
WWW.LINUXPROMAGAZINE.COM

L
IN

U
X

 P
R

O
 M

A
G

A
Z

IN
E

 IS
S

U
E

 2
4

7
J

U
N

E
 2

0
2

1
Post-Q

uantum
 Encryption Distri DTLS JSON

 Deep Dive dgam
elaunch fsnotify ARM

4 Assem
bly and GPIO EdU

B
udgie Kit Scenarist O

bsidian

 MakerSpace
Hands-On Guide to the GPIO

JSON Deep Dive
Get fluent in this
important data format

DTLS
Encryption
over UDP

ISSUE 247 – JUNE 2021

• �maddog explores the
history of text editors

• �Obsidian: Nifty note
and knowledge tool

Will privacy
survive
quantum
computers?

Post-Quantum
Encryption

10 FOSSPICKS
HEAVENLY FREE TOOLS!

FREE
DVD+

Of all the strange news this month, the one item that really
caught my eye was the announcement of IBM’s COBOL for
Linux 1.1 compiler. I guess most of us are aware that mil-
lions of lines of business software around the world are
still written in COBOL, and for that reason, old-school
COBOL programmers still have work. But think about this
for a minute: COBOL has existed for 62 years, the x86 ar-
chitecture has been around for 43 years, and Linux has
been with us for 30 years. Yet at this late date, the (97-year-
old) IBM steps up now to announce a Linux COBOL com-
piler for the x86?

It is easy to see why IBM, whose clients include many
old-school companies running old-school software,
would continue to maintain their COBOL compilers. But a
new compiler for x86 Linux? That’s not just maintaining –
that’s investing!

Of course, COBOL has been counted out in the past. In fact,
I can safely say that people have been counting out COBOL
for as long as I have known about it. The Common Business
Oriented Language (COBOL) dates back to the late 1950s,
when a group of corporate and academic computer scien-
tists got together to develop a coding language specifically
designed to address the problems of business. The early
birth of COBOL, and the fact that it was designed for effi-
cient programming, not efficient execution, meant that it
gained a reputation for being slow and inelegant. COBOL
was a way to grind out steady and unglamorous business
software. Some of that business software is still humming
along, rolling out reports, inventories, and payroll. It could
have cost millions to create, and it would cost even more
now to replace, so, as the saying goes, “If it ain’t broke,
don’t fix it.”

Over the years, COBOL has seen many updates – to be fair,
it really has evolved since 1959, with support for structured
programming techniques, as well as XML and inter-lan-
guage communication with C/​C++. But it still has a reputa-
tion for being quite retro, and I guarantee that few students
enroll in the world’s leading computer science programs
with the cherished goal of one day being a great COBOL
programmer.

Clunky old software lives forever in its bits and bytes, but
clunky old hardware fades away. Companies like IBM keep
COBOL alive by continually providing a means to transition it
to other hardware and operating systems. For years, IBM has
supported COBOL compilers for z/​OS and AIX – systems that

run on some of IBM’s modern-day mainframe platforms. But
why x86 and Linux? And why now?

Part of the answer is that the hardware of today is no hard-
ware at all. Development environments increasingly live in
the cloud, and virtual and containerized x86 systems are the
stock and trade of cloud infrastructure. Another reason for
supporting COBOL on the x86 could be a wager that, by
lowering barriers to entry, they will eventually channel
those x86-based users to the heavy mainframe systems
that IBM is still selling. (They got rid of their PC division
years ago.)

The other thing to remember is, IBM probably wouldn’t be
doing this if they didn’t think they could make some money
– or at least break even. Just because the COBOL x86 com-
piler runs on Linux doesn’t mean it is free. According to the
announcement, “COBOL for Linux on x86 is required on all
systems on which COBOL applications are developed and
where the applications are deployed and executed.” You’re
supposed to “…consult your IBM representative or IBM
Business Partner” for pricing.

Whatever the reasons, it does ap-
pear that the planets have
aligned to give COBOL another
burst of energy that could propel
it even further beyond the long-
past predictions of its demise.

NEWS FLASH: COBOL RISES
FROM ITS OWN NON-ASHES

Joe Casad,
Editor in Chief

Dear Reader,

3

EDITORIAL

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Welcome

ON THE COVER

26	 distri
The experimental distri research project investigates ways
to speed up package management.

30	 Command Line – Installers
Testing cutting-edge applications may require learning
about the installer first.

34	 DTLS – Encryption for UDP
TLS encryption is wonderful if it is running over a reliable
transport protocol like TCP; but if your needs call for the less
reliable UDP transport, you’d better start learning about DTLS.

38	 JSON Deep Dive
JSON data format is a standard feature of today’s Internet.
We’ll take a close look at JSON format and explore some
tools for reading and manipulating JSON data.

46	 dgamelaunch
Set up a server to play Roguelike games and preserve a
piece of gaming history.

51	 Charly’s Column – Zint
Doing a hardware inventory in a data center is never easy.
Charly uses Zint to provide each newly acquired system
with a QR code sticker.

52	 Programming Snapshot – fsnotify
Inotify lets applications subscribe to change notifications
in the filesystem. Mike Schilli uses the cross-platform
fsnotify library to detect what’s happening.

08	 News
• �Apple M1 Hardware Support To Be Merged

into Linux Kernel 5.13
• KDE Launches the Qt 5 Patch Collection
• �Linux Creator Warns Next Kernel Could Be Delayed
• System76 Updates Its Pangolin Laptop
• �New Debian-Based Distribution Arrives on

the Market
• System76 Releases New Thelio Desktop
• AlmaLinux Is Officially Available

12	 Kernel News
• “Welcoming” a New Kernel Developer
• An Ancient Feature Goes Belly Up

22	 Distro Walk – Knoppix
Knoppix, a portable operating system and rescue disk,
continues to evolve.

16	 Quantum Computing and Encryption
The encryption methods we use today are no match for
tomorrow’s quantum computers. We’ll show you why and
what’s ahead for cryptography in the post-quantum era.

IN-DEPTH

COVER STORY

NEWS

REVIEW

34	 DTLS
The connectionless UDP transport won't work
with the popular TLS privacy protocol. DTLS is
an alternative that will protect your UDP
traffic from prying eyes.

38	� JSON Deep Dive
JSON is a leading data format for websites, mobile
devices, and even ordinary desktop applications.
We take you down inside JSON format and
describe some tools for working with JSON data.

56	� Hands-On Guide to the GPIO
The GPIO is a powerful interface from your
Raspberry Pi to outside hardware. We'll show
you how to program for the GPIO.

88	 Obsidian
Organize your thoughts with this cool
knowledge app built on Markdown.

JUNE 2021

4 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

73	 Welcome
This month in Linux Voice.

74	 Doghouse – Code Longevity
Maddog discusses the long history of text editors and
the RAND message handling system.

75	 EdUBudgie
EdUBudgie Linux is an Ubuntu clone created by a
teacher and aimed directly at the education market.

78	 Kit Scenarist
Creative writers take note! Kit Scenarist is a free
application designed to simplify the process of writing
a screenplay.

82	 FOSSPicks
This month Graham looks at SonoBus, NewsFlash, Kinto.sh,
RetroShare, Emilia Pinball, and much more!

88	 Tutorial – Obsidian
Obsidian helps you work more effectively by giving you a
tool to record, connect, and catalog your ideas and notes.

56	 ARM64 Assembly and GPIO
Reading, writing, and arithmetic with the Raspberry Pi in
ARM64 assembly language.

66	 Pi OS 2020-12-02
The latest Raspberry Pi OS adds the PulseAudio sound
server and a print manager.

70	 Zenity
Add a dialog box to your command-line app.

MakerSpace

TWO TERRIFIC DISTROS

DOUBLE-SIDED DVD!
SEE PAGE 6 FOR DETAILS

16	 �Post Quantum
Encryption
Quantum computers are still
at the experimental stage,
but mathematicians have
already discovered some
quantum-based algorithms
that will demolish the best
of our current encryption
methods. What better time to
look for quantum encryption
alternatives?

5LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Defective discs will be replaced.
Please send an email to subs@linux-magazine.com.

Although this Linux Magazine disc has been tested and is to the
best of our knowledge free of malicious software and defects,
Linux Magazine cannot be held responsible and is not liable for
any disruption, loss, or damage to data and computer systems
related to the use of this disc.

Knoppix 9.1 and Zorin OS 15.3 Core
Two Terrific Distros on a Double-Sided DVD!

Knoppix 9.1
32- and 64-bit

Knoppix was created by Klaus Knopper, who has also
written for Linux Magazine. It was one of the first
Debian-derivatives, as well as among the first Live CDs.
This month’s download is a DVD containing 9GB of
compressed software, but it is also available as a much
smaller CD.

Knoppix was briefly installable like any disk image,
but that option is no longer supported. Instead,
Knoppix can be used as a portable operating system.
However, it is best known as a rescue drive, with low
memory requirements, extensive hardware support,
and an asortment of recovery tools. These tools are
especially useful on a large flash drive, with extra
space for storing files created while running as a Live
drive. Lesser-known but equally as impressive is
ADRIANE Knoppix, a desktop environment for the
sight impaired collected and developed by Klaus
Knopper for his wife.

Knoppix is especially popular in Germany, and some
of its documentation can take a while to be translated
into English and other languages. However, the DVD is
worth having around for emergencies and an essential
tool for those who need extra assistance in order to in-
teract with their computer. And if you are having trou-
ble with Linux detecting your hardware, Knoppix just
might help with your troubleshooting.

Zorin OS 15.3 Core
64-bit

Zorin is a Debian-derivative known for its attention
to aesthetics, like deepin or elementary OS. On the
DVD, you’ll find Zorin OS Core, the basic distribu-
tion, which will satisfy most users. However, if you
like what you see here, you might explore Zorin OS
15.3 Lite, Zorin OS 15.3 Education, or the paid ver-
sion, Zorin OS Ultimate, and decide which best suits
your needs.

All these versions share common features. All are
based on Ubuntu, with a default Gnome desktop de-
signed to run without the overview page. The result is
a very simple desktop environment, reminiscent of
Gnome 2, and easy for any computer user to learn.
The software is mostly Gnome technology. Should
you choose to go beyond Zorin OS Core, you can also
change the look of your desktop by imitating Win-
dows, macOS, and other alternatives. All in all, Zorin
OS Core is a polished beginner’s distribution, allowing
those familiar with proprietary operating systems an
easy entry into the world of Linux.

+

6 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

DVD
This Month’s DVD

 �
Apple M1 Hardware Support To Be Merged
into Linux Kernel 5.13

Hector Martin has merged the initial support for Apple M1 hardware into the Linux SOC
(System On a Chip) tree. Martin is the founder of Asahi Linux, a project to port Linux to
Apple Silicon Macs. The project was started in 2020, using the M1 Mac Mini, MacBook
Air, and MacBook Pro hardware. The Asahi goal is “not just to make Linux run on
these machines but to polish it to the point where it can be used as a daily OS.”

Now that M1 support has been merged into the tree, it should make it into the
Linux kernel for the 5.13 release (which should come sometime this summer).
That does not mean, however, you’ll be able to run Linux on Apple Silicon this
summer. In fact, at the moment there is no timetable for full support. The reason
for this is porting Linux to Apple Silicon is a daunting task. Because Apple doesn’t
release any documentation for the M1 hardware, everything must be reverse-en-
gineered and drivers must then be written.

But as of April 8, 2021, the arm/apple-m1 branch has been merged into Linux-next
(the holding area for code expected for the next kernel merge window. To view the
code that has been merged, take a look at this SOC commit (https://git.kernel.org/
pub/scm/linux/kernel/git/soc/soc.git/commit/?h=for-next&id=0d5fe4b31785b732b7
1e764b55cda5c8d6e3bbbf). Although the Asahi Linux environment will now boot on
the M1 hardware, it only provides serial and frame buffer console access. In other
words, there’s a long way to go. And, according to Martin, “we absolutely do not
recommend buying M1 hardware for that purpose unless and until the Asahi project
gets much, much farther down the road than it has managed so far.”

 �KDE Launches the Qt 5 Patch Collection
At the end of 2020, Qt 6 was released to serve as the next-gen Qt application frame-
work. This new iteration has made it possible to deliver more modern software and
KDE has every plan to fully adopt this new release for the entire software stack.

However, KDE still very much relies on Qt 5 for both desktop and applications.
With KDE’s goal of migrating to Qt 6, they had to do something to ensure nothing
falls by the wayside. To that end, KDE has decided (until Qt 6 adoption is finalized),
to maintain a collection of patches for the Qt 5.15 release. These patches will in-
clude both security and standard fixes to make sure KDE continues to remain se-
cure and stable.

Aleix Pol, KDE e.V. President said of this, “To transition to great future technologies
like Qt 6 we need to have the peace of mind that our current users are catered for. With
this patch collection, we gain the flexibility we need to stabilize the status quo. This way
we can continue collaborating with Qt and deliver great solutions for our users.”

As for Qt 6, the plan is to have support sometime in 2021.
To find out more about the KDE Qt 5 Patch Collection, read the official initiative

(https://community.kde.org/Qt5PatchCollection). To find out where KDE stands with
Qt 6, check out the Phabricator (https://phabricator.kde.org/project/board/310/).

08	 • �Apple M1 Hardware
Support To Be Merged
into Linux Kernel 5.13

	 • �KDE Launches the Qt 5
Patch Collection

09	 • �Linux Creator Warns Next
Kernel Could Be Delayed

	 • �System76 Updates Its
Pangolin Laptop

	 • �New Debian-Based
Distribution Arrives
on the Market

	 • �More Online

10	 • �System76 Releases New
Thelio Desktop

	 • �AlmaLinux Is Officially
Available

8 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools

https://git.kernel.org/pub/scm/linux/kernel/git/soc/soc.git/commit/?h=for-next&id=0d5fe4b31785b732b71e764b55cda5c8d6e3bbbf
https://git.kernel.org/pub/scm/linux/kernel/git/soc/soc.git/commit/?h=for-next&id=0d5fe4b31785b732b71e764b55cda5c8d6e3bbbf
https://git.kernel.org/pub/scm/linux/kernel/git/soc/soc.git/commit/?h=for-next&id=0d5fe4b31785b732b71e764b55cda5c8d6e3bbbf
https://community.kde.org/Qt5PatchCollection
https://phabricator.kde.org/project/board/310/

 �
Linux Creator Warns Next Kernel Could
Be Delayed

Never one to mince words, Linus Torvalds has released the latest RC (Release Can-
didate) of the Linux kernel, while expressing a slight bit of concern the size might
hinder a timely release. Torvalds went so far as to say, “I’m not overly worried yet,
but let’s just say that the trend had better not continue, or I’ll start feeling like we
will need to make this one of those releases that need an rc8.” Most Linux kernels
go through 7 Release Candidates, which are made available every Sunday.

This is the same kernel that Torvalds warned users to avoid when the first release
candidate was made available (which was delayed, due to an ice storm). To that, Tor-
valds said, “This merge window, we had a very innocuous code cleanup and simplifi-
cation that raised no red flags at all, but had a subtle and very nasty bug in it: swap
files stopped working right. And they stopped working in a particularly bad way: the
offset of the start of the swap file was lost. Swapping still happened, but it happened
to the wrong part of the filesystem, with the obvious catastrophic end results.”

With that issue resolved, the Release Candidates continued, unabated. But due
to the ballooning size, Torvalds has grown concerned about getting the final re-
lease out on time. If nothing of note happens (and the size doesn’t grow out of
hand), the 5.12 kernel should be released in late April or early May.

Read Torvalds' original statement about the 5.12 kernel size (http://lkml.iu.edu/
hypermail/linux/kernel/2103.3/05182.html).

 �System76 Updates Its Pangolin Laptop
System76 does many things very well. One of those things is listen. The consumers
have spoken and they wanted an AMD-powered version of their most popular
laptop to date, the Pangolin. The Pangolin has the title of the first System76 lap-
top to be powered by the AMD Ryzen line of mobile processors. And with the
Pangolin, you can configure a laptop all the way up to the Ryzen 7 4700 CPU and
AMD Radeon graphics. As for memory and storage, the Pangolin can be spec’d up
to 64GB of RAM and up to 2TB of NVMe storage.

The 15" laptop includes multi-colored backlit keys with tactile feedback, a large,
multi-touch trackpad, and a 1080p matte display.

The Pangolin laptop sports 1 x USB 3.2 Gen 1 Type-A, 1 × USB 3.2 Gen 2 Type-C,
2 × USB 2.0 Type-A, and a MicroSD Card Reader. Other features include:
• 1.0M 720p HD webcam
• 49Wh Li-lon battery
• Gigabit Intel Dual Band Wi-Fi 6 and Bluetooth 5
• Pop!_OS operating system
Due to incredibly high demand, System76 has already
sold out of their Pangolin stock, but the company has
made it possible for those interested to sign up to be
alerted (https://system76.com/laptops/pangolin) when
the new inventory is ready for purchase.

The Pangolin starts at $849.

 �
New Debian-Based Distribution Arrives
on the Market

New Linux distributions pop up almost weekly, so it should come as no surprise that
yet another Debian-based platform has hit the market. And like many others, TeLOS
aims to be a bit different. How? Outside of being touch-screen friendly (using the KDE
Plasma 5.20.5 desktop environment), TeLOS is ready to serve as your home theater
center, thanks to the inclusion of the Kodi open-source media center software.

You’ll also find a mixture of KDE and GNOME apps installed, giving you a sort of
best-of-both-worlds on the desktop. On the KDE front, you’ll find the standard

ADMIN HPC
http://www.admin-magazine.com/HPC/

Rethinking RAID (on Linux)
• Petros Koutoupis
Configure redundant storage arrays to boost
overall data access throughput while main-
taining fault tolerance.

ADMIN Online
http://www.admin-magazine.com/

Secure Authentication with FIDO2
• Matthias Wübbeling
The FIDO and FIDO2 standard supports
passwordless authentication. We discuss the
requirements for the use of FIDO2 and show
a sample implementation for a web service.

Identity and Access Management with
OpenIAM
• Thorsten Scherf
Identity and access management plays a cen-
tral role in modern IT infrastructures, with its
local resources, numerous applications, and
cloud services. We investigate how OpenIAM
implements centralized user management.

Processing Streaming Events with Apache
Kafka
• Kai Wähner
Apache Kafka reads and writes events virtu-
ally in real time, and you can extend it to take
on a wide range of roles in today’s world of
big data and event streaming.

Linux Magazine
www.linux-magazine.com

Linux News

9

NEWS

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

MORE ONLINE

http://lkml.iu.edu/hypermail/linux/kernel/2103.3/05182.html
http://lkml.iu.edu/hypermail/linux/kernel/2103.3/05182.html
https://system76.com/laptops/pangolin
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/
http://www.linux-magazine.com

Get the latest news
in your inbox every
two weeks

Subscribe FREE
to Linux Update
bit.ly/Linux-Update

software included (such as Dolphin, Konsole, Okular, Ark, KTorrent, K3b, Kazam,
KWrite, and KDE Connect). As for GNOME, the developers have added the Cheese
webcam viewer, Disks disk utility, the Evolution groupware suite, the GNOME on-
screen keyboard, the GNOME Clocks app, and the GNOME Sound Recorder.

But for open-source purists, TeLOS might have a couple of deal-breakers in-
cluded, as both the Chrome web browser and the TeamViewer remote desktop
software come pre-installed.

Be warned, TeLOS is pretty rough around the edges. Being a new distribution it has
a long way to go before it’s ready for the masses. And when you go to install the dis-
tribution, there is a password (ion) associated with the installer. Once installed, you’ll
also have to deal with a full-screen instance of the Chrome browser. Once you get
past those things, you might find TeLOS an interesting take on the Linux desktop.

Download an ISO of the latest version of TeLOS (https://sourceforge.net/projects/
teloslinux/files/iso/) and see if it might be your next Linux distribution of choice.

 �System76 Releases New Thelio Desktop
System76 is best known for their high quality Linux laptops and their boundary-push-
ing desktops. And with their Thelio line of desktops designed and built-in house, with
open source firmware, bios, and OS, they hold a very high appeal to Linux users.

The Thelio lineup is impressive and their newest entry to the lineup stands in be-
tween the base model, Thelio, and the next up, the Thelio Major. This new model, the
Thelio Mira, has room for up to 2 GPUs, ships with either a 3rd or 4th gen AMD Ryzen,
and can support up to 128GB of RAM. So even with a small footprint (17.18" × 9.96" ×
13.03"), you’re getting massive power to do important (or not so important) work.

Other standout specs include:
• �NVIDIA Graphics (GT 1030, GTX 1650 Super: 1 × DisplayPort, 1 × HDMI, 1 × DVI,

RTX 3070: 3 × DisplayPort, 1 × HDMI, Quadro RTX 4000: 3 × DisplayPort, 1 ×
DisplayPort over USB-C, Quadro RTX 5000: 4 × DisplayPort, 1 × DisplayPort over
USB-C, Quadro RTX 6000: 4 x DisplayPort, 1 × DisplayPort over USB-C, Quadro
RTX 8000: 4 x DisplayPort, 1 × DisplayPort over USB-C)

• �Storage Up to 36TB, 2 × M.2 PCIe Gen4 NVMe and 4 × 2.5" SATA drives
• �Rear Ports 1 × USB Type-C, with USB 3.2 Gen 2 support, 7 × USB 3.2 Gen 2, 1 ×

GbE RJ-45 port, 1 × 2.5G RJ-45 port
• �Rear Audio 5 × Audio Jacks, 1 × Optical S/PDIF out
For more information, check out the official Thelio Mira (https://system76.com/
desktops/Thelio-mira) page at System76.com.

 �AlmaLinux Is Officially Available
AlmaLinux came into being after Red Hat decided to migrate CentOS
to a pseudo-rolling release candidate. Unfortunately, several third-
party tools (such as cPanel) decided to not support CentOS Stream,
which left many admins and companies in the dark as to what they’d do.

That’s when CloudLinux came to the rescue. CloudLinux was formed in 2009 to de-
liver a fork of RHEL/CentOS designed specifically for multitenancy hosting companies.
But in 2020, the company realized they could pick up the pieces left behind by Red Hat.

Thus, AlmaLinux was born. This 1:1 RHEL binary compatible distribution is not
only perfectly capable of being deployed in place of CentOS, you can even migrate
your CentOS instances with a few quick commands. And, as of March 30, 2021, the
official first release of AlmaLinux is available to download.

Of course, as if a drop-in replacement for CentOS wasn’t enough, CloudLInux also
formed a non-profit organization (AlmaLinux Open Source Foundation, https://almalinux.
org/) dedicated to taking over the management of the distribution. And CloudLinux has
committed a $1 million annual endowment for the AlmaLinux project. So not only do
users not have to worry that CloudLinux will take the same path Red Hat did with Cen-
tOS, AlmaLinux will have plenty of funding to continue operations for some time.

Download an ISO of this exciting new server distribution now (https://repo.almalinux.
org/almalinux/8/isos/x86_64/).

10 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Linux News

NEWS

https://sourceforge.net/projects/teloslinux/files/iso/
https://sourceforge.net/projects/teloslinux/files/iso/
https://system76.com/desktops/Thelio-mira
https://system76.com/desktops/Thelio-mira
https://almalinux.org/
https://almalinux.org/
https://repo.almalinux.org/almalinux/8/isos/x86_64/
https://repo.almalinux.org/almalinux/8/isos/x86_64/

12 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

NEWS
Kernel News

ing a new filesystem into the kernel. It
may be that your ideas, time, and efforts
are better spent in contributing to an ex-
iting project. It may also be that you
have something groundbreaking work,
and I look forward to reading about
what that is.”

