
With the power of

ODROID

Repurpose your

ODROID
Volumio 2 • Android ADB Debug • Android navigation using IR remote

Magazine

N64

Exploring
RS485
communication
on C1+ and C2

A complete walkthrough allowing
you to use the classic Nintendo
console case with your favorite board

Offering
Native

ODROID-C2
Support

ODROID Year Four
Issue #41
May 2017

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the
quality and sophistication that is the hallmark of
our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and ODROID-XU4 devices to
EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Do you have an old Nintendo or other gaming console that
doesn’t work anymore? Don’t throw it away! You can re-
furbish it with an ODROID-XU4 running ODROID GameS-

tation Turbo, RetroPie or Lakka and turn it into a multi-platform
emulator station that can play thousands of different console

games. Our main feature this month
details how to fit everything into an
N64 shell, breathing new life into
an old dusty console case.

ODROIDs are extremely versatile, and
can be used for music playback, as de-

scribed in our Volumio 2 article, developing
Android apps, as Nanik demonstrates in his ar-

ticle on the Android Debug Bridge, and process
control, as shown by Charles and Neal in their discussion of the

RS485 communication protocol. We also have a guide to setting up
RetroPie, a gaming OS, which now offers native ODROID-C2 support in version 4.2.
Adrian details how to add more buttons to your ODROID-C1 or C2, Lorenzo presents his
technique for using an infrared remote control with Android, and Tobias continues his
Linux Gaming column with a look at the very popular racing game series called F-Zero.

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
a number of ODROID-U3’s, and Xu4’s, and looks forward to using the latest technologies for both personal and

business endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Went bonkers. Again!

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

retropIe - 21

xu4 gaMIng eMulator - 10

androId developMent - 12

odroIdInC.CoM - 20

lInux gaMIng - 17

SpaCeteaM - 25

rS485 - 24

hardware buttonS - 7

Ir navIgatIon - 14

voluMIo 2 - 6

Meet an odroIdIan - 26

If you’re a fan of high fidelity music, or just love rocking out,
Volumio 2 is a great feature-packed OS that is just what
you’re looking for. Almost a year ago, August to be exact, I

wrote an article about the awesome new features that Volumio
2 brought to the ODROID family. One such feature was the
ability for developers to easily add and create plugins. This
article is intended to get you up and running with one of my
favorite plugins called Spotify.

If you’re not familiar with Volumio 2, or if you want to get
the base OS up and running, I recommend having a look at the
original article first, which is located on page 26 of the August
2016 issue of ODROID Magazine at http://bit.ly/2pUExh8

Installation

Installation is very straight forward. Click on the gear icon
in the upper right of the screen and select “Plugins” from the
side menu. Once the plugins page loads, select the “Search
Plugins” tab, followed by the “Music Services” filter on the left
hand side, which should be the default category. On a clean
version of Volumio 2, Spotify will be the only plugin listed
under this filte, although more are available from 3rd party de-
velopers if you so desire. To install the plugin, simply click the

“Install” button on the bottom right of the Spotify plugin box.
Once you click the install button, Volumio will show a pop-

up box installer progress bar. For me, it took several minutes,
since Volumio needs to download and install several required
dependencies. After it installs, refresh the browser page, and
you will now see the plugin listed under the “Installed Plugins”
tab. Click the “on” toggle, then the settings button to enter in
your Spotify login information, and save it. After this, you are
ready to go!

Play
Now when you go the the playback options at the bottom

of the list, you will see an option for “Spotify”. Click this, and
you can browse through your playlists, as well as all other sta-
tions normally found on Spotify.

For more information please visit the Volumio 2 website at
www.volumio.org.

VOLUMIO 2

volumio 2 plugins page

VOluMIO 2
PLuGInS
STREAM MuSIC
WITH SPOTIFY
by @synportack24

+

Installation progress of the Spotify plugin

Spotify playback option on bottom of the list

ODROID MAGAZINE 6

http://bit.ly/2pUExh8
www.volumio.org

One thing I really liked about the ODROID 3.5” touch-
screen module is the inclusion of 4 hardware switches
that can be programmed to do just about anything.

But there is one shortcoming in my opinion: I wish there were
more buttons available. Can anything be done about that?

In order to get started using the 3.5” touchscreen, I found it
best to follow @fourdee’s guide at http://bit.ly/2oC7mdw. This
will help set up the touchscreen, but it does not suggest any use
for the buttons. While Hardkernel provides some sample code
(http://bit.ly/2pUogZy) to convert the 4 buttons in a virtual
keyboard that can output 4 key presses, we will not be using it
in this article.

My first idea of getting more out of these buttons was to
see if I could click 2 buttons simultaneously and generate a dif-
ferent event. The way the buttons work is to create a “short”
between the ADC pin and ground through one or more resis-
tors. Based on the resulting resistance value, the ADC pro-
duces a numerical value which helps you identify which button
has been pressed.

Figure 1a shows the design Hardkernel chose, while Figure
1b shows a small modification which could have added 3 more
“events” from these buttons. Had the resistors been mounted
closer to the ground, instead of before the switch, you could

HARDWARE BUTTONS

MuLTICLICK BuTTOn
HAnDLER FOR 3.5” LCD
AnD WEBCAM
GETTInG THE MOST OuT OF THE HARDWARE BuTTOnS
by adrian popa

Figure 1 (a) the original hK design & 1 (b) improvement option

Figure 2 - adC val-
ues for multiplexed

buttons (as table)

have created a parallel circuit when pressing two buttons and
have a different ADC value. I did the math (I was surprised I
still knew how 10 years after college) and worked out that for
an ODROID-C1 or C2, the values shown in Figure 2 would
have been possible with the reversed resistors.

One possible
issue with this ap-
proach might have
been getting “mis-
clicks” if the buttons
were not pressed si-
multaneously, but
since Hardkernel
didn’t implement
the hardware this
way, we need to explore other alternatives.

A different way to handle key events is to handle multiple
key presses as a single event. For example, you could handle
a “double/triple-click” event or even a “long-press” and have it
execute something else. The way you can detect such an event
is to set up a buffer, record key presses in the buffer, and when
the buffer is full, process the event.

Since this seemed like a fun and simple project, my plan
was to expand Hardkernel’s C code that handled the keys and
add this functionality. However, having been away from C
programming for quite a while, I decided to do it in Perl.

The code works a bit like this: There is an infinite loop
reading the ADC input. Once a change has been detected
(due to a key press), the value is recorded in a buffer. The sub-
sequent reads are also stored in the buffer (even when no key is
pressed) and when the buffer is full, the key sequence is identi-
fied, and some action is taken. This approach had the fortu-
nate side-effect that it adds support for key sequences such as

ODROID MAGAZINE 7

http://bit.ly/2oC7mdw
http://bit.ly/2pUogZy

before the buffer is interpreted like a long press. The default is
0.7, which means that 70% of the buffer has to be filled with
a key press (for our example it would mean holding down a
key for at least 1.4s). Note that if you hold down the key for
too long (e.g. 2.2s) and the buffer size is exceeded, the pro-
gram will interpret the first 2s as a long press and generate the
desired event and the final 0.2s as a short key press and fire a
different event. This can be mitigated in the code with a short
sleep after a long event if needed.

The final part of the configuration is the key to command
mapping. Key sequences are separated by a dash (-) and long
presses are prefixed by LONG. In the example above the key
sequence interpreted by the script is KEY1-KEY2-KEY3 (du-
plicated keys are ignored). To get a KEY1-KEY1-KEY1 se-
quence you need to release KEY1 for at least an updatePeriod
so that the buffer contains a blank reading between two keys.

