest in functional
languages and lazy evaluation (evaluating an
expression when it is needed and not before, which
has the potential to massively reduce running time)
at the time, but the first commercial lazy and purely
functional language was Miranda, produced by David
Turner at Research Software Ltd in 1985. Miranda
programs consisted of a set of equations, defining
functions and data types. As with Haskell, the order
of the set was irrelevant, and indentation was used to

minimise the need for brackets and avoid statement
terminators (as in Python). Lists and tuples were
important to Miranda, something else that made its
way into Haskell.

The original plan for the Haskell committee was
to use Miranda as a jumping-off point for the new
language, but Turner politely declined the request,
preferring to maintain Miranda as a single-dialect
language. Haskell still owed a great deal to Miranda,
but having to start from a blank page, while meaning
a great deal more work, did give them more scope to
make some potentially more radical decisions.

The first meetings of the committee, including the
one where the name was decided upon (it is named
after the logician Haskell Curry, but Haskell was felt to
be a better and less pun-inducing name than Curry),
were face-to-face, but after that the work was all
done over email. Haskell 1.0 was defined in 1990, and
improvements were made over the next seven years,
finally producing Haskell 98 in the form of The Haskell
98 Report (all 150 + 89 pages of it). This consisted
of a minimal core language and a standard library.
Haskell is intended to be easy to extend and vary.

More recently, the borrowing of functional ideas into
languages like Python and Ruby has made Haskell
a more popular language outside of academia,
and there's now an active coder community.
Further improvements have also been made to the
specification, with the most recent release, Haskell
2010, including bindings to other languages (the
foreign function interface), and various extensions.
There's an open-source library repository, Hackage,
maintained by the community, and a useful wiki is
also available from the Haskell webpage.

Getting started
Several distros offer packaged versions of the
Glasgow Haskell Compiler (GHC) and the interactive
interpreter. For Debian/Ubuntu, install ghc, and for
other distros check out the Haskell website.

Once you've started ghci, the interactive interpreter,
try a few expressions:
Prelude> "Hello world"
"Hello world"
Prelude> 6 + 3
9

Experimenting with the
interpreter ghci.

JULIET KEMP

HASKELL: PROGRAMMING
BACKWARDS
Rock-like reliability, a solid safety record in embedded systems, and a cool name.

LV022 090 Coding Haskell.indd 90 29/10/2015 12:31

www.linuxvoice.com

HASKELL CODING

91

The Haskell Working
Group, Oxford, 1992.

Prelude is a standard module that's imported by
default. It includes various functions including string
functions, list functions, and basic I/O operations.

You can test a lot of expressions in the interpreter,
and it's good for experimenting, but what if you want
to write an actual function? You can't write functions
directly in the interpreter; instead you need to create a
source code file and load it in. Create a file hello.hs:
helloworld = print "Hello World"

Load and run it in GHCI:
Prelude> :load hello.hs
[1 of 1] Compiling Main (hello.hs, interpreted) Ok,
modules loaded: Main.
*Main> helloworld
"Hello World"

So, you can define a function with just an equals
sign, just like a variable. Just remember, once an
assignment is made, you can't change it. Try this:
helloworld = print "Hello World"
helloworld = print "Hello World!"

Load and run that, and you'll get an error:
Prelude> :load hello.hs
[1 of 1] Compiling Main (hello.hs, interpreted)
hello.hs:2:1:
 Multiple declarations of `helloworld'
 Declared at: hello.hs:1:1
 hello.hs:2:1
Failed, modules loaded: none.

This applies to variables as well as functions (in
fact, variables and functions are basically the same
type of thing); see the boxout for more on code purity
and functionality.

Tic Tac Toe
Let's try writing a tic-tac-toe program. This will be a
very basic text-based input/output, rather than
anything graphical, but it will show some aspects of
Haskell. The first part will set up a list of the numbers
of the squares, and output them tidily:
numberedSquareList = ["0", "1", "2", "3", "4", "5", "6", "7",
"8"]

printSquare input =
 putStr (" " ++ input ++ "")
outputLine lineList = do
 mapM_ printSquare lineList
 putStrLn " "
outputWholeThing list = do
 let (topOfSquare, restOfSquare) = splitAt 3 list
 let (middleOfSquare, bottomOfSquare) =
splitAt 3 restOfSquare
 outputLine topOfSquare
 outputLine middleOfSquare
 outputLine bottomOfSquare
main = do
 outputWholeThing numberedSquareList

 numberedSquareList will be used to give a
number to each of the 9 squares in a standard
tic-tac-toe board. The main function just outputs
numberedSquareList as a three-by-three square,
which is set up by the rest of the functions.
 printSquare takes a single input. It's possible to
specify the type signature of a function, and we'll do
this for a function later, but as a rule Haskell can
guess it from your code. Here, the input is a string,