Amy thanked him for his feedback and
said she’d think about all those things.

Meanwhile, Randy Dunlap suggested
that Amy shouldn’t wait until her code
was truly finished, but should release
patches as she developed them, using a
“release early, release often” philosophy.
And Chaitanya Kulkarni suggested sub-
mitting patches and an overall descrip-
tion of the project as a Request For Com-
ments (RFC), in order to get the discus-
sion going.

Theodore Ts’o had some suggestions
of his own:

“File systems are also complicated
enough that it’s useful to make the
patches available via a git repo, and it’s
highly recommended that you are rebas-
ing it against the latest kernel on a regu-
lar basis.

“I also strongly recommend that once
you get something that mostly works,
that you start doing regression testing of
the file system. Most of the major file sys-
tems in Linux use xfstests for their test-
ing. One of the things that I’ve done is to
package up xfstests as a test appliance,
suitable for running under KVM or using
Google Compute Engine, as a VM, to
make it super easy for people to run re-
gression tests. (One of my original goals
for packaging it up was to make it easy
for graduate students who were creating
research file systems to try running re-
gression tests so they could find potential
problems – and understand how hard it
is to make a robust, production-ready file
system, by giving them a relatively well
documented, turn-key system for running
file system regression tests.)”

And he concluded:
“The final thing I’ll point out is that file

system development is a team sport. In-
dustry estimates are that it takes between
50 and 200 person-years to create a pro-

“Welcoming” a New
Kernel Developer
Amy Parker, a newcomer to Linux kernel
development, had an idea for a new file-
system. Ideally, she said, “once it’s com-
pleted, rich, and stable I’d try to get it
into the kernel.” She asked what would
be involved in such a process.

Andreas Dilger welcomed her and of-
fered a few words of caution (a.k.a
doom ‘n’ gloom). First of all, he said, a
new filesystem would need to have a
unique value for users. If it only did
something that other filesystems already
did well, there wouldn’t be a need to in-
clude it in the source tree.

He added that filesystems had a partic-
ularly onerous burden of reliability, since
users relied on them for their very lives.
Unlike many software problems that
could be fixed with a simple reboot, he
said, if a filesystem lost user data, there
was no way home. In light of this, An-
dreas added, “the general rule of thumb
is 10 years before a new filesystem is sta-
ble enough for general use.”

Because of this, Andreas suggested that
instead of writing a whole new filesystem,
it could sometimes make more sense to
take whatever idea Amy had in mind and
add it to an existing filesystem, if that
would be a good enough solution. He said,
“Otherwise, users would have to stop
using their existing filesystem before they
started using yours, and that is a very slow
process, because your filesystem would
have to be much better at *something* be-
fore they would make that switch.”

In terms of Amy’s actual question
about the process for submitting a new
filesystem for consideration, Andreas
said the first step would probably be to
describe her idea and see if there were
any existing filesystems that would be a
better fit for those features.

Finally, after sufficient doom ‘n’ gloom
had been dispersed, he concluded,
“Note that I don’t want to discourage
you from participating in the Linux file-
system development community, but
there are definitely considerations going
both ways wrt. [with regards to] accept-

Zack’s Kernel News

Chronicler Zack Brown reports
on the latest news, views,
dilemmas, and developments
within the Linux kernel
community.
By Zack Brown

The Linux kernel mailing list comprises
the core of Linux development activities.
Traffic volumes are immense, often
reaching 10,000 messages in a week, and
keeping up to date with the entire scope
of development is a virtually impossible
task for one person. One of the few brave
souls to take on this task is Zack Brown.

Author

Kernel News

13LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

NEWS

duction-ready, general purpose enterprise
file system. For example, ZFS took seven
years to develop, starting with a core team
of 4, and growing to over 14 developers by
the time it was announced. And that
didn’t include all of the QA, release engi-
neering, testers, performance engineers, to
get it integrated into the Solaris product.
Even after it was announced, it was a
good four years before customers trusted it
for production workloads.

“If you look at the major file systems in
Linux: ext4, xfs, btrfs, f2fs, etc., you’ll
find that none of them are solo endeav-
ors, and all of them have multiple com-
panies who are employing the developers
who work on them. Figuring out how to
convince companies that there are good
business reasons for them to support the
developers of your file system is impor-
tant, since in order to keep things going
for the long haul, it really needs to be
more than a single person’s hobby.”

Matthew Wilcox also had some advice
of his own to offer. He said:

“Writing a new filesystem is fun! Ev-
eryone should do it.

“Releasing a filesystem is gut-churning.
You’re committing to a filesystem format
that has to be supported for ~ever.

“Supporting a new filesystem is a
weighty responsibility. People are depend-
ing on you to store their data reliably.
And they demand boring and annoying
features like xattrs, acls, support for time
after 2038.

“We have quite a lot of actively devel-
oped filesystems for users to choose from
already – ext4, btrfs, xfs are the main
three. So you’re going to face a challenge
persuading people to switch.

“Finally, each filesystem represents a
(small) maintainance burden to people
who need to make changes that cross all
filesystems. So it’d be nice to have a good
justification for why we should include
that cost.

“Depending exactly what your concept
is, it might make more sense to make it
part of an existing filesystem. Or develop
it separately and have an existing filesys-
tem integrate it.”

Matthew concluded with some extra-
doomy doom ‘n’ gloom, saying, “Any-
way, I’ve been at this for twenty years,
so maybe I’m just grouchy about new
filesystems. By all means work on it and
see if it makes sense, but there’s a fairly
low probability that it gets merged.”

Rather than running for the hills, as I
myself was at that moment doing out of
sheer sympathy, Amy replied, “I’m
bored and need something to dedicate
myself to as a long-term commitment.”

She thanked everyone for their advice.
And since multiple people had suggested
looking for existing filesystems to merge
her idea into, she said she’d explore that
possibility.

In response to Ted’s suggestion that
she should set up a Git repository, Amy
replied that she had already been setting
up the infrastructure for that.

As for Ted’s further suggestion that
Amy plan on doing some regression test-
ing, Amy laughed into her sleeve, baiting
him with a quote that actually came from
Linus, “Regression testing? What’s that? If
it compiles, it is good; if it boots up, it is
perfect.” Though she immediately fol-
lowed up with, “In all seriousness,
though, yeah, already been planning for
stuff like that.”

And she remarked that she was al-
ready familiar with Ted’s xfstests tool
and had used it on a previous project.

And that was the end of the discussion.
So there you have it. Gone are the days

of Linus Torvalds welcoming all comers
with open arms, saying, “absolutely a
filesystem would be a marvelous project,
and here is the process for submitting
patches; thank you for joining the com-
munity!”

Now it’s, “hi, your project is utterly
unrealistic, whatever it is, but we en-
courage you to give it a try anyway,
sort of, not really, and in any case
we’re all so burnt out and bitter that
we are sort of just speaking on autopi-
lot. Welcome, whoever you are. The ex-
it’s over that way.”

What conclusions can we draw? Is it
possible that half-a-dozen big-time ker-
nel hackers were simultaneously having
a really bad day? Has COVID-19 fatigue
caused a certain amount of brain atro-
phy or just outright depression? Or could
it really be true that a newcomer can be
told, sight-unseen, that their idea proba-
bly isn’t really anything special and that
she’d probably be better off working on
someone else’s project?

An Ancient Feature
Goes Belly Up
Way back in September, “when the grass
was still green and the pond was still

wet and the clouds were still clean”
(apologies to The Lorax), Linus Torvalds
wrote, submitted, accepted, and applied
a patch to remove the VGA soft scroll-
back feature from the Linux kernel.

VGA soft scrollback is what lets you
scroll the console to see fleeting kernel
messages as they flow past during
bootup or crash down. You just hit Shift
and Page Up to see whatever messages
have scrolled past the top of the monitor.

Linus explained that VGA soft scrollback,
“turns out to have various nasty small spe-
cial cases that nobody really is willing to
fight. The soft scrollback code was really
useful a few decades ago when you typi-
cally used the console interactively as the
main way to interact with the machine, but
that just isn’t the case any more.”

Randy Dunlap said that with this
patch going in, it should also be possible
to remove the soft scrollback documen-
tation at the same time.

Linus also clarified the situation
somewhat:

“Note that scrollback hasn’t actually
gone away entirely – the original
scrollback supported by _hardware_
still exists.

“Of course, that’s really just the old-
fashioned text VGA console, but that one
actually scrolls not by moving any bytes
around, but by moving the screen start
address. And the scrollback similarly
isn’t about any software buffering, but
about the ability of moving back that
screen start address.

“Do people use that? Probably not. But
it wasn’t removed because it didn’t have
any of the complexities and bitrot that all
the software buffering code had.

“That said, I didn’t check how much of
the documentation is for the VGA text
console, and how much of it is for the ac-
tual software scrollback for fbcon etc. So
it is entirely possible that all the docs are
about the removed parts.”

All seemed well until Pavel Machek
cried out in anguish, “Could we pause
this madness?”

Pavel went on to say:
”“Scrollback is still useful. I needed it

today… it was too small, so command re-
sults I was looking for already scrolled
away, but… life will be really painful
with 0 scrollback.

“You’ll need it, too… as soon as you
get oops and will want to see errors just
prior to that oops.

14 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Kernel News

NEWS

[…]
“Kernel is now very verbose, so impor-

tant messages during bootup scroll away.
It is way bigger deal when you can no
longer get to them using shift-pageup.

“fsck is rather verbose, too, and there’s
no easy way to run that under X termi-
nal… and yes, that makes scrollback very
useful, too.”

Pavel put his money directly where his
mouth was, saying, “If it means I get to
maintain it… I’m not happy about it but
that’s better than no scrollback.”

Adam Borowski felt Pavel’s cry of
pain. Adam unleashed his own tor-
mented howl of “I concur,” lamenting,
“this a serious usability regression for
regular users.”

Adam pointed out that “without some
kind of scrollback, there’s no way of
knowing why eg. your rootfs failed to
mount (there was some oops, but its rea-
son was at the beginning…). Or, any
other problem the user would be able to
solve, or pass the error messages to
someone more knowledgeable.”

He also said to Linus:
“I also wonder why did you choose to

remove softscrollback which is actually
useful, yet leave hardscrollback which
doesn’t come to use on any non-ancient
hardware:

* on !x86 there’s no vgacon at all
* on x86, in-tree drivers for GPUs by

Intel, nVidia and AMD (others are dead)
default to switching away from vgacon

* EFI wants its own earlycon
”… thus, the only niche left is nVidia

proprietary drivers which, the last time I
looked, still used CGA text mode.”

Finally, to Pavel’s willingness to main-
tain the code in question, Adam re-
marked, “That’d be greatly appreciated.
There are also some simplifications/​re-
writes that could be done, like getting rid
of redundant 1-byte/​4-byte storage (or
even the code for 1-byte…). Hard scroll-
back could be axed altogether (it pro-
vides only a small amount of scroll).
Etc….”

Throwing his lot in with the rebellious
Adam and Pavel, Maciej W. Rozycki con-
firmed that “For the record I keep using
the console scrollback all the time, and
FWIW I have gone through all the hoops
required to keep using VGA hardware
emulation and its console text mode
with my most recent laptop, which is a
ThinkPad P51; no longer manufactured,

but still hardly an obsolete device by to-
day’s standards I believe.” He therefore
concluded that “no, it’s not that nobody
uses that stuff anymore, and not with
obsolete hardware either.”

At that point, the matter rested and
several months passed. Then, as if no
time whatsoever had passed, Phillip Susi
replied to Pavel, “Amen! What self re-
specting admin installs a gui on servers?
What do we have to do to get this back
in? What was so buggy with this code
that it needed to be removed? Why was
it such a burden to just leave it be?”

To which Linus replied:
“It really was buggy, with security im-

plications. And we have no maintainers.
“So the scroll-back code can’t come

back until we have a maintainer and a
cleaner and simpler implementation.

“And no, maintaining it really doesn’t
mean ‘just get it back to the old broken
state’.

“So far I haven’t actually seen any
patches, which means that it’s not com-
ing back.”

Philip asked if there was any more in-
formation available. He said, “I can’t try
to fix it if I don’t understand what is
wrong with it. Are there any bug reports
or anything I could look at?”

Meanwhile, Daniel Vetter was not
going to let scrollback return without a
fight. In addition to the problems Linus
had identified, Daniel said, “on anything
that is remotely modern […] there’s a
pile more issues on top of just the scroll-
back/​fbcon code being a mess.” He con-
tinued:

“Specifically the locking is somewhere
between yolo and outright deadlocks.
This holds even more so if the use case
here is ‘I want scrollback for an oops’.
There’s rough sketches for how it could be
solved, but it’s all very tricky work.

“Also, we need testcases for this, both
in-kernel unit-test style stuff and uapi
testcases. Especially the full interaction
on a modern stack between /dev/​fb/​0, /
dev/​drm/​card0, vt ioctls and the console
is a pure nightmare.

“Altogether this is a few years of full
time hacking to get this back into shape,
and until that’s happening and clearly
getting somewhere the only reasonable
thing to do is to delete features in re-
sponse to syzkaller crashes.”

At this point, Greg Kroah-Hartman
piled in, saying, “Along with what

Daniel has already pointed out, just
look at all of the old syzbot reports for
the code in this area. Try fixing one of
those reports in an older kernel to give
yourself an idea of the issues involved.
Best of luck!”

Philip was utterly unwilling to let this
go, however. And when Geert Uytterho-
even offered some comments on the
overall situation, Philip said, “Judging
from some of the comments in the code,
it looks like you were one of the original
authors of fbcon?” And Geert replied,
“Indeed, a looooong time ago….”

The two of them embarked on an im-
plementation discussion. Philip said he
was willing to try to rewrite scrollback
from scratch if that was what it took,
and he proposed some ideas about how
to do that. And Geert replied:

“There are multiple ways to implement
scrolling:

1. If the hardware supports a larger vir-
tual screen and panning, and the virtual
screen is enabled, most scrolling can be
implemented by panning, with a casual
copy when reaching the bottom (or top)
of the virtual screen. This mode is (was)
available on most graphics hardware
with dedicated graphics memory.

2. If a 2D acceleration engine is avail-
able, copying (and clearing/​filling) can
be implemented by rectangle copy/​fill op-
erations.

3. Rectangle copy/​fill by the CPU is al-
ways available.

4. Redrawing characters by the CPU is
always available.

“Which option was used depended on
the hardware: not all options are avail-
able everywhere, and some perform bet-
ter than others.”

Several people joined the discussion,
but no patches seemed to come out of it.

Reimplementing this feature seems, on
the one hand, like something a fair num-
ber of people want badly enough to do
just about anything for it and, on the
other hand, like something that’s very
hard to get right. And Linus doesn’t
seem inclined to accept any patches that
don’t actually get the thing right.

Will it come back? It seems like a
fairly large mountain to climb for a fea-
ture that is only really useful for kernel
developers debugging kernel code. And
yet, it does seem to have a special place
in the hearts of a fair number of those
kernel developers. Time will tell. nnn

Quantum computers and the quest for quantum-resilient encryption

 Entangled Secrets
The encryption methods we use today are no match for tomorrow’s quantum computers.
We’ll show you why and what’s ahead for cryptography in the post-quantum era.
By Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider, and Daniel Loebenberger

E ncryption is an everyday part of life on today’s Internet. En-
cryption protocols facilitate virtual private networks (VPNs),
protect corporate secrets, and validate banking transactions.
Encryption is also the secret sauce behind technologies such

as digital signatures and blockchain. The beauty of encryption is
that, even if an observer intercepts the transmitted data, the original
contents of the message remains hidden from view.

End users and corporations alike have come to depend on encrypted private
communication over public networks, but many experts believe the way we think
about encryption today will have to change if we want our secrets to stay secret.
Cryptographers are looking ahead for a new form of encryption that will meet the
needs of the post-quantum era.

The Problem
A quantum computer is a computer that is designed to exploit the mysterious features
of quantum mechanics. The basic unit of a conventional computer is binary (0 or 1). A
quantum computer, on the other hand, is built around the quantum bit, or qubit,
which assumes multiple states simultaneously.

To fully understand the nuances of quantum computing [1], you would need a PhD
in physics or computer science (or both), but as a quick illustration, Figure 1 shows a
classical bit on the left with two states, zero or one. A qubit (right, represented by a
Bloch sphere), can also represent values in between through what is known as super-
position, such as a 1 with 65 percent probability and a 0 with 35 percent probability.
If you mix up several qubits so that they influence each other, different results can
occur, each with a specific probability. This strange but powerful feature lets quan-
tum computers solve certain mathematical problems much more quickly than a con-
ventional computer.

Quantum computers
have been theorized for
many years, but the tech-
nology is still at the early
stages of development. A
few test systems exist
today, but the kind of
large-scale, production-
ready quantum comput-
ing power necessary to
implement the ideas dis-
cussed in this article are
still a few years away.
However, the experts be-
lieve the time of the
quantum computer will
come, and it make sense

Figure 1: Classical bits (left) versus quantum
bits (right).

16

COVER STORY

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Quantum Computing and Encryption

for the IT industry to prepare.
A quantum computer could the-

oretically solve any problem you can
solve with a conventional computer, but the theorized game-
changing efficiency that speeds up solution by orders of magni-
tude will only work for certain types of problems that can be
addressed using specialized quantum algorithms that exploit
the power of superposition and qubits.

For example, some popular encryption methods use a key
that is a product of prime numbers. The fact that the number
15 is the result of multiplying the two prime factors 3 and 5 is
easy to deduce for humans as well as computers, but a number
like the one in Listing 1 is difficult for even a computer to re-
duce to prime factors. The 309-digit number in Listing 1 once
carried a US$100,000 prize for anyone who could factor it. The
contest ran from 2001 to 2007, and as of the time the contest
ended, no one had claimed the prize [2]. Computer scientists
have continued to work on the RSA Factoring Challenge num-
bers even after the contest ended, and to this day, no one has
found the prime factors for the number in Listing 1, which is
known as RSA-1024.

A message properly encrypted with a huge numbers like
the one in Listing 1 poses a formidable challenge for a poten-
tial eavesdropper working with a conventional computer sys-
tem. If you know the secret (in this case, the prime factors)
the contents is quite trivial to decrypt, but if you don’t know
the secret, the message is effectively indecipherable.

However, encryption methods based on integer factorization
problems of this type are far more vulnerable to attack using a
quantum algorithm. According to cryp-
tography experts, Shor’s algorithm [3],
which was created by the mathematician
Peter Shor in 1994, could radically re-
duce the time needed to factor large
numbers.

Other encryption techniques rely on methods that mathema-
ticians refer to with names like the discrete logarithm prob-

lem or the elliptic-curve discrete logarithm problem, both
of which are also susceptible to attack using
quantum techniques.

Symmetric
Symmetric key encryption (where the data is

encrypted and decrypted using the same key) is
the most efficient means for achieving private com-

munication on the Internet – if you can solve the key
distribution problem. Even some procedures that begin

with an asymmetric key exchange actually use symmetric
encryption for communication and just employ an asym-
metric process to communicate the symmetric session key.
The most popular symmetric technique in use today is Ad-

vanced Encryption Standard (AES).
Symmetric encryption is subject to attack using quantum

techniques; however, algorithms such as AES do appear to
have some capacity to respond – at least in the near term. The
most efficient generic attack by quantum computers on sym-
metric methods is the Grover algorithm, which was developed
by Lov Grover in 1996. The Grover algorithm speeds up mind-
less brute-force checking of all possible keys. Classically, prob-
ability theory says that you have to test half of all possible keys
on average. However, even in the worst case, the Grover algo-
rithm requires no more tests than the square root of the num-
ber of all possibilities.

The Grover algorithm could thus reduce the bit security by
half. In other words, a 128-bit encryption key would provide
only the security level of 64-bit encryption in a quantum con-
text. If you double the key length, you get back to the original
security level – unattractive, but not technically difficult to im-
plement. In practice, this means that wherever AES-128 is
used, for example, you would need to upgrade to AES-256 for
equivalent security; or, in the case of hash processes, you
would need to upgrade from SHA-256 to SHA-512.

Asymmetric
The security of asymmetric methods, on the other hand, is
based on complex mathematical problems such as factoring
large numbers or finding discrete logarithms. For sufficiently
large numbers, this kind of encryption is practically impossible
to solve using classical computers, but quantum computers will
have a much better chance. Shor’s algorithm provides exponen-
tial speed-up for several asymmetric encryption methods on a
quantum computer. This speed-up allows the computation of
keys of virtually arbitrary length in a meaningful amount of time
and makes all widely used asymmetric algorithms, such as RSA,
Diffie-Hellman, DSA, and variants based on elliptic curves
(ECDH, ECDSA) vulnerable.

The potential obsolescence of the critical asymmetric algo-
rithms that underpin today’s Internet economy is one of the

1350664108659952233496032162788059699388814756056670275244851438515265106048595338

3394028715057190944179820728216447155137368041970396419174304649658927425623934102

0864383202110372958725762358509643110564073501508187510676594629205563685529475213

500852879416377328533906109750544334999811150056977236890927563

Listing 1: RSA-1024 Challenge

17

COVER STORY
Quantum Computing and Encryption

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

example, has been known since 1978 and remains unbroken
since then. However, the McEliece technique requires the
exchange of a public key that weighs in at around 1MB,
which has made the cryptosystem unattractive thus far.
Other better alternatives exist for creating signatures: Hash-
based signatures are already well understood and ready for
use. One interesting area is isogenies [4] on supersingular
elliptic curves [5] (not to be confused with classical cryptog-
raphy based on elliptic curves). However, research on this
approach has only been going for a few years, and so many
questions still remain.

Some experts point to the benefits of a hybrid approach that
would incorporate multiple procedures: If several of the proce-
dures are used in parallel, the security of the overall system is
based on all the procedures used, which spreads the risk if one
of the methods is broken. In this context, experts speak of
crypto-agility, a term that encompasses easy sharing of proce-
dures, an easy way to respond to security incidents, and appro-
priate mitigation of incidents.

This hybrid approach seems relatively easy to implement
for a task such as software updates. The update mechanism
is modified such that, in addition to checking a classical sig-
nature, it also checks a second, quantum-resilient signature.
The overhead is then limited to the additional signatures
and verification times.

VPNs
VPNs are an important part of today’s networks, and en-
cryption is essential to the privacy provided by a VPN. The
protocols most commonly used with VPNs are not well pre-
pared for attacks by quantum computers, and even some of
the quantum-resilient alternatives are not well suited to use
in VPNs. For example, the 1MB public key required by the
quantum-resilient McEliece’s method is 2,000 times bigger
than what is currently required with today’s protocols. This
also affects software development – a programmer cannot
allocate an arbitrary amount of memory on a system. In
other words, software that was written for the data sizes
that are common today (or in the past) may now need to be
adapted for the new methods.

In the case of the IPsec VPN protocol, there is broad con-
sensus that – as long as no suitably powerful quantum com-
puter exists – you merely need to add methods that are quan-
tum-resilient, but you do not yet need to replace the classical
methods. Based on this approach, initial solutions have al-
ready been discussed for the Internet Key Exchange v2
(IKEv2) protocol, which is widespread in IPsec and laid down
in the form of two Internet drafts currently under review.
These drafts specify how additional messages can be ex-
changed in the protocol: The keys of most quantum-resilient
alternatives turn out to be too large to be exchanged together
with the underlying Diffie-Hellman exchange in a message
without exceeding the maximum size of the initial message.
(The maximum size is not just determined by the protocol
but is also dependent on external parameters of the network,
such as the Maximum Transmission Unit or MTU.)

