

Cryptocurrency Mining: Earning Verium Coins With Your ODROID

O December 1, 2019

Odroid XU4's, developed by Hardkernel Co. Ltd, are quite popular. SBC systems in
general are designed to be very power efficient, because of this they are pretty good at
Verium mining.

Protect Your Privacy: Why You Should Probably Make Your Own

Home Automation Devices

@ December 1, 2019

With all of the hacks, vulnerabilities, data leaks and other disheartening news

surrounding cloud services, cloud products, and big data companies, you may want to
consider putting in the effort to create your own version of these solutions. "Smart" doorbell Have you read
the recent news that the "smart doorbell" 3

Mobile Workstation: Using An ODROID-N2 To Create A Full-Featured

Computing Experience

@ December 1, 2019

Because | somehow managed to lose my BIOS password and lock myself out, | had to

part with my old and beloved laptop, the one running Debian, but instead of just
jumping to the latest Thinkpad, | wanted to see if | could somehow mix those cravings mentioned above: a @

KVM: Fun with virtualization on the ODROID-H2

@ December 1, 2019

When it comes to the ODROID-H2, my use case for it is to work as a virtualization host,
to run a few test VMs to run software on, or test upgrades of systems for my company
(e.g. upgrading from older OS versions to newer versions). Looking at the forum, | 3@

The G Spot: Your go-to destination for all things that are Android

Gaming

O December 1, 2019

Our long wait is finally over: Google Stadia, this universal game-changing streaming

service, has gone live now! It debuted late November, 2019. As discussed in earlier
articles from this column, on this launch date, Google Stadia will ONLY be available to subscribers of the Stadia
Founder’s Edition. As you may 3@

Building An ODROID-H2 BladeCenter: Create A Micro-footprint High

Performance Computing Station

@ December 1, 2019

After receiving inspiration from the excellent OpenSCAD H2 Model posted at

https://forum.odroid.com/viewtopic.php?f=172&t=33824, | created a remix of the
fantastic Raspberry Blade Center to house 3 ODROID-H2 units. | made the following changes to the original
project: Migrated the files to SolidWorks Built an assembly Aligned the fasteners Widened the cart @

Surviving A Power Outage: Operating e-Commerce Business During

Regional Power Outage

© December 1, 2019

Imagine if the electricity to your business was cut off. But not just your business -- your

city, your county and your entire region! That is what ameriDroid was faced with due to
PG&E's Public Safety Power Shutoff that started on Saturday, October 26, 2019, and lasted until the afternoon

Repairing Your ODROID-N2: How To Recover From An Accidental
Short Circuit

@ December 1,2019

In this guide we will show you how to repair Q1 on your ODROID-N2. The original
article was taken from the Hardkernel wiki page.

Creating a Vision Application In Low Power Situations: Using
OpenVino and OpenCV With The ODROID-C2

© December 1, 2019

This article will guide you on your journey of setting up an ODROID-C2 with Ubuntu*

16.04 (LTS), building CMake*, OpenCV, and Intel® OpenVINO™ toolkit, setting up your
Intel® NCS 2, and running a few samples to make sure everything is ready for you to build and deploy your
Intel® OpenVINO™ 3

How-To Set Up A Basic NAS: Using Samba To Share Files

@ December 1, 2019

Using Samba, anyone can turn an old tower or SBC into a file server!

Cryptocurrency Mining: Earning Verium Coins With Your

ODROID

@ December 1,2019 & By Joe Rondx, wiki.vericoin.info & ODROID-XU4, Tutorial

Odroid XU4's, developed by Hardkernel Co. Ltd, are
quite popular. SBC systems in general are designed to
be very power efficient, because of this they are
pretty good at Verium mining. The downside is you
need a lot of them to amass a sizeable amount of
hashes. The up-front cost of SBC's can be very high,
but their power usage is very low. Remember to take
into account all the required extras to make SBC's
function (SD cards, power cables/supplies, network
cables, switches, cooling, mounting mechanism, etc...).

For SBCs the mining software usually needs to be
compiled for 1way using 128 MB per thread. 2Many
devices have been tested in terms of their hashrate
and it can fairly be stated that the Odroid platform
with its Octa core CPUs (Exynos5422 big.LITTLE) and 2
GB LPDDR3 RAM outperforms any other device. By
now Hardkernel has even released a special version
of the original XU4 which is called Odroid HC1 and is
designed for clustering. It should be noted that

despite their relative low total hashrate, the ration
hashrate per energy is still good. Also, there is
software out in the community that helps on the
maintenance of large clusters. For more information
the ODROID
http://www.hardkernel.com.

visit official website

Optimized OS Image for Verium Mining

The ODROID Verium Mining Image (by joe_rondx)
includes an optimized OS with preinstalled miner and
several other handy features. It is made for the XU4
line, that is Odroid XU4, XU4Q, HC1, HC2, MC1.

http://www.hardkernel.com/

EP root@loesVerium: ~

Figure 1 - Logging in to the optimized Verium mining
image

Performance features:

= hugepages are enabled (thanks to birty & fireworm)
= Maximal RAM clocking: 933 MHz

= CPU downclocking of big cores: 1.9 GHz (read here why
2 GHz is not worth it)

= Optimal two miners configuration for big.LITTLE cores.

Helper scripts:

= Temperature logging in verium/cpu_temp.log
= Status overview script vrmcheck.sh

= Filesystem expansion by resize.sh

Setup the Image

1. Download the Image from:
https://drive.google.com/open?
id=1RbXnGUh5fwmfhMQNzefCK75PajyrXjQi

2. Burn it without extracting it (The real issue is the
following: the image consists of two partitions, if you
extract the gz file you have to make sure you burn
both partitions and not only the fat partition).

3. On first bootup give it 5-10 mins time until you should
be able to find the device in the network.

4. Log in with standard root/odroid credentials.

Figure 2 - Flashing the Verium image using Etcher

Configuration of the Image

The first thing you want to do is the Image Update.
The script to do SO is at:
https://raw.githubusercontent.com/DJoeDt/verium/
master/odroid_image_update.sh. From the

command line use:

$ wget
https://raw.githubusercontent.com/DJoeDt/veriu
m/master/odroid image update.sh

$ chmod +x odroid image update.sh

Now before you run the update make sure to kill the
miner, | use

S top
$ kill

Where, nnn would correspond to the pid of the
instance of the miner on your system. Now execute:

./odroid image update.sh
Then edit
$ nano /etc/rc.local

What it does is:

= Get and compile the latest fireworm miner
= Add the new one miner command to /etc/rc.local

= Update vrmcheck.sh (not nice but well...)

Why it does this: It turned out that the configuration
with two miners is bad for a couple of reasons. | must

https://drive.google.com/open?id=1RbXnGUh5fwmfhMQNzefCK75PajyrXjQi
https://raw.githubusercontent.com/DJoeDt/verium/master/odroid_image_update.sh

admit that | was just too greedy and only looking at
H/m output. The reasons are the following:

= The low hashrate of the 1-way miner reduces the
chance to actually submit a share when pool mining.

= The additional miner connection causes a lot of work
on the pool server side.

= |tis similarly true for solo mining also.

Oh, and one miner is just easier to maintain, monitor,

etc. @ And of course the update of the fireworm

miner gives some nice features. | am getting about
530 H/m .
Personal configuration

Let us start with the configuration of the miner. The
autostart of the miner is currently done in the rc.local
file.

$ nano /etc/rc.local

At the end you will find two mining commands which
you need to adjust for your pool/solo setup. Actually
no, after the update you should just delete those
commands and use the newly added One miner
command.

In addition to the miner configuration you might want
to change the hostname and password:

$ nano /etc/hostname
$ nano /etc/hosts

$ passwd
You can also expand the filesystem by using the script
$./resize.sh
Reboot before going on
$ reboot
and run the resize script again
$./resize.sh

Network

Usually the Ethernet Port should just connect via
DHCP. If you have a Wifi Stick you should use

S nmtui

XU4 & XU4Q Tipps

Since the image was created on an HC1 you might
the GPU
https://wiki.vericoin.info/index.php?
title=Odroid#Downclocking_the_GPU.

want to check setting:

Usage and Monitoring

There is a simple status script in the home directory,
call

$./vrmcheck.sh

which prints out the configuration in rc.local, the last
10 lines of each miner log, CPU frequency and the
current temperature. Monitoring both miners is a bit
of a challenge, but DerrickEs miner Monitor scripts
(https://github.com/derricke/MinerMonitor) or
casanova's CLI monitor
(https://github.com/bezeredi/verium-cli-monitor)
support the configuration of ports (4048 & 4049 in
this case). 11 also recommend mining on two pool to
decentralize the hasrate, keep some hashes going if
one pool is down and also for monitoring.

Donation suggestion

With the new update it's more difficult to spread small
H/m portions. | won't take the time to rewrite this,
basically: if you run a lot of Odroids with this image
consider to have one running for me, thanks a lot!

1. The image starts mining right away - for joe_rondx
(next version will include fireworm). This is not meant
to be a rip off. Consider to have a freshly burned card
mine for us perhaps one hour as initial donation.

