

Linux Gaming on ODROID: Game Nostalgia Part 1 – Games I always
come back to
 October 1, 2018

I want to talk about games I used to play, or games I keep coming back to even today
and games that I play on the ODROID

Car Infotainment System: Using an ODROID-C2
 October 1, 2018

I’m proud to present my “ODROID Car Infotainment System”

ODROID Bench
 October 1, 2018

We have set up a remote ODROID experience zone for someone who wants to
measure, preview, and test the performance of ODROID SBCs. The ODROID SBCs in
our testbed connected to Gbit ethernet and are open to the public. The experience

zone o�er benchmarks for performance, cloud server and more

Wireless Charging: Adding Qi Wireless Charging to the ODROID-GO
 October 1, 2018

To show that this device was better than people were saying, so I made my �rst video
about the GO: a mini-review video about the ODROID-GO. After many more videos, I’m
now writing an article to be published, which I have never done before, so the goal is

to add

Coding Camp – Part 5: Read the ODROID-GO built-in battery voltage
 October 1, 2018

We will learn how to get the status of the battery with Arduino in this guide. The LCD
will display how much battery voltage remains in volts.

Introducing NEMS Linux: Part 1 – The Nagios Enterprise Monitoring
Server for ODROID Devices
 October 1, 2018

NEMS Linux has evolved to be what I feel is the best out-of-the-box Nagios experience
available. As a Nagios user myself, this is the Nagios server I have longed for. As NEMS

has continued to grow, I set out to �nd a more powerful platform than the Raspberry Pi. That’s

BASH Basics: Introduction to BASH – Part 5
 October 1, 2018

Our adventure into scripting continues with more tests, if statements, input and
functions; we also do calculations from within BASH. First, let’s look into �lename
manipulation, since this seems to be one of the most popular things needed in

beginner scripts. As a bonus for making it through a lot

GBM Video Driver
 October 1, 2018

This is a guide to install GBM-enabled user space drivers and build retro gaming
emulators.

Coding Camp – Part 6: Generate sound from the ODROID-GO
speaker
 October 1, 2018

Let us learn how to use the DAC output as a sound tone generator.

Meet An ODROIDian: David Knight
 October 1, 2018

Please tell us a little about yourself. I live in Newcastle, UK, working as an optometrist
working in the refractive surgery sector. My day job involves managing patients who
have had cataract or laser eye surgery. I was very studious and introverted in my

youth, always having my head in

Linux Gaming on ODROID: Game Nostalgia Part 1 – Games I
always come back to
 October 1, 2018  By Tobias Schaaf  Gaming, ODROID-XU4

Last time I talked a lot about my past, how I grew up
and what systems mostly in�uenced my childhood.
This and other events also sparked a thread in the
forum about a topic that I call Game Nostalgia. I
thought this was a nice topic to pick up but more
related to ODROIDs and see how I can project my
nostalgia in the ODROID environment. Therefore I
want to talk about games I used to play, or games I
keep coming back to even today and games that I play
on the ODROID, for that matter.

Loom

I think I have played nearly all LucasFilm/LucasArts
adventure games, especially all of the ones that were
created with the SCUMM Engine, starting with Maniac
Mansion, which gave the engine its name. I consider
the LucasArts adventure games to the best games I
have ever played and I am glad I had the chance to
experience these games when I was growing up.

Many “console” gamers likely missed most of these
games, as Point-And-Click adventures were mainly
available on “computers” and not consoles, and I can
only say if you never played LucasArts Adventure
games in your life, you missed a great deal of gaming
history.

Monkey Island, Indiana Jones, Loom, The Dig – these
games really changed me and carried me away in
wonderful, bizarre and magical worlds, as a child and
even as an adult these days.

Loom which is also a LucasFilm game will always hold
a special place in my heart, which might be hard to
understand, as commercially and also critically the
game was not as successful as other LucasArts
games. But for me, the game is very fascinating, and
many other LucasArts games referenced this game
over and over again as hidden (or not so hidden)
Easter eggs.

Figure 01 – Loom reference in The Secret of Monkey
Island (very subtly and hidden reference… not)

Loom is a game full of “guilds”: the weavers, the glass
makers, the blacksmiths and so on. You are part of
the weavers guild. and your guild invented “The Great
Loom”, which allows the weavers to weave the
threads of reality itself, which of course was deemed
forbidden right away. The weavers also wove the
great tapestries which show the history of the guild.
Although the weavers do not use the Loom, they are
still very capable spell weavers who can cast spells
with the help of a dista� and combinations of musical
notes.

The story unfolds around Bobbin, who is a child of the
Loom, as he came to existence through “The Great
Loom” itself, which is explained in a beautiful audio
drama that came on a cassette if you bought a
speci�c version back in the days. Nowadays, you can
�nd the audio drama on YouTube if you want to listen
to it. He ends up as the last of his guild and tries to
�nd the rest of his kind, which is where you take over
to control him. You learn magical spells on your way
and have to learn how and when to use them to solve
di�erent puzzles.

Figure 02 – Disturbing the dead is a very bad idea
Bobbin. You were told not to do that, don’t try it!!!

What fascinated me about this game the most is the
real use of “magic”, which is something you did not
�nd in any other game of it’s time. There were games
such as “Simon the Sorcerer” which never casts a
single spell despite it’s name, or the Legend of
Kyrandia series, which is about young magicians and
once again you do not use any magic at all (a bunch of
potions, but no “real magic”). I always found this very
confusing, there are so many games about so called
“wizards or magicians” but none of them really casts
any spells. Even much later, these so called Harry
Potter games for example are more “shooter” then
that you actually use real SPELLS to solve something.
A wand that shoots sparkles to kill monsters and goes
“pui pui” is not “magic” for me, it is just a stupid
shooter with a magic touch.

Loom was di�erent: you had spells that could open
doors, you had spells that could “re�ll” certain things
(a cup of wine for example), you had a spell that could
even turn straw to gold! You had over 15 spells (called
drafts) you could learn within the game that you used
to solve riddles.

I really liked the story of this game and how it unfolds.
It was originally planned as a trilogy, but was canceled
after this �rst part. I also love its classic Swan Lake
soundtrack. I used to play the game at least once a
year, and it took me only something between 30 to 60
min to �nish the game. If you want to play it
nowadays on ODROIDs, you can use ScummVM to run
it perfectly �ne on ODROIDs. There are di�erent
versions of this game, including a CD “talkie” version
where all text was dubbed in English.

The Curse of Monkey Island

Believe me, I love all the Monkey Island games, and I
had a blast with The Secret of Monkey Island and
Monkey Island 2: LeChuck’s Revenge. I highly
recommend these games to anyone out there. I was
hooked to the story of Guybrush when he �rst set a
foot on Mêlée Island™ and said he wanted to be a
pirate.

Figure 03 – The Curse of Monkey Island

However, if you never played any Monkey Island
game in your life and only have time (for whatever
reason) to play a single Monkey Island game, I highly
recommend playing The Curse of Monkey Island!
Although The Curse of Monkey Island is not even an
“o�cial” Monkey Island title, as it is not out of the quill
pen of Ron Gilbert, it is still an amazing game.

Figure 04 – This is how everything started back in 1990

Monkey Island 1 and 2 are all time classics and were
remade a couple years back in a remastered edition
which improved graphics and included full voice
acting that did not exist in the original game back
then, but they are not compatible with ScummVM
which means you cannot run them on ODROIDs.
Since the original Monkey Island 1 and 2 were very
pixelated, they have not aged that well, but they are
still fun to play if you like old 8-bit graphics. Some new
games try to replicate the look and feel of that era,
but Monkey Island 3 (The Curse of Monkey Island) had
already “high resolution” 640×480 graphics which are
drawn in a very beautiful comic style, which even look
amazing today.

Figure 05 – Monkey Island 3

Figure 06 – Monkey Island 3

ScummVM has no problem scaling these graphics,
and they look like they were made for 1080p the
same as they were for 640×480, which means you can
enjoy the game today like it was in 1997 when it came
out. This is actually something I never understood.
There are certain types of graphics that do not “age”
(comic style is the best example for this), but there are
only a few games that really used it. They still look
amazing 20 years later, and you could think it was a
new game that you just bought.

The story and dialog is so funny that it is worth
spending your time in the game just asking every
possible question there is just to hear all the funny
comments and dialog the game has. The voice acting
is superb, and the music by Michel Z. Land who made
all the music for the Monkey Island games is iconic
and really �ts the Caribbean setting. The game takes
references to the previous games (Monkey Island 1
and 2), and brings back characters from these games

as well, so if you want to understand every little gag in
the game you should play Monkey Island 1 and 2 as
well. This is one of my favorite games of all time and it
runs perfectly on ODROIDs, so you can have the
complete pirate Caribbean experience using
ScummVM.

Dune 2

Dune 2 was my �rst RTS (Real Time Strategy) game. In
fact, it’s called the “Grandfather of all RTS games”, and
I played it back then on my trusty Amiga. The game
was amazing: Westwood paved its way in the RTS
genre with Dune 2, and classics like the famous
Command and Conquer series is what followed as a
result of the success of Dune 2.

Dune 2 had everything you expect from a RTS game.
You collect resources (spice), you build up your base
and an army, you head out to crush your enemy and
his base. One of the things I remember about the
Amiga version is that it already had voice samples
that tell you, for example, when your buildings were
completed.

Figure 07 – Dune 2 The Building of A Dynasty

Figure 08 – Dune 2 The Building of A Dynasty

In this game, you had 3 di�erent factions to choose
from. All of them had a set of units that were identical
between each faction, and some units that were
unique for each faction. Each with their advantage
and disadvantage, although I prefer the nuclear
missile from the Harkonnen any time over the
Fremen of the Atreides (special weapons from the
Palace).

When it �rst came out, Dune 2 was revolutionary. You
controlled multiple units at once over the map and so
did the enemy. You had to concentrate on building,
resource collection and your attacks/defense at the
same time. Things that are normal today were quite
new back then.

Figure 09 – Dune 2 original graphics

While Dune 2 has aged somewhat well, its controls
are not very intuitive. You could not select multiple
units at once to order commands, but had to give
commands for each unit individually. Imagine moving
an army of 30 or more units from one place to
another (yes we did it the hard way “back in the old
days”).

Thankfully nowadays there are several remakes of
Dune 2 which include improved controls, allowing you
to move entire armies at once, and have other
improvements, such as build queues rally points, and
often also improved graphics (higher resolutions and
�lters to improve the look). I personally prefer Dune
Legacy for that, which is available on ODROIDs and
runs very good.

