
hsmag.cc Issue #39February 2021

Feb. 2021
Issue #39 £6

FREE DUAL-CORE MICROCONTROLLER

LOW-COST • HIGH-PERFORMANCE • FLEXIBLE I/O
A NEW MICROCONTROLLER BOARD

FROM RASPBERRY PI

INTRODUCING

http://hsmag.cc

www.okdo.com

WELCOME

FREE PICO
WHEN YOU
SUBSCRIBE

PAGE 46Got a comment,
question, or thought

about HackSpace
magazine?

get in touch at
hsmag.cc/hello

3

Welcome to
EDITORIAL
Editor
Ben Everard

 ben.everard@raspberrypi.com

Features Editor
Andrew Gregory

 andrew.gregory@raspberrypi.com

Sub-Editors
David Higgs, Nicola King

DESIGN
Critical Media

 criticalmedia.co.uk

Head of Design
Lee Allen

Designers
Sam Ribbits, James Legg,
Ty Logan

Photography
Brian O’Halloran

CONTRIBUTORS
Lucy Rogers, Drew Fustini,
Jo Hinchliffe, Mayank Sharma,
Gareth Halfacree, Emily Velasco,
Marc de Vinck, PJ Evans,
Helen Leigh

PUBLISHING
Publishing Director
Russell Barnes

 russell@raspberrypi.com

Advertising
Charlie Milligan

 charlotte.milligan@raspberrypi.com

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London EC1A 9PT

 +44 (0)207 429 4000

SUBSCRIPTIONS
Unit 6, The Enterprise Centre,
Kelvin Lane, Manor Royal,
Crawley, West Sussex, RH10 9PE

To subscribe
 01293 312189
 hsmag.cc/subscribe

Subscription queries
 hackspace@subscriptionhelpline.co.uk

This magazine is printed on
paper sourced from sustainable
forests. The printer operates an
environmental management system
which has been assessed as
conforming to ISO 14001.

HackSpace magazine is published
by Raspberry Pi (Trading) Ltd.,
Maurice Wilkes Building, St. John’s
Innovation Park, Cowley Road,
Cambridge, CB4 0DS The publisher,
editor, and contributors accept
no responsibility in respect of any
omissions or errors relating to goods,
products or services referred to or
advertised. Except where otherwise
noted, content in this magazine is
licensed under a Creative Commons
Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-
SA 3.0). ISSN: 2515-5148.

GET IN TOUCH

 hackspace@
raspberrypi.com

 hackspacemag

 hackspacemag

ONLINE
 hsmag.cc

HackSpace magazine
We’ve been waiting for months to be able to shout about this
issue, so it’s exciting to finally be able to talk about it. Pico is
the latest member of the Raspberry Pi stable and, if you’ve got
a paper version of this magazine, you should now be holding
one in your hands. It’s a thoroughly modern board, designed to
bring the Raspberry Pi ethos to the world of microcontrollers.
It’s cheap ($4), powerful (dual core running at up to 133MHz),
and comes with an innovative Programmable Input/Output
system that lets it do amazingly fast I/O.

We’ve got a whole load of information on how to get started
with this, starting on page 30, but for a sneak peek at what
you can achieve, take a look at page 14 for a game (inspired
by the 1980s classic Zarch) programmed by Eben Upton, and
ported to Pico by Graham Sanderson.

We look forward to seeing what you create with your Picos.
Send pictures of your creations to hackspace@raspberrypi.com
or tag @HackSpaceMag on Twitter.

BEN EVERARD
Editor ben.everard@raspberrypi.com

http://hsmag.cc/hello
mailto:ben.everard@raspberrypi.org
mailto:andrew.gregory@raspberrypi.org
http://www.criticalmedia.co.uk
mailto:russell@raspberrypi.org
mailto:charlotte.milligan@raspberrypi.org
http://hsmag.cc/subscribe
mailto:hackspace@subscriptionhelpline.co.uk
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
mailto:hackspace@raspberrypi.org
mailto:hackspace@raspberrypi.org
https://www.facebook.com/HackSpaceMag/
https://twitter.com/HackSpaceMag
http://hsmag.cc
mailto:hackspace@raspberrypi.com
mailto:ben.everard@raspberrypi.org
https://twitter.com/HackSpaceMag

4

Contents
06 Top Projects
 Special things made by human beings

20 Objet 3d’art
 Brilliant engineering to fetch power from plastic

22 Columns
 Reuse, recycle, remake, remodel

24 Letters
 Send us your musings on making

26 Kickstarting
 A hydroponics platform powered by MicroPython

30 Raspberry Pi Pico
 Say hello to the new microcontroller from Raspberry Pi

48 How I Made: Optical sound decoder
 Squeezing sound out of squiggles on tape

54 Interview: Eben Upton
 The boss of Raspberry Pi on why Pico exists

62 Improviser’s Toolbox Magnets
 Add clean stickiness to anything

2906 SPARK LENS

Cover Feature

30

84 Build an instrument that sounds
and looks unique to you

Tutorial
DIY music

102

74

RASPBERRY PI

LOW-COST • HIGH-PERFORMANCE • FLEXIBLE I/O

CONTENTS

5

Some of the tools and techniques shown in HackSpace Magazine are dangerous unless used with skill, experience and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you
are responsible for your own safety and understanding the limits of yourself and your equipment. HackSpace Magazine is intended for an adult audience and some projects may be dangerous for children. Raspberry
Pi (Trading) Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in HackSpace Magazine. Laws and regulations covering many of the topics
in HackSpace Magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some
manufacturers place limits on the use of their hardware which some projects or suggestions in HackSpace Magazine may go beyond. It is your responsibility to understand the manufacturer’s limits.

68 SoM Traffic lights
 Flash coloured LEDs on a Pico the easy way

74 SoM Raspberry Pi 400
 More ways to play with this does-it-all machine

78 Tutorial FreeCAD
 Design parametric parts

84 Tutorial DIY music
 Build a capacitive touch musical sculpture

90 Tutorial NeoPixels with PIO
 Flash coloured LEDs on a Pico the hard way

96 Tutorial Lasers
 Add touchscreen control to a laser cutter

67 FORGE

102 Best of Breed
 The best tiny gaming platforms

108 Direct from Shenzhen Hot air gun
 Melt solder paste with only a slight risk of electric shock

110 Review Bangle.js
 Massive amounts of programmability on a human wrist

112 Review micro:bit version 2
 The BBC’s physical computing platform levels up

101 FIELD TEST

Interview
Eben Upton

Hot air gun

54 On why the Raspberry Pi Pico
came into existence

108 Sometimes cheap isn’t cheerful
– sometimes it’s DANGEROUS!

06

Direct from Shenzhen

112

26
110

FREE PICO
with your

subscription
PG46

6

Top Projects

REGULAR

Right
Paul makes many
things (including
these hands) out
of wood reclaimed
from old pallets

Giant CNC-carved
wooden hands

ne day we’ll be able to hug strangers again
without fear of social opprobrium. Until that
time, there’s this ingenious way of maintaining
social distancing made by Paul of Jackman Works.
The design looks self-explanatory at first – the
fingers of each hand are linked by a cord to the

fingers of the wearer’s hand, so each digit is exactly as moveable as
your own fingers.

That simplistic view obscures the engineering that’s gone into
this build. Inside each finger there’s a length of bungee cord acting
as an extensor tendon, so that the finger will straighten out when
Paul isn’t actively flexing it. And the whole thing is cut out on a
CNC machine, so the joints work every single time. Give him a
big hand!

O
By Paul Jackman jackmanworks.com

http://jackmanworks.com

7

SPARK

Top Projects

REGULAR

8

Right
Have you ever wanted
to smash subatomic
particles into each
other in a huge
subterranean physics
lab? If not, what’s
wrong with you?

f you’ve ever read Dan Brown’s magisterial work Angels
and Demons, you’ll be aware of the Large Hadron Collider
at CERN, the European Organisation for Nuclear Research.
In order to bring the joy of theoretical physics to as many as
possible without the attendant risk of creating anti-matter and
blowing up the Vatican, CERN’s physics education facility has

come up with this: the linear particle accelerator.
Instead of ions and protons, the particle here is a ping-pong ball

coated in graphite, but the principles are the same as in the real thing
– a series of electrical charges accelerates the particle down the tube.
There are two versions available (CERN provides STL files and a bill of
materials to build your own), one a simple on/off model, and the other
controlled via an Arduino.

I
By CERN hsmag.cc/Cern

Linear accelerator

http://hsmag.cc/Cern

9

SPARK

Top Projects

REGULAR

10

Right
Paul took the radio’s
bakelite case to
his local car body
shop to get them
to polish it up – the
results are lush

Mesmeriser 2

his Bush DAC90 radio was given to Paul Parry
with the request that he turn it into a Nixie clock.
Whereas it’s commonplace to replace old radio
internals with a Bluetooth speaker and amplifier, this
time Paul removed the radio circuitry and replaced
it with a series of addressable LED rings. These are

diffused with some Mylar sheeting, and protected by the original
mesh grille.

To preserve the original look of the radio, there’s a 3D-printed
light-box, complete with warm white LEDs to light up the original
control panel.

T
By Paul Parry hsmag.cc/BadDogRadio

http://hsmag.cc/BadDogRadio

11

SPARK

Top Projects

REGULAR

12

13

SPARK

Left
The RoboTrombo
was inspired in
part by Martin
Molin’s Wintergatan
musical automata

RoboTrombo

obots are getting above themselves. Not content
with building cars, laying undersea cables, and all
manner of industrial applications, they’re turning
their attention to the arts as well. This robotic
trombone player, by Isak Monrad-Aas and Thomas
Hoffmann, comprises a pneumatic actuator, a linear

potentiometer, two solenoid valves, a servo, and a stepper motor.
For the moving parts, all are controlled by an Arduino Nano.

That replaces the arms and brain of a human player; an air
compressor and a pair of artificial latex lips replace the human’s
mouth and lungs.

On this occasion, man’s reach has exceeded his grasp, as
it doesn’t sound at all like a trombone and instead is “an over-
engineered noise machine”, as Isak puts it. We don’t care – it’s
still brilliant.

R
By Isak Monrad-Aas & Thomas Hoffmann hsmag.cc/RoboTrom

http://hsmag.cc/RoboTrom

Top Projects

REGULAR

14

Pico Zarch

arch (or Lander as its original demo was known)
came out in 1987 on the Acorn Archimedes.
For the time it was a bit of a revolution – while it
wasn’t the first 3D game, it was probably the most
sophisticated of its time. Schoolchildren across
the UK (including HackSpace magazine editor Ben

Everard) spent many hours of computer lessons attempting to
control the fickle flying machine with the mouse.

What better game, then, to show off the power of RP2040? Eben
Upton created this version (inspired by the original Zarch) to run in
HTML5 (you can play it at hsmag.cc/Ajax3D), and it was ported
to Pico by Graham Sanderson. It currently takes input via UART (so
you need a computer to feed the controller data to a serial port),
but everything else runs on the Pico. Output is via a VGA connector
controlled by a resistor DAC. Audio is output through PWM or I2S.

There are more useful things you can do with Pico, but we’re
quite happy here reliving our schooldays with Zarch.

Z
By Eben Upton and Graham Sanderson

Right
We’ll look more at
video output using
Pico next issue

http://hsmag.cc/Ajax3D

15

Top Projects

REGULAR

16

Frozen pendant

ree-form soldering lends itself to symmetrical,
unique designs, and what could better encapsulate
symmetry and uniqueness than a snowflake? This
is Czech maker and artist Jiří Praus’s latest creation: a
pendant inspired by Disney’s instant classic Frozen.

It’s lit up by cold, white LEDs, with the light
diffused through Iceland Blue Crystal Clear PLA by Fillamentum.
Plans and instructions are available at Jiří’s Patreon site
patreon.com/jiripraus.

F
By Jiří Praus patreon.com/jiripraus

Right
“My soul is
spiralling in frozen
fractals all around”

http://patreon.com/jiripraus
http://patreon.com/jiripraus

17

SPARK

Top Projects

REGULAR

18

Polyhedron light-shade

hen her local makerspace acquired a laser
cutter, mechanical engineer and maker
Victoria Joy knew exactly what she wanted
to use it for. This light-shade, in 1.5 mm
plywood, is based on the geometry of a
deltoidal hexecontahedron, a Catalan solid

with 60 identical kite-shaped faces. It throws interesting shadows
when lit, and doesn’t look too shabby during the daytime either.

Full instructions, including a description of the design process,
can be found on Instructables. Victoria explains how she modelled
the polyhedron, and designed the curvy plywood shape that was
then laser-cut multiple times, and assembled to form an almost
spherical structure.

W
By Victoria Joy hsmag.cc/LightShade

Right
As well as being a
maker, Victoria’s
an environmental
lawyer, wine-taster,
and a founder
member of Otley
Maker Space

http://hsmag.cc/LightShade

19

SPARK

Objet 3d’art

REGULAR

20

Objet 3d’art
3D-printed artwork to bring more beauty into your life

his is WinDIY. It’s an almost
entirely 3D-printed HAWT, or
Horizontal Axis Wind Turbine.
And its creation was partly down
to accident. Its creator, Fabian

Steppat, happened to buy some magnets at
a flea market. Rather than use them to stick
notes to his fridge, he designed and built a
3D-printed disk generator, featuring 40
neodymium magnets and twelve custom-
wound coils (we would normally say
hand-wound, but Fabian built a machine to
automate this process).

Having found himself with a generator, he
then thought it would be a good idea to
“harvest some free watts from mother
earth”, and so the seed for WinDIY was
sown. We invite you to check out Fabian’s
full project page at hsmag.cc/WinDIY,
where he goes through the full design
considerations, but we’ll leave you with the
thought that the whole thing can be made
on a 20×20 cm FDM printer.

T

Left
Almost every part of
WinDIY is 3D printed
from scratch

http://hsmag.cc/WinDIY

SPARK

21

Lucy Rogers

COLUMN SPARK

ad weather has broken
a sea-wall near me and
uncovered the infill –
rubbish from over 60 years
ago. Glass bottles, broken
plates, bricks, and animal

bones now scatter the foreshore. As I kick
a piece of green crockery, it reminds me of
the grim Sunday dinners my nan cooked
– and that I had to clean my plate before
being let out into Grandad’s workshop
to collect the brass curls – the swarf
that came off his lathe – that I would
use for all sorts
of decorations.

As the tide
recedes, I enjoy
beach-combing
to see what other
secrets of the past
are revealed – what
my grandparents’
generation threw
away. I froze when
I thought I saw a hand grenade, but on
closer inspection, it was just a mud-filled
jar that once contained Peck’s meat-paste.
Someone with a metal detector found
an old shilling and lumps of rust, orange
flakes falling off like confetti, which was
too far deteriorated to identify.

To get to this bit of beach, I climb up
and over a man-made hill, now turned
into a wildflower meadow. But a few
metres below my feet is the rubbish of
my generation. It’s a reclaimed old refuse
tip. If the sea ever breaks this open, I don’t
think our grandchildren are going to be
so curious about what defines us – the

polythene bags, nappies, and broken
plastic toys that we threw away.

But maybe we have started to make
a move from a throwaway society.
Television seems to be full of items
being repaired, restored, or recycled.
I know someone who takes old AVO
meters, and turns them into steampunk
clocks. At first, I felt this was sacrilege,
but then I realised that the hundreds he
had acquired were destined for landfill.
I now smile when I see old aeroplane
parts turned into desks, lamps, and coffee

tables. A part of our
heritage is being kept
– the parts reused.

I know people who
use old tools – such
as wooden moulding
planes – with the
handles worn smooth
and shaped over
years of use. Maybe
it’s not as quick as a

router, but the connection it gives to those
skilled workers of the past is apparently
worth it.

I realise that there is a cost implication
of buying things that are built to last –
which is why I am delighted to see many
communities have ‘repair cafés’ where
people can donate broken tools and
equipment to be fixed and resold, or they
can bring in their own items for repair.

I am also excited that the circular
economy – a closed-loop system where
everything is reused or recycled – is
gaining traction. Maybe in the future,
rubbish tips will be a thing of the past.

Restoration, conservation,
or recycle?

Keeping things out of landfill

B

Lucy Rogers
@DrLucyRogers

Lucy is a maker, an engineer,
and a problem-solver. She is
adept at bringing ideas to life.
She is one of the cheerleaders
for the maker industry, and is
Maker-in-Chief for the Guild
of Makers: guildofmakers.org

 I froze when I

thought I saw a hand
grenade, but on closer

inspection, it was just a
mud-filled jar

22

https://twitter.com/DrLucyRogers
https://www.guildofmakers.org

COLUMN

23

SPARK

Drew Fustini

Drew Fustini

Drew Fustini is a hardware
designer and embedded Linux
developer. He is a board member
of the Open Source Hardware
Association and the BeagleBoard.
org Foundation. Drew designs
circuit boards in KiCad for OSH
Park, a PCB manufacturing
service, and maintains the Adafruit
BeagleBone Python library.

egular readers of
HackSpace magazine
may remember that I took
over this column from the
iconic hardware hacker
Andrew ‘Bunnie’ Huang.

Recently, Bunnie has been working on a
really exciting new project that I wanted
to share in this month’s column: the
Precursor. This impressive piece of open-
source hardware engineering began with
the question, ‘how do we trust hardware?’

Software developers can use a digital
signature to ensure that the bits on our
computer are the same bits that are on the
server, as opposed
to a counterfeit
version with hidden
malware. It is not
possible to have that
same level of trust
when it comes to
hardware, because
there are many
stages between the
hardware designer
and the user. The Snowden files revealed
the ways in which the NSA implanted
chips into devices, including opening
manufactured objects and adding
in beacons during the distribution
process (hsmag.cc/NSA).

There are ways to inspect and verify a
piece of hardware, right the way down to
the chip level, but this process is complex
and expensive. Perhaps your personal
threat model doesn’t include being
worried about the NSA (or GCHQ), but it’s

not just spy stuff: there are a lot of people
– investigative journalists, lawyers,
activists, and political or public figures –
whose hardware is a real target.

This is where the Precursor comes in:
an open-source hardware development
platform for secure mobile computation
and communication. The Precursor is
a pocket-sized, lightweight device with
a display, a physical keyboard, and a
battery with a stand-by time measured
in days (hsmag.cc/Precursor). In place
of hardwired silicon, it is powered by an
FPGA soft-core system-on-chip (SoC),
allowing developers to inspect, verify,

and customise pretty
much every aspect
of its operation. The
rest of the hardware
has also been
designed for ease
of verification, from
the main PCB layout
to the choice of LCD
screen and keyboard.

This device is part
of years of research, experimentation, and
thought by Bunnie and his collaborators,
including Sean ‘xobs’ Cross. Happily,
this project is now well on the way to
becoming a reality after raising over
$400,000 in crowdfunding orders on
Crowd Supply. For the security-conscious
– or security-curious – among you,
Bunnie has written a number of excellent
blog posts on security, open hardware,
and design that are really worth seeking
out (hsmag.cc/BunnieBlog).

How secure is
your hardware?
A computing platform you can trust

R

The Precursor is a

pocket-sized, lightweight
device with a display, a

physical keyboard,
and a battery

@pdp7

http://BeagleBoard.org
http://BeagleBoard.org
http://hsmag.cc/NSA
http://hsmag.cc/Precursor
http://hsmag.cc/BunnieBlog
https://twitter.com/pdp7

Letters

REGULAR

Letters ATTENTION
ALL MAKERS!

If you have something you’d
like to get off your chest (or
even throw a word of praise

in our direction) let us know at
hsmag.cc/hello

24

OOH-ER
I’m sitting here watching the Carry On
films at Christmas, Sid James chortling
away, when I turn to HackSpace magazine
issue 38, and a how-to on slapping jellies
and touching bananas to produce music.
I’m going to play around with some sound
files and make my very own innuendo-
laden sound effect lab. Cheers everyone!

Will
Boston (the one in England)

Ben says: I was more impressed with the
giant walk-on piano keyboard that Helen
Leigh made in the same tutorial, but
maybe that just shows the generational
divide (the scene in Big with Tom Hanks
playing the giant piano means more to me
than any daft British comedy from the
1960s). Either way, I’m glad that something
has fired up your creative juices!

GET PICO
If you're reading this on
an electronic device you
won't have a Pico to play
with yet – but you can
get one for free with a
£10 three-issue
subscription. Head to
hsmag.cc/FreePico
for more details.

http://hsmag.cc/hello
http://hsmag.cc/FreePico

SPARKSPARK

APOLOGY
Last issue, we featured Eirik Brandal’s
Waldian sculpture, winner of the Hackaday.
io circuit sculpture contest, we didn’t credit
the image creator though – that was Miha
Fras. Sorry about that.

25

MOVIES
Ever since the day my auntie decided I would be too young to understand the
plot of Back to the Future, and took me to see The Care Bears Movie instead, I’ve
always wanted my own time machine – do all the wiring, lights, flux capacitor,
make a little Mr. Fusion nuclear reactor, and some time circuits, just like the
makers in your latest issue. In fact, I’ve kept hold of Jérôme Montignies’s time cir-
cuit clock from HackSpace magazine issue 37, with the intention of making one
myself over a period of enforced idleness. But there’s one last part that’s eluding
me. I just can’t seem to find a DeLorean to put it all in for less than £25,000, which
kind of takes it out of weekend project territory, budget-wise. Do you reckon it
would work in a Citroën 2CV?

Mark
Carcassonne

Ben says: Do it. Do it now.

DING-DONG!
There’s one flaw to putting your doorbell
on the internet (issue 38). It makes the
wild assumption that people (e.g. delivery
drivers) will actually press the button, and
not just throw a 'sorry we missed you'
card through the letterbox and run away.
What it really needs is some sort of laser
trip-wire that will alert me when people
get close, or a microphone to pick up on
the old-fashioned visitors who physically
knock on the door.

Brian
Dublin

Ben says: In the interests of fairness,
Andrew Lewis had to assume goodwill
from the users of that project. Of course,
there are always people who abuse the
rules around package deliveries (Mark
Rober and his glitter bombs are dealing
with them one by one), but we live in
hope, and must assume that most people
are good. In any other way lies madness.

26

Crowdfunding now

REGULAR

crowdsupply.com

lants are great things to have around.
They look nice, they convert carbon dioxide
into oxygen, and sometimes you can even
eat them. However, they do take a bit of
looking after. Eduponics Mini is an

ESP32-based kit designed to make caring for these
fickle beings a little easier.

The control board includes the microcontroller and
sensors for light, temperature, pressure, and
humidity. It’s also got connectors to add in soil
moisture sensors, and – crucially – a pump so you can
get it to water your plants automatically.

There’s an accompanying smartphone app which
lets you keep control of your garden when you’re on
the go, but the controller board runs MicroPython, so
you can program it to run however you like.

We’ve not tested one out, but it looks like it could
be a great option for keeping your houseplants alive,
or even getting your greenhouse running smoothly. It
looks perfect for the hacker who’s more used to
programming than tending plants.

P

Programmable plant care

CROWDFUNDING
NOW

Eduponics Mini

http://crowdsupply.com

27

When backing a crowdfunding
campaign, you are not purchasing
a finished product, but supporting
a project working on something
new. There is a very real chance
that the product will never ship
and you’ll lose your money. It’s
a great way to support projects
you like and get some cheap
hardware in the process, but if
you use it purely as a chance to
snag cheap stuff, you may find
that you get burned.

