

ODROID-GO Clone
 February 1, 2019

The ODROID-GO is a great invention from Hardkernel.

Kernel 5.0: the next LTS version of the Linux Kernel
 February 15, 2019

Linux Kernel 5.0, which is the next LTS version of the Linux Kernel, is now available for
ODROIDs!

Scienti�c Cluster Computations On An ODROID-MC1
 February 1, 2019

Common state-of-the-art simulations employ hundreds of thousands CPU cores on
high-performance computing (HPC) systems to solve big societal challenges. In this
context, the scalability and the simulation kernel performance are key to e�cient

multi-core computations.

Amibian.js: Emulating a Commodore Amiga on an ODROID-XU4
Cluster
 February 1, 2019

Amibian is what you need to transform your ODROID into an Amiga. It is a very
lightweight SD card image that �ts on SD cards from the size of 2GB and up. It is made

to give you the best Amiga experience you can get without having an actual Amiga.

Coding Camp – Part 11: Control the LED from your smartphone via
WiFi
 February 1, 2019

ESP32, which is used on ODROID-GO, supports WiFi 802.11b/g/n, so we can program
WiFi features with helpful libraries on Arduino.

OGO-FTPD: An FTP Server for the ODROID-GO
 February 1, 2019

In this article, I will introduce you to an FTP server for the ODROID-GO. It is a rather
minimal implementation that currently does not support authentication and passive
mode operation.

Android Gaming
 February 1, 2019

Rob promptly asked if I didn’t have a pool of games I just played on my ODROID
running Android and for a miraculous stroke of luck I did have it! Who could imagine
that I play games on my spare time?

Coding Camp – Part 12: Serial communication over Bluetooth
 February 1, 2019

In this article, we will make a wireless bridge to our smartphone using the Bluetooth
RFCOMM protocol stack.

ODROID-GO Gaming Pack: 3rd Party Apps and Games Download
Pack
 February 1, 2019

This article provides all of the third party apps and games that have been released so
far for the ODROID-GO by their contributors.

Linux Gaming: PC-Engine / TurboGrafx – Part 2
 February 1, 2019

I have really enjoyed trying out all these games for the PC-Engine / TurboGrafx CD.

Meet An ODROIDian: Chris Lord
 February 1, 2019

I am a software engineer and musician, making most of my living from the former.
Currently, I am working on a real-time motion capture system for embedded devices,
but I have worked on all sorts of things over the last decade or so.

ODROID-GO Clone
 February 1, 2019  By @cheungbx  ODROID-GO, Tinkering, Tutorial

The ODROID-GO is a great invention from Hardkernel.
It can function as a game console with many
emulators. Though the number of emulators is small
compared to those supported by RetroPie or
Recalbox installed, I found the response much faster
and smoother, while consuming a lot less power.
Game saving by default is also very handy.

An introduction video about my homemade ODROID-
GO can be found at: https://youtu.be/E3ZfBwI9Wt8.

A full demonstration of the steps can be viewed at:
https://youtu.be/sP3x_Fm-htA

https://youtu.be/E3ZfBwI9Wt8
https://youtu.be/sP3x_Fm-htA

I was not able to buy the ODROID-GO at a reasonable
price from Hong Kong, due to the high shipping cost
to ship from US, hence I decided to create one myself.
It is good that Hardkernel shared the design
schematics and �rmware on github and make it open
source, so makers like me can challenge themselves
to make their own design of the ODROID-GO.

By loading di�erent �rmware, you can use it to run
Arduino designed binary codes, micropython codes
and many other types of third party software.
Although this article shows you the steps how to do it,
not everyone can successfully build one, since it
requires reasonable soldering and desoldering skills. I
also recommend anyone who wants to own an
ODROID-GO to order it from Hardkernel as the cost to
build one (plus all the shipping) may be close to or
even exceed that of buying directly from Hardkernel.

I intend to make it with a smaller 2.2″ TFT LCD instead
of the 2.4″ one that comes with the originals. I also do
not need such loud audio output and headphone jack
output is already too loud for me, so I do not need the
ampli�er circuit. Just connect the GPIO 26 and ground
of the ESP32 to the mini/speaker or headphone jack
with a hardware volume control. That will be all I
need. I kept the 10 pin extension header, but have to
use my own set of silent buttons.

It is built on a prototype PCB as a frame, where I
carved out a rectangular window to mount the LCD,
so it will lay �at on the PCB on the front side. For the
mcu board, I chose the TTGO T8 ESP32 WRover board
ESP32 WRover board has an additional 4MB PsRam
(pseudo static Ram) compared to the ESP VRoom
board that has only 4MB �ash RAM but no PsRam.
The GO-Play �rmware of ODROID-GO that drives all
the retro-game emulation cannot work with just 4MB
Flash RAM. The GO-Play �rmware of ODROID-GO

cannot be �ashed into just 4MB �ash, so I upgraded
the surface mounted 4MB Flash RAM to 16MB. I
ruined one board by using hot air gun to desolder the
original 4MB RAM and accidentally blew o� a few
resistors and could not �nd that. I have to order a
new one and this time I used the safer approach. Just
cut-o� the pins of the 4MB Ram , then put the new
16MB RAM on top and solder it up. It is much easier
this way.

Please follow the steps below to build one if you have
good soldering skills. If you cannot solder well, I
recommend just buying the original.

Parts List

The parts list includes:

TTGO T8 V1.1 ESP32 WRover 4Mbyte Flash + 4Mbyte
PSRAM

Winbond W25Q128FVSIG SOP8 16Mb Serial Flash
memory (for upgrading the ESP32 from 4Mb Flash ram
to 16Mb)

16G TF card with SD card slot

2.2″ TFT LCD SPI il9341

3.7V 1500MaH LIPO battery

mini speaker

3.5mm headphone jack with switch

10 silent buttons

10K VR for volume control

10 pin header for expansion

5 pin and 9 pin header to connect the TFT LCD pins
made from IC sockets

Mini Slide switch for power button

Double-sided 7cm x 9cm prototype PCB

7cm x 9cm Arglic board for back cover

Four 3mm x 20mm screws to hold the back cover

0.2mm or 0.3mm laminated (insulated) wire

Most of these are available at Amazon, AliExpress, or
TaoBao in China.

Hardware Setup

This project uses a double-sided 7×9 cm prototype
PCB as the frame of the game console. We shall refer
to this as “the PCB“. The setup steps include:

Cut out a square hole on the PCB for the 2.2“ LCD

Solder the buttons as shown in the layout to the front
side of the PCB

Desolder the existing 4Mb Flash ram from the TTGO T8
ESP32-Wrover board

Solder in a 16MB Flash Ram (Winbond W25Q128FVSIG)

Mount the TTGO T8 ESP32-Wrover board at the back
side of the PCB

Mount the 2.2“ TFT LCD at the back of the PCB

Cut out 9 pins from an ic socket to plug into the TFT
LCD‘s LCD pins

Cut out 5 pins from an ic socket to plug into the TFT ‘s
SD card pins

Using 0.2 or 0.3mm Laminated (insulated) wires, start
the soldering work

Solder up all the connections from the TFT LCD to the
ESP32 board following the circuit diagram and the pin
layout

Solder up all the connections from the SD CARD slot to
the ESP32 board following the circuit diagram and the
pin layout

Solder one end of the D-PAD buttons to 3.3V (i.e.,
up/down/left/right), and the other end to the right
GPIO pin of ESP32 following the pin layout

Solder one end of the other buttons to GND, and the
other end to the right GPIO pin of ESP32 following the
pin layout

Solder up the 10K Variable resistor, the headphone
jack and the speaker as shown in the pin layout

Solder two 100K resistor and one 0.1uF and connect
that to GPIO36 for battery level measurement

Solder the 10 pin extension header to the ESP32‘s pins
according to the pin layout

Solder a cable to the battery and plug that into the
ESP32 board‘s battery input

Cover up the back of the PCB with an acrylic board and
secure it with screws

Burn SD card with �rmware and ROMs

Follow these steps:

Browse to
https://wiki.odroid.com/odroid_go/make_sd_card

Follow instructions there to download the SD Card
skeleton �les (without game ROMs), then format a
blank 16G or 32G Flash card as FAT and copy the SD
Card skeleton folders and �les downloaded from step
2 to the

root directory of the SD card

Optionally you can also download and add other 3rd
party software into the SD Card by following
instructions at https://goo.gl/vr4YdQ

For game ROMs, you can search the di�erent game
rom hosting sites by searching for the game title, the
game console name + rom. For e.g., “pinball nes rom”.
Once you downloaded, make sure you decompressed
it to

get the original �le, e.g., pinball.nes instead of
pinball.zip. Then copy the game Roms to the roms
folder of the SD card under the right folder of the
game console, e.g., copy pinball.nes to e: oms es

Just like in Retropie or Recalbox, ROM icon png �les are
stored in the downloaded_images folder under each
game console folder

If you are copying game roms from RetroPie or
Recalbox to the ODROID-GO, note that some of the
folder names are di�erent, e.g. instead of “atari2600”,
“a26” is used, and .zip �les are not supported

Once all game ROMs are copied to the SD card, eject it
safely from your computer (depends on which os you
use, windows, linux, mac)

Insert the SD card into the homemade ODROID-GO

Flash boot image to Esp32

The steps to be followed for �ashing the boot image
include:

Make sure the SD card with all the �rmware and game
roms that you created in the previous step is already
inserted to the ODROID-GO

On your workstation, browse to
https://wiki.odroid.com/odroid_go/�rmware_update

Follow instructions there to download the ESP32 �ash
tool and the Odroid-go boot image. Your tools and
instructions to use will depend on whether you are
using a Windows, Linux or OSX computer

There is no need to erase the �ash entirely �rst. The
corresponding partitions of the �ash will be erased
when a �rmware �le is loaded from the SD card to the
ESP32

Flash the ODROID-GO boot image to ESP32 SPI ram
according to the instructions. Refer to the sample
commands and screen outputs below. Following are
the sample commands and pertinent screen output
from Mac OSX terminal app:

...

check the ESP32 SPI serial flash memory size

...

$ python3 -m esptool --port

/dev/tty.SLAB_USBtoUART flash_id

esptool.py v2.5.0

Serial port /dev/tty.SLAB_USBtoUART

Connecting........__

Detecting chip type... ESP32

Chip is ESP32D0WDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef

calibration in efuse

MAC: 3c:71:bf:03:50:40

Uploading stub...

Running stub...

Stub running...

Manufacturer: ef

Device: 4018

Detected flash size: 16MB

Hard resetting via RTS pin…

...

burn the ODROID-GO-firmware into ESP 32 EEPROM

...

$ python3 -m esptool --chip esp32 --port

/dev/cu.SLAB_USBtoUART --baud 921600

write_flash --flash_mode dio --flash_freq 40m --

flash_size detect 0

ODROID-GO-firmware-20181001.img

esptool.py v2.5.0

Serial port /dev/cu.SLAB_USBtoUART

Connecting........_

Chip is ESP32D0WDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef

calibration in efuse

MAC: 3c:71:bf:03:50:40

Uploading stub...

Running stub...

Stub running...

Changing baud rate to 921600

Changed.

Configuring flash size...

Auto-detected Flash size: 16MB

Compressed 301920 bytes to 146523...

Wrote 301920 bytes (146523 compressed) at

0x00000000 in 2.3 seconds (effective 1039.5

kbit/s)...

Hash of data verified.

Leaving...

Hard resetting via RTS pin...

Once the �ash is complete, the ESP32 will reboot and
execute the ODROID-GO boot menu

Play Games with Go-Play & Emulators

You can use these steps to play the various games:

After boot up, you will see a list of �rmwares. Choose
the Go-Play and launch by pressing A button

The Go-Play �rmware will be �ashed to the ESP32 �ash
memory. There are total four partitions (0,1,2,3) to be
�ashed. For each �le, the corresponding memory
space (partition) of the 16M SPI serial �ash memory
will be �rst erased, then written into. It will take around
one minute to �ash all partitions. Luckily you will not
need to do this every time you play a di�erent game.
As long as you are in Go-Play �rmware, you can load
and play a game in less than a few seconds

The Go-Play main menu will be launched, and you will
see the list of game emulators to choose from. Use left
and right button to choose the emulator you want.
e.g., nes. In this main menu, you can press the volume
button to tune up or down the audio volume. Or hold
the start button and press the up/down button to
adjust the brightness of the TFT LCD, or press B to go
back to the previous game you had played before

Once you select one emulator, you will see all the
game rooms you have listed arranged in alphabetical
order. Use the up/down button to browse through the
games, left/right to page up/down. Select and Start to
jump to the previous letter or next letter of the game
list that is sorted in alphabetical order. This is handy as
I have thousands of games and very tiring to keep
clicking down button hundred times

To launch a game, press the “A” button two times. or
you can press the “B” button to go back to the game
emulator menu to select a di�erent game emulator. To
exit a game, and go back to the main menu, press the
menu button. While within the game, you can hold the
start button while clicking the right button to adjust the
display to scale it up or down. You will �nd that the
graphics will be enlarged or shrunk a bit, instead of
perfect pixel to pixel mapping of the original game. To

put the ESP32 to sleep mode, press and hold the menu
button for 2 seconds

To wake up the ESP32, press the menu button again.
To recover from a crashed game, switch power o�
(using the hard sliding switch). Then hold the menu
button before you switch on. To return to the �rmware
menu or to recover from a crashed �rmware, switch
o�. Then hold the B button before you switch on. You
can �ash a new boot up image to the ESP 32 at any
time without pressing any special buttons. However, if
you cannot get it to work, switch o�. Then hold the
Volume button before you switch on. The screen will

be fully lit. Then you can connect the esp 32 to the usb
port of your computer to be �ashed with a new boot
up image.

The instructions about how to navigate the go-play
�rmware are available at
https://wiki.odroid.com/odroid_go/emulator/usage_
go_play. For comments, questions, and suggestions,
please visit the original article at
https://goo.gl/yAbmbt.

https://wiki.odroid.com/odroid_go/emulator/usage_go_play
https://goo.gl/yAbmbt

Kernel 5.0: the next LTS version of the Linux Kernel
 February 15, 2019  By Marian Mihailescu  Linux

Kernel 5.0 Marian Mihailescu

Linux Kernel 5.0, which is the next LTS version of the
Linux Kernel, is now available for ODROIDs! It includes
ARM BIG.little support, and has been speci�cally
designed to work well with ARM devices. More
information may be found at https://www.xda-
developers.com/linux-kernel-5-0-rc1-arm-big-little-
eas-support-f2fs-�xes/.

$ uname -a

Linux odroid 5.0.0-rc2 #3 SMP PREEMPT Sat Jan 19

00:08:56 ACDT 2019 armv7l armv7l armv7l GNU/Linux

Here is an example boot log:

[0.000000] Booting Linux on physical CPU 0x100

[0.000000] Linux version 5.0.0-rc2

(odroid@odroid) (gcc version 7.3.0 (Ubuntu/Linaro

7.3.0-16ubuntu3)) #3 SMP PREEMPT Sat Jan 19

00:08:56 ACDT 2019

[0.000000] CPU: ARMv7 Processor [410fc073]

revision 3 (ARMv7), cr=10c5387d

[0.000000] CPU: div instructions available:

patching division code

[0.000000] CPU: PIPT / VIPT nonaliasing data

cache, VIPT aliasing instruction cache

[0.000000] OF: fdt: Machine model: Hardkernel

Odroid XU4

[0.000000] Memory policy: Data cache

writealloc

[0.000000] cma: Reserved 128 MiB at 0xb6800000

[0.000000] On node 0 totalpages: 518656

[0.000000] Normal zone: 1728 pages used for

memmap

[0.000000] Normal zone: 0 pages reserved

[0.000000] Normal zone: 196608 pages, LIFO

batch:63

[0.000000] HighMem zone: 322048 pages, LIFO

batch:63

[0.000000] Running under secure firmware.

[0.000000] random: get_random_bytes called

from start_kernel+0xa0/0x498 with crng_init=0

[0.000000] percpu: Embedded 17 pages/cpu

@(ptrval) s38348 r8192 d23092 u69632

[0.000000] pcpu-alloc: s38348 r8192 d23092

u69632 alloc=17*4096

[0.000000] pcpu-alloc: [0] 0 [0] 1 [0] 2 [0] 3

https://www.xda-developers.com/linux-kernel-5-0-rc1-arm-big-little-eas-support-f2fs-fixes/

[0] 4 [0] 5 [0] 6 [0] 7

[0.000000] Built 1 zonelists, mobility

grouping on. Total pages: 516928

[0.000000] Kernel command line: console=tty1

console=ttySAC2,115200n8 root=UUID=12345678-1234-

5678-9abc-123456789abc rootwait ro fsck.repair=yes

net.ifnames=0 HPD=true vout=hdmi

smsc95xx.macaddr=00:1e:06:61:7a:39 false

s5p_mfc.mem=16M

[0.000000] hdmi: using HDMI mode

[0.000000] Dentry cache hash table entries:

131072 (order: 7, 524288 bytes)

[0.000000] Inode-cache hash table entries:

65536 (order: 6, 262144 bytes)

[0.000000] Memory: 1901132K/2074624K available

(9216K kernel code, 731K rwdata, 2424K rodata,

1024K init, 318K bss, 42420K reserved, 131072K

cma-reserved, 1157120K highmem)

[0.000000] Virtual kernel memory layout:

 vector : 0xffff0000 -

0xffff1000 (4 kB)

 fixmap : 0xffc00000 -

0xfff00000 (3072 kB)

 vmalloc : 0xf0800000 -

0xff800000 (240 MB)

 lowmem : 0xc0000000 -

0xf0000000 (768 MB)

 pkmap : 0xbfe00000 -

0xc0000000 (2 MB)

 modules : 0xbf000000 -

0xbfe00000 (14 MB)

 .text : 0x(ptrval) -

0x(ptrval) (10208 kB)

 .init : 0x(ptrval) -

0x(ptrval) (1024 kB)

 .data : 0x(ptrval) -

0x(ptrval) (732 kB)

 .bss : 0x(ptrval) -

0x(ptrval) (319 kB)

[0.000000] SLUB: HWalign=64, Order=0-3,

MinObjects=0, CPUs=8, Nodes=1

[0.000000] hperf_hmp: fast CPUs mask: 000000F0

[0.000000] hperf_hmp: slow CPUs mask: 0000000F

[0.000000] rcu: Preemptible hierarchical RCU

implementation.

[0.000000] Tasks RCU enabled.

[0.000000] rcu: RCU calculated value of

scheduler-enlistment delay is 25 jiffies.

[0.000000] NR_IRQS: 16, nr_irqs: 16,

preallocated irqs: 16

[0.000000] GIC: Using split EOI/Deactivate

mode

[0.000000] Switching to timer-based delay

loop, resolution 41ns

[0.000000] clocksource: mct-frc: mask:

0xffffffff max_cycles: 0xffffffff, max_idle_ns:

79635851949 ns

[0.000007] sched_clock: 32 bits at 24MHz,

resolution 41ns, wraps every 89478484971ns

[0.000029] genirq: irq_chip COMBINER did not

update eff. affinity mask of irq 49

[0.001019] Console: colour dummy device 80x30

[0.001665] printk: console [tty1] enabled

[0.001718] Calibrating delay loop (skipped),

value calculated using timer frequency.. 48.00

BogoMIPS (lpj=96000)

[0.001758] pid_max: default: 32768 minimum:

301

[0.001975] Mount-cache hash table entries:

2048 (order: 1, 8192 bytes)

[0.002013] Mountpoint-cache hash table

entries: 2048 (order: 1, 8192 bytes)

[0.002965] CPU: Testing write buffer

coherency: ok

[0.003471] CPU0: thread -1, cpu 0, socket 1,

mpidr 80000100

[0.024054] Setting up static identity map for

0x40100000 - 0x40100060

[0.024382] ARM CCI driver probed

[0.024623] Exynos MCPM support installed

[0.031995] rcu: Hierarchical SRCU

implementation.

[0.042046] soc soc0: Exynos: CPU[EXYNOS5800]

PRO_ID[0xe5422001] REV[0x1] Detected

[0.047996] smp: Bringing up secondary CPUs ...

[0.080353] CPU1: thread -1, cpu 1, socket 1,

mpidr 80000101

[0.104314] CPU2: thread -1, cpu 2, socket 1,

mpidr 80000102

[0.136309] CPU3: thread -1, cpu 3, socket 1,

mpidr 80000103

[0.168309] CPU4: thread -1, cpu 0, socket 0,

mpidr 80000000

[0.168318] CPU4: Spectre v2: using ICIALLU

workaround

[0.192297] CPU5: thread -1, cpu 1, socket 0,

mpidr 80000001

[0.192304] CPU5: Spectre v2: using ICIALLU

workaround

[0.204515] CPU6: thread -1, cpu 2, socket 0,

mpidr 80000002

[0.204523] CPU6: Spectre v2: using ICIALLU

workaround

[0.216521] CPU7: thread -1, cpu 3, socket 0,

mpidr 80000003

[0.216528] CPU7: Spectre v2: using ICIALLU

workaround

[0.216711] smp: Brought up 1 node, 8 CPUs

[0.216757] SMP: Total of 8 processors

activated (384.00 BogoMIPS).