Dune Legacy

Every now and then I try out some updates of Dune
Legacy and end up playing the game for hours and
days afterwards as the game is still very good as a
strategy game, and I lose myself in its battles.

Figure 10 – Dune legacy

While talking about Dune 2 there is also a game called
“Dune”. It is a mixture of Adventure and Strategy

game, as you loosely follow the story of Paul Muad’dib
from House Atreides as he learns about the fremen
and their ways. This game is impressive as well, and
has one of the best soundtrack, especially the DOS CD
version with video cut-scenes and 3D renderers is a
very impressive game which runs �ne on DOSBox on
ODROIDs, but I think I covered that game a while back
already in my DOS games articles.

Figure 11 – Dune, epic story of gathering spice

UFO Enemy Unknown / XCOM – Ufo Defense

This one is really special to me, I cannot remember
when I got into this game. I know it existed on the
Amiga, but I think I played it much more intensely on
the PC under DOS. I absolutely crave this genre,
although the genre is really hard to de�ne for me.
Most people call it a strategy game with turned-based
tactics, or call it management simulation with turn
based tactics, but I think it is much more speci�c what
fascinates me about this game genre and I know
nothing that is similar to it besides the XCOM games
and variations of it that came out over the years.

Figure 12 – UFO Enemy

The game is rather complex and takes a lot of time to
play, master and complete, but it is well worth it. The
scenario is that aliens are here, they arrived at the

earth, �ying around with their alien space crafts
abduct humans, terrorize cities and who knows what
else they have planned. The di�erent governments of
earth realize they are not �t to take on an enemy like
this on their own and agreed to form a united force
“XCOM” to defeat the alien intruders.

For this, each country agreed to fund the XCOM group
with money and personal to achieve this goal and this
is where you come into play. You are the commander
of the XCOM and your choices will a�ect the outcome
of this scenario. You have distribute your time and
resources to mount a defense against the intruders.
You have to explore new technologies, and means
how to defeat this enemy. You have to build your own
weapons, as these new technologies do not exist yet
and you cannot just buy them. You have to train your
soldiers, equip them with armor for their protection,
weapons to mow down the enemy, and other items
such as med-kits, grenades, or motion trackers.

You also have to equip your own aircrafts to shoot
down enemy UFOs. Have to analyze collected items
and weapons from the enemy. And of course beat the
enemy on the ground, wherever you can �nd them.

For me, the whole mix is what makes this game so
great. The fact that you research your new
technologies build new weapons, armors, and
aircrafts to improve your chances of surviving. The
constant improvement, not only through better
equipment but also from your soldiers, that get better
the longer they are in the service and the more
missions they participated and the more enemies
they were able to take out. You build up a connection
to your soldiers, especially the higher they become.
Losing a rookie will not really matter as you can
simply recruit a new one, but a veteran soldier is very
precious and losing one of these normally makes your
life a lot harder, which is also the reason why I would
reload the game and try again.

Figure 12 – UFO Enemy Unknown original graphics,
�ghting the “grays”

It was also one of the �rst game where I used a hex-
editor to manipulate the save game back when I was a
child, but only to create more “Elerium”, which is an
alien mineral which is required for high tech weapon
and equipment. I constantly ran out of it as a child, so
yeah I did a little bit of cheating back then.

What always fascinated me the most about this game
is the research. The progressing through researching
and developing new technologies is what kept me
playing this game.

Figure 13 – Autopsy of one of the most dangerous aliens
out of XCOM

Figure 14 -Autopsy of one of the most dangerous aliens
out of XCOM

Research and reading all those details about the
aliens and weapons or just items you found was
always a highlight for me. It is what this game makes

unique: power through knowledge. The more you
research, the better you get the more chance you
have to defeating the enemy. Nowadays, if I want to
play the game I use OpenXcom on the ODROID, as it
has many extra features and allows for mods, extra
content, and di�erent settings to improve the gaming
experience.

I found that OpenXCom works beautifully on
ODROIDs. I like the options that it gives you, such as
disabling features of the original game that made the
game really hard (for example �ghts at night), or
simple improvements like right clicking the up arrow
on the research screen to add all available
researchers to certain research project, or the ability
to “produce and sell” (produce items that are not
available on market e.g. laser ri�es, and sell them for
a pro�t). OpenXcom allows you to play the original
UFO Enemy Unknown, as well as the second game
called “Xcom Terror from the Deep” which is pretty
much the same as the �rst game but now you �ght
the aliens coming from the sea and from under water.

OpenXcom also has a lot of mods that introduce
completely new scenarios in the universe, or create
entirely new universes. Combined with the ability to
play improved music, and sounds, add more weapons
to research and so on, OpenXcom is really one of a
kind, and well worth having on the ODROID.

Figure 15 – Higher resolutions, just one of the many
features of OpenXCom

Aside from the original UFO Enemy Unknown and
Terror From the Deep games I also greatly enjoyed
playing the remake also called XCOM: Enemy
Unknown, which brings the genre in modern 3D.

Figure 16 – XCOM: Enemy Unknown from Firaxis Games

This game even came out for Android which
technically make it compatible with ODROIDs as well,
but I would really love to see a armhf Linux port for it.
There is also the fan-made UFO Alien Invasion (UFOAI)
which is available for ODROIDs at
https://forum.odroid.com/viewtopic.php?
f=91&t=2375. I have not played this game too much
yet, but I want to as it is quite true to the original
game mechanics.

Another great remake is Xenonauts which uses 2D
graphics in an isometric view, which is a very
interesting art-style. I strongly believe this game could
run natively on ODROIDs if it was recompiled for
armhf, as it only uses SDL2. Still, it is not currently
available as such.

There is one more series based on the old UFO/XCOM
series that I really like, which is also called UFO and is
either called UFO trilogy or UFO Aftermath series,
named after the �rst game of the series. UFO
Aftermath, UFO Aftershock and UFO Afterlight are 3D
games released between 2003 and 2007, and these
games blew my mind once again.

A lot of people do not like them, as they are not as
“turn-based” as the original XCOM games, but as I said
earlier, for me these games are not about the turn-
based tactics, but rather about the research,
development, improvement and character
development.

The games also had tons of bugs, and the story
(especially from the �rst two) was not very well
written (especially the ending), but the gameplay is
what always counted for me, and they did a lot of
improvement here compared to the other games in
my opinion.

Figure 17 – UFO Aftermath has a much darker setting
and is fully 3D, but sadly is �xed to 1024×768 resolution

In the XCOM games, you start o� with a fully
equipped base and soldiers and start research “future
tech” like lasers and such right away. In UFO
Aftermath, you start in a world that was surprised by
aliens and humanity was nearly wiped out. Towns are
crumbled and mutants roam around attacking
everyone. You barely have any weapons at all, and
�nding an M4 machine gun is something like a
treasure. It takes a while until you start developing
“future tech”, and until that point, you are happy with
the weapons you �nd before you manage to replicate
the alien technologies and improve a lot.

In the XCOM series, you have to satisfy di�erent
nations to fund your operations. If you do bad in a
country, you lose money, and as aliens get stronger
and stronger, in time you will lose a lot of money, so
the game gets harder, and you have less resources to
deal with it, which is slightly annoying. In UFO
Aftermath, society collapsed, money has no value,
and that’s how it should be if you �ght a global
invasion force. Your “currency” is time. The harder a
project is, the longer it takes to develop, and you can
change this by devoting more work forces to a
common goal. You do this by selecting what your
di�erent bases should do: Research, Build
Technologies, or Defend with a military force.

Figure 18 – The brown stu� is slowly covering the earth

The �rst game of the series is the most interesting
story-wise and how it evolves from handguns and old
ri�es to alien technology. The second game in the
series is the most annoying of the three. It plays after
the �rst one and assumes that you messed up. It now
has resource management back, and it is very hard
and confusing. It has di�erent sections of humans
that you can recruit or make your enemy. It is not
really much of an improvement over UFO Aftermath,
which is my preference of the two. The third one, UFO
Afterlight, is the most advanced of the three, and
o�ers much improved 3D graphics. It is not stuck at
1024×768, and this time, you �ght on Mars, our red
neighbor.

Figure 19 – Highly improved graphics in UFO Afterlight
lots of new aliens

I hope one day we can play at least UFO Aftermath on
the ODROID as well, but until, then I love to play
OpenXcom and UFOAI. These games are really
amazing, and if you have never played them, try them
out.

Car Infotainment System: Using an ODROID-C2
 October 1, 2018  By @poptmartone  ODROID-C2, Tinkering, Tutorial

I’m proud to present my “ODROID Car Infotainment
System”. It is a combination of an ODROID-C2 and an
Arduino platform capable of CAN communication with
the car BCM module. This feature allows the steering
wheel controls to “communicate” with Android
operating system through a further infrared (IR)
interface, as I proposed some time ago. Here is the
complete hardware list:

ODROID-C2

VU7 Plus display assembly

Hi-Fi Shield plus audio board

SmartPower 2 power board

Bluetooth USB module

Wi� USB module

GPS USB module

Externally powered USB hub

Cooling fan

Arduino Nano

Niren MCP2515 CANBUS transceiver

Step down converter 12/24 V -> 5V (to power the
Arduino and the CAN module)

Many male and female DuPont connectors

The Arduino Nano works to help the C2 and provide
the main operating logic, system on / o�, IR interface,
CAN bus communication and stereo head unit remote
control services, while the ODROID board is where the
fun happens. In order to minimize the build size, and
to accommodate everything into my car dashboard
housing, I created an electronic control board which
holds all the needed electronic components as show
below.