BUYER
BEWARE !

http://rpf.io/makerspace

LENS
HACK MAKE BUILD CREATE
Uncover the technology that’s powering the future

Harness the power of mysterious
forces more constructively than
sticking things to the fridge

IMPROVISER’S TOOLBOX:
MAGNETS

Long-lost voices come back to
life with this ingenious optical
sound extractor

HOW I MADE
OPTICAL SOUND
DECODER

48
PG

62
PG

Why on earth would you spend £3m
developing a chip, only to give it
away on the front of a magazine?

INTERVIEW:
EBEN UPTON

54
PG

PG 30
RASPBERRY PI

LOW-COST • HIGH-PERFORMANCE • FLEXIBLE I/O

Raspberry Pi Pico

30

FEATURE

I
f you’re reading the paper version of this
magazine, you have in your hands right
now a brand new microcontroller board. If
you’re reading the digital version, you can get
a free Pico when you get a £10 three issue
subscription. Head to hsmag.cc/FreePico

for more details. Alternatively, you can buy one for
$4 plus local tax and shipping from your favourite
electronics retailer.

Raspberry Pi Pico is designed to be high-
performance, low-cost, and provide a flexible way
of interacting with other hardware. With two ARM
Cortex M0+ cores running at up to 133MHz and

264kB of RAM there’s plenty of processing power
for most tasks. The 26 GPIO pins include two I2C,
two SPI, two UART, three analogue inputs, and a
new feature called Programmable I/O (PIO) which
we look at in detail on page 40. There's also 2Mb of
flash for your programs and data.

Using these features, Pico could be the brains
behind your next robot, DIY smart gadget, games
system, electronic musical instrument, and more.

We’ll look at all these features of the chip, but no
doubt you’re itching to start using it, so let’s dive
straight in and have a play. Turn the page to learn
how to connect to MicroPython.

RASPBERRY PI

LOW-COST • HIGH-PERFORMANCE • FLEXIBLE I/O

http://hsmag.cc/FreePico

31

LENS

32

FEATURE

Raspberry Pi Pico

MICROPYTHON

W e'll take a detailed look at
the features of Pico in the
next few pages, but let's
start by diving right in and
coding. There are currently
two ways of programming

your Pico: MicroPython and C/C++. Let’s take a look
at MicroPython here as it’s the quickest and easiest
way to get started. If you'd rather get started with C,
take a look at rptl.io/rp2040.

First, you need to set your Pico up with the
firmware. Head to rptl.io/pico and download a UF2
file with the latest version of MicroPython. Then,
unplug your Pico (if it’s already plugged in), press the
BOOTSEL button, plug it in to your computer, and
release the button. You should now see Pico appear
as a USB mass storage device. Drag and drop the
UF2 file onto the device and it will disappear. Your
Pico is now running MicroPython. You can repeat
this process to get MicroPython back if you program
it with different firmware (or a C/C++ program).

As well as your Pico, you need a little bit of
software on your computer. You can use whatever
text editor and serial monitor you like, but for ease

DIVE STRAIGHT IN

The two most likely ways of damaging your Pico are putting
too much voltage into it, and drawing too much current from
an input/output pin. Pico works on 3.3 V, so you should never
put more than this into one of the pins. Applying a lower
voltage to a pin won't damage it, but may mean that it doesn't
correctly register when a pin is high. If you need to read a
lower voltage, you could use an analogue input.

The maximum recommended current draw is 12mA. If
you’re unsure of whether a component you connect will draw
more than this, you can add a resistor of at least 275 ohms.
This may reduce the current to the point the component won’t
work, but it will mean that you don’t damage your Pico.

If you need to drive a component that needs more than
this (such as a motor), you’ll need a circuit that uses your low
current GPIO pin to switch a high-powered circuit. This can
be as simple as a transistor, or you can get modules for driving
high-current devices such as motors.

STAYING SAFE

Above
There's a green LED
on pin 25, which is a
great way of testing
out that everything's
working

of use we recommend Thonny, at least for getting
started. You can download this from thonny.org.
It’s available for most major platforms including
Windows, macOS, Linux, and Raspberry Pi.

Once Thonny is installed, open it. You need to
tell it how to connect to your Pico, so go to Run >
Select Interpreter. You should pick ‘MicroPython
(RaspberryPi Pico)’ in the first box. If this isn’t
available, then you’re using an older version of
Thonny – if possible, you should update this, but
if not, you can use ‘MicroPython (Generic)’. After
selecting the version, you need to select the serial
port your Pico’s connected to. Depending on what
else you have connected to your computer, you may
only have one option there. If there’s more than one,
it may take a little trial and error to find the right
one. You can always unplug Pico to see which port
disappears from the list, then plug it back in. When
it’s connected properly, you’ll see something like the
following in the Shell section of the main interface:

MicroPython v1.13 on 2020-10-14; Raspberry Pi
Pico with cortex-m0plus

http://rptl.io/rp2040
http://rptl.io/pico
http://thonny.org

33

LENS

the file (this author prefers to save them on his
computer rather than the Pico as it’s easier to keep
track of them there), then you’ll see the following in
the interpreter:

>>> %Run -c $EDITOR_CONTENT
hello world

Interactive mode is great for quickly trying
something out when you don’t know the exact
syntax or how to do something.

Now we’ve got our development environment
set up and running, let’s try a simple program. As is
traditional with microcontrollers, let’s make the LED
flash on and off.

Hitting the Run button to set your script going is great for
testing things out, but when you’re running a project, you
don’t want to have to connect your Pico to a computer
and run the file. Fortunately, there’s a way around this. If
you save your file on the microcontroller as main.py, it will
automatically run each time you power on the device.

RUNNING PERMANENTLY

THERE ARE
TWO DIFFERENT
WAYS OF RUNNING
MICROPYTHON CODE

“

”

Above
The Thonny interface
is quite stripped back,
but provides quick
and easy access to
the basic features

There are two different ways of running
MicroPython code. You can type it in the interpreter
(at the bottom of the window where lines start
with >>>). Here, each line is executed as soon
as you press ENTER. For example, if you enter
print("hello world"), you’ll immediately see ‘hello
world’ come back. The other is in the text editor.
Here, you write a script and, when you’re ready,
you run the whole script in one go. For example,
enter print("hello world") here and nothing should
happen. If you press the green arrow in the toolbar
(or F5 on your keyboard), you’ll be prompted to save

http://main.py

34

FEATURE

Raspberry Pi Pico

Above
You can see the
pin numbers on
the bottom of
the board

I’D REALLY
LIKE TO SEE
PEOPLE MAKE
LITTLE GAMES
CONSOLES

“

”

Meet the

team
We spoke to some of the people behind the Raspberry Pi
Pico. Look out for these boxes to hear about the board from
the folks who made it:

HackSpace: What are you excited to see people do
with Pico?

Luke Wren, Hardware and software: There’s a guy I’ve
followed on YouTube for a while called CNLohr and he’s
done some really cool stuff with other microcontrollers –
things like bit-banging NTSC video – and I think PIO is just
made for people like that. They’re going to have a lot of fun
bit-banging things you wouldn’t ever expect to see on a
microcontroller. I’m excited to see what people like that do
with PIO once they work out what it can do and the things
you can connect it to.

HS: Do you have some specifics in mind?

I’m pretty sure you can bit-bang 10 Base-T Ethernet which
is cool for a connected sensor. There’s also been this
undercurrent on this chip of doing SNES-style graphics
without building in any specific graphics hardware. I’d
really like to see people make little games consoles and
things like that.

35

LENS

import machine
import time

pin = machine.Pin(25, machine.Pin.OUT)

while True:
 pin.value(1)
 time.sleep(1)
 pin.value(0)
 time.sleep(1)

This will continue to run forever unless you press
CTRL+C to stop it.

If you’re unfamiliar with Python, one of its more
unusual features is that whitespace is important, so
you need to have a consistent indent for the lines
after while True:.

This program first imports a pair of modules that
it’ll need: machine brings in the important bits for
accessing the underlying hardware, and time brings
in the sleep method that we need to pause the loop.

First, we have to set the function of the pin; here,
machine.Pin.OUT has set it to output. If we wanted
to read values in, we could use machine.Pin.IN.
You can also set more advanced functions such as
pull-ups here.

That’s the basics of running MicroPython on Pico.
If you’re familiar with Python or MicroPython already,
then you may be happy to dive right in and start
programming. You can find the core docs at
docs.micropython.org/en/latest.

If you’re new to this programming language, then
you can get the brand new book Get Started with
MicroPython on Raspberry Pi Pico. Buy it online or
download it for free from hsmag.cc/MPBook.

If you’d just like to take a look at some example
code, you can see the examples from the book at:
hsmag.cc/dfmGtJ.

There are also some examples showing off the
unique features of Pico at: hsmag.cc/Ly7wV0.

Turn the page and we’ll take a look at what the
different parts of your Pico are, and how they work
together to make the microcontroller board run.

Pico is based on the RP2040 microcontroller. This microcontroller is like a stripped-down
computer. It’s got two processing cores and some RAM. There’s also some flash storage on
the Pico board (see overleaf for full specs). The main difference between a microcontroller
and a normal computer is that the microcontroller isn’t designed to be a complete platform in
itself. You program it from a normal computer (you can use Windows, macOS, or Linux – such
as Raspberry Pi Model A or B), and then the microcontroller runs this program.

On this page, we’ll guide you through connecting your Pico to your computer and getting a
programming environment (MicroPython) set up so you can start programming your Pico.

WHAT IS A MICROCONTROLLER?

Most of MicroPython is standard, and the code that runs
on a Pico will also run on a PyBoard or other MicroPython-
compatible microcontroller. However, all microcontrollers
have different functionality. This is expressed through board-
specific modules.

For RP2040, this means the RP2 module. In here you'll find
a few bits, but perhaps the most useful are the sections for
accessing Programmable IO. This lets you program state
machines that run independent of the CPU and handle data
transfer protocols through the GPIO pins. See page 40 for
more information.

There are some examples of using these in the MicroPython
Examples GitHub repository at hsmag.cc/qXiV0f. There are
full details on how to use these in the Pico Python SDK book
available at rptl.io/pico.

RP2040-SPECIFIC FEATURES

THERE’S ALSO
2MB OF FLASH
STORAGE
ON THE
PICO BOARD

“

”

Above
After soldering male
pins to Pico, you can
put it on a breadboard
for easy connection
to electronic
components

Below
This official guide
book will help you to
start programming
your Pico

RP2040-SPECIFIC FEATURESRP2040-SPECIFIC FEATURES

http://machine.Pin.IN
http://docs.micropython.org/en/latest
http://hsmag.cc/MPBook
http://hsmag.cc/dfmGtJ
http://hsmag.cc/Ly7wV0
http://hsmag.cc/qXiV0f
http://rptl.io/pico

36

FEATURE

Raspberry Pi Pico

RASPBERRY PI

WHAT’S ON YOUR BRAND NEW
MICROCONTROLLER BOARD?

1
 The microcontroller at the heart of Pico is a brand new

chip designed by Raspberry Pi. It’s high-performance,
low-cost, and has a host of flexible interfacing options.
We look at all this on the next page.

2 This oscillator helps your microcontroller keep ticking
along at the right speed.

3
 Alongside the RP2040 chip, your Pico also includes 2MB

of flash memory. If you’re used to the gigabytes of
memory you get in modern computers, this may not
sound like much, but microcontroller programs don’t
tend to be very large. If you do need to store lots of data
(such as if you’re logging sensor values), you could add
additional storage such as an SD card.

4
 The micro USB port on the front of Pico can be used to

supply power and to send programs and data to the
board. It also has more advanced functions. Your Pico
can act as a USB device and interact with a computer
in a similar way to any other USB device such as a
keyboard or mouse. Want to build a custom game
controller? Pico can do that.

 A little unusually, Pico can also act as a USB host. This
means you can plug other USB devices into it. You can
use a regular USB keyboard or mouse to get data in.
In principle, any USB device should work, but bear in
mind that your program will need to understand how to
communicate with the device.

 There are some examples of both device and host USB
at hsmag.cc/kVFRIG.

5
 You can supply voltage either through the USB port or

VSYS. If you attach a power supply (such as a battery)
to VSYS via a Schottky diode, the system will take the
larger of the two voltages. This allows you to have a
backup power supply, or a separate power supply and
not need to worry about problems when plugging Pico
in for programming.

 Pico can take a wide range of input voltages: from 1.8 V
to 5.5 V. You can power it from a single lithium-ion cell,
three AA batteries, or any other power source in the
range. There are more details on powering Pico, and
example circuits, in the Pico data sheet at rptl.io/pico.

6
 You can turn the 26 GPIO pins on and off, or read

whether or not they have voltage applied to them from
your code. They can turn LEDs on and off, read button
presses, and control all manner of other hardware. If
you need to interface with other digital devices, there
are two each of I2C, SPI, and UART. There’s also a
flexible I/O controller called PIO that makes it easy to
connect to a wide range of devices (see page 40).

7
 GPIO pins 26, 27, and 28 can all read analogue values.

They return a 12-bit number that shows the voltage
(between 0 and 3.3 V). If you’d rather use a different
maximum voltage (up to 3.3 V max), you can set it via the
ADC_VREF pin.

8
 The button on Pico is used to enter programming mode.

Unplug Pico, hold down this button, then plug it in, and
it’ll show up as a USB mass storage device that you can
copy UF2 files to.

 You can get input from this button in your C/C++
programs – take a look at this example for details on
how: hsmag.cc/xbYOhc.

9
 GPIO 25 is connected to a green LED that you can

program however you like. It can be an indicator that
something’s happening on your project, or even a Morse
code output.

10
 Debugging microcontrollers can be tricky. When

something’s not working, it’s not always easy to work
out what’s not working, let alone why. Fortunately, Pico
exposes three pins on the bottom edge, and these are
for debugging using the Serial Wire Debug (SWD)
protocol. If you’re using a Raspberry Pi as your main
device to program Pico, you can connect these directly
to the GPIO pins with no extra hardware other than a
few wires. If you’re using a different computer, you’ll
need an extra adapter. Pico can be used as a debug
adapter for another Pico using the Picoprobe program.

 This interface allows you to add up to four breakpoints
and two watchpoints. This gives you much more control
about how your program runs as you develop software.

PICO CAN ALSO
ACT AS A USB HOST

“
”

http://hsmag.cc/kVFRIG
http://rptl.io/pico
http://hsmag.cc/xbYOhc

37

LENS

1

2

8

9

4 5

6

10

7

3

For more information,
take a look at Getting
Started With Raspberry
Pi Pico, which you can
download from rptl.io/pico

HS: The board has a repeating pattern of four GPIO pins,
then ground, then four GPIO pins, etc. Does this reference
something, or does it just work out nicely?

James Adams, Pico design: This chip is built on TSMC
40 nanometre process – the same process that the
main processor on Raspberry Pis (except for Pi4) use.
That’s a relatively modern silicon process to use for a
microcontroller. What that gives you is small transistors. It’s
been around since about 2008/2009 so it’s quite mature, and
it’s not that expensive these days.

Because of the small transistors and the high speeds,
you get very fast edges on your signal transitions. So the
frequency content of those edges is high. So what the
grounds are doing … if you have a signal pin going out to
your circuit, you will also have a corresponding ground
current coming back – it’s just physics. The idea is that if you
have a long loop where the current has to go out and come
back in again, that is effectively an aerial. The other thing
is that if you have multiple signal currents going out and a
single ground pin, all of the signal currents are coming back
through that single pin.

There are two things [these ground pads are] doing
here. One is separating the return currents, which reduces
cross-talk in signals. So if you’ve got a big old bus waggling

about and only a single ground pin, a lot of those signals
will get cross-talk because they’re going through the same
ground. This is not ideal from a circuit perspective. But also,
they’ll radiate more. Those are what will emit RF. If you want
to build products that don’t radiate, to pass your class B
radiation compliance (that you have to do if you build real
products), you don’t want things radiating. That’s a very
long-winded way of saying that if you want fast signals, you
need lots of grounds. You want to minimise your current
loops, and you want to minimise your cross-talk.

Also, it’s a useful thing to have. When attaching things to
the GPIO you often need a ground pin too. It’s a useful thing
to have irrespective of all the engineering-y reasons.

Meet the

team

hsmag.cc/FreePico

Get a FREE

PICO
when you subscribe

from £10

http://rptl.io/pico
http://hsmag.cc/FreePico

38

FEATURE

Raspberry Pi Pico

RP2040 IS MORE
THAN CAPABLE FOR
MOST USE-CASES

“

”

RASPBERRY PI

MICROCONTROLLER

HS: What is the process of making a new microcontroller?

Nick Francis, Hardware design: We knew we wanted
to do a microcontroller, and we knew we wanted to do
something small and cheap and fast. The M0+ is a tiny, tiny,
tiny microcontroller … quite early on we decided that dual
core was a simple thing to do for us. They’re so small!

Early on, we had discussions like: ‘How many UARTS?
How many I2Cs do you want?’ Do we want two or three or
six, or whatever? Then we started to throw more and more
gates at it. Instead, we decided to build PIO [see overleaf
for details] so – I did some early architecture work on that
trying to build a completely flexible IO block. Luke [Wren]
then took that to another level, and it’s become a much
more flexible beast that can really be used to emulate any
peripheral that we would want to use.

The PIO then became a bigger and bigger part of the
chip, so we adjusted some of the architecture. We put in a
much more flexible DMA controller that was super-efficient
and highly tuned for targeting working with the PIO, and
other peripherals. We were trying to use every gate we
could – use every cycle to get the most performance out
of the chip.

Meet the

team

39

LENS

PROCESSING POWER
RP2040 has two 32-bit ARM Cortex-M0+ processors
running at up to 133MHz (or even more if you want
to try overclocking). Microcontroller performance
is a bit more nuanced than, say, PC performance
because size, power, and cost trade-offs are
often important.

RP2040 is more than capable for most common
microcontroller use-cases: you should find that it
has plenty of horsepower. Additionally, RP2040 has
optimised floating-point routines in the boot ROM
which give it a speed boost.

LOW POWER
The Cortex M0+ cores in Pico don’t suck up a lot of
power when running normally, but if you want your
projects to run long-term on battery power, they
may draw a little too much current. Fortunately, they
have a couple of features to help get the most out of
limited power sources. Sleep and Dormant modes
can drop the power consumption of a Pico down
to around 1 mA. In these states, the Pico can’t do
any processing, but it can wait for a particular event
(such as time signal from the real-time clock, or a
signal on a GPIO pin), then wake up and perform
a particular task (such as read a sensor and save
the value).

DUAL CORE
There are two Cortex-M0+ processor cores in Pico,
and each of them is capable of the same set of
things. This, for example, allows you to dedicate
one core to just running an interface (or set of
outputs) while the other takes data in and processes
it. Obviously, this lets you do more processing in a
given time, but it can be just as useful for simplifying
your code. If you’ve got something that needs

RP2040
IN DEPTH

FIND OUT WHAT GOES ON INSIDE
THIS MICROCONTROLLER

constant attention (such as an animation you want
to proceed smoothly, or a data stream that needs
constant processing), you can dedicate one core
to just this while the other core handles all the
ancillary tasks. Your timing-critical code can then
just run uninterrupted and the other bits can still get
processor time.

REAL-TIME COUNTER (RTC)
Pico includes a timer that can be used with an
external reference clock to get the time in human-
compatible units such as days, months, and years.
This RTC can also be used to generate alarms
at particular points. If you want, for example, a
particular task to run every day at 10 am, the RTC
can trigger it. Similarly, if you want something to
trigger an action in a set amount of time (such as a
30-second timeout), the RTC can help.

FULLY CONNECTED BUS
There’s quite a lot going on inside the black package
of RP2040 – including two processor cores,
peripherals for many protocols, and PIO – and these
all need to access memory. The fully connected bus
fabric gives fast and predictable performance, even
when lots of things are happening at once.

COMMUNICATION PROTOCOLS
RP2040 is a great microcontroller, but you’re likely
to need additional parts to build up your projects,
and this means you need a way of communicating
with them. To make this quick and easy, RP2040
has hardware support for two I2Cs, two SPIs, and
two UART buses. If this isn’t enough – or you want
to connect more esoteric hardware, you can use
Programmable Input and Output (see next page).

40

FEATURE

Raspberry Pi Pico

PROGRAMMABLE I/O
CONNECT PICO TO ALMOST ANYTHING

L ike many microcontrollers, RP2040
has hardware support for some
digital communications protocols
such as I2C, SPI, and UART. This
means that if you want to communicate
with something via I2C, you can

simply send the raw data to the I2C peripheral and
it will control the pins to handle the specific timing
requirements for this protocol. However, what
happens if you need something a little unusual such
as WS2812B LEDs, or more I2C or SPI buses than
are available?

On most microcontrollers, you have to ‘bit-bang’,
which means using the main processing core to
turn the pins on and off directly. This can work, but
it can cause timing problems (especially if you use
interrupts), and can take a lot of processing resources
that you may need for other things. Pico has a little
trick up its sleeve: Programmable I/O (PIO).

As well as the two main Cortex-M0+ processing
cores, there are two PIO blocks that each have four
state machines. These are really stripped-down
processing cores that can be used to handle data
coming in or out of the microcontroller, and offload
some of the processing requirement for implementing
communications protocols.

For each simple processor (called a state machine),
there are two First-In-First-Out (FIFO) structures: one
for data coming in and one for data going out. These
are used to link the state machine to everything else.
Essentially, they are just a type of memory where the
data is read out in the same order it’s written in – for
this reason, they’re often called queues because they
work in the same way as a queue of people. The
first piece of data in (or first person in the queue) is
the first to get out the other end. When you need to
send data via a PIO state machine, you push it to the
FIFO, and when your state machine is ready for the
next chunk of data, it pulls it. This way, your PIO state
machine and program running on the main core don’t
have to be perfectly in-sync. The FIFOs are only four
words (of 32 bits) long, but you can link these with
direct memory access (DMA) to send larger amounts

IRQ 0
IRQ Masking

FIFO IRQs

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

Write
only

Instruction Memory
32 Instructions

4 Read Ports

State Machine 3

State Machine 2

State Machine 1

IO M
apping

State Machine 0

SM IRQs
IRQ 1

AHB-lite
Bus Slave

GPIO Output
Level

GPIO Output
Enable

GPIO Input

Above
There are two PIO
blocks, each of
which has four state
machines, in each
RP2040 microcontroller

41

LENS

of data to the PIO state machine without needing
to constantly write it from your main program. The
FIFOs link to the PIO state machine via the input shift
register and the output shift register.

There are also two scratch registers called X and Y.
These are for storing temporary data.

The processor cores are simple state machines that
have nine instructions:

• IN shifts 1–32 bits at a time into the input shift
register from somewhere (such as a set of pins
or a scratch register)

• OUT shifts 1–32 bits from the output shift
register to somewhere

• PUSH sends data to the RX FIFO
• PULL gets data from the TX FIFO
• MOV moves data from a source to destination
• IRQ sets or clears the interrupt flag
• SET writes data to destination
• WAIT pauses until a particular action happens
• JMP moves to a different point in the code

Within these there are options to change the
behaviour and locations of the data. Take a look at the
data sheet for a full overview.