[0.216781] CPU: WARNING: CPU(s) started in

wrong/inconsistent modes (primary CPU mode 0x1a)

[0.216809] CPU: This may indicate a broken

bootloader or firmware.

[0.218665] devtmpfs: initialized

[0.234381] VFP support v0.3: implementor 41

architecture 4 part 30 variant f rev 0

[0.234532] hperf_hmp: registered cpufreq

transition notifier

[0.234815] clocksource: jiffies: mask:

0xffffffff max_cycles: 0xffffffff, max_idle_ns:

7645041785100000 ns

[0.234851] futex hash table entries: 2048

(order: 5, 131072 bytes)

[0.237448] pinctrl core: initialized pinctrl

subsystem

[0.239514] NET: Registered protocol family 16

[0.241329] DMA: preallocated 256 KiB pool for

atomic coherent allocations

[0.242593] audit: initializing netlink subsys

(disabled)

[0.242785] audit: type=2000 audit(0.240:1):

state=initialized audit_enabled=0 res=1

[0.243262] cpuidle: using governor menu

[0.243767] hw-breakpoint: found 5 (+1

reserved) breakpoint and 4 watchpoint registers.

[0.243793] hw-breakpoint: maximum watchpoint

size is 8 bytes.

[0.287465] EXYNOS5420 PMU initialized

[0.383251] usbcore: registered new interface

driver usbfs

[0.383323] usbcore: registered new interface

driver hub

[0.383490] usbcore: registered new device

driver usb

[0.384087] s3c-i2c 12c80000.i2c: slave address

0x00

[0.384116] s3c-i2c 12c80000.i2c: bus frequency

set to 65 KHz

[0.384402] s3c-i2c 12c80000.i2c: i2c-2: S3C

I2C adapter

[0.384831] media: Linux media interface: v0.10

[0.384880] videodev: Linux video capture

interface: v2.00

[0.385008] pps_core: LinuxPPS API ver. 1

registered

[0.385028] pps_core: Software ver. 5.3.6 -

Copyright 2005-2007 Rodolfo Giometti

<giometti@linux.it>

[0.385285] s3c2410-wdt 101d0000.watchdog:

watchdog inactive, reset disabled, irq disabled

[0.386077] Advanced Linux Sound Architecture

Driver Initialized.

[0.387307] clocksource: Switched to

clocksource mct-frc

[0.423321] random: fast init done

[1.035504] VFS: Disk quotas dquot_6.6.0

[1.035594] VFS: Dquot-cache hash table

entries: 1024 (order 0, 4096 bytes)

[1.048841] NET: Registered protocol family 2

[1.049470] tcp_listen_portaddr_hash hash table

entries: 512 (order: 0, 6144 bytes)

[1.049521] TCP established hash table entries:

8192 (order: 3, 32768 bytes)

[1.049611] TCP bind hash table entries: 8192

(order: 4, 65536 bytes)

[1.049778] TCP: Hash tables configured

(established 8192 bind 8192)

[1.049896] UDP hash table entries: 512 (order:

2, 16384 bytes)

[1.049949] UDP-Lite hash table entries: 512

(order: 2, 16384 bytes)

[1.050264] NET: Registered protocol family 1

[1.050826] RPC: Registered named UNIX socket

transport module.

[1.050850] RPC: Registered udp transport

module.

[1.050869] RPC: Registered tcp transport

module.

[1.050888] RPC: Registered tcp NFSv4.1

backchannel transport module.

[1.051098] Trying to unpack rootfs image as

initramfs...

[1.520593] Freeing initrd memory: 8212K

[1.521801] hw perfevents: enabled with

armv7_cortex_a7 PMU driver, 5 counters available

[1.522633] hw perfevents: enabled with

armv7_cortex_a15 PMU driver, 7 counters available

[1.527107] Initialise system trusted keyrings

[1.527384] workingset: timestamp_bits=14

max_order=19 bucket_order=5

[1.536232] squashfs: version 4.0 (2009/01/31)

Phillip Lougher

[1.537006] NFS: Registering the id_resolver

key type

[1.537044] Key type id_resolver registered

[1.537063] Key type id_legacy registered

[1.537093] nfs4filelayout_init: NFSv4 File

Layout Driver Registering...

[1.537145] romfs: ROMFS MTD (C) 2007 Red Hat,

Inc.

[1.641405] Key type asymmetric registered

[1.641431] Asymmetric key parser 'x509'

registered

[1.641500] bounce: pool size: 64 pages

[1.641560] Block layer SCSI generic (bsg)

driver version 0.4 loaded (major 245)

[1.641793] io scheduler mq-deadline registered

[1.641816] io scheduler kyber registered

[1.642077] io scheduler bfq registered

[1.644526] samsung-usb2-phy 12130000.phy:

12130000.phy supply vbus not found, using dummy

regulator

[1.644633] samsung-usb2-phy 12130000.phy:

Linked as a consumer to regulator.0

[1.645388] exynos5_usb3drd_phy 12100000.phy:

12100000.phy supply vbus not found, using dummy

regulator

[1.645482] exynos5_usb3drd_phy 12100000.phy:

Linked as a consumer to regulator.0

[1.645516] exynos5_usb3drd_phy 12100000.phy:

12100000.phy supply vbus-boost not found, using

dummy regulator

[1.645887] exynos5_usb3drd_phy 12500000.phy:

12500000.phy supply vbus not found, using dummy

regulator

[1.645991] exynos5_usb3drd_phy 12500000.phy:

Linked as a consumer to regulator.0

[1.646024] exynos5_usb3drd_phy 12500000.phy:

12500000.phy supply vbus-boost not found, using

dummy regulator

[1.653795] dma-pl330 121a0000.pdma: Loaded

driver for PL330 DMAC-241330

[1.653825] dma-pl330 121a0000.pdma: DBUFF-

32x4bytes Num_Chans-8 Num_Peri-32 Num_Events-32

[1.656518] dma-pl330 121b0000.pdma: Loaded

driver for PL330 DMAC-241330

[1.656546] dma-pl330 121b0000.pdma: DBUFF-

32x4bytes Num_Chans-8 Num_Peri-32 Num_Events-32

[1.657395] dma-pl330 10800000.mdma: Loaded

driver for PL330 DMAC-241330

[1.657422] dma-pl330 10800000.mdma: DBUFF-

64x8bytes Num_Chans-8 Num_Peri-1 Num_Events-32

[1.719606] Serial: 8250/16550 driver, 4 ports,

IRQ sharing disabled

[1.721748] 12c00000.serial: ttySAC0 at MMIO

0x12c00000 (irq = 58, base_baud = 0) is a

S3C6400/10

[1.722153] 12c10000.serial: ttySAC1 at MMIO

0x12c10000 (irq = 59, base_baud = 0) is a

S3C6400/10

[1.722543] 12c20000.serial: ttySAC2 at MMIO

0x12c20000 (irq = 60, base_baud = 0) is a

S3C6400/10

[2.640269] printk: console [ttySAC2] enabled

[2.644919] 12c30000.serial: ttySAC3 at MMIO

0x12c30000 (irq = 61, base_baud = 0) is a

S3C6400/10

[2.654959] exynos-trng 10830600.rng: Exynos

True Random Number Generator.

[2.661237] iommu: Adding device 14450000.mixer

to group 0

[2.666316] exynos-mixer 14450000.mixer: Linked

as a consumer to 14650000.sysmmu

[2.674761] exynos-hdmi 14530000.hdmi: Failed

to get supply 'vdd': -517

[2.680599] iommu: Adding device 10850000.g2d

to group 1

[2.685238] exynos-drm-g2d 10850000.g2d: Linked

as a consumer to 10a60000.sysmmu

[2.692602] exynos-drm-g2d 10850000.g2d: Linked

as a consumer to 10a70000.sysmmu

[2.705591] mali 11800000.mali: Continuing

without Mali regulator control

[2.712268] mali 11800000.mali: GPU identified

as 0x0620 r0p1 status 0

[2.717941] mali 11800000.mali: Protected mode

not available

[2.723557] devfreq devfreq0: Couldn't update

frequency transition information.

[2.731075] mali 11800000.mali: Probed as mali0

[2.745078] brd: module loaded

[2.747198] libphy: Fixed MDIO Bus: probed

[2.751105] usbcore: registered new interface

driver r8152

[2.756278] usbcore: registered new interface

driver cdc_ether

[2.762073] usbcore: registered new interface

driver cdc_subset

[2.769920] ehci_hcd: USB 2.0 'Enhanced' Host

Controller (EHCI) Driver

[2.775016] ehci-exynos: EHCI EXYNOS driver

[2.779530] exynos-ehci 12110000.usb: EHCI Host

Controller

[2.784643] exynos-ehci 12110000.usb: new USB

bus registered, assigned bus number 1

[2.792552] exynos-ehci 12110000.usb: irq 85,

io mem 0x12110000

[2.811362] exynos-ehci 12110000.usb: USB 2.0

started, EHCI 1.00

[2.816228] usb usb1: New USB device found,

idVendor=1d6b, idProduct=0002, bcdDevice= 5.00

[2.824173] usb usb1: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[2.831359] usb usb1: Product: EHCI Host

Controller

[2.836204] usb usb1: Manufacturer: Linux

5.0.0-rc2 ehci_hcd

[2.841838] usb usb1: SerialNumber:

12110000.usb

[2.846993] hub 1-0:1.0: USB hub found

[2.850201] hub 1-0:1.0: 3 ports detected

[2.855038] ohci_hcd: USB 1.1 'Open' Host

Controller (OHCI) Driver

[2.860310] ohci-exynos: OHCI EXYNOS driver

[2.864628] exynos-ohci 12120000.usb: USB Host

Controller

[2.869844] exynos-ohci 12120000.usb: new USB

bus registered, assigned bus number 2

[2.877589] exynos-ohci 12120000.usb: irq 85,

io mem 0x12120000

[2.947600] usb usb2: New USB device found,

idVendor=1d6b, idProduct=0001, bcdDevice= 5.00

[2.954430] usb usb2: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[2.961616] usb usb2: Product: USB Host

Controller

[2.966376] usb usb2: Manufacturer: Linux

5.0.0-rc2 ohci_hcd

[2.972009] usb usb2: SerialNumber:

12120000.usb

[2.977134] hub 2-0:1.0: USB hub found

[2.980371] hub 2-0:1.0: 3 ports detected

[2.986369] mousedev: PS/2 mouse device common

for all mice

[2.991775] i2c /dev entries driver

[3.010215] vdd_ldo9: Bringing 3300000uV into

3000000-3000000uV

[3.023733] vddq_mmc2: Bringing 3300000uV into

2800000-2800000uV

[3.040091] vdd_sd: Bringing 3300000uV into

2800000-2800000uV

[3.187373] usb 1-1: new high-speed USB device

number 2 using exynos-ehci

[3.349477] usb 1-1: New USB device found,

idVendor=0bda, idProduct=8176, bcdDevice= 2.00

[3.356230] usb 1-1: New USB device strings:

Mfr=1, Product=2, SerialNumber=3

[3.363322] usb 1-1: Product: 802.11n WLAN

Adapter

[3.368088] usb 1-1: Manufacturer: Realtek

[3.372159] usb 1-1: SerialNumber: 00e04c000001

[4.109715] s5m-rtc s2mps14-rtc: registered as

rtc0

[4.113702] s2mps11-clk s2mps11-clk: DMA mask

not set

[4.120973] iommu: Adding device 11f50000.jpeg

to group 2

[4.124956] s5p-jpeg 11f50000.jpeg: Linked as a

consumer to 11f10000.sysmmu

[4.132244] s5p-jpeg 11f50000.jpeg: encoder

device registered as /dev/video30

[4.139142] s5p-jpeg 11f50000.jpeg: decoder

device registered as /dev/video31

[4.146087] s5p-jpeg 11f50000.jpeg: Samsung S5P

JPEG codec

[4.151766] iommu: Adding device 11f60000.jpeg

to group 3

[4.156925] s5p-jpeg 11f60000.jpeg: Linked as a

consumer to 11f20000.sysmmu

[4.164185] s5p-jpeg 11f60000.jpeg: encoder

device registered as /dev/video32

[4.171117] s5p-jpeg 11f60000.jpeg: decoder

device registered as /dev/video33

[4.178062] s5p-jpeg 11f60000.jpeg: Samsung S5P

JPEG codec

[4.184222] iommu: Adding device 11000000.codec

to group 4

[4.189433] s5p-mfc 11000000.codec: Linked as a

consumer to 11200000.sysmmu

[4.195927] s5p-mfc 11000000.codec: Linked as a

consumer to 11210000.sysmmu

[4.220127] s5p-mfc 11000000.codec:

preallocated 16 MiB buffer for the firmware and

context buffers

[4.227837] s5p-mfc 11000000.codec: Direct

firmware load for s5p-mfc-v8.fw failed with error

-2

[4.236446] s5p_mfc_load_firmware:73: Firmware

is not present in the /lib/firmware directory nor

compiled in kernel

[4.246971] s5p-mfc 11000000.codec: decoder

registered as /dev/video10

[4.253450] s5p-mfc 11000000.codec: encoder

registered as /dev/video11

[4.261770] iommu: Adding device

13e00000.video-scaler to group 5

[4.266898] exynos-gsc 13e00000.video-scaler:

Linked as a consumer to 13e80000.sysmmu

[4.274956] iommu: Adding device

13e10000.video-scaler to group 6

[4.280789] exynos-gsc 13e10000.video-scaler:

Linked as a consumer to 13e90000.sysmmu

[4.292670] exynos-tmu 10060000.tmu: Linked as

a consumer to regulator.7

[4.298174] thermal thermal_zone0: failed to

read out thermal zone (-22)

[4.305357] exynos-tmu 10064000.tmu: Linked as

a consumer to regulator.7

[4.311504] thermal thermal_zone1: failed to

read out thermal zone (-22)

[4.318690] exynos-tmu 10068000.tmu: Linked as

a consumer to regulator.7

[4.324838] thermal thermal_zone2: failed to

read out thermal zone (-22)

[4.332073] exynos-tmu 1006c000.tmu: Linked as

a consumer to regulator.7

[4.338176] thermal thermal_zone3: failed to

read out thermal zone (-22)

[4.345371] exynos-tmu 100a0000.tmu: Linked as

a consumer to regulator.7

[4.351542] thermal thermal_zone4: failed to

read out thermal zone (-22)

[4.358617] device-mapper: uevent: version

1.0.3

[4.362902] device-mapper: ioctl: 4.39.0-ioctl

(2018-04-03) initialised: dm-devel@redhat.com

[4.372008] cpu cpu0: Linked as a consumer to

regulator.44

[4.376524] cpu cpu0: Dropping the link to

regulator.44

[4.382332] cpu cpu0: Linked as a consumer to

regulator.44

[4.393774] cpu cpu4: Linked as a consumer to

regulator.40

[4.405406] sdhci: Secure Digital Host

Controller Interface driver

[4.410131] sdhci: Copyright(c) Pierre Ossman

[4.414633] Synopsys Designware Multimedia Card

Interface Driver

[4.420997] dwmmc_exynos 12200000.mmc: IDMAC

supports 32-bit address mode.

[4.427409] dwmmc_exynos 12200000.mmc: Using

internal DMA controller.

[4.433702] dwmmc_exynos 12200000.mmc: Version

ID is 250a

[4.439095] dwmmc_exynos 12200000.mmc: DW MMC

controller at irq 87,64 bit host data width,64

deep fifo

[4.448406] dwmmc_exynos 12200000.mmc: Linked

as a consumer to regulator.18

[4.455346] dwmmc_exynos 12200000.mmc: Linked

as a consumer to regulator.3

[4.462198] dwmmc_exynos 12200000.mmc:

allocated mmc-pwrseq

[4.484970] mmc_host mmc0: Bus speed (slot 0) =

50000000Hz (slot req 400000Hz, actual 396825HZ div

= 63)

[4.506103] dwmmc_exynos 12220000.mmc: IDMAC

supports 32-bit address mode.

[4.511568] dwmmc_exynos 12220000.mmc: Using

internal DMA controller.

[4.517956] dwmmc_exynos 12220000.mmc: Version

ID is 250a

[4.523340] dwmmc_exynos 12220000.mmc: DW MMC

controller at irq 88,64 bit host data width,64

deep fifo

[4.532656] dwmmc_exynos 12220000.mmc: Linked

as a consumer to regulator.19

[4.539582] dwmmc_exynos 12220000.mmc: Linked

as a consumer to regulator.13

[4.561916] mmc_host mmc1: Bus speed (slot 0) =

50000000Hz (slot req 400000Hz, actual 396825HZ div

= 63)

[4.587457] mmc_host mmc0: Bus speed (slot 0) =

200000000Hz (slot req 200000000Hz, actual

200000000HZ div = 0)

[4.596855] mmc0: new HS200 MMC card at address

0001

[4.601657] mmcblk0: mmc0:0001 016G92 14.7 GiB

[4.606029] mmcblk0boot0: mmc0:0001 016G92

partition 1 4.00 MiB

[4.610824] s5p-secss 10830000.sss: s5p-sss

driver registered

[4.612116] mmcblk0boot1: mmc0:0001 016G92

partition 2 4.00 MiB

[4.617831] hidraw: raw HID events driver (C)

Jiri Kosina

[4.623194] mmcblk0rpmb: mmc0:0001 016G92

partition 3 512 KiB, chardev (244:0)

[4.631959] exynos-bus soc:bus_wcore: Linked as

a consumer to regulator.41

[4.642938] exynos-bus soc:bus_wcore: Dropping

the link to regulator.41

[4.647563] mmcblk0: p1 p2

[4.658168] exynos-nocp: new NoC Probe device

registered: 10ca1000.nocp

[4.663478] exynos-nocp: new NoC Probe device

registered: 10ca1400.nocp

[4.670023] exynos-nocp: new NoC Probe device

registered: 10ca1800.nocp

[4.676618] exynos-nocp: new NoC Probe device

registered: 10ca1c00.nocp

[4.683937] exynos-adc 12d10000.adc: Linked as

a consumer to regulator.4

[4.695206] NET: Registered protocol family 17

[4.698213] NET: Registered protocol family 15

[4.702686] Key type dns_resolver registered

[4.707396] Registering SWP/SWPB emulation

handler

[4.711640] mmc_host mmc1: Bus speed (slot 0) =

50000000Hz (slot req 50000000Hz, actual 50000000HZ

div = 0)

[4.720430] registered taskstats version 1

[4.722872] mmc1: new ultra high speed DDR50

SDHC card at address aaaa

[4.725410] Loading compiled-in X.509

certificates

[4.732815] mmcblk1: mmc1:aaaa SL16G 14.8 GiB

[4.744316] mmcblk1: p1 p2

[4.747714] Key type encrypted registered

[4.777617] exynos-hdmi 14530000.hdmi: Linked

as a consumer to regulator.6

[4.783596] exynos-hdmi 14530000.hdmi: Linked

as a consumer to regulator.7

[4.790398] OF: graph: no port node found in

/soc/hdmi@14530000

[4.796566] [drm] Exynos DRM: using

14450000.mixer device for DMA mapping operations

[4.803543] exynos-drm exynos-drm: bound

14450000.mixer (ops 0xc0a62a84)

[4.810165] exynos-drm exynos-drm: bound

14530000.hdmi (ops 0xc0a63128)

[4.816826] exynos-drm-g2d 10850000.g2d: The

Exynos G2D (ver 4.1) successfully registered.

[4.824975] exynos-drm exynos-drm: bound

10850000.g2d (ops 0xc0a6403c)

[4.831469] [drm] Supports vblank timestamp

caching Rev 2 (21.10.2013).

[4.838051] [drm] No driver support for vblank

timestamp query.

