
August 2016 £5.99 Printed in the UK

JIM KILLOCK
OPEN RIGHTS GROUP

On spying, oversight,
and how the
government wants
to watch us all

RASPBERRY PI
RAIN, RAIN, GO AWAY

Build a virtual weather
man with a Pi, some
motors and a bit of
coloured cardboard

ELIXIR › RSA ENCRYPTION › KRITA & MORE!

LIBREOFFICE Inside the project that’s taking FOSS to the masses
TAILS Protect your privacy the easy way – install this distro!
GHOST Blog quickly and cleanly with Free Software

 Discover the power at the heart of your Linux box
 Seize full control over your machine’s hardware
 Take your first steps as a kernel hacker

LINUX
KERNEL

INSIDE THE

{ {
Generate a static site
without faffing around

HUGO
BUILD A WEBSITE

Get your words out there
into the eternal library

EBOOKS
PUBLISHING

BURSTING
WITH

AWESOME
TUTORIALS

August 2016

PIs IN SPACE!
PROUDLY INDEPENDENT SINCE 2013

www.linuxvoice.com

The Raspberry
Pi projects

orbiting the
earth

Hide data where no-one will
look: your holiday photos

PARANOIA

STEGANOGRAPHY

LV029 001 Cover.indd 1 09/06/2016 14:38

FOSSTALK LIVE
2016

A free evening of live Linux Podcasts
Saturday 6 August 2016

The Harrison, 28 Harrison Street, Kings Cross, London, WC1H 8JF
Doors 5pm

Plus Stuart Langridge and Dave MegaSlippers

http://www.fosstalk.com/tickets

LV029 002 Inside Front Cover.indd 2 09/06/2016 12:52

www.linuxvoice.com

ISSUE 29 WELCOME

3

The August issue

TO THE KERNEL AND BEYOND

What is Linux? That’s the question we’re tackling this issue.
We already know that it’s a kernel – the heart of the
operating system – but what does this mean? How is it

organised and what does it do? Despite using Linux for well over a
decade and a half, I really only had a slight idea about what went on
inside the kernel, so when we got Valentine’s article in, I was
particularly excited to read it. No only is this information interesting,
it’s also important to know. When running a Linux system – or any
OS for that matter – the more you understand, the more power you
have. One of the great things about using an open source OS is that
we can delve down into the depths and really see what’s going on.
Armed with this new knowledge, I feel I’m better equipped to deal
with any problems that may pop up in the future.

Ben Everard
Editor, Linux Voice

What’s hot in LV#029
ANDREW GREGORY
The landlord of my local pub
hates Windows 10, and I’ve
managed to persuade him to
make the switch to Linux. I’ll take
this issue with me next time I go
for a pint so he can choose his
distro from the group test. p50

Long-term Linux user and
best-selling author Ben is
usually found knee-deep in
either Python code or a
tangle of wires.

BEN EVERARD

 Linux Voice is different.
Linux Voice is special.
Here’s why…

THE LINUX VOICE TEAM
Editor Ben Everard
ben@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Editor in hiding Graham Morrison
graham@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Juliet Kemp,
Vincent Mealing, Simon Phipps,
Les Pounder, Mayank Sharma,
Amit Saha, Valentine Sinitsyn

GRAHAM MORRISON
GCC is one of those tools that I
use all the time, but I don’t know
too much about what goes on
inside it. This month, I’ve
particularly enjoyed the FAQ,
where Mike sheds a little light on
this ubiquitous compiler. p32

MIKE SAUNDERS
I use public and private keys all
the time, but they just seemed like
mysterious numbers to me until I
read John Lane’s tutorial. Now I
know exactly what I need to do to
keep my data safe when
transferring it on the internet. p84

1 At the end of each financial year we’ll
give 50% of our profits to a selection of
organisations that support free
software, decided by a vote among our
readers (that’s you).

2 No later than nine months after first
publication, we will relicense all of our
content under the Creative Commons
CC-BY-SA licence, so that old content
can still be useful, and can live on even
after the magazine has come off the
shelves

3 We’re a small company, so we don’t
have a board of directors or a bunch of
shareholders in the City of London to
keep happy. The only people that matter
to us are the readers.

SUBSCRIBE
ON PAGE 56

LV029 003 Welcome.indd 3 10/06/2016 15:05

www.linuxvoice.com

CONTENTS ISSUE 29 AUGUST 2016

4

Contents
Here on the plains of the Serengeti, a troupe of monkeys is playing…

News 06
Android is spreading its mechanical
tentacles to the Raspberry Pi 3 and Chrome
OS, OwnCloud has forked into a new project,
and the Krita project is now €37,000 richer.

Distrohopper 08
This month featuring a gateway distro for
Windows users and a destination distro for
the security-obsessed.

Speak your brains 10
On the importance of facial foliage in
matters Unixy, Linuxy and geeky in general.

Subscribe! 12/56
Never again be the sad-faced Victorian
urchin child, face pressed up against the
glass of the newsagent having missed out
on the last copy of Linux Voice.

FOSSPicks 58
Free range software, organically grown and
allowed enough space and light to grow
naturally into tasty morsels for us to install
on our Linux machines.

Core Tech 94
Look under the hood of Linux and find
out what’s making that funny noise. This
month: processes, threads and Systemtap.

Geek Desktop 98
Nick’s looking back at the olden days, which
is usually our sign that we should take his
Jameson’s away from him.

Regulars Cover Feature

What is it that makes Linux Linux? How does your distro speak to your
hardware? Why, it’s the Linux kernel of course, laid bare on page 14.

How a humble word processor became the figurehead of
resistance to the global proprietary software empire.

Interview

The Executive director of the Open Rights
Group on spying, privacy and GCHQ.

Jim Killock

Feature

Inside LibreOffice

FAQ Group Test

GCC 32
The little compiler that could –
without it, everything else would
be just a nice idea. Thanks GCC!

Beginners’ distros 50
Help your friends who haven’t
found Linux yet by recommending
one of these beginner OSes.

SUBSCRIBE
ON PAGE 56

34

SECRETS OF AMAROK
TURN TO PAGE 26

14

22inside

LV029 004 Contents.indd 4 10/06/2016 17:20

www.linuxvoice.com

ISSUE 29 AUGUST 2016 CONTENTS

5

Dip your toe in some of the code running on the ISS right now.
Pi projects in space

Tutorials

28

Ghost 44
If you have a blog and you want
to keep it simple, try this elegant,
easy to use solution.

Reviews

Love the idea of privacy
online, but don’t know
where to start? Start
here – Tails bundles
everything you need into
one easy to install Linux
distribution.

Tails

Gaming on Linux 46
The nights are light, the days are long and full of
possibility – so stay in, pull up a chair and refine
your reflexes with some fine games.

Books 48
When the power fails, you need something to do.
Why not read some books? Here are two good ones
filled with useful information.

Feature

Steganography 66
Hide data inside innocent-looking image
files to keep your secrets safe from all who
would do you harm (yes, we’re paranoid).

Hugo 68
Generate static webites without messing
about with your own themes, CSS and
HTML – Hugo does it all for you.

Publishing with FOSS 74
Write, edit and publish in EPUB format, then
sit back and watch as the public acclaim/
deafening silence floods in.

Raspberry Pi 78
Turn a stream of data from the interwebs
into a physical display, with Python,
cardboard and some LEDs.

Coding

Elixir 88
Develop a web application that’s reliable,
fault-tolerant and highly available.

RSA encryption 82
Cryptography is hard – find out how hard
with this mind-melting advanced tutorial.

42

Lumo 45
Isometric puzzle gaming for
the connoisseurs – turn on and
pretend it’s still 1984.

Krita 3.0 43
For drawing, animation and
aimless doodles, Krita is the best
Free application by a mile.

LV029 004 Contents.indd 5 10/06/2016 17:20

www.linuxvoice.com6

NEWS ANALYSIS

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is ex-president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

The long-running lawsuit Oracle
started against Google back in 2010
reached another milestone recently

with a jury decision that Google’s use of the
Java language in Android constitutes fair
use. I spent a good part of May in San
Francisco and testified in court there as to
how, in 2006–7, Sun Microsystems released
the Java platform under the GNU General
Public Licence.

I testified because of my role as Sun’s
head of open source at the time. Releasing
Java as OpenJDK was an excellent thing to
do for software freedom – Richard Stallman
even agreed to say so on camera in a Sun
promotional video. Among the reasons why:

 The full source code for the Java platform
is now available as genuine free software
under the GPL. That basic fact is itself a
huge benefit.
 When we (the Sun Java and open source
teams) released OpenJDK in 2006–7, we
were concerned that the open source
community might not trust our motives,
so as well as using the unaltered GPL, we
also applied the licence exception that the
GNU Projects’s team implementing a free
Java used – the Classpath Exception

– unaltered. That means you can
implement Java programs in any
language. It also means that should you
borrow just a few of the class files from
OpenJDK, they can be linked with code
under other licences.
 In particular from both of those
observations, the full Java API is now
available licensed under the GPL and you
can use all of or any part of it subject to
those terms.
 Every source file in OpenJDK includes
comprehensive comments that document
the specification for each class. The
JavaDocs tool is able to harvest those
comments to build a specification for the
Java platform. Since all those comments
are licensed under the GPL, it is possible
to build a specification licensed only under
the GPL, which places no restrictions on
reimplementation.
 From the moment we announced Java
would be open source, there were many,
many questions in the community. We
collated them all and then worked with
Sun’s business and legal teams to write
approved answers to all the questions we
could find. The result was a magnum opus;
a comprehensive and authoritative FAQ
that leaves no doubt about Sun’s intent.
This includes answers to key questions

like “can Sun (now renamed Oracle
America) prevent anyone using parts of
OpenJDK for purposes of which they don’t
approve” (the answer is “no”). You’ll find
the FAQ in the Internet Archive via wmk.
me/Java-FAQ since Oracle deleted it in
2011.
 Most importantly, there is now a large
community of developers able to maintain
Java regardless of Oracle’s strategy.
Indeed, Red Hat maintains on an official
basis several of the versions that would
otherwise have been abandoned.
In the lawsuit, OpenJDK played a key role

in proving to the jury that Google should not
owe Oracle $9 billion for using the Java
programming language in Android, even
before they started using it for Android N.
But more relevantly for the rest of us, Java
remains a platform that’s suitable for
open source use because
OpenJDK was
genuinely liberated
and not just a
corporate facade.

Opinion

Liberating Java
Legal shenanigans in California make their weight felt all around the programming universe.

Releasing Java as OpenJDK was an excellent
thing to do for software freedom – Richard
Stallman even agreed to say so on camera

The full Java API is now available licensed
under the GPL, and you can use all of or any
part of it subject to those terms

It’s OK to
use Java in
Android. Phew!

LV029 006 News.indd 6 10/06/2016 15:03

www.linuxvoice.com 7

ANALYSIS NEWS

 Systemd • Google • Linux • Android • OwnCloud • Krita • LibreOffice

Summarised: the biggest news
stories from the last monthCATCHUP

Systemd kills background
processes by default
Systemd has made some

pretty controversial changes to Linux;
now it will automatically terminate
processes when you log out, so you
need to be aware of it if you run a
multiplexer like Screen or Tmux. Some
argue that this change makes sense –
that things shouldn’t carry on running in
the background unless you specifically
say they should – whereas others
argue that it’s yet another change that
goes against the decade-long Unix
philosophy.

1
Google brings Android
support to Raspberry Pi
There are already plenty

of operating systems to run on
your Raspberry Pi: a zillion Linux
distributions, NetBSD, and even
Windows 10. Now Google is bringing
a version of Android to the Pi – and
specifically, the Raspberry Pi 3. In
Google’s Android Open Source Project
(AOSP) a new device tree has popped
up for the single-board computer, so Pi
owners should soon be able to run the
vast number of apps that have been
released for Android.

2
Linux kernel 4.6 released
Yes, kernel 4.6 is here with
a bunch of improvements:

OrangeFS distributed filesystem
support, USB 3.1 SuperSpeed,
NVIDIA GeForce GTX 900
Maxwell support along with
Dell XPS 13 Skylake.
www.kernelnewbies.org

3

Linux: the largest
software project on earth
Kernel developer Greg

Kroah-Hartman has delivered a
presentation explaining that the Linux
kernel is the largest development
project on the planet. Kernel 4.5
contains a whopping 21 million lines of
source code, and in the last year the
kernel project received contributions
from around 4,000 developers in at
least 440 different countries. And to
think that in the 1990s, many people
said open source software development
was simply not sustainable…

4
Android apps are coming
to Chrome OS
Plenty of questions have been

raised about the relationship between
Google’s two mobile operating systems:
will Android and Chrome OS eventually
merge? Or will the company kill one of
them off? Well, now it looks like Chrome
OS will soon be able to run Android
applications – so more than a million
apps and games from the Play Store.
This feature is only available in the
Chrome OS developer channel right
now, but could make its way onto
Chromebooks in the future.

5
OwnCloud gets forked:
say hello to Nextcloud
Forks in FOSS are often ugly

but sometimes necessary. OwnCloud
founder Frank Karlitschek and a bunch
of long-time OwnCloud developers
have left the project to start a new one:
Nextcloud. The reasons aren’t entirely
clear, but it appears that OwnCloud Inc.
was becoming too vulnerable to the
whims of corporate backers. Nextcloud
aims to be more accountable to the
community with a better long-term
vision and future.
www.nextcloud.com

6

Krita achieves €37,000
Kickstarter success
Image editor Krita is having a

fabulous time. The developers behind
it have run a Kickstarter crowdfunding
campaign to improve the text and
vector tools, setting a target of €30,000.
In the end, the final sum of donations
was another €7,000 on top of that,
thanks to over 1,000 backers from the
community. Now the developers will
be able to work on a better interface
for adding and manipulating text, along
with a better workflow for
vector objects.

7
LibreOffice 5.2 beta has
been released
Due for release in August,

LibreOffice 5.2 will bring a bunch of
improvements across the suite: a single
toolbar mode for Writer (ideal for low-
resolution displays), new drawing tools,
a selection filter in the Cross References
dialog, better keyboard shortcuts in
Calc, and new spreadsheet functions
galore. If you want to try a beta release,
and report any bugs you find to make
the final version really shine, grab it
from the website here:
http://tinyurl.com/h6bsemy

8

LV029 006 News.indd 7 10/06/2016 15:03

www.linuxvoice.com8

DISTROHOPPER LINUX DISTROS

ChaletOS 16.04
Welcome, newcomers!

Chalet is a well put together Ubuntu-
based distro aimed at capturing
Windows users and keeping them on

Linux, rather than scaring them off back to
their proprietary comfort zone. One of the
most notable things it does in this regard is
take some liberties with the concepts of free
software by including non-free media
codecs and the like by default, sparing those
trying Linux for the first time the faff of not
understanding why their MP3 files don’t play.

Otherwise, Chalet is more about
aesthetics than anything else, since it
targets those looking for a simple and
familiar experience, dispelling the myth that
Linux is all about headaches and terminals.
As such, it offers extremely cohesive and
consistent themes, including one that
closely resembles Windows 10. To aid in this
endeavour, the distribution comes with its
own “ChaletOS Style Changer” and at first
glance, an experienced Linux user would
struggle to tell that it is the Xfce desktop,
being used since the themes are so well
implemented.

It also does well to use Xfce considering
its responsiveness without being as
bare-bones as other DEs, since speed and
decent boot times are other factors that are
attractive to Linux newcomers. Similarly,
having the stability of an LTS release will
mean that this new user won’t be put off by
any unexpected quirks. A new addition to

Simplicity Linux 16.04
Lightweight, but with functionality.

S implicity Linux – a bloat-free
distribution derived from Puppy Linux
with some differences – has released

version 16.04, since Puppy itself is now
based on the Ubuntu release cycle. The two
main releases of Simplicity – which both
use LXDE – are called Mini (previously
Netbook) and Desktop, where the former
has the bare essentials and the latter has a
full-blown desktop experience. Besides
those, there’s the X release, an experimental
sandbox release where the developers try
out new ideas. The previous Obsidian (an

even more bare-bones version) and Media
(with XBMC pre-installed) seem to have been
discontinued, with the latter presumably
since it’s not a lot of effort to install XMBC on
the Mini build.

Though Simplicity is not ready to be used
as a day-to-day desktop, its current aims are
to make it more appealing to those crossing
over from the world of Windows, and while
this is a laudable aim, for now these efforts
consist mostly of some UI tweaks and
cramming in an absurd amount of software
into a small space. This is an impressive feat

ChaletOS’ eye candy, speed and simplicity woo users away from Windows.

What’s hot and happening in the world of Linux distros (and BSD!).

DISTROHOPPER

The standard Simplicity desktop looks rather
good for a lightweight distro.

the system is “Star Point”, an educational/
tutorial application to teach newcomers
about Linux and how to use it. Though there
are many distros out there aiming to grab
Windows users, none really hit all the
requirements as well as ChaletOS, and it’s
certainly one to consider when introducing
others to Linux.

in itself, as it includes the likes of Gimp,
Firefox, Libreoffice and Wine. Simplicity is one
to keep an eye on, as the project seems to
be at a crossroads, also having dropped
64-bit support in the two main releases, but
heading in interesting directions.

LV029 008 DistroHopper.indd 8 10/06/2016 16:04

www.linuxvoice.com 9

LINUX DISTROS DISTROHOPPER

News from the *BSD camps
What’s going on in the world of FreeBSD, NetBSD and OpenBSD.

There’s been a lot of progress across
the BSD camps with regard to more
modern hardware support, as well

as more up-to-date features. The first of this
progress comes from DrangonFlyBSD,
where Wayland/Weston support has been
moving forward to the point where
applications can run on the display server. It
isn’t so straightforward yet and requires
some technical knowledge to pull off,
however the person responsible for getting it
up and running claims that even at this
stage, it feels faster than X.org. There have
also been advancements with drivers, with
the i915 DRM driver being ported over from
the Linux 4.3 kernel, replacing the outdated
one from the 3.x series, thus improving
stability and providing proper support for
Intel Skylake CPUs.

Meanwhile, CoreCLR (the open source
implementation of the .NET framework) has
been ported to NetBSD, though for the time
being it requires assemblies to be cross-
compiled from Linux. A lot more
functionality in other areas is also being
added to NetBSD, most notably progress on

support for audio mixing – before, sound
was played on a first-come, first-served
basis with only one application playing audio
at a time. There is also a wide range of
platform improvements being made to
amd64, x86 and ARM architectures, as well

DragonFlyBSD can now run the Wayland compositor and relevant applications, though it’s not quite
ready yet for most desktop users (photo: Distrowatch).

Qubes OS 3.1

as additional hardware support such as for
the Freescale i.MX7. These are some pretty
positive steps, as NetBSD has been lagging
behind the other BSDs for some time now.

Version 0.9.0 of PC-BSD’s Lumina Desktop
has also been released, adding support for
compositing effects like shadows and
transparency, as well as a new plain text
editor written in Qt 5. The Fluxbox-based
desktop is making good progress leading up
to its 1.0.0 release, which is expected to be
released at the same time as FreeBSD 11.

Qubes is an operating system focused on security, and is hard to describe as
being strictly a Linux system by design. The Linux kernel itself never interacts
with the hardware directly, with the system instead making use of the Xen
hypervisor to do that, using a microkernel design to run multiple instances of
differing operating systems. One can see it as running a virtual machine directly
on hardware, rather than running a virtual machine through an installed
operating system, and this security by compartmentalisation approach is
mostly what Qubes is about. The basic premise is to use separate isolated VMs
for different tasks – such as one for interactions where credit card details are
required and another for general browsing – to avoid cross-contamination.

Despite this seeming like a mess, the creation of the virtual machines is
handled through a small and simple VM manager, which allows the allocation of
labels such as “work” or “personal” and to assign each window running within
that VM coloured borders, making them easily identifiable so as not to create
security flaws through human error. The windows are made to be as unintrusive
as possible, making the whole experience seamless rather than clunky, and
even copy-pasting between VMs is possible through keyboard shortcuts.
However, there are many drawbacks, since not only is running multiple VMs like
this resource intensive, but Qubes runs only on a limited range of hardware. It’s
also 64-bit only, though given the memory requirements, this shouldn’t be
surprising. Actually installing the OS is also challenging, but if all you clear

those hurdles, things become straightforward. Aside from the ease of managing
VMs, for the ordinary user Qubes functions exactly like a regular Linux desktop,
using the familiar KDE’s Plasma desktop and Fedora as the template for its
VMs, though any Xen-supported OS is possible.

Qubes running two VMs, one of which is running two windows.

Version 0.9.0 of PC-BSD’s Lumina desktop
has been released, adding support for effects
like shadows and transparency

LV029 008 DistroHopper.indd 9 10/06/2016 16:04

10

MAIL YOUR LETTERS

Got an idea for the magazine? Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS
Ben – when I look at the photos of you and your three
colleagues on LV’s Welcome to Linux page, I have just
realised that I can improve my Linux skills at a stroke… by
growing a beard!
Godfrey Green, Cardigan, Wales

Ben says: Forget about us: look at Richard Stallman
and Alan Cox, or go further back to the Unix days
of beard glory and look at Brian Kernighan, Dennis
Ritchie and Ken Thompson – magnificent beasts
all of them. We’ve got a long way to go. But we’re
confident we can make it. Except Mike.

ANGELS WITH HAIRY FACES

STAR
LETTER

Bootstrap (p78 issue 28), with its ‘grid-based layout
system,’ represents best practice in the first decade of this
century and such systems remain very popular with CMS
vendors and professional developers who learned their
trade in the earlier part of this century.

But Apple, Mozilla and Opera proposed a flow-process
approach, which was adopted – albeit in the face of great
resistance from traditionalists – in 2011.

With it I have developed two websites each with a single
CSS file, which enables content to be displayed on
anything from a 19-inch Apple monitor to an Xperia2
smartphone in configurations suitable for each screen.
For example, three images in a page display one above
each other on the smartphone and side by side on the
Apple because the content flows to suit the dimensions of
the viewport.

There is no need for multiple CSS files and the recently
introduced v unit makes it easy to ensure that images
adjust their size to the available viewport.

There is a reasonably comprehensive account of how I
have done this at http://heatholdboys.org.uk/content/
HOBA_website_documentation.pdf, and it might be worth
considering an article on the pros and cons of these
different approaches to website design.
John

Ben says: Thanks John. It seems to me that

BOOTSTRAP

Let’s all just ignore the sexism implied in the notion that you
need to have a beard to be a leet Linux user…

Whether you prefer grid- or flow-based design, Linux is our
favourite platform for web and app design.

because the web is relatively new, there’s a million
ways of doing things that are all the ‘right’ way, and
things will keep changing depending on whatever
technology is in vogue this week. We do know for
certain though that, thanks to the web’s inherent
openess, the barriers to entry will remain low,
so anyone can be an expert. And of course, Free
Software means we’ll always have lots of tools to
play around with – such as Hugo, which we explore
on page 68.

LV029 010 Mail.indd 10 10/06/2016 15:10

www.linuxvoice.com 11

YOUR LETTERS MAIL

I just thought I’d drop you a line about my most recent
Linux convert. My mum has an aged PC in the corner that
she uses to watch YouTube videos. She has loads of
precious vinyl records in the garage in tattered plastic
bags that never get played because she’d rather have the
convenience of playing music through the computer,
including bands that seemingly only she can remember.
This machine has been staggering along on Windows XP
and taking increasingly long to do anything as a decade of
malware has slowed it to a crawl. Anyway she finally
trusted me enough to put Linux Mint on it, and it now
takes a hammering every Friday night when she’s had a
few and wants to relive the glory nights of Motown.
Another happy customer.
Sarah Barnes, County Durham

CONVERSION

One of the things that drew me to Linux was how
streamlined it is. There’s no need to install things you don’t
need, wasting time and bandwidth. I was an early Ubuntu
user, and benefitted from one of the free CDs that
Canonical used to post out to help with Ubuntu adoption.
It also makes sense to keep a Linux distro small as they
are often used in rural areas where bandwidth isn’t as
good as it is in the developed world. So why on earth is
Ubuntu making its next release 2GB? It’s going to be as
big as Debian at this rate, so what’s the point?
David Wilkes, Shrewsbury

Andrew says: As projects change, so their aims
change. Ubuntu made its first release 12 years
ago, so it’s not surprising that it’s shifted from its
original goals. If you want light, you can still get

UBLOATU

Ubuntu, we still
love you. Warty
warts and all.

Mint no longer
ships with all the
media codecs
included, but it’s
still easy to set up
a drunken jukebox
for family and
friends.

it, but maybe Ubuntu isn’t the best choice for you;
try Xubuntu instead and go from there. If you want
a user-friendly distribution that makes sensible
default choices on behalf of the the users, Ubuntu
is still a good bet.

LV029 010 Mail.indd 11 10/06/2016 15:10

www.linuxvoice.com

SUBSCRIBE

12

Subscribe
shop.linuxvoice.com

Get many pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

SUBSCRIBE TO

TODAY!

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

1-year print & digital: £95
12-month digital only: £38

 Licenses its content
CC-BY-SA within 9 months

US/Canada subs prices

LV029 012 Subs US.indd 12 09/06/2016 18:03

www.linuxvoice.com

SUBSCRIBE

13

All subscribers get access to every
single digital back issue –
that’s about 1,000,000 words of
tutorials, reviews and free software
hackery at your fingertips

Overseas subs prices
12-month print & digital:
Europe: £85
US/Canada: £95
Rest of world: £99 DIGITAL

SUBSCRIPTION*

ONLY £38
*WHEREVER IN THE WORLD YOU
ARE – IT’S DIGITAL, SO THERE ARE

NO POSTAGE COSTS

LV029 012 Subs US.indd 13 09/06/2016 18:03

LINUX
KERNEL

INSIDE THE

{ {
As any sufficiently advanced technology is indistinguishable from
magic, Dr Valentine Sinitsyn takes his wand and a cloak to show

you around the dark corridors of the Linux kernel dungeons.

www.linuxvoice.com14

FEATURE INSIDE THE LINUX KERNEL

Whenever you say: “I’m a Linux user,” Richard
Stallman raises his finger and rectifies:
“GNU/Linux.” His choice of nomenclature

gives the GNU project credit for creating the majority
of the user-level components we run every day. Bash?
It’s from GNU. GCC? The same. Think of a Linux
command, and check its origin – most likely, you use
a GNU variant.

What’s Linux, then? It’s a kernel – “a computer
program that constitutes the central core of a
computer’s operating system”. The kernel isn’t
something you interact with directly as a user. It is
what gives the operating system its identity. Running
Bash on Windows doesn’t make it Linux. Even the
latest Windows Subsystem for Linux just emulates
the Linux kernel on top of NT one. It doesn’t matter if
you prefer Ubuntu, Fedora, SUSE or Arch: they may
feel different on the surface, yet they are all Linuxes.
FreeBSD or Illumos may look familiar as they are Unix
variants. Still, they are separate from Linux and each
other, as they build on different kernels.

The kernel’s job is often invisible. It schedules
processes, manages memory and peripheral devices,

and does many other things. For us, computers
“just work”: we open a browser then switch to a
word processor, then back again. We in plug a
flash memory card and upload our holiday snaps
somewhere. It’s intuitive, and we hardly ever think that
there are complex algorithms in place to make things
run smoothly.

You probably know that Linux runs on many
platforms. This includes a whole range from
embedded MIPS or ARM processors through
commodity x86 and PowerPC to heavyweights like
IBM mainframes. Linux supports all this diversity from
a single codebase. To make this possible, the kernel
carefully separates generic and architecture-specific
parts. For example, the process scheduling algorithm
is generic. The code to switch process contexts
naturally is not, as each architecture has its own set of
registers. So, the scheduler chooses the next process
to run, then calls the architecture-specific code to
apply the change. Generic parts are in C; low-level
architecture-specific operations use Assembler.

C is a procedural language. Yet kernel developers
employ object-oriented or even a functional style

The Linux kernel carefully separates
generic and architecture specific parts

LV029 014 Cover Feature.indd 14 10/06/2016 15:51

INSIDE THE LINUX KERNEL FEATURE

www.linuxvoice.com 15

across the codebase. Many kernel-
level concepts are represented as C
structures with embedded function
pointers. Effectively, they act as objects
with virtual methods that you find
in languages such as C++ or Java.
Consider the filp (“file pointer”) usage
below:
long vfs_ioctl(struct file *filp, unsigned
int cmd, unsigned long arg)
{
 int error = -ENOTTY;
 if (!filp->f_op->unlocked_ioctl)
 goto out;
 error = filp->f_op->unlocked_
ioctl(filp, cmd, arg);
 if (error == -ENOIOCTLCMD)
 error = -ENOTTY;
 out:
 return error;
}

Programming in the kernel is still
rather different from userspace. Stack
space is limited, and you can’t do
floating point math easily. Any bug in
your code affects the whole system.
You can’t expect the kernel to deliver
you SIGSEGV for a NULL pointer error
in your code, because you are now the
kernel. Many issues you don’t even
think about in userspace code become
your responsibility in the kernel.

Perhaps the most important one is
concurrency. In userspace, it’s mostly
a concern for multithreaded programs.
The synchronous code runs line by
line. You are the only owner of the
data unless you share it with other
processes somehow.

That’s not the case in the kernel.
It’s asynchronous by its very nature.
Imagine an interrupt occurs while the
CPU is executing your code. What
happens if a driver decides to update
the buffer you were reading? The Linux

kernel is also preemptive (many other
kernels aren’t). This means that after
the interrupt, the scheduler may decide
to return control to some other code,
not yours. What if that code accesses
the object you were working with?
These are only a few examples of what
a kernel hacker should keep in mind
when writing kernel-level code. Having
in-kernel synchronisation the wrong
way is disastrous.

We are the kernel
The Linux kernel comprises various
subsystems corresponding to different
features it provides. Subsystems are
logically separated from each other
and typically have dedicated directories
in the source tree. However, as Linux
is the monolithic kernel, they aren’t
isolated from each other when the
kernel is running.

It’s difficult to identify a single “most
important” subsystem, but we’d vote
for the process scheduler. It selects
processes to run and dictates for how
long they will own the CPU. Scheduler
directly affects both the system
performance and responsiveness (or
latency). Scheduler sources are found
in the kernel/sched directory.

Then comes the memory. The kernel
does two main things to manage your
gigabytes. First, it allocates chunks
called pages for the userspace and for
itself. When a process wants some
more RAM, it issues brk(2) or mmap(2)
system calls to increase the heap
(LV018). Second, the kernel configures
hardware-dependent mechanisms to
provide each process an isolated virtual
address space. This includes swapping
out pages to disk and reading them
back when necessary so that a process
may use more memory than physically

present. Memory management lives in
mm and arch/.../mm.

Perhaps the most populated
directory in the kernel sources is
drivers/. Unsurprisingly, this stores
device drivers for peripherals that Linux
supports (there are quite a few). Having
a driver in-tree isn’t a requirement,
as one can also wrap it as a kernel
module. Support for PCI, USB, and
other buses also comes through the
drivers subsystem.

There are many other kernel
subsystems, such as networking. Many
of them are worth a book on their own.
We aren’t going to dig that deep today,
so turn over the page and let’s look into
process scheduler operation.

Like any self-respecting piece of software, the Linux kernel
has a version number. You can check what version your
current kernel is with the following command:
$ uname -r
4.5.4-1-ARCH

The kernel version is first three dotted numbers (major,
release and patch level). Everything after the dash is what
your distribution adds.

Linux 2.6 was released in December 2003. The 2.6
series lasted for more than seven years. In May 2011, Linus
decided 3.0.0 would follow then-current 2.6.39. The reasons
weren’t technical; officially, it was to celebrate the 20th
anniversary of Linux. Yet we all know the real reason was
that Linus can’t count up to 40 (proof: https://lkml.org/
lkml/2011/5/29/204). Linux 4.0 was released in April 2015.
This was also a non-technical bump. Linux Kernel Newbies
suggests that “the less you think about it, the better”
(http://kernelnewbies.org/Linux_4.0).

You can learn more about Linux kernel versions at
https://www.kernel.org/category/releases.html.

KERNEL VERSIONING

The Linux Kernel Archives website is the official kernel
homepage. Here you get “vanilla” kernel sources.

Linux Kernel Newbies is a site aimed at those who wants to start hacking the kernel.

LV029 014 Cover Feature.indd 15 10/06/2016 15:51

www.linuxvoice.com16

FEATURE INSIDE THE LINUX KERNEL

PROCESSES AND SCHEDULING
Computers are a means to run programs. Here’s how the kernel makes it happen.

htop displays kernel threads alongside userspace ones. Note they are all ktrheadd descendants.

Red-black tree is a self-balancing data structure that keeps its height low. CFS uses it to
find the next process to run quickly.

A process is an instance of a computer
program that is being executed. A
typical Linux system hosts many more
processes than there are CPU cores
available, so arithmetic dictates that the
kernel must share computing resources
among these processes somehow.
Even on a uniprocessor system,
everything looks as if processes run in
parallel.

Many operating systems permit
multiple threads of execution within
one process. Linux does this as well,
yet it doesn’t distinguish between
threads and processes at the kernel
level. Threads are just processes that
have common memory space, file
descriptors, and a few other things.

Linux creates processes with so-
called “forking”. One process (a parent)
creates an exact copy of itself (a child),
which then runs independently. The
clone() system call implements this
procedure both for processes and for
threads.

Cloning (or forking) a process
implies copying all of its memory. This
doesn’t sound lightweight. Moreover,
it’s often useless, as a typical child
immediately issues execve() to run
another executable. For optimisation,
Linux employs the copy-on-write (COW)
technique and doesn’t copy memory
unless necessary.

Most processes run in userspace.
When they do a system call like read(),

the kernel executes some operations
on behalf of the process. There are,
however, processes (better said,
threads) that run exclusively in the
kernel space. They are all kthreadd
children, and they serve various
purposes. For example, ksoftirqd helps
servicing hardware interrupts; kswapd
swaps out memory pages; and jbd2
flushes the filesystem journal to the
disk.

Process descriptors
Each process has resources that the
kernel needs to track. So, the kernel
creates a so-called process descriptor
for each process in a system. It stores
the process address space, open
files and pending signals, along with
internal kernel bits like the process
state and flags. Technically, the process
descriptor is a lengthy C structure

(struct task_struct), defined in linux/
sched.h.

The kernel defines the current macro,
which returns the descriptor for the
currently running process. This is a
popular operation, and it must be fast.
For example, the x86 architecture uses
a per-CPU variable. This makes the
descriptor accessible at the known
offset from the %gs or %fs segment.
Most other architectures put a pointer
to the current process descriptor in the
bottom of the kernel stack.

Every process has a userspace stack,
typically located at the top of userspace
memory. It is used for function calls
and local variables. The kernel mode
stack serves the same purposes,
but it is used when a process runs
in kernel mode (say, during a system
call). The user mode stack is relatively
large (several megabytes) and grows
dynamically as needed. The kernel
mode stack is small (8KB for x86 and
16KB for x86-64) and static. There are
also auxiliary kernel stacks for interrupt
and exception handlers, but you can
ignore these details for now.

