
L
IN

U
X

 P
R

O
 M

A
G

A
Z

IN
E

    IS
S

U
E

 2
4

4

W W W . L I N U X P R O M A G A Z I N E . C O M

Make It Mandatory
Requiring two-factor authentication at login

2020: The Year in Review 

Kconfig Deep Dive
Exploring the powerful system that 
configures the Linux kernel

M
A

R
C

H
 2

0
2

1
Stream

 Processing        Tw
o-Factor A

uthentication     Checksecurity       Kconfig       G
nuplot      

SAFE MESSAGING 
PASS YOUR PUBLIC 

KEY USING DNS

 STREAM 
PROCESSING
New coding techniques 
for the data revolution

Gnuplot
Draw illuminating 

graphs with only a 
few lines of code

Double-Sided DVD

INSIDE!

M
aterial Shell      H

ugin      G
odot

• Material Shell: Gnome tiling extension
• Create Panoramic Images with Hugin
•  maddog: Expanding opportunity in 
Latin America

Tutorial
Build a Game with Godot

FOSSPicks
• PlotJuggler 3
•  Xournal++  
Note-Taking App

• KStars 3.5

ISSUE 244 – MARCH 2021

FREE 
  DVD

Checksecurity
Lock down your system 

with automated security checks

Raspberry Pi 4  
on 8GB RAM
Do more and go faster with 
the souped up 8GB version

STREAM 
PROCESSING





Tim Berners-Lee, creator of the World Wide Web, has spent 
the past few years working on a vision for a new and better 
Internet. He showed up at the Reuters Next conference re-
cently and gave an update.

Solid (Social Linked Data) [1] is a project led by Berners-Lee 
and developed in collaboration with Massachusetts Institute 
of Technology (MIT). The goal is to create a fully functioning 
Internet that gives users control of their own data. The proj-
ect envisions “…a web where people can use a single sign-
on for any service and personal data is stored in pods (per-
sonal online data stores), controlled by the user” [2].

As of now, the Solid project has progressed beyond the con-
ceptual stage. Berners-Lee and others have even launched a 
start-up company called Inrupt that will market a Solid server, 
developer tools, and technical support [3].

The whole social media universe is based on one simple 
premise: I’ll provide you with storage and lots of cool free 
services if you let me comb through your data and extract 
value from it. The people of the Earth have largely accepted 
this peculiar arrangement, but part of the reason for the ac-
quiescence is that, generally speaking, most people don’t 
think they have a choice.

The truth is that the core services that people love about so-
cial networking are mostly not that remarkable or unique – a 
little bit content management system, a little bit RSS feed, 
and a little bit of messaging – with some features of a per-
sonal information manager thrown in to round it out. The 
main reason people sign away their privacy is to gain access 
to others who have signed away their privacy – and also be-
cause the services are implemented in a tidy and convenient 
form that is easy to use. This precarious arrangement is then 
shored up through the power of monopoly.

In theory, it might be easy to pop the bubble that is the com-
mercial social media industry by offering a similar collec-
tion of services without forcing users to give up control. The 
only way it works, though, is if people buy in at a massive 
scale. Inrupt has already signed up the British National 
Health Service, the BBC, and the government of Flanders, 

Belgium as customers, and they plan to announce more 
contracts in April. Make no mistake though: It will take a lot 
of support from many more organizations around the world 
to help something like this catch on. Would a new round of 
privacy laws and renewed government emphasis on open 
standards be enough to level the field and give this technol-
ogy a chance? Probably not, but other sectors might help to 
tip the scales. For instance, another intriguing question is 
whether the hosting industry, which is much more competi-
tive than the social media industry, will adopt Solid technol-
ogy as a means of wresting some control from global gi-
ants like Google and Facebook.

Inrupt’s vision of a world where users control their own 
data could help to create a freer and more private Internet, 
but it won’t solve everything. If you search for something 
on Google, Google will still try to remember what you did. 
Also, the ambitious and visionary Solid project won’t solve 
the other critical problem plaguing the Internet: freaky ex-
tremist thought bubbles that foment division and gum up 
civic discourse with conspiracy theories and lies. Tim Bern-
ers-Lee is working on that problem too. In November 2019, 
he launched another initiative called the Contract for the 
Web [4] designed to shine a light on 
all the critical problems facing the 
web, including fake news, bullying, 
and political manipulation. One of 
the core principles of the Contract 
for the Web is to “Build strong com-
munities that respect civil dis-
course and human dignity.”

I applaud Tim Berners-Lee for his 
bold vision and willingness to 
build on big ideas rather 
than just lamenting. 
Here’s hoping we can 
dial back some of 
the madness 
and get to the 
Internet we al-
ways thought 
we would have.

SEEKING SOLID GROUND

Joe Casad,  
Editor in Chief

[1]  Solid project: https://  solidproject.  org/

[2]  “Father of the Web Tim Berners-Lee Prepares Do-Over”: 
https://  www.  reuters.  com/  article/  us‑tech‑bernerslee‑interview/ 
 father‑  of‑the‑  web‑  tim‑  berners‑  lee‑  prepares‑  do‑  over‑ 
 idUSKBN29H1JK

[3]  Inrupt: https://  inrupt.  com/

[4]  Contract for the Web: https://  contractfortheweb.  org/

Info

Dear Reader,

3

EDITORIAL

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

Welcome

https://solidproject.org/
https://www.reuters.com/article/us-tech-bernerslee-interview/father-of-the-web-tim-berners-lee-prepares-do-over-idUSKBN29H1JK
https://www.reuters.com/article/us-tech-bernerslee-interview/father-of-the-web-tim-berners-lee-prepares-do-over-idUSKBN29H1JK
https://www.reuters.com/article/us-tech-bernerslee-interview/father-of-the-web-tim-berners-lee-prepares-do-over-idUSKBN29H1JK
https://inrupt.com/
https://contractfortheweb.org/


  WHAT'S INSIDE        

 3 Comment

 6 DVD

95 Back Issues

96 Featured Events

97 Call for Papers

98 Preview

  SERVICE        

  IN-DEPTH        

08 News
• Mozilla VPN Now Available for Linux
•  KDE Wayland Support and Kickoff 

Redesign
• Deepin 20.1 Released
•  CloudLinux Commits over One Million 

Dollars to CentOS Replacement
•  Linux Mint 20.1 Beta Released
• Manjaro Linux 20.2 Unleashed

11 Kernel News
• Spanking Linus
• Controlling Boot Parameters via Sysfs
• Finessing GCC
• Dealing with Loose Build Dependencies

14 Stream Processing 101
Batch processing strategies won’t help if 
you need to process large volumes of 
incoming data in real time. Stream 
processing is a promising alternative to 
conventional batch techniques.

18 Apache StreamPipes
You don’t need to be a stream processing 
expert to create useful custom solutions 
with Apache StreamPipes. We’ll use 
StreamPipes to build a simple app that 
calculates when the International Space 
Station will fly overhead.

  NEWS        

  COVER STORIES        

The explosion of real-time data 
from sensors and monitoring devices 
is fueling new interest in alternative 
programming techniques. This month 
we wade into stream processing. Also 
in this issue:

•  Kconfig Deep Dive  – We explore 
the powerful yet mysterious Linux 

kernel configuration system (page 44).
•  Safe Messaging with TLSA – 

Tighten up security using DNS and 

the TLSA resource record (page 51).

Check out MakerSpace for an article on 
the souped-up 8GB Raspberry Pi 4, and 
look in Linux Voice for a complete 
tutorial on building a computer game 
with the Godot game engine.

24 Distro Walk – Arch Linux
Arch Linux, one of the more popular 
Linux distros, goes its own way, putting 
you in control.

  REVIEWS        

28 Free Software in 2020
Among other noteworthy trends in 2020, 
producing free and secure 
videoconferencing software has become 
a higher priority in the past year.

LINUX MAGAZINELINUX MAGAZINE

4 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MARCH 2021



63 Welcome
This month in Linux Voice.

65 Doghouse – Project Cauā
In Latin America, many students 
qualify for free college tuition but 
don’t attend a university because 
they can’t afford the living 
expenses. To bridge that gap, 
maddog has been working on a 
new pilot program designed to 
help students with computer skills.

66 Material Shell
The Gnome extension Material 
Shell organizes the windows on 
your desktop, giving you many 
options for smoothly switching 
between different applications and 
views.

70 Hugin
Add this tool for creating 
panoramic images to your image 
editing toolbox.

78 FOSSPicks
Graham looks at the PlotJuggler 3 
data visualizer, note taking with 
Xournal++, the KStars planetarium, 
and more!

84 Tutorial – Gaming with Godot
This open source game engine 
provides all the tools you’ll need to 
build your own shooter game.

56 Gnuplot
Create real-time charts with a few lines 
of code.

60 8GB Raspberry Pi 4
The Raspberry Pi family, and the 64-bit 
Raspberry Pi OS, further improves 
performance.

  MAKERSPACE        

30 2FA
Protect your system from unwanted 
visitors with two-factor authentication.

33 Charly’s Column – Livepatch
There is only one thing Charly 
appreciates even less than security holes: 
downtime of his machines. That’s why 
he patches his Ubuntu systems with 
Canonical’s Livepatch on the fly.

34 Command Line – Jailkit
Setting up chroot jails is no simple task. 
Jailkit can make this job a little easier by 
automating setup and configuration.

38  Programming Snapshot – Bulk 
Renaming
Renaming multiple files often requires 
small shell scripts. Mike Schilli simplifies 
this task with a Go program.

42 checksecurity
This powerful tool collection lets you 
automatically monitor basic system 
settings.

44 Kconfig Deep Dive
The Kconfig configuration system makes 
it easy to configure and customize the 
Linux kernel. But how does it work?

51 Safe Messaging with TLSA
Decoupled application design gets in the 
way of secure communication, but a little 
known feature of DNS can provide 
message security.

  IN-DEPTH        

LINUX MAGAZINELINUX MAGAZINE
MARCH 2021

5LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

TWO TERRIFIC 
DISTROS

DOUBLE-SIDED 
DVD!

SEE PAGE 6 FOR DETAILS



Defective discs will be replaced.  
Please send an email to subs@linux-magazine.com.

Although this Linux Magazine disc has been tested and is to the 
best of our knowledge free of malicious software and defects, 
Linux Magazine cannot be held responsible and is not liable for 
any disruption, loss, or damage to data and computer systems 
related to the use of this disc. 

FreeBSD 12.2 and GhostBSD
Two Terrific Distros on a Double-Sided DVD!

FreeBSD 12.2
64-bit

First released in 1992, FreeBSD is the most popular ver-
sion of BSD, especially for servers. Those coming from 
Linux will find many details different, such as the de-
vice naming system, as well as many commands and 
applications. More importantly, FreeBSD has never 
passed through a popularity phase like the one that 
drove Linux to develop mature desktop environments – 
although some mature BSD environments are available 
today. Instead, FreeBSD more resembles Linux in its 
hobbyist days. For instance, FreeBSD’s install is a text-
based series of questions with no hardware auto-detec-
tion. Furthermore, no desktop environment is installed, 
although users can add one later.

FreeBSD’s assumption is that users have the knowledge 
or interest to work with FreeBSD until their systems are 
configured to their liking. Installation is unlikely to pro-
duce a working desktop system in 15 minutes. Instead, 
users should be ready to refer repeatedly to the FreeBSD 
documentation (https://  www.  freebsd.  org/  docs.  html) and 
to fetch desired applications from websites. The reward 
for this effort will be greater knowledge of Unix-like 
systems – as well as the satisfaction that comes with 
doing it yourself.

GhostBSD
64-bit

An off-shoot of TrueOS, GhostBSD is a prominent at-
tempt to make FreeBSD more accessible to new users. 
GhostBSD’s installer is graphical, like modern Linux 
installers, offering more choices for users and install-
ing the MATE desktop with a minimum of effort. The 
default install also includes many familiar applications 
like LibreOffice, Firefox, and GTK technologies such 
as Rhythmbox and Shotwell.

More importantly, GhostBSD supports users with an 
installation forum (https://  forums.  ghostbsd.  org/ 
 viewforum.  php?  f=59) and its still-in-development in-
stallation guide (https://  wiki.  ghostbsd.  org/  index.  php/ 
 Installation_Guide). The project’s web page also in-
cludes portions of the directory tree for those who 
wish to study it.

GhostBSD is suitable for those who want to explore 
FreeBSD, but want to spend less time on installation. 
Most of what you learn from exploring GhostBSD 
specifically should apply to FreeBSD in general.

+

So you think you know open source? Just the fact that you are reading this page means that what you 
probably know is Linux. This month, the DVD provides a glimpse into another corner of open source – 
the world of BSD. Like Linux, BSD varieties are free operating systems that are Unix descendants. 
However, they are released under the permissive BSD licenses rather than the copyleft licenses that 
dominate Linux. You will also find many other differences, despite the similar underlying structures.

6 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

DVD
This Month’s DVD





  Mozilla VPN Now Available for Linux
Back in July 2020, Mozilla launched a subscription-based VPN service and made it 
immediately available for Android, iOS, and Windows. Linux and macOS users, 
however, were left in the lurch. That has officially changed, with Mozilla making 
their VPN available for the two operating systems missing in the original mix.

The new VPN service isn’t free. In fact, it’s a bit pricier than a number of other 
options on the market. What do you get for your $4.99/month? Users can enjoy 
the service on up to five different devices (desktops, laptops, phones, or tab-
lets), and with over 280 servers available in six countries (with zero bandwidth 
restrictions), Mozilla claims their VPN is one of the fastest available. This is 
achieved with the use of high-speed, low-level cryptographic algorithms.

The current country list for the Mozilla VPN is the United States, the United 
Kingdom, Canada, New Zealand, Singapore, and Malaysia. According to Mozilla, 
there will be more regions coming soon.

As for encryption and IP address obfuscation, the Mozilla VPN uses WireGuard, 
and zero network activity is logged to servers. So if speed and security are priorities 
to you, the $4.99/month might be reasonable.

To sign up for Mozilla’s VPN server, head over to https://vpn.mozilla.org/ .

  KDE Wayland Support and Kickoff Redesign
If you’re a fan of KDE, 2021 is going to be an exciting year for you. If you’re not a fan 
of KDE, this year might change that.

The most important 2021 KDE roadmap plan is Wayland support. In fact, accord-
ing to KDE developer Nate Graham, “I expect the trend of serious, concentrated 
Wayland work to continue in 2021, and finally make Plasma Wayland session usable 
for an increasing number of people’s production workflows.”

Look for Wayland to be production-ready sometime this year.
Other KDE features coming in 2021 include a redesign for Kickoff, KDE's appli-

cation launcher. This will hit Plasma 5.21 and, as Graham said, will be “super mod-
ern and awesome.” For a sneak peek at what the Kickoff replacement might look 
like, check out the Kickoff redesign page (https://invent.kde.org/plasma/plasma-
desktop/-/merge_requests/258 ). Another exciting development will be full stack 
support for fingerprint authentication. This will include the lock screen KAuth, Pol-
kit, and more. The Breeze theme (https://phabricator.kde.org/T10891) will also be 
undergoing an evolution. This change will not be fundamental, but more a modern-
ization of the look.

Other, smaller, changes coming to KDE this year might include power/session 
actions in the lock screen and reflowing text in the Konsole terminal app.

Beyond software, KDE also hopes to find more hardware partnerships, closer 
coordination with various Linux distributions, and more effort put forth on the 
Neon distribution.

Read the full KDE roadmap here: https://pointieststick.com/2021/01/01/kde-road-
map-for-2021/.

08	 •  Mozilla VPN Now 
Available for Linux

 •  KDE Wayland Support and 
Kickoff Redesign

09	 • Deepin 20.1Released
 •  CloudLinux Commits over 

One Million Dollars to 
CentOS Replacement

 •  More Online

10	 •  Linux Mint 20.1 Beta 
Released

 •  Manjaro Linux 20.2 
Unleashed

8 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools 

https://vpn.mozilla.org/.
https://invent.kde.org/plasma/plasma-desktop/-/merge_requests/258
https://invent.kde.org/plasma/plasma-desktop/-/merge_requests/258
https://phabricator.kde.org/T10891
https://pointieststick.com/2021/01/01/kde-roadmap-for-2021/
https://pointieststick.com/2021/01/01/kde-roadmap-for-2021/


  Deepin 20.1 Released
In typical fashion, the developers of Deepin Linux have opted to take the road less 
traveled and release a version of their Linux distribution that shuns the typical and 
offers up a release that will turn heads and have some open source enthusiasts 
shaking their heads in wonder.

Whether that’s a good or a bad thing is up to the beholder.
Outside of the usual, shiny new things, such as being based on Debian 10 and in-

cluding kernel 5.8 (and the regular bits of Linux under the hood), Deepin has decided 
to create their own takes on the web browser, email client, 
disk manager, and a few other pieces of software. So 
now Deepin users will get the chance to experience 
Deepin Browser and Deepin Mail.

Of course, the improvements and new features 
don’t end with Deepin’s own applications. Added to 
Deepin 20.1 is touch gesture support, a number of 
new elements in the Deepin Control Center, full text 
search in the Deepin File Manager, restriction rules 
for share names, ability to preview DJVU images, a 
number of new features for the voice notes application, 
as well as numerous bug fixes and optimizations.

Naturally, because this is Linux, if you’re not happy with using Deepin’s take on 
the web browser and email client, you can always install the tools you prefer.

Download Deepin 20.1 from the official repositories now:  
https://www.deepin.org/en/download/.

  
CloudLinux Commits over One Million Dollars 
to CentOS Replacement

Whether you use CentOS for your servers or your desktop, the embroiled Linux dis-
tribution has recently found itself in a state of tumult. You’re probably wondering 
where to go now?

If you’re not in the know, Red Hat has decided to end CentOS as it stands, in 
favor of the rolling release, CentOS Stream. This decision has placed a large number 
of the Linux community in fit of pique, looking for a new distribution to handle what 
CentOS handled with agility, security, and reliability.

That’s where CloudLinux comes in. On December 15, 2020, the company whose 
goal is to increase the security, stability, and availability of Linux servers announced 
it was sponsoring Project Lenix, which will create a 1:1 binary compatible fork of 
Red Hat Enterprise Linux (starting with version 8 and moving forward).

CloudLinux has, for 10 years, been building a hardened version of CentOS Linux 
for data centers and hosting companies, so they certainly have the knowledge and 
skills to pull this off.

The reason behind the move? First off, CloudLinux has the infrastructure, 
software, experience, and staff. Second, CloudLinux assumes this move will 
put them on the map, so businesses will finally discover their rebootless update 
software (https://www.kernelcare.com/ ) and Extended Lifecycle Support offer-

ing (https://www.cloudlinux.
com/extended-lifecycle).

The first release of Project 
Lenix will arrive in the first quar-
ter of 2021.

Read more about Project 
Lenix in the CloudLinux official 
blog announcement: https://
blog.cloudlinux.com/announc-
ing-open-sourced-community-
driven-rhel-fork-by-cloudlinux.

ADMIN HPC
http://www.admin-magazine.com/HPC/

Remora – Resource Monitoring for Users
• Jeff Layton
Remora provides per-node and per-job 
resource utilization data that can be used to 
understand how an application performs on 
the system through a combination of profiling 
and system monitoring.

ADMIN Online
http://www.admin-magazine.com/

A Decentralized Communication Platform
• Christoph Langner
With clients for all popular distributions, the 
decentralized messaging app Jami promises 
maximum anonymity for chats, voice calls, 
and videoconferencing.

Kopano Groupware – an Open Source 
Productivity Suite
• Andrej Radonic
Kopano Groupware seeks to be more than a 
slot-in replacement for Microsoft Exchange. 
We reveal how you can commission the 
platform and the highlights it offers.

Collaborative Online Office Solutions
• Erik Bärwaldt
People say many cooks spoil the broth, but 
collaborative editing of documents does not 
necessarily have to end up in chaos. The col-
laborative functions in these free online of-
fice solutions can help users with teamwork.

Im
ag

e 
©

 b
lo

o
m

u
a,

 1
23

R
F.

co
m

Linux Magazine
www.linux-magazine.com

Linux News

9

NEWS

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

MORE ONLINE

https://www.deepin.org/en/download/.
https://www.kernelcare.com/
https://www.cloudlinux.com/extended-lifecycle
https://www.cloudlinux.com/extended-lifecycle
https://blog.cloudlinux.com/announcing-open-sourced-community-driven-rhel-fork-by-cloudlinux.
https://blog.cloudlinux.com/announcing-open-sourced-community-driven-rhel-fork-by-cloudlinux.
https://blog.cloudlinux.com/announcing-open-sourced-community-driven-rhel-fork-by-cloudlinux.
https://blog.cloudlinux.com/announcing-open-sourced-community-driven-rhel-fork-by-cloudlinux.
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/
http://www.linux-magazine.com


Get the latest news 
in your inbox every 
two weeks

Subscribe FREE 
to Linux Update
bit.ly/Linux-Update

  Linux Mint 20.1 Beta Released
Fans of Linux Mint are everywhere, and they’re vocal about their love for the distri-
bution. So it should come as no surprise that their Christmas has come a bit early 
this year, thanks to the release of the beta version of Linux Mint 20.1, Ulyssa.

Linux Mint 20.1 is based on the latest Long Term Support release of Ubuntu Linux 
(20.04). And, like always, Linux Mint (even 
in its beta form) is available to install with 
one of three outstanding desktop environ-
ments: Cinnamon, MATE, and Xfce.

Along with all of the goodness that 
comes with Ubuntu 20.04, Linux Mint 
Ulyssa has gained a few new features of 
its own, including two new color 
schemes (pink and aqua); a new tool for 
sharing encrypted files over a network 
(called Warpinator); a new Web App Man-
ager, which can turn any website into a 
panel-pinnable “app” that behaves like a 

normal desktop application; and of course the new Hypnotix IPTV client, which 
allows you to watch television shows within the app.

Finally, Linux Mint 20.1 comes with Linux Kernel 5.4 and the default Cinnamon 
desktop is 4.6.

It should be noted that, as of Linux Mint 20.1, 32-bit support has been dropped, 
so you’ll only be able to download the 64-bit version.

You can download the beta version of Linux Mint 20.1, with either the default 
Cinnamon desktop (https://www.linuxmint.com/edition.php?id=284), MATE 
(https://www.linuxmint.com/edition.php?id=285), or Xfce (https://www.linuxmint.
com/edition.php?id=286 ).

Remember, this is a beta release, so you might not want to install it on a produc-
tion desktop machine.

  Manjaro Linux 20.2 Unleashed
Aside from the regular expected updates, such as kernel 5.9, Pamac 9.5.12, and 
GNOME 3.38.2, the 20.02 release from the developers of Manjaro Linux has a few 
added surprises that might intrigue many a user.

One of the cool-
est features to be 
found in Manjaro 
“Nibia” is bor-
rowed from Sys-
tem76’s Pop!_OS. 
This feature is called Pop Shell and makes it possible to quickly enable automatic 
window tiling with a click of a button. For anyone who likes their application win-
dows to always be perfectly organized on their desktop, this new tiling feature will 
go a long way to scratch that itch.

But Manjaro Linux 20.2 isn’t just limited to one tiling option. If your device hap-
pens to have a touchscreen, you can opt for the Material Shell extension, which en-
ables touch-friendly automatic window tiling. So whether you have a standard 
mouse interface or a touch interface, you can enjoy window tiling.

The Manjaro Application Utility has also received a number of improvements, 
such as the ability to easily select your favorite browsers, office suites, and even 
password managers.

One other interesting new tidbit is that when using Gnome with non-NVidia 
GPUs, Manjaro 20.02, it will default to Wayland instead of X11.

For more information on Manjaro Linux “Nibia,” check out the release information: 
https://forum.manjaro.org/t/manjaro-20-2-nibia-got-released/41034) and download 
your own ISO (https://manjaro.org/download/ .

10 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Linux News

NEWS

https://www.linuxmint.com/edition.php?id=284
https://www.linuxmint.com/edition.php?id=285
https://www.linuxmint.com/edition.php?id=286
https://www.linuxmint.com/edition.php?id=286
https://forum.manjaro.org/t/manjaro-20-2-nibia-got-released/41034
https://manjaro.org/download/.


11LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

NEWS
Kernel News

sponded in a while, please feel free to 
send me another email to check on my 
status.”

A few days later, Kirill asked for an 
update.

Lyude replied that looking at Kirill’s 
patches was “on my TODO list for this 
week at least as a priority, although I re-
ally would have hoped that someone 
from Intel would have looked by now 
since it’s a regression on their end.”

This got the attention of Ville Syrjälä 
at Intel, who asked what was up. Lyude 
replied, “whoops, you can ignore this ac-
tually – I got this mixed up with an Intel 
issue I was looking at, this is actually a 
nouveau issue and you guys don’t need 
to look at this.”

So you can start to see what’s happen-
ing here. Folks are working on stuff, but 
they are also working on a lot of other 
stuff at the same time.

Linus, however, replied:
“Christ. It’s been two weeks. I’m doing 

‑rc4 today, and I still don’t have the fix.
“The problem seems entirely obvious, 

as reported by Kirill: the nv50 code un‑
conditionally calls the ‘atomic_{dis,en}
able()‘ functions, even when not every‑
body was converted.

“The fix seems to be to either just do 
the conversion of the remaining cases 
(which looks like just adding an argu‑
ment to the remaining functions, and 
using that for the ‘atomic’ callback), or 
the trivial suggestion by Kirill from two 
weeks ago.”

He went on:
“Kirill, since the nouveau people aren’t 

fixing this, can you just send me your 
tested patch?

“Lyude/ Ben – let me just say that I 
think this is all a huge disgrace.

“You had a problem report with a bi‑
sected commit, a suggested fix, and two 
weeks later there’s absolutely _nothing_.”

Spanking Linus
Dave Airlie posted an update to the DRM 
code awhile back. One of the Linux ker-
nel’s little jokes was to take the estab-
lished acronym for Digital Rights Man-
agement, which is essentially an anti-
open source concept, and repurpose it to 
mean Direct Rendering Manager, which 
is the kernel subsystem that deals with 
video card GPUs.

It was a standard update, except Linus 
Torvalds got his knuckles rapped at the 
end of it.

Linus received the patch, saying, 
“thanks, looks good to me,” and life 
proceeded. The tracker bot announced 
that the patch had been merged. How-
ever, once Linus built the kernel with 
clang – an alternative to the GNU C 
Compiler (GCC) – he found that clang 
reported some fishy looking code in 
Dave’s patch.

It’s not really Dave’s patch – a bunch 
of people work on that code, including 
Dave, and their contributions all get piped 
up to Linus. He pointed to the problem 
area, saying “this odd code was intro-
duced by commit 0749ddeb7d6c,” and he 
added, “can we please agree to not write 
this kind of obfuscated C code?”

Dave replied that he put the relevant 
person on the job, and that they’d get a 
fix to Linus. But meanwhile – actually 
a couple of weeks later – Kirill A. 
Shutemov reported that Dave’s original 
patch produced a kernel that refused to 
boot on his system. He identified the 
specific code that seemed to cause the 
problem and suggested a workaround; 
Lyude Paul said he’d get a fix out right 
away. However, in Lyude’s sig file was 
the following remark, “Note: I deal 
with a lot of emails and have a lot of 
bugs on my plate. If you’ve asked me a 
question, are waiting for a review/ 
merge on a patch, etc. and I haven’t re-

Zack’s Kernel News
Chronicler Zack Brown reports on the latest news, views, 
dilemmas, and developments within the Linux kernel 
community. By Zack Brown

Dave replied, on behalf of Lyude and 
the rest of the folks who’d contributed to 
this patch:

“I would like to say when you sent this, 
there was patches on the mailing lists 
with Kirill cc’ed, a pull request outstand‑
ing to me on the mailing list from Ben, 
with the patches reviewed in it.

“Maybe you weren’t cc’ed on it, but 
stuff has certainly happened, in the time‑
frame, and I was keeping track of it from 
falling down a hole.

“_nothing_ is a lot more a reflection on 
your research than the ongoing process, 
there was some delays here and maybe 
we need to communicate when we are 
flat out dealing with other more urgent 
tasks that pay the actual wages.”

And that was the end of the discussion.
It’s easy for not just Linus, but every-

one else, to forget that of the many thou-
sands of people contributing code to the 
Linux kernel, many of them earn their 
living doing other things.

There are definitely plenty of people 
whose sole job is Linux kernel develop-

The Linux kernel mailing list comprises 
the core of Linux development activities. 
Traffic volumes are immense, often 
reaching 10,000 messages in a week, and 
keeping up to date with the entire scope 
of development is a virtually impossible 
task for one person. One of the few brave 
souls to take on this task is Zack Brown.

Author



12 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Kernel News

NEWS

and explained that he had put a work-
around in the code, but apparently the 
workaround had been removed. So Josh 
remarked, “Oh yeah, I forgot about that. 
That would be another option if my 
patch doesn’t work out.”

At this point, Linus Torvalds came out 
with the startling interjection, “the prob-
lem here is that the compiler fundamen-
tally isn’t smart enough to see that 
something is unreachable, and the ‘un-
reachable()’ annotation we did didn’t ac-
tually really cause any code that makes 
it so. So we basically have code that _if_ 
we ever change it, it will simply be 
wrong, and we’ll never see any warnings 
about it but it will fall through to non-
sensical code.”

The solution, Linus said, was to write 
C code that technically would do the 
exact same thing as the code that was al-
ready there, but that actually would 
force the GCC to generate better binary 
output and thus avoid ever allowing exe-
cution to fall through to the “unreach-
able” code.

And that was that.
In this particular instance, the solution 

was to write code that was probably 
going to look a little simpler than what 
was there before. The real insanity is 
when the reverse is true – when the 
compiler will only produce really great 
binary output if the source code is abso-
lutely obfuscated and bizarre. I think 
there may still be parts of the boot-up 
code that warn developers to steer clear 
for that reason.

Dealing with Loose Build 
Dependencies
The Linux kernel build system goes far 
beyond simple makefiles and ultimately 
is like a whole separate software devel-
opment project enclosed within the ker-
nel project itself. Recently Linus Torvalds 
himself submitted a bug report on the 
kernel build system, in which he found 
that a giant portion of build time was 
spent invoking the cc1plus compiler to 
perform tests in the GCC plugins direc-
tory. Apparently the same goal could be 
accomplished much faster by simply 
checking the existence of a particular .h 
file rather than running an entire com-
piler instance to read that file.

Masahiro Yamada pointed this out and 
posted a patch that not only took out the 
cc1plus invocation altogether, but also 

size or resizing a persistent memory 
region. Or simply we want to enable 
reboot_force because we noticed that 
something bad happened.”

Meanwhile, Petr Mladek offered some 
technical suggestions for Matteo’s patch, 
which Matteo promised to implement. 
He posted a quick update, and Petr gave 
his “Reviewed-By” tag, signifying that 
(almost) all seemed well. The two of 
them did another round of suggestions 
and updates, and lo and behold Andrew 
accepted the patch into his tree, in line 
for submission up to Linus Torvalds and 
the life eternal.

This question – “why?” – often leads 
to lively debate. Sometimes the goal of 
a patch is to implement pseudo-secu-
rity features that would lock users out 
of controlling their own systems and 
give control to some kind of corporate 
“signing authority” instead. When a 
patch like that does come along, the 
debate generally gets kicked off with a 
developer asking “why?” And after a 
few back-and-forths, it comes out that 
yes, indeed, the point of the patch is to 
give control to the Techmare Bitplane 
Beast from Beyond. And thus, the 
patch is not only rejected, but the rea-
sons for its rejection are codified into 
the historical record.

In this particular instance, Andrew 
just wanted to know the reasons; having 
the reasons, he accepted the patch.

Finessing GCC
In the course of a discussion that started 
off the Linux Kernel Mailing List, some 
really wonky GCC stuff emerged.

Generally, as one way to catch bugs, 
the kernel will still try to do something 
even in code paths that are supposed to 
be unreachable. Someone implements 
their favorite feature, which includes all 
the possible things that might happen, 
but there’s still that final impossible con-
dition that will never happen. So the per-
son writes fall-through code at that 
point, just in case somehow the kernel 
decided the impossible was in fact possi-
ble. Then if that code ever executes, it’ll 
provide a clue for the developers to fix 
whatever bug was exposed.

It’s a weird yet standard debugging 
technique. So Peter Zijlstra was talking 
with Josh Poimboeuf about this exact 
thing. Apparently the kernel’s unreach-
able() call was being hit. Peter groaned 

ment. They work at companies that are 
dependent on Linux, and a big chunk of 
their job is to make sure the kernel sup-
ports what they need it to support. But 
even in those cases, there’s a clear differ-
ence between those developers’ projects 
and whatever Linus might want them to 
work on.

The reason it’s easy to forget this stuff 
is because Linux is developed so fast, 
and with such a broad scope, that it 
tends to boggle the mind. Linux runs on 
toasters, vending machines, desktops, 
server farms, orbiting satellites, and is 
on track to take over the back end of 
whatever technology powers the vast 
simulation that implements the very uni-
verse itself. That last item I think is al-
ready in beta.

But in fact it really does all boil down 
to a bunch of passionate people who 
care a lot, but who don’t always have 
time to do everything they want to do.

Controlling Boot 
Parameters via Sysfs
Matteo Croce posted a patch to improve 
user control over reboots. The Linux ker-
nel has a command line like other bina-
ries, with command-line arguments and 
the whole nine yards, and you can typi-
cally set those arguments in the boot-
loader. Of particular interest to Matteo 
was controlling whether the system 
would do a hard boot with full power 
shutdown and associated tests or a soft 
boot, which can cut some corners to 
boot up faster.

Instead of command-line arguments, 
though, Matteo wanted to expose some 
sysfs control files that would let the user 
control it from the previous user session.

Andrew Morton asked why in the holy 
name of the flying spaghetti monster 
was this necessary. He didn’t ask it like 
that. He asked it nicer, saying, “Please 
include a description of why you believe 
the kernel needs this feature. Use cases, 
end-user benefits, etc. We’ve survived 
this long without it – what changed?”

Matteo replied simply that “we don’t 
always know in advance what type of 
reboot to perform.” He explained, 
“sometimes a warm reboot is preferred 
to persist certain memory regions 
across the reboot. Others a cold one is 
needed to apply a future system update 
that makes a memory memory model 
change, like changing the base page 



Kernel News

13LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

NEWS

didn’t bother implementing the test it 
had been supposed to perform. As he 
put it, failing to perform the test would 
produce a single unimportant warning. 
He remarked, “modern C++ compilers 
should be able to build the code, and 
hopefully skipping this test should not 
make any practical problem.”

Linus approved the patch without 
comment. Kees Cook also approved and 
accepted the patch into his own tree.

However, a couple of weeks later, 
Marek Szyprowski reported that this 
simple patch “causes a build break with 
my tests setup, but I’m not sure weather 
it is really an issue of this commit or a 
toolchain I use. However I’ve checked 
various versions of the gcc cross-compil-
ers released by Linaro […] and all fails 
with the same error.”

He added, “Compilation works if I use 
the cross-gcc provided by gcc-7-arm-
linux-gnueabi/ gcc-arm-linux-gnueabi 
Ubuntu packages.”

Masahiro replied, “I can compile gcc-
plugins with Linaro toolchains.” And 
proceeded to try to track down the miss-
ing component that he felt must exist in 
Marek’s setup.

Specifically, Masahiro suggested that 
Marek install the libgmp‑dev package, 
which included header files for the GNU 
Multiple Precision Arithmetic Library.

Marek installed the headers and re-
ported the problem solved.

However, Jon Hunter of NVidia also 
complained about the identical problem, 
saying, “this change also breaks the 
build on our farm build machines and 
while we can request that packages are 
installed on these machines, it takes 
time. Is there anyway to avoid this?”

Marek replied that reverting Masahi-
ro’s patch would do the trick, though of 
course then the build process would be 
slower once again.

However, this would not do the trick 
for Jon. He said, “that works locally, but 
these automated builders just pull the 
latest -next branch and build.” But on 
further reflection, Jon added, “if you are 
saying that this is a problem/ bug with 
our builders, then of course we will have 
to get this fixed.”

And Masahiro confirmed that yes, the 
problem was probably with NVidia’s 
build system, and they should take steps 
to make sure the package dependency 
was updated in their toolchain.

Masahiro explained:
“Kconfig evaluates $(CC) capabilities, 

and hides CONFIG options it cannot 
support.

“In contrast, we do not do that for 
$(HOSTCC) capabilities because it is just 
a matter of some missing packages.

“For example, if you enable CONFIG_
SYSTEM_TRUSTED_KEYRING and fail to 
build scripts/ extrace‑cert.c due to missing 
<openssl/ bio.h>, you need to install the 
openssl dev package.

“It is the same pattern.”
In other words, $(CC) refers to the 

standard compiler on the user’s system, 
so Kconfig will hide any build options 
that aren’t supported by that compiler. 
However, $(HOSTCC) specifically identifies 
package dependencies that are necessary 
for a given build option. Kconfig won’t 
hide options that are simply missing 
software dependencies on the user sys-
tem – the user is expected to install 
those dependencies in order to get the 
kernel features they need.

This made sense to Jon, and he said 
he’d speak to the engineers about updat-
ing their build environment.

Close by, Thierry Reding pointed out 
that the original code, prior to Masahi-
ro’s patch, actually attempted to build a 
test plugin, while Masahiro’s patch sim-
ply verified the existence of a header file, 
without trying to use that header file to 
build a test plugin.

Thierry felt this could explain the re-
cent breakages seen by people like 
Marek and Jon. He said, “where previ-
ously the check would fail […] the 
same check now succeeds (i.e. $CC 
was built with plugins support, but we 
no longer check if the plugin support is 
also functional). That means after your 
change the builders will now by de-
fault try to build the plugins and fail, 
whereas previously they wouldn’t at-
tempt to do so because the dependency 
wasn’t met.”

He concluded, “that makes the new 
check a bit less useful than the old one, 
because rather than defaulting to ‘no’ 
when GCC plugins can’t be built, we 
now default to ‘yes’ when they should 
be able to get built but can’t.”

However, Thierry also acknowledged, 
“it’s probably reasonable to expect the 
installation to be good and that plugins 
can be built if the gcc-plugin.h header 
can be found, so I’m not objecting to this 

patch.” But he wondered if simply in-
stalling the missing dependency pack-
ages was actually the right solution. He 
explained, “In case where CC != 
HOSTCC, it’s possible that CC was not 
built against the same version of GMP/ 
MPC as HOSTCC. And even HOSTCC 
might not necessarily have been built 
against the versions provided by libgmp-
dev or libmpc-dev.”