[5.008869] Console: switching to colour frame

buffer device 240x67

[5.029973] exynos-drm exynos-drm: fb0: frame

buffer device

[5.036099] [drm] Initialized exynos 1.1.0

20180330 for exynos-drm on minor 0

[5.043402] exynos-dwc3 soc:usb3-0: Linked as a

consumer to regulator.9

[5.049827] exynos-dwc3 soc:usb3-0: Linked as a

consumer to regulator.11

[5.056259] dwc3 12000000.dwc3: Failed to get

clk 'ref': -2

[5.061838] xhci-hcd xhci-hcd.1.auto: xHCI Host

Controller

[5.066982] xhci-hcd xhci-hcd.1.auto: new USB

bus registered, assigned bus number 3

[5.074840] xhci-hcd xhci-hcd.1.auto: hcc

params 0x0220f04c hci version 0x100 quirks

0x0000000002010010

[5.084012] xhci-hcd xhci-hcd.1.auto: irq 156,

io mem 0x12000000

[5.090229] usb usb3: New USB device found,

idVendor=1d6b, idProduct=0002, bcdDevice= 5.00

[5.098192] usb usb3: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[5.105375] usb usb3: Product: xHCI Host

Controller

[5.110206] usb usb3: Manufacturer: Linux

5.0.0-rc2 xhci-hcd

[5.115845] usb usb3: SerialNumber: xhci-

hcd.1.auto

[5.121011] hub 3-0:1.0: USB hub found

[5.124435] hub 3-0:1.0: 1 port detected

[5.128526] xhci-hcd xhci-hcd.1.auto: xHCI Host

Controller

[5.133786] xhci-hcd xhci-hcd.1.auto: new USB

bus registered, assigned bus number 4

[5.141424] xhci-hcd xhci-hcd.1.auto: Host

supports USB 3.0 SuperSpeed

[5.148056] usb usb4: We don't know the

algorithms for LPM for this host, disabling LPM.

[5.156180] usb usb4: New USB device found,

idVendor=1d6b, idProduct=0003, bcdDevice= 5.00

[5.164304] usb usb4: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[5.171486] usb usb4: Product: xHCI Host

Controller

[5.176321] usb usb4: Manufacturer: Linux

5.0.0-rc2 xhci-hcd

[5.181958] usb usb4: SerialNumber: xhci-

hcd.1.auto

[5.187110] hub 4-0:1.0: USB hub found

[5.190550] hub 4-0:1.0: 1 port detected

[5.195388] exynos-dwc3 soc:usb3-1: Linked as a

consumer to regulator.9

[5.201521] exynos-dwc3 soc:usb3-1: Linked as a

consumer to regulator.11

[5.207974] dwc3 12400000.dwc3: Failed to get

clk 'ref': -2

[5.213545] xhci-hcd xhci-hcd.2.auto: xHCI Host

Controller

[5.218707] xhci-hcd xhci-hcd.2.auto: new USB

bus registered, assigned bus number 5

[5.228478] xhci-hcd xhci-hcd.2.auto: hcc

params 0x0220f04c hci version 0x100 quirks

0x0000000002010010

[5.238437] xhci-hcd xhci-hcd.2.auto: irq 157,

io mem 0x12400000

[5.245277] usb usb5: New USB device found,

idVendor=1d6b, idProduct=0002, bcdDevice= 5.00

[5.254152] usb usb5: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[5.261975] usb usb5: Product: xHCI Host

Controller

[5.267438] usb usb5: Manufacturer: Linux

5.0.0-rc2 xhci-hcd

[5.273714] usb usb5: SerialNumber: xhci-

hcd.2.auto

[5.279523] hub 5-0:1.0: USB hub found

[5.283897] hub 5-0:1.0: 1 port detected

[5.288609] xhci-hcd xhci-hcd.2.auto: xHCI Host

Controller

[5.294680] xhci-hcd xhci-hcd.2.auto: new USB

bus registered, assigned bus number 6

[5.302932] xhci-hcd xhci-hcd.2.auto: Host

supports USB 3.0 SuperSpeed

[5.310180] usb usb6: We don't know the

algorithms for LPM for this host, disabling LPM.

[5.318965] usb usb6: New USB device found,

idVendor=1d6b, idProduct=0003, bcdDevice= 5.00

[5.327840] usb usb6: New USB device strings:

Mfr=3, Product=2, SerialNumber=1

[5.335672] usb usb6: Product: xHCI Host

Controller

[5.341159] usb usb6: Manufacturer: Linux

5.0.0-rc2 xhci-hcd

[5.347424] usb usb6: SerialNumber: xhci-

hcd.2.auto

[5.353218] hub 6-0:1.0: USB hub found

[5.357605] hub 6-0:1.0: 1 port detected

[5.363951] dma-pl330 3880000.adma: Loaded

driver for PL330 DMAC-241330

[5.371181] dma-pl330 3880000.adma: DBUFF-

4x8bytes Num_Chans-6 Num_Peri-16 Num_Events-6

[5.379932] rtc rtc1: invalid alarm value:

1900-01-11T00:00:00

[5.386467] s3c-rtc 101e0000.rtc: registered as

rtc1

[5.393351] exynos-bus soc:bus_wcore: Linked as

a consumer to regulator.41

[5.400987] exynos-bus: new bus device

registered: soc:bus_wcore (84000 KHz ~ 400000

KHz)

[5.410331] exynos-bus: new bus device

registered: soc:bus_noc (67000 KHz ~ 100000 KHz)

[5.419432] exynos-bus: new bus device

registered: soc:bus_fsys_apb (100000 KHz ~ 200000

KHz)

[5.428802] exynos-bus: new bus device

registered: soc:bus_fsys (100000 KHz ~ 200000 KHz)

[5.437937] exynos-bus: new bus device

registered: soc:bus_fsys2 (75000 KHz ~ 150000

KHz)

[5.447283] exynos-bus: new bus device

registered: soc:bus_mfc (96000 KHz ~ 333000 KHz)

[5.456438] exynos-bus: new bus device

registered: soc:bus_gen (89000 KHz ~ 267000 KHz)

[5.465404] exynos-bus: new bus device

registered: soc:bus_peri (67000 KHz ~ 67000 KHz)

[5.474626] exynos-bus: new bus device

registered: soc:bus_g2d (84000 KHz ~ 333000 KHz)

[5.483738] exynos-bus: new bus device

registered: soc:bus_g2d_acp (67000 KHz ~ 267000

KHz)

[5.493119] exynos-bus: new bus device

registered: soc:bus_jpeg (75000 KHz ~ 300000 KHz)

[5.502244] exynos-bus: new bus device

registered: soc:bus_jpeg_apb (84000 KHz ~ 167000

KHz)

[5.511619] exynos-bus: new bus device

registered: soc:bus_disp1_fimd (120000 KHz ~

200000 KHz)

[5.521180] exynos-bus: new bus device

registered: soc:bus_disp1 (120000 KHz ~ 300000

KHz)

[5.529874] usb 3-1: new high-speed USB device

number 2 using xhci-hcd

[5.537291] exynos-bus: new bus device

registered: soc:bus_gscl_scaler (150000 KHz ~

300000 KHz)

[5.547105] exynos-bus: new bus device

registered: soc:bus_mscl (84000 KHz ~ 400000 KHz)

[5.557596] odroid-audio sound: i2s-hifi <->

samsung-i2s mapping ok

[5.564403] dma-pl330 3880000.adma: PM domain

MAU will not be powered off

[5.574100] s5m-rtc s2mps14-rtc: setting system

clock to 2019-01-18T13:52:24 UTC (1547819544)

[5.607567] ALSA device list:

[5.611035] #0: Odroid-XU4

[5.615391] Freeing unused kernel memory: 1024K

[5.635534] Run /init as init process

[5.699868] usb 3-1: New USB device found,

idVendor=05e3, idProduct=0610, bcdDevice=92.22

[5.708836] usb 3-1: New USB device strings:

Mfr=1, Product=2, SerialNumber=0

[5.716557] usb 3-1: Product: USB2.0 Hub

[5.721047] usb 3-1: Manufacturer: GenesysLogic

[5.788397] hub 3-1:1.0: USB hub found

[5.792998] hub 3-1:1.0: 2 ports detected

[6.179574] usb 4-1: new SuperSpeed Gen 1 USB

device number 2 using xhci-hcd

[6.210486] usb 4-1: New USB device found,

idVendor=05e3, idProduct=0616, bcdDevice=92.22

[6.219540] usb 4-1: New USB device strings:

Mfr=1, Product=2, SerialNumber=0

[6.228530] usb 4-1: Product: USB3.0 Hub

[6.233813] usb 4-1: Manufacturer: GenesysLogic

[6.268690] hub 4-1:1.0: USB hub found

[6.273386] hub 4-1:1.0: 2 ports detected

[6.315381] usb 3-1.1: new high-speed USB

device number 3 using xhci-hcd

[6.428551] usb 3-1.1: New USB device found,

idVendor=05e3, idProduct=0610, bcdDevice=92.12

[6.437411] usb 3-1.1: New USB device strings:

Mfr=1, Product=2, SerialNumber=0

[6.445230] usb 3-1.1: Product: USB2.0 Hub

[6.449791] usb 3-1.1: Manufacturer:

GenesysLogic

[6.459404] usb 6-1: new SuperSpeed Gen 1 USB

device number 2 using xhci-hcd

[6.484035] usb 6-1: New USB device found,

idVendor=0bda, idProduct=8153, bcdDevice=30.00

[6.492722] usb 6-1: New USB device strings:

Mfr=1, Product=2, SerialNumber=6

[6.500461] hub 3-1.1:1.0: USB hub found

[6.504914] usb 6-1: Product: USB 10/100/1000

LAN

[6.510138] hub 3-1.1:1.0: 4 ports detected

[6.514899] usb 6-1: Manufacturer: Realtek

[6.519502] usb 6-1: SerialNumber: 000001000000

[6.635505] usb 4-1.1: new SuperSpeed Gen 1 USB

device number 3 using xhci-hcd

[6.662686] usb 4-1.1: New USB device found,

idVendor=05e3, idProduct=0612, bcdDevice=92.12

[6.671521] usb 4-1.1: New USB device strings:

Mfr=1, Product=2, SerialNumber=0

[6.679319] usb 4-1.1: Product: USB3.0 Hub

[6.683894] usb 4-1.1: Manufacturer:

GenesysLogic

[6.716632] hub 4-1.1:1.0: USB hub found

[6.721256] usb 6-1: reset SuperSpeed Gen 1 USB

device number 2 using xhci-hcd

[6.729009] hub 4-1.1:1.0: 4 ports detected

[6.800151] r8152 6-1:1.0 eth0: v1.09.9

[6.879387] usb 3-1.1.2: new low-speed USB

device number 4 using xhci-hcd

[6.927449] EXT4-fs (mmcblk1p2): mounted

filesystem without journal. Opts: (null)

[6.995419] usb 3-1.1.2: New USB device found,

idVendor=0b38, idProduct=0010, bcdDevice= 1.02

[7.004483] usb 3-1.1.2: New USB device

strings: Mfr=0, Product=0, SerialNumber=0

[7.179338] usb 3-1.1.3: new low-speed USB

device number 5 using xhci-hcd

[7.291103] usb 3-1.1.3: New USB device found,

idVendor=093a, idProduct=2510, bcdDevice= 1.00

[7.300240] usb 3-1.1.3: New USB device

strings: Mfr=1, Product=2, SerialNumber=0

[7.308327] usb 3-1.1.3: Product: USB Optical

Mouse

[7.308333] usb 3-1.1.3: Manufacturer: PixArt

[7.404722] NET: Registered protocol family 10

[7.410590] Segment Routing with IPv6

[7.434148] systemd[1]: systemd 237 running in

system mode. (+PAM +AUDIT +SELINUX +IMA +APPARMOR

+SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT

+GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS

+KMOD -IDN2 +IDN -PCRE2 default-hierarchy=hybrid)

[7.458784] systemd[1]: Detected architecture

arm.

[7.488449] systemd[1]: Set hostname to .

[7.784617] random: systemd: uninitialized

urandom read (16 bytes read)

[7.792320] systemd[1]: Started Forward

Password Requests to Wall Directory Watch.

[7.815444] random: systemd: uninitialized

urandom read (16 bytes read)

[7.824240] systemd[1]: Created slice System

Slice.

[7.843429] random: systemd: uninitialized

urandom read (16 bytes read)

[7.850952] systemd[1]: Listening on udev

Kernel Socket.

[7.871646] systemd[1]: Listening on Journal

Socket.

[7.894204] systemd[1]: Mounting POSIX Message

Queue File System...

[7.920531] systemd[1]: Created slice system-

getty.slice.

[7.939629] systemd[1]: Listening on fsck to

fsckd communication Socket.

[8.166377] EXT4-fs (mmcblk1p2): re-mounted.

Opts: errors=remount-ro

[8.569110] systemd-journald[277]: Received

request to flush runtime journal from PID 1

[9.073008] random: crng init done

[9.073021] random: 7 urandom warning(s) missed

due to ratelimiting

[9.160823] input: gpio_keys as

/devices/platform/gpio_keys/input/input0

[9.593187] input: HID 0b38:0010 as

/devices/platform/soc/soc:usb3-

0/12000000.dwc3/xhci-hcd.1.auto/usb3/3-1/3-1.1/3-

1.1.2/3-1.1.2:1.0/0003:0B38:0010.0001/input/input1

[9.651666] hid-generic 0003:0B38:0010.0001:

input,hidraw0: USB HID v1.10 Keyboard [HID

0b38:0010] on usb-xhci-hcd.1.auto-1.1.2/input0

[9.654992] input: HID 0b38:0010 System Control

as /devices/platform/soc/soc:usb3-

0/12000000.dwc3/xhci-hcd.1.auto/usb3/3-1/3-1.1/3-

1.1.2/3-1.1.2:1.1/0003:0B38:0010.0002/input/input2

[9.711625] input: HID 0b38:0010 Consumer

Control as /devices/platform/soc/soc:usb3-

0/12000000.dwc3/xhci-hcd.1.auto/usb3/3-1/3-1.1/3-

1.1.2/3-1.1.2:1.1/0003:0B38:0010.0002/input/input3

[9.711862] hid-generic 0003:0B38:0010.0002:

input,hidraw1: USB HID v1.10 Device [HID

0b38:0010] on usb-xhci-hcd.1.auto-1.1.2/input1

[9.714123] input: PixArt USB Optical Mouse as

/devices/platform/soc/soc:usb3-

0/12000000.dwc3/xhci-hcd.1.auto/usb3/3-1/3-1.1/3-

1.1.3/3-1.1.3:1.0/0003:093A:2510.0003/input/input4

[9.714502] hid-generic 0003:093A:2510.0003:

input,hidraw2: USB HID v1.11 Mouse [PixArt USB

Optical Mouse] on usb-xhci-hcd.1.auto-1.1.3/input0

[9.714617] usbcore: registered new interface

driver usbhid

[9.714622] usbhid: USB HID core driver

[9.776583] cfg80211: Loading compiled-in X.509

certificates for regulatory database

[9.786327] cfg80211: Loaded X.509 cert

'sforshee: 00b28ddf47aef9cea7'

[9.888965] rtl8192cu: Chip version 0x10

[9.987081] rtl8192cu: Board Type 0

[9.987396] rtl_usb: rx_max_size 15360,

rx_urb_num 8, in_ep 1

[9.987542] rtl8192cu: Loading firmware

rtlwifi/rtl8192cufw_TMSC.bin

[9.988186] ieee80211 phy0: Selected rate

control algorithm 'rtl_rc'

[9.989308] usbcore: registered new interface

driver rtl8192cu

[9.997638] usbcore: registered new interface

driver rtl8xxxu

[10.251057] FAT-fs (mmcblk1p1): Volume was not

properly unmounted. Some data may be corrupt.

Please run fsck.

[11.760287] IPv6: ADDRCONF(NETDEV_UP): wlan0:

link is not ready

[11.762438] rtl8192cu: MAC auto ON okay!

[11.795947] rtl8192cu: Tx queue select: 0x05

[11.998081] rtl8192c_common: chksum report

fail! REG_MCUFWDL:0x00030000 .

[12.003466] rtl8192c_common: Firmware is not

ready to run!

[12.358230] IPv6: ADDRCONF(NETDEV_UP): wlan0:

link is not ready

[12.469419] IPv6: ADDRCONF(NETDEV_UP): wlan0:

link is not ready

[13.499789] wlan0: authenticate with

2c:0b:e9:be:9c:81

[13.511744] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 1/3)

[13.515086] wlan0: authenticated

[13.519370] wlan0: associate with

2c:0b:e9:be:9c:81 (try 1/3)

[13.556477] wlan0: RX AssocResp from

2c:0b:e9:be:9c:81 (capab=0x1401 status=204 aid=0)

[13.556484] wlan0: 2c:0b:e9:be:9c:81 denied

association (code=204)

[14.624535] wlan0: authenticate with

2c:0b:e9:be:9c:81

[14.648246] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 1/3)

[14.751335] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 2/3)

[14.803352] wlan0: authenticated

[14.807365] wlan0: associate with

2c:0b:e9:be:9c:81 (try 1/3)

[14.842205] wlan0: RX AssocResp from

2c:0b:e9:be:9c:81 (capab=0x1401 status=204 aid=0)

[14.842211] wlan0: 2c:0b:e9:be:9c:81 denied

association (code=204)

[16.316586] wlan0: authenticate with

2c:0b:e9:be:9c:81

[16.340248] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 1/3)

[16.443345] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 2/3)

[16.547327] wlan0: send auth to

2c:0b:e9:be:9c:81 (try 3/3)

[16.556576] wlan0: authenticated

[16.559338] wlan0: associate with

2c:0b:e9:be:9c:81 (try 1/3)

[16.618346] wlan0: RX AssocResp from

2c:0b:e9:be:9c:81 (capab=0x1411 status=0 aid=1)

[16.658872] wlan0: associated

[16.659055] wlan0: Limiting TX power to 27 (30

- 3) dBm as advertised by 2c:0b:e9:be:9c:81

[16.776129] cryptd: max_cpu_qlen set to 1000

[16.808727] IPv6: ADDRCONF(NETDEV_CHANGE):

wlan0: link becomes ready

To view the source code, contribute to the project,
and make pull requests, please visit the GitHub
repository at
https://github.com/mihailescu2m/linux/tree/odroid
xu4-5.0.y. For comments, questions, and suggestions,
please visit the ODROID Forum thread at
https://forum.odroid.com/viewtopic.php?
f=95&t=33510.

https://github.com/mihailescu2m/linux/tree/odroidxu4-5.0.y
https://forum.odroid.com/viewtopic.php?f=95&t=33510

Scienti�c Cluster Computations On An ODROID-MC1
 February 1, 2019  By Andreas Lintermann  Linux, ODROID-MC1, Tutorial

The ODROID-MC1 has become an interesting cluster
system for experimenting, e.g., with Docker swarm
implementations [1] and cryptocurrency mining [2-4].
A brief introduction to the ODROID-MC1 has been
given in [5]. A single ODROID-MC1 consists of four
slimmed-down ODROID-XU4 nodes, each equipped
with a Samsung Exynos 5 Octa (5422). The Exynos 5
Octa is a two-socket ARM Big.LITTLE system consisting
of quad-core Cortex-A15 and Cortex-A7 CPUs, clocked
at 2GHz and 1.4GHz respectively. The CPUs feature
heterogeneous multi-processing (HMP). Each node is
equipped with 2GB of LPDDR3 RAM and with a Mali-
T628 MP6 GPU, which supports OpenGL ES 3.1/2.0/1.1
and the full OpenCL 1.2 pro�le. Furthermore, the
boards feature gigabit ethernet and is actively fan
cooled.

In [6] a general introduction to cluster computing
using several ODROID-XU4s is given and the concept
of MapReduce topologies is brie�y described. The
discussion in [7] presents some �rst parallel examples

of the computation of a Mandelbrot set with the MPJ
Express message passing library that is implemented
in JAVA. When it comes, to scienti�c computing, JAVA
is not the optimal choice due to its performance
limitations. In physics and engineering applications,
C++, C, or FORTRAN are still the dominating languages
for writing scienti�c code [8].

Common state-of-the-art simulations employ
hundreds of thousands CPU cores on high-
performance computing (HPC) systems [8,9] to solve
big societal challenges. In this context, the scalability
and the simulation kernel performance are key to
e�cient multi-core computations, i.e., it is not only
essential to have highly optimized code at hand that
runs e�ciently on a single core, but also to allow for
increasing computational e�ciency under an increase
of the number of computational cores. While the
single core performance is in general enhanced by
compute kernel tuning techniques such as loop
vectorization, cache line miss avoidance, and

intelligent programming, the parallel e�ciency can be
measured by means of strong scaling experiments. In
such experiments the number of cores is
continuously doubled for a given problem size.
Ideally, the time-to-solution is bisected with every
doubling. In such parallel computations, each of the
processes solves a subset of the original problem.
With an increasing number of cores, the network
communication overhead increases as well, which
leads to a decrease of e�ciency. The best-scaling
simulation codes are, able to scale up from a small
number of cores to hundreds of thousands of
processes [8-10].

The ODROID-MC1 can be seen as a small HPC system
and is also well suited for the simulation of small to
medium-scale scienti�c problems. Especially its low
power consumption and its low price make it ideal for
parallel code development and for procurement in
smaller departments or companies, or at universities
for educational purposes.