Figure 01 – Unopulated Control Board

Figure 02 – Populated Control Board

Figure 03 – Side View of Control Board

After disassembling the VU7 display kit and
rearranging the components in a sort of
“motherboard” this is what I got:

Figure 04 – All Components Connected

Figure 05 – Close-up View of The Board

Next, everything is, mounted into the car dashboard
housing:

Figure 06 – Board Mounted in Car Dashboard

Figure 07 – Underside of Car Dashboard

Figure 08 – Front of Car Dashboard

Note the infrared LED

Figure 09 – Infrared LED

Figure 10 – Everything Installed

Figure 11 – Up and Running

Please watch a completed demo video to see the
whole system in action at
https://www.youtube.com/watch?
time_continue=79&v=uQf7kH7wbuQ. For more detail
or to ask a question, please follow the link to the
ODROID forum posting at
https://forum.odroid.com/viewtopic.php?
f=140&t=32189.

https://www.youtube.com/watch?time_continue=79&v=uQf7kH7wbuQ
https://forum.odroid.com/viewtopic.php?f=140&t=32189

ODROID Bench
 October 1, 2018  By Dongjin Kim  Linux, ODROID-C2, ODROID-XU4, ODROID-HC2

We have set up a remote ODROID experience zone
for someone who wants to measure, preview, and
test the performance of ODROID SBCs. The ODROID
SBCs in our testbed connected to Gbit ethernet and
are open to the public. The experience zone o�er
benchmarks for performance, cloud server and more
via SSH.

Figure 1 – ODROID SBCs on the testbed connected to
maze.odroid.com

What devices are available on the testbed?

We provide a fully dedicated 1Gbps network with a
domain at maze.odroid.com and di�erent ODROID
hardware setups to o�er an experience to use any

ODROID SBCs that you are interested in. From this
environment, you can see hardware performance and
computing power. Future ODROID SBCs would be
accessed before launching.

Which operating system is installed on the
ODROIDs?

It o�ers Debian Stretch in a Docker container on top
of a recent Linux kernel that is maintained and
updated by Hardkernel. Hardware performance and
computing power are not a�ected by another
environment with this con�guration. If you are new at
ODROID SBCs, all source code released for Linux
kernel and U-boot are uploaded to the Github
repositories at https://github.com/hardkernel.

What ODROID SBCs are accessible?

The beginnings will seem humble. You can have a
command shell of ODROID after SSH-ing to a board
through a dedicated port number, and you can even

https://github.com/hardkernel

run or install a package. As of today, we o�er 5
ODROID SBCs with a basic set up:

2x ODROID-XU4

2x ODROID-C2

1x ODROID-HC2 Home Cloud kit with 3.5″ 1TB HDD

How are they accessible?

Only 4 out of 5 ODROID SBC are ready to accept your
commands through an SSH-ing with a dedicated port
number.

Login account: odroid

Password: odroid

Once you access an ODROID SBC, you are fully
granted to run any Linux commands to play with
(some commands could be restricted for security
reasons), and you can jump to another ODROID SBC
in the same local network as well.

Figure 2 – Network setup

Figure 3 – Diagram of ODROIDs attached to
maze.odroid.com

For instance, if you like to access the ODROID-XU4 in
which port number is 2220, you can run the following
command, which will let you access an ODROID-XU4
with internal IP address 192.168.0.20:

$ ssh ­p 2220 odroid@maze.odroid.com

Once you have access to an ODROID, you can connect
to any other ODROID in the same network with its
dedicated internal IP address. For example, this
command will let you access ODROID-C2 from
ODROID-XU4 which you have connected with the
previous command:

$ ssh ­p 2222 odroid@192.168.0.30

Figure 4 – Connecting to the ODROIDs via SSH

What other hardware is available?

Unlike the 4 ODROID SBCs explained so far, we also
provide one dedicated cloud storage running
Nextcloud with 1TB HDD. This storage device is to
demonstrate how you can build your own cloud
device with ODROID-XU4 and o�er you an
opportunity to use them before you decide to build by
yourself. Everyone can access this storage with the
open account, so you have to aware that all �les can
be accessed by anyone else. Therefore, you should
not upload any private �les to the storage. Also, you
must not share any type of non-free �les for your
personal purpose using the storage.

Login account: odroid

Password: odroidfun

Figure 5 – Connecting to cloud storage from a mobile
device

What is doable and not?

All ODROID SBCs in maze.odroid.com are publicly
accessible and opened to o�er sample SBC
experiences. We are pleased to use them and listen to
your opinion what can be improved. You can do see
the performance of hardware with benchmark tools
like sysbench or even simple Linux tools like dd or
ping. Also, if you are willing to run a network tool with
a certain port, you are able to use the ports between
4000 and 4499 in the Docker container.

Figure 6 – Running Sysben on ODROID-XU4

Figure 7 – Running iperf3 to measure the network
bandwidth between two ODROID SBCs

The ODROID SBC you are accessing is running on a
Docker container, so you are also able to see how the
Docker container is performing enough like a native
operating system on ARM hardware.

Figure 8 – Say “Hello” if you found someone else who is
doing interesting work

Unfortunately, we are not providing a graphical
environment access because of limited hardware
capability of allowing many users at the same time.
We also do not want them to be a hacking resource or
used as a building machine that consumes full
hardware resources. Also, the ODROID that you
connect would run slowly since the devices in the
maze.odroid.com can be accessed by anyone at any
time. How long will maze.odroid.com run? We are
expecting to o�er experiences of ODROID SBCs we
built, but we are also o�er popular or future devices
shortly after being introduced to the market. We only
have 5 ODROID SBCs today, but more devices can
come on demand or whenever a new ODROID SBC is
published. As long as we have users who wants to
have an experience, we will run more ODROID SBCs
at maze.odroid.com.

We welcome hearing your suggestion or request,
please visit the ODROID forum thread at
https://forum.odroid.com/viewtopic.php?
f=29&t=32257#p234012. For questions, comments
and suggestions, please visit the original article at

https://forum.odroid.com/viewtopic.php?f=29&t=32257#p234012

https://medium.com/@tobetter/odroid-bench-
c5c1a10d6bec.

https://medium.com/@tobetter/odroid-bench-c5c1a10d6bec

Wireless Charging: Adding Qi Wireless Charging to the ODROID-
GO
 October 1, 2018  By @Kamots  ODROID-GO

I have been an electronics enthusiast ever since I was
eight years old, when my grandfather used to send
me small components such as LEDs, small DC motors,
and 555 timers. He would include hand-drawn
schematics with notes I could follow in order to build
simple projects. As I got older, the projects became
more complex, allowing me to learn more. I also got
into computers, programming, and Amateur Radio
before going to college for computer networking.

Fast forward to 2018: I now make YouTube videos
about technology. I started my channel “Kamots Talks
Tech” because I had purchased an ODROID-GO and
got involved with the community, but I wasn’t happy
with the accuracy of most reviews being published
about the GO. I wanted to show that this device was
better than people were saying, so I made my �rst
video about the GO: a mini-review video about the
ODROID-GO. After many more videos, I’m now writing

an article to be published, which I have never done
before.

My project’s goal is to add wireless charging
capabilities to the ODROID-GO. My motivation was
utilizing the Qi Wireless Charging pad I already own to
make something cool for my YouTube subscribers to
enjoy. I was inspired by a video from ETA PRIME
where he added wireless charging to the NeoGeo
Mini. It may seem like a di�cult project but in reality,
it’s only four solder connections. If you take your time
following the instructions below, you will likely be
successful. However, there is risk of damaging your
GO so please do not take on this project unless you
are con�dent in your soldering and electronics skills.

Required Supplies

ODROID-GO (https://bit.ly/2lgWvGA)

Adafruit’s Universal Qi Wireless Receiver Module
(https://www.adafruit.com/product/1901)

Very thin wire (28AWG / 0.081mm2). I took apart a �at
Ethernet cable to get mine

Electrical tape or other strong non-conductive adhesive

Soldering iron and solder

Preparation

First, let’s look at portions of the schematic for the
ODROID-GO to understand where to connect the Qi
coil output. Usually power for the GO is provided via
the USB port but the solder pads are very small for
the Micro USB connector so we need to �nd another
way to connect on the inside of the GO.

Figure 1 – Excerpts from the ODROID-GO schematic

As you can see in Figure 1, power is normally provided
to the GO via the Micro USB connector to VBUS and
GND. Those same power rails are available on the
external IO header which has much larger pins on the
GO’s board. So we will solder the Qi module to pin 1
and 10 of the external IO header, which you can see
in Figure 2. Standard USB power is 5 volts. The Qi
module also provides 5 volts so it will charge the GO
just like if you plugged it in via USB.

Figure 2 – External IO header

Now that we have �gured out where to connect the
coil, you will need to very carefully bend the two wires
coming from the Qi coil into its controller board. This
allows clearance for the plastic ridges on the inside of
the GO’s back cover where we will eventually mount
the Qi module. I used tweezers to carefully bend the
coil feed wires, as you can see in Figure 3. While I
myself did this after I had soldered on the wires, I
recommend you do it before any soldering.

Figure 3 – Bending the Qi coil feed wires

Figure 4 – Bent Qi coil wires

Making The Connections

Now begins the delicate soldering work. You will want
to use the thinnest diameter solder you have.
Carefully add a small amount of solder to the V4+ and
GND pads on the Qi coil’s controller board as seen in
Figure 5. There are three pads and if you have the coil
oriented the same way as in Figure 5, you will need to
add solder to the center and right pad as shown.

Figure 5 – Solder on the V4+ and GND pads

Once you have added solder to the pads, solder one
wire to each pad by re�owing the solder you added to
the pads and pressing the wire in to it. You can see
me do this in Figure 6.

Figure 6 – Adding the wires to the Qi coil

Next, check the length of your wires to make sure
they can reach the pins of the external IO header
without being so long that they will be di�cult to
manage when you reassemble the GO. I recommend
cutting where the wire reaches my �ngers in Figure 7.

Figure 7 – Checking the wire length

For the next step you will likely need a “Helping
Hands” type stand with alligator clips as seen in Figure
8, or an extra set of human hands. You will need to
position the wires on the header pins, heat the
header pin and wire, then add solder to make a good
connection. As you may remember from the
schematic in Figure 1, the wire from V4+ goes to pin
10 and the wire from GND goes to pin 1. Be very
careful when soldering wire to pin 1 as the nearby
component could get damaged.

Figure 8 – Soldering to the header pins

Test your connections with a multimeter, making sure
you have good connections with no resistance. Verify
that you have connected the Qi coil output pins to the
correct pins on the GO. Getting things backwards
could damage your device and/or the Qi coil
controller board.

Figure 9 – Test your connections

Finishing Up

Once you are certain everything is connected
properly, grab your Qi charging pad and place the Qi
coil on it as seen in Figure 10. The red light on the GO
should be illuminated, indicating that it is charging.