In which case, he said, the depen-
dency might not be as easy to meet as 
simply installing a particular package on 
a particular Linux distribution – the 
package may need a certain version 
number.

At this point, Linus came into the dis-
cussion, saying:

“This seems to be a package depen‑
dency problem with the gcc plugins – 
they clearly want libgmp, but appar‑
ently the package hasn’t specified that 
dependency.

“If this turns out to be a big problem, I 
guess we can’t simplify the plugin check 
after all.

“We historically just disabled gcc‑pl‑
ugins if that header didn’t build, which 
obviously meant that it ‘worked’ for peo‑
ple, but it also means that clearly the cov‑
erage can’t have been as good as it could/ 
should be.

“So if it’s as simple as just installing 
the GNU multiprecision libraries (‘gmp‑
devel’ on most rpm‑based systems, ‘lib‑
gmp‑dev’ on most debian systems), then 
I think that’s the right thing to do. You’ll 
get a working build again, and equally 
importantly, your build servers will actu‑
ally do a better job of covering the differ‑
ent build options.”

Ultimately, this seems like the sort of 
issue that will be solved with minimal 
pain. Jon, for example, mentioned that 
“I have reported this issue to the team 
that administers the builders. So hope-
fully, they will install the necessary 
packages for us now.” And it’s likely that 
a small number of other organizations 
may have to implement similar fixes.

Probably the speed fix will stay in the 
kernel, and users will need to install 
the necessary packages from their dis-
tro. It doesn’t seem likely that this will 
turn into the kind of problem that 
would lead to reverting a significant 
build-time speedup, just to avoid a 
minor inconvenience to a relatively 
small number of users.  nnn



S tream processing, also known as data stream processing, has been around 
since the early 1970s, but it has seen a big resurgence of interest in recent 
years. To understand why stream processing is on the rise, first consider how 
a conventional program processes data. Traditional software reads a chunk of 

data all at once and then performs operations on it. This batch technique is fine for 
certain types of problems, but in other use cases, it is quite limiting – especially in 
the modern era of parallel processing and big data.

Stream processing instead envisions the data as a continuous flow. New events are 
processed as they occur. You can envision the program as something like a factory as-
sembly line – a stream of incoming data is analyzed, manipulated, and transformed 
as it passes through the system. In some cases, parallel streams might arrive sepa-
rately for the program to analyze, process, and merge together.

Stream processing excels at use cases that require real-time processing of incoming 
data from large datasets, such as fraud detection software for a credit card company 

or a program that manages and interprets data from IoT environmental 
sensors.

A stream processing program consists of sources, nodes/ opera-
tors, and sinks that are connected by data streams. Sources ei-

ther read data from external components or generate data 
themselves. Sinks are responsible for outputting data – to 

the screen, to files, or to external systems. Operators 
have at least one input to which a data stream is 

connected.
One popular form of stream process-

ing known as distributed stateful 
stream processing opens up almost infi-

nite possibilities for developing complex 
business logic, analysis processes, and 

even complete applications. Several open 
source frameworks offer support for distrib-

uted stateful stream processing, which means 
developers can explore the possibilities of this 

powerful technique without worrying about underly-
ing network layers or even process synchronization. 
Adopting an existing framework also lets you take ad-
vantage of built-in fault tolerance.

Stream processing Terms
To understand stateful stream processing, imagine the fol-

lowing scenario: A major video-streaming provider has thou-
sands of movies on offer. It is almost impossible for the user to 

browse through them all to find the right movie that suits the 
user’s preferences and current mood. Therefore, the provider 
wants to send each user a few personalized suggestions. After 
the user has browsed the offering for several weeks, the stream-

Understanding data stream processing

All Is Flux
Batch processing strategies won’t help if you need to process large volumes of incoming data in real 
time. Stream processing is a promising alternative to conventional batch techniques. By Nico Kruber

14

COVER STORY

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Stream Processing 101



ing provider can anticipate which movies or series the customer 
likes. The provider looks at all the suggestions it has made, how 
the customer continues to browse these offers, and which video 
the customer watches. This information is available to the pro-
vider in two separate data streams: Impressions (suggestions 
shown) and Plays (video playback). If you look more closely at 
the data streams for this task, you can derive an architecture like 
the one shown in Figure 1, which reads the streams, performs 
further processing, then finally merges the streams to achieve 
the desired result, which is new recommendations for the reader 
based on the analysis of past behavior.

Data Stream
A data stream is basically a sequence of data or events. Some 
definitions distinguish between binary data streams, which 
occur in music or video data processing, and event data 
streams, which are discussed in this article. An event in this 
context is a request that can be considered separately from all 
others. Event data streams are the model used by typical 
stream processing frameworks.

A network channel is a data stream that can be read block by 
block or byte by byte. You could also define a data stream for a 
network channel in terms of its logical structure – for example, 
into individual HTTP requests.

A closer look at event data streams reveals some additional 
details. First of all, each data stream is naturally unlimited: If 
you read at a certain position in the imaginary data stream, you 
do not know how many more events exist. If the data stream is 
cached in some way, there is often the possibility to shift this 
reading position and thus jump back into the past. But what 
lies in the future is unknown at the current time. To a certain 
extent, delimited data streams – data streams with a defined 
beginning and end – constitute a special case of this general 
view. Such data streams are typically created when someone 
artificially splits up an unlimited data 
stream to process events en bloc. An ex-
ample could be the logfiles from one day 
or all the entries for one day. Working 
with limited data streams is typically re-
ferred to as batch processing.

In the video-streaming scenario de-
scribed earlier in this article, two source 
data streams have to be processed: Im-
pressions and Plays. The two are com-
pletely independent of each other, and 
they are separately populated with 
events by different apps or web services. 
The events can take different routes on 
their way to the sources of the applica-
tion in external and probably also dis-
tributed systems (e.g., through load bal-
ancing or server failure). They thus ar-
rive with a time delay – an effect that 
must also be taken into account within a 
distributed application.

Figure 2 shows a more complex physi-
cal execution plan for the application 
shown in Figure 1. The figure shows two 
parallel instances of sources and opera-

tors – and one instance as the data sink. Different connection 
patterns link these instances, including simple forwarding from 
one source to a downstream operator or more complex parti-
tioning patterns between Map and Join operators. Partitioning 
the data stream is necessary to assign all display events associ-
ated with a user to playback events. If we can ensure that all 
events are always processed by a user on the same Join in-
stance, you can easily parallelize the computational work.

Time
The assignment of display events to playback events should 
ideally reconstruct all display events before the time of play-
back exactly as the user has seen them on their end device. But 
that’s easier said than done: An initial simple solution could be 
for all display events to be cached in the Join and whenever 
playback occurs, for all associated display events to be 
searched for and then output. Although this sounds logical, it 
unfortunately leads to wrong results in the general case.

Imagine the following: Alice has seen movie recommenda-
tions for Star Wars and Scary Movie and finally watched Space-
balls. The associated events, which have come from Alice’s de-
vices and have migrated through several different layers of the 
provider’s servers, are then read from the sources and pro-
cessed in the map operators (for example, removing superflu-
ous details). The events are now located in the data streams 
between Map and Join (Figure 2). The order in which these 
three events are now read by the Join operator has decisive 
consequences for the computation results. If Spaceballs is 
viewed first, there are no previous display events at all. Simi-
larly, only one ad might arrive before playback, and the result 
would not be complete. This solution does not reconstruct all 
display events before the time of playback as Alice saw them 
but only links the display events that occurred before the play-
back event.

Figure 1: Logical data flowchart for a stream-processing application 
that analyzes and determines the displayed video suggestions (Impres-
sions) that guide a user to a video playback decision (Plays).

Figure 2: Physical execution plan for the stream-processing application 
in Figure 1 with two parallel instances of each source and operator, but 
only one sink.

15

COVER STORY
Stream Processing 101

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



In the case of Alice’s video data, we need a (local) data 
store to buffer the display and play back events within the 
Join operator until the matching watermark signals that the 
input is complete or complete enough to process. This en-
sures that the output includes both Star Wars and Scary Movie 
as ads for the Spaceballs playback and that personalization is 
handled correctly.

Reliability and Consistency Models
Stream processing usually processes one incoming event after 
another (although in principle it is possible to combine several 
events into groups or batches and process them en bloc). It is 
important to establish a consistency model around these 
events. The model considers how the event or its message is 
processed in case of an error. If there are no guarantees, the 
model is known as “At Most Once,” which means that a mes-
sage may or may not be processed. “At Least Once” means that 
the system ensures that each message is processed at least 
once, and “Exactly Once” means the message is processed ex-
actly once.

Ultimately, it doesn’t matter how often a message is pro-
cessed as long as it only affects the internal states as defined 
by these guarantees and has no side effects. “Exactly Once,” 
in this case, means that each message influences the internal 
state exactly once only. It may happen that the message is 
processed multiple times, but the state, for example a counter, 
is always consistent and does not count an event twice! Side 

The correct solution must reference the timestamps in the 
events. This is known as event time processing and is an essen-
tial idea in any stream processing framework. The Star Wars 
analogy is also used in this context to illustrate the differences 
between these two time concepts and to emphasize that in-
coming events do not necessarily have to be sorted by event 
time (see the box entitled “A Galaxy Far Away: Processing Time 
vs. Event Time”).

Watermarks
Watermarks offer a compromise between completeness and 
fast response. A watermark (T) contains a timestamp T and 
flows with the remaining messages in the data stream. The wa-
termark indicates that, at the time of reception, (probably) no 
further messages with an event time before or including T are 
present in the data stream. The stream processor can then as-
sume that it has seen everything up to T and respond accord-
ingly. If an event with timestamp <= T appears later on, it is 
classified as a delayed event according to the definition. The 
delayed event can either be used to complete the computations 
and output a new result, it can be written to a side channel for 
error analysis, or it can be ignored completely.

Watermarks are typically based on simple mechanisms used 
to define the degree of disorder in the data stream. For example: 
If you see an event with an event time of X, you have probably 
seen all the events up to event time X ‑ 4 and can create a corre-
sponding watermark. With this scheme, you can only assume 
that you have seen everything up to Episode III in Star Wars 
VII. Episode I and II were already late events, because after 
episode VI a watermark (II) could have been created. With 
such a high degree of disorder, you would have to wait a very 
long time to be sure that the story was fully known.

Turning to the example of Alice, I would have to wait with the 
join for Play(Spaceballs) with the appropriate impressions until 
I receive a watermark from all input data streams that is greater 
or equal to the timestamp of the playback event. This is the only 
way to keep to the agreement on watermarks in operators that 
read from different data streams. From the operator’s point of 
view, this can also be imagined as having your own event time 
clock, with hands that only move to reflect the minimum of all 
last-seen watermarks per input data stream. When this pointer 
moves, all time-based actions up to this time can be processed.

Data Memory
To allow for more complex applications, a stream processing 
framework needs some form of persistent data storage. Storage 
is often outsourced to an external component, such as a cen-
tralized database, or to internal or local data storage. Separat-
ing the processing of data from storage offers some advan-
tages, but it can also cause complications, such as higher la-
tency. Local storage is therefore an important component of 
stream processing; it keeps the state of an operator in RAM or, 
if necessary, stores it on hard disk/ SSD. Local storage is typi-
cally faster, and it allows the framework to provide its own 
consistency models in a relatively easy and resource-efficient 
way. The price of local storage is that the state of an operator 
now has to be managed by the framework. The framework also 
has to take care of fault tolerance, reliability, scalability, and 
expandability.

The processing time is the point in time at which George Lucas 
and his team processed the events “a long time ago in a gal-
axy far, far away” to create a movie (i.e., since 1977). The event 
time, on the other hand, is the time in which the story takes 
place (Episode I to VI and beyond). Depending on your point of 
view, one or the other is the right order:

| Sorted by Processing Time: | IV (1977) ‑ V (1980) ‑ U 

  VI (1983) ‑ I (1999) ‑ II (2002) ‑ III (2005) |

| Sorted by Event Time: | I (1999) ‑ II (2002) ‑ U 

  III (2005) ‑ IV (1977) ‑ V (1980) ‑ VI (1983) |

The difficult thing about event time processing is to find out 
when the incoming message stream is complete enough to 
make statements about it. In the Star Wars context, this can be 
illustrated by the numbers for the years. For example, if you 
watched the movies in the order of the calendar years, when 
can you be sure that you know the whole story? In 1983, for ex-
ample, it was assumed that the story was complete, but with 
some delay, further events from before the previously known 
story were revealed. What is the outlook in 2005? Is the story 
complete following Episodes I to VI? Do we maybe know this 
when Episode VII (2015) is released? In this case the answer 
would unfortunately be no, because in 2016 the movie Rogue 
One was released, and it is set between Episodes III and IV. 
Things are similar for a stream processor, because every in-
coming event poses the question as to whether it has to wait 
for more data (in which case its knowledge would be more 
comprehensive) or should it respond (promptly) to the cur-
rently available information?

A Galaxy Far Away: Processing Time vs. Event Time

16

COVER STORY
Stream Processing 101

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



effects can also be included separately, for example, at the 
sinks with “Exactly Once End-to-End,” where the results 
are also produced exactly once.

These forms of fault tolerance need two things: the ability to 
create a distributed, consistent snapshot of the entire running 
system and the ability to restore this state on reboot while con-
tinuing reading from the sources at the exact position where 
the snapshot was taken.

The different stream processing frameworks use different ap-
proaches to ensure that these guarantees are met. You’ll find 
comprehensive descriptions of the fault tolerance approaches 
in the framework documentation.

Stream processing Frameworks
The most popular stateful stream processing frameworks in the 
open source space are Apache Flink, Apache Kafka, and 
Apache Spark – all developed at the Apache Software Founda-
tion and therefore available under the Apache license. All are 
written in Java or Scala and at home in the Java Virtual Ma-
chine (JVM). Apache Flink was born as a stream processor. 
Apache Spark came out of the batch-processing environment 
and, over time, added stream processing capabilities in the 
form of processing in micro-batches. Apache Kafka is actually 
a tool for storing data streams and is very popular as a stream 
processing source and sink. In recent years, however, Kafka 
has also been given a number of functions that enable it to 
operate as a stream processor.

Each stream processing framework has a different program-
ming model, but the tools do have some similarities. For exam-
ple, all three have programming interfaces (APIs) with varying 
degrees of expressiveness: from relatively close to the system 
to more abstract interfaces to languages such as SQL (see the 
box entitled “Databases and Stream Processing”).

A special class of APIs called stateful functions allow easy 
and flexible creation of event-based distributed applications 
that use a stream processor as a substructure but feel comfort-
able in a serverless environment. A program of this kind is not 
modeled as a data stream but with stateful functions for each 
object of the system, where each function can freely interact 
with others. Programs written with stateful functions can use a 
number of different programming languages, because the func-
tions use HTTP to communicate with each other and are com-
pletely independent of each other. Ververica was one of the 
first companies to publish a stateful functions API for this type 
of modeling and programming in the stream processing envi-
ronment a year ago, and it is now an official component of 
Apache Flink.

Conclusions
Stream processing has become an im-
portant tool for processing as much 
distributed data as possible in real 
time. The stream processing paradigm 
offers an easy approach to creating dis-
tributed real-time applications of arbi-
trary complexity. Open source frame-
works help programmers produce cor-
rect results and also handle task distri-
bution, network communication, and 

fault tolerance in the underlying cluster. Stream processing 
might seem confusing at first glance, especially event time 
and watermarks, but once you have internalized the various 
elements, you’ll be well on your way to building your own 
stream processing applications.

In order to make stream processing available to an even 
wider audience, SQL APIs have already been created to enable 
software engineers, data engineers, and scientists to benefit 
from the advantages of integrating a database. These APIs, as 
well as the ecosystem that surrounds them, are undergoing 
continuous development.  nnn

Databases and stream processing often appear together, but it 
is important to distinguish between databases and stream-
processing frameworks. SQL only acts as a description lan-
guage for a program. In a streaming context, the application 
usually runs continuously and processes the infinite data 
stream chunk by chunk, adjusting the internal state and the 
output as a new event becomes available.

To use SQL at all, stream-processing frameworks often define 
a duality between a data stream and a dynamic table. (If you 
look at a table and observe all changes over time, you ulti-
mately have a data stream.) Databases often even allow ac-
cess to this data stream, either through a kind of binary log, or 
in the form of a Change Data Capture (CDC) data stream.

Listing 1 shows how to implement the example of linking the 
video playback events to video ads using the Apache Flink 
SQL API. In this case, you only have to define p.playTime and 
i.impressionTime as event-time attributes, including defining 
the watermark strategy, and you have quite a compact pro-
gram that continuously outputs all display events for each 
video playback up to one hour before playback. In Flink’s sys-
tem-level DataStream API (Java or Scala), the code for this 
scenario would be a little more complicated: The programmer 
would have to take care of temporarily buffering the events 
while reading the data streams until the watermark signals 
that the input is complete.

Databases and Stream Processing

01  SELECT

02    p.userid, p.title, p.playTime, COLLECT(DISTINCT i.title) AS impressions

03  FROM

04    Plays p,

05    Impressions i

06  WHERE

07    p.userid = i.userid AND

08    i.impressionTime BETWEEN p.playTime ‑ INTERVAL '1' HOUR AND p.playTime

09  GROUP BY p.userid, p.title, p.playTime

Listing 1: SQL example in Flink

Dr. Nico Kruber is a committer in the Apache Flink project and 
works as a solutions architect at Ververica, where he helps both 
customers and the open source community get the most out of 
Apache Flink. Before his time with Apache Flink, he did his PhD in 
Distributed Systems at the Zuse Institute Berlin and worked on 
the distributed, transactional key-value store Scalaris.

Author

17

Stream Processing 101

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

COVER STORY



O ur modern world is increasingly dependent on con-
tinuous data streams that generate large volumes of 
data in real time. These streams might come from science 
experiments, weather stations, business applications, or 

sensors on a factory shop floor. Many of the software systems that 
interact with these data streams follow an architecture in which 
events drive individual components. Continuous data sources 
(producers) such as sensors trigger events, and various components 
(consumers) process them. Producers and consumers are decoupled 
using a middleware layer that handles the distribution of the data, usually in 
the form of a message broker. This approach reduces complexity, because any 
number of services can receive and process incoming data streams virtually simul-
taneously. This flexible architecture gives rise to a new generation of tools that provide 
users with an easy way to create custom solutions that process data from incoming 
streams. One example is the open source framework Apache StreamPipes [1].

Stream processing made easy with Apache StreamPipes

 Space Flyby
You don’t need to be a stream processing expert to create useful custom solutions with 
Apache StreamPipes. We’ll use StreamPipes to build a simple app that calculates when 
the International Space Station will fly overhead.  
By Patrick Wiener, Dominik Riemer, and Philipp Zehnder

Figure 1: An overview of StreamPipes.

18

COVER STORY

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Apache StreamPipes



StreamPipes has been an incuba-
tor project at the Apache Software 

Foundation since November 2019 and is 
part of a growing number of solutions for the Internet of 
Things (IoT). The StreamPipes toolbox [2] is aimed at business 
users with limited technical knowledge. The main goal is to 
make stream-processing technologies accessible to nonexperts. 
Various modules are available to connect IoT data streams 
from a variety of sources, to generate analyses of these data 
streams, and to examine live or historical data.

StreamPipes offers a variety of connectors and algorithms for 
analyzing industrial data, 
with the focus on inte-
grating data from the pro-
duction and automation 
environment. But users 
without access to their 
own production line can 
also benefit from Stre-
amPipes: For example, 
real-time data from pub-
licly available APIs and 
widely used protocols 
such as MQTT can be 
used to connect existing 
data sources.

One important Stre-
amPipes component is the 
Pipeline Editor. Users can 
rely on graphical, data-
flow-oriented modeling to 
independently generate 

processing pipelines that the underlying stream processing in-
frastructure then automatically executes. On the application 

side, StreamPipes is useful for applications such as 
continuous monitoring (e.g., condition monitoring), 

detection of time-critical situations, live 
computation of key performance indica-
tors, and integration of machine learning 

models. Figure 1 provides a rough overview 
of StreamPipes, from data connection, pro-

cessing, and analysis through to deployment.

Stream Processing Made Easy
Figure 2 shows the different layers of the Stre-

amPipes architecture. Most users will want to con-
nect existing data streams in the first step. For this pur-

pose, StreamPipes provides a library with the Stre-
amPipes Connect module to connect data based on stan-
dard protocols or certain special systems already sup-

ported by StreamPipes. Connect adapters, which can also 
be installed on lightweight edge devices such as Raspberry 

Pis, handle the task of collecting and forwarding data streams 
to the internal message broker – Apache Kafka is used under 
the hood. In the Connect adapters, users can define their own 
transformation rules (e.g., to convert value units).

One layer above the transport layer are reusable algorithms 
(e.g., for detecting statistical trends, preprocessing data, or 
image processing), each of which encapsulates a specific func-
tion and is available as an event-driven microservice. In addi-
tion to algorithms, StreamPipes also provides data sinks in this 
way, such as connectors for databases or dashboards.

Each individual microservice provides a machine-readable 
description of the algorithm’s requirements and functionality. 
For example, certain required data types or measurement units 
can be specified that the data stream must provide to initialize 
the component. The algorithm kit can be extended at runtime 
with a software development kit, so that the user can install 
additional algorithms at any time, when new requirements 
arise, without restarting the application.

Figure 2: An overview of the StreamPipes architecture

19

COVER STORY
Apache StreamPipes

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



tion will be to calculate other key fig-
ures based on incoming data and dis-
play the results on a live dashboard.

First you will need to install Stre-
amPipes. The easiest way to set up Stre-
amPipes is to use a Docker-based instal-

lation (Listing 1), which downloads and starts all the required 
components. Both Docker and Docker Compose must be pres-
ent on the system; Docker needs a RAM allocation of 2 to 3GB.

During the initial installation, the Docker images for Stre-
amPipes and other images used in the background (for example, 
Apache Kafka) are loaded. Once the system is started, you can 
complete the setup in a web browser. By default, the interface is 
accessible on port 80. After you log in with your choice of user 
credentials (they are only saved locally), the StreamPipes wel-
come page appears (Figure 3).

Simple IoT Data Connection with Connect
The first step is for the application to receive the position data 
of the ISS as a continuous data stream. For this purpose, you 

need to change to the Connect module. 
The data marketplace, which is now vis-
ible, shows you the existing adapters, 
each of which can be configured individ-
ually (Figure 4). For example, you will 
find generic adapters for MQTT, PLC 
controls, Kafka, or databases, as well as 
some specific adapters for source sys-
tems such as Slack. For this ISS applica-
tion, I will use the preconfigured ISS Lo-
cation adapter.

Each adapter has a wizard to configure 
the required parameters. In this case, the 
matching adapter generates an event with 
only three parameters: a timestamp and 
the coordinates of the current ISS location 
(latitude and longitude in WGS84 format).

At the end of the wizard, assign a 
name to the new adapter (here ISS-Lo-
cation) and start the process. From now 
on, regular updates of the ISS position 
will reach the underlying Apache Kafka 
infrastructure. A quick look at the pipe-
line editor shows a new icon in the 
Data Streams tab.

Building Pipelines
After implementing the adapter, you 
can create a pipeline to compute some 
interesting data. The pipeline editor re-
lies on the drag-and-drop principle: you 
can drag data streams, data processors, 
and data sinks into the editing area and 
link them together.

A schematic of the ISS application is 
shown in Figure 5. The program will 
transform the geographic coordinates 
using a reverse geocoding procedure 
to find the location nearest to the cur-

Users interact with the web-based front end, which makes it 
easy to build pipelines by linking data streams with algorithms 
and data sinks. In contrast to other graphical tools for model-
ing data flows, StreamPipes integrates a matching component 
directly into the core application. This component continu-
ously checks the consistency of processing pipelines while the 
model is being built and relies on semantic checking to prevent 
modeling of faulty connections.

From Data to Application in a Few Clicks
For an example of a simple StreamPipes application, consider 
the International Space Station (ISS). Scientists rely on an 
open API to determine the current position of the ISS in its 
orbit around the Earth. The goal of the StreamPipes applica-

Figure 3: The StreamPipes welcome page.

Figure 4: The data marketplace within the Connect module.

# download and unzip latest release from streampipes.apache.org/download.html

$ cd incubator‑streampipes‑installer/compose

$ docker‑compose up ‑d

Listing 1: Install and Launch StreamPipes

20

COVER STORY
Apache StreamPipes

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



rent coordinates. To do this, I will use an integrated com-
ponent that covers a selection of around 5,000 cities world-
wide. In addition, I’ll use a Speed Calculator that calculates 
an average speed based on several successive locations. 
When I’m done, the processing pipeline should generate a 
notification as soon as the ISS enters a defined radius 
around a certain location.

Start to assemble the pipeline by first dragging the ISS-Lo-
cation data stream you just created into the editing area and 
selecting the Reverse Geocoding component from the Data 
Processors tab. The two components are now linked. The 
StreamPipes core now checks the compatibility – in this 
case, the geocoder needs an input event with a coordinate 
pair consisting of Latitude and Longitude, which the ISS 
data stream provides.

After the check, a configuration dialog opens. You can pa-
rameterize many algorithms here, for example, by specifying 
configurable threshold values. For the Geocoder, the only pos-
sible configurations are already preselected. After pressing 
Save, move on to add the next pipeline element – in this case, 
the Speed Calculator component – and configure it. To visualize 
the results, click on the Data Sinks tab and select the Dash-
board Sink item. This allows you to set up a matching visual-
ization in the live dashboard later.

Now you just need some notification 
that the space station is approaching. 
To do this, connect the Static Distance 
Calculator component to the ISS data 
stream through another output. Two 
inputs are required. The first one is a 
pair of coordinates for the location to 
which you want to calculate the cur-
rent distance – in this case, I will use 
the coordinates for the city of Karl-
sruhe, Germany (Latitude 49.006889, 
Longitude 8.403653).

Then add a Numerical Filter to this 
component, with a value of distance 
for Field to Filter, < as the FilterOpera-
tion, and, say, 200 as the Threshold. 
The actual notification is generated by 
the Notification component, which you 
can now configure by adding a title 
and some additional text (Figure 6). Fi-
nally, add another dashboard sink to 
the Distance Calculator to visualize the 
distance.

A click on Save Pipeline starts the pipe-
line, after you enter a name, and takes the 
user to the overview. In the background, 
the existing microservices are instantiated 
with the selected configurations. The de-
tailed view shows the configured distrib-
uted system; all components now ex-
change data via automatically created 
topics in Apache Kafka.

In addition to the standard wrapper 
used in this example, which runs di-
rectly on the Java Virtual Machine 

(JVM) and can also run on a Raspberry Pi, there are other 
wrappers for scalable applications based on Apache Flink or 
Kafka Streams.

Data Exploration
At this point, you still have to visualize the results. Two mod-
ules are available for this purpose: the Live Dashboard and the 
Data Explorer to display live or historical data. The live dash-
board is the right choice to visualize the ISS. First of all, you 
need to set up a new dashboard; different widgets then handle 
the task of displaying the live data. I decided to display the 
speed, the closest city, and the distance to Karlsruhe by means 
of a single-value widget, and I added a map display of the cur-
rent position (Figure 7). Dashboards like this can also be ac-
cessed separately from the actual StreamPipes web application 
via generated links.

With just a few clicks, I have created an application that ana-
lyzes a continuously incoming data stream. The algorithms de-
scribed in this article specialize in geographic operations, but 
the library contains many other modules, including modules 
for calculating statistics and identifying trends, as well as 
image processing and object recognition. There is also a JavaS-
cript evaluator that offers great flexibility when it comes to 
transforming data streams.

Figure 5: Schematic representation of the pipeline.

Figure 6: Configuring notifications.

21

Apache StreamPipes

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

COVER STORY



generates a new project, including the 
required Java classes to create a new 
pipeline element.

The anatomy of a pipeline element fol-
lows the scheme shown in Figure 8. One 
(or more) data processors in StreamPipes 
are encapsulated in a standalone mi-

croservice that can be accessed via an API. The API provides 
StreamPipes’ central pipeline management with a description 
of the available processors (or sinks) and is called whenever a 
pipeline starts or terminates.

The description contains information such as required user 
configurations (for example, input parameters or selection 
menus) that the web interface displays. It also defines stream re-
quirements. In this way, the pipeline element developer can de-
fine requirements for the incoming data stream, such as the 
presence of a numerical value for a corresponding filter or, in the 

example described, geocoordinates (lati-
tude and longitude in WGS84 format).

An output strategy defines the syntax 
of the outgoing events delivered by the 
component. It describes the transforma-
tion of incoming data streams into an 
outgoing data stream. For example, Out-
putStrategies.keep() can be used to 
specify that the output data stream cor-
responds to the input data stream in the 
structure. Finally, event grounding de-
fines message formats supported by the 
component for transmission. This can be 
JSON or binary formats such as Apache 
Thrift, as well as various supported pro-
tocols. StreamPipes supports Kafka and 
Java Message Service (JMS) out the box.

If you now start the newly created 
component via the integrated init 

Extension of the Toolbox
No-code solutions for data stream analysis initially include 
only a limited set of algorithms or data sinks. Extensions are 
therefore necessary for applications that are not covered by ex-
isting components.

To simplify the development of new algorithms for Stre-
amPipes, a software development kit is available. Currently, 
an SDK exists for Java, and support for JavaScript and Python 
are in the works. The Java SDK lets you create new compo-
nents using a Maven archetype. The command from Listing 2 

mvn archetype:generate \

‑DarchetypeGroupId=org.apache.streampipes \

‑DarchetypeArtifactId=streampipes‑archetype‑pe‑processors‑jvm \

‑DarchetypeVersion=0.67.0

Listing 2: Generate Project via Maven

Figure 8: The anatomy of a new pipeline element.

Figure 7: The dashboard visualizes the ISS data.

22

COVER STORY
Apache StreamPipes

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



method, it automatically logs into StreamPipes’ pipeline man-
agement and can be installed via the user interface. The 
Maven archetype generates a Dockerfile in addition to the re-
quired code classes, which ensures an easy transition to the 
production system. The online documentation contains sev-
eral tutorials that explain how to create new components for 
StreamPipes.

As soon as the user starts a pipeline, the API calls the runtime 
and the implemented function. Messages are continuously re-
ceived via the selected protocol (Apache Kafka in this case); the 
calculated results are then sent back to the broker.

Cluster Operation
StreamPipes’ microservice approach includes the UI, the Stre-
amPipes core for pipeline management, and all extensions, 
such as Connect adapters and pipeline elements. Flexible or-
chestration is available using Docker. In addition to the widely 
used AMD-based architectures, StreamPipes now also supports 
ARM-based systems.

The ARM support means that, for certain use cases, indi-
vidual algorithm containers can be started on small edge de-
vices, such as a Jetson Nano or Raspberry Pi, while the 
pipeline management core is hosted centrally. This is 
achieved by means of multi-architecture Docker images 
available on Docker Hub. These images are annotated via 
the Docker Manifest feature, so the user does not need to 
adjust the image tags in deployment descriptions. With a 
combination of architecture-specific image tags and an asso-
ciated Docker manifest, you can create a one-size-fits-all 
image description that agnostically retrieves the right image 
of Docker Hub for the system architecture.

Experience has shown that containerizing services makes 
it possible to implement different operation options, from 
single server instances to full cluster operations. For single-
server deployment, the StreamPipes environment can be 
quickly and easily launched using Docker Compose, a tool 
in the Docker ecosystem for defining and running multi-con-
tainer Docker applications. The StreamPipes services de-
fined in a YAML file are configured this way and then started 
locally with a single command.

Especially in use cases where high-powered computing re-
sources are not available internally, or where the cloud is not 
an option, even a user without in-depth Docker skills can set 
up an executable StreamPipes instance in a few minutes. In ad-
dition to server operation, you can also provision small, porta-
ble mini PCs with StreamPipes.

It is also possible to use StreamPipes in distributed clusters. 
For this purpose, you can operate the individual microservices 

in a Kubernetes infrastructure, using Kubernetes’ Helm pack-
age manger to reduce complexity. Helm lets you combine rela-
tively complex Kubernetes YAML manifests into a single pack-
age. You can install StreamPipes’ own Helm chart very easily in 
a Kubernetes cluster using a one-liner:

$ cd incubator‑streampipes‑installer/k8s

$ helm install streampipes ./

This also means that you can create Kubernetes clusters of 
edge nodes on the shop floor, as well as on centralized back-
end servers. StreamPipes Connect can then connect the data at 
an early stage directly at the machine and, if necessary, set up 
processing algorithms for transformation, filtering, enrichment, 
and so on. This approach ensures that you don’t necessarily 
have to transmit all the raw data, which is often not feasible 
due to restrictions such as latency, available bandwidth, or 
data sovereignty.

A blog post on the StreamPipes website contains detailed in-
formation about using the StreamPipes Helm chart in an exam-
ple Raspberry Pi 4 Kubernetes cluster based on Rancher’s light-
weight K3s distribution.

Conclusions
The relatively young Apache StreamPipes incubator project by 
the Apache Software Foundation seeks to improve the accessi-
bility of data stream-based applications for business users. 
With the underlying microservices approach, StreamPipes 
seeks to achieve the greatest possible reusability of the individ-
ual components. In the end, however, you’ll need to decide 
whether the flexibility benefits of a modular solution exceed 
the benefits of a customized, programmed application.

In addition to StreamPipes and the popular Apache Flink and 
Apache Kafka tools, the Apache Software Foundation offers 
other projects that are useful in IoT deployment scenarios. The 
top-level Apache PLC4X project, for example, focuses espe-
cially on connecting machine data in an industrial context. 
Apache IoTDB is a relatively new database that specializes in 
persisting time series. The Apache Software Foundation main-
tains a strong community-driven approach to development. 
The developer community welcomes contributions of all kinds, 
enabling everyone to contribute to building a strong, open 
source IoT ecosystem.  nnn

[1]  Apache StreamPipes: https://  streampipes.  apache.  org
[2]  StreamPipes on GitHub:  

https://  github.  com/  apache/  incubator‑streampipes

Info

nnn

23

Apache StreamPipes

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

COVER STORY

https://streampipes.apache.org
https://github.com/apache/incubator-streampipes


by two distributions: CRUX [2] and 
PLD [3]. However, while he considered 
CRUX simple and elegant, Vinet consid-
ered both CRUX and PLD to be lacking de-
cent package management. Acting on this 
analysis, Vinet began the pacman [4] 
package manager (Figure 1), which to this 
day is one of Arch’s characteristic features.

Early on, the distribution defined itself 
as “simple” and “lightweight.” The Arch 
team defines simplicity as “without unnec-
essary additions or modifications. It ships 
software as released by the original devel-
opers upstream with minimal distribution 
(downstream) changes. Patches not ac-
cepted upstream are avoided, and Arch’s 
downstream patches consist almost en-
tirely of backported bug fixes that are 
made obsolete by the project’s next re-
lease. When we need patches in the proj-
ect, most of the work ends upstream.” An 
example of Arch’s concept of simplicity is 
its installer (Figure 2), which makes no as-
sumptions about what users want, but it 
does explain how users can do the most 
common tasks in its documentation.

Similarly, the Arch team says that the 
distribution is lightweight “in the sense 
that the default installation is a minimal 
base system, which can be configured by 
the user to only add what is needed.” 
Asked what other values Arch tries to 
follow, the core team listed:
• Modernity: A rolling-release system 

that allows for one-time installation 

A ccording to DistroWatch, 274 
Linux distributions are active [1]. 
However, that number is mis-
leading. Many distributions are 

heavily based on other distros, with only 
minor variations such as software selec-
tion or the intended audience. Many dis-
tributions, too, are dependent on a major 
distro’s repositories. By contrast, Arch 
Linux, since its founding in March 2002, 

has gained a reputation for doing things 
its own way, according to a well-defined 
set of principles that appeals to users who 
prefer simplicity. Recently, I sent ques-
tions to Arch Linux Leader Levente 
Polyak, who consulted with the distribu-
tion’s core developers to provide answers.

Arch was founded by Judd Vinet, who 
was lead programmer until 2007. Accord-
ing to the Arch team, Vinet was inspired 

Arch Linux

 Popular Maverick
Arch Linux, one of the more popular Linux distros, goes its own 
way, putting you in control. By Bruce Byfield

Le
ad

 Im
ag

e 
©

 P
h

ai
f,

 1
23

R
F.

co
m

Figure 1: The pacman package manager is one of Arch Linux’s defining 
features.

24

REVIEW

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Distro Walk – Arch Linux



with continuous upgrades and the 
latest software

• Versatility – A general-purpose distri-
bution designed for multiple uses 
from personal computers to servers 
and CI/ CD deployment chains

• Security – Backported and upgraded 
packages with resources invested in 
the reproducible builds initiative as 
well as ensuring deterministic and ver-
ifiable package artifacts

Other goals are proposed and discussed 
by the entire project. Asked how well 
these goals are met, the team cheerfully 
replies, “we truthfully don’t have a 
clue.” Although Arch is widely used, the 
main concern is to make a distribution 
that its developers want to use. While 
the distribution does not track down-
loads, the fact that some one hundred 
thousand are registered on its forums 
suggests its principles are popular ones.

Organization
Arch is developed entirely by volunteers 
working on the mailing lists, IRC, and 
the bug tracker. The Arch team empha-

sizes that they have no corporate spon-
sorship or any other external pressure on 
development.

“We have few formal processes,” the 
team notes. Much of the work is done by 
teams: Security, Reproducible Builds, 

Figure 2: Unlike most distributions’ installers, Arch Linux makes few 
assumptions about what users want, guiding them instead.

Distro Walk – Arch Linux

REVIEW



configuring Arch is a transferrable skill.” 
If you have learned how to configure 
something using Arch, chances are good 
that you can do the same task on most 
other distributions.

Just as importantly, Arch Linux’s wiki 
maintains extensive documentation – 
more than 23,000 pages – as well as ac-
tive user forums and a Reddit page. Con-
sidering how the distribution defines 
simplicity, leaving users to go their own 
way as much as possible, this support is 
essential. What is less well-known is 
that the available help is so comprehen-
sive that often the users of other distri-
butions can benefit from it as well.