To map a command to a sequence, simply type in the com-
mand you want executed on the same line after the ‘:’ sign.
The commands are executed in a background shell as the same
user as the script runs (root). If you need to run a graphical
command, you can prefix it with DISPLAY=:0.

Once the configuration is finished, you can copy it as /etc/
tftlcd35-key.yaml, activate the script and have it start up auto-
matically:

$ sudo cp custom-config.yaml /etc/tftlcd35-key.yaml

$ sudo systemctl enable tftlcd35-key

$ sudo systemctl start tftlcd35-key

Logging and debugging information goes to syslog and can
be viewed with the following command:

$ sudo journalctl -f -u tftlcd35-key

HARDWARE BUTTONS

“KEY1-KEY2” and “KEY1-KEY2-KEY3”.

To get the code and set it up, follow the steps below:

$ git clone https://github.com/mad-ady/tftlcd35-key.

git

$ cd tftlcd35-key

$ sudo apt-get install liblog-log4perl-perl \

libproc-background-perl libconfig-yaml-perl

$ sudo cp tftlcd35_key.pl /usr/local/bin

$ sudo cp tftlcd35-key.service /etc/systemd/system/

The code ships with a few configuration examples to use
based on your needs. If you only want 1 normal click and 1
long-click per key, use config-empty-1.yaml. If you want to use
2 key combinations use config-empty-2.yaml or if you want 3
key combinations use config-empty-3.yaml. The configuration
syntax is in simple YAML format. Just as in Python syntax,
indentation counts, and you should not use the tab character
to create white space. If, after starting the script, it generates
complaints about the configuration, you can use an online vali-
dator like http://www.yamllint.com/ to pinpoint the problem.
The default configuration sets logging to INFO level, which
sets the period between reads to 200ms, the buffer length to 10
and the longpress interval to 70% of the buffer length. If you
have issues, you can set the logging to DEBUG level, but it’s
very verbose. To understand how these parameters affect you,
let’s analyze the hypothetical buffer shown in Figure 3.

Each cell represents a value read from the ADC. The buffer
has 10 cells, so bufferSize has to be 10. Depending on how fast
you press and release a key, you can set the updatePeriod higher
or lower (default is 200000 microseconds, or 200ms). If you
set updatePeriod to something too long (e.g. 500ms), you will
miss keypresses because you can press and release the button
when the script is in sleep mode. If you set updatePeriod to
something too short, you may need a bigger buffer to record
all of your key presses. For instance, if you get the buffer listed
earlier in Figure 3, but you double-clicked KEY1, this means
your updatePeriod is too high.

From the moment you press a key, the script will take up-
datePeriod * bufferSize microseconds to react. This means that
having a high bufferSize gives you a high reaction time (you
pressed the button once, but the action happens 5 seconds
later). The default configuration uses a 2 second reaction time
(200ms * 10).

The final global parameter is longPress which represents the
number of items in the buffer that have to be a certain key

Figure 3 - Sample buffer

Figure 4 - example configuration

ODROID MAGAZINE 8

http://www.yamllint.com

Before starting the service, you will need to configure it.
The first step is to identify your input device and provide the
correct path to it in /etc/systemd/system/multibutton.service
(the -i parameter), as described above.

Next, adjust the configuration file to meet your your needs.
The syntax is the same as the touchscreen handler, however,
since in my case I have only 1 button, there is only one thing
I can control. The configuration file is in YAML format and
has the same 3 configuration options to change: polling period,
buffer size and long press percentage. In this case, updatePeri-
od is not as important, since the kernel will do the polling and
will forward all events to the end user (no more missed keys).

Then comes the key sequences in the format “KEY_LA-
BEL1-KEY_LABEL2”. You can get the correct labels with the
evtest command. Following the key labels you need to specify
the command(s) to be run. Figure 7 shows an example (see the
actual file for comments):

Once you have set up your configuration and systemd ser-
vice you can turn the service on with:

$ sudo systemctl daemon-reload

$ sudo systemctl enable multibutton

$ sudo systemctl start multibutton

You can view the logs with journalctl:

$ sudo journalctl -u multibutton -f

If you need to support multiple devices (e.g., say 2 cameras)
you can create a new service, point it to the new device and
load a different configuration.

Note that you can run this event handler on any input device,
including a real keyboard, and only configure certain key presses
to execute various commands. This could make for an interesting
alternative keystrokes where, for example, you bind “w” to execute
some arbitrary command when pressed three times in a row. Note
that the code has not been tested for handling multiple keys.

For comments, questions, suggestions, or bug reports,
please visit the support thread at http://bit.ly/2nFxvJh.

HARDWARE BUTTONS

Using a button on a device
If you do not have the Hardkernel 3.5” display to use, but

you have devices with physical buttons (like, a camera or a
sound card) you can still get multiple actions from them in a
similar way. For example, the Hardkernel 720p camera comes
with a button to take snapshots, which is rarely used. The but-
ton registers as an input device (e.g., as a standard keyboard)
and registers only 1 button as an event. You can easily find out
which keys are supported by running the evtest command, as
shown in Figure 5.

$ sudo apt-get install evtest

The input devices are mapped in /dev/input/event*, but the
mapping is dynamic so you cannot depend on the numbers
across reboots. Instead you should identify your device from
/dev/input/by-id/ which is more stable, as shown in Figure 6.

So, to benefit from click and multi-click events (double/
triple/long-press) you can download and install this handler
program:

$ git clone https://github.com/mad-ady/multibutton.

git

$ cd multibutton

$ sudo perl -MCPAN -e ‘install Linux::Input’

$ sudo apt-get install libconfig-yaml-perl liblog-log-

4perl-perl \

libproc-background-perl

$ sudo cp multibutton.pl /usr/local/bin

$ sudo cp config-minimal.yaml /etc/multibutton.yaml

$ sudo cp multibutton.service /etc/systemd/system

Figure 5 - evtest sample output

Figure 7 - multibutton.pl sample configuration

Figure 6 - Stable input mapping

ODROID MAGAZINE 9

http://bit.ly/2nFxvJh

I created an N64 gaming emulator with which I can play
games from Atari all the way up to N64 and PS1. I mod-
eled all the parts myself to fit into the case of an old, unus-

able N64 system. I am using an ODROID-XU4, which makes
it much easier and smoother for 4 players at once compared to a
Raspberry Pi 3.

I am using RecalBox as my emulation OS, which works great, al-
though it has a poor controller configuration options when it comes
to Nintendo 64. When building it, a hot glue gun was definitely my
best friend to be sure that my connections were tight, and my USB
ports were secure. I am still working on the routing of the HDMI,
so if anyone else would like to put their own spin on it, I would be
more then happy to see what you have in mind! This is just a rough
draft of my project so far, and I will make a much more detailed pro-
cedure regarding the steps that I took once I have it more complete.
Please do not do this to a working Nintendo 64 system! It broke my
heart enough for me to gut this non-working system.