The following text will be described how to setup a
cluster system with a shared �le system using the
Network File System (NFS) and the Message Passing
Interface (MPI) together with the cluster job scheduler
SLURM. Examples on how to run parallel
computations on this system are given. An example
from Computational Fluid Dynamics (CFD)
corroborates the applicability of the ODROID-MC1 to
solve scienti�c problems. The presented steps are the
technical details that are behind the simulations and
analyses discussed in [10].

Setting up the cluster system

The cluster system consists of a front end node, which
is a single ODROID-XU4 equipped with a 16GB eMMC
5.0 module, the ODROID-MC1, a Synology 4-bay
Rackstation RS816, a GS750E ProSAFE Web Managed
50-port Gigabit Ethernet Switch, and an internet
gateway. Figure 1 shows a photo of the current setup
mounted in a 19″ rack.

The RS816 serves as a DHCP and NFS server and is
connected to the switch with a dual port link
aggregation con�guration. The switch connects the
di�erent components. Obviously, the RS816 and the
GS750E can be replaced by any other server and

switch with the same functionality, e.g., the front end
node itself can serve as a DHCP and NFS server. For
the following explanation it is assumed that access to
the internet is granted via the gateway with the local
IP 192.168.1.1, the server is named ‘FS’, is up and
running, and has an IP address of 192.168.1.2. In the
present example, the server exports the three
directories via NFS:

/homes/ (will hold user home directories)

/netopt/ (will contain shared software)

/work/ (will be used as work space for computations)

The front end node will be identi�ed by the name ‘FE’
and will be assigned the IP 192.168.1.100. The cluster
nodes will be named CL[1…4] and will have the IP
addresses 192.168.1.101 through 192.168.1.104. First,
the con�guration of the front-end node is presented
before general software installation and the cluster
node installation are discussed.

Figure 1 – Picture of the ODROID-MC1 setup (here, two
MC1 systems are visible)

Front end node installation

First, the Ubuntu Linux image needs to be installed on
the eMMC module of the ODROID-XU4 front end
node or on an SD-card. A great step-by-step
explanation can be found online under [11]. For the
cluster nodes it is su�cient to install the minimal
Ubuntu image. Note that the cluster installation has
been tested for Ubuntu Linux 16.04 Xenial. Some
details on installing the cluster system on Ubuntu
Linux 18.04 Bionic can be found in Sec. 5. To install
the front end, the following tasks need to be

performed as superuser. The �rst thing to do after
login is set a new password and generate a key for
easy login

$ passwd

$ ssh-keygen -t rsa

This will install the ssh-key for root in
/root/.ssh/id_rsa. This key will in a later stage be
copied to the cluster nodes to allow for easy
administration.

IP address and hostname setup

On the system FE, a �xed IP 192.168.1.100 is assigned
via updating the �le /etc/network/interfaces to
contain

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static address 192.168.1.100

gateway 192.168.1.1

netmask 255.255.255.0

dns-nameservers 192.168.1.1

The name of the system can be updated by adding

FE 192.168.1.100

to /etc/hosts and by replacing odroid in
/etc/hostname by FE. To furthermore make the
system aware of the cluster nodes, i.e., if your DHCP
server does not assign the correct names to the
nodes, add them, FS, and FE to /etc/hosts as well

CL1 192.168.1.101

CL2 192.168.1.102

CL3 192.168.1.103

CL4 192.168.1.104

FS 192.168.1.2

A restart of the system makes sense at this stage of
con�guration.

Installation and con�guration of the automounter

To automatically mount the shares of the NFS server,
the automounter is installed via:

$ apt-get update

$ apt-get upgrade

$ apt-get install autofs

Then, modify the �le /etc/auto/master and add the
following to the end of the �le:

/nfs_mounts /etc/auto.nfs

Subsequently, create the �le /etc/auto.nfs with the
following content:

netopt -fstype=nfs,rw,soft,tcp,nolock,uid=user

FS:/volume1/shares/netopt

homes -fstype=nfs,rw,soft,tcp,nolock,uid=user

FS:/volume1/shares/homes

work -fstype=nfs,rw,soft,tcp,nolock,uid=user

FS:/volume1/shares/work

This mounts NFS exports from the NFS server with
the username user located at /volume1/shares on the
server. Note that the username user must exist on
both systems FS and the FE. Furthermore, create the
corresponding directories:

$ mkdir /nfs_mounts

$ mkdir /netopt

$ cd /netopt

$ ln -s /nfs_mounts/netopt

$ cd /home

$ ln -s /nfs_mounts/homes/user

$ cd /home/user

$ ln -s /nfs_mounts/work

Note that the folders /nfs_mounts/netopt,
/nfs_mounts/homes, and /nfs_mounts/work do not
exist at this stage, will, however, become available
upon starting the automounter. Therefore, execute

$ service autofs restart

It also makes sense for both the user and root to add
the paths of the software that will be installed in the
subsequent section to the path search directory
environment variables. Therefore, add to the �le
~/.pro�le

$ export PATH=$PATH:/netopt/mpich/bin

$ export PATH=/netopt/slurm/bin:$PATH

$ export PATH=/netopt/munge/bin:$PATH

Software installation for parallel cluster
computation

All shared software will be installed on the shared NFS
resource /netopt. All sources will be downloaded and
con�gured in the subdirectory /netopt/install. The

following is performed on the front end FE and
assumes that a compiler suite such as llvm or the
GNU compiler suite is available.

Installation of MPICH

To allow for parallel software development, a parallel
communication library needs to be installed. In this
example the MPICH library version 3.2.1, which is
available from www.mpich.org, will be installed with
the following commands:

$ cd /netopt/install

$ mkdir mpich

$ cd mpich

$ tar -xvf mpich-3.2.1

$ cd mpich-3.2.1

$./configure --enable-mpi-cxx --

prefix=/netopt/mpich-3.2.1

$ make -j 4

$ make install

$ cd /netopt

$ ln -s mpich-3.2.1 mpich

Installation and con�guration of MUNGE

For the installation of the job scheduler SLURM, the
MUNGE services (here MUNGE 0.5.13; available from
https://dun.github.io/munge/) need to be installed.
MUNGE is an authentication service for creating and
validating credentials that is necessary for
authenticated scheduling. To install MUNGE �rst do

$ apt-get install munge

This allows to have all necessary start scripts and run
service scripts at hand. To install, however, the latest
version of MUNGE, the aforementioned source code
is downloaded and stored in /netopt/install. To
compile MUNGE and install it run

$ cd /netopt/install

$ mkdir munge

$ cd munge

$ tar -xvf munge-0.5.13.tar.gz

$ cd munge-munge-0.5.13 .

$ /configure --prefix=/netopt/munge-0.5.13

$ make -j 4

$ make install

$ cd /netopt

$ ln -s munge-0.5.13 munge

$ cd munge

$ mv etc etc.old

$ mv var var.old

$ ln -s /etc

$ ln -s /var

Note that the logs of MUNGE will this way be written
to the local �le system /var and the con�guration is
performed in /etc. To con�gure MUNGE, a secret
MUNGE key needs to be generated by:

$ dd if=/dev/random bs=1 count=1024 >

/etc/munge/munge.key

Note that in a later stage (see Sec. 2.3.2) the �le
/etc/munge/munge.key is copied to the cluster nodes.
Furthermore, since the compiled MUNGE installation
replaces the previously installed version, the link to
the MUNGE executable needs to be updated:

$ cd /usr/sbin

$ mv munged munged.old

$ ln -s /netopt/munge/sbin/munged

Installation of PMIX

Another tool that needs to be installed is PMIX (here
PMIX 2.1.0; available from
https://github.com/pmix/pmix/releases):

$ cd /netopt/install

$ mkdir pmix

$ cd pmix

$ tar -xvf pmix-2.1.0.tar.gz

$ cd pmix-2.1.0

$./configure --prefix=/netopt/pmix-2.1.0

$ make -j 4

$ make install

$ cd /netopt

$ ln -s pmix-2.1.0 pmix

Installation and con�guration of SLURM

Finally the scheduler SLURM (here SLURM 17.11.3-2;
available from https://slurm.schedmd.com) is
installed. Similar to MUNGE, �rst the Ubuntu SLURM
is installed via

http://www.mpich.org/
https://dun.github.io/munge/
https://github.com/pmix/pmix/releases
https://slurm.schedmd.com/

$ apt-get slurm-llnl libslurm-dev

Then, the latest version is installed in /netopt via

$ cd /netopt/install

$ mkdir slurm

$ cd slurm

$ tar -xvf slurm-17.11.3-2.tar.gz

$ cd slurm-17.11.3-2

$./configure --prefix=/netopt/slurm-17.11.3-2 --

sysconfdir=/etc/slurm-llnl --with-

munge=/netopt/munge

 --with-pmix=/netopt/pmix

$ make -j 4

$ make install

$ cd /netopt

$ ln -s slurm-17.11.3-2 slurm

To con�gure SLURM, the �le /etc/slurm-llnl/slurm.conf
is modi�ed to contain

GENERAL

ControlMachine=FE

AuthType=auth/munge

CryptoType=crypto/munge

MpiDefault=none

ProctrackType=proctrack/pgid

ReturnToService=1

SlurmctldPidFile=/var/run/slurm-llnl/slurmctld.pid

SlurmdPidFile=/var/run/slurm-llnl/slurmd.pid

SlurmdSpoolDir=/var/spool/slurmd

SlurmUser=slurm

StateSaveLocation=/var/spool/slurmctld

SwitchType=switch/none

TaskPlugin=task/affinity

TaskPluginParam=sched

SCHEDULING

FastSchedule=1

SchedulerType=sched/backfill

SelectType=select/cons_res

SelectTypeParameters=CR_Core

LOGGING AND ACCOUNTING

AccountingStorageType=accounting_storage/none

ClusterName=odroid

JobAcctGatherType=jobacct_gather/none

SlurmctldDebug=verbose

SlurmctldLogFile=/var/log/slurmctld.log

SlurmdDebug=verbose

SlurmdLogFile=/var/log/slurmd.log

COMPUTE NODES

NodeName=CL[1-4] CPUs=8 RealMemory=1994

State=UNKNOWN

PartitionName=batch Nodes=CL[1-4]

OverSubscribe=EXCLUSIVE Default=YES

MaxTime=INFINITE State=UP

In /usr/sbin, update the following links:

$ cd /usr/sbin

$ mv slurmctld slurmctld.old

$ mv slurmd slurmd.old

$ mv slurmstepd slurmstepd.old

$ ln -s /netopt/slurm/sbin/slurmctld

$ ln -s /netopt/slurm/sbin/slurmd

$ ln -s /netopt/slurm/sbin/slurmstepd

Also make sure that you add the following folder and
change the permissions as follows

$ mkdir /var/spool/slurmctld

$ chown slurm:slurm /var/spool/slurmctld

Cluster node installation

The cluster nodes also use the Ubuntu Linux minimal
image. The following is exemplarily shown for the �rst
cluster node CL1 with IP 192.168.1.101 and needs to
be applied to all cluster nodes.

General cluster node con�guration

After installation of the SD-card make sure that the
system is up-to-date:

$ apt-get update

$ apt-get upgrade

$ apt-get dist-upgrade

Also be sure to copy the folder /root/.ssh from FE to
CL1, i.e., on FE execute the following ((make sure that
rsync is installed):

$ rsync -av /root/.ssh CL1:/root/

Then, follow the steps in Sec. 2.1.1 and Sec. 2.1.2 to
have the correct IP address (192.168.1.101),
hostname (CL1), and the automounter running.

Integration into the cluster system

Install all necessary packages on CL1:

$ apt-get install munge slurm-llnl libslurm-dev

Then, the MUNGE key generated in Sec. 2.2.2 and
residing in /etc/munge/munge.key on FE and the
SLURM con�guration �le found in /etc/slurm-
llnl/slurm.conf need to be transferred to CL1 by
running

$ rsync -av /etc/munge/munge.key CL1:/etc/munge/

$ rsync -av /etc/slurm-llnl/slurm.conf

CL1:/etc/slurm-llnl/

on FE. At this stage it makes sense to restart the
cluster node. After installing each node, the system is
almost ready for cluster computation.

Cluster administration

To have the scheduler running, the following
commands need to be executed on the nodes

$ sudo service munge start

$ sudo service slurmd start

and on FE:

$ sudo service munge start

$ sudo service slurmctld start

The node status can be checked by:

$ scontrol show nodes

or by:

$ sinfo -N --long

If one of the nodes is in state DOWN or UNKNOWN it
can be resumed by

$ scontrol update NodeName=NAME State=RESUME

where NAME is the name of a node, e.g., CL1.

Job submission

Now that the cluster is fully functional, jobs can
submitted to the scheduler, which need a job �le such
as:

#!/bin/bash -x

#SBATCH --nodes=4 // allocates 4 nodes

for the job

#SBATCH --ntasks-per-node=2 // starts 2 MPI

ranks per node

#SBATCH --cpus-per-task=4 // for each MPI

rank per node 4 OpenMP threads are reserved

#SBATCH --output=mpi-out.%j // location of

the output file

#SBATCH --error=mpi-err.%j // location of

the error file

#SBATCH --time=00:20:00 // wall time of the

job

#SBATCH --partition=batch // the name of

the partition

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

// information for OpenMP

srun --mpi=pmi2 COMMAND // runs the command

COMMAND in parallel

Jobs can be scheduled to the nodes di�erently, i.e.,
either individual cores, the Cortex-A7 (slow) or Cortex-
A15 (fast) cores, or both can be used for computation.
This is con�gured by the srun command in the job
script:

srun --cpu-bind=verbose,mask_cpu:ABxCD --mpi=pmi2

COMMAND // uses mask ABxCD for scheduling

The mask_cpu option allows to specify the mask for
execution. The masks for using a whole single Cortex
system or both are show in Tables 1 and 2.

Table 1:CPU binding mask for individual cores.

Table 2:CPU binding mask for whole single or both
Cortex.

Example: Flow simulation on the ODROID-MC1

To show that the ODROID-MC1 system can be used
for scienti�c simulations, an example of the
simulation of the �ow in a slot burner geometry [10],
see Fig. 2; left side, is presented in the following. The
simulation uses a lattice-Boltzmann code [12], which
solves the governing equations of �uid mechanics on
a space-discretizing Cartesian mesh, i.e., the
Boltzmann equation is solved for all spatial location
within this mesh in time.

At each time step, at each location in the mesh, a
velocity vector and the density is computed by a two-
stage algorithm that locally simulates the collision of
particles in a �nite volume and transports collision
information to neighboring locations. The mesh is
generated by a parallel mesh generator [13] and is
shown in Fig. 2 on the right side. Especially in the
vicinity of the walls and in the burning jet region, the
mesh is locally re�ned to have a su�cient resolution
to capture the main �ow features. Figure 3 shows the
results of the computation, which is produced using
only the fast Cortex-A15 cores of the ODROID-MC1.
The simulation is run for 24 hours. Obviously, a jet
develops in the slot region that reaches into the
combustion chamber. On the left a cross-section in
the slot region is shown with contours of the velocity
magnitude. The right side shows three-dimensional
contours of the vortical structures generated at
di�erent time steps of the simulation. As mentioned
in the introduction, scalability is an important aspect
in HPC simulations. Therefore, strong scalability
measurements are performed for the whole system.

Figure 4 shows the scalability of the simulation using
di�erent parallelization strategies, i.e., using a pure
MPI and hybrid MP/OpenMP parallelization strategies,
latter with di�erent OpenMP scheduling options for
parallelized loops. The black lines represent the ideal
scaling behavior. In Figure 4 it can be seen that
among all cases, the hybrid MPI/OpenMP using the
guided loop parallelization strategies performs best
and is hence the method of choice for a simulation.
The e�ect of the communication overhead is already
visible from the discrepancy to the ideal black line.
This con�guration does, however, not outrun the
performance of using only the fast Cortex-A15 cores
(as used for the slot burner simulation). For more
details, the interested reader is referred to [10] from
where the results are taken and which furthermore
discusses the energy consumption of the ODROID-
MC1 and compares its performance to state-of-the-art
German HPC systems.

Figure 2: Schematic view and computational mesh of a
slot burner con�guration [10]

Figure 3: Results of the �ow simulation in a slot burner
geometry [10]

Figure 4: Strong scalability of the lattice-Boltzmann code
on the whole ODROID-MC1 cluster using di�erent
parallelization strategies [10]

Summary and conclusion

The ODROID-MC1 is a promising system for cluster
operation and for the simulation of small to medium

scienti�c problems. The corresponding software
installation is straightforward. The present article has
given a step-by-step manual on how to setup the
cluster system for parallel computation using MPI
with MPICH and PMIX. The scheduler SLURM uses
MUNGE for authentication and allows job pinning for
pure MPI and hybrid MPI/OpenMP job executions. An
example of the simulation of the �ow in a slot burner
con�guration shows the ODROID-MC1 to be a suitable
system for the simulation of such problems. The
scalability of the simulation software on the system is
quite su�cient to compute solutions in a human-
manageable time. That is, the ODROID-MC1 is for
small departments or research groups a cost-e�ective
alternative to x86-based HPC systems if large-scale
simulations are not the main target.

Further remarks

Instead of installing each cluster node individually, it is
also possible to install PXE boot and to have each
node boot online over the network from TFTP. The
root �le system is then imported via NFS from a �le
server. A detailed guide on how to setup PXE boot on
ODROID-XU4 can be found on the ODROID Wiki pages
[14]. Using the latest Linux Ubuntu 18.04 Bionic, some
changes in the installation process are necessary. First
of all the network con�guration has changed from a
setup in /etc/network/interfaces to a con�guration via
netplan. That is, instead of modifying
/etc/network/interfaces, the �le /etc/netplan/01-
networkd.yaml should be created with the following
content (example for CL1)

network:

 ethernets:

 eth0:

 addresses: [192.168.1.101/24]

 gateway4: 192.168.1.1

 nameservers:

 addresses: [192.168.1.1]

 dhcp4: no

 version: 2

Make sure not to use any tabulators in the �le for
indentation. After that you can run

$ netplan apply

$ netplan --debug apply

which should change your IP right away. Furthermore,
the SLURM version in the Ubuntu repository on Bionic
is di�erent and you need to install

$ apt-get install slurm-wlm

instead of package slurm-llnl. This still delivers you
the same directory structure as slurm-llnl and hence
there are no further changes necessary.

References

[1] A. Yuen, ODROID-MC1 Docker Swarm: Getting
Started Guide, Odroid Magazine (46)(2017)

[2] E. Kisiel, Prospectors, Miners, and 49er’s: Dual
GPU-CPU Mining on the ODROID-XU4/MC1/HC1/HC2,
Odroid Magazine (51)(2018).

[3] E. Kisiel, Prospectors, Miners, and 49er’s – Part 2:
Dual GPU-CPU Mining on the ODROID-
XU4/MC1/HC1/HC2, Odroid Magazine (52)(2018).

[4] E. Kisiel, Prospectors, Miners, and 49er’s – Part 3:
Operation and Maintenance of Crypto-Currency
Mining Systems, Odroid Magazine (53)(2018).

[5] R. Roy, ODROID-HC1 and ODROID-MC1: A�ordable
High-Performance And Cloud Computing At Home,
Odroid Magazine (45)(2017).

[6] M. Kamprath, ODROID-XU4 Cluster, Odroid
Magazine (53)(2018).

[7] A. Yuen, ODROID-MC1 Parallel Programming:
Getting Started, Odroid Magazine (46)(2017).

[8] D. Brömmel, W. Frings, B. J. N. Wylie, B. Mohr, P.
Gibbon, T. Lippert, The High-Q Club: Experience
Extreme-scaling Application Codes. Supercomputing
Frontiers and Innovations, 5(1), 59–78 (2018).
doi:10.14529/js�180104

[9] A. Pogorelov, M. Meinke, W. Schröder, Cut-cell
method based large-eddy simulation of tip-leakage
�ow. Physics of Fluids, 27(7), 075106 (2015).
doi:10.1063/1.4926515

[10] A.Lintermann, D. Pleiter, W. Schröder,
Performance of ODROID-MC1 for scienti�c �ow
problems, Future Generation Computer Systems (in
press, �rst online: Jan. 04, 2019).
doi:10.1016/j.future.2018.12.059

[11] Odroid Wiki
https://wiki.odroid.com/troubleshooting/odroid_�as
hing_tools

[12] R.K. Freitas, A. Henze, M. Meinke, W. Schröder,
Analysis of Lattice-Boltzmann methods for internal
�ows. Computers & Fluids, 47(1), 115–121 (2011).
doi:10.1016/j.comp�uid.2011.02.019

[13] A. Lintermann, S. Schlimpert, J. H. Grimmen, C.
Günther, M. Meinke, W. Schröder, W. Massively
parallel grid generation on HPC systems, Computer
Methods in Applied Mechanics and Engineering 277,
131–153 (2014). doi:10.1016/j.cma.2014.04.009

[14] PXE boot on ODROID-XU4/MC1/HC1,
https://wiki.odroid.com/odroid-
xu4/application_note/software/pxe_boot

http://doi.org/10.14529/jsfi180104
http://doi.org/10.1063/1.4926515
http://doi.org/10.1016/j.future.2018.12.059
https://wiki.odroid.com/troubleshooting/odroid_flashing_tools
http://doi.org/10.1016/j.compfluid.2011.02.019
http://doi.org/10.1016/j.cma.2014.04.009
https://wiki.odroid.com/odroid-xu4/application_note/software/pxe_boot

Amibian.js: Emulating a Commodore Amiga on an ODROID-XU4
Cluster
 February 1, 2019  By Jon L. Aasenden  ODROID-XU4, Tutorial

Amibian is what you need to transform your ODROID
into an Amiga. It is a very lightweight SD card image
that �ts on SD cards from the size of 2GB and up. It is
made to give you the best Amiga experience you can
get without having an actual Amiga. Amibian allows
you to remember, relive, and rediscover the joy of
Amiga easily with cheap hardware and minimum
e�ort.