2. If you are running less than 10 units (XU4, XU4Q, HCT,
MC1/4) the initial donation is all we are asking for.

3. If you are running 10-19 units you may consider to
have one small miner running on joe_rondx address.

4. If you are running 20-29 units you may consider to
have one more small miner running on fireworms
address.

5. If you are running 30-39 units you may consider to
switch joes small miner to a big one.

6. If you are running 40-49 units you may consider to
switch fireworms small miner to a big one.

7. 1f you are running 50+ units please also consider
donating to the project via its donation page.

https://wiki.vericoin.info/index.php?title=Odroid#Downclocking_the_GPU
https://github.com/derricke/MinerMonitor
https://github.com/bezeredi/verium-cli-monitor

Justification: Individual hasrates may vary, but let's
assume you were getting 450 H/m per unit without
this image. The image should give you 537 H/m which
is an increase of nearly 20% . 10 units should produce
5370 H/m while one small miner does about 137 H/m
- which is about 2.5% of the total hashrate. Thank you
very much for your support! - joe_rondx

Other OS Images

Let us start with special images by Odroid God birty:
Odroid Miner Images
(ttps://drive.google.com/drive/folders/0B26cQdIGFXo
2S3ViQ3IxaVhfUkk). In particular the newest image
with enabled hugepages in combination with
fireworms miner gives a significant boost of hashrate.
It was used for the optimized image. Odroids Official
Images (https://wiki.odroid.com/odroid-
xu4/os_images/linux/start) are of course velry well
made. The newest Ubuntu Mate 16.04.3 (20171212)
which was release after birtys image even has
hugepages enabled. But unfortunately it uses too
Tmuch RAM. Even more unfortunate is that the
Ubuntu 16.04.3 (20171213) (MINIMAL, BARE OS)
image does not have hugepages enabled. | have once
tested like 6 different images that are available for the
XU4 platform. For the beginning | recommend the
DietPi image (https://dietpi.com/#download)
2because its included diet-config tool already
supports lots of the configurations you want to set.

Tweaking the OS for Mining

The whole thing as a script (ARM Miner + XU4 Setup):
the shell
https://raw.githubusercontent.com/DJoeDt/verium/
master/1wayARM_XU4_VeriumMiner_install.sh.

Download script at:

$ wget
https://github.com/DJoeDt/verium/raw/master/lw
ayARM XU4 VeriumMiner install.sh

$ chmod +x lwayARM XU4 VeriumMiner install.sh
$./lwayARM XU4 VeriumMiner install.sh

Downclocking (yes, down!) the CPU

To prevent throttling due to heat it may actually
increase your hashrate if the CPU does not run at 2
GHz (max). Even if you can prevent throttling at 2GHz
it is anyhow not worth it: you might get 10-15 H/m

more but it costs about 2 Watts (out of 12) to get this
last increase - so it will not pay back, for Details
checkout the
https://www.planet3dnow.de/vbulletin/threads/428
622-Odroid-HC1. Install the utility (or use DietPi
config)

benchmark at:

$ sudo apt-get install cpufrequtils

use it directly

$ sudo cpufreg-set -c¢ 7 -u 1.9GHz -r

and make the change permanent by creating a config
file

$ sudo nano /etc/default/cpufrequtils

with the following settings

ENABLE="true"
GOVERNOR="performance"
MAX SPEED=1900000

MIN SPEED=1900000

Now the CPU should always run at constant speed.
This also saves a reasonable amount of power.

Overclocking the RAM
On the boot-FAT-Partition edit the boot.ini

$ sudo nano boot.ini
Find
ddr freq

and change the value to 933

DRAM Frequency
Sets the LPDDR3 memory frequency

Supported values: 933 825 728 633 (MHZ)

setenv ddr freq 933

Make sure before bootz to

set DDR frequency
6dmc ${ddr freq}

Downclocking the GPU
Install this utility

$ sudo apt-get install sysfsutils
Then edit

https://wiki.odroid.com/odroid-xu4/os_images/linux/start
https://dietpi.com/#download
https://raw.githubusercontent.com/DJoeDt/verium/master/1wayARM_XU4_VeriumMiner_install.sh
https://www.planet3dnow.de/vbulletin/threads/428622-Odroid-HC1

$ sudo nano /etc/sysfs.conf

and insert the following line

Put GPU into powersave mode (= Downclocking

it)
devices/platform/11800000.mali\:/devfreq/11800

000.mali\:/governor = powersave

then start the service

$ sudo service sysfsutils start

Effect: reduced the power consumption by 0.7 - 0.8W,
SOC will be 1-3°C cooler. Get information on reducing
power consumption in a headless scenario at
https://obihoernchen.net/1340/lower-gpu-clock-of-
odroid-xu4-for-headless-servers/ Another way might
be

$ sudo nano /etc/rc.local

and add this line before exit 0

$ echo powersave >
/sys/devices/platform/11800000.mali\:/devfreq/
11800000.mali\:/governor

Setting up a Swapfile
Verium is memory intensive, so we increase the swap
file (or use DietPi config).

sudo fallocate -1 1G /var/swapfile

sudo

$

S chmod 600 /var/swapfile
$ sudo
$

mkswap /var/swapfile

sudo swapon /var/swapfile
check it with
$ free -h

and configure that permanently

$ sudo echo "/var/swapfile none swap sw 0 0"

>> /Jetc/fstab

Processes

Further optimization can be done by checking the
process tree

$ pstree -p

and disable/uninstall stuff that is not needed. KILL 'EM
ALL! I did not find it yet but if you come across
ads7846 remove it.

$ modprobe -r ads7846
$ tee /etc/modprobe.d/blacklist-ads7846.conf
<<< "ads7846"

XU4 hardware

The key is to exchange the thermal tape of the
heatsink with some good thermal paste, decreases
the temperature by 10 degrees (C) using the same
testing conditions. Also get the under-side cooled as
well. To save electricity you may turn down the power
suppiies voltage with a screwdriver. Check sd card slot
heat.

Optimal big.LITTLE and Maximal RAM Usage

aka "Getting the last Hash out of your Odroid". The
first step is to use an OS image that uses a minimum
amount of RAM for the system. To illustrate how to
use the big.LITTLE cores and most of the memory we
first the
effectstocause miner.

have a look at configuration with

The Goal

Verium mining is a lot about RAM, so you want to
maximize the memory usage. How does that work?
The
(https://github.com/effectsToCause/veriumMiner)
can be configured to use a different amount of RAM
per thread. So the idea is to use 2 different miner
compilations and make use of the 2GB LPDDR3 RAM
@ 933Mhz the Odroid has. Plus: do that wisely to also
benefit from the big.LITTLE cores of the Samsung
Exynos5422 Cortex™ ARM Cortex-A15 (2.0Ghz) /
Cortex-A7 (1.4 Ghz) Octa core CPUs

verium Miner

Technical details

The miner settings are called 1 way or 3 way where

1 way => 128 MB per mining thread
3 way => 384 MB per mining thread

The #way of the miner is configured in

$ nano veriumMiner/algo/scrypt.c

https://obihoernchen.net/1340/lower-gpu-clock-of-odroid-xu4-for-headless-servers
https://github.com/effectsToCause/veriumMiner

Now you can calculate around for yourself or just # 3way -t 3 big
trust me that you want those two miner /root/verium/3wayminer/cpuminer -o

conﬁguraﬂorm;andther1run stratum+tcp://pool-eu.bloxstor.com:3003 -u

VEXMki129ycW5vSt3MmdM5iwHgsHUx91EMr.Guide -p

5 threads @ 1 way = 640 MB GuidePwd ——Cpu—priority

3 threads @ 3 way = 1152 MB 4 -t 3 --cpu-affinity 0x00FF --api-bind
1792 MB total RAM 0.0.0.0:4048 &
The system needs some memory, too and with this Just copy it and give it a try as donation &

setting there is only around 60 MB left free - but only
if you use the image linked above (I have tested 6
different ones, only this works with -t 5 & -t 3). A 2 The little core shall run the 1 way miner on APl Port
way compilation might be interesting as well, but my 4049 with lower priority

little cores -t 5

compilation try did not work.
--cpu-priority 1

Easy Installation -b 4049

, , , --api-bind 0.0.0.0:4049
| have prepared two scripts on my git repository

(https://github.com/DJoeDt/verium - no warranty where | just don't touch --cpu-affinity and thus the
whatsoever): remaining 4 little + 1 big cores are used. This is the

complete line from my /etc/rc.local
lwayARM XU4 VeriumMéiner install.sh

3wayARM XU4 VeriumMiner install.sh # lway -t 5 little

hich i Il th . . /root/verium/lwayminer/cpuminer -o
wnli n miners in
¢ stall the ers into stratum+tcp://pool-eu.bloxstor.com:3003 -u
~/verium/lwayminer/ VEXMki129ycW5vSt3MmdM5iwHgsHUx91EMr.Guide -p
GuidePwd --cpu-priority 1 -t 5 -b 4049 --api-

bind 0.0.0.0:4049 &

~/verium/3wayminer/

How to run them L
Monitoring
Having both compilations at hand we need to manage

. If you use the APl you need to configure both ports.
them properly. Besides the threads there are two y y g P

. . My workaround with birtys <3 webscripts looks like
things to configure

this: So far | have copied index_monitor.php to

the big.little core index_monitor4049.php, reconfigured
the API Port
defined ('API _PORT') || define('API PORT',

big cores -t 3 4049)
The big cores shall run the 3 way miner on the init, and justincluded it by adding to the index.php.
standard port 4048 with high priority More information on monitoring can be found here.
--cpu-priority 4 The Result

--cpu-affinity O0x00FO

L a04s Some remarks before we look at H/m:

--api-bind 0.0.0.0:4048 . . .
1. again: only the image linked above worked for me, but

those are the options to be set. About using cpu- not even by default

affinity (https://wiki.vericoin.info/index.php?
title=Cpu-affinity). This is the complete line from my
/etc/rc.local

2. you still have to create a swap file (included in my
scripts)

3. 1lied about the lines in my rc.local, | actually mine on
two different pools. Decentralize it!

https://github.com/DJoeDt/verium
https://wiki.vericoin.info/index.php?title=Cpu-affinity

Hashrate Numbers!'11

Originally | ran birtys miner configuration which
actually is the 1 way configuration. Without any -t
option it just starts 8 threads and with pool mining i
got an average of

395 H/m = 1 way -t 8

The two miners put out like

195 H/m
250 H/m =

1 way -t 5
3 way -t 3

Happy adding!
| wonder how this performs when solo mining?

Update to fireworm miner & hugepages

lway 128MB -> nr hugepages = 65. 3way

384MB -> nr hugepages = 193. 6way 768MB ->

nr hugepages = 386.