Arch Linux has a reputation in some 
circles as a difficult distribution. How-
ever, as you start to use it, you may 
slowly realize that it is not so much diffi-
cult as different from many distributions. 
Stick with it, and you should start to re-
alize that Arch is a distribution that puts 
you in control – a design principle that 
you can quickly learn to appreciate.  nnn

Testing, and DevOps, with general deci-
sions made by consensus. Until recently, 
the Arch Leader’s term length was not 
limited; Aaron Griffin had been leader 
since 2007, and there was no procedure 
for changing positions. However, in early 
2020, the project limited leaders to a 
term of two years, with leaders voted on 
by all developers, trusted users, and sup-
port staff (a total of about 105 people), 
who list candidates in order of prefer-
ence. Voting takes place over a two-week 
period and is presided over by project 
members who are not running for office 
and have not nominated anyone. No 
quorum is required, and leaders whose 
term has expired can run again any 
number of times.

Derivative Distributions
DistroWatch lists 20 other derivative dis-
tributions (see Table 1). By comparison, 
Fedora has only 12, and Linux Mint 
three. One mark of Arch’s consistent 
popularity is that only Debian and 
Ubuntu have more derivatives.

Arch’s core team divides derivatives into 
two types: “CPU ports rebuild to their spe-
cific architecture and may add additional 
specific packages and patches. They either 
use our package tree directly and regularly 
report bugs for packages that don’t build, 
which is extremely helpful. We appreciate 
their hard work in making Arch available 
to non-official architectures.”

The team continues, “The other sort 
are the re-spins/ flavors, which custom-
ize Arch for a particular goal. Sadly, we 
rarely hear from them and do not gener-
ally receive offers of contributions. One 
of the exceptions is Parabola GNU/ 
Linux-libre, members of which have sub-
mitted a number of patches to Arch tool-
ing or are participants in the Arch pro-
audio ecosystem.”

New Directions
Arch Linux does not have a concrete 
roadmap, which is deliberate. The core 
team maintains that “being able to as-
sess and draw conclusions based on the 
current state and priorities makes us 
more flexible and adaptable. Most goals 
are primarily driven by the motivation of 
individuals [in the project].”

Still, Arch continues to evolve. Re-
cently, it has added the code from Alex-
ander Epaneshnikov’s TalkingArch proj-
ect into Archiso, the toolchain used in an 

Arch Linux installation. This develop-
ment comes after major reworking of the 
code throughout 2020. According to the 
core team, during installation users can 
now “select an audio card by auditory 
feedback, and afterwards the console 
output is read to them using the speech 
synthesizer.”

In addition, in the last few years, Arch 
Linux has been migrating its packaging 
code from SVN to Git and moving some 
sub-projects and its Kanban boards (a 
work organizing system) to its own Git-
Lab in order to centralize the distribu-
tion’s management. The core team 
would also like to find ways to “provide 
more optimized architectures, to have a 
better user-facing integration of the re-
producible builds efforts, as well as a 
central and automatic way to detect up-
stream source releases for our pack-
ages.” Like most distributions, Arch con-
tinues to be a work in progress.

So why should you consider Arch as 
your distribution? “The best part of 
Arch,” its core team suggests, “is that 
the installation can be kept up to date 
with a single command without the need 
of painful periodic major upgrades. The 
official repositories contain over 11k 
packages for a wide range of general 
purpose needs. This includes non-free 
software like Steam even though all 
packages included in the base installer 
are free. Our packagers deliver updates 
frequently and timely (on average, 30-40 
per day), and they are kept as close to 
the upstream releases as possible. This 
improves security and also means that 

Arch Linux
Website: https://archlinux.org/

Based on: Independent

Founded: March 2002

Architecture: x86_64

Release type: Rolling

Downloads: Not tracked

DistroWatch Page Hit Ranking: 17

Init: systemd

Distinctive features: Pacman package manager, wiki documentation, DIY 
installer

Governance: Consensus; Leader elected every two years

Derivative distros: Manjaro, EndeavourOS, ArcoLinux, Garuda Linux, 
Bluestar Linux, Archman GNU/ Linux, ArchBang Linux, 
RebornOS, BlackArch Linux, Obarun, ArchLabs Linux, 
Syslinux, SystemRescue, Anarchy Installer, Parabola 
GNU/ Linux-libre, Hyperbola GNU/ Linux, ArchStrike, 
Namib GNU/ Linux, UBOS, LinHES

Table 1: Arch Linux Summary

[1]  Active distros: https://  distrowatch. 
 com/  search.  php?  ostype=All& 
 category=All&  origin=All& 
 basedon=All&  notbasedon=None& 
 desktop=All&  architecture=All& 
 package=All&  rolling=All&  isosize=All& 
 netinstall=All&  language=All& 
 defaultinit=All&  status=Active#  simple

[2]  CRUX: https://  crux.  nu/

[3]  PLD: http://  www.  pld‑linux.  org/

[4]  pacman: https://  wiki.  archlinux.  org/ 
 index.  php/  Pacman

Info

26

Distro Walk – Arch Linux

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

REVIEW

https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=All&notbasedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://crux.nu/
http://www.pld-linux.org/
https://wiki.archlinux.org/index.php/Pacman
https://wiki.archlinux.org/index.php/Pacman




System76 is even developing its own key-
board, while its in-house Pop!_OS distri-
bution, with its auto-tiling feature, was in 
the top 10 of page views on DistroWatch 
throughout the year.

On the other hand, Purism, which 
gained its reputation for its Librem line of 
laptops that were certified in the FSF’s 
Respects Your Freedom program [5], 
struggled all year to release a fully func-
tional version of its Librem 5 phone. Al-
though announced in September 2019, 
the Librem 5 [6] was in unofficial beta 
status for most of 2020. When the com-
pletely functional phone was finally re-
leased in November, its price was $1,999 
– three times the price offered in the origi-
nal fundraising campaign in 2017. It is a 
disappointing story for a product that was 
announced with such high hopes.

Meanwhile, instead of the assortment 
of small businesses in open hardware 
that seemed to be emerging in recent 
years, the development of free hardware 
is still largely in the hands of existing 
corporations, and it is currently empha-
sizing the development of modular parts, 
like the RISC-V chip. The use of these 
parts in new products is still to come.

Corporate Free Software
With the world’s economies in survival 
mode, major free software business 
news was scant in 2020. Beyond the 
usual software releases, relatively little 
news came from the larger companies 
like Canonical, Red Hat, or SUSE.

Probably the most important news of 
the year came early in December, when 

L ooking back at 2020, it’s impossible 
not to talk about the pandemic or 
the economy. However, free soft-
ware businesses and communities 

suffered less than many organizations 
this year, for the simple reason that many 
of the precautions that others scrambled 
to put in place have been standard prac-
tice in free software for decades. For ex-
ample, when everyone was advised to 
work from home, many Ubuntu em-
ployees [1] were doing so already. Aside 
from a surge of interest in videoconfer-
encing, the pandemic has been largely 
business as usual in free software.

For that reason, a thorough summary of 
trends and events in free software during 
2020 is impossible. As usual, too much 
was happening. However, here is my pick 
of the key events of 2020 at every level 
from the corporate to the home desktop.

Application Arrivals and 
Departures
Once not so long ago, Adobe Flash was a 
necessity for the web. Some sites were ac-
tually written entirely for it. For years, the 
Free Software Foundation (FSF) listed a 
free Flash replacement as a high-priority 
project [2] and sponsored its own alterna-
tive called Gnash. However, built-in sup-
port in web browsers, as well as changes 
in design fashion and W3C standards, has 
put an end to Flash at last. In November, 

Mozilla confirmed that starting with its 
next release in January 2021, Flash would 
no longer be supported in Firefox [3]. A 
sign of how times have changed is that 
this milestone is passing mostly unnoticed.

By contrast, the pandemic sent millions 
to videoconferencing with proprietary soft-
ware like Zoom. Possibly overwhelmed by 
all the new users, in the summer, Zoom’s 
gaps in privacy and security became 
known – and further concerns were raised 
when the company initially announced 
that end-to-end encryption would only be 
available for paying customers, although 
that position was quickly modified [4]. 
Unsurprisingly, free software videoconfer-
encing was added to the high-priority list 
around the same time. Almost immedi-
ately, previously obscure self-hosting proj-
ects gained notice, like Riot (now Ele-
ment), BigBlueButton, and Jitsi, as well as 
alternatives to Slack such as Rocket.Chat. 
In this way, if few others, social-distancing 
literally changed free software’s priorities.

Free Hardware Ups and 
Downs
For free hardware, 2020 was a mixed year. 
On the one hand, System76, already a 
leading manufacturer of preinstalled Linux 
computers, went from strength to strength, 
with frequent announcements of additions 
to its aesthetically designed Thelio line, 
ranging from minis to high-end servers. 

Free software trends and events

2020 in Review
Among other noteworthy trends in 2020, producing free and 
secure videoconferencing software has become a higher priority 
in the past year. By Bruce Byfield

Le
ad

 Im
ag

e 
©

 C
ec

ili
a 

Li
m

, F
o

to
lia

.c
o

m

28

IN-DEPTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Free Software in 2020



Red Hat announced that it was discontinu-
ing CentOS [7]. CentOS had made its repu-
tation as a more easily available clone of 
Red Hat Enterprise Linux (RHEL), and it 
was acquired by Red Hat in 2014 – pre-
sumably to remove the competition. Since 
then, CentOS has acted much as Fedora is 
supposed to do, as a testing ground for 
RHEL. Now, however, Red Hat will con-
tinue only CentOS Stream, which will be-
come RHEL’s upstream development 
branch with rolling releases.

One reason may be that CentOS is much 
more popular than RHEL as a server. Cer-
tainly that appears to be why angry Cen-
tOS users have been decrying the change. 
As Red Hat itself notes, CentOS Stream is 
hardly a replacement. Many are denounc-
ing the move as a corporate betrayal.

Almost immediately, CentOS cofounder, 
Gregory Kurtzer, immediately announced 
he would create a CentOS replacement 
called Rocky Linux. Meanwhile, Cloud-
Linux plans to produce its own fork, Proj-
ect Lenix – and invest over a million dol-
lars a year in it. These alternatives [8] 
should solve CentOS users’ practical prob-
lems, but the episode is likely to fester as 
an additional justification for free software 
users to mistrust corporations.

FSF Announces New 
President
In 2019, Richard Stallman stepped down 
as president of FSF. Stallman had made a 
poorly judged and perhaps poorly under-
stood email comment in the case of Jeffrey 
Epstein, the alleged sex trafficker, which 
led to a flood of stories about his treatment 
of women. Stallman also resigned from his 
position at MIT as a result [9].

Almost a year later, the FSF an-
nounced that Geoffrey Knauth [10], a 

long-time board member and friend of 
Stallman, would be its next president. 
The announcement offers a new start to 
the organization and perhaps a chance 
to re-establish its leadership in the com-
munity. However, several months later, 
Knauth specifically and the Foundation 
in general remains mostly quiet.

LibreOffice vs. Apache 
OpenOffice
LibreOffice might well be the most com-
mon application on the Linux desktop. 
No other free office suite comes close to 
offering its feature set. Just as impor-
tantly, with this year’s 7.0 release, it can 
claim to be the most feature-rich office 
productivity suite on any platform.

However, LibreOffice forked from its 
predecessor OpenOffice.org (now Apache 
OpenOffice) with considerable animosity 
on both sides. In 2020, on the 20th anni-
versary of the release of the shared code, 
The Document Foundation, which over-
sees LibreOffice, suggested an end to the 
feud [11]. Each project could offer what 
the other could not: OpenOffice the name 
recognition, and LibreOffice the funds 
and developers. Sadly, the response on 
the Apache OpenOffice mailing list was 
uniformly hostile, so this pointless dupli-
cation of effort is going to continue.

The Fight Against COVID-19
With free software already in a strong po-
sition to wait out the pandemic, many 
projects are spending the pandemic look-
ing for ways to assist in the crisis. Debian 
Med has been particularly active, holding 
an online “BioHackathon” in the spring; it 
also continues to develop its biology and 
medical packages and to produce auto-
mated biomedical workflows using the 

Common Workflow Language. Countless 
others have experimented with using 3D 
printing to improve the availability of med-
ical supplies. During 2020, academic proj-
ects for modeling like Nextstrain and 
CHIME also contributed to vaccine re-
search. Moreover, Pfizer, the pharmaceuti-
cal company that produced the first vac-
cine, released some of its code early in the 
pandemic – a move which probably con-
tributed to the early arrival of the vaccines.

Most of these efforts have received little 
publicity. However, they are proof (if any 
is needed) that the spirit of volunteerism 
that launched the free software commu-
nity remains both active and efficient.

The Future of Free Software
Free software seems to have held its own 
in 2020 – which is more than many organi-
zations can say. Noticeably, the list of top 
10 page hits on DistroWatch [12] remained 
almost unchanged, which suggests this 
last year was not a time for innovation.

A possibly more ominous note was 
struck in December by Hans Petter Jans-
son in a blog post, “On the Graying of 
Gnome” [13], in which he tracks the ori-
gins of commits to Gnome over the years.

Jansson concludes that Gnome “has 
hundreds of experienced and first-time 
contributors every year. It is well-orga-
nized and arguably well-funded com-
pared to its peers.” However, he also 
concludes that the project’s commits 
peaked around 2010. Currently, fewer 
and fewer veterans do most of the work 
and are not being replaced by newcom-
ers. He adds that, while corporate spon-
sorship is probably required, the number 
of sponsors is thinning.

Of course, in a year like 2020, just 
survival is an accomplishment.  nnn

[1]  Ubuntu employees: https://  ubuntu.  com/  blog/ 
 canonical‑managed‑  services‑  ubuntu‑support‑covid‑19

[2]  Free Flash replacement:  
https://  www.  fsf.  org/  campaigns/  priority‑projects

[3]  Flash no longer supported in Firefox: https://  blog.  mozilla.  org/ 
 futurereleases/  2020/  11/  17/  ending‑firefox‑support‑for‑flash/

[4]  End-to-end encryption statement: https://  www.  theverge.  com/ 
 2020/  6/  17/  21294355/  zoom‑security‑end‑to‑  end‑ 
 encryptoin‑beta‑release‑july‑  2020‑  new‑feature

[5]  FSF Respects Your Freedom: https://  ryf.  fsf.  org/

[6]  Librem 5: https://  en.  wikipedia.  org/  wiki/  Librem_5

[7]  CentOS: https://  arstechnica.  com/  gadgets/  2020/  12/ 
 centos‑shifts‑from‑  red‑hat‑unbranded‑to‑red‑hat‑beta/

[8]  CentOS alternatives: https://  linux.  slashdot.  org/  ?  issue=20201221

[9]  Richard Stallman: https://  www.  theverge.  com/  2019/  9/  17/ 
 20870050/  richard‑stallman‑resigns‑mit‑  free‑  software‑ 
 foundation‑epstein

[10]  Geoffrey Knauth:  
https://  www.  fsf.  org/  news/  geoffrey‑knauth‑elected‑free‑ 
 software‑foundation‑president‑  odile‑  benassy‑joins‑the‑board

[11]  “Open Letter to Apache OpenOffice” by Mike Saunders: 
https://  blog.  documentfoundation.  org/  blog/  2020/  10/  12/ 
 open‑letter‑to‑apache‑  openoffice/

[12]  Top 10 page hits on DistroWatch:  
https://  distrowatch.  com/  dwres.  php?  resource=popularity

[13]  “On the Graying of Gnome” by Hans Petter Jansson: https:// 
 hpjansson.  org/  blag/  2020/  12/  16/  on‑the‑graying‑of‑  gnome/

Info

IN-DEPTH
Free Software in 2020

29LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

https://ubuntu.com/blog/canonical-managed-services-ubuntu-support-covid-19
https://ubuntu.com/blog/canonical-managed-services-ubuntu-support-covid-19
https://www.fsf.org/campaigns/priority-projects
https://blog.mozilla.org/futurereleases/2020/11/17/ending-firefox-support-for-flash/
https://blog.mozilla.org/futurereleases/2020/11/17/ending-firefox-support-for-flash/
https://www.theverge.com/2020/6/17/21294355/zoom-security-end-to-end-encryptoin-beta-release-july-2020-new-feature
https://www.theverge.com/2020/6/17/21294355/zoom-security-end-to-end-encryptoin-beta-release-july-2020-new-feature
https://www.theverge.com/2020/6/17/21294355/zoom-security-end-to-end-encryptoin-beta-release-july-2020-new-feature
https://ryf.fsf.org/
https://en.wikipedia.org/wiki/Librem_5
https://arstechnica.com/gadgets/2020/12/centos-shifts-from-red-hat-unbranded-to-red-hat-beta/
https://arstechnica.com/gadgets/2020/12/centos-shifts-from-red-hat-unbranded-to-red-hat-beta/
https://linux.slashdot.org/?issue=20201221
https://www.theverge.com/2019/9/17/20870050/richard-stallman-resigns-mit-free-software-foundation-epstein
https://www.theverge.com/2019/9/17/20870050/richard-stallman-resigns-mit-free-software-foundation-epstein
https://www.theverge.com/2019/9/17/20870050/richard-stallman-resigns-mit-free-software-foundation-epstein
https://www.fsf.org/news/geoffrey-knauth-elected-free-software-foundation-president-odile-benassy-joins-the-board
https://www.fsf.org/news/geoffrey-knauth-elected-free-software-foundation-president-odile-benassy-joins-the-board
https://blog.documentfoundation.org/blog/2020/10/12/open-letter-to-apache-openoffice/
https://blog.documentfoundation.org/blog/2020/10/12/open-letter-to-apache-openoffice/
https://distrowatch.com/dwres.php?resource=popularity
https://hpjansson.org/blag/2020/12/16/on-the-graying-of-gnome/
https://hpjansson.org/blag/2020/12/16/on-the-graying-of-gnome/


of Coordinated Universal Time (UTC) [1] – 
exists on the two systems involved 
(smartphone and computer console). 
Reply yes since all systems today use I f the only protection between an at-

tacker and a user account is a pass-
word, security-conscious adminis-
trators start to get nervous – and 

rightly so. Although strong passwords 
can be enforced, carelessness cannot be 
ruled out. Two-factor authentication 
(2FA) provides additional protection 
against unwanted visitors, even if a user 
chooses a weak password. While the us-
er’s password remains as the first au-
thentication factor, a six-digit numerical 
code with a limited validity period gen-
erated by a smartphone authenticator 
app adds a second factor.

In this article, I will show how to re-
quire a one-time code at login (in addi-
tion to the user’s password) by creating 
an app on the user’s smartphone. This 
procedure was developed by the Initia-
tive For Open Authentication (OATH) 
and has been an Internet Engineering 
Task Force (IETF) standard since 2011.

Getting Started
For this article, I am using Ubuntu 20.04, 
but the procedure is very similar on other 

distributions. You have a Linux client and 
a server. On the server, which goes by the 
name of influx in this example, I have an 
account belonging to user bob. Bob has 
been logging in 
with a password 
only. However, his 
organization now 
wants to switch 
Bob’s account 
to 2FA.

I’ll start by in-
stalling the au-
thentication mod-
ule on Bob’s client 
(Listing 1, line 1) 
and then log in as 
bob and start the 
module (line 2)

The module first 
prompts you to de-
cide whether the 
authentication 
should be time-
based. It wants to 
know if the identi-
cal time – in terms 

Smartphone-based two-factor authentication

 Double Your Security
Protect your system from unwanted visitors with two-factor authentication. By Charly Kühnast

01  $ sudo apt install libpam‑google‑authenticator

02  $ google‑authenticator

Listing 1: Installing Authentication Module
Figure 1: The QR code generated by Google 
Authenticator can be scanned using an OTP app 
like FreeOTP. Ph

o
to

 b
y 

Sc
o

tt
 W

eb
b

 o
n

 U
n

sp
la

sh

30

IN-DEPTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

2FA



Network Time Protocol (NTP) to syn-
chronize their time.

Next a QR code (Figure 1) appears, 
which you scan with a One-time pass-
word (OTP) app that you install on your 
smartphone; an OTP is only valid for a 
single use. There are plenty from which 
to choose; you can use any app that uses 
the Time-based One-time Password 
(TOTP) protocol. TOTP generates time-
limited, one-time passwords based on 
the Hash-based Message Authentication 
Code (HMAC). For example, Google Au-
thenticator is a very popular OTP app, 
although it is not open source.

For this example, I will install the 
FreeOTP app developed by Red Hat, 
which is available for both iOS [2] and 
Android [3], on the smartphone (Fig-
ure 2). After you scan the code, a new 
button will appear in the app that lets you 
generate a one-time password on demand 
with a validity period of 30 seconds.

Now set aside the smartphone and re-
turn to the console. Below the QR Code in 
Figure 1, you will find a number of emer-
gency scratch codes. If you lose your 

smartphone, you can still log in with 
these codes to generate a new QR code 
and start over. Each of the emergency 
scratch codes can only be 
used once. Keep these 
codes in a safe place.

Google Authenticator will 
now ask you a series of secu-
rity questions, all of which 
you can safely answer 
with y (Figure 3). The 
idea is to limit the num-
ber of logins per time inter-
val, but at the same time en-
sure a certain tolerance for 
time differences between cli-
ent and server.

You need to complete these steps for 
each user on the system who will be 
using 2FA. On the client side, all the 
work is done; time to work on the 
server.

Modifying PAM
To enable 2FA access, you need to mod-
ify two configuration files, for which you 
need root privileges.

First, modify the /etc/ssh/sshd_con‑
fig file (Listing 2). Find the two lines 
that begin with UsePAM and ChallengeRe‑
sponseAuthentication and make sure 
that both end with yes.

Next, edit the /etc/pam.d/sshd file, 
again working as root. After the @include 
common‑auth line at the top of the file, add 
the following line:

auth required U

  pam_google_authenticator.so

The file should now look like Listing 3.
Now type the command

systemctl restart ssh

to start the SSH service. At the next login 
attempt via SSH (Figure 4), the server 
now not only prompts for the user pass-
word (Password: in Figure 4), but also 
the one-time password (Verification 
Code:), which you generate with Google 
Authenticator.

Figure 2: Unlike Google Authenticator, Red Hat’s FreeOTP is an open 
source application.

Figure 3: Yes (y) is the right response to all of Google Authenticator’s 
questions.

UsePAM yes

 [...]

 ChallengeResponseAuthentication yes

Listing 2: Modifying /etc/ ssh/ sshd_config

[...]

@include common‑auth

auth required pam_google_authenticator.so

[...]

Listing 3: Editing /etc/ pam.d/ sshd

Figure 4: In addition to the user password (Password:), the login dialog 
now also prompts you for the one-time password (Verification Code:).

IN-DEPTH
2FA

31LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



on their client to generate a key pair 
(Figure 5).

After that, the command

ssh‑copy‑id bob@influx

is sufficient, followed by the input of the 
current password. Bob can now log on to 
the influx server without entering a 
password.

Passwordless login can also be com-
bined with 2FA. To do this, change the 
two configuration files on the server that 
I discussed previously. First open /etc/
ssh/sshd_config and enter the following 
line at the end of the file:

AuthenticationMethods publickey,U

  keyboard‑interactive

Second, edit /etc/pam.d/sshd. Here you 
need to disable the line that reads @in‑
clude common‑auth by adding a hashtag 
(#) at the start of the line:

#@include common‑auth

Then run the systemctl restart ssh 
command to restart the SSH service. 
When Bob now logs on to the server, he 
does not have to enter a password, but 
he does have to enter the one-time pass-
word from the smartphone app.

Conclusions
Security is not witchcraft. As shown here, 
even simple mechanisms such as 2FA can 
make logging on to a system far more se-
cure. 2FA gives you additional protection 
against unwanted visitors, even if users 
choose weak passwords.  nnn

Console Login
My changes so far only apply to access 
via SSH. If you want to enable 2FA for 
the local login (the console) in addition 
to the remote login (the smartphone), 
you need to change the /etc/pam.d/login 
file (Listing 4).

To do this, insert the following line

auth required U

  pam_google_authenticator.so

after the @include com‑
mon‑auth line. The session 
optional pam_motd.so 
noupdate line is used to 
display notifications (Mes-
sage of the Day); it is not 
available on all systems.

Gnome Display 
Manager
If your console system 
uses a Gnome graphical 
user interface, you can 
also enable 2FA authenti-
cation at login time. To do 
this, you make the same 
changes previously dis-
cussed, but in a different 

file: /etc/pam.d/gdm‑password (Listing 5). 
After a restart, Gnome will now prompt 
you for the second factor at login time.

Passwordless Login
Going back to logging in via SSH, many 
users prefer passwordless access via 
public key authentication. To do this, the 
user bob enters the command

ssh‑keygen ‑t rsa ‑b 4096

 [...]

 @include common‑auth

 session optional pam_motd.so noupdate

 # insert this line:

auth required pam_google_authenticator.so

[...]

Listing 4: Modifying /etc/ pam.d/ login

[...]

@include common‑auth

# insert this line:

auth required pam_google_authenticator.so

[...]

Listing 5: Modifying /etc/ pam.d/ gdm-password

Figure 5: For a passwordless login, Bob generates a key pair on the client.

[1]  UTC: https://  www.  timeanddate.  com/ 

 time/  aboututc.  html

[2]  Apple iOS:  

https://  apps.  apple.  com/  us/  app/ 

 freeotp‑authenticator/  id872559395

[3]  Android:  

https://  play.  google.  com/  store/  apps/ 

 details?  id=org.  fedorahosted.  freeotp

Info

nnn

32

2FA

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://www.timeanddate.com/time/aboututc.html
https://www.timeanddate.com/time/aboututc.html
https://apps.apple.com/us/app/freeotp-authenticator/id872559395
https://apps.apple.com/us/app/freeotp-authenticator/id872559395
https://play.google.com/store/apps/details?id=org.fedorahosted.freeotp
https://play.google.com/store/apps/details?id=org.fedorahosted.freeotp


Ubuntu systems with live patching. It 
does not matter at all whether they are 
laptops or servers. If you need the option 
to add more machines, choose the com-
mercial option Canonical customer. After 
you create your account, the website 
presents you with a long string of hexa-
decimal characters, such as 7b1fb-
58c00a64e1c9f9679304f066ef5.

The system you want to live patch 
must be a 64-bit Ubuntu with kernel ver-
sion 4.4 or later. First, make sure that 
snapd is installed (Listing 1, line 1). If 
the daemon is missing, install it retroac-
tively (line 2). After that, use snap to in-
stall the Livepatch system (line 3). Now 
you can enable live patching with the 
key you got from the Canonical website 
(line 4).

If successful, the system reports Suc-
cessfully enabled device. If you are un-
sure whether live patching is active or 
not on a particular system, you can al-
ways find out with

sudo canonical‑livepatch status

(shown in Figure 2). Note that live patch-
ing does not give you a new kernel ver-
sion. It is only used to patch vulnerabili-
ties in the currently running operating 
system kernel without rebooting. Updat-
ing the kernel still requires the usual in-
stallation process including a reboot.  nnn

V ulnerabilities in the kernel 
are always ugly, but since 
the Linux kernel is a very com-
plex piece of software, admins 

have to come up with a strategy to deal 
with them. Fortunately, patches are 
often available shortly after the discov-
ery of a vulnerability, but the application 
and the subsequent reboot will lead to 
an – admittedly usually short – period of 
unavailability of the system.

For Ubuntu systems, distributor Canon-
ical has developed a very easy-to-use live 
patching system, Livepatch. It patches the 
kernel without requiring a reboot. This 

helps the admin sleep more soundly, and 
the system reboot can be skipped or post-
poned to a more convenient time, such as 
a scheduled maintenance window. To use 
Livepatch, you need an Ubuntu One ac-
count, which you create on https://  auth. 
 livepatch.  canonical.  com (Figure 1).

Choose Ubuntu user for free access. 
You can now set up a maximum of three 

The sys admin’s daily grind: Livepatch

 Open Heart Surgery
There is only one thing Charly appreciates even less than security holes in the kernel: downtime of 
his machines. That’s why he patches his Ubuntu systems with Canonical’s Livepatch on the fly.  
By Charly Kühnast

Charly Kühnast manages Unix systems in 
a data center in the Lower Rhine region of 
Germany. His responsibilities include 
ensuring the security and availability of 
firewalls and the DMZ.

Author

Figure 1: Canonical’s Livepatch Service requires you to log in.

01  $ dpkg ‑l | grep snapd

02  $ sudo apt install snapd

03  $ sudo snap install canonical‑livepatch

04  $ sudo canonical‑livepatch enable 7b1fb58c00a64e1c9f9679304f066ef5

Listing 1: Installing Livepatch

Figure 2: The Livepatch status of a system can be checked at any time.

33LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

IN-DEPTH
Charly’s Column – Livepatch



boot from a single drive, with utilities 
to help in restoring the system

Most of these purposes do not require a 
desktop environment, although you can 
add one to the chroot by installing the X 
clients section when using jk_init, if 
desired.

Chroot’s Wikipedia entry lists a num-
ber of common uses, including Postfix 
utilities, FTP servers, and package-build-
ing farms for Debian, Ubuntu, SUSE, Fe-
dora, and Red Hat when they test for de-
pendencies [2]. Despite being added to 
Version 7 Unix as long ago as 1982 – and 
possibly earlier – chroot remains a versa-
tile tool today.

Whatever your purpose, setting up a 
chroot can be a laborious task. First, 
the chroot needs to be initialized. 
Then, depending on your purposes, 
you may need to configure the files, 
the access to devices, the shell, the 
user access, and daemons in the 
chroot. There is even a separate wrap-
per for using procmail within the jail. 
A time may come, as well, when you 
want to edit or update files. About half 
of these actions have a default configu-
ration file in /etc/jailkit, although 
you will probably need to edit it for 

B oth the chroot command and a 
container are ways to isolate 
parts of a system. However, 
their methods are quite differ-

ent. While a container is a form of virtu-
alization with its own allocated re-
sources, chroot is a way to limit a user 
account’s access to the parts of the direc-
tory tree by – as the name of the com-
mand implies – changing its root direc-
tory. The result is what is known as a 
chroot or, sometimes, a chroot jail, 
which draws on the larger system’s re-
sources as needed. The result is more 
economical, if less trendy than contain-
ers, but it is difficult to set up. Fortu-
nately most distros include jailkit [1], a 
collection of utilities that helps to auto-
mate setup and configuration.

Contrary to widespread misinformation, 
a chroot is not a security measure unless 
specifically configured as one. Although 
confinement in a jail can limit what an un-
informed user can do, expert users could 
escape a jail by creating a second jail 
within the first. In addition, any process 
run with root privileges can access re-
sources outside the chroot. Similarly, if a 
user has permissions for any files outside 
their home directory, they are not jailed. In 
addition, any user with root privileges can 
access the chroot from the main system, 
including those using sudo.

A chroot can be made secure with 
some effort. But more commonly, a 
chroot has other purposes, including:
• Sandboxing: Safely testing unstable 

builds without risking the rest of the 
system

• Creating a new environment: Usually 
for testing purposes

• Dependency control: Giving an appli-
cation access to only certain versions 
of dependencies

• Running old software: Denying access 
to hardware that the software cannot 
handle

• Recovery: Making the entire chroot a 
filesystem that can be accessed after 

Chroot jails made simpler

 Jail Management
Setting up chroot jails is no simple task. Jailkit can make this job a little easier by automating setup 
and configuration. By Bruce Byfield

Le
ad

 Im
ag

e 
©

 In
ts

 V
ik

m
an

is
, 1

23
R

F.
co

m

Bruce Byfield is a computer journalist and 
a freelance writer and editor specializing 
in free and open source software. In 
addition to his writing projects, he also 
teaches live and e-learning courses. In his 
spare time, Bruce writes about Northwest 
coast art (http://  brucebyfield.  wordpress. 
 com). He is also co-founder of Prentice 
Pieces, a blog about writing and fantasy at 
https://prenticepieces.com/.

Author

34

IN-DEPTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Command Line – Jailkit

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/


your own purposes. However, the ad-
vantage is that, should you require a 
clone of a chroot, it can be created 
quickly. You might also locate an on-
line example you can modify to suit 
your purpose. Note, though, that many 
examples assume a Debian or Ubuntu 
installation and may need to be modi-
fied for other distributions. You should 
also check the synopsis at the start of 
each man page to learn whether the 
command can be run from outside or 
inside the chroot.

More to the point, these actions can be 
simplified by jailkit’s utilities, many of 
which have their own man page with 
more examples. Generally, however, the 
first option in a command will be

‑‑jail‑CHROOT ‑j CHROOT

and the last one the command, user, or 
other element of the main system that 
will interact with the jail.

To set up a chroot, you should run the 
utilities in the order listed below, skip-
ping any that are irrelevant to your pur-
poses. Those at the end of the list can be 
run periodically as the chroot evolves or 
needs updating.

jk_init
Begin the creation of a chroot with jk_
init (Figure 1). At the very least, the 
command must specify the directory for 
the chroot plus the .ini file plus the sec-
tions to install:

‑usr/sbin/jk_init U

  ‑j CHROOT‑DIRECTORY INI‑FILE U

  ‑‑configfile =FILE (‑c FILE) SECTION

Alternatively, you can make configura-
tion choices from the command line, 
which may be a more secure choice if 
you are not familiar with the contents of 
the .ini file:

jk_init U

  ‑v CHROOT‑DIRECTORY FILES‑TO‑INSTALL

The chroot’s root directory, as well as its 
parent directories, will be made if they do 
not already exist, while possible sections 
of the .ini file for jk_init.ini can be read 
by using the ‑‑list option (Figure 2).

Figure 1: Installing files to the chroot.

Figure 2: The ‑‑list option shows the sections in the .ini file that you can add to the chroot.

IN-DEPTH
Command Line – Jailkit

35LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



jk_chrootlaunch ‑j /chroot ‑u bb U

  ‑x 'service apache2 start'

would run Apache for user bb in the jail 
in the /chroot directory.

jk_uchroot
jk_uchroot sets up users of the main 
system who can use the chroot. The list 
of users and which chroots they can use 
is kept in /etc/jailkit/jk_uchroot.ini. 
Some sample entries include:

[jwl]

allowed_jails = /srv/johnjail, U

  /srv/commonjail

skip_injail_passwd_check = 1

[group users]

allowed_jails = /srv/commonjail

skip_injail_passwd_check = 1

Notice the optional last line in each 
entry that skips the password check.

jk_user
Use this utility to move an existing 
user account into a chroot. If the 
‑‑move (‑m) option is used, the user’s 
entire home directory is placed in the 
chroot’s directory /home/USER. The user 
will no longer have access to the main 
system.

jk_procmailwrapper
Not all chroots require email. For those 
that do, jk_procmailwrapper runs proc-
mail. For users with access to the main 
system, it provides access to their nor-
mal .procmailrc file. If procmail is in-
stalled within the chroot, jailed users 
can use the .procmailrc in their home 
directory in the chroot.

The jk_init.ini file defines the basic 
configuration of the chroot, as well as 
the behavior of the other jailkit utili-
ties. Jailkit installs with an .ini file for 
a set of general purpose paths and ap-
plications (Figure 3), but often you can 
create a much simpler chroot. For in-
stance, Listing 1 shows an example 
from the man page that creates the 
chroot with a limited shell so it can 
run the sftp command.

jk_cp
Because a chroot is isolated from the rest 
of the system, you need to copy into the 
chroot any files or devices you want to 
run within it. This command is simply a 
space-separated list of the full path to 
files to add to the chroot. If a command 
is copied, its dependencies are as well – 
a great time-saver to manual creation 
using the chroot command. The copy of 
each file has the same permissions as 
the original, except that setuid and set‑
gid permissions are removable.

jk_chrootsh
This command cre-
ates a login shell 
for the chroot. 
Since the shell has 
no access to the 
system’s libraries 
or commands, most 
of those it needs 
must be copied into 
the chroot using 
jk_cp. Only a mini-
mum set of com-
mands is installed 
by default, such as 
the files in /etc/
passwd needed for 
the user to log in. 

Other commands that can be executed 
in the chroot are defined in /etc/jail‑
kit/jk_lsh.ini (see next).

jk_lsh
jk_lsh is the limited shell to run within 
the chroot. You can implement it by list-
ing jk_lsh as the user’s shell in either 
the system’s or the chroot’s /etc/passwd 
file, although using the chroot’s copy is 
more secure.

jk_socketd
Configured in /etc/jailkit/jk_socketd.
ini, this daemon lets jailed users log into 
the main system’s syslog. It may not be 
necessary for many chroot purposes.

jk_chrootlaunch
This utility starts a daemon from the 
main system within a chroot. It may 
change the user and group ID before 
running the daemon in the jail. The dae-
mon does not become accessible from 
within the chroot. For example:

Figure 3: Jailkit installs with an all-purpose jk_init.ini file. However, it can be edited or replaced with a 
simpler one for security or memory considerations.

[jk_lsh]

  comment = Jailkit limited shell

  paths = /usr/sbin/jk_lsh, /etc/jailkit/jk_lsh.ini

  users = root

  groups = root

  need_logsocket = 1

  includesections = uidbasics

  [sftp]

  comment = ssh secure ftp with Jailkit limited shell

  paths = /usr/lib/sftp‑server

  includesections = netbasics, uidbasics

  devices = /dev/urandom, /dev/null

  emptydirs = /svr

Listing 1: Creating a Limited Shell

36

Command Line – Jailkit

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



jk_check
After a chroot is set up, run this utility to 
locate security weakpoints. It lists set‑
guid and setgid applications, modified 
applications, directories with wide-open 
permissions, and other potential prob-
lems listed in /etc/jailkit/jk_check.ini 
(Figure 4).

Be aware that correcting all reported 
problems does not necessarily make the 
jail secure. Whether it does or not de-
pends on the commands available in the 
chroot.

jk_list
After the chroot is set up, jk_list shows 
the PID and UID of all the processes that 
run in it. This information can be useful in 

tightening the chroot’s security, as well as 
the permissions for multiple chroot users.

jk_update
This utility is used to update files within 
a chroot and to sync them with the main 
system. Note that, depending on the pur-
pose of the chroot, you might not want 
to update its files – or, at least, have no 
reason to do so.

Reducing Labor
Even with jailkit, setting up a chroot jail 
is not an easy task. If nothing else, you 
still need to decide on the chroot’s con-
tents. In addition, jailkit’s documenta-
tion is light, and you may still need to 
find examples that you can modify.