Early this month I announced that the o�cial
hardware will be based around Hardkernel’s ODROID-
XU4 line of SBC’s (single board computers) which
deliver good performance, exceptional stability, and
low power consumption at a reasonable price. I also
availed that the �rst Amibian.js setup would consist of
�ve ODROID-XU4 boards working together in a
cluster, meaning that work is divided among these
�ve boards for high e�ciency and that they share
resources.

Amibian.js is gaining momentum as more and more
developers, embedded systems architects, gamers,
and retro computer enthusiasts discover the project. I
have to admit I’m pretty stoked about what we are
building here myself!

However, as with any new technology or invention,
there are two common traps that people can fall into:
The �rst trap is to gravely underestimate a
technology. JavaScript certainly invites this, because
only a decade ago the language was little more than a
toy. Since then, JavaScript has evolved to become the
most widely adopted programming language in the
world, and runtime engines like Google’s V8 runs
JavaScript almost as fast as compiled binary code.
“Native” means machine code like that produced by a
C/C++ compiler, Pascal compiler, or anything else that
produces programs that run under Linux or Windows.

It takes some adjustments, especially for traditional
programmers that haven’t paid attention to where

browsers have gone, but long gone are the days of
interpreted JavaScript. Modern JavaScript is �rst
parsed, tokenized, and compiled to bytecodes. These
bytecodes are then JIT compiled (“just in time”, which
means the compilation takes place inside the
browser) to real machine-code using state of the art
techniques (LLVM). So the JavaScript of 2018 is by no
means the JavaScript of 2008.

The second trap you can fall into is to exaggerate
what a new technology can do, and attach abilities
and expectations to a product that simply cannot be
delivered. It is very important to me that people don’t
fall into either trap, and that everyone is informed
about what Amibian.js actually is and can deliver, as
well as what it won’t deliver. Rome was not built in a
day, and it’s wise to study all the factors before
passing judgement.

I have been truly fortunate that people support the
project �nancially via Patreon, and as such I feel it’s
my duty to document and explain as much as
possible. I am a programmer and I often forget that
not everyone understands what I’m talking about. We
are all human and make mistakes. Hopefully this
article will paint a clearer picture of Amibian.js and
what we are building here. The project is divided into
two phases: �rst, to �nish Amibian.js itself; and
second, to write a Visual Studio clone that runs purely
in the browser.

What the heck is Amibian.js?

Amibian.js is a group of services and libraries that
combined creates a portable operating system that
renders to HTML5. A system that was written using
readily available web technology, and designed to
deliver advanced desktop functionality to web
applications.

The services that make up Amibian.js were designed
to piggyback on a thin Linux crust, where Linux deals
with the hardware, drivers, and the nitty-gritty we
take for granted. There is no point in trying to write a
better kernel in 2018, because you are never going to
catch up with Linus Torvalds. It’s much more
interesting to push modern web technology to the
absolute limits, and build a system that is truly
portable and distributed.

Figure 1 – Amibian.js is created in Smart Pascal and
compiled to JavaScript

The service layer is written purely in node.js
(JavaScript) which guarantees the same behavior
regardless of host platform. One of the bene�ts of
using o�-the-shelves web technology is that you can
physically copy the whole system from one machine
to the other without any changes. So if you have a
running Amibian.js system on your x86 PC and copy
all the �les to an ARM computer, you don’t even have
to recompile the system. Just �re up the services and
you are back in the game.

Now before you dismiss this as “yet another web
mockup” please remember what I said about
JavaScript: the JavaScript in 2018 is not the JavaScript
of 2008. No other language on the planet has seen as
much development as JavaScript, and it has evolved
from a “browser toy” into the most important
programming language of our time.

So Amibian.js is not some skin-deep mockup of a
desktop (lord knows there are plenty of those online).
It implements advanced technologies such as remote
�lesystem mapping, an object-oriented message
protocol (Ragnarok), RPCS (remote procedure call
invocation stack), video codec capabilities and much
more—all of it done with JavaScript.

In fact, one of the demos that Amibian.js ships with is
Quake III re-compiled to JavaScript. It delivers 120 fps
�awlessly (browser is limited to 60 fps) and makes full
use of standard browser technologies (WebGL). So
indeed, the JavaScript we are talking about here is
cutting edge. Most of Amibian.js is compiled as
“Asm.js” which means that the V8 runtime—the code
that runs JavaScript inside the browser, or as a
program under node.js—will JIT compile it to highly
e�cient machine-code, which is why Amibian.js is
able to do things that people imagine impossible!

What does Amibian.js consist of?

Amibian.js consists of many parts, but we can divide it
into two categories:

A HTML5 desktop client

A system server and various child processes

These two categories have the exact same
relationship as the X desktop and the Linux kernel.
The client connects to the server, invokes procedures
to do some work, and then visually represent the
response This is identical to how the X desktop calls
functions in the kernel or one of the Linux libraries.
The di�erence between the traditional, machine code
based OS and our web variation, is that our version
doesn’t have to care about the hardware. We can also
assign many di�erent roles to Amibian.js. More about
that later.

Figure 2 – Enjoying other cloud applications is easy with
Amibian.js. Here is Plex, a system very much based on
the same ideas as Amibian.js

For the record: I’m trying to avoid a bare-metal OS,
otherwise I would have written the system using a
native programming language like C or Object Pascal.
So I am not using JavaScript because I lack skill in
native languages, I am using JavaScript because native
code is not relevant for the tasks Amibian.js solves. If I
used a native back-end I could have �nished this in a
couple of months, but a native server would be
unable to replicate itself between cloud instances
because chipset and CPU would be determining
factors.

The Amibian.js server is not a single program. The
back-end for Amibian.js consists of several service
applications (daemons on Linux) that each deliver
speci�c features. The combined functionality of these
services make up “the Amibian kernel” in our analogy

with Linux. You can think of these services as library
�les in a traditional system, and programs that are
written for Amibian.js can call on these to a wide
range of tasks. It can be as simple as reading a �le, or
as complex as registering a new user or requesting
admin rights.

The greatest strength of Amibian.js is that it’s
designed to run clustered, using as many CPU cores
as possible. It’s also designed to scale, meaning that it
will replicate itself and divide the work between
di�erent instances. This is where things get
interesting, because an Amibian.js cluster doesn’t
need the latest and coolest hardware to deliver good
performance. You can build a cluster of old PCs in
your o�ce, or a handful of embedded boards. An
ODROID-XU4, Raspberry Pi or a Tinker Board are
brilliant candidates.

Why not just stick with Linux?

That is a fair question, and this is where the roles I
mentioned above comes in. As a software developer,
many of my customers work with embedded devices
and kiosk systems. You have companies that produce
routers and set-top boxes, NAS boxes of various
complexity, ticket systems for trains and busses; and
all of them end up having to solve the same needs.

What each of these manufacturers have in common is
the need for a web desktop system that can be
adapted for a speci�c program. Any idiot can write a
web application, but when you need safe access to
the �lesystem, uni�ed API’s that can delegate signals
to Amazon, Azure, or your company server, things
suddenly get more complicated. Even when you have
all of that, you still need a rock solid application
model suitable for distributed computing. You might
have 1 ticket booth, or 10,000 nationwide. There are
no systems available that are designed to deal with
web technology on that scale. Yet.

Let’s look at a couple of real-life scenarios that I have
encountered. I’m con�dent you will recognize a
common need. Here are some roles that Amibian.js
can assume to help deliver a solution rapidly. It also
gives you some ideas of the economic possibilities.

Please note that we are talking about JavaScript here,
not native code. There are a lot of native solutions out

there, but the whole point here is to forget about
CPU, chipset, and target and have a system �oating
on top of whatever is beneath.

When you want to change some settings on your
router, login to your router. It contains a small apache
server (or something similar) and you do all your
maintenance via that web interface. The web interface
is typically skin-deep, annoying to work with, and a
pain for developers to update since it’s connected to a
native apache module which is 100% dependent on
the �rmware. Each vendor ends up reinventing the
wheel over and over again.

When you visit a large museum notice the displays. A
museum needs to display multimedia, preferably on
touch capable devices, throughout di�erent exhibits.
The cost of having a developer create native
applications that display the media, play the movies,
and give visual feedback is astronomical. This is why
most museums adopt web technology to handle media
presentation and interaction, once again reinventing
the wheel with varying degree of success.

Hotels have more or less the exact same need but on a
smaller scale, especially larger hotels where the lobby
has information booths, and each room displays a web
interface via the TV.

Shopping malls face the same challenge, and
depending on the size they can need anything from a
single to a hundred nodes.

Schools spend millions on training software and
programming languages every year. Amibian.js can
deliver both, allowing schools to pay only for
maintenance and adaptation–the product itself is free.
Kids get the bene�t of learning traditional languages
and enjoying instant visual feedback! They can learn
Basic, Pascal, JavaScript and C. I �rmly believe that the
classical languages will help make them better
programmers as they evolve.

You’re probably starting to see the common
denominator here: they all need a web-based desktop
system, one that can run complex HTML5 based
media applications and give them the same depth as
a native operating-system, which is pretty hard to
achieve with JavaScript alone.

Amibian.js provides a rich foundation of more than
4000 classes that developers can use to write large,
complex, and media-rich applications (see Smart
Mobile Studio below). Just like Linux and Windows

provide a wealth of libraries and features for native
application development, Amibian.js aims to provide
the same for cloud and embedded systems.

As the name implies, Amibian.js has roots in the past
with the machine that de�ned multimedia, the
Commodore Amiga. The relation is more than just
visual: Amibian.js uses the same system architecture
because we believe it’s one of the best systems ever
designed.

If JavaScript is so poor, why should we trust you to
deliver so much?

First of all, I’m not selling anything. It’s not like this
project is something that is going to make me a ton of
cash. I ask for support during the development period
because I want to allocate proper time for it, but
when done Amibian.js will be free for everyone
(LGPL). And I’m also writing it because it’s something
that I need that I haven’t seen anywhere else. I think
you have to write software for yourself, otherwise the
quality won’t be there.

Secondly, writing Amibian.js in raw JavaScript with the
same amount of functions and depth would take
years. The reason I am able to deliver so much
functionality quickly is because I use a compiler
system called Smart Mobile Studio. This saves months
and years of development time, and I can use all the
bene�ts of OOP (object-oriented programming).

Prior to starting the Amibian.js project, I spent roughly
9 years creating Smart Mobile Studio. Smart is not a
solo project–many individuals have been involved.
The product provides a compiler, IDE (editor and
tools), and a vast run-time library of pre-made classes
(roughly 4000 ready to use classes, or building-
blocks).

Figure 3 – Writing large-scale node.js services in Smart is
easy, fun and powerful!

Unlike other development systems, Smart Mobile
Studio compiles to JavaScript rather than machine
code. We have spent a great deal of time making sure
we could use proper OOP, and we have spent more
than three years perfecting a visual application
framework with the same depth as the VCL or FMX
(the core visual frameworks for C++ builder and
Delphi).

The result is that I can knock out a large application
that a normal JavaScript coder would spend weeks on
in a single day.

Smart Mobile Studio uses the Object Pascal language,
a dialect which is roughly 70% compatible with Delphi.
Delphi is exceptionally well suited for writing large,
data driven applications. It also thrives for embedded
systems and low-level system services. In short, it’s a
lot easier to maintain 50,000 lines of object pascal
code, than 500,000 lines of JavaScript code.

Amibian.js, both the service layer and the visual
HTML5 client application, is written completely using
Smart Mobile Studio. This gives me as the core
developer of both systems a huge advantage–who
knows it better than the designer right? I also get to
write code that is truly OOP (classes, inheritance,
interfaces, virtual and abstract methods, partial
classes etc), because our compiler crafts something
called a VMT (virtual method table) in JavaScript.

Traditional JavaScript doesn’t have OOP, it has
something called prototypes. With Smart Pascal I get
to bring in code from the Object Pascal community,
components and libraries written in Delphi or
Freepascal–which range in the hundreds of
thousands. Delphi alone has a massive library of code
to pick from. It’s been a popular toolkit for ages (C is
three years older than pascal).

But how would I use Amibian.js?

Amibian.js can be setup and used in four di�erent
ways:

As a true desktop, booting straight into Amibian.js in
full-screen

As a cloud service, accessed through any modern
browser

As a NAS or Kiosk front-end

As a local system on your existing OS. A batch script
will �re it up and you can access it on
https://127.0.0.1:8090 using your browser.

So the short answer is yes, you install it. But it’s the
same as installing Chrome OS. It’s not like an
application you just install on your Linux, Windows, or
OSX box. The whole point of Amibian.js is to have a
platform independent, chipset agnostic system.
Something that doesn’t care if you are using ARM,
x86, PPC or Mips as your CPU of preference.
Developers will no doubt install it on their existing
machines. Amibian.js is non-intrusive and does not
a�ect or touch �les outside its own ecosystem.
However, the average non-programmer will most
likely setup a dedicated machine (or several) or just
deploy it on their home NAS.

The �rst way of enjoying Amibian.js is to install it on a
PC or ARM device. A disk image will be provided for
supporters so they can get up and running ASAP. This
disk image will be based on a thin Linux setup, just
enough to get all the drivers going (but no X desktop).
It will start all the node.js services and �nally enter a
full-screen web display (based on Chromium
Embedded) that renders the desktop. This is the
method most users will prefer to work with
Amibian.js.

The second way is to use it as a cloud service. You
install Amibian.js like mentioned above, but you do so
on Amazon or Azure. That way you can login to your
desktop using nothing but a web browser. This is a
very cost-e�ective way of enjoying Amibian.js since
renting a virtual instance is a�ordable and storage is
abundant.

The third option is for developers. Amibian.js is a
desktop system, which means it’s designed to host
more elaborate applications. Where you would
normally just embed an external website into an
IFrame, but Amibian.js is not that primitive. Hosting
external applications requires you to write a security
manifest �le, but more importantly: the application
must interface with the desktop through the window’s
message-port. This is a special object that is sent to
the application as a hand-shake, and the only way for

the application to access things like the �le-system
and server-side functionality, is via this message-port.

Calling “kernel” level functions from a hosted
application is done purely via the message-port
mentioned above. The actual message data is JSON
and must conform to the Ragnarok client protocol
speci�cation. This is not as di�cult as it might sound,
but Amibian.js takes security very seriously so
applications trying to cause damage will be promptly
shut down.

You mention hosted applications, do you mean
websites?

Both yes and no: Amibian.js supports 3 types of
applications:

Ordinary HTML5/JS based applications, or “websites” as
many would call them. But like I talked about above
they have to establish a dialog with the desktop before
they can do anything useful.

Hybrid applications where half is installed as a node.js
service, and the other half is served as a normal
HTML5 app. This is the coolest program model, and
developers essentially write both a server and a client
and then deploy it as a single package.

LDEF compiled bytecode applications, a 68k inspired
assembly language that is JIT compiled by the browser
(commonly called “asm.js”) and runs extremely fast.
The LDEF virtual machine is a sub-project in Amibian.js

The latter option, bytecodes, is a bit like Java. A part of
the Amibian.js project is a compiler and runtime
system called LDEF.

Figure 4 – The Amibian.js LDEF assembler, here listing
opcodes and disassembling a method

The �rst part of the Amibian.js project is to establish
the desktop and back-end services. The second part
of the project is to create the world’s �rst cloud based
development platform. A full Visual Studio clone if you

like, that allows anyone to write cloud, mobile, and
native applications directly via the browser.

Several languages are supported by LDEF, and you
can write programs in Object Pascal, Basic and C. The
Basic dialect is especially fun to work with, since it’s a
re-implementation of BlitzBasic, with a lot of added
extras. Amiga developers will no doubt remember
BlitzBasic as it was used to create some great games
back in the 80s and 90s. It’s well suited for games and
multimedia programming and above all–very easy to
learn.

More advanced developers can enjoy Object Pascal
(read: Delphi) or a subset of C/C++. Please note: This
IDE is designed for large-scale applications, not simple
snippets. The ultimate goal of Amibian.js is to move
the entire development cycle to the cloud and away
from the desktop. With Amibian.js you can write a
cool “app” in BlitzBasic, run it right in the browser, or
compile it server-side and deploy it to your Android
Phone as a real, natively compiled application. Any
notion of a “mock desktop for HTML” should be �rmly
put to the side. I am not playing around with this
product and the stakes are very real.

But why don’t you just use ChromeOS?

There are many reasons, but the most important one
is chipset independence. Chrome OS is a native
system, meaning that it’s core services are written in
C/C++ and compiled to machine code. The
fundamental principle of Amibian.js is to be 100%
platform agnostic, and “no native code allowed.” This
is why the entire back-end and service layer is
targeting node.js. This ensures the same behavior
regardless of processor or host system (Linux being
the default host).

Node.js has the bene�t of being 100% platform
independent. You will �nd node.js for ARM, x86, Mips,
and PPC. This means you can take advantage of
whatever hardware is available. You can even recycle
older computers that have lost mainstream support,
and use them to run Amibian.js.

A second reason is this: Chrome OS might be free, but
it’s only as open as Google wants it to be. Chrome OS
is not just something you pick up and start altering.
It’s dependence on native programming languages,

compiler toolchains, and a huge set of libraries makes
it extremely niche. It also shields you utterly from the
interesting parts, namely the back-end services. It’s
quite frankly boring and too boxed in for any practical
use–except for Google and its technology partners,
that is.

I wanted a system that I could move around, that
could run in the cloud on cheap SBC’s. A system that
could scale from handling 10 users to 1000 users–a
system that supports clustering and can be installed
on multiple machines in a swarm.

A system that anyone with JavaScript knowledge can
use to create new and exciting systems, that can be
easily expanded and serve as a foundation for rich
media applications.

What is this Amiga stu�, isn’t that an ancient
machine?

In computing terms yes, but so is Unix. Old doesn’t
automatically mean bad, it actually means that it has
adapted and survived challenges beyond its initial
design. While most of us remember the Amiga for its
games, I remember it mainly for its elegant and
powerful operating system. A system so �exible that
it’s still in use around the world–33 years after the
machine hit the market. That is quite an achievement.

Figure 5 – The original Amiga OS, not bad for a 33-year-
old OS! It was and continues to be way ahead of
everyone else. A testament to the creativity of its
authors

Amibian.js, as the name implies, borrows architectural
elements en masse from Amiga OS. Quite simply
because the way Amiga OS is organized and the way
you approach computing on the Amiga is brilliant.

Amiga OS is much more intuitive and easier to
understand than Linux and Windows. It’s a system
that you could learn how to use fully with just a
couple of days exploring and no manuals.

But the similarities are not just visual or architectural.
Remember I wrote that hosted applications can
access and use the Amibian.js services? These
services implement as much of the original ROM
Kernel functions as possible. Naturally I can’t port all
of it, because it’s not really relevant for Amibian.js.
Things like device-drivers serve little purpose for
Amibian.js, because Amibian.js talks to node.js, and
node talks to the actual system, which in turn handles
hardware devices. But the way you would create
windows, visual controls, bind events and create a
modern, event-driven application has been preserved
to the best of my ability.

How does this thing boot?

If you have set up a dedicated machine with
Amibian.js then the boot sequence is the same as
Linux, except that the node.js services are executed
as background processes (daemons or services as
they are called), the core server is initialized, and then
a full-screen HTML5 view is set up that shows the
desktop.

But that is just for starting the system. Your personal
boot sequence which deals with your account, your
preferences and adaptations–that boots when you
login to the system.

When you login to your Amibian.js account, no matter
if it’s just locally on a single PC, a distributed cluster,
or via the browser into your cloud account, several
things happen:

The client (web-page if you like) connects to the server
using WebSocket.

