
IISSSSUUEE 0077 -- NNOOVV 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // wwwwww .. tt hh eemmaaggpp ii .. cc oomm

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

TT hh ii ss II ss ss uu ee .. .. ..

•• II nn tt ee rr uu pp tt ss
•• SS oo ll aa rr PP ii
•• TT uu rr bb oo MMoodd ee
•• PP ii EE vv oo ll uu tt ii oo nn
•• CC++ ++

PP ll uu ss .. .. ..
•• AAnn ii nn tt ee rr vv ii eeww ww ii tt hh tt hh ee
RRaa ss pp bb ii aa nn dd ee vv ee ll oo pp ee rr ss
•• MMaa kk ee yy oo uu rr oowwnn ll aa dd dd ee rr
gg aammee uu ss ii nn gg PPCCBB '' ss
•• TT hh ee bb aa ss ii cc ss oo ff GGNNUU mmaa kk ee

AArrdduuiinnoo AAnndd
RRaassPPii GGeett
CCoonnnneecctteedd!!

AA cchh aa nn cc ee tt oo
ww ii nn aa PP II NNKK
RRaa ssPP ii CC aa ss ee !!

Support us even more
by buying the printed
copy of this mag!



Welcome to Issue 7,

The Raspberry Pi and Arduino are a perfect match for real time applications
where a bit more CPU power is needed for control. Coupling the two devices
together opens up the possibility to use a wealth of Arduino sheilds too. We look
forward to seeing some really interesting projects in the future.

There is an interview from the lead developer of Raspbian (Debian build for the
Raspberry Pi), competitions and a selection of programming articles to get your
teeth into.

If you would prefer to receive your copy of The MagPi in hard copy, visit
http://www.modmypi.com and place your order now!

Ash Stone, Chief Editor of The MagPi



Contents



$ sudo apt-get install arduino

$ sudo apt-get install python-serial me
rcurial
$ hg clone https://bitbucket.org/tino/p
yfirmata
$ cd pyfirmata
$ sudo python setup.py install

$ cd .. ; sudo rm -r pyfirmata



arduino_firmata_ty.py

$ python arduino_firmata_tk.py



import pyfirmata
from Tkinter import *

# Create a new board object,
# specifying serial port;
# could be /dev/ttyUSB0 for older
# Arduinos
board = pyfirmata.Arduino('/dev/ttyACM0')

# start an iterator thread so
# serial buffer doesn't overflow
iter8 = pyfirmata.util.Iterator(board)
iter8.start()

# set up pins
# A0 Input (LM35)
pin0 = board.get_pin('a:0:i')
# D3 PWM Output (LED)
pin3 = board.get_pin('d:3:p')

# IMPORTANT! discard first reads
# until A0 gets something valid
while pin0.read() is None:

pass

def get_temp():
# LM35 reading in deg C to label
label_text = "Temp: %6.1f C" % (

pin0.read() * 5 * 100)
label.config(text = label_text)
# reschedule after half second
root.after(500, get_temp)

def set_brightness(x):
# set LED
# Scale widget returns 0 .. 100
# pyfirmata expects 0 .. 1.0
pin3.write(float(x) / 100.0)

def cleanup():
# clean up on exit
# and turn LED back off
pin3.write(0)
board.exit()

# set up GUI
root = Tk()
# ensure cleanup() is called on exit
root.wm_protocol("WM_DELETE_WINDOW",cleanup)

# draw a big slider for LED brightness
scale = Scale(root,

command = set_brightness,
orient = HORIZONTAL,
length = 400,
label = 'Brightness')

scale.pack(anchor = CENTER)

# place label up against scale widget
label = Label(root)
label.pack(anchor = 'nw')

# start temperature read loop
root.after(500, get_temp)
# run Tk event loop
root.mainloop()



Last Month's Winners!
.

!

NOVEMBER COMPETITION



A Little Ray
Of Sunshine…

While browsing for interesting Raspberry Pi devices, I came
across the following item from CottonPickersPlace.







$ cd
$ git clone
git://git.drogon.net/wiringPi
$ cd WiringPi
$ ./bulid

$ cd
$ git clone
git://git.drogon.net/ladder
$ cd ladder

$ ./ladderTest.sh

$ ./tuxx.sh



Setting Up The Pins

echo Hello there.

How to share GPIO resources among multiple applications,
and use of interrupts to replace wasteful status check loops.