Haskell: functional and pure
In an imperative language, you give the computer a
sequence of actions to perform in a specific order.
In a functional language, like Haskell, you give it
instead a collection of expressions, so it knows
what to compute, but not how or when to do it.

In order for this to work, it's important that
functions should have no side-effects. That means
that a functional expression must not change
any part of the program state, and the result of a
function must depend only on its input, and not on
anything else happening elsewhere in the program.

This makes life a bit difficult if you want to do
any input/output: I/O actions necessarily have side
effects, as they interact with the outside world and
can alter system or program state. To deal with
this, Haskell divides code into 'pure' and 'IO'. Pure
code has no side effects, and never alters state.

Impure code (which includes system commands,
modification of global variables, and I/O) may have
side effects or alter state.

A corollary of all of this is that within pure code,
variables mustn't vary, but remain the same once
set. Otherwise the result of a function that refers to
the variable foo might differ depending on whether
or not foo changed at another point in the program.

Given no side effects and no changes to
variables, the expressions in a program can be
evaluated in any order. This supports Haskell's
"lazy" approach: Haskell will evaluate an expression
when and only when its result is needed. This
doesn't matter, because the program has no moving
parts; whenever you evaluate the expression, the
result will be the same. Functional languages
also make it easy to pass functions into one

another, as well as sticking them together. The
map function is an example: it takes a function
and a list as parameters, and applies the function
to every element of the list. Haskell functions can
also return functions, as well as having them as
parameters. These ideas all arise from lambda
calculus, and will be familiar if you know any Lisp.
Functional programming can be a bit of a challenge
if you're familiar with imperative programming,
but it has some real advantages for certain sorts
of project. It entirely avoids a certain class of
bugs, those which are due to unanticipated side
effects; and makes testing easier. It also makes it
possible to automatically parallelise the pure parts
of your code (recent versions of ghc will do this for
you), as side effects are one of the big issues with
parallelised code.

Rock-like reliability, a solid safety record in embedded systems, and a cool name.

LV022 090 Coding Haskell.indd 91 29/10/2015 12:31

www.linuxvoice.com

CODING HASKELL

92

and the function outputs it to the screen with a
space on each side.
 outputLine takes a list, and applies printSquare to
each member of the list. mapM_ and mapM are the
functions that handle applying functions to lists, and
they're really useful. The syntax, as shown here, is
mapM function list
 mapM also collects and outputs the return value of
the function as it is repeatedly applied. Here, we're
not really interested in the return value, so we use
mapM_, which discards the return value. mapM and
mapM_ deal with monads, whereas map does not;
see the boxout for more on monads.
 outputWholeThing takes a list and outputs it three
elements at a time. The splitAt function does what
you might expect: it splits a list at the given element
(note that lists in Haskell are indexed from zero). So
first we split the list into the first three elements and
the rest of the list, then we split the rest of the list
again into the first three elements and the
remainder. (This doesn't check for errors, like a list
that is the wrong size; it just assumes that we're
getting in a 9-element list.) Then outputLine outputs
each section of the list, creating our tic-tac-toe grid.
Now let's try to get a player's move, and then save it:

getMove player = do
 putStrLn ("Enter square to move for player " ++ player)
 square <- getLine
 return (player, read square :: Int)
saveMove player square = do
 let (listA, listB) = splitAt square numberedSquareList
 let numberedSquareList = listA ++ player ++ (tail listB)
 outputWholeThing numberedSquareList
main = do
 outputWholeThing numberedSquareList
 (a, b) <- getMove "x"
 saveMove [a] b
 outputWholeThing numberedSquareList

getMove uses getLine (self-explanatory) to get the
square for the move from the user. This will be read
in as a string, so when returning it, we use read to

translate it into an Int. (Note that read doesn't do any
error-checking; you could look into using reads.)

saveMove uses a couple of useful list functions.
splitAt does what you'd expect: it splits the given list
at the given index (with that index starting the second
list). We then stick the two lists back together, adding
the player value (which will be X or O, in tic-tac-toe)
between them, and dropping the first value of the
second list. (The function tail list returns all but the
first value of a list.) Since we split the list at the index
point, this effectively creates a list that has the new
move in the place where the index number used to
be. So if player X chose square 6, the list now has X
instead of 6. We then output the whole thing to show
the player what the board now looks like. At this stage,
we're only getting player X to play, and only once.