Therefore, between the initial handshake, from which the con-
nection is secured using a session key derived from Diffie-Hell-
man for AES, and the authentication step, you need to insert

reasons why cryptographers are working ahead to ensure that
quantum-resilient alternatives are in place before quantum
computers emerge from the laboratory.

Quantum-Resilient Alternatives
Production-ready quantum computers are still several years
away. Stop-gap measures such as increasing key lengths and
tweaking handshake procedures might work for a while, but
eventually, the world will need a whole new class of encryp-
tion methods.

Today’s security protocols are usually optimized for a spe-
cific procedure (e.g., a specific key exchange such as the Dif-
fie-Hellman key exchange). Replacing this procedure was
never intended; therefore, the protocol was not modularized
accordingly. Designing the protocol around the encryption
improves the efficiency of communication, and it also implic-
itly rules out certain attacks; however, the structure of the
legacy protocol might complicate your efforts to migrate to a
new encryption method.

Cryptographers are exploring several potential techniques for
quantum-resilient encryption. One promising alternative is
based on the concept of lattices. In a two-dimensional grid
(Figure 2), it is comparatively easy to see which grid point
(red) an arbitrarily set point (purple) is closest to. In a multidi-
mensional grid, this becomes computationally very difficult. If
the grid points symbolize all possible messages, a shifted point
could represent the encrypted message. The receiver, who has
precise knowledge of the grid, will find the next point with
comparative ease. An attacker without sufficient information
would have a hard time. Therefore, grids enable efficient en-
cryption and signature procedures. Although it is very difficult
to find reliable parameters, it is believed that this type of proce-
dure is one of the most promising.

A quantum-resilient encryption method could also be built
around error-correcting codes. McEliece’s cryptosystem, for

Figure 2: Multidimensional lattices can serve as
the starting point of quantum-resilient encryption
schemes.

18

COVER STORY
Quantum Computing and Encryption

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

several messages for additional key negotiations. With the help
of a quantum-resilient method (or several), additional secrets
could be exchanged and the symmetric key could be updated.
The connection would then be secured using at least two meth-
ods, which would also make it quantum-resilient.

But even that doesn’t solve all the problems. The maxi-
mum size of an IKEv2 message is 64KB – too small for some
procedures, including some McEliece configurations. There-
fore, the key itself would have to be distributed over several
messages and reassembled at the recipient’s end by means
of an internal counter. Possible solutions to this problem are
currently in progress, but their security has not yet been
conclusively demonstrated.

Quantum-resilient encryption poses not only protocol-related
questions, but also methodological ones. The Diffie-Hellman key
exchange, which is used in almost all common protocols today,
lets both communication partners participate equally and with
equal communication overhead in the process of creating the
final symmetric key. This is not always the case with key-encap-
sulation mechanisms (KEMs), which are common in the field of
post-quantum cryptography, because here the key is transmitted
from one communication partner to the other. For McEliece, this
means, for example, that a great deal of data travels in one direc-
tion and very little in the other. This relationship, which is un-
usual for the previous protocols, might be exploitable by attack-
ers even without a quantum computer. Similarly, it is important
to clarify how best to achieve properties such as forward secrecy
using KEMs in protocols or use cases.

Note that these changes are occurring with protocols that
were deliberately kept simple to eliminate or mitigate the ef-
fects of a few specific attacks. Implementing hybrid or crypto-
agile solutions dials up the complexity, which could make the
protocol susceptible to other sorts of attacks, such as denial-of-
service attacks. It would therefore be important for the devel-
oper to provide other safeguards, such as checking to see if an
attacker is trying to fill the receiver’s memory with unneces-
sary data disguised as key material.

Next Steps
To enable adaptation of the existing infrastructure with all its
protocols and the software on a wide variety of systems, stan-
dardization bodies are already addressing the problem. The
challenge is to find a consensus on how to extend the protocols
to communicate both practically and securely in the future.
New solutions are needed in some cases, especially since the
focus is now on the modularity of the mechanisms and hybrid
application of the procedures.

The problem can definitely be solved. The US National Insti-
tute of Standards and Technology (NIST) is currently elaborat-
ing a standardization process [6]. Organizations like the Ger-
man Federal Office for Information Security (BSI) advise migra-
tion and recommend quantum-resistant algorithms. However,
it will probably be years before the standards are adopted and
established in practice. For highly sensitive use cases, if you
wait for the standard, you might already be too late.

Conclusions
Recent estimates suggest that it takes about 20 million qubits to
break a 2048-bit RSA key. Currently, the most powerful quantum

computers operate at about 70 qubits, and even optimistic esti-
mates expect at most 1,000 qubits within the next three to five
years. This means that current quantum computers are not
nearly powerfully enough to break today’s encryption algo-
rithms. It is unclear if and when a cryptographically relevant
quantum computer might exist.

However, if the pace of quantum development observed in
recent years continues, the future could hold a realistic threat
to secure communications. Some government intelligence
agencies have already intercepted and stored vast volumes of
encrypted data and might be able to start deciphering that data
as soon as there are advances in crypto analysis or as soon as
suitable quantum computers become available. This means
that different encryption solutions are already useful today
even if quantum decryption is not yet available.

At the end of the day, the problems related to quantum-resil-
ient encryption are solvable, but there can be no doubt that the
alternatives will not turn out to be as efficient and simple as
the classical procedures.

When you migrate to quantum-resilient IT, it will be impor-
tant to document where cryptography is used in your own en-
terprise – or in your own products. Then you can explore
whether alternative options are available. Dependencies will
always crop up, meaning that product manufacturers or open
source projects will have to make appropriate adjustments. For
example, the question might arise as to whether the crypto li-
braries used with the project can be replaced by quantum-resil-
ient alternatives, or whether high-security requirements al-
ready force transitional solutions.

Some standardization bodies are at least trying to offer the
option of securing today’s communications against quantum
computers without the use of post-quantum cryptography – for
example, with the help of pre-shared keys.

The multitude of requirements makes a universal recommen-
dation impossible. Only the use of experts and a broad ex-
change of knowledge can prevent isolated solutions, which –
unfortunately – often occurred in the past. It is important to
cover the widest possible range of use cases with the smallest
possible number of standard solutions. Crypto and IT security
experts rely on the experience of software and hardware devel-
opers, as well as administrators of small and large networks.
This real-world testing with large volumes of data is the best
way to identify vulnerabilities. Government agencies, stan-
dards bodies, and the crypto community need this input, and
they welcome the participation of all of us in preparing tomor-
row’s digital world for the requirements of the near future. nnn

[1]	� Quantum computing:
https://​en.​wikipedia.​org/​wiki/​Quantum_computing

[2]	� RSA Factoring Challenge:
https://​en.​wikipedia.​org/​wiki/​RSA_Factoring_Challenge

[3]	� Shor’s algoritm:
https://​en.​wikipedia.​org/​wiki/​Shor%27s_algorithm

[4]	� Isogeny: https://​en.​wikipedia.​org/​wiki/​Isogeny

[5]	� Supersingular elliptic curves:
https://​en.​wikipedia.​org/​wiki/​Supersingular_elliptic_curve

[6]	� NIST PQC mailing list: https://​csrc.​nist.​gov/​projects/​
post‑quantum‑cryptography/​email‑list

Info

19

Quantum Computing and Encryption

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

COVER STORY

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Isogeny
https://en.wikipedia.org/wiki/Supersingular_elliptic_curve
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list

ercises done with the GNU shell and
compiler collection, using the GNU/​
Linux, BSD, and Hurd kernels. Knopper
was among the students who founded a
Unix working group, which eventually
went on to organize the LinuxTag expo.

A few years later, Knopper encoun-
tered the Linuxcare Rescue CD, an 18MB
business-card-sized CD with the Linux
kernel and a command-line rescue tool.
Knopper recalls, “I thought that a full
CD-sized operating system with all the
applications I use frequently, including a

F or over 20 years, Knoppix has
been the premier portable operat-
ing system and rescue disk for
Linux users. Although its pack-

ages are drawn from the Debian reposi-
tories, and contributors add to its hard-
ware support, the bulk of the work on
the distribution is done by German elec-
trical engineer Klaus Knopper (Figure 1),
an independent consultant and instruc-
tor at the Kaiserslautern University of

Applied Sciences. Over the years, Knop-
pix’s hardware support has increased,
features have been added and dropped,
and its original purposes have been
joined by ADRIANE (Audio Desktop
Reference Implementation and Net-
working Environment), a desktop de-
signed for the sight impaired with input
from Klaus’s wife, Adriane Knopper
(Figure 2). All of which shows how this
passion project is evolving with the
times and is as important as ever.

“When I started studying electrical
engineering in the late
’80s,” Klaus Knopper
says, “my plan was to
build electric cars and
solar power plants.
Apparently, this vi-
sion was just a little
too early, so my inter-
ests turned more to-
wards networking
software and the pos-
sibilities that ap-
peared with the Inter-
net.” At the time, free
software was how
Unix-like systems
were taught, with ex-

Evolution of a Passion Project

 Knoppix
Knoppix, a portable operating system and rescue disk, continues to evolve. By Bruce Byfield

Figure 1: Klaus Knopper, Knoppix’s
core developer.

Figure 2: Adriane Knopper, the inspiration for
ADRIANE, Knoppix’s desktop for the blind.

22

REVIEW

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Distro Walk – Knoppix

graphical desktop, data forensics, and
TeX and other favorites would be ex-
tremely practical for travelling without
a computer, using publicly available
computers while still being able to use
my personal software collection without
installation.”

A Knoppix prototype debuted at the
Atlanta Linux Showcase in 2000. After
talking about his efforts, Knopper gave
out several dozen CDs plus, a few
weeks later, feedback about hardware
detection. “At that point,” he says, “I
decided that Knoppix should be a pub-
licly available project for further devel-
opment, because I could not possibly
test on every available computer hard-
ware constellation on my own. Detect-
ing hardware correctly, and creating ap-
propriate configuration for optimal sup-
port without any questions asked inter-
actively is probably the biggest techni-
cal challenge.”

Today, Knoppix is downloaded 7,000
to 20,000 times per day from Knopper’s
own website [1]. Although Knopper
does not have statistics from mirrors, he
notes that some Internet providers rec-
ommend downloading a Knoppix DVD
just for measuring real bandwidth.

Hardware Detection
From the start, Knoppix’s main chal-
lenge has been hardware support (Fig-
ure 3). However, support has become
easier thanks to packages like the Linux
kernel and udev, which have built-in de-
tection for many types of hardware.
“Writing scripts that probe a few thou-
sand setup options is no longer neces-
sary,” Knopper says. “One challenge left
is finding the correct chipset to use in
dual-chipset graphics on some boards.
Depending on vendor and BIOS setup,
only one of the tandem chipset parts
works reliably, so there is only a 50/​50
chance for finding the working setup for
these automatically. As an example,
from my experience, with the frequently
installed Intel+NVidia combination, the
Intel part works better out of the box,
but in some cases booting with knop‑
pix64 xmodule=nouveau is required to se-
lect the NVidia art instead.”

Knopper continues, “for only partly
Linux-supported hardware, fallbacks to
generic drivers are included. But these
only come into action if the native
drivers exist cleanly. Sometimes you

have the case that an older Knoppix
version works well on a specific graph-
ics card using the vesa or framebuffer
drive while a newer version which has
a new experimental driver won’t, but
can still be booted with the option
knoppix xmodule=vesa to enforce the
simplest driver.”

Streamlined Features
In the past, some users have installed
Knoppix as their main operating system,
but Knopper warns that it is not a typical
distro with frequent upgrades and multi-
user setups. Nor does it work well with
UEFI or upgrades. Because of these prob-
lems, the hard disk installer was re-
moved in Knoppix 9. Instead, Knopper
advises working from a flash drive, with
the /home directory on a separate filesys-
tem, so that upgrades do not cause prob-
lems. The exception is the update‑secu‑
rity script, which according to Knopper
can safely replace most packages.

Another feature dropped from Knop-
pix is systemd. In fact, Knoppix was one
of the first major distributions to remove
systemd. “I try to keep the startup proce-
dure as simple as possible, driven by
shell scripts and only starting tasks in
parallel when I’m confident this will
work without conflicts,” Knopper says.
“Systemd has made a Linux system very
complex with dependencies at places
where you would not expect them logi-
cally. You may have noticed that some
Linux installations wait for a minute or
two before successfully shutting down,
just because there are leftover dependen-
cies between network and services after
a program removal, so the system has to
wait until a timeout is reached when
programs or libraries don’t send the ex-

pected answers. This won’t happen on
Knoppix because processes are just shut
down cleanly without waiting for system
services to signal that they are ready for
this now.”

Knopper adds, “Actually, for justice,
I also dropped SysVinit and replaced it
by the simpler BusyBox internal init
and shell scripts which replace the
shutdown, reboot, and poweroff com-
mands by safe procedures. Removing
systemd as well as (most of) SysVinit
also removed a lot of dependencies
which would otherwise have pulled in
many libraries and services that are
not actually needed to run Knoppix. To
fulfill the dependency requirements in
some Debian packages without mess-
ing with the package format, I added
these as virtual dependencies, so you
will find a package no-systemd in-
stalled on Knoppix which also avoids
accidentally reinstalling systemd and
possibly killing the boot system.”

ADRIANE
One indication of how personal a project
Knoppix remains is the inclusion of
ADRIANE, a desktop designed for the
blind (Figure 4). ADRIANE was devel-
oped with Knopper’s sight-impaired wife
Adriane in mind, “so she can use a
Linux system which she can control
completely by herself without needing
any proprietary software or surprises by
incompatible updates or pop-up license
requests, for using the Internet. The way
which the audible desktop menu works
and the easy-to-remember speech func-
tions [are] her design. [It] tries to reflect
the way a blind person starts learning to
use a computer on their own with no or
few sighted help.”

Figure 3: Knoppix’s hardware detection is both quick and extensive,
although it sometimes needs the help of boot options.

Distro Walk – Knoppix

23LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

REVIEW

files – normal work in an easy-to-use in-
terface. The KARL keyboard learning
program teaches you keyboard layout
and functions by having the computer
read the meaning of a pressed key to
you, enabling people unfamiliar with
computers to learn how to use a key-
board before using applications. Experts
would most likely use the shell with the
screen reader, which is also a menu item
in ADRIANE.

Looking Ahead
Asked about future plans for Knoppix,
Knopper’s first reply is “whatever is
new and interesting in the FOSS world.”
For example, with the increased use of
videoconferencing, the forthcoming
Knoppix 9.2 includes Open Broadcaster
Software (OBS) Studio, with virtual
camera support.

In addition, Knoppix tends to use 32-
bit user space by preference, although it
does support a 64-bit kernel. This ten-
dency helps Knoppix to support as
much hardware as possible. Some mod-
ern applications like Docker are in-
stalled as statically linked binaries, but
they do not interfere with the rest of the
32-bit system. “I do get a lot of emails
asking for a specific 64-bit version,”
Knopper says, “but unfortunately I do
not have enough free time to work on
many versions in parallel.”

Knoppix will never rival Fedora or
Ubuntu, but, then again, it is not meant to.
Instead, it has found its own niches and
learned to thrive in them. It remains an ex-
ample of how much one developer can do
in free software while borrowing the ef-
forts of others in the community. nnn

Knopper further explains, “ADRIANE is
not another add-on for graphical desktops
but works with what’s commonly perceiv-
able without vision: speech and text. For
beginners who don’t know the whole lot
of keyboard shortcuts which graphical
screen readers need, [there's] the simple
talking menu which is controlled entirely
by arrow keys, Escape, and Caps Lock as
‘Talking control’ keys. When configured
with autostarting ADRIANE, the first thing
you hear when starting the computer is
‘Enter for help, arrow down for next
menu’, which tells you what you can do
and how to get more information about
the audible desktop usage. The JavaScript-
capable text browser ELinks allows you to
access and work with most websites eas-
ily, and email using the Mutt mail client
(which I also use personally because it can
handle extreme numbers of inbox mail
smoothly) is also possible with only audio
and (optionally) Braille devices.”

Knopper adds, “ADRIANE (started
with boot option adriane) is not an assis-
tive technology per se; rather it is an al-
ternative, non-vision-oriented desktop
that uses assistive technologies like the
SBL screenreader (with configurable pro-
files for different programs for speech
and Braille), entirely made of Bash shell
scripts with dialogs and accessible con-
sole-based programs. Knoppix can also
use Orca on the graphical desktop, like
many other distros (boot option knoppix
orca), but that’s not a direct part of
ADRIANE.”

Currently, with the help of ADRIANE,
Knopper says you should be able to
teach yourself to use a Linux system
without vision. You can do things like
access the Internet and email, use utili-
ties like a calculator, take text notes, use
an address book, and scan printed letters
or books and then have the computer
read them to you or save them as text

[1]	� Download Knoppix:
https://​www.​knopper.​net/​
knoppix‑mirrors/​index‑en.​html

Info

Figure 4: Knoppix’s ADRIANE is a desktop environment for the blind,
working through sound and keyboard shortcuts.

nnn

24

Distro Walk – Knoppix

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

REVIEW

https://www.knopper.net/knoppix-mirrors/index-en.html
https://www.knopper.net/knoppix-mirrors/index-en.html

What he discovered was that the meta-
data downloaded was often out of pro-
portion to the package’s size, and even
more so the smaller the package. Any
Debian user can easily check this by
looking in the terminal at the end of an
apt update to see how many megabytes
of metadata the operation downloads.
This amount often exceeds the total size
of the actual packages to be updated
(Figure 1).

The maintainer scripts that the pack-
age manager runs during installation
also slow down the process, as well as
prevent parallel installation of packages.
In Stapelberg’s view, these scripts can
just as easily run the first time the appli-
cation is launched. Debian processes
maintainer scripts using files such as
preinst and postinst when installing or
updating packages; they contain distri-
bution-specific customizations [5].
Debian has 8,620 maintainer scripts. The
Debian Policy Manual web page pro-
vides flowcharts that exemplify the un-
derlying complexity here [6]. In Fedora,
scriptlets perform this task [7].

P ackage managers differ from
each other not only in terms of
the package formats they use,
but also in their execution speed.

Developer Michael Stapelberg has been
working on how to streamline package
managers such as Debian’s Apt or Fedo-
ra’s DNF to make them faster. He has
written blog posts on the subject, given
talks, and created an experimental distri-
bution, distri [1] to explore the problem.

Distri is a minimal, command-line dis-
tribution for reviewing package manage-
ment concepts in Linux. This is purely a
feasibility study and is not suitable for
production use. Distri seeks to be the
simplest distribution that is still useful.

Criticism of Debian
Stapelberg, currently a Google developer,
was a package maintainer at Debian from
2012 to 2019. Besides maintaining packages
of Debian he wrote the i3 Window Man-
ager and the Debian Code Search engine.

In March 2019, he announced in frus-
tration his withdrawal from Debian de-
velopment with a harsh criticism of the

Debian project [2]. He referred to the
practices and tools used to develop,
manage, and support the software in the
distribution saying that they were often
more of a hindrance than a help.

In Stapelberg’s opinion, there is a lack
of effective tools to implement compre-
hensive changes in a timely manner.
Also, according to Stapelberg, the speci-
fications laid down in the Debian guide-
lines and pushed by the quality assur-
ance tool Lintian [3] unduly hinder the
implementation of necessary technical
changes.

Too Much, Too Slow
In particular, Stapelberg vehemently crit-
icizes the package management – not
only in Debian, but Linux in general.
Above all, he dislikes that package man-
agers do too much and do it too slowly.
To this end, he first conducted a series of
tests with small and larger packages
using the Apt, DNF, pacman, Nix, and
apk package managers, contrasting the
metadata downloaded and the time and
bandwidth used [4].

Improving Linux package management

 Delivery Service
Linux package managers work too slowly. The experimental distri research project investigates ways
to speed up package management. By Ferdinand Thommes

Ph
o

to
 b

y
M

ik
a

B
au

m
ei

st
er

 o
n

 U
n

sp
la

sh

26

IN-DEPTH

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Distri

Inefficient
At Google, Stapelberg learned a great
deal about effectively updating large
amounts of data. Updates to distribu-
tions proved fairly ineffective in his re-
search. He did a test using common sys-
tems to install one small package and
one large package, recording times.

Although the test computer’s network
connection supported speeds of around
115MBps, none of the distributions
achieved more than just under 11MBps
of throughput, with most achieving
around 3MBps. Alpine Linux performed
best, being the fastest in both tests at
10.8MBps and also requiring the lowest
volume of metadata to complete the
task. Arch Linux and NixOS were in the
middle, while Debian and Fedora per-
formed worst.

As an example, for the small 75KB ack
package, Fedora had to download a mas-
sive 114MB and the install took 33 sec-
onds. Alpine, on the other hand, was
content with 10MB installed in one sec-
ond. When installing the virtualization
software Qemu, Alpine managed with

26MB, while Fedora needed almost 10
times the amount of data at 226MB.

In view of such numbers, it is little
wonder that Fedora is pretty sluggish
when it comes to updates and installa-
tions. In both scenarios, Debian came in
second to last, because downloading the
large volume of metadata also delayed
the process. Besides Alpine, Arch Linux
also had one of the faster package man-
agers in the test.

Hooks and Triggers
Fedora is also slow because its un-
packed package list alone is 60MB,
while Alpine’s list is a lean 734KB. Fe-
dora offers over 20,000 packages, which
is three times more packages than the
very small Alpine, but the difference is
still striking.

However, Stapelberg thinks even the
best results in the test are too slow. He
sees another reason for this in the fre-
quently used hooks and triggers that the
package manager executes during instal-
lation, which trigger the aforementioned
maintainer scripts, create daemon user

accounts (such as an FTP or WWW ac-
count), or create cache files.

One of the most commonly used trig-
gers, the man package trigger ensures
that a man page for the package is in-
cluded on the system with each package
installation. In his blog, Stapelberg ex-
plains why all this should not happen
during installation and how it prevents
parallel installation of packages [8].

In Stapelberg’s opinion, these inter-
ruptions of the actual installation should
preferably take place when the app is
first launched. If an application does not
start between installation and the first or
even further updates, the adjustments
would only be executed once instead of
several times, for example.

Image Instead of Archive
In Stapelberg’s opinion, a package man-
ager should only do what is absolutely
necessary to anchor a package in the
system so that it is ready for use (i.e.,
start the program or load a kernel mod-
ule). Unpacking during installation is
not necessary if packages are available
as filesystem images that the distribution
mounts at startup, as is the case with
AppImage or Snap.

According to Stapelberg, no package
manager in a Linux distribution cur-
rently uses this scenario, although it
could still increase the speed to above
the level achieved by Alpine’s apk, the
fastest package manager in his test se-
ries. Images are currently only used by
the Haiku operating system project.

In Stapelberg’s experimental distribu-
tion distri, he seeks to experiment with
reducing the complexity of package
management. He concludes that distri-
butions like Fedora or Debian could also
run faster given less complexity. That
doesn’t mean it’s technically easy to im-
plement, but it would be feasible.

For example, distri uses read-only
SquashFS images as the package format
instead of the usual TAR archives (Fig-
ure 2). In addition to increased speed,
this has the advantage that applications
cannot be modified, which protects
them from accidental or malicious mod-
ifications.

Distri organizes all files provided by a
package under the /ro/ mount point,
each in its own directory. The usual
data exchange between software pack-
ages, which takes place via the speci-

Figure 1: When installing and updating packages, the package manager
also downloads metadata. The volume of metadata is particularly high
in Fedora and Debian, which delays package installation.