Configuration of birtys image

Setup: birtys hugepages minimal image: [drive]

Configure hugepages

$ sudo nano /etc/sysctl.conf
to

$ vm.nr hugepages=839
Change host

$ nano /etc/hostname

$ nano /etc/hosts
and dram_freg=933 in
$ nano /media/boot/boot.ini
as well as the password by
$ passwd
Reboot before going on
$ reboot
Fireworm Miner Installation
Remove old miner from birtys image:

$ rm -rf veriumMiner

Install newest miner by script:
$ wget \

https://github.com/DJoeDt/verium/raw/master/nwa
yARM_HC1_fireworm_install.sh

$ chmod +x nwayARM HC1l fireworm install.sh
$./nwayARM HC1l fireworm install.sh

Miner Autostart Configuration

Autostart config

$ nano /etc/rc.local

Verium Miner Configuration

big cores

$ nice --10 /root/verium/nwayminer/cpuminer

-0 stratum+tcp://vrm.n3rd3d.com:3332 -u

joe rondx.l -p joe

-t 3 -1 1 --cpu-affinity 0x00F0 --cpu-priority
2

--api-bind 0.0.0.0:4048 --no-color >>

/root/verium/nwayminer/3waymine.log &
$ sleep 5 # delay for hugepages allocation

little cores

$ /root/verium/nwayminer/cpuminer

-0 stratum+tcp://eu.vrm.mining-pool.ovh:3032 -
u joe rondx.HCl 1 -p joe

-1 4 —--cpu-affinity-stride 1 --cpu-affinity-
oneway-index 0 --cpu-priority O

-—api-bind 0.0.0.0:4049 -b 4049 --no-color >>

/root/verium/nwayminer/lwaymine.log
Run the 3way miner first !!
-t 3 -1

First because it should make maximal use of
hugepages. Secondly run only Tway

-1 4
where 1 thread runs without hugepages.
Hashrate

=> 400 + 137 = 537 H/m @ 1.9 GHz

Power to the Rig

The specs say 4 Amps @ 5V for an Odroid. But there is
way more to consider if you want to power your rig.

https://github.com/DJoeDt/verium/raw/master/nwayARM_HC1_fireworm_install.sh

Reference

https://wiki.vericoin.info/index.php?title=Odroid
https://ameridroid.com/products?
keywords=aluminum
https://forum.odroid.com/viewtopic.php?
f=93&t=27239

http://www.thinkwiki.org/wiki/How_to_use_cpufreq
utils https://wiki.odroid.com/odroid-
xu4/os_images/linux/ubuntu_4.14/ubuntu_4.14
https://forum.odroid.com/viewtopic.php?
f=146&t=28895&sid=873dc51d2cf97257c807b99826f
91525

https://wiki.vericoin.info/index.php?title=Odroid
https://ameridroid.com/products?keywords=aluminum
https://forum.odroid.com/viewtopic.php?f=93&t=27239
http://www.thinkwiki.org/wiki/How_to_use_cpufrequtils
https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/ubuntu_4.14
https://forum.odroid.com/viewtopic.php?f=146&t=28895&sid=873dc51d2cf97257c807b99826f91525

Protect Your Privacy: Why You Should Probably Make Your Own

Home Automation Devices

@ December 1,2019 & By Miguel Alatorre, ameriDroid Technician & Development, ODROID-C2, ODROID-N2, ODROID-XU4

With all of the hacks, vulnerabilities, data leaks and
other disheartening news surrounding cloud services,
cloud products, and big data companies, you may
want to consider putting in the effort to create your
own version of these solutions.

"Smart" doorbell Have you read the recent news that
the "smart doorbell" sold by a major company sends
your home's WiFi password in plain text through the
Internet, allowing hackers to potentially gain access to
your home network? And how the same company
bragging about tracking "Trick-or-treaters" as they
went from house-to-house on Halloween?

Have you read the news from this summer of a
popular "smart lock" that allowed hackers to unlock
your doors without knowing your passcode or having
a key?

Figure 1 - Image: Chase Dardaman, Jason Wheeler

From https://techcrunch.com/2019/07/02/smart-

home-hub-flaws-unlock-doors:

“Dardaman said any hub connected directly to the
internet would be exploitable. The
researchers found five such vulnerable devices using
Shodan, a search engine for publicly available devices
and databases.” Have you heard that Alexa, Siri and
Google Assistant can be hacked by a laser from up to
350 feet away? News of this exploitation can be found

remotely

here:
https://www.vice.com/en_in/article/3kxwvy/alexa-siri-
and-google-assistant-can-be-hacked-remotely-with-
lasers

These are only three examples of big data companies
mishandling the privacy and security of their
customers. One of the reasons these "big data
products" are so often hacked is because big data
companies are often less concerned about your
security than they are about profits and getting a
product quickly to market. In addition, they generally
have sold a lot of the products in question, which
makes them a juicy target for hackers.

L LI N

Pristatypa HAT Shisis
«

Rissiatar Stsrtar Kit - 800
Paecas

Figure 2 - Resource List

Here are just a few benefits to building your own
versions of these products:

= You are free to exercise as much creativity and passion
when developing your products as you'd like

= You'll learn new skills and sharpen existing skills

= You can add features that haven't been offered by
others and suit your particular needs

= You can take pride in creating your own solutions, and
you can fix your own stuff

= You can go "overboard" with your security steps, if you
so desire, or you can rely on "security through
obscurity,"
(https://en.wikipedia.org/wiki/Security_through_obsc
urity) or a combination of the two, something which
may work much better for a one-off product than a
product sold to thousands or millions of customers by
a big data company

= You can take an existing how-to project found online
and modify it to your personal needs and preferences,
often with less effort than starting from scratch There
are many open source projects that can be used as a
starting point for your solution. As opposed to a
"canned solution" provided by a big data company,
open source software can be audited by anyone to see
if any security or privacy concerns exist.

The original article can be viewed at the following link:
https://ameridroid.com/blogs/ameriblogs/privacy-
why-you-should-probably-make-your-own-home-
automation-devices

https://en.wikipedia.org/wiki/Security_through_obscurity
https://ameridroid.com/blogs/ameriblogs/privacy-why-you-should-probably-make-your-own-home-automation-devices

Mobile Workstation: Using An ODROID-N2 To Create A Full-

Featured Computing Experience

@ December 1,2019 & By Pieterjan Montens €= ODROID-N2, Tutorial

For some years | have been longing for two things:

= A“Laptop” with a high-quality keyboard and a trackball

= An ARM-architecture based “workstation” to be
productive with

Unexpectedly, and because | somehow managed to
lose my BIOS password and lock myself out, | had to
part with my old and beloved laptop, the one running
Debian (I travel with both a Linux and Windows
laptop. No | can't think of a single reason to bring a
Mac along). But instead of just jumping to the latest
Thinkpad, | wanted to see if | could somehow mix
those cravings mentioned above: a deconstructed
“mobile” ARM-based workstation where | could
choose all the parts, without solder or duct-tape, just
off-the-shelf components. It would be power-efficient.
It would adapt to the places I'll be working at, using
screens if available, power, etc., so I'd just need to

take the components I'd need for my journey. It would

be low-budget. So, off | went with a small shopping
list.

| already knew I'd use my ergonomic keyboard and
trackball, because those are my most proficient input
tools. | just needed a computing unit, a screen, and a
battery. Those last two components were easy to
come by, Amazon has plenty of them:

= Astandard 13.3" 1080p panel that somehow works,
but can’t change brightness and contrast is wrong:
should've picked something better.

= A 25000mAh power pack with USB and 12V outputs,
that's important. Mine is from Krisdonia, and unlike the
screen, I'm very happy with it.

Choosing an ARM-based computing unit, powerful
enough to “work” with (decent computing and
graphics capabilities) and with a robust storage
medium (i.e.; not microSD) was a bit more difficult: |
already had plenty of experience on Raspberry Pi's

(this was before the 4 came out, more on that below)
for home projects and monitoring solutions, but knew
it would be lacking as a day-to-day work platform.
After a small comparison of available alternatives, |
went with the ODROID-N2 4GB, mostly because of the
robust eMMC storage. As for a more complete list of
what it offers:

BIG.little architecture: “BIG" quad Cortex-A73 and
“little” dual Cortex-A53, making it a heterogeneous
hexacore, associated with 4GB DDR4 RAM

= 3 decent Mali-G52 GPU
= eMMC memory (up to 128GB)
= Gigabit ethernet, HDMI (4k@60hz), 4 USB3 ports and

= Comes in a nice package with a massive passive cooler,
which acts as support for the whole unit

Installation went like a breeze (Debian Buster with
4.9.190-odroidn2-arm64 kernel), and before long my
usual working environment was installed and fully
functional. It worked! | used it to actually make work
happen. I'm writing this article on it. It's hardware
you'd find in a smartphone, it's small, and now I've
plugged my peripherals in and everything is great. It
also happens to minimize my environmental impact,
the power consumption being very limited compared
to a standard laptop, let alone desktop (the screen is
the most power hungry element here, just like in
Smartphones).

So, what does it feel like to work on ARM?

Well, for starters: Thanks to Debian compiling the
whole distribution for multiple architectures, | have
access to almost all of my most wished for tools.
Some (proprietary!) software, like Synology's cloud
station, are not available for ARM architectures. Slack
isn't available either, but they offer a workable web-
based interface.

| didn't experience any problems with day-to-day tools
such as vim, node, npm, though Docker is a tad slow
to build. However, even GIMP and FreeCAD work!
Working on the battery is nice too, | didn't really stress
it but until now | never managed to empty it.

Occasionally a tab crashes in Firefox. Otherwise
browsing is a mundane affair, though nothing
comparable to a mean-16GB-i7-machine. Client-heavy

web applications are another matter and sometimes
a bit slow. Switching to Chrome for Google docs helps,
however. It didn't become my sole and unique
“computer” | take with me though... | still carry a
Thinkpad along most of the time, and they turn out to
be quite complementary. | just need some more time
to set it all up when | arrive and to strip it all down
when | leave.