The kernel also distinguishes
between process states. A process can
be runnable, meaning a scheduler can
pick it up for execution. Or, it can be
sleeping (blocked), either interruptible
or uninterruptible. The difference is that
interruptible sleep can be terminated
with a signal. When you can’t stop a
program with Ctrl+C or kill, it means
the process is in uninterruptible sleep
somewhere in the kernel. ps marks
such processes with D.

pid: 128
vruntime 75 ms

pid: 344
vruntime 100 ms

pid: 1032
vruntime 150 ms

Empty

Leftmost runs first

Empty Empty Empty

LV029 014 Cover Feature.indd 16 10/06/2016 15:51

INSIDE THE LINUX KERNEL FEATURE

www.linuxvoice.com 17

When it’s time to reschedule, the
kernel selects a process to run next and
does a “context switch”. That is, it refills
the CPU registers with new values and
sets up a new address space. When the
switch completes, a new process thinks
it just returned from a kernel function
call and continues normally.

Calling for the scheduler
How does the kernel know it’s time to
reschedule? Every few milliseconds,
it calls the scheduler_tick() function.
It checks if the current process had
already been running for too long.
If this is the case, a special flag
TIF_NEED_RESCHED is set on the
process descriptor. Later, when the
kernel returns control to the userspace
after servicing an interrupt or a system
call, this flag is examined. If it is set,
schedule() is called.
schedule() is the scheduler’s main

entry point. Many kernel functions call
it explicitly when they need current
to sleep. A common reason is that a
process wants to read data that isn’t
available at the time.

First, a process descriptor is added
to the wait queue. Then, current is
rescheduled. Later, some other code

wakes up processes on the queue. For
a blocked process, this looks like the
schedule() function has returned. This
is how it happens in /dev/hpet (a high-
precision timer) device driver:
static ssize_t
hpet_read(struct file *file, char __user
*buf, size_t count, loff_t * ppos)
{
 DECLARE_WAITQUEUE(wait, current);
 struct hpet_dev *devp;

 devp = file->private_data;
 add_wait_queue(&devp->hd_waitqueue,
&wait);
 for (; ;) {
 set_current_state(TASK_
INTERRUPTIBLE);
 data = devp->hd_irqdata;
 if (data)
 break;

 schedule();
 }
 __set_current_state(TASK_RUNNING);
 remove_wait_queue(&devp->hd_
waitqueue, &wait);
}

The hpet_read() method implements
the read() system call for /dev/hpet.
When an HPET interrupt occurs, its
handler updates hd_irqdata and calls
wake_up_interruptible(&devp->hd_
waitqueue);.

Many kernels don’t reschedule
a process when it is in the kernel
mode. Linux would do this unless
kernel preemption was temporarily
disabled with preempt_disable().
Kernel preemption occurs when Linux
finishes servicing a hardware interrupt
and returns control to the kernel mode
code. It may also happen when the
kernel enables preemption back with
preempt_enable().

Schedulers galore
Linux sports different scheduling
algorithms often called classes.
Completely Fair Scheduler (CFS) is the
default. There are also two real-time
classes for higher priority processes
and the Earliest Deadline First (EDF)

scheduler for real-time processes
with timing constraints. You can set a
scheduler class for the process with
the sched_setscheduler() system call.
EDF processes take precedence over
real time processes, which run before
normal ones.

CFS builds on a simple idea. Imagine
“an ideal multitasking CPU” that
precisely shares its 100% physical
power between running tasks. This
CPU would execute two tasks really
in parallel, devoting 50% power to
each. CFS models this on top of real
hardware.

A real CPU can run only one process
per core at time. Context switches are
costly, so CFS sets a minimum time
a process can execute. If a process
doesn’t yield the CPU for too long, the
system becomes unresponsive, so it

also sets some maximum value. Then,
it introduces the concept of virtual
running time (vruntime), which is a
process runtime weighted by its priority
(see nice(2)). On an ideal multitasking
CPU, all processes of the same priority

would have the same vruntime. So,
CFS picks a process with a minimum
vruntime and runs it. Real-time
scheduling classes are a bit simpler.
SCHED_FIFO processes run until they
decide to relinquish the CPU. SCHED_
RR processes are given a timeslice and
are scheduled in round-robin fashion.
When a process has consumed its
timeslice, it is refilled, and the process is
added to the end of the queue.

The deadline scheduler (EDF) is a
new guy on the block. Introduced with
Linux 3.14, it ensures that a process is
given a predefined time to run within
each accounting period. Say, you may
want a process to run for 20ms every
100ms. This is important for time-
sensitive applications. The algorithm
chooses the process with the earliest
deadline, hence the name.

The kernel creates a so-called process
descriptor for each process in a system

If this month’s cover feature has whetted your appetite, and
you want to learn more, there are numerous good resources.

For starters, consider the already-mentioned Linux
Kernel Newbies, available at http://kernelnewbies.org.
It’s a community website, perhaps best-known for its
no-nonsense kernel changelogs. Also have a look at Kernel
Planet (http://planet.kernel.org), which gathers blogs from
many kernel developers. Many new kernel features are being
discussed at Linux Weekly News (http://lwn.net). Note that
these two resources aren’t aimed at beginners, though.

There are also several good kernel books. The problem
is that most of them are at least five years old. They cover
Linux 2.6, which is not much different from now-current
4.x, as you already know. Ultimately, their age is not a big
deal, as fundamental parts of the kernel rarely change. But
of course there will be some differences between what you
read and up-to-date code.

For the first read, consider the Linux Kernel Development,
3rd Edition by Robert Love. It’s relatively short and high-level
enough to build a complete picture without digging too
much into details. You may also consider Professional Linux
Kernel Architecture by Wolfgang Mauerer, which is a bit older,
a bit thicker and more in-depth.

OTHER KERNEL RESOURCES

LV029 014 Cover Feature.indd 17 10/06/2016 15:51

Most architectures today provide a
Memory Management Unit (MMU). You
may think of the MMU as a chip that
translates memory addresses and
enforces memory protection. This
paves the way for process-isolated
virtual address spaces. MMU operates
on pages. Typically, a page is 4KB,
although it’s possible to create huge
pages spanning megabytes or even
gigabytes. The idea is to increase
granularity to minimise costs. If the
MMU wants just one bit of metadata
per memory byte, this means 12.5%
overhead with a byte-level granularity,
but only 0.003% with 4K pages.

Linux also needs to track memory
metadata, and it also does it with page-
level granularity. Each physical page
has an associated struct page structure
in the kernel. It tells if the page is free
or not, or if it is dirty (that is, has some
data not on the disk yet). In short, struct
page is like struct task_struct in that
it stores all the information the kernel
needs to manage a memory page.

Having a structure per single page
may seem like a waste. If struct page
is about 100 bytes (actually less), and

page size is 4KB, it takes a few percent
of the memory available. This doesn’t
seem to be a prohibitive price to pay for
a useful metadata struct page.

Pages are organised into zones. The
reason for this is that not all pages
are born equal. Old ISA devices, for
instance, can only use memory in the
lowest 16MB. 32-bit devices can’t see
memory above 4GB. Naturally, one
doesn’t allocate “normal” memory there
unless absolutely necessary. Zones are
what facilitates making such decisions
in the kernel.

 A 64-bit PC has most of its memory
in the Normal and DMA32 zones. A 32-
bit system is likely to have an additional
HighMem zone. The kernel address
space is typically 1GB on 32-bit hosts,
and HighMem includes memory above
that. On 64-bit systems, the address
space is a huge 64TB, and everything
fits in Normal.

Meet your buddies
All C programmers know malloc(). You
tell this function how many bytes of
memory you want, and it finds a big
enough chunk for you. malloc() comes

from the standard C library, which is a
user-level thing. So, the kernel needs its
own memory allocator.

At the lowest level in the kernel lies
the page allocator. This shouldn’t come
as a surprise, as the page is the basic
memory management unit. Yet a page
is relatively big chunk of data, and
no one goes to ask for 4KB if all they
need is 128 bytes. So, there are other
mechanisms built on top of the page
allocator as well.

A memory allocator often has two
main goals. First, it needs to keep
memory fragmentation low in the long
run. Otherwise, it wouldn’t be possible
to allocate a large chunk of memory,
even if it is formally available. Imagine
memory where all even pages are used,
and all odd pages are free. One can’t
allocate a block larger than one page,
even if half the memory is empty.

To prevent this situation, you can
allocate and free up memory in large
blocks. And here comes another goal:
the allocator shouldn’t waste too much
memory. Linux addresses both points
with a variation of algorithm known as
a buddy system. It allocates pages in

MEMORY MANAGER
Take care of your memory – all 640KB of it.

www.linuxvoice.com18

FEATURE INSIDE THE LINUX KERNEL

Kernel image User page

Hole
Userspace

User page User page

Kernel space

Physical memory (x86-64)

Physical memory map
(64 TB)

Virtual memory (x86-64)

0x1000000 (16M)

0x3FF0000 (+512M)

0x00007fffffffffff

0xffffc7ffffffffff

0xffff800000000000

0xffff880000000000

Hole

The kernel builds virtual address spaces for userspace processes and for itself. We discussed it in LV018, now online.

LV029 014 Cover Feature.indd 18 10/06/2016 15:51

power-of-two chunks: 1, 2, 4, 8 and so
on. Each size has a separate free list,
or list of pages (struct page), which are
available. If someone asks for 3 pages,
the allocator looks up the 4-page list. If
it’s empty, the allocator splits an 8-page
block in two halves called “buddies”
(hence the name). Then it returns the
first half to the caller and adds the
second to the 4-page list. Later, when
the first buddy is freed, the allocator
detects it and promotes a combined
8-page block back to the original list.

cat /proc/buddyinfo tells how many
free blocks are currently available in
each of your system’s zones. The

number of pages in the block (also
called an “order”) increases from left to
right: 0, 1, 2 and so on.

SLAB, SLOB, and SLUB
The kernel also provides a way to
allocate specific objects, such as struct
task_struct. They are sometimes small
and short-lived, which warrants them
special treatment. To this end, the
kernel has three related algorithms:
SLAB, SLUB and SLOB.

The idea is to keep “ready to
consume” objects and return them
quickly without allocating any memory.
This also serves as a cache, hence

corresponding kernel functions carry
the kmem_cache_ prefix. An object’s
memory comes from page-sized
blocks. They are called “slabs”, and are
allocated via a buddy system. When
the request comes, and there are no
free objects in a cache, a new page is
allocated and initialised. The kernel also
aligns objects in a slab the way they
don’t step on each other’s toe in CPU
hardware caches.

SLAB is a classic implementation of
this idea that first appeared in Solaris.
SLOB is its low-footprint variant. It
works best for smaller systems but
isn’t that good on larger ones. SLUB

introduced some optimisations to
original SLAB, which makes it the
default in recent Linux kernels.

When the kernel forks a process, it
allocates a new process descriptor
and kernel stack space. This occurs in
dup_task_struct():
static struct task_struct *dup_task_
struct(struct task_struct *orig)
{
 struct task_struct *tsk;
 struct thread_info *ti;
 tsk = kmem_cache_alloc_node(task_
struct_cachep, GFP_KERNEL, node);
 if (!tsk)
 return NULL;

 ti = page_address(alloc_kmem_pages_
node(node, THREADINFO_GFP, THREAD_
SIZE_ORDER));
 if (!ti)
 return NULL;
 ...
}
Here, struct task_struct comes from
a slab; struct thread_info comes from
the buddy system. Finally, there is the
kmalloc() function to allocate arbitrary-
sized buffers. To facilitate it, the kernel
has several caches (kmalloc-N) for
power-of-two sized blocks smaller than
two pages. For larger blocks, pages are
allocated via a buddy system.

So far, we’ve spoken of physical
memory. However, programs and the
kernel itself run in a virtual address
space, so the same address may
refer to different memory locations in
userspace processes (the kernel has
a single virtual address space). When
MMU detects the program tries to
touch an address which is not mapped,
it calls the page fault handler in the
kernel. The latter decides whether the
fault should result in system panic (if
it occurred within the kernel), or just
SIGSEGV. Sometimes, the fault is not a
problem at all, as the page in question
has been just swapped out.

BUILD THE TOOL
slabinfo comes together with the Linux kernel. Grab
the latest version from www.kernel.org (it’s big),
untar, cd into linux-X.Y.Z/tools/vm, then do make
slabinfo. You’ll need build-essentials or the similar
package from your Linux distribution.

STEP BY STEP: PEEK INTO KERNEL CACHES WITH SLABINFO

GET SOME STATS
Now run the tool as ./slabinfo (root permissions are
required). It will produce a lengthy table containing
all slab caches found in your system along with
some stats. As an exercise, try to find the kmalloc or
task_struct caches. How many objects are in them?
What’s the object size?

PLOT SOME GRAPHS
A picture is worth a thousand words. Build some
totals with while [1]; do ./slabinfo -X >> stats;
sleep 1; done (wait a dozen of seconds). Then run
bash ./slabinfo-gnuplot.sh stats to build graphs.
Green is slab size. Red is loss (how much space the
slab wastes).

INSIDE THE LINUX KERNEL FEATURE

www.linuxvoice.com 19

When the kernel forks a process, it allocates a
new process descriptor and kernel stack space

LV029 014 Cover Feature.indd 19 10/06/2016 15:51

cscope is a venerable source code navigation tool. It’s old enough to remembers the days of PDP-11,
and it’s still useful enough to be relevant in 2016. Good job, cscope!

You can think of a sysytem call as an interrupt
that you generate to draw the kernel’s attention

www.linuxvoice.com20

FEATURE INSIDE THE LINUX KERNEL

SYSTEM CALLS
The kernel is here so you can focus on your job, not managing the hardware.

Up until now, we saw the kernel as
something transparent, sitting between
our programs and the hardware, and
providing some useful abstractions to
the former. From time to time, the
programs want to request some
service from the kernel explicitly.
Without that, it won’t be possible to
read and write files, or exchange data
over a network.

For security reasons, the kernel is
isolated from the rest of the system.
This happens at hardware level (think
MMU again), and this means you can’t

simply call a kernel function from
userspace. Instead, one uses a system
call interface as a well-defined gateway
to the kernel.

This isn’t the only means to switch to
the kernel mode: hardware interrupts
incur this as well, but they are outside
the programmer’s control. You may
think of a system call as an interrupt
that you, not hardware, generate to
draw the kernel’s attention. Services
available through the system call

interface are carefully chosen, and
arguments you pass are thoroughly
validated. So, rare-yet-possible bugs
aside, system calls provide a safe way
to call into kernel functions.

The role of libc
As a programmer, you almost never
deal with system calls directly. The
standard C library (nine out of ten
times, Glibc) wraps them to provide a
standard API such as POSIX. Imagine
you want to get some information
about the system you run on. POSIX

defines the uname(3) function and
associated structure definitions for this
purpose. It’s available on many Unixes,
and its Linux implementation may be
as simple as this:
int uname(struct utsname *uts)
{
 return syscall(SYS_uname, uts);
}

This code comes from Musl (https://
www.musl-libc.org), an alternative C
library for Linux. As you see, it simply

wraps the system call of the same
name. This doesn’t have to be the
case in all Unixes, though. uname(3) is
POSIX standard, uname(2) is, in theory,
Linux-specific.

Not all C library functions are simple
wrappers, of course. Linux defines a
few hundred system calls, and many
of them are rather low-level. Others
multiplex several userspace visible
functions. There are system calls that
are specific to hardware architecture.
Often, they carry the arch_ prefix. There
are system calls that have no C library
wrappers, such as futex(2) or native
asynchronous I/O family (LV026). No
wrappers are a fat hint that you don’t
want to use these system calls in your
programs directly. Yet it is still possible
to issue them the indirect way via
syscall(), as the C library does.

In fact, Linux distinguishes system
calls not by names, but by numbers.
SYS_uname is a macro that expands
to 63 on 64-bit x86 machines. This
number is also architecture-dependent:
it’s 122 for 32-bit x86, for instance.
Internally, the kernel recognises this
system call as “new uname”. There
are also “old uname” and even “old old
uname.” It’s not uncommon to have
such a convoluted history in the world
of system calls. From time to time,

kernel developers make incompatible
changes to data structures but leave
the semantics unchanged. It seems
reasonable to declare an earlier
implementation as “old”. Luckily, a
standard C library hides all these
nuances from mere mortals.

The exact method of making a
system call, that is, switching to kernel
mode, is also architecture-specific.
On x86 computers, this used to be
a software interrupt, int $0x80. You

LV029 014 Cover Feature.indd 20 10/06/2016 15:51

With LXR, you can navigate kernel sources straight from you web browser. It comes in
handy when you read things like this web page.

INSIDE THE LINUX KERNEL FEATURE

www.linuxvoice.com 21

may still find it in older manuals and
tutorials. This method is still supported,
yet rarely used. The reason is that
interrupts are quite costly. As programs
do system calls very often, this may
hurt the performance. So newer CPUs
introduced dedicated instructions
for fast switching to the kernel mode
and returning the control back. Intel
processors implement sysenter/
sysexit instructions and AMD chips
have syscall/sysret. There are also
some peculiarities related to 64-bit and
32-bit modes. How does the poor C
library account for all these specifics
when issuing system calls?

Nuts and bolts
In short, it doesn’t. Otherwise, it
won’t be possible to introduce a new
switching method in the kernel without
touching every C library implementation
in the world. This doesn’t scale well.
Instead, the kernel maps a “vDSO”
(virtual dynamic shared object) in every
process address space:
$ cat /proc/self/maps
...
7ffd86721000-7ffd86742000 rw-p
00000000 00:00 0 [stack]
7ffd867e2000-7ffd867e4000 r-xp
00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp
00000000 00:00 0 [vsyscall]

A vDSO is much like a shared library
which is always present. You may
think it’s a waste of RAM. Again, it’s
not, because Linux keeps only one
copy of a non-writable page (note the
r-xp permission bits) in memory. As

a shared library, vDSO defines several
symbols (think functions). One of
these functions executes the preferred
instruction for the system call. As
the kernel builds and maps vDSO on
its own, it has complete control of
what this instruction would be. Other
vDSO symbols may provide optimised
versions for selected system calls (like
gettimeofday(2)), which don’t incur
switch to the kernel at all.

Either way, when a switch to the
kernel mode occurs, a system call
dispatcher in the kernel ultimately runs.
It analyses the system call number and
calls an appropriate implementation.
By convention, it carries the sys_ prefix.
For our good old friend uname(2), this
will be sys_newuname(). This function
lives in kernel/sys.c:
SYSCALL_DEFINE1(newuname, struct
new_utsname __user *, name)
{
 int errno = 0;
 down_read(&uts_sem);
 if (copy_to_user(name,
utsname(), sizeof *name))
 errno = -EFAULT;
 up_read(&uts_sem);
 return errno;
}

As before, we simplified the
implementation a bit to highlight the
main points. The sys_ prefix is added
in the SYSCALL_DEFINE1 macro.
The code calls the utsname() kernel
function, which gathers the required
data from an internal kernel structure,
and copies bytes to the userspace
memory. Sometimes, there is a

do_something() kernel function that
does all heavy lifting. A semaphore,
uts_sem, protects the structure from
concurrent access (didn’t I tell you
that kernel programming is always
asynchronous?). Also note that
negative return values indicate an
error. The convention in userspace is
different, so the C library detects it and
sets the errno variable appropriately.

We hope you enjoyed your trip
under the Linux kernel surface. The
kernel is huge, and there are many
books devoted to single subsystems
of it. They cover many nuances which
are essential if you are serious about
kernel programing. Yet the kernel is no
magic, just different from what we have
in a comfy userspace. It also implies
a good understanding of computer
architecture, even for generic pieces
like the memory allocator. Not many
of us write kernel code (if you have a
patch accepted, please let us know!),
but it’s always fun to learn how gears fit
together.

If you are wondering how Linux works, the sources are the
ultimate answer. However, the kernel is a large program.
Without dedicated navigation tools, it’s very easy to get lost
in its 50K+ source files.

You need to look up identifiers, like variables or function
names, and search for raw text strings. You’d want to jump
directly to locations where these identifiers are defined, but
also list locations where they occur in the code. Quite often,
you’d also want to know where some variable gets its value.

Luckily, there are several free tools to help you with all
of these. A de-facto standard one is Cscope. It wasn’t built
specifically for the Linux kernel. In fact, it’s almost as old
as Unix. Born in Bell Labs, it was a part of AT&T. Santa
Cruz Operations, a predecessor to the ill-fated SCO Group,
released Cscope under the BSD licence in 2000.

Linux provides a dedicated Makefile target to generate
the Cscope database. Running make cscope && cscope
-d will bring you a text-based interface. Use the arrow keys
to choose what you’re looking for (say, a C symbol), type
the search terms and hit Enter. Results are displayed in
the upper half of the screen. Press Tab to switch between
halves. Select the result with Up and Down keys, or press a
single-letter hotkey to open the location in $EDITOR. If your
search yielded many results, use Space to turn pages. To
exit, press Ctrl+D. The ? key brings the help page.

For a friendlier alternative, try LXR (Linux Cross
Referencer). It’s a web application built specifically for Linux,
yet found its usages in other projects (Mozilla). You can find
LXR online here: http://lxr.free-electrons.com.

First, select the kernel version. This defaults to the latest
mainline. You can navigate the sources manually in the
Source Navigation tab. If you want to trace the origins of
some log message, LXR should be your first stop.

FINDING YOUR WAY

LV029 014 Cover Feature.indd 21 10/06/2016 15:51

Along with GNU/Linux and Firefox, LibreOffice is
one of the biggest success stories in Free Software.
Find out where it came from, and how it’s developed.

www.linuxvoice.com22

FEATURE INSIDE LIBREOFFICE

Ask a Linux user to name some really
exciting things going on in the Free
Software world right now, and they

will probably mention Gnome or KDE
updates, or perhaps some flashy new
graphical effects promised by Wayland, or
maybe some awesome new games in the
pipeline. Even new programming languages,
container technology and Firefox updates
can be fascinating. But office suites? Surely
that’s the least exciting thing on this
wonderful green planet – right?

Well, no. It’s true that the humble office
suite is a mere tool for getting things done,
a quotidian aid for productivity rather than
something to wow and entertain you. But
this is a topic that’s well worth keeping an
eye on, as it has the potential to completely
change the computing landscape. We won’t
see Linux completely dominate the desktop
market in the next few years – the days
when we’d get excited about the year of
Linux on the DesktopTM are over – but there’s
a chance that Microsoft’s de facto monopoly

inside

Tens of millions of people use LibreOffice each day, the
project is growing, and it looks to have a healthy future

on office suites could at last be broken
thanks to contenders like LibreOffice.

And the reason is simple: it’s a much
easier job to switch an office suite than it
is to migrate an entire operating system.
Consider how much success Firefox had in
its early days; Microsoft’s Internet Explorer
utterly dominated the browser market, and
many said it could never be beaten. But
Firefox’s better performance, security and
featureset brought it up to 30% marketshare,
while Internet Explorer usage dropped quickly
(especially thanks to competition from
Google’s Chrome).

Reach for the prize
We could see the same with LibreOffice.
Sure, switching office suites is a bigger job
than changing browsers, but it’s certainly
possible. The French government has
migrated hundreds of thousands of
computers from Microsoft Office to
LibreOffice, and the Italian military is also
undergoing a major transition. And funnily

enough, while some bemoan LibreOffice’s
“old-style” interface, many users of earlier
Microsoft Office versions prefer switching to
LibreOffice than having to use the ribbon that
Microsoft is so proud of.

So, tens of millions of people use
LibreOffice each day, the project is growing,
and it looks to have a healthy future. But
where did it come from, how does it work
internally, and what’s in the pipeline for the
future? Over the next few pages, we’ll give
you all the details.

LV029 022 Feature LibreOffice.indd 22 10/06/2016 17:23

www.linuxvoice.com 23

INSIDE LIBREOFFICE FEATURE

Many of us cut our teeth on Linux back in the late
1990s, as it started to develop from a hacker’s
plaything into a viable operating system for servers
and home desktops. Around the time, many computer
magazines started featuring Linux distributions on
their coverdiscs, along with a certain office suite
called StarOffice. This suite had a strange look and
feel: it tried to ape the Windows 95 desktop with a
taskbar and Start-like button, and managed to
maintain this design across the various platforms on
which it ran (Windows, Solaris, Linux).

StarOffice came into the world in 1985 as StarWriter,
a word processor developed by a German student
for the 8-bit home computers at the time. In the
following years, more components of the office suite
were added and it was ported to MS-DOS, IBM’s OS/2
and Microsoft Windows. StarOffice was a small but
important player in the early 1990s, but something
happened that suddenly elevated it into the spotlight.

Unix giant Sun Microsystems (which is today
owned by Oracle) was looking to install Microsoft
Office on its 42,000 workstations. That’s a hefty
licensing cost – so Sun decided to buy StarOffice
outright in 1999 as a cost-saving measure. StarOffice
was also made available as a free download, so
even while it was seen as a bit lacking and clunky in
comparison to Microsoft’s offering, many people used
it as a cost-cutting measure alone.

But then Sun did something drastic: the company
open sourced StarOffice, creating OpenOffice.org,
which was a monumental effort. The suite was built
from millions of lines of source code, many of which
still contained German comments right from the early
days of the suite, and getting the FOSS community on
board was a difficult task. Early releases of OpenOffice.
org were slow to use and glitchy in places but provided
Linux distributions with a powerful office suite that
abided by open source principles.

While Sun maintained control of the OpenOffice.org
project, as the 2000s progressed a small community
of independent developers, supporters and marketers
built up around it. There was some concern that Sun
had too much sway in the project, and these fears
only got worse when Oracle snapped up Sun in 2010
– what would Oracle, hardly the biggest champions of
open source in the world, do with the software now?

A fork in the road
So a team of OpenOffice.org developers and
supporters from the community forked the code and
created LibreOffice in late 2010. This was one of the
biggest splits in FOSS history, and with few developers
left working on OpenOffice.org, Oracle decided to hand
it over to The Apache Foundation (where it still
survives today as Apache Open Office, albeit with very
little development work underway).

One of the goals of LibreOffice was to be as
independent from control of a single company as
possible. To that end, the team behind it set up The
Document Foundation (TDF), a non-profit entity
registered in Berlin and with members across the
planet. This was a bold move, especially for such a
fledgling project, but it established a structure and
statutes for the project to ensure democracy and
transparency throughout. TDF is comprised of several
bodies, including:

 The board of directors The main administration of

LibreOffice’s projects and teams.
 The membership committee Administers
membership applications, and oversees election of
the board of directors.
 The advisory board For companies and
organisations that support LibreOffice to provide
ideas and advice.
The statutes of TDF state the following: “The board

of directors is therefore obliged to ensure, that the
board of directors itself, the membership committee,
and the advisory board, at maximum have one third of
their members being employed by a single company,
organisation, entity or their respective affiliates”. This
is a smart move that largely eliminates the problems
of the past – too much control from a single company
like Sun or Oracle.

FROM HUMBLE BEGINNINGS

LibreOffice’s codebase
dates back to StarOffice
in the 1980s (image
credit: http://tinyurl.com/
heuv5q8).

Early releases of OpenOffice.org were slow to use
and glitchy in places, but provided Linux distros

with a powerful open source office suite

LV029 022 Feature LibreOffice.indd 23 10/06/2016 17:23

www.linuxvoice.com24

FEATURE INSIDE LIBREOFFICE

So LibreOffice has established itself, in part thanks to
the efforts of The Document Foundation, as a healthy
and vibrant followup to OpenOffice.org. But how
exactly does the project work? Who’s in control? Well,
TDF is supported by donations, the majority of which
come from end users who choose to give a bit of
money when downloading the software. Many
onlookers were sceptical, in the early days, that such a
large project (with over 7 million lines of source code)
could survive off donations – but TDF has shown that
it can work.

Indeed, TDF employs a small team to help further
LibreOffice. These aren’t primarily developers, but
staff working on other supporting aspects of the
project, such as infrastructure, developer mentoring,
documentation and marketing. Most of the
development effort comes from hackers working at
companies that use LibreOffice in their products –

such as Red Hat, Canonical and Collabora (see our
interview with Michael Meeks in issue 5). Plus, of
course, there are contributions from other developers
in the community as well.

In order to get releases out of the door – and
avoid Debian-esque “we’ll release when it’s ready”
delays – TDF adopted a time-based release schedule.

Major releases such as 4.4 or 5.0 are issued every
six months, and each of those releases receives a
number of bugfix updates (such as 5.0.1). In addition,
one release branch is named “Fresh”, meaning that it’s
the newest codebase which may have some features
that need more testing; the other branch is called “Still”
and is recommended for large-scale deployments in
governments and businesses. At the time of writing,
the Fresh branch is 5.1, while Still is 5.0.

Long-term support
Speaking of deployments, while The Document
Foundation strives to support each major release of
LibreOffice for several months, it’s limited in its
resources and recommends that companies use
Certified Developers (www.documentfoundation.org/
gethelp/developers) for long-term support. This is a
bit like the Red Hat Enterprise Linux model, where you
get the core product (in the form of CentOS) for free
with some community support, but if you want to roll
it out across 20,000 servers or workstations, it’s
probably wise to pay for commercial support as well.

As LibreOffice moves towards a new release,
various teams inside the project hold meetings
and post minutes on mailing lists. This includes
the design team, engineering steering committee,
documentation team, marketing team and others.
The person coordinating this effort, and managing
the staff at TDF, is the executive director, Florian
Effenberger. We spoke to Florian way back in issue 1
for our first interview – so if you’ve been reading Linux
Voice right from the start, dig out that issue and enjoy
a look back at the state of LibreOffice back then!

THE NOW AND THE FUTURE

Florian Effenberger is the
executive director at The
Document Foundation,
managing the team that
works on administration,
documentation and
marketing.

The Document Foundation is supported by
donations, the majority of which come from users

who give a bit when downloading the software

LV029 022 Feature LibreOffice.indd 24 10/06/2016 17:23

www.linuxvoice.com 25

INSIDE LIBREOFFICE FEATURE

Because the LibreOffice codebase is so vast, it
can be difficult for new developers to get involved.
In recent years, LibreOffice developers have done an
impressive job tidying up the codebase, making it
easier to navigate and build, and removing lots of
those ancient German source code comments. In
addition, because LibreOffice is designed to run on
many platforms, there are large levels of abstraction
in the suite, which have caused problems (especially
with performance) in the past. Collabora’s Michael
Meeks has spent a lot of time wrestling with the
internals of the software to remove old bottlenecks
and make it more responsive – see http://tinyurl.
com/q72bctv for a (very technical) description.

When a new release is available, TDF doesn’t
simply chuck it onto the downloads page and wait
for mirrors to propagate. No, there’s an increasing
need to market the software professionally, making
sure that end-users and journalists are fully aware
of the new features and changes. In addition, TDF
holds a yearly conference where developers, users
and supporters meet up – this year it will be held from
7–9 September in Brno, Czech Republic, so visit
https://conference.libreoffice.org if you’re interested.

What’s coming up?
The next major release of LibreOffice, version 5.2, is
due in early August 2016. This will include interface
improvements in Writer (such as a single toolbar
mode for low-resolution displays), new spreadsheet
functions in Calc, along with fixes and enhancements
in other areas of the suite. For companies working
with sensitive data, document signing has been
improved as well. And, as with every release, a lot of
work has been done to make the Microsoft Office file
format filters even more exact.

While the standalone desktop version of LibreOffice
is coming along well, there’s increasing demand
(especially from businesses that want to switch to the
software) for a cloud version. Progress is being made
in this area: Collabora, one of the major LibreOffice
contributors, has announced version 1.0 of its
Collabora Online suite (www.collaboraoffice.com), a
trimmed-down version of LibreOffice that’s accessible
in a web browser. While Collabora aims to make
money providing support for its version, the company
is donating code back to the main LibreOffice source
tree, so a community-supported version should follow.

GET INVOLVED!

But why is a cloud version so important? The big
issue is administration. Imagine you’re responsible
for IT in a company with 10,000 desktop PCs. When
a new version of LibreOffice is available, you have to
roll it out on every computer, make sure it’s all working
correctly, and that nobody has messed up their
installation with some custom settings or packages.
There are ways to handle this in a more automated
fashion, but it’s tough.

With a cloud version, the software is run on a server
and rendered in users’ web browsers – so there’s only
one version to worry about. Admins can upgrade and
customise that single version on the server, and all
end users will receive the changes via their browsers.
So it makes the admin’s life much easier, and also
means that end users can connect to the server from
different machines and locations, always interacting
with the same LibreOffice instance.

So there’s plenty to look forward to in LibreOffice,
and the project looks to have a healthy future. There’s
even the possibility that Thunderbird, Mozilla’s email
client, could be integrated with LibreOffice some today
to provide a complete productivity and collaboration
solution to compete with MS Office and Outlook

LibreOffice is heading
to the cloud, thanks to
the work of Collabora
and developers in the
community.

While the standalone desktop version of
LibreOffice is coming along well, there’s increasing

demand for a cloud version

Because LibreOffice is such a large project, the idea of getting
involved may seem incredibly daunting at first. And indeed, up
until a few years ago, the barriers to entry were rather high. But
the LibreOffice team has done a lot of grunt work to simplify the
build process and introduce new developers to the codebase,
so there has never been a better time to contribute. Plus, saying
that you’ve been involved in a major Free Software project like
LibreOffice is mightily good for your CV!

The best place to start is www.libreoffice.org. Click the
Community menu on the top-right and you’ll see different areas
of the project: design, development, documentation, marketing,
native-lang projects (for translations) and testing. So even if
you’re not a coder, there are plenty of ways to get involved.
Even if you can only spare half an hour a week to update some
documentation, translate a few interface strings or confirm a
handful of bugs, all participation is greatly appreciated.

LV029 022 Feature LibreOffice.indd 25 10/06/2016 17:23

www.linuxvoice.com26

SECRETS AMAROK

Music touches a part of our souls that rational thought can’t
reach. It can makes us smile when we’re sad, help us
remember event’s we’d forgotten and compel us to dance

even when we’re tired. It’s a cultural universal, and every group of
humans on earth has some type of music, though it comes in many
different form.

Something that’s so essential to the human condition deserves to
be treated as a priority on our digital setups. Mastering your music
collection probably won’t make you any more productive, or make
your computer run faster, but it may well make you happier, and we
think that’s more important. Let’s find out how to get the most out of
Amarok, one of the most popular music players for Linux.

01Manage your tracks
If you’re you’re like us and
have a mass of half-sorted

MP3 files from two decades of ripping
CDs and downloading from various
sources (all legal of course), you’ll find
Amarok’s music management features
useful. It can shift your tracks into a
properly structured directory system
with just a couple of clicks.

02Scripts
Amarok has tons of
features, but it doesn’t have

everything you could possibly want. If
there’s a particular thing that you want
to do that’s not yet possible, you can
use JavaScript and the Qt bindings to
add more functionality. There’s also a
large library of scripts already available
to do things like add internet radio

stations or lyric-streaming services. To
manage your scripts go to Settings >
Configure Amarok > Scripts.

03Dynamic playlists
If you’ve got a lot of music,
it can be hard to find the

tracks you want to listen to. We don’t
mean locate a particular track, but
decide the right selection of music for
the moment. With Amarok’s Dynamic
Playlists, you can specify a set of rules
and the software will find a selection of
tracks for you to listen to. If you want
80s rock (and why wouldn’t you?), just
set up the Dynamic Playlist, put on your
mullet wig and ripped jeans, then
head-bang the night away. Amarok will
keep your playlist topped up with more
music from your collection so you won’t
run out.