Login is validated by the server.

The client starts loading preferences �les via the
mapped �lesystem, and then applies these to the
desktop.

A startup sequence script �le is loaded from your
account, and then executed. The shell-script runtime
engine is built into the client, as is REXX execution.

The startup-script will set up con�gurations, create
symbolic links (assigns), mount external devices

(Dropbox, Google drive, FTP locations and so on).

When �nished the programs in the ~/WbStartup folder
are started. These can be both visual and non-visual.

As you can see, Amibian.js is not a mockup or “fake”
desktop. It implements all the advanced features you
expect from a “real” desktop. The �lesystem mapping
is especially advanced, where �le data is loaded via
special drivers; drivers that act as a bridge between a
storage service (a hard disk, a network share, a FTP
host, Dropbox, or whatever) and the desktop.
Developers can add as many of these drivers as they
want. If they have their own homebrew storage
system on their existing servers, they can implement
a driver for it. This ensures that Amibian.js can access
any storage device, as long as the driver conforms to
the driver standard.

In short, you can create, delete, move, and copy �les
between these devices just like you do on Windows,
OSX, or the Linux desktop. And hosted applications
that run inside their own window can likewise request
access to these drivers and work with the �lesystem
(and much more!).

Can Amibian.js really run actual programs?

Amibian.js has a JavaScript port of UAE (Unix Amiga
Emulator). This is a fork of SAE (scripted Amiga
Emulator) that has been heavily optimized for web.
Not only is it written in JavaScript, it performs
brilliantly and thus allows us to boot into a real Amiga
system. So if you have some �oppy-images with a
game you love, that will run just �ne in the browser. I
even booted a 2 gigabyte hard disk image.

But Amiga emulation is just the beginning. More and
more emulators are ported to JavaScript; you have
NES, SNES, N64, PSX I & II, Sega Megadrive and even a
NEO GEO port. So playing your favorite console
games right in the browser is pretty straightforward!

But the really interesting part is probably QEmu. This
allows you to run x86 instances directly in the
browser too. You can boot up in Windows 7 or
Ubuntu inside an Amibian.js window if you like.
Perhaps not practical at this point, but it shows some
of the potential of the system.

I have been experimenting with a distributed
emulation system, where the emulation is executed
server-side, and only the graphics and sound is
streamed back to the Amibian.js client in real-time.
This has been possible for years via Apache
Guacamole, but doing it in raw JS is more �tting with
our philosophy: no native code!

I heard something about clustering?

Remember I wrote about the services that Amibian.js
has? Those that act almost like libraries on a physical
computer? Well, these services don’t have to be on
the same machine—you can place them on separate
machines and thus its able to work faster.

Figure 6 – The o�cial Amibian.js cluster, 4 x ODROID-
XU4 SBC’s in a micro-rack

A cluster is typically several computers connected
together, with the sole purpose of having more CPU
cores to divide the work on. The cool thing about
Amibian.js is that it doesn’t care about the underlying
CPU. As long as node.js is available it will happily run
whatever service you like with the same behavior and
result.

The o�cial Amibian.js cluster consists of �ve ODROID-
XU4/S SBC (single board computers). Four of these
are so-called “headless” computers, meaning that
they don’t have a HDMI port and they are designed to
be logged into and software setup via SSH or similar

tools. The last machine is a ODROID-XU4 with a HDMI
out port, which serves as “the master”.

The architecture is quite simple: We allocate one
whole SBC for a single service, and allow the service
to copy itself to use all the CPU cores available—each
SBC has eight CPU cores. With this architecture, the
machine that deals with the desktop clients doesn’t
have to do all the grunt work. It will accept tasks from
the user and hosted applications, and then delegate
the tasks between the four other machines.

Please note that the number of SBC’s is not �xed.
Depending on your use, you might not need more
than a single SBC in your home setup, or perhaps two.
I have started with �ve because I want each part of
the architecture to have as much CPU power as
possible. So the �rst “o�cial” Amibian.js setup is a 40
core monster shipping at around $250.

But as I mentioned, you don’t have to buy this to use
Amibian.js. You can install it on a single spare X86 PC
you have, or daisy chain a couple of older PC’s on a
switch for the same result.

Why Headless?

The headless SBC’s in the initial design all have a GPU
(graphical processing unit) as well as audio
capabilities. What they lack is GPIO pins and 3
additional USB ports. So each of the nodes on our
cluster can handle graphics at blistering speed—but
that is ultimately not their task. They serve more as
compute modules that will be given tasks to �nish
quickly, while the main machine deals with users,
sessions, tra�c and security.

The 40-core cluster I use has more computing power
than Northern Europe had in the early 80s. That’s
something to think about. And the pricetag is under
$300! I don’t know about you, but I always wanted a
proper mainframe, a distributed computing platform
that you can login to, and that can perform large tasks
while I do something else. This is as close as I can get
on a limited budget, yet I �nd the limitations thrilling
and fun!

Part of the reason I have opted for a clustered design
has to do with future development. While UAE.js is
brilliant to emulate an Amiga directly in the browser, a
more interesting design is to decouple the emulation

from the output. In other words, run the emulation at
full speed server-side, and just stream the display and
sounds back to the Amibian.js display. This would
ensure that emulation of any platform runs as fast as
possible, makes use of multi-processing (read: multi
threading), and fully utilizes the network bandwidth
within the design (the cluster runs on its own switch,
separate from the outside world-wide-web).

I am also very interested in distributed computing,
where we split up a program and run each part on
di�erent cores. This is a topic I want to investigate
further when Amibian.js is completed. It would no
doubt require a re-design of the LDEF bytecode
system, but this something to research later.

Will Amibian.js replace my Windows box?

That depends completely on what you use Windows
for. The goal is to create a self-sustaining system. For
retro computing, emulation, and writing cool
applications Amibian.js will be awesome. But Rome
was not built in a day, so it’s wise to be patient and
approach Amibian.js like you would Chrome OS.
Some tasks are better suited for native systems like
Linux, but more and more tasks will run just �ne on a
cloud desktop like Amibian.js.

Until the IDE and compilers are in place after phase
two, the system will be more like an embedded OS.
But when the LDEF compiler and IDE is in place, then
people will start using it en masse and produce
applications for it. It’s always a bit of work to reach
that point and create critical mass.

Figure 7 – Object Pascal is awesome, but modern, native
development systems are quite demanding

My personal need has to do with development. Some
of the languages I use installs gigabytes onto my PC
and you need a full laptop to access them. I love
Amibian.js because I will be able to work anywhere in
the world, as long as a browser and normal internet
line is available. In my case, I can install a native
compiler on one of the nodes in the cluster, and have
LDEF emit compatible code. Voila, you can build app-
store ready applications from within a browser
environment.

I also love that I can set up a dedicated platform that
runs legacy applications and games, and that I can
write new applications and services using modern,
o�-the-shelf languages. Should a node in the cluster
break down, I can just copy the whole system over to
a new, a�ordable SBC and keep going. No super
expensive hardware to order, no absurd hosting fees,
and �nally a system that we all can shape and use in a
plethora of systems. From a full-�edged desktop to a
super advanced NAS or router that uses Amibian.js to
give its customers a fantastic experience.

And yes, I get to re-create the wonderful reality of
Amiga OS without the absurd egoism that dominates
the Amiga owners to this day. I don’t even know
where to begin with the present license holders–and I
am so sick of the drama that rolling my own seemed
the only reasonable path forward.

I hope this helps clear up any misconceptions about
Amibian.js, and that you �nd this as interesting as I
do. As more and more services are pushed cloud-side,
the more relevant Amibian.js will become. It is perfect
as a foundation for large-scale applications,
embedded systems, and indeed, as a solo platform
running on embedded devices. I can’t wait to �nish
the services and cluster this sucker on the ODROID
rack!

If you �nd this project interesting, head over to my
Patreon website at
http://www.patreon.com/quartexNow and get
involved! I could really use your support, even if it’s
just a $5 “high �ve”. For comments, questions, and
suggestions, please visit the original article at
https://jonlennartaasenden.wordpress.com/2018/12
/05/amibian-js-under-the-hood/.

http://www.patreon.com/quartexNow
https://jonlennartaasenden.wordpress.com/2018/12/05/amibian-js-under-the-hood/

Coding Camp – Part 11: Control the LED from your smartphone
via WiFi
 February 1, 2019  By Justin Lee  ODROID-GO, Tutorial

This article will show you how to build a WiFi AP mode
web server that blinks a LED from your web browser
remotely.

Figure 1 – Example of wi� controlled LED

Before starting, there are two important things to
read �rst:

Refer to the Arduino o�cial documents. This tells us
useful common functions with great instructions,
available here: https://www.arduino.cc/reference/en/

Refer to the ESP32 o�cial programming guide. Most of
ESP32 speci�c functions introduced here: https://esp-
idf.readthedocs.io/en/v3.0/

WiFi in AP Mode

ESP32, which is used on ODROID-GO, supports WiFi
802.11b/g/n, so we can program WiFi features with
helpful libraries on Arduino. In this guide, we’re going
to use the wi�.h library:

#include

const char *apSsid = "ODROID_GO_AP";

const char *apPasswd = "12345678";

WiFiServer server(80);

void setup() {

IPAddress gateway(192, 168, 4, 1);

IPAddress subnet(255, 255, 255, 0);

if (WiFi.softAP(apSsid, apPasswd)) {

server.begin();

}

}

void loop() {

}

This is the basic code for WiFi in AP mode. As you
know what AP mode means, this code makes
ODROID-GO generating its on WiFi signal and you can
access to that AP on your WiFi connectable device. To
do that we’ve de�ned the AP information for SSID and
password, and gave the gateway IP address and
subnet mask. These IP addresses should be created
as an instance of IPAddress class. So with this code, it
will be on 192.168.4.x IP addresses, and you can
connect to that by accessing to 192.168.4.1. This AP
activates with a WiFi.softAP() function.

To provide a web page, de�ne an WiFiServer instance
as a global variable. This begins when the WiFi
activates successfully in AP mode. Next, add code for
setting the blue status LED up and some debugging
messages shown on the serial monitor. This should
be very helpful to show how the code �ows.

#include

#define PIN_STATUS_LED 2

const char *apSsid = "ODROID_GO_AP";

const char *apPasswd = "12345678";

WiFiServer server(80);

void setup() {

Serial.begin(115200);

pinMode(PIN_STATUS_LED, OUTPUT);

digitalWrite(PIN_STATUS_LED, LOW);

IPAddress gateway(192, 168, 4, 1);

IPAddress subnet(255, 255, 255, 0);

if (WiFi.softAP(apSsid, apPasswd)) {

Serial.println("WiFi AP established.");

Serial.print("WiFi AP IP: ");

Serial.println(WiFi.softAPIP());

Serial.print("AP SSID: ");

Serial.println(apSsid);

Serial.print("AP Password: ");

Serial.println(apPasswd);

server.begin();

} else {

Serial.println("WiFi AP establishing failed.");

}

}

void loop() {

}

Finally, create a client listener in the loop() function.
This listener code loops and will respond only when
the client accesses. We’re not providing a description
for this web code, since the important thing is that
you can respond as a packet containing your intended
contents:

#include

#define PIN_STATUS_LED 2

const char *apSsid = "ODROID_GO_AP";

const char *apPasswd = "12345678";

WiFiServer server(80);

void setup() {

Serial.begin(115200);

pinMode(PIN_STATUS_LED, OUTPUT);

digitalWrite(PIN_STATUS_LED, LOW);

IPAddress gateway(192, 168, 4, 1);

IPAddress subnet(255, 255, 255, 0);

if (WiFi.softAP(apSsid, apPasswd)) {

Serial.println("WiFi AP established.");

Serial.print("WiFi AP IP: ");

Serial.println(WiFi.softAPIP());

Serial.print("AP SSID: ");

Serial.println(apSsid);

Serial.print("AP Password: ");

Serial.println(apPasswd);

server.begin();

} else {

Serial.println("WiFi AP establishing failed.");

}

}

void loop() {

WiFiClient client = server.available();

if (client) {

Serial.println("New Client.");

String currentLine = "";

while (client.connected()) {

if (client.available()) {

char c = client.read();

Serial.write(c);

if (c == '

') {

if (currentLine.length() == 0) {

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println();

client.print("Click here to turn

the blue status LED on.

");

client.print("Click here to turn

the blue status LED off.

");

client.println();

break;

} else {

currentLine = "";

}

} else if (c != '

') {

currentLine += c;

}

if (currentLine.endsWith("GET /H")) {

digitalWrite(PIN_STATUS_LED, HIGH);

}

if (currentLine.endsWith("GET /L")) {

digitalWrite(PIN_STATUS_LED, LOW);

}

}

}

client.stop();

}

}

Compile and upload to your ODROID-GO and you can
see the debugging code at the Serial monitor.

Figure 2 – AP serial debug information

Connect to ODROID-GO and toggle the LED

You can connect to ODROID-GO on your WiFi
connectable device.

Figure 3 – Our ORDOID-GO Access Point

Access the ODROID_GO_AP with password 12345678,
then visit 192.168.4.1 on your web browser.

Figure 4 – The demo LED webpage

If you click the text, you can see the status LED turns
on or o�. The behaviors may be monitored on the
Serial monitor.

Figure 5 – Webpage Debug Information Show on Serial

The complete example is available by clicking on Files
→ Examples → ODROID-GO → WiFi_AP menu to
import, then press CTRL-U to compile/upload. This
guide was taken from the ODROID wiki which is
available at
https://wiki.odroid.com/odroid_go/arduino/08_wi�_ap
.

OGO-FTPD: An FTP Server for the ODROID-GO
 February 1, 2019  By @Paspartout  ODROID-GO, Tutorial

In this article, I will introduce you to an FTP server for
the ODROID-GO. It is a rather minimal
implementation that currently does not support
authentication and passive mode operation. The use
case I aimed for is one to transfer and manage your
ODROID �les on a trusted WiFi network, for which it
already works quite good.

The reason for developing this application was that I
recently got the ODROID-GO, but could not �nd my
SD card reader. Since I could still �ash the ODROID-
GO using the USB cable, I thought it might be a good
idea to implement an FTP server for the ODROID-GO.
It was a nice learning experience, but took much
longer than buying a new card reader, which I did
later. Once I started working on the server, I wanted
to �nish a usable version. Later, I read in the Project
Suggestions post in the forum (https://goo.gl/6wzxFv)
that someone actually would like to use the odroid as
a FTP Server. So I hope this will be helpful to you.

The maximum speed I got is around 500 KB/s, but I
am not sure if the SD card or WiFi connection is the
bottleneck. The tests were performed on Linux using
FileZilla (https://�lezilla-project.org) as a client. I
would love to hear your impressions and bug reports
on it.

You can download the application at
https://github.com/Paspartout/ogo-ftpd/releases,
and the source is available at
https://github.com/Paspartout/ogo-ftpd. It is a
known issue that sometimes I have to restart the app
to make it connect to my WiFi.

In order to con�gure the WiFi access point that the
ODROID should use, you have to place a �le named
wi�.json into the root folder of your SD card. The
contents should follow this pattern:

{"networks": [{"ssid": "YOUR_SSID", "password":

"YOUR_PASSWOD", "authmode": "YOUR_AUTHMODE"}]}

YOUR_AUTHMODE can be one of the following:

https://goo.gl/6wzxFv
https://filezilla-project.org/
https://github.com/Paspartout/ogo-ftpd/releases
https://github.com/Paspartout/ogo-ftpd

open

wep

wpa-psk

wpa2-psk

wpa/wpa2-psk

You can also add multiple networks by adding them
to the json array. I may add the ability to con�gure
the wi� using an on screen keyboard like the odroid-
go-launcher does (https://github.com/jkent/odroid-
go-launcher). I found the odroid-go-launcher to be an
interesting project, especially the ability to install and
use multiple apps without re�ashing every time. The

server uses some code from Je� Kent, who created
the launcher, so I want thank him for that.

For secure transferring of �les over the Internet, even
more things like encryption will be needed. Passive
mode and authentication should not be di�cult to
implement, and maybe even FTPS
(https://en.wikipedia.org/wiki/FTPS) might be easy to
add, because the esp-idf already provides a TLS
implementation. Pull requests are very welcome.

For comments, questions and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=158&t=33275.

https://github.com/jkent/odroid-go-launcher
https://en.wikipedia.org/wiki/FTPS
https://forum.odroid.com/viewtopic.php?f=158&t=33275

Android Gaming
 February 1, 2019  By Bruno Doiche  Android, Gaming

Hello there my dear readers, long time no see, right?
Well, that is if you just skipped our last edition where I
just did a retrospective of our 5 years of ODROID
Magazine, or as I call it fondly: ODROIDMAG. On that
article we just teased that we often talk about games,
and this is indeed true. So Rob promptly asked if I
didn’t have a pool of games I just played on my
ODROID running Android and for a miraculous stroke
of luck I did have it! Who could imagine that I play
games on my spare time?

So, without further ado, let’s see what I can show you
guys:

Sonic Dash

Download My daughter keeps playing without
stopping on her cellphone Temple Run-like games,
and being this (sorta jealous) kind of guy, I looked for
something on this same vein, who would wonder that
Sega would make a Sonic endless runner game? I
personally am hooked on endless runners since the

�ash player classic: canabalt. They are easy to play,
and hard to master. If you by any way skipped the fun
that is to play an endless runner game, and by any
chance played a Sonic game during your youth years
(or is still living your youth years), download this one,
you will certainly love it.

https://play.google.com/store/apps/details?id=com.sega.sonicdash&hl=en&pid=Comms-Website

Picture 1 – Sonic Dash

CrossFire: Legends

Download I do have Justin Lee to blame for me
playing this game, last year he did an article on how
to play PUBG on the XU-4 and while looking for the
Tencent Games page, I stumbled on this one. With the
twist of a PVE mode, It is a perfect companion for
those moments where you still want to play a modern
shooter and hone your PUBG skills but is in a more
introspective mode. I usually get this one and a good
synthwave playlist on the background and I can chillax
during a good sunday afternoon.

Picture 2 – Cross�re: Legends

Lamplight

Download After two hectic games, we present
Lamplight, a turn-based game. It is in fact a game that
was produced during a game jam, and it is so catchy.
The best part of digging those indie games is that you
get a pure to the bones gaming experience, and for
the rush on development you get a bunch of things
that can be seen as a bonus. Such as: It is a fully
unlocked game, without ads, and no internet
required. So go ahead, explore dark rooms and defeat
enemies using your magic lamp’s abilities. Choose
your path through the depths encountering unique
enemies in varied environments. Find artifacts that
will help you and defeat bosses to steal their powers
to upgrade your lamp. Make di�cult decisions as you
face progressively tougher and numerous enemies.
Can you make it to the end?

Picture 3 – Lamplight

OutRush

Download Wait a second? Did I read on the CrossFire:
Legends part of this article about chillaxing (chill +
relaxing) at the sound of cool synthwave songs? Well,
than nothing is fairer than indicating OutRush, that
alongside the synthwave soundtracks, it comes with
the complete package of this so nostalgic 80’s visuals

https://play.google.com/store/apps/details?id=com.tencent.tmgp.cfmnac
https://play.google.com/store/apps/details?id=com.goldshoe.lamplight
https://play.google.com/store/apps/details?id=com.ugindie.outrush

that are so good looking. It reminds me a mix playing
REZ on my old PS2 and viewpoint on a Neo Geo.

Picture 4 – OutRush

Alite

Download A competent clone of the classic Elite
game, you can’t go wrong on this. If you don’t have

the Elite:Dangerous installed on your PC/Xbox/PS4
but still miss the ropes of playing a procedurally
generated galaxy where you are a space trader that
has to deal with pirates, this game is for you. Get your
notepad, start plotting your trading charts and go to
the void, space calls!

Picture 5 – Alite

https://play.google.com/store/apps/details?id=de.phbouillon.android.games.alite&hl=en_GB

Coding Camp – Part 12: Serial communication over Bluetooth
 February 1, 2019  By Justin Lee  ODROID-GO, Tutorial

In this article, we will make a wireless bridge to our
smartphone using the Bluetooth RFCOMM protocol
stack.

(Figure 1 – Send Message to the ODROID-GO) (Figure
2 – Receive Message from the ODROID-GO)

Before we begin make sure that you’ve followed the
guides at Getting started with Arduino and Arduino
for ODROID-GO – Hello World. Additionally, you can
always refer to the Arduino’s o�cial documentation.
This tells us lots of useful common functions with
great instructions at
https://www.arduino.cc/reference/en/. The ESP32
o�cial programming guide is also a great place
further information, most of the ESP32 speci�c
functions are introduced at https://esp-
idf.readthedocs.io/en/v3.0/. Finally, the original
source of this guide can be found on the ODROID-GO
wiki page at
https://wiki.odroid.com/odroid_go/arduino/07_bluet
ooth_serial.