Materials
- a old nintendo 64 system (preferably broken) and its hardware
(screws)
- odroId-xu4 w/ power supply
- Slim 4-port uSb data hub like this one, such as http://amzn.
to/2paphjz
- 2 x 1/2’ 2-56 screws
- Spdt MoM-on Switch, such as http://bit.ly/2pYldpS
- 2 x 1/4’ 4-40 Screws with nuts
- 1/2’ 4-40 screw
- 28 awg wire
- Soldering Iron
- hot glue gun
blue led with a 10 ohm resistor
rJ-45 Jack similar in size to the one at http://bit.ly/2ooqkZM
a power jack similar size (9mm x 15mm) to the one at http://bit.
ly/2oehoe4
- I used retrolink uSb controllers, which gives you the feeling of
playing the original system, but you can also use almost any uSb
controller, such as xbox or pS3
recalbox/batocera oS (http://bit.ly/2oodtSz)
lakka oS (http://bit.ly/2ptdwhx)

XU4 GAMING EMULATOR

Xu4 GAMInG
EMuLATOR
TIME TO REPuRPOSE THAT OLD COnSOLE
YOu BOuGHT FROM THE FLEA MARKET
by @Markt

3D Printing
The 3D print files may be downloaded from the Thingiverse

project page at http://bit.ly/2pXcaf6. Flip the USB ports on
their back (outlets pointing up) with rafts and support, then
print 2 game pack hold downs. Use raft and support for both
buttons/switches and the expansion pack cover.

Manufacturer: MakerBot
Printer: MakerBot Replicator
Rafts: Yes
Supports: Yes
Resolution: .20
Infill: 30%

As shown in Figure 2, everything is placed as it should be.
I have used hot glue to hold the USB terminals securely in the
slots, and zip ties for strain relief. My USB hub sits under the
raft. I have also attached an LED with a 10 Ohm resistor onto
GPIO 11 and GND. I soldered the other end of my switch to
the same switch that is on the board to the correct terminals.

Figure 1 - 3d printed case, fully assembled

ODROID MAGAZINE 10

http://amzn.to/2papHjz
http://amzn.to/2papHjz
http://bit.ly/2pYldPS
http://bit.ly/2ooqkZM
http://bit.ly/2oEhoe4
http://bit.ly/2oEhoe4
http://bit.ly/2ooDtSz
http://bit.ly/2ptdWHX
http://bit.ly/2pXcaf6

XU4 GAMING EMULATOR

Figure 2 - Inside of case Figure 5 - desolder the uSb ports and use roughly 28-30 awg
wire to extend the uSb ports out to the printed uSb slots. or buy
new uSb terminals, which are easier to solder

Figure 3 - the switch is screwed to the Switch_bottom print and
glued in place to secure then, then the white and grey wire are
soldered to the switch on the odroId board.

Figure 6 - the rear of the console showing the ethernet outlet and
dC power jack.

Figure 4 - ethernet and dC jack are soldered and glued securely,
making sure to have the dC jack soldered to the correct polariza-
tion before gluing.

Figure 7 - For the top, I printed the game pack hold downs to make
more space inside the console while maintaining the appearance
of the nintendo 64

ODROID MAGAZINE 11

Android Debug Bridge (ADB) is the only tool available for
developers to communicate with their Android devices.
ADB provides the ability for developers to dig deeper into

Android by allowing them access to the command line shell, which
opens the whole world of Android at their fingertips. Having access
to the command line shell, we can take a look at the logs, pull data
out from Android devices, installing and uninstall applications, and
much more.

We are going to take a look at ADB in depth and dissect how it
works internally. The article will be broken down into 2 part. This
article is the the first part of the series, and will talk about ADB in
general, and how it is being built as part of the build process and it’s
architecture. The second part will look more in detail at the different
parts of the ADB source code and how the magic of communication
with your device works.

ADB in L, M and N
Let’s take a look first how different the adb source code is for the

different version of Android. Figures 1, 2 and 3 show the source
code for Lollipop, Marshmallow, and Nougat respectively. The lo-
cation of the adb application is inside <your_android_directory>/
system/core/adb folder.

ANDROID DEVELOPMENT

DEEP DIvInG InSIDE
AnDROID
DEBuG BRIDGE (ADB) – PART 1
by nanik tolaram

From the screenshot, you can see that ADB in Lollipop was
written for C, while the other 2 versions are written in C++. The
number of files have increased in Nougat because of the new func-
tionality added, and a lot of refactoring has been done from previ-
ous versions to make the code more structured.

In terms of compilation artifacts, there are mainly 2 binary that
we are interested in: adb and adbd, as shown in next page.

ADB Architecture
Internally, ADB is structured as 2 different applications that run

as host and server. The “host” runs on your computer or laptop,
and the “server” runs on the Android device. The applications run
as a pair of client server connecting with each other either by IP or
USB. Once connection has been established, commands are sent
back and forth.

Figures 1, 2 and 3 - from left to right: lollipop/Marshmallow/nougat adb source.

ODROID MAGAZINE 12

Both adb and adbd are in the same code base, but what sepa-
rates them during the compilation process is the use of macro. This
makes the project output 2 different apps, as seen from the Android.
mk in Figures 4 and 5. The way adb runs inside the host is different
than inside the device.

As shown in the process flow of Figure 7, what really happens
internally running in the host computer is that adb spawns off a new
adb process that will be used to communicate with the remote An-
droid device. For example, if you run the command “adb devices”,

ANDROID DEVELOPMENT

Figures 4 and 5 - from left to right: adb target and abdb target.

Figure 6 - adb in host and adbd in android device

Figure 7 - process flow running adb in host

Figure 8 - 2 processes running inside host

adb will have 2 different process running in the computer: one run-
ning as a server doing the communication with the adbd in the An-
droid device, and the other process interpreting the command that
the user has instructed, which is “devices” in our example. Figure 8
outlines how adb will look like in the host computer when the user
executes a command such as “adb devices.”

What this means is that whenever you use adb to connect to
your Android device to do an operation, after the operation com-
pletes, there is a single process that is still running in your computer
connected to your Android devices. This long running process al-
lows you to continue performing operations on your devices with-
out losing any connection. In part 2, we will look more in depth
into the different parts of adb using the source code to dig deeper
and understand it.

ODROID MAGAZINE 13

nect digital pin 3 to the IR LED anode bringing the cathode
to ground through a series of 100Ω resistors. Next, prepare a
group of four buttons which connect the Arduino Nano +5V
power out pin to four different digital input pins, in this case 5,
6, 7 and 8. Remember to connect a 10 kΩ pull down resistor

In this project, we will create an IR based remote control
that we can use to remotely operate Android, removing the
need for a touch interface. This can be used as a simple

remote control, for a home-made Android TV system based on
an ODROID or, for instance, as an interface between the auto-
motive CAN bus network and the Android operating system.

This interface has been developed and tested to be fully
functional with an ODROID-C2 but, it should work just as
well with an ODROID-C1/C1+, running Android Lollipop
5.1.1 v3.4.

Hardware
requirements

•	 ODROID-C2
•	 1x Arduino Nano
•	 1x mini breadboard
•	 4x buttons
•	 4x 10 kΩ resistors
•	 1x 100 Ω resistor
•	 1x IR led

Software
requirements

•	 Android Lollipop 5.1.1 v3.4 from Hardkernel
•	 Arduino IDE v1.8.1
•	 Arduino IRremote library, http://bit.ly/1Isd8Ay
•	 Android file manager with text file editing capabilities

Building the IR
remote control

In this example, we will create an IR interface capable of
opening the Android app switcher, navigating through the app
list, and starting a desired app. Now, let’s build the IR remote
control!