04Remote control
While it isn’t a core part of
Amarok, there’s additional

With Amarok’s Dynamic Playlists, you can
specify a set of rules and the software will find
a selection of tracks for you to listen to

Get the most out of KDE’s in-house music player.

SECRETS OF
AMAROK

01

02

LV029 026 Feature Secrets 2ag.indd 26 09/06/2016 17:56

www.linuxvoice.com 27

AMAROK SECRETS

software you can use to control your
Amarok playback while you’re away
from the desktop, including an Android
app (AmaroKontrol http://bit.
ly/1TaEO8Q). Amarok is probably a bit
too heavyweight to make it useful as an
embedded music player, but this
feature enables you to use your PC’s
sound system as a general music
player without having to switch back to
the mouse or keyboard regularly.

05File tracking
Your music player builds up
a lot of information about

the music files you have – how much
you play them, whether you favourite
them, etc. This is great until you move
your collection onto a different hard
drive and suddenly all this information
is gone. Well, not with Amarok: it can still
link your information to your music if it’s
in a different location, so you never lose
this metadata.

06Buy music
Want to listen to some new
music? Amarok can

integrate with Amazon, Magnatune and
MP3tunes (through plugins) to give you

the ability to get all the latest music
legally. If you’re after something a little
less commercial, you can use Jamendo
to get music by independent artists,
and if you’re more interested in spoken
word than tunes, there’s integration
with Podcast Directory and Librevox.

07Bookmarking
If you’re listening to a
podcast, audio book or long

piece of music, you might want to
return to a particular point. This could
be because you want to restart in the
same place, or there’s a particularly
poignant or interesting section you
want to return to. Amarok enables you
to bookmark places in your tracks so
you can easily return without having to
memorise the time position in the track.

08Konfiguration
Amarok is the KDE music
player, so as you would

expect, it’s highly customiseable. In fact,
just about every aspect of the
application can be tweaked to your
desires, even to the extent of selecting
the position on the screen that
notifications will appear. What other

music player enables you to connect to
an external MySQL database? All this
configuration works equally well on
Qt- and GTK-based desktops, so you
don’t have to be using KDE to reap the
full benefits.

03

05

04

06

07

08

LV029 026 Feature Secrets 2ag.indd 27 09/06/2016 17:56

Les ‘Spaceman’ Pounder calls occupants of interplanetary craft to find out what’s
been going on with Linux and computing in low Earth orbit.

NASA

Using the Sense HAT we can measure
temperature, humidity, acceleration,
pressure, orientation and magnetic field

www.linuxvoice.com28

FEATURE PIs IN SPACE

On December 15th 2015, astronauts
from NASA, Russian Space Agency
and the European Space Agency

blasted off from Baikonur Cosmodrome,
Kazakhstan as part of the Principia mission.
Principia, or Philosophiæ Naturalis Principia
Mathematica , Latin for “Mathematical
Principles of Natural Philosophy” was the
mission name chosen by Flight Engineer 4,
former army major and
test pilot Tim Peake. The
goal of the Principia
mission is to work on
experiments that cannot
be conducted on Earth;
these include physics,
biology and technology demonstrations. The
location for these experiments being the
International Space Station (ISS) in orbit
around Earth.

In 2009, Tim Peake was appointed an
ambassador for UK science and space-
based careers and worked with the
various agencies to promote science and
engineering as career possibilities for school

children. Tim’s aspect of the mission was
enhanced with the use of a ubiquitous
platform: the Raspberry Pi, which made its
way to space because UK Space Agency
wanted to engage with the public via a
series of experiments and agreed that a
harmonised platform – the Raspberry Pi
– would be beneficial to children, offering
as it would a unique opportunity to use the

same hardware as an astronaut in space.
After passing every test to ensure that
the equipment was ready for flight final
certification for use aboard the ISS was
awarded. The Astro Pi project was ready for
launch.

The hardware behind Astro Pi is an
add-on board for the Raspberry Pi,
called Sense HAT. The Sense HAT board

comes with a plethora of sensors used to
gather data; using the Sense HAT we can
measure temperature, humidity, pressure,
acceleration, orientation and magnetic field
strength and direction. Also present on the
board is a miniature joystick for basic input
and an 8x8 grid of multi-colour LEDs, which
can be used as a method of output.

Children from around the United Kingdom
were asked to submit
their project ideas for
consideration, and from
the many hundreds of
applications seven were
chosen. We’re going to
look at three that piqued

our interest and which can be easily
replicated at home.

Due to the length of these projects we
have cherry-picked interesting parts of
the code, but we have included a link to
the project page which will provide all of
the code that you will need to replicate the
projects on planet Earth.

Get ready for blast off!

LV029 028 Feature Pi.indd 28 10/06/2016 17:25

www.linuxvoice.com 29

PIs IN SPACE FEATURE

This project, created by Cottenham Village College, is
a backup environmental system monitor designed to
cross-check the ISS’s own environmental control
systems. Watchdog works by using the sensors
present on the Sense HAT, chiefly the temperature,
pressure and humidity. Any changes outside of
mission parameters will cause the alarm to trigger,
alerting the crew to an incident.

As this project is huge, totalling 2,681 lines of code,
we shall take a look at sections of the code; for the full
code, please visit https://astro-pi.org/competition/
winners/\#watchdog. The first thing that impressed
us was the diligent use of comments to create a “table
of contents” used to identify what sections of code
control the various aspects of functionality. Here is a
snippet to illustrate their use.
1 # CREDITS [165 - 168]
2 # IMPORT MODULES [171 - 180]
3 # SETTING UP PROGRAM [183 - 206]
SETS ASTROPI MODULES AS FRIENDLY NAME [185 - 187]
SETTING UP RASPBERRYPI FOR FLIGHT BUTTONS TO USE
GPIO PINS [189 - 192]
ASSIGNING FRIENDLY NAMES FOR GPIO PINS [195 - 202]
FORCING PROGRAM TO RUN PROGRAM WITHIN WHILE LOOP
[204 - 206]

After the comments the code starts by importing
a series of libraries to enhance the project. We start
by importing the RPi.GPIO library, this enables the
ISS crew to control the project using the joystick
and buttons present on the Astro Pi units. Next we
import the time-logging library, which will be used
as a counter. We import the time library and the
sleep function to control the pace of the project. The
asctime function is used to convert the time into a
human-readable format. The other imports cover
using the filesystem, the Sense HAT and the camera.
import RPi.GPIO as GPIO
import time, logging
from time import sleep, asctime
import datetime
import sys, os
import astro_pi
from astro_pi import AstroPi
import picamera

Going down the code to line 212, we can see a time
stamp used to keep an accurate reference point for
data collection. From lines 233 to 248 we can see
variables used to store default values for the various
sensors present on the Sense HAT. Using these
values the team cleverly bypass an issue where the
temperature sensor returns a higher than normal
value, largely due to being placed over the Pi’s CPU.

The class logged all of the data to an external CSV
file, which can later be imported into a spreadsheet for

further investigation.
file = open(‘log/’+(str(tmstmp))+’ watchdog-log.csv’, ‘w’)
file.write(“\”Time\”,\”Display\”,\”Temperature\”,\”Temp_
Reading\”,\”Temp_Alarm\”,\”Temp_
Snapshot\”,\”Humidity\”,\”Hum_Reading\”,\”Hum_
Alarm\”,\”Hum_Snapshot\”,\”Pressure\”,\”PSI_Reading\”,\”PSI_
Alarm\”,\”PSI_Snapshot\”,\”Pitch\”,\”Roll\”,\”Yaw\”\n”)

Going from lines 2094–2153 we see a function
used to detect and react to user action, such as
pressing the joystick right to show the air pressure on
the LED matrix. On line 2155–2157 we see a for loop,
cleverly configuring each of the GPIO pins used for
user input.
for pin in [UP, DOWN, LEFT, RIGHT, A, B]:## SETUP GPIP PIN
VALUES
 GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 GPIO.add_event_detect(pin, GPIO.FALLING, callback=button_
pressed, bouncetime=500)

From lines 2185–2294 we see classes created.
The first class, AstroPiContinuous(AstroPi), contains
configuration for all of the sensors including the
camera. The second class, CPUTemp, is used to
configure, read and convert the temperature taken
from the temperature sensor.

From line 2299 to the end we see a try, finally
construction used to handle reading the sensor data,
write it to an external file and take pictures using the
Raspberry Pi camera. There are sections of code that
can mute the alarms and use the Watchdog project as
a blackbox flight recorder. Once the project ends the
code cleans up and exits to the command line

A great piece of code!

PROJECT 1 – WATCHDOG

Top: Watchdog is a clever
project that monitors the
crew’s status and alerts
them to any life-support
issues. Including recording
data to a black box for
retrieval.
Bottom: Using some
advanced calculations to
plot the course of the ISS
and detect which country
it is over, Flags is a cross
curricular learning project.

Keep astronauts safe and sound with a Pi and a mere 2,000-odd lines of code.

LV029 028 Feature Pi.indd 29 10/06/2016 17:25

www.linuxvoice.com30

FEATURE PIs IN SPACE

Team Space-Byrds from Thirsk School have created a
great project to track the ISS. Typically we only hear
about NORAD at Christmas, thanks to a long-running
Santa Tracker, which originated via a joke
communiqué in 1948 which continues to this day. But
NORAD provides telemetry data for satellites in orbit,
and this project uses this data to track the ISS without
the need for an internet connection. The location data
is then used to display the flag for the country over
which the ISS is orbiting, and then scroll a phrase in
the local language for that country.

All of the code for this project can be found at
https://astro-pi.org/competition/winners/\#flags.

What first struck us about this project was the use
of the ephem library. This library provides a means to
perform high-precision astronomical computations.

On lines 17 and 18 we see two lines of numbers;
this is satellite data for the ISS, which we shall later
convert to a format for use with ephem on lines 33
and 34. Inside of a while True loop, lines 27 to 30,
we see three lines of code that capture the current
temperature, pressure and orientation of the Sense
HAT.
....
temp = str(ap.get_temperature())
pressure = str(ap.get_pressure())
orientation = ap.get_orientation_degrees()
....

From lines 36 to 48 we see the latitude and
longitude calculated and converted from a string
of characters, splitting the string by identifying a

delimiter and using that as a pattern. Finally the new
strings are converted to float values.

Lines 54–1507 comprise a series of conditional
tests used to check the longitude and latitude of the
ISS against the values held for a particular country.
Two variables, X and O, are used to create a list, with
a layout of 8x8, to represent the LED matrix on the
Sense HAT. By positioning the X and O in the correct
place we can create the correct flag for a country.
With the list created the pixels are then updated to
show the flag. The code then pauses for six seconds
before scrolling two messages across the LED matrix,
in the local language for this country. Here is the
example for the United Kingdom.
if (lati[0] <= 53 and lati[0]>= 52) and (longt[0] >= -4 and
longt[0]<= -1):
 print “United Kingdom”
 X = [255, 0, 0] # Red
 O = [255, 255, 255] # White
 UK = [
 O, O, O, X, X, O, O, O,
 O, O, O, X, X, O, O, O,
 O, O, O, X, X, O, O, O,
 X, X, X, X, X, X, X, X,
 X, X, X, X, X, X, X, X,
 O, O, O, X, X, O, O, O,
 O, O, O, X, X, O, O, O,
 O, O, O, X, X, O, O, O
]
 ap.set_pixels(UK)
 time.sleep(6)
 ap.show_message(“Hello ISS, you are over the UK”)
 ap.show_message(“Hello ISS. How are you!”, text_
colour=[255, 0, 0])

At the end of the conditional test we have an else
condition, line 1509, which is used to quickly scroll
the current temperature. It then uses a while loop
that will loop and count down from 5000 to 0. While
counting down random integers are chosen for the
x,y co-ordinates of pixels on the LED matrix. The mix
of coloured light is chosen at random, giving us the
illusion of blinking LEDs computing a problem.
while FLASH > 0:
 x = randint(0, 7)
 y = randint(0, 7)
 r = randint(0, 0)
 g = randint(0, 100)
 b = randint(0, 255)
 ap.set_pixel(x, y, r, g, b)
 FLASH = FLASH - 1

The code then advises the user that their location is
being computed, ready to display the correct flag. The
pressure is calculated and shown on the LED matrix
before the matrix runs the computer animation.

PROJECT 2 – FLAGS
Where in the world is our intrepid team of space adventurers?

Right: The Astro Pi
website, https://astro-
pi.org, contains more
information about the
competition winners,
the goal of the Principia
mission, and regular blog
posts from the ISS.

Below: The Astro Pi
units are safely installed
aboard the ISS and are
being routinely used by
Tim Peake who is running
code written by UK school
children.

LV029 028 Feature Pi.indd 30 10/06/2016 17:25

www.linuxvoice.com 31

PIs IN SPACE FEATURE

Hannah Belshaw from Cumnor House Girls School
has created a great way of visualising sensor data by
using Minecraft. This project has many different
aspects; we’ll focus on the data logger and the
Minecraft data playback scripts. All of the code for this
project can be found at https://astro-pi.org/
competition/winners/\#spacecraft.

The data logger code, astropidatalogger.py, is
rather short as it imports a lot of configuration from
an user-created external library. The data logger
process is called on lines 29 and 32. With line 32 the
logger starts to gather data, saving the output to an
external CSV file. The library contains all of the raw
code that interacts with the sensors and formats the
data inclusion in a CSV file. In the external library,
astropidata.py, on line 52 we see the creation of a
class designed to log the sensor data. There are a
number of functions starting from line 93, which
handle printing verbose information to the terminal.
On line 188 we see the creation of a dictionary, used to
hold specific information that can be referenced via a
key, typically the name of the data that we wish to
save. The names of the fields for the data spans all
the way to line 231.
 datarow = {}
 datarow[DATETIME] = datetime.now()
 datarow[TIME] = time()
 datarow[CPU_TEMP] = cpu_temp.get_temperature()
 datarow[HUMIDITY] = ap.get_humidity()

From lines 248–362 we see another class that
reads the data from the sensors and then stores
it in the appropriate section of the dictionary. Here
is an excerpt from line 344–347 showing the
accelerometer data being stored.
 def get_gyroscope_raw(self):
 return {“x”: float(self.data[GYRO_RAW_X]),
 “y”: float(self.data[GYRO_RAW_Y]),
 “z”: float(self.data[GYRO_RAW_Z])}

Minecraft data playback
Playback of the data captured is handled via
mcastroplayback.py and this code visualises the data
using Minecraft and its many different block types. On
line 39 we see the raw CSV data being imported into
the code.
 apr = AstroPiDataReader(self.filename)

Further down the code, from line 45 onwards, see
the beginnings of the Minecraft code; on line 50 we get
the position of the player so that any visualisations are
created near to their location. From lines 65–73 we
see the code that will update the ISS data visualisation
with the latest information.
 isstowerdisplay.update(
 apr.get_time(),

 apr.get_cpu_temperature(),
 apr.get_temperature(),
 apr.get_humidity(),
 apr.get_pressure(),
 apr.get_orientation(),
 apr.get_joystick())

From line 113 we see the creation of another
class. This time it handles a command line interface
enabling the user to interact with the data via a shell
interface. Commands entered into the shell can be
passed arguments, extra information or configuration,
in this case it is the name of the file where the data is
stored.
 def __init__(self):
 Cmd.__init__(self)
 self.prompt = “SpaceCRAFT $ “
 self.intro = “Welcome to SpaceCRAFT data playback. Type
help or ? to list commands.\n”
 self.playback = None

From lines 181–194 we see a function that handles
the playback speed of the visualisation, either real
time, x1 or the value can be increased doubling each
time all the way to x16 speed. The code for playback
speed also incorporates error handling, in case the
user provides an incorrect speed.

At the end of the code we see two lines of code
that handle running the project and calling the various
classes that make up the code.
if __name__ == “__main__”:
 PlaybackCommands().cmdloop()

This robust project encompasses many different
aspects of Python, data structures and provides an
entertaining method of understanding data.

PROJECT 3 – SPACECRAFT
Lego, on a computer, in space…

Top: As well as Astro
Pi, the crew of the ISS
also run other science
experiments – here we
see blood being taken fron
Tim Peake by Commander
Timothy Kopra.
Bottom: The International
Space Station is huge –
measuring 109 metres by
73 metres it is the largest
man-made object in Earth
orbit.

LV029 028 Feature Pi.indd 31 10/06/2016 17:25

www.linuxvoice.com

FAQ GCC

32

GCC
The GNU Compiler Collection may be the most important piece of free software

ever developed – even more than the Linux kernel. Here’s why.

Whoa, it says up there that
GCC is more important than

the Linux kernel! Can I have some of
what you’re smoking?

No, we’re serious. Yes, the Linux
kernel is an incredible

accomplishment, a vast body of code
and effort from thousands of talented
developers. It’s arguably the best
operating system kernel in the world.
But in order to understand the
importance of GCC, we have to step
back in time a bit. Don’t worry though
– this isn’t going to be a drawn-out
history lesson.

Picture the scene in the late 1990s
and early 2000s. There were several
free software operating systems
making good progress: GNU/Linux,
FreeBSD, OpenBSD and NetBSD. Had
the Linux kernel – for some reason
– been made completely illegal, or

Linus Torvalds managed to erase all
traces of its source code from the world
and retired to a desert island, we had
other options. Most of the FOSS
computing world could have switched
to FreeBSD, for instance, which does a
similar job to GNU/Linux as a
workstation and server Unix flavour.

But all of these other operating
systems had something in common:
they were all built with GCC, the GNU
Compiler Collection (formerly the GNU
C Compiler, but the name was changed
as it evolved to support more
programming languages). Had GCC
disappeared or been made illegal back
then, the Free Software community
would have been up a very unpleasant
creek without even the slightest hint of
a paddle.

We had various kernels, text editors,
libraries, window managers and other
tools that could be swapped out, but
GCC was one of a kind. Sure, other

FOSS compilers existed – but they
were very primitive in comparison. GCC
was simply years ahead, and was so
dominant in the Free Software world
that many programs used GCC-specific
extensions in their source code.

OK, so GCC was a cornerstone
of FOSS development back

then. But what about today?
Well, it’s still a hugely significant
piece of software, and the default

compiler on pretty much every GNU/
Linux distribution, but some
competition is emerging in the form of
LLVM/Clang. This is a compiler
toolchain for C, C++ and Objective C(++)
that’s released under a more permissive
licence than the GNU GPL used by GCC
– so in other words, LLVM/Clang is
more appealing to proprietary software
companies. Apple has been one of the
leading developers of LLVM/Clang, and
other closed source companies have
gotten involved as well.

Right now, GCC and LLVM/Clang are
very close in terms of performance
(both in compile times and generated
code), with each project claiming a lead
in certain areas. But LLVM/Clang has

GCC is still a hugely significant piece of
software, and the default compiler on pretty
much every GNU/Linux distribution

MIKE SAUNDERS

LV029 032 FAQ 2ag.indd 32 09/06/2016 18:00

www.linuxvoice.com

GCC FAQ

33

shown enough maturity to be the
default compiler in FreeBSD 10
onwards – although GCC is still
available as an option. By the end of
2014, LLVM/Clang was able to compile
almost 95% of the Debian software
archive without problems, which is
mightily impressive considering that’s
over 40,000 packages.

So is that the end for GCC? Is
LLVM/Clang the future?
That remains to be seen. One
thing that makes LLVM/Clang so

appealing to developers is its
modularity. The toolchain can be neatly
split up so that the separate parts can
be used in an IDE (integrated
development environment), providing
useful debugging and error messages
along the compilation and linking chain.
In comparison, GCC makes it harder for
IDEs to access the code during the
intermediate compilation steps,
providing hurdles for seamless
integration.

GNU founder Richard Stallman has
said this is a feature and not a bug, and
essential to keep GCC away from being
wrapped up in proprietary IDEs. But at
the end of the day, it’s down to the old
battle of idealism vs pragmatism. If
LLVM/Clang ends up producing faster
and smaller code while working much
better with IDEs, many hackers may be
willing to forgive its more permissive
licence and just get their work done.

But surely GCC is making
progress, right? I heard that

there was a new 6.1 version
released just recently…

Yes, GCC is still going strong and
has a lot of hugely talented

people working on it. Version 6.1 was a
major upgrade, using the C++14
standard by default (from 2014, as
opposed to previous versions of GCC
which defaulted to the 1998 standard).
Support for very old architectures is
being dropped, new optimisations are
being rolled into the code base, and the
runtime library is being worked on too.

It’s also important to note that GCC
supports a wide range of CPUs and
languages, and is being updated for
relatively new languages such as Go.
So we don’t have any deep concerns
about GCC’s future, even with LLVM/
Clang wooing lots of developers. In an

ideal world, both projects will provide
healthy competition and result in even
better compilers.

OK, so let’s get a wee bit
technical. How exactly does

GCC work?
Compilers are incredibly
complicated pieces of software,

and warrant entire books about their
design – but we can summarise the
key components here. GCC doesn’t
simply read a piece of code like
puts(“Hello world”); and determine the
right CPU instructions to do the job;
instead, it’s made up of multiple
components that go through the code
in a stage-by-stage basis.

To start off, the “front end” part of the
toolchain looks at the human-written
source code, parses it, checks for errors
and generates a “syntax tree” (a tree-like
representation of the code). This syntax
tree is not specific to any particular
language – so you have front-ends for
C, C++, Ada and other languages that all
generate a syntax tree in the same
format for the next step of the
compilation process.

This middle stage performs
optimisation on the syntax tree,
creating an intermediate language that
looks a bit like assembly language but
is still CPU-independent. Finally, the
“back end” takes the intermediate
language and converts it into assembly
language for a specific architecture.
That code is then assembled and
linked, resulting in a binary executable
that you can run.

Because compilation is split up into
these separate stages, developers can
work on the parts they like without
having to know everything about every
language and CPU. Someone with
extensive knowledge of C++, for
example, can hack on the C++ front-end
without having to know anything about
x86 or ARM processors. Similarly, a low-
level coder who’s ace at micro-
optimisations on x86 chips can work on
the back end without having to deal
with the complexities of C++.

Ooh, that actually sounds like
fun. I did a bit of x86 assembly

language once, thanks to a certain
tutorial series in Linux Voice…

Then get involved! The GCC
website at https://gcc.gnu.org

has mountains of information; in
particular, the page for new contributors
at https://gcc.gnu.org/contribute.html
is a good starting point. GCC is a large
and mature project with some of the
most experienced hackers on the
planet, so it may take a while to get
yourself familiar with the codebase and
infrastructure, but any contributions are
welcome. And as with almost every
Free and open source software project,
source code is just one slice of the
development pie – the team also
welcome bug reports, documentation
updates and other non-hacking
contributions as well.

If you want to get involved but don’t
know where to start, or you’re short of
ideas, see https://gcc.gnu.org/projects
– and especially, the “projects for
beginner GCC hackers” link. This
contains a list of newbie-friendly
hacking tasks, such as splitting up giant
source code files and removing
duplicated code. These jobs may sound
trivial in the grand scheme of things,
but they help to make GCC tidier,
cleaner and more accessible for other
contributors. Plus, being able to say
that you contributed to a compiler is yet
another thing to shout about on your
geek business card…

Protip: despite what the GCC logo may have you believe,
gnus are not born in eggs, nor do they hatch out with
fully-grown antlers.

LV029 032 FAQ 2ag.indd 33 09/06/2016 18:00

INTERVIEW JIM KILLOCK

34 www.linuxvoice.com

T
he Open Rights Group: if y

ou haven’t heard of

it, lo
ok it u

p. ORG is one of a handful of bodies

dedicated to lobbying MPs, raising public

awareness and fighting injustices that crop up whrn

the modern world rubs up against th
e machinery of

state. Whether it’s
 data privacy, surveillance or th

e

right of online firms to use a level playing field, the

Open Rights Group is there, making a load of good

arguments with a big spoonful of common sense.

We spoke to ORG’s executive director, Jim Killock…

Country mice Andrew Gregory and Ben Everard venture to scary London to

talk about fre
edom, surveillance, and why we should be bothered.

JIM KILLOCK

LV029 034 Interview.indd 34 10/06/2016 17:26

“It doesn’t make me very comfortable that my personal
internet activities are being assessed for how suspicious
they look. That places me under suspicion; it places you
under suspicion, it places your readers under suspicion.”

JIM KILLOCK INTERVIEW

35www.linuxvoice.com

LV029 034 Interview.indd 35 10/06/2016 17:26

36

INTERVIEW JIM KILLOCK

www.linuxvoice.com

Let’s get down to business –
what is the Open Rights Group

working on right now?
Jim Killock: We’re working on mobile
data and how mobile phone companies
are collecting and using people’s data.
Both data protection and privacy are
going to big debates in Europe over the
six months, particularly privacy.

That’s if we’re still in Europe
– after the referendum we

might have left…
JK: I mean… yeah… ORG is not pro- or
anti-Europe as such. But assuming we
did leave, there are really big questions
for digital rights. How do you do all of
the telecoms regulation? What do you
do with data protection? What do you
do with e-privacy? Do we stay in the
digital single market? And the curious
thing there is that if you stay in the
single market then you have to keep all
these laws, which means the situation
simply doesn’t change. So leaving
Europe might not make a great deal of
difference; it might well be that a lot of
these laws stay exactly the same

That’s the Norwegian model,
isn’t it?

JK: It is. And the thing with that of
course if that that might not be very
politically palatable. So you’ve got a
hard choice between the economically
easy route and the politically tenable
route. I think it’s going to be quite hard
to leave Europe and then say “well
actually we’re going to keep everything
the same and keep adopting European
laws’, because that’s going to make no
sense. It’s very hard to know which of
these tendencies wins out.

I wonder how the UK parliament
would cope with doing this sort of
legislation They’re very detailed,
technically intricate and not very
interesting to voters most of the time,
and I don’t think that our MPs are going
to have a lot of time or interest for these
reasons.

What would happen in practice is
that our civil servants would do all
of this and it would all go through as
statutory instruments. So you’d still
have a democratic deficit, possibly a
worse one, because there is some kind

of transparency in the EU process, and
it’s probably less when it’s civil servants
drafting SIs.

So who, in the UK government,
gets it, do you think? Tom

Watson and David Davies are the
obvious two that spring out. It
seems to me that, there’s an
increasingly authoritarian streak in

mainstream politics, and there are
only a few people who understand
that spying on people is A Bad
Thing.
JK People in government in the cabinet
are always are under a lot of pressure
to play to the gallery, and therefore even
the people who might understand the
problems don’t often vocalise them.

In parliament at the moment we do
have a shortage of attention to these

Jim tells us that it’s hard to get the public
interested in TTIP (how do you campaign on
something that’s happening in secret?), but it’s
most probably not going to happen anyway.

GCHQ are scoring everyone
on the basis of how much
risk they think we are

LV029 034 Interview.indd 36 10/06/2016 17:26

37

JIM KILLOCK INTERVIEW

www.linuxvoice.com

issues. We do have some interesting
MPs who were elected on the Labour
backbenches who are sort of making a
bit of progress, but none of them have
had time to grapple with this agenda.

I think we miss Julian Huppert
[former Liberal Democrat MP for
Cambridge]; he was very good, and
it’s a pity that we don’t have him in
parliament. Within the Conservative
ranks there are a number of people who
are very good. Obviously David Davis,
but at least one or two of them have
ended up in the cabinet, where they
effectively get shut up, so you don’t
hear from them.

I think the other thing with the
Conservatives right now is that
obviously they’re preoccupied with
Europe – that’s the problem with the
Investigatory Powers bill right now. A
lot of the people you’d expect to have at
least some kind of interest in this have
not been paying attention, because
they’re putting all of their energies into
the referendum. And yet these next few
weeks are also the critical time for the
Investigatory Powers bill, making the
public side of campaigning very very
difficult. Attention is elsewhere.

Labour’s rationale for
abstaining on the first vote

was that they would be able to

oppose it more effectively at a later
stage. Do you think that’s a winning
strategy?
JK I don’t think it is particularly effective
right now, but I understand why they did
it. Everybody has known for a while that
these laws need updating; that’s partly
because of Snowden – you can see
that the law is out of kilter with what’s
happened, what the practice is; and it’s
partly because in the 10 or 15 years
since they last legislated, the world has
changed. I think we can understand
that legislation is needed, and if you
start from that assumption, it’s going to
feel like a much better option to try to
improve what has been proposed
rather than try to oppose it wholesale.

The other thing is that Labour
themselves are quite torn about how to
approach this. Part of the Labour party
is very concerned about civil liberties
and wants to see it do more about
these issue, and part of it still very
afraid of being painted as being weak
on crime, weak on terror and so on, and
they want to portray themselves as
supporting the secret services as much
as possible. So they have a problem.

Then there are some really
fundamental issues that we don’t
understand. One of the biggest is bulk
powers. Are bulk powers justifiable?
From our point of view it’s very hard

to see how something that’s entirely
indiscriminate could be viewed as
proportionate. But we haven’t seen
it tested in the courts in quite these
terms, and of course the opposing
argument is kind of “How are we
meant to to do this? How are we meant
to achieve the results we need if we
aren’t sweeping it all up?”

So Labour are trying to push for a
review of the powers to see whether
they’re justified or not. They’re trying
to in a sense get somebody else to tell
them whether this is legitimate or not.

So what could the effects of
the IP bill be for the average

law abiding citizen who doesn’t have
anything to hide?
JK: The thing you have to remember as
an individual is that… GCHQ are literally
scoring everybody on the basis of how
much risk they think we are. You can
choose to ignore it, but the fact is that
we are all being evaluated. They’re
piecing together information per
individual, trying to correlate it with
other information about individuals,
then deciding whether we appear to be
close to certain sorts of patterns.

Those of us who do match or seem
close to certain patterns then get
looked at more closely. But the fact is
that machines are evaluating all of us.

“The first thing you’ve got to
remember is that politicians are not
overly familiar with all of the detail

of surveillance law or what might
constitute mass intrusion”.

LV029 034 Interview.indd 37 10/06/2016 17:26

38

INTERVIEW JIM KILLOCK

www.linuxvoice.com

GCHQ’s argument is that this process
of evaluation, correlation, matching of
data doesn’t matter, because it’s only
machines that are doing this, and
none of this is being looked at by an
individual. But it doesn’t make me very
comfortable that my personal internet
activities are being assessed for how
suspicious they look. That places me
under suspicion; it places you under
suspicion, it places your readers under
suspicion.

Does using Tor place you more under
suspicion? It kind of does, it’s very likely
to. Is using a VPN likely to give you a
couple more suspicion points? Yes.
Does moving around in certain parts
of town put you at greater suspicion?
Yes. Each of these things, your flight
records, passport history, whatever it
happens to be, all these things build a
profile. And that means that sometimes
some people are going to come and
start asking questions. Should I read
this website that provides information
about extremists? Maybe not – maybe
I don’t want the police or GCHQ to be
knowing that about me. Even as an
individual there are serious concerns
that people’s behaviour online changes.
Effectively your free expression, your
right to impart and receive information,
it is limited because of your fear of
surveillance. We don’t know the full
effect of that yet, but it is inevitably

going to make people that little bit more
conformist and that little but less risk-
taking.

What happens with the journalist
who finds it harder to persuade a
whistleblower to hand evidence over?
Or what happens with an individual who
needs legal protection and that legal
protection is known by the authorities;
do they not seek legal advice? Those
sorts of things are bad for us all. If the
rule of law, or the ability of journalists to
do their work, is limited, then the result
is that we have a less democratic, less
free society.

If somebody ends up in jail a little bit
longer, because they’ve been afraid to
talk to a lawyer, that undermines the
rule of law for all of us. It changes our
society. I think those are the reasons
we try to restrain surveillance; we don’t
try to just say “looks, we’ll deal with
it when it goes wrong”, which is kind
of the approach that the government
has when they say they’ll fix it with
oversight and checks and balances.
You limit surveillance because you don’t
want everyone to feel like they’re under
surveillance. That’s wrong.

Fair enough.
JK: It’s not hard it is, talking to

people who already agree? The problem
is that the counterview is that the
government has a duty to defend

people from crime, terrorism, and that
individuals have a right to life. That’s
also a powerful argument. That’s when
you end up saying that you have to
have some surveillance. And that’s why
we end up in this horrible area around
the techniques that GCHQ use that
really work. Because you have to ask
whether they are (as GCHQ claim) the
only way to reach the conclusions that
they’re reaching, the only way to
develop these and the only way to get
to these people.

We borrowed a similar point
from Bruce Schneier a couple

of issues ago. Even with a filter
that’s 99.99% accurate, if you run
that on 100m people that’s a huge
number of false positives.
JK: You’ve got a false positives
problem, but you’ve also got a huge
need to sift everything. If your
algorithms and sorting processes
requires each and everybody’s
metadata to be sorted and then to find
ways to assess all of that metadata,
and to make it searchable, so you’re

You don’t want everyone
to feel like they’re under
surveillance. That’s wrong

Before joining ORG, Jim was
the external communications
chap at the Green Party.

LV029 034 Interview.indd 38 10/06/2016 17:26

39

JIM KILLOCK INTERVIEW

www.linuxvoice.com

creating a huge amount of machinery
just to deal with irrelevant information.

Maybe it’s more easily solvable that
I’m giving credit for, but at the very
least you’ve got to question that use of
resources.

Did you do the Putin posters
with the slogans over the top

of them?
JK: We did that with the other Don’t
Spy On Us groups – we raised about
£15,000 to help publish those and we
also got some grants in to do that. And
we worked with an ad agency who
wishes to remain anonymous. The little
bit I did, apart from a bit of logistics,
was to help them find a CC image they
could use.

I was wondering where that
photo came from…

JK: It was kindly published by the
Kremlin. So if you look on the posters
they all say “Image CC Kremlin.ru”.

The big challenge is trying to get the
public interested.I don’t think it’s that
the public is not interested; it’s just that
there are so many competing problems
an the EU referendum right now is
overshadowing literally everything. We
did the Putin posters to remind people
that this issue is still there, but what you
actually need is the politicians arguing
it out and explaining to the public
why they’re taking certain positions.
Until that happens, the issue isn’t a
real decision for people. It’s just some

vague thing that’s going on. It’s the
point at which Theresa May [the Home
Secretary] stands up in parliament and
says “You’ve got to vote for this” and
someone from the other side stands
up and says “what you’re proposing is
totalitarian”. That is the point that public
start to understand that this is really
happening and they need to take a side.

I want to ask you about Myles
Jackman [who has recently

joined the ORG as legal director].
How’s he getting on?
JK: Miles is great. He’s very interesting
because he’s been a campaign lawyer.
He thinks like a campaigner, he’s
someone who wants to see the law
change and is capable of pinpointing
the problems when they go wrong for
individuals. I think he’ll be a very
effective member of our team.

More widely for ORG I think the
legal dimension to our work is going
to become more important over time,
because it’s one thing to argue these
things out with bureaucrats who’ve got
an excuse for everything, but if we are
prepared to take these things to court
that will remind politicians that if they
step over the limit in these areas then
they aren’t going to get their way.

In this area there’s been a sort of
assumption that because digital is new
that politicians have a kind of carte
blanche to do whatever they like and
can define the boundaries as they like.
And that ignores the fact that a lot of

these principles have been debated in
the past, and the limit online has to be
the same as offline. We have the same
privacy rights, we have the same free
expression rights.