You might notice that sometimes we use let x =
y, and sometimes we use x <- y. The former is used
for 'pure' code, and the latter for I/O (or other impure)
code. If in doubt, experiment, and the compiler will tell
you if you've got it wrong.

This all looks good, but if you run it, you'll find that
the final output no longer has the x in the 'saved'
position. This is because Haskell is a pure language;
you can't reassign variables once they've been
assigned. In saveMove, you're not actually replacing
numberedSquareList. You're creating a new local
variable, also called numberedSquareList, which only
exists for the lifetime of that particular function. Once
we return to main, the local variable disappears, and
the original numberedSquareList hasn't changed.

One way to get around this is to get saveMove to
return a value, and keep creating new lists:
saveMove :: [String] -> Int -> [String] -> IO [String]
saveMove player square oldList = do
 let (listA, listB) = splitAt square oldList
 let newList = listA ++ player ++ (tail listB)
 outputWholeThing newList
 return newList
main = do
 outputWholeThing numberedSquareList
 (a, b) <- getMove "x"
 list1 <- saveMove [a] b numberedSquareList
 (a, b) <- getMove "o"
 list2 <- saveMove [a] b list1
 (a, b) <- getMove "x"
 list3 <- saveMove [a] b list2
 (a, b) <- getMove "o"
 list4 <- saveMove [a] b list3
 (a, b) <- getMove "x"
 list5 <- saveMove [a] b list4
 (a, b) <- getMove "o"
 list6 <- saveMove [a] b list5
 (a, b) <- getMove "x"
 list7 <- saveMove [a] b list6
 (a, b) <- getMove "o"
 list8 <- saveMove [a] b list7
 (a, b) <- getMove "x"
 list9 <- saveMove [a] b list8
 putStrLn "All done!"

It's a draw, as tic-tac-toe
tends to be when both
players know what they're
doing.

LV022 090 Coding Haskell.indd 92 29/10/2015 12:31

www.linuxvoice.com

HASKELL CODING

93

Juliet Kemp is a friendly polymath, and is the author of
Apress’s Linux System Administration Recipes.

saveMove now takes another argument: a list to
act on. It also returns a list. We've also added a type
signature at the top to make it more maintainable (this
is good practice to do for all your functions, although
not necessary).
[String] -> Int -> [String] -> IO [String]
means that the function takes a String array, an Int,
and another String array, and outputs an IO String
array. If you're struggling to work out a type signature,
you can use :type functionname in the interpreter and
it will tell you what it thinks the type is.

In main, we repeatedly call saveMove on the
current list, then use the list it returns as the input
the next time. This also means we're getting moves
from the X and O players alternately, which is handy.
Note that the last statement in a do block must be an
expression, so we need that last putStrLn line.

The downsides are, firstly, that it's rather untidy, and
secondly, that there's no way of cutting a game short
if someone wins. Haskell doesn't really do iteration
(though there is a way of iterating over lists), but a
very common Haskell idiom is recursion. Let's try a
recursive approach to our game:
import Control.Monad
saveMove
 -- as before, but delete outputWholeThing line
wholeMove player oldList = do
 (a, b) <- getMove player
 newList <- saveMove [a] b oldList
 outputWholeThing newList
 return newList
playGame list = do
 putStrLn "Who plays next? x, o, or q to quit"
 continue <- getLine
 unless (continue == "q")
 newList <- wholeMove continue list
 playGame newList
main = do
 outputWholeThing numberedSquareList
 playGame numberedSquareList
 putStrLn "All done!"