According to the wiring diagram shown in Figure 1, con-

AnDROID nAvIGATIOn
uSInG An InFRARED REMOTE COnTROL
by lorenzo Carrieri

IR NAVIGATION

Figure 1 - wiring diagram

Figure 2 - Ir remote controller

ODROID MAGAZINE 14

http://bit.ly/1Isd8Ay

repeat_key_begin

 0x88 113

 0xdc 116

 ...

 0x12 580 (this is the new line added)

repeat_key_end

For the next step, ensure that IR debug mode is on. If it is
not, you can activate the debug mode through the remote.conf
file by changing debug_enable option from 0 to 1:

debug_enable = 1

If altered, save and reboot ODROID-C2 to apply the
change.

Arduino code for the IR remote
control

First, install all the needed libraries as described in the In-
stallation section at http://bit.ly/1Isd8Ay. Then, open a new
sketch and paste the following code:

/*

* ODROID IR SEND TEST

* An IR LED must be connected to Arduino PWM pin 3.

* Version 0.1 March, 2017

*/

#include <IRremote.h> // we include

the IR remote library

IRsend irsend;

void setup()

{

pinMode(5, INPUT); // now we set all the

input pin

pinMode(6, INPUT); // to which we will as-

sociate

pinMode(7, INPUT); // the selected Android

events

pinMode(8, INPUT);

}

void loop() {

// irsend.sendNEC(IR code, 32) is the function that

generate and send the 32 bit IR binary word

// in compliance with the IR NEC protocol (the same

of the ODROID IR receiver)

if (digitalRead(5)==HIGH) { // open the App switcher

irsend.sendNEC(0x4db2bb00,32);

between each input pin and the ground through the button, as
shown in the wiring diagram.

The remote.conf file
After building the remote, we need to know what this re-

mote will “say” to the ODROID-C2 IR receiver. Let’s open the
file called remote.conf, located in the ‘\system\etc’ folder. In
the file, you will find something similar to the following:

key_begin

 0x88 113

 0xdc 116

 ...

key_end

repeat_key_begin

 0x88 113

 0xdc 116

 ...

repeat_key_end

Look at the first line after the ‘key_begin’ statement; it is
made up of two parts: a binary string (hexadecimal coded),
an IR action code, followed by a keycode number. The first
part is the digital word the ODROID-C2 wants to read from
its IR receiver in order to execute the Android event associated
with the corresponding keycode number. A full list of Android
event keycodes is contained in the ‘/usr/keylayout/generic.kl’
file. For this example, we find the following keycodes:

Note that, except for APP_SWITCH, the other three
events are already present in remote.conf file, but they need a
little modification. For the moment, just add a new line for the
APP_SWITCH event in each section of the remote.conf file
enclosed by the _begin and _end statements:

key_begin

 0x88 113

 0xdc 116

 ...

 0x12 580 (this is the new line added)

key_end

IR NAVIGATION

table 1 - android event keycodes

ODROID MAGAZINE 15

http://bit.ly/1Isd8Ay

Repeat this procedure for all the
buttons, then save and reboot the
ODROID-C2. If everything went cor-
rectly, you should now have a fully work-
ing home-made ODROID IR remote
control.

Notes
The procedure described in this guide

lets the user start a specific Android
event using an external IR remote con-
trol. Since Android Lollipop 5.1.1 v2.9,
it has been possible to start a selection
of four different apps directly through
GPIO pins. This service recalls the An-
droid events F7, F8, F9, and F10 which
can be associate to a specific app simply
using the ODROID Utility application.
This result can be achieved also using an
external IR remote control. Simply as-
sociate the keycodes 65, 66, 67, and 68
to the events for F7, F8, F9, and F10
respectively, using the IR action code to
map the keycodes to events as demon-
strated in this article.

know the corresponding IR action code
to write in the remote.conf file. So, con-
nect your ODROID-C2 board to the
PC with developer option enabled and
open an ADB session in Windows com-
mand prompt and follow this procedure:

•	 press and hold one of the buttons
on the IR controller, for instance
the one associated with the app
switcher

•	 without releasing the remote
control button, enter the com-
mand dmesg into the ADB
prompt

•	 release the button.

Looking at the dmesg result, the last
rows should show something like this:

remote: scancode is

0x004b,invalid key is 0x0000.

The scancode 0x004b is the IR code
read by ODROID-C2 in which 4b is the
IR action code that we have been search-
ing for. Open the remote.conf file, go
to the line we previously added related
to the APP_SWITCH event, and write
the correct IR action code. Following
the above example, we would now have
the following:

key_begin

 0x88 113

 0xdc 116

 ...

 0x4b 580 (this is the

new line added with the correct

IR action code)

key_end

repeat_key_begin

 0x88 113

 0xdc 116

 ...

 0x4b 580 (this is the

new line added with the correct

IR action code)

repeat_key_end

}

else if (digitalRead(6)==HIGH)

{ // simulate tap on the screen

(press OK)

irsend.sendNEC(0x4dce00,32);

}

else if (digitalRead(7)==HIGH) {

// simulate scroll down

irsend.sendNEC(0x4db2d200,32);

}

else if (digitalRead(8)==HIGH) {

// simulate scroll up

irsend.sendNEC(0x4db2ca00,32);

}

}

As you can see in the code, the
function irsend.sendNEC(IR code,32)
takes an IR code as a parameter which
is a 32bit long integer, written here as
hex, that contains the IR emitter identi-
fier and the IR event code. In this code
we see it formatted in hex such as this:

0x4db2ca00, as shown in Figure 3.
For this example, we have four com-

mand buttons and four different ‘if ’
statements that, on true, call the func-
tion irsend to generate the correspond-
ing IR signal, compliant with the NEC
protocol, on digital pin 3. Now we can
load the sketch on to the Arduino Nano.

Configuring the
remote.conf file

The final step of this example is the
configuration of the remote.conf file,
which links the attribution of the cor-
rect IR action code to the desired An-
droid event. Note that, at this time, we
have assigned a specific IR event code to
each of the Android events, but we don’t

Figure 3 - Structure of the Ir code

Figure 4 - Complete system

IR NAVIGATION

hopefully a remote control for a
remote control will be the subject of
lorenzo’s next article

ODROID MAGAZINE 16

dirt patches that slow you down, or pads
that make you jump or give you a boost,
not all of which work in your favor. At
the start of each track, there is a recharg-
ing field that can restore your power if
you received damage.

With each round you complete, you
fill one boost, signaled by a green “S” in
the lower right corner of the screen. You
can stack up a maximum of 3 boosts,
which allow you to catch up quickly if
you were slowed down by hitting anoth-
er car or a wall.

Aside from the racers that you com-
pete against, the tracks will have random
cars popping up once you hit the second
round. These cars can slow you down,
or you get pushed against a wall. There’s
even a blinking car showing up at the
track occasionally, which you should
avoid hitting at all costs, since this one
is going to explode, dealing quite a bit
damage and completely throwing you
off course. Some courses even have mag-
netic strips or wind that lets your racer
slowly drift to the side.

The tracks are fairly tough, and I en-
joyed playing it a lot, although I’m nor-
mally not a fan of racing games. The old
Super Mario Kart really does nothing
for me, and feels very slow compared to
F-Zero. Unlike Mario Kart, the music
and game play in F-Zero fit perfectly to-
gether.

F-Zero had 5 more releases for the

The F-Zero series, which came out
for a lot of different systems, most
of which had limited capabilities,

turned out to be known for its very fast
past racing action. It came out for the
SNES first, and introduces what is now
called Mode 7 scrolling, which combines
scaling and positioning/turning of layers
to make an effect that looked like it was
in 3D. The same technique was later
used for Super Mario Kart. You choose
one of four racers and get right into the
action.