Figure 10 – Test that it charges

If it works, celebrate! The hard part is over. Now you
just need to secure the Qi coil to the back case of the
GO. I used electrical tape as you can see in the
pictures. However, Justin Thomas left a comment on
my video about this project saying I should try 3M
brand VHB double-sided tape. I’ll leave it up to you
which one you use. The most important part is
making sure that the coil lays �at against the inside of
the back cover and that you don’t damage it. You may
also want to cut away part of the plastic ridges inside

the back cover around where the Qi coil controller
board sits before securing the coil. You can see how I
secured mine in Figure 11.

Figure 11 – Coil mounted to the back panel

Once you have the Qi coil and its board secured to the
back panel, close up the GO–making sure the wires
are not pinched anywhere–and put all of the screws
back in place. The �nal result should look similar to
Figure 12.

Figure 12 – ODROID-GO assembled with the Qi coil

Now you can place your GO on a Qi charging pad,
making sure you center the coil on the pad, and enjoy
wirelessly charging the GO. I did notice the coil gets a
little warm after a while, but I don’t think it is an issue.
However, the coil can’t tell when the GO �nishes
charging, so don’t leave it on a charging pad
overnight. You can also still use a USB cable to charge
your GO if you want.

Coding Camp – Part 5: Read the ODROID-GO built-in battery
voltage
 October 1, 2018  By Justin Lee  Tutorial, ODROID-GO

We will learn how to get the status of the battery with
Arduino in this guide. The LCD will display how much
battery voltage remains in volts.

Figure 1 – The ODROID-GO has a ~3.7V battery module

We can read the battery level through one of the 12-
bit SAR ADCs which are integrated in ESP32. These
ADCs are:

ADC1: 8 channels, attached to GPIOs 32-39.

ADC2: 10 channels, attached to GPIOs 0, 2, 4, 12-15, 25-
27.

There are some restrictions for an application’s use of
ADC2. The battery is attached to GPIO pin number 36,
so we should read a value from that using ADC1.
There is a library to control ADC for ESP32 and is
called adc.h. In this guide, we’re going to use that to
read the current battery level in volts and display it on
the LCD. First, prepare the code like below to display
on the LCD:

#include

void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

}

double readBatteryVoltage() {

}

void showBatteryVoltage(double voltage) {

GO.lcd.clear();

GO.lcd.setCursor(0, 0);

GO.lcd.printf("Current Voltage: %1.3lf V

", voltage);

}

void loop() {

// put your main code here, to run repeatedly:

showBatteryVoltage(readBatteryVoltage());

delay(1000);

}

We de�ned two functions in advance:

readBatteryVoltage(): returns completely calculated
voltage.

showBatteryVoltage(): receives that voltage and print
that on the screen.

Set the channel up to the proper values as we
designed. Before setting it up, it’s important to know
that the GPIO battery voltage is divided by 2 due to
the input limitation of the integrated ADC. So, if the
original value coming from the battery is 3.7V, then
the input value to the GPIO pin will be about 1.85V.
Thus, we have to multiply the value by 2 to know the
actual voltage.

We use 12 bit SAR ADC for the channel with 11 dB
attenuation. We should use these rates to calculate
the result as well. First of all, de�ne that extra value as
a Preprocessor macro and include necessary libraries
to use ADC on ESP32:

driver/adc.h: to get a raw ADC value about the voltage.

esp_adc_cal.h: to calculate a correct voltage by using
the AP.

Then, set the channel with the proper value by using
two functions:

adc1_con�g_width(): con�gures width of the ADC.

adc1_con�g_channel_atten(): con�gures attenuation of
the channel. GPIO pin number 36 uses channel
number 1.

To get an accurate ADC voltage, calibration is needed.
The ADC reference voltage is originally 1.1V by default
but actually di�ers slightly on every ESP32 module.
The manufacturer writes the calibration data in efuse:

esp_adc_cal_characterize(): returns a characteristic of
its AP as a structure.

The readBatteryVoltage() function reads an ADC value
with the adc1_get_raw() function. It returns a
calculated voltage as a double type value using the
esp_adc_cal_raw_to_voltage() function:

#include

#include <driver/adc.h>

#include

#define RESISTANCE_NUM 2

#define DEFAULT_VREF 1100

static esp_adc_cal_characteristics_t

adc_chars;

void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

adc1_config_width(ADC_WIDTH_BIT_12);

adc1_config_channel_atten(ADC1_CHANNEL_0,

ADC_ATTEN_DB_11);

esp_adc_cal_characterize(ADC_UNIT_1,

ADC_ATTEN_DB_11, ADC_WIDTH_BIT_12,

DEFAULT_VREF, &adc_chars);

}

double readBatteryVoltage() {

return (double)

esp_adc_cal_raw_to_voltage(adc1_get_raw(ADC1_C

HANNEL_0), &adc_chars) * RESISTANCE_NUM /

1000;

}

void showBatteryVoltage(double voltage) {

GO.lcd.clear();

GO.lcd.setCursor(0, 0);

GO.lcd.printf("Current Voltage: %1.3lf V

", voltage);

}

void loop() {

// put your main code here, to run repeatedly:

showBatteryVoltage(readBatteryVoltage());

delay(1000);

}

Optionally, we can calculate more accurately

by multi­sampling the ADC value.

Read the value 64 times, and divide that by

the repetition count.

#include

#include <driver/adc.h>

#include

#define RESISTANCE_NUM 2

#define DEFAULT_VREF 1100

#define NO_OF_SAMPLES 64

static esp_adc_cal_characteristics_t

adc_chars;

void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

adc1_config_width(ADC_WIDTH_BIT_12);

adc1_config_channel_atten(ADC1_CHANNEL_0,

ADC_ATTEN_DB_11);

esp_adc_cal_characterize(ADC_UNIT_1,

ADC_ATTEN_DB_11, ADC_WIDTH_BIT_12,

DEFAULT_VREF, &adc_chars);

}

double readBatteryVoltage() {

uint32_t adc_reading = 0;

for (int i = 0; i < NO_OF_SAMPLES; i++) {

adc_reading += adc1_get_raw((adc1_channel_t)

ADC1_CHANNEL_0);

}

adc_reading /= NO_OF_SAMPLES;

return (double)

esp_adc_cal_raw_to_voltage(adc_reading,

&adc_chars) * RESISTANCE_NUM / 1000;

}

void showBatteryVoltage(double voltage) {

GO.lcd.clear();

GO.lcd.setCursor(0, 0);

GO.lcd.printf("Current Voltage: %1.3lf V

", voltage);

}

void loop() {

// put your main code here, to run repeatedly:

showBatteryVoltage(readBatteryVoltage());

delay(1000);

}

Press CTRL-U to compile and upload the sketch. The
current voltage of the battery will be shown on the
LCD.

Completed example

The complete example is available by clicking the Files
→ Examples → ODROID-GO → Battery menu to

import and press CTRL-U to compile/upload, as
shown in Figure 2.

Figure 2 – Accessing the completed example

For comments, questions and suggestions, please
visit the original article at
https://wiki.odroid.com/odroid_go/arduino/05_batte
ry.

https://wiki.odroid.com/odroid_go/arduino/05_battery

Introducing NEMS Linux: Part 1 – The Nagios Enterprise
Monitoring Server for ODROID Devices
 October 1, 2018  By Robbie Ferguson  Linux, Tutorial

Nagios® Core™–which I’ll simply refer to as “Nagios”
throughout this article–is a free, open source server
application which monitors hosts and services that
you specify, alerting you when things go bad and
when they get better. I’ve been using Nagios for many
years. If I had to hazard a guess as to when I started
using it, I’d say it was around 2006.

My wife and I ran a small computer service company
out of our home in those days, and in order to keep
track of my customer sites and be as proactive as I
could be, I had a beast of a computer in the garage
keeping check on my customers’ hard drive space,
backup state, CPU load, and antivirus de�nition
updates, as well as various other services.

I remember setting up that old Nagios server. The
process was onerous, and all the con�guration was
done through the Linux terminal by opening con�g
�les in vi. One malformed syntax and Nagios would

fail to start. I made it work, and if anyone has ever
doubted my nerdiness, they are clearly mistaken. Ah,
who am I kidding? Nobody has ever doubted my
nerdiness. As the years went on and my support
business customer base continued to grow, I began
repurposing old hardware, installing an independent
Nagios server at each client site. This worked very
well.

I received my �rst Raspberry Pi in 2014. After it sat on
the shelf for a year, I began to consider possible ways
I could put it to use. I realized that the power
consumption, rack space, and noise of these old
Nagios servers was an incredible waste of resources. I
was convinced that a single-board computer could
make an excellent Nagios server, and began tinkering.

Why reinvent the wheel? Ryan Siegel’s NagiosPi image
was out-of-the-box ready and gaining popularity. I
started using it, but quickly became dismayed by the

state of the distro, which appeared to be aging and
was not being updated at a pace suitable for business
use. It was a wonderful starting point, but felt in some
important ways like an incomplete product. I began
working on my own rebuild of NagiosPi, calling it
NEMS; short for “Nagios Enterprise Monitoring
Server”.

Figure 1: This customer Nagios server was replaced with
the �rst-ever NEMS server in 2016

I’m a coder in my professional life. I develop server-
side applications, mainly for web. Beyond building on
a more current software base, the �rst thing I’d set
out to do was build a responsive browser-based UI for
NEMS, bringing all the components of NagiosPi
together into a single interface. This later became the
NEMS Dashboard, also known by its GitHub
repository name, “nems-www.”

Figure 2 – NEMS Dashboard

Upon releasing NEMS to the public through my blog,
Siegel himself said, “I’d love to upgrade NagiosPi, but i
don’t have [the] ability to make a GUI that can beat
that of NEMS. I strongly feel that it has always been a
necessary addition to NagiosPi and NEMS was able to
deliver what is essentially an updated and improved
version of NagiosPi. No reason not to start using
NEMS for the time being. Nice work Robbie!” I didn’t
stop there, and in the wonderful spirit of community,

Siegel even pitched in during the development of
NEMS 1.2 in early 2017, bringing many additional
Windows checks to NEMS.

With a new major release of NEMS every six months
and rolling updates in between, NEMS is currently
based on Debian Stretch with Nagios Core 4.3.4 at its
heart. Having upgraded and maintained NEMS with a
current software base, this also means things like PHP
7, current SSL certs, and a suite of customized
software optimized to work on a modern server. For
example, NConf (a very useful tool for con�guring
Nagios) stopped development years ago, so it only
worked on PHP 5.3 or less. Therefore, I forked it and
reworked the code to support PHP 7.0+. Of course, I
made some other improvements along the way.