In addition, there are a couple of features to make
life a little easier:

• Side-setting is where you can set one or
more pins at the same time that another
instruction runs

• Delays can be added to any instruction
(the number of clock cycle delays in
square brackets)

Let’s have a look at a really simple example, a
square wave:

.program squarewave_wrap

.wrap_target
 set pins, 1 [1]
 set pins, 0 [1]
.wrap

This uses an outer wrap loop. The wrap_target label
is a special case because we don’t need to do an
explicit jump to it: we can use .wrap to jump straight
to .wrap_target. Unlike an explicit jump instruction,
this doesn’t take a clock cycle, so in this case we’re
producing a perfect 50% square wave. The .wrap and
.wrap_target labels can be omitted. Each instruction
also has a delay of a single clock cycle.

The value of pins is set when we create the PIO
program, so this can create a square wave on any I/O.

Let’s take a look at a more useful example, an SPI
transmitter. This just controls the data-sending line
for SPI:

.program spi_tx_fast

.side_set 1

loop:
 out pins, 1 side 0
 jmp loop side 1

This shows the power of the side-set. In this case,
the side-set pin is the SCL (clock) line of SPI, and the
out pin is the SDA. The out instruction takes a value
from the FIFO and sets the pin to that value (either 1
or 0). The next instruction triggers the side-set on the
clock pin, which causes the receiver to read the data
line. Notice that the second instruction is a jump, not
the wrap as in the previous example, so it does take a
clock cycle to complete.

The out instruction gets a bit of data from the
output shift register, and this program would quickly
empty this register without a pull instruction to get
data into it. However, the pull instruction would
take one cycle which would complicate the timings.
Fortunately, we can enable autopull when we create
a PIO program, and this will continuously refill the
output shift register as needed as long as data is
available in the FIFO. Should the FIFO be empty, the
PIO state machine will stall and wait for more data.

The speed of this SPI transmit is set up the
clock speed of the PIO state machine, and this is
configurable when you start the PIO.

This has been a whistle-stop tour to show off the
ideas behind PIO. For more details about exactly
how to implement a PIO program, take a look at the
tutorial on page 90

THERE ARE TWO
PIO BLOCKS THAT
EACH HAVE FOUR
STATE MACHINES

“

”

42

FEATURE

Raspberry Pi Pico

OTHER RP2040
HARDWARE

OTHER WAYS TO USE THE MICROCONTROLLER

P ico isn’t the only board built on an
RP2040. The microcontroller chip is
available for other companies to build
products off, and here are some other
boards that are coming soon. They’re

all based on the same underlying processing power,
but they each build on it in different ways to make
products for different uses.

PICO SYSTEM

Unlike the other boards we’ve looked at here, Pico System
isn’t intended to be a general-purpose board; it’s designed
with one (very obvious) use in mind: RP2040 makes a great
gaming platform. PIO with DMA means that it can output video
data very quickly with little CPU overhead, and having two
cores and plenty of memory means that there’s loads of scope
for doing all the processing that games demand. Add to this
some beautiful design work, and you get a fantastic handheld
console which we’re looking forward to playing with more in
the coming months.

PIMORONI £58.50 pimoroni.com

IT’S DESIGNED
WITH ONE
(VERY OBVIOUS)
USE IN MIND

“

”

Left
This is a prototype
Pico System, so
the final version
may look a
little different

http://pimoroni.com

43

LENS

PRO MICRO RP2040

MICROMOD RP2040 PROCESSOR BOARD

If you’re looking for the smallest RP2040 board, then this is
it. SparkFun has squeezed and shrunk everything down to
the footprint of its Qwiic Pro Micro range. However, unlike
the original (which features a 16MHz, 8-bit microcontroller),
this has all the processing power of the RP2040 to get your
project running. Alongside this, there’s 16MB of RAM for your
programs and data, which should be enough for almost all
microcontroller applications.

Despite its small size, it still breaks out 18 of the GPIOs,
including four analogue inputs, and has a Qwiic connector
for additional hardware. There’s a USB for data and power, a
power LED, and a user-controlled RGB LED. There are reset
and boot buttons, so you can program one of these without
unplugging power (as is needed on Pico).

We looked at the MicroMod system in issue 38. It allows you to
quickly and easily slot a microcontroller module into a carrier
board. These modules are stripped right back to just the bare
essentials, so they’re tiny, and the M.2 mounting means they
are secure and don’t add any height to the carrier board.

This can mean you have a bit less flexibility than with some
other add-on systems, but if there’s a carrier board that suits
your needs, it can be a compact and robust solution. If you’re
looking for a large Arduino Uno-like board with an RP2040
at its heart, there’s the ATP carrier. If you’re looking for a
board with input and display, there’s the aptly named Input
and Display carrier. There are also data logging and machine
learning carrier boards.

As with the Pro Micro, there’s also 16MB of flash memory to
store programs and data, but other than this, all features are
on the carrier boards rather than the processor boards.

SPARKFUN $9.95 sparkfun.com/rp2040

SPARKFUN $11.95 sparkfun.com/rp2040

Above
The smallest
RP2040-based
board available
at the moment

Below
Slot an RP2040 into
the heart of other
carrier boards

DESPITE ITS SMALL
SIZE, IT STILL BREAKS
OUT 18 OF THE GPIOS

“

”

http://sparkfun.com/rp2040
http://sparkfun.com/rp2040

44

FEATURE

Raspberry Pi Pico

ADAFRUIT FEATHER 2040

THING PLUS RP2040

You’re almost certainly going to want to plug some extra
hardware into your microcontroller to build your projects.
Whether that’s sensors, displays, or actuators, it’s this extra
hardware that is usually the point of microcontroller
projects. There are already some great accessories for
Pico (see next page), but if you want to get access to
a huge range of add-ons, the best solution is to jump
right into one of the biggest microcontroller ecosystems
around – Feather. Adafruit’s Feather 2040 has the
standard pinout that lets you plug in almost any
Feather add-on (or Wing as they are known). These
are stackable, so you can add several of them if you
need lots of features for your project.

21 GPIOs are broken out, and there’s also on-board
LiPo battery charging if you need your project to be
portable, and a STEMMA QT connector for adding even
more hardware. There’s 4MB of flash for storing your data
and programs, and like the Mini, there are both reset and boot
buttons. All this means that the board is slightly wider than
Pico (one row on a breadboard).

The Feather 2040 comes set up and ready to run
CircuitPython. This is a little different to MicroPython on Pico.
CircuitPython includes excellent support for Adafruit (and
other) hardware.

SparkFun's Thing Plus is also compatible with Feather, so
you get access to that ecosystem of add-ons. However,
the Thing Plus is slightly longer than the classic Feather.
There are 19 exposed GPIOs (two fewer than on some
Feather-compatible boards), but there is a Qwiic
connector (next to the battery charger) to give
even more options for connecting hardware,
and a microSD card holder (on the underside)
for storage. Couple this with 16MB of flash
and you've got enough storage for almost
any eventuality. For a full range of blinkies,
there's an LED on pin 25 (the same as on
Pico), and a WS2812B LED to give full
RGB colours.

ADAFRUIT $9.95 adafruit.com

SPARKFUN $17.95 sparkfun.com/rp2040

THING PLUS
IS ALSO
COMPATIBLE
WITH FEATHER

“

”

Above
Access a huge
range of hardware
add-ons through the
Feather ecosystem

Right
It's a small detail, but the
reset and boot buttons
on the Thing Plus feel
great to use

http://adafruit.com
http://sparkfun.com/rp2040

45

LENS

Below
Pico Audio, Scroll,
and Display add-
ons from Pimoroni,
linked together on
a Pico Decker

PICO ADD-ONS
PLUG NEW FEATURES INTO YOUR PICO

Y ou can add hardware to your Pico
by building your own circuits
– and in many cases, this is
relatively straightforward thanks
to protocols such as SPI and I2C.
However, sometimes it’s easier and

quicker to start with a premade add-on that gives
more capabilities to your Pico so that you can spend
your time working on other parts of the project. We
expect there to be lots of add-ons for Pico created in
the coming months, but here are some that you can
get right now from Pimoroni.

Pico Audio adds an I2S decoder and headphone and
line-level outputs to Pico. Pico has a capable audio
system that can output I2S via PIO. You can create
buffers of data that are streamed to your attached
device. At the time of writing, this is in the pico-extras
repository (hsmag.cc/pico-extras) because, while it
does work, there is ongoing development and the API
may change. You can use the audio system to directly

output audio using PWM, but you can get better
quality using I2S, and the integrated headphone and
line-level amps make this easy to use.

If you prefer visual output rather than audio, Pico
Display gives a TFT screen, four buttons, and an
RGB LED, all within the Pico footprint. The result is a
compact, encapsulated display, perfect for adding a
little visual output to your project.

For a bit more sparkle, Pico Scroll adds a 17×7
matrix of white LEDs to the top of the Pico. As the
name suggests, this works well for scrolling text as
well as displaying data or just generally shimmering.
There are four buttons to get data in from the user to
control the display, or perhaps play a game of Snake.

Of course, you may want more than one of these,
and for that you’ll need an Omnibus (for two add-
ons) or a Decker (for four add-ons). You can also use
these to access all the pins when another add-on is
on top, whether that’s for debugging or expanding
your project.

http://hsmag.cc/pico-extras

Subscription will continue quarterly unless cancelled

hsmag.cc/FreePico

SUBSCRIBE
TODAY

Get three issues plus a
FREE Raspberry Pi Pico

delivered to your door

FOR JUST £10

UK offer only. Not in the UK?
Save money and get your

issue delivered straight to your
door at hsmag.cc/subscribe.

See page 66 for details.

http://hsmag.cc/FreePico
http://hsmag.cc/subscribe

SUBSCRIPTION

Design and make a perfect
robotic companion

RESTORATION HOME AUTOMATION 3D PRINTING MUSIC

3D
Get started

with FreeCAD

DIY

Use NFC in your projects

RASPBERRY PI

We take a look
at the latest

tiny computer

CHOOSE YOUR
CONTROLLER

PICK YOUR
CHASSIS

ADD
SENSORS

Dec. 2020
Issue #37 £6

SELECT
THE PERFECT

MOTORS

Rob
Ives
Paper engineering
and the power of
doing your own thing

CONTACTLESS

400

DESIGN

hsmag.cc Issue #37December 2020

Issue #37 D
ecem

b
er 2020

B
uild

 A
 R

ob
ot

hsm
ag

.cc

hsmag.cc Issue #38January 2021

RASPBERRY PI
XMAS

LASER
ETCHING

Make stunning
multicolour images

Microcontrollers
go modular

The best
festive makes

Billie
Ruben

Wire your projects
without soldering

Bringing

craft and

digital

design

together

MICROMOD

+ Jan. 2021
Issue #38 £6

DOOR BELLS KEYS FACE RECOGNITION MUSIC

+
+

Issue #38 January 2021
R

em
aking M

ovies
hsm

ag
.cc

hsmag.cc Issue #39February 2021

Feb. 2021
Issue #39 £6

Issue #39 February 2021
R

asp
b

erry P
i P

ico
hsm

ag
.cc

FREE DUAL-CORE MICROCONTROLLER

LOW-COST • HIGH-PERFORMANCE • FLEXIBLE I/O
A NEW MICROCONTROLLER BOARD

FROM RASPBERRY PI

INTRODUCING

44%
SAVE

SUBSCRIBE
on app stores
From £2.29

Buy now: hsmag.cc/subscribe
Free Pico with print subscription only

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
http://hsmag.cc/subscribe
https://play.google.com/store/apps/details?id=com.apazine.hackspace&gl=GB&showAllReviews=true

How I Made: An audio decoder

FEATURE

s modern humans, we
not only stand atop the
shoulders of the giants
who came before us,
we walk amongst
their bones.

The detritus of their past
lives and technologies long
since rendered obsolete
swirl around our feet,
forgotten, overlooked, and
often discarded.

But sometimes the
voices of our ancestors
linger behind, trapped
within scraps of the
world that they left. And
sometimes, if we’re
willing to listen closely,
we can hear what
they’re trying to say.

STAYING SANE IN
QUARANTIMES
For a moment, let’s rewind
to 2019. Back in the days when
office workers worked in offices,
one of my co-workers, knowing my
propensity for collecting old and unusual
things, asked me if I wanted a 16 mm film
projector that had belonged to his father.
I, being presented with the opportunity to

A
By Emily Velasco

AN AUDIO DECODER

indulge in my favourite vice of hoarding,
enthusiastically said yes. It turned out to be
a gorgeous, albeit only partially functioning,
bit of 1930s technology. I spent some time

repairing it, and then I sought out a film
to play on it. A trip to the local flea

market bore fruit a few months
later, and I came home with a

mid-century educational film
on man-made isotopes.

Looking at that film, I
noticed something I hadn’t
expected. Running down
one of its sides was a
track with a curiously
squiggly line. It was the
audio for the film, stored
in optical form.

I had never really
pondered how old films

captured their audio, but
of course, it would be

easiest to capture sound
as light. The rest of the film

held its information optically,
so why not encode the audio in

the same medium?
My projector, however, came from

a time when films were still likely to be
of the silent variety, and it had no way of
playing back the audio on this flea-market
film. I briefly toyed with the idea of adding

How I Made

Turning light into sound

48

a light receiver on the other side of the
film. As the sound track slides between
them, some of the light shines through
the squiggle and lands on the receiver on
the other side. Since the squiggle varies in
width, the amount of light landing on the
receiver varies in a way that corresponds
to the sound that was recorded. With the
receiver translating this light signal into
an electrical signal, one only needs an
amplifier and a speaker to further transform
it into something audible.

DECODER DESIGNING
When that technology was first devised in
the late 1920s, the engineers did all of this
with incandescent bulbs and specialised
vacuum tubes, but I, a home tinkerer a
century later, had more options.

My thought was that I could put an LED
on one side of the film, and a photoresistor
on the other side. I have literally hundreds
of each at my disposal. Easy, right? In
theory, yes. In practice, well…

49

LENS

some electronics to the projector to play
that audio, but that notion was quickly
swept aside by newer and shinier project
ideas and soon forgotten.

A year later though, I was scraping the
bottom of my project barrel in search
of something to do to keep me sane
through another day, week, or month of
quarantining, and that faint ember of an
idea reignited.

‘How hard could it be to build something
to decode that optical sound track?’ I
thought to myself.

Heh, famous last words.

THE OLDEN DAYS
Before I get into my thought process
on building an optical audio decoder, I
should probably explain how optical sound
tracks work.

The squiggle running down the centre of
the track is a visual representation of the
sound that goes with the film. Every one of

its undulations corresponds to a sound-
wave that wiggled its way through the air
at the time the film was recorded.

To turn those undulations back into
something we can hear, movie studio
engineers of a hundred years ago put a
light source on one side of the film, and

Left
My radiopunk speaker grill

Right
Letter punches
let you add text
to a surface

FEATURE

50

fired up the 3D printer. Hours later, I had
a prototype. I installed the electronics,
added some soft felt to be gentle on
the film, clamped it in my vice, inserted
a manageable length of film, attached a
battery, pulled the film through and …
nothing. I didn’t get a single sound. OK,
back to the drawing board.

My research suggested that maybe a
photoresistor was not sensitive enough to
work with the minute amount of light that
passes through the narrow slit between
the razor blades, so I went digging in my
parts bins for a photodiode. Photodiodes
are more sensitive than photoresistors, and
they also respond more quickly to changes
in frequency, so I figured maybe that would
work better than the photoresistor had. I
jumped back into the CAD software and
redesigned my parts to hold the photodiode
instead. Hours later, I had a second
prototype. I assembled everything a second
time, and headed out to the workshop with
version two.

I clamped it all in my vice again,
attached the battery, inserted the film,
and … nothing. I was starting to get a bit
discouraged, but on a whim, I attached
a set of earbuds to the amplifier, stuffed

Let’s go back to the squiggle. If we look
closely at it with the aid of a magnifying
glass, we will see that within its many
undulations, there are even tinier waves,
many thinner than the breadth of a human
hair. If we simply cast light as wide as an
LED on that, our receiver will translate the
sum of those waves into sound all at once.
The audio will end up indistinct, in much
the same way it’s difficult to understand
what a friend is telling you while hanging

out in a crowded room with dozens of
conversations happening.

To hear the audio clearly, we need to
shine light on just one tiny undulation at a
time. I’ll admit that coming up with a way
to do this baffled me a bit. I had an idea
churning around in my head about trying
to cut a thin slit in aluminium foil when a
friend asked me if I had considered using
disposable razor blades. Razor blades,
he said, are cheap, have a precisely

honed edge, and
are used in some
optics experiments to
create a narrow slit
for laser light to pass
through. Perfect.

Working in CAD
software, I designed
some parts to hold an
LED, a photoresistor,
the film, and the
razor blades, and I

Left
A 3D-printed part
holds everything
in place

Left
Tensioning springs
hold the film in place

How I Made: An audio decoder

51

LENS

They arrived about a week later, and I
got back to work. I redesigned my parts in
CAD, printed them, installed the electronics
and razor blades, and headed back out to
the garage. With the contraption held in my
vice yet again, I pulled the filmstrip through
and out of the speaker came a loud, buzzy
voice. This time I could almost make out
what it was saying – something about
sodium. Goosebumps again.

I spent some more time making
adjustments and tweaking things,
and pulled the film again in what was
becoming almost a ritual.

them in my ears, pulled the film through
the device, and I heard something! It was
faint, but it was there. In my excitement,
and to make sure I hadn’t imagined it, I
pulled the film back and forth through the
device several more times. It was muffled
and indistinct, but unmistakable. I had my
first hints of sound coming back to life from
the decades-old film.

I tweaked some things, narrowing
the gap between the razors even more,
swapped in a brighter LED, and pulled the
film through again. Goosebumps rose on
my arms. The sound was still extremely
quiet, but I could just begin to make out
something that sounded like a voice.

LEAVING FAMILIAR TERRITORY
It was a promising start, but still a long
ways from anything remotely intelligible.
I needed to do more thinking. One night a
few days later, I was chatting with a friend

about the project,
and he offered up
something known
as a transimpedance
amplifier as a
suggestion. He said
it would be more
sensitive than my
photodiode, and tried
explaining how they
work and how to build
one but I, not being
an electrical engineer,
might as well have
been a brick wall.

‘Don’t worry,’ he said. ‘You can just buy
one. Go look for an OPT101.’

I went looking and found out a couple of
things. For one, I learned that an OPT101
is an integrated circuit that combines a
photodiode and an op-amp in one package.
For two, I learned I could get them for
a few dollars apiece online. I ordered a
couple and waited.

Left
Panel mount LEDs
make great retro-
looking indicators

Above
This can play the
audio backwards
because...why not?

Right
An LED supplies light in place
of the traditional bulb

FEATURE

52

From the speaker came the voice of a
man with a British accent, and he said:

“If a compound containing sodium is
inserted into the reactor…”

I couldn’t help but laugh with excitement.
I almost couldn’t believe it. I had actually
done it. This man, who was probably
decades in the ground by now, was
speaking to me in my very own garage.
Someone once called me a techno-witch,
and for once, I felt like it was true. It was
like I had performed a séance, and here was
this ancient disembodied voice explaining to
me how to make sodium isotopes.

ARTISTIC LICENCE
When I began the project, I hadn’t really
considered where it would go beyond this
point. I just wanted to see if I could decode
an optical sound track, and I had. It was
cool as hell though, and I figured I should
do something with it. I spent the next few
weeks indulging my creative impulses, and
bit by bit, things came together. I didn’t
want to deal with dozens or hundreds of
feet of film, so I decided to make loops
of film similar to how some electronic

Left
A wooden box
houses the audio
parts of this project

Below
The audio is
the wiggle on the
right-hand side

How I Made: An audio decoder

53

LENS

musicians use loops of tape from an audio
cassette. Because the technology for
playing optical sound tracks originally dated
to the late 1920s, I wanted the project to
have the look of what, for lack of a better
term, I’m calling radiopunk – that aesthetic
of darkly stained wood, chunky bakelite
knobs, and polished metal you find on very
old radio sets.

To drive the film, I chose to use a stepper
motor because it’s a simple matter to
control their speed in a precise way using
an Arduino, which is one microcontroller
I can actually write code for. This was
the easy route, but it was maybe not the
most ideal solution either. Stepper motors,
as their name suggests, move in steps.
Those steps mean the motor’s motion
isn’t perfectly smooth, and in the decoder,
it means there is some audible distortion
when it plays a sound track. I could
probably solve that with more sophisticated
electronics, or through some additional
mechanical parts, but sometimes you just
have to call a project done. I’ll save those
ideas for my next optical audio project,
and if anyone asks about the motor noise
on this project, I’ll tell them it’s part of the
aesthetic. That’s one advantage of people
thinking you’re an artist. You can make
things up, and they have to believe you.

Now that it’s done, I don’t really know
what I’m going to do with it. I suppose I’ll
hang it on the wall in my living room, and

if guests come over,
they can try it out, and
learn how to make
isotopes, one film loop
at a time.

Right
The finished
project ready to
be wall-mounted

I had actually done it. This man, who was
probably decades in the ground by now, was

speaking to me in my very own garage

Eben
Upton

Eben Upton

INTERVIEW

54

Above
Game developer
Eben Upton (see
page 14) also
dabbles in creating
single-board
computers

Eben
Upton55

LENS

 HackSpace magazine meets…

fter years of blood, sweat,
and tears, we can finally
talk about Raspberry
Pi Pico in public. It’s
the first entirely new
product from Raspberry

Pi, designed entirely in-house to do a
specific job: put the ability to make smart
devices into as many hands as possible.
If you want the technical details, page 30
is the place for you. If you want the
philosophical take on things, who better
to talk to than Eben Upton, Raspberry Pi’s
benevolent overlord? We spoke to him
from his hollowed-out volcano lair deep
in the Fens about what Pico is, what it
does, who it’s for, and why it was worth
spending millions to develop it.

A

The boss of Raspberry Pi explains what this
Pico malarkey is all about

Eben Upton

Eben
Upton

Eben Upton

INTERVIEW

56

”

” It’s ideal for jobs
like controlling

strings of LEDs,
polling sensors, and
writing values on to

SD cards

answer for beginners is a high-level
language, particularly MicroPython. It’s
a conscious choice, and it’s one that we
made to ensure that access to Pico is as
easy as possible.

HS What sort of things do you envisage
people will be doing with their Pico after
they’ve had a play with it?

EU I hope they’ll be using them for…
all the things they do with other
microcontrollers. There’s that whole
sea of things that are a bit low-power
and a bit small. It’s ideal for jobs like
controlling strings of LEDs, polling
sensors, and writing values on to

SD cards. I genuinely think
there’ll be a subset of the things
people do with Raspberry Pis,
and people will migrate from
Raspberry Pi to Pico.

If you want to make a logging
weather station, for example,
maybe you want to do it on a
Pico, because it’ll consume less
power. You can program it in
Python, connect all the same
sensors to it, and in fact, there’ll
be some analogue sensors

that you couldn’t connect to it using a
Raspberry Pi. All these sorts of maker
projects are ideal for a Pico – the maker
projects that care more about power and
size than about performance.

HS And presumably the projects that
don’t actually need a full computer
operating system?

EU There’s lots of stuff. If you want your
environment for doing computer vision
or something, probably the Raspberry Pi
is the platform for that, because you can
install OpenCV and a bunch of other
stuff really easily and start working
away really quickly, far more quickly
than you could on a Pico.

But on the other hand, you can run off
a battery for a lot longer on a Pico. So
sometimes there’ll be a project that will
run just as well either on a Pico or on a
Raspberry Pi, then it’s a straight trade

HackSpace First of all, what is Pico?
Is it just the latest version of the
Raspberry Pi?