The game is very fast compared to
other racing games such as Super Ma-
rio Kart and is, at times, very unforgiv-
ing. For example, if you hit the edge
of the road, you will be damaged and
lose speed. You can also bounce off the
wall and other racers, which can lead to
some flipper effects and cause you to lose
speed and power/health very quickly.
The track also has some obstacles like

SNES as well as the Super Famicom Sys-
tem, which were only available in Japan.
It used the Satellaview satellite modem
add-on of the Super Famicom, which al-
lowed you to download a game to mem-
ory and play it until you replaced it with
another game.

The first game was released in 4
episodes: F-Zero Grand Prix - Knight
League, Queen League, King League,
and Ace League. Unfortunately, I
couldn’t get any of these to work, but
I read that there is a patch that should
work with BSNES to get the games to
work again. F-Zero Grand Prix 2 is
working fine, although it’s just the Ace
League that you can play. It feels even
faster than the original F-Zero game
with new exciting tracks, and is a lot
harder to play.

F-Zero X
The next release in the series was

a jump into 3D on the Nintendo 64,

LInuX GAMInG
F-ZERO SERIES CAR RACInG
by tobias Schaaf

LINUX GAMING

Figure 1 - F-Zero on the SneS in Mode 7

Figure 2 - F-Zero x on the n64

ODROID MAGAZINE 17

ond round, you can use boosts now,
but not like in the SNES version which
limited you to one boost per round; you
can use them as long as you have Energy.
Energy is similar to the power bar on
the SNES version, and reduces if you hit
obstacles like other racers. Starting with
the second round, you can use the same
energy to activate boosts. Each time you
activate it, you’ll lose some energy, and
with that also some of your “health”, so
you need to be careful how often you use
your boost.

Aside from the 4 racers of the origi-
nal game, there are additional 26 racers
that you can unlock and choose from,
which gives the game a much bigger
variety. The developers also added new
game modes: Time Attack, Death Race
and even a multiplayer spit-screen mode
called VS Battle. You could unlock not
only new racers, but also new cups, with
the final cup being the X-Cup with auto-
generated maps, which means that the
tracks were different each time you raced
them.

The game runs very nicely if you run
it on an ODROID-XU3/XU4 or an
Exynos 4-based ODROID (X, X2, U2/

where the series was picked up and im-
proved a lot, which is probably the best
known game of the series.

Right at the start, you’re greeted with
awesome fast-paced music, and every-
thing in this game screams “speed!”. The
game was intentionally produced with a
lower graphics quality, which means the
line of sight is somewhat limited. There
are only a few objects apart from the
racers and the track, and there’s rarely
any sky or other background elements
that can be seen. This was done to keep
the frame rate always at 60 FPS, which
makes the game feels very fast and flu-
ent. It all worked perfectly to create an
awesome racer game.

As mentioned earlier, the game had
many changes as compared to the SNES
version, such as racing against 29 other
racers rather than just 3. The tracks you
could race got a 360° upgrade, which
was fully used on the N64. You could
race in tubes that allowed you to drive
on the ceiling, or just spin around in cir-
cles. You could even race on the outside
of a tube, which means that instead of
being limited by walls in all directions,
you could only see the sky, which made
it seem like you could fall off of the track
at any time. In fact, falling off of the
track was a distinct possibility, and some
tracks, with their half or quarter pipes,
were actually designed to throw you off
the track to crash and burn. The game
came with bend curves, loops, and dif-
ferent kinds of jumps.

The way boosts could be used was
updated as well. Starting from the sec-

LINUX GAMING

U3) and is really fun to play. The emu-
lator supports rumbling of the joystick,
which gives you a little extra depth when
you hit a wall or an enemy or just crash
and burn.

F-Zero X Expansion
Kit

Two years after the release of F-Zero
X, Nintendo developed an expansion kit
for the game. This was only available in
Japan and only for the 64DD (the Nin-
tendo 64 Disk Drive). It was an expan-
sion disk that added new racers, new
cups and courses, new music, and two
very special extra features.

This expansion kit allowed you to
design your own racer for the game
where you could put the racer together
very much to your liking, paint it the
way you wanted, added logos and other
enhancements. That alone was already
a very cool feature, but the developers
went further and included a course edi-
tor. This allowed you to create your own
courses to race on no matter how crazy
they were, with twists, curves, and spins.
The expansion was praised for this fea-
ture the most. Unfortunately, you cur-
rently can’t use it on the ODROID, so I
couldn’t test it myself.

F-Zero on GBA
The F-Zero series moved then to the

Game Boy Advanced (GBA) on which it
had three releases. In 2001, one year af-
ter the 64DD expansion, the first game
called F-Zero – Maximum Velocity was
released, and was actually a launch title

Figure 3 - F-Zero x supports up to 4
player on split screen

Figure 4 - In F-Zero x you race against
29 other racers

Figure 5 - Spinning in circles in F-Zero x

Figure 6 - recharging your energy meter
in F-Zero x

LINUX GAMING

ODROID MAGAZINE 18

Climax, which was only released in Ja-
pan for the GBA. F-Zero Climax is ac-
tually the best of the 2D games in my
opinion. It has everything that made the
SNES version great, and adds the new
features from F-Zero GP Legend, with-
out the ridiculous pinball effects. This
one is really fun to play, and you have
lots of things to unlock while you com-
plete races. It even comes with a track
editor that allows you to create your own
crazy tracks.

Other F-Zero titles
In 2003, there were also two new

3D games released in the series for the
Nintendo GameCube and arcade: F-
Zero GX and F-Zero AX. Both of these
games were similar and actually could
share game data, means you could take
your character from the Game Cube and
put it into the arcade machine to unlock
extra content. This was very unique,
and the Arcade system actually looks re-
ally awesome with a cockpit and pedals
and nice steering wheel: https://www.
youtube.com/watch?v=MAFZvKkVt10.

The graphics are really nice and the
gameplay is ultra fast which makes this

ers/characters. The story is told through
nice anime-style cut-scenes.

The game updated the graphics a lit-
tle as well, and shows off some weather
effects. However, the game has some is-
sues with bouncing off of walls and other
racer, which leads to terrible pinball be-
havior, where you have no control over
your racer and just get slammed into the
walls left and right and can do nothing
against it. That’s very frustrating and
really interferes with the gaming experi-
ence. The symbiosis of SNES and N64
elements is actually quite nice, although
the graphics are quite a step back com-
pared to the N64 version.

The final installment of the series was
released in 2004 and is called F-Zero

for the GBA. This time the F-Zero se-
ries went back to its origin and the game
pretty much looked and played like the
old SNES version. Thanks to the higher
processing power of the GBA com-
pared to the SNES as well as the higher
number of colors, the game runs even
faster and smoother on the GBA than
the SNES version does, although it has
a lower resolution, due to the smaller
screen of the GBA. I went back to play
the SNES version for a little while after
I played the GBA version, and it really
felt like suddenly the game was much
slower. While the SNES version has a
higher resolution and cars look much
better, the background in the SNES ver-
sion was rather dull compared to the
GBA version. I prefer the GBA version
over the SNES version even though the
resolution is somewhat lower, because
the game is faster and overall more fun.