12



echo Hello there. >file_01

echo 23 >/sys/class/gpio/export

echo out
>/sys/class/gpio/gpio23/direction

echo low >/sys/class/gpio/gpio23/
direction
echo high
>/sys/class/gpio/gpio23/direction

echo 1 >/sys/class/gpio/gpio23/value
echo 0 >/sys/class/gpio/gpio23/value

echo 1 >/sys/class/gpio/gpio23/
active_low

Continues on the next page

PleasenoteGPIO reference changes for
pins 3,5,7&13onRevision2.0

13



The Program

gpio_control 23 export

ryniker@raspberrypi:~$ gpio_control
16 export
export failed: Device or resource busy

14



Another Python program

Expanding The GPIO

A Summary of The URLs

By Richard Ryniker

15



An interview with Mike Thompson



Mike Thompson is a Computer Engineer living in
the San Francisco Bay Area. He has a diverse
background in embedded systems design,
handheld/mobile application development, PC
application development and large scale Internet
systems design. He is a serial entrepreneur who
co-founded two previous companies and is the
founder and a lead developer for Raspbian, the
leading operating system for the Raspberry Pi.





$ sudo raspi-config

$ sudo raspi-config



$ sudo apt-get update
$ sudo apt-get upgrade -y





PPII--EEVVOOLLUUTTIIOONN





is a central part of building packages of compiled code or documentation on a LINUX system. When runs
it reads one or more text files containing targets and dependencies. The targets are only executed if a file is not
present or is newer than the output file. The syntax also allows multiple dependencies, such that some files are
required to be built before others. Starting with a first example,

Similar to scripting languages, comments start with a hash or pound character (#). The target has no
spaces or tabs in front of it and is followed by a colon. Dependencies for the target can be added after the colon. The
actions are given on lines after the target name and must be prefixed by a tab character. If white spaces are used
make will report an error.

By default looks for a file called . Therefore, use (described in the issue 3 C cave article) to
create a file called containing the example above. Then type

The first time is typed the command executes the target, which uses the command to create an
empty file of the right name. The second time is typed it, it finds that the file already exists and no action is
needed.

For examples with dependencies, a small C example can be used. In a new directory, create three files:

and

The basics of GNU Make

MMaakkiinngg ccooddee ddeevveellooppmmeenntt ffaasstteerr

24



Now create a new file called containing,

This time typing make will cause each file to be compiled into a file. Then the files are linked together to form
an executable called . The target is the first target in the file and is therefore the default
target. When runs it checks the dependencies of , which are that the and

files exist and are not newer than the target . If the files do not exist then the target to
make the file is run. Any target other than the default target can be run by typing the target name after the
command, e.g.

Writing files where each of the file names needs to be specified can rapidly become very time consuming.
Automatic variables can be used instead of explicitly specified targets,

This has exactly the same as action as the previous one. The automatic variable is the target name,
are the names of all of the dependencies, and is the name of the first prerequisite. For each file required by the
default target, make tries the wildcard . If the file is missing make will report an error.

Wildcards can also be used to define a list of objects from the list of files in the present working directory,

where is a variable. In this case, all of the files in the present working directory are used to build an
executable called . The command lists all files which match the pattern . Then
removes the ending an replaces it with . The resulting list is assigned to the variable. Try using

to update each file time stamp and then re-run make to see what happens.

files can have many layers of dependencies. For software distribution on multiple platforms, the Makefiles are
typically generated from templates using the tool.

Article by W. H. Bell

25



#include <iostream>
using namespace std;

int main()
{

//Output a message.
cout << “Hello, welcome to C++” << endl;
return 0;

}



#include <iostream>
using namespace std;

int main()
{

//Create 2 variables
int a, b;
a = 1;
b = 2;

//Output the sum of these variables
cout << “a + b = ” << a + b << endl;
return 0;

}

#include <iostream>
using namespace std;

int main()
{

//Create 2 variables
int a, b;

//Ask for and store user input
cout << “Input the first number: ”;
cin >> a;

cout << “Input the second number: ”;
cin >> b;

//Output the sum of these variables
cout << a << “ + ” << b << “ = ” << a + b << endl;
return 0;

}







# line generator with command line arguments
# By Colin Deady - 03 October 2012

import os, pygame, argparse, sys
from pygame.locals import *

# initialise pygame (to render the image)
pygame.init()

# Define two functions that will be used:

# 1) fnAppend2Log will write a line to a log file
def fnAppend2Log( line2write ):

logfile = open('lines.log', 'a')
logfile.write(line2write + '\n')
logfile.close()

# 2) fnPlotLines will render a quarter of the shape.
# Uses the previous co-ordinates as the new starting co-ordinates
def fnPlotLines(quarter, sX, sY, eX, eY, incSX, incSY, incEX, incEY ):

fnAppend2Log(quarter + ' quarter co-ordinates:')