Bluetooth Serial

The ESP32, which is used on ODROID-GO, supports
Bluetooth 4.2, so we can program Bluetooth features
with helpful Arduino libraries. In this guide, we’re
going to use the BluetoothSerial.h library:

#include "BluetoothSerial.h"

BluetoothSerial serialBT;

void setup() {

Serial.begin(115200);

serialBT.begin("ODROID-GO");

Serial.println("The device started, now you can

pair it with bluetooth!");

}

void loop() {

if (Serial.available()) {

serialBT.write(Serial.read());

}

if (serialBT.available()) {

https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup
https://wiki.odroid.com/odroid_go/arduino/02_hello_world
https://www.arduino.cc/reference/en/
https://esp-idf.readthedocs.io/en/v3.0/
https://wiki.odroid.com/odroid_go/arduino/07_bluetooth_serial

Serial.write(serialBT.read());

}

delay(20);

}

De�ne an instance for BluetoothSerial as a global
variable called serialBT. To set it, we use begin()
function having a parameter indicates the name of
the Bluetooth device for the Bluetooth scanners and
name it ODROID-GO. In the loop() function, if a
message from the Serial monitor available, send that
message to the connected device via Bluetooth serial.
On the other hand, if a message from the Bluetooth
serial available, send that message to the host.

Serial Monitor

You can use a Serial monitor to watch the debug
messages from the Serial port, which can be fund in
the Tools → Serial Monitor menu. Alternatively, you
can press CTRL-SHIFT-M to open it more quickly. To
show the message properly, you should set the
bandwidth to 115200 baud. This would be very
helpful debugging tool for you. In this guide, we’re
using this tool to communicate with the connected
device.

Figure 3- The Serial Monitor

Connect and communicate

We tested with the Serial Bluetooth Terminal
application on Android Playstore, on a Galaxy Note 8.

It �nds a Bluetooth device named ODROID-GO and
can connect to that.

Figure 4 – Bluetooth Pairing with a Smartphone

And in the app, select ODROID-GO on the Devices tab.

Figure 5 – Bluetooth Serial App Pairing

Push the connect button on the top of the screen at
the Terminal tab, then these can communicate each
other.

Figure 6 – Serial App After Pairing

Figure 7 – Serial App Showing Text To and From the
ODROID-GO

Of course you can do also do this using iOS or a
PC/laptop if it has Bluetooth capabilities.

A completed example

The complete example is available as by clicking the
Files → Examples → ODROID-GO → BT_Serial menu
to import the code, then pressing CTRL-U to
compile/upload.

Figure 8 – Loading the Bluetooth Example

ODROID-GO Gaming Pack: 3rd Party Apps and Games Download
Pack
 February 1, 2019  By @jutleys  Gaming, ODROID-GO, Tutorial

This article provides all of the third party apps and
games that have been released so far for the
ODROID-GO by their contributors. To stay up to date
with the latest releases, please view the original article
at https://forum.odroid.com/viewtopic.php?
f=159&t=31716. Thanks to all the developers and
contributors for the apps and games!

Instructions

Copy the contents of the pack to the root of your SD
card. All instructions are in each folder. The skeleton
�les are available for download at
https://drive.google.com/�le/d/11zbZmq3gUEuFcx1
BODcXB_IardaJe9a4/view?usp=sharing, and the
third-party games and apps are available at
https://drive.google.com/�le/d/1kDO1lmb9x0S0T22J
eTcHCl0Lt2s_0gwC/view?usp=sharing (updated on
January 16, 2019). For more games and resources,

visit https://github.com/chrisdiana/awesome-
odroid-go, which is maintained by @in�am52.

Copy the “Romart” folder to the root of your SD card

Place the .fw �les in the ODROID/�rmware folder

Turn o� the ODROID-GO, hold the B button, then turn
it on and wait, holding B until menu appears

https://forum.odroid.com/viewtopic.php?f=159&t=31716
https://drive.google.com/file/d/11zbZmq3gUEuFcx1BODcXB_IardaJe9a4/view?usp=sharing
https://drive.google.com/file/d/1kDO1lmb9x0S0T22JeTcHCl0Lt2s_0gwC/view?usp=sharing
https://github.com/chrisdiana/awesome-odroid-go

Figure 1 – Place .fw �les in ODROID/�rmware, then turn
o�, hold B, turn on and wait holding B until menu
appears

List of Games

Go-Play.fw latest release:
https://github.com/OtherCrashOverride/go-
play/releases

Keyboard (turns the go into a BT remote):
https://github.com/OtherCrashOverride/bt-
keyboard-go/releases

Wolfenstein 3D Full v1.4 GT and Spear of Destiny:
https://github.com/jkirsons/wolf4sdl/tree/master/rel
ease

Doom.fw release: https://github.com/mad-ady/doom-
odroid-go/releases/tag/20180816

Doom Latest release with sound:
https://github.com/mad-ady/doom-ng-odroid-
go/releases/tag/20181213

Duke Nukem 3D:
https://github.com/jkirsons/Duke3D/tree/master/rel
ease

https://youtu.be/S-DgYw0V4NQ

OpenTyrian on ODROID-GO:
https://github.com/jkirsons/OpenTyrian/tree/master
/release

Pong Game by metagod194041:
https://github.com/khuenqdev/goduino/tree/master
/pong

C64-go Schuemi: https://github.com/Schuemi/c64-
go/blob/master/README.md

(New build by Nemo1984
https://forum.odroid.com/download/�le.php?
id=8003)

C64 frodo-go crashoverride:
https://github.com/OtherCrashOverride/frodo-
go/releases/tag/20181022

MicroPython.fw latest release:
https://github.com/OtherCrashOverride/MicroPytho
n_ESP32_psRAM_LoBo-odroid-go

Stella.fw latest release:
https://github.com/OtherCrashOverride/stella-
odroid-go/releases/tag/20180801

Prosystem.fw latest release:
https://github.com/OtherCrashOverride/prosystem-
odroid-go/releases/tag/20180803

ZX_Spectrum.fw latest release:
https://bitbucket.org/DavidKnight247/odroid-go-
spectrum-emulator

fMSX-go.fw latest release:
https://github.com/Schuemi/fMSX-
go/releases/tag/20180816

ODROID-GO compatible M5STACK Library latest
release: https://yadi.sk/d/0wo7ympO3Zc6RT

ROM artwork:
https://dn.odroid.com/ODROID_GO/romart-
20180810.tgz

https://github.com/OtherCrashOverride/go-play/releases
https://github.com/OtherCrashOverride/bt-keyboard-go/releases
https://github.com/jkirsons/wolf4sdl/tree/master/release
https://github.com/mad-ady/doom-odroid-go/releases/tag/20180816
https://github.com/mad-ady/doom-ng-odroid-go/releases/tag/20181213
https://github.com/jkirsons/Duke3D/tree/master/release
https://youtu.be/S-DgYw0V4NQ
https://github.com/jkirsons/OpenTyrian/tree/master/release
https://github.com/khuenqdev/goduino/tree/master/pong
https://github.com/Schuemi/c64-go/blob/master/README.md
https://forum.odroid.com/download/file.php?id=8003)
https://github.com/OtherCrashOverride/frodo-go/releases/tag/20181022
https://github.com/OtherCrashOverride/MicroPython_ESP32_psRAM_LoBo-odroid-go
https://github.com/OtherCrashOverride/stella-odroid-go/releases/tag/20180801
https://github.com/OtherCrashOverride/prosystem-odroid-go/releases/tag/20180803
https://bitbucket.org/DavidKnight247/odroid-go-spectrum-emulator
https://github.com/Schuemi/fMSX-go/releases/tag/20180816
https://yadi.sk/d/0wo7ympO3Zc6RT
https://dn.odroid.com/ODROID_GO/romart-20180810.tgz

Linux Gaming: PC-Engine / TurboGrafx – Part 2
 February 1, 2019  By Tobias Schaaf  Gaming, ODROID-XU4

I have really enjoyed trying out all these games for the
PC-Engine / TurboGrafx CD. Some of the games I even
played all the way through. I’m looking forward to
trying out more of them. I this article, I will test each
one the same as last time: by playing each and every
one of them for a period of time and then deciding if I
like them or not. I will only concentrate on CD-based
games for now.

Games I liked

Doraemon – Nobita no Dorabian Night

This game starts o� rather childish but turns out to be
a nice platformer. You travel through time to save
your friends and collect di�erent weapons and power
ups during during each level, which you can select
and switch in game by using the select button to
access the menu. The graphics are okay, although the
main characters are rather simple. I guess this is due
to the style of the TV series this game is based on.
Overall, I rather enjoyed this game. Althodaugh it’s

completely in Japanese you can �gure things out
rather quickly.

As you travel through di�erent stages, a door waits
for you at the end of each level that leads to the next
stage. On the stages you can collect your bonus items,
often found inside doors or caves. Occasionally you’ll
�nd a mini game where you can get one of four items,
including an extra life which is quite handy.

Double Dragon II – The Revenge

This really brings back memories of old times. I used
to love Double Dragon games and played them all the
time. I really like this one. The game has nice graphics,
supports two player cooperative play, and the music
and sound e�ects are also okay. In between levels
and before the game starts, you have nice cut-scenes
and although they are completely in Japanese you
should understand what is going on. The cut-scenes
give the game a nice touch. After them, it’s back to
some good old kicking and punching.

Figure 1 – Good old Double Dragon beat ‘em up action

Figure 2 – A boss waits for you at the end of each level

Download 2

Figure 3 and 4 – Download 2 has a lot of di�erent levels
that never look alike

Download 2 is the �rst shooter on these systems that
I really sank a lot of time into. The graphics are nice
with a lot of parallax scrolling in all levels, and even
the scenes between levels. The game is completely in
Japanese which means I don’t understand a single
word of what is being said in the cut-scenes, but that
doesn’t diminish the overall fun. The sound is good; I
like that the music is �tting for a shooter game
(although not ground-breaking). You have a total of 4
di�erent weapons: a very fast pea shooter that will
spread to a three directional shoot when upgraded; a
laser type weapon that goes straight through all
objects, and ranges from one to �ve lines of laser,
depending on your upgrades; homing “missiles”–they
look like balls, so I’m not sure if they’re supposed to
be missiles–that can �y in any direction and auto
attack all enemies on screen (the higher the power-up
you have, the more you have you �re at once), and
last is a very short but extremely strong electric shock,
which does the most damage but it’s reach is so short
that you often get killed if you try to use it. However, it
can be very handy in boss �ghts.

Aside from weapon power-ups, you can collect speed-
ups which let you move your ship faster. This can also
be negative, as some levels require you to navigate
very precisely. Being to fast can make you hit objects
by accident. There are also satellites to collect which
shoot homing attacks and protect you from taking
hits. You can collect a shield that can absorb di�erent
kinds of bullets from your enemies. The game is very
good, and I highly recommend it if you like shooters.

Dragon Ball Z – Idainaru Son Gokuu Densetsu

I have to admit that I’m a huge Dragon Ball Z fan and
probably know all the Dragon Ball Z episodes by
heart. When I �rst started this game I was instantly
amazed! This game has some of the best graphics I
have ever seen in a Dragon Ball game from that era.
The cut-scenes are AMAZING! They even included the
complete series intro in PC Engine graphics which is
VERY, VERY close to the original intro despite only
being standing pictures and animated sprites. You
really feel that the developers put a lot of e�ort in this
game.

Some scenes are so well-animated that you think
you’re watching the TV series. Of course, everything is
in Japanese, but this time my passion for the series
was all I needed to know exactly what’s going on. You
instantly recognize every character, and I think they
even used all the original voice actors of the Japanese
original.

The music is everything you would expect–the same
tunes you know from the TV series. The cut-scenes
are a huge highlight of the game and strive to
replicate the TV series as close as possible without
being an actual full motion video.

The gameplay took me a while to �gure out. It was
quite frustrating at the beginning. Once I �gured out
the basics it got a lot easier, but I still don’t know
everything about this game. Since it took me a little
while to �gure out what I found, I’d like to share it, as I
think it’s a game worth playing.

Figure 5 – Main battle �eld in Dragon Ball Z – Idainaru
Son Gokuu Densetsu

Figure 6 – Special attack chance the second phase of the
�ght

If you look at the �rst picture, you will see the game’s
standard battle�eld. Your character can move on
three planes back and forth during the �ght. A �ght
can be drawn out for quite a long time, although at
�rst it won’t see so, as you will probably get beaten
down quite fast and quite often, but you and your
enemy have plenty of health and it takes a while
deplete.

Let’s talk about the di�erent bars and icons:

1. The pulsating orange and blue gauge at the bottom:
This is your advantage bar. It �lls to one side or the
other depending on who has the upper hand in a �ght.
If the gauge fully goes to one or the other side the
respective player has an attack chance, as seen in the
second picture.

2. Above the advantage gauge is your health bar.
Currently you only see yellow blocks in the picture. If
you get damaged, they will turn red and after red they
become black. That is when the game is either won or
lost. As I said, this will take a while.

3. Above that, the blue gauge is your power meter. It
represents the amount of Ki you currently have. This
bar is diminishes during battles and special attacks,
but can be re�lled by pressing and holding both
buttons on the controller.

4. Underneath your picture there is a colored icon. It has
3 colors: green, red, and black, which have di�erent
properties and can be changed by pressing up or down
on the controller. A. Red is your attack stance. If you
are on red and attack the enemy, the advantage gauge
is likely to �ll more in your favor. B. Green is your
charging stance. If you are on green and hit both

buttons to re�ll your Ki, it will regenerate MUCH faster
than on red or black. If you’re �ghting in that stance
you won’t get any advantage over your enemy. In fact,
as seen in the picture, it will be the other way around
as I have nearly full Ki using green in this situation
doesn’t help. C. I haven’t �gured out what black stands
for yet, but I’m positive I will �nd out eventually.

When you completely �ll the advantage gauge in your
favor, you get a screen similar to the one in the
second picture, which is your attack chance. You’re on
the left side of the screen and the enemy is on the
right (no matter who had upper hand).

If you have the upper hand you can select a Japanese
symbol which represent a di�erent type of attack.
Then adjust the bar at the bottom which indicates
how much Ki you want to use for the attack. The
combination out of these three will create di�erent
kind of attacks which can do di�erent damage.

If you’re the one being attacked you can only adjust
your Ki bar, which you can use to counter your
enemy’s attack. If you use more energy than your
enemy and he attacks you, there’s a chance you can
counter the attack or simply avoid it. A successful
attack will reduce the health bar, deciding the
outcome of the match. It’s a little bit complicated, and
compared to the Bodukai series, it doesn’t really
count as “real combat”, but it’s quite fun once you get
the hang of it.

Dragon Slayer – The Legend of Heroes

Another of the system’s few RPG games that play
similar to the old Dragon Quest games. It is also
completely in English, and even comes with cheesy
voice acting. Although the graphics are not as
impressive as other games, the gameplay and the
music totally compensate. There is a lot of grinding
involved but luckily the game also has an auto battle
feature which speeds the �ghts up and you to do
other things on the side–like writing articles for the
ODROID Magazine. At some point the game even tells
you how much you should grind by telling you what
level you need to a certain mission to accomplish. The
level-ups are also quite nice: not only do you get
better stats, you can also �ll up your HP and MP each
time. The number of monsters that attack you adjust

to your strength and the size of your party. This is
quite neat, as it also increases the amount of Gold
and Exp you get out of �ghts. Meanwhile, the enemy’s
strength does not increase greatly. I personally found
having good armor is almost, if not more important
than having a good weapon, as it greatly reduces the
amount of damage from enemies. I would rather hit
an enemy three times to kill him and get 1 damage for
each round than kill an enemy in one or two hits, and
receive 20 damage each hit.

All your party member have a healing spell right from
start which makes grinding even more easy. You have
a limited number of spell slots so you might have to
exchange spells later in the game. If an enemy turns
out to be to strong and your party dies in battle the
game is not over; you can restart the �ght or return to
the last town you visited. I suggest restarting the �ght
as this also allows you to run from a �ght and
replenishes your health to it’s pre-�ght state.
Returning to town will give you a party with 1 HP per
character and there is no guarantee that there is an
Inn to sleep for the night. I have enjoyed playing the
game so far and have spent several hours grinding
already, getting my party some nice equipment, all
while writing on this article.

The Dynastic Hero

This is a port of a game better known as “Wonder Boy
in Monster World.” It is very much the same as other
games found on consoles under that name. In fact, it
looks nearly identical to the Genesis/Mega Drive
version, with some minor changes.

The main character gets a minor redesign and the
colors are a little bit darker on the PC Engine
compared to the Sega Genesis/Mega Drive. I’ve also
noticed a slight di�erence in aspect ratio. The PC
Engine has slightly wider graphics than the Sega
version. I’ve also seen some parallax scrolling on the
Genesis/Mega Drive version, which doesn’t seem to
be included in the PC Engine version. These are all
just minor changes, the game itself is pretty much the
same on both systems. It looks very good; in my
opinion, one of the best action platformers for the PC
Engine.

Figure 7 and 8 – Side by Side comparison of Dynastic
Hero on the PC Engine (Left) and Wonder
Boy in Monster World on the Mega Drive (right)

Figure 7 and 8 – Side by Side comparison of Dynastic
Hero on the PC Engine (Left) and Wonder
Boy in Monster World on the Mega Drive (right)

The PC Engine version comes with a very nice intro
and a lot of CD quality music in the game. It’s up to
you which one you prefer–they are somewhat
di�erent and many people prefer the rough sounds
of the Mega Drive over other consoles. This is
de�nitely a recommendation of mine. If you want to
see more about the two games in comparison, I
recommend watching the YouTube video at
https://www.youtube.com/watch?v=R7D2bYgA5IA.

Exile

When I �rst tried this action-RPG I was not very
impressed. After a long and mostly good-looking intro
with English voice-over, it started o� with a top-down

view of your character in a town. The graphics were
far from impressive, even if not as bad as other
games.

Figure 9 – Top down view of the map where you talk to
people and walk around

Once I gathered my party and went to an Oasis, I
found myself in a trap which changed the game from
an RPG style game to an action platformer with
signi�cantly better graphics. Instantly, I found the
game much better than before. Sadly, this didn’t last
very long as I soon found out I was weak, enemies
took many blows to kill, and they were approaching
very, very fast. Even if I managed to kill them, there
were spots where enemies just kept spawning and no
sooner did I �nish a �ght than I was in another one.
Just one untimely hit with my sword and I got
damaged. After a few minutes it was already game
over.

Figure 10 – The action part of the game is actually quite
fun, once you reach a certain level

This was where I stopped trying during my �rst e�ort.
However, for this review, I forced myself to continue
through with it. Thanks to some saving and loading, I
got past the very �rst dungeon with much frustration.
After, I went back to down, looked a little bit around,
and bought some better equipment for my character.
This improved things slightly, but not much. The next
section started o� hard as well, with enemies taking
four to eight hits to kill, while I still went down after
three or four. While �ghting and jumping through the
level, I suddenly had enough exp to gain a level up,
and everything changed drastically. Where it �rst took
four to eight hits, it now took only one or two hits to
kill an enemy. I got more HP as well and could
withstand a lot more hits myself. Since experience
points came in fast, I soon had another level up and
everything went up again, allowing me to kill every
enemy I encountered with just one hit. I found a
sweet spot where enemies spawned constantly and
got another level or two.

I soon felt very con�dent and ventured on. The
second boss I encountered was easy compared to the
one in the �rst dungeon. The �rst boss I had to kill
required constant jumping and precision hits. After
about 25 hits or so–please remember, three or four
hits got me down, so this was very hard–the enemy
was down. The second boss was so much easier. By
the time I could easily withstand 15 or 20 hits, �ghting
a boss that went down after 10 hits or so, the game
got a lot more interesting and fun to play. Later

enemies o�ered still more of a challenge. Eventually, I
came to enjoy the game a lot and was looking forward
to trying the second game in the Exile series. Inside
the game, a girl advertised the sequel, stating it was
coming out in Super CD format for the PC Engine.

Exile II – Wicked Phenomenon

Although announced as Exile II – The Revenge as an
Easter egg within the �rst game, Exile II was released
under a di�erent name. “What else is di�erent?” you
may ask. I’m looking into that.

First of all, the graphics have improved quite a bit,
both on the top-down part of the game as well as on
the side-scrolling action scenes, which now o�er
some parallax scrolling which is quite nice. The
gameplay is l similar to the �rst game, but with a few
changes.

Traveling between places will always put you into the
side-scrolling action part, where in the past it was
more like a dungeon system where the side-scrolling
bit only took place when you entered certain buildings
or places. The game now starts o� even harder than
the �rst game. Two hits is all it takes to kill you.