In 2003, F-Zero GP Legend was re-
leased for the GBA. This game is closer
to the N64 version, and also based on
an anime with the same name. In GP
Legends, similar to the N64 version,
you now race as one of 30 racers in a
Grand Prix, although it still feels closer
to the SNES version because you only
see a few racers on the track. However,
you can play and unlock up to 34 rac-
ers/characters, just like the N64 version.
Other features of the N64 version were
also introduced into the game, such as
the power meter doubling both as health
and booster energy. It added a couple
new game modes such as time attack,
and a story mode that allowed you to
follow the story of 8 out of the 34 rac-

Figure 7 - F-Zero Maximum velocity on the
gba, looks much like the SneS version

Figure 8 - new game modes in
F-Zero gp legends

Figure 9 - Story mode in F-Zero gp leg-
end is told in anime cut-sequences

Figure 10 - weather effects in F-Zero
gp legend, fog in misty places

Figures 11 and 12 - F-Zero Climax is prob-
ably the best you can get on a system
like the gba with nicely drawn back-
grounds and smooth and fast gameplay

LINUX GAMING

ODROID MAGAZINE 19

https://www.youtube.com/watch%3Fv%3DMAFZvKkVt10
https://www.youtube.com/watch%3Fv%3DMAFZvKkVt10

LINUX GAMING

game really fun. Unfortunately, nei-
ther the GameCube version nor the
arcade version can currently run on
ODROIDs, but this might change with
future boards. However, if you have a
PC with Dolphin Emulator for Game-
Cube, you can play the game in up to
4k resolution and turn on other effects
depending on what your PC supports,
making this game graphically very im-
pressive. You should definitely give it a
try if you like racing games.

Notes
I’m very new to the F-Zero series, but

I enjoyed it a lot. I liked the SNES ver-
sion when I first played it for being so
much faster than Super Mario Kart, but
after playing the GBA versions, even the
SNES version seems slow. I definitely
prefer F-Zero Climax over GP Legend,
although the story mode is a nice addi-
tion. F-Zero X on the N64 is great as
well, especially if you want to play with
friends. The 3D spinning is very fun,
and I really enjoy the music of the N64
version. This game just make you feel
the speed, and the rumbling support
gives it a little more of an arcade feel. I
hope that one day we will be able to play
the GameCube version on a ODROID
as well, and have all the F-Zero glory we
want right there in one device.

A nEW ODROID
STORE IS
OPEn In THE uS
vISIT ODROIDInC.COM
by rob roy (robroy)

Anew Hardkernel distributor has just opened an online store in the Unit-
ed States, which offers their complete catalog of products, including the
ODROID-XU4, ODROID-C0, ODROID-C1+ and ODROID-C2. The

site calculates bulk discounts for a number of products and several shipping options
for fast delivery. It will be opening in mid-April, so make sure to visit the new web-
site at www.odroidinc.com for all of your single board computer needs.

 ODROIDINC.COM

bruno and rob roy really take their
F-Zero games seriously

ODROID MAGAZINE 20

Ubuntu minimal image. You’ll also
notice that the documentation has re-
ceived a much needed update at http://
bit.ly/2pdVK42. There are many other
changes, including usability improve-
ments, and bug fixes – for more details
please see the changelog below.

You can download a 4.2 image from
http://bit.ly/1WB25BO. For new in-
stallations, please follow the installation
instructions at http://bit.ly/2pdZNO2.
If updating from 4.0.x, you should make
a backup first, then choose “Update all
installed packages” from RetroPie-Setup
main menu. Anyone upgrading from
3.x will need to update the RetroPie-Set-
up script first, as detailed at http://bit.
ly/2pXcV80.

You can also install RetroPie on top
of an existing Raspbian setup, or on top
of Ubuntu on a PC/Odroid-C1/C2.
Links to the relevant instructions can be
found in the downloads area. Thanks to
all those who contributed to this release
with a special mention to @fieldofcows
for his excellent EmulationStation im-
provements.

Changelog
•	 EmulationStation Improvement:

Video Support, White Screen of
Death Fix

•	 Support for the ODROID-C2
on top of the Ubuntu 16.04
minimal image

RetroPie allows you to turn your
Raspberry Pi or PC into a retro-
gaming machine. It builds upon

Raspbian, EmulationStation, RetroArch
and many other projects to enable you to
play your favorite Arcade, home-console,
and classic PC games with minimum
set-up. For power users, it also provides
a large variety of configuration tools to
customize the system as you want. Ret-
roPie sits on top of a full OS, you can
install it on an existing Ubuntu image,
or start with the RetroPie SD image and
add additional software later.

Emulators
An emulator is software that makes a

computer behave like another computer,
or in the case of RetroPie, a computer
that behaves like a video game console
such as the Super Nintendo. The Ret-
roPie SD image comes pre-installed
with many different emulators. ROMs
are digital versions of game cartridges.
Loading up a ROM in an emulator is
the equivalent of putting a cartridge in
a game console. ROMs are copyrighted
content and as such are not included
with RetroPie.

Version 4.2
A lot has happened since 4.1, with

updates to EmulationStation adding
video support and fixing the dreaded
white screen of death. Many packages
have been updated, and RetroPie 4.2
includes the latest RetroArch v1.5.0 as
well as Kodi 17 (installed optionally).
RetroPie 4.2 also includes initial sup-
port for the ODROID-C2 board, which
is installed on top of the ODROID-C2

•	 Kodi 17 now installable from op-
tional packages

•	 AdvanceMame has been updat-
ed and split into three separate
packages: 0.94, 1.4 and v3.3

•	 Updated to RetroArch v1.5.0
•	 To match upstream changes, lr-

mupen64plus has been renamed
to lr-parallel-n64, and lr-glu-
pen64 has been renamed to lr-
mupen64plus

•	 Fixed launching Pixel desktop
and other X11 apps from Emu-
lationStation

•	 Fixed problems building Zdoom,
ResidualVM and Mupen64Plus
and PPSSPP

•	 Doom ports will automatically
add launch scripts if it finds
doom1.wad, doom2.wad, tnt.
wad, or plutonia.wad

•	 lr-snes9x emulator added, which
is a libretro port of the current
snes9x codebase

•	 Added Amiberry (an Amiga em-
ulator), which is an updated fork
of uae4arm, with more features

•	 Multi disk zip support for Vice
(C64 emulator), fs-uae, uae4arm
and Amiberry (Amiga)

•	 You can now launch Amiga disk
images directly from Emula-
tionStation with uae4arm and
Amiberry

•	 Standalone version of Stella (At-

RETROPIE vERSIOn 4.2
nOW OFFERInG nATIvE ODROID-C2 SuPPORT
edited by rob roy

RETROPIE

ODROID MAGAZINE 21

http://bit.ly/2pdVK42
http://bit.ly/2pdVK42
http://bit.ly/1WB25BO
http://bit.ly/2pdZNO2
http://bit.ly/2pXcV80
http://bit.ly/2pXcV80

Fixing non-working sound
If you have troubles with no sound or sound stuttering bad-

ly in menu or game, check your CPU usage via top or htop.
If pulseaudio is using more than 20%, then it may be the cul-
prit. In my case, it was using 80%! I had only one sound
card output (HDMI) so I completely removed pulseaudio. For
Ubuntu 14, this is done with a single command:

$ sudo apt-get --purge remove pulseaudio

To disable pulseaudio instead, type the following com-
mands into a Terminal window:

$ mkdir ~/.pulse

$ echo “autospawn=no” >> ~/.pulse/client.conf

$ pulseaudio -k

Configure controllers
On first boot, your filesystem will be expanded automati-

cally, and you will then be welcomed with the controller con-
figuration menu for both Emulationstation and RetroArch
Emulators. Hold down any button on your keyboard or game-
pad and the name will appear at the bottom and then open up
into a configuration menu. Follow the onscreen instructions
to configure your gamepad. If you run out of buttons just hold
down a button to skip each unused button. When asked to
press “OK”, press the button you have configured as “A”.