IN-DEPTH
Distri

27LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

On Fedora, use:

dnf install zstd

Then extract the file using the call:

$ unzstd ~/Downloads/distri‑disk.img.zst

In the process, the compressed file loses
the .zst attachment and grows to 8GB.
An attempt to start distri on an 8GB USB
stick failed as expected; you need a stick
with at least 16GB capacity. After start-
ing distri, a login prompt opens where
you can enter the password, which is
peace for root (Figure 4).

You are greeted by a very simple Z
shell prompt that lets you explore the
system. At first, I thought the cd com-
mand had failed, because the prompt
does not show the new location after the
change – but pwd will help here. Entering
cd /ro/ takes you to the directory with
all installed packages; switching to /ro/
share/ takes you to the exchange direc-
tory (Figure 5).

For common distri commands, and
their equivalents in Debian, see distri’s
documentation [11]. This is also where
you can learn more about Distri’s pack-
age format and how to create your own
packages. The distri update command
(Figure 6) replaces

apt update && apt full‑upgrade

and upgrades the entire distribution at
an impressive pace. With a 1Gbps con-
nection, the system downloads and in-

fied directories of the Filesystem Hierar-
chy Standard (FHS) in conventional dis-
tributions, is handled by the system via
exchange directories, which are pro-
vided by FUSE.

For example, the exchange directory
/ro/share/ provides the union of the
share/ subdirectory of all packages in
the package store. The global exchange
directories map the FHS with sufficient
accuracy to allow third-party software,
such as Google Chrome or Spotify, to
work. Using /ro/ also prevents conflicts
when installing multiple versions of a
package.

Distri also streamlines package build-
ing. Unlike conventional distributions'
builders, the distri package builder does
not install packages in the build environ-
ment. Instead, the system provides a fil-
tered view of the package store in /ro/ in
the build environment. Even with large
dependency trees, setting up a build en-
vironment this way takes a fraction of a
second.

Distri’s website provides information
about the various ways to use the distri-
bution [9]. There is no installer yet, but
the maintainer has future plans for one.
Distri can be started from a USB stick or
in a Docker or LXD container, as well as
in a virtual machine with VirtualBox or

Qemu. Since it is in IMG format [10] and
not an ISO, you first need to convert it to
a Virtual Disk Image (VDI) for Virtual-
Box (Figure 3).

First, you unpack the image. Since the
developers have packaged it with the rel-
atively new Zstandard (Zstd) compres-
sion algorithm, you will probably need
to install zstd up front. On Debian, you
can do this with:

apt install zstd

Figure 2: Distri uses the SquashFS package format, available as images
and in packaged formats.

Figure 3: If using VirtualBox, you first need to convert the downloaded
image into a VDI.

Figure 4: At login, distri mounts a basic set of essential applications. At
runtime, it brings in more apps, depending on the usage.

Figure 5: Besides the usual suspects like /etc or /usr, you will also find
distri-specific directories like /ro and /roimg in the root directory.

28

Distri

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

stalls around 275MB of data in less than
four seconds.

Package installations are also com-
pleted in the blink of an eye (Figure 7).
In the case of the Nano editor

distri install nano‑amd64‑4.9.5‑2

it took just over a millisecond. You need
to specify the package version because
multiple versions can be installed in par-
allel. Available packages can be found in
the distri repository [12].

Conclusions
Because distri is an experiment in
package management, it is likely to in-
terest only a limited user base. If you
want to dig deeper, you should read all
of Stapelberg’s blog posts on the topic
[13] and watch his keynote at the Arch
Developer Conference 2020 [14].
While there is no official support for
distri, Stapelberg will answer ques-
tions on the
mailing list [15]
and in the #dis-
tri chat room on
the legacy.irc-ro-
bustirc IRC
server. However,
you may have to
be patient. nnn

Figure 7: The installation of individual packages is blazingly fast. The cmake package, weigh-
ing in at about 75MB, was installed in about 1.5 seconds on a fast Internet connection.

Figure 6: The distri update command updates the system. In a test,
this took just under 3.3 seconds.

[1]	� distri: https://​distr1.​org

[2]	� Stapelberg’s critique of Debian: https://​michael.​stapelberg.​ch/​
posts/​2019‑03‑10‑debian‑winding‑down/

[3]	� Lintian: https://​en.​wikipedia.​org/​wiki/​Lintian

[4]	� Package manager comparison: https://​michael.​stapelberg.​ch/​
posts/​2019‑08‑17‑linux‑package‑​managers‑​are‑slow/

[5]	� Maintainer scripts:
https://​www.​debian.​org/​doc/​debian‑​policy/​
ch‑maintainerscripts.​html

[6]	� Debian flowcharts:
https://​www.​debian.​org/​doc/​debian‑policy/​ap‑flowcharts.​html

[7]	� Fedora scriptlets: https://​docs.​fedoraproject.​org/​en‑US/​
packaging‑guidelines/​Scriptlets/

[8]	� Hooks and Triggers: https://​michael.​stapelberg.​ch/​posts/​
2019‑07‑20‑hooks‑and‑triggers/

[9]	� Using distri: https://​distr1.​org/​getting‑started/

[10]	�distri download: https://​repo.​distr1.​org/​distri/​supersilverhaze/​img/

[11]	�distri documentation: https://​repo.​distr1.​org/​distri/​jackherer/​
docs/​rosetta‑stone.​html

[12]	�distri repository: https://​repo.​distr1.​org/​distri/​supersilverhaze/​pkg/

[13]	�Michael Stapelberg’s blog:
https://​michael.​stapelberg.​ch/​posts/​tags/​distri/

[14]	�Stapelberg’s keynote at Arch Developer Conference 2020:
https://​media.​ccc.​de/​v/​arch‑conf‑​online‑2020‑6387‑​distri‑​
researching‑​fast‑linux‑​package‑​management

[15]	�distri mailing list: https://​www.​freelists.​org/​list/​distri

Info

nnn

Distri

29LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

IN-DEPTH

https://distr1.org
https://michael.stapelberg.ch/posts/2019-03-10-debian-winding-down/
https://michael.stapelberg.ch/posts/2019-03-10-debian-winding-down/
https://en.wikipedia.org/wiki/Lintian
https://michael.stapelberg.ch/posts/2019-08-17-linux-package-managers-are-slow/
https://michael.stapelberg.ch/posts/2019-08-17-linux-package-managers-are-slow/
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ap-flowcharts.html
https://docs.fedoraproject.org/en-US/packaging-guidelines/Scriptlets/
https://docs.fedoraproject.org/en-US/packaging-guidelines/Scriptlets/
https://michael.stapelberg.ch/posts/2019-07-20-hooks-and-triggers/
https://michael.stapelberg.ch/posts/2019-07-20-hooks-and-triggers/
https://distr1.org/getting-started/
https://repo.distr1.org/distri/supersilverhaze/img/
https://repo.distr1.org/distri/jackherer/docs/rosetta-stone.html
https://repo.distr1.org/distri/jackherer/docs/rosetta-stone.html
https://repo.distr1.org/distri/supersilverhaze/pkg/
https://michael.stapelberg.ch/posts/tags/distri/
https://media.ccc.de/v/arch-conf-online-2020-6387-distri-researching-fast-linux-package-management
https://media.ccc.de/v/arch-conf-online-2020-6387-distri-researching-fast-linux-package-management
https://www.freelists.org/list/distri

would even list and install dependen-
cies, although less conscientious devel-
opers might still strand users in depen-
dency hell. Installing from source typi-
cally begins by switching into the direc-
tory that contains the source code and
running ./configure to check that all the
required dependencies are already in-
stalled (Figure 1). For instance, one of
the first checks that ./configure usually
does is to check whether the system has
the GCC compiler installed and running
correctly. In addition, ./compile creates
the files needed to compile, such as the
makefile that contains the basic instruc-
tions for compiling. If all dependencies
are present, you can then compile the bi-
nary using the make command. If the

A
well-known xkcd cartoon
starts with 14 competing stan-
dards [1]. Someone resolves to
simplify the situation by devel-

oping one standard that covers all the
others. The result? Fifteen competing
standards. The cartoon reflects a wry
truth that has recently been illustrated
in a proliferation of software installers
that complicates matters for those who
install cutting-edge applications. In-
creasingly, would-be users have to learn
a new installer and install more soft-
ware before they can get to the software
they want to try.

When Linux first became popular in
the late 1990s, software installation
often ended in what was known as “de-
pendency hell,” in which users had to
track down the correct version of each

dependency and risked leaving a pack-
age half-installed. One way around this
problem was to use static tarballs – ar-
chives that included the required de-
pendencies. These were used in the first
forays into commercial Linux software,
like Loki Entertainment, and they were
easy to create with the tar command.
However, static tarballs were not always
used, probably because they often
meant that one hard drive might con-
tain several versions of the same soft-
ware, which was wasteful at a time
when storage was limited.

Another early solution was to install
software written in C or C++ from
source, creating the necessary binaries.
If you were lucky, the install scripts

Competing software installers

Proliferation
With an increasing number of software installation methods, testing cutting-edge applications may
require learning about the installer first. By Bruce Byfield

Bruce Byfield is a computer journalist and
a freelance writer and editor specializing
in free and open source software. In
addition to his writing projects, he also
teaches live and e-learning courses. In his
spare time, Bruce writes about Northwest
coast art (http://​brucebyfield.​wordpress.​
com). He is also co-founder of Prentice
Pieces, a blog about writing and fantasy at
https://prenticepieces.com/.

Author

Figure 1: The ./configure command is used to compile C and C++
source code, along with make and make install. Le

ad
 Im

ag
e

©
 D

ea
n

 D
ro

p
b

o
t,

 1
23

rf
.c

o
m

30

IN-DEPTH

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Command Line – Installers

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/

build is successful, the command make
install installs the application. This sys-
tem at least provides some minimal
guidance in dealing with problems and
is still used today, as well as variants like
KDE’s CMake.

Installation took a giant step forward
when Debian became the first distribu-
tion to introduce package management.
With package management, applica-
tions are presented along with an array
of scripts that handle dependencies (as
well as any alterations to the system be-
fore, during, and after installation) and
draw from a standard set of online re-
positories. The efficiency, as well as the
economy of memory, meant that pack-
age management soon spread to other
major distributions. The commands
may differ – apt‑get or dpkg for Debian,
yum or dnf for Fedora, and pacman for
Arch Linux – but the structure of pack-
age managers is much the same in all
distributions, with basic commands for
installation, deletion, and repository
searching and updating, as well as a
centralized database for all installa-
tions. Several years ago, Ubuntu intro-
duced apt, a convenient subset of
apt‑get functions (Figure 2), but the
structure of package management has
remained the same for over two de-
cades. Most Linux users have likely

used a package manager, if only
through a graphical interface.

Universal Packages
Today, Linux computing is vastly differ-
ent than it was in its infancy. Memory is
abundant now, and the restrictions of
earlier times no longer seem relevant to
many. For instance, on many systems,
package installation no longer needs to
be part of system administration in order
to manage limited system resources. In-
stead, ordinary users can install software
for their own use. Similarly, there is
room for multiple versions of resources,
something that package management
generally avoided. And, most impor-
tantly, many developers would prefer to
build a single file for all distributions, in
effect making software installation on
Linux closer to what it is on Windows or
macOS.

Currently, there are three main univer-
sal package systems: AppImage, Canoni-
cal’s Snap, and Fedora’s Flatpak. An-
nounced in 2016, Snap and Flatpak
helped to renew the interest in AppIm-
age (Figure 3). All three are structured
much like traditional package manage-
ment systems and might be said to be a
more sophisticated version of static
tarballs. However, although all three are
highly promising (e.g., Flatpak’s home

page declares the format “The Future of
Apps on Linux”), distributions differ
enough in details like the location of files
that one format that fits all is not always
easy to create. Several distributions like
openSUSE now maintain releases in a
universal format, but all three universal
package systems have become just more
standards among many.

The New Installers
Another growing trend is to use the in-
staller included in a programming lan-
guage. For instance, Carp is the package
manager for the Rust programming lan-
guage. Similarly, Ruby borrows Home-
brew from Apple.

The most common of these program-
ming language installers is pip, the Py-
thon installer (Figure 4). Until January
2020, a pip version existed for Python re-
leases before 3.x and is undoubtedly still
around. For current versions of Python,
pip3 is the command. However, some-
what confusingly, at the command
prompt, pip3 is referred to merely as pip.
The command structure is further com-
plicated by calling pip from Python3:

python3 ‑m pip install PACKAGE

The package can be defined by a local
path, or the version control or Python

Figure 2: Typical of modern package manager commands, apt explains the results of requests and reports on
progress.

Figure 3: AppImage requires only a download and a change in permissions to run.

IN-DEPTH
Command Line – Installers

31LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

the installers for less common program-
ming languages. And I admit that I have
rarely seen many of these methods as
anything other than a distraction from
my browsing of newer applications.
However, the choice of installation meth-
ods is not made to help users. Much of
the time, the choice is made for the con-
venience of the developers, who would
understandably rather be working on the
code than making provisions for users
before the code’s general release. How-
ever, the situation remains reminiscent
of the xkcd cartoon, and those who
browse the latest code development
need to be aware of how the choice of
installers can become an obstacle. nnn

repository. An exact version can be spec-
ified by PACKAGE==VERSION, while specify-
ing a version and adding <HIGHER‑VERSION
or >LOWER‑VERSION specifies a range of in-
stallation candidates. In addition, ~=VER‑
SION specifies an installation candidate
compatible with a certain version.

Almost alone among the other installa-
tion choices, this syntax is more compli-
cated than that of other package manag-
ers discussed here. However, it is in-
cluded, because, as its use of Debian
syntax implies, pip seems designed as an
improvement over traditional package
management. Its syntax makes pip an
installer for experts, providing them with
advanced tools.

Cloning from Servers
An increasingly common installation
method is to copy the files from a version

control repository. The most common
command for this purpose is git, using
the command git clone URL (Figure 5),
but curl and wget are also occasionally
used. With all three commands, several
scenarios are possible. You might copy
only source code and find installation in-
structions in a README file. If the appli-
cation is written in an interpreted lan-
guage like Python, the copied files are
ready for use. Alternatively, a developer
may have included a compiled binary and
all the dependencies. In all these cases,
you only need to follow the provided in-
structions, although you may need to in-
stall a tool or two before you install.

15 Competing Standards
I have omitted some of the installation
methods available for new applications
on GitHub or GitLab, which are mostly

[1]	� “Standards,” xkcd:
https://​xkcd.​com/​927/

Info

Figure 4: Python’s pip installer closely resembles standard package installers.

Figure 5: Cloning a Git repository can be a quick way to install an application.

nnn

32

Command Line – Installers

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

https://xkcd.com/927/

can integrate DTLS into you own pro-
grams using OpenSSL or GnuTLS.

How It Works
DTLS reuses most of the protocol ele-
ments from TLS, with minor but crucial
modifications for it to work properly
with datagram protocols like UDP. To
cope with the unreliability of connec-
tionless protocols, DTLS had to imple-
ment a solution for packet loss and
packet reordering.

DTLS messages are grouped into a se-
ries of message flights. Although each
flight may consist of a number of mes-
sages, the flight should be viewed as
monolithic for the purpose of time out
and retransmission. Figure 1 shows the
DTLS 1.2 handshake procedure.

Because the DTLS handshake takes
place over unreliable datagram trans-
port, it is vulnerable to two types of
Denial of Service (DoS) attacks. The
first scenario is a standard resource-
consumption attack. An adversary
could start multiple handshake re-
quests and cause the server to allocate
system resources to burdensome cryp-

T CP/​IP is at the heart of the In-
ternet, and the Transport layer
is at the heart of TCP/​IP. The
Transport layer is responsible

for end-to-end connections between
the sender and receiver over a TCP/​IP
network. The two most common Trans-
port layer protocols are Transmission
Control Protocol (TCP) and User Data-
gram Protocol (UDP). Nearly all Inter-
net traffic uses either TCP or UDP.

TCP is connection-oriented, which
means that a connection between the cli-
ent and server is established before data
can be sent. The TCP protocol provides
reliable ordering and error-checked de-
livery. UDP is a connectionless protocol,
which means it provides only minimal
information and has no handshaking
procedure. UDP does not offer a guaran-
tee of ordering or delivery. Of course, the
brevity of UDP makes it much faster
than the steady and careful TCP, so ap-
plications that don’t require a high level
of reliability tend to use UDP.

TCP and UDP were created in more
innocent days of an Internet, when
networks did not face the security

challenges we deal with today. The
Transport Layer Security (TLS) proto-
col (and its predecessor SSL) were de-
veloped to provide encryption for com-
munication security at the Transport
layer. TLS offers privacy and data in-
tegrity between two communicating
network nodes; however, it requires a
reliable transport protocol, which
means it won’t work with the simple
and unreliable UDP. TLS assumes that
the packets arrive in the correct order,
which TCP ensures but UDP does not.

Does this absence of ordering control
mean that you can’t use UDP for en-
crypted communication? Not exactly.
UDP is intended as a foundation, upon
which developers can add new protocols
and services. The Datagram Transport
Layer Security (DTLS) protocol [1] was
developed to bring TLS-like privacy and
encryption to UDP. The creators of DTLS
wanted it to be as much like TLS as pos-
sible, adding only the necessary services
needed to make TLS-style encryption
work correctly.

This article introduces you to DTLS
and offers some thoughts on how you

Secure communication
over the unreliable UDP
transport with DTLS

 Secret
 Delivery
TLS encryption is wonderful if it is running over a reliable transport protocol like TCP; but if your
needs call for the less reliable UDP transport, you’d better start learning about DTLS. By Andrei Kuzmenko

Le
ad

 Im
ag

e
©

 D
an

ie
l V

ill
en

eu
ve

, 1
23

R
F.

co
m

34

IN-DEPTH

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

DTLS – Encryption for UDP

tographic operations. This attack could
slow or disrupt other network connec-
tions. The second attack is an amplifi-
cation attack, in which an adversary
sends a ClientHello message to the
server and receives a large Certifi-
cateMessage response. To cause the
damage, an adversary could employ IP
spoofing to cause the DTLS server to
send large CertificateMessage mes-
sages to the victim’s IP address.

To protect against DoS attacks, DTLS
adds a stateless cookie exchange to the
handshake. The term cookie is univer-
sally used in computer science to de-
scribe a small packet of information that
is sent and received without changes.
The term “stateless” means that a cookie
should be generated in such a way that it
does not require keeping state on the
server, which would require memory
consumption.

To prevent DoS attacks, the DTLS
server responds to the client’s ClientHello
message with a HelloVerifyRequest mes-
sage, which contains a cookie. The client
then has to repeat the ClientHello mes-
sage with the cookie attached. The server
verifies the cookie and proceeds with the
handshake only if the cookie is valid.

The “Denial-of-Service Countermea-
sures” section of RFC 6347 [2] states the
following:

“DTLS servers SHOULD perform a
cookie exchange whenever a new hand-
shake is being performed. If the server is
being operated in an environment where
amplification is not a problem, the server

MAY be configured
not to perform a
cookie exchange.
The default
SHOULD be that
the exchange is
performed, how-
ever.”

Note the key-
words “SHOULD”
and “MAY.” The
keyword
“SHOULD” indi-
cates items that
can be omitted
given valid rea-
sons. The keyword
“MAY” indicates
features that can
be arbitrarily
omitted.

According to RFC 6347, the cookie ex-
change must be enabled by default on
the server side, and a user has no duty
to activate it. Because
the cookie exchange is
not a mandatory attri-
bute of the handshake
procedure, it can theoreti-
cally be turned off if the
user really wants to re-
move it and understands
all consequences of this
decision. Network servers
that are more sensitive to
overall handshake latency
can skip the HelloVeri-
fyRequest message and in-
stead respond with a
ServerHello message, in
which case the protocol
behavior is the same as in
the TLS protocol. Servers
that choose to make this
optimization can still be
used as DoS amplifiers
and should therefore not
skip HelloVerifyRequest in
environments where an
amplification attack is a
possibility.

RFC 6347 gives permis-
sion to disable the cookie
exchange mechanism
during the handshake
procedure. The question
is how this capability is
realized in popular soft-
ware libraries. The fol-

lowing sections look at implementing
DTLS in OpenSSL (1.1.1i) and GnuTLS
(3.6.15).

OpenSSL
OpenSSL [3] is a very popular library
and the de facto standard open source
TLS implementation. The architecture of
OpenSSL consists of three parts: the con-
text (CTX), the session (SSL), and the
basic input/​output subsystem (BIO). The
context is responsible for the protocol
(SSL/​TLS/​DTLS), the session cache, and
other global parameters. Each new ses-
sion is represented by the SSL object cre-
ated from the existing context. The SSL
object holds the session state and a BIO
object. The BIO object is used to com-
municate with a network socket. The
scheme of the DTLS server is defined as
shown in Listing 1.

The function DTLSv1_listen() waits for
incoming ClientHello messages, responds
with a HelloVerifyRequest message,

Figure 1: The DTLS 1.2 handshake.

01 �/* Functions to proccess cookies */

02 �int gen_cookie(...){...};

03 �int verify_cookie(...){...};

04 �int main(void){

05 �/* Library initialization */

06 �SSL_load_error_strings();

07 �SSL_library_init();

08 �/* Create DTLS Context */

09 �mtd = DTLSv1_server_method();

10 �ctx = SSL_CTX_new(mtd);

11 �/* Load SSL certificates */

12 �/* Bind callbacks */

13 �SSL_CTX_set_cookie_generate_cb(...);

14 �SSL_CTX_set_cookie_verify_cb(...);

15 �/* Create UDP socket */

16 �fd = socket(...);

17 �/* Process UDP packets */

18 �for(;;){

19 � /* Prepare new session */

20 � BIO *bio = BIO_new_dgram(...);

21 � SSL *ssl = SSL_new(ctx);

22 � SSL_set_bio(ssl, bio, bio);

23 � /* Waiting for ClientHello msg */

24 � while(DTLSv1_listen(...) <= 0);

25 � /* Encrypted data FROM client */

26 � /* Process data */

27 � /* Encrypted data TO client */

28 � do_session(ssl, &client);

29 � }

30 �}

Listing 1: Skeleton of a DTLS Server in OpenSSL

IN-DEPTH
DTLS – Encryption for UDP

35LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

The GnuTLS approach is very similar
to the OpenSSL scheme. The main dif-
ference is that the cookie exchange
procedure is not a built-in part of
gnutls_handshake() on the server side.
From the documentation:

“Because datagram TLS [DLTS] can op-
erate over connections where the client
cannot be reliably verified, functionality

and returns 0, which means that no cli-
ent has been verified yet and it must
be called again to continue listening.
When the client sends a ClientHello
message with a valid cookie attached,
the function will return 1 and the sock-
addr structure of the verified client.
There are two callback functions to
provide cookie exchange operations on
the server side: gen_cookie() and ver-
ify_cookie().

When a cookie has to be generated
for a HelloVerifyRequest message, the
gen_cookie() function is called. After
receiving an answer from the client
with a cookie attached to a ClientHello
message, the verify_cookie() function
is used. Note that the programmer
must implement these functions. I
should emphasize that the implemen-
tation of gen_cookie() and verify_
cookie() is a mandatory requirement
within the existing architecture of the
OpenSSL library. If the callbacks are
not binded to the CTX by using SSL_
CTX_set_cookie_generate_cb() and SSL_
CTX_set_cookie_verify_cb(), or a NULL
value is used instead of the function’s
address as a parameter of the binding
function, the DTLS server will not re-
spond to the client after receiving a
ClientHello message.