This, however, won't be the end of my ARM
adventures. There are still some weaknesses that |
would like to be addressed, for a device like this to
fulfill all my needs. Like, for example:

= Tens of cores. BIG.little is great, just add more !

= More RAM !

= Even better storage (NVMe ?)

= On-board quality networking (wifi, ethernet, Bluetooth)
= 2 video outputs

= hardware-based full-disk encryption: these things are
easy to lose, and may contain sensitive data

Let's not forget that Microsoft is expected to release
an ARM-powered Surface hybrid soon: | may end up
working exclusively on ARM sooner than | thought
was possible.

But how does it compare to the Raspberry
Pi4?

Shortly after | bought the ODROID, the Raspberry Pi 4
came out, completely unannounced, much to the
surprise of virtually everybody. Most readers will
probably want to know how both ARM platforms
compare to each other. This short and subjective
the advantage of
raspberry’s formidable community, which is mostly

comparison won't include
why | went with raspberry when beginning my ARM
adventure in the first place. | will only focus on the
specific use-case | have, but one should not forget
that both platforms don't really address the same
market segment. All-in-all, the technical differences

with the A72-powered raspberry 4 are small:

= While the ODROID A73 CPU is a completely different
architecture, it only offers some improvements to the
A72, as detailed on anandtech:
https://www.anandtech.com/show/10347/arm-cortex-
a73-artemis-unveiled

HardKernel's ODROID has 2 extra “little” A53 cores, as
used by the Raspberry Pi 3 (who has 4 of them). So you
get like the computing equivalent of a Raspberry Pi 4
and half a Rasbperry Pi 3.

Both have Gigabit ethernet and USB 3 ports

ODROID comes with it's own heatsink, while the
raspberry throttles quickly without one

the ODROID Mali G52 GPU should be at least twice as
powerful as the Raspberry Pi's videocore 6 (850Mhz,
6.8 Gpix/s vs. 500Mhz, 2.5 GPix/s)

The ODROID onboard chipset does not include wifi or
bluetooth, it needs a little dongle... that's a shame,

really, because the RaspBerry’s include both

While | would have loved the dual micro-HDMI
outputs of the Raspberry Pi 4, the micro-SD storage is
just too unreliable to be considered for day-to-day
work. eMMC is, in my opinion, the decisive argument
in favor of the ODROID, compared to the Raspberry Pi
4.

The original article can be found at
https://medium.com/@pieterjan_m/reinterpretation

-of-the-mobile-workstation-e8dc95d279f9.

https://medium.com/@pieterjan_m/reinterpretation-of-the-mobile-workstation-e8dc95d279f9

KVM: Fun with virtualization on the ODROID-H2

@ December 1,2019 & By Tobias Schaaf = ODROID-H2, Tutorial

When it comes to the ODROID-H2, my use case for it
is to work as a virtualization host, to run a few test
VMs to run software on, or test upgrades of systems
for my company (e.g. upgrading from older OS
versions to newer versions). Looking at the forum, |
see people struggling to get VMware or Citrix
Hypervisor running, mainly due to unsupported NICs
an other components of the board. For me, that was
always a little puzzling, as | know about KVM, which is
part of the Linux Kernel and allows for easy
virtualization, and since under regular Linux (Ubuntu,
Debian, etc.) NICs and stuff work fine, as does
When | first
mentioned this in the forum, | was asked to make a

virtualization without any issue.
guide, since rarely anyone seems to know about this.
So let's see what there is to say: first, let's explain
what I'm actually talking about, and what tools and

components | use for this.

KVM

KVM is built into the Kernel, and actually means
“Kernel-based Virtual Machine” and uses the Linux
Kernel to run Virtual Machines (VMs) on it. This allows
you to run VMs directly under any Linux you run on
your ODROID-H2 (or any other PC that runs Linux).

QEMU

Qemu - Quick Emulator is known as a rather quick
and feature rich emulator that allows you to emulate
different systems and hardware components. It can
be used in combination with KVM to emulate
hardware such as hard drives, CD-ROM drives, NICs,
etc. but sends the commands from the devices to the
It allows for advanced

KVM virtualization layer.

features such as snapshots for VMs.

libvirt
Libvirt is a open-source API to configure VM platforms
such as KVM, Xen, VMWare, or QEMU. The list of

supported Hypervisors is rather long and even
includes containers such as LXC. We will use it as a

https://www.redhat.com/en/topics/virtualization/what-is-KVM

frontend, both graphically as well as on the command
line to do things with our VMs in KVM.

First Scenario

Now that we have decided to use KVM, let's see what
we need to run VMs and how to install both Linux and
Windows VMs, as well as how to control them. Since
we're ODROID lovers, we do this of course on our
ODROID-H2, but as said before, it will also work on
any other x86 based PC/Server that runs Linux. Keep
that in mind when | refer to the ODROID-H2 from now
on, as it applies to any other system as well.

Requirements

= ODROID-H2
= |nstalled OS (Debian or Ubuntu for easy start)

= |nternet Connection

In this first scenario, we don’t need much: only an
ODROID-H2 with an installed Linux of your choice. As |
favor Debian for server tasks, | will use Debian Buster
as my reference OS, but the commands apply to
Ubuntu as well and should work the same.

Installation and Configuration

Let's just assume you have already installed a Linux

distribution fully installed with a Desktop
Environment (DE) and Network Manager and your

default user is called “odroid”.

$ sudo apt install virt-manager
$ sudo adduser odroid libvirt

$ sudo reboot

Congratulations, you're done and can start creating
VMs! That wasn't so hard, was it?

Virtual Machine Manager (virt-manager)

The Virtual Machine Manager (virt-manager) is a
graphical interface that you can use to create and
configure your VMs, create snapshots and all kind of
other things.

Figure 1 - Virtual Machine Manager on Debian Buster
MATE Desktop

The Virtual Machine Manager is what you use to
create, configure and interact with your VMs. It can be
used to observe resources such as CPU usage, and
other things. | don't want to go too much into the
details, let's just say there's a lot you can do with it,
and you might want to read up on some tutorials for
the advanced stuff. For now, let's keep it simple and
see what we need to create a VM. Creating our first
VM | still have a Debian Stretch netinstall image laying
around, which I'm going to use in this scenario. You
can mount .iso files directly in VMs similar to VMware
and other hypervisors. There is only one detail which
is good to know: by default, virt-manager searches for
all images under /var/lib/libvirt/images. It uses this as
the default pool for all images, both your hard drives,
as well as your ISO files that you want to mount. You
can add more storage if you want, but for now, let's
keep this one and copy the Debian Stretch image that
| have into this folder so that it's found directly. After
this, let's just click on the button in the upper left
corner of our Virtual Machine Manager to create a
new VM. It will open a wizard that will guide you
through the entire process.

Figure 2 - Setting up a new VM with virt-manager is very Figure 5 - | only want a small test VM so 8GB is enough

easy disk space
Figure 3 - Selecting Debian 9 netinstall image as COROM Figure 6 - Give the VM a name and we're done
Figure 4 - | chose 2 CPUs to show that VMs can handle Figure 7 - The VM starts and boots the installer image for

multiple cores Debian 9

1 Applicatons Places System [v @ N

o) Z sunNov10,18:50
debiand on QGEMU/KVM =

il Machine View SendKey

-5

Retrieving file 111 of 1075 (nin 44s remaining

{5 & [odroid@ODORIDH2: ~] w Virtual Machine Manag... £ [KVM] 5 debiand on QEMU/KVM _ B odroid@ODORIDH2: ~ 5

Figure 8 - Going though the standard setup and install
MATE Desktop

Figure 9 - Debian Stretch MATE Desktop running in a VM

The entire process is rather easy and straightforward.
And as we can see, even an installation of a graphical
desktop environment is quite easy, and can be used
rather well. Instead, you could also use a pure
terminal installation and connect to your VM via SSH.

Installing a Windows VM

Installing Windows is similar, but a bit different. While
Linux is rather good at handling virtual systems and
being a virtual system itself, Windows is not as good
with those things, and while we could install a
Windows machine pretty much the same way as we
did with the Linux system, the performance would be
not very good, as Windows does not handle
virtualization well enough. For this, it's best to install
with
virtualization, especially for KVM to get the best

Windows directly driver support for

performance out of it. First, we need to download
some drivers. Luckily for us, the Fedora project takes
care of most of the stuff for us, and we can simply
download a pre-made image for all the drivers we
need. At https://bit.ly/2s3rAUK, there are several
links for the stable images and the latest images with
the drivers needed, either as a CD or even as a floppy
disk image to download. | downloaded the stable CD
image which at the point of this article was: virtio-win-
0.1.171.iso and placed it in our images folder as
explained earlier. Next, we can start the creation of a
new VM same as we did with Linux, except for the last
screen where we will check the option “Customize
configuration before install”. Here, we need to change
some hardware settings for the VM. We start by
should
already be selected. We change the device type to

adding new hardware, where “Storage”
CDROM device and select our virtio image which has

all of the drivers.

Figure 10 - Make sure to select to customize
configuration

https://bit.ly/2s3rAUK

Figure 11 - Add a new CDROM device with virtio ISO

Next, we need to adjust some existing hardware;
namely our network adapter (NIC) and the disk we
want to use. Both devices tend to be slow on this type
the disk
performance, which has been an ongoing problem for

of Windows virtualization, especially
me for Windows guests under KVM. | encourage
anyone that wants to use Windows VMs (server or
client) to read up on this topic, and I'm open to other
options and suggestions as to how to increase

performance.