Eben Upton It’s a microcontroller board.
The easiest way of differentiating it from
a Raspberry Pi is that, unlike a
Raspberry Pi, it’s not a platform you
develop on; it’s a platform you develop
for. So it needs a host, and Raspberry Pi
is a good host.

Everything we make is about bringing
more capabilities to people who wouldn’t
have thought of themselves as engineers.
Raspberry Pi has been very successful at
that, because it allows people to go and
do embedded stuff. The whole world of
[Cortex-] A class devices –
Raspberry Pi and its maker
competitors – does that really
well. Pico is about bringing the
same capabilities to people who
want to get to an even lower level.
So people who want to run code
on bare metal…

Actually, you can run code bare
metal on Raspberry Pi, but it’s
designed to have a big operating
system in the way. Which is good,
because it brings lots of features,
but is bad because it brings, for example,
a lack of deterministic latency. That’s
the nice thing about microcontrollers.
You run a program and it sits there
polling a GPIO and the moment the GPIO
changes, it goes and does something
else. When we say ‘the moment’, you can
localise what ’the moment’ is down to a
handful of nanoseconds. Which you can
never do on a proper computer, right?

So it brings deterministic latency,
analogue input, and Pico can go down to
very low levels of power consumption.

Also, it’s mechanically smaller than
everything else we make. Even the board
itself is mechanically smaller than
everything else we make.

HS How does it fit alongside the rest of
Raspberry Pi’s wares?

EU It’s useful to put it alongside
Raspberry Pi 400 and Compute Module 4

actually, in terms of what it does to the
business. Each of them is an extension
of Raspberry Pi in the direction that
we’re already travelling in.

Compute Module 4 is about people
who want to do the high-performance
embedded stuff that Raspberry Pi
has become very popular for, but
in their own form factor with more
customisation that you can’t do in a
core product.

Raspberry Pi 400 is about using
Raspberry Pi as a PC. It’s for those who
want a uncompromised PC experience.

Pico is going in the other direction:
people who want to be even more deeply
embedded than a Raspberry Pi or a

Compute Module – what can we give
to them?

HS That sounds like it’s aimed at people
who are already comfortable with
creating embedded devices?

EU It’s for new developers as well as
more experienced ones: that’s why
you can choose to use it with either C
or MicroPython.

We are not recommending that your
average Joe’s first exposure to this
product is using C. Those days are just
behind us now. The C side of things is
for people who are already familiar with
embedded devices; the MicroPython
side is for beginners.

We’ve split the market into two bits:
there’s a bit we’re addressing with C, and
for that, we want the best possible C
SDK, not a port of somebody else’s. And
then you’ve got beginners, and the right

Eben
Upton57

LENS

Above
“The right [language]
for beginners is a
high-level language,
particularly
MicroPython”

Eben
Upton

Eben Upton

INTERVIEW

58

Eben
Upton59

LENS

”

” It’s important to emphasise that
this is a different thing from

Raspberry Pi. Nothing we’ve ever
done before has been different

from Raspberry Pi. This is the first
time we’ve done something new in

our entire history.

Eben
Upton

Eben Upton

INTERVIEW

60

 We’re bringing the Raspberry Pi
brand values to the microcontroller
board space. And what are our brand
values? Well, we make very high-
performance products. We make very
low-cost products. And we make
really well-engineered products. It’s
always those three with Raspberry Pi
products. You have to be cheapest, you
have to be the best, and best is fast and
beautifully engineered. And Pico is
beautiful, because it’s another James
Adams project.

The way the busing works inside the
system, you can have one Arm core
writing memory flat out, and one Arm
core running memory flat out, you can
have the DMA engine copying one bit of
memory to another, and that can all
happen at the same time.

Everything can happen at the same
time because of the way that we have a
fully connected switch. There are no
bottlenecks in the chip, so it can run at
full tilt.

What else? Having two completely
symmetrical processors. There are a
lot of multi-core processors, but they
tend to be asymmetrical. They tend to
have an application core, an M4 maybe,
and a peripheral management core, an
M0 maybe. We’ve gone for a different
approach, where everything about the
architecture is smooth and symmetrical.
And very easy to understand. Because
of the way the arbitration works, you
can reason very precisely about what
this chip is going to do on any given
clock cycle.

HS Why is that important?

EU Well we’ve got performance, quite a
lot of MIPS and memory, but we’ve also
given you predictability. You can go
close to the edge without falling off. If
you have some real-time task, you can
go right up and use 100% of the
performance.

If you have non-determinism, you end
up programming in a margin to account
for that. You can’t run the system flat
out, so at say 70% of performance it

starts to slow down, you know why and
you know what you have to do. This
one’s designed to perform right to the
limits of its capacity.

HS Why release this now?

EU It’s important to emphasise that this
is a different thing from Raspberry Pi.
Nothing we’ve ever done before has been
different from Raspberry Pi. This is the
first time we’ve done something new in
our entire history. The first time we’ve
done something completely new.

Almost everything else we do is
about making Raspberry Pi better,
making accessories for it, polishing the
platform. And while it’s satisfying, it’s
also very linear, very incremental.

So, after nine years polishing
one platform, it just felt like time to
do something different. It’s been a
complicated programme, an expensive
programme, but I think it’s been worth it.

HS When you say Pico was ‘expensive’
to create, how expensive are
you talking?

EU Somewhere in the region of £3–4
million to design the chip.

HS But why? You can buy a bunch of
chips off the shelf and design a board
and have a great product.

EU You want to make something
perfect, and in this space, there’s no way
to make a perfect thing without making
your own silicon. There’s a reason why
the other fruit company does this, right?
It’s not that they want to save money.
They have margin to burn. If they
thought they could make great Macs
using Intel chips, they wouldn’t make
their own silicon just for the vanity.
They do it because it’s what it takes to
make a great product, and this is the
same thing.

That’s the privilege of working at
Raspberry Pi. You get to watch a great
team do great engineering. And they’ve
done it again with the Pico!

between the size of the battery and the
number of hours of programming that it
takes to do it. The Raspberry Pi is really
easy to hack stuff together on, but at the
end of the day, you can’t get away from
the fact that you’re running it on a PC.

HS Do you have a comparison for how
much longer a device will last if it’s built
on a Pico compared with, say, a
Raspberry Pi Zero?

EU I think that 10× is plausible. You’re
talking fractions of milliwatts rather
than fractions of a watt. You can beat a
Zero down to a few hundred milliwatts,
but you can beat this thing down to a
few milliwatts. I’d say 10–100× longer,
depending on what you’re doing.

If you run a Zero flat out, it will
consume a watt and a bit, it won’t be two
watts. Probably not less than a watt. If
you overclock a Pico and you run it flat
out, then you could consume 100 to 200
milliwatts. So I guess the answer is that
it depends on how much time spent
idling the device is going to be. If they’re
running flat out, there’s a factor of 10
between them, whereas if they’re both
idling, the Pico will consume roughly
100 times less power.

HS What are the key features of
the Pico?

EU First of all, there’s the price. Cost is
about accessibility. You don’t want a
world where either people have to pay
$20 for a microcontroller board, or else
they can’t get one, or that they only get
one, or a world where they’re then forced
to buy clones of products that are of
dubious quality. We want to provide
quality and cost together in one place.

We have 256kB of RAM, 2MB of flash,
and two cores at 133MHz. But the big
feature that it’s easy to overlook is the
price. In that respect, I think you can see
it being competitive with unbranded
microcontroller boards. What was a
really key goal with this product was to
be cheaper than anything you can buy
on AliExpress. Because it’s about access.

Eben
Upton61

LENS

Above
What will you
make with
your Pico?

FEATURE

62

Improviser’s Toolbox: Magnets

that the most common magnetic fields originate
from electrons, which are negatively charged.

In non-magnetic materials, the magnetic fields
of electrons point in different directions and cancel
each other out. In magnetic materials, the fields
all align in the same direction. The physicists have
multiple explanations about why the magnetic fields
align in the same direction, which also helps explain
how magnets behave.

What still remains a mystery though is why
particles emit magnetic fields in the first place,
and why do magnets always have a north and
south pole?

You can cut a magnet as many times as you
wish and the pieces will still have the two poles.
However, hammering it or heating it up will cause
it to lose its magnetic properties. That’s because
these actions cause the particles to lose their
alignment and get arranged in random directions.

Although most of the magnets around you are
made of iron, they can be made of any material as
long as they have unpaired electrons. That includes
many metals and alloys, such as neodymium.

In addition to naturally occurring magnets, we
also have electromagnets that use electricity to
create their power of magnetism, which can be
turned off simply by killing the electricity. Powerful
electromagnets are used in high-speed Maglev
trains, to make the trains float over the tracks,
reducing friction. The technology is also popularly
used for propelling rollercoasters.

Here are some interesting builds that make clever
use of magnets.

lthough it might not be very
apparent, you are surrounded
by magnets and everything,
from the computer to your car,
wouldn’t function properly
without them. In fact, our entire

planet is like one big magnet. The Earth’s iron core
is surrounded by hot molten iron that is moving
around it, creating an electric current that generates
a magnetic field around the planet. This gives the
planet a magnetic north and a magnetic south
which, as we all know, is what the needle on a
compass points to.

Surprisingly, despite its scale, the Earth’s
magnetic field is extremely weak – hundreds of
times weaker than a typical bar magnet. But still,
several animals can sense it. For instance, birds
and turtles are known to navigate using magnetic
fields and, according to some fairly recent research,
magnets can repel sharks and rays.

Kids have always been fascinated with magnets,
but physicists understand them pretty well, for
the most part. So, for instance, scientists know
that magnetism is the result of magnetic fields
that naturally radiate from the electrically charged
particles that make up the atoms. They also know

A
Make your builds more ‘attractive’

“Although most of the magnets around
you are made of iron, they can be made
of any material as long as they have
unpaired electrons”

MAGNETS
Mayank Sharma

@geekybodhi

Mayank is a Padawan
maker with an
irrational fear of drills.
He likes to replicate
electronic builds,
and gets a kick out
of hacking everyday
objects creatively.

https://twitter.com/geekybodhi

63

LENS

Project Maker

Gary Fixler
Project Link
hsmag.cc/RubiksCube

e think a Rubik’s Cube is one of
the best puzzles and, while Gary
Fixler isn’t the first to custom-
build one, his version is
one of the most visually

arresting. Gary’s magnetic version of
the original Rubik’s Cube is made
with 27 acrylic cubes and, instead
of screws through springs, uses
108 neodymium disc magnets.
Gary explains that he first
mocked up a version in the Maya
3D design app to figure out the
polarities of the magnets, and he
only began working on the project
once he was satisfied his cube
would remain sound, even as faces
were spun all around. The project
involves a lot of drilling and gluing,
and Gary has patiently explained
the entire process in great detail.
Besides getting the polarities of all
the magnets right, the toughest part
was the intricate drilling in the acrylic
cubes, which took some missteps
before he got it right. He first created
the central piece and the six pieces that
attach to it, before attaching the twelve
edge pieces, and the final eight corner
pieces. “It was a lot of fun to build, is not
nearly as easy to handle as a well-lubed
Assembly Cube, but is in its own way, quite
pretty and enjoyable,” writes Gary.

W

Below
Although he prefers
the clear cube, Gary
suggests you should
apply the colour
labels to enjoy it like
a real puzzle

RUBIK’S
CUBE

hsmag.cc/rubikscube

FEATURE

64

Improviser’s Toolbox: Magnets

Project Maker

Craig Colvin
Project Link
hsmag.cc/MagnetClock

here’s no shortage of custom DIY
clocks, but Craig Colvin’s version is a
head-turner, and not just because it
uses fridge magnets. Craig places the
magnetic numbers on a piece of thin

white Plexiglas that’s got a sheet of metal laminated
to the back, to give the magnets something to hold
on to. The real magic happens on the back though,
where he’s implemented a CoreXY-style mechanism
to move the numbers. Craig explains his clock is
driven by a belt that moves a carriage behind a
number. It then engages two magnets which attract
the magnets on the number, which allow the number
to follow the carriage movement. Once the numbers
are at their destination, the carriage magnets are
disengaged and the metal sheet behind the Plexiglas

T

ANIMATED
CLOCK

Right
You can hack
Craig’s code and
design to turn the
clock into a spooky
Halloween prop

keeps the numbers in place. The CoreXY assembly
is powered by a stepper motor that’s controlled by
an Arduino-compatible, SAMD21 M0-Mini board
from RobotDyn, along with a PCF8523 real-time
clock for timing. The parts that hold the assembly
are 3D-printed, and Craig has done a nice job of
explaining the build process, including sharing
the schematics of the electronics, and the source
code for the various modules that make the whole
contraption tick.

“The parts that hold
the assembly are
3D-printed”

hsmag.cc/magnetclock

65

LENS

Project Maker

Linda Ly
Project Link
hsmag.cc/SpiceRack

ack when prolific
cookbook author
Linda Ly was living
in a 2000-square
foot loft, she

decided to free up some space
in her kitchen by getting rid of
the spinning spice rack. Instead
of storing the spices on the
counter, Linda decided to mount
them to the side of a cabinet
with the help of some magnets.
The build process is actually fairly
simple. You’ll need tin containers

B

MAGNETIC SPICE RACK

Left
Although his speaker
is mono, you can
make it stereo by
building another one
and soldering the aux
cable to both

ANIMATED
CLOCK

Project Maker

James
Project Link
hsmag.cc/Speakers

peakers don’t cost much these days,
but the joy one gets from fabricating
one from knick-knacks is priceless.
James built one for a workshop, to teach
the fundamentals of these audio-oozing

devices. The build requires a foam plate, 28-gauge
magnetic wire to create the speaker coil, eight
neodymium disc magnets, an aux cable with male
3.5 mm jacks on each end, and some other bits and
bobs. The actual construction is fairly simple, and
James’s instructions are easy to follow. The only step
that requires care is the last one, where you strip the
aux cable to expose and identify the ground and signal
wires. The speakers are very fragile and aren’t very
loud, but, as James demonstrates, they work really
well and serve as a good way of demonstrating how
speakers generate sound. James has also shared
his notes about the workings of speakers for anyone
interested in the science lesson.

S

with clear, transparent lids. Make
sure they are lightweight and big
enough to store about three to
five ounces of a spice. You’ll also
need neodymium magnets. If you
get small ones, you can use two
or even three per tin, depending
on the weight of the spice. Linda’s
used printed labels to tag the name
of the spice to the containers, but
you can also scribble the name
across the lid. Now glue the
magnets to the back of the tins, fill
the spices, and you’re done.

Left
Linda has mounted
the containers on a
steel sheet, but you
could simply slap
them to the side of
your refrigerator
as well

SIMPLE SPEAKERS

hsmag.cc/speakers
hsmag.cc/spicerack

Subscription starts with next issue

Raspberry Pi Pico
With your first 12-month print subscription

This is a limited offer. Not included with renewals.
Offer subject to change or withdrawal at any time.

FREE!

Subscribe online: hsmag.cc/subscribe

SUBSCRIBE
TODAY
Get 12 issues of HackSpace magazine

delivered to your door for just

£55 (UK) £90 (USA)

£90 (Rest of World)£80 (EU)

SUBSCRIPTION

http://hsmag.cc/subscribe

Start your journey to craftsmanship
with these essential skills

SCHOOL OF
MAKING

PG68

68 MicroPython on Pico

HACK MAKE BUILD CREATE
Improve your skills, learn something new, or just have fun
tinkering – we hope you enjoy these hand-picked projects

FORGE
74

PG

Great ways to use a
keyboard computer

RASPBERRY
PI 400
PROJECTS

90
PG

NEOPIXEL
DITHERING
Use Pico to get extra range
from WS2812B LEDs

84
PG

SONIC
CREATURE
Build a unique touch-
sensitive instrument

78
PG

PARAMETRIC

Use FreeCAD to create a
customisable, 3D-printable
project box

BOX

96
PG

LASER
CONTROLLER
Upgrade your laser cutter
with a Raspberry Pi

68

Traffic light controller

SCHOOL OF MAKING

icrocontrollers can be found
in almost all the electronic
items you use on a daily basis –
including traffic lights. A traffic
light controller is a specially built
system which changes the lights on

a timer, watches for pedestrians looking to cross, and
can even adjust the timing of the lights depending on
how much traffic there is – talking to nearby traffic
light systems to ensure the whole traffic network
keeps flowing smoothly.

While building a large-scale traffic management
system is a pretty advanced project, it’s simplicity
itself to build a miniature simulator powered by your
Raspberry Pi Pico. With this project, you’ll see how
to control multiple LEDs, set different timings, and
how to monitor a push-button input while the rest
of the program continues to run using a technique
known as threading.

For this project, you’ll need your Pico; a breadboard;
a red, a yellow or amber, and a green LED; three
330 Ω resistors; an active piezoelectric buzzer; and a
selection of male-to-male (M2M) jumper wires. You’ll
also need a micro USB cable, and to connect your
Pico to your Raspberry Pi or other computer running
the Thonny MicroPython IDE.

A SIMPLE TRAFFIC LIGHT
Start by building a simple traffic light system, as
shown in Figure 1. Take your red LED and insert it
into the breadboard so it straddles the centre divide.

M
Use one of the 330 Ω resistors, and a jumper wire if
you need to make a longer connection, to connect the
longer leg – the anode – of the LED to the pin at the
bottom-left of your Pico as seen from the top with the
micro USB cable uppermost, GP15. If you’re using a
numbered breadboard and have your Pico inserted at
the very top, this will be breadboard row 20.

Take a jumper wire and connect the shorter leg –
the cathode – of the red LED to your breadboard’s
ground rail. Take another, and connect the ground
rail to one of your Pico’s ground (GND) pins – in the
Figure 1 wiring diagram, we’ve used the ground pin
on row three of the breadboard.

You’ve now got one LED connected to your Pico,
but a real traffic light has at least two more for a
total of three: a red light to tell the traffic to stop,
an amber or yellow light to tell the traffic the light is
about to change, and a green LED to tell the traffic it
can go again.

Take your amber or yellow LED and wire it to your
Pico in the same way as the red LED, making sure
the shorter leg is the one connecting to the ground
rail of the breadboard and that you’ve got the 330 Ω
resistor in place to protect it. This time, though, wire
the longer leg – via the resistor – to the pin next to
the one to which you wired the red LED, GP14.

Finally, take the green LED and wire it up the same
way again – remembering the 330 Ω resistor – to pin
GP13. This isn’t the pin right next to pin GP14, though
– that pin is a ground (GND) pin, which you can see if
you look closely at your Pico: the ground pins all have

Gareth Halfacree

@ghalfacree

Gareth Halfacree is a
freelance technology
journalist, writer,
and former system
administrator in the
education sector. He
has written several
publications about
Raspberry Pi.

Create your own mini pedestrian crossing system using multiple LEDs and a push-button

Traffic light controller

Figure 1
A basic three-light
traffic light system

https://twitter.com/ghalfacree

69

FORGE

a square shape to their pads, while the other pins
are round.

When you’ve finished, your circuit should match
Figure 1: a red, a yellow or amber, and a green LED,
all wired to different GPIO pins on your Pico via
individual 330 Ω resistors and connected to a shared
ground pin via your breadboard’s ground rail.

To program your traffic lights, connect your Pico
to your Raspberry Pi or other computer and load
Thonny. Create a new program, and start by importing
the machine library so you can control your Pico’s
GPIO pins:

import machine

You’ll also need to import the utime library, so you
can add delays between the lights going on and off:

import utime

As with any program using your Pico’s GPIO
pins, you’ll need to set each pin up before you can
control it:

led_red = machine.Pin(15, machine.Pin.OUT)
led_amber = machine.Pin(14, machine.Pin.OUT)
led_green = machine.Pin(13, machine.Pin.OUT)

These lines set pins GP15, GP14, and GP13 up
as outputs, and each is given a descriptive name to

Left
Raspberry Pi Pico
is a brand new
microcontroller

Below
This article is
an extract from
Get Started with
MicroPython on
Raspberry Pi Pico.
Buy it in print or
download the PDF:
hsmag.cc/picobook

WARNING

Always remember that an LED needs a current-limiting
resistor before it can be connected to your Pico. If you
connect an LED without a current-limiting resistor in
place, the best outcome is the LED will burn out and no
longer work; the worst outcome is it could do the same
to your Pico.

make it easier to read the code: ‘led’, so you know
the pins control an LED, and then the colour of
the LED.

Real traffic lights don’t run through once and stop
– they keep going, even when there’s no traffic there
and everyone’s asleep. So that your program does the
same, you’ll need to set up an infinite loop:

while True:

Each of the lines beneath this need to be indented
by four spaces, so MicroPython knows they form

http://hsmag.cc/picobook

70

Traffic light controller

SCHOOL OF MAKING

part of the loop; when you press the ENTER key
Thonny will automatically indent the lines for you.

led_red.value(1)
utime.sleep(5)
led_amber.value(1)
utime.sleep(2)
led_red.value(0)
led_amber.value(0)
led_green.value(1)
utime.sleep(5)
led_green.value(0)
led_amber.value(1)
utime.sleep(5)
led_amber.value(0)

Click the Run icon and save your program to your
Pico as Traffic_Lights.py. Watch the LEDs: first the
red LED will light up, telling the traffic to stop; next,
the amber LED will come on to warn drivers the lights
are about to change; next, both LEDs switch off and
the green LED comes on to let traffic know it can
pass; then the green LED goes off and the amber
one comes on to warn drivers the lights are about to
change again; finally, the amber LED goes off – and
the loop restarts from the beginning, with the red
LED coming on.

The pattern will loop until you press the Stop
button, because it forms an infinite loop. It’s based
on the traffic light pattern used in real-world traffic

control systems in the UK and Ireland, but sped up –
giving cars just five seconds to pass through the lights
wouldn’t let the traffic flow very freely!

Real traffic lights aren’t just there for road vehicles,
though: they are also there to protect pedestrians,
giving them an opportunity to cross a busy road
safely. In the UK, the most common type of these
lights are known as pedestrian-operated user-friendly
intelligent crossings or puffin crossings.

To turn your traffic lights into a puffin crossing,
you’ll need two things: a push-button switch, so the
pedestrian can ask the lights to let them cross the
road; and a buzzer, so the pedestrian knows when it’s
their turn to cross. Wire those into your breadboard
as in Figure 2, with the switch wired to pin GP16 and

the 3V3 rail of your breadboard, and the buzzer wired
to pin GP12 and the ground rail of your breadboard.

If you run your program again, you’ll find the button
and buzzer do nothing. That’s because you haven’t
yet told your program how to use them. In Thonny, go
back to the lines where you set up your LEDs and add
the following two new lines below:

button = machine.Pin(16, machine.Pin.IN)
buzzer = machine.Pin(12, machine.Pin.OUT)

This sets the button on pin GP16 up as an input,
and the buzzer on pin GP12 as an output. Remember,
your Pico has built-in programmable resistors for its
inputs, which run as pull-down resistors by default;
if you were writing this program for a different
microcontroller development board, you might need

An easy way to visualise
threads is to think of each
one as a separate worker

in a kitchen

”
”

Figure 2
A puffin crossing
traffic light system

Right
Resistors are
essential components
for limiting the amount
of current that flows
through a circuit

71

FORGE

to configure the programmable resistors manually – or
even place a physical resistor on your breadboard.

