
The Android APK • SEGA Gaming on your ODROID • Linux Gaming

Year One
Issue #9
Sep 2014

• BASH BASICS
• FREEDOMOTIC
• WEATHER FORECAST
• 10-NODE U3 CLUSTER
• ODROID-SHOW

3D PRINT AN
ODROID-POWERED

GARDENING SYSTEM

Magazine
ODROID

Magazine

BUILD YOUR
OWN WALL-E
THE LOVABLE PIXAR ROBOT
COMES TO LIFE WITH AN ODROID-U3

3DPONICS

A FUTURISTIC PORTABLE DIY LAPTOP
PLUS:

What we stand for.
We strive to symbolize the edge technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID U3
devices to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone : +49 (0) 8403 / 920-920
email : service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
http://bit.ly/1tXPXwe

ODROID MAGAZINE 3

EDITORIAL
With the introduction of the ODROID-W and ODROID Weath-

er Board, there have been several projects posted recently on the
ODROID forums involving home automation, ambient lighting, and

cool robotics. This month, we feature several of those projects,
including predicting whether to go fishing this weekend, building

a custom laptop case, taking care of
your garden remotely, and building a
faithful reproduction of everyone’s
favorite robot, Wall-E!

 Hardkernel will be demonstrat-
ing the new XU3 at ARM Techcon on Oc-
tober 1st - 3rd, 2014 in San Jose, Califor-

nia. Stop by the booth if you’d like to chat with
some of the Hardkernel and ODROID Magazine

team members. Tickets for the exposition floor
are currently $59 at www.armtechcon.com.

 The recently released octa-core XU3 already has several mod-
ern operating systems available, including both Android and Ubuntu. The ARCH-
Linux group has already posted instructions for compiling ARCHLinux for ARM
(ALARM) for the XU3 at http://bit.ly/1tS2xNs. Hardkernel offers Android 4.4 for
download at http://bit.ly/1qMA6Oq, ODROID forum user @voodik published Cya-
nogenMod 11 at http://bit.ly/1qMA6Oq, and Ubuntu 14.04 is available at http://bit.
ly/1s06GZW.

If you haven’t ordered one already, the XU3 is the fastest computer that
Hardkernel has ever made, since it’s able to use all eight cores at the same time,
improving upon the original XU’s design of cluster switching between the high-
efficiency A7 and performance A15 cores. It’s also fully compatible with USB 3.0
and eMMC 5.0, and offers the latest Mali T-628 MP6 GPU with OpenGLES 3.0
and OpenCL 1.1. It’s available from the Hardkernel store at http://bit.ly/YGEnc2.

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

http://bit.ly/1tS2xNs
http://bit.ly/1qMA6Oq
http://bit.ly/1qMA6Oq
http://bit.ly/1s06GZW
http://bit.ly/1s06GZW
http://bit.ly/YGEnc2
http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE 4

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of
Respectech, Inc., a

technology consultancy
in Ukiah, CA, USA that I founded in
2001. From my background in elec-
tronics and computer programming, I
manage a team of technologists, plus
develop custom solutions for companies
ranging from small businesses to world-
wide corporations. ODROIDs are one
of the weapons in my arsenal for tack-
ling these projects. My favorite devel-
opment languages are Rebol and Red,
both of which run fabulously on ARM-
based systems like the ODROID-U3.
Regarding hobbies, if you need some,
I’d be happy to give you some of mine
as I have too many. That would help
me to have more time to spend with my
wonderful wife of 23 years and my four
beautiful children.

Bruno Doiche,
Art Editor

Secured his comput-
ing necromantic skills

after bringing a fiber
optics switch back to life, getting his
Macintosh back from death, getting a
PS3 back from death, getting his fian-
cee T400 back from death (that was a
old style dd data transplant), and man-
aging how to handle the cold innards of
his steady job data center.

Manuel
Adamuz,
Spanish
Editor

I am 31 years old and
live in Seville, Spain,

and was born in Granada. I am mar-
ried to a wonderful woman and have
a child. A few years ago I worked as a
computer technician and programmer,
but my current job is related to quality
management and information technol-
ogy: ISO 9001, ISO 27001, and ISO
20000. I am passionate about comput-
er science, especially microcomputers
such as the ODROID and Raspberry
Pi. I love experimenting with these
computers. My wife says I’m crazy be-
cause I just think of ODROIDs! My
other great hobby is mountain biking,
and I occasionally participate in semi-
professional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound marketing
strategies, social media directing, and
media production for print, web, vid-
eo, and film. Managing multiple ac-
counts with agencies and filmmakers,
from Analytics and Adwords to video
editing and DVD authoring. I own
an ODROID-U3 which I use to run a
sandbox web server, live in the Califor-
nia Bay Area, and enjoy hiking, camp-
ing and playing music. Visit my web
page at http://www.nicolecscott.com.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com

ODROID MAGAZINE 5

INDEX
PLAYING SEGA GAMES IN HD 1080P - 6

NATIVE LINUX GAMES - PART 1 - 7

DIY LAPTOP - 9

BASH BASICS - 10

INSTALLING FREEDOMOTIC - 12

INSTALLING WICD - 13

3DPONICS OPEN SOURCE GARDENING SYSTEM - 14

WALL-E - 16

WEATHER FORECAST - 23

ODROID-SHOW - PART 2 - 25

ANDROID APK - 30

MEET AN ODROIDIAN - 33

ODROID-U3 CLUSTER - 28

ODROID MAGAZINE 6

PLAYING SEGA GAMES
IN HD 1080P
A BLAST FROM THE PAST
By Jeremy “Cartridge” Kenney

cause ODROID computers make use
of OpenGL-ES which does not easily
translate to OpenGL since the ES ver-
sion is a subset of OpenGL.

There are options for Screenshotting
and video recording, however the record
option does not output in AVI or MPG,
but instead outputs video in proprietary
format. This means you won’t be able to
view the recorded video with a media play-
er, only through DGEN. It works nicely
and has a built in menu to fast-forward,
reverse and even pause the playback.

16 bit sound is used to stay true to
Sega’s original 16 Bit sound and graph-
ics, but you can change the sampling
from 8000hz to 48000hz to give the
16 bit sound a better quality. There are
also options to change the original color
output from 8, 15, 16, 24 and 32 bpp
modes giving you a good range of bits to
choose from. Support for compressed
and zipped files, including rar,
is enabled.

Scale2X and HQX is sup-
ported for desktop resolu-
tions only, and is compiled
in for your convenience be-
cause they work flawlessly
on CRT resolutions. Finally,
the M68K debugger is imple-
mented for developers to de-
bug their games and apps run-
ning on the 68K chip.

I’ve included a text file in

An ODROID is all you need to
get your favorite Sega Games
running again! You will op-

tionally need a Sega Genesis controller
adapter to output your controller to
USB so that the ODROID can recog-
nize it and, of course, be able to plug it
in to the USB port. You can then grab a
copy of DGEN-SDL for the ODROID,
compiled by myself at HardKernel Fo-
rums, at http://bit.ly/1pgoyO8 to get
started playing Sega games.

The unique features of DGEN make
it a wonderful application to use, and
includes a nice range of options to cus-
tomize your emulation. DGEN can also
make use of GameGenie codes, so if you
still own a GameGenie manual or even
have written codes in the last pages of
your game manual under the “Notes”
pages, you can use them with DGEN.

Fullscreen modes of NTSC and
PAL works flawlessly for both North
America and Europe, as well as Japan
NTSC, in order to output video on any
TV you may have. OpenGL is imple-
mented, but is not compiled in, be-

SEGA

Sega Genesis, the system that gave us Sonic!

SEGA

the original post thread to associate but-
ton mapping to customize your control-
ler mapping. DGEN should already
detect the controller and auto-map the
buttons, but for unsupported control-
lers, refer to the Text File Button Map-
ping file. Although it’s incomplete, we
are rounding up every controller that we
can get in order to determine if they will
be auto-mapped correctly. Most 2003
controllers, gamepads and joysticks are
mapped perfectly without additional
configuration, including the previously
mentioned Sega Genesis Controller.

To install DGEN, unzip the package
and type the following in Terminal, replac-
ing the .deb file with the package name:

$ sudo dpkg -i NameOfYourDebian-

PackageHere.deb

If you have a controller, it’s best to plug

 http://bit.ly/1pgoyO8

ODROID MAGAZINE 7

Sega game up and running

SEGA

technique, the scientists discover a new
dimension, but something goes wrong!
Demons are appearing and either kill-
ing humans or transforming them into
monsters.

Hell breaks loose, and you have to
fight your way throughout the levels of
Doom 3. The game comes with a lot of
scripted events that are supposed to scare
and frighten the player with shocking
effects. Together with the dark atmo-
sphere of the game, this is really going
to freak you out every now and then!

@AreaScout implemented a new
shader for the game to fix an issue with
the gamma and brightness. With this
setting, you can lighten up the sur-
rounding of the game, which makes it
easier to find objects in the game and see
corners where an enemy might lurk into
the dark, ready to scare and attack you.
Doom 3 is definitely a must have for all
horror and first person shooters.

Homeworld - Space
Real Time Strategy

Another game that can be launched
natively on the ODROID is an awe-
some real time strategy (RTS) game
called Homeworld. In Homeworld,
you are part of a group of people that

In the last few articles, I presented
an overview of the different emula-
tors available on the GameStation

Turbo image, which supports thousands
of games by emulating different console
systems such as SNES or PS1. However,
because GameStation Turbo uses Linux
as its underlying operating system, I’d
like to now take a closer look into some
of the games that exists for Linux that
run natively, without an emulator. Note
that all of the pictures in this article were
taken with an ODROID.

DOOM 3 – Horror
Sci Fi First Person
Shooter (18+)

For those who haven’t noticed yet,
there is an awesome first person shooter
available for the ODROID. @AreaS-
cout ported DOOM 3 to the ODROID
platform, and was able to get it running
natively with OpenGL ES. In Doom 3,
you play a soldier who recently arrived
at the ars base, which is a huge research
facility. Many scientists work on differ-
ent projects at the base, including tele-
portation. By using the teleportation

LINUX GAMING
PLAYING NATIVE
GAMES ON THE
ODROID - PART 1
by Tobias Schaaf

LINUX GAMING

it in before running the app. To launch
DGEN, type the following, replacing the
filename with the selected ROM:

dgen -f romname.bin

Options
Using the option -f permits fullscreen,

and -G outputs a selected resolution, for
example:

dgen -G 1279x719

This will result in a windowed desk-
top resolution of 1024x768. HQX and
Scale2x may be enabled by pressing F6
and F5 for “Crappy TV” filters, giving
the ability to have a low-resolution video
output like in the old days!