If you wish to configure more than one controller, you can
do so from the start menu of emulationstation. For more de-
tails on manual controller configurations, please refer to http://
bit.ly/2ooycuf.

Hotkeys
Hotkeys enable you to press a combination of buttons to

access functions such as saving, loading, and exiting emulators.
The following chart shows the default hotkey combinations. By
default, the hotkey is selected, so that means you hold down se-
lect while pressing another button to execute a command. Hot-
keys are only specific to the retroarch/libretro based emulators.

ari 2600 emulator) updated to v4.7.3
•	 usbromservice, which supports mounting of USB sticks

over ~/RetroPie to keep ROMs on USB
•	 Ability to set custom ES themes in configs/all/plat-

forms.cfg, which can override any setting in RetroPie-
Setup/platforms.cfg

•	 SDL2 updated to 2.0.5
•	 @Sselph’s scraper updated to the latest version, and new

options added. Scraper has been moved to optional
packages and needs to be installed before it will show
up in configuration / tools

•	 Include PowerBlock and ControlBlock driver packages
•	 Input configuration script for Daphne
•	 RetroPie setup menus now works with all connected

joysticks, although mapping is still hardcoded
•	 Updated RPI detection code to support BRANCH=next

firmware/kernel
•	 Overhaul of the runcommand launch script
•	 Raspbian Wheezy support removed
•	 New packages added to experimental section

Building RetroPie
To build RetroPie for the ODROID-C2, start with a pre-

built image of Ubuntu from Hardkernel’s website at http://
bit.ly/1dFLsQQ (http://bit.ly/1OU4kbl). Extract the .xz file
with a program like 7zip, then write the .img file to your SD
card or EMMC module with Win32DiskImager (http://bit.
ly/2pe19YV). Unlike the RetroPie SD Image, the ODROID
image will auto-expand the filesystem, so there is no need for
that step here. To start, type the following commands into a
Terminal window:

$ sudo apt-get update && sudo apt-get upgrade

$ sudo apt-get install -y git

$ cd

$ git clone --depth=1 https://github.com/RetroPie/

RetroPie-Setup.git

$ cd RetroPie-Setup

$ sudo ./retropie_setup.sh

If you have issues while compiling modules and it freezes up
on you, then you need to tell it to only compile with one core
by running the setup script:

$ sudo MAKEFLAGS=”-j1” ./retropie_setup.sh

All modules can be installed from the RetroPie Setup Script.
The two main packages you need in order for the majority of
your system to run are RetroArch and EmulationStation. You
can then choose your emulators from the available options.

RETROPIE

ODROID MAGAZINE 22

http://bit.ly/2ooycuf
http://bit.ly/2ooycuf
http://bit.ly/1dFLsQ
http://bit.ly/1dFLsQ
http://bit.ly/1OU4kbl
http://bit.ly/2pe19YV
http://bit.ly/2pe19YV

to enable SSH (http://bit.ly/2oDSP0S).
The default username is “pi”, and the de-
fault password is “raspberry”. You can
also login as root if you wish to change
more files than just the ROMs, but
you first need to enable the root pass-
word, which is explained at http://bit.
ly/2pdX3QG.

To transfer via Samba from a Win-
dows machine, type \\retropie into the
Windows Explorer, or type \\<ip-ad-
dress>. If using OS X, select “Go” in the
Finder, and “Connect to Server”. Type
smb://retropie (or use the IP address)
and select “Connect”.

Playing games
After you’ve added your ROMs,

you need to restart EmulationStation
in order for them to show up by using
the Start menu, or by rebooting your
ODROID using the “sudo reboot” com-
mand. Please refer to the Retropie docu-
mentation at http://bit.ly/2pdVK42 for
more detailed information on individual
emulators and advanced settings. For
topics not covered in the documenta-
tion, you can refer to the helpful Ret-
roPie community forums at http://bit.
ly/2oE5D7l.

The RetroPie Project is primarily
maintained by a few developers who de-
velop it in their free time. If you have
found the RetroPie project useful please
consider donating to the project at
http://bit.ly/2q7bbs0. As you become
more familiar with RetroPie, pay it for-
ward by helping others on the forum.
The RetroPie Project is what it is today
because of the many contributions of the
community. For comments, questions,
and suggestions, please refer to the origi-
nal article at http://bit.ly/2pX8Vof.

Installing additional
emulators

On RetroPie 4.0+, not everything is
installed by default. The pre-made im-
ages contain the best working emulators
for each system supported by the hard-
ware. This should cover everything most
users would be doing. Ports like quake
and doom and some other emulators
like ScummVM can be installed later.

Software can be installed from the
RetroPie-Setup script, which is acces-
sible from the RetroPie menu on Emu-
lationStation. Once there, you can navi-
gate to “Manage Packages”, where you
will see various sections. In each section
are lists of packages that can be installed
along with what is currently installed.
Stable additional packages are under the
“Optional” section, with more unstable
packages listed under experimental. The
packages are ordered first by type, then
alphabetically. By selecting a package
you can choose to install it or remove
it. Some packages also have additional
configurations.

Transferring ROMs
Due to the nature/complexity of

Copyright and Intellectual Property
Rights Law, which differs significantly
from Country to Country, ROMs can-
not be provided with RetroPie and must
be provided by the user. You should
only have ROMs of games that you own.
There are three main methods of trans-
ferring ROMs: USB, SFTP, and Samba.

To transfer via USB, Ensure that
your USB is formatted to FAT32 or
NTFS, then create a folder called ret-
ropie on your USB stick. Plug it into
the ODROID and wait for it to finish
blinking, then pull the USB out and
plug it into the computer containing the
ROMs. Add the ROMs to their respec-
tive folders in the retropie/ROMs folder,
then plug it back into the ODROID and
wait for it to finish blinking. Refresh
EmulationStation by choosing “Restart
EmulationStation” from the Start menu.

To transfer via SFTP, you first need

RETROPIE

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE 23

http://bit.ly/2oDSP0S
http://bit.ly/2pdX3QG
http://bit.ly/2pdX3QG
http://bit.ly/2pdVK42
http://bit.ly/2oE5D7l
http://bit.ly/2oE5D7l
http://bit.ly/2q7bbs0
http://bit.ly/2pX8Vof

This article is intended to discuss the RS-485 communi-
cation protocol based on my experiences, rather than
explaining the principles of RS-485 communication. I

have often set up communications between systems using RS-
232, which is simpler, cheaper and more widely used than oth-
er communication protocol. It involves attaching the RS-232
driver chip in any MCU (usually using an 8-bit MCU made
by PIC or Atmega) and setting the UART port to talk with
the other MCUs. For peer to peer communication and a short
distance, I use RS-232. However, lots of industrial systems use
RS-485 communication, which supports stable communica-
tion and can propagate messages to many devices from a single
source at a distance.

An engineer who has experience in implementing UART
drivers will find it easy to create an RS-232 or RS-485 con-
nection, because both RS-232 and RS-485 simply specify the
electrical characteristics of the generator and receiver. It does
not specify or recommend any communications protocol, only
the physical layer.