Next, you need a way for your program to
constantly monitor the value of the button. Previously,
all your programs have worked step-by-step through
a list of instructions – only ever doing one thing at a
time. Your traffic light program is no different: as it
runs, MicroPython walks through your instructions
step-by-step, turning the LEDs on and off.

For a basic set of traffic lights, that’s enough; for
a puffin crossing, though, your program needs to be
able to record whether the button has been pressed
in a way that doesn’t interrupt the traffic lights. To
make that work, you’ll need a new library: _thread.
Go back to the section of your program where you
import the machine and utime libraries, and import
the _thread library:

import _thread

A thread or thread of execution is, effectively, a
small and partially independent program. You can
think of the loop you wrote earlier, which controls the
lights, as the main thread of your program – and using
the _thread library you can create an additional thread,
running at the same time.

An easy way to visualise threads is to think of each
one as a separate worker in a kitchen: while the chef
is preparing the main dish, someone else is working
on a sauce. At the moment, your program has only
one thread – the one which controls the traffic lights.
The RP2040 microcontroller which powers your Pico,
however, has two processing cores – meaning, like
the chef and the sous-chef in the kitchen, you can run
two threads at the same time to get more work done.

Before you can make another thread, you’ll need
a way for the new thread to pass information back
to the main thread – and you can do this using global
variables. The variables you’ve been working with
prior to this are known as local variables, and only
work in one section of your program; a global variable
works everywhere, meaning one thread can change

the value and another can check to see if it has
been changed.

To start, you need to create a global variable. Below
your buzzer = line, add the following:

global button_pressed
button_pressed = False

This sets up button_pressed as a global variable,
and gives it a default value of False – meaning when
the program starts, the button hasn’t yet been
pushed. The next step is to define your thread, by
adding the following lines directly below – adding
a blank line, if you want, to make your program
more readable:

def button_reader_thread():
 global button_pressed
 while True:
 if button.value() == 1:
 button_pressed = True

The first line you’ve added defines your thread and
gives it a name which describes its purpose: a thread
to read the button input. Like when writing a loop,
MicroPython needs everything contained within the
thread to be indented by four spaces – so it knows
where the thread begins and ends.

The next line lets MicroPython know you’re going
to be changing the value of the global button_pressed
variable. If you only want to check the value, you
wouldn’t need this line – but without it you can’t
make any changes to the variable.

Next, you’ve set up a new loop – which means a
new four-space indent needs to follow, for eight in

Left
Breadboards
make it easy to
prototype circuits

Above
LEDs come in
different colours and
are a great way to add
light to your project

72

Traffic light controller

SCHOOL OF MAKING

Defining a thread doesn’t set it running: it’s
possible to start a thread at any point in your program,
and you’ll need to specifically tell the _thread library
when you want to launch the thread. Unlike running
a normal line of code, running the thread doesn’t
stop the rest of the program: when the thread starts,
MicroPython will carry on and run the next line of
your program even as it runs the first line of your
new thread.

Create a new line below your thread, deleting all of
the indentation Thonny has automatically added for
you, which reads:

_thread.start_new_thread(button_reader_thread, ())

This tells the _thread library to start the thread you
defined earlier. At this point, the thread will start to
run and quickly enter its loop – checking the button
thousands of times a second to see if it’s been
pressed yet. The main thread, meanwhile, will carry
on with the main part of your program.

Click the Run button now. You’ll see the traffic
lights carry on their pattern exactly as before, with
no delay or pauses. If you press the button, though,
nothing will happen – because you haven’t added the
code to actually react to the button yet.

Go to the start of your main loop, directly
underneath the line while True:, and add the
following code – remembering to pay attention to
the nested indentation, and deleting the indentation
Thonny has added when it’s no longer required:

 if button_pressed == True:
 led_red.value(1)
 for i in range(10):
 buzzer.value(1)
 utime.sleep(0.2)
 buzzer.value(0)
 utime.sleep(0.2)
 global button_pressed
 button_pressed = False

total, so MicroPython knows both that the loop is part
of the thread and the code below is part of the loop.
This nesting of code in multiple levels of indentation
is very common in MicroPython, and Thonny will do
its best to help you by automatically adding a new
level each time it’s needed – but it’s up to you to
remember to delete the spaces it adds when you’re
finished with a particular section of the program.

The next line is a conditional which checks to see
if the value of the button is 1. Because your Pico
uses an internal pull-down resistor, when the button
isn’t being pressed the value read is 0 – meaning the
code under the conditional never runs. Only when the

button is pressed will the final line of your thread run:
a line which sets the button_pressed variable to True,
letting the rest of your program know the button has
been pushed.

You might notice there’s nothing in the thread to
reset the button_pressed variable back to False when
the button is released after being pushed. There’s
a reason for that: while you can push the button of
a puffin crossing at any time during the traffic light
cycle, it only takes effect when the light has gone
red and it’s safe for you to cross. All your new thread
needs to do is to change the variable when the
button has been pushed; your main thread will handle
resetting it back to False when the pedestrian has
safely crossed the road.

Defining a thread doesn’t set it running: it’s possible
to start a thread at any point in your program” ”

Above
There are many ways
of making noise with a
microcontroller, but a
buzzer is the simplest

Right
The RP2040
microcontroller at the
heart of Pico has two
ARM Cortex-M0 cores

73

FORGE

This chunk of code checks the button_pressed
global variable to see if the push-button switch has
been pressed at any time since the loop last ran. If
it has, as reported by the button reading thread you
made earlier, it begins running a section of code
which starts by turning the red LED on to stop traffic
and then beeps the buzzer ten times – letting the
pedestrian know it’s time to cross.

Finally, the last two lines reset the button_pressed
variable back to False – so the next time the loop runs
it won’t trigger the pedestrian crossing code unless
the button has been pushed again. You’ll see you
didn’t need the line global button_pressed to check
the status of the variable in the conditional; it’s only
needed when you want to change the variable and
have that change affect other parts of your program.

Your finished program should look like this:

import machine
import utime
import _thread

led_red = machine.Pin(15, machine.Pin.OUT)
led_amber = machine.Pin(14, machine.Pin.OUT)
led_green = machine.Pin(13, machine.Pin.OUT)
button = machine.Pin(16, machine.Pin.IN)
buzzer = machine.Pin(12, machine.Pin.OUT)

global button_pressed
button_pressed = False

def button_reader_thread():
 global button_pressed
 while True:
 if button.value() == 1:
 button_pressed = True

_thread.start_new_thread(button_reader_thread, ())

while True:
 if button_pressed == True:
 led_red.value(1)
 for i in range(10):
 buzzer.value(1)
 utime.sleep(0.2)
 buzzer.value(0)
 utime.sleep(0.2)
 global button_pressed
 button_pressed = False
 led_red.value(1)
 utime.sleep(5)
 led_amber.value(1)

 utime.sleep(2)
 led_red.value(0)
 led_amber.value(0)
 led_green.value(1)
 utime.sleep(5)
 led_green.value(0)
 led_amber.value(1)
 utime.sleep(5)
 led_amber.value(0)

Click the Run icon. At first, the program will run
as normal: the traffic lights will go on and off in the
usual pattern. Press the push-button switch: if the
program is currently in the middle of its loop, nothing
will happen until it reaches the end and loops back
around again – at which point the light will go red and
the buzzer will beep to let you know it’s safe to cross
the road.

The conditional section of code for crossing the
road runs before the code you wrote earlier for
turning the lights on and off in a cyclic pattern: after
it’s finished, the pattern will begin as usual with the
red LED staying lit for a further five seconds on top
of the time it was lit while the buzzer was going. This
mimics how a real puffin crossing works: the red
light remains lit even after the buzzer has stopped
sounding, so anyone who started to cross the road
while the buzzer was going has time to reach the
other side before the traffic is allowed to go.

Let the traffic lights loop through their cycle a few
more times, then press the button again to trigger
another crossing. Congratulations: you’ve built your
own puffin crossing!

Above
Your traffic light needs
to light up in the
correct sequence

TUTORIAL

74

Perfect projects for your Raspberry Pi 400

ou’ve probably guessed that we
at HackSpace magazine are pretty
excited about Raspberry Pi 400.
Having a desktop-capable computer in
a single keyboard unit for under £100
is not only amazing, but also takes

some of us older ones back to the time when this
form factor was the norm. That said, does it deserve a
place in the maker community? Obviously, the regular
Raspberry Pi ‘credit card’ format is great for robotics
and being nestled away out of sight. So what can
makers do with the slightly larger 400? Well, there’s
plenty to keep you busy. Here’s some inspiration.

PROJECT 1
RETRO COMPUTING CONSOLE
Let’s start with one of the most popular uses for the
Raspberry Pi range: classic gaming and computer
emulation. Projects such as RetroPie (retropie.org.uk)
and Lakka (lakka.tv) have made the otherwise
complex setup of various console emulators an
absolute breeze. A Raspberry Pi 400 is a great choice
for emulating classic computers of the 1980s, such
as the ZX Spectrum or BBC Micro (which after all a
direct forerunner of the Raspberry Pi), as you have
the computer and keyboard in a single portable unit.

Plus, there’s plenty of free and legal software available.
Check out Fuse for a great Spectrum emulator.

PROJECT 2
HOME AUTOMATION
Again, the Raspberry Pi is a common choice for home
automation projects. Combined with a small screen,
a Raspberry Pi 400 can provide a compact console for
controlling various aspects of your home. A popular
platform is Home Assistant (home-assistant.io).

Right
Home Assistant
enables you to control
all your smart devices
from a single interface

It’s a keyboard and a computer! The portability and
compact form factor of the new Raspberry Pi 400
make for perfect project material

Perfect projects for
your Raspberry Pi 400

Y
PJ Evans

@MrPJEvans

PJ is a writer, tinkerer,
and software engineer.
He keeps misplacing
his Raspberry Pi 400
and then wondering
why his keyboard
won’t boot.

http://retropie.org.uk
http://lakka.tv
http://home-assistant.io
https://twitter.com/MrPJEvans

75

FORGE

You can download a ready-to-go image, burn it to an
SD card, and be up and running in minutes. Home
Assistant is compatible with a huge range of home
automation and Internet of Things devices, including
popular platforms like Philips Hue or IKEA TRÅDFRI
for lighting, Sonos for audio, and sensor devices
such as Nest. You can even build your own sensors
using MQTT.

PROJECT 3
DESKTOP COMPUTER
Raspberry Pi 400 is the fastest model yet. The
addition of a large heatsink that runs almost the
entire length of the keyboard has allowed the safe
overclocking of the whole system, making it faster
than Raspberry Pi 4. Add improvements in Chromium
and you now have a realistic home computer that
can be used for web browsing, YouTube, email
and, with the amazing LibreOffice, a pretty decent
machine for preparing documents, spreadsheets,
and presentations. Of course, you’re not going to be
video editing or designing complex 3D models, but for
casual use, you cannot beat the price.

PROJECT 4
SUPER-PORTABLE
One of the great pluses of Raspberry Pi 400 is that
it reduces the number of wires needed, especially
if you use a Bluetooth or wireless mouse. Better
still, some of the more advanced power banks can
provide enough amps to power the whole system.
Suddenly, you’ve got a portable computer for making
on the move. We’ve already seen projects for small
touchscreens that connect to the GPIO pins and can
be angled. Put all this together and you can set up
your Raspberry Pi workstation anywhere and for a
fraction of the cost of a laptop.

PROJECT 5
ZOOM STATION
Some of the most uttered phrases of 2020 must
include “You’re on mute” and “Can you see my
screen?” For many of us, videoconferencing has
become a daily way of life, not just with colleagues,
but friends and family too. Why not set up a
dedicated ‘Zoom Station’ so you can have meetings
and chats in a more friendly environment? Just
add a monitor, speaker, and webcam (many have
decent microphones built-in). Raspberry Pi 400 has
enough horsepower to happily run Zoom in the
Chromium browser. With a big enough monitor,
you can get the family around the table rather than
squinting at a laptop screen.

Left
Raspberry Pi 400 is
powerful enough to be
a desktop computer

ESSENTIAL ADD-ONS FOR

RIBBON CABLE
£3.50 I thepihut.com

Make any HAT fit nicely to Raspberry Pi 400’s GPIO port with
the addition of a cheap 40×2 ribbon cable.

BREAKOUT GARDEN
£10 I shop.pimoroni.com

Pimoroni’s Breakout Gardens allow you to connect all kinds
of sensors and output devices with ease. This three-slot
version is right-angled for Raspberry Pi 400.

WAVESHARE SCREEN
£54 I thepihut.com

Need a perfect screen to go with your fancy new
Raspberry Pi 400? If you’re looking for portability, this
7” touchscreen comes with a case and connects to HDMI
and USB.

FLAT HAT HACKER
£7.50 I shop.pimoroni.com

Hooking the newly positioned GPIO port to a breadboard
can be a bit fiddly. This breakout board allows you easier
access to the pins, and can take an additional pHAT-
format HAT as well.

RASPBERRY PI 400 MAKERS

http://thepihut.com
http://shop.pimoroni.com
http://thepihut.com
http://shop.pimoroni.com

DON’T MISS THE BRAND NEW ISSUE!

Buy online: store.rpipress.cc

magpi.cc/12months

FREE PI ZERO W
STARTER KIT*

With your 12-month subscription to the print magazine

SUBSCRIBE FROM JUST £5
> FREE! 3 issues for the price of one

> FREE! Delivery to your door

> NO OBLIGATION! Leave any time

* While stocks last

http://store.rpipress.cc
http://magpi.cc/12months

210108_IoT_HS_UK.indd 1210108_IoT_HS_UK.indd 1 1/7/21 2:18 PM1/7/21 2:18 PM

http://www.digikey.com/iot

TUTORIAL

78

FreeCAD, parametric parts, and other approaches

n parts one and two of this series, we
covered the basics of sketching, extruding,
and other tasks to create parts using
the part, sketcher, and part design
workbenches. In this tutorial, we’re going
to add to our skills by exploring a small range

of tools and approaches and making a variety of
small project items. We’ll start by exploring the ‘Add
a Thickness’ tool, look at using the Spreadsheet
workbench, and working parametrically, we’ll bring
these skills altogether to make an automatic box with
lid generator.

For a quick example of using the ‘Make a Thick
Solid’ tool, begin in the part design workbench and
create a new body. Create a new sketch in the body
on the XY plane, then select the polygon tool to draw
a hexagon. Start your hexagon on the 0,0 point of the
axis so that it is positionally constrained. You should
have a hexagon with two degrees of freedom. A
simple way to constrain a hexagon is to make the
uppermost line of the hexagon horizontal by selecting

I
the line and clicking the ‘create a horizontal constraint’
tool. Next, you can select two nodes vertically
above each other, and set a vertical distance to fully
constrain the sketch Figure 2.

Close the sketch and then pad the sketch using
the pad dialogue found on the tasks tab in the combo
view window or by clicking the 'pad a selected
sketch' tool icon.

We are going to now use the thickness tool to
hollow out our hexagonal extrusion. Select the upper
face of the hexagonal extrusion and then click the
‘Make A Thick Solid’ tool. You should see instantly
that the part now appears as a hollowed version
of itself. In the thickness tool dialog, you can see
the selected face and change various parameters
(Figure 3). You can, of course, increase and decrease
the thickness that is created. By default, the
thickness dialog adds the thickness to the outside of
the underlying geometry, so if you set the hexagon
vertical constraint to 30 mm you now will have an
object that is 30 mm plus the thicknesses. If you

In this third part of the FreeCAD series, we are going to design a variety of objects
using numerous different tools and approaches

FreeCAD, parametric parts,
and other approaches

Figure 1
Using a parametric approach
means that we can create
collections of similar parts
with differing dimensions
from one base model

Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a constant
tinkerer and is passionate
about all things DIY
space. He loves designing
and scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines and
CNC kit!

https://twitter.com/concreted0g

79

FORGE

Figure 2
Constraining a
hexagon centred on
the 0,0 co-ordinates
only needs two other
constraints to fully
constrain it

Figure 3
Using the 'Make a
Thick Solid' tool
to make our
padded hexagon
object hollow

want to create an object that matches the external
dimensions of the underlying geometry, click the
‘make thickness inwards’ tick-box. You can also swap
between Arc and Intersection, which essentially
toggles between creating filleted edges or sharp
edges on the thickness.

Finally, if you want to apply a thickness but create
an object which is more of a pipe than a bowl, you
can click the ‘Add Face’ button. In the preview
window, the original selected face reappears
highlighted and you can select the opposite face.
You should now have a hexagonal object with a wall
thickness with both ends open.

LET’S GET PARAMETRIC!
We looked at making multiple ’simple copies’ of
parts using the ‘part’ menu on the part workbench
in previous parts of the series. You can also use
that approach to create simple copies of bodies that
you have designed in part design. Sometimes we

might want to make multiple similar parts, but with
one or more dimensions changed – for example, if
we were drawing a model of a 3D printer that used
the common 2020 aluminium extrusion (Figure 1).
One way we could make this easier is to draw an
aluminium extrusion profile sketch, and then pad or
extrude it multiple times to multiple lengths. As a
workflow, we might choose to use the part design
workbench to create a body for our original extrusion
and then create multiple simple copies on the
part workbench.

This is a very simple example that introduces the
idea of working parametrically. Parametric work in
CAD is where we can change the model geometry by
adjusting parameters such as dimensions. Whilst only
being one parameter, we can use this mini project
to learn about using a spreadsheet to store and alter
parameters for objects and sketches.

We downloaded an image with the dimensions of
the 2020 extrusion and created a new project. On
the part design workbench we selected to create a
new body and then to create a sketch in the XY plane.
We crudely drew a shape of the profile using the
polyline tool and then worked through to constrain the
sketch (Figure 4).

Having constrained the sketch, we checked how
it looked by performing a ‘pad’ from the tasks menu,
and we then added the external corner radius fillet
and the chamfers at the edges of the extrusion slots.
We could now, of course, just set a pad length of
extrusion and then create a simple copy on the part
workbench to create different length parts, but we

YOU’LL NEED

A laptop
or desktop
computer

Often in this article,
we have described
tools using the
text that appears
when you hover
the mouse over the
tool icon. This is a
great way to find the
tools or explore a
new workbench.

QUICK TIP

OTHER OPTIONS
The thickness tool is an excellent way to quickly create
hollow geometries, but it does have some limitations. It
can fail to work with more complex shapes; things like
curvy cones can be its nemesis. In the next part of this
FreeCAD series, we’ll begin to look at ‘Lofting’ tools,
which enable us to create hollow parts with curved
walls and more.

Parametric work in CAD
is where we can change
the model geometry by
adjusting parameters

”
”

TUTORIAL

80

FreeCAD, parametric parts, and other approaches

want to learn how to use the spreadsheet function to
further explore parametric work.

Let's move to the spreadsheet workbench using
the workbench drop-down menu, and click the
‘create a new spreadsheet’ icon. You should now
see a spreadsheet open in the preview window
in a separate tab (Figure 5). This is very handy,
as it allows quick switching between the model
and the spreadsheet. If you close the spreadsheet
tab, the spreadsheet is still an item in the file tree
view and you can double-click to open it. The
spreadsheet functions are very capable, and similar
to standard spreadsheets you may have used in
office software. For this simple task, we are going
to write the label ‘Length’ in cell A1, and then in
cell B1 we can type a length we want our extrusion
to be. When we type a dimension into a constraint
in the sketcher, it interprets that number as the

units you use throughout FreeCAD, which can be
set in the preferences menu. In our case, this is
millimetres and will be the case for our spreadsheet
values, so we don’t need to define our input units in
the spreadsheet.

Set cell B1 to 100 and click back onto the preview
tab with the model in it. Reopen the pad by double-
clicking on the pad in the file tree. In the input box for
‘length’ you should see the current pad length value,
but you should also see a blue circle icon on the right-
hand side of the box . Click this to open the formula
editor (Figure 6). In this input box, now start to type
‘Spreadsheet’. You should find that it automatically
suggests the word spreadsheet as you start typing.
Click the suggested ‘Spreadsheet’ from the drop-
down and it should insert the word spreadsheet

followed by a full stop. After the full stop, we need
to input the cell location of the cell from which we
want it to take its value. If you type ‘B’, it again
should automatically suggest ‘B1’ as a value. This
autosuggestion is useful when we come to projects
with numerous cells of data in a spreadsheet, as it
will only suggest cells that have data in them. Click
the ‘B1’ so that the value in the formula editor reads
‘Spreadsheet.B1’, as in Figure 6.

Returning to the preview tab with the model in, you
should see that the extrusion body is now padded
or extruded to the 100 mm length. You can now
create multiple simple copies from the body using
the ‘create a simple copy’ tool in the ‘part’ drop-down
on the Part Workbench, changing the length of the
original body copy in the spreadsheet, as in Figure 1.

Figure 4
A basic sketch of
the 2020 profile. We
added chamfers and
fillets once the sketch
was padded

Figure 5
The spreadsheet
workbench, with our
spreadsheet opened
in its own tab in the
preview window

Figure 6
Clicking the circular
blue box in the corner
of any input box takes
you to the formula
editor, where you can
link the value to a
spreadsheet, amongst
other functions

This autosuggestion is useful
when we come to projects with

numerous cells of data
in a spreadsheet

”
”

81

FORGE

LET'S COMBINE OUR NEW SKILLS!
Having explored using both spreadsheets and the
thickness tool, let’s combine our new skills and create
an automatic parametric box generator. This simple
project makes it easy to create a box and lid of any
size that we could 3D-print or CNC-machine.

Let’s begin by creating a new project. In the new
project, go to the spreadsheet workbench and create
a new spreadsheet. For the main body of our box, we
are going to need four parameters: the box length,
width, height, and the wall thickness. Create labels for
these parameters in cells, and in adjacent cells input
some initial values (Figure 7).

Next, jump to the part design workbench and create
a body and a sketch in the XY plane. We are going to
draw a rectangle around the zero point and then, at first,
constrain it to always be centred around the origin point
of the sketch. Draw the rectangle and then click the
‘create a symmetry’ constraint tool. Use the symmetry
constraint tool to select the upper right-hand node, the
upper left-hand node, and the vertical Y axis line. Repeat
this for the upper right and lower right nodes, and the X
axis line. Now the rectangle should always be centred
around the 0,0 co-ordinates, regardless of its size.

Next, let’s add a constraint for the box length
by selecting the top line and clicking the ‘Fix the
horizontal distance’ tool. In the input box, click
the blue circle formula editor button and insert
‘Spreadsheet’, followed by the cell location for the
box length, which in our case was B2. Repeat this for
the vertical line to set the box width, and the sketch
should now appear fully constrained.

Close the sketch and perform a ‘pad’ task to
extrude the box; set the pad dimension to receive
the input from the box height cell in the spreadsheet.
Next, we will click the upper surface of our box and
use the thickness tool we explored earlier to hollow
out our box. To set the thickness, we are going to link
the thickness value in our spreadsheet. All being well,
you should now have a hollow box in the preview
window (Figure 8).