However, these tasks are even more 
laborious done with the chroot com-
mand alone. The chroot command re-
quires an extremely long command, 
and, even then, much of the jail’s con-
figuration must be done manually. By 
contrast, while jailkit does not do ev-
erything for you, it does take much of 
the effort out of ordinary housekeeping 
for a chroot jail. By doing so, it makes 
this venerable bit of Unix technology 
available to everyone.  nnn

Figure 4: jk_check.ini checks for basic security problems.

nnn

[1]  jailkit: https://  olivier.  sessink.  nl/  jailkit/

[2]  Major uses of chroots:  
https://  en.  wikipedia.  org/  wiki/  Chroot# 
 Uses

Info

Command Line – Jailkit

37LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

IN-DEPTH

https://olivier.sessink.nl/jailkit/
https://en.wikipedia.org/wiki/Chroot#Uses
https://en.wikipedia.org/wiki/Chroot#Uses


are fetched from the array slice by the 
expression [1:]; line 33 assigns the list 
of files to the variable files.

The instruction passed in at the com-
mand line to manipulate the file names 
(e.g., '.log$/.log.old') gets sent to the 
mkmodifier() function defined further 
down in Listing 3. This turns the instruc-
tion into a Go function that manipulates 
input file names according to the user’s 
instructions and returns a modified 
name.

Function Returns Function
You’ve read that correctly: The mkmodifier() 
function actually returns a function in line 
34 of Listing 2, which is assigned to the 
modifier variable there. A few lines down, 
in the for loop that iterates over all the files 
to be manipulated, the main program sim-
ply calls this function by referencing modi‑
fier. With every call, the main program 
passes the returned file name the original 
name of the file and, in line 42, picks up the 
new name and stores it in modfile.

If the user has chosen dryrun mode 
(‑d), line 47 simply prints the intended 

O ne popular interview question 
for system administrators is 
what is the easiest way to give a 
set of files a new extension. 

Take a directory of *.log files, for exam-
ple: How do you rename them all in one 
go to *.log.old? It has reportedly hap-
pened that candidates suggested the 
shell command mv *.log *.log.old for 
this – however, they were then not hired.

There are already quite a few tools 
lurking around on GitHub that handle 
such tasks, such as the Renamer tool 
written in Rust [1]. But such simple utili-
ties make for great illustrative examples, 
so I wanted to explore some Go tech-
niques for bulk renaming. Paying tribute 
to the original, the Go variant presented 
below will also go by the name of Rena-
mer. For example, to rename an entire set 
of logfiles ending in .log to .log.bak, just 
use the call shown in line 1 of Listing 1.

Or how about renaming vacation 
photos currently named IMG_8858.JPG 
through IMG_9091.JPG to ha‑

waii‑2020‑0001.jpg through ha‑
waii‑2020‑0234.jpg? My Go program 
does that too with the call from line 4, 
replacing the placeholder {seq} with a 
counter incremented by one for each 
renamed file, which it pads with lead-
ing zeros to four digits.

Mass Production
The renamer main program (Listing 2) 
processes its command-line options ‑d 
for a test run without consequences 
(dryrun) and ‑v for chatty (verbose) sta-
tus messages in lines 19 and 20. The 
standard flag package used for this pur-
pose not only assigns the dryrun and 
verbose pointer variables the values true 
or false, respectively, but it also jumps 
to a Usage() function defined in the Usage 
attribute if the user tries to slip in an op-
tion that the program doesn’t know.

In any case, the program expects a 
command to manipulate the file names 
and one or more files to rename later. 
Line 12 informs the user of the correct 
call syntax of the renamer binary com-
piled from the source code.

The array slice arithmetic 
assigns the first command-
line parameter with index 
number 0 to the cmd variable. 
This is followed by one or more 
file names, which the shell is 
also welcome to expand using 
wildcards before passing them to 
the program. The arguments 
from the second to last position 

Bulk renaming in a single pass with Go

Name 
Changer
Renaming multiple files following a pattern often requires 
small shell scripts. Mike Schilli looks to simplify this task 
with a Go program. By Mike Schilli

Mike Schilli works as a 
software engineer in the 
San Francisco Bay area, 
California. Each month 
in his column, which has 
been running since 1997, 
he researches practical applications of 
various programming languages. If you 
email him at mschilli@perlmeister.  com 
he will gladly answer any questions.

Author

01  $ renamer ‑v '.log$/.log.bak' *.log

02  out.log ‑> out.log.bak

03  [...]

04  $ renamer ‑v '/hawaii2020‑{seq}.jpg' *.JPG

05  IMG_8858.JPG ‑> hawaii2020‑0001.jpg

06  IMG_8859.JPG ‑> hawaii2020‑0002.jpg

Listing 1: Renaming Files

Le
ad

 Im
ag

e 
©

 D
en

is
 T

ev
ek

o
v,

 1
23

R
F.

co
m

38 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH
Programming Snapshot – Bulk Renaming



fields. The associated if block prints a 
message and breaks the for loop with 
break, because in that case the end of the 
world is nigh.

Regular Expressions
Instead of requesting a plain vanilla 
string replacement, the user can also 
specify regular expressions to remodel 
file names. For example, the .log$ search 
expression illustrated earlier specifies 
that the .log suffix must actually be at 
the end of the name – it would ignore 
foo.log.bak. To enable this, Listing 3 
draws on the standard regexp package 
and compiles the regular expression 
from the user input to create a rex vari-

rename action, and 
line 50 rings in the next 
round of the for loop 
with continue, skipping 
the call of rename() in 
line 52.

In production mode, 
however, line 52 calls 
the Unix system rename() 
function from the stan-
dard os package and re-
names the file to the 
new name from modfile. 
If access rights prevent 
this, the function fails 
and os.Rename() returns 
an error, which line 53 

01  package main

02  

03  import (

04    "flag"

05    "fmt"

06    "os"

07    "path"

08  )

09  

10  func usage() {

11    fmt.Fprintf(os.Stderr,

12      "Usage: %s 'search/replace' file ...\n",

13      path.Base(os.Args[0]))

14    flag.PrintDefaults()

15    os.Exit(1)

16  }

17  

18  func main() {

19    dryrun := flag.Bool("d", false, "dryrun only")

20    verbose := flag.Bool( "v", false, "verbose 
mode")

21    flag.Usage = usage

22    flag.Parse()

23  

24    if *dryrun {

25      fmt.Printf("Dryrun mode\n")

26    }

27  

28    if len(flag.Args()) < 2 {

29      usage()

30    }

31  

32    cmd := flag.Args()[0]

33    files := flag.Args()[1:]

34    modifier, err := mkmodifier(cmd)

35    if err != nil {

36      fmt.Fprintf(os.Stderr,

37        "Invalid command: %s\n", cmd)

38      usage()

39    }

40  

41    for _, file := range files {

42      modfile := modifier(file)

43      if file == modfile {

44        continue

45      }

46      if *verbose || *dryrun {

47        fmt.Printf("%s ‑> %s\n", file, modfile)

48      }

49      if *dryrun {

50        continue

51      }

52      err := os.Rename(file, modfile)

53      if err != nil {

54        fmt.Printf("Renaming %s ‑> %s failed: %v\n",

55          file, modfile, err)

56        break

57      }

58    }

59  }

Listing 2: renamer.go

01  package main

02  

03  import (

04    "errors"

05    "fmt"

06    "regexp"

07    "strings"

08  )

09  

10  func mkmodifier(cmd string) (func(string) string, error) {

11    parts := strings.Split(cmd, "/")

12    if len(parts) != 2 {

13      return nil, errors.New("Invalid repl command")

14    }

15    search := parts[0]

16    repltmpl := parts[1]

17    seq := 1

18  

19    var rex *regexp.Regexp

20  

21    if len(search) == 0 {

22      search = ".*"

23    }

24  

25    rex = regexp.MustCompile(search)

26  

27    modifier := func(org string) string {

28      repl := strings.Replace(repltmpl,

29        "{seq}", fmt.Sprintf("%04d", seq), ‑1)

30      seq++

31      res := rex.ReplaceAllString(org, repl)

32      return string(res)

33    }

34  

35    return modifier, nil

36  }

Listing 3: mkmodifier.go

39

Programming Snapshot – Bulk Renaming

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

IN-DEPTH



Attentive readers may wonder what the 
difference is, considering the fact that you 
can easily convert a string into a byte slice 
with []byte(string).

To explain this, it is worthwhile di-
gressing into Go’s implementation of 
strings [2]. Astonished Go students will 
discover that strings and byte slices ([]
byte) are fundamentally different data 
types in Go. You are not allowed to mod-
ify existing strings: Strings are immuta-
ble, but you are allowed to mess around 
with byte slices. In addition, strings dis-
tinguish between characters and bytes. 
Since strings are UTF-8 encoded in Go 
code, the “Piñata” string in the program 
text of Listings 6 and 7 takes up seven 
bytes, since the accented ñ character in 
UTF-8 is represented as c3 b1 hex.

As the meaning of the word “charac-
ter” has historically often been confused 
with “byte,” the Unicode standard refers 
to them as code points. The ñ character 
occupies position U+00F1, which UTF-8 
encodes as c3 b1. To make things worse, 
there is also an alternative rendering of it 
in the form of two Unicode code points. 
This has a squiggly tilde floating above 
an n, but we’ll not be going into that 
today. The only important thing is that 
Go refers to code points in the Unicode 
standard as “runes.”

While the range operator in Listing 6 
parses the runes (Figure 1), the for 

able of the *regexp.Regexp type using 
MustCompile() in line 25. After that, the 
modifier defined in line 27 can call the 
ReplaceAllString() function. It replaces 
all matches that match the expression in 
the original name org with the replace-
ment string stored in repl.

Attentive readers may wonder about 
the mkmodifier() function in Listing 3: It 
returns a function to the main program, 
to be called multiple times, but this func-
tion actually seems to maintain state be-
tween calls. For example, take a look at 
the function’s local variable seq: Each 
new call to the function injects a value 
incremented by one into the modified 
file name. How is this possible?

Closed Case
The secret is known as closure and is a 
feature supported not only by Go but 
also by many other scripting and pro-
gramming languages. Listing 4 illustrates 
the procedure with a simple example.

Before a function-creating function 
like mkmycounter() returns a newly con-
structed subroutine to the caller, it is al-

lowed to define local variables, which 
are then wrapped into the returned func-
tion’s context. When called multiple 
times, those variables subsequently ap-
pear global (or rather static) to the call 
context. If a call to the generated and re-
turned function modifies one of these 
variables, the next call to the function 
will also find the previously modified 
value. The enclosed variables therefore 
belong to the function, much like in-
stance variables belong to an object in 
object-oriented programming.

As expected, the call of the binary com-
piled from Listing 4 shows successive 
calls of the generated function outputting 
growing counter values (Listing 5).

Characters, Bytes, and 
Runes
The call to the regexp function ReplaceAll‑
String() in line 31 of Listing 3 also needs 
some explanation. It replaces all the char-
acters in the org string matched by the reg-
ular expression rex with the characters in 
the repl string. On the other hand, the Re‑
placeAll() function (without the String 
suffix), which the user may find first in a 
cursory study of the man page, expects 
slices of the type []byte instead of strings. 01  package main

02  

03  import "fmt"

04  

05  func main() {

06    mycounter := mkmycounter()

07  

08    mycounter()

09    mycounter()

10    mycounter()

11  }

12  

13  func mkmycounter() func() {

14    count := 1

15  

16    return func() {

17      fmt.Printf("%d\n", count)

18      count++

19    }

20  }

Listing 4: closure.go

01  $ go build closure.go

02  $ ./closure

03  1

04  2

05  3

Listing 5: Calling the Binary

Figure 1: When parsing strings, 
the range operator and for loop 
return different results.

package main

import "fmt"

func main() {

  str := "Piñata"

  for i, c := range str {

    fmt.Printf("str[%d]='%c'\n", i, c)

  }

}

Listing 6: range.go

package main

import "fmt"

func main() {

  str := "Piñata"

  for i := 0; i < len(str); i++ {

    fmt.Printf( "str[%d]='%c'\n", i, 

str[i])

  }

}

Listing 7: forloop.go

40

Programming Snapshot – Bulk Renaming

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



loop in Listing 7 indexes the individual 
bytes and returns the accented charac-
ter in the form of two illegible bytes. 
You see: It makes sense to check very 
carefully whether a function processes 
strings or byte slices. Converting be-
tween the two different data types 

looks easy, but it involves a great deal 
of internal overhead – that is, it’ll cost 
you compute cycles at runtime.

Off We Go
Let’s get back to Listing 4. Because of 
the closure implemented there, the 

function incre-
ments the value 
of the seq vari-
able by one for 
each call and re-
places the {seq} 
placeholder in 
the file template 
with the integer 
value padded out 
to four digits with 
leading zeros. 
foo‑{seq}.log 
first becomes 
foo‑0001.log, 

then foo‑0002.log, and so on.
The call to

go build renamer.go mkmodifier.go

compiles both listings and links the re-
sult together into a binary called renamer. 
Figure 2 shows some usage examples.

By the way, the os.Rename() function 
also accepts identical source and target 
files – in which case it just does nothing. 
But if the target file already exists, it 
overwrites it with the source file without 
any warning. If you don’t want that, you 
can add a test and maybe a new ‑‑force 
option, which tells the program to bull-
doze whatever it finds in the way.

To avoid unintentional renaming of 
critical files, it is always a good idea to 
do a dry run first with ‑d. Is everything 
okay? Then go again, and do it live this 
time.  nnn

Figure 2: The Go program renames files and numbers 
them if so desired.

[1]  Renamer: https://  github.  com/  adriangoransson/  renamer

[2]  “Strings, bytes, runes, and characters in Go”:  
https://  blog.  golang.  org/  strings

Info

Programming Snapshot – Bulk Renaming

IN-DEPTH

https://github.com/adriangoransson/renamer
https://blog.golang.org/strings


staller does not create a launcher in the 
desktop menu hierarchy. The individual 
scripts for running the tests can be 
found after installation in /usr/share/
checksecurity/.

During installation, checksecurity also 
loads the Postfix mail transfer agent. 
This mail server allows the system to 
send mails independently. However, this 
does not work without a fixed IP address 
and complex configuration. The recom-
mended approach is to configure Postfix 
so that the service routes outgoing mail 
via a commercial provider such as Gmail 
or GMX. You can find information on 
this by searching for “Postfix email pro-
vider” on the web.

Alternatively, you can set up Postfix to 
deliver mail locally. To do this, select the 
Local only option in Postfix Configura-
tion. Then install the mailutils package 
and add your user to the mail group by 
running the command:

sudo adduser $USER mail

To be able to read mail sent by checkse-
curity to the root user via the mail pro-
gram, forward the messages sent to root 
to your own account by typing

echo $USER | sudo tee /root/.forward

L inux is considered a very secure op-
erating system for computers of all 
kinds. Realistically, however, even 
Linux is not immune to vulnerabili-

ties and malware, which is why you can 
find a large number of tools in the package 
sources of Linux derivatives to help scan 
for vulnerabilities. However, these tools 
tend to focus on specific weaknesses and 
narrowly defined attack scenarios by only 
analyzing a computer system for individ-
ual potential security problems.

With the checksecurity tool collection, 
on the other hand, you can automatically 
check Ubuntu and Debian systems [1] 
and their derivatives for multiple poten-
tial basic security flaws or anomalies.

Concept
Checksecurity consists of a number of 
plugins, each of which you then custom-
ize in a configuration file. The corre-
sponding files are in text format, so a 

simple editor is all it takes to set up the 
service. When checksecurity is called, 
the program works through the activated 
plugins one by one and outputs the re-
sults of the tests in a terminal window.

To achieve the highest possible level of 
security through an automated process, 
the system automatically creates two dif-
ferent cron jobs during installation. The 
check‑setuid plugin does this by check-
ing setuid attributes (see the “setuid” 
box) for modifications and looking for 
remote filesystems that are mounted in-
securely on the local system.

The Check‑sockets plugin searches for 
and monitors open and modified ports, 
making it possible to detect malware 
that tries to enter the system through 
these ports. The check‑passwd plugin 
checks the system for unsecured system 
accounts, while check‑diskfree checks 
mounted filesystems for their capacity 
limits. The check‑iptables‑logs plugin 
takes care of possible intrusion attempts, 
which it finds using the iptables logfiles.

Installation
You can set up checksecurity on 
Debian, Ubuntu, and their derivatives 
conveniently using the system’s pack-
age management sources. Since it runs 
entirely on the command line, the in-

Perform basic system checks with checksecurity

 Health Check
Linux offers users a wide range of options for system configuration. With the help of the 
checksecurity tool collection, you can automatically monitor basic system settings. By Erik Bärwaldt

Le
ad

 Im
ag

e 
©

 S
ia

rh
ei

 L
en

et
s,

 1
23

R
F.

co
m

Linux organizes read, write, and exe-
cute permissions for files and directo-
ries using attributes. Programs 
equipped with the setuid bit (SUID) 
can also be executed with the owner’s 
rights, which is a security risk if the 
file belongs to the root user.

setuid

42

IN-DEPTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

checksecurity



Configuration
You create the global configuration for 
checksecurity in the /etc/checksecurity.
conf file. In the file, you can switch the 
individual modules on and off or set 
check intervals for the automated execu-
tion of the individual scripts (Figure 1).

In the /etc/checksecurity/ directory, 
you will find additional configuration 
files for all plugins except check‑ipta‑
bles‑logs. These files are not used for 
global configuration, but they do support 
customization of individual script flows. 
They are also in text format and can 
therefore be easily modified using your 
favorite editor.

You need to pay special attention to 
the CHECK_DISK_PERCENT option in the 
check‑diskfree.conf file, which defaults 
to 70. This setting results in a system 
message being output as soon as one of 
the mounted partitions reaches a utiliza-
tion level of more than 70 percent. Since 
this value can be reached quite quickly, 
especially with small system partitions 

that also store temporary data, it is a 
good idea to increase the value to 80 or 
even 90 percent.

In the check‑passwd.conf configura-
tion file, you can define whether or not 
you want the script to detect empty 
system password entries or duplicate 
passwords. By default, both routines 
are activated.

Deployment
To start checksecurity manually, enter 
the checksecurity command at the 
prompt with administrator privileges. 
The tool then works through the scripts 
and outputs warning messages in case of 
deviations as defined in the settings. It 
displays the messages in a terminal win-
dow without separating them from each 
other (Figure 2). If you have defined a 
mail account in the configuration dialog, 
an email is then sent to that account.

By default, the installer creates cron jobs 
for checksecurity. Checksecurity checks 
the firewall logfiles once a week; the sys-

tem loads the other 
routines daily. The 
program stores the 
corresponding logs 
in the /var/log/
checksecurity/ di-
rectory in various 

files with meaningful names sorted in 
chronological order (Figure 3). You can 
modify these settings to suit your own 
preferences at any time by modifying 
the associated cron jobs or by editing 
the /etc/checksecurity.conf file.

Conclusions
Checksecurity provides security-con-
scious users with a useful tool for regu-
larly checking a Linux system’s basic 
settings. It primarily tests for open ports, 
empty or duplicate passwords, and stor-
age capacities on the mounted disks. Al-
though this data can also be queried 
with other Linux tools, checksecurity 
does the checks in one go and in the 
background.

Checksecurity logs abnormalities and 
optionally sends them to a configured 
email address, giving you an overview of 
which system resources you need to check 
or potentially reconfigure. The software 
makes a fundamental contribution to sys-
tem integrity. As a supplement to other 
routine checks, checksecurity is a valuable 
addition to any production server.  nnn

Figure 1: Configuring the basic settings in the check‑
security.conf file. The individual plugins are set up 
in separate configuration files.

Figure 2: Checksecurity is only reporting overflowing 
disks here.

Figure 3: Checksecurity also reliably checks for open 
ports.

[1]  Debian checksecurity:  
https://  packages‑picconi.  debian.  org/ 
 en/  bullseye/  checksecurity

Info

IN-DEPTH
checksecurity

43LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

https://packages-picconi.debian.org/en/bullseye/checksecurity
https://packages-picconi.debian.org/en/bullseye/checksecurity


example, there may be a device that you 
wish to connect to your Linux PC that 
does not function. Specifically, it may be 
not automatically detected by the kernel 
because support for the device (via a de-
vice driver) is not enabled. Enabling the 
driver is done through an invocation to 
make menuconfig, which results in the 
image shown in Figure 1, locating the 
appropriate configuration option and 

R ecently, I was working on a 
project on Nvidia’s Jetson Nano 
platform [1]. The project re-
quired me to build certain ker-

nel drivers. Of course, I looked through 
the requisite driver makefiles to deter-
mine which CONFIG options needed to be 
enabled. However, when I ran make menu-
config, I noticed that, while I could 
search through the kernel for the partic-
ular CONFIG option, I couldn’t actually 
navigate to the menu to enable it. Fur-
thermore, when I tried to modify tegra_
defconfig, which is the standard kernel 
configuration for Nvidia platforms, to in-
clude the required CONFIG option, the 
kernel simply ignored it. Unfortunately, 
the kernel gave no indication as to why 
the specific CONFIG option was ignored. 
While I ultimately determined that there 
was another CONFIG option that needed 
to be enabled (which should have been 
handled by menuconfig if the particular 
Nvidia CONFIG options were detected), I 
wanted to dig deeper to understand how 
Kconfig works and share my findings. 
While this article does not go into sub-
stantial detail on some of the requisite 
topics (such as grammars, Flex [2], and 
Bison [3]), this article strives to provide 

enough detail to provide an understand-
ing of how Kconfig works.

Now, most people will not use the Jet-
son Nano as their daily driver. However, 
even if you are using an x86_64 plat-
form, such as one that is based on the 
Intel or AMD processors that are present 
in most modern-day laptops and desk-
tops, it’s important to get comfortable 
navigating the kernel configuration. For 

Exploring the kernel’s mysterious  
Kconfig configuration system

 Deep Dive
The Kconfig configuration system makes it easy to configure and customize the Linux kernel. But 
how does it work? We’ll take a deep dive inside Kconfig. By Mohammed Billoo

Figure 1: Configuring the kernel through a simple graphical interface. Ph
o

to
 b

y 
Jo

se
p

h
 N

o
rt

h
cu

tt
 o

n
 U

n
sp

la
sh

44

IN-DEPTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Kconfig Deep Dive



enabling it; under the hood, a specific 
kernel CONFIG option is enabled. How-
ever, enabling that particular option 
may not be straightforward. For exam-
ple, the driver configuration option 
might be buried under another higher 
level configuration option that needs to 
be enabled first.

Specifically, let’s say 
you’d like to connect a 
Sony PS4 controller to a 
tablet or convertible laptop, 
on which you’ve installed 
Linux. When you plug in 
the controller in an avail-
able USB port on your tab-
let, you notice that it isn’t 
automatically detected as 
you’d hoped. After running 
make menuconfig on the 

downloaded 
source code of 
your version of the 
kernel, you dis-
cover that the op-
tion to enable the 
PS4 (under Device 
Drivers | HID sup-
port | Special HID 
drivers) is not 
checked off, as 
shown in Figure 2.

You check off 
that particular op-

tion, save the configuration, rebuild your 
kernel, install it on your system, and re-
boot. After rebooting, you discover that 
the controller has been detected by your 
system, and you can use it to play the 
desired video game!

Continuing with the example of using 
a tablet, let’s say you are having an issue 

where the display of the tablet does not 
automatically rotate when you are 
switching from portrait to landscape (or 
vice versa). One debugging technique 
would be to confirm that the Intel ISH 
HID configuration option is enabled in 
the kernel. Recent Intel processors have 
a built-in sensor hub that allows them to 
detect and control certain aspects of a 
tablet, such as backlight and auto rota-
tion. If you are having issues where the 
display orientation is not rotating as you 
are rotating the tablet, one of the first 
things to do would be to confirm that the 
INTEL_ISH_HID feature is enabled in the 
kernel. This can be done by running make 
menuconfig, enter the forward slash (/) 
key to search through all of the configs, 
and typing INTEL_ISH. This will bring up 
the message shown in Figure 3.

If =n is shown in the search message 
(instead of =y), this indicates that sup-
port for the Intel sensor hub isn’t com-
piled in the kernel. The first step to re-
solve the issue would be to enable this 
feature, recompile the kernel, install it, 
and reboot your system.

Kconfig
The system for configuring the Linux 
kernel is generally referred to as the 
Kconfig system. Kconfig is a configura-
tion database that ultimately defines 
which modules and features are built in 
the final kernel. Kconfig defines its own 
language (and grammar) that supports 
configuration management, including 
dependencies across options.

Users configure settings for the build 
system through a number of optional in-
terfaces called targets, which are defined 
in the appropriate makefiles. The menuco-
nfig option described in the previous 
section is a Kconfig target that allows 
users to enter information in a rudimen-
tary menu system. Other targets support 
other input methods (see Table 1).

Figure 2: Support for the Sony PS4 controller is not enabled.

Figure 3: Searching for INTEL_ISH in kernel config.

menuconfig Updates the configuration using an ncurses interface

gconfig Updates the configuration using a GTK+-based program

xconfig Updates the configuration using a QT-based program

oldconfig updates the configuration using .config file and prompting for new options

allyesconfig New configuration with all options set to yes

allnoconfig New configuration with all options set to no

defconfig New configuration with default settings defined for hardware architecture

tegra_defconfig Target used with Nvidia Tegra systems like my Jetson Nano

Table 1: Kconfig Targets

IN-DEPTH
Kconfig Deep Dive

45LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



When you step through conf with 
these specific arguments, you see that 
the first switch block falls through to the 
defconfig case statement, where the 
path to the tegra_defconfig file (i.e., 
arch/arm64/configs/tegra_defconfig) is 
stored in defconfig_file. Then, you can 
see that the name variable obtains Kcon-
fig, which is passed to the function 
conf_parse, which is defined in zconf.y. 
That is not a typo! zconf.y is a special 
type of source file that isn’t directly com-
piled but is converted into a C source file 
by Bison. I’ll get into the specifics of 
how Bison and Flex (and their corre-
sponding files) are used to convert the 
contents of a Kconfig file later in this ar-
ticle; for now I’ll focus on the implemen-
tation of conf_parse. The relevant por-
tions are shown in Listing 7.

The first line, zconf_initscan(name) 
invokes a function defined in zconf.l. 
This file is similar to zconf.y in that it is 
converted into a C file to parse text 
input and take some action. Generally, 
Flex and Bison go hand-in-hand to 
parse a text file with a structured for-
mat, which Kconfig files have. Specifi-
cally, Flex, which generates a lexical 
scanner, is used to parse and extract to-
kens in a file such as Kconfig. The input 
to Flex is a file with a .l extension, 
which contains a set of rules that define 
what action should be taken if a token 
is detected. Bison generates a parser 
that takes actions when given a certain 
input; these actions are defined by “pro-
duction rules” defined in the .y file. 
Both of these files usually define C 
functions that provide the crux of the 
actions to take, which you can see by 
the fact the zconf_initscan is defined in 
the zconf.l file, and that conf_parse is 
defined in zconf.y. zconf_initscan is 
simply priming the lexical scanner to 
point it to the Kconfig file, which is 
passed in via the name argument, for 
token extraction.

Returning back to conf_parse, you can 
see that the next relevant line is the call 

to sym_init(), 
which is defined 
in symbol.c. The 
key function in 
sym_init is the 
call to sym_
lookup. sym_
lookup takes a 
handful of ac-

The configuration database begins 
with the contents of the Kconfig file at 
the source root, then additional settings 
configured through the Kconfig target 
are added to the mix (you’ll see how ad-
ditional directories are traversed later). 
The configuration information is ulti-
mately used to create a .config file, 
which is then used to enable and disable 
certain kernel configurations. These con-
figuration options also define whether 
certain components, such as drivers, are 
built as part of the final kernel binary or 
as separate “kernel modules,” which can 
be loaded during runtime.

The versatile Kconfig system makes 
it easy for a user to build a custom 
Linux kernel with minimal program-
ming and maximum automation, but it 
is also something of a mystery. I de-
cided to explore what really goes on 
under the hood when the Kconfig sys-
tem integrates user-defined configura-
tion settings.

Just a word of warning up front: you 
might need some knowledge of program-
ming to follow all the nuances of this ar-
ticle, which relies on some standard soft-
ware debugging tools. But even if you’re 
not a veteran coder, this discussion 
should offer some insights on the inner 
workings of the Kconfig system.

Going Deeper
You might encounter situations where 
an option that you absolutely need to 
enable might not be visible in the inter-
face. In that case, it is useful to under-
stand the entire Kconfig infrastructure 
of the kernel in more detail. As men-
tioned, when you have a clean checkout 
of the kernel and wish to build it for a 
specific target platform and application, 
you must first configure the kernel. Pre-
viously, I discussed using the simple 
menuconfig interface to interactively en-

able and disable certain options in the 
kernel, but another method allows for a 
file to predefine the desired kernel con-
figuration in order to support a more 
automated workflow. For my Jetson 
Nano, this is done by invoking make, as 
shown in Listing 1, which configures 
the kernel using the tegra_defconfig file 
under the ARM64 architecture.

When you look at stdout during this 
process, you will see that the kernel 
builds the source files under scripts/
kconfig/ into an application called conf 
and runs that application. To under-
stand how conf works, it would be ex-
tremely helpful to step through it using 
gdb (the GNU Debugger). However, that 
requires a build of conf with debugging 
enabled. This can be achieved by sim-
ply opening the top-level makefile (at 
the root of the checkout directory) and 
modifying HOSTCFLAGS to reflect what is 
shown in Listing 2.

Now when you invoke make, as shown 
in Listing 1, the conf application will be 
built with debugging symbols and you 
can step through it to understand how 
the application works. If you search for 
the main function under scripts/kcon-
fig, you discover that it is present in 
conf.c. When you look in conf.c, you 
can see that it takes action depending 
on the arguments that are passed into 
it, as shown in Listing 3.

In order to properly run gdb against 
the conf application, you’ll need to know 
the appropriate arguments to pass the 
application. Although you can navigate 
through the makefiles to decipher the ar-
guments, there is a simpler way. You can 
add a simple for loop, as shown in List-
ing 4, that prints out the arguments 
passed in to the application.

When you add the for loop and rerun 
the command in Listing 1, you can see 
that the arguments passed to conf are 
those shown in Listing 5.

You can now run gdb, set a breakpoint 
in main, and pass it the two arguments 
listed above, as shown in Listing 6.

01  make ARCH=arm64 tegra_defconfig

Listing 1: Configuring the Kernel

01  HOSTCFLAGS   := ‑g ‑Wall ‑Wmissing‑prototypes ‑Wstrict‑prototypes ‑O0 ‑fomit‑frame‑pointer ‑std=gnu89

Listing 2: Adding Debugging Symbols

01  while ((opt = getopt_long(ac, av, "s", long_opts, NULL)) != ‑1) {

02  ...

Listing 3: Arguments in main of conf.c

46

Kconfig Deep Dive

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH





tions relevant to the symbol table; a 
“symbol” is a data structure that con-
tains the relevant information associated 
with a CONFIG option. First, it checks if 
the symbol being requested is one of 
three specific symbols: a “yes” symbol, 
“no” symbol, or “mod” symbol. If so, it 
simply returns the corresponding hard-
coded data structure. If not, it then 
checks to see if the symbol exists in the 
symbol table. The symbol table is simply 
a hash map of all the CONFIG options in 
the kernel. Specifically, it’s an array of 
the CONFIG options, where the index into 
the array is a hash of the string corre-
sponding to the option. Additionally, 
each element in the array consists of a 
linked list, to mitigate any possible hash 
collisions. Figure 4 shows the layout of 
the symbol table.

To determine if the symbol exists in 
the symbol table, sym_lookup first calcu-
lates the hash of the symbol name, 

modulo the hash size. Then, it searches 
through the linked list corresponding to 
the particular element in the hash table 
to determine if the symbol exists. If it 
does, it simply returns it. However, if 
the symbol doesn’t exist, it allocates 
memory for the symbol data structure, 
adds it to the beginning of the linked 
list in the appropriate hash entry, and 
returns the symbol.

Returning to conf_parse in Listing 7, 
the next function to be called after sym_
init() is zconfparse(). However, when 
you search for zconfparse in either 
zconf.y or zconf.l, you will see that it 
isn’t defined. But, if you step into the 
function, you see that yyparse is called 
instead. This is because Bison rede-
fines some of the internal functions 
(such as yyparse) to zconfparse, so they 
are accessible outside of the Bison 
namespace. zconfparse is the crux of 
the Bison parser, where it performs the 

parsing of the 

input Kconfig file. I will return to the 
actual parsing itself later, but for now, 
assume that zconfparse populates the 
sym_hash data structure with all of the 
symbols in all Kconfig files in the ker-
nel source. The next set of statements 
in Listing 7 are simply confirming that 
there are no dependency issues in the 
symbol_hash data structure. If you look 
at the function sym_check_deps, you will 
see that conf is navigating through the 
symbol_hash data structure and ensur-
ing that a few conditions are met; the 
relevant portions of the function are re-
produced in Listing 8.

First, sym_check_deps checks to make 
sure that there are no recursive depen-
dencies. Second, for all “choice value” 
entries, it confirms that there is a corre-
sponding “choice” block. Similarly, for 
all “choice” blocks, it ensures there are 
valid “choice value” entries. Finally, the 
function does a general check on all 
symbols in the hash table to confirm 

01  ...

02  zconf_initscan(name);

03  

04  sym_init();

05  ...

06  zconfparse();

07  ...

08  for_all_symbols(i, sym) {

09          if (sym_check_deps(sym))

10                  zconfnerrs++;

11  }

12  ...

Listing 7: conf_parse()

Figure 4: Structure of symbol_hash hash_map.

01  ...

02  if (sym‑>flags & SYMBOL_CHECK) {

03          sym_check_print_recursive(sym);

04          return sym;

05  }

06  if (sym‑>flags & SYMBOL_CHECKED)

07          return NULL;

08  if (sym_is_choice_value(sym)) {

09  ...

10  } else if (sym_is_choice(sym)) {

11          sym2 = sym_check_choice_deps(sym);

12  } else {

13          sym‑>flags |= (SYMBOL_CHECK | SYMBOL_CHECKED);

14          sym2 = sym_check_sym_deps(sym);

15          sym‑>flags &= ~SYMBOL_CHECK;

16  }

Listing 8: sym_check_deps()

01  ...

02  for (i = 0; i < ac; i++) {

03          printf("arg %d: %s\n", i, av[i]);

04  }

05  ...

Listing 4: Determining Arguments Passed to conf

01  arg 0: scripts/kconfig/conf

02  arg 1: ‑‑defconfig=arch/arm64/configs/tegra_defconfig

03  arg 2: Kconfig

Listing 5: Arguments Passed into conf

01  $> gdb scripts/kconfig/conf

02  (gdb) break main

03  (gdb) r ‑‑defconfig=arch/arm64/configs/tegra_defconfig Kconfig

Listing 6: Running gdb on conf

48

Kconfig Deep Dive

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



ally works backwards to figure out the 
appropriate production rule that this 
string matches. In this case, since it 
matches the source_stmt rule, the parser 
takes the action specified in the curly 

that the relevant dependencies have 
been met.

With that, all of the Kconfig files in 
the entire kernel source directory have 
been added to the symbol_hash data 
structure, along with all of their 
properties (such as whether it’s a 
choice, or whether it can be com-
piled as a separate kernel module), and 
their dependencies have been con-
firmed. What’s interesting is that I only 
passed in a single Kconfig file to the 
conf application. How did the program 
navigate throughout the entire kernel, 
and then extract and parse all of the 
Kconfig files? The answer is in the snip-
pet from zconf.y shown in Listing 9.

The file that is input to Bison to gener-
ate a parser has a very rigid structure. 
The statements in Listing 9 demonstrate 
“productions,” which are rules for con-
verting one statement into another and 
what actions should be taken when a 
particular statement has been detected. 
All productions begin with start. You 
can see in Listing 9 that stmt_list is one 
valid replacement for start. Further 
below, you can see that common_stmt is a 
valid replacement for stmt_list. Then, 
you see that source_stmt is a valid re-
placement for common_stmt. Finally, T_
SOURCE prompt T_EOL is a valid replace-
ment for source_stmt. If you search for 
T_SOURCE, you can see that it’s defined 
as a token. A token is simply a member 
of a predefined set of strings that are 
valid inputs to the program. In this 
case, T_SOURCE is defined in zconf.
gperf. zconf.gperf is a file that is used by 
the gperf tool to return hashes associated 
with certain strings. prompt, as seen in 
Listing 9, is any string that has been de-
tected by the parser. T_EOL is also a token, 
but it’s defined in zconf.l. As men-
tioned before, zconf.l is a file used by 
Flex to create a lexical analyzer, 
which parses strings in a given input file 
and returns tokens that these strings rep-
resent. Regular expressions are mostly 
used to extract tokens, and you can see 
how a T_EOL token is extracted from the 
snippet of zconf.l in Listing 10.

This snippet simply looks for any 
number of tabs at the start of a line, fol-
lowed by any number of characters, fol-
lowed by a newline, and returns the T_
EOL token (along with some internal 
Flex/ Bison bookkeeping). Going back to 
Listing 9, a source_stmt rule would be re-

placed by source <string> \n, which is 
exactly how Kconfig files reference other 
Kconfig files. As a matter of fact, when 
the parser created by Bison detects 
source <string> \n in any input, it actu-

01  %token <id>T_SOURCE

02  ...

03  %token T_EOL

04  ...

05  %type <string> prompt

06  ...

07  start:  mainmenu_stmt stmt_list | no_mainmenu_stmt stmt_list;

08  ...

09  stmt_list:

10            /* empty */

11          | stmt_list common_stmt

12  ...

13  common_stmt:

14            T_EOL

15          | if_stmt

16          | comment_stmt

17          | config_stmt

18          | menuconfig_stmt

19          | source_stmt

20  ;

21  ...

22  source_stmt: T_SOURCE prompt T_EOL

23  {

24          printd( DEBUG_PARSE, "%s:%d:source %s\n", zconf_curname(), zconf_
lineno(), $2);

25          zconf_nextfile($2);

26  };

Listing 9: zconf.y with  Multiple Kconfig Files

01  [ \t]*#.*\n   |

02  [ \t]*\n      {

03          current_file‑>lineno++;

04          return T_EOL;

05  }

Listing 10: Generating the T_EOL token (zconf.l)

01  ...

02  switch (input_mode) {

03          case defconfig:

04                  if (!defconfig_file)

05                          defconfig_file = conf_get_default_confname();

06                  if (conf_read(defconfig_file)) {

07                          printf(_("***\n"

08                                   "*** Can't find default configuration 
\"%s\"!\n"

09                                  "***\n"), defconfig_file);

10                          exit(1);

11                  }

12                  break;

Listing 11: Processing the defconfig File (conf.c)

Kconfig Deep Dive

49LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

IN-DEPTH



particular CONFIG option in the symbol_
hash data structure that exists from 
scanning the kernel. The relevant snip-
pets are reproduced in Listing 12.