The dominant metaphor in the mind
of a lot of politicians is the internet as
publisher, so the internet should behave
itself like a newspaper would, or the BBC
should. So they expect the individuals
online to behave as though they were a
BBC journalist; not saying outrageous
things, not speaking as they would in
public… But at at the same time, most
people are talking pretty much as they
would to their friends, so the metaphor
at work in most people’s minds when
they say and do things online is that
of common everyday speech, not
editorialised content, and that’s quite
hard for politicians to grasp. You see
that also in the police when they react to
content that is offensive.

The chap who was arrested for
having a Nazi pug, for example.

JK: The Hitler pug video is puerile, and
I’m not going to claim that it’s a great
example of tasteful humour or anything
like that, but the question really has to
be if this man is inciting racial hatred,
why isn’t he being prosecuted under
racial hatred laws? The reason is, I
think, because the police reckon they
wouldn’t get away with it. He’s very
clear about his intentions; he says in
the video that he’s trying to annoy his
girlfriend and that he’s not actually
advocating Hitlerian politics, and
therefore a court would find it difficult
to convict as an incitement to racial
hatred. So they threatened him with
offences under the Communications
Act, because ‘grossly offensive’ is
essentially an ‘I don’t like it very much’
test that drags in anything where you
can get a lot of people to shout ‘I don’t
like this.’ That’s not a sufficient test for
prosecuting someone.

That doesn’t mean you have to like
the video; but just because I think what
he did wasn’t an appropriate thing to do,
doesn’t mean that I have the right to tell
him he has to go to jail. But of course
for politicians a lot of the time it’s easier
to tap into the offence that is generated
rather than try to work out whether the
lines are properly drawn. I guess that’s
why we have courts and it’s why we
have ORG.

“It is actually quite difficult at the
moment for Europe to compete in
a market with the USA because of
different privacy laws and standards.”

LV029 034 Interview.indd 39 10/06/2016 17:26

shop.linuxvoice.com

MUGS AND T-SHIRTS!

You can drink
coffee, tea or
champagne.
It’s all about

choice.

This mug
respects your

freedom. Look,
it even says
GNU/Linux!

LV028 040 Ad Merchandise.indd 40 09/06/2016 18:05

www.linuxvoice.com 41

INTRO REVIEWS

REVIEWS
The latest software and hardware, rigorously bashed against a wall by our crack team.

Andrew Gregory
Is grateful to the brewers of Hebden Bridge for
this month’s creativity juice.

There’s a bit of theme running
through this month’s reviews:
neo-Luddism. We’ve shunned

the latest AAA first-person shooters to
review Lumo. It’s simple, it’s wonderful
and we like it a lot.

In the world of distributions there are
all sorts of advanced features, but
we’ve chosen to review one that has
simplicity as its raison d’etre – Tail,
which makes it simple to use the Tor
anonymising software. And Ben’s been
playing with Ghost, a blogging platform
that trades on its simplicity.

Simplicity is a feature
The reason we like simplicity isn’t that
we’re lazy or thick: we like it because
we’re got better things to do that learn a
whole new CMS when all we want to do
is put up some allotment photographs.
We don’t want to have to learn a new
control system when the WASD keys
and Space bar can give us immediate
feedback. And frankly, if someone’s
gone to the bother of configuring the
Tor Browser for us, why on earth would
you bother to do it for yourself?
Immediacy is attractive and rewarding.
andrew@linuxvoice.com

On test this issue . . .

Group test – beginner distros 50
Emancipate yourself from mental slavery, put
Windows down and install one of these fine
beginner-friendly distributions.

Booooooooooooooks!!!! 48
Presumably privacy advice for girls is the same as
it is for boys. Likewise the fundamentals of Bitcoin
don’t change according to your gender.

Group test and books

Ghost 44
Bring the stark elegance of Adrian Frutiger to your
online musings with this blogging engine.

Lumo 45
The isometric gameplay of the 1980s coupled with
the graphics performace of today. Noiiiice!

Tails 42
Tor is essential for maintaining your privacy – and
Tails helps you set it up. Simple.

Krita 43
New features and even more polish make KDE’s
drawing app a must-try for artists.

LV029 041 Reviews Intro.indd 41 10/06/2016 16:39

REVIEWS LINUX DISTRIBUTION

www.linuxvoice.com42

Tails 2.4
Browse the web completely anonymously. Well, sort-of.

While the Tor Browser is
the main feature in Tails,
plenty of other software is
included as well.

Is there such a thing as total anonymity on the
internet? Well, if you’re willing to travel by foot to a
foreign country with a stolen laptop, hack

someone’s Wi-Fi and do you work that way – quite
possibly. But for most people, Tor provides a certain
level of anonymity by routing your internet traffic
through a complex network of servers, making it
difficult for the end resource that you access to
determine where the original request came from.

Tails (The Amnesic Incognito Live System) is a
Debian-based live distro that includes everything you
need to get started with Torout of the box. Just boot it
up and start browsing – as simple as that. If you boot

Tails in VirtualBox, it complains that your anonymity
could be reduced (ie the virtual machine could still
be monitoring your keypresses). So for maximum
anonymity it’s best to run it on native hardware.

Along with the Tor Browser – a modification of
Firefox – Tails includes other software in its 1GB DVD
download ISO, such as the Pidgin instant messenger,
Icedove (a rebranded Thunderbird), Gobby (a document
collaboration tool) and other useful bits and pieces.
Yes, this all bulks up the download size of the distro,
but we appreciate having a versatile toolset with all
network traffic going through Tor.

Tails 2.4 features updates for all its major software
components, and the Gnome Tweak Tool has been
removed. This is a controversial change for some,
given how non-configurable Gnome 3 is; on the other
hand, we understand that it makes support much
easier when end users can’t pull apart their desktop
beyond recognition. Another change is the removal of
#tails on IRC as a method of communication, as the
Tails team recommends using XMPP chat instead.

In all, it’s a solid upgrade for the distro and we give
credit to the Tails team for maintaining its focus and
consistently delivering a good experience. It doesn’t
guarantee 100% anonymity, but it’s a big step in the
right direction.

In a world where government (and corporate)
spying is everywhere, Tails is a valuable tool.

Web https://tails.boum.org
Platforms x86
Price Free

LV029 042 Review Tails 2ag.indd 42 09/06/2016 18:04

KRITA REVIEWS

www.linuxvoice.com 43

Krita 3.0
Graham Morrison finds his own version of the adult colouring book phenomenon.

The new layer UI and
multi-selection makes
multi-layer blender a very
creative and rewarding
process.

Before we look at what’s inside this major
update to our favourite drawing tool, it’s worth
looking at what’s been going on outside the

code. In particular, we think the Krita team is doing an
amazing job at managing the project, both by getting
great support for its crowdfunding efforts, and via the
publicity it generates through its website and media
channels. We highly recommend our readers take a
look at some of the time-lapse design creation videos,
example files, brush presets and tutorials, as they
provide a brilliant overview of what Krita is capable of.

Let’s get squiggling!
Animation alone is worthy of the 3.0 release moniker,
literarily adding an entire new dimension to Krita. With
the new animation and timeline ‘docker’ panes, you
can easily start making your drawings move, adding
one frame after another and using onion skin overlays
to preview previous and next frames. It reminds us of
the ancient Deluxe Paint on the Amiga, and while Krita’s
implementation is obviously capable of serious
results, it’s just as fun. It’s probably a good thing that
the OpenGL 3.0 (and Qt 5!) performance
enhancements have made it into this release too, as
creating animations requires a lot of fast switching
between both rasterised and vector layers, but we
experienced great performance and no stability
issued with the latest release on a modest 2.2GHz

Intel CPU with 8GB of RAM, Intel graphics and a very
high resolution display. Everything behaved brilliantly.

This release is the result of a year’s work, and of the
great many other additions, our favourites include the
grids and guides overhaul – guides are now saved
with your work and the unified pane makes them easy
to access – the ability to move and manipulate more
than one layer at once and the new popup palette. The
new update, thanks to its speed and design, feels like
a genuine professional application capable of
stunning results in the right hands.

An absolutely brilliant drawing app, whether
you’re a beginner or a professional.

Web https://krita.org/
Developer The Krita team
Licence GPLv2+

LV029 043 Review Krita 2ag.indd 43 09/06/2016 18:06

REVIEWS BLOGGING PLATFORM

www.linuxvoice.com44

Ghost 0.8
There are ghouls on the web, but Ben Everard ain’t afraid of no Ghost.

The marketplace contains
a bewildering array of
themes (both free and
paid-for) to suit almost
any taste.

Ghost has all the features you’d expect from a
blogging platform – you can create posts,
manage them, and publish them on the web.

Many people can work together to create a single blog
with each publishing under their own name. The thing
that sets Ghost apart from the other options is the
user experience. Blogs are written in Markdown, and
there’s a live preview of the output on the right-hand
side of the screen. The interface is uncluttered, and
everything is stripped away to force you to focus on
what’s important – the content. The Ghost software
processes the Markdown and combines it with your
selected theme to produce a great-looking blog.

There are two options for running Ghost – you can
host it yourself (the software is open source) or you
can use the hosted option at ghost.io. Setting the

software up is a little more involved than many web
apps because it uses Node.js and has to be routed
through a proxy (such as Nginx). There are detailed
instructions on the project’s web page (https://
support.ghost.org/developers). Because of the
technologies used, you’ll hit some slight complications
if you plan on running Ghost on the same box you use
for Apache/PHP web apps.

The hosted options start from $19 per month for
up to 25,000 page views. The cost means that Ghost
is more suited to professional writing than someone
looking to write the occasional piece about a hobby.

When productivity is important, ease of use is a
feature. It’s difficult to make an ugly post on Ghost
(when compared to HTML-based blogs that give you
enough flexibility to create horrid-looking pages).
When blogging is something that you tend to put
off, these two factors may make you more likely to
actually post something.

Some blogging platforms are flexible to the point
that they’re really content management systems
that can be bent into any website. Ghost is not one of
these – it’s a blogging platform for blogging, and by
focusing on one thing, it performs the task excellently.
The cost might be a little high for hobbyist bloggers,
but for professionals, Ghost has a lot to offer.

A blog platform for bloggers, but the hosted
options are pricey.

Web ghost.org
Developer Ghost Foundation
Licence MIT

LV029 044 Review Ghost 2ag.indd 44 09/06/2016 18:07

LUMO REVIEWS

www.linuxvoice.com 45

Lumo
Graham Morrison falls head over heels in love (again) with 2.5 dimensions.

Controls can be configured
to find the most natural fit
for the view on-screen,
though they never make it
easy.

Lumo is an isometric puzzle game. If that means
anything to you, you’re going to love Lumo. It
brilliantly recreates the challenges and

addictive gameplay of its forebears, rendered in a
modern graphics engine running from Steam on your
Linux box. If ‘isometric puzzler’ means nothing to you,
you should note that Lumo isn’t really isometric, nor
much of a puzzler. Isometric is a reference to the way
games designers built the graphics for their games
back in the 1980s, placing pixels at the north west,
north east, south east and south west points adjacent
to another pixel. This technique limited what would
now be called jaggies or aliasing, the stepped
appearance of a line when it’s drawn across a low
resolution, and the arrival of these games on home
computers caused a revolution back in 1984. 256 ×
192 pixels never looked the same after Ultimate Play
The Game released Knight Lore for the ZX Spectrum.

Isometric alienation
Lumo comes with a huge chunk of nostalgia, and it
does a skillful job at weaving in references from the
80s into its gameplay, from Oliver Frey to Shahid
Ahmad, and retains an authentically British Bedrooms
to Billions aesthetic (a great film if you’ve not seen it).

But more importantly, Lumo revisits a gameplay
mechanic that’s been lost in the era of 25GB game
patches and tenth generation GPUs. This mechanic

comes from the limitations of the display, and the
language of the isometric view is a fundamental part
of the challenge. Without any instructions or
prompting, the player is able to make sense of their
surroundings and work their way from one room to
the next. There are hundreds of rooms grouped into
levels, and getting through the game is going to be a
serious quest. Success depends upon precision
timing and enough mental dexterity to transpose the
on-screen angles into keyboard or game controller
movements, sometimes reversed, always under
pressure. It’s this unforgiving environment that makes
the game so compelling and utterly addictive. We
loved it. Just like its 80s counterparts.

Two thumbs up. Inane grin.

Web http://triple-eh.tumblr.com
Developer Gareth Noyce/Triple
Eh Games
Price £14.99 (Steam)

LV029 045 Review Lumo.indd 45 10/06/2016 17:28

www.linuxvoice.com46

REVIEWS GAMING

Stellaris
Intergalactic grand strategy.

The tastiest brain candy to relax those tired neurons
GAMING ON LINUX

 STAR TREKKIN’

Following last month’s coverage
of how the Vive VR is yet to
have Linux support, the first

steps to this being amended have
been taken, albeit by crafty
community workarounds rather than
by Valve, which plans to add support
at a later date. Those who bought a
Vive to use with a Windows dual-boot
should check out this guide (http://
tinyurl.com/z4qtgv7) on how to get it
up and running. For those looking to
buy a Vive to use exclusively on
Linux, it’s best to wait for official
Linux support.

Something briefly touched upon in
Distrohopper last month was
progress with running Linux on a
PS4. These efforts have now begun
to seriously pay off, and an install of
Arch Linux on a PS4 has been able to
run Steam in Big Picture mode. To
make this feat even more impressive,
the modder responsible also
managed to install Radeon drivers to
make full use of the console’s AMD
graphics. As a demonstration, a video
has been making the rounds of the hit
indie game Bastion running natively
on the hardware. Needless to say,
now with far more native Linux
games around, the possibilities for
console Linux distros are far more
exciting.

On the development side of things,
the Unity Engine is to add Vulkan
support very soon, adding a major
advance to one of the most
widely-used game engines out there.
The developers are also working on
some SDL improvements, which
should allow for Wayland and Mir
support.

Michel Loubet-Jambert is our Games
Editor. He hasn’t had a decent night’s
sleep since Steam came out on Linux.

In Stellaris, the Fermi paradox
has been answered as the Milky
Way is densely inhabited.

The game’s high level of detail enables us to see
space battles and planets from up close.

Web http://store.steampowered.com/app/281990
Price £34.99

This game got a lot of people excited
when it was first announced – it’s
reminiscent of Master of Orion and is

brought to us be the people behind Crusader
Kings and Europa Universalis (two of the finest
strategy games on Linux), so it should be a
seemed like a match made in heaven.

Stellaris certainly does a lot right. The familiar
interface, ability to create and customise galactic
empires, a sensible non-Hollywood approach to
science, a good mix of well executed mechanics
and story events that provide intrigue and
mystery to the galaxy all serve to provide an
extremely polished game. On top of this, Stellaris
does well to remain grounded in sticking
conventionally understood concepts like
terraforming and FTL travel, instead of getting
into the outlandish realms of force crystals and
magical powers, which can break immersion if
not done right and make decision-making
arbitrary in a strategy game.

Where the game falls short is with a problem
that is all-too-common in strategy games, and
that’s in the late game. After an incredible
exploration phase in the early game filled with

small quests and the excitement of discovering
neighbouring empires, followed by a strong
mid-game with the imminent threat of war and
strong factions, the game becomes a bit of a
slog in the later stages and the new technologies
and mechanics steadily unlocked throughout the
game do little to remedy this.

Bigger and better
Nevertheless, strategy games of the last 10 or so
years have rarely been perfect from the start,
often improving greatly with expansions.
Fortunately, a tonne of free content has been
announced for the coming months. Stellaris is
still certainly worth getting now, with the
knowledge that it will get even better over time.

LV029 046 Gaming.indd 46 09/06/2016 20:14

www.linuxvoice.com 47

GAMING REVIEWS

Stellaris
Overfall
This RPG with turn-based combat has it all: a
strong story, pleasing art and addictive
gameplay. What makes Overfall unique is the
way in which the story is told, having Rogue-
like permadeath elements, it occurs through its
multiple runs rather than in a linear manner. It
Overfall provides the fleshed-out world and
characters of a traditional RPG.
http://store.steampowered.com/app/402310

ALSO RELEASED…

The Mims Beginning
A contemporary alternative to Populous.

A fter some time in Early Access,
The Mims Beginning has now seen
a full release, and promises the

ability to “re-live the golden age of god
games”. In The Mims, the player is tasked
with overseeing a group of aliens who
have settled on floating islands in space,
attending to their needs and ensuring
their survival. Both the premise and the
graphical style is reminiscent of this
golden age, while the added benefit of
hindsight ensures that the best aspects
are taken from these classics.

The game has pretty much every
mechanic you’d expect, a decent story
mode, lots of buildings and a good
interface to manage it all. There’s lots to
do, so expect to get many hours out of it

though the game doesn’t have a steep
learning curve.

One very unusual omission in the
current build of the game is the lack of a
save feature during missions, and while
the rest of the game is polished and
bug-free, this is something that really
should have made its way into the final
version. Aside from this, The Mims delivers
what it promises.

Shadwen
A stylish medieval stealth game.

Shadwen is a stealth game that
breaks a few of the genre’s
conventions. Other than the female

protagonist and companion, the game
also makes use of time pausing and
rewinding. These elements mix things up
a bit and make the game feel far more
stealth-like than in those where the player
can be caught repeatedly. Similarly, giving
the choice between killing the guards or

simply evading them using craftable
tranquillisers and traps adds a lot of player
choice and replay value.

The story holds it all together nicely and
the inclusion of Lily – a young girl rescued
by Shadwen – adds more dimensions to a
single-objective plot. Unfortunately,
Shadwen feels wonky in areas with some
weird physics and collision detection at
times. Similarly, at the time of writing,
controller support is completely absent on
Linux, which is a shame since this kind of
game greatly benefits from it.

Blueprint Tycoon
Fresh out of Early Access, Blueprint Tycoon is a
game which – despite the aesthetics – has
very little to do with blueprints. It can be seen
as more of a business sim game, where the
objective is to gather raw materials and
transform them into goods to be sold at a
profit. It’s pretty challenging, though also
rather addictive, and involves using meticulous
planning to achieve optimum efficiency.
http://store.steampowered.com/app/454060

Lumo
Lumo brings back isometric platforming after a
long absence, but now rendered in real 3D
rather than hampered by the graphical
limitations of the 1990s. This does a lot to
offer extra charm to its already pretty – though
minimalist – levels and character, and fuses
modern lighting effects and the like with
some classic gameplay. There are also plenty
of fun minigames and secrets in this hugely
enjoyable game (see our review p45).
http://store.steampowered.com/app/345480

Join Shadwen on her mission
to kill the King while jumping

about everywhere.

The Mims has a classic feel while using
modern graphics to its advantage.

Web http://store.steampowered.com/app/425210
Price £12.99

Web http://store.steampowered.com/app/337820
Price £12.99

LV029 046 Gaming.indd 47 09/06/2016 20:14

www.linuxvoice.com

REVIEWS BOOKS

48

Ben Everard is neither smart nor a girl, but he does protect his privacy.

Smart, sensible and accessible advice for
staying safe online.

V iolet Blue, blogger at Tiny Nibbles:
Open Source Sex, isn’t a typical
privacy advocate. Of all her

publications, this is the only one that could
be considered safe for work (the others are
all of an intimate nature). As a woman who
speaks about sexuality online, she has had
to learn how to stay safe on the internet.

Keeping our private information private
can be difficult in the digital world, but it’s a
challenge that we should all take seriously.
The Smart Girl’s Guide To Privacy is a great
guide for women who usually find privacy
advice too technical or dry to digest, and
also gives real-world examples of what
can go wrong if you don’t take necessary
precautions. The Smart Girl’s Guide To Privacy
is both practical and realistic. It accepts that

women want to have a social life online, and
this may include things like internet dating.
Rather than keeping your privacy by turning
off your computer, this book goes through
the particular risks and potential mitigations
for being an active member of the online
community. It gives advice for what to do
should you lose control of information such
as through doxxing or revenge porn.

This book is an important read if
you’re a woman online, and it’s essential
reading if you’re a woman online who (for
whatever reason) is particularly at risk from
harassment.

The best source of online privacy advice
for women we know.

Author Violet Blue
Publisher Digita Publications Privacy
Price £3.59
ISBN None

Bitcoin For The Befuddled
Money money money, must be funny, in a Bitcoin world.

Let’s face it: Bitcoin is complicated
in a huge number of ways, and if it
doesn’t befuddle you a bit, you’re

either an expert or not really thinking about
it. There’s the underlying processes of how
a decentralised digital currency can even
work, there’s the practicalities of how to buy
and spend it and there’s the philosophical
reasons for why we’d want such a thing in
the first place.

All this is without getting started on what
money actually is. Bitcoin For The Befuddled
tackles these areas and even goes further to
show you what to expect in the future and
how to incorporate the currency into your
software.

Bitcoin has attracted more than its fair
share of controversy over the years, and has
had wildly varying prices, but it’s weathered

all the storms and seems to be as strong as
ever. Bitcoin is fascinating for its own sake,
but the principals behind it (such as using a
blockchain as a distributed ledger) may well
find applications in far more areas. Even if
the actual currency of Bitcoin goes away, the
technical ideas behind it won’t, so it’s well
worth making the effort to understand it.

Bitcoin For The Befuddled is a great read
for programmers and other technical people
who want to understand what’s going
on with cryptocurrencies. Non-technical
readers won’t get quite as much out of it,
but should still be able to follow most of the
ideas in the book.

Tired of endlessly mashing money into your
screen? Then this book is for you.

The Smart Girl’s Guide To Privacy

A wide-reaching guidebook to the most popular
digital currency.

Author Conrad Barski and Chris Wilmer
Publisher No Starch Press;
Price £16.50
ISBN 978-1593275730

LV029 048 Review Books.indd 48 09/06/2016 20:23

LV029 049 Ad Podcast.indd 49 09/06/2016 20:24

www.linuxvoice.com

GROUP TEST BEGINNER DISTROS

50

My niece recently got a
laptop on her birthday
and wondered if she

could run Linux on it. For a second I
was tempted to suggest one of
either Linux Mint or Ubuntu. These
distros make it easy to flesh out the
installation with plugins to work
with all sorts of online services and
play all types of content. Ubuntu
also works with a number of
popular software vendors, and you
can rest assured that if there’s a
Linux-compatible piece of code out
there, it’ll surely work on Ubuntu.
But are these considerations
enough? If anything they just make
Ubuntu an ideal base for a beginner
distro.

A distro that’s just easy to use
isn’t always the best bet for helping
new users traverse the open source
ocean (see box below). For starters,
the average Linux desktop distro

still presents too many choices that
can potentially confuse someone
who’s just starting out. They also
look almost too polished and lack
the vibrancy and attractiveness
that would catch the fancy of a new
user. After all, Linux’s legacy as a
distro for uber geeks or the server
room needs to be buried under a
thick coat of lively interfaces and
user-friendly design.

In this Group Test we’ll look at
distros designed to cater to the
needs (and whims) of the new Linux
user. We’ll go off-piste and look past
the usual list of desktop distros
that are often pitched to the new
user. Our collection of distros are
designed from the ground-up to be
attractive and useful to beginners.
We’ll analyse the unique aspects of
these distros and how they
help them convince a user to
indulge in something new and bold.

Mayank Sharma helps solve the one question put to every geek – what’s the best Linux
distribution for those just starting their journey into Free Software?

Beginner distrosOn test
URL www.antergos.com
Licence GPL and others
Latest release 2016.04.22
What’s a rolling release doing in a
Group Test of distros for newbies?

Antergos

URL www.deepin.org
Licence GPL and others
Latest release 15.1
Are the Chinese as proficient in building
distros as they are with everything else?

Deepin

URL https://elementary.io
Licence GPL and others
Latest release 0.3.2
Arguably the most well known newbie
distro – does it trump the competition?

Elementary OS

URL https://kaosx.us
Licence GPL and others
Latest release 2016.04
KDE for the new users? You gotta
be kidding me!

KaOS

URL www.pinguyos.com
Licence GPL and others
Latest release 14.04.4-1
It looks appealing but is that enough to
top the rest?

Pinguy OS

URL www.solus-project.com
Licence GPL and others
Latest release 1.1
Is this the solution to end all desktop
geekery?

Solus

GROUP TEST

What makes a beginner-friendly distro?
It’s a mistake to assume that a
distribution designed for the average
desktop user would be well suited for
someone who’s just starting out with
Linux. A new Linux user needs to be
cajoled and handheld through regular
everyday computing tasks as they get
familiar with the lay of the land.

To begin with, these distributions help
users by making choices on their behalf.
Linux and FOSS are all about choice, but
it’d be a cumbersome exercise for a new
user to sift through the myriad desktop

environments before they even get to
a download image. These projects also
take the time to tweak the components
within the distro to make them easier for
new users to approach them. Some even
modify the code of popular apps to write
customised versions of the apps that are
designed to be operated by newbies.

No matter how they customise their
offering, Linux distributions aimed at the
inexperienced user are far easier to get
started with and use than your typical
desktop distro.

A distro that’s easy to use isn’t
always the best bet for helping new
users traverse the open source ocean

LV029 050 Group Test.indd 50 09/06/2016 20:56

www.linuxvoice.com

BEGINNER DISTROS GROUP TEST

51

G ive Deepin a try and you’ll be amazed
by its reimagined desktop
experience. The Debian-based distro

has customised all aspects of the distro and
that has had a pleasantly positive effect on
the user experience.

By default, Deepin’s installer will take up
all the space on the selected disk, but you
can manually configure the partitioning
by clicking Expert Mode. After installation
you get to witness one of the major factors
that sets the distro apart from other Debian
derivatives; the distro’s home-grown
desktop – Deepin Desktop Environment
(DDE). It’s based on HTML 5 and WebKit, and
uses a mix of QML and Go for its various
components. DDE has a clean and clutter-
free interface and tries its best to replicate
the usability and aesthetics of Mac OS X.

Besides the desktop itself, notable
homebrewed Deepin components include
the application launcher, dock and control
centre. The launcher is elegant and blazingly
fast and it will either display the installed
apps in alphabetical order or separate them
under categories.

The desktop has hot corners and the top-
left corner opens the full-screen application
launcher. To search for an application you
start typing the letters and the launcher will
offer all matching results. The dock at the
bottom of the screen has several views/
modes. Besides the default stylish Fashion
mode, there’s the Efficient mode, which
places icons on the desktop, as well as
the Classic mode, which is similar to the
Efficient mode but with smaller icons.

What’s the cost of all the glow and
glitter you get with these
beginner-friendly distros? Do they

all need state-of-the-art hardware? The
different distros on test here have different
hardware requirements. The primary factor
is the choice of their desktop environment.
Some extend the ease of use by extending
the conveniences offered by full-blown
desktop environments, while others rely on

Deepin
Is beauty really just skin deep?

Hardware requirements
Do they burden your silicon?

VERDICT
A well designed and
elegant distro with a host
of custom apps.

At first glance, the Deepin Store appears
to be a clone of the Ubuntu Software Centre.
However, it’s better organised and offers
a much neater experience. Besides the
desktop apps, the Store also offers several
web apps for installation, such as Google
Drive, Hangout, Pixlr editor, and more,
courtesy of the distro’s collaboration with
the Intel Crosswalk project.

Kitchen-sink approach
In addition to the customised desktop,
Deepin includes several custom-built apps,
such as Deepin Boot Maker for creating a
bootable USB, Deepin Music, Deepin Store,
and more. Besides the custom apps the
distro also bundles several proprietary apps
such as Google Chrome, the Steam client,
WPS Office, and CrossOver Linux.

The Deepin developers have gone to
great lengths to make using the distro
familiar to those coming from proprietary
environments. For instance, removing apps

uses the same parlance as Windows and
involves right-clicking an application and
selecting the Uninstall option. In another
departure from convention, the Control
Centre is integrated into the desktop itself,
instead of being offered as a distinct
application. The bottom-right hot corner
opens the pop-out side panel that houses
the various settings under different sections.
You can manage all aspects of the desktop,
from the boot manager to the desktop
theme from the controls here. It also helps
keep track of and apply any updates. The
Control Centre also enables you to access
the Deepin Manual as well as the Remote
Assistance feature, which uses Chrome
Remote Desktop to share your desktop with
other Deepin users.

custom-built resource-friendly compositing
graphical environments. Furthermore, many
of these distros bundle some software that
you wouldn’t normally find installed by
default inside a desktop distribution,
primarily because of the lack of their
intended audiences’ ability to find these for
themselves. Some of these specialised
applications can be quite demanding and
may take a toll on your computer.

That said, we should keep in mind that
some distros are able to tune down the
glitter automatically based on the hardware
resources at their disposal, so you might be
able to run them on a machine that’s been
sitting on your desk for a couple of years
now. However, to enjoy these distros to the
hilt and take full advantage of their beginner-
friendly usability, we’ll advise you to run
them on a well stocked machine.

The entire distro is designed with ease of use in mind, and is well-suited for touch devices as well.

LV029 050 Group Test.indd 51 09/06/2016 20:56

www.linuxvoice.com

GROUP TEST BEGINNER DISTROS

52

K aOS isn’t your typical distro
designed for new users: it’s
designed primarily for people

who are at home with the KDE desktop.
What makes KaOS beginner-friendly

is its tightly integrated streamlined
design. Unlike most other Linux distros
that burden users with ample choices,
KaOS has consciously decided to keep
the options limited. The installable live
distro takes a conservative approach to
package management, offering only
KDE as the desktop, and is available for
64 -bit machines with its repositories
replete with only x86_64 packages.

Another aspect that will help new
users is the use of the distro-agnostic
Calamares installer. One of its highlights
is the advanced partitioning feature,
which offers several partitioning
options including the ability to carve out
partitions to your liking.

The distro includes all the apps
you’d need for everyday desktop tasks.

KaOS
Chaos?

Continuing with the KDE theme of the
distro, there’s the Calligra office suite,
the Qupzilla web browser, Clementine
audio player, KDE Telepathy for instant
messaging, Quassel for IRC, SMPlayer
and MPV media players, and many
more including apps to stream
YouTube and record the screen and
the webcam. To help users flesh out
their installer, KaOS uses the Octopi
graphical application installer, which
is a front-end to the powerful Pacman
package manager. To maintain its
tight integration, KaOS doesn’t use
any upstream repositories, choosing
instead to build each of the packages
in its three repositories from scratch
specifically for KaOS.

KDE for newbies
KDE is perhaps not the easiest desktop
environment to get to grip with, but
KaOS is so well packaged that it
makes conducting everyday desktop

business simple and straightforward.
Also helping its cause is the new KDE
Plasma 5, which is pretty enough to
rope in new users who wouldn’t even
realise that they’re using a distro based
on one of the geekiest flavours of Linux.

KaOS has a simple repository layout that helps newbie
wrap their heads around the open source universe.

Like KaOS, Antergos will help instill the ways of a rolling
release without intimidating a beginner.

Here’s another Arch-based
distro that’s developed with
simplicity in mind. Antergos

provides a fully configured environment
that can be used right out of the box.
The live CD boots to a customised
Gnome-based desktop featuring a dock
ripped out from the Activities Overview
using the Dash to Dock extension.

Antergos uses a custom installer
called Cnchi, which is easy to navigate
and use despite its beta status. Its
partitioning step also offers several
options that will appeal to both new and
experienced users.

Despite its goal, Antergos passes
on the burden of selecting core
components to the user. One
screen asks you to select a desktop
environment from either Cinnamon,
Gnome, KDE, Mate, Openbox or Xfce. In
the next you’re asked to select optional
components from a list that includes
Firefox, LibreOffice, Steam, PlayOnLinux

Antergos
Enter the dragon.

and more. The installer then downloads
the components you have selected,
which might take some time depending
on your internet connection.

Search for applications
Besides the apps offered in the
installation screen, if you choose to
install the default Gnome desktop,
the distro also includes the Gnome
Music and Video apps, Pidgin, and the
Chromium browser. Antergos ships with
a graphical package manager called
Pamac. It’s easy to navigate, and just
like KaOS’s Octopi, Pacmac might not
be pretty to look at but it gets the job
done. However we’d suggest using
the search function to find packages
instead of relying on the available
software categories, which are not
always intuitive. For instance, Firefox is
available under the browser category,
while add-ons for the browser are
housed under a different category.

Also, while the email category lists just
one client, a search turns up several.
However, once you’ve got it set up,
Antergos is a pleasure to use and
doesn’t pose any debilitating issues
that are beyond the grasp of ordinary
desktop users.

VERDICT
The software selection
screen rules it out for
absolute Linux newbies.

VERDICT
Its conservative approach
and tight integration give
it real appeal.

LV029 050 Group Test.indd 52 09/06/2016 20:56

www.linuxvoice.com

BEGINNER DISTROS GROUP TEST

53

Zorin OS is an unusual distro that, like the
others in this group test, is aimed at
easing Windows users into a Linux

distro. However, what makes it unique is its
Gnome desktop that’s modified to resemble
Windows 7. Zorin is based on Ubuntu, and its
goal is to package the goodness offered by
that distro into a system that “anyone can use
without learning anything new thanks to its
familiar interface.”

To that end, the home-brewed Zorin Look
Changer app lets you customise the distro
to match different versions of Windows.
The default desktop behaves pretty much
like Windows 7 and although it’s not an
exact replica, it does provide a comfortable
experience for users who only have experience
with using Windows (you can also use the
Look Changer to make the desktop resemble
the older Windows XP, if you’re feeling
nostalgic). Besides the applications to modify
its desktop layout, Zorin OS also includes a
custom app to easily modify the theme.

The distro is available in four different
versions: the Core and Lite editions are free,
while the Business and Ultimate flavours
cost €8.99 (about £7) and €9.99 (about £8)
respectively. The paid versions come with
support and a few extra features, such as the
option of using interfaces that mimic Mac
OS X and Windows 2000. The Core edition
includes all the apps you’d find in a normal
desktop Linux distribution, while the Lite
edition is designed for older machines and
the Ultimate edition is chock-full of all kinds of
apps and games.

Attack of the clones

You can use the Zorin web browser manager to
pick and install any of the four popular browsers.

Pinguy OS also includes Pinguy Builder, which is a fork of the popular Remastersys tool to help
create custom ISO images from your Pinguy OS installation.

The Pinguy OS distro gives you the
option to either explore the live
environment or jump straight into

the installer. The distro is based on the
Ubuntu LTS releases and relies on the
Ubuntu installer to anchor the distro to
your computer.

The distro uses a customised Gnome
desktop featuring a semi-transparent
panel at the top and a dock at the bottom
with a Conky-powered applet applet on the
right-hand side of the screen displaying
vital information about the computer. The
panel houses the Gno-Menu extension,
which serves as the default application
launcher. It contains a categorised list
of software and also keeps track of
frequently used apps and recently viewed
files. You can also bring up the default
Gnome 3 Activities application launcher
by pressing the Win key. Move the mouse
to the left-hand edge of the screen to
reveal several home folders.

Pinguy is chock full of general purpose
and specialised apps including LibreOffice,
OpenShot video editor, Boot Repair, Devede,
Empathy, Handbrake, Shotwell, and more.
For video playback, besides VLC, it’s also
got the Plex Media server. The Clementine
music player also comes equipped with
access to over a dozen online music
services including Grooveshark, Last.fm,
Spotify, Jamendo and SoundCloud.
Besides the open source apps, Pinguy OS
also includes several popular proprietary
ones, such as Dropbox, Skype, TeamViewer,

Pinguy OS
The pinup guy.