To make a lid, we are going to do the same process
as we did to make the box section, but we are going
to use some simple formulae so that the lid is
generated to fit whatever dimensions are of the box
created. On the part design workbench, click to create
a new sketch on the XY plane. We don’t need to
import any geometry from our first sketch, but let’s
draw another rectangle and place it along the x axis
so it isn’t on top of our box base. To positionally

Figure 7
The spreadsheet set up
for our box generator

Figure 8
Using the spreadsheet
and the thickness tool,
we have a parametric
hollow box ready to
make a lid for

Figure 9
Laying out the sketch
for the box lid, making
sure it will always be
positioned away from
our box

TUTORIAL

82

FreeCAD, parametric parts, and other approaches

Figure 11
The box now
complete with a
fitting lid laid out
on the XY plane

Figure 10
Adding a small
formula to a cell
to automatically
generate the
dimension needed for
the lid length

To finish the lid, we added the formula for the box
width, using the same formula for length, except using
the box width dimension. We also created an input
value for the lid height. We constrained the length and
width of the lid sketch by adding constraints linked
to our calculated dimensions in the spreadsheet. We
then performed a pad using the lid_depth value and, in
turn, applied a thickness to the lid using the thickness
value in the spreadsheet. You now have an automatic
box generator at your disposal! Simply change the
parameters in the spreadsheet and it will automatically
generate your box with a fitting lid (Figure 11).

constrain this lid rectangle, select the upper left
corner node and the sketch origin point at 0,0 and set
a horizontal distance constraint. For the value of this
constraint, we have linked the spreadsheet cell that
holds the box_length value. This means that the lid
will always be away from the box with a gap in
between them (Figure 9).

Next, select the upper right and lower right nodes
and the x axis line, and create a symmetry constraint.
To create the length and width of the lid, we are
going to create two new labels in the spreadsheet
and create two new cells to hold this value. However,
we are going to insert a small formula in the cells to
generate these values. The value for the length of
the lid will be equal to the box length value plus twice
the value of the wall thickness. It will also need a
clearance to make the lid fit over the box. We have
created a label and a cell called ‘clearance’, and put
in a value of half a millimetre which we will add to
each side of the lid. So, to create the value of the
lid_length in that cell, we input the formula to multiply
the thickness and the clearance by two and add them
to the box length. To add this formula, highlight the
target cell and type it into the formula bar (Figure 10).

LINING UP
Once you have your box generator set up, you can
generate boxes of any dimensions easily. The layout
on the XY plane means that the box and lid will
be easy to export and 3D-print, as both parts are
modelled in a way that emulates them sitting on the
print bed. If you wanted to look at your box with the lid
in position, again you could create a simple copy on
the part workbench and move and rotate those parts
into the correct position.

When working on
a sketch like the
2020 extrusion,
using the ‘create an
equality’ constraint
tool is helpful
on lines that are
relatively the same
in each quadrant of
the sketch.

QUICK TIP

You don’t have
to draw the 2020
extrusion to learn
this technique
– you can just
draw a simple
square instead!

QUICK TIP

Buy online: hsmag.cc/pythongui

✓ Create games and fun Python programs

✓ Learn how to create your own graphical
user interfaces

✓ Use windows, text boxes, buttons,
images, and more

✓ Learn about event-based programming

✓ Explore good (and bad) user
interface design

Create Graphical
User Interfaces

with Python

http://hsmag.cc/pythongui

TUTORIAL

88

Make music with touch

t the heart of this make is one of
my favourite board and sensor
combinations: the Bela Mini and
the Trill Craft. It’s a pretty pricey
board compared to an entry-level
microcontroller, but if you’re looking

to level up your embedded instrument design, it is
really worth considering. If you’re not ready to invest
in a Bela, you can try out the Trill Craft sensor with an
Arduino, Teensy, Raspberry Pi, or any other board that
supports I2C.

The Trill Craft is a capacitive touch sensor board.
Capacitive touch is a staple technology of many

Use capacitive sensing to create
your own sounds

Make music
with touch

A
Helen Leigh

Helen turns all sorts
of unusual items into
musical instruments
(among other things).

@helenleigh

instrument inventors, many of whom will use a
capacitive touch library or the trusty MPR121. The Trill
Craft has great resolution and provides a continuous
reading, plus the killer feature is that it has 30 channels,
compared to the MPR121’s twelve channels. You can
also chain up to nine sensors together, giving you a
potential 270 capacitive touch channels to play with.

This project involves quite a few design decisions:
limbs, body, shape, support, and strain relief. Take time
making your choices and picking your materials – it will
be worth it to create your own playable work of art.

STEP ONE CHOOSING YOUR MATERIALS
The metal rod or wire you choose to use in this project
needs to be 0.8 mm thick, or it won’t thread through
the pin holes on your sensor board with enough space
for solder to flow. Depending on how you want to

Left
Brass wires
reflecting light can
give your instrument a
unique look

https://twitter.com/helenleigh

85

FORGE

shape the limbs of your creature, you’ll also need it to
be reasonably flexible. I have had the most success
when using brass rods or steel wire, which you can
find at art supply or architectural modelling stores.
Learn from my mistakes and buy a sample rod of your
chosen material first – that way you can check that you
can make the shapes you want before you spend time
attaching 30 gangly and uncooperative limbs!

The Trill sensor board has 30 pins, so you can add
up to that number of limbs. For my harp creature, I
used all 30 pins for limbs because I wanted a feathery,
messy feel to match the generative nature of the code
I planned to write, but for my bass creature I wanted
a more minimal instrument with sharp, clean lines, so
I only used ten pins – eight pins to span a full octave,
plus two pins for triggering sound effects. Sketch out
a few ideas, keeping in mind how the look might relate
to the sound you want your own instrument to make.

In this make I’m using a Bela Mini to read the sensor
values from the Trill Craft sensor and produce sound.
However, the Trill Craft sensor board also works
with Arduino, Teensy, Raspberry Pi, and any other
microcontroller or single board computer that uses
I2C communication. I chose the Bela Mini because I
wanted low latency plus the ability to use Pure Data to

Left
The parts you'll need
for this project

Below
The solder joints are
critical, so take your
time on them

The most fragile part of this make is where your
limbs attach to your sensor board with solder”

”

YOU’LL NEED

Tools

Soldering iron

Helping hands

Laptop or
desktop
computer

Materials

Trill Craft sensor

Trill Craft bare
PCB (optional, see
step three)

Bela Mini

Four M-to-F
jumper cables

5 V power cable
with ground

0.8 mm thick
metal rod or wire

produce a rich, complex sound for my creature, but you
should feel free to make a decision that suits you.

Once you’re happy with your design decisions, you
can start soldering the limbs. Insert one of your metal
rods into your sensor board and solder into place.
When soldering the limbs, you’ll need to apply your
soldering iron for a little longer than you’re used to
with a normal component. This is because the limbs
are long, thick, and made of metal, so they absorb and
disperse the heat from your iron more than the little leg
of a resistor would.

STEP TWO SECURE SOLDER JOINTS
The most fragile part of this make is where your limbs
attach to your sensor board with solder, especially
if you’ve chosen limbs that are long and wiggly. The
movement of the limbs backwards and forwards
can eventually break the connection, leaving you
with a useless limb and possibly even a broken
pin connection.

With this in mind, it’s worth pausing after you’ve
soldered the first couple of limbs to your sensor board
to think about how you can make them more secure.
There are a couple of ways to do this, depending on
how much wear and tear you expect your creature to
endure. The simplest solution is to add a thin layer of
hot glue at the end of soldering your limbs. This will
give you a little extra support and insulation for your
solder joints. If you used flux to help you solder, make
sure to clean any excess off before sealing it up with
hot glue.

The second method I experimented with to secure
my limbs was a bit more effort but also a lot more
protective and, to my eyes, much more aesthetically

TUTORIAL

86

Make music with touch

pleasing. To reduce the mechanical stress on the
sensor board itself, I made a sensor board ‘sandwich’,
with a functional board underneath and a dummy board
on top to take the stress of the movement of the
limbs. Because the lovely people at Bela have made
their hardware open-source, I downloaded the KiCad
PCB design file for the Trill Craft sensor board from
their GitHub page (hsmag.cc/BelaDesign), then sent
that file to OSH Park and placed an order for three
boards. I used OSH Park because I wanted their gold
and black ‘After Dark’ finish to match the rest of my
creature, but you can use any PCB service for
hobbyists. A week or so later I got a set of sensor
boards in the post. Of course, these sensor boards
didn’t have any components on them, but that didn’t

matter to me – all I wanted was a nice-looking board to
relieve the strain of my wiggly limbs.

I used this bare board to protect my Trill Craft board.
If you choose to go this route too, then once you’ve
soldered the first couple of limbs to your working
sensor board, you can carefully thread the strain relief
board onto those same limbs. Push it down until
it’s nearly on top of your functioning Trill Craft, then
carefully solder it in place. Once you have secured
both of your boards in place, you then can move on to
soldering the rest of your limbs.

STEP FOUR ADDING HEADER PINS
The Trill sensor comes with a row of header pins, so
after the limbs are in place you need to solder them
onto your board. I chose to solder the header pins
underneath the sensor board, but if you prefer the
way the pins look the way other around, do feel free
to switch it up – as long as you wire it up to your Bela
correctly it doesn’t matter. I soldered on all six header
pins, but we’re only going to be making use of four for
this make: SCL, SDA, +V, and GND.

STEP FIVE SUPPORTING AND SHAPING
YOUR CREATURE’S LIMBS
Once you have soldered and secured your limbs and
added in your header pins, you can start to shape
your creature. Depending on your design, you may
want to add in support or a base at this point. The
legs of my bass creature were sturdy and straight so
they supported its body, but for this delicate spidery
creature I used two M3 brass standoffs, two M3 nuts,

and a bit of scrap wood to make
a basic support stand. I secured
the Trill Craft to one of the brass
standoffs using an M3 bolt through
the hole at the back of the board,
then added a second brass standoff
to give it a little extra height. Finally,
I drilled a 3 mm hole in some scrap
wood to allow space for the second
M3 bolt to go through and connect
to the brass standoffs.

Once you’re confident in the
stability of your creature, gently
and carefully bend each of the
limbs of your creature into place.
You can also trim the limbs at this
point. This stage is where you really
create the look of your creature,
so think about where it will live,
how you will play it, and what kind
of aesthetic you want to achieve.

Above
An extra PCB helps
hold the wires in place

Below
Take your time with
the soldering and
make sure you get a
good connection

http://hsmag.cc/BelaDesign

87

FORGE

Whatever look you decide to go for, make sure that the
limbs are not in contact with each other, or you will end
up unintentionally triggering pins too often when you
play it.

STEP SIX WIRING YOUR CREATURE
Once you are happy with your creature’s appearance,
use the header pins and four jumper cables to wire it to
your Bela Mini. Wire +V on the sensor board to VOUT,
GND to GND, SCL to SCL, and SDA to SDA. If you flip
the Bela Mini over, you will find the pins labelled on the
bottom, or you can open up the IDE (see below) to find
an interactive pin diagram. Once your creature is wired
to your board, you need to connect it to your computer
using a micro USB cable.

If you choose to use a different microcontroller or
single-board computer, the wiring will be the same, but
the instructions for setting up your board and making
sounds will differ. For Linux-based systems including
the Raspberry Pi, head over to Bela’s GitHub for
libraries and examples (hsmag.cc/BelaPlatform).
You also can find libraries and examples for
Arduino boards and Arduino-compatible systems,
including Teensy, in a different folder on the Bela
GitHub (hsmag.cc/BelaArduino).

STEP SEVEN PREPARING YOUR
AUDIO SOFTWARE
For my creature, I worked with the sound artist and
composer Andrew Hockey to make a delicate, ethereal
harp sound using Pure Data. Pure Data (often called
Pd) is an open-source visual programming environment

for sound, visuals, and other media. There are two
versions of this software: Pd Vanilla and Purr Data.
Either will work for this project, but I’m using Pd
Vanilla. Go to puredata.info, then download and install
the software onto your laptop or desktop computer.

Please note that Pure Data files will run on Bela
and Raspberry Pi boards but not on a microcontroller.
If you are using your Trill Craft sensor board with
a microcontroller, you will have to make your own
sounds. There will be many excellent audio libraries out
there to play with, no matter which system you choose
to use.

STEP EIGHT WORKING WITH THE BELA IDE
One of the nice things about Bela is that you access
the IDE using your web browser. This means you can
connect your Bela to your computer, open a browser,
and get coding – no downloads or special software
needed! You don’t even need to be connected to the
internet: once your Bela is plugged in, your computer
recognises it as a local network.

Plug your Bela system into your computer with a
USB cable. After it’s booted, go to bela.local in a web
browser to load the Bela IDE. If bela.local does not
bring up the IDE, try the IP addresses 192.168.6.2
or 192.168.7.2.

There are four main parts of the IDE: the editor, the
toolbar, the tabs, and the console.

The editor is where you type your code: C++,
Csound or SuperCollider programming language
(sclang), or JavaScript if you’re making a GUI. For this
project we’re using a Pure Data file, known as a patch.
You can’t edit a Pure Data patch in your browser, but
once you’ve uploaded your patch it will be visualised in
the editor.

The toolbar contains controls for running and
stopping your project as well as two useful tools: the
oscilloscope (super-handy for visualising and examining
signals) and the GUI visualiser.

The tabs contain most of the controls for your Bela
system. This is where you’ll manage your projects and
customise settings, plus you can find lots of helpful

There will be many excellent
audio libraries out there to
play with, no matter which
system you choose to use

”
”

Above
Shaping the
instrument gives it
its unique aesthetic

Below
Four wires join the
two boards together

http://hsmag.cc/BelaPlatform
http://hsmag.cc/BelaArduino

TUTORIAL

88

Make music with touch

resources here including code examples, an interactive
pin diagram, and all the built-in code libraries.

The console gives you printed feedback about what
your Bela is doing. You can print sensor data to this
console as your code runs, and it will also provide
useful error and status information. The console is
also the command line for your Bela, letting you run
terminal commands.

Go ahead and poke around the Bela IDE to get used
to where some of the controls live. You can also test
everything is working by running Bela’s equivalent of
‘Hello world!’ or ‘Blink’:
the sine tone. Click on
the little light bulb icon
in the tab section of
the IDE to bring up the
Examples folder. Click on
Fundamentals, then click
on the example project
called ‘sinetone’ to open
it up in your editor. Click
on the ‘Build & run’ circular arrow icon in your toolbar
and your code should start running on the board.

To hear the sine tone, you’ll need to connect the
audio adapter cable supplied with the board to ‘out’,
then plug in your headphones or a speaker. If you hear
a continuous bloop, you’ve successfully made your
Bela make its first noise! Hooray! Now let’s make it do
something that sounds a little nicer.

STEP NINE TESTING OUT YOUR CREATURE
Go back to the Examples tab, then scroll down until
you see a folder called Trill. Click on that, then click
on the project called ‘craft-pd’ to open it in the editor.
You’ll be able to see what the example Pure Data

patch looks like, but you won’t be able to edit it. Make
sure your creature is connected to your Bela correctly
and that none of the limbs are touching each other,
either directly or through a conductive surface, then
build and run the code using the circular arrow icon in
your toolbar.

If everything is working correctly, your console
should start printing ‘bela: touchSensor: 0 0 0 0 0 0 0 0
0 0’. If you get an
error message that says ‘Unable to create Trill CRAFT
device ‘mycraft’ on bus 1 at default address. Is the
device connected?’, that means something has gone
wrong with your wiring. Double-check your SDA, SCL,
+V, and GND wires are going where they should and
try again.

Once your sensor has connected correctly, you can
try touching some of the limbs on your creature. Some
of the zeroes printed in your console should change
and start returning different values. Each of these
values corresponds to a different pin on your board.
If you touch a limb attached to pin 0, 1, 2, or 3, you
should be able to hear someone speaking.

STEP NINE CHANGING THE DEMO CODE
We can’t edit Pd files directly in the browser, so we
need to download the example code to our computer.
Click on the folder icon in the tabs section of the IDE to
open the Project Explorer, then download your project
and unzip the folder. Open the file _main.pd using the

Pure Data software you
installed earlier.

Once your file is open,
go to the Edit menu
and turn on ‘Edit mode’.
For our first edit we are
going to make any pin we
choose responsive, not
just the four pins in the
example code. Each of

the pins can be accessed by editing the connections
coming from the ‘unpack f
f f f f’ block. Each of the black rectangles at the bottom
of this block corresponds to a pin on the Trill Craft
board. The first four rectangles have lines connecting
them to a group of six blocks which trigger audio files.
Select, copy, and paste one of these groups, then
move this new group to its own space.

Hover your cursor over the first available
unconnected black rectangle on the ‘unpack’ block,
then click and drag the line to the top-left black
rectangle of your new group. This can be a little fiddly
with Pd Vanilla as you have to let go in just the right
spot – watch for the circle to tell you you’re in the right

We can’t edit Pd files directly
in the browser, so we need to
download the example code to

our computer

”
”

Above
Brass wire is easy to
bend and holds its
shape well

89

FORGE

place! To give yourself more room to manoeuvre, you
can increase the size of the ‘unpack’ block by dragging
the right-hand edge. Next, connect the ‘playAudioFile~’
block to both the left and the right side of the ‘dac~
1 2’. Finally, change the name of the audio file in your
new group of blocks to ‘five.wav’.

Repeat this process for as many pins as you like,
changing the audio file name for each pin, then save
your patch. Your patch must be called _main.pd or
your Bela will not be able to read it.

Once you’re done with your patch, you can choose
your files. Go to the project folder you downloaded
and you will find four WAV files. To change the sounds
triggered and add new ones, you need to save your
sounds as WAV files in this folder with file names that
match the file names you put in your Pure Data patch.
For my edited patch, I triggered different miaows for
each pin just to make myself laugh, but you can do
whatever pleases you most.

STEP TEN UPLOADING YOUR NEW PATCH
Once you are happy with your edited patch and new
sounds, you need to upload it all to your board.

Go back to the IDE in your browser and create a new
Pure Data project. Go to the Project Explorer tab and
click the Create New Project button at the top. Select
Pure Data in the dialog box that pops up, give your
project a name, and click ‘Create project’ to make a
blank Pure Data Bela project. Click on Project Contents
in the Project Explorer tab and you will see that the
only thing in it is a file called _main.pd. You can either
upload your files individually in the IDE, or you can drag
all the files from the folder on your computer and drop
them anywhere on the Bela IDE window. This will
upload and run your patch, ready for you to test out
your new samples and additional pins.

Once you have a Pd file you’re happy with, you can
disconnect your Bela from your computer and power
the creature using a 5 V power cable.

Below
This is my instrument,
but it's up to you how
you build yours

TUTORIAL

90

NeoPixel dithering with Pico

S2812B LEDs, commonly
known as NeoPixels, are cheap
and widely available LEDs.
They have red, green, and blue
LEDs in a single package with
a microcontroller that lets you

control a whole string of them using just one pin on
your microcontroller. However, they do have a couple
of disadvantages:

1) The protocol needed to control them is timing-
dependent, and often has to be bit-banged.

2) Each colour has 8 bits, so has 255 levels of
brightness. However, these aren’t gamma-corrected,
so the low levels of brightness have large steps
between them. For small projects, we often find
ourselves only using the lower levels of brightness, so
often only have 10 or 20 usable levels of brightness.

We’re going to look at how two features of Pico
help solve these problems. Firstly, Programmable IO
(PIO) lets us implement the control protocol on a state
machine rather than the main processing cores. This
means that we don’t have to dedicate any processor
time to sending the data out.

Secondly, having two cores means we can use
one of the processing cores to dither the NeoPixels.
This means shift them rapidly between different
brightness levels to make pseudo-levels of brightness.
For example, if we wanted a brightness level halfway
between levels 3 and 4, we’d flick the brightness
back and forth between 3 and 4. If we can do this fast
enough, our eyes blur this into a single brightness level
and we don’t see the flicker. By varying the amount of
time at levels 3 and 4, we can make many virtual levels
of brightness. While one core is doing this, we still
have a processing core completely free to manipulate
the data we want to display.

First, we’ll need a PIO program to communicate
with the WS2812B LEDs. The Pico development team
have provided an example PIO program to work with
– you can see the full details at hsmag.cc/orfgBD, but
we’ll cover the essentials here. The PIO code is:

Right
The three
connections may be
in a different order
on your LED strip,
so check the labels
to make sure they’re
connected correctly

Get extra levels of brightness out of your LEDs

NeoPixel dithering
with Pico

W

Fortunately, the Pico
development team have
provided an example PIO

program for us to work with

”
”

Ben Everard

@ben_everard

Ben's house is slowly
being taken over by 3D
printers. He plans to
solve this by printing an
extension, once he gets
enough printers.

DIN DINDO

+5V

GND

+5V

GND

+5V

GND

DINDO

+5V

GND

+5V

GND

DO

+5V

GND

DO

http://hsmag.cc/orfgBD
https://twitter.com/ben_everard

91

FORGE

.program ws2812

.side_set 1

.define public T1 2

.define public T2 5

.define public T3 3

bitloop:
 out x, 1 side 0 [T3 - 1]
 jmp !x do_zero side 1 [T1 - 1]
 do_one:
 jmp bitloop side 1 [T2 - 1]
 do_zero:
 nop side 0 [T2 - 1]

We looked at the PIO syntax in the main cover
feature, but it’s basically an assembly language for
the PIO state machine. The WS2812B protocol uses
pulses at a rate of 800kHz, but the length of the pulse
determines if a 1 or a 0 is being sent. This code uses
jumps to move through the loop to set the timings
depending on whether the bit (stored in the register x)

is 0 or 1. The T1, T2, and T3 variables hold the timings,
so are used to calculate the delays (with 1 taken off as
the instruction itself takes one clock cycle).

There’s also a section in the pio file that links the
PIO code and the C code:

% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_program_init(PIO pio,
uint sm, uint offset, uint pin, float freq, bool
rgbw) {

 pio_gpio_select(pio, pin);
 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1,
true);
 pio_sm_config c = ws2812_program_get_default_

Above
There will usually
be wires already
connected to your
strip, but if you cut it,
you’ll need to solder
new wires on

SETTING UP THE SDK
In order to compile this code, you need to set up the SDK. Follow the steps at
pico.raspberrypi.org/getting-started. Once you’ve got that set up, you can use CMake to
build the project. So, if you have two directories at the same level, one called PicoLights
and one called PicoLights-build, you can build the project with the following run in the
PicoLights-build directory:

cmake ../PicoLights -G "Nmake Makefiles"
nmake

This is for Windows. You’ll need to alter the -G parameter of CMake if you’re using macOS
or Linux. See the getting started documentation for details.

If you’d rather just see it running, you can get the compiled code from github.com/
benevpi/PicoLights/releases/tag/v.0.1 and flash this to your Pico.

DIFFERENT LEDS

WS2812B LEDs come in a lot of different types, and
many LEDs that are sold as WS2812N LEDs aren’t really
WS2812B LEDs at all. You may find that the colours
don’t match up properly with what we’re getting here
(the colour order can be different). You should be able
to amend the code to fix this. If you don’t get anything
sensible out (or just odd lights), it may be that you
have 400kHz LEDs rather than 800kHz ones. In which
case, you’ll need to decrease the frequency in the
ws2812_program_init line in int main.

http://pico.raspberrypi.org/getting-started
http://github.com/benevpi/PicoLights/releases/tag/v.0.1
http://github.com/benevpi/PicoLights/releases/tag/v.0.1

TUTORIAL

92

NeoPixel dithering with Pico

config(offset);
 sm_config_set_sideset_pins(&c, pin);
 sm_config_set_out_shift(&c, false, true, rgbw ?
32 : 24);
 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

 int cycles_per_bit = ws2812_T1 + ws2812_T2 +
ws2812_T3;
 float div = clock_get_hz(clk_sys) / (freq *
cycles_per_bit);

 sm_config_set_clkdiv(&c, div);
 pio_sm_init(pio, sm, offset, &c);

 pio_sm_set_enable(pio, sm, true);
}
%}

 Most of this is setting the various PIO options – the
full range is detailed in the Pico C/C++ SDK document
at rptl.io/rp2040.

 sm_config_set_out_shift(&c, false, true, rgbw ? 32
: 24);

This line sets up the output shift register which
holds each 32 bits of data before it’s moved bit by bit
into the PIO state machine. The parameters are the
config (that we’re setting up and will use to initialise
the state machine); a Boolean value for shifting right or
left (false being left); and a Boolean value for autopull
which we have set to true. This means that whenever

the output shift register falls below a certain threshold
(set in the next parameter), the PIO will automatically
pull in the next 32 bits of data.