Control.Monad contains some useful functions

to use with monads, including unless and when.
wholeMove is just a helper function to get and save a
specific move; there's no new code.

playGame is the clever bit. It takes a list as an
argument: this is the current state of the game. First
we ask which player has the next move (and offer the
chance to quit), and get the answer. If the answer is q,
the function ends. Otherwise (unless q), we perform
the next move, get a new list out again, and then call
playGame again on the new list, which has the new
state of the game. We keep going around until the
user types q at the prompt, passing the new state
back into the method each time.

main now outputs the initial (blank, numbered) grid,
then passes that into playGame to start the recursion.
When the user answers q, we jump back to main, and
output "All done".

There are a few ways you could improve on this
code: You could look into the State monad functions
to find other ways of passing state around.

Currently, you can keep playing even once all the
squares are blank; you'll just overwrite them. You
could add something to stop the game once that
happens. Similarly, the user has to decide who has
won; could you find a way of checking for that?

More fundamentally, this code isn't super-Haskell-y
in that it could probably have a better separation of
pure and IO code. Improving that would be a great
way of finding out more about how monads and type
signatures work.

If you want to get stuck into improving this code or
writing your own, there are plenty of online resources
available. Try Learn You A Haskell For Greater Good
(free online, or in print) for a bunch of great tutorials.
The Haskell wiki is a good reference, and there's a
thorough Haskell book on Wikibooks. Real World
Haskell is also available online. Have fun!

Playing the game! Still very
basic though...

Monads
Monads are part of functional programming, and enable
Haskell to maintain its pure/not pure division by isolating
parts of code that might have side-effects (like IO code).
They enable you to guarantee that certain calculations are
done in a particular order; as discussed above, this isn't
usually the case in Haskell. Monadic actions enable you to
pass elements and results from one function to the next in
a way that is illegitimate in pure code. They also contain a
way of turning a type into a monad type – the IO monad can
turn a String into an IO String, for example – again, allowing
the separation between pure and 'real-world-acting' code.

IO is a common monad, as is Maybe, which we don't use
in this tutorial but which is useful for computations that
could fail. There are many, many explanations of monads
online, and different people understand them in different
ways. You can't get all that far in Haskell without them, but
once you come to grips with them, they're incredibly useful.

LV022 090 Coding Haskell.indd 93 29/10/2015 12:31

CORETECHNOLOGY

www.linuxvoice.com

Valentine Sinitsyn develops
high-loaded services and
teaches students completely
unrelated subjects. He also has
a KDE developer account that
he’s never really used.

94

Computers speak machine language. Humans
usually don't. Machine code is just too
primitive, too low-level for our brains, which are

used to higher-level abstractions. When we design a
house, we decide on materials, the number of rooms,
and which colour the ceiling will be, not how the bricks
will stick together. The same applies to most
programs we write.

Except for specific system stuff, our software uses
high-level programming languages. They are great for
programmers, but all Greek to computers. So, what
we need is some way to translate these languages
into machine code.

This is basically what compilers and interpreters are
all about. Today, we'll see how this conversion occurs
in various situations. Consider a trivial C program:
int main()

{
 return 0;
}

How to run it? Unless you are very new to Linux
(welcome!), the answer is straightforward:
$ gcc -o trivial trivial.c
$./trivial

gcc is the GNU C Compiler, and it is part of GCC,
which stands for GNU Compiler Collection (still
loving your recursive acronyms, yeah?). Essentially,
this command transforms C code into machine
instructions and packs them in an ELF executable
(LV018). This is sometimes called Ahead-of-time
Compilation or AOT, because the program is built prior
to execution.

The gcc command is really a shortcut for whole
pipeline of things. First, the lexer recognises the
tokens (like keywords or variable identifiers) that your
code is made of. Tokens form syntactic constructions
(say, loops or function definitions) that the parser
recognises. If the parser comes across something
it doesn't understand (for instance, two tokens that
don't fit together, like if and for), you get a compilation
error. Otherwise, an Abstract Syntax Tree or AST is
built in the compiler's memory (see Figure 1), which
is a program's representation that's not tied to input
language syntax.

AST is well suited for semantic analysis and, in
particular, optimisation. Optimisation is a tricky
topic, and although gcc provides command-line
switches to fine-tune individual optimisations, most
often you just set the desired optimisation level with
-O<something>.

At the next pipeline stage, the compiler walks
through the optimised tree and emits native machine
instructions for your program. Usually, this step is
invisible, but you can instruct gcc to stop here to see
the assembler; just use the -S switch. This is what
trivial's main() function looks like:
main:

CORE
TECHNOLOGY
Prise the back off Linux and find out what really makes it tick.