By default the cookie exchange is en-
abled, and you do not have a way to
change this part of the handshake proce-
dure. There is an option called SSL_OP_
COOKIE_EXCHANGE in the public API of the

OpenSSL library that could be used to
regulate the cookie exchange mecha-
nism. But this option is used by the
OpenSSL library itself in the body of the
function DTLSv1_listen(). Therefore, this
option is useless for the programmer.
Within the current implementation of
the library, the cookie exchange is al-
ways on.

GnuTLS
GnuTLS [4] is a C-based library that
implements protocols ranging from SSL
3.0 to TLS 1.3, accompanied with the re-
quired means for authentication and
public key infrastructure. The strong side
of GnuTLS is a detailed documentation
that is available online [5]. The docu-
mentation contains a brief introduction
to the secure communication protocols
and many examples of source code.
GnuTLS provides essential means to
write DTLS applications. One problem is
that the library does not provide a func-
tion like DTLSv1_listen() from OpenSSL.
You should construct the whole DTLS
handshake procedure in your own pro-
gram using functions provided by the li-
brary, which means that the text of the
source code and the program structure
of the application will be different de-
pending on the programmer’s decisions.
If you want an RFC-compliant applica-
tion, you must design and write the code
as RFC-compliant.

Listing 2 shows the skeleton for a
DTLS server in GnuTLS.

01 �/* Data structures for cookies */

02 �gnutls_dtls_prestate_st prestate;

03 �gnutls_datum_t cookie_key;

04 �/* Init library */

05 �gnutls_global_init();

06 �/* Prepare key for cookie */

07 �gnutls_key_generate(...);

08 �/* Create socket */

09 �fd = socket(...);

10 �/* Wait for incoming udp packets */

11 �for(;;){

12 � /* Get udp payload */

13 � ret = recvfrom(...);

14 � if(ret > 0){

15 � /* try to verify cookie */

16 � ret = gnutls_dtls_cookie_verify();

17 � if(ret < 0){

18 � /* Send HelloVerifyRequest */

19 � /* with attached cookie */

20 � gnutls_dtls_cookie_send(...);

21 � continue;

22 � }

23 � }

24 � else continue;

25 � /* Prepare session */

26 � /* ... */

27 � gnutls_dtls_prestate_set(...);

28 � /* Do DTLS handshake */

29 � gnutls_handshake(...);

30 � /* Do DTLS data exchange */

31 � for(;;){

32 � /* Encryptead data exchange */

33 � do_session(...);

34 � }

35 �}

Listing 2: Skeleton of a DTLS Server in GnuTLS

If you do not want to use the cookie ex-

change mechanism, you should re-

move all parts of the source code

where cookies are used. In the files

provided with this article [6], you will

find a file named cookie.diff where

you can see all steps to remove the

cookie exchange from the source code

of the DTLS server. You can obtain a

version of the DTLS server without

cookie exchange by executing the fol-

lowing command "patch ‑b server.c

cookie.diff" in your terminal program.

When you get this version, you should

compile it and then collect the network

traffic using tcpdump. After loading the

dump in Wireshark, you will see a

screen view similar to one in Figure 2.

As you can see, the traffic dump does

not contain a HelloVerifyRequest mes-

sage with attached cookie. The DTLS

connection was successfully estab-

lished without the cookie exchange

during the handshake procedure.

GnuTLS Without Cookies

36

DTLS – Encryption for UDP

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

in the form of cookies is available to pre-
vent denial of service attacks to servers…
If successful, the session should be initial-
ized and associated with the cookie using
gnutls_dtls_prestate_set before proceed-
ing to the handshake. Note that the
above apply to server side only and are
not mandatory. Not using them, however,
allows denial of service attacks. The cli-
ent-side cookie handling is part of
gnutls_handshake.”

Unlike the OpenSSL library, GnuTLS
allows you to forego the cookie exchange
without any limitations (see the box en-
titled “GnuTLS Without Cookies,”) but
this option is best reserved for secure
networks. If you plan to use DTLS on the

Internet, the cookie exchange is an im-
portant protection against denial of ser-
vice attacks.

The End
DTLS brings encryption capabilities simi-
lar to TLS to the connectionless UDP pro-
tocol. Both the OpenSSL and GnuTLS li-
braries provide a high level of security for
DTLS connections. It is not a problem to
perform the cookie exchange procedure
during the DTLS handshake, but it is diffi-
cult to refuse this high level of protection.
You can’t use the only option to turn off
the cookie exchange when configuring
the DTLS object. You also can’t use any
stubs or NULL-pointer arguments.

GnuTLS makes you write a part of
the server-side handshake procedure
manually, which is not a user-friendly
approach. OpenSSL already has all the
necessary pieces in place, but the cur-
rent implementation of the library is
rather strange. In the future, greater
adoption of DTLS will depend upon de-
velopers having access to simple and
reliable libraries and frameworks with
predictable behavior. nnn

Figure 2: DTLS connection without the cookie exchange.

[1]	� DTLS: https://​en.​wikipedia.​org/​wiki/​

Datagram_Transport_Layer_Security

[2]	� RFC 6347:

https://​tools.​ietf.​org/​html/​rfc6347

[3]	� OpenSSL: https://​www.​openssl.​org/

[4]	� GnuTLS: https://​www.​gnutls.​org/

[5]	� GnuTLS documentation: https://​www.​

gnutls.​org/​documentation.​html

[6]	� Code for this article:

ftp://​ftp.​linux‑magazine.​com/​pub/​

listings/​linux‑magazine.​com/​247/

Info

Andrei Kuzmenko is a
professional software en-
gineer and researcher. He
is particularly interested
in network technologies
and Bash scripting. In the
last 15 years, he has been working on
Linux and its applications. C++ is his old
passion.

Author

nnn

DTLS – Encryption for UDP

37LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

IN-DEPTH

https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://tools.ietf.org/html/rfc6347
https://www.openssl.org/
https://www.gnutls.org/
https://www.gnutls.org/documentation.html
https://www.gnutls.org/documentation.html
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/

Mark the individual structure levels
with brackets and indentation for bet-
ter readability (Listing 5). Pairs of O ur world of web applications and

fast, interactive mobile devices
calls for the free exchange of
data in easily accessible forms.

Standard formats promote interoperability
and minimize development time. Open
formats also make it easy to import data
into other applications. Over the years,
several popular alternatives have
emerged. CSV, XML, and YAML are well
known and easy to adapt to different ap-
plications (see the box entitled “Compar-
ing Formats” and Listings 1-3 for exam-
ples). One format that is used extensively
for web applications, mobile applications,
and even some conventional desktop tools
is JavaScript Object Notation (JSON) [1].

JSON is wildly popular as a tool for
passing information between web apps –
for instance, it is currently the de facto
standard for REST services – yet for
many users, the details of JSON format
are shrouded in mystery. This article
takes a close look at JSON and some of
the tools available for reading, manipu-
lating, and importing JSON data.

Understanding JSON
The notation of JSON is analogous to ob-
jects, records, or dictionaries – depending

on what that structure is currently called
in your favorite programming language.
Even though JSON format is based on Ja-
vaScript, parsers exist in
almost all programming
languages. In addition to
Awk and C/​C++, you can in-
tegrate JSON with Fortran,
Go, Lisp, Lua, Python, and Vi-
sual Basic.

In everyday life, you
will find the format in the
data-sharing Jupyter Note-
book app [2], in geographical
specifications like GeoJSON
[3] (Listing 4), and even in
databases like MongoDB.

Taking a closer look at the
JSON data structure, you will
see that it is in an easy-to-
read, text-based format. Pa-
rentheses, colons, and com-
mas separate the individual
elements; the data can be
nested as desired. This
means, for example, that you
can map lists, arrays, or ob-
jects. Table 1 summarizes the
elementary data types that
JSON supports.

Working with the JSON data format

Data Dog
JSON data format is a standard feature of today’s Internet – and a common option for mobile and
desktop apps – but many users still regard it as something of a mystery. We’ll take a close look at
JSON format and some of the free tools you can use for reading and manipulating JSON data.
By Frank Hofmann and Veit Schiele

Stephen Fry; The Hippopotamus; 1994

Ian Rankin; Set In Darkness; 2009

Ken Follett; The Pillars of the Earth; 1989

Listing 1: CSV File

<inventory>

 <book>

 <author>Stephen Fry</author>

 <title>The Hippopotamus</title>

 <publication>1994</publication>

 </book>

 <book>

 <author>Ian Rankin</author>

 <title>Set In Darkness</title>

 <publication>2009</publication>

 </book>

 <book>

 <author>Ken Follett</author>

 <title>The Pillars of the Earth</title>

 <publication>1989</publication>

 </book>

</inventory>

Listing 2: XML File
Le

ad
 Im

ag
e

©
 F

ab
ia

n
 S

ch
m

id
t,

 F
o

to
lia

.c
o

m

38

IN-DEPTH

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

JSON Deep Dive

curly braces ({ and }) each form a unit.
Square brackets ([and]) are used to
indicate fields (also known as arrays).

Individual field elements follow the
form of an enumeration and are sepa-
rated by commas. Each field element

consists of a key-value pair separated
by a colon (:).

JSON was originally created in the
early 2000s to exchange data between
web applications. JSON worked quite
well in the web context (even though
you cannot always parse it unambigu-
ously). To structure data, JSON falls
back on conventions familiar to anyone
who has programmed in a C-based lan-
guage (C, ​C++, C#, Java, JavaScript,
Perl, Python, and others).

JSON is specified according to RFC
8259 [4] and ECMA-404; common exten-
sions are JSONP (JSON with padding),
JSONPP (JSON with padding and param-
eters), and JSONML, which combines
XML and JSON together. The character
set for all JSON formats is Unicode
(UTF-8), which eliminates the character-
set guessing game that you will be famil-
iar with from CSV.

You can use JSON to exchange smaller
volumes of data between applications in
an agile way. However, if the transferred
data volume increases (e.g., if you have
millions of measurements from a sensor),
JavaScript-based Python libraries like Ipy-
widgets, Bokeh, and Plotly often fail. In
the face of large data volumes, binary

Using comma-separated values (CSV) ensures the data remains manageable for the most
part, but the format is neither standardized nor particularly flexible. In a file like the one in
Listing 1, neither the character set nor the separator between columns is fixed. In practical
applications, spaces, tabs, hyphens, or semicolons are sometimes used instead of com-
mas. Corresponding key data either has to be agreed upon or inferred from the file itself.
Furthermore, the format does not allow nested records, arrays, or binary data.

The Extensible Markup Language (XML) is far more structured and flexible than CSV.
A notable feature of XML is the data field enclosed in the field name with the form
<fieldname>value</fieldname> (Listing 2). In practice, it makes sense to choose field
names that let you infer the contents. The order of the fields is usually variable in a
layer, and fields can be missing. One disadvantage of XML is that an XML file is sig-
nificantly larger due to the need to continually repeat the field labels for each entry.

YAML is a recursive acronym for YAML Ain’t Markup Language. The YAML specifica-
tion describes a very compact way to serialize data. Hyphens and indentations using
spaces serve as the basis for denoting fields. YAML borrows from XML, as well as
from the format in which three programming languages (Python, Perl, and C) de-
scribe their data structures. Listing 3 shows the book inventory data as a YAML
structure.

JSON [1] is based on JavaScript. The format is also very compact and flexible. In
contrast to YAML, JSON explicitly identifies objects and their attributes, whereas in
YAML, the assignment is derived from the context of the indentation depth.

Comparing Formats

‑‑‑

book:

‑ author: Stephen Fry

 title: The Hippopotamus

 publication: '1994'

‑ author: Ian Rankin

 title: Set In Darkness

 publication: '2009'

‑ author: Ken Follett

 title: The Pillars of the Earth

 publication: '1989'

Listing 3: YAML File

{

 "type": "Feature",

 "geometry": {

 "type": "Point",

 "coordinates": [125.6, 10.1]

 },

 "properties": {

 "name": "Dinagat Islands"

 }

}

Listing 4: GeoJSON File

Data Type Description
Strings All Unicode characters except ", \, and control characters

Numbers Numeric values including hexadecimal and exponential
values, for example 0x42 and .2e‑3

Boolean values Logic values true and false

Arrays Comma-separated, unordered lists of properties, although
objects without properties are also allowed

Objects with properties Notation as key-value pairs

Null values null, NIL, or ()

Table 1: JSON Data Types

Figure 1: The Jq tool puts in your JSON output and keeps the output
readable.

IN-DEPTH
JSON Deep Dive

39LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Verifying JSON Data
The formatted output of a tool like jq
or aeson-pretty usually helps to detect
obvious errors in the JSON structure at
a glance, but if you need a closer look,
you can check your JSON data with
JSONLint. The tool expects the file
with the JSON data as a parameter. If
everything is correct, it reports back
that JSON is valid. If there is an error,
it outputs the location that it identified
as the error. Figure 2 shows JSONLint
output for the book inventory – first
with a correct JSON file, and then with

transport mechanisms are a better option
for handling the load.

Tool Overview
Several command-line tools are avail-
able for parsing, processing, and out-
putting JSON data. Table 2 summarizes
some of the available tools. All of these
tools are available as packages for
Debian GNU/​Linux, Ubuntu, Devuan,
Linux Mint, and macOS.

Not all of the tools in Table 2 are in-
tuitive, and some of them only develop
their full impact in a specific context.
You will find more information on
these tools in the various docu-
ments and cheat sheets available
online [12].

Easily Readable JSON
Output
When it comes to pretty printing, aeson-
pretty, jc, jo, jq, and Jshon all have
something to say. Some of the tools have
a command-line parameter for printing,
for example, ‑p for jo.

In Listing 6, cat and aeson-pretty
work together for readable output via a
pipe. Jq delivers the same results with
the next call, but the output is in color
(Figure 1):

$ jq . book_inventory.json

The dot in the call to jq is not immedi-
ately understandable. It stands for the
expression to be processed; in this
case, it denotes all objects specified as

parameters in the JSON file. You can
define colorizing of the output using
two options, ‑C (‑‑colour‑output) and
‑M (‑‑monochrome‑output).

Some users prefer compact output
with as few (space) characters as possi-
ble. In Listing 7, see aeson-pretty with
the ‑c (short for ‑‑compact) option. This
option reduces the number of characters
in the output by 45 percent, from 428 to
236 bytes. Compared to Listing 5 and
Listing 6, the results still convey the
same information, but with only half the
amount of data.

Tool Language Application
aeson-pretty [5] Haskell Output JSON in a readable way

jc [6] Python Convert output to JSON

jid [7] Go Interactively filter JSON

jo [8] C JSON output in the shell

jq [9] C Output and filter JSON in a readable way

Jshon [10] C Read and generate JSON

JSONLint [11] PHP Validate JSON data

Table 2: JSON Tools

Figure 2: JSONLint helps you identify errors in JSON data.

Figure 3: The demo app shows output converted into JSON format
using route as an example.

{"book": [

 {

 "author": "Stephen Fry",

 "title": "The Hippopotamus",

 "publication": "1994"

 },

 {

 "author": "Ian Rankin",

 "title": "Set In Darkness",

 "publication": "2009"

 },

 {

 "author": "Ken Follett",

 "title": "The Pillars of the Earth",

 "publication": "1989"

 }

]}

Listing 5: JSON File

40

JSON Deep Dive

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

a variant that is missing a comma as a
separator.

JSONLint was written in PHP. If you
are looking for an alternative, you may
also be able to get by with jq. If jq fails
to parse the JSON data, it returns a
number greater than zero, otherwise
zero. Listing 8 shows the output for a
deliberate error.

Converting Output to JSON
All Unix/​Linux tools have their own spe-
cific output format. With a clever combi-
nation of grep, sed, and awk, you can
break down the output and create the
format you need for further processing.
This approach sounds simple, but it
often feels like walking up the stairs
backwards while balancing a crystal
vase on your head.

On the other hand, if every Unix/​
Linux tool had a ‑‑json switch and used
it to create output in JSON format, the
output could be parsed in a standardized
way. However, the world still has a long
way to go before this happens, so a
workaround is needed. Jc and jo can
both read the output from a tool, convert
the output, and flip it back to the stan-
dard output in JSON format.

The list of output formats that jc un-
derstands is quite long and includes the
output from df, du, lsblk, crontab, net‑
stat, and lsof. Figure 3 shows output

from the route command, as processed
by the jc web demo page [13]. On the
demo page, you can select the desired
Unix/​Linux command or data format at
the top, and then copy the associated
output into the input box. Click on Con-
vert to JSON to create the output below
– each entry is a JSON element. Use the
Pretty Print checkbox to specify
whether the output should be a com-
pact one-liner or a prettied-up, longer
version.

Building complicated JSON files your-
self and counting parentheses – that was
yesterday. Today, jo does it for you. Jo
expects the key-value pairs as parame-
ters and screws together a corresponding
JSON output from them. Figure 4 shows
the output for the two parameters maga‑
zine and issue.

Because jo receives the key-value pairs
as parameters when called, variable con-
tent from the shell is no longer a problem.
See Listing 9, which shows variables for
today’s date and home directory.

Interactive Filters
Tools like jq, jid, and Jshon can filter the
output if you only need part of the data.
Earlier you learned that passing a . to jq
outputs the entire dataset. With the ap-
propriate call, you
can filter the data
and extract the au-
thor, title, and
publication data
from a JSON file
with book pub-
lishing data. Using
.book[], you first

narrow down the search to the book list;
then you filter all items with the publi‑
cation key using a pipe (|).

Figure 5 shows the results from jqplay –
a simple playground tool in the web
browser whose contents are passed to jq
for processing. If you change the filter or
the output in the two input fields on the
left, the output on the right adjusts.

Jid stands for JSON Interactive Digger.
A call to cat book_inventory.json | jid
lets you browse a JSON file interactively.

We have not yet discovered any spe-
cial programs with graphical interfaces
for editing JSON data. All text editors
offer syntax highlighting and thus sim-
plify editing. We were particularly im-
pressed by the web-based JSON Viewer
[14] editor, which offers a graph struc-
ture in addition to an object-based dis-
play. We fed JSON Viewer our book list
for Figure 6.

Downstream Processing
In addition to the tools that output and
format JSON data for the user are several
tools that provide downstream process-
ing of JSON as input in other programs
(post-processing).

If you receive JSON data via an inter-
face, it is good programming practice to

$ cat book‑inventory‑broken.json | jq .

parse error: Expected separator between values at line 7, column 5

$ echo $?

4

Listing 8: Finding Errors in JSON Data with jq

Figure 4: Jo lets you compile JSON output without
any serious overhead.

$ jo timeofday="$(date +%c" home=$HOME

{"time of day":"Mon 12 Oct 2020 17:06:30 CEST","home":"/home/frank"}

Listing 9: Adding Environment Variables

$ cat book‑inventory.json | aeson‑pretty

{

 "book": [

 {

 "publication": "1994",

 "author": "Stephen Fry",

 "title": "The Hippopotamus"

 },

 {

 "publication": "2009",

 "author": "Ian Rankin",

 "title": "Set In Darkness"

 },

 {

 "publication": "1989",

 "author": "Ken Follett",

 "title": "The Pillars of the Earth"

 }

]

}

$

Listing 6: Printing with aeson-pretty
$ cat book‑inventory.json | aeson‑pretty ‑c

{"book":[{"publication":"1994","author":"Stephen Fry","title":"The Hippopotamus"},

{"publication":"2009","author":"Ian Rankin","title":"Set In Darkness"},

{"publication":"1989","author":"Ken Follett","title":"The Pillars of the Earth"}]}

Listing 7: Compact Output with aeson-pretty

JSON Deep Dive

IN-DEPTH

41LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

for NodeJS, you can use the Express
framework.

Processing JSON
The list of command-line tools and help-
ers that read, search on, and modify
JSON data is quite extensive. We stopped
counting after more than 20 entries (see

sanity check the received data before
further processing. The sanity check in-
cludes two stages:
•	 Syntactic correctness – is the spell-

ing correct? Do all brackets (equal
number of opening and closing
brackets), commas, and quotation
marks fit the bill?

•	 Correctness of data fields – does the
received data structure match the data
definition (JSON schema)?

For the first question, it is best to use
JSONLint, which is described earlier in
this article. For the second stage, you
need the JSON schema that describes the
data structure. You then compare this
description with the received data.

On json-schema.org, you will find an
overview of validators [15], sorted by
the various programming languages in
which they were developed. For exam-
ple, consider the validate-json tool im-
plemented in PHP [16]. If you are more
into Python, jsonschema [17] serves the
same purpose. The call to the two tools
is identical.

Defining the JSON Schema
Listing 10 shows the JSON schema with
which you define the exact format of
your data structure. The schema
matches the book inventory used earlier
in this article. The schema was stored in
the book‑inventory‑schema.json file in
the local directory.

The schema definition references the
JSON standard used (the draft from Sep-
tember 2019, in this case) in the second
line. The definition contains a number of
keywords. Table 3 explains these key-
words in more detail; a complete list of
all supported keywords is available at
json-schema.org [18].

The next task is to validate the re-
cords by checking whether they
match the specified schema. Listing 11
shows a single record from the book in-
ventory in readable format. The compact
version of the record contains all the pa-
rentheses and fields in a single line.

The validate-json tool expects two pa-
rameters in the call, the dataset and the
schema (Listing 12). If everything goes
well, the output does not cause any fur-
ther feedback (line 2); otherwise, vali‑
date-json grumbles (lines 4 and 5). To
provoke the error message starting in
line 4, we turned the numeric specifica-
tion for the year of publication (1994)

into a string "1994", which means that
the data type in the dataset no longer
matched the stored data type in the
JSON schema. validate-json has every
reason to complain.

Some programming languages also
offer suitable helper libraries. In Python,
for example, you can use jsonschema, and

Keyword Description
$schema Description of the schema specification
title Title of the schema
type Type of JSON data
properties Properties of each value (key and values allowed for

the field)

required List of required properties
properties.type Data type of an entry
properties.minimum Minimum value of an entry
properties.maximum Maximum value of an entry
properties.minLength Minimum number of characters for an entry
properties.maxLength Maximum number of characters for an entry
properties.pattern Regular expression for a comparison with the value of

an entry

Table 3: JSON Keywords

Figure 6: The web-based JSON Viewer shows data links as a graph.

Figure 5: Jq can filter JSON output by arbitrary criteria.

42

JSON Deep Dive

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

Table 4 for a sample). Developer Ilya Sher
maintains a useful, commented overview
of options [19].

Jtbl, for example, takes JSON records
and knits a pretty table from them. In
Figure 7, you can see how this table
looks for the book inventory. Each re-
cord is shown in a separate row. Jtbl can
only cope with flat JSON structures. It
cannot handle nesting so far.

Element-by-Element Access
A tool like jq can dig out individual ele-
ments from the JSON data stream using
expressions, but this approach is cumber-
some for highly nested data structures; it
is far easier to use a path specification.
Tools like JMESPath [20] (pronounced
“James Path”) and JSONPath [21] are
similar to XPath for XML. JMESPath is
available in Python, PHP, JavaScript, or
even Lua; JSONPath is available in JavaS-
cript, PHP, and Java.

These tools enable more complex ex-
pressions. Table 5 shows you a selection.

You read the expressions from left to
right and name nodes or attributes in the
order in which you want to work your
way along the data structure. Two levels
of nodes or attributes are separated by a
period. Sets and patterns are specified in
square brackets, for example, book[*] for
all nodes of the book list. The specifica-
tion book[?author == `Ken Follett`]
takes all nodes from the dataset for
which the attribute author has the
value Ken Follett.

Please note the correct quotes when
formulating the expressions. You need to
quote values for comparison in the call
in backticks (`), regardless of whether
they are strings or numeric values.