The final parameter is set using the expression rgbw
? 32 : 24. This means that if the variable rgbw is true,
the value 32 is passed, otherwise 24 is passed. The
rbgw variable is passed into this function when we
create the PIO program from our C program and is
used to specify whether we’re using an LED strip with
four LEDs in each using (one red, one green, one blue,
and one white) or three (red, green, and blue).

The PIO hardware works on 32-bit words, so each

SPEED
The protocol for WS2812B LEDs throws data out at
800kHz (well, there is a little wiggle room to speed this
up). The total time it takes to update a string of LEDs
obviously depends on how many LEDs you have on it.
We found that this code worked well with about 60–80
LEDs. If you start adding more than this, then you may
start to notice flicker.

This doesn’t mean that you’re limited to this many
WS2812B LEDs in a total display, though, as you can
add multiple state machines controlling multiple
strings of LEDs and, as long as each string is kept short
enough, you should have the processing power to
manipulate a lot of LEDs. However, if you’re going to do
this, you probably want to use a few more techniques
to squeeze out maximum performance. Take a look at
the 'Going Further' box (overleaf) for more details.

Above
Using a text editor
with programmer’s
features such as
syntax highlighting
will make the job a
lot easier

93

FORGE

chunk of data we write with the values we want to
send to the LEDs has to be 32 bits long. However, if
we’re using RGB LED strips, we actually want to work
in 24-bit lengths. By setting autopull to 24, we still
pull in 32 bits each time, but once 24 bits have been
read, another 32 bits are pulled in which overwrite the
remaining 8 bits.

sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

Each state machine has two four-word FIFOs
attached to it. These can be used for one going in and
one coming out. However, as we only have data going
into our state machine, we can join them together to
form a single eight-word FIFO using the above line.
This gives us a small buffer of time to write data to in
order to avoid the state machine running out of data
and execution stalling.

The following three lines are used to set the speed
the state machine runs at:

 int cycles_per_bit = ws2812_T1 + ws2812_T2 +
ws2812_T3;
 float div = clock_get_hz(clk_sys) / (freq *
cycles_per_bit);
 sm_config_clkdiv(&c, div);

The WS2812B protocol demands that data is sent
out at a rate of 800kHz. However, each bit of data
requires a number of state machine cycles. In this

case, they’re defined in the variables T1, T2, and T3. If
you look back at the original PIO program, you’ll see
that these are used in the delays (always with 1 taken
off the value because the initial instruction takes one
cycle before the delay kicks in). Every loop of the PIO
program will take T1 + T2 + T3 cycles. We use these
values to calculate the speed we want the state
machine to run at, and from there we can work out the
divider we need to slow the system clock down to the
right speed for the state machine.

The final two lines just initialise and enable the
state machine.

THE MAIN PROCESSOR
That’s the code that’s running on the state machine, so
let’s now look at the code that’s running on our main
processor cores.

The full code is at github.com/benevpi/PicoLights.
Let’s first look at the code running on the second core
(we’ll look at how to start this code running shortly), as
this controls the light levels of the LEDs.

int bit_depth=12;
const int PIN_TX = 0;

uint pixels[STRING_LEN];
uint errors[STRING_LEN];

Left
If you just want to
see this in action,
you can download
the UF2 file from
hsmag.cc/orfgBD
and flash it straight
to your Pico

http://github.com/benevpi/PicoLights
http://hsmag.cc/orfgBD

TUTORIAL

94

NeoPixel dithering with Pico

static inline void put_pixel(uint32_t pixel_grb) {
 pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
}

static inline uint32_t urgb_u32(uint8_t r, uint8_t
g, uint8_t b) {
 return
 ((uint32_t) (r) << 8) |
 ((uint32_t) (g) << 16) |
 (uint32_t) (b);
}

void ws2812b_core() {
 int valuer, valueg, valueb;
 int shift = bit_depth-8;

 while (1){

 for(int i=0; i<STRING_LEN; i++) {
 valueb=(pixelsb[i] + errorsb[i]) >> shift;
 valuer=(pixelsr[i] + errorsr[i]) >> shift;
 valueg=(pixelsg[i] + errorsg[i]) >> shift;

 put_pixel(urgb_u32(valuer, valueg, valueb));
 errorsb[i] = (pixelsb[i] + errorsb[i]) -
(valueb << shift);
 errorsr[i] = (pixelsr[i] + errorsr[i]) -
(valuer << shift);
 errorsg[i] = (pixelsg[i] + errorsg[i]) -
(valueg << shift);
 }
 sleep_us(400);
 }
}

We start by defining a virtual bit depth. This is how
many bits per pixel you can use. Our code will then
attempt to create the necessary additional brightness
levels. It will run as fast as it can drive the LED strip,
but if you try to do too many brightness levels, you’ll
start to notice flickering. We found twelve to be about
the best with strings up to around 100 LEDs, but you
can experiment with others.

Our code works with two arrays – pixels which
holds the values that we want to display, and errors
which holds the error in what we’ve displayed so
far (there are three of each for the different colour
channels). To explain that latter point, let’s take a look
at the algorithm for determining how to light the LED.
We borrowed this from the source code of Fadecandy
by Micah Scott, but it’s a well-used algorithm for
calculating error rates.

We have an outer while loop that just keeps pushing
out data to the LEDs as fast as possible. We don’t
care about precise timings and just want as much
speed as possible. We then go through each pixel.
The corresponding item in the errors array hold the
cumulative amount our LED has been underlit so far
compared to what we want it to be. Initially, this will
be zero, but with each loop (if there’s a difference
between what we want to light the LED and what we
can light the LED) this error value will increase.

These two numbers (the closest light level and
the error) added together give the brightness at the
pseudo-level, so we need to bit-shift this by the
difference between our virtual level and the 8-bit
brightness levels that are available. This gives us the
value for this pixel which we write out. We then need
to calculate the new error level.

Let’s take a look at what this means in practice.
Suppose we want a brightness level halfway between
1 and 2 in the 8-bit levels. To simplify things, we’ll use
nine virtual bits. 1 and 2 in 8-bit is 2 and 4 in 9 bits
(adding an extra 0 to the end multiplies everything
by a power of 2), so halfway between these two is a
9-bit value of 3 (or 11 in binary, which we’ll use from
now on).

GOING FURTHER
There are quite a few ways of improving this code.
Firstly, you can use DMA to give you more headroom
for timings. Secondly, a single PIO can drive more
than one output, and therefore more than one string of
WS2812B LEDs. However, these changes do increase
the complexity of the code.

You can take a look at the ws2812b_parrallel.c
example for details of how to implement these.

Above
NeoPixels come
in many different
shapes and sizes

95

FORGE

In the first iteration of our loop, pixels is 11, errors
is 0, and shift is 1.

value = 11 >> 1 = 1
errors = 11 – 10 = 1

So this time, the brightness level of 1 is written out.
The second iteration, we have:

value = 100 >> 1 = 10
errors = 100 – 100 = 0

So this time, the brightness level of 10 (in binary, or
2 in base 10) is written out. This time, the errors go
back to 0, so we’re in the same position as at the start
of the first loop. In this case, the LED will flick between
the two brightness levels each loop so you'll have a
brightness half way between the two.

Using this simple algorithm, we can experiment with
different virtual bit-depths. The algorithm will always
handle the calculations for us, but we just have to see
what creates the most pleasing visual effect for the
eye. The larger the virtual bit depth, the more potential
iterations you have to go through before the error
accumulates enough to create a correction, so the
more likely you are to see flicker.

The biggest blocker to increasing the virtual bit
depth is the sleep_us(400). This is needed to reset the
LED strip. Essentially, we throw out bits at 800kHz,
and each block of 24 bits is sent, in turn, to the next
LED. However, once there’s a long enough pause,
everything resets and it goes back to the first LED.
How big that pause is can vary. The truth is that a huge
proportion of WS2812B LEDs are clones rather than

official parts – and even for official parts, the length of
the pause needed to reset has changed over the years.
400 microseconds is conservative and should work,
but you may be able to get away with less (possibly
even as low as 50 microseconds for some LEDs).

The urgb_u32 method simply amalgamates the red,
blue, and green values into a single 32-bit string (well,
a 24-bit string that’s held inside a 32-bit string), and
put_pixel sends this to the state machine. The bit shift
there is to make sure the data is in the right place so
the state machine reads the correct 24 bits from the
output shift register.

GETTING IT RUNNING
We’ve now dealt with all the mechanics of the code.
The only bit left is to stitch it all together.

int main() {

 PIO pio = pio0;
 int sm = 0;
 uint offset = pio_add_program(pio, &ws2812_
program);
 ws2812_program_init(pio, sm, offset, PIN_TX,
1000000, false);
 multicore_launch_core1(ws2812b_core);

 while (1) {
 for (int i = 0; i < 30; ++i) {
 pixels[i] = i;

 for (int j=0;j<30;++j){
 pixels[0] = j;
 if(j%8 == 0) { pixels[1] = j; }
 sleep_ms(50);
 }
 for (int j=30;j>0;--j){
 pixels[0] = j;
 if(j%8 == 0) { pixels[1] = j; }
 sleep_ms(50);
 }
 }
 }
}

The method ws2812_program_init calls the method
created in the PIO program to set everything up.

To launch the algorithm creating the virtual bit-depth,
we just have to use multicore_launch_core1 to set a
function running on the other core. Once that’s done,
whatever we put in the pixels array will be reflected
as accurately as possible in the WS2812B LEDs. In this
case, we simply fade it in and out, but you could do
any animation you like.

POWER
You can connect the power line in your WS2812B strip
directly to the 5 V output on your Pico, and this should
work for a small strip of LEDs. We say ‘should’ because
it’s technically out-of-spec. The datasheet says that
you need a data voltage of at least 0.8 times the power
voltage. With 5 V power, that means you need a data
voltage of 3.5 V. In practice, however, almost all the
WS2812B LEDs we’ve tested work absolutely fine at
3.3 V, which is what Pico’s GPIOs use.

Another power problem is that the LEDs can
create a lot of noise on the power line. To get different
brightness levels, the LEDs flick on and off, and this
can create problems as they demand more or less
electricity. Adding a smoothing capacitor between the
5 V and GND will help eliminate any problems. If you’re
still having problems after you’ve added a capacitor, it
could be the voltage level. You can either use a logic
level shifter to increase the voltage on the data line, or
add a 0.7 V voltage drop diode to the voltage line.

TUTORIAL

96

Touchscreen laser control

K40 laser cutter is a nice addition
to a workshop, but it takes a lot
of work to get the best out of it.
Aside from the obvious safety and
performance upgrades, one of the
best things you can do for your K40

is to add dedicated computer control. In this article,
you will learn how to add a Raspberry Pi to connect
your K40 to your WiFi network, with a touchscreen
and configurable push-button controls.

To make this project, you will be wiring the
switches and touchscreen to the Raspberry Pi, and
housing it inside the metal cabinet. To make the
mounting process easier, you can use the bezel
template for this project to cut the screen mount on

your laser cutter. Mount the push-button switches
into the bezel, and then line up the touchscreen with
the cut-out in the bezel. The screen should push into
the cut-out and be a tight fit. It might be necessary
to shave a little bit of the plastic bezel away with
a razor blade, depending on the kerf of your laser
cutter. Use hot glue around the back of the screen to
hold it in place. Cut a hole in the back of the medical
cabinet, about 19 cm × 15 cm, and mount the bezel
over this hole so that the screen and buttons are
inside the hole.

WIRELESS LASER FUN
Transfer-mark the holes in the bezel to the metal
cabinet, and drill them out. Next, cut out a hole

Right
Keep the control of
your K40 laser cutter
local by adding a
Raspberry Pi. Shorter
USB cables mean
less chance of CRC
errors and accidental
cable disconnections

Build a Raspberry Pi-powered control
system for your K40 laser

Touchscreen
laser control

A
Dr Andrew Lewis

Dr Andrew Lewis is a
specialist fabricator
and maker, and is the
owner of the Andrew
Lewis Workshop.

97

FORGE

in the side of the cabinet for the panel-mounted
USB socket. The position of this socket is down
to personal preference, and can be placed on
either side or even on the top of the cabinet. Place
another hole in the case to pass the USB power for
Raspberry Pi, and the USB cable for the laser. You
can make this hole look neater by using a 20 mm
cable gland, which will also help to protect the
cables from the sharp edges of the metal cabinet.
Fix the bezel in place on the cabinet with the bolts,
and improve the fit by running hot glue along the
internal edges of the cut-out in the metal box so that
the box is hot-glued to the plastic bezel all the way
around the inside.

Mount your Raspberry Pi into the medicine
cabinet, and connect it to the touchscreen using the
provided USB and HDMI cables. The push-buttons
need to be connected next, by soldering one side of
each button to a ground pin on Raspberry Pi, and the
other side of the buttons to GPIO pins 26, 19, 13, 6,
and 5. By default, these buttons will be configured

Above
Make sure that you
add a cover for
your USB socket.
Workshops are
often dusty and dirty
places, and it’s better
to keep the USB
socket clear of any
dust and debris

Left
You can mount your
Raspberry Pi using
board supports or
a plastic case with
a strip of Velcro,
although hot-gluing
the edge will work as
a temporary solution

YOU’LL NEED

Raspberry Pi 3
or 4

5 V 3 A PSU for
Raspberry Pi

7” touchscreen
(hsmag.cc/TouchScr)

USB female-
to-male panel
mount connector
(hsmag.cc/MntCon)

5 × 12 mm
push-buttons
momentary
normally open
(hsmag.cc/PButton)

Metal medicine
cabinet, 9 cm ×
22 cm × 32.5 cm
or similar
(hsmag.cc/Cabinet)

1 m USB A–B
cable to connect
Raspberry Pi
to laser

Plastic bezel –
laser-cut from file

Neodymium
magnets to
connect cabinet
to laser chassis
(optional)

M20 cable gland

UNTOUCHABLE
The default version of K40 Whisperer doesn’t work as
we need it to for this project. It doesn’t work well with
a touchscreen unless you have a keyboard attached,
doesn’t start up in full-screen mode, and it doesn’t
connect to the push-buttons on Raspberry Pi. You’ll
need to make some modifications to the code to get this
working. Bind the push-buttons to commands by adding
the following code around line 200 of k40_whisperer.py:

self.master.bind('<q>' , self.Raster_Eng)
self.master.bind('<w>' , self.Vector_Eng)
self.master.bind('<e>' , self.Vector_Cut)
self.master.bind('<r>' , self.Home)self.
master.bind('<t>' , self.Unlock)

Make the app start full-screen by adding
root.attributes("-fullscreen", True) at line 5734,
just after the line reading root= Tk(). Next, you’ll need to
replace all of the text entry boxes with spin boxes so that
their values can be changed without typing in numbers.
As an example, line 473 should change from

self.Entry_Reng_feed = Entry(self.master,
width="15") to
self.Entry_Reng_feed = Spinbox(self.master,

width="15",values=(100,150,200,250,300),

state="readonly")

This change will make the text entry into a spinbox with
fixed values, and disable the ability to manually type a
value in the box. If this is starting to sound complicated,
don’t panic. A modified version of the code is available at
hsmag.cc/issue39, and the majority of these changes are
already done. Simply download the file and replace the
existing k40_whisperer.py with the downloaded version.

http://hsmag.cc/TouchScr
http://hsmag.cc/MntCon
http://hsmag.cc/PButton
http://hsmag.cc/Cabinet
http://hsmag.cc/issue39

TUTORIAL

98

Touchscreen laser control

utility and configure it to work with the buttons
in the bezel, install K40 Whisperer so that it runs
automatically on startup, and modify the code so that
it understands the button input and runs in full-screen
when it's started.

The touchscreen may work straight out of the
box – if that isn’t the case, touchscreen installation
is not difficult. You can follow the instructions at
hsmag.cc/DisplayC to get going.

Adafruit provides an installer script for
Retrogame. You can follow the instructions at
hsmag.cc/Retrogame to install it. When you run
the installer, you will be asked to choose a control
configuration. It doesn’t really matter which option
you pick, because you will be creating your own
configuration. Once the installer has finished,
reboot your Raspberry Pi, and then open up
/boot/retrogame.cfg in your text editor of choice.
The Retrogame configuration file is very simple,
consisting of a key name (like A or SPACE) and then
a number that refers to the GPIO pin that this should
be connected to. You are going to use Retrogame
to connect the push-buttons to the QWERT keys,
and then, later on, you will modify K40 Whisperer
to monitor these keys and trigger events within the
program. With Retrogame’s simple config format, the
entire config file should look like this:

Q 26
W 19
E 13
R 6
T 5

AUTOSTART

Ideally, K40 Whisperer needs to start up automatically
when you boot the Raspberry Pi. There are a number of
methods available to accomplish this, but the easiest
is probably to use autostart. Open a terminal and type
the following:

mkdir /home/pi/.config/autostart
nano /home/pi/.config/autostart/k40.desktop

This will create an autostart directory and a new file
called k40.desktop. In nano, enter the following lines:

[Desktop Entry]
Type=Application
Name=k40
Exec=python /home/pi/K40_Whisperer-0.52_
src/k40_whisperer.py

Save the file and reboot. K40 Whisperer should now
start automatically, and you’re almost done with the
setup of the laser controller.

Above
Fix your controller
onto the laser cutter
by adding a few
magnets to the base
of the cabinet. Old
hard drive magnets
are great for this,
providing enough
strength to hold the
cabinet in place, while
still allowing it to be
easily detached
when necessary

Remember to change
the default password
to improve security
on your Raspberry Pi
OS install.

QUICK TIP

to start raster engraving, vector engraving, vector
cutting, send the carriage to the home position, and
turn off the gantry motors. There is no reason why
you can’t add more buttons or configure them to
perform different tasks, and this will be explained in
more detail further on in this article.

Install the latest version of Raspberry Pi OS on
your Raspberry Pi, and check for updates. To set up
Raspberry Pi as a laser controller, you will need to
install the touchscreen drivers, install the Retrogame

http://hsmag.cc/DisplayC
http://hsmag.cc/Retrogame

99

FORGE

PUSH FOR ACTION
If you are adding extra buttons, you just need to add
them here, binding keys to GPIO pins as necessary.
Restart the Raspberry Pi, and open a text editor.
Pressing a push-button should now type a letter
in the text editor. After confirming the buttons are
working, you can move on to download the K40
Whisperer source from hsmag.cc/Whisperer.
Follow the instructions in the README_linux.txt
to install the necessary dependencies for K40
Whisperer, and then make sure that it runs by
navigating to the source directory and typing
python k40_whisperer.py.

OUTSOURCE YOUR PROCESSING
Depending on the complexity of the file you are
intending to laser-cut or etch, you might find that
your Raspberry Pi takes a while to process design
files. As a workaround to this, you can save time
by processing the file on your desktop or laptop
machine, and saving it as an EGV file to Raspberry
Pi. If you choose to do this, it is probably worth
changing the ‘Reload design file’ button in the
interface to open EGV files instead. This has already
been done in the modified k40_whisperer.py file
provided with this project.

SHARED ACCESS
While it’s possible to copy files to the laser controller
using a USB drive, it’s easier to connect to the laser using
a shared directory. Set up Samba on your Raspberry Pi
to enable file sharing. Begin by installing Samba from the
terminal by typing:

sudo apt-get install samba samba-common-bin

Then create a directory that you will share by typing:

mkdir /share

Samba’s configuration information is stored in the file
 /etc/samba/smb.conf. Open this file with your favourite text
editor and delete the contents. Now copy in the following
text and save it:

[global]
netbios name = LaserCutter
server string = k40 pi
workgroup = WORKGROUP

[laser]
path = /share

comment = Laser cutter shared directory
browseable = yes
writeable = Yes
only guest = no
create mask = 0777
directory mask = 0777
Public = yes
Guest ok = yes

This will make a public shared directory on your machine
that can be accessed by K40 Whisperer. Restart your
Raspberry Pi and your drive should appear on the network.
You can make K40 Whisperer go directly to this location
by changing the value of init_dir in the functions
menu_File_Open_Design and menu_File_Open_EGV. Changing
the init_dir = os.path.dirname(self.DESIGN_FILE)
to init_dir = "/share" will open the file selector in the
shared directory when it is used.

If you are having problems connecting to the Samba
share with Windows 10, you might need to enable SMB1.0/
CIFS support by opening Control Panel > Turn Windows
features on and off. In the list of options, find ‘SMB1.0/CIFS
File Sharing Support’ and make sure it is enabled.

Above
The buttons on the
panel are colour-
coded to match the
SVG line colours used
by K40 Whisperer.
Black for raster
engraving, blue for
vector engraving, and
red for vector cutting.
The green and orange
buttons are used to
home the gantry
and turn off the
stepper motors

You can skip steps
one to six of the
README_linux.txt
file when installing
K40 Whisperer,
because there will
only be one user in
this installation, and
controlling access
to the laser is
less important.

QUICK TIP

http://hsmag.cc/Whisperer

Join us as we lift the lid
on video games

Visit wfmag.cc to learn more

http://wfmag.cc

FIELD TEST
HACK MAKE BUILD CREATE
Hacker gear poked, prodded, taken apart, and investigated

DIRECT FROM SHENZHEN:

HOT AIR
STATION
Blast your circuits with
scorching heat and melt metal

108
PG

A microcontroller you wear
on your wrist

110
PG

BANGLE.JS

BEST OF
BREED

PG

102

Maker gaming systems

The educational
development board
grows up

112
PG

MICRO:BIT
V2

Gaming on the go!

BEST OF BREED

102

ONLYTHE

BEST

t’s that time of year when the console
wars heat up. PlayStation vs Xbox vs Stadia
and more. All the big players have new
systems and games hitting the shelves. The
challenge is finding one! Gaming is a huge
community, and we’re not even including the

incredibly popular PC crowd of gamers. But what
happens when you are on the go? Or worse, when
someone else is playing your system, and you have
a need for some good old-fashioned competition?
Well, that’s where these portable game systems
come into play.

There are tons of DIY game kits out there, from
the ever-popular Raspberry Pi and Retro Arcade
scene, to dozens of different handhelds and desktop
systems. In this Best of Breed, we’ll be looking at
the truly portable and affordable systems, both in kit
form and fully assembled. The general specification
is that they must fit in your pocket or measure
around the same size as a deck of cards. Some are
much smaller, and maybe a few push the limits of
‘pocketable’, but they are all packed with fun.

Gaming systems that fit in your pocket

By Marc de Vinck @devinck

I

Gaming on the go!