Figure 12 - NIC should be Device model: virtio for best
performance

Figure 13 - Without VirtlO Disk bus the disk speed might
be as slow as 1MB/sec

The Network adapter should be changed to virtio
Device model for best performance. The same goes
for the Disk bus of our virtual harddrive. Under
performance options, you should set Cache mode
“none”. This should increase write performance,
which is the biggest issue for Windows hosts. The
storage format qcow?2 is the default for VMs, but
some suggest using “raw” as a Storage format instead.
While this can increase performance, it also removes
some features like snapshots for VMs, so make sure
you don't need this. Finally, click the button “Begin
the upper of the
configuration window, and KVM will start our new VM
and boots the Windows CD.

) Applications Places System [¥ @ N DE

‘win1O on GEMU/KVM

Installation” in left corner

SunNov10, 20:11

File Virtual Machine View SendKey

(=] 0 - &

Winl0 on QEMU/KVM

Figure 14 - Windows doesn’t know how to handle VirtlO
disks

1 Applicatons Places System [v @

) Applicatons Places System (] v @

) Z sunNov1o, 2012
Winl0 on GEMU/KVM =

File VirtualMachine View SendKey

Instal

[= Virtual Machine Mang... & winl0 on GEMUKVM: -

Figure 15 - Installing additional drivers during Windows
Setup

When you first start the setup of Windows and want
to select the hard drive on which you want to install
Windows, you will find the list is completely empty.
This is due to the fact that Windows doesn't have any
drivers for VirtlO based disk drives. One Windows
feature heavily used under Windows 95 or 98 but
nearly forgotten by now is required to get things
working: the installation of additional drivers during
the Windows Setup. For this, select the button “Load
drivers” in the lower left corner of the installation
window and navigate to the CD we mounted in the
second CD drive. Navigate to the folder “viostor” and
then to the OS and architecture you want to install.
For me this was w10/amdé4 as | installed Windows 10
on a 64bit board (the ODROID-H2). If your OS is not
listed, take one that is closest to it and it should work
anyway. After the driver was installed, the setup
found the harddrive and | could continue to install
Windows as usual. After the setup completed and the
system rebooted, Windows loaded normally but
stopped again when it tried to connect to the Internet.
| did not install drivers for the network when |
installed the drivers for the harddrive. To be honest, |
don't know if | could have, and | haven't tried. |
probably could have installed all the necessary drivers
right then and there, but it's not important as you can
continue without them, and install the drivers later.

) Z sunNov10,20:13
‘wini0 on GEMU/KVM © 0
File Virtual Machine View SendKey

=] 0 - &

5 ® Virtual Machine Manag... & win10 on QEMU/KVM. -
Figure 16 - After installing drivers for VirtlO disk bus
Windows found the HDD

9 Applcations taces system (3 v @

o) £ sunNov10,20:30

‘Win10 on GEMU/KVM
File Virtual Machine View SendKey

= P @ -

Let's connect

To finish setup, you'l

5 Virtal Machine Manag.. ¥ winlOon GEMUJKVM 5

Figure 17 - The network was an afterthought for me

Once Windows is up and running, just navigate to
your System — Device Manager in Windows, and you
will find the devices where the drives are missing.
Right click them and select update drivers, then
navigate to the CD with the virtio drivers. You do not
need to select the correct folder for the drivers, since
Windows will find them on its own.

Figure 18 - Windows booted up just fine even without
network

1 Applicatons Places System (3 s @ N @
Wint0 on QEMUIKVM

SunNov10,20:36

File VirtualMachine View SendKey

= O]

B Updste Drvers - xhernet Controle

owse for driversonvour computer
ForFolder X

<P Sekc the foker hat comans evers for your hrdere, |

A HGFRE EN-GE,
011 o| bcompute
5 7| prastaiiversi

&9 Virtual Machine Manag... ¥ winl0on QEMU/KVM
Figure 19 - Installing missing drivers; just select the CD
Windows does the rest

1 Applcatons Places System (] v @ N Ll
‘win10 on QEMU/KVM

2] SunNov10,20:36

ol

ou st How can

£ Type here to search

@ Virtual Machine Mang... & winl0 on GEMUKVM: =

Figure 20 - Windows will ask if it's suppose to install the
driver

) Applicatons Places System [v @ @) 2 sunhov10,2038

‘win10 on GEMU/KVM
File Virtual Machine View SendKey

= CIR

e Divers - Vit Blloon Diver

it Balloon Driver

) Virtual Machine Mansg... winl0 onGEMU/KVM: =

Figure 21 - Installing PCI Device Balloon Driver

Installing the “PCl Device” Balloon Driver is somewhat
controversial. Some people claim the system runs
better without, but | will let you decide about that.
What it does is fill the RAM with a pseudo process,
and depending on what RAM the Host OS or the
Guest OS needs to run applications, it expands or
reduces its size, and with that allows either the Host
or the Guest to use more RAM, depending on their
needs. At this point Windows is up and running, and
should behave like any other Windows VM.

Figure 22 - Now we can watch Windows doing what
Windows does best

You can install additional drivers, though. Spice is a
graphical interface to connect to the display of the
VM. Rather than using VNC, like other hypervisors,
Spice is used by default in QEMU. It is faster and more
responsive than VNC. For Windows there are spice-
guest-tools that can improve graphics and other
features on a Windows guest. Think of it like as

https://rwmj.wordpress.com/2010/07/17/virtio-balloon/

VMWare or VirtualBox guest tools/additions just for
QEMUY/Spice. You can download and install them from
https://www.spice-
space.org/download/binaries/spice-guest-tools/.
You can check if it's installed correctly by checking
your graphics adapter after the installation of the
spice-guest-tools.

1 Applcatons Places system (1 v @ @) 2L sunhov 10,2046

Win0 on QEMU/KVM
File VirtualMachine View SendKey

@_ W (o) ~ & <&

ssssss

Windows Update

‘dows Defender Antivirus - KB2267602 (Version 1305.1830.0)

NET Framework 3.5 and 48 for Windows 10 Version 1903 for x64.

llllllllll

{5 = Virtual Machine Manag.. & winl0onQEMUKVM, @ odroid

Figure 23 - Red Hat QXL controller is the new GPU driv-e:-
for your VM with spice-guest-tools installed

There is one feature | want to talk about, as it's been
used in other hypervisors as well: Snapshots. The
Virtual Machine Manager can handle Snapshots of
VMs just fine, same as VMWare, or VirtualBox or any
other hypervisor would do. Simply open the Snapshot
TAB in your VM click on the plus symbol and create a
snapshot.

Figure 24 - Creating a new Snapshot for our Windows VM

Figure 25 - Snapshot details - you can have multiple
snapshots for one machine

While snapshots are a nice way to revert to a previous
state, which makes it essential when you want to try
out new things that might affect the system (e.g. OS
upgrade), please consider that snapshots can reduce
overall performance as well as highly increase disk
usage. Let's assume you have a VM with two disks:
one for the OS and a second with a size of 20 GB as a
data store. You fill the data disk to its maximum
(20GB) and make a snapshot. Then you exchange the
entire data on the data disk. If you check on the host
system, where your qcow?2 file for the data disk is
located, you will notice that the size of the file has
increased to approximately 40GB. Although the size
limit of the disk is 20GB, it now needs additional 20GB
to store the difference between the snapshot and the
new data. Keep this in mind when working with
snapshots, and also that snapshots should only be a
temporary solution, not a way to organize or backup
your data.

Up Next

In the next article on this topic, | want to talk about
advanced features, like shared storage pools and live
migration of VMs from one host to another, which
means moving a VM while running from one PC to
another PC without interruption. | also want to
introduce “virsh”, which is the command line tool for
libvirt, and also show how you can connect to your
virtualization hosts from a remote system, so that you
don't need a desktop installation to run your VMs on.

https://www.spice-space.org/download/binaries/spice-guest-tools

The G Spot: Your go-to destination for all things that are Android

Gaming

© December 1,2019 & By Dave Prochnow E= Android, Gaming, ODROID-C2, ODROID-N2

Our long wait is finally over: Google Stadia, this
universal game-changing streaming service, has gone
live now! It debuted late November, 2019.

As discussed in earlier articles from this column, on
this launch date, Google Stadia will ONLY be available
to subscribers of the Stadia Founder's Edition. As you
may recall, this $129 package includes a controller,
Chromecast Ultra for TV, 3 months of Stadia Pro and a
“FREE” streamed copy of Destiny 2. If you are not
already a Founder's Edition subscriber, then you will
have to wait for three months before you can
experience Stadia.

Figure 1 - Founder’s Edition subscribers get some
hardware with their purchase

After the three month Stadia perk for Founder's
subscribers has lapsed, then regular subscribers can
join in the game-streaming party. This Stadia Pro
option will cost $9.99 per month (three months of this

option are included with the Founder's Edition

subscription) PLUS the cost for purchasing any games.
No free lunch here, yet.

At October's Made by Google event, there was a
mention that a “free tier” would be launched in 2020.
This option will include stereo sound and 1080p game
streaming. The free option is in stark contrast with the
previously mentioned Stadia Pro which will feature 4K
game streaming, HDR color, 5.1 surround sound and
one free game per month. Regardless of your
subscription tier, you will receive at least 60 frames
per second (fps) for game playback.

Figure 2 - The Stadia controller

Unfortunately, there were some surprising “details”
mentioned at the October event that disappointed
many of the Stadia faithful.666

Bundled inside these surprising caveats that caught
some Stadia followers by surprise was the limitation
on mobile devices that will be able to access Stadia at
the time of launch. Only Pixel 3 and 3a phones (and
presumably the new Pixel 4 family of smartphones)
Slate, HP
Chromebook X2, etc.) will have access. Furthermore,

and Chrome OS tablets (e.g., Pixel
the Stadia controller will only work in wireless mode
with Chromecast Ultra. Any computer, however, with
a Google Chrome browser will work with the Stadia
controller using a wired USB connection and have
access to Stadia. Additionally, you will be able to use
third-party controllers with Chrome on your Stadia-
streaming computer.