NEMS Linux, as it is now called (I had to �nd a dot-
com, after all) takes the most modern network asset
monitoring and does away with the old Nagios
scripting requirement. The scripts are still there, it’s
just that you (the user) don’t ever have to see them or
touch them. The whole thing is controlled, con�gured,
and monitored through your web browser, with
email, Telegram, or Pushover noti�cations all
operational out of the box. It also has a JSON API, a TV
display for your server room, and more.

NEMS Linux has evolved to be what I feel is the best
out-of-the-box Nagios experience available. As a
Nagios user myself, this is the Nagios server I have
longed for. As NEMS has continued to grow, I set out
to �nd a more powerful platform than the Raspberry
Pi. That’s when I found the ODROID-XU4. Just over a
year ago (September 13, 2017 to be exact) I began my
quest to port NEMS Linux to the ODROID-XU4. After
nearly a year of development, I am extremely proud
and excited to share: NEMS Linux is now available for
ODROID boards.

NEMS Features

I’ve already touched on the obvious interface and UX
improvements that NEMS Linux brings to the Nagios
experience. Those are perhaps the key points as to
what makes NEMS stand out, but it’s important to
understand that NEMS Linux is far more than just
Debian with Nagios installed. Let’s look at a small
selection of additional features.

NEMS Migrator

When focusing on building a distro for single board
computers (SBC), I took very seriously the fact that SD
cards can and likely will fail, and data can be lost. I
wanted to create a way for users to be able to easily
backup and restore their con�guration. Out of that
desire, Migrator was born.

Migrator allows you to backup your entire NEMS
con�guration (hosts, services, checks, system settings,
etc.) via a samba share, https download, or even an
optional o�site backup service. The backups can be
encrypted, and only you know the decryption key.
Should your device fail, you can write the image to a
new SD card, restore your Migrator backup, and be up
and running in under �ve minutes with all your
settings intact. Migrator also makes it easy to
transition from one platform to another. For example,
having setup a NEMS Linux server on a Raspberry Pi
3, you can easily move to an ODROID-XU4 for an
enormous performance boost.

Another advantage that Migrator brings to the table is
an absolutely simple upgrade path: as new major
releases of NEMS Linux are introduced, you can easily
write the new NEMS image, import your backup, and
be on the latest version of NEMS in just minutes.

UI-Based Con�guration with NEMS Con�gurator

NEMS Con�gurator (NConf) is what makes browser-
based Nagios con�guration possible. This customized
version of the old NConf con�guration tool brings a
sophisticated front-end to the modern architecture of
NEMS. Your entire Nagios con�guration is done
through this interface: from adding hosts to
con�guring your service checks. It’s all done through
an intuitive browser-based system.

Now, I’ll admit NConf is not the most aesthetically
beautiful feature of NEMS at the moment, but it works
brilliantly. And a redesign of the UI is on schedule for
a future release. When that happens, the interface will
be automatically updated on all existing deployments
through NEMS’ automatic update system. With NEMS
NConf, you will never have to look at a Nagios cfg �le
again!

NEMS System Settings Tool (SST)

Speaking of doing away with Nagios con�g �les,
several Nagios con�guration options have been
moved to a tool called NEMS System Settings Tool,
also referred to as NEMS SST. Items such as your
SMTP server settings, domain user credentials, and
other defaults are part of this interface.

So now that you know a little about what NEMS is and
how it came about, let’s dive in!

Installation

All that is required in order to deploy NEMS Linux is a
compatible ODROID device and a Micro SD card. At
the moment, the XU3, XU4, HC1, and HC2 are all
supported. More devices will be supported as soon as
I have development hardware to compile and test on,
so if you’re reading this article several months after
publication, please check the NEMS website, as your
board may be supported.

Download the latest version of NEMS Linux from
https://nemslinux.com and “burn” it using your
favorite tool. I’ve really come to prefer Etcher from
https://etcher.io/ but you can use whatever tool you
like best. eMMC may work for you if you have a
current bootloader, but it is not yet o�cially
supported. If in doubt, please use a UHS-I or better SD
card. I recommend 16GB or more, but you could get
away with 8GB if that’s all you have handy. You can
always use NEMS Migrator to move to a bigger card
down the road.

Upon booting your NEMS Linux server, your
�lesystem will be automatically resized to the capacity
of your SD card. You can con�rm NEMS is up and
running by visiting https://nems. local/ in your web
browser. If name resolution doesn’t work, try the IP
address of your NEMS device instead, which you can
�nd in your router’s DHCP table, or on a TV connected
to your device’s HDMI port. I do plan to introduce
support for the Cloudshell 2 screen in a future
update.

https://nemslinux.com/

Figure 3 – NEMS details displayed on a connected TV

Initialization

Generally speaking, the only time you’ll really have to
touch the Linux terminal on a NEMS server is during
the initialization procedure. This task works magic in
automatically con�guring your entire server in just a
few seconds. It generates self-signed certi�cates so
every NEMS Linux user has a unique certi�cate, allows
you to con�gure your timezone, creates your Nagios
admin user, your Linux account, and so on. To
initialize your NEMS Linux server, connect to your
server over SSH on the default Port 22 using the
following credentials:

Username: nemsadmin

Password: nemsadmin

Once connected, type:

$ sudo nems­init

You’ll be asked to enter the password again. Follow
the prompts. All the complicated stu� is made easy.

Figure 4 – NEMS Initialization

Congratulations! Your NEMS Linux server is now
online and ready to monitor your network assets.

Connecting to Your NEMS Server

Now that your NEMS Linux server is up and running,
you can access its entire feature set via your web
browser. Simply point to https://nems.local/ which
should work in most networks out of the box, but if
you need to, you can alternatively use the IP address
of your NEMS server.

Setting Up Email Noti�cations

The �rst thing you’ll want to do on your new NEMS
Linux server is con�gure your SMTP settings. This will
allow your NEMS server to email you if a problem is
detected.

Access the NEMS System Settings Tool (SST) from the
Con�guration menu of your NEMS dashboard. This
tool does away with the need to use the traditional
Nagios resource.cfg �le to con�gure your email
settings. One of the nice things about NEMS Linux is
that I really don’t have to go into detail about how to
do this. It’s so intuitive that it does not require
explanation. So I’ll just provide a screenshot in Figure
5.

Figure 5 – Nagios SMTP setup is easy with NEMS System
Settings Tool

Con�guring your SMTP server in NEMS is as simple
as con�guring a mail client.

Tip: If you’re using Gmail as your SMTP provider, be
sure to review the NEMS Documentation found at
https://docs.nemslinux.com/usage/nagios-gmail-
smtp for the additional steps required.

Once you are con�dent your SMTP settings are
correctly entered, click Save All Settings and then re-
connect over SSH to test your email settings with the
following command (replacing
youremail@yourdomain.com with your actual
recipient email address):

https://docs.nemslinux.com/usage/nagios-gmail-smtp

$ sudo nems­mailtest youremail@yourdomain.com

This command simply veri�es your mail settings by
sending a test noti�cation. If there are any problems,
it will show you on screen what the issue is, and you
can make the necessary changes to your account
settings in NEMS SST.

Note: NEMS currently requires your SMTP server
support TLS authentication. Against my best
judgement but in line with user requests, an option
will be added to a future release to allow insecure
authentication if required, as might be the case with
an internal relay.

The Final Step to Email Noti�cations

The �nal step in setting up your email noti�cations is
to tell NEMS where you’d like these notices to be sent.
To do this, open NEMS Con�gurator (NConf) under
Con�guration, and on the left navigation press Show
next to Contacts. You will see the NEMS Initialization
procedure already added your user to NConf. It’s
robbief in my case. Press the pencil icon (Modify) to
edit your contact.

Figure 6 – Change admin email address

Under Email Address, change the value to your actual
email address. Ensure your recipient email address is
not the same as the one used for your SMTP settings
in NEMS SST. Otherwise you may not receive the
noti�cations as the receiving server will see you as the
sender and hide the noti�cations from your inbox.

Once you’ve changed the email address, scroll down
and press Submit to save the changes. Please note
that your contact information will not be live until you
Generate Nagios Con�g.

Generate Nagios Con�g: Make Your Changes Live

To make your changes live, press the Generate Nagios
Con�g link on the left navigation. You should see 0

errors. If you do see errors, press the Syntax Check
bar and review where you went wrong. NConf is very
good at showing you where the error is so you can go
back and �x it and try again.

Figure 7 – Generate Nagios Con�g with the NEMS
Con�gurator

If everything checks out, press Deploy, and your
admin contact email address will instantly be
activated in Nagios.

Learn More

I would like to encourage you to visit the NEMS
Documentation and Community Forum to learn more
about how to con�gure and use your new NEMS Linux
server, and be sure to join me again in next month’s
edition of ODROID Magazine as we go through our
�rst exercise: Con�guring NEMS Linux to monitor a
local Linux server. NEMS has an active community
forum. I check in quite regularly to provide free
support to users. I also o�er commercial one-on-one
priority support for those needing a higher level of
support.

I would like to extend thanks to mad_ady and meveric
from the ODROID community for assisting me in
those early days as I planned to port NEMS Linux to
the ODROID platform. Of course, this release wouldn’t
be possible without the great work meveric has done
on the Debian Stretch image, which powers NEMS
Linux for ODROID-XU3/XU4/HC1/HC2. NEMS Linux is
free to download and use. Its source code is available
on GitHub, and the ready-to-use image can be
downloaded for the ODROID at
https://nemslinux.com.

About the author

Robbie Ferguson is the host of Category5 Technology
TV and author of NEMS Linux. His TV show is found at
https://category5.tv and his blog is
https://baldnerd.com.

https://nemslinux.com/
https://category5.tv/
https://baldnerd.com/

BASH Basics: Introduction to BASH – Part 5
 October 1, 2018  By Erik Koennecke  Linux

Our adventure into scripting continues with more
tests, if statements, input and functions; we also do
calculations from within BASH. First, let’s look into
�lename manipulation, since this seems to be one of
the most popular things needed in beginner scripts.
As a bonus for making it through a lot of theory, we
have another example of BASH programming in the
form of a game.

Basenames

The �rst script people usually write are to handle lots
of �le manipulation. Having to do simple tasks again
and again, such as conversions, gets boring real quick.
It’s only natural that even the most script-averse
people try to automate this after a while. Usually, this
involves storing the result to the same �lename but
with a di�erent extension, for example converting
�le001.png to �le001.jpg then, �le002, �le003 and so
on.