Code compilation
Join us for a fantastic voyage trip to the internals of a process in
which plain English words are melt into executable machine codes.

Figure 1. Simplified AST
tree for abs(x) function
as seen by the Python
compiler.

abs

x

args body

value

or elsebody

op operand
testtest

left
ops

comp

return

IfExp

- x

x 0
<

Compare

UnaryOp x

LV022 094 CoreTech.indd 94 29/10/2015 15:32

 CORETECHNOLOGY

www.linuxvoice.com 95

 pushq %rbp
 movq %rsp, %rbp
 movl $0, %eax
 popq %rbp
 ret

Compiled code units are saved as object files, which
conventionally carry the .o suffix.

Finally, object files are combined together in one
executable, or shared library. This is the linking
stage, and in fact it isn't part of the compiler. A
separate program called a linker (ld, in the case of
GCC) resolves external references (like the extern
variables or library functions) and lays out everything
to produce a valid ELF binary. Or, it can produce
something different, as a thing named a "linker script"
dictates. Practically, you don't write linker scripts
(they are rather low-level) or call ld directly. Everything
happens behind the gcc curtains.

Ahead-of-time (or simply traditional) compilation
has several benefits. As it runs "offline" on a build
farm and not in real time on an end-user device,
it can involve deeper and more time-consuming
optimisations. Together with native code generation
this yields a more efficient binary. However, it would
necessarily be system-specific (or non-portable), and
you can't just copy an ELF image from your x86 PC to
an ARM smartphone and hope it will work properly.
This could be a problem, and if platform independence
is a priority, another approach might be helpful.

In the meantime
The trick is not to target any specific processor
architecture or operating system during the code
generation phase. Instead, the compiler emits
instructions of a virtual processor, often called
"bytecode". The problem is that virtual processors
don't exist in silicon, so you need to implement them
in software. This is the approach usually taken by
interpreters and language virtual machines (VMs).
Some languages (such as Python) bundle the
compiler and virtual machine together, while others
(Java) keep them separate.

Bytecode doesn't need to be as low-level as real
machine instructions. For instance, the Java virtual
machine has an instruction to get an array's length,
something that isn't readily available even in C. Python
implements an instruction to print a string or setup
the with block. Being able to design an instruction set

for a language makes the compiler simpler. And of
course, generated bytecode can run on any platform,
provided the latter has a virtual machine available.

But there are also some downsides. In practice, you
can't ditch platform-specific code altogether, as you
need some way to interact with the environment you
run in. Interpreted languages are also significantly
slower than compiled ones, as virtual machines have
measurable overhead.

To see is to believe, so let's have a look at the
bytecode of one popular interpreted language. You
guessed it, Python. Consider a simple function that
returns an absolute value of its sole argument:
>>> def abs(x)

... return -x if x < 0 else x
The Python Standard Library provides the dis

module, which is a disassembler for Python bytecode.
Note it is naturally implementation-specific, and if
you use anything other than CPython, the command
below may not work for you:
>>> dis.dis(abs)
 2 0 LOAD_FAST 0 (x)
 3 LOAD_CONST 1 (0)
 6 COMPARE_OP 0 (<)
 9 POP_JUMP_IF_FALSE 17
 12 LOAD_FAST 0 (x)
 15 UNARY_NEGATIVE
 16 RETURN_VALUE
 >> 17 LOAD_FAST 0 (x)
 20 RETURN_VALUE

abs() translates to nine bytecode instructions.
Numbers in the first column denote lines of source
code. CPython's virtual machine is stack-based, and
it has no registers as real processors. This hurts
performance a bit, but allows for a simpler design.

First, the function pushes the x value and 0
constant on to the stack. Then the COMPARE_OP

Get to know ctypes
ctypes is a portable way to create and manipulate C
language types from Python. It can call into shared
libraries, and wrap Python functions so that libraries can
call them back. ctypes is mainly useful to create bindings
to C libraries. It isn't blazing fast, but requires zero C code.
ctypes works on the ABI (Application Binary Interface) level,
which is somewhat easier to break but doesn't involve any
compilation steps. However, if you use it carelessly, you can
crash the Python interpreter quite easily.

Figure 2: Python defines
quite a few bytecode
instructions. All of them
are described in the dis
reference manual.