Listing 13 shows the three expressions
from Table 5 in action in a Python script.
We used the JSON implementation of
JMESPath here. Although the Json li-
brary is a fixed part of Python, JMESPath
is one of the extras that you can install
before using it, either via Pip or the
package manager that comes with your
Linux distribution. The corresponding

{

 "$schema": "�http://json‑schema.org/

draft/2019‑09/schema",

 "title": "Book",

 "type": "object",

 "required": [�"author", "title",

"publication"],

 "properties": {

 "author": {

 "type": "string",

 "�description": "The author's

name"

 },

 "title": {

 "type": "string",

 "description": "�The book's

title"

 },

 "publication": {

 "type": "number",

 "minimum": 0

 },

 "tags": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 }

}

Listing 10: JSON Schema

{

 "author": "Stephen Fry",

 "title": "The Hippopotamus",

 "publication": 1994

}

Listing 11: JSON Record

01 �$ validate‑json record.json bookinventory‑schema.json

02 �$

03 �$ validate‑json record.json bookinventory‑schema.json

04 �JSON does not validate. Violations:

05 �[publication] String value found, but a number is required

Listing 12: Calling validate-json

Tool Application (selection)

faq, Xidel Convert formats from and to JSON (BSON, Bencode, JSON,
TOML, XML, YAML, etc.)

fx, gofx, jq, jid Filter JSON data

jello Filter JSON data with Python syntax

jtbl Output to a table

Underscore Processing via the command line

Table 4: Command-Line Tools

Expression Meaning
book[*].title All book titles

book[?author == `Ken Follett`].title All book titles by author Ken Follett

book[?publication > `1990`] All books published after 1990

Table 5: Expressions in JMESPath

Figure 7: Representing records as a table.

JSON Deep Dive

IN-DEPTH

43LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

package for Debian GNU/​Linux and
Ubuntu goes by the name of python3-
jmespath.

After first loading the two Python li-
braries, json and jmespath, in the script
(lines 1 and 2), three expressions or
search patterns are defined as objects
with the names expression1, expres‑
sion2, and expression3. If you are famil-
iar with the Python regular expression
library re, you will already know the
procedure.

Lines 8 and 9 read the book inventory
as a JSON file and load() the contents of
the file as a dictionary into the jsonData
variable. Searches over the book inven-
tory rely on the search() method from
the search pattern object. For example,
the call to expression2.search(jsonData)
searches out all book titles that belong to
the author Ken Follett.

search() returns a list of search hits
that you can output one by one in a for
loop. Figure 8 shows the output of the
search matches for all three previously
defined search paths.

JSON Libraries
If you prefer some other programming
language instead of Python, you can
still connect to JSON. Table 6 shows a
selection of libraries and modules. If
you have different implementations
available for a programming language,
it is difficult to make a recommenda-
tion without knowing the volume and
structure of the JSON data you wish to
process. After a benchmark test, you
will be smarter [22] about what best
suits your case.

Listing 14 shows how to access JSON
objects in the Go programming lan-
guage. After importing the two modules
encoding/​json and fmt, you create a Book
data structure that includes three vari-
ables: Author, Title, and Publication.
You access this data structure in the
main() function by declaring a book vari-
able with this type in it.

The bookJson variable acquires the re-
cord for a book. Using the Unmarshal()
method from the json module, you un-
pack the record byte by byte and assign
the contents to the components from
book. Then, using the Println() method,
you output the contents of the compo-
nents. For more information on process-
ing, see Soham Kamani’s blog [23],
which is definitely a worthwhile read.Figure 8: Selecting records and attributes by path.

01 �import jmespath

02 �import json

03 �

04 �expression1 = jmespath.compile('book[*].title')

05 �expression2 = jmespath.compile('book[?author == `Ken Follett`].title')

06 �expression3 = jmespath.compile('book[?publication > `1990`]')

07 �

08 �with open("bookinventory.json") as jsonFile:

09 � jsonData = json.load(jsonFile)

10 �

11 � # book titles

12 � print("Book title:")

13 � bookTitles = expression1.search(jsonData)

14 � for title in bookTitles:

15 � print(title)

16 �

17 � print(" ")

18 �

19 � # all the books by Ken Follett

20 � print("All books by Ken Follett:")

21 � bookTitles = expression2.search(jsonData)

22 � for title in bookTitles:

23 � print(title)

24 �

25 � print(" ")

26 �

27 � # all books published later than 1990

28 � print("All books published later than 1990:")

29 � books = expression3.search(jsonData)

30 � for item in books:

31 � author = item["author"]

32 � title = item["title"]

33 � publication = item["publication"]

34 � print("Author : %s" % author)

35 � print("Title : %s" % title)

36 � print("Published: %i" % publication)

37 � print(" ")

Listing 13: find-json-path.py

44

JSON Deep Dive

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

Now save Listing 14 to the ex‑
tract‑json.go file and run the code. You’ll
see something like the output in Listing 15.

Outlook
Using JSON is a good choice if the data
conforms to the supported formats, the
strings are not arbitrarily long, and you
only need to implement the data ex-
change, while the documentation of the

data is managed elsewhere. Another
strength of JSON is that many languages
can process it.

With large volumes of data, however,
the file size can have a detrimental effect
on the processing speed. In those cases, a
different format such as Google’s Protobuf
[24] could offer an alternative. For more
information on serialization formats and
the practical handling of JSON, see the ex-
amples in the Jupyter tutorial [25]. nnn

Language Libraries (Selection)
Go encoding/​json

LISP CL-JSON

Lua json.lua

NodeJS Express

Perl JSON::Parse, JSON::PP, JSON::XS

PHP JSON

Python simplejson, hyperjson, json, jsonschema, orjson, RapidJSON,
UltraJSON, pandas

Ruby JSON

Tcl json

Table 6: Selection of JSON Libraries

package main

import (

 "encoding/json"

 "fmt"

)

type Book struct {

 Author string

 Title string

 Publication string

}

func main() {

 bookJson := `{�"author": "Stephen Fry", "title": "The Hippopotamus",

"publication": "1994"}`

 var book Book

 json.Unmarshal([]byte(bookJson), &book)

 fmt.Println("Author: ", book.Author)

 fmt.Println("Title: ", book.Title)

 fmt.Println("Publication: ", book.Publication)

}

Listing 14: extract-json.go

$ go run extract‑json.go

Author: Stephen Fry

Title: The Hippopotamus

Publication: 1994

Listing 15: Output

Veit Schiele is founder and CEO of Cusy
GmbH, which provides privacy-compliant
tools for software development and a
platform for research software and data.
He is the author of Jupyter and PyViz
tutorials. Frank Hofmann works mostly on
the road as a developer, trainer, and
author. His preferred work locations are
Berlin, Geneva, and Cape Town. He is one
of the authors of the Debian package
management book.

Author

[1]	� JSON: https://​www.​json.​org/

[2]	� Jupyter Notebook:
https://​jupyter.​org/​try

[3]	� GeoJSON: https://​geojson.​org

[4]	� RFC 8259:
https://​tools.​ietf.​org/​html/​rfc8259

[5]	� aeson-pretty: https://​github.​com/​
informatikr/​aeson‑pretty

[6]	� jc: https://​github.​com/​kellyjonbrazil/​jc

[7]	� jid: https://​github.​com/​simeji/​jid

[8]	� jo: https://​github.​com/​jpmens/​jo

[9]	� jq: https://​github.​com/​stedolan/​jq

[10]	�Jshon: http://​kmkeen.​com/​jshon

[11]	�JSONLint: https://​jsonlint.​com

[12]	�jq cheat sheet:
https://​lzone.​de/​cheat‑sheet/​jq

[13]	�jc demo website:
https://​jc‑web‑demo.​herokuapp.​com

[14]	�JSON Viewer:
https://​jsonviewer.​arianv.​com

[15]	�JSON validators: https://​json‑schema.​
org/​implementations.​html#​validators

[16]	�validate-json: https://​github.​com/​
justinrainbow/​json‑schema

[17]	�jsonschema:
https://​github.​com/​Julian/​jsonschema

[18]	�Validation of JSON data:
http://​json‑schema.​org/​draft/​2019‑09/​
json‑schema‑validation.​html

[19]	�“List of JSON tools for command
line”: https://​ilya‑sher.​org/​2018/​04/​10/​
list‑of‑json‑tools‑for‑command‑line/

[20]	�JMESPath: https://​jmespath.​org

[21]	�JSONPath: https://​code.​google.​com/​
archive/​p/​jsonpath/

[22]	�“Choosing a faster JSON library for
Python”: https://​pythonspeed.​com/​
articles/​faster‑json‑library/

[23]	�“How to Parse JSON in Golang”:
https://​www.​sohamkamani.​com/​blog/​
2017/​10/​18/​parsing‑json‑in‑golang/

[24]	�Protobuf: https://​developers.​google.​
com/​protocol‑buffers

[25]	�Serialization formats/​JSON (Jupyter
Tutorial): https://jupyter-tutorial.
readthedocs.io/en/latest/data-process‑
ing/serialisation-formats/json.html

Info

The authors would like to thank Gerold
Rupprecht for his criticism and
suggestions during the preparation of
the article.

Thank you

JSON Deep Dive

IN-DEPTH

45LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

https://www.json.org/
https://jupyter.org/try
https://geojson.org
https://tools.ietf.org/html/rfc8259
https://github.com/informatikr/aeson-pretty
https://github.com/informatikr/aeson-pretty
https://github.com/kellyjonbrazil/jc
https://github.com/simeji/jid
https://github.com/jpmens/jo
https://github.com/stedolan/jq
http://kmkeen.com/jshon
https://jsonlint.com
https://lzone.de/cheat-sheet/jq
https://jc-web-demo.herokuapp.com
https://jsonviewer.arianv.com
https://json-schema.org/implementations.html#validators
https://json-schema.org/implementations.html#validators
https://github.com/justinrainbow/json-schema
https://github.com/justinrainbow/json-schema
https://github.com/Julian/jsonschema
http://json-schema.org/draft/2019-09/json-schema-validation.html
http://json-schema.org/draft/2019-09/json-schema-validation.html
https://ilya-sher.org/2018/04/10/list-of-json-tools-for-command-line/
https://ilya-sher.org/2018/04/10/list-of-json-tools-for-command-line/
https://jmespath.org
https://code.google.com/archive/p/jsonpath/
https://code.google.com/archive/p/jsonpath/
https://pythonspeed.com/articles/faster-json-library/
https://pythonspeed.com/articles/faster-json-library/
https://www.sohamkamani.com/blog/2017/10/18/parsing-json-in-golang/
https://www.sohamkamani.com/blog/2017/10/18/parsing-json-in-golang/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://jupyter-tutorial.readthedocs.io/en/latest/data-processing/serialisation-formats/json.html
https://jupyter-tutorial.readthedocs.io/en/latest/data-processing/serialisation-formats/json.html
https://jupyter-tutorial.readthedocs.io/en/latest/data-processing/serialisation-formats/json.html

I n the early ’80s, Rogue, a game that
would overhaul the gaming world,
was released. According to Rogue-
like Gallery, Rogue first ran on a

PDP-11 machine running Unix v6 [1].
Primitive by today’s standards, Rogue
popularized the Roguelike genre despite
not being the first game of its kind.
Rogue’s influence can be seen in modern
commercial titles. Rogue’s source code is
still available, as are many games that
pre-date Linux.

In this article, I show how to set up a
server to host antique terminal games.
Why would you want to do this? Be-
sides preserving a piece of history,
playing these games is fun despite
their age. In addition, running games
on a specific server allows you to keep
scoreboards, letting you compete
against friends on a shared server.
Last, but not least, setting up a game
server is an instructive exercise.

Service
Architecture
This article as-
sumes you are
using Debian,
which unlike early
16-bit Operating
Systems, is capa-
ble of using mod-
ern connectivity
protocols.

In the service
architecture, open-
bsd-inetd takes an
incoming Telnet
connection from
the user and
passes it to a Tel-
net daemon (tel‑
netd). The Telnet
daemon calls
dgamelaunch.
Dgamelaunch

Setting up a dgamelaunch game server

A Blast from the Past
If you are into retrogaming, dgamelaunch lets you set up a server to play Roguelike games and
compete with friends, all while preserving a piece of gaming history. By Rubén Llorente

Figure 1: The game server’s service architecture. Ph
o

to
 b

y
K

ev
in

 B
o

rr
ill

 o
n

 U
n

sp
la

sh

46

IN-DEPTH

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

dgamelaunch

chroots into /var/dgl and provides a lim-
ited shell that allows the user to play
games (Figure 1).

The core of this game server is the
game launcher, which is a limited shell
that is used to authenticate the player
and start games. The launcher I am
using, dgamelaunch [2], is surprisingly
capable for such a small C program.
Dgamelaunch records games, allows
users to watch other players, and relays
messages from one person to another.

The game server will be available over
Telnet, a ubiquitous protocol that most
operating systems support out of the
box. The idea is to let the player connect
to the server using a Telnet client and
offer him or her a dgamelaunch shell
that will allow them to select which
games to play. Beware: Telnet is not se-
cure (see Upgrading from Telnet for a
safer approach).

Chroot Security
Dgamelaunch uses chroot() as a security
layer. Roughly speaking, when you
chroot into a directory, you are running
a process inside that directory, with the
process viewing the directory as the
root (/) of the filesystem hierarchy. In
essence, it means any process running
within the chroot cannot access files
placed outside of the chroot directory.
This makes chroot() a poor man’s isola-
tion technique. A server running within
a chroot won’t be able to wreak havoc in
the rest of the filesystem if the service is
compromised.

However, chroots are breakable by de-
sign, making them less than ideal for
isolating a service from the rest of the
operating system. A root-owned process
within a chroot can create block device
nodes. If a chroot includes a hard link
that points to an external resource, the
resource can be abused from within the
chroot. Also, a root-owned process can
break out of the chroot directory.

Consequently, chroot() is no substi-
tute for proper privilege separation. To
avoid this problem, dgamelaunch drops
privileges immediately after chrooting.
Unprivileged processes can’t escape
from a chrooted environment so easily.

Installing dgamelaunch
Unfortunately, dgamelaunch is not
packaged by any major Linux distribu-
tion. At the time of writing, the project
has had no official release since 2011.
However, dgamelauch is used by many
current projects, including Roguelike

Gallery, Dungeon Crawl Stone Soup [3],
and the public NetHack server NAO [4].
As a result, there is a constant influx of
patches from the community should
you ever need them, despite the offi-
cial project appearing to be dead.

The following command (which must
be run as superuser) installs everything
you need in order to compile dgame-
launch:

apt‑get install automake autoconf U

 build‑essential git bison sqlite3 U

 libsqlite3‑dev curl unzip groff U

 libncurses‑dev flex‑old

You can get the source code from GitHub
using the following command:

$ git clone U

 https://github.com/paxed/dgamelaunch.git

Then, compile the program. If you in-
tend to enable sqlite for managing your
users and plan to use /var/dgl as a
chroot directory, you may configure and
compile dgamelaunch as follows:

$ cd dgamelaunch

$./autogen.sh ‑‑enable‑sqlite U

 ‑‑enable‑shmem U

 ‑‑with‑config‑file=U

 /var/dgl/etc/dgamelaunch.conf

$ make

This prepares dgamelaunch to load its
configuration from /var/dgl/etc/dgame‑
launch.conf and to use sqlite as the user
database.

While the setup described in this article
is safe to deploy on a home LAN, it is
unsafe to use for a game server acces-
sible over the Internet.

Armies of bots roam the Internet,
storming Telnet services and trying to
gain access to them via brute force at-
tacks. Bots can also automatically cre-
ate massive numbers of accounts in
the hope of using them later for nefari-
ous purposes. Although the real dam-
age a bot can cause after registering or
gaining access into an already existing
account is negligible, dgamelaunch is
not well equipped for dealing with
these attacks directly, and neither is
telnetd in this configuration.

Another issue associated with Telnet
is that it lacks secure authentication – at
least the way it is demonstrated here.
Usernames and passwords are sent
unencrypted over the line. That may be
acceptable for a home network, but not
for the Internet.

Organizations who offer retrogame
servers over the Internet favor SSH in-
stead, which offers encrypted connec-
tions and better support for dealing
with bot attacks. SSH also does not re-
quire inetd. Using SSH, however, is
outside of the scope of this article.

In order to mitigate the damages that
may be caused by malicious users,
dgamelaunch is designed to chroot
into an isolated part of the operating
system and drop privileges.

Upgrading from Telnet

CHROOT="/var/dgl/"

USRGRP="games:games"

SQLITE_DBFILE="/dgldir/dgamelaunch.db"

Leave this variable empty to skip installing gzip in the chroot

COMPRESSBIN=""

The script is Nethack centric. Leave some variables blank since

we have no use for them.

NETHACKBIN=""

NH_PLAYGROUND_FIXED=""

There Nethack related variables must be set even if we have no

use for them.

NHSUBDIR="/nh343/"

NH_VAR_PLAYGROUND="/nh343/var/"

Listing 1: Dgl-create-chroot Configuration

IN-DEPTH
dgamelaunch

47LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

wide installation. Keep in mind that
Rogue will live in a chroot and won’t
be able to modify the rest of the oper-
ating system: For the game, the chroot
directory will be all there is to the op-
erating system.

Create the appropriate directories in
the chroot and move the binary file to its
final destination:

cd /var/dgl

mkdir ‑p var/games/rogue3/save

mkdir ‑p usr/games

mkdir ‑p dgldir/inprogress‑rogue3

cp $user_home/ElwinR‑rl‑74351bf23e5e/U

 rogue3/rogue3 usr/games/

chown ‑R games:games var/games dgldir

You can install additional games using
similar steps. Keep in mind that you also
must copy the libraries required by those
games inside the chroot folder.

Rogue requires the appropriate
ncurses library to live within the
chroot.

cp /lib/x86_64‑linux‑gnu/U

 libncurses.so.6 U

/var/dgl/lib/x86_64‑linux‑gnu/

Configuring dgamelaunch
The game launcher’s main configura-
tion file resides in /var/dgl/etc/dgame‑
launch.conf. Listing 2 shows an exam-

Next, build the chroot directory that
dgamelaunch will switch into when a
user connects to the server. Dgame-
launch provides a script, dgl-create-
chroot, to do this. Open dgl-create-
chroot with any text editor and change
the configuration variables to your lik-
ing. The script is NetHack-centric, be-
cause NetHack is the most popular
Roguelike game in existence, but you
can leave the NetHack-related variables
unmodified if you don’t plan to run it at
all. See Listing 1 for the variables you
can set.

Once the configuration is done, save
the script and run it as root:

bash dgl‑create‑chroot

If you use the example values from List-
ing 1, the /var/dgl directory will be cre-
ated and populated with all the neces-
sary libraries and configuration files to
run a chroot.

Finally, install dgamelaunch in /usr/
bin, with the setuid bit set.

cp dgamelaunch /usr/bin/

chmod 4755 /usr/bin/dgamelaunch

Installing Games
Installing the original Rogue seems ap-
propriate for this article. Roguelike Gal-
lery hosts builds for many early Rogue-

likes. John “Elwin” Edwards, Roguelike
Gallery’s creator, has done an amazing
job of keeping and updating these an-
tique games’ source code to ensure they
can run on modern operating systems.
Roguelike Gallery also provides precom-
piled binaries [5].

I keep a convenient copy of Elwin’s
Roguelike collection on a personal
server. You may download it with the
following command:

$ curl ‑LO U

 gopher://gopher.operationalsecurity.es/U

 9/Software/Early%20Roguelikes/U

 ElwinR‑rl‑74351bf23e5e.zip

Compile Rogue v3 (the earliest version of
Rogue that was widely available) with:

$ unzip ElwinR‑rl‑74351bf23e5e.zip

$ cd ElwinR‑rl‑74351bf23e5e/rogue3

$ autoreconf

$./configure U

 ‑‑enable‑savedir=U

 /var/games/rogue3/save U

 ‑‑enable‑scorefile=U

 /var/games/rogue3/rogue.scr U

 ‑‑enable‑logfile=U

 /var/games/rogue3/rogue.log

$ make

The enable‑savedir, enable‑scorefile,
and enable‑logfile switches are nec-
essary to compile a game for system-

chroot_path = "/var/dgl"

dglroot = "/dgldir/"

banner = "/dgl‑banner"

shed_uid = 5

shed_gid = 60

commands[register] = mkdir "%ruserdata/%n",

 mkdir "%ruserdata/%n/ttyrec",

 mkdir "%ruserdata/%n/ttyrec/rogue3"

commands[login] = mkdir "%ruserdata/%n",

 mkdir "%ruserdata/%n/ttyrec",

 mkdir "%ruserdata/%n/ttyrec/rogue3"

menu["mainmenu_anon"] {

 bannerfile = "/dgl_menu_main_anon.txt"

 commands["l"] = ask_login

 commands["r"] = ask_register

 commands["w"] = watch_menu

 commands["q"] = quit

}

menu["mainmenu_user"] {

 bannerfile = "/dgl_menu_main_user.txt"

 commands["c"] = chpasswd

 commands["e"] = chmail

 commands["w"] = watch_menu

 commands["3"] = play_game "RogueV3"

 commands["q"] = quit

}

menu["watchmenu_help"] {

 bannerfile = "/dgl_menu_watchmenu_help.txt"

 commands["qQ "] = return

}

DEFINE {

 game_path = "/usr/games/rogue3"

 game_name = "Rogue V3 (3.6)"

 short_name = "RogueV3"

 game_args = "rogue3", "‑n", "%n"

 inprogressdir = "%rinprogress‑rogue3/"

 ttyrecdir = "%ruserdata/%n/ttyrec/rogue3/"

 commands = cp "�/var/games/rogue3/save/%u‑%n.r3sav" "/var/

games/rogue3/save/%u‑%n.r3sav.bak"

}

Listing 2: dgamelaunch.conf

48

dgamelaunch

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

ple to get you started. You may find
more example configuration files in
dgamelaunch’s source code tarball,
with the meaning of the variables prop-
erly explained.

The shed_uid and shed_gid variables
define the user ID and group ID that

dgamelaunch will drop privileges to after
chrooting. In the example shown in List-
ing 2, this would be equivalent to
games:games in a default Debian install.
commands[login] and commands[register]
tell dgamelaunch which actions to per-
form when a player logs in or registers,

respectively. In Listing 2, they build a di-
rectory tree when the user registers and
rebuild it if the user logs in and the tree
does not exist.

The DEFINE clause provides a configu-
ration for loading Rogue, game_path de-
fines the location of the rogue3 binary
within the chroot, while commands backs
up each player’s saved files each time
the game is launched. ttyrecdir sets the
directory in which the game session is
recorded, just in case you want to watch
your games later.

The final step is to configure the
menus the users will see when logged
into the game server. The default con-
figuration suffices for testing, with the
exception of the menu located at /var/
dgl/dgl_menu_main_user.txt. By default,
the menu is NetHack-centric. Listing 3
provides you with an appropriate alter-
native.

Making the Service
Available
You can test whether dgamelaunch
works by invoking the dgamelaunch com-
mand as any regular user:

##

$VERSION ‑ network console game launcher

Copyright (c) 2000‑2009 The Dgamelaunch Team

See http://nethack.wikia.com/wiki/dgamelaunch for more info

##

Games on this server are recorded for in‑progress viewing and playback!