Figure 3 - Make your TV a Stadia “play” with Chromecast

Ultra7

As for games, Google had previously stated that 31
games would be ready on the Stadia launch day. Since
the bulk of these promised titles have already been
released, this goal should be attainable (and do not
forget two of these 31 titles are reliable DOOM
standards). Luckily, lots of game developers want to
jump onto the Stadia bandwagon, so this list of games
is increasing. In fact, both Red Dead Redemption 2
and Orcs Must Die 3 should join the Stadia party in
March 2020.

Figure 4 - A Stadia game sampler; Destiny 2: The
Collection is included free for Founder's subscribers

Is this a bumpy start for Stadia or just a minor,
forgettable glitch? According to Stadia chief, Rick
Osterloh, “Stadia is aiming to deliver the best games

ever made to just about any screen in your life".
Enough said.

If you are still confused about all of this Stadia stuff,

there is a Google-made video at
https://www.youtube.com/watch?v=Pwb6d2wK3Qw
that explains “how Stadia works"” or, as its also known,

“Stadia 101".

Building An ODROID-H2 BladeCenter: Create A Micro-footprint
High Performance Computing Station

@ December 1,2019 & By @rvalle &= ODROID-H2, Tinkering

After receiving inspiration from the excellent
OpenSCAD H2 Model posted at
https://forum.odroid.com/viewtopic.php?
f=172&t=33824, | created a remix of the fantastic
Raspberry Blade Center to house 3 ODROID-H2 units.
| made the following changes to the original project:

= Migrated the files to SolidWorks
= Built an assembly
= Aligned the fasteners

= Widened the cart by 2mm so that it would remain fitin
its place

= Made pillars for PSM brass inserts by both Heatlok and
Minitech

The SolidWorks
https://www.thingiverse.com/thing:3929164.

files are available at

Figure 1 - For a more realistic model, here is an assembly
of the ODROID-H2 with peripherals and heat-sink on

https://forum.odroid.com/viewtopic.php?f=172&t=33824
https://www.thingiverse.com/thing:3929164

Figure 2 - Here is another view of the assembly of the
ODROID-H2 with peripherals and heat-sink on

Figure 3 - The design of the caddy

Figure 4 - The design of the caddy

Figure 5 - The design of the caddy

Figure 6 - The design of the caddy

Figure 7 - The first 3D print, which pretty much works,
but needs thicker pillars

Figure 8 - The first 3D print, which pretty much works,
but needs thicker pillars

Figure 9 - The first 3D print, which pretty much works,
but needs thicker pillars

Figure 10 - | decided to make an unusual hack, letting
each audio connector embed itself into the next block

Figure 11 - The audio block is higher than the mount, as
you can see on this side view

Figure 12 - A socket has been created on the base of the
mount to embed the audio connector from the previous
H2 block

Figure 13 - Here you can see how each audio connector
embeds in the next block, saving space to allow 8 units
in 3Us

Figure 14 - Once you put them together, the blade
center looks like this

Figure 15 - After receiving the RAM and SSD Figure 18 - The second mount print, where the
alignment knobs work well, but the holes need to be

cleaned of plastic for them to do their job properly

Figure 16 - The first mount print

Figure 19 - The entire rack assembled, where |
implemented a press fit system so that the blades don't
come off the mount easily, with a click and a helper tab
to get them out, similar to the Ethernet cables

Figure 17 - The first mount print i X X
Figure 20 - Here is a section to see the lock system
working

Figure 21 - Here you can see how the caddy and tab
interact

Figure 22 - The final assembly mounted into a rack, with
3 ODROID-H2 units installed

Required Hardware

= 4x Rods, M6x44.5 cm (Metal or Nylon)
= 4x M6 Nuts

= Optional 32x M3 HeatLok Brass Inserts from PSM
International or similar.

= QOptional 32x M3x5mm screws for Insert Version

= QOptional 32x self tapping screws 5-6mm long (hole is
2.5mm wide)

Printed Parts

= 8x H2 Caddy (either Inserts or Self tapping version)
Version with inserts recommended, but requires brass
inserts.

= 8x H2 Mount part (vanilla, pressfit or pressfit&tab
version) recommended the one with tab.

= Ix Ear Left
= 1x Ear Right

Equipment

= 8x H2 Boards
= 3U available in a rack (small depth/network rack is OK)

= PSU

Pending Issues

| have not tested the Self-tapping screws version of
the caddy The distributed PSU is not rack friendly.

ODROID-H2 Design Feedback For the particular use
case of using the H2 as a rack blade, the following
issues have been found:

= The audio connectors are too tall, and should stay
within the limits of the other connectors

= The positioning of the power/reset switches is
inconvenient, and it would be better to have them in
the front of the caddy

= The positioning of the LEDs is also inconvenient

For more information, comments, suggestions, and
please visit the project page at
https://www.thingiverse.com/thing:3929164 or the
ODROID post at
https://forum.odroid.com/viewtopic.php?
t=367808&p=272149.

questions,

Forum

https://www.thingiverse.com/thing:3929164
https://forum.odroid.com/viewtopic.php?t=36780&p=272149

Surviving A Power Outage: Operating e-Commerce Business

During Regional Power Outage

@ December 1,2019 & By www.ameridroid.com & Tutorial

Imagine if the electricity to your business was cut off.
But not just your business -- your city, your county
and your entire region! That is what ameriDroid was
faced with due to PG&E's Public Safety Power Shutoff
that started on Saturday, October 26, 2019, and lasted
the afternoon of Wednesday, October 30
affecting our warehouse in Northern California.

until

PIJE

PUBLIC SAFETY
__POWER SHUT OFF

Figure 1

Our Challenge

ameriDroid's staff did not want to delay the shipping
of packages to our customers, and also did not want
to have customers confronted with dead phone lines
when trying to call in. So we knew we could not just

kick back in our beach chairs with tropical drinks until
the power came back on!

Figure 2

Our Infrastructure

Because ameriDroid is a single board computer
(https://ameridroid.com/collections/single-board-

computer) distributor, retailer
(https://ameridroid.com/collections/all), and
wholesaler

(https://ameridroid.com/pages/corporate-orders),
we want to be intimately familiar with the products
we sell. In addition to research and theory, using our
products in the real-world is one of the best ways to
do this. We decided from the beginning that we would
operate as much as possible using only the products
we sell. We are also committed to minimizing our
impact on the environment. We do this in several
ways:

= We are completely paperless in our operations other
than: cardboard boxes and packing material we use for
shipping, thermal shipping labels, thermal packing
receipts

= We recycle any excess cardboard, paper and packing
material we get from other sources

= Qur shipping staff use Android tablets for the majority
of their work in the warehouse

= Our warehouse infrastructure runs on ARM-based
ODROID SBCs
(https://ameridroid.com/collections/odroid) with one
low-power embedded Intel system
(https://ameridroid.com/products/beelink-sii-mini-
pc) (for shipping peripherals that run on Windows, like
digital scales and address label printers) - this allows
for redundancy and low power requirements

Figure 3

= QOur video security system runs on custom-designed
Raspberry Pi camera units with an ODROID-U3 acting
as a DVR, which is an extremely power-efficient system

Figure 5

= Qur site premises security system runs on an ODROID-
XU4Q and battery-powered wireless door and motion
sensors, again extremely power-efficient

= Qur peripheral storage facility runs on an off-grid solar

array, but is too far from our warehouse to act as a
power supply for the main shipping location

https://ameridroid.com/collections/single-board-computer
https://ameridroid.com/collections/all
https://ameridroid.com/pages/corporate-orders
https://ameridroid.com/collections/odroid
https://ameridroid.com/products/beelink-sii-mini-pc

We employ Internet connectivity from 3 different
providers for redundancy, but only one ended up
being viable during the regional outage:

= Comcast - Down due to regional equipment failure

= Verizon - Marginally operational with high latency and
about 50% packet loss due to overloaded networks

= Pacific.net Bonded DSL - Fully operational

Because our parent company, Respectech

(http://respectech.com/), provides our main
infrastructure on industry-standard equipment, we
had to set up a temporary network to allow
ameriDroid to operate on the Pacific.net connection.
Respectech's server rack takes 30A of power to
operate, so it was not feasible to power these
Windows- and CentOS-based servers on our off-grid
solution. ameriDroid's phone systems also operate off
Respectech's infrastructure. Fortunately, ameriDroid's
calls automatically fail-over to our staff's mobile

phones during an outage.

Our Solution

Figure 6

On our first day of off-grid operations, we enlisted the
ameriBus to provide power with its 4000W peak pure
sine wave inverter. The ameriBus has limo-style
perimeter seating, so we installed this inverter to
allow the ameriBus to act as a portable conference
room and demo facility for our SBC solutions at fairs,
conferences, and when visiting our west-coast clients.
It also came in handy for our unexpected off-grid
requirements. Although this system worked perfectly

well, the ameriBus consumed about one gallon of fuel
for every 4 hours of idling due to the big v10 engine.
We knew we could do better. The following day, we
took a 1000W pure sine wave inverter being used on
our peripheral storage facility's solar power system
and connected it to ameriDroid's shipping van. The
shipping van has a much smaller 6 cylinder engine.
This change allowed us to operate on approximately 1
gallon of fuel for every 8 hours of operation. Because
we operate on SBCs, tablets, and low-power thermal
printers, 1000W of current was more than enough. An
ironic challenge was that even during the day, our
shipping staff had to use LED-powered headlamps to
work in the warehouse as the overhead lighting

wasn't able to be powered up.

Figure 7

The Outcome

We lost a few hours of standard productivity by
having to set up off-grid power distribution solutions
and building a temporary network for our shipping
infrastructure. Other than that, we were nearly fully
operational for the extent of the 5-day-long Public
Safety Power Shutoff event, and most customer
orders went out on schedule. The few that didn't
make the shipping cut-off went out the very next day.
We'll be even more prepared for the next challenge,
thanks to the possibilities provided by single-board
computers!