Some are much smaller, and
maybe a few push the limits

of ‘pocketable’, but they are all
packed with fun

”

”

https://twitter.com/devinck

103

FIELD TEST

mall? Check! Fun? Check! Funny
name? Double-check!! What is there to
say about the ButtSnap, other than it’s
exactly the product we were looking for
when it comes to portable competitive
fun. It’s truly simple, and most people

won’t even need to be told how to play. Simply wait
for the LED to blink and beat your opponent’s
reaction time. But there is more…

What we really like about the ButtSnap is the
unexpected features of the game. Every so often, a
bonus speed round is started. The LED flashes
rapidly for a fixed period of time, and the person who
clicks their button the most in that time wins the
round. A very clever way to add another dimension
to an otherwise simple game. We have only one
request for a future version: make it a kit! We’d love
the opportunity to solder this together. But then
again, many people will appreciate the fact that this
comes ready for some button-mashing competition.

S
STUDIOBELOW $15 tindie.com BOBRICIUS $39 tindie.com

he classic 8×8 LED matrix, loved by
so many electronics enthusiasts, is
the main feature of this minimal
handheld game system by bobricius.
But don’t be fooled – you can do a lot
with just 64 LEDs and an ATmega328

IC. The LED Station can play eight different games,
including modified versions of Tetris, Pong,
Breakout, Snake, and more.

And since it’s basically an Arduino at its core, you
can fairly easily hack it and upload your own code.
Head over to the website for a link to the source
code, libraries, design files, and more. There are also
a few good videos that demonstrate all the games
included. We’re always amazed at the games you
can create with only three buttons!

T

ButtSnap vs
LED Station Portable

Left
Is this the smallest
two-player game?

ButtSnap
Two-button fun!

LED Station
Portable

A bit pricey,
but it comes
assembled.

10

7

VERDICT

/10

/10

Below
The classic LED matrix
is great for retro games

http://tindie.com
http://tindie.com

BEST OF BREED

104

Gaming on the go!

classic game of Simon Says
designed by SparkFun as a great
learn-to-solder kit. This author has
put dozens of these kits together at
conferences, and it’s one of our go-to
kits for teaching anyone how to

solder. SparkFun has great documentation to support
the Simon Says kit too, including a brief introduction
to soldering. It’s another reason why we’d like to
recommend this particular kit to people just starting
out with electronics and soldering.

And, just like some of the other kits in this roundup,
this kit features an ATmega328 at its core (the chip
found in so many Arduino boards). It makes it
surprisingly easy to hack, and learn more about, since
the open-source ecosystem is so robust around this
popular microcontroller. Speaking of hacking, check

A

SparkFun Simon Says
SPARKFUN $26.95 sparkfun.com

e’ve been a fan of the
TinyCircuits ecosystem for
many years. This author
remembers building a wrist-watch
with a few simple clicks of their
components while simultaneously

heading out the door on a business trip. Everyone
loved the 3D-printed case he designed, and they were
amazed at the size and quality of the screen. Ever
since then, we’ve been hooked on TinyCircuits.

The Pocket Arcade kit leverages the same amazing
OLED colour screen and click-together technology as
that watch, and packages it up with a 32-bit ARM
processor, laser-cut case, power supply, and speaker.

W

Pocket Arcade

Pocket Arcade
Very well made
and super-small.

8

VERDICT

/10

TINYCIRCUITS $59.95 tinycircuits.com

You can create your own games, download them
from the TinyCircuits website, or even encode videos
to watch on the go. This little kit can play hours of
movies from an SD card, with audio, in surprisingly
good resolution – check out their website for more
information on the Pocket Arcade, and all the other
components available for your next micro-build.

Left
A lot of power in a
small space

out SparkFun’s instructions on the product page
where they walk you through the process of
reprogramming the ATmega and getting access to the
piezo speaker and LEDs. It’s a really fun introduction
to programming and embedded electronics.

SparkFun
Simon Says

A classic kit of a
classic game.

9

VERDICT

/10

Left
Build a game while
learning to solder

http://sparkfun.com
http://tinycircuits.com

105

FIELD TEST

verything Adafruit designs and
manufactures is well thought out and
beautiful. And the PyGamer Starter Kit is
no exception. This open-source kit is
capable of running your choice of
CircuitPython, MakeCode Arcade, or

Arduino code, making it incredibly easy and
extensible. There is something for everyone, from
new users to seasoned programmers.

This is the kit version of the PyGamer, which
includes the PyGamer PCB, case, batteries, and more
for an affordable price. You can also pick up just the
PyGamer PCB and other needed components
separately, but the kit is a great choice, especially
as a gift.

E

Adafruit PyGamer Starter Kit

Adafruit
PyGamer
Starter Kit

Well made, and
well played.

10

VERDICT

/10

ADAFRUIT $59.95 adafruit.com

There is something for
everyone, from new users
to seasoned programmers

”

”

The PyGamer is powered by an ATSAMD51, which
features 512kB of flash and 192kB of RAM. Adafruit
then added an additional 8MB of QSPI flash for game
file storage. It also features a 160×128 colour TFT
display, a dual potentiometer analogue stick, four
square-top buttons, and five NeoPixel LEDs. The back
of the board has a socket that allows you to expand
the system by plugging in any of their FeatherWing
boards. There are a lot of other connectors and
components packed on the PCB. Your best bet is to
head on over to the website to get all the details.

Left
Code your games
in Python

http://adafruit.com

BEST OF BREED

106

Gaming on the go!

nother home run of an arcade kit
from TinyCircuits! This author has
owned this kit for many years, and it
still gets regular use by anyone visiting
the studio. The Tiny Arcade DIY Kit
comes with everything you need to

make a miniature arcade game. At its core is a 32-bit
ARM processor, a full-colour OLED screen, built-in
speaker, and LiPo battery. All of this is housed in a
laser-cut case with a four-way joystick and two buttons.

This is one of those kits that you need to see to
believe. The responsiveness of the joystick, coupled
with the clarity of the OLED screen is amazing. No,
it’s not going to replace your next-gen console gaming
system, but you’d be surprised that it often gets more
attention. It’s a fun little kit that anyone can assemble,
no soldering required.

he Espresso is a DIY gaming system
that uses the ever-popular form factor
of the full-size Game Boy Pocket
buttons, coupled with a 2.2-inch
screen, an ESP32, and a clever and
beautifully designed ten-PCB

enclosure. Yes, ten PCBs! Thanks to the ESP32, you
can play many of your favourite retro arcade system
games, including the NES, Game Boy, Sega Master
System, ColecoVision, and more.

What really caught our attention is the ten PCBs
that make up the case. By stacking them together,
you get a very robust and beautiful enclosure. You
also get a great way of adding in all the other

A

T

Tiny Arcade DIY Kit

Espresso Kit

Tiny Arcade
DIY Kit

One of our
favourite
gaming kits.

10

VERDICT

/10

Espresso Kit
Well worth
the semi-
complicated
build.

8

VERDICT

/10

TINYCIRCUITS $59.95 tinycircuits.com

AMPERSAND $47 tindie.com

components, since you can have traces and
connectors wherever you need them!

The kit includes most of what you need, but you
will have to supply the battery, a microSD card, and
Game Boy Pocket buttons. We’re not sure why the
buttons aren’t included, as they can be sourced fairly
easily for only a few dollars, but being able to reuse
buttons from a beloved Game Boy system or
personalise the colour with a new set is nice too.

Left
Just add buttons!

Left
Create your own
mini arcade

http://tinycircuits.com
http://tindie.com

plus all good newsagents and:

Inside:
 Build a four-legged walking robot

 Create a Tetris-inspired clock

 Grow veg with hydroponics

 And much more!

WITH

GET
STARTED

Robots, musical instruments,
smart displays and more

£10with FREEworldwideshipping

MAGAZINEFROM THE MAKERS OF

AVAILABLE
NOW hsmag.cc/storehsmag.cc/store

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://hsmag.cc/store

Hot air
reflow station
A fancy hair-dryer or useful soldering kit?

ot air reflow work is a valuable
technique to be able to access at
home. It is excellent in terms of being
able to populate PCBs with smaller
SMD components, but also incredibly
useful in removing items from PCBs for

repair, or for salvaging components off boards. There
are lots of cheap hot air reflow tools available and many
are bundled together with both a hot air tool and a
conventional soldering iron. Lots of people, ourselves
included, will have one or more soldering irons, so we
were interested to explore the cheap 858D station
which features hot air only.

The 858D is cheap and cheerful, and online searches
reveal so many differently badged items. With so many
clones, it’s unclear which versions are the originals.
There are also lots of examples of people modifying
the 858D and, in certain cases, rectifying some safety
concerns, more of which later!

At £32, our 858D was branded ‘Yihua’, and arrived
from China well-packed in a cardboard box with decent
foam packing. Inside the box, the 858D was found with
the correct UK mains plug attached, and shipped with
three different pattern end pieces for the hot air gun.
We’d read online about many 858Ds being shipped
where the hot air gun part was not connected to the
ground plane, and that many people ended up creating
a wire link between the gun and the ground connection
on the chassis. Obviously it’s a concern if the gun isn’t
grounded as, in the event of a fault, there is a chance
that the metal end of the gun could become energised.

 A simple check is to grab a multimeter capable of
performing a continuity check and, before plugging the
machine in, put one probe on the end of the gun and

H
Below
The tips shape
the hot air
blowing out

By Jo Hinchliffe @concreted0g

REGULAR

108

Direct From Shenzhen

https://twitter.com/concreted0g

touch the other probe to the ground pin on the mains
plug. Doing this check showed that our machine was
indeed grounded through to the tip of the gun. We’d
also read online a worrying story that the fuse holders
on some 858Ds are in-line on the neutral line rather
than the live mains line between the mains input and
the controller PCB. We had also read and seen a few
photos of other wiring and connector issues, and so
we decided to inspect the internals before powering on
the unit. We opened up the box and were pleased to
see that the fuse was wired correctly on our unit, and
we were actually impressed with the general state of
the wiring and connectivity. We’d seen a large variety
of internal pictures online, as many of these 858D units
have differing ICs and PCBs and numerous different
modifications and firmwares have been developed by
the community. We noted that our main IC was directly
soldered to the PCB rather than in a socket, which may
create an amazing chicken and egg situation if we ever
wanted to replace it, as we’d need hot air reflow to
remove it!

Reassured that everything was as it should be, we
powered up the unit. The controls are simple, with a
knob to turn that increases and decreases the air flow
through the gun, and buttons that increase or decrease
the temperature. There is a small holder for the air gun
mounted on the side of the unit, and it has a magnet
and reed switch arrangement to detect when the gun
is in the holder. Dialling in a temperature and increasing
the air flow, the gun only begins to heat when removed
from the holder. Similarly, once up to temperature, if
the gun is replaced in the holder, the fan continues to
run until the temperature is reduced to 100 degrees

and then the fan cuts out. This speeds cooling, but
it’s still important to make sure that the hot air gun
is not close to any materials that it could burn whilst
cooling. Lifting the gun, the temperature increases and
the fan starts again. It’s a matter of seconds for the
unit to return to its operational temperature and isn’t
frustrating in terms of use.

Using a clean PCB, we applied some tiny amounts
of solder paste and populated a board. Making sure our
fume extractor was running and our workspace was
also adequately ventilated, we fitted a small circular
nozzle to the hot air gun. Moving the hot air gun over
the part laid on the solder paste, we quickly reflowed
the part in a few seconds. If you haven’t used hot air
reflow before, it’s incredibly satisfying to see nice shiny
joints materialise in front of your eyes magically! We
opted to use the smallest circular nozzle, and we
imagine this will sit on the machine most of the time,
unless we are trying to remove a large component. In
use, the hot air gun is comfy in the hand and not
unwieldy at all. We tended to have the air flow set at
the lower end of the scale, as increasing it makes it
very easy to blow small SMD components like
resistors and caps off the paste. Set between 375 and
400°C, our air gun struck a good balance of heating to
the reflow temperature quickly, without cooking the
board, and we got good results with our solder paste.

For the price point, and bearing in mind our unit
didn’t have any of the safety concerns others have
reported, it’s hard to find any complaints with our
858D, and its small footprint sits nicely on the desk,
waiting to be called into service.

D
IR

ECT FR
O

M
 S

H
E

N
Z

H
E

N

Above
We were able to solder these surface mount components
using this station

Below
The 858D is easy to hold and use, and sits comfortably
 in the hand.

109

FIELD TEST

Bangle.js

REVIEW

110

e’re fans of hackable
smartwatches here at
HackSpace towers. They
offer a tantalising chance to
build a future of IoT that works
for us, not some global mega

corp that wants to harvest our data or lock us into an
ecosystem of ever increasingly expensive devices.
We’ve previously looked at the LILYGO T-Watch-2020,
and now we’ve had a chance to play with a Bangle.js.

W

Below
The watch is
large, but does sit
comfortably on the
wrist (unless you’re
wearing a shirt)

Bangle.js
A smartwatch that you can control

ESPRUINO £69.96 banglejs.com

As you may have guessed from the name, the
Bangle.js is programmed in JavaScript. It also features
something of a kitchen sink approach to hardware and
is unbelievably packed with features for a wrist-borne
device. There’s a GPS receiver, a heart rate monitor, a
three-axis accelerometer, a three-axis magnetometer,
a vibration sensor, a 64MHz ARM Cortex M4 with
64Kb of RAM, 4MB of external flash, and a 350 mAh
battery. On top of all this, it’s waterproof for ten
metres. It will come as no surprise that with all
this on board, it’s a bit of a whopper. It comes in a
5×5×1.7 cm case. This is significantly larger than any
watch this author has worn before, and it’s a visible
statement piece on your wrist. If you wear shirts, you
may find that it interferes with your cuffs. That said,
we didn’t find it uncomfortable to wear and it felt
quite unobtrusive despite its size.

The Espruino firmware is open-source, so you can
code for it at almost any level you like, but for most
users, programming the Bangle.js will mean writing
apps or widgets. These are very similar, other than
the fact that widgets run in the background and apps
in the foreground (apps can include widgets, if you
need both functions).

You can develop these on the online Espruino IDE
at espruino.com/ide. From there, you can upload
your code over Bluetooth (there’s no data-in on the
watch, and the USB charge cable is power only). This

It features something of a
kitchen sink approach to

hardware and is unbelievably
packed with features

”
”

@ben_everardBy Ben Everard

http://banglejs.com
http://espruino.com/ide
https://twitter.com/ben_everard

FIELD TEST

111

VERDICT
A fun and
versatile
wrist-based
computer.

 9/10

Pages, and create your own app store to which you
can add your apps (see this reviewer’s at
benevpi.github.io/BangleApps). We’ve been
working on a sleep quality tracker, which you can see
in this store. Once you’re happy with your code, if
you want, you can submit a pull request back to the
original repository and your app will be listed on the
global app store.

GPS reception is OK. Indoors, it can struggle, but
outdoors, we found it worked better. This is probably
because antennae don’t like being crammed in a small
space with lots of other electronics, especially when
they’re trying to pick up weak signals from spacecraft
thousands of miles away.

We also found the heart rate monitor prone to
suspect readings. We found we could get accurate
data by taking five readings, then selecting the middle
one, but obviously this limits the speed at which you
can get data.

These minor gripes aside, we found the Bangle.js
worked excellently. We were able to play with other
people’s apps, poke around their internals, and code
our own – exactly what you’d expect to be able to
do with an open-source watch. For the price, this is
an excellent development platform for personalised
electronics, with more features than we know what to
do with. We’ve already got some plans for this watch
– keep an eye on the mag for future articles. However,
it is a big watch and right on the limit of what we’d
consider an acceptable size for a wrist-based device.

Above
The Espruino IDE
lets you upload
code, interact with
the serial console,
and pull data off
the watch

reviewer has done some JavaScript development
over the years, but only a little, and he found it
straightforward to get started. Perhaps the main thing
to get your head around is the event-driven nature of
the language. Lots of things are driven by callbacks to
functions passed as parameters. This sounds more
complex than it is. Really, it just means that you create
functions that you want to run when particular events
happen, and then tell the watch which event you want
to trigger your function. An advantage of this is that
it means that the firmware can take care of power
management. In your code, you just link in what you
want to happen when – and when nothing’s running, it
can make sure that power isn’t wasted.

The IDE provides the ability to grab data files off the
watch, which is a great way of working with anything
that tracks data. However, it’s worth bearing in mind
that Bluetooth is the only way of getting data on or off
the watch. You can download the files manually like
this, or you could write a companion app (or website)
that gets the data you want. It’s possible to connect to
the device with another Bluetooth-compatible device
using Puck.js to stream data to a web service if you
want, but this isn’t entirely straightforward.

There’s an app store of existing applications at
banglejs.com/apps. This is driven by GitHub as the
data store, so if you want to see how an app works,
just click on the GitHub icon and you can see the
source code. What’s more, this is a static page driven
by GitHub Pages, so you can fork this, enable GitHub

http://benevpi.github.io/BangleApps
http://banglejs.com/apps

micro:bit version 2

REVIEW

112

ince 2016, the BBC micro:bit has
been a fixture of the UK tech
education scene. The little board,
with its iconic array of 25 red LEDs
and two user buttons, can be found
in schools and youth groups up and

down the country. It’s got chunky GPIO pins that
are easy to connect to, yet is still small enough to
fit in little hands and feel comfortable to use. The
micro:bit has introduced a generation of children
to microcontrollers and programming. Four years
after the initial release, the Micro:bit Educational
Foundation has announced a major upgrade to this
little board. Let’s take a look at this new micro:bit, and
what it means for users.

S

Below
The front of the new
micro:bit will be
instantly recognisable
to anyone familiar
with the form factor

micro:bit version 2
The educational microcontroller gets an upgrade

MICRO:BIT EDUCATIONAL FOUNDATION £13.50 microbit.org

Before looking at the shiny new things, let’s take a
quick look at what’s still the same. There’s still a 5×5
grid of red LEDs, and two buttons. There’s still an
accelerometer, compass, and temperature sensor.
The programming environments are also still the
same, and code for your micro:bit v1 should work
without alteration on a v2 board.

So, if all that’s the same, what’s new? There’s
a significant boost to processing power, as the
new Nordic nRF52833 microcontroller boasts a
64MHz ARM Cortex M4F (up from a 16MHz ARM
Cortex M0+ in the previous micro:bit). There’s now
128kB of RAM and 512kB of storage. Bluetooth
is upgraded from 4.0 to 5.0. For audio, there’s a
microphone and speaker, and the logo at the top of
the board is now touch-sensitive.

The GPIO connector is almost the same. It still has
21 GPIOs, with three broken out as large pads, and
3 V and ground connectors. However, the connector
now has notches on each of the large pads. The

notches in the GPIO connector may seem like a
cosmetic change, but they do offer a significant
advantage of making it easier to connect with
crocodile clips or conductive thread. Clips can

now go perpendicular to the board, and the
notch will stop them from slipping sideways
to bridge an additional GPIO.

The changes open up significant new
ways you can work with micro:bit. Sound
has long been a popular tool of teachers
getting students interested in coding
and, while the previous micro:bit could
make sounds, you had to manually

connect headphones using crocodile clips.

@ben_everardBy Ben Everard

http://microbit.org
https://twitter.com/ben_everard

FIELD TEST

113

VERDICT
Cheap,
powerful, and
feature-packed,
but limited
connectivity.

 9/10

However, if you want to expand the capabilities of
your micro:bit, there’s a good selection of add-ons
available from a range of manufacturers. You can use
your micro:bit to control a robot, water your plants,
or play games – all by clipping it into off-the-shelf
hardware. All these should continue to work with the
new board.

For an educational microcontroller board, the
advantage of the micro:bit really has nothing to do
with the hardware – it’s the set of resources that go
with this. Professionally made and curated projects
and lesson plans can be found at microbit.org.
These, on their own, are more important than the
processor speed or amount of storage. The fact that
the new device is compatible with code for the old
micro:bit means that all the effort that went into
creating them the first time is still paying off.

For a hobbyist, there are undoubtedly some great
projects you can build with this board. However, if
you need to use more than three GPIOs, you’ll end
up with a bulky project, and even accounting for
this, you’re still quite limited with connections. If you
can live with this, the micro:bit version 2 represents
excellent value for money.

 For just over £10, you get a powerful
microcontroller with a bunch of sensors and a couple
of output devices (the LED array and the speaker).
We don’t know of any other development board that
offers so much for such a small price.

Adding a speaker makes it
a much simpler experience.
The upgrade to the processor
also brings machine learning
within range. TensorFlow Lite can
run on microcontrollers such as this, and the Edge
Impulse team have already demonstrated keyword
recognition from voice running on the new board
(see here for details: hsmag.cc/EdgeImp).

The one major downside to the micro:bit v2 is,
for us, the same as the one major downside to
the micro:bit v1 – connectivity. There are three
large pins broken out and this doesn’t really give
you much scope for anything beyond adding a
few buttons.

There are an additional 18 GPIOs available on
the edge connector, but you will need an adapter
to make this work. Of these 18, ten are needed for
internal use – the LED array, buttons, and I2C bus
are all included in this count, so even with an edge
connector, there are relatively few connections
available to use unless you disable these functions.
There’s also no 5 V (or VBUS), so if you want to use
hardware that needs this level supply, you will need
an external power supply.

For a hobbyist, there are
undoubtedly some great
projects you can build

with this

”
”

Left
The new speaker
sits right in the
middle of the back
of the micro:bit

http://microbit.org
http://hsmag.cc/EdgeImp

ALSO
 LASER CUTTING

 MUSIC

 3D PRINTING

 DIY SMARTWATCH

 AND MUCH MORE

hsmag.cc/subscribe

ON SALE
18 FEBRUARY#40

http://hsmag.cc/subscribe

GND

SW
DIO

SW
CLK

1 40

39

38

37

36

30

29

28

27

23

26

35

34

33

32

31

25

22

21

24

6

11

16

17

18

12

13

7

8

4

9

14

19

20

15

10

5

2

3

GP0 VBUS

VSYS

GND

3V3_EN

3V3(OUT)

RUN

GP22

GND

GP21

GND

GP20

I2C0 SCL

I2C0 SDA

GP28

GND

GP27

GP26

GP19

GP17

GP16

LED (GP25)

GP18

ADC_VREF

ADC2

AGND

ADC1

ADC0

SPI0 TX

SPI0 CSn

SPI0 RX

SPI0 SCK

I2C1 SCL

I2C1 SDA

I2C1 SCL

I2C0 SCL

I2C0 SDA

UART0 RX

UART0 TX

I2C1 SDA

GP4

GP8

GP12

GP13

GND

GP9

GND

GP5

GND

GP2

GP6

GP10

GP14

GP15

GP11

GP7

GP3

GP1

GND

SPI0 RX

SPI0 RX

SPI1 RX

SPI1 RX

SPI1 CSn

SPI1 CSn

SPI0 CSn

SPI0 SCK

SPI0 SCK

SPI1 SCK

SPI1 SCK

SPI1 TX

SPI1 TX

SPI0 TX

SPI0 TX

SPI0 CSn

I2C0 SDA

I2C0 SDA

I2C0 SDA

I2C0 SDA

I2C0 SCL

I2C0 SCL

I2C0 SCL

I2C1 SDA

I2C1 SDA

I2C1 SDA

I2C1 SDA

I2C1 SCL

I2C1 SCL

I2C1 SCL

I2C1 SCL

I2C0 SCL

UART0 TX

UART1 TX

UART1 TX

UART0 TX

UART0 RX

UART1 RX

UART1 RX

UART0 RX

POWER GROUND UART GPIO, PIO & PWM

ADC SPI I2C SYSTEM CONTROL DEBUGGING

UART (default)

Raspberry Pi Pico Pinout

http://pimoroni.com/pico