-R will help you run the game of the
region of your choice. Possible region
codes are “E” for Europe, “U” for USA/
Canada and “J” for Japan:

$ dgen -f -R E romname.bin

-D will play back your recorded vid-
eo:

$ dgen -f -d demoname romname.bin

Now your ODROID is ready to play
Sega Genesis games on your HDTV, old
CRT TV or any other kind of monitor.
If you don’t have an old TV to play with
and your HDTV is too high definition
for your liking, enable the CrapTV fil-
ters to make it look authentic. Have fun
playing Sega with your ODROID!

ODROID MAGAZINE 8

LINUX GAMING

discovered plans of an old ship while on
an expedition, along with a Hyperspace
Core which allows you to travel very fast
through space. They discover the origin
of their own species on a world called
HIIGARA (home), and they decide to
build a vast space ship called the “moth-
ership” to travel to that world.

However, soon after the mothership
is finished and goes on its first test hy-
perspace jump, something goes wrong.
The ship you are supposed to meet was
destroyed by raiders, and when you
come back to your planet, you find it
devastated along with the space station.
So, you have to build up a fleet to defend
yourself, revenge your people and find
your way to HIIGARA. Soon you meet
new allies, enemies and other species.

Homeworld is a very nice game,
with beautiful graphics, and a deep

Resource collector and the Mothership
(Homeworld)

soundtrack including the well known
Adagio for Strings from Samuel Barber,
and featuring the famous Vienna Boys
Choir. The game has a lot of details in
the different spaceship models and ef-
fects, backgrounds and planets.

Homeworld’s story is very thrilling
since you have to research new technol-
ogy and ships, plan your moves ahead,
household with the rare resources you
have, and protect your fleet while smash-
ing through the enemy lines. If you like
RTS games and like the space genre as
well, this is definitely a must have and
will keep you busy for hours and hours.

EDuke 32 – First
person shooter

“Come get some!” -- Duke Nukem

Duke Nukem is a very famous char-
acter in gaming history. He’s the tough
guy, that goes and saves the world, and all
the girls, from an evil alien invasion. He
will always be remembered for quotes like
“What are you waiting for.... Christmas?”
With the newly ported EDuke32, Duke
Nukem comes back to life, and this time
in HD quality and with real 3D polygon
models. When the game first came out

on PC, I played the DOS version. I still
wonder how I was able to play the game
without a mouse, resorting to looking
up and down by pressing keys on the
keyboard while moving left and right, all
while trying not to get shot by an enemy.

Originally, the game offered a 3D
world with 2D sprites as characters and
objects, which was very impressive back
then. It still looks quite nice with trilin-
ear filtering.

Interestingly, mirror algorithms were

not easy to implement in the age of DOS,
so the programmers created an identical
world and doubled all the characters and
movements. So when you looked into a
mirror you did not actually see a reflec-
tion, but another Duke Nukem behind a
window, mirroring your movements!

The screenshot shows how the virtual
world was filled with sprites back then,
since 3D cards were not very common,
and everything was done by the CPU.
Luckily, those days are over, and we now
have a new version of Duke Nukem
in real 3D and with high resolution
textures. If you haven’t played Duke
Nukem 3D before, the remake is well
worth it, offering a lot of action, nice
gameplay and a little bit of erotica here
and there.

Don’t forget the all famous quotes
from Duke Nukem himself which made
him the most badass gaming character of
all time. But remember, the game was
made for mature audience. Now, there’s
only one thing left to do: “Hail to the
king, baby!”

Destroyed planet and shipyard
(Homeworld)

Starting to build up a fleet to defend
yourself (Homeworld)

Detailed view of an enemy ship under
fire (Homeworld)

Duke Nukem in front of a mirror
“Damn... I’m looking good!”

ODROID MAGAZINE 9

DIY LAPTOP

Building my own ODROID lap-
top all started when my ancient
single-core laptop broke. I

searched the Internet for a replacement
and discovered the fantastic ODROID-
U3, which is powerful enough to be used
in place of a normal computer. I decided
to build a laptop from an ODROID-U3
and make a custom case out of plexiglass.

For the screen, I purchased a nice
10.1-inch monitor, as well as a couple of
accessories like the I/O shield and wifi,
which is all I needed to start building
my “all-in-one” laptop! However, I had
a lot of peripherals without a container
to accommodate them. Although I had
seen several PCs made of wood, I opted
to use plexiglass, which is fairly easy to
work with.

First, I used a pen and paper to out-
line the project. My design was not
complicated, so I measured and cut it
directly on the plexiglass. The character-
istic of the transparent plexiglass helped
me understand the measurements. For
example, to take measurements of the
holes on the ODROID, I simply put the
card on the sheet of plexiglass. Once in-
verted, I marked off where to drill the
four points.

For the plexiglass, I recommend us-
ing at least a 5mm thickness in order to
strengthen the floor and structure. The
top panels are OK to use 4mm. Own-
ing DIY machinery is still very expensive
(unless I borrow from a neighbor), so I

BUILDING AN
ALL-IN-ONE
DIY LAPTOP
TAKE YOUR U3
ANYWHERE

by Daniele S.

wide blade to help with staying straight.
A small blade helps with creating circles
for cables, connectors and switches.

An important thing to keep handy is
a nice glass of water - not for drinking,
but for the blade of the saw. Every 2-3
cm of cutting, I removed the blade and
let it cool in the glass of water, which
also lubricated it. When drilling, keep
everything nice and wet with the water,
and put a wooden piece below the plexi-
glass. The wood keeps the plexiglass
from breaking when the drill pierces the
bottom side.

I then spent some time curving the
edges of the case, using a hair dryer to
blow hot air over the plexiglass. After
a while, it became soft to where I could
apply pressure (it takes very little). On
one side of the panel, when it began
bending, I moved the hair dryer and put
it back over slowly. It takes some finesse
to do this: If the plexiglass is too cold, it
can crack -- or melt if it’s too hot.

The finished laptop case, with speakers installed at the bottom
of the clear plexiglass front, a handy I/O shield for quick hard-
ware prototyping, and a beautiful 10.1” HD monitor

used a lot of tools that are easily found in
the home or garage.

* Hand jig saw
* Screwdriver
* Hair dryer
* Nail file
* Measuring tape
* Marker

For those not familiar with plexi-
glass, it has a tendency to fuse together
at higher temperatures. The first time
I made a cut on plexiglass, I went very
fast and I could see that behind the
blade, the plexiglass material melted and
cooled back together. By the time I had
finished cutting, it had repaired itself as
if it had not been cut!

I learned to keep the speed of the saw
blade very low, and apply a continuous
on/off so as to slowly move the blade.
For straight cuts, I laid a straight edge
to the desired length and inserted a nice

ODROID MAGAZINE 10

BASH
BASICS
SHEBANGS
AND SHEBANGS
by Tynan Overstreet

Once the piece was bent to the prop-
er position, I used a cool fan to lock the
plexiglass into its shape. It also helped to
use wood panels anchored with clamps
so as to obtain a line to follow while
bending. I recommend practicing on
scraps of plexiglass. Once you get the
hang of it, it’s very fun to build a custom
laptop case this way!

To affix the panels to each other, I
used some self-tapping screws salvaged
from an old PC and pre-drilled the screw
holes. Once it was finished and fit to-
gether nicely, I disassembled everything
and moved on to painting. I applied
a coating to the inner part of the back
piece of the panel, giving a nice mirror
effect. By writing on the plexiglass panel
with tape, you can remove it once the
paint is dry so that the writing is trans-
parent, giving a nice lighting effect at
night.

Since I installed the board with the
chip facing down, I put two pieces of
plastic near the two LEDs to reflect the
light. It isn’t the most practical solution
in the world but it certainly is simple
and functional. Finally, I equipped it
with two speakers retrieved from my old
laptop for playing music.

Although the laptop seems all nice
and finished in the pictures, the proj-
ect is not yet complete, as I still need to
install buttons on the front for switch-
ing power on and off in order to have a
single external 12V power supply. I am
also planning to add a LI-ION battery
pack, so that it becomes a truly portable
laptop.

I worked on the project for a long
time, and opted for function over aes-
thetics. However, nothing should stop
you from doing something more beauti-
ful. Now you can pick up your house-
hold tools and make a nice custom case
for your own ODROID!

DIY LAPTOP BASH BASICS

Basic bash skills are the starting point
for learning how to be a Linux guru

Bash is a very useful tool for au-
tomating administrative tasks
on your Odroid. A script

can be something quick and dirty
just to get a job done; or it can run
each time your computer boots up.

Building a bash
script

Every bash script should start with:

#!/bin/bash

This lets your system know which in-
terpreter to use. Interestingly, the “#!”
symbol is known as a “shebang”. I sug-
gest using the word as much as possible,
since it is under-utilized apart from the
chorus of old Ricky Martin songs. In
this article, you will learn how to use
bash to:

Do something every time your Odroid
boots
Do math and concatenate strings
Accept arguments
Run a loop
Launch a bunch of child processes
with different arguments

Make a robot cat

For our first example, let’s make a script
concatenate two strings.

1. Create a file called meow.sh

#!/bin/bash

uno=”me” # i’m a comment… uno

references a string

dos=”ow” # you probably get

where I’m going with this

echo “${uno}${dos}” # variables

are referenced ${…}

2. After you make the file, type the follow-
ing at a command line prompt:

$ sudo chmod +x meow.sh

3. Now you can run the script by typing:

$./meow.sh

It should print “meow”. Bash is now
a robot cat!; Now, let’s modify our script
so we can change what our cat can say.
Maybe he will say something uplifting,
maybe something hurtful, but the point
is the power is yours. Change meow.sh to:

 #!/bin/bash

uno=${1:-”me”} #use first param-

ODROID MAGAZINE 11

BASH BASICS

eter supplied, else use default

provided

dos=${2:-”ow”} #use second param

supplied, else use default pro-

vided

echo “${uno}${dos}” #nothing new

here…

Now you can type ./meow.sh and
get our default cat behavior from the
previous example, OR you can type ./
meow.sh <whatever_you_want> and your
robot cat will oblige by echoing it back.
For example, suppose your cat sees an-
other attractive robot cat and wants
to get its attention. Type ./meow.sh
meeeeeee owww and start a conversation!