Reference

https://ameridroid.com/blogs/ameriblogs/news-
operating-e-commerce-business-during-regional-
power-outage

http://respectech.com/
https://ameridroid.com/blogs/ameriblogs/news-operating-e-commerce-business-during-regional-power-outage

Repairing Your ODROID-N2: How To Recover From An Accidental

Short Circuit

@ December 1,2019 & By Justin Lee = ODROID-N2, Tinkering

In this guide we will show you how to repair Q1 on
your ODROID-N2. The original article was taken from
the Hardkernel page
https://wiki.odroid.com/odroid-n2/hardware/repairs

wiki available here:

Figure 1 - Discrete Load Switch Schematic with FTK3407

Causes of Q1 Transistor Failure

Over-currents, even for a short duration, can cause
progressive damage to a MOSFET, often with little

noticeable temperature rise before failure. MOSFETs
often carry a high peak-current rating, but these
ratings typically assume peak currents only lasting
300 psec or so. And cumulative over-current may
cause damage.

The causes of Q1 failure are generally from built-in
current limiting circuits in integrated power switches
to prevent the load SW from being destroyed during
over-currents. In the case of discrete load SW, the
current limiting circuit is not built in, so the P-CH FET
FTK3407 is damaged due to over-currents as shown
above.

= When the eMMC is mounted to reverse, over-current
flows to VCC3V3 due to the FLASH_1V8 node short
circuit to GND.

= GPIO connection error or GPIO short-circuit on the 40-
pin 10 port.

Failure to function -- due to failure

As shown below, the load switch does not supply the
VCC3V3 node due to damage and its power supply is
not supplied, so booting to the eMMC, USB, Ethernet
and 10 pin etc. does not work.

Figure 2 - Block diagram of MOSFET that is damaged

Repair procedure

Note:

= You can also replace AO3407A alternatively since
FTK3470 is not easily accessible.

= Make sure to leave the components R44, R45, and

C147 nearby Q1 alone. Small parts could go flying by
your wayward soldering iron.

Step 1. Basically, you could see the Q1 damaged by its
appearance as shown in figure 3.

' JRB6C192 O
=537 82

?EEE ¥ |

3”2
asn’
]

&

—

U pze |

Figure 3 - Q1 outlined in red

Step 2. To easily detach Q1, you should add a little
solder on the pad of Q1.

Figure 4 - Solder added to Q1 for easier removal

Step 3. If you have a spare soldering iron, use it as
shown in the image. If you don't have a spare
soldering iron, it will be harder than using a single
soldering iron, but you could try melting solder on the
three pads at the same time and then pull part out.

Figure 5 - Using 2 soldering irons to re
all of the pads at the same time

move Q1, heating

o |
B, 8
dIGEl’ 1, .
o C108 L4

G154

Figure 6 - Q1 removed

Step 4. Remove the rest of the solder on the pad. Use
a solder wick for solder removal.

--J.H'!lb 1.2

= ._;un E
(==

Flgure 7 - Copper W|ck used to remove any residual Figure 8 - Solder removed

solder
Step 5. Use SMD tweezers and soldering the new Q1

into place.

Flgure 9 - New MOSFET held in place with tweezers

3 .;;nnm._v'a_‘zuﬂ
-
| RS e, 2

Figure 10 - New MOSFET solder in place

Conclusion

We hope that this guide helped you with repairing
your ODROID-N2. After replacing Q1 (P-CH FET), your
USB, Ethernet, Expansion Connector 3.3V power, and
eMMC booting should work perfectly.

Creating a Vision Application In Low Power Situations: Using
OpenVino and OpenCV With The ODROID-C2

@ December 1,2019 & By software.intel.com £ Linux, ODROID-C2, Tutorial

The Intel® Distribution of the OpenVINO™ toolkit and
the Intel® Neural Compute Stick 2 (Intel® NCS 2) are
the perfect complement for vision applications in low-
power development environments. Getting setup on
different
opportunities. ARMI platforms such as ARM64 are
becoming

so many architectures presents

increasingly common for developers
building and porting solutions with low-powered
single-board computers (SBCs). These can have widely
varying requirements compared to traditional x86
computing environments. While the Intel®
Distribution of the OpenVINO™ toolkit provides a
binary installation for multiple environments,
including the popular Raspberry Pi* SBC, the open-
source version of the Intel® OpenVINO™ toolkit offers
developers the opportunity to build the toolkit and
port application(s) for various environments.
HARDKERNEL CO., LTD's ODROID-C2 is a

microcomputer similar to the Raspberry Pi. The

ODROID-C2 is an ARM64 platform with a powerful
quad-core processor and plenty of RAM (2 GB) for
multiple applications. This article will guide you on
your journey of setting up an ODROID-C2 with
Ubuntu* 16.04 (LTS), building CMake*, OpenCV, and
Intel® OpenVINO™ toolkit, setting up your Intel® NCS
2, and running a few samples to make sure everything
is ready for you to build and deploy your Intel®
OpenVINO™ toolkit applications.

Neural Compute Stick Package

Although, these instructions were written for the
ODROID-C2*, the steps should be similar for other
ARM* 64 SBCs such as ODROID-XU4 as long as your
environment is using a 64-bit operating system. If
your device uses a 32-bit operating system supporting
at least the ARMv7 instruction set, visit this ARMv7
https://intel.ly/2Dy]jpt. general
instructions on building and using the open source
distribution of the OpenVINO™ toolkit with the Intel®
Neural Compute Stick 2 and the original Intel®
Movidius™ Neural Compute Stick please take a look at
the article at: https://intel.ly/2P9kQga.

article: For

Hardware

Make sure that you satisfy the following requirements
before beginning. This will ensure that the entire
install process goes smoothly:

= ARMv7 SBC such as the Orange pi PC Plus

= AT LEAST an 8GB microSD Card. You may utilize the
onboard eMMC module if one is attached, but you will
need a microSD card to write the operating system to
the board

= |ntel® Neural Compute Stick 2

= Ethernet Internet connection or compatible wireless
network

= Dedicated DC Power Adapter
= Keyboard

= HDMI Monitor

= HDMI Cable

= USB Storage Device

= Separate Windows*, Ubuntu*, or macOS* computer
(like the one you're using right now) for writing the
installer image to device with a compatible microSD
card reader

Setting Up Your Build Environment

This guide assumes you are using the root user and
does not include sudo in its commands. If you have
created another user and are logged in as that user,
run these commands as root to install them correctly.

Make sure your device software is up to date:
$ apt update && apt upgrade -y

Some of the toolkit's dependencies do not have
prebuilt ARMv7 binaries and need to be built from
source - this can increase the build time significantly
compared to other platforms. Preparing to build the
toolkit requires the following steps:

Installing build tools
= |nstalling CMake* from source

= |nstalling OpenCV from source

Cloning the toolkit

These steps are outlined below:

Installing Build Tools
Install build-essential:

$ apt install build-essential

This will install and setup the GNU C and GNU
CPlusPlus compilers. If everything completes
successfully, move on to install CMake* from source.

Install CMake* from Source

The open-source version of Intel® OpenVINO™ toolkit
(and OpenCV, below) use CMake* as their build
system. The version of CMake in the package
repositories for both Ubuntu 16.04 (LTS) and Ubuntu
18.04 (LTS) is too out of date for our uses and no
official binary exists for the platform - as such we
must build the tool from source. As of writing, the
most recent stable supported version of CMake is
3.14.4. To begin, fetch CMake from the Kitware*
GitHub* release page, extract it, and enter the
extracted folder:

$ wget
https://github.com/Kitware/CMake/releases/down
load/v3.14.4/cmake-3.14.4.tar.gz

https://intel.ly/2DyJjpt
https://intel.ly/2P9kQga
http://cmake.org/

S tar xvzf cmake-3.14.4.tar.gz
$ cd ~/cmake-3.14.466

Run the bootstrap script to install additional
dependencies and begin the build:

$./bootstrap
$ make -3j4

S make install

The install step is optional, but recommended.
Without it, CMake will run from the build directory.
The number of jobs the make command uses can be
adjusted with the -j flag - it is recommended to set
the number of jobs at the number of cores on your
platform. You can check the number of cores on your
system by using the command grep -c Aprocessor
/proc/cpuinfo. Be aware that setting the number too
high can lead to memory overruns and the build will
fail. If time permits, it is recommended to run 1 to 2
jobs. CMake is now fully installed.

Install OpenCV from Source

Intel® OpenVINO™ toolkit uses the power of OpenCV
to accelerate vision-based inferencing. While the
CMake process Intel® OpenVINO™ toolkit
downloads OpenCV, if no version is installed for

for

supported platforms, no specific version exists for
ARMvV7 platforms. As such, we must build OpenCV
from source. OpenCV requires some additional
dependencies. Install the following from your package

manager (in this case, apt):

= git

= |ibgtk2.0-dev

= pkg-config

= |ibavcodec-dev
= |ibavformat-dev

= |ibswscale-dev

Clone the repository from OpenCV GitHub* page,
prepare the build environment, and build:

$ git clone
https://github.com/opencv/opencv.git

$ cd opencv && mkdir build && cd build
$ cmake -DCMAKE BUILD TYPE=Release -
DCMAKE TNSTALL PREFIX=/usr/local ..

$ make -j4

$ make install

OpenCV is now fully installed.

Download Source Code and Install
Dependencies

The open-source version of Intel® OpenVINO™ toolkit
is available through GitHub. The repository folder is
titled dldt, for Deep Learning Development Toolkit.

$ git clone https://github.com/opencv/dldt.git

The repository also has submodules that must be
fetched:

$ cd ~/dldt/inference-engine
$ git submodule init

$ git submodule update --recursive

Intel® OpenVINO™ toolkit has a number of build
dependencies. The install_dependencies.sh script
fetches these for you. There must be some changes
made to the script to run properly on ARM*
platforms. If any issues arise when trying to run the
script, then you must install each dependency,
individually. For images that ship with a non-Bash
POSIX-Compliant shell, this script (as of 2019 R1.1)
includes the use of the function keyword and a set of
double brackets which do not work for non-Bash
shells. Using your favorite text editor, make the
following changes.