Spotify and Steam for Linux. There’s
also Wine, which you can manage with
the bundled PlayOnLinux front-end. For
customisers, the distro includes the
Gnome and Ubuntu Tweak Tools.

Shiny as a new pin
If you need more software, the distro
offers the Ubuntu Software Centre as well
as the Synaptic package manager. The
package managers are equipped with
a large number of repositories, many of
which are enabled by default, including
those for Linux Mint and Ubuntu. There
are PPAs for themes and apps such as
Clementine, VLC and Gnome. Pinguy also
includes the Y PPA Manager to keep track
of all the PPAs.

Pinguy’s developer has cherry-picked
the components to offer a convenient
user experience. The distro uses the Nemo
file manager along with a bunch of plugins
to integrate Dropbox, Samba and the file
archiver. The file manager is also equipped
with scripts such as Torrent-Video-Player,
so you can right-click on a .torrent file
and use the Torrent-Video-Player option
to stream it without downloading.
There’s also a script to help organise your
downloaded TV shows and movies into
folders with cover arts and subtitles.

Missing Windows already?

VERDICT
An elegant distro that’s
easy to use but needs a
decent machine.

LV029 050 Group Test.indd 53 09/06/2016 20:56

www.linuxvoice.com

GROUP TEST BEGINNER DISTROS

54

E lementary OS has made a name
for itself as an elegant and
user-friendly distro. Its custom

desktop, Pantheon, takes cues from the
Mac OS X desktop, and has its own
Mutter-based window manager called
Gala. The desktop nicely integrates the
various other important elements, such
as the Plank dock, the top panel (called
Wingpanel) and the Slingshot application
launcher, to present a smooth, unified,
user experience. Nearly all actions on
the desktop are subtly animated.

One of the strangest things about
Elementary is that it comes with
an unusual set of applications. The
distro supplies a number of custom
tools, such as the Geary mail client,
Scratch text editor and Audience
video player, which are designed to
assist inexperienced users. However,
Elementary OS doesn’t offer many
apps out of the box and doesn’t include
proprietary codecs or ship any non-GTK
apps, which is why it doesn’t include
the likes of LibreOffice and Firefox.
Instead it uses the Midori web browser.
For package management the distro
uses the Ubuntu’s Software Centre
and it pulls software from the Ubuntu
repositories as well as PPAs of its own.

Another solution
Unlike some of its peers, Solus is not
based on another distro, which gives its
developers manoeuvrability to mould all
aspects of the distro to their vision,
including the user experience.

Elementary OS vs Solus
Custom desktop faceoff.

The distro boots into a Live
session, and as with most of the core
components, its installer too is custom
built. While it’s fairly intuitive and easy
on the eyes, it lacks an automated
partitioner. This is something that the
developers will have to correct very
soon, because asking first-timers to
fire up GParted and manually craft
partitions won’t get them very far.

Solus uses a custom desktop called
Budgie, which is based on Gnome
libraries. The Budgie desktop tries its
best to replicate the classic Gnome
look and feel while offering several
conveniences of the modern Gnome
desktop. Budgie’s application menu
displays a categorised list of apps

and has a search box for finding apps
without having to navigate the menus.
The one strange aspect of the menu
is that it keeps reorganising the apps
within the categories depending on
how often they are used. While this
ensures that the frequently used apps
are always at the top of each menu, it
might seem confusing to not find the
app at their usual places.

Another unique aspect of Solus is
the all-in-one applet, notification and
customisation centre called Raven.
This houses all the information in two
tabs: all the notifications are tracked
in one tab, while the Applets tab
displays the calendar, sound volume
and sound devices. All items on the
panel, including the application menu
and clock etc, are applets, and you can
place and reposition them.

Solus has plenty of apps for
regular desktop use, including Firefox,
Thunderbird and VLC, but lacks an
office suite and any sort of games.
The distro also has a custom package
manager that’s designed intelligently
for inexperienced campaigners with a
minimal, unimposing interface.

Elementary OS can be used on older hardware as well because of its low system requirements.

The Budgie desktop is a wonderful piece of software that blends old and new functionality.

VERDICT
SOLUS The easy-to-
use experience is
hindered by the lack of
an automated installer.

ELEMENTARY OS It’s
pleasing to the eyes
but its defaults aren’t
the best for a newbie.

LV029 050 Group Test.indd 54 09/06/2016 20:56

the window manager up to its apps
is crafted to adhere to its design
principles. We’d recommend it over
Solus, but only just.

The top two distros for new
Linux users are Pinguy OS and
Deepin. Both distros offer a good
mix of form and function and their
pleasing desktop environments
give access to its vast number of
applications. However Pinguy’s
usability comes at a cost. All of its
customisations consume a lot of
resources, and you’ll only be able to
enjoy Pinguy OS on a machine that
has at least 4GB of RAM.

Deepin too isn’t without issues.
Designed to be user friendly, the
distro is ideal for beginners but
doesn’t offer much for advanced
users. So while its installer enables
you to perform all the usual
partitioning operations, Deepin
doesn’t support LVM, and you
can’t create an encrypted home
folder, which is something that
most distros support. It’s a pretty
close battle between Pinguy OS
and Deepin but in the end Pinguy’s
stringent hardware requirements
help clinch the deal for Deepin.

Recommending a distro to a
new Linux user depends
strongly on their proficiency

and comfort level with the
computer. That said, we hesitate to
recommend Antergos, because it
presents too many choices to the
user who is probably not well
equipped to make the correct
decision. Then there’s KaOS, which
presents an intriguing option
because of its tight integration, but
isn’t designed specifically for new
users. However, those with some
mileage under their belt will surely
appreciate the consistency of the
desktop and the coherent design.

It’s a close call between Solus
and Elementary OS for a position
on the podium. Solus is by no
means just another newbie-friendly
distro. It’s a project with solid
foundations and leadership that
has a clear vision and experience
to realise it. Once the issue with the
installer have been ironed out, the
distro should be ready to compete
with the established players.

Elementary OS has also put in
quite an effort into building custom
tools and libraries. Everything from

www.linuxvoice.com

BEGINNER DISTROS GROUP TEST

55

1st Deepin

Killer feature Elegant-looking custom desktop and tools.
URL www.deepin.org
Full of customisations to serve the new user well.

2nd PinguyOS

Killer feature Customised Gnome desktop and apps galore.
URL http://pinguyos.com
Designed to pamper the new user, it only narrowly loses out.

3rd Elementary

Killer feature Pantheon desktop and pure GTK experience.
URL https://elementary.io
It’s aesthetically pleasing, but its default software selection
necessitates a visit to the package manager.

4th Solus OS

Killer feature The Budgie desktop environment.
URL www.solus-project.com
Still early days for the distro that needs to simplify its installer.

5th KaOS

Killer feature Well integrated KDE experience.
URL https://kaosx.us
The KDE-centric distro isn’t specifically designed for beginners
but still does a good job.

6th Antergos

Killer feature Makes Arch Linux accessible to the masses.
URL www.antergos.com
For a newbie-friendly distro, it offers too many choices.

Thanks to its focus on design and aesthetics, Deepin is easily the
new benchmark for newbie-friendly distros.

OUR VERDICT
Beginner distros

Other user-friendly distros
There are several other projects that
produce distros that are easy to use and
can also double up as beginner-friendly
distros. There’s PCLinuxOS, which began
life as a repository for improving a stock
Mandrake release and then forked into a
distro of its own in 2003. It uses a rolling
release model with ISO releases every
now and then to assist new users take
the plunge.

Another useful distro is Bodhi Linux,
whose minimalistic nature is in contrast
to the usual approach of cramming the
distro with apps. Bodhi uses the Moksha

desktop built atop the lightweight
Enlightenment desktop. Like its peers,
Bodhi takes the pain out of cumbersome
processes like fleshing out the distro by
using easy-to-operate custom apps.

You might also want to take at friendly
versions of popular mainstream releases.
Korora, for example, produces versions
based on the official Fedora releases.
Then there’s the Arch-based Manjaro
Linux, which produces several flavours,
and the Ubuntu-based Netrunner. These
distros lower the learning curve of using
their parent distros.

Solus OS has solid foundations and
leadership that has a clear vision
and the experience to realise it

LV029 050 Group Test.indd 55 09/06/2016 20:56

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

Subscribe
shop.linuxvoice.com

www.linuxvoice.com

SUBSCRIBE

56

LV029 056 Subs UK.indd 56 10/06/2016 15:53

www.linuxvoice.com

NEXT MONTH

57

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

EVEN MORE AWESOME!

For so long the
darling of Free
Software, Firefox has
had its ups and
downs. Is it
yesterday’s web
browser now, or can
it take back the web?

Firefox

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, 2nd
Floor, 5 Churchill Place, Canary Wharf,
London, E14 5HU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until March 2017 when all content (including
our images) is re-licensed CC-BY-SA.
©Linux Voice Ltd 2015
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

The Ferrari of
filesystems has been
on our radar for a
while now, but we’ve
never been brave
enough to take the
plunge. Well now we
are – let’s upgrade!

ZFS

The graphical
revolution has been
a long time coming.
Now it’s time to set
up, configure and
use Wayland. How is
it going to make our
lives better than X?

Wayland

It’s summer – so speed up your computer
with our clutch of tips and tricks and spend
the time saved doing awesome things.

SAVE TIME FOR THE WIN

ON SALE
THURSDAY

21 JULY

LV029 056 Subs UK.indd 57 10/06/2016 15:53

www.linuxvoice.com

FOSSPICKS

58

Sparkling gems and new
releases from the world of
Free and Open Source SoftwareFOSSpicks

QDirStat 1.0
Storage pruner

Our benevolent editorial overlord Graham Morrison tears himself away
from updating Arch Linux to search for the best new free software.

One of our favourite Linux
utilities is called Filelight.
This is a KDE tool, now

ported to other environments, that
visualises the size of files stored on
your drive using a multilevel pie
chart (called a sunburst chart,
apparently). With a simple glance,
you can easily see which files were
taking up the most space and
where they were located. It’s still the
best way we’ve found of freeing up
space by finding forgotten ISOs and
games. Many of these features
could also be found in KDE 3’s
KDirStat, often included in older
distributions, and while its size

visualisation was an area chart, it
also included a tree view of your
files and folders, just like a
traditional file manager. Having this
functionality built right into the
desktop, so you could launch the
application as soon as you got your
first ‘Out of storage space’
warnings, saved our storage bacon
on several nervous occasions.

KDE Kontinues
QDirStat is a continuation and port
of KDirStat (80% of the old code has
been rewritten), unlocking it from
that old KDE dependency and
making it available to any desktop

or operating system with a modern
Qt port.

Unlike Filelight, which really only
served one function, QDirStat gives
you lots more information and
control over how you look at your
files and folder. The tree view lists
the percentage of your storage that
a file or folder is taking up, along
with specific sizes, and a
customisable colour can be defined
for different file types, making them
very easy to identify and filter from
both the tree view and the area map
(called a ‘tree map’ by QDirStat). You
can even create rules for ignoring
files you don’t want listed.

Clicking on a file or folder nicely
animates a transition in the other
view so that everything stays in
sync, and the same right-click
context menu can be used to
perform actions on your selected
files and folders. Along with the
expected, and dangerous, ‘delete’
option, you can open a terminal or a
file manager, zoom in to expand a
folder, and perform other actions
like make clean and git clean to
remove old build material from
folders of source code. You can
create your own cleanup actions
from the Settings pane, and it’s as
easy as entering the command with
some simple variables representing
the path, file and directory name.
This deceptively powerful feature
makes QDirStat the most powerful
application we’ve found for
visualising space and folders and
safely cleaning up your storage.

1

2

3

4 5

6

7

8

1 Tree map The area of each block corresponds to a file size, while the colour is for file type. 2 Custom cleaning
Developers can remove unwanted build and git files, and you can add your own. 3 File tree The traditional unfoldable file
view is also available. 4 Percentages Easily see exactly which files and folders are taking the most space.
5 Custom columns You can add and remove columns from the main view. 6 View rules Ignore files you don’t want

touched. 7 MIME types Set colours and create your own types for better visualisation.
Project website
https://github.com/shundhammer/qdirstat

LV029 058 Fosspicks.indd 58 10/06/2016 17:29

www.linuxvoice.com

 FOSSPICKS

59

We had thought that by using the command line we’d save
ourselves from Google distractions. We were wrong.

It could be a temporary trend,
but we’re using the command
line more and more each

month. Its enforced minimalism is
the opposite of GUI bloat because
command line programmers are
forced to think carefully about how
functions are implemented and
how those functions presented to
the user, whether that’s through a
command’s arguments, or through
a curses-based interface.

This doesn’t seem to happen
with most desktops and graphical
user interfaces, where there always
seems to be room to add another
feature, or where usability testing
gets forgotten in all the excitement
of adding new things. Googler is
another step forward in our
command line conversion, and it’s
one we’ve mentioned before. It’s a
tool that lets you interact with
Google from the command line,

whether it’s for scripts or for your
own convenience. Type googler
followed by your search terms and
the results are delivered directly to
your terminal.

We’re happy to report that
development has been prolific, and
the recent 2.4.0 upgrade bundles
several significant new features.
The output looks much cleaner,
especially for news results, and you
can click on links to open them
from your browser.

There are keyboard shortcuts too,
and you can output the results with
JSON formatting. This is excellent if
you want to script your searches
and integrate the results with other

applications, and it’s this feature we
think will be the most helpful,
especially for analysis such as
customised ranking reports.

Googler 2.4.1

We used to think desktop integrated search was what we were
looking for, but FSearch does it better and more quickly.

Now that our hard drives are
full and we’ve forgotten
half the things on there,

local search has become as
important as online search. And yet
we’ve yet to find the ideal solution.

There are lots of pervasive search
tools – Ubuntu’s works well, as
does KDE’s – but we’re slightly
distrustful of their pervasive nature.
KDE’s Nepomuk process often
seems to take up huge slices of
CPU and its database size can be
huge. FSearch offers the same
pervasive search functions, but
constrains them to a single
application where you have
complete control over what is
indexed, where the index lives and
when you need to run it.

This size and scope would
ordinarily make it slow, as you’d
need to rebuild the database each

time you ran a search, but FSearch
side-steps this issue by being
incredibly fast. It indexed our home
folder, containing 136,250 items, in
under 2 seconds, and that’s with a
PC from five years ago.

It delivers results just as quickly,
filling the results table as you type.
It doesn’t search within files, but
that’s not what FSearch is for. It
helps you find your files instantly,
whether that’s via a regular
expression or some vague
Proustian remembrance of what
the file is called.

FSearch is built using GTK 3,
although the author wants to also

support Qt 5; it’s tiny and takes no
time to build. This is in huge
contrast to many of the other
search tools available, and despite
this being a very early alpha, we had
no issues with stability or usability.

FSearch 0.1alpha
Search utility

Bash Google

Googler is a tool that lets you
interact with Google from
the command line

Project website
https://github.com/jarun/googler/releases/
tag/v2.4.1

Project website
https://cboxdoerfer.github.io/fsearch/

FSearch indexed our home
folder, containing 136,250
items, in under 2 seconds

LV029 058 Fosspicks.indd 59 10/06/2016 17:29

www.linuxvoice.com

FOSSPICKS

60

Run C++ like it’s embedded into your Commodore 64.

There’s a huge difference
between interpreted
programming languages

and those that need to be compiled
and run as binary objects. This
difference is apparent in both the
complexity of running your
applications and in the approaches
taken by the syntax within the
languages. But the speed and
capabilities of modern hardware is
definitely bringing both camps
closer from the perspectives both
of end users and also developers.

Python and Go, for example, are
interpreted languages that are used
in a phenomenal number of
mission critical applications,
previously the domain of languages
like C++. C++ itself is an old
traditional language that’s seen as
poles apart from Python and Go.
However, remarkably, C++ is also
benefiting from modern hardware

with the creation of interpreters that
can transform what was previously
only compilable code into an
executable instruction that runs
immediately.

This on the fly interpretation is
exactly what Cling does, using both
the LLVM and Clang libraries. You
type in C++ and it runs each line
independently, building a virtual
machine of your code. For those of
us with a long history of C and C++,
it feels like black magic. But it’s also
liberating, letting you try things out
or run ‘scripts’ without the tedium of
having to run make at every step to
check your code. It’s also a great
educational tool, because it forces

you to write good code, and any
errors or ambiguities appear
immediately.

If you’ve ever wanted to try C++
but have always been put off by the
complexity of building, linking and
running executables, the world of
interpreted programming is right
here waiting for you.

Cling

At least your typical developer won’t be put off by using curl to
install the package.

We’ve done some Qt
programming in the
past, and one of the

things that can be annoying is
trying to track down the various bits
and pieces of Qt-related
dependencies that you may need to
pool together to make a single
application. This is a problem that
Qpm attempts to solve rather
elegantly.

Unlike packages for your chosen
distribution, Qpm’s packages are
tailored specifically for your project,
enabling you to use them and
incorporate them into your code
without any extra hassle. This is
different from installing them
through a package manager, as
you’re never certain which versions
are installed, and that’s if there’s a
package available. It’s still early
days for Qpm, but the packages

available already are unlikely to be
available through a normal package
manager, and really help with both
Qt and QML/QtQuick development.
It also keeps your packages and
dependencies up to date,
independent from your distribution
package updates, and that’s
important when you need control
over exactly what your applications
are linked to.

Developers!
At the time of writing, there are only
34 packages being served (qpm list
tells you this), but we’re hoping
many more are included in the

future, as the qpm command itself
makes it easy to publish your own.
The whole command itself is easy
to use – it’s installed via a simple
curl command and typing qpm tells
you all you need to know about
searching, installing, installing and
creating packages.

Qpm
Developer package manager

C++ interpreter

Modern hardware is bringing
compiled and interpreted
languages closer together

Qpm keeps your packages
and dependencies up to date
independent from your distro

Project website
https://root.cern.ch/cling

Project website
www.qpm.io

LV029 058 Fosspicks.indd 60 10/06/2016 17:29

www.linuxvoice.com

 FOSSPICKS

61

Why is it that a PC with a CPU speed of 66MHz and only 64MB of
RAM booted faster than the futuristic machine we’re typing on?

Emulating old hardware is
definitely fun, even if most of
the fun comes from getting

old games running rather than
playing them. Too often we go back
to our old favourites to find that
without our 14-year-old reflexes,
we’re just cannon fodder. Emulating
modern hardware isn’t always fun,
but it is very practical. It’s the best
way of experimenting with a new
distribution, and for deploying a
thousand servers across the cloud
(sort of).

Back on the desktop, QEmu is one
of our favourite tools, and while it’s
great from the command line,
there’s nothing wrong with
accepting a little help from the GUI.
AQemu is an alternative GUI that
provides lots of help, from locating
the location of the binary at startup
to helping you create your first
virtual hardware. We like the way,

for example, you can specify the PC
hardware you’d like to conjure up by
its age – a PC from 1990–95, for
example, which is a great way of
playing games from the golden era
of DOS. Sadly, the GUI lacks the
equivalent ‘Turbo’ button, but we
may make a feature request for a
fully authentic 1995 experience.

Run Linux on Linux
For the less nostalgic, AQemu will
also create machines using a Linux,
Windows or OS X template,
complete with storage and
networking. As with all of the
options, you still need to provide
your own installation medium, and go through the installation

procedure, even if this is from a disk
image of Doom taken from a
3.5-inch floppy disk.

AQemu 0.9.2

As you can see, with five
hard drives and up to
seven partition on each,
we desperately needed
a good partition
manager.

All of us have been saved by
the perennial GParted. It’s
the one application you can

rely on when you need to dance
that dangerous partitioning dance.
When there’s delicate manoeuvring
to be done, we’d even prefer it over
the command line equivalents
because sometimes you just want
to see that your data is safe.

GParted has never failed us,
despite our own actions failing us
on more than one occasion. KDE
Partition Manager is very much like
GParted, only with what we’d
describe as a more modern user
interface. Having the choice, and
the competition, can only be a good
thing for such an important task,
and we’re suckers for a nice KDE
application.

KDE Partition Manager looks
fantastic, especially if you’re not

using a GTK-based desktop, and
offers almost all the same features
as GParted.

But this release is significant to
us for one major reason – KDE
Partition Manager 2.2.0 adds a
feature we’ve wanted/needed from
GParted for ages – the ability to
resize encrypted LUKS partitions.
This is important because more
and more of us are using LUKS
partitions to store our Linux and
data installations.

Killer feature
LUKS partitions stop people getting
access to your data when they have
access to your hardware, but
because of the way LUKS hides
Linux filesystems within their
random noise of encryption,
resizing has been a tricky problem,
and being able to resize your

partition rather than creating a new
one and copying over the data is
going to save us lots of trouble.
For that feature alone, thank you
KDE Partition Manager!

KDE Partition Manager 2.2.0
Disk manager

Emulator front-end

Project website
https://sourceforge.net/projects/aqemu

Project website
https://stikonas.eu/wordpress/2016/05/27/
kde-partition-manager-2-2-0

AQemu is an alternative GUI
for the QEmu emulator that
provides lots of help

LV029 058 Fosspicks.indd 61 10/06/2016 17:29

www.linuxvoice.com

FOSSPICKS

62

Finally, there’s an open source webmail solution that has
encryption support baked in.

This has been a month of
turmoil for one of the of the
largest server-based open

source projects we rely on. The
OwnCloud project has been forked
into NextCloud, and we genuinely
hope this doesn’t affect the
development or momentum of
what we think is one of the most
important open source and Free
Software projects available.

It shouldn’t, as most of the
developers from the old project
have moved to the new project, but
we don’t want to imagine a future
without a genuine alternative to the
proprietary cloud-based behemoths
of Google, Microsoft and Facebook.

Another cloud project we used
has also celebrated this month, and
that’s Roundcube, with a new
release of its brilliant webmail
application. The major feature for
this update is that Roundcube now

has native support for encryption.
This is significant because it’s both
a brilliant feature and a brilliant
show of support for what should be
part of every email client and email
exchange.

Keep it secret…
Roundcube accomplishes
encryption either via a Firefox plugin
called Mailvelope, or on the server
via the Enigma plugin and GnuPG.
From the perspective of a user,
Mailvelope is easy to install and get
to grips with, and makes grabbing
remote PGG keys for decryption
simple – when it detects a public
key, it will automatically import this

into your web-based keychain so
you can decrypt messages. This is
exactly what you need, so there’s
even less of an excuse to start
signing and encrypting emails. Oh,
and we love the way you can now
finally search between dates!

Roundcube 1.2.0

Now Hollywood film directors have another Linux command to use
when portraying hackers on screen.

We have Kurruptor on our
IRC channel to thank for
this particular find. It’s a

simple but useful and slightly
compulsive discovery. Cava is a
spectrum analyser for the
command line, rendering the
various frequencies of an audio
signal using Curses onto your
console. Because it’s for the
command line, it’s both tiny and
quick, and being quick is a great
asset if you’re measuring audio in
real time.

On a practical level, it can be a
useful way of monitoring your
surroundings before a recording.
Higher and lower frequencies may
be inaudible to our old ears and yet
be visible on the screen. But
because this is also running from
the command line, you can use it to
snoop, at least visually, on the audio

going into remote computers and
even servers.

It feels weird SSHing into a box
and then watching the little
frequency bars bouncing around,
but it’s also surprisingly useful. This
could be a visual baby monitor, for
example, or a way of seeing if a
conversation has finished without
having to listen to the content. If
you’re processing audio, it’s also a
great way to see the range of
frequencies you’re recording, or
have recorded.

By default, it works easily with
PulseAudio. Just run the command
and make sure PulseAudio is

listening on the right input, and we’d
recommend the excellent
Pavucontrol for this. A few simple
key commands can change the
scale and colours, but that
overcomplicates things. Just let
yourself get mesmerised by the
look of music on your console.

Cava (from git)
Spectrum analyser

Webmail

When it detects a public key,
it will import this into your
web-based keychain

It’s a great way to see the
range of frequencies you’re
recording, or have recorded

Project website
/news/2016/05/22/roundcube-webmail-1.2.0-
released

Project website
https://github.com/karlstav/cava

LV029 058 Fosspicks.indd 62 10/06/2016 17:29

www.linuxvoice.com

 FOSSPICKS

63

Never start a partitioning operation without having photorec and testdisk handy (and a backup, of course).

Picture the scene: you’re
browsing an online shopping
emporium and see that

there’s a special offer on 1TB hard
drives. This is brilliant. You can now
buy several and potentially put
them to good use as part of a RAID
array, or just have lots of cheap
storage. This is what we did a
couple of years ago, except we
never got around to building a RAID
configuration and instead used the
drives within our main PC where the
drives quickly absorbed gigabytes
of Kylie Ann Minogue rarities.

Two years later, we’re updating
Arch and installing Ubuntu, when
we repartition one of those drives,
certain that the drive we chose was
correct. Except, because it’s
identical to two more 1TB drives, it
isn’t. It’s the one filled with treasured
sounds. Denial. Anger. Bargaining.
Depression. Acceptance.

Lazarus raised
Thankfully, there’s TestDisk. This
amazing utility has saved our raw
data more times than we can think
of. It’s particularly brilliant when
you’ve accidentally repartitioned a
drive already full of data, a situation
that initially looks lamentably grim.
But because you’ve only written a
new partition table to a special part
of the drive, and not overwritten
your actual data, there’s a chance

– and we don’t want to promise
miracles – there’s a chance your
old table can be resurrected and
rewritten to your drive, reinstating
your data immediately.

If this happens to you, first make
sure you don’t touch your drive at
all. Instead, reboot to a rescue USB
stick or run TestDisk from a distro
that doesn’t touch your drive.
There’s a good chance it will be able
to restore your old configuration
and your data.

If this doesn’t work, there’s
another part of the TestDisk suite
that can help, and that’s PhotoRec
and its GUI counterpart, QPhotoRec.
These scan the raw blocks of your
drive looking for the telltale
signatures of known file types (not

just photos, as their names imply).
Dozens of file types are supported,
and this major update adds more,
including .kra Krita files. When
detected, you can rip out the raw
data into a usable file again, though
you’ll often lose the filename and
any folder organisation you had.

This is a last resort rather than a
fix, but it might mean you’re able to
keep your precious photos, and
both TestDisk and PhotoRec are two
the best tools to have on hand. That
they’re still being developed and
passing major milestones like a 7.0
release is something we’re all
grateful for. Thanks TestDisk!

TestDisk 7.0
Data rescue

Project website
www.cgsecurity.org

1 Run testdisk with the drive you want to
scan as the single argument. You’ll also
need sudo or root privileges.

STEP BY STEP: RESTORE YOUR OLD PARTITION
2 TestDisk will guess the partition type, but

you need to make sure it’s guessed
correctly. Then select Analyse.

3 TestDisk will look for the remnants of a
partition table. When it finds one, select
Write – then donate to TestDisk!

LV029 058 Fosspicks.indd 63 10/06/2016 17:29

LV029 064 Ad Code Club.indd 64 10/06/2016 09:59

www.linuxvoice.com 65

INTRO TUTORIALS

TUTORIALS
Warning: excessive Linux knowledge may lead to fun and more efficient computing.

Mike Saunders
Makes a bomb shipping computers from
Barnard’s Star to Sol.

Have I mentioned recently how
much I love Vim? It has been a
while since I’ve written about it

in Linux Voice, and if it weren’t for Ben’s
wise editorial decisions I’d do a 32-page
feature every month about its raw
awesomeness. But seriously, learning a
powerful text editor like Vim was the
best decision I ever made (in my
computing life, at least. Combining
bacon with Sriracha sauce was the
best decision ever).

Vim scares many people away; it
feels like some weird relic from the
1970s at first (and indeed, its origins lie
way back in early Unix releases). But
don’t just think about it like an editor –
it’s more of a machine and a language
for manipulating text. Just like a
programming language, you can build
up useful routines and methods for
doing things, and repeat them to save
you heaps of time. Yes, Vim may be
overkill for taking a few notes, but for
anything else it’s superb. Check out the
video I made back in 2014 to learn to
really love Vim: www.youtube.com/
watch?v=rfl9KQb_HVk – and drop me
a line and let me know if you become a
convert too!
mike@linuxvoice.com

In this issue . . .

Conceal secret messages or other information
inside files with Ben Everard’s sneaky guide to the
art of steganography.

Hide data in images with
Steganography

Coding

66

Encryption 82
Understand how the encryption
that secures the web works.
John Lane introduces RSA.

Elixir 88
Mihalis Tsoukalos gets you
started with this language and
shows you some of its secrets.

Does the world need yet another website creation
engine? Well yes, when it’s as awesome as Hugo, as
Amit Saha explains.

Build fast, clean websites
with Hugo

68

Yes, it’s possible to make ebooks from scratch –
Andrew Conway has all the tips and tricks you need
to do just that.

Publish with
Free Software

74

Les Pounder mixes together a Raspberry Pi Zero,
stepper motors and external data sources for
maximum awesomeness.

Display data on a
physical interface

78

Get access to every Linux Voice tutorial ever published in our digital library of back-issues available exclusively to subscribers – turn to page p56 to join.

LV029 065 Tutorials Intro 5ag.indd 65 10/06/2016 15:11

TUTORIAL STEGANOGRAPHY

www.linuxvoice.com66

HIDE CONFIDENTIAL DATA
WITH STEGANOGRAPHY
Hide encrypted data in the one place the spooks will never look for it – your photos.

Encryption is a great way to keep private
information secret; if used properly, there's no
way for an attacker to break modern

encryption. However, sometimes we don't want an
attacker to even know we have information that's
encrypted. An extreme case for this is that an attacker
could blackmail you into giving them the password,
but it can be useful for any occasion when we simply
want to keep our encryption private.

1 Get the software
There's a wide range of steganography software
available. We've opted to use OpenStego, because it's
written in Java so should work on most systems and
is easy to use. You can download the this software
from https://github.com/syvaidya/openstego/
releases – there's a Deb file for Debian-based
systems or a Zip file for other Linuxes (and you should
be able to run this on any system with Java). To run
OpenStego from the Zip, just extract the contents and
run the openstego.sh script. There's also a Windows
release if you need to share your secrets with a
Windows machine.

You'll need to make sure you have Java installed.
OpenStego runs on either Oracle's version of Java or
the OpenJDK. We'll also use the gpg command line
tool for encrypting data, and you should find this in
your distro's repositories if it's not installed by default.

STEP BY STEP: CONCEAL ENCRYPTED DATA
2 Get an image

Any image should work, but some images work better
than others. OpenStego can read most image formats,
but the output will always be in PNG because it has to
be in a lossless format – the type of compression in
JPEGs, for example, could destroy the data stored in
the image file. This formatting of the image can lead
to some images being viewed with more suspicion
than others. Photographs are rarely stored as PNGs,
so an alert eavesdropper may be suspicious if they
come across a large number of photos stored in PNG
format. Screenshots, on the other hand, are regularly
kept as PNGs, as JPEGs struggle with text.

OpenStego will, by default, store three bits per colour
channel per pixel, so you can store one byte per pixel
(it's technically 9 bits, but the maths is easier if you
use 1 byte, and you rarely need to fill an image). You
can split a large amount of data across several
images if needed.

In this tutorial we're going to look at steganography,
which is the process for hiding data inside media files.
Typically, this is done with image files. The technique
works by subtly changing some details of the image
in a way that's barely perceptible to the human eye. To
the rest of the world, it looks like you have an
obsession with images of fluffy kittens, but really
you're safely guarding your secret family recipe that
makes the fluffiest Yorkshire puddings.

BEN EVERARD

Why do this?
• Guard against data

theft.
• Communicate

securely.
• Combine your

backups with your
family portraits to
save space.

LV029 066 Tutorial Steganography.indd 66 10/06/2016 10:10

STEGANOGRAPHY TUTORIAL

www.linuxvoice.com 67

6 Decrypt your secrets
The final step is to extract the secrets from the image.
Just like hiding them, this is a two-stage process: first
we have to get the encrypted data out of the image,
then we have to decrypt the data. Extracting the
encrypted data is done using OpenStego. This time
you need to select Extract Data and enter the image
file and the output file. You don't need to enter the
password as we'll decrypt it next. Make sure the
output file has the .gpg suffix.

Once you've got the output as a GPG file, you can
decrypt the data using the command
gpg <encryptedfile>

GPG will automatically detect the cipher type and
prompt you to enter the password. You should now
have recovered your secrets from the image. As
you've seen, steganography is a simple way of adding
an extra layer of protection to your most valuable
secrets. Now go out and take loads of photos to mask
your secret snaps.

5 Share your secrets
Now you have your secrets hidden inside an image,
it's time to do something with them. What, exactly, this
step entails depends on what your secrets are and
why you hid them inside a file.

If you just did it to ensure your data doesn't fall
victim to any hackers that get into your computer,
then the only thing to do here is get rid of the other
files containing those secrets. If you did this to enable
you to share your secrets then you can now send
them to other people. If you post these pictures on a
social network such as Facebook, they'll be re-
formatted and will probably lose the information
stored within them. You have to share them as files
rather than as images, so anything like email
attachments or DropBox should work fine.

You'll also need to make sure that anyone who
should be able to read them has the password.

3 Encrypt your data
Steganography hides your data within images, which
is good, but not perfect – if an adversary finds out
you've used steganography then there's a good
chance they'll be able to recover the data. OpenStego
does enable you to password-protect your data, but it
does this using the outdated DES encryption
algorithm. If you're going to the trouble of hiding your
data in images, the data is probably important enough
to be worth encrypting using the best available
encryption, so we'll first secure it using the gpg
command. This is done with the following (enter a
password when prompted):
gpg --cipher-algo AES256 -c <inputfile>

This will create a new file with the same name as
inputfile, but with the additional suffix .gpg. It's this
encrypted file that you will use with OpenStego.

4 Hide your secrets
Now you have your image and your encrypted file, it's
time to combine the two into our steganographic
secret. Start OpenStego and you will see the Hide Data
and Extract Data options on the left of the window.
Make sure Hide Data is selected, then enter the GPG
file in the Message File box, the image file in the Cover
File box (here you can select multiple images if you've
got a large message file), and a name for the output
file. There's no need to enter a password, as we've
already encrypted the files and an additional layer of
security won't add anything.

The original image file will remain untouched, and
the data will be hidden inside the file you created in
the Output File option. You can open this up in an
image viewer and it should look identical (or almost
identical) to the original file despite having a secret
message stored inside it.

LV029 066 Tutorial Steganography.indd 67 10/06/2016 10:10

TUTORIAL HUGO

www.linuxvoice.com68

W ith static website generators, we can write
the content of your site as formatted text
files in our favourite text editor, convert

them to HTML files, copy those files to a web host and
we're done. The number of static site generators
available today is staggering; some of the most
popular ones are Jekyll, Octopress, Pelican, Nikola and
of course, Hugo.