Listing 12 shows the checks that are 
performed and how a particular CONFIG 
option is disabled. For each line, the 
function checks to see if it begins with a 
hash. If so, it then checks that CONFIG_ 
follows immediately after the hash. If 
so, it checks that the exact string "is 
not set" follows. If that check passes, 
then it searches the symbol table for the 
corresponding CONFIG option. If a sym-
bol exists in the table, it sets the 
TRISTATE value of the symbol to no. A 
similar process exists for when a CONFIG 
option is enabled in the defconfig file. 
Finally, a check is done to ensure that 
the updated symbol table data structure 
is still valid.

Lastly, you know that a .config file 
is produced. How does that happen? 
You can look towards the end of the 
main function in conf.c to answer that 
question. Ultimately, a call to conf_
write is made and NULL is passed in. In 
the conf_write function, calls are made 
to the conf_write_heading and conf_
write_symbol functions to populate the 
final .config file.

Conclusion
The kernel Kconfig infrastructure is a 
pretty complex system that cleverly uses 
different paradigms and tools in com-
puter science beyond just standard de-
velopment. The use of Flex and Bison by 
Kconfig is an interesting case study in 
how to leverage seemingly irrelevant 
tools for an optimal solution.  nnn

braces. It simply invokes zconf_nextfile 
and passes in <string> to the function, 
where <string> is the path to another 
Kconfig file in the kernel. If you look at 
zconf_nextfile, you can see that it sim-
ply updates Flex and Bison to point to 
the appropriate file for parsing.

While this concludes the different nu-
ances in navigating the kernel to extract 
all of the available CONFIG options, you 

need to understand how a specific con-
figuration (such as tegra_defconfig) is 
applied. If you go back to conf.c, the rel-
evant portion to process a specific def-
config file is given by Listing 11.

The conf_read function, which is de-
fined in confdata.c, invokes the conf_
read_simple function. This function 
simply performs some checks to deter-
mine whether to enable or disable a 

01  while (compat_getline(&line, &line_asize, in) != ‑1) {

02  ...

03          if (line[0] == '#') {

04                  if (memcmp(line + 2, CONFIG_, strlen(CONFIG_)))

05                          continue;

06                  p = strchr(line + 2 + strlen(CONFIG_), ' ');

07                  if (!p)

08                          continue;

09                  *p++ = 0;

10                  if (strncmp(p, "is not set", 10))

11                          continue;

12                  if (def == S_DEF_USER) {

13                          sym = sym_find(line + 2 + strlen(CONFIG_));

14                          if (!sym) {

15                                  sym_add_change_count(1);

16                                  goto setsym;

17                          }

18                  } else {

19                          sym = sym_lookup(line + 2 + strlen(CONFIG_), 0);

20                          if (sym‑>type == S_UNKNOWN)

21                                  sym‑>type = S_BOOLEAN;

22                  }

23                  if (sym‑>flags & def_flags) {

24                          co nf_warning("override: reassigning to symbol %s", 

sym‑>name);

25                  }

26                  switch (sym‑>type) {

27                          case S_BOOLEAN:

28                          case S_TRISTATE:

29                                  sym‑>def[def].tri = no;

30                                  sym‑>flags |= def_flags;

31                                  break;

32                          default:

33                                  ;

34                  }

35          }

Listing 12: Processing a defconfig File

[1]  Nvidia Jetson Nano:  
https://  www.  nvidia.  com/  en‑us/ 
 autonomous‑machines/ 
 embedded‑systems/  jetson‑nano/

[2]  Flex: https://  en.  wikipedia.  org/  wiki/ 
 Flex_(lexical_analyser_generator)

[3]  Bison:  
https://  www.  gnu.  org/  software/  bison/

Info

nnn

50

Kconfig Deep Dive

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
https://www.gnu.org/software/bison/


only guaranteed to be unique within the 
scope of a single certificate authority 
(CA). In other words, the CA’s 
namespace is the boundary of protec-
tion against naming collisions.

The Domain Name System (DNS) is 
most commonly used to associate a name 
(www.example.com) with an IP address. 
The list of DNS standards for representing 
other types of information is quite long. 
For this project, I will use a record format 
called TLSA, which is defined by the 
DNS-based Authentication of Named En-
tities (DANE) standard [1]. According to 
RFC 6698, DANE enables “administrators 
of domain names to specify the keys used 
in that domain’s TLS servers.” DANE 
places the control of which public keys 
can be associated with specific TLS-pro-
tected services in the hands of the admin-
istrator of the DNS zone. By binding the 
DNS name to a certificate, DANE miti-
gates naming collisions across CAs, 
greatly increasing the level of difficulty in-
volved in website impersonation. Only 
the certificate found at the server’s name 
in DNS may be used to authenticate the 
server side of the connection.

A key component of DANE is the 
TLSA DNS record format. (See the box 
entitled “DNS Resource Records.”) The 

T raditional security mechanisms 
like Transport Layer Security (TLS) 
provide the ability to authenti-
cate both sides of a direct session 

between two parties, and to encrypt the 
traffic passing over the authenticated 
session. For applications that fit into the 
footprint of the client/ server architec-
ture, TLS is a fine solution for authenti-
cation and encryption.

However, as applications become 
more sophisticated, client/ server appli-
cations are often challenged to maintain 
availability with a large number of cli-
ents. Middleware layers often serve as a 
means for providing more graceful scal-
ing. The practice of adding layers to the 
application stack connecting communi-
cating parties is called decoupling. De-
coupled applications – applications that 
may contain components like message 
queues or brokers between the message 
sender and receiver – have been around 
for many years. Decoupled designs are 
now employed for building massive IoT 
applications, like smart cities and facili-
ties automation.

Message brokers and other middle-
ware components offer many advan-
tages, but they also add some complica-
tions. One problem is that a message 

broker prevents the sender and receiver 
from establishing a direct session that 
can be secured with TLS. If you don’t 
have a direct connection, how do you 
encrypt the data and also authenticate 
both sides of a session?

This article describes a standards-
based solution to the message security 
problem in a decoupled application.

Message Security in 
Decoupled Apps
The challenge with authentication and 
encryption across decoupled applica-
tions is that there is no direct session to 
secure between the sender and receiver. 
You need to apply security to the mes-
sages themselves to ensure that they ar-
rive unparsed and unchanged.

Digital identity, in its most simple 
form, is a method by which an entity 
can prove ownership of its name. The 
usefulness of a digital identity is di-
rectly tied to how widely recognized the 
identity is, and how effectively the 
identity resists abuse by impersonation. 
Digital certificates are used to bind a 
name to a public key, but different cer-
tificate authorities might create certifi-
cates for the same name, if the right 
controls are not in place. A name is 

Secure decoupled messaging with DANE and the TLSA resource record

 Decoupled and Secure
Decoupled application design gets in the way of secure communication, but a little known 
feature of DNS can provide message security.  By Ash Wilson

 P
h

o
to

 b
y 

D
ay

n
e 

To
p

ki
n

 o
n

 U
n

sp
la

sh
.c

o
m

IN-DEPTH

51LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

Safe Messaging with TLSA



be aware of the need to conform to secu-
rity policies for you own organization.

For this test, you’ll need:
• At least one Raspberry Pi 3 or 4
• Internet connectivity for the devices
• A 16GB microSD card
• A way to get the application image 

onto the Pi’s microSD card (USB mi-
croSD adapter)

• An account with Balena.io, a cloud 
platform for supporting IoT projects (I 
will use the Balena.io account for 
managing the code on the devices)

• An account with a DNS hosting pro-
vider, or your own DNS server (make 
sure you choose a DNS project that 
can present TLSA records)

It is also possible to use docker-compose 
for this experiment instead of Balena.io 
and a Raspberry Pi – see the instructions 
in the code repository’s README.md file.

The first step is to navigate to 
https://  github.  com/  ValiMail/ 
 dane‑message‑security‑mqtt and click 
on Deploy to Balena. This will allow 
you to create a new application in your 
Balena account, and it will start the 
build for the application code.

Download the Balena image for the 
device. Then install Balena Etcher and 
use it to copy the image to the mi-
croSD card. Next, put the microSD 
card in the Pi and plug in power and 
network cables. The Pi will automati-
cally register with the Balena service and 
download the application.

Understanding the 
Message Application
Before I go on (and while you wait for 
Balena to build and ship the application 
to the device), I’ll briefly describe the 
theory of operation for this messaging 

application. The application runs three 
services (as configured in docker-com-
pose.yml): messaging_sender, messaging_
receiver, and maintenance. As you might 
have guessed, the messaging_sender ser-
vice is responsible for signing, encrypt-
ing, and transmitting messages. The mes-
saging_receiver service is responsible for 
retrieving, decrypting, and verifying 
messages. The maintenance service is 
used for managing your keys and certifi-
cates on the device.

This is a decoupled application, so the 
messaging_sender service does not di-
rectly connect to the recipient device’s 
message_receiver service. Instead, the 
devices use HiveMQ’s free message bro-
ker service to get messages from one de-
vice to the other. As an added benefit, 
the use of a public message broker al-
lows you to avoid firewall port forward-
ing – the message broker acts as a server 
for the purpose of establishing a connec-
tion, and the message broker’s publish-
ers and subscribers are clients of the 
message broker.

When the messaging_receiver service 
starts and detects a usable configuration, 
it connects to the message broker as a 
subscriber. On inspecting applications/
messaging_receiver/src/application.py, 
you may notice that there are queues in 
place to act as buffers between the dis-
tinct steps of message processing. Al-
though this could have been written in a 
more synchronous manner, this ap-
proach was taken to improve the read-
ability of the code and more closely rep-
resent how a subscriber might use buff-
ering or queueing to handle a dynamic 
volume of events.

When a message arrives via MQTT, 
the message is placed in a queue con-
taining encrypted messages, named EN-
CRYPTED_MESSAGES. A thread monitors 
the ENCRYPTED_MESSAGES queue for new 

TLSA record is a multifunction tool, 
enabling the user to present informa-
tion about public keys in a variety of 
different ways. The original purpose of 
the TLSA record was to publish con-
straints around how a public key can 
be associated with a name in DNS. For 
instance, a TLSA record can specify 
that only a PKI-validated certificate 
containing a specific public key may be 
used to authenticate a server operating 
on a specific port. This is known as the 
service certificate constraint mode of 
the TLSA record. Using the TLSA re-
cord in this way allows the application 
owner to specify a separate certificate 
for service authentication for each 
TLS-secured port on a server. I will be 
using the TLSA record for something a 
little different: certificate discovery, to 
enable message-based authentication 
and encryption.

Encrypted and 
Authenticated Messaging 
System
To demonstrate these concepts in a 
real-life scenario, I will show you how 
to configure DNS to let users locate 
certificates via the TLSA record. Using 
DNS for discovering certificates allows 
me to distribute the public key so that 
whoever receives the messages can 
validate the sender, and anyone with 
the public key can send encrypted 
messages to the device. For the mes-
sage transport between devices, I will 
use the free MQTT message broker ser-
vice provided by HiveMQ.com. (See 
the box entitled “MQTT.”)

This example is provided as a proof of 
concept. Adapt and expand as needed 
for your own network, and, as always, 

This article assumes that you already 
have some familiarity with DNS. But 
for a little refresher, DNS doles out bits 
of information in the form of resource 
records. The classic record type is the 
A record, which returns a 32-bit IPv4 
address for the specified DNS name, 
but DNS supports dozens of other re-
cord types. For instance, the MX record 
maps the domain name to a mail trans-
fer agent and the CNAME record pro-
vides an alias “canonical name” for the 
specified domain. This flexible system 
allows developers to extend DNS by 

simply adding new resource record 
types.

The dig command-line tool is a quick 
and easy way to interact with DNS. To 
query DNS for the TLSA record defined 
by the DANE standard, use the follow-
ing command:

dig ‑t TLSA ${IDENTITY_NAME}

replacing ${IDENTITY_NAME} with the DNS 
name where you expect to find a certifi-
cate. This command will come in handy 
later, when you configure your device’s 
identity in DNS.

DNS Resource Records

Message Queuing Telemetry Transport, 
or MQTT [2], is a message brokering 
protocol maintained by OASIS, an 
open standards group. MQTT is light-
weight and very widely used in IoT ap-
plications. MQTT is especially useful 
for protecting an application from 
surges of information that may occur in 
large IoT applications, which would 
otherwise require the central process-
ing service to scale dramatically.

MQTT

52

IN-DEPTH
Safe Messaging with TLSA

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



messages. When a new encrypted mes-
sage appears, the thread attempts to 
use the device’s own private key to de-
crypt it. The mechanics of this process 
are handled in the dane_jwe_jws li-
brary [3]. If the message is successfully 
decrypted, it is then placed in the DE-
CRYPTED_MESSAGES queue, where the 
thread that performs authentication 
picks it up.

The process of authenticating the mes-
sage is largely handled in the dane_jwe_
jws library. The JWS [4] message format 
contains a signature-protected field 
named x5u. The x5u field is used to con-
vey the URI where the message sender’s 
x.509 certificate is located. When the re-
ceiver’s message_is_authentic() function 
is called, the underlying dane_jwe_jws li-
brary extracts the contents of the x5u 
field and uses the DNS URI contained 
therein to retrieve the sender’s certificate 
from DNS. If the message authenticates 
against the public key contained in the 
certificate, the decrypted message is 
placed in the AUTHENTICATED_MESSAGES 
queue. The message printer picks up the 
authenticated messages and writes them 
to stdout, along with the authenticated 
sender’s ID.

The messaging_sender service is far 
simpler than the messaging_receiver 
service. When a message is sent, the 
send_message.py script (Listing 1) cre-
ates a JWS object. The JWS object con-
tains the user’s message and the en-
closed x5u field is populated with the 
DNS URI for the sender’s identity, so 
that the recipient can retrieve the send-
er’s certificate from the DNS record. 
The send_message.py script then uses 
the device’s private key to sign the 
JWS object. As with the messaging_re-
ceiver service, the details of the JWS 
and JWE object construction, signing, 
and encrypting are handled in the 
dane_jwe_jws library.

Once a signed object is generated, 
the send_message.py script uses DNS to 
locate the intended recipient’s certifi-
cate. The public key is extracted from 
the certificate and used to generate an 
encrypted JWE object. Finally, the 
send_message.py script connects to the 
message broker as a publisher and 
publishes the JWE object (which con-
tains the signed JWS object) using the 
recipient device’s DNS name as the 
topic. Once the message is sent to the 

01          #!/usr/bin/env python3

02  """Send encrypted messages over MQTT."""

03  import argparse

04  import os

05  import sys

06  

07  from dane_jwe_jws.authentication import Authentication

08  from dane_jwe_jws.encryption import Encryption

09  from dane_discovery.exceptions import TLSAError

10  import paho.mqtt.publish as publish

11  

12  from idlib import Bootstrap

13  

14  

15  def main():

16      """Wrap all."""

17      parser = argparse.ArgumentParser()

18      parser.add_argument( "recipient", help="Recipient DNS name")

19      parser.add_argument( "message", help="Message for recipient")

20      args = parser.parse_args()

21      env_config = get_config()

22      try:

23          payload =  sign_and_encrypt(env_config["identity_name"], env_config["crypto_path"],

24                                      env_config["app_uid"], args.message, args.recipient)

25      except TLSAError as err:

26          print("Trouble retrieving certificate from DNS: {}".format(err))

27          sys.exit(2)

28      topic_name = args.recipient

29      publish.single(topic_name, payload, hostname=env_config["mqtt_host"],

30                     port=int(env_config["mqtt_port"]))

31  

32  

33  def sign_and_encrypt(source_name, crypto_path, app_uid, message, recipient):

34      """Return a signed and encrypted JSON object."""

35      crypto = Bootstrap(source_name, crypto_path, app_uid)

36      signed = Authentication.sign(message, crypto.get_path_for_pki_asset("key"), source_name)

37      return Encryption.encrypt(signed, recipient)

38  

39  

40  def get_config():

41      """Get config from environment variables."""

42      var_names = ["identity_name", "crypto_path", "mqtt_host",

43                   "mqtt_port", "app_uid"]

44      config = {}

45      for x in var_names:

46          config[x] = os.getenv(x.upper())

47      for k, v in config.items():

48          if v is None:

49              print("Missing essential configuration env var: {}".format(k.upper()))

50      if None in config.values():

51          sys.exit(1)

52      return config

53  

54  if __name__ == "__main__":

55      main()

56  

57  # copyright 2021 GitHub, Inc.

Listing 1: send_message.py

Safe Messaging with TLSA

53LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

IN-DEPTH



broker, the send_message.py script dis-
connects from the broker and exits.

At this point, the device should be 
running the proof-of-concept code, 
which was built by Balena.

Configuration
Set each device’s DNS name in Balena.io 
by defining an environment variable 
called IDENTITY_NAME for each device. 
This should be set to the DNS entry that 
will store the device certificate.

Create the device identity credentials, 
using a terminal session in the mainte-
nance container, by running ./create_
selfsigned_id.py. Next, generate the TLSA 
record data by running generate_tlsa.py.

You’ll see a long string of text pro-
duced from the last command. That’s 
the actual TLSA record contents for you 
to place in DNS (Figure 1).

You’ll notice that if you run ls /iden-
tity/, you’ll see a self-signed certifi-
cate and private key. Perform the same 
steps for generating the identity and 
TLSA record for each of your devices. 
Then, copy the TLSA record contents 
for each of your devices into your DNS 
management system. There are a great 
many options for hosting DNS; you can 
pick a DNS hosting provider that sup-
ports the TLSA record type or you can 
use an open-source DNS server like 
PowerDNS. Once your TLSA record is 
correctly configured in your DNS 
server, you will be able to use dig to 
download your certificate. As de-
scribed previously, enter:

dig ‑t TLSA ${IDENTITY_NAME}<I>

where ${IDENTITY_NAME} is your device’s 
DNS name.

In the Balena console, watch the logs 
for the messaging_receiver service. At 
first, you’ll see “Public identity is not 
valid!” messages. These messages will 
go away once the TTL in DNS for record 
nonexistence expires and the certificate 
is available. It shouldn’t be more than a 
minute or two with most DNS servers.

Sending a Message
To send a message between your de-
vices, use the messaging_sender con-
tainer to run the send_message.py com-
mand. This command takes two argu-
ments: the destination device’s DNS 
name and the message itself (Figure 2). 
(Don’t forget the enclosing quotes if 
the message has spaces.) When you 
run this command, the tool uses the 
device’s private key to generate a 

signed JWS object con-
taining your message. 
The tool then grabs the 
recipient’s certificate 
from DNS and uses the 
public key in the certifi-
cate to generate an en-
crypted JWE object, 
which contains the JWS 
object. Finally, the 
signed and encrypted 
object is published to 
the message broker with 
the recipient’s DNS 
name as the topic.

Within a second or 
two, you should see the 
message in the console of 
the recipient device (Fig-
ure 3). The recipient de-
vice listens on the mes-

sage broker for messages with a topic 
matching the device’s DNS name. The 
device then retrieves and decrypts the 
message (JWE object) and then uses the 
sender’s certificate from DNS (which is 
referenced in the JWS object headers) to 
authenticate the message. Finally, the 
message is printed to the console.

These messages all pass through the 
HiveMQ public message broker. You 
can watch your encrypted messages 
scroll by using the web client located 
at http://  www.  hivemq.  com/  demos/ 
 websocket‑client/. First, use the web cli-
ent to connect to the broker (hostname: 
broker.hivemq.com). Next, watch the re-
cipient device’s topic: Use the device’s 
identity name for the topic to monitor.

Call a friend, and ask them to follow 
the same steps. It doesn’t matter if you 
use the same domain, or if you even use 
the same DNS provider. They just need a 
certificate in a TLSA record, and you can 
chat with end-to-end encryption and 

Figure 1: Generating the TLSA record.

Figure 2: Sending a message.

Figure 3: The message arrives on the receiving device.

54

Safe Messaging with TLSA

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



The speed of evolution in those IoT-spe-
cific initiatives leads to many interesting 
and engaging possibilities.

Now you have patterns, tools, and ex-
amples to build on. Go forth and build 
better, more secure applications!  nnn

source authentication knowing only the 
DNS name of the device with which you 
want to communicate.

Postscript
The chat application described in this 
article implements sender authentica-
tion and end-to-end message payload 
encryption in a way that doesn’t re-
quire you to transmit a copy of the 
certificate to everyone who might 
need to authenticate the sender of 
your messages.

Compare this to the common prac-
tice of synchronizing the certificate au-
thority’s set of currently-valid certifi-
cates to every entity that might need to 
authenticate your messages. The 
method described in this article is 
more scalable and straightforward. 
Certificate rotation is straightforward 
too: If you want to replace your de-
vice’s certificate, the only delay in ro-
tation is tied to the time required to 
place the new certificate in DNS and 
wait out the TLSA record’s TTL; the 

recommended TTL for the TLSA record 
is not specified in the DANE RFC and 
is completely under your control.

This system is resilient against naming 
collisions (since there is only one DNS), 
and revoking trust in an identity is as 
simple as deleting the TLSA record from 
DNS. Even though the messages them-
selves pass over a public transport for all 
to see, they are individually encrypted so 
that only the intended recipient may read 
them. Though the message is encrypted, 
the recipient device’s DNS name is still 
revealed in the message topic.

The messaging devices described in 
this article won’t add much convenience 
to your day-to-day life, but they demon-
strate the use of standards and open 
source software to simplify the process of 
end-to-end message security in IoT appli-
cations. Remember: Encryption is only 
part of the solution. Without authentica-
tion, you really can’t establish trust.

Standards bodies have a great deal of 
work ahead to address the many different 
aspects of secure IoT communications. 

Ash Wilson is the Technical Director 
over IoT research at Valimail. He has pre-
sented and volunteered at DEF CON, and 
is currently the a Vice Chair of the IoT SIG 
at the Messaging, Malware, and Mobile 
Anti-Abuse Working Group (M3AAWG) 
https://  www.  m3aawg.  org/.

Author

[1]  DANE RFC:  
https://  tools.  ietf.  org/  html/  rfc7671

[2]  MQTT: https://  mqtt.  org/

[3]  dane_jwe_jws library on PyPI:  
https://  pypi.  org/  project/  dane‑jwe‑jws/

[4]  JOSE Working Group:  
https://  datatracker.  ietf.  org/  group/  jose/ 
 documents/

Info

Safe Messaging with TLSA

IN-DEPTH

https://www.m3aawg.org/
https://tools.ietf.org/html/rfc7671
https://mqtt.org/
https://pypi.org/project/dane-jwe-jws/
https://datatracker.ietf.org/group/jose/documents/
https://datatracker.ietf.org/group/jose/documents/


sudo apt‑get install gnuplot

Gnuplot is typically run as a command-
line utility, but it can also be run manu-
ally, with the charting instructions and 
data values inserted inline. To plot four 
sets of data points in a line chart, you 
could enter:

$ gnuplot

gnuplot> $Mydata << EOD

# Now enter some data

2 1

3 1.5

4 2.1

5 3.3

EOD

gnuplot> plot $Mydata with line

Data block names must begin with a $ 
character, which distinguishes them 
from other types of persistent variables. 

S ome excellent charting and 
plotting packages can be found, 
but if you’re like me, you some-
times just want to do a quick 

dynamic test plot without a lot of cus-
tom setup. Gnuplot is a command-line 
charting utility that has been around for 
a while, and I was amazed how easy it 
was to get up and running. In only 20 
lines of scripting code, I was able to cre-
ate real-time line and bar charts.

In this article, I introduce Gnuplot with 
two dynamic examples: The first shows the 
status of Raspberry Pi I/ O pins, and the sec-
ond is a line chart of CPU diagnostics.

Getting Started
Gnuplot [1] can be installed on Linux, 

Windows, and 
macOS. To install 
Gnuplot on 
Ubuntu, enter:

MakerSpace
Real-time plots in 20 lines

The Plot Twists
Use Gnuplot with command-line utilities. By Pete Metcalfe

Figure 1: A line chart plotted with inline data. Figure 2: A simple bar chart of Raspberry Pi GPIO pins. Le
ad

 Im
ag

e 
©

 V
o

lo
d

ym
yr

 H
o

rb
o

vy
y,

 1
23

rf
.c

o
m

56 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Gnuplot



The end-of-data delimiter (EOD here) can 
be any sequence of characters. For this 
example, the plot command creates a 
line chart from the $Mydata variable 
(Figure 1).

Static Bar Chart
For a simple Gnuplot bar chart, you 
could plot the real-time status of Rasp-
berry Pi general purpose input/ output 
(GPIO) pins. A static bar chart presenta-
tion can be created with a data file 
(called gpio.dat here):

# gpio.dat ‑ data file for GPIO U

             pin values

# column1 = chart position, U

  column2 = heading, column3 = value

0 GPIO2 0

1 GPIO3 1

2 GPIO4 1

# ...

To plot a bar chart (Figure 2), the fill 
style and bar width need to be de-
fined. The using 1:3:xtic(2) argu-
ment, shown in the next code block, 
configures the first column in the data 
file as the x position, the third column as 
the y value, and the second column as 
the x-axis labels. Use the interactive 
commands

$ gnuplot

gnuplot> set style fill solid

gnuplot> set boxwidth 0.5

gnuplot> plot "gpio.dat" U

           using 1:3:xtic(2) U

           with boxes title ""

to plot the file.

Real-Time Bar Chart
The previous example used a manually 
created gpio.dat data file. The current 
status of GPIO pins can be found with the 
gpio command-line utility [2]. For exam-
ple, to get the status of GPIO pin 9, enter:

gpio read 9

By adding some Bash and an Awk script, 
you can create a gpio.dat file:

$ gpio read 9

1

$ gpio read 9 | U

  awk '{ print "9 GPIO9 " $1 }'

9 GPIO9 1

$ gpio read 9 | U

  awk '{ print "9 GPIO9 " $1 }' > U

  gpio.dat

$ cat gpio.dat

9 GPIO9 1

To make a dynamic bar chart, create the 
gpio_bars.txt Gnuplot script shown in 
Listing 1. The Gnuplot scripting lan-
guage is quite powerful and supports a 
wide range of functions and control 
statements.

Rather than manually adding lines for 
each GPIO pin status, a for loop can iter-
ate from pins 2 to 29 (lines 14-17). A 
system command runs the GPIO utility 
and Bash commands (line 16). To refresh 
the data, use the replot and pause com-
mands (lines 18 and 19), and enter

gnuplot ‑persist gpio_bars.txt

to run the script (Figure 3).

Simple Line Chart
A line chart presentation can be created 
from a data file (GPU.dat), as well:

# GPU.dat ‑ a time stamp with two U

            data points

18:48:30 51.0 49.0

18:48:40 50.5 49.5

18:48:45 51.5 49.0

18:48:50 50.0 50.5

18:48:55 50.5 49.5

The interactive Gnuplot commands to 
show a line chart of this data are shown 
in Listing 2. This Gnuplot script requires 
a few extra lines: The plot needs to know 
that the x-axis is time data, and it needs 
to know the format of the time data and 
the x labels.

Multiple data points can be plotted at 
the same time (Figure 4). The using ar-
gument tells Gnuplot how to reference 
the <x>:<y> columns in the data file. (If 

01  # Create a dynamic bar chart that reads GPIO pins every 5 seconds

02  #

03  set title "PI GPIO Data"

04  set boxwidth 0.5

05  set style fill solid

06  

07  # Create a dummy file to get started without errors

08  system "echo '0 GPIO2 1' > gpio.dat"

09  

10  plot "gpio.dat" using 1:3:xtic(2) with boxes title ""

11  

12  while (1) {  # make a new 'gpio.dat' every cycle with fresh data

13    system "echo '' > gpio.dat"

14    do for [i=2:29] {

15      j = i‑2 # put first GPIO pin at position 0

16      sy stem "gpio read " .i.  "  | awk '{ print  \"" . j . " GPIO" . i . " \" $1 
}' >> gpio.dat

17    }

18    replot

19    pause 5

20  }

Listing 1: Dynamic Bar Chart

Figure 3: Dynamic status of Rasp Pi GPIO pins.

57LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

Gnuplot MAKERSPACEMAKERSPACE



CPU: +47.0°C 

Ambient: +38.0°C 

SODIMM: +37.0°C 

…

With some Bash and Awk commands, 
you can get just the fan speed and CPU 
temperature (Listing 3).

Awk supports a systime() call to re-
turn the present date/ time, and a 
strftime() call to customize the presen-
tation. (Note: You might have to install 
gawk – sudo apt‑get install gawk – on 
the Raspberry Pi to get this added func-
tionality.)

Once the measurements have been 
parsed, the next step is to format the 
sensor output with a timestamp:

$ sensors | U

  grep RPM | U

the data file had a third column of data 
points, the using reference to get the 
last column of data would be 1:4:4).

Real-Time Line Chart
Linux has a lot of useful command-line 
troubleshooting tools, such as iostat, 
vmstat, and top, to name just a few. For 
the line chart example, I use the sensors 

utility [3] to get the fan speed and CPU 
temperature of my Linux server. The 
sensors command returns a number of 
lines of information.

$ sensors 

dell_smm‑virtual‑0 

Adapter: Virtual device 

Processor Fan: 2676 RPM 

$ gnuplot

gnuplot> # plot 2 variables in the file GPU.dat

gnuplot> #

gnuplot> set xdata time

gnuplot> set timefmt "%H:%M:%S"

gnuplot> set format x "%H:%M:%S"

gnuplot> plot "GPU.dat" using 1:2 with line title "GPU temp" , "GPU.dat" using 

    1:3:3 with line title "CPU temp"

Listing 2: Line Chart from a File

Figure 4: A simple line chart.

$ sensors | grep RPM

Processor Fan: 2685 RPM

$ sensors | grep RPM | awk '{print $3}'

2685

$ sensors | grep CPU

CPU: +48.0°C

$ sensors | grep CPU | awk '{print $2}'

+48.0°C

$ sensors | grep CPU | awk '{print substr($2,2,4)}'

48.0

Listing 3: Parsing Data

01  # C reate a Plot or User and System CPU Usage, update 

every 5 seconds

02  #

03  set title "GnuPlot ‑ Fan Speed  and CPU Temperature"

04  set yrange [2650:2700]

05  set ylabel "Fan Speed"

06  set y2range [43:49]

07  set y2label "CPU Temp (C)"

08  set y2tics

09  set xdata time

10  set timefmt "%H:%M:%S"

11  set format x "%H:%M:%S"

12  

13  system " sensors | grep RPM | awk '{print 

strftime(\"%H:%M:%S \", systime()) $3}' > fan.dat"

14  system " sensors | grep CPU | awk '{print 

strftime(\"%H:%M:%S \",systime()) 

substr($2,2,4)}'  > cpu.dat"

15  

16  pl ot "fan.dat" using 1:2  with lines axes x1y1 title "fan 

speed (RPM)",  "cpu.dat" using 1:2 with lines axes x1y2 

title "CPU Temp (C)"

17  while (1) {

18    pause 5

19    sy stem "sensors | grep RPM | awk '{print 

strftime(\"%H:%M:%S \", systime()) $3}' >> fan.dat"

20    sy stem "sensors | grep CPU | awk '{print 

strftime(\"%H:%M:%S \", systime()) substr($2,2,4)}'  

>> cpu.dat"

21    replot

22  }

Listing 4: Dynamic Line Chart Script

58 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

GnuplotMAKERSPACE



The complete Gnuplot script to show 
fan speed and CPU temperature is only 
20 lines of code! The command

$ gnuplot ‑persist line_fan_cpu.txt

runs this script (Figure 5).

Final Comments
I won’t give up using plotting packages 
like Matplotlib or ggplot, but I was very 
impressed with how easy it was to create 
real-time plots with Gnuplot.

Manipulating the Bash/ Awk script can 
be a little complex, but it’s incredibly use-
ful to be able to use output from almost 
any command-line utility in Gnuplot.

Gnuplot can plot a large number of data 
points, but it makes sense to do a tail 
command to create a sliding view of the 
latest information.  nnn

  awk '{U

        print strftime("%H:%M:%S ", U

        systime()) $3}'

10:26:46 2685

$sensors | U

  grep CPU | U

  awk '{U

        print strftime(\"%H:%M:%S \",U

        systime()) substr($2,2,4)}'

10:27:46 48.0

After a time and value string have been 
generated, you can create a Gnuplot script, 
line_fan_cpu.txt, to show real-time data 
(Listing 4). To make the script a little easier, 
I create two data files, fan.dat and cpu.dat.

The plot accounts for different scale 
ranges with y2range and y2label defini-
tions. The final addition is to include an 
axis (x1y2 or x1y2) to each plot point that 
lines up the data values to the right or 
left y-axis.

Figure 5: Gnuplot real-time sensor data.

You can investigate more neat projects 
by Pete Metcalfe and his daughters at 
https://  funprojects.  blog.

Author

[1]  Gnuplot documentation:  
http://  www.  gnuplot.  info/

[2]  gpio command-line utility:  
http://  wiringpi.  com/  the‑gpio‑utility/

[3]  sensors command-line utility:  
https://  wiki.  archlinux.  org/  index.  php/ 
 Lm_sensors

Info

nnn

59LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

Gnuplot MAKERSPACE

https://funprojects.blog
http://www.gnuplot.info/
http://wiringpi.com/the-gpio-utility/
https://wiki.archlinux.org/index.php/Lm_sensors
https://wiki.archlinux.org/index.php/Lm_sensors


two monitor connections, the Rasp-
berry Pi had finally come of age [1]. 
Technical details, such as the new 
BCM2711 system on a chip (SoC), 
along with the four Cortex A72 cores 
and up to 4GB of RAM were nearly 
forgotten.

W hen the fourth generation 
of the Raspberry Pi was 
presented in June 2019, 
the Raspberry Pi Founda-

tion fulfilled almost all the wishes of 
its loyal fans. With directly wired Giga-
bit Ethernet, fast USB 3.0 ports, and 

The Raspberry Pi 4 equipped with 8GB of RAM is the top 
end of this popular small-board computer. A 64-bit version 
of Raspberry Pi OS and the ability to boot from storage 
devices connected over USB are also just around the corner. 
By Christoph Langner

A 64-bit Raspberry Pi with 8GB 
of RAM and USB boot

Pi in the Sky

MakerSpace

Figure 1: Check the end number on the memory chip to distinguish 
between the Raspberry Pi 4 variants: D9WHZ (2GB), D9WHV (4GB), and 
the new D9ZCL (8GB). Le

ad
 Im

ag
e 

©
 in

n
o

va
ri

, f
o

to
lia

.c
o

m

60 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE 8GB Raspberry Pi 4



Almost a year later, the Foundation 
launched a new variant of the Raspberry 
Pi 4. Besides versions with 1, 2, and 4GB 
of RAM, the new version was now also 
available with 8GB of RAM for an official 
price of $75 (£73/ EUR78) – hardly a sur-
prise, because the variant was listed in 
the Safety and User Guide enclosed with 
each board, more or less by mistake. 
Technically, the BCM2711 chip on the 
Raspberry Pi 4 can address up to 16GB 
of memory, but no chip manufacturer 
was able to supply LPDDR4 (low power, 
double data rate) chips with 8GB of ca-
pacity for the 2019 release [2].

In terms of components, the 8GB ver-
sion hardly differs from the previous 
Raspberry Pi 4 versions; the only differ-
ence is that the RAM chip’s identifier 
ends in D9ZCL (Figure 1). Having more 
RAM also means a minor adjustment of 
the power supply. Apart from that, the 
boards of the different variants are like 
identical twins.

Raspberry Pi OS
After the memory upgrade, the 8GB 
Raspberry Pi 4 now exceeds the 4GB 
limit that 32-bit systems can ad-
dress [3]. Thanks to a large physical ad-
dress extension (LPAE) kernel, however, 
the entire RAM is accessible by Rasp-
berry Pi OS (the Raspberry Pi Founda-
tion version of Raspbian diverged sig-
nificantly and so became a distinct 
OS [4]), which is still only a 32-bit sys-
tem. However, individual processes 
have to make do with a maximum of 
3GB of memory. Memory-hungry appli-
cations are not usually limited by this 
ceiling, because they typically use mul-
tiple processes. For example, the Chro-
mium browser starts a separate process 
for each tab.

To be prepared for the future, the 
Raspberry Pi Foundation is also work-
ing on a 64-bit version of its operating 
system. Meanwhile, users can install a 
public beta on their Raspberry Pi, if 

they are interested 
in doing so [5]. It is 
important to make 
sure you use a suit-
able version of the 
small-board com-
puter (SBC). Ever 
since the Raspberry 
Pi 2B v1.2, the SBC 
has used 64-bit pro-
cessors (BCM2837-
SoC with ARM Cor-
tex-A53). Since 
Raspberry Pi 3, the 
SBC has only been 
available in a 64-bit 
architecture. The 
Raspberry Pi Zero 
and Zero W, on the 
other hand, are not 
64-bit capable be-
cause they are 
based on the first 
generation of the 
Raspberry Pi.

Booting over 
USB
Another feature of 
the new OS for the 
Raspberry Pi 4 is the 
ability to boot from 
USB. This option is 
recommended for 
scenarios in which 

applications are expected to write a large 
amount of data to the Raspberry Pi’s 
memory card. An SD card is not de-
signed for this type of use and will even-
tually stop working. A classic hard drive 
or solid state drive, on the other hand, 
does not fail, even if it writes large 
amounts of data regularly.

To enable USB boot, you have to in-
stall the system as usual on an SD card 
and update it to the current version 
(Listing 1, first line). Usually you will 
have to update the firmware, as well. 
Firmware versions provided by the 
Raspberry Pi Foundation can be found 
in the filesystem under /lib/firmware/
raspberrypi/bootloader/. The develop-
ers distinguish between stable and 
beta versions (second and third com-
mands) – the beta is only recom-
mended for experienced testers.

The rest of the commands in Listing 1 
check the currently loaded firmware and 
then import the latest version. After a re-
boot, issuing the

vcgencmd bootloader_version

command again reports the new version; 
the date of the bootloader then corre-
sponds to the date contained in the 
name of the pieeprom‑<date>.bin file.

Workarounds
A suitable bootloader is now installed, 
but the 32-bit version of Raspberry Pi 
OS (published on May 27, 2020), 
which was current at the time of test-
ing, could not yet be booted from USB. 
As a workaround, start as usual by in-
stalling the system on an SD card. 
Then install all the current updates 
and transfer the complete data medium 
to the USB storage device connected to 
the Raspberry Pi with the Accessories | 
SD Card Copier menu option. Option-
ally, you can switch to the 64-bit ver-
sion of Raspberry Pi OS: It booted di-
rectly from USB in our lab without any 
workarounds.