So what can BASH do here?

If you open the bash manual, with man bash,
somewhere in the nearly 6000 lines of the manual,
equal to 35 parts of the BASH series you are reading
now, you will �nd a section about ‘Parameter
Substitution’. I will save you from scrolling through all
this and give you a helpful trick to handle long man
pages:

$ man ­P "less ­p 'Parameter Expansion'" bash

This jumps directly to the section you are looking for,
if you remember the right keywords. Let’s sum up our
�ndings here, since the man page is even drier than
my article and so terse that you have to read it several
times for full impact. The variable writing convention
$foo is a shorthand, the full version is ${foo} which is
also a short version, of ${foo:operators}. What does
this mean? Let’s look at some of these constructs, and
then follow up with examples. There are two
operators inside the curly braces, the # and the %

operator. They can be used as single characters or in
pairs. The resulting combinations are

To trim the shortest su�x from the end:
${variable%pattern}

To trim the longest su�x from the end:
${variable%%pattern}

To trim the shortest pre�x from the beginning:
${variable#pattern}

To trim the longest pre�x from the beginning:
${variable##pattern}

The di�erence between “shortest” and “longest” only
applies if you are using a shell wild card * in your
pattern, for something like jpg, they are identical. Now
we need a few examples to understand how this
works. Since learning by doing is always best, you can
experiment with the echo command and several shell
variables yourself. If you want to follow the example,
make a path /tmp/odroid with mkdir -p /tmp/odroid,
followed by touch /tmp/odroid/photos.zip to generate
an empty �le for your experiment. It’s not needed if
you follow line-by-line, but for your own experiment,
it’s better to have something which you can
manipulate. Here are the results: If we have the
variable

foo="/tmp/odroid/photos.zip"

(Don’t forget the quotes to make sure that you can
deal with spaces and other di�cult special characters)
you can use

foo=/tmp/odroid/photos.zip”; echo “${foo%/*}” to
show the path /tmp/odroid. That is an easy method to
get the so-called dirname of a �le.

foo=/tmp/odroid/photos.zip”; echo “${foo##*/}” yields
photos.zip, the basename of the �le.

foo=photos.zip”; �le=”${foo%%.*}” gives photos, and
foo=photos.zip”; echo “${foo#*/}” gives zip.

One other useful application of curly brackets is curly
bracket expansion. For example, if you want to make
a backup �le of something, but are too lazy to type
out the full path and �lename for source and
destination: cp /path/to/your/�le.doc{,.bak} expands
to cp /path/to/your/�le.doc /path/to/your/�le.doc.bak
and makes a backup �le of your document in the

same directory. ${#foo} gives the number of
characters of the variable. foo=4-letter-word; echo
${#foo} is 13.

Tests and if statements

To look into tests and if statements in more detail, we
want to have an example script with all the basic
blocks which can occur, as shown below:

#!/bin/bash #Start of every BASH script

Basic if statement # Comment, script purpose

if [$1 ­gt 9] #test condition and if

statement

then

 echo $1, that's unusual for a lucky

number. # if statement true

 date # if statement true

fi

Pwd #always executed

then

 date

else

 pwd

...

The snippet above could be part of such a script.
There’s also if – elif – else or short for ‘else if’
statements, case statements, or the option of multiple
tests with AND or OR conditions with the operators
&& for AND and || for OR, but this is beyond the
scope of this article. The square brackets, [], in the if
statement above is a reference to the command test.
All the operators that test allows may be used here as
well. Look up the man page for test to see all the
possible operators; some of the more common ones
are listed below.

! EXPRESSION – The EXPRESSION is false.

-n STRING – The length of STRING is greater than zero.

-z STRING – The lengh of STRING is zero (= it is empty).

STRING1 = STRING2 – STRING1 is equal to STRING2

STRING1 != STRING2 – STRING1 is not equal to
STRING2

INTEGER1 -eq INTEGER2 – INTEGER1 is numerically
equal to INTEGER2

INTEGER1 -gt INTEGER2 – INTEGER1 is numerically
greater than INTEGER2

INTEGER1 -lt INTEGER2 – INTEGER1 is numerically less
than INTEGER2

-d FILE – FILE exists and is a directory.

-e FILE – FILE exists.

-r FILE – FILE exists and the read permission is granted.

-s FILE – FILE exists and its size is greater than zero (= it
is not empty).

-w FILE – FILE exists and the write permission is
granted.

-x FILE – FILE exists and the execute permission is
granted.

Input, more variables

For BASH input, if you want to have an interactive
script, you can use ‘read’ to read the variable from the
user input. Simple script example, greeting.sh:

echo Who are you?

read name

echo It's nice to meet you, $name.

Since the quote has a special meaning for BASH, it
gets escaped via the backslash. read -p and read -sp
can be used to prompt and be silent, which means
not to echo the typed input:

read ­p 'Username: ' user

read ­sp 'Password: ' pass

stores the username in $user and the password in
$pass, without showing it. If the user enters several
words when prompted, read varx vary varz would
store three words in the three di�erent variables. If
more than three words were given, the last variable
stores the remaining input. Here are some special
variables which you can use in your scripts:

$0 – The name of the Bash script.

$1 – $9 – The �rst 9 arguments to the Bash script.

$# – Number of arguments passed to the Bash script.

$@ – All the arguments supplied to the Bash script.

$? – The exit status of the most recently run process.

$$ – The process ID of the current script.

$USER – The username of the user running the script.

$HOSTNAME – The hostname of the machine the script
is running on.

$SECONDS – The number of seconds since the script
was started.

$RANDOM – Returns a di�erent random number each
time is it referred to.

$LINENO – Returns the current line number in the
Bash script.

These should be pretty simple, with $0 needing a little
more detail: With this, you can have your script act
di�erently depending on which name you used for it,
for example, compressing and decompressing �les. A
full list of pre-de�ned variables which you can use is
available if you type ‘env’ on the command line.

With this, there are now 3 methods of passing data to
a BASH script, and which method is best depends on
the situation:

Command line arguments, like ourscript.sh foo bar baz
gives $1=foo, $2=bar and $3=baz.

Read input during script execution, see above.

Data that has been redirected into the script via stdin.
This is more for experienced scripters, basically, it is
same as piping results from another script or function
into our script with ‘|’.

We used quotes now sometimes without explaining
what they are good for. Since BASH uses a space to
separate items, device=Odroid XU4; echo $device
gives an error message that ‘XU4’ cannot be found,
because the variable content is just ‘Odroid’ and BASH
tries to execute ‘XU4’. If you want a variable with
spaces, you need to use quotes. Text in quotes
indicates to BASH that the contents should be
considered as a single item. You may use single
quotes ‘ or double quotes “. Depending on what you
want to do, either one is important:

Single quotes will treat every character literally. echo ‘I
am $USER’ prints I am $USER.

Double quotes will allow you to do substitution (that is,
include variables which get evaluated). echo “I am
$USER” prints I am odroid.

You can also use command substitution to have a
variable �lled with the evaluation of command(s) –
foo=$(ls /etc | wc -l); echo There are $foo entries in
/etc. shows how many con�guration entries are in
your /etc directory.

If you want to have variables available for other
scripts, you need to export them. export foo makes
$foo available for following scripts, but if they change

$foo, this has no impact on the exporting script. Think
of it as making a copy and handing it out.

Calculations

Let’s cover calculations in BASH brie�y. It’s enough to
know that $((…)) evaluates the term in the double
brackets. So, if you want to know quickly how many
seconds a year has, type:

$ echo $((60*60*24*365))

This should return 31536000. Only integer values are
allowed, though. This is true for input and output –
fractional output gets dropped by BASH. echo $((4/5))
gives 0, and only echo $((5/5)) would give you 1 as a
result.

Practical BASH application

Another game as a reward for making it through all
the theoretical BASH aspects, in around 350 lines of
BASH script, is the game 2048. You can play it with the
cursor keys, link to the script in the references.
download it with wget.

This was a lot of exciting information, in the next part
we take a break from the theory and look at an
interesting command line applications and useful
BASH scripts. Also a little more (only a little!) about
scripting with loops and functions.

References

http://linuxg.net/curly-brackets-expansion-in-bash-
with-5-practical-examples/
https://raw.githubusercontent.com/mydzor/bash20
48/master/bash2048.sh

http://linuxg.net/curly-brackets-expansion-in-bash-with-5-practical-examples/
https://raw.githubusercontent.com/mydzor/bash2048/master/bash2048.sh

GBM Video Driver
 October 1, 2018  By @AreaScout  Gaming, ODROID-XU4, Tutorial

This is a guide to install GBM-enabled user space
drivers and build retro gaming emulators. First, we
will showcase the use of the Mali GBM enabled
userspace library. We will show how well it works, and
for what it can be used. We will use the ODROID-VU5A
display to showcase the samples.

We will install an Ubuntu 18.04 minimal image for XU4
and prepare the use of the GBM Mali Driver for it. As
a result, PPSSPP will run to emulate the games well
without any tearing. The video showcasing GoW –

Chains of Olympus on ODROID-XU4 can be found at
https://youtu.be/QegJlw�kZk.

Install the image

Download the image: ubuntu-18.04-4.14-minimal-
odroid-xu4-20180531.img.xz from
https://odroid.in/ubuntu_18.04lts/. Extract it and
write the image to the boot media, using the the
online guide described at Hardkernel’s wiki.

https://youtu.be/QegJlwflkZk
https://odroid.in/ubuntu_18.04lts/

Boot the ODROID-XU4 using the boot media and use
the login credentials:

Username: root Password: odroid

Update the system software using the commands:

$ apt update && apt full­upgrade ­y

Install dependent components:

$ apt­get install mali­x11 libx11­dev libsm­

dev libxext­dev git cmake mercurial libudev­

dev libdrm­dev zlib1g­dev pkg­config

libasound2­dev alsa­utils htop bc ifupdown2

net­tools libssl1.0­dev mlocate bluez

libfreetype6­dev libgbm­dev

Add the odroid user and add the userid to groups:

$ adduser odroid usermod ­aG

Sudo,adm,audio,operator,input,video,tty,staff,

games,users, plugdev,netdev,bluetooth,disk

odroid

Login with the newly created user:

$ su ­ odroid

Enable color prompt:

$ sed ­i '1iforce_color_prompt=yes' ~/.bashrc

$ su odroid

Turn the mali-x11 display driver in the GBM enabled
one. This is normally relatively easy to do by only
updating eglplatform.h which is multi platform (ie.
fbdev x11 and GBM). However, we need to update the
other headers also.