Ahead-of-time compilation can involve
deeper and more time-consuming
optimisation than just-in-time

LV022 094 CoreTech.indd 95 29/10/2015 15:32

CORETECHNOLOGY

www.linuxvoice.com96

instruction pops both, compares them and pushes
the result. POP_JUMP_IF_FALSE pops the result of
comparison, and branches to instruction 17 (marked
with a double arrow) if it is false. Here, the code
again puts x on the stack and returns a value from
the stack's top (ie, x) with RETURN_VALUE. Another
branch works in a similar fashion. The documentation
for the dis module lists all bytecodes known to
CPython's VM. There are quite few of them, but still
less than in a typical processor's instruction set.

Just in time
Conceptually, Just-In-Time compilation is like Ahead-
Of-Time compilation, but there is one very important
nuance. It happens "online", on the end-user device,
often while the program is running. This poses some
challenges, but if implemented properly, can also yield
measurable benefits.

The main challenge is probably that the end-user
device's processor is probably slower than that
of the developer's machine or build farm, and is
often battery-powered. Moreover, you don't carry a
smartphone to build software on it, so the compilation
process shouldn't be resource-intensive. This limits
the amount of optimisation that the compiler can do,
and the amount of code it compiles. JIT usually deals
only with performance-critical application parts, and
leaves the rest to the emulator. As a rule, JIT compiler
also works on intermediate (bytecode) representation.
It's simpler to translate than source code, and also
offloads many things to the developer's machine, as in
AOT. Sometimes the results of JIT are also cached on
device for later re-use.

At the same time, JIT techniques enable targeted
optimisation. The compiler knows exactly what CPU
it runs on, and can potentially emit machine code
for this particular processor. More importantly, the
compiler knows how the program is being used, and
can employ profile-guided optimisations. Say, if you
barely use feature A, there's no point spending time
and resources compiling it.

Perhaps the trickiest part is striking a balance
between compilation costs and optimisation level.
Again, there's no single solution. One way is to work on
method or function level. The VM starts in interpreter
mode and collects statistics on which methods
are executed most often. Then it emits optimised
machine code, so they could execute faster. Oracle's
Java VM behaves this way. In fact, it's called HotSpot
VM because it is all about detecting "hot spots" in your
Java bytecode and optimising them properly.

Hot traces
Tracing JIT is an alternative approach. The idea is
that programs spend most time in loops, or code
that jumps to the same origin. These loops can span
multiple methods (albeit they don't need to) and are
dubbed "hot paths", as opposed to "hot spots" in
method-level JIT. Internally, tracing the JIT compiler
keeps a counter for each code location. Initially, the

VM runs in monitor mode. It interprets bytecode and
updates the counter each time a specific location
is visited. When the counter appears to be above a
threshold, a hot path is detected, so the VM switches
to record mode. Then it carefully records all effects
of bytecode execution until the code returns to the
starting point.

Now, the VM has a "trace" of the new hot path.
Instructions that can diverge from it (like branching)
are protected with guards that quickly check that the
assumptions under which the trace was taken are
still true. Then the trace is compiled to native code.
Next time the VM encounters this hot path, it executes
compiled trace instead.

Mozilla's original TraceMonkey JavaScript engine
and the PyPy Python language implementation
are both examples of tracing JIT. However, there
is no ultimate answer to which JIT flavour is the
clear winner. PyPy delivers impressive results, while
TraceMonkey was later superseded with combined
JIT techniques. Results naturally depend on the
languages you compile, and the environment.

Do it yourself
As a roundup, let's build a small JIT compiler for
mathematical expressions. To keep things simple, we
won't support variables or functions: just plain values
and arithmetic operations.

We won't start from scratch. The Numba project
(see boxout) maintains the llvmlite LLVM binding,
which focuses on JIT compilation, and we'll use it
today. We aren't going to use a dedicated parser,
though. Instead, we'll employ the ast module to peek
into the syntax tree generated by the Python compiler.
import ast
expr_str = '2+2'
ast_mod = ast.parse(expr_str)
expr = ast_mod.body[0].value

We start with the expression string and parse it into
AST. Python delivers the result as a module containing

Python JIT for real
Besides our toy example, there are some real JIT compilers
targeting the Python language. As you already know,
PyPy (www.pypy.org) sports tracing JIT. Benchmarks
look promising, and it's mature enough to run the Flask
or Django web frameworks. Pyston (www.pyston.org) is a
method-level JIT from Dropbox. Just like our tiny example,
it starts with AST and relies on LLVM to produce fast code.
The project is currently in alpha stage, but it would be
curious to watch it progress.