Enable automation
Suppose, however, that you actually

want to do something useful with bash,
such as writing a script to execute a few com-
mands every time your ODROID boots
up. I use the following script, for example,
to start a TCP server on each U3+ in my
cluster to respond to client work requests:

1. Create a file named on_boot.sh:

#!/bin/bash

sleep 15 # pause execution for

15 seconds

cd /home/of/your/file # change

places

$ twistd -y WorkNode.tac -l logs/

node.log # put your command here

2. Now edit /etc/rc.local and add the
following lines before the exit 0:

cd /the/folder/where/on_boot/

lives/

./on_boot.sh

Also, don’t forget to make your
script executable with sudo chmod +x
on_boot.sh.

Do some math
Bash can also do useful things like ex-

ecute for loops and do math. As an ex-
ample, create a file called math_loop.sh:

#!/bin/bash

for i in 1 2 3 4 5 6 7 8 9 10

do

 tau=$((i*1000)) # aka tau

is i * 1000

 echo tau

done

After giving it the same file permis-
sions as above, the script will print 1000,
2000, …, 10000 on your console. Al-
ternatively, you could refactor the above
script using a while loop instead. As
you might expect, comparison operators
look a little different in bash:

#!/bin/bash

i=1

while [$i -lt 11] # -lt means

less than

do

 tau=$((i*1000))

 echo $tau

 i=$[$i+1] # increments

i by 1

done

Both programs perform the same be-
havior, with a different way of get-
ting there. Let’s put it all together
now and create a script to execute
multiple scripts in a loop. I can use

this script whenever I need to manu-
ally submit a series of work requests
to my cluster:

#!/bin/bash

symbol=$1

date=$2

for i in 1 2 3 4 5 6 7 8 9 10

do

 ip=$((i-1))

 tau=$((i*1000))

 path=”${symbol}_${date}”

 python WorkClient.py -t

$tau -f $path -i 192.1.1.$ip

done

This script takes two arguments,
the futures symbol name and date
in YYYYMMDD form, and uses
them to submit jobs using Work-
Client.py (a TCP client). No-
tice how the bash script creates
the tau, path, and ip parameters
that are passed to WorkClient.py.
Bash is a powerful tool that every
ODROID admin should have at their
disposal.

Summary
In this article, I presented some

very basic ways that we can use bash,
including simple math operations,
string concatenation, and loops.
Passing arguments to your scripts re-
ally expands the number of functions
you can perform. If you are anything
like me, you want to automate as
much of your workflow as possible,
and bash can help relieve you of many
tedious tasks in need of automation,
as well as provide you with a quick
and powerful tool for interacting with
your systems.

Sample Code
To download the example code

used in this article, please visit www.
odroidcluster.com, and direct any ques-
tions, errata, or pen-pal requests to
odroidcluster(at)gmail.com.

ODROID MAGAZINE 12

following to launch the build process:

$ cd freedomotic/

$ mvn clean install

After the build is completed, Maven
may be launched using the mvn com-
mand.

Setup the example
data

Create a copy of the example data us-
ing the command:

$ cp -r data-example/ \

framework/freedomotic-core/data

Run freedomotic

Launch the platform using the com-
mand:

$ java -jar framework/\

freedomotic-core /target/\

freedomotic-core/freedomotic.jar

You will then be presented with a
login dialog window.

The Freedomotic open source build automator login screen

FREEDOMATIC

INSTALLING
FREEDOMOTIC
A BUILDING AUTOMATION
FRAMEWORK
by Venkat Bommakanti

A re you interested in Home Au-
tomation? The ODROID sys-
tems make for great automa-

tion controllers and managers! They
can be used to control your house re-
motely, or set tasks to be automatical-
ly performed by the home each day.
This article describes the use of the
U3 as the heart of a building, home,
or office automation system using the
Freedomotic software platform.

Requirements:

Any ODROID board, with an appropri-
ate power adapter.
A bootable 8+ GB MicroSD card or
eMMC module containing the latest
U3 Lubuntu image available from the
Hardkernel website.
A network where the device has ac-
cess to the internet and the ODROID
forums.
Optional SSH access to the U3 via
utilities like PuTTY (MS Windows 7+)
or Terminal (Mac, linux to perform the
steps from a remote host computer.

Install Apache
maven

Apache maven is a software project
management and comprehension tool.
The freedomotic software platform uses
this infrastructure. it can be installed us-
ing the command:

$ sudo apt-get install maven

Fetch freedomotic
source code

Because no relevant pre-built
ARM-based ubuntu packages exist,
you will have to build the framework
from its source-code, right on the U3.
This article does not address a cross-
compilation option.

Create a sub-directory to receive the
sources and change to it, using the com-
mands:

$ mkdir freedomotic-src

$ cd freedomotic-src/

Fetch the source code from the rel-
evant git repository, to this location, us-
ing the command:

$ git clone https://github.com/

freedomotic/freedomotic.git

Build freedomotic
using maven

A new sub-directory holding the en-
tire source-tree is automatically created.
Navigate to that directory, then type the

ODROID MAGAZINE 13

WICD

Use id/pwd of admin/admin to log-
in. Now the automation world is yours!
Make sure to research the automation
topic well and take all the appropri-
ate precautions while automating and
making public, any aspect of your life,
including but not limited to, home au-
tomation and universal web access. The
information here is only for educational
and fun purposes.

Plugins
Freedomotic works on the extensible

principle of plugins. You can use free
open source plugins or build your own.
The GIT repository holds the complete
SDK that has all the code you need to
build and test your own plugins. After
compiling for the first time, open the
freedomotic-core project with your fa-
vourite IDE.

To develop your own plugin you
can start from the hello-world example
project included in the plugins/devices/
hello-world directory. Open it in your
IDE, make some changes and compile
it. It will be automatically installed into
the freedomotic runtime freedomotic-
core project. Just restart freedomotic-
core to try out your latest changes.

For additional information or ques-
tions, please visit the original informa-
tion sources at http://bit.ly/1qqjyun,
http://bit.ly/1nL16ZI, and http://bit.
ly/1Cdwdai.

The Freedomotic welcome screen
features Bender from Futurama!

INSTALLING
WICD
A NETWORK
CONNECTION MANAGER
by Venkat Bommakanti

WICD allows the ODROID to easily con-
nect to any wired or wireless network

FREEDOMATIC

I f you wish to use a network connec-
tion manager to manage both wired
and wifi interfaces, the lightweight

wicd utility is an option. It is an alterna-
tive to the gnome based NetworkMan-
ager tool. This article describes the in-
stallation of wicd on the ODROID U3.

Requirements

1. An ODROID U3 board, with an ap-
propriate power adapter.
2. A MicroSD card (with an SDCard
reader/writer) containing the latest
U3 specific lubuntu desktop desktop
image, or an 8+ GB eMMC card.
3. A network where the device has ac-
cess to the internet and the ODROID
forums.
4. SSH access to the U3 via SSH utili-
ties like PuTTY (MS Windows 7+) or
Terminal (Mac, linux) from the re-
mote desktop.

Install wicd and
needed
infrastructure

Run the following command to in-
stall all the needed components:

$ sudo apt-get install \

wicd-curses wicd

Start the wicd
service
and application

Start the application and required
service, using the command:

$ sudo service wicd

start

 * Starting Network connection

manager wicd

 [OK]

$ sudo wicd-curses

Verify installation
An user-interface should be present-

ed listing various networks, like the one
shown at the article main image:

Please refer to the man-pages or
online-help for usage details. For ad-
ditional information or questions, visit
the original information sources at
http://bit.ly/1powWRH and http://bit.
ly/1vTU7Df.

http://bit.ly/1qqjyun
http://bit.ly/1nL16ZI
http://bit.ly/1nL16ZI
http://bit.ly/1nL16ZI
http://bit.ly/1powWRH
http://bit.ly/1vTU7Df
http://bit.ly/1vTU7Df

ODROID MAGAZINE 14

OPEN SOURCE GARDENING SYSTEM

3DPONICS
AN OPEN SOURCE
ODROID-POWERED
GARDENING SYSTEM
by Lucy Morrissey

With 3Dponics, vegetables can be grown in almost any small space

Are you a city dweller lacking space for a garden, a fresh
food lover tired of paying a fortune for vegetables at
the grocery store, or simply too busy to manually take

care of vegetables? Now, you can grow your own food at home
using a next-generation hydroponics gardening system called
3Dponics, available for free at http://www.3Dponics.com.
Best of all, you can print most of the parts at home!

For the past two years, 3Dprintler, an Ottawa-based tech-
nology lab, has been developing a 3D-printable hydroponics
system, and is offering it to the public as a completely open
source project. Because of its affordable price and powerful
processor, 3Dponics recently chose the ODROID-U3 as the
recommended hardware for connecting the garden sensors with
the Internet, allowing the garden to be operated and monitored
remotely.

Getting started

1. Download the open source files from the 3Dponics website
or the 3Dprintler account on http://www.thingiverse.com.
2. 3D print the files yourself, or use a 3D printing service to
create the system components.
2. Collect the parts that are not 3D printable from your home
or hardware store.
4. Set up the system, using the detailed instructions and easy
video tutorial available from the 3Dponics website.

Software and hardware
Various types of software, including SolidWorks, SketchUp

and AutoCAD, were used to design the 3Dponics components
and prepare them for the printer. Although 3Dponics needed
the software to create the files, you don’t, since you can simply
access the prepared files online. However, you are welcome to
alter the files and share your changes with other users.

When the original files were designed and prepared, the
parts were 3D-printed using a Makerbot Fifth Generation
Replicator and Formlabs Form 1+. The entire system can be
printed in just five hours at a low resolution setting.