$ cd /usr/include/EGL

$ sudo rm eglplatform.h

$ sudo wget

https://www.khronos.org/registry/EGL/api/EGL/e

glplatform.h

$ cd /usr/include/GLES2

$ sudo rm *

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES2/gl2platform.h

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES2/gl2.h

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES2/gl2ext.h

$ cd /usr/include/GLES3

$ sudo rm *

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES3/gl3.h

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES3/gl31.h

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES3/gl32.h

$ sudo wget

https://www.khronos.org/registry/OpenGL/api/GL

ES3/gl3platform.h

Now get the new driver binary:

$ cd ~

$ wget http://deb.odroid.in/bigmali.tar

$ tar xf bigmali.tar libmali.so

$ sudo mv libmali.so /usr/lib/arm­linux­

gnueabihf/mali­egl/.

Add a missing symbolic link:

$ sudo ln ­s /usr/lib/arm­linux­

gnueabihf/mali­egl/libmali.so

/usr/lib/arm­linux­gnueabihf/libGLESv1_CM.so.1

Add a new directory, open up vi editor for
/usr/local/lib/pkgcon�g/gbm.pc �le:

$ sudo mkdir /usr/local/lib/pkgconfig

$ sudo vi /usr/local/lib/pkgconfig/gbm.pc

Add the following section into the new �le:

prefix=/usr/local

exec_prefix=${prefix}

includedir=${prefix}/include

libdir=${exec_prefix}/lib

Name: libgbm

Description: A small gbm implementation

Version: 19.0.0

Cflags: ­I${includedir}

Libs: ­L${libdir} ­lgbm

Save and close vi. Add symbolic links for libgbm:

$ cd /usr/local/lib/

$ sudo ln ­s /usr/lib/arm­linux­

gnueabihf/mali­egl/libmali.so libgbm.so

$ sudo ln ­s libgbm.so libgbm.so.19

$ sudo ln ­s libgbm.so.19 libgbm.so.19.0.0

$ sudo ldconfig

Fetch gbm.h and delete the one from mesa:

$ cd /usr/include

$ sudo rm gbm.h

$ sudo wget ­O gbm.h

https://pastebin.com/raw/5QUd011t

Download SDL2, build and install it:

$ cd ~

$ hg clone http://hg.libsdl.org/SDL SDL2

$ cd SDL2

$./configure ­­disable­video­opengl ­­enable­

video­kmsdrm

After the con�gure step is �nished you should see this
line:

Video drivers : dummy x11(dynamic)

kmsdrm(dynamic) opengl_es1 opengl_es2 vulkan

Now we have to edit SDL_con�g.h to permanently
dlopen our libgbm.so.19 instead of the libgbm.so.1
from Mesa. Build and install it:

$ sed ­i ­e 's/libgbm.so.1/libgbm.so.19/g'

include/SDL_config.h

$ make ­j7

$ sudo make install

After the build completes we can test:

$ cd test $./con�gure $ make -j7 $./testgles2

You should see a spinning cube, wait some seconds
and quit with ESC key. If you are using the VU5A, you
will notice something like this which indicates it is too
slow:

INFO: 56.89 frames per second

It should reach 60 fps, if not it is a real problem for
emulators. If they try to just hold 60 fps and they
cannot, then it will really slow down things a lot. We
can observe further using PPSSPP game intro videos.

Building the Kernel for >60fps on VU5A

We have to patch the kernel to get more than 56fps
processing. Until we publish the needed changes in

the mainline kernel, we will have to do it on our own.

The pixel clock and probably some H or V sync timing
values of HDMI PHY con�g are not right for the VU5A
Display. Details can be found at https://goo.gl/CVJYS6.
Hardkernel took the closest one but they choose it to
be on the lower side of 60fps. For emulation it is
better to choose the higher side of 60fps, so at the
end we will have a �xed frame rate of 64fps.

Ensure you have enough space on the system
storage, and then Fetch the kernel source. We will
select the HDMI PHI con�g from the next higher pixel
clock, as what is really inside this HDMI PHY con�g is
unknown to the public. We have asked several
developers but no one could give me an answer, only
in kernel 3.10 there is some small code to change this
32byte long con�g. So only some few bytes are
known, but they do not change the refresh rate.

$ git clone

https://github.com/hardkernel/linux.git

$ cd linux

$ wget ­O VU5A.patch

https://pastebin.com/raw/aWEYArWL

$ patch ­p1 < VU5A.patch

$ make odroidxu4_defconfig

$ make ­j7

$ sudo cp arch/arm/boot/zImage /media/boot/.

$ sudo cp arch/arm/boot/dts/exynos5422­

odroidxu4.dtb /media/boot/.

$ sudo make modules_install

Reboot and test the fps value again:

$ cd SDL2/test

$./testgles2

Now you should see something like this:

INFO: 64.01 frames per second

Now we will build PPSSPP and then RetroArch with
GBM KMSDRM backend, including some libretro’s.

Building PPSSPP

PPSSPP is a PSP emulator for Android.

Fetch the source and apply a needed patch:

$ cd ~

$ git clone ­­recursive

https://github.com/hrydgard/ppsspp.git

FFmpeg needs to be built before the PPSSPP binary is
built. The pre-built binaries are all for soft �oating
points and we need hardfp:

$./linux_armhf.sh

$ cd ..

Before we can start to compile we have to turn our
copy of /usr/include/GLES2/gl2ext.h into a vendor
speci�c one by disabling the use of
GL_EXT_bu�er_storage. A backup �le is created
gl2ext.h.back. Our Mali library does not
include/export that function so we cannot de�ne it.

$ sudo sed ­i.bak '/^#ifndef

GL_EXT_buffer_storage$/,/^$/d'

/usr/include/GLES2/gl2ext.h

You may want to set the use of only 4 cores in
FFmpeg for tinkering and experimenting. I have
observed that FFmpeg with threading does not work
out very well when all cores are chosen with HMP
(switching higher demanding tasks from LITTLE to the
BIG CPU’s). For this you can edit the �le
Core/HW/MediaEngine.cpp at line number 475, and
change to use only 4 cores (better for switching from
4 LITTLE to 4 BIG instead using all 8 cores).

However, this was observed in Moonlight with game
streaming 1080p video �les. PPSSPP video �les are

not that big and maybe therefore not so CPU
intensive so that may only impact very little to
nothing:

av_dict_set(&opt, "threads", "4", 0);

Now, we need to generate the Make�le.

$ cmake ­DUSING_EGL=OFF ­DUSING_GLES2=ON ­

DUSE_FFMPEG=YES ­DUSE_SYSTEM_FFMPEG=NO .

Start compiling the binary:

$ make ­j7

If you are using the VU5A you will now have
touchscreen capabilities in menu and you can also
enable ‘On-Screen touch controls’ if you want. You can
watch the video at https://youtu.be/QegJlw�kZk?
t=374. You can now brand your emulated PPSSPP to
an unique region by generating a locale for it. In my
case, I used de_AT:

$ sudo locale­gen de_AT.UTF­8

$ sudo update­locale LANG=de_AT.UTF­8

Some games may use it for In-Game Language. The
download at https://goo.gl/BhHLxm contains my
settings for GoW, including some texture
replacements for Star Wars, The Clone Wars and Star
Wars, and The Force Unleashed. These games are
playable

The PPSSPP con�g directory would look like this:

odroid@odroid:~$ tree ­d .config/ppsspp/

.config/ppsspp/

└── PSP

├── PPSSPP_STATE

├── SAVEDATA

│ ├── ULES01284SAVE00

│ └── ULES01376SYSDATA

├── SYSTEM

│ └── CACHE

└── TEXTURES

├── ULES00981

└── ULES01284

10 directories

Build and con�gure RetroArch

A video of this can be viewed at
https://youtu.be/6Ewgov7_TXM. In addition to the
fetching RetroArch, we need a small patch which
prevents us to have the menu with only a black
background:

$ git clone

https://github.com/libretro/RetroArch.git

$ cd RetroArch

$ wget ­O retro.patch

https://pastebin.com/raw/1SCeb8EG

$ patch ­p1 < retro.patch

$./configure ­­enable­opengles3 ­­enable­

opengles ­­enable­neon ­­enable­floathard ­­

enable­freetype

$ make ­j7

$ sudo make install

$ retroarch

Apply some useful settings. This is a suggestion to you
to setup RetroArch, after it is installed you do not
have to follow that tutorial anymore. Update the
Assets (Icons, background pictures and stu�). You can
�nd needed information at the menus below:

MainMenu ­> Online Updater ­> Update Assets

We suggest you also update these packages:

Core Info Files, Joypad Profiles, Database,

GLSL Shaders

Also, you could use the Core Updater to get some
emulators. Next, enable Advanced Settings:

Settings ­> User Interface ­> Show Advanced

Settings ­> ON

Enable Threaded Video, and it will boost up emulation
a lot:

Settings ­> Video ­> Threaded Video ­> ON

Enable FPS counter, it is helpful to see how fast the
emulation runs, especially when you setup things:

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Display Framerate ­> ON

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Show frame count on FPS

Display ­> OFF

Settings ­> Driver ­> Audio Driver ­>

alsathread

and if you are using VU5A:

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification size ­> 18

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification X position ­>

0.010

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification Y position ­>

0.010

If you already have games installed on your ODROID-
XU4, scan for them using Import Content -> Scan
Directory and select the root game folder to let
RetroArch scan for your games. They will appear on
the right side of the menu after some time.

Build and con�gure Versatile Commodore
Emulator

A video of this can be viewed at:
https://youtu.be/ItkppnXWd9U

First let us install Vice libretro and then mame
libretro.

Install the prerequisite:

$ sudo apt­get install bison

Download the source and apply the no-border patch
for VIC-II Commodore machines if you want. This will
remove the border of C64 and C128 machine models,
the games are way better to view without it. This is a
quick way to do it. A better approach would be to add
it to the libretro con�g.

If a game draws inside those borders it will not work
and the system will probably segfault, but not a lot of
games are drawing into the border.