However, if you have a problem when building the system
using RS-485, you might have to use debugging. I just want
to introduce simple RS-485 communication example that is
half duplex operation using 2-wire. First, wire up the devices
as shown in Figures 1a and 1b. Your setup should look like the
picture in Figure 2.

EXPLORInG RS485
COMMunICATIOn On C1+
AnD C2 BOARDS
by Charles park and neal Kim

RS485

Figures 1a and 1b - Schematic diagram of the rS-485 module

table 1 - pin layout chart

Figure 2 - odroId devices connected via rS-485

ODROID MAGAZINE 24

message can then trigger an action on
the slave.

To run the script, type the following

command on the ODROID-C2 master
device, which should show similar re-
sults to Figure 3:

$ sudo ./rs485_test –d /dev/ttyS1

–b 115200 –p 1 –m 1

To verify that the messages are being
acknowledged, type the following com-
mand on the ODROID-C1 slave device,
which should show similar results to Fig-
ure 4:

$ sudo ./rs485_test –d /dev/ttyS2

–b 115200 –p 1 –m 0

Software
We tested the following steps using

an ODROID-C2 (master) and C1+
(slave) running the latest Ubuntu im-
ages, both downloaded from http://bit.
ly/1R6DOgZ. Before starting, run the
following commands in a Terminal win-
dow on both devices, then reboot:

$ sudo apt-get update && sudo

apt-get upgrade \

 && sudo apt-get dist-upgrade

$ sudo apt-get install git vim

To build the test application, we need
the library wiringPi. First, download the
rs485_test.c source code from https://
pastebin.com/GN2LxwZV. Then,
download wiringPi and compile the test
script into an executable with the follow-
ing commands:

$ git clone https://github.com/

hardkernel/wiringPi

$./wiringPi/build

$ gpio –v

gpio version: 2.33

Copyright © 2012-2014 Gordon Hen-

derson

This is free software with ABSO-

LUTELY NO WARRANTY.

For details type: gpio –warranty

Hardkernel ODROID Details:

Type: ODROID-C1/C1+, Revision: 1,

Memory: 1024MB, Maker: Hardkernel

$ gcc –o rs485_test rs485_test.c

–lwiringPi -lpthread

Communication
The master device transfers a mes-

sage, including the ID, every second to
the slave devices, then waits to get an
acknowledgement (ACK) response from
the slave. In case the master doesn’t re-
ceive the ACK response from the slave,
the master will increase the variable ack_
fail_count and retransmit the message to
the slave. The slave continually waits to
get a message from the master, and sends
an ACK response to the master immedi-
ately upon receiving the message. This

RS485

table 2 - protocol Structure

Figure 3 - results of rS485 test script
on odroId-C2 Master

Figure 4 - results of rS485 test script
on odroId-C1 slave

ANDROID GAMES

SPACETEAM
nOW YOuR FRIEnDS
HAvE A GOOD REASOn
TO YELL LOuDLY AT
EACH OTHER
by rob roy

Spaceteam is a cooperative party
game for 2
to 8 players

who shout tech-
nobabble at each
other until their
ship explodes.
You’ll be assigned
a random control
panel with buttons, switches, sliders,
and dials. You need to follow time-
sensitive instructions. However, the
instructions are being sent to your
teammates, so you have to coordinate
before the time runs out. Also, the
ship is falling apart, and you’re trying
to outrun an exploding star. Good
luck, and remember to work togeth-
er... as a Spaceteam!

https://play.google.com/store/
apps/details?id=com.sleeping-
beastgames.spaceteam

In Spaceteam, you work together in real
life to control the virtual spaceship

ODROID MAGAZINE 25

http://bit.ly/1R6DOgZ
http://bit.ly/1R6DOgZ
https://pastebin.com/GN2LxwZV
https://pastebin.com/GN2LxwZV
http://bit.ly/1msfObs
http://bit.ly/1msfObs
http://bit.ly/1msfObs

ed to be a great
platform, even
though the hard-
ware should have
allowed it to fly.
My U2 was a fun
toy, but it never re-
ally gets much use.
The C1 and C1+
were my next pur-
chases, and they
showed promise.
However, the C2 was the game chang-
er for me. My C2 is one of my main
2160/50p HEVC players running Li-
breElec. Forum user @wrxtasy and the
team developing LibreElec and Kodi for
the AMLogic S905 platform deserve a
lot of credit for their hard work in get-
ting Kodi to such a great point on the
ODROID platform.

I mainly use my C2 for running Li-
breElec to run Kodi. The lack of a mod-
ern kernel, which I know is coming,
means that running my C1/C1+s as TV
Headend backends is a pain because of
limited kernel support of modern DVB-
T2 tuners, which would be my ideal task
for them. I run the C1s as secondary

media players. I
have an x86 box
running as my main
TV Headend server
at the moment.

The ODROID-
C2 is my favorite
ODROID because
it offers awesome
media player func-
tionality at a fan-
tastic price. The
eMMC storage is
nice and fast. It
would be nice
to see integrated
802.11ac WiFi and
Bluetooth 4.0 or

I work in the broadcast industry in a
creative role, but started my career as a
Research and Development engineer at
a Broadcast Equipment manufacturer. I
currently live in London, England, and
have an engineering degree from Cam-
bridge University.

My first computer was a ZX81 from
a kit in 1981 with my dad. After that,
I had an Acorn BBC Micro, an Acorn
Archimedes, which was my first ARM
based home computer, and various DOS
machines until I ended up on Windows,
then a Macintosh. I have a large collec-
tion of classic 8- and 16-bit micros from
the 1980s. More recently, I have been
playing around with Linux on x86 and
ARM platforms for media playback, TV
reception, VOIP PBX, and home auto-
mation, and have started playing with
ESXi VMs. I also have an unRAID serv-
er that I built, which stores all my media.

I was attracted to the ODROID plat-
form for its performance and price. I
initially bought a U2, since it generated
a lot of buzz in Kodi circles (I’m a mod-
erator on the Kodi forums), which was
a little disappointing in the end. The
U2 didn’t quite get the support it need-

MEET An ODROIDIAn
STEPHEn nEAL (@nOGGIn)

MEET AN ODROIDIAN

higher, along with a Displayport output
capable of retina resolutions. HDMI is
great, but running an iPad Retina screen
via an eDP to DP converter, which is a
trivial bit of hardware and widely avail-
able, would allow the use of cheap 9.7”
retina displays, which would make an
awesome “not quite tablet”. USB 3.0
support would also be fantastic for high
speed storage bandwidth. Effectively, it
would be great to see a C2 / XU4 hybrid,
if such a SoC exists!

I’d also like to see up-to-date kernels.
The Raspberry Pi and x86 platforms are
more flexible than the ODROID be-
cause of this. I love my ODROIDs, but
an up-to-date kernel with driver support
for new devices would make them even
better.

In my free time, I enjoy learning lan-
guages, watching TV, reading crime fic-
tion, and traveling. I’ve been fortunate
to be able to travel widely in my job, and
really enjoy visiting new places.

My advice for new programmers is to
just jump in and buy a cheap ARM com-
puter like the ODROID-C1+ or C2, or
a Raspberry Pi, since its educational sup-
port is second-to-none, and learn about
Linux. Afterwards, branch out to learn-
ing Python. You should also use Google
wisely, since you can learn a lot by see-
ing how other people have solved similar
problems.

Stephen enjoys reading crime fiction

the Zx81 computer kit was an amazing machine when it was first
introduced, and got Stephen started with computers

ODROID MAGAZINE 26