Hugo is written in Golang, so we first have to make
sure we have Golang installed and have the GOPATH
environment variable on your system. If you don't
have the go tools (compiler and other tools) installed,
you can either use the distro's package manager
to install them or download the Linux binary and
follow the instructions on the install page at https://
golang.org/doc/install. Once the installation steps
are completed, open your favourite terminal emulator,
type go version and it should print a message similar
to below:
$ go version
go version go1.6 linux/amd64

We next need to set up our Golang workspace.
If you already have GOPATH set up, you may skip
ahead. Create a sub-directory golang in your home
directory (/home/<user>) and two sub-directories, src
and bin inside it. The directory tree for your workspace
should look as follows:
$ tree -L 1 ~/golang
 bin
 src

Today I Learned
The go compiler and other tools expect the GOPATH
environment variable to point to the workspace
directory, so set the following to your .bashrc or the
file relevant to your shell, so that it is always set when
you start a new terminal session (Replace <user> with
your username):
export GOPATH=/home/<user>/golang

Once you have set the above, start a new terminal
session and type go env GOPATH:
$ go env GOPATH
/home/<user>/golang

Next, we will get the source for Hugo and build it:
$ go get -v github.com/spf13/hugo
github.com/spf13/hugo (download)

github.com/fsnotify/fsnotify (download)
..
..

At this stage, we should have Hugo built and the
binary placed in the $GOPATH/bin/ sub-directory. You
can print the version of Hugo using hugo version:
$ $GOPATH/bin/hugo version
Hugo Static Site Generator v0.16-DEV BuildDate:
2016-04-27T18:29:22+10:00

If we execute $GOPATH/bin/hugo --help, it will print
a brief overview of the various flags and commands:
$ $GOPATH/bin/hugo --help
hugo is the main command, used to build your Hugo site.
Hugo is a Fast and Flexible Static Site Generator
built with love by spf13 and friends in Go.
Complete documentation is available at http://gohugo.io/.
Usage:
 hugo [flags]
 hugo [command]
 ..

As the help message shows, Hugo's functionality
is available via various subcommands and flags. For
example, the hugo new site command will be used
to create a new site and hugo server will start a local
server to serve our site's content. Appending --help
to to a Hugo sub-command (eg $GOPATH/bin/hugo
new --help) will display help message for the sub-
command as well.

The site we will be building in this article – you
can see it live at https://amitsaha.github.io/
linux_voice_4.

SET UP YOUR NEXT
BLOG WITH HUGO
Generate hugely configurable static websites at lightning speed!

AMIT SAHA

Why do this?
• Get content online,

fast, without having
to wrestle with the
complexities of a
CMS.

• It's another excuse to
mess around with Go!

LV029 068 Tutorial Hugo.indd 68 10/06/2016 10:12

HUGO TUTORIAL

www.linuxvoice.com 69

We will create a site called "Today I Learned". The
content of the site, including the posts, pages and the
configuration, will live in a single sub-directory in our
filesystem. Let's say we want to create our site in a
subdirectory today-i-learned; we'll use the hugo new
site today-i-learned command. This will create a new
sub-directory today-i-learned in the directory you
executed the command:
$ $GOPATH/bin/hugo new site today-i-learned
Congratulations! Your new Hugo site is created in "/
home/amit/today-i-learned".
Just a few more steps and you're ready to go:
1. Download a theme into the same-named folder. Choose
a theme from https://themes.gohugo.io or
 create your own with the "hugo new theme
<THEMENAME>" command
2. Perhaps you want to add some content. You can add
single files with "hugo new <SECTIONNAME>/<FILENAM
E>.<FORMAT>"
3. Start the built-in live server via "hugo server"
For more information read the documentation at https://
gohugo.io.
At this stage, Hugo has created a scaffold for our site:
$ tree today-i-learned
.
 archetypes
 config.toml
 content
 data
 layouts
 static
 themes

The config.toml file is our site configuration
formatted as a TOML file. The subdirectories created
above are all empty and they serve different purposes:

 archetypes When we create new content, Hugo
pre-fills the content's front matter with metadata
such as title and date. Using archetypes, we can
customise the metadata we want to be pre-filled.
 content This is where all the content will live
 data This directory can be used to load custom data
from a YAML-, JSON- or TOML-formatted file and
make it available at site-generation time. You can
think of it as like a file based data store for your site.
 layouts This is where the layout of the site can be
customised using templates.
 static This is where, we should place any custom
CSS, JavaScript, images or any files we want to be a
part of our site.
 themes We will store our theme here.
At this stage we have our site structure ready, but

we are missing content and a theme. As important as
they are, let's ignore them for the time being and go
ahead and start a server to serve our site:
$ cd today-i-learned/
$ $GOPATH/bin/hugo server
Started building site
===
============

Your rendered home page is blank: /index.html is
zero-length
 * Did you specify a theme on the command-line or in
your
 "config.toml" file? (Current theme: "")
 * For more debugging information, run "hugo -v"
===
============
0 draft content
0 future content
0 pages created
0 non-page files copied
0 paginator pages created
0 tags created
0 categories created
in 32 ms
Watching for changes in /home/amit/today-i-learned/
{data,content,layouts,static}
Serving pages from memory
Web Server is available at http://localhost:1313/ (bind
address 127.0.0.1)
Press Ctrl+C to stop

A web server has been started for us and you
can visit the URL from your browser, but you will be
greeted with a blank page – which of course isn't
surprising. Keep the server running, switch to a new
terminal window to create our first blog post:
$ cd today-i-learned/
$ $GOPATH/bin/hugo new post/hello-world.md
/home/amit/today-i-learned/content/post/hello-world.
md created
A new subdirectory, post, has been created under the
content directory with a file hello-world.md under it:
$ tree content
content
 post
 hello-world.md

At this stage, it's worth discussing the concept of
"sections" in Hugo. Hugo lets you organise your site's
content into any structure you please. So, for example
(as we will in this article) we can categorise our site's
content into being a "post" and "page", or you could
just call them something else entirely.

We can now write our blog post content in the
hello-world.md file. It currently will contain the
following:
+++
date = "2016-05-12T08:05:42+10:00"

Posts with categories –
generated in double-quick
time..

LV029 068 Tutorial Hugo.indd 69 10/06/2016 10:12

TUTORIAL HUGO

www.linuxvoice.com70

draft = true
title = "hello world"
+++

The content within the +++ is referred to as the
front matter, and is the metadata. Open the file in your
favourite text editor and change the content to the
following:
+++
date = "2016-05-12T08:05:42+10:00"
title = "hello world"
+++

Hello World! This is the first blog post in my brand
new blog "Today I Learned". I will be using this blog as
a place to post my notes on everyday things I learn.

We have removed the draft = true line from
the header so that our post will be available for
consumption via our site. We now have some content
for our site, but we don't have a theme yet and so
we still can't view our site content. http://themes.
gohugo.io is a showcase of a number of Hugo
themes. The choice of theme will determine how
your site's content is structured and how it looks.
In addition, a theme may have additional features
already available. For our site, we will use the "hyde-x"
theme (https://github.com/zyro/hyde-x). It looks
nice and makes adding social links really easy. Instead
of cloning the Git repository for the theme, we will
download a Zip archive of the theme from
https://github.com/zyro/hyde-x/archive/master.
zip, unzip it and place it in the themes sub-directory

created for us:
$ cd themes
$ wget https://github.com/zyro/hyde-x/
archive/master.zip
$ unzip master.zip
$ mv hyde-x-master hyde-x
$ rm master.zip

At this stage, our site structure looks
like this:
$ tree -L 3

.
 archetypes
 config.toml
 content

 post
 hello-world.md

 data
 layouts
 static
 themes
 hyde-x
 LICENSE
 README.md
 archetypes
 images
 layouts
 static
 theme.toml

Our next step is to tell Hugo that we want to use
the "hyde-x" theme. We do so by changing our config.
toml to be the following:
baseurl = "http://replace-this-with-your-hugo-site.com/"
languageCode = "en-us"
title = "Today I Learned"
theme = "hyde-x"

Note that we also changed the title of our site
and specified the theme. Now, if we go back to the
terminal where we left the "hugo server" running, we
will see messages like:
Change detected, rebuilding site
2016-05-12 08:16 +1000
Config file changed: /home/amit/today-i-learned/config.
toml

Now, if we go back to http://localhost:1313 on your
browser, you will see your site with your first post.
If you click on the post title, you are led to the entire
post which is available at http://localhost:1313/post/
hello-world. If you now look at your site's directory,
you will see no traces of HTML files anywhere. This is
because Hugo serves your pages from memory.

Let's add a new post to our blog while keeping our
server running:
$ pwd
/home/amit/today-i-learned
$ GOPATH/bin/hugo new --editor emacs post/hugo-live-
reload.md

Passing the option --editor followed by the path
to your editor will open your editor with the new blog
post front-matter pre-filled in and ready for you to type
in your post. Note how the front-matter has changed
from our first post? This is because the hyde-x theme
defines an archetype in its archetypes subdirectory,
which overrides the default archetype. We will type in
a couple of sentences:

Hugo has a live reload feature, which means the
moment we save this page, not only our my site
content regenerated, but the browser also reloads the
site. This means, we can see our new post without
needing to refresh the site.

As I write in the blog post above, you will see
that the site you had opened on your browser has
automatically been live reloaded. This is a unique
feature of Hugo, which it achieves by utilising web
sockets, and is certainly great when you're working on

Figure 4: Syntax
highlighting code
demonstration.

PRO TIP
The [params] section in the config.toml
file are made available by Hugo to be used
in templates. In our case the templates
that will be used to render our homepage
are part of the theme we are using and
hence any theme specific parameters will
be specified int he "params" section.

LV029 068 Tutorial Hugo.indd 70 10/06/2016 10:12

HUGO TUTORIAL

www.linuxvoice.com 71

your site's content. To disable the live reload, we can
pass the --disableLiveReload option to "hugo server".

Adding pages to our blog
To add a new page to our blog, we will once again use
the "hugo new" command. From within the today-i-
learned directory, execute the following command,
which will once again open a specified editor to edit
the page we want to create:
$ $GOPATH/bin/hugo new --editor emacs page/about.md

Type in something that you would want to be in
the page, save the file and exit. You will see that a file
about.md has been created in the page subdirectory
under the content directory.
$ tree content/
content/

page
about.md

post
 hello-world.md
 hugo-live-reload.md

On the terminal you have "hugo server" running, you
will see messages such as:
adding created directory to watchlist /home/amit/
today-i-learned/content/page
Change detected, rebuilding site
2016-05-13 07:58 +1000
0 draft content
0 future content
2 pages created
1 non-page files copied
1 paginator pages created
0 tags created
0 categories created
in 7 ms
Change detected, rebuilding site
2016-05-13 07:58 +1000

However, if you go to your browser window, you
will not see a link to the page that we just added. The
reason is that menus in Hugo have to be explicitly
configured. hyde-x already shows us a link to the site
home, but we have to do some work to get new pages
to be visible in the menu. We will edit our config.toml

file so that it looks as follows:
baseurl = "http://replace-this-with-your-hugo-site.com/"
languageCode = "en-us"
title = "Today I Learned"
theme = "hyde-x"
[[menu.main]]
 name = "About"
 url = "/page/about/"
 weight = 2

Now, we will see the link to the About page on your
homepage. The section [[menu.main]] indicates that
we are adding this menu to the main menu, has the
name "About", which is the text we see, the URL it
points to and its weight. Weight decides the order of
the menu items.

Categories and tags
With Hugo you can classify your site's content into
categories and tags. It refers to these as "taxonomies".
We first have to define them in the site's configuration
before we can classify our content using these. Here's
our config.toml after defining the categories and tags:
baseurl = "http://replace-this-with-your-hugo-site.com/"
languageCode = "en-us"
title = "Today I Learned"
theme = "hyde-x"
[[menu.main]]
 name = "About"
 url = "/page/about/"
 weight = 2
[taxonomies]
tag = "tags"
category = "categories"

The "[taxonomies]" section in the site configuration
defines the tag and category for our site.

Now, we can add categories and tags to our
existing posts. The first post will now look like this:
$ cat content/post/hello-world.md
+++
date = "2016-05-12T08:05:42+10:00"
title = "hello world"
categories = ["updates"]
+++

Hello World! This is the first blog post in my brand
new blog "Today I Learned". I will be using this blog as
a place to post my notes on everyday things I learn.

Resources
• Hugo showcase https://gohugo.io/showcase
• Archetypes https://gohugo.io/content/archetypes/
• Sections https://gohugo.io/content/sections/
• Configuration https://gohugo.io/overview/configuration/
• Shortcodes https://gohugo.io/extras/shortcodes/
• Syntax Highlighting https://gohugo.io/extras/highlighting
• Templates https://gohugo.io/templates/homepage/
• hyde-x theme https://github.com/zyro/hyde-x
• �Data�files�https://gohugo.io/extras/datafiles#the-data-

folder
• Static sites with docker http://ilkka.io/blog/static-sites-

with-docker
• Automated site deployments https://gohugo.io/tutorials/

automated-deployments
• Hugo tools https://gohugo.io/tools

Figure 3: Side bar showing
the social links and RSS
Feed

LV029 068 Tutorial Hugo.indd 71 10/06/2016 10:12

TUTORIAL HUGO

www.linuxvoice.com72

The second post is updated to the following:
+++
date = "2016-05-12T09:20:03+10:00"
title = "Hugo Live Reload"
categories = ["blogging", "hugo"]
tags = ["golang"]
+++

Hugo has a live reload feature, which means the
moment I save this page, not only is my site content
regenerated, but the browser also reloads the site.
This means, I can see my new post without needing
to refresh the site myself.

Now, we can see that our posts have categories
assigned (Figure 2), and if you click on a category
label, you will find all posts in that category.

Social, RSS feeds and other customisation
The "hyde-x" theme makes it easy to add links to your
social profiles such as your GitHub and Twitter
profiles. To do so, we will add a new section "params"
to our site configuration and add the following:
[params]
github = "https://github.com/amitsaha"
twitter = "https://twitter.com/echorand"
rss = true

You will see that there are links to the specified
GitHub, Twitter profiles and the RSS feed for your blog
contents (Figure 3). The theme also has support for
various other social profiles. The RSS feed is for the
entire site; if you want to refer to category-specific
feeds, you can find them at http://localhost:1313/
categories/<category>/index.xml.

There's a good chance you will have code in your
blog posts, and you want it to be syntax highlighted.
Hugo has support for two kinds of syntax highlighting
– server side or render time (using Pygments) and
client-side using JavaScript. We will see an example of
the latter. Let's create a new post with this content:
$ cat content/post/syntax-highlighting-code.md
+++
categories = ["golang", "code", "python"]
date = "2016-05-13T17:02:38+10:00"
description = ""
keywords = []
title = "Syntax highlighting code"
+++
I learned how to post syntax highlighted code in a post.
Hugo has two

options when it comes to syntax highlighting - server
side and client side.
This is an example of client side highlighting. You can
read all about it
[here](http://gohugo.io/extras/highlighting/).
~~~python
# A line of Python
print('Hello world')
~~~
~~~go
// A simple program in Golang
package main
import (
     "fmt"
)
func main() {
     fmt.Println("Hello world")
}
~~~

In addition, we will have to select a syntax
highlighting scheme using the highlight key in the
params section:
highlight = "zenburn"

We will see that the post has syntax highlighted
code (Figure 4). There are various highlighting
schemes available with hyde-x, which you can see in
the themes/hyde-x/static/css/highlight sub-directory.

Shortcodes
Shortcodes in Hugo enable you to do common things
which Markdown doesn't allow (Figure 5). Their
syntax is usually {{< short-code parameter1
parameter2 >}}. For example, we link to another post
or page in our blog, we will use the ref shortcode:
[post]({{< ref "post/hello-world.md" >}})
[page]({{< ref "page/about.md" >}})

There are various other useful shortcodes
– for example to embed a GitHub gist with ID
9864ec0475dd9b68c4a38be37726e552 we will use
the gist shortcode:
{{< gist amitsaha 9864ec0475dd9b68c4a38be37726e552
>}}
The first parameter to the gist shortcode is the GitHub
username, and the second parameter is the Gist ID.

Hosting your content on GitHub pages
A site is perhaps never done, but I think we are at a
point where we are ready to go live. We will deploy our
static site using GitHub pages, because it's free and
easy to set up. GitHub pages allow two kinds of sites
– one of the form <your-username>.github.io or
<your-username>.github.io/<repo_name>. The first
step is to create a repository on GitHub named
linux_voice_4 and create a branch gh-pages from the
repository page. Next, create a local clone of the
repository:
$ git clone git@github.com:amitsaha/linux_voice_4.git
$ cd linux_voice_4
$ git branch

Figure 5: Demonstration of
using the "gist" shortcut to
embed a GitHub gist

LV029 068 Tutorial Hugo.indd 72 10/06/2016 10:12

HUGO TUTORIAL

www.linuxvoice.com 73

Amit Saha is the author of Doing Math with Python (No Starch Press)
and a software engineer. He blogs at https://echorand.me, tweets
@echorand and can be reached via email at amitsaha.in@gmail.com

master
We will use the master branch of the repository to

keep a copy of our site's "source", and the gh-pages
branch will have only the generated files. Our next
step is to simply move the entire directory tree of
today-i-learned to the linux_voice_4 subdirectory so
that it looks like this:
$ tree -L 2 linux_voice_4
linux_voice_4

LICENSE
README.md
archetypes
config.toml
content
 page
 post
data
layouts
static
themes

 hyde-x
It's time to now modify our config.toml file to add

our base URL:
baseurl = "http://<your-github-username>.github.io/
linux_voice_4/"

Our next step is to generate the HTML files for our
content and add everything to the master branch:
$ $GOPATH/bin/hugo
$ git add -A .
$ git commit -m "Initial version"

At this stage, we have our generated site in the
public subdirectory. We now want to move the
contents of that directory to our gh-pages branch. We
will do it using a straightforward but admittedly naive
approach – we will copy the contents to a directory
/tmp/hugo_public, checkout the gh-pages branch
and copy the content from /tmp/hugo_public, then
commit everything to the gh-pages branch and finally
push both the branches:
$ cp -r public/ /tmp/hugo_public
$ git checkout gh-pages
$ cp -r /tmp/hugo_public/* .
$ git add -A .
$ git commit -m "New build"
$ git push origin master gh-pages

If you now visit https://<your-github-user-name>.
github.io/linux_voice_4, you should see your site's
content. Now that our site is live, we want to integrate
Google Analytics with it for tracking and Disqus to add
the ability to comment on our blog posts (Figure 6).

Google Analytics and Disqus integration
To add Google Analytics tracking to our page, we
create a property on Google Analytics, get our tracking
ID and add it as googleAnalytics = "UA-77766553-1".
To add Disqus integration to our site, we have to first
create an account on Disqus, get the shortname for
this site and simply add disqusShortname = "<you-
short-name>" in the config.toml file.

We'll get back our master branch and add the
above. The config.toml file now looks like this:
baseurl = "http://<your-github-username>.github.io/
linux_voice_4/"
languageCode = "en-us"
title = "Today I Learned"
theme = "hyde-x
disqusShortname = "hugo-todayilearned"
googleAnalytics = "UA-77766553-1"
[[menu.main]]
 name = "About"
 url = "page/about/"
 weight = 2
[taxonomies]
tag = "tags"
category = "categories"
[params]
highlight = "zenburn"
home = "Home"
github = "https://github.com/amitsaha"
twitter = "https://twitter.com/echorand"
rss = true

Once we re-publish the site by building the site from
master and pushing to our gh-pages branch, the
posts should have the Disqus commenting system
and Google Analytics enabled on all the pages.

Conclusion
As I explored Hugo while working on the article, I was
initially overwhelmed by the features and the need to
configure even the smallest of things. However, I have
no hesitation in saying that Hugo stands out with its
huge number of built-in features, and the enormous
configurability is a good thing. It includes sensible
features by default and puts the content creator in
control of how the site should be written, structured
and appear.

You can find the source for the "Today I Learned"
site at https://github.com/amitsaha/linux_voice_4
in addition to a set of resources to explore next. The
copy of hyde-x in my Git repository is slightly changed
to create the links correctly. I will investigate it further
and post updates here: https://github.com/spf13/
hugo/issues/2147.

Figure 6: Hugo comes with
in-built Disqus integration
and the hyde-x theme lists
the number of comments
against each post.

LV029 068 Tutorial Hugo.indd 73 10/06/2016 10:12

TUTORIAL PUBLISHING

www.linuxvoice.com74

I t was on a dark and stormy night when, suddenly,
the velvet drapes shimmered, the candle flickered
and you were overcome with a desire to write a

book. But how best to do it? You could use LibreOffice
Writer, or try Latex, but perhaps markdown and HTML
is an option. Then there's the question of how to
publish: you like those old, dusty tomes piled in the
corner of the study, but then the Raven quoth
"Nevermore!", so an eBook it will be. But how to
produce a book for these new fangled eReaders?
Read on, but hurry! lest the Cthulhu devour you before
you commit your thoughts to ePrint.

It is now the norm for documents to be stored in at
least two distinct parts: one contains the content,
such as the words in this article; and separate from
that is information on style, such as what font to use
for the headings. The most obvious example of this is
the use of HTML for web content, and CSS to tell a
web browser how the content should be displayed.

We're going to use HTML and CSS as the basis for
writing our book for a few reasons. First, it means you
can use any text editor to write your content, and you
can keep style at arm's length while you toil over your
choice of words and sculpt your prose to perfection.
Also, because proofreading is usefully done using
something closer to the final format, you can preview

your work using a web browser and simulate
something close to what might appear on an eReader,
app or even in the print version.

The third and most important advantage of HTML
and CSS is that it's very easy to transform it into
almost any format. In fact, one of the most common
electronic formats – the EPUB – is a Zip file that
includes XHTML and CSS files. Our aim in this article
is to build an EPUB manually.

You could use LibreOffice Writer to write and format
your text and then export HTML and CSS, but that
way you will sacrifice both simplicity and control. You
do not need to be a web designer to use the HTML
and CSS needed to make a book; it's much simpler
than putting together a website.

Markdown
You can write HTML directly. However, after a while
you'll start to learn why Markdown was invented.
Opening every paragraph with <p> and closing it again
with </p> gets irritating after you've done it a hundred
times, and it's prone to error as it's almost inevitable
that you'll forget to close such tags at some point.

You're spoilt for choice when it comes to converting
Markdown to HTML. I use the Python markdown_py;
snother good choice would be Pandoc, which makes

ANDREW CONWAY

Markdown quick start

MAKE EBOOKS FROM
SCRATCH WITH FOSS
Birth your literature upon the world the best way possible – the Free way!

Why do this?
• Write an eBook

with simplicity and
control

• Write with FOSS tools
on Linux

• Prepare for any
format: eBook, web
or print

Markdown has become a favourite format for
coders who tire of having to close every tag of
HTML. It was created in 2004 by John Gruber with
help from Aaron Swartz. In addition to being easy
to write, it's designed to be readable as-is, unlike

HTML, which can look quite jumble.
The screenshot below gives you a quick

introduction to the basics of Markdown. On the
left is the markdown in a text editor (Kate), and on
the left is HTML generated from it viewed in a web

browser (Firefox). If Markdown doesn't support the
formatting you want, you can always use HTML
tags. See Marco Fioretti's excellent introduction to
Markdown in Linux Voice issue 10 for more detail
and also a list of handy cheatsheets on its syntax.

LV029 074 Tutorial Publishing.indd 74 10/06/2016 10:15

PUBLISHING TUTORIAL

www.linuxvoice.com 75

a worthy claim to being the Swiss Army knife of text
format converters.

There is however one drawback with Markdown:
there is no standard. Over the years different
implementations have created different syntaxes.
The first problem this creates is that a web search
on syntax might throw up results that aren't correct
for the markdown implementation you are using. The
second problem is that Markdown has portability
issues: a file put through two different Markdown
converters might produce different results.

The best to way to avoid these problems is to
stick with one Markdown converter and keep your
formatting as simple as possible. If you do encounter
any peculiarities of the Markdown converter you're
using, you can keep your document portable by using
HTML tags instead of the offending syntax.

From laziness comes efficiency
So let's get writing. Enter some Markdown into a text
editor. Now save it as test.markdown (you can use
.md if you prefer, but older text editors may think
you're writing Modula-2 code and highlight it
incorrectly) and generate the HTML with this on the
command line
markdown_py test.markdown

You'll then see the HTML produced as output to the
terminal. We'd rather it went to a file, so do this
markdown_py test.markdown -f test.html

The -f option tells markdown_py to send its output
into the file test.html. You could use the > symbol to
send the standard output to a file, but this will cause
problems for something we'll want to do later.

Now open the file test.html. You can do this via
your web browser's menu, though as browsers are
increasingly intent on hiding menus from you, you
might want to type something like this into the URL
bar file:///home/jim/somedir/test.html – where jim
is the username and somedir is the directory with
test.html in it. Alternatively you could try dragging
test.html from your file manager and dropping it onto
your browser.

You'll now see your masterpiece rendered with
formatting. It's a bit ugly – we'll come to styling CSS
later. For now we wish to concentrate on content.
Make some edit to test.markdown, save it, run
markdown_py on it again and then hit reload on your
browser to see the results.

Now imagine doing that several hundred times a
day. And count the number of times your hand goes
from keyboard to mouse and back again. Yes, you can
use a few keyboard shortcuts, or even avoid a mouse
completely with a tiling window manager, but wouldn't
it be nice to just hit Save and see the result appear
instantly in your web browser? Let's go WYSIWYG.
Not so much What You *See* Is What You Get but
What You *Save* Is What You Get.

We're going to save our wrists from repetitive strain
injury by using the nifty command entr. (I first heard

about this via a podcast associated with a computing
magazine, Minix Vocals I think it was.) First install it if
you haven't got it:
sudo apt-get install entr

Now enter the following in a terminal:
ls test.markdown | entr markdown_py test.markdown -f
test.html

This says: keep an eye on the file test.markdown; if
it changes, run the command after entr which, in our
case, will create the test.html file. Now make an edit
to test.markdown, save it and then reload the browser
and you'll see your edits are rendered.

But we're only half way to our goal. We want the
browser to reload automatically when we save. There

are two ways to do this. The simplest method is to
use Midori. No, not the alcoholic liqueur of green hue,
but the Midori web browser, which you will likely find
in your distro's repositories, though it is included in
some distributions, notably Raspbian. It has the handy
feature that you can instruct it to reload its current tab
from the command line. To get this working save the
following text into a file called refresh.sh:
markdown_py test.markdown -f test.html
midori -e Reload

Before running this script, open up test.html in
Midori manually.

We can now use entr to run the Bash script
refresh.sh whenever we change test.markdown:
ls test.markdown | entr sh refresh.sh

Try editing the Markdown file and, when you save
it, you should see what's shown in Midori update
accordingly.

If you'd rather not use Midori, perhaps because you
don't want to install it for this one purpose, then you
can achieve the same thing with almost any web
browser. To do this, go to entr's website entrproject.
org, download its reload-browser script and use
it in place of the midori -e Reload command. The
script works by faking a Ctrl+R press in your browser
window using the xdotool command. Bear in mind
that it doesn't work in all window managers, and
you might need to install xdotool from your distro's
repositories.

One reason we use Midori is so we can dedicate the
browser to this one task and keep it separate from all
other web browsing. If you use your main browser for
the job and leave it on the wrong tab and save your
Markdown file, then the reload-browser script will
merrily reload that tab. The result may be harmless, or
it might be irritating, but it might cause a more serious
problem if you're half way through entering a long
form with important information like bank details.

You can write HTML directly. However,
after a while you'll start to learn why
Markdown was invented

LV029 074 Tutorial Publishing.indd 75 10/06/2016 10:15

TUTORIAL PUBLISHING

www.linuxvoice.com76

Now let's pull together all the bits and pieces we
need to make a book. There's not space to include all
the lines of XML needed in this article so we omitted
the most boring ones, but you can find complete
versions of all files mentioned at github.com/mcnalu/
linuxvoice-publishing. First, we need to augment our
script so that we create a proper HTML document
with CSS styling, and also handle multiple chapters.
Here we've just included two to demonstrate the
principle: chapter1.markdown and chapter2.
markdown. Create a text file called make_book.sh
containing this:
#Insert beginning of HTML file and timestamp
cat head.html > mybook.html
echo "<p class="centre">Generated: " >> mybook.html
date >> mybook.html
echo "</p>" >> mybook.html
#Create one big markdown file
echo "##Contents" > mybook.markdown
echo "[TOC]" >> mybook.markdown
cat chapter1.markdown >> mybook.markdown
cat chapter2.markdown >> mybook.markdown
#Create the html with a table of contents
markdown_py -x toc mybook.markdown >> mybook.html
#Finish off the HTML file
echo "</body></html>" >> mybook.html
midori -e Reload

The head.html should look something like this:
<?xml version="1.0" encoding="utf-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:epub="http://www.idpf.org/2007/ops">
<head>
<title>My Book</title>
<link rel="stylesheet" type="text/css" href="mybook.
css"/>
</head>

<body>
<h1 class="centre">My Book</h1>
<p class="centre">A.N. Author</p>
<p class="centre">Copyright 2016 A.N. Author </p>

This contains the tags needed at the start of a valid
XHTML file, which we'll need for the EPUB later, and
it specifies the character encoding as UTF-8 and the
CSS file as mybook.css in which the centre class
we use in head.html is defined. Then the body of the
HTML starts and a basic title page is created with a
title, author and copyright information.

The secret of writing the CSS file for an e-document
is to keep it simple. Here's a CSS file that's all you need
for simple but decent eBook:
body {margin: 3em 3em 3em 3em;}
h2 {page-break-before: always;}
h3 {page-break-after: avoid;}
.centre {text-align: center;}
p {text-indent: 1em;}

First notice that all sizes are in units of em, where
1em is equal to the font size, and 3em means three
times the font size. Using pixel size px would be
very naughty in this context and is likely to cause
unexpected weirdness on some eReaders and
unpredictable results when printed. Next, we say that
there should always be a page break before the h2
style, because it will be used for chapter headings.
For headings within chapters we use h3, and we want
to avoid breaks after them if possible. This will avoid
having headings near the bottom of a page. These
page-break styles will have no effect in a web browser,
but will in an eReader or if you print the HTML from
your browser.

The .centre defines a class that was used in head.
html to centre text on the title page. The text-indent
for p specifies that each paragraph should start with a
small indent, as is conventional in print and eBooks.

We can generate a new preview of our book when
any part of it is saved using the entr command:
ls *.markdown mybook.css | entr sh make_book.sh
This triggers a rebuild of the book if any of the
markdown files change or the CSS file changes.

At this point, assuming you've written some text for
chapters 1 and 2, you will have a book that you can
view in a web browser. Next we'll show how to wrap
this up in a valid eBook format.

Prepare to publish
Of the very many eReader formats, probably the most
widely used is EPUB, though arguably the dominance
of Amazon's Kindle means that many people are
using the AZW format without knowing it. AZW is
based on the older MOBI format, but since 2011
Amazon has been using its newer Kindle Format 8
(.fd8 or .azw3), which is based on HTML 5 and CSS.

We'll concentrate on how to manually create a
version 3 EPUB. Have a look at the boxout on the
anatomy of EPUB for an overview before reading on.

First, in an empty directory, create the basic
structure of what needs to go into the EPUB file:

Anatomy of an EPUB
An EPUB is a Zip file with a prescribed set
of files and directories, as shown here. The
mimetype must be the first file in the archive
and must not be compressed. This enables
applications to quickly determine that the
file is an EPUB. Most of the files in the EPUB
are XML files, with exceptions being the CSS
file and content files such as images, audio
or video. The main content of the book is
supplied in one or more XHTML files using
HTML 5 syntax. You can have one file for an
entire book, but it's more usual to split it into a
file per chapter, or even per section.

The container.xml's main purpose is to
point to content.opf (though it can be given
any name) which contains a manifest of all
files in the EPUB, along with the order in which
the main parts of the book are meant to be read, and references to navigation elements. In the
current EPUB 3 format, navigation menus in applications and eReaders will use a file that's
usually called toc.xhtml. This is a change from EPUB 2, which used an XML .ncx file to specify
the navigation structure. As many eReaders and applications still use EPUB 2, it's still a good
idea to include an NCX .ncx, but an EPUB 3 reader will ignore it and expect to find toc.xhtml.
The full EPUB specification can be found at www.idpf.org/epub.

LV029 074 Tutorial Publishing.indd 76 10/06/2016 10:15

PUBLISHING TUTORIAL

www.linuxvoice.com 77

echo -n "application/epub+zip" > mimetype
mkdir META-INF OEBPS
cp /some/path/mybook.html OEBPS/mybook.xhtml
cp /some/path/mybook.css OEBPS

Notice we've used -n, which tells echo not to add
a newline character. This is important because the
mimetype file must not have more than one line. Also,
notice that we renamed the mybook.html to mybook.
xhtml, which is conventional in EPUB 3.

Now create a file called container.xml inside the
META-INF directory that contains this:
<?xml version="1.0" encoding="UTF-8" ?>
<container version="1.0" xmlns="urn:oasis:names:tc:ope
ndocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="OEBPS/content.opf" media-
type="application/oebps-package+xml"/>
 </rootfiles>
</container>

The main task of container.xml is to point to the
content.opf file. This is also an XML file, and its
important lines are:
<manifest>
 <item id="toc" properties="nav" href="toc.xhtml"
media-type="application/xhtml+xml" />
 <item id="template_css" href="mybook.css" media-
type="text/css" />
 <item id="mybook" href="mybook.xhtml" media-
type="application/xhtml+xml" />
</manifest>
<spine>
 <itemref idref="mybook" />
</spine>

The manifest lists the contents of the EPUB file:
the table of contents (toc), the CSS file and the main
content file. The spine is used to list the linear reading
order of the document, though in our case we've
opted for only one big XHTML file. If we had one
.xhtml file per chapter, the spine section would need
an itemref for each one.

The final file we'll need is toc.xhtml. The important
bit of this is this:
 <nav id="toc" epub:type="toc">
 <h1 class="frontmatter">Table of Contents</h1>
 <ol class="contents">
 Contents</
a>
 Chapter 1</
a>
 Chapter
2

 </nav>

You can save yourself some time by looking
inside mybook.xhtml for the table of contents that
markdown_py generated. Those items can be
copy and pasted into toc.xhtml, although you'll have
to add in mybook.xhtml before the # in each href link.
The toc.xhtml is separate to the table of contents
we've already put at the start of the book and will be

used to enable eReaders to offer a navigation menu
no matter where you are in the book. For an eBook,
there's probably no reason to have both, but it does no
harm to leave it in and most eReaders will respond to
the links as expected.

Now that all the files are in place we can create the
EPUB file as follows:
zip -0X mybook.epub mimetype
zip -Xr9D mybook.epub META-INF/ OEBPS/

The first zip command is performed separately
to ensure that mimetype is the first file in the Zip
archive, and the -0 option (that's a zero) tells Zip
not to compress that file. This is important so that
applications can easily find and read the mimetype.
The second command compresses and stores all
other directories and files in the archive. The X stops
extra file attributes being included in the archive; r
tells it to include files recursively in sub-directories; 9
means maximum compression and D omits separate
entries for directories.

You can now open the EPUB in any application
and check that it's displaying correctly. If you want to
check you've structured your EPUB correctly, you can
download the EpubCheck tool from https://github.
com/IDPF/epubcheck.

Epilogue
Hopefully this has given you an understanding of how
an electronic document is structured and that by
using Markdown and keeping a light touch with CSS
styling, you can keep your writing process simple
while staying in control of the finished product. That
said, the process of creating an EPUB manually is
rather fiddly. You can automate it further by writing
your own scripts to copy files into the directory
structure and zip up the EPUB, but another option is to
use the Calibre application to generate the EPUB. We'll
describe Calibre and various ways you can publish an
eBook and a print version in a follow-on article.