If you don’t have access to a 3D printer, you can still
build the 3Dponics system by contacting the 3D-printing
location service at http://www.3dhubs.com. They will con-
nect you to someone nearby who has a 3D printer and can
print the files for you. With this service, you don’t need
to pay high shipping costs, and can have the components
ready quickly. The most important parts are the drip noz-
zle, conduit and silencer.

Printable system parts

Drip Nozzles for Plastic Bottles
Conduit with a Hole for Aquarium
 Air Bubbler
Conduit for Aquarium Air Bubbler
Silencer to Reduce Noise Levels
Outer Bottle Clip
Inner Bottle Clip

http://www.3Dponics
http://www.thingiverse.com
http://www.3dhubs.com

ODROID MAGAZINE 15

OPEN SOURCE GARDENING SYSTEM

ODROID-U3 app
An app called the 3Dponics Farm App is under active de-

veloped, which users can install on their own ODROID-U3
device. The app takes data from sensors on the 3Dponics
system and communicates with the 3Dponics servers, which
can then forward the data to a smartphone.

Users simply open the ODROID app on their phone
(Android or iOS) and connect with the ODROID-U3
server to monitor and control their own 3Dponics system.
They can check the temperature and moisture levels; turn
the system on or off, set up a timer (for example, schedule
operation when rates are lowest), watch live video feed,
sync the system with the sunrise and sunset, and connect
it to solar panels as a renewable source of energy.

Because the system’s footprint is already small, only
4.5 watts of electricity is required to operate a 3Dponics
system. By adding solar cells and a battery, the air bub-
bler and ODROID-U3 can be fully powered by sunlight.
3Dponics is the most economical way to start growing
your own vegetables right now!

A 3Dponics garden setup using inexpensive household items

A typical design for the 3Dponics garden watering system

Bottle Height Adjuster
Pump Connector for Multiple Systems
Modular Support Rod for Tubing
Bottle Sleeve Root Protector
Sprinkler Head for Foliage Enhancement
Sprinkler for Root Enhancement

Non-printable system parts

3-4 empty plastic bottles (1L or 2L recommended)
Hagen Marina 200 Quiet Aquarium Air Pump (or equivalent)
10 ft of aquarium air bubbler tubing
20 zip ties

Autonomous system
Thanks to the ODROID-U3, the 3Dponics system is

Internet-enabled. After experimenting with several different
units, the ODROID-U3 was found to work best for powering
the 3Dponics system because:

1. The ODROID-U3 costs less ($65) than other comparable
boards such as the Intel Nuc i3 ($300), and its microSD
card, USB HD cameras and data sensors are affordable,
2. The operating system (OS) is free (Android or Linux),
3. You can 3D print your own custom ODROID-U3 case at
http://bit.ly/1qmCfAv (thanks to Thingiverse user miguif).

http://bit.ly/1qmCfAv

ODROID MAGAZINE 16

The basic remote-control Wall-E Pixar
model is available for purchase from
Amazon, ready for an ODROID-U3 brain!

WALL-E

WALL-E
BUILDING YOUR OWN
ROBOT AT HOME
PART 1
by Vincenzo Siriaani

Ihad a dream since childhood
that I wanted a robot to live
in my house. Recently, since

home robotics has become af-
fordable, I began programming
Arduino-based robots, and created
some to walk around and avoid ob-
stacles, but they were basic robots
without any personality. About 6
months ago, I began studying Py-
thon, because Java and C were too
difficult for me.

I bought an ODROID-U3
with a Linux eMMC module,
but I had never used Linux be-
fore. In fact, I could not even in-
stall the basic OpenCV computer vision library. I eventually
downloaded an OS image from the ODROID Robotics fo-
rums called Linaro 12.11 Robotics Edition (ROS), and I used
some example Python code to teach my robot to detect faces.
After I got OpenCV working, I connected an Arduino to the
U3 using a USB cable and sent some strings.

The inspiration for my Wall-E robot began when i saw the
movie “Wall-E”, then bought a used Wall-E U-Command,
made by Pixar (http://amzn.to/1lBYyC2). In my research, I
found the site of DJ Sures (http://bit.ly/1pfKxEQ) and I re-
alized that it was possible to make the same robot without a
Windows PC, using an ODROID-U3 instead!

Materials

1. Arduino 2009
2. ODROID U3
3. Webcam from Hardkernel
4. eMMC with Ubuntu pre-installed
5. MicroSD card class 10 (for Linaro)
6. 2 servos with metal gear for the “caterpillar”- Turnigy Digi-
tal high torque bearing servo 26.0g/3.5kg/.12sec
7. 2 servos for head pan and tilt - HK15168 Coreless Analog
Micro Servo 8g / 1.2kg / 0.12s

8. 2 servos ultramicro for the eyes - HK-282A Single-Screw,
Ultra-Micro Servo 2g / 0.2kg / 0.08sec
9. 2 servos for the arms (the same as the pan and tilt servos)
- HK15168 Coreless Analog Micro Servo 8g / 1.2kg / 0.12s
10. A voltage regulator of 5 volt (max 5 Ah) to feed the cir-
cuits - TURNIGY 3A UBEC w/ Noise Reduction
11. Lipo battery - Turnigy nano-tech A-SPEC 2200mah 3S
65~130C Lipo Pack

I hacked the Wall-E robot that I bought and inserted the
head servos and webcam, as shown in the accompanying pic-
tures. Then, I started developing the software controllers. For
now, I wrote the code in Python 2.7, without any GUI. Part of
the code is for face detection and tracking, part is for sending
the video to another computer, and another part is to receive
the commands.

http://amzn.to/1lBYyC2
http://bit.ly/1pfKxEQ

ODROID MAGAZINE 17

without this class the thread doesn’t works

def server():

 global command

 server_socket = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

 server_socket.setsockopt(socket.SOL_SOCKET, sock-

et.SO_REUSEADDR, 1)

 server_socket.bind((“localhost”,5001))

 server_socket.listen(5)

 client_socket, address = server_socket.accept()

 while 1:

 client_command = client_socket.recv(1024)

 client_socket.send(“From “ + repr(address) +

“ Recived “ + repr(client_command))

 command = client_command

 if client_command == “q”:

 time.sleep(5)

 client_socket.close()

 server_socket.close()

 break

 print “Uscito server”

this is a server that receives the command for the

Wall-E, you can change the “localhost”

with a ip number and it works out of the same ma-

chine. to send the command

out of the home network you must to redirect the

port in the settings of your router

def cattura_immagine():

 time.sleep(1)

 global command

 global stringData

Wall-E Main Controller Python Script

import threading

import time

import cv2

import timeit

import socket

import serial

import numpy

these are all the libraries

global command

global face_positionx

global face_positiony

#queue

face_positionx = 0

face_positiony = 0

command = “”

class tasks(threading.Thread):

 def __init__(self, threadID, name, counter, func-

tions):

 threading.Thread.__init__(self)

 self.threadID = threadID

 self.name = name

 self.counter = counter

 self.functions = functions

 def run(self):

 print “Starting “ + self.name

 self.functions()

 print “Exiting “ + self.name

this is a class that performs the server that re-

ceives the command, i don’t know why, but

Wall-E rescued a friend and decided to revive him with an ODROID

WALL-E

ODROID MAGAZINE 18

 print “ARDUINO NON CONNESSO”

 # this piece try to connect the ODROID U3 to the

arduino, you can change the port name and

 # the speed

 SCALA = 2

 TRAINSET = “/home/linaro/opencv-2.4.6.1/data/lbp-

cascades/lbpcascade_frontalface.xml”

 classifier = cv2.CascadeClassifier(TRAINSET)

 # this set the cascade for the search of faces,

lbp is faster, but you can change

 webcam = cv2.VideoCapture(0)

 time.sleep(3)

 if webcam.isOpened():

 print “Video aperto”

 ret, frame = webcam.read()

 if ret:

 print “ret True”

 contatore = 0

 # this start the webcam capture, you can

change the number of the webcam port

 while(1):

 contatore = contatore + 1

 ret, frame = webcam.read()

 t = timeit.default_timer()

 height = frame.shape[0]

 width = frame.shape[1]

 face_positionx = 0

 face_positiony = 0

 command_arduino = 0

 TCP_IP = “192.168.1.107”

 TCP_PORT = 5002

 print “before socket.socket”

 sock = socket.socket(socket.AF_INET, socket.SOCK_

STREAM)

 sock.setsockopt(socket.SOL_SOCKET, socket.SO_RE-

USEADDR, 1)

 print “after socket.socket”

 sock.bind((TCP_IP, TCP_PORT))

 sock.listen(5)

 client_socket_video, address = sock.accept()

 # this part of code start the variables and video

serve, you can change the IP

 # number as the server for commands

 print “ARDU”

 try:

 arduino = serial.Serial(‘/dev/tty-

USB0’,115200)

 arduinoconnesso = 1

 print “ARDUINO CONNESSO”

 except:

 arduinoconnesso = 0

Wall-E’s parts are disassembled in order to test the eye motors

WALL-E

ODROID MAGAZINE 19

 command = “”

 # this is for the manual command of pan

and tilt of Wall-E head

 if command == “f”:

 faces = classifier.

detectMultiScale(gray)

 for f in faces:

 x, y, w, h = [v*SCALA for v

in f]

 cv2.rectangle(frame, (x,y),

(x+w,y+h), (0,0,255))

 cv2.rectangle(frame, (x+w/2-

1,y+h/2-1), (x+w/2+1,y+h/2+1), (0,0,255))

 cv2.putText(frame, “X =

“+repr(x+w/2)+” Y = “ + repr(y+h/2), (5, 25),

 cv2.FONT_HERSHEY_SIMPLEX,

0.6, (255,255,255))

 face_positionx = repr(x+w/2)

 face_positiony = repr(y+h/2)

 cv2.putText(frame, “Volti n.