Logged in as: $USERNAME

c) Change password e) Change email address

w) Watch games in progress

3) Play Rogue V3

q) Quit

=>

Listing 3: dgl_menu_main_user.txt

dgamelaunch

IN-DEPTH

There are lots of games that can be
run within a dgamelaunch service.
Debian has the bsdgames package in its
repository, with many terminal games
from the pre-Linux era, including phan-
tasia, battlestar, and trek. With a little
tweaking, incorporating these games
into the game server is possible.

You can see dgamelaunch in action
using Roguelike Gallery’s SSH service [6]
(use rodney for the username and yendor
for the password). Instructions for play-
ing Rogue are in the source tarball. If
you prefer to play a modern game with a
retro feel, the Dungeon Crawl Stone
Soup team keeps a list of servers for
playing their games [7]. nnn

$ /usr/bin/dgamelaunch

If everything works as intended, dgame-
launch will chroot into /var/dgl, and
you’ll be presented with a menu (Fig-
ure 2), from which you can create a user
account for the game service, play
games, and watch other players.

In order to make the game available
over Telnet, you must install the appro-
priate Telnet daemon and configure it.
Dgamelaunch’s README file offers instruc-
tions to do this. Begin by installing an
inetd daemon and a Telnet server:

apt‑get install openbsd‑inetd telnetd

OpenBSD’s inetd is a superserver that
takes incoming connections and passes
them to the appropriate server, in this
case telnetd. In order to make this con-
figuration work, edit /etc/inetd.conf
and ensure the line shown in Listing 4 is
its only content.

This line instructs OpenBSD’s inetd to
call the Telnet daemon when a Telnet
connection is received. In turn, the Tel-
net daemon is configured to use /var/
dgl/dgamelaunch as a shell. Remember to

reload the inetd daemon for the configu-
ration to take effect:

systemctl reload inetd

Recording Games
The server automatically records the
games under /var/dgl/dgldir/
userdata/$user/ttyrec/rogue3. The re-
cordings can be watched using a ttyrec
player, such as ttyplay. It is common for
public dgamelaunch servers to offer the
files for download via a web server.

Any user who connects while other
people are playing may watch the ongo-
ing games. If the game is patched for
proper dgamelaunch integration, it is
possible for the audience to send mes-
sages to the player. Games that support
this include NetHack and Dungeon
Crawl Stone Soup. Trying to deliver a
message when a game has no spooldir
variable set will crash dgamelaunch, but
thankfully it will not affect the instances
of the people who are running games.

Conclusions
Setting a server to play old terminal games
is not easy, but it is certainly doable.

telnet stream tcp nowait root.root /usr/sbin/tcpd /usr/sbin/in.telnetd ‑h ‑L /var/dgl/dgamelaunch

Listing 4: inetd.conf

Figure 2: The dgamelaunch menu.

[1]	� History of Rogue:
https://​rlgallery.​org/​about/​rogue3.​html

[2]	� dgamelaunch’s GitHub repository:
https://​github.​com/​paxed/​
dgamelaunch

[3]	� Dungeon Crawl Stone Soup:
https://​crawl.​develz.​org/

[4]	� NAO: https://​alt.​org/​nethack/

[5]	� Roguelike Gallery: https://​rlgallery.​org

[6]	� Roguelike Gallery’s dgamelaunch SSH
service: https://​rlgallery.​org:8080

[7]	� Dungeon Crawl Stone Soup online:

http://​crawl.​chaosforge.​org/​Playing_

online

Info

nnn

Rubén Llorente is a
mechanical engineer,
whose job is to
ensure that the
security measures of
the IT infrastructure
of a small clinic are
both law compliant
and safe. In addition, he is an OpenBSD
enthusiast and a weapons collector.

Author

50

dgamelaunch

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

https://rlgallery.org/about/rogue3.html
https://github.com/paxed/dgamelaunch
https://github.com/paxed/dgamelaunch
https://crawl.develz.org/
https://alt.org/nethack/
https://rlgallery.org
https://rlgallery.org:8080
http://crawl.chaosforge.org/Playing_online
http://crawl.chaosforge.org/Playing_online

of me that has a PZN barcode. I can see
from a web page [2] for generating bar-
codes that this is used on pharmaceuti-
cals in Germany. On the same website –
funnily enough, it uses Zint itself – there
are examples of the other types of code.

For inventory purposes, I use a classic
QR code. I can encode all ASCII charac-
ters in it, but I have to avoid nonstan-
dard characters like accents and um-
lauts. Using the call from Listing 1, I
create a QR code as a PNG that reveals
the URL for Linux Magazine’s website
(Figure 3).

In Listing 1, I use ‑b 58 to select QR as
the code type. The parameter ‑d for data
always has to be at the end: Zint blithely
ignores all the options that follow. As
long as I stick to this, the barcode gener-
ation routine works like clockwork,
which gives me one less excuse to put
off the pesky inventory process. nnn

W hen you need to manage
large numbers of devices,
there is no avoiding central-
ized data management. In

the simplest case, this can be a wiki,
with one entry per system. This will in-
clude, for example, the date of purchase,
the length of the warranty period or
maintenance contract, any repairs that
have already been made, and the rack
number where the device is installed
(finding the hardware in a larger data
center can be time-consuming). I then
encode the URL of the wiki entry as a
barcode or QR code, print it on self-ad-
hesive film, and stick it on the device.

I generate the codes for this with
Zint [1]. Many distributions have Zint

on board; if not, it is quickly compiled
from the GitHub repository. You must
have libpng in place; otherwise, Zint
will not generate images. Those who
now want to generate codes are spoiled
for choice: Zint knows dozens of vari-
ants (Figure 1). With zint ‑t, I can dis-
play their names.

I know a few of these codes, like EAN
and QR, from ev-
eryday life.
PDF417 (Figure 2)
and its relatives
can be found on
the boarding
passes of many
airlines. And there just happens to be a
cold medicine bottle on the table in front

The sys admin’s daily grind: Zint

 Checklist
Doing a hardware inventory in a data center is anything but a
piece of cake. In order to quickly assign devices to the appropriate
database entry, Charly provides each newly acquired system with
a QR code sticker with the help of Zint. By Charly Kühnast

Charly Kühnast manages
Unix systems in a data
center in the Lower Rhine
region of Germany. His
responsibilities include
ensuring the security and
availability of firewalls
and the DMZ.

Author

[1]	� Zint: https://​github.​com/​zint/​zint

[2]	� Barcode generator: http://​www.​
barcode‑generator.​org

Info

Figure 1: Zint can generate these codes.

Figure 2: PDF417 is the barcode format often used in
the transportation industry.

Figure 3: The Linux Magazine URL
as a QR code

$ zint ‑o ~/qr/linmagurl‑qr.png ‑b 58 ‑d https://linux‑magazine.com

Listing 1: QR Code with Zint

51LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

IN-DEPTH
Charly’s Column – Zint

https://github.com/zint/zint
http://www.barcode-generator.org
http://www.barcode-generator.org

I n a file manager, have you ever observed how newly cre-
ated files by other applications immediately appear in the
displayed directory and wondered how this works? As
continuous querying of the filesystem is out of the ques-

tion for performance reasons, these applications use the Linux
filesystem’s inotify interface instead.

Operating systems implement the mechanism in different
ways: Linux uses inotify, the Mac uses kqueue, and Win-
dows comes with an unpronounceable extra. Fortunately,
the Go library fsnotify on GitHub abstracts this proliferation

Go library shows filesystem
changes across platforms

 Motion
 Sensor
Inotify lets applications subscribe to change notifications in the filesystem. Mike Schilli uses the
cross-platform fsnotify library to instruct a Go program to detect what’s happening. By Mike Schilli

Figure 1: Listing 1 listens for filesystem messages in
/tmp/test/ …

Figure 2: … which were triggered by user actions in
another terminal.

01 �package main

02 �

03 �import (

04 � "fmt"

05 � "github.com/fsnotify/fsnotify"

06 �)

07 �

08 �func main() {

09 � watcher, err := fsnotify.NewWatcher()

10 � if err != nil {

11 � panic(err)

12 � }

13 � defer watcher.Close()

14 �

15 � go func() {

16 � for {

17 � select {

18 � case event, ok := <‑watcher.Events:

19 � if !ok {

20 � return

21 � }

22 � fmt.Printf("%+v\n", event)

23 � }

24 � }

25 � }()

26 �

27 � err = watcher.Add("/tmp/test")

28 � if err != nil {

29 � panic(err)

30 � }

31 �

32 � done := make(chan struct{})

33 � <‑done

34 �}

Listing 1: watch.go

Le
ad

 Im
ag

e
©

 a
lp

h
as

p
ir

it
, 1

23
R

F.
co

m

52 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH
Programming Snapshot – fsnotify

and finally delete it with rm. Figure 1
confirms that the Go program actually
sees all changes in real time and logs
the actions.

To do this, Listing 1 retrieves the li-
brary code from GitHub in line 5, cre-
ates a new watcher as the first step in
the main program, and calls defer to tell
it to shut itself down at the end of the
program.

Since filesystem monitoring with fs-
notify is an asynchronous process

to create a simple interface. This
means that programmers only need to
write their applications once to cover
all platforms.

No Stress
About 15 years ago, I wrote an article on
this topic in my regular column [1]. At
the time I used Perl, and the article re-
lied on FUSE, a special filesystem. Today
filesystem notifications are part of the
standard.

In Go, the whole thing can be done
without much fuss; Listing 1 shows a
simple example just to get you warmed
up. Figure 1 visualizes how an execut-
able binary named watch is created from
the Go code in watch.go, which then
starts monitoring a newly created direc-
tory /tmp/test/. In another terminal,
the user now enters the commands
shown in Figure 2. They first create a
new file in the test directory, write data
to it, change its execution privileges,

01 �package main

02 �

03 �import (

04 � "fmt"

05 � "github.com/fsnotify/fsnotify"

06 � "log"

07 � "os"

08 � "os/user"

09 � "path/filepath"

10 � "strings"

11 �)

12 �

13 �func main() {

14 � cur, err := user.Current()

15 � dieOnErr(err)

16 � home := cur.HomeDir

17 �

18 � watcher, err := fsnotify.NewWatcher()

19 � dieOnErr(err)

20 � defer watcher.Close()

21 �

22 � watchInit(watcher)

23 �

24 � err = filepath.Walk(filepath.Join(home, "go"),

25 � func(path string, info os.FileInfo, err error) error {

26 � dieOnErr(err)

27 � if info.IsDir() {

28 � err := watcher.Add(path)

29 � dieOnErr(err)

30 � }

31 � return nil

32 � })

33 � dieOnErr(err)

34 �

35 � done := make(chan bool)

36 � <‑done

37 �}

38 �

39 �func eventAsString(event fsnotify.Event) string {

40 � info, err := os.Stat(event.Name)

41 � dieOnErr(err)

42 � evShort := (strings.ToLower(event.Op.String()))[0:2]

43 � dirParts := strings.Split(event.Name, "/")

44 � pathShort := event.Name

45 � if len(dirParts) > 3 {

46 � pathShort = filepath.Join(�dirParts[len(dirParts)‑3 :

len(dirParts)]...)

47 � }

48 � return fmt.Sprintf(�"%s %s %d", evShort, pathShort, info.

Size())

49 �}

50 �

51 �func watchInit(watcher *fsnotify.Watcher) {

52 � go func() {

53 � for {

54 � select {

55 � case event, ok := <‑watcher.Events:

56 � if !ok {

57 � return

58 � }

59 � if event.Op&fsnotify.Rename == fsnotify.Rename ||

60 � event.Op&fsnotify.Remove == fsnotify.Remove {

61 � continue

62 � }

63 � log.Printf("%s\n", eventAsString(event))

64 � info, err := os.Stat(event.Name)

65 � dieOnErr(err)

66 � if info.IsDir() {

67 � err := watcher.Add(event.Name)

68 � dieOnErr(err)

69 � }

70 � case err, _ := <‑watcher.Errors:

71 � panic(err)

72 � }

73 � }

74 � }()

75 �}

76 �

77 �func dieOnErr(err error) {

78 � if err != nil {

79 � panic(err)

80 � }

81 �}

Listing 2: fswatch.go

53

Programming Snapshot – fsnotify

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

IN-DEPTH

tion sets another watcher for it with
Add(). Each of these watchers consumes
a file descriptor on Linux, and the oper-
ating system does not have an unlimited
supply of them. The ulimit ‑n command
shows the number of file descriptors
available and gives the administrator the
ability to increase the number. Under
normal circumstances, however, the de-
fault of 1,024 descriptors is fine.

The call to watchInit() in line 22 of
the main program determines what
happens on arriving inotify events.
The function starts in line 51, with an
asynchronous goroutine waiting for
events from all defined watchers up to
this point. If the event belongs to a
newly generated directory within the
monitored file structure, line 67 also
sets a watcher for it. Luckily, the pro-
gram does not need to worry about
watchers being defined twice for the
same entry: fsnotify is smart enough
to ignore duplicates.

Race Condition
However, this method is not completely
reliable: If the tracker notices the genesis
of a new directory, it needs to quickly set
up a watcher for it to track future
changes in the directory. But if an appli-
cation creates files in the directory im-
mediately after it is created, it could beat
the tracker to it, and the tracker would
not notice the change.

Also, the Walk() function originally
called to collect all the subdirectories

does not con-
tinue to track
symbolic links.
If you want to
do that, you
have to resolve
them with the
EvalSymlinks()
function, but
watch it care-
fully to prevent
the walker get-
ting stuck in an
infinite loop.

Events report-
ing the renaming
or deletion of an
entry are filtered
out by the if
condition in line
59, because an
os.Stat() for

using Go channels, line 15 calls go func
to launch a goroutine, which immedi-
ately starts an infinite loop with a se‑
lect statement. The latter blocks the
flow of the goroutine until messages
arrive from the watcher.Events chan-
nel, sent by the library code from fsno-
tify, which gets its clues directly from
the operating system.

Routines and Blocking
Meanwhile, the main program contin-
ues to flow unimpeded, and line 27
tells fsnotify via watcher.Add() that it
wants to monitor the /tmp/test/ direc-
tory. That’s all there is to it in the main
program.

But since main is supposed to con-
tinue running and listening for events
in the Goroutine launched earlier; line
32 creates an unused channel just be-
fore the end in line 33. Alas, no mes-
sage will ever arrive from this channel:
Its only job is to block the main pro-
gram until the user cancels it by press-
ing Ctrl+C.

Non-Recursive
The Go library fsnotify only adds one di-
rectory to the watch list with each call to
Add(). Recursive integration of an entire
file tree is supposedly on the fsnotify
project’s roadmap, but it doesn’t work at
the moment. Therefore, the application
has to weave its own surveillance net by
issuing recursive calls down the direc-
tory hierarchy.

For example, to track which files the
Go compiler downloads or generates in
the directory hierarchy below ~/go/ in
the user’s home directory during the
work phase, Listing 2 first has to delve
the depths of the directory structure
using the Walk() function from the
standard filepath package starting in
line 24.

As a parameter, the function expects a
callback function that it will call for each
filesystem entry it finds with the name
and the FileInfo structure including the
metadata, such as the file or directory,
size in bytes, or access permissions. If an
error occurred during the traversal, the
err variable is set to the corresponding
error instead.

Short Shrift for Want of
Space
To shorten the eternal error checks after
function calls with err != nil requiring
countless if conditions to a magazine-
friendly code length, Listing 2 defines
the dieOnErr() function in line 77; this
simply aborts on any error. Under pro-
duction conditions, you would want to
log the error here instead and eventu-
ally handle it upstream, but then you
wouldn’t have to worry about the
shortage of space inherent in print
products. Ha!

The callback function then uses
IsDir() to check for each newly discov-
ered entry below the ~/go/ directory. If it
is not a file but a subdirectory, the func-

Figure 3: While the Go compiler loads sources from GitHub to compile a binary, fsnotify
keeps track of the new files created in the process.

54

Programming Snapshot – fsnotify

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

long because of code bloat or depen-
dency hell. nnn

such an entry would fail. Line 63 prints
all other events in a nicely formatted way.

Figure 3 shows what the watcher finds
while running the Go compiler with:

go build fswatch.go

The watcher reports the creation of quite
a few cache directories that help compile
and include the fsnotify code down-
loaded from GitHub. The cr abbreviation
here stands for the “create” action. Other
messages have an identifier of ch for
chmod when the compiler manipulates
the access bits. If compiling a long Go
program with many dependencies drags
on and on, this little helper tells you ex-
actly what the compiler is doing and you
can guesstimate how long it will con-
tinue to run.

To neatly log the events that occur, the
eventAsString() function reformats them
in what is still a pretty rudimentary way
starting at line 39. Line 42 truncates the

event names to their first two characters
and converts them to lowercase with
ToLower(). Line 43 splits long directory
paths into their components; line 46
shortens them to the last three partial
paths (if it finds any more). Using the
[m:n] array slice syntax, it extracts the
last three with len(dirPaths)‑3 for m and
len(dirParts) for n.

The element at index m is by definition
included in the result, while the one for
n is not. Since Join() from the filepath
package joins a variable number of indi-
vidual elements rather than an array of
partial paths, the final three dots turn
the array slice coming from the slice op-
erator into a flattened list of individual
elements.

The whole thing could now be nicely
embedded in a UI that constantly enter-
tains the user with updates for each
compiler run, so that you can immedi-
ately see whether it is just the network
hanging or if the process is taking so

[1]	� “Detecting system changes with Dno-
tify” by Mike Schilli, Linux Magazine,
issue 63, February 2006, https://​www.​
linux‑magazine.​com/​Issues/​2006/​63/​
Perl‑noworries/​(language)/​eng‑US

[2]	� Listings for this article:
ftp://​ftp.​linux‑magazine.​com/​pub/​
listings/​linux‑magazine.​com/​247/

Info

Mike Schilli works as a
software engineer in the
San Francisco Bay area,
California. Each month
in his column, which has
been running since 1997,
he researches practical applications of
various programming languages. If you
email him at mschilli@perlmeister.​com
he will gladly answer any questions.

Author

Programming Snapshot – fsnotify

IN-DEPTH

https://www.linux-magazine.com/Issues/2006/63/Perl-noworries/(language)/eng-US
https://www.linux-magazine.com/Issues/2006/63/Perl-noworries/(language)/eng-US
https://www.linux-magazine.com/Issues/2006/63/Perl-noworries/(language)/eng-US
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/

gpiocount, and writes the bytes into a
four-digit, seven-segment display. All
segment lines of the four displays are
wired together inside the chip so that, to
see the separate digits, you must turn on
the four displays one at a time, faster
than the eye can detect. That takes care
of the reading, writing, and arithmetic.

Both gpiocount and gpiomux need to
use the basic GPIO functions, so these
functions have been placed into a
shared library, libgpio.asm, which is
assembled and linked to libgpio.so
created by Makefile.

Each separate GPIO operation – read-
ing a GPIO pin, writing a pin, setting a
pin to input mode or output mode – is a
function in libgpio. Mapping the GPIO’s
hardware registers into the memory
spaces of gpiocount and gpiomux is an-
other operation performed by libgpio.
The gpiocount program creates a shared
memory space and gpiomux reads the ad-

I n this article, I explore the Rasp-
berry Pi’s general purpose input/​
output (GPIO) system and look at
how to use it to perform some

basic input and output tasks with four
separate programs that run simultane-
ously and communicate with each other.
Table 1 lists the various programs dis-
cussed in this article [1].

Recon
The first program, gpiocount.asm, counts
up or down in various number systems:
binary, octal, decimal, and hexadecimal
– or really, any number system up to
base 16. The count mode is changed
with a switch that causes an interrupt to
a loadable kernel module. That’s the
arithmetic portion of the project.

The gpiocount program writes its val-
ues to 4 bytes of memory that is shared
with gpiomux.asm, which runs in the
background, reads the 4 bytes written by

Reading, writing, and arithmetic with the Raspberry Pi in ARM64 assembly language. By John Schwartzman

Access Raspberry Pi GPIO
with ARM64 assembly

The Three Rs

MakerSpace

File Name Function
gpiocount.asm Count up or down in different number systems

gpiocount.h C++ header file with declarations for exports in gpiocount.asm

countmain.cpp Optional C++ main() for gpiocount.asm

gpiomux.asm Read and write four-digit, common-anode, seven-segment displays

gpiomux.h C++ header file with declarations for exports in gpiomux.asm

muxmain.cpp Optional C++ main() for gpiomux.asm

libgpio.asm A shared library with GPIO functions used by gpiocount.asm and
gpiomux.asm

arm64_include.
asm

Contains constants and macros for ARM64 assembly language and
describes the Raspberry Pi GPIO register map

lkm_gpio.c An LKM that handles interrupts from user space

Table 1: Code Files

dress of this shared memory. Those two
functions are also placed in libgpio.

Each of the three GPIO programs is
placed in a separate ARM64 assembly
language file. Both gpiocount.asm and
gpiomux.asm have main functions, but
they can be conditionally compiled to re-
place these functions with countmain.cpp
and muxmain.cpp (the default in Make-
file). Seeing the same code in both as-
sembly language and C++ should make
the code easy to follow.

Both countmain.cpp and muxmain.cpp
print a lot of output to the console; how-
ever, I didn’t bother with that in the as-
sembly language versions. It’s very easy
to add printf calls to the assembly lan-
guage mains, though: Simply place the
string you want to print in the read-only
data section (.section .rodata),

initstr: .asciz U

 "countmain: initializing\n"

and place the following lines in the code
section (.section .text):

main:

 push2 x29, x30

 ...

 adr x0, initstr

 bl printf

 ...

 pop2 x29, x30

 ret

The fourth program is a loadable kernel
module (LKM) written in C, lkm_gpio.c,
that allows you to interrupt the kernel Le

ad
 Im

ag
e

©
 d

ri
zz

d
, 1

23
R

F.
co

m

56 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE ARM64 Assembly and GPIO

through a switch connected to a GPIO
pin. It forces the current counter to end,
whereupon the gpiocount function main
starts a new task. The LKM module is a
standalone program with a separate proj-
ect directory and Makefile.

Accessing the GPIO
The Raspberry Pi system-on-chip (SoC)
contains 54, 32-bit hardware registers that
provide access to the GPIO pins located in
a 40-pin header. Although you could read
and write to hardware registers, just as if
they were memory locations, the register
addresses are not within the range avail-
able to the programs.

Linux provides a way to map these ad-
dresses into virtual addresses that you
can read and write. To do this, open the
character device /dev/gpiomem as a file
and call mmap to map the GPIO hardware
register addresses. The code for this op-
eration is located in the mapOpen subrou-
tine in the file libgpio.asm.

Most of the code in this article is writ-
ten in ARM64 Assembly Language. As-
sembly language gets you very close to
the hardware and is often preferred over
a high-level language when dealing with
hardware. Figure 1 shows the bread-
board connected to the Raspberry Pi
through a 40-pin header and a bread-
board adapter, and Figure 2 shows the
wiring diagram for the device.

To save hardware, access to the GPIO
registers is assigned to bits in a register,
not the whole register. The gpiomux.asm
program (Listing 1) provides a lookup
table starting at line 279 that allows you
to find the register addresses needed. For
example, GPIO pin 6, which is assigned
to segment e of the seven-segment dis-
play (lines 292-294), is in function select
register 0, which manages GPIO pins
0-9. Bits 0-2 are assigned to GPIO pin 0,

bits 3-5 to GPIO pin 1, bits 18-20 to GPIO
pin 6, and so on.

Why 3 bits? With 3 bits you can specify
eight unique values. The value 000 means
the pin is an input, 001 means the pin is an
output, and the other six values 010-111
specify an alternative function for the
GPIO pin. Here, I’ll only deal with input
and output. To write a 1 or a 0 to the GPIO
output pin you have to write a bit into the
set or clear register. The bit set is the same
as the GPIO pin number, which is not the
same as the 40-pin header number.