If you prefer the 32-bit version of 
Raspberry Pi OS and want to save your-
self the time-consuming procedure of 
transferring a preinstalled system, use 
the boot.zip archive from the download 
section for this article [6]. The archive 
contains a number of .dat and .elf files 
that you need to transfer to the Rasp-
berry Pi OS boot partition (Figure 2). 

$ sudo apt update && sudo apt full‑upgrade

[...]

$ ls ‑al /lib/firmware/raspberrypi/bootloader/stable

[...]

‑rw‑r‑‑r‑‑ 1 root root 524288 Apr 23 17:53 

pieeprom‑2020‑04‑16.bin

‑rw‑r‑‑r‑‑ 1 root root 524288 Jun 17 11:15 

pieeprom‑2020‑06‑15.bin

$ ls ‑al /lib/firmware/raspberrypi/bootloader/beta

[...]

‑rw‑r‑‑r‑‑ 1 root root 524288 Jun 16 11:59 

pieeprom‑2020‑06‑15.bin

‑rw‑r‑‑r‑‑ 1 root root 524288 Jul  8 01:18 

pieeprom‑2020‑07‑06.bin

$ vcgencmd bootloader_version

Apr 16 2020 18:11:26

version a5e1b95f320810c69441557c5f5f0a7f2460dfb8 (release)

timestamp 1587057086

$ cd /lib/firmware/raspberrypi/bootloader/stable

$ sudo rpi‑eeprom‑update ‑d ‑f pieeprom‑<2020‑06‑15>.bin

BCM2711 detected

VL805 firmware in bootloader EEPROM

BOOTFS /boot

*** INSTALLING pieeprom‑<2020‑06‑15>.bin  ***

BOOTFS /boot

EEPROM update pending. Please reboot to apply the update.

Listing 1: Enabling USB Boot

61LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021

8GB Raspberry Pi 4 MAKERSPACEMAKERSPACE



version feels faster subjectively. Booting 
from a USB storage medium also opens 
the way for new potential applications. 
On the one hand, a USB solid state drive 
makes the Raspberry Pi a faster desktop 
replacement; on the other hand, a full-
blown data carrier offers far superior 
protection against memory errors than 
an SD card.  nnn

Because these files overwrite existing 
files, be sure to save the old files first. 
After the action, the operating system 
should boot from USB, even if some 
error messages still appear on the 
screen (Figure 3).

Conclusions
Many applications for the Raspberry Pi do 
not require a large amount of memory, so 
an upgrade to the 8GB Raspberry Pi 4 is 

not a must-have. However, those who 
want to use the Raspberry Pi as a replace-
ment for a desktop computer will be 
pleased with the memory expansion. The 
Foundation only charges a moderate price 
for doubling the RAM capacity (4GB, 
$55/ £54/ EUR58; 8GB, $75/ £73/ EUR78).

What is far more important is the cur-
rent developments that are slowly trans-
lating into updates for the Raspberry Pi 
OS. The 64-bit system available as a beta 

Figure 2: For a freshly installed Raspberry Pi OS (32-bit) to boot from USB, you need to replace the boot files 
with the files in the boot.zip archive.

Figure 3: Starting a 32-bit installation of Raspberry Pi OS on a Rasp-
berry Pi 4 from USB currently requires a number of workarounds.

[1]  Raspberry Pi 4B:  
https://  www.  raspberrypi.  org/  products/ 
 raspberry‑pi‑4‑model‑b/

[2]  “8GB Raspberry Pi 4 now on sale 
at $75”:  
https://  www.  raspberrypi.  org/  blog/ 
 8gb‑raspberry‑pi‑4‑on‑sale‑now‑at‑75

[3]  4GB limit: https://  en.  wikipedia.  org/ 
 wiki/  3_GB_barrier

[4]  Raspbian vs. Raspberry Pi OS:  
https://  unix.  stackexchange.  com/ 
 questions/  602587/  why‑has‑  raspbian‑ 
 apparently‑  been‑renamed‑  into‑ 
 raspberry‑pi‑os

[5]  Raspberry Pi OS (64 bit):  
https://  downloads.  raspberrypi.  org/ 
 raspios_arm64/  images/

[6]  Code for this article:  
ftp://  ftp.  linux‑magazine.  com/  pub/ 
 listings/  linux‑magazine.  com/  244/

Info

nnn

62 MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

8GB Raspberry Pi 4MAKERSPACE

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/blog/8gb-raspberry-pi-4-on-sale-now-at-75
https://www.raspberrypi.org/blog/8gb-raspberry-pi-4-on-sale-now-at-75
https://en.wikipedia.org/wiki/3_GB_barrier
https://en.wikipedia.org/wiki/3_GB_barrier
https://unix.stackexchange.com/questions/602587/why-has-raspbian-apparently-been-renamed-into-raspberry-pi-os
https://unix.stackexchange.com/questions/602587/why-has-raspbian-apparently-been-renamed-into-raspberry-pi-os
https://unix.stackexchange.com/questions/602587/why-has-raspbian-apparently-been-renamed-into-raspberry-pi-os
https://unix.stackexchange.com/questions/602587/why-has-raspbian-apparently-been-renamed-into-raspberry-pi-os
https://downloads.raspberrypi.org/raspios_arm64/images/
https://downloads.raspberrypi.org/raspios_arm64/images/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/244/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/244/


LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 63

INTRODUCTION LINUX VOICE

Those of us who are old enough to recall sitting in a 1980s 
basement and playing with a friend’s Atari set will fondly 
remember the iconic Space Invaders – a simple yet cap-
tivating game that allows you to experience saving the 
Earth by shooting a virtual laser at virtual aliens. (Some of 
us – yes, we’re still around – might even remember the 
original Space Invaders, an arcade game that offered a 
similar experience in barrooms and pinball arcades in the 
late 70s.) The cool thing about Space Invaders was that it 
was simple and unadorned, yet it had all the elements for a 
successful game, and other games have been building 
upon its steady foundation ever since.

This month, Paul Brown provides 
a complete tutorial showing all 
the steps for creating a shooter 
game that captures the spirit of 
Space Invaders using the ver-
satile and powerful Godot 
game engine. We’ll give 
you the basics, and once 
you are familiar with 
Godot, you too can build 
upon the steady founda-
tion by adding your own 
scenes, features, extensions, 
and evermore-evil aliens.

Doghouse – Project Cauā 65
Jon “maddog” Hall
In Latin America, many students qualify 
for free college tuition but don’t attend 
a university because they can’t afford 
the living expenses. To bridge that gap, 
maddog has been working on a new pilot 
program designed to help students with 
computer skills

Material Shell 66
Christoph Langner
The Gnome extension Material Shell 
organizes the windows on your desktop, 
giving you many options for smoothly 
switching between different applications 
and views.

Hugin 70
Karsten Günther
Add this tool for creating panoramic 
images to your image editing toolbox.

FOSSPicks 78
Graham Morrison
Graham looks at the PlotJuggler 3 data 
visualizer, note taking with Xournal++, the 
KStars planetarium, and more!

Tutorial – Gaming with Godot 84
Paul Brown
This open source game engine provides 
all the tools you’ll need to build your own 
shooter game.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m





A bout 15 years ago, a student in Brazil asked at a confer-
ence: “How can I make money with free software?”

Of course there are many ways to make money with 
free software, but if you add open hardware and open culture 
you can do a lot more.

I started thinking about it and making small pilots. Over time, 
more and more issues that stopped it were resolved, and certain 
things that I learned changed the business model or gave it even 
greater utility.

In its current model, the project is targeted to help computer 
science and computer engineering students earn the money for 
living expenses during the time they attend university.

In some Latin American countries, university tuition is free or 
very inexpensive for qualifying students; however, many stu-
dents who work hard in grade school and pass the entrance 
exams still cannot afford to go to university because their fami-
lies are too poor to pay the expenses for housing, Internet, com-
puters, books, and transportation.

Often the students are already working, trying to help their families 
get enough money to pay their bills. This is why many times the el-
dest child never goes to university and the younger ones do. This is a 
horrible crime. Society doesn’t get the best students, only the richest.

The project was set up to take students who already know 
about computers (they have been repairing the computers of 
their extended family and friends for years) and teach them how 
to run their own part-time business while they are in high school 
and into university.

We estimate working only 24 hours a week the students can earn 
enough to live, while doing things with computers (which is what 
they are interested in), not just flipping hamburgers or being a night 
clerk at a hotel. (Note: There is nothing wrong with those profes-
sions; it is just that these students do not want to study those skills.)

Students may have to attend university for five years instead of 
four, but at least they will have a degree and some experience in the 
computer field, as well as experience in running their own company.

The project was designed to be gratis for the students, provid-
ing guidance, mentors, and business models. The students will 
provide first line sales and support to their customers, and form 
a community to help one another.

We had a couple of pilots. We learned from the participants that 
a “service only” model was not what they wanted. They wanted a 
“product” that they could sell as well as service.

We created four products, and we are starting to bring this to 
pilot in Argentina and Brazil in the beginning of 2021. We have 
100 high school seniors in Argentina, 25 students at a university 
in western Brazil, and more students in some northern states of 
Brazil. The hardware is already finished and purchasable; the 
software is finished and is free software.

This is a point of sale (POS) and enterprise resource planning 
(ERP) system built from commodity, widely available inexpensive 
parts. If you have recently gone to a grocery store or McDonald’s, you 
have seen one of these POS/ ERP systems, typically closed source 
and very expensive.

The fact that they are very expensive prevents lots of small 
store owners from using a system like this. The fact that they are 
closed means that the customers can not easily add the simple 
modifications or extensions they need.

A friend of mine owns a restaurant. He has to spend one day 
a month typing the receipts from his suppliers into the system. 
If the system were open source he could strip the formatting 
from his receipts (that he receives via email) and push them 
into the system. However, the closed source module from the 
ERP vendor that allows this would cost $40,000 in US dollars, 
so he types them in.

As we roll out these POS/ERP systems, I will approach my friend 
and offer to help him port from this closed source system to a FOSS 
system based on Odoo, creating a less expensive and more flexible 
system for him and a job for local programmers to support him.

The other thing that we might do for my friend is make some in-
expensive hand-held order input terminals for less than the $3,000 
that the company was going to charge for each terminal.

In the age of COVID-19 and lost jobs, with small stores and 
restaurants trying to start up again, perhaps FOSSH people 
would like to start their own businesses in providing this type 
of product to customers.

After all, if it works in Argentina and Brazil, it may work in other 
places where there are numerous people struggling to make a living, 
which certainly includes many parts of the United States.  nnn

MADDOG’S  
DOGHOUSE
In Latin America, there are many students who qualify for free college tuition 
but don’t attend a university because they can’t afford the living expenses. 
To bridge that gap, maddog has been working on a new pilot program 
designed to help students with computer skills.  BY JON “MADDOG” HALL

Jon “maddog” Hall is an author, 
educator, computer scientist, 
and free software pioneer 
who has been a passionate 
advocate for Linux since 1994 
when he first met Linus Torvalds 
and facilitated the port of 
Linux to a 64-bit system. He 
serves as president of Linux 
International®.

Expanding Opportunity in Latin America

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 65

LINUX VOICEDOGHOUSE – PROJECT CAUĀ



Unlike other Gnome extensions, Material Shell 
does not simply add a new menu or a few new 
icons to the desktop; the extension completely re-
structures the Gnome desktop. For this article, we 
tested how Material Shell performs on Gnome 
3.38.1 based on a current Arch Linux system and 
on Ubuntu 20.10 (also with Gnome 3.38).

Installation
To install, you need the help of the Gnome Shell 
Extensions [4] website. All you have to do is 
open the project site in the browser, flip the 
switch from off to on, and then allow the instal-
lation. For this to work, you may need to enable 
Gnome Shell integration in the web browser you 
are using. Suitable add-ons are available for 

E ver since Xerox Alto, the first workstation 
with a graphical user interface, was intro-
duced in 1973, computer users have been 

pushing windowed applications across the 
screen with a click of the mouse [1]. At that time, 
the motion was still very jerky when moving open 
applications. Today, organizing applications on 
the desktop is hardly likely to faze the computer’s 
graphics card.

Especially on systems with small monitors, 
however, freely floating windows have disadvan-
tages: For example, the control elements for re-
ducing, enlarging, or closing windows require valu-
able space on the screen. The now common 
screen format with resolutions in the 16:9 ratio in-
tensifies the problem compared to the previously 
common 4:3 format. There is a massive amount 
of space available horizontally, but every pixel 
counts in the vertical direction.

Many users therefore prefer a tiling window 
manager (like i3 or herbstluftwm) that orga-
nizes the windows in a static grid on the 
screen. If windows cannot be moved freely, you 
don’t need a window bar. In addition, there is 
often no need to use the mouse – the windows 
can be arranged on the screen using keyboard 
shortcuts.

However, only a few distributions like Regolith [2] 
contain such a window manager in their standard 
configurations, and the window managers retro-
actively installed on other distros often need 
much adjustment. For this reason, tiling window 
managers are still not as widely used as you 
might expect despite their suitability for everyday 
use. If you are tempted to switch to a tiling win-
dow manager but are worried about the installa-
tion overhead it involves, you may want to take a 
look at Material Shell [3]. It is not a standalone 
window manager, but integrates directly into 
Gnome Shell as an extension that can easily be 
turned on or off.

The Gnome extension Material Shell organizes the windows on your desktop, 
giving you many options for smoothly switching between different applications 
and views. BY CHRISTOPH LANGNER

Gnome extension with a tiling function

Strictly Structured

Gnome extensions are known to break when 
upgrading from one version of Gnome to an-
other. In the best case, the extension will sim-
ply stop working; in the worst, Gnome will re-
fuse to start after login. Especially with roll-
ing release distributions, like Arch Linux or 
Manjaro, you therefore need to be sure to dis-
able all Gnome extensions before installing 
version updates.

This situation is also an issue for the Gnome 
developers. With the desktop APIs changing 
with every release, Gnome extensions pro-
grammers have to revise their work and 
adapt it to the new features in a Gnome re-
lease. In the future, however, the Gnome 
desktop’s main developers will be looking to 
work more closely with the community. The 
Gnome Extensions Rebooted initiative prom-
ises a number of improvements [7].

Upgrades

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM66

LINUX VOICE MATERIAL SHELL



Google Chrome and other Chromium-based 
browsers [5] and also for Mozilla’s open source 
browser, Firefox [6].

After importing the extension, the function can 
be (de)activated as required using the Extensions 
app or Optimizations (in the Extensions tab). Using 
the button in the applications window bar, you can 
completely disable and enable support for exten-
sions (Figure 1). This option to disable the exten-
sions is especially important when an upgrade 
from one Gnome version to the next is imminent 
(see the “Upgrades” box).

Always Organized
By enabling Material Shell, the desktop rebuilds it-
self completely. Instead of only one panel at the 
top of the desktop, the shell now shows two pan-
els, top and left at the edge of the screen.

The left bar serves as a system panel, and at the 
bottom of the bar you will find the notification area 
with menus for network access, or shutting down 
and restarting the computer. At the top of the bar 
you will find icons for different workspaces. Mate-
rial Shell allows you to create multiple work-
spaces, or virtual desktops, and this is where you 
will create and switch between them.

You can create additional workspaces by press-
ing the plus button in this left-hand panel. The 

shell automatically adapts the icon of the new 
desktop to the applications loaded there. This 
means that you can distinguish between a desk-
top for the browser, one for image editing, and an-
other for the development environment without 
having to search for them. For example, if you 
launch Gimp or an image viewer, Material Shell au-
tomatically sets a painting palette as an icon. If 
necessary, you can change the icon by right-click-
ing on the entry in the panel.

The Hybrid option shows the icon of the applica-
tion (if there is only one application); the Applica-
tions preview option shows the icons of the pro-
grams currently active on the desktop. Optionally, 
you can select an application category (Figure 2).

The other panel is called the workspace panel, 
and it is found at the top of the screen. This is 
where you will find the applications currently 
loaded in the active workspace as well as a layout 
switcher on the far right that switches between 
the various views.

You need to pay special attention to this switch. 
If you have launched several applications, you can 

Figure 1: In the Extensions app introduced with Gnome 3.36, Gnome finally offers a simple 
interface for managing add-ons.

Figure 2: Material Shell automatically assigns the individ-
ual workspaces icons that reflect the active programs. Figure 3: In Split mode, Material Shell always displays two applications side by side.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 67

MATERIAL SHELL LINUX VOICE



the workspace panel to switch to the windows be-
hind it. If you want to change the order, simply 
drag the corresponding window to the left or right. 
This can be done via the window itself or via the 
tab in the workspace panel. Alternatively use the 
keyboard shortcuts Super+Shift+A (current win-
dow to the left) and Super+Shift+D (to the right). 
The same is true for reordering in the other modes 
(Figure 5).

Good Memory
Many users always start a day at the office with 
the same ritual, for example: Turn on the com-
puter, get a coffee while the computer is booting, 
log back into the system, launch all the applica-
tions needed, and arrange them on the desktop. 
Although Material Shell does not make coffee, it 
does save you from having to start and organize 
your applications.

When logging out of the desktop environment, 
Material Shell remembers the last active applica-
tions and their arrangement on the screen. After 
logging in, the system starts up with the last 
known layout and shows placeholders for the pro-
grams last loaded there (Figure 6). By clicking on 
the individual icons, you can then launch the 
linked applications. If the programs come with a 
session manager, the latest version is automati-
cally loaded.

You can customize Material Shell’s behavior in 
the extensions settings (Figure 7). Open the dialog 
by clicking on the gearwheel icon in Extensions or 
Optimizations. For example, you can enable a bright 
theme, change the color for the highlights in the 
panels, or set individual keyboard shortcuts for 
switching between windows or workspaces. In the 
Layouts tab, you can also selectively disable modes 
that you use only rarely or not at all or enable those 
that are not yet active in the default configuration.

Conclusions
Profound modifications to essential components 
such as the desktop environment should always 
be viewed with a fair dollop of caution. With Mate-
rial Shell, however, you do not have to worry about 
your system’s health. The extension can be dis-
abled again with a single click, and it’s not difficult 
to remove it completely (see the “Uninstalling” 
box). Material Shell rewards users for showing 
enough courage to try something new with a very 
efficient workflow. Especially on systems with 
very small or very large screens it is useful for 
windows to organize themselves automatically 
and find free space.

Material Shell’s appearance is also very orga-
nized. The release of Gnome 3.38 also saw Mate-
rial Shell updated; there were no problems during 
the upgrade. On the project website, the develop-
ers explain to the user in great detail how Material 

click on the icon to switch between the various 
views, such as Maximize (current application maxi-
mized), Split (two applications side by side as 
shown in Figure 3), Half (one application com-
pletely in the left half, the others stacked on top of 
each other on the right) and Grid (all applications 
fitted to a dynamic grid). In Float mode, all windows 
float freely on the desktop as usual (Figure 4).

In Split mode, Material Shell only ever draws two 
applications on the screen at any given time. If 
you are using additional applications, you can use 

Figure 4: Float mode allows application windows to be freely positioned on the screen in 
the usual way.

Figure 5: To reorganize the windows as shown here in Half mode, simply drag the program 
to the desired location.

Figure 6: Material Shell remembers the programs that were active at logout time, and their 
arrangement. When you restart, one click is all it takes to load these applications.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM68

MATERIAL SHELLLINUX VOICE



Shell works, and a demo video gives undecided 
users a taste of the functions. All in all, this is a 
very successful performance.  nnn

Figure 7: Material Shell’s behavior can be extensively customized in the settings. Layouts that you don’t want to use can 
simply be disabled.

Material Shell does not change anything in 
terms of the Gnome Shell’s program base; it 
simply adds new JavaScript code as an ex-
tension. If you want to return to the normal 
Gnome Shell, you simply have to disable the 
extension in the Extensions app (you can de-
lete it completely if necessary). To undo all 
adjustments, you also need to log out of the 
desktop and log back in again.

Uninstalling

[1]  Xerox Alto demo: https://  www.  youtube.  com/  watch?  v=9H79_kKzmFs

[2]  “Regolith and i3: Timely Tiling,” by Christoph Langner and Joe Casad, 
Linux Magazine, issue 231, February 2020, pp. 18-23

[3]  Material Shell: https://  material‑shell.  com

[4]  Gnome Shell Extensions:  
https://  extensions.  gnome.  org/  extension/  3357/  material‑shell

[5]  Gnome Shell Integration for Chrome: https://  wiki.  gnome.  org/  Projects/ 
 GnomeShellIntegrationForChrome/  Installation

[6]  Gnome Shell Integration for Firefox: https://  addons.  mozilla.  org/  en‑US/ 
 firefox/  addon/  gnome‑shell‑integration

[7]  The Gnome Extensions Rebooted initiative: https://  blogs.  gnome.  org/  sri/ 
 2020/  09/  16/  the‑gnome‑extensions‑rebooted‑initiative

Info

nnn

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 69

MATERIAL SHELL LINUX VOICE

https://www.youtube.com/watch?v=9H79_kKzmFs
https://material-shell.com
https://extensions.gnome.org/extension/3357/material-shell
https://wiki.gnome.org/Projects/GnomeShellIntegrationForChrome/Installation
https://wiki.gnome.org/Projects/GnomeShellIntegrationForChrome/Installation
https://addons.mozilla.org/en-US/firefox/addon/gnome-shell-integration
https://addons.mozilla.org/en-US/firefox/addon/gnome-shell-integration
https://blogs.gnome.org/sri/2020/09/16/the-gnome-extensions-rebooted-initiative
https://blogs.gnome.org/sri/2020/09/16/the-gnome-extensions-rebooted-initiative


images worth viewing 10 years ago, the develop-
ers have been working on Enblend and Enfuse 
since 2004, and Panotools was originally released 
in 1998 and has been continuously improved. The 
longevity of these tools shows that they continue 
to be useful even though many cameras now have 
built-in tools for creating panoramas that generate 
more or less capable results.

Keeping It Simple
With images shot in the right way (more on this 
later), creating a panorama with Hugin is simple. 
The main focus of Hugin’s development work in re-
cent years has been to improve the Assistant for 
combining panoramic images, also known as 
stitching. You just need to load the raw material 
and run the Assistant to complete the next steps. If 
you accept the presets and the images meet the 
requirements, the software computes the results in 
less than five minutes (Figure 1). It’s especially 
easy if the images you’re merging into a panorama 
are a landscape with the main features at some 
distance from the camera (Figure 2).

H ugin is a free and open source program 
that has been around for years. Up to 
now, it has mainly been used to create 

large panoramic images from a few – or even 
many – single images. If you use Hugin cor-
rectly, you can create good panoramic images 
very quickly.

However, Hugin also supports other uses that 
include generating HDR images and computing 
super resolution images – large, extremely high-
resolution images created by interpolation. Hugin 
also includes many advanced tools, for example, 
letting users determine the correction data for 
lenses (calibrate_lens_gui). The align_image_
stack command, which is used by many other pro-
grams to align images, is also part of the Hugin 
package.

Hugin [1] was originally developed as a user in-
terface for Panorama Tools, also known as Pan-
oTools [2]. Later, support was added for the com-
bination programs Enblend and Enfuse [3]. Hugin, 
PanoTools, Enblend, and Enfuse are all mature 
tools – Hugin was already producing panoramic 

Hugin is a tool for creating panoramic images, with many additional functions that 
make it a powerful supplement to your image editing toolbox. BY KARSTEN GÜNTHER

Create panoramic images from  
single shots with Hugin

Expert Stitching

Figure 1: This near-
panoramic image is 
composed of eight RAW 
images.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM70

LINUX VOICE HUGIN



In the current version (2019.2.X at the time of 
writing), the Assistant comprises three steps (see 
Figure 3). Step one is loading the images. This is 
where you determine which image is used as the 
reference point for the white balance.

Step two is alignment, where you define the 
control points that allow the alignment of the im-
ages. Various algorithms are available for this pur-
pose; if necessary, you can add or move control 
points manually.

Creating the panorama is the third step. To do 
this, the software distorts the images using the 
control points and then stitches them together by 
blending to conceal the transitions. This distortion 
is similar to a cage transformation in Gimp, where 
the control points serve as anchors.

Shooting Images the Right Way
The better the images fit together and the more 
they overlap, the more accurate the results will be 
and the less distorted they will appear. Many of 
these issues will need to be considered as you are 
taking the photos.

Parallax errors are one potential problem. 
These occur when you have captured the im-
ages to be combined from angles that are too 
different, and the relative position of elements 
within the photos appears to shift [4]. You can 
avoid or reduce parallax errors by rotating 
around the parallax-free fulcrum (NPP: “No-paral-
lax point”) [5], often incorrectly referred to as the 
nodal point. You can achieve this with a special 
adapter for the tripod. For landscape panora-
mas, however, this is often not necessary if you 
rotate the camera only by small angles and use 
large overlaps in the images.

Composite images created indoors or gener-
ally in confined spaces are far more difficult. 
Sometimes it is virtually impossible to take all 
the required images with low parallax from a 

single vantage point, although this would be 
preferable for automatic stitching. Sometimes 
only manual postprocessing of the single im-
ages or many attempts will achieve good results. 
The example in the “A Challenging Subject” box 
shows the overhead that can be required.

With 360-degree panoramas, an additional 
problem arises from the exposure. This often dif-
fers so greatly when you combine shots taken 
against the light and those with the sun at your 
back that there may not be a consistent expo-
sure setting for all the images. Exposure bracket-
ing and several exposure cycles help in these 
cases. You then have a good chance of finding 
suitable images to create a harmonious pan-
orama by manually selecting which single im-
ages to use.

Figure 2: Hugin works 
almost perfectly for 
landscape panoramas with 
distant subjects. This 
example combines three 
individual images.

Figure 3: Hugin’s Assistant 
guides you in three steps 
(1-3) through the process of 
creating the panoramic 
images.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 71

HUGIN LINUX VOICE



These three steps are all you need to create 
360-degree panoramas, although you may want to 
adjust the exposure of the individual images  to 
avoid distinct transitions. Then crop the result so 
that no empty areas are visible. Also, if you use RAW 
images, you first need to develop them digitally. 
Hugin can do this automatically, but it's usually bet-
ter to do it manually (see the “Using RAW Files” box).

The Assistant will guide you through the steps 
automatically, and the result is a PTO file (a Hugin 
project file), which the program parses again later 
on, if needed, to load the settings. During a rerun, 
you can test additional settings, for example, by 
choosing alternative options or generating a HDR 
image as the output. You can add more images to 
the project at any time via drag and drop.

Hugin’s Assistant will default to cropping the 
generated image so that no empty spaces remain 
at the edges. This sometimes reduces the size of 
the image unnecessarily. Missing information in 
the corners can be filled in with software such as 
Gimp by cloning or using the resynthesizer plugin. 
If you take this approach, you are free to manually 
resize the panorama image by setting up another 
frame under Crop or by using the handles to en-
large the area for the output.

Setting Control Points
The control points play a key role in stitching. 
These points, which you or the software set in two 
adjacent images, help the algorithm to determine 
the parameters for defuzzing and fuzzing.

Hugin uses the method selected in Preferences 
to determine the points. This has a considerable 
influence on the quality of the panorama. A status 

Hugin’s Assistant
The Hugin interface takes some getting used to, 
as it connects several elements and you some-
times need to switch between different dialogs on 
different levels while working.

By default, the program starts with a wizard called 
the Assistant, which has already been mentioned 
and that will be described in more detail. In the 
menu under User Interface, you will also find the op-
tions to activate an Advanced and an Expert mode. 
However, you may want to avoid these settings as 
you are getting used to the program.

Below the menu, in a kind of toolbar, you can ac-
cess the various dialogs you might need from As-
sistant to Crop. Again, less is more at first: If the 
Assistant produces good results with the default 
setting, leave things be.

The Norddeutsche Landesbank building in Hanover [6], Germany, (also 
called the Nord/ LB) is considered an architectural highlight of the city. 
However, because it is nestled in the relatively narrow streets of the city 
center, it can be very difficult to find suitable locations to photograph the 
building well.

For nearly all sides of the building, you need to capture partial images 
and stitch them together. From any location on the ground, many parts 
of the building are difficult to see. In addition, there are problems with 
the lenses. It makes sense to use fixed focal lengths with short focal 
lengths and with the camera mounted on a tripod.
Stitching with Hugin quickly reaches its limits, and visible distortions 
begin to appear: the edges of the buildings, the skywalks and other 
structures then appear curved. While this is far from ideal, Gimp can 
help clean up the most serious errors (Figure 4).

A Challenging Subject

Figure 4: Sometimes quite rounded edges appear when stitching. In Gimp, you can clean this up with the Curved Bend filter.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM72

HUGINLINUX VOICE



field of the main window displays the results of 
the alignment (marked with an X in Figure 3). If 
the error values are high, test whether another 
method provides better results or select other im-
ages if necessary.

Which images Hugin is currently previewing 
and using for combination is managed by the 
settings in Displayed Images. The software only 
includes images marked as active in this folder. 
You can see their positions in the panoramic 
image by mousing over the preview while hold-
ing down Ctrl (Figure 6). The software automati-
cally highlights the thumbnails so that you can 
immediately see which images are incorrectly 
positioned.

Hugin shows you the control points in the 
Panorama Editor preview. If this is not the case, 
you can enable this view by pressing Shift+F3 or 
selecting View | Control Points | Show Control 
Points (Figure 7).

Control points located in clouds or other moving 
structures (such as waves or vehicles) are a bad 
choice for stitching. You will want to remove 
them. The Control Points dialog in the Panorama 
Editor is used for manual fine adjustment and for 
creating or removing control points. Figure 8 
shows the window, and the “Alternative Algo-
rithms” box explains the details.

In Figure 8, two adjacent images have been 
selected and are shown in the preview windows. 
If you click on one of the preview windows, the 
program displays a crosshair in both of them. 
You can now move the control point with the 
mouse pointer to achieve identical positioning 
in the two images. To move control points in 
both previews at the same time, hold down Shift 

while dragging the 
mouse. Holding down 
Ctrl moves the image 
in the preview.

This new item is now 
available in the list 
below the preview and 
activated there, as-
suming that the auto 
add button to the right 

The current program version lets you use RAW files directly for pro-
cessing. The required conversion into bitmap images is handled in a 
semi-automated way. For example, if you drag a group of RAW files 
from the file manager directly into the editing window, a dialog box 
appears (Figure 5).
Hugin tells the RAW converters to produce bitmap images in TIFF 
format with 16-bit color depth. This offers you pretty good possibili-
ties for blending.
If there are already sidecar files for the imported RAW files from other 
programs, the software uses them to adopt the parameters for develop-
ing. However, it often makes sense to convert the images manually for 
the best quality. The results are usually better, especially if the light con-
ditions were difficult when taking the pictures.

Using RAW Files

Figure 5: If required, Hugin will automatically convert RAW 
files.

Figure 6: Which part of the panorama is from which image? If you hold down Ctrl while 
mousing over the preview, Hugin will display the source.

Figure 7: Hugin marks the determined control points in the 
preview with a colored X.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 73

HUGIN LINUX VOICE



the preview images into the window, while 1 dis-
plays the preview at the original size.

The default is fit to window, which makes it diffi-
cult to place the control points in large images. It 
is therefore better to switch to a fixed zoom level. 
With auto fine-tune, you set the general location of 
new points manually and then determine their 
exact positions automatically. This procedure usu-
ally gives you good results.

From the Panorama Editor, after changing some 
settings, you can return to the Assistant by select-
ing OpenGL Preview. After determining the control 
points, this shows you a rough preview of the re-
sults. If things look crooked, the Move/ Drag menu 
item lets you move and bend parts of the image to 
minimize distortion (Figure 10).

Use the mouse to grab the panorama approxi-
mately in the middle and drag it down until hori-
zontal lines (say on the ridge of the roof) actually 
look straight. However, this correction is often not 
necessary, as the software has probably incor-
rectly identified the control points in these cases. 
Sometimes it helps to select a projection other 
than the default (in Lens type in the Assistant) and 
use Crop to correct the area for the finished pan-
oramic image.

Align and Crop
In the Assistant, use Align in the toolbar to 
launch the algorithm for arranging the images. 
The order in which they are loaded is irrelevant, 
since the algorithm follows the control points 
when positioning the images. This makes it all 
the more important to make sure the control 
points are set correctly.

The error message enblend: excessive image 
overlap detected; too high risk of defective seam 

of the list is activated. 
You can delete faulty 
control points in this 
list using Del.

The Zoom field to the 
right of this list lets you 
define how Hugin dis-
plays the images in the 
preview. The 0 key fits 

Hugin comes with its own control point gen-
erator (CPFind). In many cases, this delivers 
good results, but it quickly reaches its limits 
with more complex images, such as those of 
the Nord/ LB. Then it is worth taking a look at 
the alternatives: Autopano-SIFT is one of the 
best-known algorithms, but until recently it 
was protected by a patent. With the patent 
expired, it is now possible to use the algo-
rithm freely. The original implementation re-
quires Mono, which makes it a less than at-
tractive option. A variant implemented in C 
(Autopano-sift-C) is now available for many 
systems. In the Nord/ LB example, Autopano-
sift-C finds about twice as many control 
points as CPFind.
You can enable the alternative control point 
generator either by default in Hugin’s config-
uration or directly for the current project in 
the Panorama Editor (Figure 9). This very 
simple dialog is interesting for advanced 
users. It offers a good way of quickly trying 
out different parameters for a panorama, 
whereas the Assistant guides you through 
the options at a fairly leisurely pace. In the 
settings for Feature Matching, you can select 
alternative generators, while Optimize takes 
you to the additional parameters. You can 
also adjust the lens type here if necessary.

Alternative Algorithms

Figure 8: For perfect results, Hugin lets you define control points manually.

Figure 9: The most important options for panoramic images can be quickly adjusted in the 
Panorama Editor to try out alternatives.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM74

HUGINLINUX VOICE



line in the log window indicates that you tried to 
combine too many images with too large an over-
lap. Positioning errors usually do not cause the 
process to abort, but will result in faulty images. 
Figure 11 shows two typical examples.

In both cases, it is best to remove virtually iden-
tical images from the list until the error message 
disappears. Figure 12 shows an example: After 
the number of images was reduced from 26 to 16, 
Hugin computed an attractive panorama.

Create
In the last step, Create, you define how the software 
combines the individual images (Figure 13). This is 
specifically about creating High Dynamic Range 
(HDR) and Low Dynamic Range (LDR) images.

Hugin offers different variants: Exposure fused 
from stacks lets you combine LDR images to cre-
ate an HDR image. Exposure fused from any ar-
rangement lets you combine LDR images to cre-
ate an HDR panorama.

In the upper field of the Size and File Format dia-
log, you can define the format for the output, 
among other things. JPEG means that the soft-
ware only allows the use of LDR images, while 
PNG and TIFF support the use of HDR images 
with up to 16-bit color depth.

Sometimes it makes sense to use the images 
converted by Hugin for manual post-processing. 

By default, the program automatically deletes the 
used copies, but Keep Intermediate Images pre-
vents this from happening.

Next, Hugin automatically enables an additional 
program, the Batch Processor. This controls the 

Figure 10: Moving parts of the image helps you compensate for collapsing lines or 
curved ridges.

Figure 11: One possible cause of error when stitching images is trying to combine too few or too many images.

Figure 12: To create this panorama, the number of images was reduced in the test from the original 26 to 16.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 75

HUGIN LINUX VOICE



process of editing the PTO files generated by 
Hugin. In the best case, Hugin will automatically 
start the current project and finish it without er-
rors. If errors occur, a window opens with related 
messages. Edit with Hugin lets you reread and edit 
the PTO files.

Hugin needs a generous helping of disk space 
to create the panorama. If you work with RAW 
files, for example, it first converts them into large 
TIFF files, which it then saves again – keeping the 
same size – when distorting and blending. Finally, 
an additional output file of several hundred mega-
bytes ends up on your hard disk. The last step – 
but only this one – can be avoided by creating 
JPEG files first. For printing or further processing, 
however, TIFF files are by far the better choice.

In order to keep tabs on the volume of data, 
it is therefore recommended to create only LDR 
variants with JPEG as input and output format 
at first and use HDR-relevant options (expo-
sure bracketing, 16-bit input images, TIFF as 
output format) in the second step only, once 
you have determined the matching images. 
Large panoramas should ideally be created 
step by step to find out whether the individual 
images are correct.

If you save the source images for several pan-
oramas in one directory, another special feature 
of Hugin simplifies the workflow. The program 
offers the possibility to quickly group images 
that belong together – based only on the time of 
creation in the Exif tags – and convert them into 
panoramas. The Batch Processor, which was au-
tomatically activated in the last step, offers a 
Browse for images feature in the File menu. This 
takes you via a small dialog to a list of related im-
ages (Figure 14).

Since the evaluation here is done only on the 
basis of the Exif tags, the software also classi-
fies exposure series and other continuous shoot-
ing as belonging together, which then often leads 
to unwanted results. Nevertheless, this function 
proves to be a fast method for assigning images 
to a panorama.

Preferences
Hugin’s preferences dialog looks quite complex. 
However, most distributions set up the software 
with reasonable defaults during installation. Of 
particular interest is the tab for selecting the con-
trol point algorithms (Figure 15).

Try other algorithms if the default setting does 
not produce sufficiently good results. For exam-
ple, you have the option to select algorithms 
marked by Celeste that do not create control 
points in complex structures in the image. In 
Stitching and Stitching (2),you can set up how 
Hugin creates the panoramas and provides them 
with metadata.

Figure 13: Another dialog lets you define how the program combines the single images.

Figure 14: The Batch Processor automatically determines related images by reference to 
the Exif data.

Figure 15: The way the software determines the control points is defined in the preferences.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM76

HUGINLINUX VOICE



Conclusions
Although modern cameras often have built-in tools 
for creating panoramic images, Hugin offers many 
advantages. Sometimes the built-in camera tools 
do not write RAW files for panoramas, or some-
times the results are technically not convincing. 
Hugin, on the other hand, is universal and, besides 
panoramas, generates HDR images and super res-
olution images as needed. Whenever things get dif-
ficult, the program shows its full potential.