“ + repr(len(faces)), (x-50,y-10),

 cv2.FONT_HERSHEY_SIMPLEX,

0.6, (255,255,255))

this performs the real face detection,

 # (http://bytefish.de/blog/

opencv/object_detection/)

 if face_positionx != 0 or face_

positiony != 0:

 if int(face_positionx) < 220:

 command_arduino = “4”

 if int(face_positionx) > 390:

 command_arduino = “3”

 if command_arduino != 0:

 if arduinoconnesso == 1:

 cv2.putText(frame, “Larghezza “ +

repr(width) +

 “Altezza “ + repr(height),

(50,10),

 cv2.FONT_HERSHEY_SIMPLEX,

0.6, (255,255,255))

 minisize = (frame.shape[1]/

SCALA,frame.shape[0]/SCALA)

 miniframe = cv2.resize(frame, mini-

size)

 gray = cv2.cvtColor(miniframe, cv2.

COLOR_BGR2GRAY)

 gray = cv2.equalizeHist(gray)

 # all this part of code starts to

read frames for ever, gets the time for FPS,

 # shrinks the frame, turns the frame

first to grey scala, then makes Histogram

 # Equalization, to improves the con-

trast in the image, to speed up the process

 # of face detection

 if command == “4”:

 command_arduino = “4”

 if command == “5”:

 command_arduino = “3”

 if command == “r”:

 command_arduino = “2”

 if command == “t”:

 command_arduino = “1”

 if command_arduino != 0:

 if arduinoconnesso == 1:

 arduino.write (repr(command_

arduino))

 command_arduino = 0

A front view of Wall-E’s tractor wheels and motor A side view of Wall-E’s tractor wheels with the treads removed

WALL-E

ODROID MAGAZINE 20

 arduino.write

(repr(command_arduino))

 command_arduino = 0

 if int(face_positiony) < 160:

 command_arduino = “1”

 if int(face_positiony) > 320:

 command_arduino = “2”

 if command_arduino != 0:

 if arduinoconnesso == 1:

 arduino.write

(repr(command_arduino))

 command_arduino = 0

 face_positionx = 0

 face_positiony = 0

 dt = timeit.default_timer() - t

 cv2.putText(frame, “FPS = “ +

repr(1/dt), (5, 50),

 cv2.FONT_HERSHEY_SIMPLEX, 0.6,

(255,255,255))

 # this part sends the command to Wall-E

head to track the faces

 encode_param = [int(cv2.IMWRITE_JPEG_

QUALITY),90]

 result, imgencode = cv2.imencode(‘.

jpg’, gray, encode_param)

 data = numpy.array(imgencode)

 stringData = data.tostring()

 if contatore == 3:

 client_socket_video.

send(str(len(stringData)).ljust(16));

 client_socket_video.

send(stringData);

 contatore = 0

 # this send the stream video to the client

video, it send strings of text!!

 cv2.imshow(‘frame’,frame)

 if command == “q”:

 webcam.release()

 cv2.destroyAllWindows()

 break

 if cv2.waitKey(1) & 0xFF == ord(‘q’):

 command = “q”

 break

 sock.close()

 time.sleep(2)

 if arduinoconnesso == 1:

 arduino.close()

 webcam.release()

 time.sleep(2)

 cv2.destroyAllWindows()

 print “Uscito Opencv”

 time.sleep(2)

 # this closes all when you push “q”

this starts everything

print “Comincio”

thread2 = tasks(2, “server”, 2, server)

thread2.start()

cattura_immagine()

The script above is the main software, but there are 2 other
programs needed. After the main module is started, the central
command service and the video service are launched:

Consider a waterproof case for the U3, since Wall-E loves to swim!

WALL-E

ODROID MAGAZINE 21

 buf += newbuf

 count -= len(newbuf)

 return buf

http://stupidpythonideas.blogspot.it/2013/05/sock-

ets-are-byte-streams-not-message.html

TCP_IP = “192.168.1.107”

TCP_PORT = 5002

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((TCP_IP, TCP_PORT))

while (True):

 length = recvall(s,16)

 stringData = recvall(s, int(length))

 data = numpy.fromstring(stringData,

dtype=’uint8’)

 decimg=cv2.imdecode(data,1)

 cv2.imshow(‘SERVER’,decimg)

 if cv2.waitKey(1) & 0xFF == ord(‘q’):

 break

s.close()

cv2.destroyAllWindows()

import socket # Import socket module

s = socket.socket() # Create a socket object

host = “localhost” # Get local machine name

port = 5001 # Reserve a port for

your command service

s.connect((host, port))

print “Connect to “ + host

print “Use f for detection, 4, 5, r, t for manual

command of the head, q to quit “

while (True):

 command = raw_input (“Command? “)

 s.send(command)

 print s.recv(1024)

 if command == “q”:

 break

s.close # Close the socket when

“q”

video client:

import socket

import cv2

import numpy

def recvall(sock, count):

 buf = b’’

 while count:

 newbuf = sock.recv(count)

 if not newbuf: return None

An ODROID-U3 mounted to the Wall-E base, with wireless dongle

Closeup of the
servo motors used
to control Wall-E’s
eye movements

Wall-E’s eyes
are his signature
feature, and
need to be very
expressive!

WALL-E

ODROID MAGAZINE 22

http://stackoverflow.com/questions/20820602/image-

send-via-tcp

The Arduino code is very simple, and does noth-

ing more than receiving the messages from ODROID and

sending them to the servos. Note that the servos of

the head are connected to pin 5 and 6.

#include <Servo.h>

Servo myservo1;

Servo myservo2;

byte rx = 0; // variabile per contenere il carattere

ricevuto.

int pan = 90;

int tilt = 77;

void setup()

 {

Serial.begin(115200); // imposto la seriale per

lavorare a 115200 baud

myservo1.attach(6);

myservo1.write(pan);

myservo2.attach(5);

myservo2.write(tilt);

Serial.flush(); // svuoto il buffer di ricezione se-

riale.

delay(100);

 }

void loop()

 {

 if (Serial.available() >0) // Controllo se il buf-

fer di ricezione contiene qualcosa

 {

 rx = Serial.read(); // leggo il carattere

ricevuto e lo memorizzo in rx

 Serial.flush(); // svuoto il buffer di ricezione

seriale

 if (rx != ‘0’)

 {

 if (rx==’1’)

 {

 if (pan >= 35)

 {

 pan = pan - 2;

 }

 }

 if (rx==’2’)

 {

 if (pan <= 135)

 {

 pan = pan + 2;

 }

 }

 if (rx==’3’)

 {

 if (tilt >= 35)

 {

 tilt = tilt - 2;

 }

 }

 if (rx==’4’)

 {

 if (tilt <= 125)

 {

 tilt = tilt + 2;

 }

 }

 }

 myservo1.write(pan);

 myservo2.write(tilt);

 }

}

As my next step, I want to add speech and voice recognition
to Wall-E, and then connect the servos to the Arduino to make
my robot mobile!

Wall-E using an ODROID-VU touchscreen to program his new buddy

Wall-E was inspired by 3Dponics and started his own garden!

WALL-E

ODROID MAGAZINE 23

Should one plan to go fishing next the weekend, play golf, or
just stay inside and use a computer? That is a question that
outdoor hobbyists are always asking during the work week!

To help answer this question, Linux users can can install a forecast
directly onto the desktop. In this article, I present a couple of ap-
plications that display the current weather and do some forecasting
in order to help to plan future outdoor activities.

XFCE
The XFCE desktop contains a weather plugin and it can be

added to the bottom panel. One can add a Weather Update
widget into panel, as is shown in the first screenshot. To install
the XFCE weather plugin, type:

$ sudo apt-get install xfce4-weather-plugin

From the panel, one can open the properties by right-click-
ing to access the configuration dialog.

The Change button opens a second dialog that can be used
to select a location. The city closest to our fishing river is “Vii-
tasaari”, which can be located by entering it into the text box
and pressing the Search button. From the results list, one can

WEATHER FORECAST

WEATHER
FORECAST ON THE
DESKTOP
WHAT CHANCE IS THERE
TO CATCH FISH NEXT WEEKEND?
by Jussi Opas

select the aimed location and get its forecast.
Hovering over the weather widget with the mouse shows

a tooltip with more information such as temperature, wind,
humidity, and cloudiness. By clicking the widget, one can get
a forecast for the next few days.

In order to catch trout, then the weather should be cloudy

Configuration dialog for the
Weather Update application

or somewhat rainy, rather than bright. Trout are active late in
the evening or in the early night hours. Meanwhile, winds are
hostile for fly-fishing, since it affects the ability to cast, and one
can not see fish activity on a windy water surface.

Several widgets such as wind and temperature may be added
to help us make our fishing decisions. In our example shown
in the screenshot, the aimed fishing days are Saturday and Sun-
day, and it seems that the best fishing weather is on the begin-
ning of Saturday night, as there is practically no wind, some-
what cloudy and dark. The Sunday morning is also promising,
since it will be cloudy.

Gnome and Unity
The users of almost all other desktops, including Gnome

and Unity, also have weather application available from sev-
eral software sources. Search for “weather” in the Ubuntu or

Weather Update

In this desktop background from http://bit.ly/1lGnGrj, there is
a kingfisher as wallpaper. Maybe it is predicting something
about our chance of catching fish?

 http://bit.ly/1lGnGrj

ODROID MAGAZINE 24

Lubuntu Software Center. For instance, gnome-weather is
available in Lubuntu Software Center, as shown in the screen-
shot, and may be installed by typing:

$ sudo apt-get install gnome-weather

Using gnome-weather, the user can choose a certain loca-

After we came home from our trip, we formulated a com-
putational model of probability to catch fish based on certain
variables such as the weather and type of lure:

if (weather is cloudy) {

 probability = good;

}

if (it is evening) {

 increase probability;

}

if (tinsel is used) {

 increase probability;

} else if (hassle is used) {

 decrease probability;

}

if (fisherman is skilled) {

 increase probability;

}

We can test this method against what actually happened;
the productive fishing happened on a bright Sunday morning,
with a hassle fly and an unskilled fisherman. Despite these
disadvantages, a fish was still eventually caught.

If one wants to build a better model for possibility of catch-
ing fish, it could be based on Bayes’ Theorem (http://bit.
ly/1nwkWIA), which describes how computations can be made
with conditional probabilities. A more advanced model could
use also some history data from actual weather. For instance,
one should know whether it has been rainy in last two weeks or
how warm it has been. This reference data could be collected
with an ODROID weather board, located at the fishing resort,
with its data available in the Internet.

rain, the fish were active and responded to a tinsel streamer. Un-
fortunately, the fish escaped when the tippet line broke!