Original Line 8 :
function yes or no {
Line 8 Edit:

yes _or no() {

Original Line 23:

if [[-f /etc/lsb-release]]; then
Line 23 Edit:
if [-f /etc/lsb-release]; then

The script also tries to install two packages that are
not needed for ARM: gcc-multilib and gPlusPlus-
multilib. They should be removed from the script, or

all other packages will need to be installed
independently.

Run the script to install:

$ sh ./install dependencies.sh

If the script finished successfully, you are ready to
build the toolkit. If something has failed at this point,
make sure that you install any listed dependencies
and try again.

Building

The first step, for beginning the build, is telling the
system the location of the installation of OpenCV. Use
the following command:

$ export OpenCV_DIR=/usr/local/opencvé

The toolkit uses a CMake building system to guide
and simplify this building process. To build both the
inference engine and the MYRIAD plugin for Intel®
NCS 2, use the following commands:

$ cd ~/dldt/inference-engine

$ mkdir build && cd build

$ 6cmake -DCMAKE BUILD TYPE=Release
-DENABLE MKL DNN=OFF
—-DENABLE CLDNN=OFF
-DENABLE GNA=OFF
-DENABLE SSE42=0FF
—DTHREADING=SEQ

S make

If the make command fails because of an issue with
an OpenCV library, make sure that you've told the
system the location of your installation of OpenCV. If
the build completes at this point, Intel® OpenVINO™
toolkit is ready to run. The builds are placed in:

/inference-engine/bin/armv7/Release/

Verifying Installation

After successfully completing the inference engine
build, you should verify that everything is set up
correctly. To verify that the toolkit and Intel® NCS 2
works on your device, complete the following steps:

= Run the sample program benchmark_app to confirm
that all libraries load correctly

= Download a trained model
= Select an input for the neural network
= Configure the Intel® NCS 2 Linux* USB driver

= Run benchmark_app with selected model and input.

Sample Programs: benchmark app

The Intel® OpenVINO™ toolkit includes some sample
programs that utilize the inference engine and Intel®
NCS 2. One of the programs is benchmark_app, a tool
for estimating deep learning inference performance.
It can be found in:

~/dldt/inference-engine/bin/intel64/Release6

Run the following command in the folder to test
benchmark_app:

$./benchmark app -h

It should print a help dialog, describing the available
options for the program.

Downloading a Model

The program needs a model to pass into the input.
Models for Intel® OpenVINO™ toolkit in IR format can
be obtained by:

= Using the Model Optimizer to convert an existing
model from one of the supported frameworks into IR
format for the Inference Engine

= Using the Model Downloader tool to download a file
from the Open Model Zoo

= Download the IR files directly from download.01.org

For our purposes, downloading the files directly is

easiest. Use the following commands to grab an age
and gender recognition model:

$ cd ~

$ mkdir models

$ cd models

S wget
https://download.0l.org/opencv/2019/open model
_z00/R1/models bin/age-gender-recognition-
retail-0013/FPl6/age-gender-recognition-
retail-0013.xml

$ wget
https://download.0l.org/opencv/2019/open model

_z00/R1/models bin/age-gender-recognition-

retail-0013/FPl6/age-gender-recognition-
retail-0013.bin

The Intel® NCS 2 requires models that are optimized
for the 16-bit floating point format known as FP16.
Your model, if it differs from the example, may
require conversion using the Model Optimizer to
FP16.

Input for the Neural Network

The last required item is input for the neural network.
For the model we have downloaded, you need a
62x62 image with 3 channels of color. This article
includes an archive that contains an image that you
can use, and it is used in the example below. Copy the
archive to a USB Storage Device, connect the device to
your board, and use the following commands to
mount the drive and copy its contents to a folder
called OpenVINO in your home directory:

$ 1lsblk

Use the Isblk command to list the available block
devices, and make a note of your connected USB
drive. Use its name in place of sdX in the next
command:

mkdir /media/usb
mount /dev/sdX /media/usb
mkdir ~/OpenVINO

cp /media/archive openvino.tar.gz ~/OpenVINO

©r v W U

tar xvzf ~/OpenVINO/archive openvino.tar.gz

The OpenVINO folder should now contain two images,
a text file, and a folder named squeezenet. Note that
the name of the archive may differ - it should match
what you have downloaded from this article.

Configure the Intel® NCS 2 Linux* USB
Driver

Some udev rules need to be added to allow the
system to recognize Intel® NCS 2 USB devices. Inside
the attached tar.gz file there is a file called 97-myriad-
usbboot.rules_.txt. It should be downloaded to the
user's home directory. Follow the commands below to
add the rules to your device:

If the current user is not a member of the users group
then run the following command and reboot your
device:

S sudo usermod —-a -G users “$ (whoami)”

While logged in as a user in the users group:

$ cd ~

$ cp 97-myriad-usbboot.rules .txt
/etc/udev/rules.d/97-myriad-usbboot.rules
$ udevadm control --reload-rules

$ udevadm trigger

$ ldconfig

The USB driver should be installed correctly now. If
the Intel® NCS 2 is not detected when running
demos, restart your device and try again.

Running benchmark_app

When the model is downloaded, an input image is
available, and the Intel® NCS 2 is plugged into a USB
port,
benchmark_app:

use the following commands to run the

$ cd ~/dldt/inference-

engine/bin/intel64/Release

$./benchmark app —-I ~/president reagan-

62x62.png —-m
~/models/age-gender-recognition-retail-

0013.xml

$ -pp ./lib -api async -d MYRIAD

This will run the application with the selected options.
The -d flag tells the program which device to use for
inferencing - MYRIAD activates the MYRAID plugin,
utilizing the Intel® NCS 2. After the command
successfully executes the terminal will display
statistics for inferencing. If the application ran
successfully on your Intel® NCS 2, then Intel®
OpenVINO™ toolkit and Intel® NCS 2 are set up
correctly for use on your device.

Inferencing at the Edge

Now that you have confirmed that your ARMvV7 is
setup and working with Intel® NCS 2, you can start
building and deploying your Al applications or use
one of the prebuilt sample applications to test your
use-case. Next, we will try to do a simple image
classification using SqueezeNetv1.1 and an image
downloaded to the board. To simplify things the
attached archive contains both the image and the
network. The SqueezeNetv1.1 network has already

been converted to IR format for use by the Inference
Engine.

The following command will take the cat.jpg image
that the the
squeezenet1.1 network model, load the model with
the MYRIAD plugin into the connected Intel® NCS 2,
and infer the output. As before, the location of the
sample application is:

was included in archive, use

/inference-engine/bin/armv7/Release/

$./classification sample -i
~/OpenVINO/cat.jpg -m

~/0penVINO/squeezenet/squeezenetl.l.xml -d
MYRIAD

The program will output a list of the top 10 results of
the inferencing and an average of the image
throughput.

If you have come this far, then your device is setup,

verified, and ready to begin prototyping and
deploying your own Al applications using the power of

Intel® OpenVINO™ toolkit.

For more complete information about compiler
optimizations, see our Optimization Notice at:
https://intel.ly/33FbQUU.

Reference

https://software.intel.com/en-us/articles/ARM64-
sbc-and-NCS2

https://intel.ly/33FbQUU
https://software.intel.com/en-us/articles/ARM64-sbc-and-NCS2

How-To Set Up A Basic NAS: Using Samba To Share Files

@ December 1,2019 & By Miguel Alatorre, ameriDroid Technician & Linux, Tutorial

While having a piece of hardware made specifically
for NAS applications is ideal, that doesn't mean that
it's impossible to make one out of any old computer
[or

new single-board computer]! Using Samba,

anyone can turn an old tower or SBC into a file server!

NOTE: While a Samba server can be setup and run on
Windows operating systems, this guide will focus on
the Linux OS.

Now boot up your favorite distro of Linux on your
machine Editor's note: In case you're curious, the blog
picture shows an ODROID-XU4 and 2.5" SSD. Install
the latest version of Samba with the following
commands:

$ sudo apt update
$ sudo apt upgrade

$ sudo apt install samba

Before configuring Samba, make sure that the drive is
mounted and accessible. To mount it, enter sudo
mount {Drive} {Mounting Point}, though make sure to

substitute {Drive} and {Mounting Point} with the
correct drive and directory respectively. [Something
like this: sudo mount /dev/sdal /mnt/extdrive]

NOTE: To find the correct drive, use the fdisk -I
command.

From here we need to dive into the smb.conf file to
setup the playing with the
configuration, it is a good idea to make a backup in-

server. Before

case anything goes wrong. To do so, enter:

$ sudo cp /etc/samba/smb.comf

/etc/samba/smb.comf .bak

Next comes the fun part, to edit the “*.conf” file, use
your favorite text editor, or type:

$ sudo nano /etc/samba/smb.conf

For a simple server enter something similar to the
following at the end of the file:

[Share]

comment = Shared Files

path = /path/to/share/destination
writable = yes

guest ok = yes

browsable = yes

That's all, to access the share on Windows, enter
\Samba.Server.IP.Address in the file explorer search
bar; for macOS, select the “Go” tab and enter
smb://Samba.Server.IP.Address [in either case,
replace Samba.Server.IP.Address with the IP address
of your Samba server]. For Linux, the process may be
different for different distributions, though you
should be able to open the file manager and select a

“Connect to Remote Host” option and enter
smb://Samba.Server.|P.Address.

[Editor's note: Please note that Samba has multiple
security options, and the above configuration is a basic
configuration for storing files that don't contain sensitive
data. If you wish to store and access sensitive data,
please study Samba security in more depth.]

The this
https://ameridroid.com/blogs/ameriblogs/how-to-

source of article is available at:

set-up-a-basic-nas-using-sambaFor more product
updates and how-to tutorials, follow us on YouTube,
our ameriDroid blog,

Instagram!

Facebook, Twitter and

https://ameridroid.com/blogs/ameriblogs/how-to-set-up-a-basic-nas-using-samba