The problem with doing effective JIT for Python and
similar languages is in their dynamic nature. Variables may
change their types, and the interpreter dispatches this at
runtime. Objects may have dynamic attributes, and the
interpreter looks them up in a dictionary. This is bad for
machine code, where each value is typed, and the meaning
of `a + b` is totally different for `a` and `b` being integers or
strings. Sometimes, the compiler is able to infer types and
generate effective machine code, but often it's difficult or
impossible, and compiled code ends up being wasted.

LV022 094 CoreTech.indd 96 29/10/2015 15:32

 CORETECHNOLOGY

www.linuxvoice.com 97

a single expression (check it with ast.dump(ast_
mod)), and we unwrap it.

The next step is to generate an LLVM intermediate
representation (IR). The llvmlite.ir module provides all
relevant functionality:
from llvmlite import ir
def create_ir_builder():
 fnty = ir.FunctionType(ir.DoubleType(), ())
 module = ir.Module(name=__file__)
 func = ir.Function(module, fnty, name="_main")

 block = func.append_basic_block()
 builder = ir.IRBuilder(block)
 return module, builder

Here, we create an IR module and define the _main
function inside it. The function takes no arguments
and returns double. Note how LLVM relies on types for
its operations. create_ir_builder() returns a module
and an IR builder we'll use later to emit IR instructions.
def emit_ir_for_ast(builder, node):
 if isinstance(node, ast.BinOp):
 left_ir = emit_ir_for_ast(builder, node.left)
 right_ir = emit_ir_for_ast(builder, node.right)
 if isinstance(node.op, ast.Add):
 return builder.fadd(left_ir, right_ir)
 # other operations follow
 elif isinstance(node, ast.Num):
 return ir.Constant(ir.DoubleType(), float(node.n))

prog, builder = create_ir_builder()
result = emit_ir_for_ast(builder, expr)
builder.ret(result)

This fragment walks AST in descent-recursive
manner. It converts any number encountered to a
double floating-point constant, and generates IR
instructions for binary operations. ast.Add represents
addition, and fadd is floating point addition in LLVM IR.
Finally, we return the result of the top-level expression
from _main. Operator precedence is handled
automatically in the Python parser.

Then, the program calls into the llvmlite.binding
layer to compile the IR into machine code. It's rather
long and we won't show the details here; refer to
comments in sources available at ww.linuxvoice.

com. The binding functions accept IR source code as
a string (you get it as str(prog)).

Finally, we use ctypes (see boxout) to call into the
machine code we just generated:
from ctypes import CFUNCTYPE, c_double
func_ptr = engine.get_function_address("_main")
_main = CFUNCTYPE(c_double)(func_ptr)
print("_main() = %f" % _main())
ExecutionEngine.get_function_address() returns the
pointer to the _main() function we just compiled.

To try this code yourself, you'll need to obtain
llvmlite first. This could be tricky, so I suggest you
use the Miniconda installer (http://conda.pydata.org/
miniconda.html). It keeps everything in your home
directory along with system-wide Python, and is great
for trying new stuff. Download the installer script from
the link above and simply run conda install llvmlite
when done.

What does the _main() function look like at
machine code level? Disassembly (TargetMachine.
emit_assembly()) gives the answer. And there's
another surprise: it's just three instructions long. LLVM
is an optimising compiler, and as it detects that all
operands in the expression are constant, it evaluates
it compile-time. This is called "constant folding", and
that's why optimised LLVM execution time (blue bars)
doesn't depend on expression complexity. To make
comparison fair, we can disable optimisations in LLVM.
However, this doesn't change the results drastically.

Figure 3: Execution time
for varying expression
sizes. Compiled code
spends most of the time
in ctypes, that's why the
unoptimised version is
only marginally slower.

Ti
m

e,
se

c

0.2

0.15

0.1

0.05

0

Command of the month: pycc
Python's JIT is fun, but wouldn't it be nice to simply
compile your script into static binary, as we do in C or
C++? Well, it probably would, but pycc won't help you
there. Instead, pycc compiles your Python functions
into shared libraries (.so) that you can use in a
language of your liking. pycc is also part of Numba
(see boxout), and it uses the same LLVM machinery
that the @jit decorator does.