Soon it became dark, so we had to stop fishing. It was better to
go to sleep and start fishing again on Sunday morning. A tinsel was
used because it had some luck on Saturday, but on Sunday there
were no bites at all! So, we started using a fly called a “hassle” in
the deep pools. The chance of catching any fish with the hassle fly
was poor, since our experience is that the trout ignore it. After some
time, and despite the bright weather, a trout was finally caught!
Fishing Prediction Model

WEATHER FORECAST

Gnome Weather

Tinsel lure - A sample
tinsel streamer trout

lure that imitates
a small fish

A hassel fly lure
has two partridge
feather hackles,
and the used pupa
hook is weighted
so that it floats
upside down in a
pool bottom

This trout was
caught with the
hassle fly and
then released

tion, and see the weather for that area. One can see a weather
forecast for the current day, and also view a reasonably accurate
prediction for the next week.

Gone Fishing
To continue our story, the weekend came and we travelled to

the river, based on the information that we had from our weather
widget. The sky was cloudy on Saturday evening, but instead of
being cloudy on Sunday morning, it was bright, and there were
only a few clouds. The predicted weather took place but it hap-
pened earlier than expected. The interpretation here is that the
air masses were moving faster than what was forecast.

On Saturday evening, when it was cloudy, just before a light

http://bit.ly/1nwkWIA
http://bit.ly/1nwkWIA

ODROID MAGAZINE 25

* a ground pin, which is needed to
form an electrical circuit and counts
as a “low” logic level

* digital pins, which can be in either a
“high” or “low” state

* analog pins, which are connected
internally to an analog to digital con-
verter and can measure any voltage
value between 0
(ground) and 3.45 volts (high)

* a reset pin, which is usually unused

In the first part of this series of ar-
ticles about the ODROID-SHOW,
I introduced the basics of the soft-

ware running on it with enough to get
you started on your own programs. In
this issue, I’ll focus on using the two pin
headers located up at the top right of the
board to connect up some simple com-
ponents to the SHOW.

Pins
If you’re just starting out with Ardui-

no-like hardware, the information above
may seem a little overwhelming, so I’ll
take a few paragraphs here to break it
down into more manageable chunks.

To begin with, the two most impor-
tant columns are the “Label”, which is
what is printed on the board and lets you
identify the pin, and the “Function” col-
umn, which is the primary use for that
particular pin. Looking at the Function
column, you should be able to see these
distinct types of pin:

* power pins, which supply 3.54 volts
and count as a “high” logic level

Summary of the functions of each ODROID-SHOW pin

The two pin headers
at the top right area

of the board can
be used to connect

several external
components

DIGGING (INTO)
THE ODROID-SHOW
PART 2:
MAKING CONNECTIONS
by Declan Malone

Any of the analog pins can be pro-
grammed to operate just like a digital
pin if that is what you want, but the re-
verse is not true. Typically, digital pins
are connected to switches or buttons of
some kind, while analog pins are con-
nected to things like variable resistors
(potentiometers) or light-dependent
resistors. Note also that pins can only
work in analog mode when they are set
as inputs; when a pin is set as an output,
it can only be on or off but not some
value in between.

Alternate
pin functions

Continuing on, we see that pins can
have alternate functions, which can be
divided into groups. They can be used
for SPI, I2C, Pulse-Width Modulation
(PWM, which is often used to drive
motors or vary the brightness of LEDs),
externally-triggered interrupts, and
timer-based interrupts. The first two of
these are different protocols allowing the
SHOW’s ATMega chip to communicate

ODROID-SHOW PART 2

ODROID MAGAZINE 26

with more complex integrated circuits
(ICs), sensors and so on. Refer to the
“I2C and SPI” sidebar for an overview.

Not all of the possible alternative
functions are available on the ODROID-
SHOW due to the fact that some of the
pins are also used to communicate with
the TFT hardware. In particular, pins
D11, D12 and D13 are wired up to the
TFT, which means that pin D11 can-
not really be used for either PWM or for
triggering timer-based interrupts. With
the correct wiring and programming,
however, it can still be used to commu-
nicate to another SPI device other than
the TFT display.

The only other alternative function
left to describe is for externally-triggered
interrupts. I’ll cover that later on when I
talk about using interrupts to respond to
button presses.

The “ATMega/Port” column shows
alternative ways of addressing the pins.
If you decide to use “avr-gcc” to write
and compile programs for the SHOW
instead of the “arduino” IDE, then you
will need to refer to the pins using the
numbering in the ATMega documenta-
tion: “avr-gcc” does not recognise Ardui-
no-style pin numbering such as D11.

The “Port” value is another way to
refer to pins. The ATMega processor
groups pins into four separate “ports” or
“banks” and includes methods for read-
ing or writing any number of pins in
the same port at once. It’s also possible
to set up interrupt handlers to moni-
tor for changes in pin states, but (with
the exception of pin D2) this can only
be done with a full port instead of indi-
vidual pins. Ports are named “A” to “D”.
For example, the pin labelled A5 on the
board has the port name PC5, which
means that it is in port ”C”, and bit 5 is
used to access its value.

Finally, each pin has an associated in-
terrupt number which is shown in the
last column. As the name suggests, when
a “pin change” interrupt is enabled, it
causes an interrupt when the pin goes
from “high” to “low” or vice-versa.

Sensor circuits
With some of the theory out of the

way, now we can get down to actually
connecting up some sensors and reading
their values on the SHOW. While these
are admittedly very simple circuits, they
are often all that is needed to add some
interactivity to a program, particularly if
you want to use the SHOW for a stand-
alone application.

To save space, I’ll describe just the
main points of each Arduino circuit.

Button press circuit
A button or switch can be wired in

series between a digital pin and a 3v45
pin. In this way, when the button is
pressed or the switch closed, the pin reg-
isters a ‘high’ value.

Reading
a potentiometer

Potentiometers (or “pots”) are a form
of variable resistor. They can come in ro-
tary or linear forms, like a volume con-
trol knob or a slider in a mixing desk,
respectively. They can also be “linear”,
where the resistance is proportional to
how far the “wiper” is turned, or “log”,
where the resistance is proportional to
the logarithm. Linear pots are generally
more useful.

Reading a joystick
Most joysticks, except for really old

ones, are analog devices, with one pot for
the X axis, and another for the Y. They
usually have one or more buttons as well.

Using interrupts for
button presses

While it’s simple to connect up dis-
crete components like variable resistors,
LEDs, switches and relays and so on
to a microcontroller, as more complex
components became available, people
realised the need to come up with stan-
dard ways of interfacing with them. The
I2C and SPI protocols were developed
independently to address this problem.
Most microcontrollers, and even some

more powerful processors or SOCs (Sys-
tem On a Chip) will support one or
both.

Both protocols have the concept of
a shared bus, over which data travels to
and from the peripheral device. Both
also use a master-slave arrangement,
with the microcontroller (MCU) operat-
ing as the master, telling the slave devices
what to do. They also allow for connect-
ing several different devices to the shared
bus, although they differ in exactly how
individual devices are addressed, mean-
ing how the device knows that the MCU
is talking to it at any given time.

SPI
With SPI, different devices are ad-

dressed by dedicating a separate “slave
select” line for each individual device.
By bringing the appropriate slave select
line low, the device attached to it knows
that the MCU is now talking to it. With
I2C, on the other hand, each device
must have a unique address, which is
usually a 7-bit number. Most I2C de-
vices can have their addresses configured
by means of jumpers or solder pads. The
master device prefixes each message with
the address of the device it wishes to talk
to.

SPI has the advantage of higher data
transfer rates with slave devices, so it is
often used in applications like TFT dis-
plays and SD card modules. It’s also ca-
pable of synchronous operation, mean-
ing that data can be transferred in both
directions at once over the MOSI (“Mas-
ter Out, Slave In”) and MISO (“Master
In, Slave Out”) pins. I2C’s main ad-
vantage is that it only requires two pins
even if addressing the maximum num-
ber of devices. This feature makes it a
very popular choice for a wide variety of
exotic sensors including the ODROID
Weatherboard, controllers such as motor
controllers, and I/O expanders such as
those embedded in the U3 I/O shield.

There’s also a wealth of modules avail-
able for the Arduino platform that could
be connected to the I2C or SPI pins of

ODROID-SHOW

ODROID MAGAZINE 27

the ODROID-SHOW. The only thing
to be careful with is making sure that the
device can operate correctly at the 3.45v
logic level that the SHOW uses. You
can even connect SPI and I2C devices
at the same time, though you will need
to dedicate an unused pin (A3 or D2) as
a slave select line for each SPI device to
avoid conflicts with the TFT controller.

Most hardware modules designed for
connecting with an Arduino or simi-
lar system will have libraries and demo
code available for it, so using them in
your SHOW program will often be as
simple as including the correct library
and modifying the demo to make it do
what you need. The libraries will usually
hide all the details of the actual protocols
used for communication. This makes it
a cinch to use most modules in projects
of your own design, since you can con-
centrate on the bigger picture of what
it’s supposed to do and let the libraries
handle the boring bits.

Basic
electrical safety

Due to the tiny currents and voltages
used by the ODROID-SHOW, there’s
practically zero chance of accidentally
giving yourself a shock when connecting
passive components to the board. How-
ever, the sensitive electronics compo-
nents in the SHOW are a different mat-
ter, and it’s quite possible damage the
board if you wire something up incor-
rectly. There are essentially three ways
to damage the electronics in the SHOW:

* create an over-voltage situation
* create an over-current situation
(short circuit)
* connect an external power supply
with the wrong polarity

Over-voltage situations arise from
connecting an externally-powered device
that supplies more than 3.45 volts to any
of the SHOW’s pins. This includes other
Arduino boards, which generally operate
at 5v, or what’s known as “TTL” levels,

and some externally powered “mod-
ules” which may use 5v levels for
signalling. These devices can
still be connected as long as
the 3.45v pins are electri-
cally isolated from the
higher voltage, such as
by using an appropri-
ate voltage divider,
level converter or
opto-isolator. Static
electricity can also
cause damage to some
components, so use
appropriate anti-static
or grounding methods
when handling them.