$ git clone https://github.com/libretro/vice­

libretro.git

$ cd vice­libretro

$ wget ­O noborder.patch

https://pastebin.com/raw/VwtSDj50

$ patch ­p1 < noborder.patch

Start to build a Commodore machine of your choice.
The valid machine types are:

x128, x64, x64sc, x64dtv, x64scpu, xplus4,

xvic, xcbm5x0, xcbm2, xpet

You must add a EMUTYPE variable followed by the
machine type you want to build. If you do not add this
variable, then x64(C64) is the default machine type.

$ make EMUTYPE=x64 ­f Makefile.libretro ­j7

If you want to build more then one machine type, do
not forget to run the clean command on the project,
otherwise the core will not work:

$ make EMUTYPE=x64 ­f Makefile.libretro ­j7

clean

RetroArch con�g

Copy the binary into RetroArch core folder:

$ cp vice_x64_libretro.so

~/.config/retroarch/cores/.

Start RetroArch and select the vice core – either start
the core without game or with it. Hit the Guide button
on your game controller or F1 on the keyboard and
scroll down to Options enter it and disable
DriveTrueEmulaton->OFF. It will take a very long time
to load a game and set Controller0Type to joystick.

You can also enable an Aspect Ratio of 16:10. It is a
good compromise between 4:3 and 16:9

Settings ­> Video ­> Aspect Ratio ­> 16:10

With the Start button you can activate the nuklear GUI
settings (Select button has to pressed once to activate
mouse) from there you can choose the C64 Joyport,
machine cpu, sid type and more. The Onscreen
keyboard is activated with the x button (Xbox layout)

Build and con�gure Reicast core – a Dreamcast
emulator

https://youtu.be/ItkppnXWd9U

The video link can be found at
https://youtu.be/j0jEUcQx-vM. Download the source
and apply a patch as usual:

$ cd ~

$ git clone

https://github.com/libretro/reicast­

emulator.git

$ wget ­O xu4.patch

https://pastebin.com/raw/pfVjnVs3

$ patch ­p1 < xu4.patch

$ platform=odroid ARCH=arm make ­j7

$ strip reicast_libretro.so

$ cp reicast_libretro.so

~/.config/retroarch/cores/.

First you need some bios for NAOMI and Dreamcast.
Some good links to obtain and use them are
https://goo.gl/a5JbMT and
https://docs.libretro.com/library/reicast/. If you
want to know the md5 checksum of the NAOMI bios
�le you can take a look into the core info �le:

/home/odroid/.config/retroarch/cores/reicast_l

ibretro.info

Inside a game open RetroArch menu and go to core
options �nd the following settings and change them
to the following values, which are the most important
to get a decent speed:

reicast_framerate = "normal"

reicast_enable_rttb = "enabled"

reicast_threaded_rendering = "enabled"

For comments, questions, and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=98&t=32173.

https://youtu.be/j0jEUcQx-vM
https://goo.gl/a5JbMT
https://docs.libretro.com/library/reicast/
https://forum.odroid.com/viewtopic.php?f=98&t=32173

Coding Camp – Part 6: Generate sound from the ODROID-GO
speaker
 October 1, 2018  By Justin Lee  Tinkering, Tutorial, ODROID-GO

Let us learn how to use the DAC output as a sound
tone generator. The odroid_go.h library and its GO
instance has a Speaker instance for using the speaker
easily. So, you can play something with GO.Speaker.
Some of the GO.Speaker functions are:

setVolume(): to set volume level. The given parameter
can be 0 to 11(mute).

playMusic(): to play music which is written in 8 bit
integers. The given parameter is a proper sample rate
for playing music.

beep(): to play a simple beep sound.

tone(): to play a simple beep sound with two
parameters of a frequency and a duration in
millisecond. You can omit the duration argument.

We’re going to write code that plays a sound when a
button is pressed. We will use the A, B, and Start
buttons and make these buttons play a sound that
di�ers from each other. To learn about how the

buttons are used, please refer to the Buttons
example. We’re also going to show which button is
pressed on the LCD.

To learn about how the LCD is used, please refer to
the Hello World example. We can write source code
as shown below. Initialize the board by calling the
GO.begin() function and put the code in the loop()
function that activates when the button wasPressed().

#include

void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.printf("ODROID­GO speaker test:

");

GO.Speaker.setVolume(8);

GO.Speaker.playMusic(m5stack_startup_music,

25000);

}

void loop() {

// put your main code here, to run repeatedly:

if(GO.BtnA.wasPressed()) {

GO.lcd.printf("wasPressed: A

");

GO.Speaker.beep();

}

if(GO.BtnB.wasPressed()) {

GO.lcd.printf("wasPressed: B

");

GO.Speaker.tone(3000, 200);

}

if(GO.BtnStart.wasPressed()) {

GO.lcd.printf("wasPressed: Start

");

GO.Speaker.playMusic(m5stack_startup_music,

25000);

}

GO.update();

}

Press CTRL-U to compile and upload the sketch, and
press A, B or Start button to play a sound.

Completed example

The complete example is available by clicking the Files
→ Examples → ODROID-GO → Speaker menu to
import and press CTRL-U to compile/upload, as
shown in Figure 1.

Figure 1 – Accessing the completed example

For comments, questions, and suggestions, please
visit the original article at
https://wiki.odroid.com/odroid_go/arduino/06_speake
r.

Meet An ODROIDian: David Knight
 October 1, 2018  By Rob Roy  Meet an ODROIDian

Please tell us a little about yourself. I live in Newcastle,
UK, working as an optometrist working in the
refractive surgery sector. My day job involves
managing patients who have had cataract or laser eye
surgery. I was very studious and introverted in my
youth, always having my head in books. I was pretty
good at maths, science and chess – in the 1980’s
computing as a subject was still fairly new and I was
more interested in biology at the time. I remember
working in a spectacle glazing factory over the
summer one year and shortly after decided to do a
degree in Optometry. After working in private practice
for a decade I needed a new challenge. That’s when I
turned to refractive surgery and have not looked
back! When I’m not working, training or educating, I
am currently completing a part-time degree in
Computing and IT. Programming is my hobby and my
“me” time!

Figure 1 – David Knight

I am very happily married with four children. My wife
is a �tness instructor, so I have no excuse to keep
myself in shape! Three of my children have �nished
education and my youngest is still in primary school.

How did you get started with computers? My �rst
computer was the ZX Spectrum 48K. I remember
playing Manic Miner on it when I was 6 years old! As
we couldn’t a�ord games I remember typing a few
BASIC programmes I found in magazines, but didn’t
really progress from there. I still have my Spectrum
though sadly the keyboard has succumbed to the
passage of time and no longer works. I think this is
where my passion for computing came from though
as I remember wanting to learn to program – at
university I was the only non-computing student who
dared to enter the Unix lab (though I admit it was
mainly to play MUDs!)

After much procrastination around 2009, I started
dabbling with Linux, learning Bash scripting in the
process. I wanted to create a Linux distribution for the
visually impaired and got involved with the Vinux
project which modi�ed a vanilla Ubuntu distribution

to make it more accessible for visually impaired users,
which is still going today. By then, I had learned a
smattering of Python, but really wanted to get to grips
with C and C++. As an exercise, I decided to start by
porting Passage to the GCW Zero hand-held. It was
certainly and exercise in frustration! After much
wasted time, I managed to get it to compile and still
remember the thrill of seeing the game run on my
system – I was hooked!
(https://boards.dingoonity.org/gcw-
releases/passage/)

Figure 2 – David’s wonderful family

Since then, I think I’ve ported around 30 emulators to
handheld consoles, enjoying the challenges each
project brings and of course learning along the way. I
particularly enjoy the challenge of optimising code so
it can run smoothly on slower systems. I spend way
too much time improving performance by a few
percent or obsessing over tiny features that nobody
will notice except me, but I don’t like ine�cient code
or using more power than is necessary. I also enjoy
working on the UI so that controls are intuitive and
make sense.

https://boards.dingoonity.org/gcw-releases/passage/

What attracted you to the ODROID platform? I was
looking for an easy and fun introductory electronics
project to make with my son Alexander over the
summer holidays. It had to be easy to construct
ideally without the need to solder components. After
looking at a multitude of Raspberry Pi projects, I
found out about the ODROID-GO. He really enjoyed
constructing the kit, and his favourite games were
Pac-man and Frogger. I was amazed at how much
processing power was available in the ESP32 and how
comfortable the controls felt. The only problem was
that there was no Spectrum emulator.

How do you use your ODROIDs? Our ODROID-GO
spends most of its time either in my work bag (for
long train rides) or plugged into my computer when
we are programming on it. We really enjoy tweaking
settings and seeing how it a�ects the performance of
the emulators. I recently made a very low power build
that would run games for 19 hours.

Which ODROID is your favourite and why? I only have
my ODROID-GO at the moment. I am attracted to
e�cient low power portable devices and love the
ESP32, it has loads of power but uses so little energy! I
have really enjoyed reading the Programming Guide
and learning about the rich feature set available to
developers.

What innovations would you like to see in future
Hardkernel products? As a portable device, the
ODROID-GO ideally should have a headphone socket
(I’m looking at you Apple). Of course the ESP32 is
capable of Bluetooth, so perhaps wireless
headphones will be a possibility in future. Also

currently sound volume is reduced by reducing the bit
depth of sound samples, producing poor quality
sound at low volume. It would be great to have a
potentiometer with perhaps a scroll wheel to control
volume. Similarly screen brightness control could
perhaps be controlled autonomously by an LDR.

What hobbies and interests do you have apart from
computers? Apart from a spot of retro gaming, I’m not
really a gamer. When not spending time with my work
and family I enjoy running, cycling, singing in a choir
and juggling.

What advice do you have for someone wanting to learn
more about programming? The reason I got into
programming was because I needed to understand
how computers work and I soon realised the myriad
possibilities that opened up. As a beginner, I wish
someone had given me “How to Think Like a
Computer Scientist”. It’s a great introduction to
computer programming. When learning, it is
important to get small victories; Scratch is a great way
to teach the fundamentals and retain interest,
particularly with younger children. Start with fun,
small projects with simple challenges to solve. Street
Fighter 2 with cats? Yup, we did that with Scratch!

Links

Vinux project website
http://www.vinux.org.uk/about.html My �rst
compiled port https://boards.dingoonity.org/gcw-
releases/passage/ My Github and BitBucket sites
https://github.com/DavidKnight247,
https://bitbucket.org/DavidKnight247

http://www.vinux.org.uk/about.html
https://boards.dingoonity.org/gcw-releases/passage/
https://github.com/DavidKnight247
https://bitbucket.org/DavidKnight247