Usage is straightforward: you tell pycc which
Python sources to compile, and get a .so object.
Note that any function you want compiled should be

explicitly exported with numba.export(), specifying
both arguments and the return type:
import numba
def add(x, y):
 return x + y
export('add i4(i4, i4)')(add)

Here, i4 means 32-bit integer. Alternatively, you may
ask pycc to output LLVM bytecode with pycc --llvm.

Numba advertises pycc as an experimental feature,
and at the time of writing it had some known issues.
Nevertheless, this tool looks rather promising.

LLVM optimised
LLVM unoptimised
Pure Python

Expression JIT benchmarks

No. of Operands

1 3 5 7 9 11

LV022 094 CoreTech.indd 97 29/10/2015 15:32

www.linuxvoice.com98

/DEV/RANDOM/ FINAL THOUGHTS

Final thoughts, musings and reflections

MY LINUX SETUP
JON WILLIAMSON

Recently, the Linux Foundation
promoted a new animation series “A
World without Linux” (http://goo.gl/

H8UrrT). The intention seems to be to
remind people that they use Linux all the
time – though, since only Linux types are
going to know about it in the first place, I
guess they are hoping that it will get tweeted
or instagrammed or whatever it is you do on
Facebook these days apart from dodge
taxes. Tip: Omit the word ‘Linux’ from the link
if you want non-Linux people to look at it.

It is a very reasonable thing to do, but I am
not sure that having watched a few episodes
everyone in the world is going to rush to
download a distro. I went to a friend of a
friend’s birthday a few weeks back, and not
wanting to go empty handed, I took him an
Ubuntu T-shirt. When he opened it, I had to
explain what it was – he uses Ubuntu
because it is free and it works and he can do
all the stuff he wants to on it. He probably
never noticed the logo before.

People *do* use Linux every day, but they
don’t know, and, I suggest, they don’t care.
That’s fine with me. For people who do care,
it is more interesting to see the people who
do embrace Linux and open source doing
cool stuff – Netflix recently updated its
GitHub repository and is doing a major push
on its open source software (http://goo.gl/
it5wUH). Why? Because more people using
it (and finding bugs and fixing things) makes
it better. The average viewer may be very
slightly interested to know that without
Linux their show wouldn’t exist, but
convincing non-open-source coders is
probably more beneficial. And they might
appreciate T-shirts more.

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

Ninja-coder, product designer and co-founder of Pimoroni.

Rigol DS2072A
2-channel oscilloscope
for debugging circuits.

Fluke 287 multimeter,
which is possibly my
favourite toy.

Amazing Space
Shuttle poster which
Paul bought for me.

Marmite
for morning
crumpets.

Photos of my
daughter to remind
me to go home.

Intel NUC i7 + 34-inch
curved IPS LCD. My
primary computer.

What version of Linux are you
currently using?
Ubuntu 15.04 (though I’ve just
upgraded to 15.10 at home). All of

our Pimoroni infrastructure is running on
Ubuntu Server.

And what desktop are you using at
the moment?
Unity – it’s great with a little tweaking.
Matches my workflow well.

What was the first Linux setup you
ever used?
Yikes, that was a long time ago! It was
a painful night spent installing

Slackware in… err 2001? It took hours and
wasn’t a pleasant experience. I ended up

moving to Debian (then naturally on to
Ubuntu).

What Free Software/open source
can’t you live without?
All of them! It’s amazing to be able to
install something like wkhtmltopdf

through your package manager and
produce a PDF from a webpage then
email it to someone all without leaving the
terminal. Lots of great tools is where the
power lies.

What do other people love but you
can’t get on with?
Vim/Emacs. I’m a Sublime Text 3 user
and I while I wish it were open source I

wouldn’t change it for anything.

LV022 098 Geek Desktop.indd 98 29/10/2015 14:12

This is what we’ve done in the last 12 issues.
Subscribe to the next 12 from just £38.

shop.linuxvoice.com
Every subscription includes access to every PDF, ePub and audio edition we’ve ever published.

LV022 099 Inside Back Cover.indd 99 29/10/2015 14:27

LV022 100 Back Cover.indd 100 29/10/2015 12:44