Andrew Conway watches the stars from his wood-panelled study.
He likes open data and what you can do with it using Free Software.

A real example
The techniques in this article are not just
some theoretical musings, but those I have
used to produce a real book called An Active
Citizen's Guide to Scotland (see activecitizen.
scot if you're interested). All the text for
this book was written in Markdown in KDE's
Kate text editor, and tables and figures were
mostly generated using LibreOffice Calc with
a few being made with Gnuplot. Although the
Bash script used to construct the book was a
little more complex than the one shown here,
it is still pretty short at 43 lines.

Some publishers may insist on their
authors providing a particular format,
too often .docx, but, if you make it as
a bankable, best-selling author like JK
Rowling, you could, if you so wished, submit

your manuscript scrawled by hand in purple ink on the back of a thousand fag packets.

LV029 074 Tutorial Publishing.indd 77 10/06/2016 10:15

TUTORIAL LINUX FOR LEARNERS

www.linuxvoice.com78

Summer time is upon us in the northern
hemisphere, and the weather is always a keenly
discussed topic of conversation. Is it warm

enough to get the barbecue out? Being the chief
question. Using a little GPIO Zero code, a stepper
motor and LEDS plus a Python weather module, we
can build ourselves a cool weather frame that will
keep us up to date. There are two parts to the
hardware build. First we have the components, chiefly
our stepper motor and eight LEDs. Our stepper motor
has a driver board using a ULN2003 chip. The board
requires 5V of power from our Raspberry Pi and a
Ground (GND) connection. We can then connect the
other “input” pins of the board to our Raspberry Pi. We
can also attach the LEDs to the corresponding pins of
our Raspberry Pi via a 220Ω resistor.

The second part of the build is the physical frame.
We chose to use a cheap picture frame and replaced
the glass with a piece of cardboard that fit into place
with a gentle push. We then stuck some coloured
card to the cardboard to hide the backing. Next we
measure out a dial using an old CD and then split
the circumference of the dial into segments for our
temperature range. To attach the stepper motor to
the cardboard we used some machine screws and
nuts. But to attach the dial to our stepper we used a
lollipop stick into which we cut a notch that matched
the stepper motor spindle. By attaching the lollipop
stick to our dial using tape and then sliding on to the
spindle, we now have a reliable method of precise
rotational movement. We then attached another dial
to the frame, but this time with no stepper motor. In
this dial we inserted 8 LEDs.

We start by opening a Terminal window, the icon for
which is found in the top-left of the screen and looks
like a black screen.

Our first task is to install the Python library for
OpenWeatherMap. In the terminal type the following
and press Enter.
$ sudo pip3 install pyowm

With installation complete we now need to sign up
to the OpenWeatherMap service via its website. In a
browser visit https://home.openweathermap.org/
users/sign_up and create a new account. This will
generate an API key, which will enable our project to
request weather data. Keep this key handy, as we will
need it later in the project. Also note that this key is
private and linked to your account, so do not share
your API key.

Coding the project
We start coding the project by opening the Python 3
application, found in the Programming menu. With
Python 3 open click on File > File New to open a new
blank document. Immediately save your work as
Weather_Frame.py. This will enable quick saving as
we work through the code.

Our first section of Python code is a series of
imports. First we import two classes from GPIO
Zero, namely LED to handle our LED indicators, and
OutputDevice, a class enables us to directly control
GPIO pins.
from gpiozero import LED, OutputDevice
import pyowm

Our completed project sits inside its picture frame home
ready to inform us of the next change in weather.

The OpenWeatherMap
website has a great suite
of tools for you to research
historical and forecast
future weather.

RASPBERRY PI DISPLAY
DATA PHYSICALLY
Turn input from the internet into something you can hold in your hand.

LES POUNDER

Why do this?
• Make the most out of

GPIO Zero
• Control a stepper

motor
• Work with external

data sources

You will need
• Any model of

Raspberry Pi
• Wi-Fi connection
• Stepper motor
• LEDs
• 220Ω resistor

(RED-RED-BROWN)
• Breadboard
• Male–female

jumper wire
• Female–female

jumper wire
• Power for your

Raspberry Pi

LV029 078 Tutorial Education.indd 78 10/06/2016 10:17

LINUX FOR LEARNERS TUTORIAL

www.linuxvoice.com 79

import time
We next create variables that will be used to

identify the LEDs for the different weather statuses
that we wish to identify. The GPIO Zero LED class is
remarkably easy to use and requires little code for
configuration.
Sunny = LED(17)
Bluesky = LED(27)
Snow = LED(22)
Cloudy = LED(10)
Thunder = LED(9)
Shower = LED(11)
Rain = LED(5)
Fog = LED(6)

Next we use another class, OutputDevice, from
GPIO Zero. The class enables control of any GPIO pin.
Here we use it to create four pins that will be used to
control our stepper motor.
Temp_IN1 = OutputDevice(23)
Temp_IN2 = OutputDevice(24)
Temp_IN3 = OutputDevice(25)
Temp_IN4 = OutputDevice(8)

Finally we create a new variable called delay that is
used to control the stepper motor speed. This is the
optimum time to run the stepper smoothly.
delay = 0.01

We now create a function that will control our
stepper motor. This function is called cw, short for
clockwise, and it takes three arguments: the number
of steps to move; the delay between each step; and
the stepper motor to control. This function can control
multiple stepper motors, but for this project we use
just the one.
def cw(steps,delay,stepper):

Inside this function we have an if condition that
checks the name of the stepper motor to be used. In
this case it is Temp for our temperature gauge. This
condition is indented to show that it is part of the
function.
 if stepper == "Temp":

Next we create another indentation, which we use
to construct a for loop. This loop will pulse the GPIO
pins connected to our stepper motor in the correct
sequence to drive the stepper clockwise. At each time
one pin is turned on while the rest are off, causing the
stepper to move one step. By changing the pins in
quick succession we can create a smooth rotation. In
the code we only partially show the sequence, which
can be seen in the in the project files downloadable
from our GitHub page.
 for i in range(steps):
 Temp_IN1.on()
 Temp_IN2.off()
 Temp_IN3.off()
 Temp_IN4.off()
 time.sleep(delay)
 Temp_IN1.off()
 Temp_IN2.on()
 Temp_IN3.off()
 Temp_IN4.off()
 time.sleep(delay)
 ….
With that we end this function by making a new line
under the function, and ensuring that our cursor is to
the left of the window.

We now create a new function, this time called
ccw, Counter Clockwise. This function has the same
arguments as cw, but reverses the sequence to force
the stepper to rotate counter clockwise. Again, not all
of the code is shown due to its length:
def ccw(steps,delay,stepper):
 if stepper == "Temp":
 for i in range(steps):
 Temp_IN1.off()
 Temp_IN2.off()
 Temp_IN3.off()
 Temp_IN4.on()

Stepper motors normally
come as just a motor,
but we picked these up
cheaply from eBay, which
come with their own
controller board.

Work with remote data: OpenWeatherMap
Python has many methods of working with external data,
one of which is OpenWeatherMap.

OpenWeatherMap is a free resource of worldwide
weather data that has an extensive API for many
languages.The OpenWeatherMap website details the many
uses of this project. It can be used as a simple website to
query historical and forecasted weather data, but by using
an API for Python, it enables our Raspberry Pi to receive
remote data that will ultimately control our appliance,
creating a physical appliance that can show us the data
in an unusual way. By merging remote data with physical
computing we can create new appliances and even use data
to drive art installations. In our tutorial we used pyowm
from https://github.com/csparpa/pyowm, which has now
been packaged ready for use with the Python package
manager pip3.

There are many more modules that can pull data from
other services, for example eBay and newsfeeds. Another
source of external data is IFTTT, short for “If This, Then
That”. IFTTT is a trigger- and event-based system that can
link into many web services and your mobile device. You
can even create a location-based trigger that will turn on
your TV ready for when you get home. You can learn more
about IFTTT at https://ifttt.com.

LV029 078 Tutorial Education.indd 79 10/06/2016 10:17

TUTORIAL LINUX FOR LEARNERS

www.linuxvoice.com80

 time.sleep(delay)
 Temp_IN1.off()
 Temp_IN2.off()
 Temp_IN3.on()
 Temp_IN4.off()
 time.sleep(delay)
 ….

We now close this function and create a new
function called get_weather. This function uses the
OpenWeatherMap API (Application Programming
Interface) via a Python module. Using this module
we can check the weather for any location across the
globe. This function takes one argument, n, which
represents the location where we would like to know

the weather.
def get_weather(n):

Indented in our function we create a variable called
owm, and in here we store output of connecting to the
OpenWeatherMap API using the Python module and
our secret API key. We then create a variable called
observation, which will get the weather data for your
chosen location, via the n argument.
 owm = pyowm.OWM("YOUR SECRET API KEY")
 observation = owm.weather_at_place((n))

Still in the get_weather function we now create
a dictionary, a Python data structure that can store
data with associated keys. In our project we use
a dictionary to store the numerical code given by
OpenWeatherMap for different weather conditions as

the key, which in turn will return the correct weather
condition as a string. A dictionary uses { } to contain
the data. Our keys are identified by a colon, :, and our
data are strings containing weather status.
 codes = {
 211:"thunderstorm",
 313:"shower rain and drizzle",
 321:"shower drizzle",
 500:"light rain",
 …
 }

Next we create a variable called w, which is used to
temporarily store weather data.
 w = observation.get_weather()

From this variable we now obtain the temperature
from our chosen location, which we then store in a
new data structure called a The new data structure
is a dictionary and we're looking for the key temp,
as in temperature. On the next line of code we wrap
the extracted data in a function that will convert the
data into an integer. All of this is then contained in a
variable called a.
 a = w.get_temperature('celsius')
 a = int(a['temp'])

Next we create a variable called b, and in there we
store the weather code that matches the current
weather at our chosen location. This will be used later
with our weather codes dictionary.
 b = w.get_weather_code()

To confirm that the data stored in variables a and
b is correct we print the contents to the Python shell.
This step can be removed once the data has been
confirmed correct.
 print(a)
 print(b)

Else, if
Still inside our function, we now create a series of
conditional tests that will check the value of the
variable a, which is the temperature of our chosen
location. If the temperature matches one of the tests,
then it it is considered True, and the code that relates
to that condition is executed. Our first test uses if and
checks the value of a against the value -5 as in -5C. If

Our circuit involves quite a
few wires, for best results
build and test segments of
the circuit as you go. It is
easier to debug a hardware
issue.

We used the weather codes from http://bugs.
openweathermap.org/projects/api/wiki/Weather_
Condition_Codes to generate our dictionary of weather
conditions.

Using the OpenWeatherMap API via
Python we can check the weather for
any location across the globe

LV029 078 Tutorial Education.indd 80 10/06/2016 10:17

LINUX FOR LEARNERS TUTORIAL

www.linuxvoice.com 81

that condition is true then we call the ccw function
with the arguments denoting 11 steps, delay variable,
and control our “Temp” stepper motor. This will cause
the stepper to spin and rotate the temperature dial for
11 steps, taking us to -5C on the dial. Then after five
seconds we call the cw function to rotate the stepper
motor back to its original position.
 if a == -5:
 ccw(11,delay,"Temp")
 time.sleep(5)
 cw(11,delay,"Temp")

Define a temperature range
We cover a temperature range of -5C to +40C and for
each temperature we require a conditional test. For
subsequent tests we will use “else if”, shortened to
elif in Python. If the first condition is not true, then the
tests will continue until a test evaluates as True, or if
none of the tests work then the else condition must
be True, in which case it forces the code to wait for
five seconds before repeating the process. Here we
see a snippet of the code.
 ….
 elif a == 40:
 ccw(506,delay,"Temp")
 time.sleep(5)
 cw(506,delay,"Temp")
 else:
 time.sleep(5)

This ends the conditional tests against the
temperature data. Now we create a new series of
tests that will check the weather code saved in the
variable b against the values hard-coded in our tests.
Again we start with an if condition, but this time we
control our LEDs. At the start of the code we created

variables for each of the LEDs using the LED class
from GPIO Zero. So now we can turn an LED on or off
by calling its name followed by on or off. For our first
condition, if the weather code returns “211” then the
LED to indicate a Thunderstorm will illuminate for five
seconds before turning off.
 if b == 211:
 Thunder.on()
 time.sleep(5)
 Thunder.off()

The code continues with a series of elif statements,
each testing the value of b. Our final test is else, and
we use this to indicate that it is sunny, as every other
test has evaluated as False, so Else must be True.
 elif b == 804:
 Cloudy.on()
 time.sleep(5)
 Cloudy.off()
 Else:
 Sunny.on()
 time.sleep(5)
 Sunny.off()

With the functions completed we now go to our
main body of code. Here we use a While True loop
to constantly run our code. Inside the loop we call
our get_weather function with our location as an
argument. In my case that's “Blackpool, UK”. This calls
all of the code that we have written previously. Once
the functions have run, the loop sleeps for 15 minutes
before repeating the process.
while True:
 get_weather("Blackpool, UK")
 time.sleep(900)

With the code and hardware complete, save your
work and click on the Run menu, then click on Run
Module to run the code. You will see the stepper
motor come to life and after a few seconds the LED
weather indicator will illuminate the current status.

This project can be built
with any Raspberry Pi. We
chose to use the Pi 3 as it
has WIFI built in, but this
project could be built using
a Pi Zero.

Working with motors
There are many different types of motors on the market.
The first motors we typically come across are simple DC
motors. These are really cheap and easy to use but not very
precise. Next we have micro gear metal motors, which are
typically geared to a set ratio – in other words the lower the
ratio, the faster they spin. A high-ratio motor produces slow
movement and plenty of pulling power for larger chassis.
Stepper motors are slow motors, but they are very precise,
in fact they are commonly used in DVD drives, scanners and
printers, devices which require precision movement.

Every motor needs some form of controller, and should
never be connected to the GPIO directly (this can cause
damage to your Raspberry Pi). For the stepper motor we
bought two units from eBay. These units came with their
own controller boards built around the ULN2003, a high-
voltage and high-current controller. The ULN2003 receives
power from the Raspberry Pi and then provides it to the
stepper motor at a higher rate of current, much more than
the Pi can normally supply. Typically you can only power
one stepper motor from the Raspberry Pi; if you need
to power more, an external 5V power supply is required.
You could use a 4 x AA battery box or hack a USB lead
from a USB battery to provide the necessary current. Just
remember to connect the GND of your battery to the GND of
your Raspberry Pi

Les Pounder makes things, breaks things, and spends the rest of his
time teaching teachers about the new IT curriculum.

LV029 078 Tutorial Education.indd 81 10/06/2016 10:17

www.linuxvoice.com

CODING ENCRYPTION

82

You are protected by encryption whenever you
access a secure website on the internet, and
you may know this as SSL. Most secure web

sessions begin with a handshake that relies on an
asymmetric cryptographic algorithm called RSA. It's
also used for other things, but most people will
encounter it through their web browsing activities.

We explored how SSL works in issue eight (you
can download it from https://www.linuxvoice.
com/issues/008/ssl.pdf) and how it begins with an
encrypted key exchange. RSA is used to perform that
exchange securely, and how it does that is the subject
of this tutorial.

RSA was invented in 1977 by Ron Rivest, Adi
Shamir and Leonard Adleman – hence RSA. It is the
most popular asymmetric cryptosystem in use today.
When we say that it's asymmetric, we mean that it
uses different keys to encrypt and decrypt a message.
We call these keys public and private.

The first thing to understand is that cryptography
is a mathematical problem; a numbers game. When
we talk about a message we mean a number. A
potentially large number with hundreds of digits,
but a number nonetheless. To convey a message of
words, it first needs to be converted into a number.
Fortunately, computers are good at that and we have
codes like ASCII for specifically that purpose. So we'll
put words to one side until our final example at the
end and concentrate on the numbers for now. And
we'll begin by using small ones to keep things simple.

RSA provides a formula to convert one number (the
plaintext) into another (the ciphertext). It looks like
this:
y Ξ xe (mod n)

Another formula is used to decrypt. It is very similar:
x Ξ yd (mod n)

And that's it. In fact, they're the same function that
we can represent in code (our examples are in Ruby):

Finding factors isn't the
way to crack RSA: it
doesn't take a very long
key for the time to factor it
to be noticeable.

ROLL YOUR OWN
ENCRYPTION WITH RSA
Write your own crypto tool and understand how the web stays secure.

JOHN LANE

Why do this?
• Deepen your faith

that the crypto people
know what they're
doing.

• Show off with some
hard maths.

Ti
m

e
(s

ec
on

ds
)

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
0 10 20 30 40 50 60 70 80

Number size (bits)

LV029 082 Coding RSA.indd 82 10/06/2016 10:19

www.linuxvoice.com

ENCRYPTION CODING

83

def crypt(m,e,n)
 m**e % n
end

You could now encrypt a plaintext message x into
ciphertext y if you know what e and n are. If you sent
that ciphertext y to someone else and they knew d
and n then they would be able to decrypt y to recover
the plaintext message x. But we don't yet know what
those values are; this is what they mean:

 e is the public exponent and it's part of the public
key, along with n.
 d is the private exponent and, along with n, forms
the private key.
 n is called the modulus, and the mod in the
formulae indicate they're using modular arithmetic
(see the box if you need that explained).
We are free to choose what n is, but our choice

defines the biggest number that can be encrypted.
This is because all our calculations are done mod n,
which means that we can encrypt between 0 and n-1.
We use the size of n in binary digits (bits) to describe
the key size. Real-world keys should be at least
2048 bits to be considered secure (that's a 617-digit
number).

Before choosing e and d, think about the encryption
and decryption formulae and that decryption undoes
encryption. This implies that you should be able to
combine them like this:
x Ξ (xe)d (mod n)

which is
x Ξ xed (mod n)

And you can, and you get ed=1. But it doesn't follow
that d=1/e. No, if it were that simple then we wouldn't
have encryption. And it isn't that simple because of
the modulus, and there are no fractions in modular
arithmetic.

So we need to find an integer value for d that gives
1 when multiplied by e, and we say that value d is the
modular multiplicative inverse of e.

How can we do that? Well, our formula is very
similar to what is known as Euler's Theorem, which
looks like this:
xφ(n)Ξ 1 (mod n)

where φ(n) (the Greek character φ) is Euler's Totient
Function. We'll talk more about that later but, for now,
it's interesting because we can use it to write an
equation to help solve d. If we multiply both sides by x
we have
xφ(n)x = xφ(n)+1 = xed n Ξ x (mod n)

Now, if you consider that the only variable is the
exponent, you can say that
ed Ξ φ (n) +1 (mod φ(n))

Note how the modulus becomes φ(n), because

that's the modulus of exponents in a modulo n
formula (Euler'sTheorem proves this if you are
interested). We can replace the modulus with some
multiple, k, of φ(n):
ed=kφ(n)+1

ed + kφ(n) = 1

We now have a formula in the style of Bézout's
Identity. This is another theorem in the elementary
theory of numbers and it states that, for two integers
a and b, and their greatest common divisor c, there
exist integers x and y such that:
ax+by=c

and x and y are called the Bézout Coefficients of a and
b and, if those are e and φ(n)then x will be the private
exponent, d, that we seek.

To make this work out for us, the theorem requires
that the greatest common divisor, c, of e and φ(n) is 1
or, in other words, that they are coprime. While we're

Listing 1: the algorithms "rsa.rb"
 0 #!/usr/bin/ruby
 1 def gcd(a,b)
 2 (r = a % b) == 0 ? b : gcd(b,r)
 3 end
 4 def phi(*args)
 5 case args.length
 6 when 2
 7 (args[0]-1)*(args[1]-1)
 8 when 1
 9 n = args[0]
10 (1..n).reduce(0) { |p,i| gcd(n,i)==1 ? p+1 : p }
11 end
12 end
13 def eea(a,b)
14 return b==0 ? [1,b] : begin
15 q, r = a.divmod b
16 s, t = eea(b,r)
17 [t, s - q * t]

18 end
19 end
20 def key(e, *args)
21 case args.length
22 when 1
23 n = args[0]
24 t = phi(n)
25 when 2
26 p, q = *args
27 n = p*q
28 t = phi(p,q)
29 end
30 d = eea(e,t).first % t
31 [d, n]
32 end
33 def crypt(m, e, n)
34 m**e % n
35 end

All our calculations are done mod n,
which means that we can encrypt
between 0 and n-1

LV029 082 Coding RSA.indd 83 10/06/2016 10:19

www.linuxvoice.com

CODING ENCRYPTION

84

free to use any value for e within that constraint, most
real-world implementations choose one of the so-
called Fermat Primes (3, 5, 17, 257 and 65,537) with
65,537 being the most popular.

So, all we have to do to find d is to solve Bézout's
Identity but, before we can do that, we need to find
φ(n).

The Phi Factor
In 1640, Pierre de Fermat stated Fermat's Little
Theorem for prime numbers. A hundred years later, a
Swiss mathematician called Leonhard Euler

(pronounced Oiler) generalised Fermat's theorem so
that it could also be applied to non-prime (composite)
numbers. Euler's Theorem defines the "totient" of a
number n to be the count of the positive integers that
are less-than n and are coprime with n.

The totient can be derived by iterating
over the numbers between 1 and n
and increasing a total for any number
found to be coprime with n – that is any
number that has a greatest common
divisor (gcd) of 1 with n. You can find
the gcd using an algorithm that was
documented over two thousand years

ago by the Greek mathematician, Euclid (see the
ancient algorithms box).

The totient is the key to the security of the
RSA algorithm because computing the totient
iteratively would take too long for large numbers.

We say it's a "hard" thing to do, not because the
algorithm is difficult, but because it would require
a disproportionate amount of time (and computer
power) to complete.

But there are numbers where iteration can be
avoided: prime numbers. Primes cannot be divided, so
everything less than a prime is coprime to it. In other
words, if n is prime then φ(n) = n-1 (which is what
Fermat had said originally).

Still, anyone knowing n (remember that n forms part
of the public key) would be able to quickly determine
the private key if n was prime. So we really don't want
n to be prime; we need a composite number.

We can use another property of the totient
to efficiently find it for a composite number: it's
multiplicative. This means, for two numbers p and q,
that:
φ(pq)=φ(p)φ(q)

Now, if p and q are prime then the totient of pq
will be (p-1)(q-1). This means that you can quickly
calculate the totient of a number if you can find its
prime factors. But finding factors of large numbers
is also hard. So we choose the prime numbers and
multiply them to make n. We keep them secret (as
part of the private key) and that's what keeps your
online banking account secure.

So we can now find the totient, φ(n), either
iteratively for small values of n or, for any value that is
composed as the product of known prime numbers. If
we only use two primes then it'll be even more difficult
to find them by factoring n.

We'll call our two prime factors p and q, and can
obtain them from any suitable source such as

 OpenSSL, which includes a command-line tool that
can generate 16-bit or larger primes: "openssl prime
-generate -bits 20".
 The Wolfram Alpha computational knowledge

PRO TIP
A United States patent for RSA was
granted in 1983 and expired in 2000. You
can read it at https://www.google.com/
patents/US4405829.

Modular arithmetic
Modular arithmetic is way of counting integers where they
wrap around upon reaching a value that we call the "Modulus".
Time and, more specifically, clocks provide an easy to
understand real-world example of everyday use.

Modular formulas are suffixed with (mod n) to indicate
they are modulo n and the triple-bar congruence (Ξ) symbol
indicates modular equivalence, which is like equals (=) in the
modulo arithmetic world.

A congruence like 15 Ξ pmod 12 can be written as
12k+15=3 where k is any positive integer; any multiple (k) of
the modulus (12) is congruent (equivalent) to 0 (mod 12). So
the integers 3, 15, 27 and so-on are congruent in modulo 12.

Another way to look at it is as the remainder in a whole-
number division, so 9+4=13 and 13 / 12=1 with a remainder of
1. There's a modulus operator that takes two arguments and
returns the remainder like 15 (mod 12) = 3. Note that the mod
operator's result is an equality (=) rather than a congruence
(Ξ). Many programming languages use a % operator for this:
15 % 12 = 3.

While we're talking division – watch out: modular arithmetic
doesn't have division but, instead, has modular reduction.

Time is modulo 12 making one o'clock four hours later
than nine: 9+4 Ξ PMOD:12
(CC BY-SA): https://en.wikipedia.org/wiki/File:Clock_group.svg

Consider that 4 Ξ 14 mod 10 but 4/2 Ξ / 14/2 mod 10. Modular
arithmetic is constrained to integers – there are no fractions.

Another thing to watch out for with modular reduction is
that exponents must be reduced by a different modulus: the.
The algorithms used by RSA are based in modular arithmetic,
albeit with a very large modulus!

You can find the greatest common
divisor using an algorithm that was
documented over 2000 years ago

0

6

9 3

0

6

9 3
+ 4 h

LV029 082 Coding RSA.indd 84 10/06/2016 10:19

www.linuxvoice.com

ENCRYPTION CODING

85

engine (wolframalpha.com); a request like
"randomprime(1<<2047)" will produce a 2048-bit
prime.
It doesn't matter where the factors come from, as

long as they are prime. The bit length of n is the sum
of the bit lengths of p and q; you can use half the
desired bit length of n for the factors (so two 1024-bit
factors would give a 2048-bit key).

Now that we have e and n (or its prime factors p
and q), we can find the totient t. Listing 1 presents
everything we need:

 gcd (lines 1–3) uses the Euclidean Algorithm to find
the greatest common divisor of two numbers a and
b, and
 phi (lines 4–12) returns the totient of one number
by iteration or of two numbers (assumed prime)
using the totient formula.
The key method (lines 20–32) generates a private

key from a public exponent, e, and a modulus that
can be either a number, n, or its prime factors p,q. It
first uses phi to get the totient, t, of the modulus and
then uses a variant of Euclid's algorithm, the Extended
Euclidean Algorithm, to compute the private key.

You don't need to know how the Extended
Euclidean Algorithm (eea, Listing 1, lines 13–19) or the
other algorithms work to understand how RSA uses
them, but there are many well explained resources on
the web if you want to know more.

The key method passes, on line 30, the public
exponent, e, and the totient, t, into eea and receives
their Bézout Coefficients - the first one is the private
key. That's taken modulo t to ensure it's a positive
number (if it's negative, it'll have a positive congruence
modulo t).

As an example, take e=17 and n=26. Those
numbers are small enough to iteratively compute t or
factorise n into p=2 and q=13 and then obtain t=(2-1)
(13-1)=12. The algorithm will return the private key
d=5. We have our keys – we can now encrypt!

Encryption is easy. Take a message m=20 and it's
just a matter of ne mod n = 2017 mod 26 = 24. And
decryption is just as easy: 245 mod 26 = 20. Both use
the same formula so a single crypt method (lines
33–35) provides the implementation.

Listing 2 presents a small test that exercises the
algorithms in Listing 1. We can use it to demonstrate
that the message, m, is encrypted to ciphertext, c with
public key e, which is decrypted to mm by private key
d:
$./testrsa.rb 20 17 26
m:20 e:17 args:26
n:26 d:5 c:24 mm:20

You can also test with larger numbers and use
prime factors:
$./testrsa.rb 29384 65537 199 617
m:29384 e:65537 args:199,617
n:122783 d:78209 c:17392 mm:29384

Exponential Efficiencies

The tests demonstrate that the algorithm is sound,
but think about large numbers for a moment. Raising
numbers to large exponents is likely to exceed the
capabilities of your math library, even with a big
number library (we found this happened
when n was around 21 bits). We need
another way and, because we want the
result modulo n, modular arithmetic can
provide the answer: a large exponent
can be reduced to a simpler problem
and one way to do this is known as the
binary or squaring method. Here is one
way to implement it:
def powmod(base, exponent, modulus)
 return modulus==1 ? 0 : begin
 result = 1
 base = base % modulus

 while exponent > 0
 result = result*base%modulus if exponent%2 == 1
 exponent = exponent >> 1
 base = base*base%modulus

 end
 result
 end
end

Add this new powermod method into rsa.rb and
change crypt (Listing 1, line 34) to use it:
powmod(m,e,n)

This allows key sizes to be increased beyond 21
bits. You can try to generate a key with 2048 bits if
you feel brave enough (you will need to use two 1024-
bit primes). Something like this :
$ p=$(openssl prime -generate -bits 1024)
$ q=$(openssl prime -generate -bits 1024)
$./testrsa.rb 29384 65537 $p $q

The binary method only needs to perform

OpenSSL provides tools that can create and verify standard key files from the parameters
generated by our test program.

PRO TIP
The current factoring record was set
in 2009 when the factors of a 768-bit
number were found. It took two years to
factor the 232-digit number.

LV029 082 Coding RSA.indd 85 10/06/2016 10:19

www.linuxvoice.com

CODING ENCRYPTION

86

multiplicative operations for each 1 bit in the
exponent, so we can make further efficiencies by
having as few as possible. The usual choice of 65537
for the public exponent e has only two 1 bits but the
private exponent d will be a large number with a lot
of 1 bits, and this can make decrypting a time-wise
expensive operation.

We can employ techniques to minimise this: we can
use Carmichael Numbers to find a smaller value for d
and then use the Chinese Remainder Theorem to split
the decrypting exponent operation into two smaller
(and more efficient) modular exponent calculations.

The Carmichael Function (sometimes called the
Reduced Totient), usually denoted as λ (lambda),
is a drop-in replacement for Euler's Totient that can
be used when the prime factors p and q are known.
It results in private keys that are smaller. Smaller
numbers have fewer bits and we've seen that fewer
bits are less work when computing exponents. To use
it, add its definition to the code:
def lam(p,q)
 (p-1).lcm(q-1)
end
and then change the key method (Listing 1, line 28) to
use it. Change it so that lam is used instead of phi to
obtain the totent value t:
 t = lam(p,q)

The rest of the code will use the value as if it is φ;
nothing else needs to be changed. Private keys will
now be smaller!

You can test with e=3, p=17 and q=23. If we used
φ, we'd get d=235 but using λ it's d=59. What's
interesting is that this reveals a little-known fact –
there is more than one private key for any public key:
both values of d will decrypt a message that was
encrypted with the public exponent e=3 and modulus
n=17*23=391.

The second optimisation uses the Chinese
Remainder Theorem to split the computation in two.
We compute three additional values when we create

the private key and let them become part of it. The
values are two new exponents and a modular inverse
and we extend the key method in Listing 1 (replace
line 31 with the below) to compute them:
if defined?(p) && defined?(q)
 dp = d % (p-1)
 dq = d % (q-1)
 qinv = eea(q,p).first % p
 [d,n,p,q,dp,dq,qinv]
else
 [d, n]
end

Then, provide a new decrypt method that can be
used with those values to decrypt a message:
def decrypt(c,p,q,dp,dq,qinv)
 m1 = powmod(c,dp,p)
 m2 = powmod(c,dq,q)
 h = qinv*(m1-m2) % p
 m = m2 + h*q
end

If we have the CRT values in our private key then we
can decrypt a message more efficiently by using:
 decrypt(c,p,q,dp,dq,qinv)
instead of the equally valid but less efficient
 crypt(c,d,n)

Hello, World!
Those optimisations complete the RSA
implementation. We'll now show it is compatible with
real-world implementations by generating a key and
using it with OpenSSL. We'll also use a real text
message instead of a number to demonstrate that
real words can be encrypted.

First of all we will use the test program to create
some key parameters (the message isn't important
because were only interested in the key; choose any
public exponent and prime factors that you want -
we've used 32 bits to keep them readable but 1024 bit
primes will work too):
$./testrsa.rb 12345 65537 3273361529 4176726557

Put them in a temporary text file formatted like this:
asn1=SEQUENCE:rsa_key
version=INTEGER:0
modulus=INTEGER:13671936028836425653
pubExp=INTEGER:65537
privExp=INTEGER:531444176792982513
p=INTEGER:3273361529

Listing 2: Testing "testrsa.rb"
 0 #!/usr/bin/ruby
 1 require_relative 'rsa'
 2 def rsa(m, e, *args)
 3 puts "m:#{m} e:#{e} args:#{args.join(',')}"
 4 d, n, *crt = key(e,*args)
 5 mm = crypt(c = crypt(m,e,n),d,n)
 6 puts "n:#{n} d:#{d} c:#{c} mm:#{mm}"
 7 [m,c,n,e,d,*crt]
 8 end
 9 if ARGV.length > 0

10 m, c, *params = rsa(*ARGV.map{|i| i.to_i})
11 puts "asn1=SEQUENCE:rsa_key\n\n[rsa_key]"
12 %w(modulus pubExp privExp p q e1 e2 coeff).each do |i|
13 break if params.empty?
14 puts "#{i}=INTEGER:#{params.shift}"
15 end
16 end

If given no arguments this test program it will continuously
generate input data to soak-test the algorithm.

We'll use our RSA implementation in
the real world to generate a key and
use it with OpenSSL

LV029 082 Coding RSA.indd 86 10/06/2016 10:19

www.linuxvoice.com

ENCRYPTION CODING

87

q=INTEGER:4176726557
e1=INTEGER:1295519345
e2=INTEGER:20202669
coeff=INTEGER:1526950891

You may have noticed that the test program also
outputs key information in this format; now you know
why. Save the temporary file (with a recognisable
name, say key.cnf), and run it through OpenSSL to
create a standard .pem formatted key files (we have
to first create a DER-formatted key and then change
it to PEM):
$ openssl asn1parse -genconf key.cnf -out key.der
$ openssl rsa -in key.der -inform der -check -noout
RSA key ok

$ openssl rsa -in key.der -inform der -out private.pem
writing RSA key
$ openssl rsa -in key.der -inform der -out public.pem
-pubout
writing RSA key

That gives us valid keys in text files private.
pem and public.pem that we'll now use to perform
some encryption. We'll need another very small test
program for that (crypt.rb):
#!/usr/bin/ruby
require_relative 'rsa'
m, mm = 0, ''

STDIN.read.each_byte { |c| m=(m<<8)+c }
m = crypt(m,*ARGV.map{|i| i.to_i})
while m>0 do
 mm.prepend (m & 255).chr
 m = m >> 8
end
print mm

This encrypts or decrypts a message read from
standard input. First it converts the message into
an integer as required by the algorithm. It then
calls the crypt method, passing in the command-
line arguments, where the exponent and modulus
should be given. The integer returned by crypt is then
returned to a string and output (print is used so that
a newline isn't appended because this will corrupt

ciphertext). We can encrypt with OpenSSL and
decrypt with our test:
$ echo -n 'HiWorld!' > message.txt
$ openssl rsautl -pubin -inkey public.pem -in message.
txt -encrypt -raw -out ciphertext.txt
$./crypt.rb < ciphertext.txt 531444176792982513
13671936028836425653
HiWorld!

First we place our message into a text file. We're
using "raw" mode with OpenSSL, which means that
it won't apply the padding that it would normally use
to make the message the same size as the modulus
and also more secure. Padding is external to the RSA
algorithm and space prohibits covering it now, so
using -raw disables it. Note, however that OpenSSL
then insists that the input message is the same size
as the modulus – hence our test message is exactly
eight characters to match our 64-bit key.