Additional programs such as the calibrate_lens_
gui tool supplement the range of functions to deter-
mine correction data for older lenses – for example, 
from analog timing. The Batch Processor manages 
the process of computing many panoramas, which 
you can then run automatically overnight.  nnn

nnn

[1]  Hugin:  
http://  hugin.  sourceforge.  net

[2]  Panorama Tools:  
https://  sourceforge.  net/  projects/  panotools/

[3]  Enblend and Enfuse:  
https://  sourceforge.  net/  projects/  enblend/

[4]  Parallax error:  
https://  wiki.  panotools.  org/  Parallax

[5]  NPP:  
https://  wiki.  panotools.  org/  NPP

[6]  Nord/ LB: https://  en.  wikipedia.  org/  wiki/ 
 Norddeutsche_Landesbank

Info

HUGIN LINUX VOICE

http://hugin.sourceforge.net
https://sourceforge.net/projects/panotools/
https://sourceforge.net/projects/enblend/
https://wiki.panotools.org/Parallax
https://wiki.panotools.org/NPP
https://en.wikipedia.org/wiki/Norddeutsche_Landesbank
https://en.wikipedia.org/wiki/Norddeutsche_Landesbank


 FOSSPicks
Graham recently needed to read an ancient 3.5-inch floppy disk, but the only 
computer with a drive was his old Amiga 4000. Amazingly, the disk worked, but the 
null-modem serial transfer took all night!  BY GRAHAM MORRISON

Sparkling gems and new  
releases from the world of  
Free and Open Source Software

Project Website
https://  github.  com/  facontidavide/  PlotJuggler

P lotJuggler is an applica-
tion that can help you vi-
sualize timestamped 

data. The timestamp part is im-
portant, because it’s a reference 
to the kind of data that PlotJug-
gler is best capable of parsing 
and visualizing. Typically, this 
means data from sensors, such 
as an orientation value, voltage, 
light sensor resistance, flow me-
ters, and velocity. Sensors can 
even be remote, and PlotJuggler 

will connect via protocols such as 
MQTT, WebSockets, ZeroMQ, and 
UDP. But it can also work from 
data saved to a file, from simple 
CSV to JSON, CBOR, and BSON. 
With this kind of focus, it’s no sur-
prise that the project established 
itself first as a tool for the robot 
operating system (ROS), where 
accurate monitoring and insight-
ful analysis of this kind of data 
has a direct impact on the perfor-
mance and development of the 

hardware. Despite this, as well as its intimidating looks 
and capabilities, PlotJuggler isn’t difficult to use. It can 
even help with more mundane datasets, such as the loca-
tion data from a bike ride, your running cadence from a 
smart watch, or even just your kitchen thermometer. This 
is thanks to its plotting window.

It’s only after you’ve got your data into the application that 
PlotJuggler’s real strengths become apparent. Datasets are 
loaded into a panel on the left (by default) called Timeseries 
List, and this can bundle multiple sources at once. You might 
want GPS data from one sensor, for example, and heart rate 
from another. To plot those values, you simply drag them 
from the Timeseries List into the default 2D plot view that 
takes up most of the window space. You can drag as many 
as you need, and each additional datapoint will be superim-
posed on top of previous values, with the axis and annota-
tions automatically updated for scale. It’s quick and easy to 
understand. Because all this data has a timestamp, you can 
play back the input values as they were received with the 
play button at the bottom of the plot. A cursor will then 
swoop across the plot to show which values were detected 
at which times, a little like it does in Audacity when playing 
an audio file (which is really just a different kind of plot).
The plot window is the most powerful element in the appli-
cation. If you right-click within the view, for example, you can 
split the window both vertically and horizontally into as 
many separate plot panes as you need. You can then drag 
data elements into these panes to have their values plotted 
separately within the same time frame. This is useful if they 
use a completely different scale or set of axes, for instance, 
and you can even choose to lock or unlock the zoom value 
for each individual pane. There’s also a plot editor that al-
lows you to transform multiple inputs into a single output by 
writing a Lua-based function. This would be brilliant for cal-
culating values such as velocity or distances from other val-
ues captured by sensors and then plotting the new derived 
values alongside those measured. Sliding across the data-
points, zooming in and out, and playing back through even 
complex datasets is always super-smooth thanks to the 
OpenGL acceleration. When you find a layout that works 
well for the dataset you’re studying, you can save the entire 
layout, including the data, as an XML file to use for further 
analysis or to reload into the application to continue work.

Data visualizer

PlotJuggler 3

1. Data formats: PlotJuggler can import numbers in many different formats and 
packages. 2. Streaming data: Grab real-time data from your robots and devices with 
MQTT and other protocols. 3. Timeseries List: Each set of data you import is listed here, 
and you simply drag a source into the plot to generate the chart. 4. Plot area: The data is 
rendered beautifully with OpenGL, allowing for seamless automatic scaling and zooming. 
5. Tabs and splits: Split a single view into multiple panes, or create a new tab and drag in 
as many data sources as you need. 6. Linked views: With panes locked together, the 
same data point is always in view.. 7. Data processing: Calculate derivatives, integrals, 
and moving averages to generate new datapoints. 8. Playback: Every datapoint is linked 
to a timestamp, allowing you to play back the data as it was captured.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM78

LINUX VOICE FOSSPICKS

https://github.com/facontidavide/PlotJuggler


Note taking

Xournal++
T hat there are so many 

note-taking applications is 
perhaps a reflection of 

how personal note taking can be. 
We all have our own proven meth-
ods and routines. But one of the 
best accepted ways of taking 
notes is by actually writing or draw-
ing them, rather than typing them 
on a keyboard. The physical act of 
drawing something seems to help 
the brain with categorization and 
recall, whereas typing can be more 
passive. There are far fewer note-
taking applications capable of 
working with this kind of sketch, 
but Xournal++ is one of them. 
Xournal++ has been designed first 
for written, rather than typed, note 
taking, which is also why there are 
versions for the web, Android, 
Chrome OS, and (imminently) iOS, 
alongside the GTK+ desktop ver-

sion we’re looking at. The UI, too, is 
entirely tailored for drawing rather 
than typing and beautifully de-
signed and rendered. Its default 
background simulates the lines 
and margins you’d find on a typical 
notebook, inviting you to start 
drawing, but you can change this 
into graph paper, your own back-
ground, and even musical staves.

Drawing is accomplished with a 
simple click and drag, just as it 
would be in an art package. It’s 
obviously much easier with a 
touchscreen or stylus, or even 
with a drawing tablet where pres-
sure is taken into account, but it’s 
also passable with non-acceler-
ated mouse or touchpad settings. 
There’s a choice of tip thickness 
and easy access to a color palette 
containing common pen colors, 
as well as tools for drawing com-

mon shapes. You can also record an audio annotation 
while you’re scribbling. Pages can be inserted before or 
after the current page, and you can create two or more col-
umns and switch the layout between vertical and horizon-
tal. The entire project can then be saved or exported as a 
PDF or PNG with or without the eye candy paper style. It’s a 
wonderful application to use, and it works perfectly.

Project Website
https://  github.  com/  xournalpp/  xournalpp

As well as taking notes, Xournal++ can be used to make presenta-
tions and even annotate PDFs.

Galaxy Buds utility

LiveBudsCLI

A s Linux users, we’re fa-
miliar with not being able 
to use the latest shiny 

Apple and Samsung devices with 
our computers, especially now 
that so many rely on companion 
smartphone apps to control their 
configurations. This can be diffi-
cult when devices such as Ap-
ple’s AirPods, or Samsung’s Gal-
axy Buds Live, are some of the 
best devices in their class. For 
the latter, however, we now have 
LiveBudsCLI, a brilliant open 
source tool that lets you control 
all aspects of your Samsung in-
ear earbuds from the luxury of 
your Linux command line. Live-
BudsCLI works with both Galaxy 
Buds Live and Galaxy Buds+. 
After first pairing your device in 
the normal Bluetooth way for 
your system, you need to run the 

earbuds ‑d command. This 
launches a background daemon 
that will monitor your buds and 
enables LiveBudsCLI to con-
stantly report on their status. It 
even creates a PulseAudio sink 
so that your desktop audio can 
be easily routed to your head-
phones, which can then be con-
trolled with any MPRIS-compati-
ble controllers. The daemon will 
then send a desktop notification 
when your batteries are low.

Typing earbuds ‑status will tell 
you all about the state of your ear-
buds, including battery percent-
ages for both the left and right 
buds, whether noise reduction or 
touches are enabled, and even 
your ear temperature for both left 
and right ears! If a value can be 
changed, there’s an option to 
change it. Type earbuds set 

equalizer dynamic to change the equalizer setting, for in-
stance, or earbuds set tap‑action spotify left to set an 
application to launch with a long tap of the left bud. The 
command even embeds scripts to add auto-complete to 
your chosen shell, so you don’t need to remember all the 
parameters. It works brilliantly and mimics every function 
in the bloated and privacy lobotomized smartphone app.

Project Website
https://  github.  com/  JojiiOfficial/  LiveBudsCli

Without this brilliant utility, your Galaxy Buds earbuds are stuck with 
poor quality sound presets.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 79

FOSSPICKS LINUX VOICE

https://github.com/xournalpp/xournalpp
https://github.com/JojiiOfficial/LiveBudsCli


Drive saver

hd-idle

O ne of the best things 
about Linux is that it’s 
easy to augment your 

distribution’s base functional-
ity with whatever tools and util-
ities you need for your own 
specific hardware. It’s com-
mon to use the sensors pack-
age to monitor system temper-
atures and fan speeds, for ex-
ample, or to install the thermal 
daemon, thermald, to control 
the fan speed across different 
temperature thresholds to save 
power or to maximize perfor-
mance. While you can often 
monitor storage temperatures 
with these tools, neither will let 
you control how and when an 
external disk can be sus-
pended to save both power 
and wear and tear on your 
hardware. But this is some-

thing you can do with hd-idle, a 
modern re-implementation of 
Christian Mueller’s hd-idle with 
some additional features.

Hd-idle is a utility that navi-
gates the syntax and protocols 
associated with spinning down 
a hard drive for you, without 
you having to understand or 
study the principles. Without 
hd-idle, it can even be difficult 
getting a drive to listen to your 
hdparm power management 
and standby incantations, but 
hd-idle seems to sidestep all of 
this and “just work,” at least on 
the drives we tested it with. 
This is important because the 
data on your drives is obviously 
precious, and you don’t want to 
make a mistake. With a simple 
configuration file to edit and a 
single command to run, your 

drive will spin down and sleep after whatever duration 
you’ve set, and this includes external USB drives. If you 
do encounter problems, there’s an excellent debug 
mode that will output everything, including spin up and 
spin down times in an attempt to highlight an issue. 
But for most of us, hd-idle will just work, and after test-
ing from the command line can safely be daemonized 
to a systemd service and left to run automatically in 
the background.

Project Website
https://  github.  com/  adelolmo/  hd-idle

Spinning down a drive too regularly can lead to damage, which is 
why hd-idle defaults to a safe 10 minutes.

Planetarium

KStars 3.5
S tars, such as our sun, go 

through dramatic changes: 
From an initial particle 

cloud 4.5 billion years ago full of 
gravitational potential energy, to its 
transformation via thermal energy, 
to its current main sequence state. 
From here, the sun will potentially 
become a red giant, a white dwarf, 
and then finally a black dwarf, a 
process that could take another 5 
billion years. But even in two years, 
things can change. A new solar 
minimum, powerful solar flares, 
and coronal mass ejections have 
all occurred over the last couple of 
years. But there have been other 
developments over that period that 
are almost as significant; for one, 
there’s a new version of KStars, one 
of the best tools for exploring the 
solar system and beyond from your 
humble Linux box.

Like our sun, KStars goes 
through cycles of activity and inac-
tivity, and this is a period of activity. 
The new release is worlds away 
from the KStars that seemed stati-
cally linked to the KDE 3 and KDE 4 
desktops. It’s now a tool capable 
of some serious exploring, rather 
than a tool that nicely rendered the 
night sky. A new solving algorithm, 
StellarSolver, has been retooled to 
work inside KStars, and it brings 
with it all kinds of improvements, 
including fewer dependencies, con-
figuration files, and temporary files. 
It also enables improved Ekos inte-
gration, for example, helping you 
automate telescope guidance as 
well as make sense of any images 
you take, without requiring any ex-
ternal applications. The FITS astro-
nomical data viewer too now sup-
ports image formats like JPEG, 

PNG, and RAW files from many DSLR cameras, helping you 
do more from a single application. The application itself is 
still one of the best planetarium applications, now with won-
derfully accelerated OpenGL hardware acceleration, freely 
downloadable star catalogs containing millions of targets, 
and even an Android version for stargazing on the go.

Project Website
https://  edu.  kde.  org/  kstars/

Thanks to a slew of new features, KStars is now an application 
capable of supporting some serious all-night observation sessions.

FOSSPICKSLINUX VOICE

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM80

https://github.com/adelolmo/hd-idle
https://edu.kde.org/kstars/


Windows VST bridge

yabridge
I t’s always surprising just 

how many excellent and in-
novative audio production 

tools you find on Linux. As 
we’ve said many times before, 
they may not have the profes-
sional sheen of the commercial 
mainstays on macOS and Win-
dows, but they make up for that 
in flexibility and rapid progress. 
Yabridge is one of the best ex-
amples of this. The “ya” in its 
name refers to the oft-used 
phrase “Yet Another,” and in this 
case, yabridge is “yet another 
way to use Windows VST pl-
ugins on Linux.” This is quite 
self-deprecating, because, 
while there are indeed a few 
projects that try to do the same 
thing, yabridge is the best. For 
the uninitiated, VST plugins are 
discrete audio instruments and 

effect-processing applications. 
There are thousands, from 
samplers and synthesizers to 
spring reverbs and noise reduc-
ers, and there are an order of 
magnitude more VST plugins 
for Windows than there are for 
Linux, especially of the com-
mercial variety.

As is the Linux way, many 
Windows VSTs can be made to 
work on Linux, but it can be a 
complex and convoluted pro-
cess that involves Wine, Pulse-
Audio, and the VST SDK. 
Yabridge abstracts this com-
plexity into a single package 
that’s even available as a binary 
download. It promises some 
level of compatibility with hun-
dreds of VST plugins, including 
commercial stalwarts from Na-
tive Instruments, Serum, and 

PSPaudioware. Installation still requires you to have a 
functioning version of Wine Staging, which you then use 
to install whatever Windows VST plugins you wish to 
use. Yabridge will then detect these and operate as the 
“bridge” between the Windows-embedded VST installa-
tion and the native Linux VST host running on your sys-
tem. As long as your favorite Linux audio application 
supports Linux VSTs, the Windows-VST served by 
yabridge will appear as Linux-native instruments and ef-
fects, delivering the best of both worlds.

Project Website
https://  github.  com/  robbert-vdh/  yabridge

Yabridge lets you run some of the best Windows-only VST synths 
and audio effects on your Linux desktop.

Network monitor

pktvisor

A month rarely goes by 
without a new CPU 
monitoring tool being 

created. But network monitor-
ing, by comparison, suffers 
from a lack of decent tools for 
ordinary users. Ntop is a good 
high-level tool, and Wireshark 
is deep and complex, but 
there’s very little in-between 
the two, and this is where pkt-
visor could help. Pktvisor is 
roughly analogous to Top, but 
it deals with network packets 
instead of CPU usage. This tool 
lists, categorizes, sorts, and 
highlights the quantity and 
type of packets as they’re con-
sumed or produced by various 
processes on your system or 
network. One possible negative 
is that its default installation is 
via a Docker container. This 

does have lots of understand-
able advantages when you 
want to install on a cloud in-
stance, or without making local 
network changes, but it also 
makes the package opaque 
and difficult to analyze. That 
can be a tough sell when you’re 
trusting a packet monitor with 
access to your data. Fortu-
nately, it’s not too difficult to 
build and run outside of Docker 
if you’re prepared to go through 
the manual process.

There are two main elements 
in the package: a background 
daemon that collects the data 
and makes it available over its 
own REST API and a terminal 
GUI that makes the data readily 
accessible. They both have 
their own configuration op-
tions, and it’s also relatively 

easy to use the REST API with your own monitoring 
application to extract the data you need. It’s worth the 
effort, because, with just a single terminal view, pktvi-
sor gives you a fantastic overview of the state of your 
network. The top pane shows packet rates and counts 
by protocol version, while the bottom pane is split into 
14 top-10 lists showing details including which IPs 
and qualified names are being accessed the most, top 
QTYPES, geolocations, and server fails, all of which 
are easily accessible and constantly updated.

Project Website
https://  github.  com/  ns1/  pktvisor

The daemon’s REST API makes it easy to import your packet 
telemetry into other analysis and monitoring tools.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 81

https://github.com/robbert-vdh/yabridge
https://github.com/ns1/pktvisor


Hex editor

ImHex
H ex editors are cool. Even 

when you don’t know 
what you’re doing, they 

can be a thought-provoking tool to 
play with. Hex, or hexadecimal, is a 
number system that represents 
16 decimal values starting with 0 
as a single digit, with 0 to 9 fol-
lowed by a, b, c, d, e, and f (for the 
double digit decimals 10 to 15). 
This is useful because computers 
typically process binary values in 
multiples of 16 bits, which are eas-
ily represented with a single 0 to f 
character in hexadecimal. This is 

what hex editors do, and they’re an 
acute reminder that despite all ap-
pearances, your computer really is 
just iterating over a set of instruc-
tions with a set of data. Even the 
humble xxd command, which sim-
ply creates a hexadecimal dump 
of its input, can reveal the hidden 
secrets of whatever binary files 
you have read access to, from the 
crude text strings programmers 
often compile into their code, to 
the data structures they use to 
hold values.

ImHex has far more features 
than xxd and is likely to appeal to 
those pursuing more ambitious 
projects. It’s one of the most pow-
erful hex editors we’ve ever seen, 

with a sprawling desktop GUI that can quickly 
become complicated but that easily com-
petes with popular commercial editors for 
other platforms. The “Im” in the project name 
is used to denote that ImHex has been built 
with Dear ImGui, a graphical interface library 
for C++. It’s fast, powerful, and efficient, and it 
allows developers to quickly iterate over their 
design ideas. You can see this in the applica-
tion itself, as every pixel has been made to 
count, with very little space for superfluous 
design. The main window acts as a dock for 
the various smaller panes you can enable or 
disable. These can either float freely, or be 
dragged into various docking positions within 
the main window. Every pane is filled with de-
tails, often with draggable borders to make 
use of any empty space. This can make the 
application difficult to use on a high-DPI dis-
play, but it’s also excusable at the moment. 
The project is nascent, and while there’s no 
way to currently configure the scaling, or 
change the default dark color palette, these 
options will surely come.

The lack of configurability does not mean 
functionality suffers in the same way. The de-
velopment focus has obviously been on creat-
ing a full-fledged powerful hex editor first, and 
ImHex goes way beyond viewing and editing 
binary files. The editor is still the heart of the 
application, but it also lets you copy bytes, 
strings, arrays from popular languages, and 
various markups. These functions are aug-
mented by the floating and dockable panes, 
which include a disassembler that can convert 
ARM, x86, PowerPC, SPARC, M68K, and other 
binaries into their native CPU instructions. This 
can help with debugging, but also with reverse 
engineering. It works well with the analysis 
pane, which visually shows the distribution of 
byte values across the file and can help you 
discern which parts are compressed or en-
crypted, or contain text or instructions. It will 
even attempt to decode magic file values, such 
as MIME type, and how you entropy values in a 
graph. There’s a tools pane that shows ASCII 
and color values for quick reference, a string 
tracker that can help you track values through 
the file you’re analyzing, and a regex replacer 
that can simplify making batch edits across a 
file. ImHex includes everything you need to an-
alyze and unpick all kinds of files and executa-
bles from all kinds of legacy and modern sys-
tems and rip them into their constituent 
threads. Both figuratively and literally.

Project Website
https://  github.  com/  WerWolv/  ImHex

Click on a location in the hex editor and the disassembler will sync to whatever 
instruction it’s associated with, whether it’s 16, 32, or 64 bit, from the Amiga’s 
68000 to the ARM64.

The data inspector instantly interprets a selected value as various data types, 
characters, numbers, dates, and even colors.

FOSSPICKSLINUX VOICE

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM82

https://github.com/WerWolv/ImHex


Stock trading simulator

TradeSim
I t’s difficult getting into trading 

stocks because it involves 
learning with real money. Even 

the free simulation sites are typi-
cally linked to real trading portals, 
which will then try to tempt you 
into their paid-for accounts after 
they’ve no doubt created a model 
for your behavior from the data 
you’ve provided them. TradeSim 
doesn’t have that problem because 
it’s the open source beginnings of a 
game you can play on your local 
machine, and it starts with import-
ing a set of data you can use to test 
your instincts. The package in-
cludes access to Euro and GBP to 
USD currency databases from 
2019 and 2020. They can be down-
loaded in-game, but also manually 
as an SQLite database from the 
project’s GitHub account. With 
these imported, you create a new 
simulation from the start wizard, 

give yourself some arbitrary credits 
and start the game.
The aim of the game is to make a 
profit; buy at one price and hope-
fully sell at a higher price. The 
main window shows a candlestick 
chart for the beginning of the time 
period in the selected database. 
This candlestick chart will be fa-
miliar to anyone who’s dealt with 
stocks or digital currency. They’re 
like bar charts, with variably long 
rectangles going up or down, col-
ored green or red respectively. 
Each rectangular bar has a vari-
ably long stick (their wicks) in the 
middle of the top and/ or bottom 
sides, and they look a little like can-
dlesticks. Either end of each bar is 
the open and close price for a time 
period, while each end of any wick 
is the highest and lowest price of-
fered in the same period. They 
allow you to judge demand, and it’s 

supposedly possible to recognize certain patterns as trends 
on which you can predict and capitalize. Press play in the 
game and time moves on automatically through the data. 
This is where the game element comes in, as TradeSim 
tracks your profits and losses as you buy time points in the 
chart. It’s brilliantly executed. While it’s early days for the 
game itself, we can’t wait to see how it develops.

Project Website
https://  github.  com/  horaciodrs/  TradeSim

TradeSim won’t help you understand the cynical entropy of bitcoin 
prices, but it will help you understand candlestick charts and trading 
volumes.

S auerbraten is an old-
school first person 
shooter (FPS) that’s also 

really old. The previous major re-
lease was in 2013. Since then it 
has been languishing on Source-
Forge. The game itself offers the 
usual fare of reflex-fast baddy 
blasting through everything from 
dark Medieval corridors to tropi-
cal islands in the sky. There’s 
also the usual array of weapons, 
from shotguns to sniper rifles 
and era-defining heavy metal 
music. You can play capture the 
flag and team tactics, among a 
huge variety of other modes, and 
you can spawn bots if you’d 
rather practice against your CPU 
than other people’s brains. This 
is all what you’d expect from 
such a game. But there are some 

original elements too, such as 
being able to edit the map in-
game, and the almost 200 new 
maps that come in this first 
major update for so many years.
These kinds of games are never 
judged on their originality. Instead, 
they’re judged on their playability, 
and this is a difficult quality to de-
fine. It often takes hundreds of 
playing hours to decide whether 
an FPS has got it, and there are 
enough people still filling the on-
line lobbies of Cube 2 to suggest 
it’s a game that does. Certainly, 
the limited, twitchy fast move-
ment, small area, and weapon ac-
curacy make each map a seri-
ously challenging environment 
that needs to be mastered. The 
good news is there’s little modern 
complexity, such as roles and up-

grade trees. Because the graphics are old, they’re now 
lightening fast even on old hardware. This release ports 
the graphics to SDL2, so the game will continue to work 
for some time yet. But more importantly, there are still 
many people playing it, and it’s a perfect way to spend 
20 minutes after a day of video calls.

Project Website
http://  sauerbraten.  org/

Cube 2 offers some of the best classic FPS gameplay this side of the 
millennium.

Multiplayer FPS

Cube 2: Sauerbraten

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 83

https://github.com/horaciodrs/TradeSim
http://sauerbraten.org/


Tower Defense
The documentation says Godot development is 
scene-based, and the first thing you have to grok is 
that a “scene,” in Godot parlance, is a bunch of nodes 
(more about nodes in a minute) that work together.

Take the turret defending Earth in a Space In-
vaders video game. The image (or images, in case 
of an animation) of the turret, the collision map 
that lets you detect when it touches another game 
element, the sound it makes when it fires, etc., are 
all the different nodes that give life to the turret en-
tity. This is what Godot calls a scene (Figure 2).

I’ll start by building a turret that the player can move 
left or right across the bottom of the screen and that 
animates when the player hits the fire button.

Start up Godot and choose New Project from the 
Projects tab in the Projects Manager dialog. Give your 
game a name, select an empty folder to store all 
the stuff in it, and click Create and edit.

The first screen in the designer looks very exciting, 
with a 3D plane extending off into infinity. Unfortu-
nately you won’t be using that, as Spaced Marauders 
is a 2D game. Your workspace will look more like 
Figure 3. To get to that 2D editor, click on the 2D label 
in the top center of the screen (Figure 3, section 6).

In the default layout, on the top left you have the 
Scene dock (Figure 3, section 2) that will contain 

W riting a game from scratch is hard, and 
that’s why nobody does it anymore. 
Game creators instead use “engines” 

that combine a framework and a comprehensive 
set of tools that let you skip the drudgery and get 
to the creative parts right away. Godot [1] is one of 
the most popular free and open source game en-
gines, and, after a couple of weeks playing with it, I 
can see why.

The Concept
One of Godot’s creators, Juan “reduz” Linietsky, 
stated that the name “Godot” is a reference to the 
homonymous gentleman in Samuel Beckett’s 
play. Godot, in the play, never arrives and, in a simi-
lar manner, Linietsky says the Godot game engine 
will never be entirely finished, as it can always be 
improved and expanded.

After six years of active development, Godot 
has grown to include a huge variety of tools. 
The best way to demonstrate Godot’s capabili-
ties is simply to build a game from beginning to 
end. So let’s make a game of tactical interstellar 
warfare that … Who am I kidding? It’s Space In-
vaders; we’re making Space Invaders, people 
(Figure 1).

Creating a game requires a wide set of skills to combine graphics, animations, 
sound, double-clicks, and meticulous coding. The free and open source Godot 
game engine provides you with all the tools you need to get started.
BY PAUL BROWN

Build a complete game with the Godot game engine

Gaming for Godot

Figure 1: You will be making a Space Invaders clone with Godot.
Figure 2: A “scene” is a bunch of related nodes that work 
together.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM84

LINUX VOICE TUTORIAL – GAMING WITH GODOT



the nodes for your current scene. Below that you 
have the FileSystem dock, where you can see your 
assets – that is, your files containing code, im-
ages, sounds, etc. (Figure 3, section 4). Center 
stage is the workspace (Figure 3, section 1) show-
ing an image of the assets linked to the current 
node (if there are any) on the playing field. This 
view changes to a text editor when you need to 
start coding. On the right is the Inspector (Figure 3, 
section 3), which will show the properties of the 
currently selected node. Another tab behind Inspec-
tor called Nodes will show the signals you can lever-
age for the selected node and options for group-
ing similar nodes together. The usefulness of both 
will become clear later.

Go back to the Scene dock (Figure 3, section 2). 
If you haven’t done anything yet, it will be show-
ing several suggestions of nodes to add. Click on 
+ Other Node to open a list of available nodes. 
There are a lot, but you can filter the options using 
the search function at the top of the dialog. Type area 
in the search box and chose Area2D from the list.

The node’s names are pretty good descriptions 
of what they are; Area2D is an area that contains a 
2D object. Usually, all the things that have to 
change when they “touch” each other (like the tur-
ret being hit by bullets or aliens) will be Area2D 
nodes. Once picked and added to your scene, you 
will see that Godot places a yellow warning icon 
next to the empty Area2D node. If you click on the 
warning icon, Godot tells you that an Area2D is not 
useful until it contains a collision shape. Double-
click on the node’s title of the node and edit the text 
to Turret. Press Ctrl+S to save the scene, and Godot 
will suggest Turret.tscn. That name is fine.

Before adding a collision shape, you will need 
to know what to base the shape on, namely the 

picture of the turret. You can use something like 
what you can see in Figure 4. Go to the directory 
where you are saving your Godot project and cre-
ate a new subdirectory called art. Copy your 
image in there. If you would like to use the stuff 
I drew for this project, all art, code, and sounds 
are available online [2].

Click on your Turret node to highlight it, and ei-
ther click on the plus (+) sign in the upper left-
hand corner of the dock or press Ctrl+A to add a 
new subnode. As you can see in Figure 4, the tur-
ret image is really a sequence of images (i.e., an 
animation containing six frames in one image). 
This is what Godot calls a sprite sheet. The idea is 
that every time you fire, the cannon will recoil be-
fore firing again.

If you start typing anima into Create New Node‘s 
search bar, the first option that pops up is Animat-
edSprite and that is exactly what you need. Dou-
ble-click on it to add it under your Turret node. The 
AnimatedSprite node comes with another yellow 
warning icon, this time telling you that you need 
to add an image before you will be able to see 
anything.

Cross over to the right of the screen to the Inspec-
tor (Figure 3, section 3) and notice how the Frames 
property says it is [empty]. Click on the arrow point-
ing down in the box and pick New SpriteFrames from 
the drop-down menu. A new horizontal panel, Sprite-
Frames, will open across the bottom of the work-
space (Figure 3, section 7). Locate the Add Frames 

Figure 3: Anatomy of Godot's editor: workspace (1), Scene dock(2), Inspector/Node tabs (3), Filesystem dock, (4) playback 
toolbar (5), editor modes (6), Animations pane (7), and main menu (8).

Figure 4: The turret is actually a sprite sheet containing six frames in one PNG image.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 85

TUTORIAL – GAMING WITH GODOT LINUX VOICE



Before you continue, it is a good idea to lock all 
the graphical nodes in your scene together so you 
don’t pick one up by mistake and move it sepa-
rately from the others. Click on the top Turret node 
to select it, and then click on the tool that keeps 
the subnodes from being selected separately. It is 
the 12th icon from the left above the workspace 
(Figure 3, section 1) and looks like the icon shown 
in the green box in Figure 2.

Once you have locked all your nodes together, 
pick up the image of your turret by clicking and 
dragging on it in the workspace and move it 
somewhere near the center of the playing field so 
you can see clearly what happens next. The play-
ing field is shown as a faint purple rectangle in the 
workspace.

One of Godot’s tenets is that you should be able 
to test each scene separately, without having to 
run the complete project. This helps isolate prob-
lems later on, when you have put it all together. 
You have now reached a point in which you can 
“play” your first scene.

At the top right of the screen, there is a series of 
buttons (Figure 3, section 5). You can use the Play 
button (an icon with an arrow pointing to the right) or 
press F5 to play the whole project, but as we haven’t 
defined the main scene, you can’t do that just yet. 
Two icons to the right of the Play button is another 
one that looks like a movie clapper. Click it (or press 
F6), and it will play only the selected scene.

When you hit the Play Scene button, not much 
happens. Indeed, it looks like nothing happens: 
Your turret pops into existence on the playing field 
wherever you dragged it to and just sits there, no 
animation, no nothing. But that is fine, as you have 
not yet told Godot under which circumstances you 
want to animate the turret.

Getting Animated
This is where you need to start coding. Godot sup-
ports several programming languages, including a 
visual node-based one. But the best option is 
probably GDScript [3], a language similar to Python 
but designed specifically for Godot.

Although Godot does let you write scripts that 
are independent from the nodes, most will be as-
sociated with nodes. Such is the case with Turret, 
as you are going to link a script with its Area2D 
node. Select the node from the Scene dock by 
clicking on it and then click on the Attach Script icon 
in the toolbar (Figure 2, yellow box).

A dialog box pops up asking what language you 
want to use for the script (Godot has no problem 
letting you use different languages for different 
nodes), what it inherits (you usually won’t want to 
change this), the template you want to use (Default 
is fine), whether the script will be built-in (don’t 
choose that, otherwise you will not be able to edit 
the script with an external editor), and the path 

from Sprite Sheet button in the Animation Frames toolbar 
(second from left; it looks like a grid).

A file browser dialog opens. Navigate to the art 
directory you created earlier and pick the image 
containing the frames shown in Figure 4. It is im-
portant that all the frames are the same size and 
shape, as Godot will now ask you how you want to 
split the frames.

Change the value in the Horizontal text box to 6 
(meaning there are 6 frames along the horizontal 
axis), change the value in the Vertical text box to 1 
(meaning there is only one row of frames), and 
click Select/ Clear All Frames to select all the frames. 
A set of six blue boxes will surround each frame. 
Click on Add 6 Frames at the bottom of the dialog to 
add them to your node. The frames will appear in 
the SpriteFrames pane at the bottom of the window 
and the sprite will take the shape of the first frame 
and show up in the upper left corner of the playing 
field (Figure 5). You can now rename your anima-
tion “fire,” move frames around, or copy and paste 
frames into different positions.

Looping is fine for things like walk cycles or 
spinning wheels, but with your turret, you want the 
cannon to retract once and then stop the anima-
tion until the fire button is pressed again. So deac-
tivate looping by switching off the Loop toggle but-
ton in the bottom left of the panel, and change the 
frames per second (FPS) to something like 40, so 
that it doesn’t look like the cannon is recoiling in 
slow motion.

In the properties, changing the value of Frame 
will show the corresponding frame on your turret 
in the editor, and ticking the Playing checkbox will 
play the animation once (because I deactivated 
looping). If you need to change anything else 
about the animation, click on the arrow pointing 
down in the Frames drop-down and choose Edit 
from the list of options. Use the arrow pointing left 
at the top of the Inspector dock to get back to the 
AnimatedSprite‘s main property list when you’re 
done editing the animation.

Figure 5: Adding a sprite sheet shows the frames in the SpriteFrames panel and the first 
frame on the playing field in the upper left-hand corner.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM86

TUTORIAL – GAMING WITH GODOTLINUX VOICE



where you want to store the script in your resources 
directory.

Once you click Create, a scroll icon representing 
the script will appear to the left of the name of the 
node (Figure 2, red box). Click on the scroll icon 
and the script will open in the script editor, show-
ing you the default template (Listing 1).

Things to note:
n  When you associate a script with a node, 

GDScript treats the node like a class, and your 
script extends the class. Hence, line 1 in the 
script for our Turret scene will read extends 
Area2D. If you change the type of node later on, 
you will have to change line 1 by hand to the 
node’s new type, or Godot will be unable to run 
the scene.

n  In GDScript, like in Python, indentation matters. 
When you create a function, start a loop, or es-
tablish a conditional structure, you must indent 
its contents.

n  The Godot project publishes a style guide [4] 
that you can ignore, but you would be advised to 
follow it to keep your code nice and organized.

The template provides you with two ready-
made functions that are very common in many 
node-attached scripts: _ready() and _process().
The _ready() function is called automatically 
when the object (node) is instantiated for the 
first time (i.e., when it is pulled in as part of the 
game). When an alien pops into existence at the 
beginning of a level, Godot looks for the alien’s _
ready() function first. You can use _ready() to 
set the node’s properties when it starts. You 
could, for example, set the coordinates of an 
alien on the playing field.

The _process() function is called every game 
frame to update the node. If the node contains an 
animation, it will update the frame; if the node is 
moving, it will update its position.

The _process() function’s delta variable provides 
what is called “game time,” a way to calculate the 
state of things taking into account how long has 
passed since the node’s _process() function was 
last called. For example, say a node’s sprite is mov-
ing at 400 pixels per second horizontally across 
the screen, and the last time the node’s _process() 
function was called was half a second ago (delta 
= 0.5). To find out where to paint the sprite next, 
you just have to multiply the sprite’s speed by the 
delta (400 x 0.5), and Godot will show the sprite 
200 pixels from its prior position.

In _process() is where you are going to do the first 
modification. Get rid of all the quoted lines and un-
quote line 12 (func _process(delta):) and change 
line 13 from pass to $AnimatedSprite.play("fire"). 
Note that this line has to be indented.

Using a dollar sign ($) plus the node’s name is 
the way you refer to nodes in the node tree. In this 
case, you want to call $AnimatedSprite‘s play() 
method. How do you know $AnimatedSprite has a 
play() method? Because as soon as you type the 
point (.) after $AnimatedSprite, the GDScript editor 
pops up a useful list of the methods and attributes 
you can use with that particular node, and play() 
is on said list. The GDScript documentation also 
has a list of all the types of objects/ nodes [5], and 
that list tells you what methods you can use with 
which node. Look for AnimatedSprite, and you will 
learn that the play() method plays the animation 
you pass it as a parameter. In this case, the fire ani-
mation you made earlier plays. The final script 
looks like what you can see in Listing 2.

Now run the scene. The turret will animate, as if 
firing bullets out of its cannon. You can also see 
the scene working in the editor if you want. Add a 
line that says tool to the beginning of your script 
and save it, and the scene will play out as you edit. 
You only want the firing animation to play when 

the player hits the fire 
button. To do that, you 
have to be able to read 
input from the player.

Button Smashing
Godot is prepared to 
read input from most 
sources. Keyboards 

01  extends [Node Type]

02  

03  # Declare member variables here. Examples:

04  # var a = 2

05  # var b = "text"

06  

07  # Called when the node enters the scene tree for the first time.

08  func _ready():

09    pass # Replace with function body.

10  

11  # C alled every frame. 'delta' is the elapsed time since the previous 

frame.

12  #func _process(delta):

13  #  pass

Listing 1: GDScript’s Default Node Template

01  extends Area2D

02  

03  func _ready():

04    pass

05  

06  func _process(delta):

07    $AnimatedSprite.play("fire")

Listing 2: Turret.gd (v1)

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 87

TUTORIAL – GAMING WITH GODOT LINUX VOICE



if Input.is_action_pressed("ui_left"):

and Godot will check for the left arrow button on a 
keyboard, but also the left button on the D-Pad on 
a game controller, and in a bunch of other places 
so you don’t have to code them in explicitly.

What’s great about this is that you can also cre-
ate your own shortcuts. Although there is no pre-
programmed shortcut for a “fire” button, you can 
make one easily. Visit the Project menu in the main 
menu (Figure 3, section 8) and select Project Set-
tings… . A dialog will open with all the properties for 
your game. Select the Input Map tab, and you will see 
all the available shortcuts. Take a moment to re-
view what’s available. To add a new shortcut, fill in 
the name in the Action text box at the top of the dia-
log. Call the new action ui_fire. Click the Add button, 
and the action will appear at the bottom of the list.

To attach an input to the action, click on the + 
symbol to the right of your action and pick Key 
from the drop-down menu that appears. A pop-up 
dialog will appear urging you to press a key. Hit 
your space bar and the Ok button, and Space will 
appear under the ui_fire action. Click on the + again 
and pick Joy Button from the pop-up. Looking at the 
previously mentioned list [6], you see that JOY_R2 is 
the right trigger button on most controllers. Pick 
R2 from the drop-down and click Add.