Learning from my experience playing Exile, I took my
time to make sure I got a level and sure enough,
things got better although not to the same extent. I
could take more hits, but the damage I in�icted was
still pretty low at this point. You can now see how
much HP the enemy has when you them, which
shows you how much longer you need to bash an
enemy before he goes down, which especially nice to
have when battling bosses. This game got a lot harder
though, since as good as level-ups are, they are not as
powerful as before and there is no easy way to grind,
as all monsters are dangerous to you.

Figure 11 and 12 – Improved graphics for Exile 2 both in
top down view as well as side-scrolling view

Figure 11 and 12 – Improved graphics for Exile 2 both in
top down view as well as side-scrolling view

A nice change is that you can now control all four
characters (which also appeared in the �rst game) in
the action side-scrolling part of the game. Each
character has its own advantages and disadvantages.
Rumi is very fast and agile and has a ranged attack
throwing daggers. She is not very strong though.
Kindin is a huge man, and �ghts with his �sts. He is
very strong but has almost no reach so he can be hit
easily by enemies. Fakhyle uses ranged magic to
attack. Both he and his attacks are rather slow, but his
auto-aim means he can hit the enemy even if they’re
above or below you. This provides some nice tactical
options in �ghts, but also means you need four times
the items to equip your party. Luckily, they all share
the same exp so you don’t need to level them

separately. Although I found Exile II a lot harder than
Exile, I still recommend them both.

Fantasy Star Soldier / Star Parodier

This classic cute-em-up is one of many shooters for
the PC Engine. I enjoyed the vivid graphics, with
parallax scrolling and all types of e�ects. It comes
with three playable characters, one of which being
Bomberman, and another being the PC Engine itself.
The developers clearly had fun making this game.
Fantasy Star Soldier is the American version for the
Turbo Graphix and Star Parodier is the Japanese
version. Although essentially the same game, the
Japanese version has an intro that was removed from
the American version, so if you want to have the full
experience I suggest trying Star Parodier, as the game
really doesn’t need any explanation. It’s not that hard
of a shooter and you’re looking for something fun and
kid-friendly, this is one of the best games out there. I
highly recommend it.

Faussete Amour

This Japanese action platformer features a female
main character in a pink armor that goes out to
defend the land and people from evil. For this she has
some kind of �ail that she can use to attack in
di�erent directions, as well as a rope to reach higher
places. When you jump, if you press down and hit the
attack button she swings her weapon around in a
circle around her. It’s also the only way to launch the
three special attacks that you can collect via green,
red, and blue orbs dropped by fairies provide all your
items in the game.

Figure 13 – One of the boss monsters in the game. Most
of them can only be beaten with special attacks

The green orb will shoot three bubbles in an arch in
front of you, hitting in a wide angle. The red orb will
shoot three blasts straight ahead from where you
started the attack. The blue orb will spawn three
wide-spread blasts from the ground which go straight
up over the entire screen. The graphics are nice, the
music good, the controls are spot on, and the �ghting
is fun. The developers were a little bit on the naughty
side, as the main character loses her armor when hit
(like in Ghouls and Ghosts or Ghosts and Goblins), but
when hit again, she’s completely naked. Then she
dies. Overall, the game is fun to play and if you are a
fan of action platformers and not too o�ended by
some naughty pictures, this is probably a nice game
for your library.

Fray CD Xak Gaiden

Figure 14 – Cute comic-style graphics in Fray CD Xak
Gaiden really �t the game’s setting

This game came out in 1994, very late in the system’s
lifetime, and this is probably the reason why it looks
rather good. This action game features Fray, who is
�ghting through the levels with her magical weapon,
killing monsters, collecting gold to buy better
equipment, and �nding items in treasure chests.
Sadly, it’s completely in Japanese again, but I could
always �nd a way to proceed even without
understanding what was being said. The presentation
is nice and a little bit on the cute side, as the main
character is an anime girl with quite some funny faces
now and then. Cut-scenes are rendered nicely and
overall the sound, graphics, and music are superb.
The game is also quite funny. I just wished I could
understand enough to get all the jokes in the game.

Games I found OK

Davis Cup Tennis

This tennis simulation is okay; the graphics are nice, it
supports up to four players, the voices in this game
are superb, but for my taste it’s way too hard. I got
frustrated with it after about 10 to 15 minutes of
playtime, as I only won a single match when the
enemy hit the net with every serve. I guess it’s not the
worst sports game I ever played, but I much prefer
Virtual Tennis on the Dreamcast over this version.

Dekoboko Densetsu – Hashiru Wagamanma

This racing game is interesting and supports up to �ve
players. It’s a kind of crash-rally game that is quite
hard, especially if you play against the PC. If you press

select on the start screen you can cycle through the
game di�culty. I’d suggest starting at beginners level,
as this game can be hard.

Hitting an enemy from behind will take a hit point
from the enemy. But if you hit an enemy at the wrong
angle you will lose a hit point yourself. You can try to
push them o� the track or into obstacles which are
plentiful. It looks a little bit like micro machines. The
enemy sadly is rather perfect, so for beginners it’s
hard to get the hang of, but I think this could be a very
nice party games with your friends.

Downtown Nekketsu Monogatari

Also known as River City Ransom is a very interesting
�ghting game similar to Double Dragon. I especially
like it since it shares the character style of my favorite
NES game “Nintendo World Cup” (aka Nekketsu
Koukou Dodgeball Bu – Soccer Hen). It has but one
very big downside. It’s completely in Japanese and I
can’t really understand what I’m doing. There are
things I can buy and use, but I don’t understand what
they are for, so this is very annoying, as I have the
feeling I’m wasting my hard earned money on things I
don’t need. The game itself is fun to play. The controls
are okay, with one button for kick, another for punch
and both buttons to jump. Still, it’s not easy and you
can go down faster than you expected if you’re not
careful. It’s still fun, I just wish I knew what I’m doing.

Dungeon Explorer II

This game starts o� with a very nice animated intro
and English voiceover that tells you the backstory as
well as showing you some scenes from the �rst game.

The graphics in the intro are beautiful and detailed,
but in the game it’s not as detailed. Dungeon Explorer
II is a dungeon crawler in the style of Gauntlet. The
most interesting part is that you can play it with up to
�ve players in total. It’s an action-RPG with some nice
music, thanks to the CD format. Aside from that I can’t
say much about it. It was fun for a little while, but I
would probably have had more fun playing it with
some friends.

Dungeon Master – Theron’s Quest

This game is a typical �rst-person dungeon crawler
like Eye of the Beholder, Elvira Mistress of Darkness,

and the like. I’m normally not a big fan of these, as
they often require a lot of backtracking and a good
notebook to write down all the hints and notes you
�nd, as your inventory is always to small and any
information you �nd doesn’t help for another hour or
two. It’s not a bad game and runs �ne, it’s just not my
type. It has a lot of ambient sounds, but no music
from what I could tell.

F1 Circus Special – Pole to Win

This racing game starts o� on an interesting note with
some digitized photographs of Formula 1 racing
history. It’s quite cool to see, although I did not
understand what they were saying, as it was
completely in Japanese.

The game itself is not bad on the eye but also not very
impressive either. One thing for sure is that this game
is FAST! Maybe I’m too old or I never really was in
these kind of games, but this game is way too fast for
me. I constantly came o� the track or bumped into
things. Do that hard or often enough and it’s over.
The game also has a simulation aspect to it where you
can modify your car for di�erent improvements just
like in the real Formula 1. It’s a nice game but simply
not my type. There’s actually a 3-D variant of this
game available directly for the ODROID called F1-
Spirit (https://www.youtube.com/watch?v=M7I4K3-
DlW34) which apparently I have forgotten to publish
and should do that in the near future.

Fiend Hunter

When you �rst start the game you’re greeted with a
very lengthy, looping intro with lots of naked skin and
detailed graphics. When you hit the start button and
begin a new game, you have a second type of intro,
shown in in-game graphics with a lot of people talking
to you and each other, some of which are voiced very
nicely.

(Figure 15 – One of the �rst �ghts in Fiend Hunter.
This guy can be pretty tough, but once you �gure out
his pattern, the �ght gets quite easy)

There is but one issue with this: everything is in
Japanese, and I have no clue what’s going on or what
I’m suppose to do. After �fteen minutes in the game
,I’m completely lost, so I decided just to go straight to

one end of town just to see what happens. Sure
enough, I left town and found myself in a very good
looking 2D action platformer. I have no clue if I’m ever
suppose to go back to town or what all these people
said to me, but I’m slowly �guring out the action part
of the game. I found I could walk around, climb on
ledges, jump between gaps and the like, but I couldn’t
do much further than that. At one point I reached an
area and suddenly a �ght started. Now I had a sword,
and the little companion that was �ying around me
the whole time and I were able to attack this enemy. I
could take a lot of hits so I went for it and killed the
enemy, losing about a fourth of my HP in the process.
Not bad, I’m assuming.

After killing an enemy, that enemy drops a crystal.
This crystal can be used to increase your stats, vitality,
mental ability, the power of your psycho blade,
psycho arrows, and psycho spark. The latter two I
assume appear later in the game, as I haven’t seen
either of them yet. You can also upgrade “Exy the
Photon Fiend”–the little companion of yours that
follows you around and also attacks the enemy. Exy
also has abilities you can use. You can �y him around,
or use him as a source of light in dark dungeons. The
�ghts are not that easy and I admit I used the save
and load feature quite a bit, but every enemy has a
pattern that allows you to defend yourself from their
attacks and wait for your turn to counter-attack. Exy is
very helpful here, as he will attack the enemy as well
which can often save your hide. I probably would
have put this in the “Games I Like” section, but since I
don’t understand what’s going on, I think I’m missing
some important things.

Final Zone II

This is a mix of a run-and-gun, like the old Commando
or Ikari Warriors games, and a vertical shooter. The
cut scenes are completely in English and though they
are well-drawn, I wouldn’t say they are “good”. In fact
they are quite cheesy and the voice acting is rather
terrible. They don’t make much sense, nor do they
develop any story or characters. However, the
shooting action is rather fun and reminds me of early
shooters like Ikari Warriors. Each of the di�erent
characters you can play have the same main weapon–
a vulcan gun–and a di�erent secondary weapon. You

start o� as a guy with a bazooka which does minor
area damage. The second character has some kind of
laser instead. No splash damage, but it can shoot
through objects. The third one in the horizontal
shooter scenes was �ying a helicopter with “missiles”
that do a lot of damage, but are rather short. Maybe
later in the level there are other characters and
weapons, but I’m not sure yet. I’m looking forward to
�nding out.

Some enemies drop power ups, either a “H” for health
which restores your health, or an “B” for the
secondary weapon. This just restores your weapon; it
doesn’t give you more than what you started with.
Later levels give you a chance to pick up either a “P”
which will increase your maximum health or an “S”
that will restore your health to the maximum. The
game only has seven stages and is over rather quickly.
In later levels you can choose which character you
want to take to battle, which is nice. Overall the game
is average at best.

Flash Hiders

This game starts o� rather strange with an intro that
has a lot of voiceover but little in the way of animation
and graphics. Some of the graphics are good, but
many others are rather simple. When you press start,
the game has a black screen for several seconds,
which is apparently just a very long loading screen.
This was nothing I had ever encountered before on
the system. The menu gives you three options:

1. A one-on-one battle mode lets you play either against
another player or a computer, or lets you view a demo
mode where computer �ghts against computer. Before
you start you can distribute some attribute points like
o�ense, defense, and speed and then it starts.

2. There is also a “Scenario” mode, which is your story
mode of the game–and damn, did they put a lot of
story in there. Before each �ght you have a lengthy
cut-scene with people talking to each other, which
sounds hilarious but since it’s completely in Japanese I
don’t understand a word. Since most of it is just static
pictures with little to no animation you can’t even
guess what they are all about. I ended up skipping
them all together. In Scenario mode you have a series
of �ghts, and can again distribute your points over
o�ense, defense, and speed, but after a couple of
�ghts your character levels up, and you have higher

base stats. You already start rather high, on level 8 or 9
character, so you probably won’t see much di�erence.

3. The last option you have is “Advance.” Here you start
with a level 1 character of your choice, pick the battles
you want to �ght, and earn money and experience.
When you have enough money you can buy items
from a shop to further increase your character. This
mode I found most interesting and played the longest.

A rather strange option for this �ghting game is the
option to choose between Auto and Manual mode in
both Advance and Scenario mode. This means the
computer is taking over your character and �ghts
against another computer opponent. Odd, but it
works, so you can just watch instead of �ghting
yourself if that’s what you want. The graphics and
animations in a �ght are rather good, with some mild
parallax scrolling on the battle�eld.

Forgotten Worlds

This was kind of a mediocre side-scrolling shooter
with very little variety, bad voice active, and a lot of
repetition. It has an auto-�re function, so you only
need to “turn” your weapon to shoot in the direction
you want to �re. There is a shop where you can go
and buy upgrades like health, armor, or weapons, but
that’s the most exciting part of the game. The
graphics are okay. There is no parallax scrolling and in
some areas not even a background. It’s fun for a short
while though.

Games I disliked

Daisenpuu Custom

This shooter was really not one of my favorites. In
fact, I think it’s quite buggy. There are some trucks

that when drop weapon upgrades or special attacks
when you shoot them, but sadly half of the time they
weren’t working at all. The entire second stage was
completely empty for me and I just �ew through. The
game was not very fun. I didn’t like that I could gather
some weapon upgrades, but no di�erent weapons.
It’s blunt and not very entertaining.

Faceball

This game is hard to describe. You are a ball with a
face on it (hence the name), and you’re thrown into a
3D maze and have to either hunt other faces (Battle
mode) or collect eggs (no clue where they come from)
and bring them to a wall that blinks to get points for it
(Race mode). Neither mode is very fun in my opinion,
and although the music is nice and seeing 3-D
graphics on the PC Engine is kind of interesting, this
game just couldn’t keep me entertained enough to
keep playing it.

Fighting Street

Ever wondered why the Street Fighter series started
with “Street Fighter 2”? What happened to “Street
Fighter 1”? There really was such a thing and believe it
or not, Fighting Street for the PC Engine is pretty
much an exclusive port of this game to a home
console. Sadly, the game itself was never really good
to begin with. The controls are terrible and the voice
acting was copied 1:1 from the arcade which is even
worse. The soundtrack got an upgrade and is CD
quality but that doesn’t �x an overall not so great
game. If you ever want to know what the original
Street Fighter looked like you can try it, but there are
much better �ghting games out there.

Meet An ODROIDian: Chris Lord
 February 1, 2019  By Rob Roy  Meet an ODROIDian

Please tell us a little about yourself. I am a software
engineer and musician, making most of my living
from the former. Currently, I am working on a real-
time motion capture system for embedded devices
(https://github.com/glimpse-project/glimpse), but I
have worked on all sorts of things over the last
decade or so. My areas of interest have been, in no
particular order: embedded systems, hardware-
accelerated user interfaces, web browser backends
and most recently, machine learning. I am based in
South London, where I have lived all of my life, though
I studied at Southampton University, where I achieved
a �rst-class masters degree in Computer Science.

Figure 1 – Meeting with Ralph Stanley II at Vine Grove
Bluegrass Festival in Kentucky

How did you get started with computers? I was
interested in computers and electronics from a very
early age, since my dad was a computer programmer,

https://github.com/glimpse-project/glimpse

and my mother also spent a signi�cant amount of
time doing accounting on PCs and writing COBOL for
a living. I remember having computers all of my living
memory, starting o� with an Epson QX-10, before
upgrading to an Amstrad 8086 machine and then
various other PCs over the years. I always showed an
interest in computers and my dad was keen to oblige,
so I had the advantage of being taught programming
from about 4 years of age, starting in MF-BASIC,
before progressing to C and dabbling some in Z80
assembler.

During my late childhood, my mother also worked at
what was then called Cable (then United Artists, then
Telewest, then BlueYonder, and now Virgin Media)
and that let us get cheap internet, which I took full
advantage of. This was quite unusual for the time,
having access to the internet, and being able to use it
for long periods was pretty rare in the early 90’s in
England. Though I spent a lot of time playing games, I
also spent quite a bit of time programming them too,
and learning more about programming in general. It
was not long before I realised that I enjoyed the
periphery of game programming a lot more than
programming games though, so that was never a
career path I pursued.

What attracted you to the ODROID platform? I had been
researching Pi-based portable games devices, but it
always irked me that using a Pi generally meant using
Linux and dealing with lengthy boot times. As far as I
am aware, the Pi does not support any suspend
states, which makes it a pretty poor choice for such a
use. I was reading an article on Engadget about
someone’s Pi-based portable retro gaming kit, and
someone in the comments section, happened to
mention ODROID-GO. Pretty much immediately, I
knew it was quite close to what I wanted; a device that
can boot instantly into an application and that has the
power to emulate the systems from the 80s. Not to
mention insane battery life. I also enjoy the kit aspect
of it, it was not long ago that I built a gigatron TTL kit,
which I found to be a very fun and informative
process. I am looking forward to modding my
ODROID-GO with a headphone socket, and who
knows what other upgrades people might think of
down the line.

How do you use your ODROIDs? I mainly use my
ODROID-GO to play NES games during my work
commute, or while watching TV. Speci�cally, I am a big
fan of the NES version of Tetris, and after spending
some time improving the screen-update code, it is an
excellent device to practice on. I have probably spent
more time writing code for it than I have actually
playing on it, but hopefully the disparity is not too
large. Having GPIO pins neatly accessible on the
outside of the device is a really nice touch that would
be fun to take advantage of sometime, maybe to
enable Gameboy link cable functionality.

Figure 2 – An IKEA-enhanced 3D printing setup, featuring
an M3D Pro

Which ODROID is your favorite and why? The ODROID-
GO is my favourite, as it is the only ODROID I have
Looking at the rest of the range though, the H2 looks
interesting. Having that sort of power and the x86
architecture is a huge boon for a lot of use-cases. I
would be interested in knowing how its power
consumption compares to contemporary Pi SoCs.

What innovations would you like to see in future
Hardkernel products? I would love to see more ultra-
portable designs, like the GO. Customisable portable
gaming is very attractive to me, especially in the sort
of ultra-small pro�le of the GO. Somewhere the GO is
a bit hamstrung that I would love to see addressed in
a later model (11-year anniversary celebration,
perhaps?) is using SPI for screen output. Or at least,
using SPI for screen output coupled with a screen that
requires at least 16-bit pixel data. There just is not
enough bandwidth for a 60Hz output without
performing some clever tricks (which is what I have

been working on, with mixed success). If it was
coupled either with an LCD controller that could do
palette-based 8-bit updates, or a controller that could
run at the full 80Mhz of the bus, this would not be an
issue. Alternatively, a chipset that could more �nely
control the speed of the SPI bus would help solve this
issue too, currently the ESP32 o�ers either 40Mhz or
80Mhz, and reports show that the chosen LCD
controller tops out at about 70Mhz. This is really a
limitation of the ESP32 chip, but I think it could be
worked around with some thought.

Figure 3 – A �nished build of the Gigatron TTL
microcomputer

Figure 4 – The Gigatron TTL microcomputer displaying a
demo image

What hobbies and interests do you have apart from
computers? When I am not working on computers, I
spend most of my time playing music. I am a keen
banjo player and play in a band called The Vanguards
(http://thevanguards.uk/). When we are not gigging, I
like to play in open sessions around London, and I
have made two musical pilgrimages to the southern
states over the last couple of years. I particularly like
playing bluegrass, which is quite niche in this country.
I have played music for most of my life, starting with
piano when I was 6, and moving through euphonium,
trombone, bass guitar, electric guitar, drumkit, banjo,
acoustic guitar and double bass, with varying levels of
pro�ciency. Banjo is my main instrument at this point,
but I still enjoy playing piano and I can �ll in on
rhythm guitar in a pinch. For me, music is an escape
from computers, which dominate most of the rest of
my life. I like to keep them separate as much as
possible.

http://thevanguards.uk/

Figure 5 – Chris’ band The Vanguards after recording a
promotional video

What advice do you have for someone wanting to learn
more about programming? I have had the privilege of
being in positions to interview other programmers
during my career, and something that I think can
really separate people is a basic knowledge of how
computers actually work. It is far too much to expect
people to understand modern CPUs with their various
micro-architectures and ludicrous long pipelines, but
certainly basic concepts can still apply very
successfully to coding today. You can tell the
di�erence between someone that started on
JavaScript or Python and never went any lower, versus
someone that is done some systems programming in
C or assembly, even for high-level jobs. I would
suggest that people try to reach the lowest level

they’re comfortable with. For me, that was assembler
programming on a TI-83 graphing calculator, and then
the same for the Gameboy. I think the Arduino
platform now can teach similar lessons and it is never
been easier or cheaper to dive in.

Figure 6 – Achieving a new high score on NES Tetris on
the ODROID-GO