With the message taken care of, we call OpenSSL
to get an encrypted ciphertext.txt file, which we pass
as input to our test program. We pass our private
exponent and modulus as arguments and receive our
original text as output. Finally, reversing the order, we
can encrypt with our test, passing our public exponent
this time, and decrypt with OpenSSL:
$./crypt.rb < message.txt 65537 13671936028836425653 >
ciphertext.txt

$ openssl rsautl -inkey private.pem -in ciphertext.txt
-decrypt -raw
HiWorld!

Everything works as expected, proving our RSA
implementation works as it should. We'll leave it as
an exercise for you to write a decrypter that uses the
Chinese Remainder Theorem to decrypt the message
(hint: use the decrypt method instead of crypt).

Final words
We've shown how to write your own RSA
cryptosystem to demonstrate how it works by
revealing the centuries-old algorithms that it relies
upon. We've created keys and then used them with
OpenSSL to demonstrate that they are compatible.
However, we haven't covered everything, and there are
ways of using RSA that are less secure than others.
Real-world implementations are aware of such
potential weaknesses and apply techniques such as
the padding schemes that we mentioned to mitigate
them. Don't rely on a homebrew cryptosystem to
protect your secrets!

Ancient algorithms
RSA depends on some algorithms that have stood the test
of time. Euler's theorems, which are the foundation for
RSA, were penned in the 17th century but aren't the oldest.
The Chinese Remainder Theorem, which can speed up
decryption, was evident as far back as the 3rd century.

But it was around 300BC when the Greek mathematician
Euclid documented his Euclidean Algorithm for the greatest
common divisor (or gcd) of two numbers – the largest
number that evenly divides both of them. He discovered,
given two numbers a and b, that gcd(a,b) is the same as
gcd(b, a mod b) and that this fact can be applied recursively
until a mod b Ξ 0; we expressed this succinctly in code
(Listing 1, line 2). John Lane provides technical solutions to business problems.

He has yet to find something that Linux can't solve.

OpenSSL insists that the input message
is the same saze as the modulus –
hence our test message is 8 characters

LV029 082 Coding RSA.indd 87 10/06/2016 10:19

www.linuxvoice.com

CODING ELIXIR

88

E lixir is a functional programming language
created by José Valim built on top of the
Erlang Virtual Machine. Elixir tries to improve

the complicated parts of Erlang while keeping the
good parts intact. Elixir helps you write cleaner
programs using less code than Erlang. This means
two things: first, that you can better understand what
an Elixir program tries to implement; and second, that
you can maintain an Elixir program more easily than
an equivalent Erlang program. Both Elixir and Erlang
are well suited for writing reliable server software.

Elixir enables you to very easily create powerful
software, as we will demonstrate. After finishing this
tutorial you will be able to program your own highly
available, fault-tolerant web application in Elixir.

You'll need to install both Erlang and Elixir. If you're
on a Debian-based system, you'll need to add the
repositories for Erlang Solutions, like so:
wget http://packages.erlang-solutions.com/erlang-
solutions_1.0_all.deb

sudo dpkg -i erlang-solutions_1.0_all.deb
Now you can grab the packages you need:

sudo apt-get update
sudo apt install esl-erlang
sudo apt install elixir
For other distros, the process will be a little different;
the details are at http://elixir-land.org/install.html.

You can find the version of Elixir you are using by
running elixir --version; at the time of writing this
tutorial, the latest stable version of Elixir is 1.2.4.

The following code is the Elixir version of the "Hello
World!" program:
$ cat helloWorld.ex
defmodule LinuxVoice do
 def hello do
 IO.puts "Hello World!"
 end
end

LinuxVoice.hello
The reason for needing a module and a function

for such a simple program is that all Elixir code must
be organised in modules and functions. The last
command is for automatically calling the desired
function. The .ex extension is used for files that
contain Elixir code, whereas the .exs extension is used
for Elixir scripts.

You can execute helloWorld.ex using the interactive
Elixir shell (iex) or compile it and execute it using the
Elixir compiler (elixirc). Alternatively, you can use the
Elixir script runner, named elixir, which is similar to iex
but automatically exits when the Elixir script finishes.
So, you can run helloWorld.ex as follows:
$ elixir helloWorld.ex
Hello World!
$ elixirc helloWorld.ex
Hello World!
$ ls -l Elixir.LinuxVoice.beam
-rw-r--r-- 1 mtsouk mtsouk 1348 Apr 25 16:44 Elixir.
LinuxVoice.beam
$ file Elixir.LinuxVoice.beam
Elixir.LinuxVoice.beam: Erlang BEAM file
$ iex
iex(1)> c("helloWorld.ex")

Hello World!

The mix utility is the Elixir
build tool, that can help
you create, compile, test
and manage your projects'
dependencies.

USE ELIXIR TO DEVELOP
A WEB APPLICATION
Elixir can make your software reliable, fault-tolerant and highly available.

MIHALIS
TSOUKALOS

Why do this?
• Develop better web

applications
• Use Elixir to develop

fault-tolerant web
applications

• Learn how to develop
a website in Elixir

LV029 088 Coding Elixir.indd 88 10/06/2016 10:23

www.linuxvoice.com

ELIXIR CODING

89

[LinuxVoice]
iex(2)> LinuxVoice.hello
Hello World!
:ok

As you can see, elixirc automatically generates a
BEAM file as does the Elixir shell after processing the
c("helloWorld.ex") command. This happens because
when you compile an Elixir program, the compiler
converts the code into a BEAM (Bodgan's Erlang
Abstract Machine) file, used by Erlang. The Elixir script
runner doesn't generate a BEAM file which can be very
convenient when experimenting with Elixir.

Process Power
Elixir processes are very lightweight and isolated from
each other. An Elixir program is implemented as a
large number of small processes that do simple tasks
and communicate with each other using code that
has no side effects. The biggest difference between
Elixir and Erlang is that in Elixir the value of a variable
can change after its initial assignment whereas in
Erlang this is not allowed.

Elixir offers a tool for creating new projects called
mix. To get a list of all available mix options, execute

mix --help. If you want to find more information about
the new command, for example, you can execute mix
help new – this works for every mix command.

Processes in Elixir are identified by a unique
process ID (PID). A PID has the following form and its
own data type, which means that you cannot manage
a process ID as if it were a string:
#PID<0.185.0>

The project for the web application will be created
with the help of the mix tool. Run mix new web --sup
in the new directory to build the necessary files (see
figure 1). The --sup option that was used is optional;
its purpose is generating an OTP application skeleton

including a supervision tree (see boxout). You'll learn
more about supervisors later on in this tutorial.

Other useful mix commands include mix compile,
which compiles the source files of the current project,
mix clean, which erases the generated application
files and mix run, which is used for executing your
project – running mix run on an empty project
generates no output. The mix test command runs the
tests of a project; when you create a new project, mix
automatically generates some dummy tests – it is the
job of the developer to create real tests.The purpose
of the mix.exs file is to configure your project. The
code for the project can be found at ./lib/web.ex and
./lib/web/router.ex – these are the files that you are
going to edit.

You can start the web application by executing the
following command:
$ iex -S mix
iex(1)> :application.which_applications

Here's what will happen
if you try to start another
instance of the same web
application.

What is OTP?
OTP stands for Open Telecom Platform, and is Erlang’s
collection of open source libraries and tools designed for
developing big projects. OTP is about taking all the generic
components, putting them into libraries, making sure they
work fine and reliably and then reusing that code as often
as possible. The programmer needs only to deal with things
that change from application to application.

OTP enables you to supervise existing Elixir and Erlang
code. In order to supervise an existing module, you will to
write additional Elixir code, but you will not need to make
any changes to the module you want to supervise! If you
are going to write real-world Elixir or Erlang software, you
will eventually have to learn the OTP Framework.

An Elixir program is implemented as
a large number of small processes that
perform simple tasks

LV029 088 Coding Elixir.indd 89 10/06/2016 10:23

www.linuxvoice.com

CODING ELIXIR

90

[{:web, 'web', '0.0.1'}, {:logger, 'logger', '1.2.3'}, {:mix, 'mix',
'1.2.3'},
 {:iex, 'iex', '1.2.3'}, {:elixir, 'elixir', '1.2.3'},
 {:compiler, 'ERTS CXC 138 10', '6.0.3'}, {:stdlib, 'ERTS CXC
138 10', '2.8'},
 {:kernel, 'ERTS CXC 138 10', '4.2'}]

The previous output shows that the web application
is running along with many other applications
including mix, logger, iex, elixir, compiler, stdlib and
kernel.

In this section you're going to make the web
application support multiple web pages. There exist
many web frameworks that can make your life
easier, including the famous Phoenix web framework.
However, the simplicity of our application does not
justify the use of Phoenix .

For such a simple application, the main task of
the developer is defining the supported URLs using
pattern matching. With pattern matching in functional
programming languages, you need to provide a route
or a case that matches the URLs that cannot be
matched by the other routes.

The mix.exs file has three parts.: the project
function is used for describing the project, whereas

the application function is used for describing the
application itself. Finally, the deps function is used
for listing the dependencies of the project. The
application function states the name of the Elixir
module that will be used for developing the application
– in this case the name of the module is Web, based
on the argument of the mix new command. However,
the name of the application is :web, as defined in the
project function – you will use this name to start and
stop the application. When you start the application
using mix, the Web.start/2 function is automatically
called. The /2 means that the Web.start() function
requires two arguments.

The final version of mix.exs without any comments
is the following:
defmodule Web.Mixfile do
 use Mix.Project

 def project do
 [app: :web,
 version: "0.1.1",
 elixir: "~> 1.2",
 build_embedded: Mix.env == :prod,
 start_permanent: Mix.env == :prod,
 deps: deps]
 end

 def application do
 [applications:
 [:logger, :cowboy, :plug],
 mod: {Web, []}
]
 end

 defp deps do
 [{:cowboy, "~> 1.0.3"},
 {:ranch, "1.2.1"},
 {:plug, "~> 1.1.2"}]
 end
end

As you can see from the definition of the deps
function, the project uses three external components
named Plug, Ranch and Cowboy. After defining that
you want to use Plug, Ranch and Cowboy, mix will
get all the modules for you or give you instructions on
how to install them and any other additional module
dependencies when you try to run or compile the
project. As you can understand from the definition
of the application function, you also need to tell mix
which modules your web application will actually use.
As Ranch is not directly used by :web, you don't need
to include it in the list.

The Elixir code of the ./lib/web.ex file is:
defmodule Web do
 use Application

 def start(_type, _args) do
 import Supervisor.Spec, warn: false
 IO.puts "Starting Web Router!"
 children = [

The various URLs
supported by the web
application. You can add
as many URLs as you want!

For such a simple app, the main task of
the developer is defining the supported
URLS using pattern matching

LV029 088 Coding Elixir.indd 90 10/06/2016 10:23

www.linuxvoice.com

ELIXIR CODING

91

 Plug.Adapters.Cowboy.child_spec(:http, Web.
Router, [])
]

 opts = [strategy: :one_for_one, name: Web.Supervisor]
 Supervisor.start_link(children, opts)
 end

end
You will need to create a new module inside the lib

directory that will serve all HTTP connections with
the help of the Plug module – the name of the new
module will be Web.Router and its code can be found
inside .lib/web/router.ex, where you can define as
many routes as you want.
defmodule Web.Router do
 use Plug.Router
 use Plug.Debugger

 plug Plug.Logger
 plug :match
 plug :dispatch

 def start_server do
 end

 def init(options) do
 options
 end

 def start_link do
 start_server

 end

 get "/" do
 conn
 |> send_resp(200, "ok")
 |> halt
 end

 get "/bug" do
 raise "WAT"
 end

 get "/hello/:name" do
 conn
 |> send_resp(200, "Hello #{name}!")
 |> halt
 end

 match _ do
 conn
 |> send_resp(404, "Not Found")
 |> halt
 end
end

The match _ do part is the case that matches what
is left. Please note that the match all case must be the
last one in your code because only the first match is
executed.

You can start the web application with the help of
the Elixir interactive shell as follows:
$ iex -S min

You can also stop the web server from running by
exiting the Elixir shell. First, you should press Ctrl+C,
which will display the message:
iex(2)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution

Select a to end the server.
Figure 2 shows the output you will get when you

try to execute another instance of the same web
application. This happens because a TCP port, in
this case port 4000, can only be used by a single
application.

Figure 3 shows the web application in action. The
/bug address uses Plug.Debugger to show a very
informative web page that can be used for debugging
purposes.

Under supervision
A supervisor has a very specific responsibility:
supervising other processes. If something bad
happens to the supervised process, the supervisor will
notice and start a new process.

The good news is that you do not need to write any
extra code to create and use a supervisor for your
web application, as this has already be handled by mix
when you executed mix with the --sup command line
parameter. All processes included in the "children" list
will be supervised. The :one_for_one option inside the
start function of the web.ex file tells the Supervisor to

The Erlang philosophy
The design of Erlang follows six rules. The first rule
is Isolation, which means that Erlang processes are
isolated; therefore each Erlang process has its own stack
and heap and is separately garbage collected. Also,
processes cannot see the memory of other processes and
consequently cannot harm other processes. The second
rule is Concurrency, which means that Erlang processes are
concurrent by design. So, in theory, all processes can run in
parallel. This is an excellent property now that computers
have multi-core processors, because processes can be
spread over the available cores.

The third rule is Failure Detection. As failure cannot be
avoided, Erlang processes can detect failures. You can
also create a link between two processes; therefore, when
a process dies for some reason, some other process can
be informed about the failure of the first process. So, when
something fails, you can let someone else fix the problem.
The fourth rule is Live Code Upgrade. Put simply, Erlang
can be modified as it runs! Applications can be upgraded
while running without downtime! The fifth rule is Fault
Identification. This means that when a process fails, the
error signal contains additional data provided by the Erlang
runtime system that tells exactly why the process has
failed. The sixth rule is Stable Storage, which is not done in
Erlang but in third-party libraries. You can use Mnesia, Riak,
or another supported databases for storing data. Every
process can access the data of a database because the
data is shared among Erlang processes.

LV029 088 Coding Elixir.indd 91 10/06/2016 10:23

www.linuxvoice.com

CODING ELIXIR

92

Mihalis Tsoukalos is a Unix administrator, programmer and
mathematician who also enjoys writing technical articles.

start one process if one process crashes – this is the
most important part of the Elixir code related to the
supervisor.

In order to see what this really means, you should
first find the process ID of the current process and kill
it. The steps are the following:
iex(5)> children = Supervisor.which_children(Web.
Supervisor)
[{{:ranch_listener_sup, Web.Router.HTTP}, #PID<0.279.0>,
:supervisor,
 [:ranch_listener_sup]}]
iex(6)> [{_, pid, _, _}] = children
[{{:ranch_listener_sup, Web.Router.HTTP}, #PID<0.279.0>,
:supervisor,
 [:ranch_listener_sup]}]
iex(7)> pid
#PID<0.279.0>
iex(8)> Process.exit(pid, :kill)
true
iex(9)> children = Supervisor.which_children(Web.
Supervisor)
[{{:ranch_listener_sup, Web.Router.HTTP}, #PID<0.393.0>,
:supervisor,
 [:ranch_listener_sup]}]
iex(10)> [{_, pid, _, _}] = children
[{{:ranch_listener_sup, Web.Router.HTTP}, #PID<0.393.0>,
:supervisor,
 [:ranch_listener_sup]}]
iex(11)> pid
#PID<0.393.0>

The Supervisor automatically started a new
process with pid #PID<0.393.0> after you killed the
old process with pid #PID<0.279.0>.

As all Elixir processes communicate with
messages, it does not matter whether all processes
are running on the same machine, because they will
be able to communicate with each other if needed.
This section will show you how two different Elixir
shells can communicate with each other. Although
you will need at least two Linux machines to run a
distributed application, you can simulate the process
on one Linux machine. The first step includes starting
two Elixir shells with different names on two different
terminals on the same Linux machine. In the first shell
you should execute the following command:
$ iex --sname n1

In the second shell, you should execute the
following command:
$ iex --sname n2

 As you can see in the image, left, the two different
Elixir shells have different prompts, depending on the
value of the --sname command line option, which
helps you differentiate between them. Then, you
define a new module, named WantToCommunicate,
in shell n2 that just contains the sendMessage/0
function. The key point here is that shell n1 knows
nothing about the WantToCommunicate module and
its sendMessage/0 function, which is verified by the
following output:
iex(n1@mail)1> WantToCommunicate.sendMessage
** (UndefinedFunctionError) undefined function
WantToCommunicate.sendMessage/0 (module
WantToCommunicate is not available)
 WantToCommunicate.sendMessage()

However, the n1 shell can use the
WantToCommunicate.sendMessage/0 function and
get its output as follows:
iex(n1@mail)1> Node.spawn_link :n2@mail, fn ->
WantToCommunicate.sendMessage end
Message sent!
#PID<9332.79.0>

So, we called a function from a different shell on
the same computer, which could have been a remote
computer, without writing any extra code!

We hope that this tutorial helped you realise the
advantages of Elixir and OTP – if you're developing a
web application, you should definitely consider writing
it in Elixir!

Bibliography
You can learn more about Elixir by reading Programming
Elixir 1.2: Functional, Concurrent, Pragmatic, Fun from
Pragmatic Bookshelf. Two other excellent books about
Elixir are Elixir in Action from Manning Publications and
Seven More Languages in Seven Weeks from Pragmatic
Bookshelf, which contains a chapter on Elixir.

If you're interested in Erlang you'll find both Programming
Erlang, 2nd edition from Pragmatic Bookshelf and Learn
You Some Erlang for Great Good! from No Starch Press
very useful. Finally, there's Erlang and OTP in Action from
Manning Publications, which talks about OTP.

Look! Two Elixir shells
communicating with each
other!

LV029 088 Coding Elixir.indd 92 10/06/2016 10:23

www.linuxvoice.com

ELIXIR CODING

93

LV029 088 Coding Elixir.indd 93 10/06/2016 10:23

CORETECHNOLOGY NETWORKING

www.linuxvoice.com

Valentine Sinitsyn develops
high-loaded services and
teaches students completely
unrelated subjects. He also has
a KDE developer account that
he’s never really used.

94

Most general-purpose OSes today run
processes. They serve as units of isolation:
processes have distinct address spaces,

and if one of them crashes, the others remain
unaffected. Processes are also units of parallelism: an
OS can execute many of them simultaneously. On a
uniprocessor system, this is just an illusion carefully
preserved by the process scheduler. Most PCs today
are multicore, though, and processes can really run in
parallel on different cores. To sum up, processes are a
useful yet costly abstraction.

Sometimes, you don't need isolation. You just want
to run some tasks in parallel. This could make a good
case for "lightweight processes", or threads. In this
Core Tech, we'll look at POSIX Threads (Pthreads), and
how Linux implements them.

Hello, threads!
As a programmer, you may think of a thread as a
function that executes in parallel with main(). For
Linux, threads are just processes that share some
resources. This includes memory, file descriptors,
and signal handlers. Each thread has its own stack
and CPU context, so the kernel can schedule them
independently.

A typical desktop application may offload time-
consuming jobs, such as software rendering, to

threads. This way, the main UI thread is kept ready for
user-generated events (say, mouse clicks). Overall,
the application remains responsive, even if it does
some complex maths in the background. It's also
common to spawn threads for heavy I/O tasks, yet
asynchronous approaches (LV016 and LV028) may
serve you better. Like processes, threads come at a
price. CPU-bound tasks are usually worth it, while for
I/O bound tasks, there could be cheaper alternatives.

Different operating systems provide various
threading APIs. For Unix (Linux included), POSIX
Threads are the standard. IEEE POSIX 1003.1c
defines them, and the implementation is usually
available as libpthread which comes with the
standard C library (libc). To enable threading support
in your code, pass the -pthread switch to GCC.

Creating a thread is simple:
#include <pthread.h>
static void * thread_fn(void *unused)
{
 int done = 0;
 while (!done) {
 /* Do the work */
 }
 return NULL;
}
int main()
{
 pthread_t thread_id;
 void *retval;
 int err;
 err = pthread_create(&thread_id, NULL, thread_fn,
NULL);
 if (err) { /* Handle it */ };
 err = pthread_join(thread_id, &retval);
 ...
 return 0;
}

First, we define a "thread function", thread_fn.
That's the code our thread will execute. Thread
functions receive a sole void * argument. When the
function returns, or calls pthread_exit(), the thread
is terminated. So, it is a common pattern to loop in a

CORE
TECHNOLOGY
Prise the back off Linux and find out what really makes it tick.

POSIX Threads

htop displays threads in a
different colour, and with a
custom name, settable via
pthread_setname_np(3).
Note this four-core CPU
runs 314 threads in total.

LV029 094 CoreTech.indd 94 10/06/2016 10:25

NETWORKING CORETECHNOLOGY

www.linuxvoice.com 95

thread function until some condition is fulfilled.
Next, we actually spawn a thread in main() with

pthread_create(). thread_id is like a handle to the
thread. Don't confuse it with TID (see gettid(2)), which
is a Linux process' property. pthread_t is just some
opaque value used as a reference to a specific thread
across Pthreads functions. For example, you can
cancel a thread with pthread_cancel(thread_id).

The second argument to pthread_create() defines
the thread attributes. They are useful for fine-tuning,
like setting a thread stack size, but that's beyond
the scope of this Core Tech. The third argument is a
pointer to the thread function, and the last one is the
value that thread_fn accepts.

Quite often, you just want to spawn a thread to
do some background processing, then forget about
it. In this case, you should mark it as "detached"
with pthread_detach(). When a detached thread
terminates, the system reclaims its resources
automatically.

If you want the result, use pthread_join(). This
call waits for the thread to terminate, then grabs the
void * value passed to return/pthread_exit(). There
isn't much sense in calling pthread_join() just after
pthread_create(), as we do here. But if the thread has
already finished, pthread_join() collects its exit value
and returns immediately.

It is important to call either pthread_detach() or
pthread_join(). By default, all threads are joinable, and
if you forget to collect the result, you'll get a "zombie
thread" wasting the system's resources. This being
said, all threads typically lasts only until their parent
process terminates. If you want children to outlive
their parents, you probably want processes, not
threads (LV019).

How many threads to spawn depends on the
task's nature. Some do best with one thread per CPU
core. sysconf(_SC_NPROCESSORS_ONLN) reports
how many processors are currently online. Yet this
doesn't guarantee that each thread will really run on
a dedicated core. pthread_setaffinity_np() may help,

but it's rarely useful. The ultimate goal is to have just
enough threads to process incoming data with no
pauses, and no threads idling for too long.

Taming concurrency
Now, imagine a thread that accepts a fixed-size buffer
and continuously fills it with some symbols. That's a
poor man's imitation of a complex rendering task:
#include <pthread.h>
struct shared_buf {
 char *data;
 long size;
};
static void *render(void *arg)
{
 struct shared_buf *sbuf = (struct shared_buf *)arg;
 char *buf = sbuf->data, c;
 int i;
 for (;;) {
 c = buf[sbuf->size - 1];
 for (i = sbuf->size - 2; i >= 0; i--) {
 buf[i + 1] = buf[i];
 }
 buf[0] = c;
 }
 return NULL;
}

The main() function initialises data in the buffer and
dumps it to stdout, acting as a viewer:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define LINE_SIZE 24
int main()
{
 struct timespec t = {0, 100000000L};
 struct shared_buf sbuf;
 pthread_t thread_id;
 char buf[LINE_SIZE + 1];
 int i;
 buf[LINE_SIZE] = '\0';
 for (i = 0; i < LINE_SIZE; i++) {
 buf[i] = (i % 3 == 0) ? '+' : '-';
 }
 sbuf.data = buf;
 sbuf.size = LINE_SIZE;
 pthread_create(&thread_id, NULL, render, &sbuf);
 pthread_detach(thread_id);
 for (;;) {
 printf("%s\n", sbuf.data);
 nanosleep(&t, NULL);
 printf("\033[1A");

Races manifest
themselves in many
different ways. When a
writer scrolls the buffer
halfway behind the reader's
back, you get two pluses
in a row.

Threads and signals
As you know, you can send a signal to a Unix process.
What happens if you send a signal to a multithreaded
application? Recall that signal handlers are shared among
all threads in a process. So, the kernel delivers the signal to
a random thread. It is possible, however, to set per-thread
signal masks with pthread_sigmask(3). This way, you
can choose which threads are going to respond to which
signals. Say, if your program uses SIGHUP to reload a
config, you may want to handle it in the main thread. Just
block SIGHUP in all worker threads, and you're done. The
kill command will deliver this signal to the main thread.

It is also possible to send a signal to specific thread. the
tgkill(2) system call does this. Libc usually wraps it, or its
older variant, tkill(2), as the pthread_kill(3) function. For
instance, when you cancel a thread with pthread_cancel(),
the target thread gets a SIGCANCEL signal. It is usually the
first POSIX real-time signal (32). This means, SIGCANCEL is
delivered before any other real-time signal pending.

LV029 094 CoreTech.indd 95 10/06/2016 10:25

CORETECHNOLOGY NETWORKING

www.linuxvoice.com96

 }
 return 0;
}

The \033[1A ANSI sequence moves the cursor
one line up. It's often used to animate progress bars
in Linux console tools. Perhaps I wanted this code
to produce a creeping line effect. And it really does
this, but more often than not, the animation appears
garbled (see the screenshot). What's wrong?

Shared data is the culprit. There is no
synchronisation between threads. So, the reader may
get a half-baked frame, and the writer may change
the buffer while it's being read. This brings us a whole
new set of issues related to atomicity and races. It's
complex topic, but let us scratch the surface.

We need to ensure that only one thread accesses
the buffer at given moment. Pthreads has many
"synchronisation primitives" to achieve this. Perhaps
the simplest one is a mutex.

Mutex stands for "mutual exclusion". It's something
a thread can lock and unlock. Many threads may
try to lock a mutex simultaneously, but only one will
succeed. The others will be blocked until the mutex is
released. A mutex is like a flag:
int locked = 0;
if (!locked) {
 locked = 1;
 /* Proceed safely */
}

However, mutex operations are atomic, while this
code is not. A potential race is depicted on the figure.
Races are often non-trivial to reproduce and debug.
So, please use dedicated primitives, not homebrew
flags, in your Pthreads code.

Fixing a race in our program is straightforward:
struct shared_buf {
 ...
 pthread_mutex_t mutex;
};
static void *render(void *arg)
{
 ...
 for (;;) {

 pthread_mutex_lock(&sbuf->mutex);
 /* The buffer is updated */
 pthread_mutex_unlock(&sbuf->mutex);
 }
 ...
}
int main()
{
 ...
 sbuf.data = buf;
 sbuf.size = LINE_SIZE;
 pthread_mutex_init(&sbuf.mutex, NULL);
 ...
 for (;;) {
 pthread_mutex_lock(&sbuf.mutex);
 printf("%s\n", sbuf.data);
 pthread_mutex_unlock(&sbuf.mutex);
 ...
 }
 pthread_mutex_destroy(&sbuf.mutex);
 return 0;
}

Both threads now grab the mutex before doing
anything to the buffer and release it after that. Keeping
locks for too long isn't a good idea, as it prevents other
threads' progress. Locks can become performance
bottlenecks when contended, so one should design
synchronisation very carefully. The code path between
the lock being acquired and released is often called a
"critical section", as only one thread can execute it at
the given time. This being said, it's better to think of
mutexes as a way to protect specific data, not code.
So we embedded the mutex in the buffer structure.

Having no synchronisation for shared data is bad,
but having it wrong is worse. Imagine you have two
mutexes, A and B. Thread 1 acquires mutex A and
waits for B. Thread 2 does the opposite. Neither one

Green thread
You may also come across the term "green threads". These
are threads that exist completely in userspace, in some
language runtime (think Java or Erlang). The name may
read as if they are lightweight, which is often the case. But
in fact, it came from the Green Team at Sun Microsystems,
which did the threading in the Java VM.

Green threads aren't real threads as we've discussed;
usually, they don't exploit multicore CPUs. They offer
cooperative multitasking. This means that the thread itself
yields control to the scheduler when it thinks it's time.
Quite often, this is transparent to the programmer. This
simplifies things a bit: don't make critical sections; simply
don't reschedule when you are not ready to. Yet it also adds
responsibilities: if a thread keeps running for too long, it
makes the others starving. If it blocks on I/O, it blocks the
whole program. This sounds similar to how asynchronous
I/O works (LV016). In fact, green threads are often bound to
event loops internally.

Some languages, like Java or Erlang, provide green
threads out of the box. Others may have special libraries,
such as Python's Gevent or Greenlet. Green threads aren't
a substitute for real ones, but they do have their usages. At
least, they run even if the OS lacks threading support.

Non-atomic comparisons
may result in two
threads holding a "lock"
simultaneously. Use
dedicated primitives, Luke.

lock = false

lock == false?

lock == false?

lock = true

lock = true

Both threads "hold" the lock now

No

Ti
m

e

lock = false

LV029 094 CoreTech.indd 96 10/06/2016 10:25

NETWORKING CORETECHNOLOGY

www.linuxvoice.com 97

is going to proceed, and they will remain in this state
forever. This situation is called a deadlock. To avoid it,
always acquire multiple locks in the same order.

More primitives
Quite often, you have threads that only write shared
data and threads that only read it. Any number of
threads may read data simultaneously, but any writer
must have exclusive access to the resource. A mutex
is a bad choice here, as it won't allow multiple readers.

Read-write locks (or "rwlocks" for short) are the
answer. Pthreads implements them as pthread_lock_t
and have a bunch of functions (pthread_rwlock_*())
to operate on them. Readers call `pthread_rwlock_
rdlock()/pthread_rwlock_rdunlock(), so no writer
may change the data while it's being read. Writers use
pthread_rwlock_wrlock() to obtain exclusive access.

Some may say that rwlock is just a specialisation of
another primitive, a conditional variable (or "condvar").
An rwlock is basically something with two counters
and a mutex to protect them. To get a read lock, you
acquire the mutex and check if the number of writers
is zero. If yes, you increase the readers count, release
the mutex and proceed. If not, you release the mutex
and block until the writers count reaches zero.

That's exactly how a conditional variable works: it
is always associated with a mutex. You grab it and
check the condition. If it's false, you call pthread_
cond_wait() to atomically release the mutex and put a
thread to sleep. When the condition changes, another
thread signals an event to one or all waiters with
pthread_cond_signal() or pthread_cond_broadcast(),
respectively. In waiting threads, pthread_cond_wait()
grabs the mutex again and returns. The thread
should now re-evaluate the condition and either
proceed or go back to sleep. The main guarantee
that a conditional variables provide is again atomicity.
Releasing a mutex and putting a thread to sleep
occurs as a single operation. There's no chance for a
wake-up signal to get lost in between.

It is also possible (yet rather difficult) to write
multithreaded programs lock-free. More formally,
the code is lock-free if it keeps at least one thread
progressing towards the end result. That's not the
case with locks. Imagine the kernel decides to re-
schedule a userspace thread holding the lock. No
other thread can make progress in this case until the
kernel resumes the thread and the lock is released.

Lock-free programming is made possible with low-
level atomic operations, among other things. Usually,
reading and writing a naturally-aligned simple type
(such as a 4-byte aligned 32-bit integer) is atomic.
There are also ways to increment and decrement an
integer, or exchange two values atomically. Finally,
many CPUs provide atomic compare-and-swap (CAS)
operation. On x86, it's lock cmpxchg. That is, it's
possible to check a target value against the expected
one and update it if they match without any other code
intervening. This could be used to update shared data
in a lock-free fashion.

Multithread programming is hard, and lock-free
programming is even harder – you don't do it on a
whim. The principle that it delivers better performance
isn't true in all cases either. So, you should evaluate
carefully what your performance bottlenecks are – if
these are locks, you may try to re-implement parts
of your algorithm lock-free. How to do it properly is
beyond the scope of this Core Tech, however.

Nothing lasts forever,
except two threads waiting
for each other to release
a lock.

Command of the month: stap
In multithreaded programs, the order of statements in
the sources is different from the order of execution.
So, merely looking at the code doesn't reveal the
sequence of the program's operations. You want
some tools for live introspection, also called dynamic
code analysis.

SystemTap is one of such tools, and stap is its main
executable. SystemTap enables you to write small
scripts called probes, and attach them to various
events happening in userspace and in the kernel.
It was designed to be safe for use on production
systems. So, you can study non-trivial situations such
as deadlocks, in the wild.

While SystemTap can do many things, the reason
we mention it here is that it helps to determine

contended locks. SystemTap comes with many
examples found in /usr/share/doc/systemtap/
examples. One of these is the process/futexes.stp
script. It traces the futex syscall and dumps how
many times the thread had to sleep waiting for the
lock, and for how long. Lower values are generally
better. Here's what I got on my Fedora 23 box for our
sample program:
$ sudo stap -c ./sample futex.stp
...
sample[3006] lock 0x7ffcc7301fe0 contended 79 times, 26
avg us
Make sure you have the kernel debug info installed.

If you want SystemTap covered in one of the future
Core Teches, please drop us a line.

Thread 1

Thread 2

Lock A

Lock B

Lock B

Lock A

LV029 094 CoreTech.indd 97 10/06/2016 10:25

www.linuxvoice.com98

/DEV/RANDOM/ FINAL THOUGHTS

Final thoughts, musings and reflections

MY LINUX SETUP

Many lifetimes ago, it seems to me,
I was the editor of a magazine
called Amiga Format. It was a

magazine that was so stratospherically
successful that we could do pretty much
anything. The kind of problems about
appeasing advertisers, compromises over
paper quality, penny-pinching over the best
writers and a myriad more that were the
constant juggling act of most magazines
simply didn’t apply any more. We made
something brilliant, and that enabled us to
remain making something brilliant. It is a
situation few people in a commercial
environment ever find themselves in, and I
was grateful to be a part of it.

It is precisely this environment that drives
some of the success of open source. Make
something good = people want it. More
users generally leads to the ability to do even
more good stuff. The trick of turning open
source into a revenue-generating business
seems to be adding on the money-spinning
in a way that doesn’t bring everything
tumbling down.

The exit of Frank Karlitschek and other
developers from OwnCloud tends to suggest
this is a balancing act that isn’t always easy
to navigate. Though nobody has given
specific reasons for most of the developers
upping sticks, the comments that have been
made (eg http://goo.gl/kFYUvr) suggest
that ‘investors’ were felt to have undue
influence over the roadmap. The rapid
emergence of Frank’s new project,
NextCloud, and the employment of pretty
much anyone from OwnCloud who wanted
to come underlines where the value of an
open source business really lies.

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

Then send your photos and text to:

SEND US YOUR
DESKTOPS!

2

Tell us a little about the
things we can see.

3

And answer these awesome
questions.

geekdesktop@linuxvoice.com

1

Take a photo of your desk.

> What version of Linux are
you currently using?
> What desktop are you using
at the moment?
> What was the first Linux
setup you ever used?
> What Free Software/open
source can’t you live without?
> What do other people love
but you can’t get on with?

LV029 098 Geek Desktop.indd 98 10/06/2016 15:07

This is what we’ve done in the last 24 issues.
Subscribe to the next 12 from just £38.

shop.linuxvoice.com

Every subscription includes access to every PDF, ePub and audio edition we’ve ever published.

LV029 099 Inside Back Cover.indd 99 09/06/2016 12:54

LV029 100 Back Cover.indd 100 09/06/2016 12:55