Go back to your script and change the line:

if Input.is_key_pressed(KEY_SPACE):

to

if Input.is_action_pressed("ui_fire"):

Now the animation will play when you press 
space and when you hit the right trigger button on 
the game controller. While you’re at it, let’s add 
movement to the turret. It only needs to move left 
and right, so you can make do with something like 
what you can see in Listing 4.

There’s a lot of interesting new stuff going on in 
Listing 4. On line 3, you set up a variable called 
speed that contains the speed at which the turret 
will move along the screen. The number is in pix-
els per second. The screen_size variable (line 4) 
will contain the width and height of the screen.

The _ready() function (lines 6 to 8) uses the in-
built get_viewport_rect() GDScript function to get 
the details from the viewport and copy the size 
into the screen_size variable you declared earlier. 
The size attribute contains two values, x for the 
horizontal length of the playing field, and y for the 
vertical length. Use those values to position the 
turret halfway across the bottom of the screen 
(line 8). The position is of Area2D nodes.

Next up, edit the _process() function by defining 
a velocity variable (line 11). Note that velocity in 

and mice are obviously supported, but so are 
most game controllers and touchscreen buttons. 
Let’s start simple, though, and link the turret’s fire 
animation to when the player hits the space bar.

GDScript’s Input object simplifies reading from 
peripherals and lets you do things like what you 
can see in Listing 3. This listing shows how to 
check whether a key pressed is a specific key (in 
this case a SPACE) and then trigger an action.

GDScript’s KEY_SPACE inbuilt constant is one of 
many supported by Godot. You can find a list of 
other constants and variables on the website [6]. 
These cover most of the keys you can find on key-
boards and the buttons, triggers, and joystick po-
sitions you’ll find on most controllers. Note that 
the true in the $AnimatedSprite‘s play() method 
(line 3) ensures the animation bounces back and 
the cannon does not stay retracted after the shot. 
When you run the scene, make sure that the Ani-
matedSprite’s Playing and Loop properties are both 
off, and the animation will play only when you hit 
the space bar.

You would be right to feel chuffed already, but 
you can do one better. Apart from addressing 

specific keys and but-
tons, Godot has short-
cuts for left, right, up, 
and down, so if you 
want to check if the 
player wants to move 
left, you can do

01  func _process(delta):

02    if Input.is_key_pressed(KEY_SPACE):

03      $AnimatedSprite.play("fire", true)

Listing 3: process() (Turret.gd)

01  extends Area2D

02  

03  var speed = 400

04  var screen_size

05  

06  func _ready():

07    screen_size = get_viewport_rect().size

08    position = (Vector2(screen_size.x/2, screen_size.y‑32))

09  

10  func _process(delta):

11    var velocity = Vector2(0, 0)

12  

13    if Input.is_action_pressed("ui_right"):

14      velocity.x += 1

15    if Input.is_action_pressed("ui_left"):

16      velocity.x ‑= 1

17    if velocity.length() > 0:

18      velocity = velocity.normalized() * speed

19    if Input.is_action_pressed("ui_fire"):

20      $AnimatedSprite.play("fire", true)

21  

22    position += velocity * delta

23    position.x = clamp(position.x, 32, screen_size.x ‑ 32)

Listing 4: Turret.gd (v2)

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM88

TUTORIAL – GAMING WITH GODOTLINUX VOICE



this context is not the same as speed. While speed is 
scalar value, velocity is a vector. Indeed, Vector2 is 
a special kind of GDScript type that indicates the di-
rection of the object. Usually, vector values vary be-
tween -1 and 1, so a vector with the values of, say, 
(1, 0) would point straight to the right; with a value 
of (1, -1), it would point up (lower numbers are 
higher up on the y axis in Godot) and to the right in 
a 45 degree angle; a value of (0.5, 1) would point 
down and to the right in a 63.4 degree angle.

Although the turret will be moving on a horizontal 
line (making vectors a bit of an overkill), it is a good 
habit to use vectors for movement and physical 
forces, as most inbuilt attributes use them. Either 
way, on line 11 velocity is set to (0, 0). On lines 13 to 
16, we check the input and add and subtract from 
the velocity accordingly. If there has been move-
ment, the length of velocity will be larger than zero 
(line 17), and we will normalize it and multiply it by 
the speed (line 18).

“Normalizing” entails figuring out the position of 
the node depending on the angle of the vector. Say 
the speed is 10 pixels per second. If the velocity is 
(1, 0), after one second, the sprite will have moved 
10 pixels to the right from its prior position. If the 
velocity is (0, 1), the sprite will have moved 10 pixels 
down. But if the velocity is (1, 1), for example, it 
won’t have moved 10 pixels to the right and 10 pix-
els left in one second, because then it would have 
traveled the square root of 200 (as per Pythagoras, 
the square root of 10 squared plus 10 squared) – 
that is, 14.1 pixels in one second. Godot’s normal‑
ized() function figures out the correct values for 
the vector by dividing each component by the 
length of the vector. Normalizing is not strictly nec-
essary for sprites that move perfectly horizontally 
or vertically, but it is good practice to include it.

Line 22 calculates the new position of your sprite 
by adding the velocity to the current position and 
multiplying by the time that has passed since the 
last time this function was run. Line 23 clamps the 
turret’s position – that is, it limits it, in this case, to 
the left and right limits of the playing field. This 
stops the sprite from going over the edge and disap-
pearing into gameland oblivion.

Taking Shape
The final piece the turret needs is its collision shape. 
You need a collision shape, because Godot doesn’t 
know what bits of your image are meant to be solid.

Click on the + in the Scene dock to add a new 
node and look for CollisionPolygon2D. The moment 
you add it to your Turret node, the yellow warning 
sign disappears from the top node, but a new 
one appears next to your CollisionPolygon2D node. 
This is because the latter node is not complete 
without a defined shape. To add a shape, click on 
the CollisionPolygon2D node to select it, look at the 
Inspector dock on the right, and click on PoolVector2 

Array (size 0). The zero indicates that there are no 
vertices in the shape yet.

Once you click PoolVector2 Array (size 0), the text 
will turn blue indicating it is in “edit” mode. In the 
workspace, use the Ctrl+mouse wheel to zoom in 
on the turret and click on one of its corners. A 
small dot will appear where you clicked. That is 
your first vertex. Move the cursor, and a red line 
between the first point and your cursor will ap-
pear. Follow the contour of the turret, clicking at 
every corner to set the vertices of the shape (Fig-
ure 6, left). To close the shape, move to the first 
vertex you set and click on it (Figure 6, right).

Congratulations! No more warning icons. Your 
turret now has a shape that can collide and be col-
lided with. Let’s just give it something to collide 
with. The turret’s enemies are the aliens you can 
see in Figure 7. To incorporate them into your 
game, click on the + symbol over the central work-
space to create a new scene and add an Area2D 
node as the top node. Rename the node Enemy and 
press Ctrl+S to save everything as Enemy.tscn.

Add an AnimatedSprite node under Enemy. As all the 
enemies will behave in the same way, you can add 
all the animations from 
Figure 7 to the same 
node (Figure 8). To load 
in the skully frames, pro-
ceed like you did with the 
turret. Then, click on the 
New Animation button (Ani-
mations dock, top left) 
and add in cthulhy and 
then repeat the process 
for medussy. This time 
you do want the anima-
tion to loop, so make 
sure the Loop switch is 
on. The default FPS 
speed of 5 is fine.

In the Inspector dock, 
you can choose which 
animation to preview in 
the Animation drop 
down. Clicking the Play-
ing checkbox will play 

Figure 6: Drawing a collision shape (left) and the final shape covering your sprite (right).

Figure 7: Your player’s enemies: skully, cthulhy, and 
medussy (from top to bottom).

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 89

TUTORIAL – GAMING WITH GODOT LINUX VOICE



dock on the left, and pick a plain and simple Node 
from the list.

Change the name Node to Main and click on the 
icon showing three connected chain links (Instance 
a Scene) in the Scene dock toolbar located directly 
above the node you just created. This will open a 
dialog with the available scenes, namely Turret and 
Enemy. Select both and click the Open button.

The Turret and Enemy scenes will now appear as 
nodes of Main. If you run Main, both scenes will run as 
one (Figure 9). However, when the enemy and turret 
meet, nothing happens: The alien drifts over the tur-
ret as if it wasn’t there. In fact, a collision is happen-
ing; it is just that you are not doing anything with it.

To solve this, click on the Turret node in Main to se-
lect it; over on the right of the Godot editor, click on 
the Node tab (located next to the Inspector tab). This 
will show all the signals/ events available to the cur-
rently selected node, the Area2D Turret in this case.

The first one reads area_entered(area: Area2D), and 
it is a signal that is triggered when another body 
with a collision shape hits the current Area2D node. 
This is exactly what we need now. Click on it to 
select it and click the Connect button at the bottom 
of the dock.

A dialog will open with a list of nodes under 
Main. What Godot is asking you here is which node 
the signal is going to affect. As an experiment, 
let’s just make the alien stop in its tracks when the 
turret hits it. As the node affected by the signal will 
be the alien, pick the Enemy node from the list.

In the text box at the bottom, Godot suggests _
on_Turret_area_entered. This is the name of the func-
tion/ method that will run when the signal is trig-
gered. You could change it or make it point to 
functions you have already written to manage the 
signal, but in this case you can just click Connect.

Godot opens the scripting editor and provides you 
with an empty template for the _on_Turret_area_en‑
tered() function. Edit the function so it looks like 
what you can see in Listing 6. Save your work, run 
Main, and when the alien hits the turret, it will stop in 

the animation on a loop so you can check that ev-
erything is working correctly.

Add a CollisionShape2D to the Enemy node. This is 
simpler than the CollisionPolygon2D we used for the 
turret, because you can pick a fixed Shape in the In-
spector, and you don’t have to faff around with verti-
ces and segments. I picked a circle, and that works 
just fine. Listing 5 shows how you could move a 
medussy alien from left to right across the bottom 
of the screen and have it animated to boot.

Collisions
What we need now is to combine both the turret 

and enemy scenes so 
that both elements are 
on screen at the same 
time. To do that, create 
a new scene by clicking 
on the + sign over the 
main workspace area, 
choose Other Nodes from 
the options in the Scene 

Figure 8: As all the enemies behave in the same way, you can load all three animations into 
the same AnimatedSprite node.

01  extends Area2D

02  

03  var speed = 80

04  var screen_size

05  var direction = 1

06  

07  func _ready():

08    screen_size = get_viewport_rect().size

09    position = Vector2(32, screen_size.y ‑ 32)

10  

11  func _process(delta):

12    var velocity = direction * speed

13    position.x += velocity * delta

14  

15    $AnimatedSprite.play("medussy")

Listing 5: Enemy.gd

01  func _on_Turret_area_entered(area):

02    speed = 0

Listing 6: _on_Turret_area_entered() (Enemy.gd)

Figure 9: By instancing scenes Turret and Enemy under an umbrella scene called Main, you 
can make them both run as one.

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM90

TUTORIAL – GAMING WITH GODOTLINUX VOICE



its tracks. You can also do something more exciting 
and make your turret explode.

Explosions
To show this explosion, you will add a new anima-
tion to your turret. As I am terrible at drawing ani-
mated explosions, I resort to the excellent Open 
Game Art [7] for these kind of things and, specifi-
cally, to an explosion designed by Ben Hickling 
(Figure 10) that he generously distributes under a 
CC0 license.

Set the animation not to loop and the FPS to 25. 
Go to your Main node again, select the Turret node 
from the list of instanced nodes, and go to the 
Node tab on the far right of the editor screen. Se-
lect the area_entered(…) signal again, click Connect, 
and connect it to the Turret node. That’s right, there 
is no problem in connecting one signal to several 
nodes. As before, this will automatically create a 
function to handle the signal and open the editor 
to fill it in. Add the code shown in Listing 7.

In Listing 7, the first thing you do is that, when 
the Turret collides with an alien, you stop it in its 
tracks (line 2) and then move it upwards 20 pixels 
(line 3). I found that the explosion was a bit bigger 
than the image of the turret; if it is not moved up, 
a lot of the explosion happens off the bottom of 
the playing field. Once in place, run the animation 
proper on line 4.

Godot’s inbuilt yield() function (line 5) stops all 
the action on the node until something occurs 
(i.e., a signal is triggered). It takes two parameters: 
the node to watch and the event (signal) to watch 
for. In this case, Turret‘s AnimatedSprite has a signal 
that indicates that the animation has finished 
(you can check it by selecting the AnimatedSprite 
node under Turret and then looking up the anima-
tion_finished() signal in the Node dock). That is what 
you tell Godot to wait for. If it didn’t wait, Godot 
would quickly go on to the next step in the pro-
gram, and you would probably not see the explo-
sion at all, because the next step is to hide() the 
node (line 6) and then disable it (line 7).

You use Godot’s set_deferred() function to set 
a property of a node to a certain value. The differ-
ence between using set_deferred() and just doing 
property = value is that set_deferred() waits until 
the current game frame ends and then updates 
the property before the next frame starts.

Finally, on line 8, the GDScript’s queue_free() 
function releases and removes the node from the 
node tree, effectively purging it from the game. 
Run Main and watch how the turret explodes in a 
ball of fire when the alien touches it. Yay!

Lining Up the Alien Invasion
In the traditional game of Space Invaders, aliens 
start at the top of the screen, march right, reach 
the right edge of the screen, move down a certain 

number of pixels, and then start marching left. 
When they reach the left side of the screen, they 
again shuffle down, change direction, and start 
marching right again.

You may think that the way to do that is to 
check the position of an alien every time it moves. 
I guess that would be fine if we were talking about 
one alien, but what about 60, 70, or 100? Checking 
every frame for every alien is a massive waste of 
computing resources.

Turns out collision shapes are useful here too. 
The trick consists of creating a new scene (let’s 
call it Limits) that contains two CollisionShape2D 
nodes, each of which is a segment. Then you cre-
ate a script for Limits that extends the segment 
along the left and right border of the playing field 
from top to bottom. Listing 8 shows how this 
would work.

Next instance Limits into the Main node so you 
can connect Limits‘s area_entered signal to an on_
Limits_area_entered() function in Enemy.gd (List-
ing 9). Find the line in Enemy.gd that says

01  func _on_Turret_area_entered(area):

02    speed = 0

03    position.y ‑= 20

04    $AnimatedSprite.play("explosion")

05    yield($AnimatedSprite, "animation_finished")

06    hide()

07    set_deferred("disabled", true)

08    queue_free()

Listing 7:  _on_Turret_area_entered(area) (Turret.gd )

Figure 10: A cool, 50-frame explosion animation created by Ben Hickling and available from 
Open Game Art.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 91

TUTORIAL – GAMING WITH GODOT LINUX VOICE



Main scene. Finally, on line 10, call start(), a new 
function you create in Enemy.gd (Listing 11) for each 
enemy. The start() function actually places the alien 
on the playing field. Run Main and you will see a 
bunch of critters a-crawling across the playing field.

This looks like we’re halfway there, but there are 
still problems. One of them is that you already in-
stantiated Enemy once so you could pass the signal 
from Limits on to it. This means that one random 
alien that doesn’t belong to the legion pops up in the 
upper left-hand corner and behaves strangely. An-
other problem is that when the first column of aliens 
hits the right side of the playing field, there is a con-
fusing cascade of signals that make deciding what 
each alien should do next very hard.

It is much easier to treat the invading army as a 
unit for some things and as individuals for others; 
you also want to tell Godot to wait until the aliens 
clear the limits before checking to see if the signal 
has fired again. To fix these problems, first re-
move Enemy from the list of instantiated objects in 
Main, open the Enemy scene, and click on the Node 
tab in the dock on the right side of the editor. Note 
that, apart from Signals, there is another set of op-
tions under a heading that says Groups. Add a new 
group by typing enemies in the text box and click-
ing the Add button. Now, every time a new alien is 
created, like when the legion of invaders is gener-
ated at the beginning of each level, each critter 
will be added to the enemies group. Re-write the 
code for Enemy.gd so it looks like Listing 12.

Aliens Advance
Now you need to create a scene the sole purpose 
of which is to act as a container for all those 
aliens and manage their movement. Create a new 
scene and add a plain Node node to it. Rename the 
node Swarm and save the scene as Swarm.tscn.

To solve the problem of the aliens still touching 
the limits for several consecutive frames, Godot 
provides Timers; so under the top Swarm node, add 
a Timer node (look for “timer” in the Create New Node 
dialog). Rename your timer CollisionTimer and view 
its properties in the Inspector dock. Set its Wait time 
to 0.25 seconds and check the One shot checkbox.

One shot timers start when you tell them, count 
down the time you tell them, and then stop until 
the next time you need to start them. Non-one 
shot timers count down the time you tell them and 
then immediately start again until you tell them to 
stop looping. As you want a timer that only starts 
when the first alien hits a limit on the edge of the 

position = Vector2(32, screen_size.y ‑ 32)

and change it to

position = Vector2(32, 32)

so that the alien starts marching at the top of the 
playing field and run Main. Your alien will now march 
along the top of the playing field and move down-
wards and switch direction when it reaches an edge. 
But one alien an invasion does not make, so the next 
step would be to create many aliens. To do this you 
could try something like what is shown in Listing 10.

Using Main.gd‘s _ready() method, set up an array 
with the different animations of the aliens (line 2) 
and then loop over the array and make two lines of 
10 aliens each in formation, similar to what you 
can see in Figure 1. On line 8, GDScript’s preload() 
function loads data from a resource on disk, in this 
case the Enemy scene, and puts a pointer to its in-
stance into the enemy variable. GDScript’s add‑
child() function then adds each instance to the 

01  extends Area2D

02  

03  func _ready():

04    var screen_size = get_viewport_rect().size

05    $Left.shape.a = Vector2 (0, 0)

06    $Left.shape.b = Vector2 (0, screen_size.y)

07  

08    $Right.shape.a = Vector2 (screen_size.x, 0)

09    $Right.shape.b = Vector2 (screen_size.x, screen_size.y)

Listing 8: Limits.gd

01  func _on_Limits_area_entered(area):

02    direction = ‑direction

03    position.y += 10

Listing 9: on_Limits_area_entered() (Enemy.gd)

01  func start(start_position, alien):

02    position = start_position

03    animation = alien

Listing 11: start() (Enemy.gd)

01  func _ready():

02    var enemy_types = ["skully", "cthulhy", "medussy"]

03    var row_y_location = 0

04  

05    for alien in enemy_types:

06      for _j in range (2):

07        for i in range(10):

08          var enemy = preload("res://Enemy.tscn").instance()

09          add_child(enemy)

10          enemy.start(Vector2((i * 64) + 50, row_y_location + 50), alien)

11        row_y_location += 64

Listing 10: _ready() (Main.gd)

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM92

TUTORIAL – GAMING WITH GODOTLINUX VOICE



playing field, one shot is the way to go. A quarter 
of a second is plenty of time to clear the limit 
when the invaders change direction. Add the 
script in Listing 13 to the Swarm node.

The new_level() function (lines 3 to 13), which 
you will call from Main.gd, fills in the rows of 
aliens. More interesting are the _on_Limits_area_
entered(area): and _on_Turret_area_entered(area) 
functions. The first manages what happens when 
an alien hits the limit. It checks to see if the timer 
is running. If not, it means it’s the first alien to hit a 
limit in awhile, so it proceeds to start the timer 
and calls Enemy.gd‘s switch_direction() function 
to force all the aliens in the enemies group (i.e., all 
of them) to change direction.

On the other hand, if the signal is fired and the 
timer is already running, it means another alien has 
recently hit the limit, which in turn means all of the 
aliens are already moving in the new direction, so no 
changes are made. When an alien brushes the tur-
ret, the _on_Turret_area_entered(area) function runs, 
calling Enemy.gd‘s stop function for all aliens. Tying 
together, add the Swarm scene to Main and change 
the content of Main.gd to is shown in Listing 14.

Now is a good time to make Main the main scene 
of your project. Go to Project | Project Settings… in the 
menus and click on Run in the left sidebar of the set-
tings dialog. Click on the folder icon in the Main 
Scene field and pick Main.tscn from the list of avail-
able scenes. Click Open. Now you can run your 
whole game when you click the Play button in the 
toolbar above the Inspector dock (or just hit F5).

Firing Bolts
So far you have a bunch of aliens invading but no 
way to fight back. The next step, then, is to en-
hance the turret’s defense system and actually 
make it shoot something when the player hits fire.

Create another Area2D-based scene and call it 
Bolt. Give it an AnimatedSprite node and add two ani-
mations: a default animation with an image of a 
bullet (mine is an orangey oblong). Call this ani-
mation bolt. The second animation is another “ex-
plosion” from Open Game Art.

When you fire the bolt, it will stop in its tracks 
and shift to the animation of the explosion when it 
hits an alien in the same way the turret explodes 
when it hits an alien. Lines 14 to 21 in Listing 15 
show what that would look like.

Use Bolt‘s area_shape_entered() signal (line 14) to 
determine which alien the bolt collided with, as it 
delivers the information you need through its area 
parameter. You can then call a new method, de‑
stroy(), in Enemy.gd that removes the blasted 
enemy from the node tree.

The collision layer the turret is on must be different 
from the one the bolt is on; otherwise the bolt will 
collide with the turret. Open the turret scene and 
select the Turret node. Click to unfold the Collision 

section in the node’s 
properties in the Inspec-
tor dock on the right, and 
take a look at the Layer 
grid. There are 20 layers 
that Area2D nodes can 
be on, and by default 
new Area2D nodes start 
on layer 1. For the turret 
that is fine, but now do 
the same for Bolt and de-
activate layer 1 by click-
ing on it and activate 
layer 2. Like that, colli-
sions for bolt only hap-
pen with other nodes on 
layer 2.

Your enemies will 
also be on layer 1. Se-
lect the Enemy scene 
and the top Enemy node 
and again open Collision. 
As you need to be able 
to collide with Turret on 
layer 1 and Bolt on layer 
2, leave layer 1 as ac-
tive, but also activate 
layer 2.

To instantiate a Bolt 
scene when a player 

01  extends Area2D

02  

03  var speed = 80

04  var direction = 1

05  var animation = "medussy"

06  

07  func _ready():

08    position = Vector2(50, 50)

09  

10  func start(start_position, alien):

11    position = start_position

12    animation = alien

13  

14  func _process(delta):

15    position.x += direction * (speed * delta)

16    if speed != 0:

17      $AnimatedSprite.play(animation)

18  

19  func switch_direction():

20    direction = ‑direction

21    position.y += 10

22  

23  func stop():

24    speed = 0

25    $AnimatedSprite.stop()

Listing 12: Enemy.gd

01  extends Node

02  

03  func new_level():

04    var enemy_types = ["skully", "cthulhy", "medussy"]

05    var row_y_location = 0

06  

07    for alien in enemy_types:

08      for _j in range (2):

09        for i in range(10):

10          var enemy = preload("res://Enemy.tscn").instance()

11          add_child(enemy)

12          enemy.start(Vector2((i * 64) + 50, row_y_location + 50), alien)

13        row_y_location += 64

14  

15  func _on_Limits_area_entered(area):

16    if $CollisionTimer.is_stopped():

17      $CollisionTimer.start()

18      get_tree().call_group("enemies", "switch_direction")

19  

20  func _on_Turret_area_entered(area):

21    get_tree().call_group("enemies", "stop")

Listing 13: Swarm.gd

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021 93

TUTORIAL – GAMING WITH GODOT LINUX VOICE



delay (half a second works well) between each 
shot (Figure 11).

Back to the fire signal, open the Main scene and 
connect the fire signal from Turret to Main. You must 
write the body of the _on_Turret_fire() function 
Godot creates in Main.gd, making it do the following:
1. Preload the Bolt scene.
2. Add it as a child instanced node to Main.
3. Call the start() method in Bolt.gd (Listing 15, 

line 8).
Listing 16 will do the trick.

When a player hits fire, a bolt node is created and 
placed on the tip of the turret’s cannon and starts 
moving upwards (Listing 15, lines 5 and 6) at 400 
pixels per second. If it flies off the screen without 
hitting anything, it is removed in Listing 15 lines 11 
and 12. If it hits an alien, you call Enemy.gd‘s de‑
stroy() function to remove the alien (line 15), stop 
the bolt (line 16), and remove the bolt’s capacity to 
collide with anything else (line 17). Then you play 
the explosion’s animation and pause the script 
until it’s finished (lines 18 and 19). Finally, you re-
move the bolt from the game (lines 20 and 21).

Conclusion
Godot has many other options that this article has 
not covered. We have not mentioned sound design, 
exporting your game to work natively on different 
platforms (Godot supports Linux, Windows, macOS, 
Android, iOS, and HTML5), or 3D game design.

If you need more ideas, try increasing the difficulty 
of the Spaced Marauders game by having the aliens 
fire back and moving quicker as you pick them off. 
You can also create new levels in which the aliens 
start lower down, move faster, or fire more. Or you 
could try adding a scoreboard. If you get stuck, 
know that I will gradually add all these changes and 
more to the game, and you can find all the code 
and assets under a GPL license online [2].  nnn

hits fire, create a custom signal in Turret.gd by 
adding the line signal fire to the top of the 
script and then emit the signal with the line 
emit_signal("fire") underneath the line that 
checks for the input from the “fire” button (List-
ing 4, line 19). While you are at it, you may want 
to add a timer to Turret so that there is a short 

01  extends Node

02  

03  func _ready():

04    $Swarm.new_level()

Listing 14: Main.gd

01  extends Area2D

02  

03  var speed = 400

04  

05  func _process(delta):

06    position.y ‑= speed * delta

07  

08  func start (bolt_position):

09    position = bolt_position

10  

11  func _on_VisibilityNotifier2D_screen_exited():

12    queue_free()

13  

14  fu nc _on_Bolt_area_shape_entered(area_id, area, area_shape,  

self_shape):

15    area.destroy()

16    speed = 0

17    $CollisionShape2D.set_deferred("disabled", true)

18    $AnimatedSprite.play("explosion")

19    yield($AnimatedSprite, "animation_finished")

20    hide()

21    queue_free()

Listing 15: Bolt.gd

Figure 11: Unless you add a timer that forces a delay between shots, this game will be very easy.

01  func _on_Turret_fire():

02    var bolt = preload("res://Bolt.tscn").instance()

03    add_child(bolt)

04    bolt.start(Vector2($Turret.position.x, $Turret.position.y ‑ 20))

Listing 16: _on_Turret_fire() (Main.gd)

[1]  Godot game engine: https://  godotengine.  org/
[2]  Assets and code for Spaced Marauders: 

https://  gitlab.  com/  linux‑magazine/ 
 spaced‑marauders

[3]  GDScript:  
https://  docs.  godotengine.  org/  en/  stable/ 
 getting_started/  scripting/  gdscript/  index.  html

[4]  GDScript style guide: https://  docs. 
 godotengine.  org/  en/  stable/  getting_started/ 
 scripting/  gdscript/  gdscript_styleguide.  html

[5]  GDScript API: https://  docs.  godotengine.  org/ 
 en/  stable/  classes/  index.  html

[6]  GDScript inbuilt constants and variables: 
https://  docs.  godotengine.  org/  en/  stable/ 
 classes/  class_@globalscope.  html

[7]  Open Game Art: https://  opengameart.  org/

Info

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM94

TUTORIAL – GAMING WITH GODOTLINUX VOICE

https://godotengine.org/
https://gitlab.com/linux-magazine/spaced-marauders
https://gitlab.com/linux-magazine/spaced-marauders
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/index.html
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/index.html
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_styleguide.html
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_styleguide.html
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_styleguide.html
https://docs.godotengine.org/en/stable/classes/index.html
https://docs.godotengine.org/en/stable/classes/index.html
https://docs.godotengine.org/en/stable/classes/class_@globalscope.html
https://docs.godotengine.org/en/stable/classes/class_@globalscope.html
https://opengameart.org/


LINUX 
 NEWSSTAND
Linux Magazine is your guide to the world of Linux. Monthly issues are packed with advanced technical 
articles and tutorials you won't find anywhere else. Explore our full catalog of back issues for specific 
topics or to complete your collection. 

Order online:  
https://bit.ly/Linux-Newsstand

#238/September 2020

Speed Up Your System

Your Linux experience goes much more smoothly if your system is running at peak 
performance. This month we focus on some timely tuning techniques, including the 
kernel’s new Pressure Stall Information (PSI) feature.

On the DVD: Bodhi Linux 5.1 and openSUSE Leap 15.2

#239/October 2020

Build an IRC Bot

IRC bots do the essential work of coordinating and forwarding chat messages on the 
Internet. This month we show you how to build your own custom bot – and we give 
you an inside look at how to work directly with IRC.

On the DVD: Debian 10.5 and Devuan 3.0

#242/January 2021

3D Printing

The weird, wonderful, futuristic world of 3D printing is waiting for you right now if 
you’re willing to invest a little time and energy. This month we help you get started 
with practical 3D printing in Linux.

On the DVD: Ubuntu 20.10 “Groovy Gorilla” and Fedora 33 Workstation

#241/December 2020

Secure Your System

Security often means sophisticated tools like firewalls and intrusion detection systems, 
but you can also do a lot with some common-sense configuration. This month we study 
some simple steps for securing your Linux. 

On the DVD: KDE neon 5.20.0 and elementary OS 5.2

#240/November 2020

It's Alive

Build a whole operating system? Well maybe not a Linux, but if you're interested, you can 
implement the basic features of an experimental OS using resources available online. We 
can’t show you the whole process, but we'll help you get organized and take your first steps.

On the DVD: Linux Magazine 20th Anniversary Archive DVD

#243/February 2021

iNet

With Linux, more innovation is always on the way. This month we take a look at the 
iNet wireless daemon, a new wireless client that is poised to replace the venerable 
WPA Supplicant.

On the DVD: Linux Mint 20 and Kali Linux 2020.4

95

SERVICE
Back Issues

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



FEATURED 
EVENTS
Users, developers, and vendors meet at Linux events around the world.  
We at Linux Magazine are proud to sponsor the Featured Events shown here. 

For other events near you, check our extensive events calendar online at  
https://www.linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar, 
please send a message with all the details to events@linux-magazine.com.

Im
ag

es
 ©

 A
le

x 
W

h
it

e,
 1

23
R

F.
co

m

Remove extra URL on all Linux 
Foundation links, leave only: 
https://events.linuxfoundation.org/

FOSDEM 2021 February 6-7 Virtual Event https://fosdem.org/2021/

FAST '21 February 23-25 Virtual Event https://www.usenix.org/conference/fast21

CloudFest 2021 March 23-25 Virtual Event https://www.cloudfest.com/

Kubernetes Community Days April 8-9 Amsterdam, Netherlands https://sessionize.com/kcdams2021/

NSDI '21 April 12-14 Virtual Event https://www.usenix.org/conference/nsdi21

DrupalCon North America 2021 April 12-16 Virtual Event https://events.drupal.org/drupalcon2021

DevOpsCon London Hybrid Edition April 20-23 London, UK and Online https://devopscon.io/london/

KubeCon + CloudNativeCon May 5-7 Virtual Event https://bit.ly/kube-cloudnativecon

Linux Storage Filesystem & May 12-14 Palm Springs, California https://events.linuxfoundation.org/lsfmm/  
MM Summit

LISA21 June 1-3 Anaheim, California https://www.usenix.org/conference/lisa21

SYSTOR 2021 Hybrid June 14-18 Haifa, Israel https://www.systor.org/2021/venue.html

stackconf online 2021 June 15-16 Virtual Event https://stackconf.eu/

ISC High Performance 2021 Digital June 24-July 2 Virtual Event https://www.isc-hpc.com/

Cloud Expo Europe July 7-8 London, United Kingdom https://www.cloudexpoeurope.com/

USENIX ATC '21 July 14-16 Santa Clara, California https://www.usenix.org/conference/atc21

KVM Forum August 2-4 Vancouver, British Columbia https://events.linuxfoundation.org/

Embedded Linux Conference  August 4-6 Vancouver, British Columbia https://events.linuxfoundation.org/ 
North America

     Events

 NOTICE 
Be sure to check the event 
website before booking any 
travel, as many events are 
being canceled or converted 
to virtual events due to the 
effects of COVID-19.

 CloudFest 2021 

Date: March 23-25, 2021

Location:  Virtual Event

Website:  https://www.cloudfest.com/

CloudFest returns on an all-digital 
platform amid a global pandemic as we 
take stock of the strengths, weaknesses, 
risks, and opportunities that are revealed 
by a globe-spanning threat like COVID-
19. Join us at CloudFest 2021, and let’s 
build something great together.

 DrupalCon North America 2021  

Date: April 12-16, 2021

Location: Virtual Event

Website:  https://bit.ly/DrupalConNA2021

Don’t miss the most widely attended 
Drupal event in the world. This year’s 
digital event brings together thought 
leadership around open source, pro-
vides professional development and 
networking opportunities, and invigo-
rates Drupal project momentum 
through education and contribution.

96

SERVICE
Events

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



We are always looking for good articles on Linux and the 
tools of the Linux  environment. Although we will consider 
any topic, the following themes are of special  interest:

• System administration

• Useful tips and tools

• Security, both news and techniques

• Product reviews, especially from real-world experience

• Community news and projects

If you have an idea, send a proposal with an  outline, an esti-
mate of the length, a description of your background, and 
 contact information to edit@ linux-magazine.com.

The  technical level of the article should be consistent with 
what you  normally read in Linux Magazine. Remember 
that Linux Magazine is read in many  countries, and your 
article may be translated into one of our  sister publica-
tions. Therefore, it is best to avoid using slang and idioms 
that might not be understood by all readers    . 

Be careful when referring to dates or events in the future. 
Many weeks could pass between your manuscript sub-
mission and the final copy reaching the reader’s hands. 
When submitting proposals or manuscripts, please use a 
 subject line in your email message that helps us identify 
your message as an article proposal. Screenshots and 
other supporting materials are always welcome. 

Additional information is available at:  
http://www.linux-magazine.com/contact/write_for_us.

CALL FOR PAPERS

Erik Bärwaldt 42

Mohammed Billoo 44

Paul Brown 84

Zack Brown 11

Bruce Byfield 24, 28, 34

Joe Casad 3

Mark Crutch 63

Karsten Günther 70

Jon “maddog” Hall 65

Dr. Nico Kruber 14

Charly Kühnast 30, 33

Christoph Langner 60, 66

Vincent Mealing 63

Pete Metcalfe 56

Graham Morrison 78

Mike Schilli 38

Jack Wallen 8

Patrick Wiener 18

Ash Wilson 51

Authors

Editor in Chief 
 Joe Casad, jcasad@linux-magazine.com
Copy Editors 
 Amy Pettle, Megan Phelps
News Editor 
 Jack Wallen
Editor Emerita Nomadica 
  Rita L Sooby
Managing Editor 
  Lori White
Localization & Translation 
  Ian Travis
Layout 
 Dena Friesen, Lori White
Cover Design 
 Lori White
Cover Image 
 © ryzhi, 123RF.com
Advertising 
 Brian Osborn, bosborn@linuxnewmedia.com  
 phone  +49 89 3090 5128
Marketing Communications 
 Gwen Clark, gclark@linuxnewmedia.com 
 Linux New Media USA, LLC  
 2721 W 6th St, Ste D  
 Lawrence, KS 66049 USA
Publisher 
 Brian Osborn
Customer Service / Subscription 
 For USA and Canada: 
 Email: cs@linuxpromagazine.com 
 Phone: 1-866-247-2802  
 (Toll Free from the US and Canada)

 For all other countries: 
 Email: subs@linux-magazine.com

www.linuxpromagazine.com – North America
www.linux-magazine.com – Worldwide

While every care has been taken in the content of 
the  magazine, the publishers cannot be held respon-
sible for the accuracy of the information contained 
within it or any  consequences arising from the use of 
it. The use of the disc provided with the magazine or 
any material provided on it is at your own risk.

Copyright and Trademarks © 2021 Linux New 
Media USA, LLC.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the  publishers. It is assumed that all cor-
respondence sent, for  example, letters, email, 
faxes, photographs, articles,  drawings, are sup-
plied for publication or license to third  parties on 
a non-exclusive worldwide basis by Linux New 
Media USA, LLC, unless otherwise stated in writing.

Linux is a trademark of Linus Torvalds.

All brand or product names are trademarks 
of their respective owners. Contact us if we 
haven’t credited your copyright; we will always 
correct any oversight.

Printed in Nuremberg, Germany by hofmann 
infocom GmbH.

Distributed by Seymour Distribution Ltd, United 
Kingdom

LINUX PRO MAGAZINE (ISSN 1752-9050) is 
published monthly by Linux New Media USA, LLC, 
2721 W 6th St, Ste D, Lawrence, KS, 66049, USA. 
Periodicals Postage paid at Lawrence, KS and 
additional mailing offices. Ride-Along Enclosed. 
POSTMASTER: Please send address changes to 
Linux Pro Magazine, 2721 W 6th St, Ste D, 
Lawrence, KS 66049, USA.

Published monthly in Europe as Linux Magazine 
(ISSN 1471-5678) by: Sparkhaus Media GmbH, 
Zieblandstr. 1, 80799 Munich, Germany.

     Contact Info

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 244 MARCH 2021



Issue 245

Issue 245 / April 2021

Shell 
Shopping
Next month we compare a pair 
of the leading Linux command 
shells: Bash and Zsh.

Preview Newsletter
The Linux Magazine Preview is a monthly email 
newsletter that gives you a sneak peek at the next 
issue, including links to articles posted online. 

Sign up at: https://bit.ly/Linux-Update

Image © Alexandra, 123RF.com

 Approximate 
UK / Europe Mar 06
USA / Canada Apr 02
Australia May 03

 On Sale Date 

98

NEXT MONTH

MARCH 2021 ISSUE 244 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM






	Linux Magazine 244
	Welcome
	Contents
	On the DVD
	News
	Kernel News
	Stream Processing 101
	Apache StreamPipes
	Distro Walk – Arch_Linux
	Free Software in 2020
	2FA
	Charly – Livepatch
	Command Line – Jailkit
	Programming Snapshot – Bulk Renaming
	checksecurity
	Kconfig Deep Dive
	Safe Messaging with TLSA
	Gnuplot
	8GB Raspberry Pi 4
	Linux Voice Introduction
	Doghouse – Project Caua
	Material Shell
	Hugin
	FOSSPicks
	Tutorial – Gaming with Godot
	Back Issues
	Events / Authors
	Linux Magazine 245 Preview