# calculate and loop through line co-ordinates
for i in range(0,iterations, args.step):

nSX = sX + (incSX * i) # start X
nSY = sY + (incSY * i) # start Y
nEX = eX + (incEX * i) # end X
nEY = eY + (incEY * i) # end Y

# draw a line between the pair of co-ordinates.
pygame.draw.line(screen,(lineColour),(nSX,nSY),(nEX,nEY),1)

python lines.py -h

python lines.py -s 3 -t 4



# construct a string for the window title and the log file
coordText = '('+str(nSX)+','+str(nSY)+')-

('+str(nEX)+','+str(nEY)+')'
# render the image line by line (takes longer)?
if args.renderlines == 'y':

pygame.display.update();
pygame.display.set_caption(coordText)

# output co-ordinates to the log
fnAppend2Log(coordText)

# return the final calculated co-ordinates
return (nSX, nSY, nEX, nEY);

# define the command line arguments:
parser = argparse.ArgumentParser(description='Render shape')
parser.add_argument('-s', action='store', dest='scale', type=int,

default=2, help='Render size, default=2, 200x200px)')
parser.add_argument('-t', action='store', dest='step', type=int,

default=5,
help='Lower step values for denser lines (default=5)')

parser.add_argument('-r', action='store', dest='renderlines',
choices=('y','n'), default='y',
help='Render line by line (Y) or finished object (n)')

args = parser.parse_args()

# Define the variables that will be needed
sz = 100*args.scale # size in pixels horiz x vert of a quarter image
iterations = sz +5 # number of lines to render per quarter
lineColour = 0,0,255 # the colour of the line to draw (blue)

# open a pygame screen on which to render our objects
# the image size is twice the object to be rendered as we render 4 quarters
screen = pygame.display.set_mode([sz*2,sz*2],0,32)

# Draw the lines, quarter by quarter, returning the co-ordinate pairs
# The starting co-ordinates equal the end from the last quarter rendered
sx, sy, ex, ey = fnPlotLines('Top left', sz, 0, sz, sz, 0, 1, -1, 0 )
sx, sy, ex, ey = fnPlotLines('Bottom left', ex, ey, sx, sy, 1, 0, 0, 1 )
sx, sy, ex, ey = fnPlotLines('Bottom right', ex, ey, sx, sy, 0, -1, 1, 0 )
sx, sy, ex, ey = fnPlotLines('Top right', ex, ey, sx, sy, -1, 0, 0, -1 )

# if rendering each line is suppressed then display the final image
if args.renderlines == 'n':

pygame.display.update();

# save the rendered image to a file
pygame.image.save(screen, 'lineimage.png')

# display the result for 10 seconds
pygame.time.wait(10000)



Feedback & Question Time
Q: Regarding the Skutter series,
you mention a robot arm can be
mounted. Could you please
specify which robot arm and
where I can get it?

Richard

A: Skutter is a long-term series,
with the first article published in
issue 1 of The MagPi. This
contains some background
information: "The robotic arm kit
called the OWI Edge is currently
available from Maplin electronics
and it uses a simple USB interface
to control it."
http://www.maplin.co.uk/robotic-
arm-kit-with-usb-pc-interface-
266257

Q: Is it going to be possible to
view the mag on an iPad in the
near future or am I missing the
point?

John

A: The Issuu site we use has
recently started to support
HTML5, so it should now work on
iPads and iPhones etc. You can
also download the PDF and view it
within iBooks. We are currently
working with a developer
regarding a Newsstand app.

Thank you for making a printed
edition of The MagPi available
from http://www.modmypi.com. I
always print out each issue
because I prefer to read from
paper rather than online. Imagine
my surprise to discover that the
cost is only £2.49. It almost costs
that much for me to print out 32
colour pages myself!

Ian

Q: As a new user of the
Raspberry Pi I'm very interested in
your excellent magazine. I have
had no difficulty reading your
Issues 1 to 6 on my desktop
computer that uses Linux Mint 13.
Imagine my disappointment when
I found that, of the six issues, I
can only open Issue 3 on my
Raspberry Pi. Not being familiar
with the MuPDF program that
Raspbian uses, I thought I'd better
check by installing and testing
MuPDF on my Linux Mint
machine. The result is that every
MagPi issue opens without a
problem using MuPDF on my
Linux machine. This is possibly
not your technical problem but I
thought you would want to know
that a significant and growing
number of Raspberry Pi owners
cannot read your magazine.

Lloyd

A: This problem extends to many
other PDF files. MuPDF seems to
work fine for some users but not
others. Personally I have removed
MuPDF and use xPDF instead,
which works with everything. You
can do this with the following
commands:
$ s u d o a p t - g e t r emo v e MuPDF

$ s u d o a p t - g e t i n s t a l l x PDF