Over-current
The two ways you can cause an

over-current situation are by connect-
ing devices that draw too much current
from the pins or by forming a short-cir-
cuit. The pins on a standard Arduino
(which operates at 5V) are rated for a
maximum of 40mA on any individual
pin, with a maximum draw of 200mA.
The SHOW, however, operates at 3.45V,
so the maximum current is less. I wasn’t
able to find exact details on this, so to
be safe I would recommend not exceed-
ing 20mA on any one pin, or 100mA
overall. In fact, since the SHOW is
also driving a TFT screen containing
an LED backlight, it may be that even
100mA is optimistic. Some devices, like
LEDs, could draw too much current
if connected directly and need a limit-
ing resistor, while others, like motors or
other inductive loads should never be
driven directly.

Short circuit
A short circuit is formed when you

create a path from one of your +3.45v
pins directly to ground. Besides the ob-
vious short-circuit where you acciden-
tally connect your power pin directly to
ground, it’s also possible to form a short
with GPIO pins that have been config-
ured as OUTPUT. An output pin that’s

high counts as a +3.45v supply, and one
that’s low counts as GND, so there’s a
risk of short circuit if you wire them up
to a ground or +3.45v pin respectively.
Pins configured as INPUT, however, are
safe to wire directly to either your posi-
tive pins or ground.

The simple fix for over-current prob-
lems and short-circuits, assuming they
aren’t an oversight, is to put a current-
limiting resistor in series with any path
that has a risk of drawing too much
current or forming a short circuit. Us-
ing Ohm’s law, a value of 220 Ohms,
for example, would limit the current to
3.45v/220R = 15.7mA, which is safely
below the maximum current of 20mA.

However, as long as you recognise the
hazards and check your circuit before
connecting anything, you are unlikely to
cause any damage.

ODROID-SHOW

The ODROID-SHOW LCD Panel with
optional battery pack

Be safe when working with electricity!

ODROID MAGAZINE 28

It has always been a dream of mine to
own a supercomputer. According-
ly, I entered a field where powerful

compute clusters abound: algorithmic
trading. In the “algo” world, it is not
uncommon for companies to spend six
to seven figures on their compute clus-
ters with each node costing thousands of
dollars and consuming copious quanti-
ties of electricity.

Fortunately for those of us without
piles of cash, the ARM-based ODROID
U3 offers a compelling chance to build a
compute cluster at a fraction of the cost
of a traditional x86-based solution. In
my first step towards this goal, I built a
prototype 10-node cluster out of U3’s,
and will now subject it to a series of per-
formance tests against one of my current
x86 based nodes:

Backtesting a new strategy idea
Real-time signal filtering
Generating Random Walks
The Challenge

This article will cover the result of the
first test: backtesting a new strategy idea
using Response Surface Methodology
(RSM), a powerful technique for estimat-
ing the shape of hard to evaluate func-
tions. In this case, it is a 4-dimensional
hyper-surface. Each point on the surface
represents a possible strategy configura-
tion. Three (3) of the dimensions repre-
sent configurable parameters in the strat-
egy; think of them as knobs or dials that
control the strategy’s behavior. The final
dimension represents the historical profit-
ability of that particular configuration.

HEADLESS 10-NODE
ODROID-U3 CLUSTER
THE ULTIMATE AFFORDABLE
HOME SUPERCOMPUTER
by Tynan Overstreet

The hyper-surface can be visualized as
a 3-dimensional cubic swimming pool,
where we measure the temperature at
each point, recording the x,y,z position
as well. The warmer the temperature we
measure, the more money the strategy
makes. We are thus trying to find the
warmest, or most profitable, regions of
the pool to swim in. You can assume
that warm water is a good thing in this
example, and not the result of some un-
supervised children in our pool!

Each point-measurement takes some
non-trivial amount of time to complete,
and we must complete thousands of
measurements to map the surface accu-
rately. In this example, we are limited by
the time it takes to actually evaluate the
strategy logic against historical data and
measure the resulting profit/loss from
any hypothetical trades.

The contenders
My current node consists of an

8-core 4.2 GHz x86-64 based CPU run-
ning Xubuntu with 8GB of memory, a
500GB SSD, dual R9 270x GPU’s for
OpenCL processing (useful for generat-
ing random walks), and an 850W ATX
power supply. Not including the rack
case or shipping, the node cost about
$1150. Similarly, after purchasing
10 x U3’s, corresponding 8gb eMMC
modules pre-loaded with Linux, power
supplies, cooling fans, and a network
switch, the ODROID cluster cost about
$1250, which minus $100 in shipping
puts it right at the cost of each of my
x86 nodes. I prefer having some local
disk space per node, but if you wanted
to forgo the eMMC modules and do a
network boot, you could save $250 and
build an 10-node ODROID cluster for
around $900, excluding shipping.

Additionally, each U3 is overclocked
to 1.92GHz by adding the following
line to /etc/rc.local right before exit 0:

Every node in Tynan’s cluster is a
powerful U3 with its own cooling fan

ODROID U3 CLUSTER

ODROID MAGAZINE 29

echo 1920000 > \

/sys/devices/system/cpu/cpu0/\

cpufreq/scaling_max_freq

Results
I wanted to see how the ODROID

cluster would perform with essentially
unmodified code. Other than setting up
a python Twisted application to coordi-
nate work across the cluster, the code used
for backtesting was the same as my x86
node. As you can see from Figure 1, the
ODROID cluster completes a 1-day back-
test a full 1 hour faster than the x86 node.

Backtesting a single day is not very
helpful, however, so I performed a 20-
day backtest and recorded the elapsed
time: the ODROIDs deliver an almost
37% decrease in the time taken to per-
form the RSM, from running for over
60 hours on the x86 to about a day and
a half for the ODROID cluster.

There are also a host of less obvious
benefits of running the ODROIDs vs
the x86 node. For one thing, the cluster
is virtually silent compared to the x86.
Once you turn the blue heartbeat LEDs
off you barely even notice you have a
computer running, let alone 10. More-
over, the U3 cluster draws less power un-
der full-load than just the x86 CPU, not
to mention the dual GPU’s.

The only downside to the cluster is
the added complexity of managing 10
nodes as opposed to a single computer.
As such, I am writing a simple cluster
management interface that is specific to
the needs of a ODROIDs and will re-
lease it on www.ODROIDCluster.com
when it’s ready for public use.

Following are some common pitfalls

to avoid when setting up the cluster for
the first time:

First, I had to regenerate the MAC
address for each ODROID in order to
get the network to recognize each node
as a unique device. This was done by
deleting the file /etc/smsc_95xx_addr

and rebooting, which generated a new
MAC-Address and allowed me to assign
a static IP to the node.

Next, The passive heat sinks needed
to be removed in order to add active
cooling fans, but they do not give eas-
ily. I had to let each U3 watch YouTube
for 5-10 minutes prior to prying off the
original sinks. This process provided
some unneeded digital exfoliation!

Finally, installation of nfs-common
did not work until I upgraded the kernel
using the ODROID Utility. To access
the utility from a headless U3, I had to
type sudo ODROID-utility.sh in my re-
mote command line.

Future
improvements

The code used in this speed test was
as unmodified as possible in order to
assess the differences in hardware in a
quick and dirty fashion. Improvements
in software design made possible by the
increased memory space, for example,
were not considered in this test. The
ODROID cluster has a total of 20GB of
memory vs 8GB on the x86 node, mean-
ing that the software could be refactored

to use the hard drive less, which should
provide even further speed improve-
ments.

Going forward
The next test compares the

ODROIDs with the x86 in real-time
signal processing of incoming market
data. The computers will apply Bayes-
ian filters to real-time prices from US fu-
tures markets. There is the potential for
significant improvements in the number
of symbols that the cluster can process
simultaneously vs the x86 node. Finally,
I will test the ability of each hardware
configuration to generate random walks,
which is necessary for real-time Monte-
Carlo options pricing.

Conclusion
The ODROID cluster presents a com-

pelling alternative to traditional comput-
ing solutions. In a head-to-head speed trial
using Response Surface Methodology, the
ODROID cluster was 37% more time ef-
ficient than my incumbent, x86 based
node. Moreover, extra benefits including
decreased noise and power consumption
make the U3’s far superior in this specific
application. While operating a cluster adds
administrative complexity, the benefits far
outweigh the downsides. For up to date in-
formation on the ODROID cluster, please
visit http://www.ODROIDCluster.com.

The total power needed for this 10-node
U3 cluster is less than 70 watts

Speed results of ODROID cluster vs x86

ODROID U3 CLUSTER

http://www.ODROIDCluster.com

ODROID MAGAZINE 30

The following list describes the differ-
ent folder and files:

AndroidManifest.xml
This is the XML configuration file that Android reads in order
to find the structure of the app and other properties.

classes.dex
This file contains the compiled version of the app’s code.

resources.arsc
In general, all APKs that run on Android have the same folder
structure, which is only slightly different for APKs that are
generated as part of a system image. This contains the binary
compiled version of resources.

ANDROID APK

ANDROID
DEVELOPMENT
INSIDE THE ANDROID APK
by Nanik Tolaram

In the last few issues, I gave an overview of the different low
level parts of Android, and how they work together to cre-
ate the Android operating system. In this article, I begin a

series of articles on how to develop applications for Android.
The best thing about programming on Android is that you can
develop and test your applications using any Android device,
and it will run (most of the time) on most Android hardware
in the wild.

In conventional Android development, you need to test
your application with different versions of Android, but you
don’t need to do this if you are using ODROID hardware. The
ODROID family of microcomputers is a great platform on
which test your application, since it’s able to run different An-
droid versions. However, keep in mind that Hardkernel does
not have official support of older versions like Honeycomb, but
does publish images for Ice Cream Sandwich 4.0, JellyBean
4.1/4.2, and KitKat 4.4.

Throughout this article I will be using the open source Fen-
nec (Mozilla) browser application as an example, which is avail-
able at http://mzl.la/1lxftFA.

What is an .apk?
An APK (Android Package File) is a single compressed

package that contains all the different files required for your
application. If you have developed in Java before, this is similar
to a .jar file.

Folder structure
of an APK file

/lib
Contains native
libraries that
are architecture
dependant

/res
Contains resources
that are used by the
application such as
images, text, and
layout

/assets
Any file that will be
used by the app can
be put here.
Normally files
inside this folder
are read as byte
streams and suit-
able for content like
large images, videos
and other binary
formats

META-INF
Contains MANIFEST.MF and
the certificate of the app

http://mzl.la/1lxftFA

ODROID MAGAZINE 31

ANDROID APK

Illustration of the APK packaging process

Format of a
dex file

The compiling and packaging step is normally done by an
Interactive Development Environment (IDE), such as Eclipse
or Android Studio, which both use aapt internally.

Dexdump
The Dexdump tool is used to dump the content of your

classes.dex file. Shown below is an example of the output:

Processing ‘classes.dex’...
Opened ‘classes.dex’, DEX version ‘035’
Class #0 -
 Class descriptor : ‘Landroid/support/v4/accessibilityser-
vice/AccessibilityServiceInfoCompat$AccessibilityServiceInfo
VersionImpl;’
 Access flags : 0x0600 (INTERFACE ABSTRACT)
 Superclass : ‘Ljava/lang/Object;’
 Interfaces -
 Static fields -
 Instance fields -
 Direct methods -
 Virtual methods -
 #0 : (in Landroid/support/v4/accessibility-
service/AccessibilityServiceInfoCompat$AccessibilityServiceI
nfoVersionImpl;)
 name : ‘getCanRetrieveWindowContent’
 type : ‘(Landroid/accessibilityservice/Acces-
sibilityServiceInfo;)Z’
 access : 0x0401 (PUBLIC ABSTRACT)
 code : (none)
…..
…..
…..
 access : 0x0401 (PUBLIC ABSTRACT)
 code : (none)
 source_file_idx : 1418 (AccessibilityServiceInfoCompat.
java)
…..
…..

Compatibility
With hundreds of kinds of Android devices in the world, it’s

no surprise that some applications work flawlessly on one de-
vice but don’t work on other devices. There is no single answer
or solution to this problem, as it can be caused by incompatible
code anywhere from the kernel all the way up to the front-end
Android code. Most of the time, vendors modify the Android
code to suit what they want to achieve for their devices, which
creates more complications.

Most of the time, compatibility issues arise with applica-
tions that interact with device’s peripherals, since they may have
different a behavior when running on a spectrum of hardware.
The problem is not with the Android code itself, but with the
device driver. Since nearly all of the Android hardware drivers
are closed source, there is nothing much that can be done to
address the issue except to file a bug with the vendor.

The best approach for a robust application is to test it on as
many devices as you can, ii you have access to the devices, or
use 3rd party services that test your app on different devices for
a fee. Another way, adopted by many software developers, is
release the application untested, and let users be the beta tes-
ters, giving you access to real life testing environment on a large
range of devices. Although this approach is not recommended,
in return you can provide the users with free upgrades.

For more detailed information on the Android APK file,
please visit http://bit.ly/1A2T0l1, http://bit.ly/1uw6Xqc, and
http://bit.ly/1rLAfUK.

Java vs Native (C/C++)
Android apps are normally built using Java language, but

there are many apps, such as games, that are written in a native
language, but are still available for Android. Applications that
are ported to Android normally do have some Java code, but it
is used as a wrapper layer for the native code. An example of
this are many ported games, which run the original version of
the console game inside an Android wrapper.

It is recommended to write all Android apps in the Java
language, as this will make it more portable across different An-
droid versions, and keeps the maintenance of the code base to
a minimum. Using a native app requires that it be recompiled
for each version of Android.

The .dex file
Android APK files have a file called classes.dex which con-

tains your app code in binary compiled format. The format
of this file has been defined by Google, and it is not the same
as the .class format in the Java world. The dex file is more
compact than a normal class file, which is necessary because
Android need to run on older devices with limited storage.

By typing the following command, you
will see the information of classes.dex dump
into fennec.txt file and will look the snapshot
below. If you compare the output with the
.dex layout format you can inspect the infor-
mation available on each layer.

 <sdk tool>/dx \

 --dex --verbose-dump \

 --dump-to=fennec.txt \

 fennec-32.0b2.en-US.android-arm.apk

AOSP tools
There are a number of APK-related tools inside Android,

including aapt (Android Asset Packaging Tool), which is the
main tool for packaging Android apps. The included flowchart
shows the sequence of steps that need to be done to make an
application run on Android.

http://bit.ly/1A2T0l1
http://bit.ly/1uw6Xqc
http://bit.ly/1rLAfUK

ODROID MAGAZINE 32

switch for the eMMC
and SD, with lots of features that I very
much liked. That’s why it was my first
ODROID, although I could have got
a cheaper U2 instead! But seeing the
new XU3, that’s the kind I was looking
forward to, so once I get my hands on
one of these babies, I might have a new
favorite!

Your GameStation Turbo image is very popu-
lar on the forums. What other software have
you produced for the ODROID?

I wonder if anyone else produces “soft-
ware” for the ODROID. Yes, there is the
XBMC port, and a couple of different OS
versions of Linux (Ubuntu, Debian, Arch,
etc.) which many people worked on, but
actual software seems to be rarely ported.

I port mostly games and emulators,
which now can be found in the Games
& Emulators section of the forum, but
I also ported a few programs, such as
clipgrab, sdl2, or ffmpeg. In addition,
I maintain my own kernel builds from
Hardkernel as .deb files for installing

MEET
AN ODROIDIAN
TOBIAS SCHAAF:
LINUX NINJA AND
ODROID ENTHUSIAST
edited by Rob Roy

Tobias Schaaf, our resident gaming
expert, riding a Canada Bushplane

Tobias with a friend in Germany, preparing
a barbecue shortly before his most recent
trip to the United States

MEET AN ODROIDIAN

Please tell us a little about yourself.

My name is Tobias Schaaf and i’m from
Germany. I’m 31 years old, and will be 32
by the end of August. I’m a sysadmin in
a software company which concentrates
on software solutions for smart metering,
smart home, and smart grid. I’ve been
interested in everything related to comput-
ers since early childhood. I love gaming,
reading books, watching movies and an-
imes, listening to music and audiobooks. I
also like to swim and, of course, everything
related to the ODROID.

How did you get started in computers?

The first thing that got me hooked was an
old Atari 2600 that my parents gave to me
as a present in my early childhood. Later,

my dad got a Com-
modore 64, and later,
a couple of Amigas
with hard drives. At
the age of 14, I got my
first PC with Windows
95, which I broke within
two weeks, and then had
my uncle rebuild with a du-
alboot PC-DOS and Win95
for me. I preferred the DOS way
over Windows. Ever since then, I have
made sure to constantly upgrade my com-
puter hardware, and normally have about
2-3 PCs actively running besides some old-
er ones that are standing around. Nowa-
days, there a lot of ODROIDs being added
to my PC hardware.

What is your favorite ODROID?

Up until now, the X2 was my favor-
ite one, with lots of USB ports, a nice
design, and very good quality. It had a

ODROID MAGAZINE 33

MEET AN ODROIDIAN

I’m also building a “real” Debian
repository, which allows you to install
and update the software that I ported
to the ODROID by using the apt-
get command. This also includes the
newest kernel verion, so you can up-
date the ODROID kernel by simply
typing apt-get dist-upgrade.

I am always looking around for
more awesome games to port to the
ODROID. I still have about 50 tabs
open of games and programs that I’m
considering working on next. There
is plenty more to do!

Pictured below is my beloved X2
which I mostly use for gaming since iI-
have the XBox 360 controller hooked up

to it, but as you can see by the SD Cards
laying around, it’s also a base for testing,
along with my two U3s.

Also shown is my build slave, which
is a U3 hooked up to a 1TB external
HDD, where I perform my software
magic for my latest ODROID projects.

On board the Nargoma, a museum ship that
agreed to let Tobias steer for a while

and updating. I also created .deb files
for XBMC to cleanly install and update
xbmc without using the update script
provided by @mdrjr, which simply cop-
ies the XBMC files over an existing in-
stallation.

Most of my work goes directly in the
GameStation Turbo image, so I work
mostly on new games and updating
cores for Retroarch. As far as I know,
I have the largest collection of working
cores out there for ODROID and al-
ways try to improve. I work on stabiliz-
ing them and adding new features at the
same time. Lately, @AreaScout has done
a very good job in helping me with these
tasks.

What type of hardware innovations would you
like to see for future Hardkernel boards?

1. SATA port(s)
2. 1000 Mbit LAN port
3. Two 100 MBit LAN ports to have native
routing abilities
4. Together with the SATA port, a custom
ODROID case which allows the addition
of hard drives to the ODROID to build a
powerful NAS
5. A portable ODROID PC like the Open-
Pandora.
6. A U3 underclocked to maybe 1.2 GHz to
reduce power consumption together with
a nice battery pack, a small keyboard and
a simple screen. That would be a nice
project!
6. Working power and reset buttons. I

think they worked rather well on the X2.
7. Better cases that allow access to all
parts of the ODROID without the need
to remove the case (for example, the
eMMC, SD and I/O port) or a case that
allows a bigger slower turning cooling
system, perhaps a 60mm fan with a big-
ger heatsink.

What are your future plans for ODROID and
your GameStation Turbo Image?

I have a lot of projects running
currently. The GameStation Turbo
Image is constantly under develop-
ment and improvement. I plan to do
more updates on the cores and adding
a few new ones. I want to exchange
the Amiga core from Retroarch for
fs-uae (another Amiga emulator) as
a standalone emulator, since it comes
in a OpenGL ES version which runs
much faster than the Retroarch core.

I also plan to include the N64
emulator that @AreaScout and I were
working on. There is still room for
improvement. I also noticed an issue
with PPSSPP under Debian Wheezy,
that the system pauses every now and
then within emulation. It happens on
the X86 version as well, so it’s an issue
with Debian itself.

I’m also considering moving to
Ubuntu 12.04 or 14.04. But, that
might not be necessary. PPSSPP
made some improvements in the last
few months, and the newest version
even supports ARMHF operating
systems, which all previous versions

did not. They also fixed some
graphical issues as well, so I have
to check on how this influences
my image.

Besides the GameStation
Turbo, I’m working on a proj-
ect to use scripts for installing
different kinds of servers on an
ODROID, for example, DNS,
DHCP, Samba and Active Direc-
tory, which will come with an
easy to use menu.