To set GPIO pin 6 to 0, write a 1 into
bit 6 of the GPCLR0 register. To make ev-
erything a little more complicated, if you
only want to change one pin, you have
to read a register first, change the bit
that needs to be changed, and then write
back the modified register.
Look at the seg_e entry in the lookup
table and note the three values associated
with that entry. The 0 means use gpfsel0
(GPIO function select register 0) and 18
means write into bits 18, 19, and 20 of
gpfsel0 to set the register function. Fi-

nally, the 6 indicates the bit you have to
set in gpset0 to put GPIO pin 6 in a 1 state
and the bit you have to set in gpclr0 to
put the pin in a 0 state. To set a GPIO pin
high (1) or low (0), use gpioSetState()
(in the writeDigit() function). Please see
arm64_include.asm for a description of the
Raspberry Pi GPIO register map.

Counting
The gpiocount.asm program has two
methods that count in various number
systems: countUp(base) and
countDown(base). Figure 3 shows a flow-
chart of the countUp function. These rou-
tines write the count to four shared
memory locations. The gpiocount pro-
gram doesn’t need to know much about
the hardware; it needs to know just
enough to test whether it has been inter-
rupted. When the LKM is interrupted by
switch_0 pulling GPIO pin 17 low, it pulls
GPIO pin 22 low, which countUp() and
countDown() monitor to determine when
they need to exit. They then restore
GPIO pin 22 to a high state.

Figure 1: The breadboard and
40-pin header adapter with the Pi
counting up in hexadecimal.

Figure 2: The breadboard wiring diagram.

57LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

ARM64 Assembly and GPIO MAKERSPACEMAKERSPACE

001 �//==

002 �// gpiomux.asm ‑ Read and write 4‑digit common‑anode
7‑segment displays

003 �// John Schwartzman, Forte Systems, Inc.

004 �// 03/07/2021

005 �// ARM64

006 �//==

007 �.include "arm64_include.asm" // �contains constants &
macros

008 �

009 �//==================== CODE SECTION ======================

010 �.section .text

011 �

012 �.ifdef OPT //========= use main from this file ==========

013 �

014 �.global main

015 �

016 �//==

017 �main:

018 � push2 x29, x30 // push fp & lr

019 �

020 � mov w0, #SIGHUP // �prepare handleHangup ‑ sig number

021 � adr x1, handleHangup // ‑ function adr

022 � bl signal // invoke glibc signal() function

023 �

024 � bl initialize // set up gpio and shared memory

025 � bl readWrite // �continuously display shared memory

026 � bl cleanUp // restore and unmap gpio

027 �

028 � mov w0, wzr // w0 = EXIT_SUCCESS

029 � bl exit // invoke glibc exit() function

030 �

031 � pop2 x29, x30 // pop fp & lr

032 � ret

033 �

034 �//==

035 �

036 �.else // OPT != __MAIN__ //== use main from muxmain.cpp ==

037 �

038 �.global initialize, cleanUp, readWrite, setExitFlag

039 �

040 �.endif //==

041 �

042 �//==

043 �// Handle the SIGHUP signal: call cleanUp

044 �handleHangup:

045 � push2 x29, x30 // push fp & lr

046 � bl setExitFlag // tell readWrite to exit

047 � pop2 x29, x30 // pop fp & lr

048 � ret

049 �

050 �//==

051 �setExitFlag: // tell readWrite to exit

052 � adr x0, exitFlag // �write ONE to memory location
exitFlag

053 � mov w1, #ONE

054 � strb w1, [x0]

055 � ret

056 �

057 �//==

058 �// Map virtual memory to /dev/gpiomem and set GPIO pins
for input or output.

059 �initialize:

060 � push2 x29, x30 // push fp & lr

061 �

062 � adr x0, digits

063 � bl readSharedMemory

064 � cmp x0, #MINUS_ONE // success?

065 � beq fin // branch if no

066 �

067 � adr x0, memdev

068 � adr x1, gpiobase

069 � bl mapOpen // map the memory

070 � cmp x0, xzr // success?

071 � bmi fin // branch if no

072 �

073 � adr x29, gpiobase // save gpiobase

074 � str x0, [x29]

075 �

076 � adr x29, gpiobase // �This step is necessary for all

077 � ldr x29, [x29] // GPIO activity. x29 => gpiobase

078 �

079 � adr x0, switch_0 // GPIO pin 17 used for switch

080 � bl gpioDirectionIn

081 �

082 � adr x0, seg_a // GPIO pin 20

083 � bl gpioDirectionOut

084 �

085 � adr x0, seg_b // GPIO pin 21

086 � bl gpioDirectionOut

087 �

088 � adr x0, seg_c // GPIO pin 19

089 � bl gpioDirectionOut

090 �

091 � adr x0, seg_d // GPIO pin 13

092 � bl gpioDirectionOut

093 �

094 � adr x0, seg_e // GPIO pin 06

095 � bl gpioDirectionOut

096 �

097 � adr x0, seg_f // GPIO pin 16

098 � bl gpioDirectionOut

099 �

100 � adr x0, seg_g // GPIO pin 12

101 � bl gpioDirectionOut

102 �

103 � adr x0, seg_dp // GPIO pin 26

104 � bl gpioDirectionOut

105 �

106 � adr x0, digit_0 // GPIO pin 18

107 � bl gpioDirectionOut

108 �

109 � adr x0, digit_1 // GPIO pin 23

110 � bl gpioDirectionOut

111 �

112 � adr x0, digit_2 // GPIO pin 24

113 � bl gpioDirectionOut

114 �

115 � adr x0, digit_3 // GPIO pin 25

116 � bl gpioDirectionOut

Listing 1: gpiomux.asm

58 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

ARM64 Assembly and GPIOMAKERSPACE

The gpiomux.asm program takes the
numbers from shared memory and writes
them to the seven-segment display. Each
of the eight LED segments is connected to
a GPIO pin designated as output. The
four-digit driver pins (digit_0, digit_1,
digit_2, and digit_3) have been desig-
nated as outputs, as well.

In gpiomux.asm, the initialize func-
tion (line 59) gets the shared memory
region, performs the virtual GPIO map-
ping, and sets the GPIO pin directions
as desired.

The hex_numbers lookup table (gpiomux.
asm, lines 323-339) describes what seg-
ments should be on (0) or off (1) to form

the correct number on the seven-segment
display. I know that sounds backward,
but on a common-anode, seven-segment
display, the anode of every LED in the
device is connected through its driver pin
and a general-purpose NPN transistor to
3.3V. Writing a 1 to a GPIO seg_n pin
means putting 3.3V on the pin. With

117 �

118 � adr x0, pin_22 // GPIO pin 22

119 � bl gpioDirectionOut

120 �

121 � mov x0, xzr // clear error flag

122 �

123 �fin:

124 � pop2 x29, x30 // pop fp & lr

125 � ret

126 �

127 �//==

128 �cleanUp: // cleanup has no parameters

129 � push2 x29, x30 // push fp & lr

130 �

131 � adr x29, gpiobase // x29 => gpiobase

132 � ldr x29, [x29]

133 �

134 � adr x0, seg_a // GPIO pin 20

135 � bl gpioDirectionIn

136 �

137 � adr x0, seg_b // GPIO pin 21

138 � bl gpioDirectionIn

139 �

140 � adr x0, seg_c // GPIO pin 19

141 � bl gpioDirectionIn

142 �

143 � adr x0, seg_d // GPIO pin 13

144 � bl gpioDirectionIn

145 �

146 � adr x0, seg_e // GPIO pin 06

147 � bl gpioDirectionIn

148 �

149 � adr x0, seg_f // GPIO pin 16

150 � bl gpioDirectionIn

151 �

152 � adr x0, seg_g // GPIO pin 12

153 � bl gpioDirectionIn

154 �

155 � adr x0, seg_dp // GPIO pin 26

156 � bl gpioDirectionIn

157 �

158 � adr x0, digit_0 // GPIO pin 18

159 � bl gpioDirectionIn

160 �

161 � adr x0, digit_1 // GPIO pin 23

162 � bl gpioDirectionIn

163 �

164 � adr x0, digit_2 // GPIO pin 24

165 � bl gpioDirectionIn

166 �

167 � adr x0, digit_3 // GPIO pin 25

168 � bl gpioDirectionIn

169 �

170 � adr x0, pin_22 // GPIO pin 22

171 � bl gpioDirectionIn

172 �

173 � mov x0, x29

174 � bl mapClose // unmap gpio

175 �

176 � pop2 x29, x30 // pop fp & lr

177 � ret

178 �

179 �//==

180 �readWrite: // readWrite has no parameters

181 � push2 x29, x30 // push fp & lr

182 � push x22

183 �

184 � adr x29, gpiobase

185 � ldr x29, [x29] // x29 = gpiobase

186 �

187 � adr x22, digits // get this from shared memory

188 � ldr x22, [x22]

189 �

190 �continue:

191 � ldrb w0, [x22, #THREE] // get lsd ‑‑ digit_0

192 � adr x1, hex_numbers // get lookup table hex_
numbers patterns

193 � ldr w1, [x1, x0, lsl #2] // �point to correct num &
get pins to clr

194 �

195 � adr x0, digit_0 // write digit_0

196 � bl writeDigit

197 �

198 � ldrb w0, [x22, #TWO] // get digit_1

199 � adr x1, hex_numbers // �get lookup table hex_
numbers patterns

200 � ldr w1, [x1, x0, lsl #2] // �point to correct num &
get pins to clr

201 �

202 � adr x0, digit_1 // write digit_1

203 � bl writeDigit

204 �

205 � ldrb w0, [x22, #ONE] // get digit_2

206 � adr x1, hex_numbers // �get lookup table hex_
numbers patterns

207 � ldr w1, [x1, x0, lsl #2] // �point to correct num &
get pins to clr

208 �

209 � adr x0, digit_2 // write digit_2

210 � bl writeDigit

211 �

Listing 1: gpiomux.asm (continued)

59LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

ARM64 Assembly and GPIO MAKERSPACE

212 � ldrb w0, [x22, #ZERO] // get digit_3

213 � adr x1, hex_numbers // �get lookup table hex_
numbers patterns

214 � ldr w1, [x1, x0, lsl #2] // �point to correct num &
get pins to clr

215 �

216 � adr x0, digit_3 // write digit_3

217 � bl writeDigit

218 �

219 �

220 � adr x0, exitFlag // read the exit flag byte

221 � ldrb w0, [x0]

222 � cmp w0, #ONE // do we need to exit?

223 � bne continue // branch if no

224 �

225 � pop x22

226 � pop2 x29, x30 // pop fp & lr

227 � ret

228 �

229 �//==

230 �writeDigit: // �x29 => gpiobase, w0 => active digit, x1 =
print pattern

231 � push2 x29, x30 // push fp & lr

232 � push x22

233 �

234 � mov x22, x0 // x0 => active digit to write

235 �

236 � adr x8, clrAllSeg

237 � ldr w8, [x8] // w8 = bits we care about

238 � str w8, [x29, #gpset0] // �write 1st pattern to
gpset0

239 � str w1, [x29, #gpclr0] // �write 2nd pattern to
gpclr0

240 �

241 � mov x0, x22 // turn on digit

242 � mov x1, #ONE // �one pulse to base of npn
transistor

243 � bl gpioSetState

244 �

245 � bl sleep // display digit for 2.5ms

246 �

247 � mov x0, x22 // turn off digit

248 � mov x1, xzr // �zero pulse to base of npn
transistor

249 � bl gpioSetState

250 �

251 � pop x22

252 � pop2 x29, x30 // pop fp & lr

253 � ret

254 �

255 �//==

256 �sleep:

257 � push2 x29, x30

258 � ldr x0, =timespecsec // sleep for 2.5ms

259 � ldr x1, =timespecsec

260 � bl nanosleep

261 � pop2 x29, x30 // pop fp & lr

262 � ret

263 �

264 �//===================== DATA SECTION =====================

265 �.section .data

266 �

267 �exitFlag: .byte 0 // this will be 1 when we should exit

268 �gpiobase: .dword 0 // memory mapped gpio address space

269 �digits: .dword 0 // 4 digits memory

270 �

271 �//============== READ‑ONLY DATA SECTION ==================

272 �.section .rodata

273 �

274 �timespecsec: .dword 0 // 0

275 �timespecnano: .dword 2500000 // 2.5ms

276 �

277 �memdev: .asciz "/dev/gpiomem"

278 �

279 �// GPIO pin lookup table

280 �seg_a: .word 8 // pin20 ‑ offset to select register

281 � .word 0 // ‑ bit offset in select reg

282 � .word 20 // ‑ bit offset in set & clr reg

283 �seg_b: .word 8 // pin21

284 � .word 3

285 � .word 21

286 �seg_c: .word 4 // pin19

287 � .word 27

288 � .word 19

289 �seg_d: .word 4 // pin13

290 � .word 9

291 � .word 13

292 �seg_e: .word 0 // pin06

293 � .word 18

294 � .word 6

295 �seg_f: .word 4 // pin16

296 � .word 18

297 � .word 16

298 �seg_g: .word 4 // pin12

299 � .word 6

300 � .word 12

301 �seg_dp: .word 8 // pin26

302 � .word 18

303 � .word 26

304 �switch_0: .word 4 // pin17

305 � .word 21

306 � .word 17

307 �digit_0: .word 4 // pin18 ‑ shared memory

308 � .word 24

309 � .word 18

310 �digit_1: .word 8 // pin23

311 � .word 9

312 � .word 23

313 �digit_2: .word 8 // pin24

314 � .word 12

315 � .word 24

316 �digit_3: .word 8 // pin25

317 � .word 15

318 � .word 25

319 �pin_22: .word 8 // pin22

320 � .word 6

321 � .word 22

322 �

323 �hex_numbers:

Listing 1: gpiomux.asm (continued)

60 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

ARM64 Assembly and GPIOMAKERSPACE

3.3V connected to the resistor and 3.3V
on the LED, no current can flow, and the
LED is unlit.

Only by writing a 0 to a GPIO seg_n
pin which puts 0V (ground) on the resis-
tor, do you get a difference of potential
across the LED, which makes it light up.
The resistor is there to limit the current
that the GPIO pin will sink to less than
16mA. Most devices can sink more cur-
rent than they can source, so the com-
mon-anode design is a common ap-
proach. Nowhere in the circuit do you
connect to 5V. (Note: The Pi’s GPIO pins
are not 5V tolerant. Stick to 3.3V every-
where.)

The readWrite function (lines 180-227)
is the workhorse of gpiomux.asm, cycling
through the four shared memory loca-
tions and writing each in turn to its asso-
ciated GPIO digit. It turns on one digit at
a time and sets the appropriate segments
to be on or off for each of the four digits.
It has to turn the digits on and off fast
enough to fool the eye that it is seeing
the display as four separate digits. An
oscilloscope display of the four-digit out-
puts is shown in Figure 4.

The readWrite function reads a digit in
shared memory and determines from the
hex_numbers lookup table which seg-
ments should be lit. It passes the argu-
ments address of digit_n (digit_0 …
digit_3) and hex_numbers[n] to write-
Digit, which writes the pattern to the
GPIO hardware.

The writeDigit subroutine (lines 230-
253; Figure 5) gets the pattern stored at
memory location clrAllSeg and writes it
into gpset0 (0x28) from the GPIO base
address (gpiobase). Next, it takes the pat-
tern passed to it by readWrite() in register
w1 and writes it to clrregoffset. That
lights the appropriate segments. It then
turns on the digit (writes a 1 to the base
of the associated NPN transistor driver).
The address of the digit lookup table is
passed to writeDigit() in register x0.

After writing to the GPIO hardware,
writeDigit goes to sleep for 2.5ms and
then turns off the digit (writes a 0 to the
base of the associated NPN transistor).
The readWrite() and writeDigit() func-
tions produce the waveform shown in
Figure 4.

Change Mode
So far, you have a device that counts
over and over again, forever. To make it Figure 3: Flowchart for the countUp(base) subroutine.

324 � .word 0x00392040 // 0 ‑ �write this to gpclr0 to display 0

325 � .word 0x00280000 // 1 ‑ write this to gpclr0 to display 1

326 � .word 0x00303040 // 2 ‑ write this to gpclr0 to display 2

327 � .word 0x00383000 // 3 ‑ write this to gpclr0 to display 3

328 � .word 0x00291000 // 4 ‑ write this to gpclr0 to display 4

329 � .word 0x00193000 // 5 ‑ write this to gpclr0 to display 5

330 � .word 0x00193949 // 6 ‑ write this to gpclr0 to display 6

331 � .word 0x00380000 // 7 ‑ write this to gpclr0 to display 7

332 � .word 0x00393040 // 8 ‑ write this to gpclr0 to display 8

333 � .word 0x00391000 // 9 ‑ write this to gpclr0 to display 9

334 � .word 0x00391040 // A ‑ write this to gpclr0 to display A

335 � .word 0x00093040 // b ‑ write this to gpclr0 to display b

336 � .word 0x00112040 // C ‑ write this to gpclr0 to display C

337 � .word 0x00283040 // d ‑ write this to gpclr0 to display d

338 � .word 0x00113040 // E ‑ write this to gpclr0 to display E

339 � .word 0x00111040 // F ‑ write this to gpclr0 to display F

340

�341 �clrAllSeg:

342 � .word 0x04393040 // write this to gpset0 to make leds dark

343 �

344 �//==

Listing 1: gpiomux.asm (continued)

61LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

ARM64 Assembly and GPIO MAKERSPACE

adding the components shown in Fig-
ure 7 unless you want. Note that gpio_
set_debounce() does not seem to be im-
plemented on the Raspberry Pi.

Basic ARM64 Assembly Tasks
Next, I look at some basic GPIO tasks and
see how they work in ARM64 assembly
language. Remember that when you pass
arguments to a function, they are placed
in x0, x1, …, x7. If you need more than
eight arguments, the remaining argu-
ments must be passed on the stack.
That’s the convention for calling the ker-
nel or a glibc function. Because you’re
calling your own assembly language
functions, you could pass the arguments
any way you like, but for consistency, I’ll
stick with the C calling convention.

In libgpio.asm, the gpioDirectionIn
function (Listing 2, line 143) sets a GPIO
pin as an input, for which you need the 3
bits that control its function. To make it
easy, forgo multiplication and division and
use a lookup table to find everything
needed for any GPIO pin that will be used.

For example, say you want to make
GPIO pin 22 an input (as in the initial-
ize() subroutine in gpiocount). For all of
the libgpio exported functions, set x29
to point to the base register of GPIO. Any
routine that deals with GPIO will need
the GPIO base register address, so x29 is
a sort of global variable.

The first thing to do inside gpioDirec-
tionIn is to load the contents of the first
element (8) of pin_22 in the GPIO lookup
table (gpiocount.asm, line 300, on FTP site
[1]) into x2:

// GPIO pin lookup table

pin_22: .word 8 // pin22 ‑ LKM U

do something else – that is, to change
the mode of the device – you need to in-
terrupt the kernel and make it tell the
current subroutine that it’s finished and
should stop. That involves the GPIO pin
17 single pole, single throw, normally
open switch and lkm_gpio.c to watch
GPIO pin 17. Note that pin 17 is nor-
mally at 3.3V. When the switch is
pressed, pin 17 goes low and then high
again when the switch is released. Me-
chanical switches don’t produce a clean
on-off state. They are actually quite
noisy and can produce many spikes that
can confuse the kernel (Figure 6).

A noisy switch can be dealt with in one
of two ways: Ask the kernel to take care
of it in software, or take care of it yourself
in hardware. The software method (soft-
ware debouncing) involves telling the
kernel module that it should check again
after a given number of microseconds
and make sure that was really a falling
edge pulse transition that it saw. Still, you
will see a few extraneous triggers with
software debouncing. Although the soft-
ware solution is easy, it’s kind of hard on
the kernel, because it’s already pretty
busy and you are asking it to set timers
and retest. The hardware method (hard-
ware debouncing) involves adding hyster-
esis and a slight delay to the switch. The
program lkm_gpio.c can be compiled both
ways, so just uncomment line 16,

// #define __HW__DEBOUNCE__ //

if you want add the extra components
necessary for hardware debouncing to
the switch (Figure 7). The device works
fine with either software or hardware de-
bouncing, so you don’t need to deal with

Figure 4: The oscilloscope trace indicates the wave-
forms produced by gpiomux: yellow = GPIO pin 18,
purple = pin 23, blue = pin 24, and green = pin 25.

Figure 5: Flowchart for the
writeDigit(digit, pattern)
subroutine.

Figure 6: Switch noise – a single press of the switch
produces 300ms of noise before settling into the 0
state.

62 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

ARM64 Assembly and GPIOMAKERSPACE

 will notify us of interrupts by U

 bringing this pin low

 .word 6

 .word 22

The first element of the lookup table is
the offset of the function select register
that controls GPIO pin 22. The function
select registers start at the GPIO base
register address, so x29 plus x2 is the ad-
dress of gpfseln. The value in the lookup
table is 8 bytes, so line 145 points to gpf-
sel2, which is 8 bytes away from the
GPIO base register. The next value in the
lookup table is the bit offset in gpfsel2,
so 6 will be the value returned in w3 by
the statement in line 146.

Next, create a mask of 3 bits (0b111) in
w0 and perform a logical shift left of that
mask by w3 (which from the lookup
table is 6). The bic instruction with w1
as the destination register then clears the
3-bit mask, because 000 means input.
The value read from gpfsel2 is modified
by writing three 0 bits into the register at
bits 6, 7, and 8 before the modified data
is written back into gpfsel2.

The gpioDirectionOut section starts the
same way as gpioDirectionIn but then
writes 001 (output) into gpfsel2.

The hex_numbers table (Listing 1, line
323) contains the values you want to write
into gpclr0 for each of the 16 number
symbols. Remember, you write a 1 to
gpclr0 to set the output pin to 0, which
makes the LED segment light. I recom-
mend that you take a piece of graph paper
and lay out the 32 bits of the gpclr0 regis-
ter from left to right, with 31 as the first
column on the left and 0 as the last col-
umn on the right. Now mark the columns
with the segment letters for the GPIO pins:
An a would go in column 20, a b in col-
umn 21, a c in column 19, and so on.

As an example, take the symbol 1,
which has only segments b and c lit.
Place a 1 in column 20, a 1 in column
19, and a 0 in every other column. Next,
map each 4 bits into a number from
0000 (0) to 1111 (F), and you will have
written the number symbol in hexadeci-
mal. The value shown in hex_numbers[1]
is 0x00280000. The symbol 7 lights seg-
ments a, b, and c. Go through the same

process as before, and you should get
0x00380000. That is the value in hex_
numbers[7]. Every one of the 16 possible
values is an element of hex_numbers.

Running
See the boxout titled “Installing the
Source Code.”

On the Ubuntu 20.10 operating sys-
tem, /dev/gpiomem is owned by root:root
and marked as read/​write for root only,
so you should create a group named gpio
and assign your user to that group. Also,
change the ownership of /dev/gpiomem to
root:gpio and assign group read/​write
permissions. This change should occur
on every bootup. As a quick alternative,
you can use

sudo ./gpiocount

to run the application with root privi-
leges. (See the “Setting Permissions at

Figure 7: Schematic diagram of a circuit that performs hardware
switch debouncing.

...

142 // Set pin to input

143 gpioDirectionIn: // x29 => gpiobase, x0 => seg lookup tbl

144 ldr w2, [x0] // w2 = offset to gpfseln ‑ 1st val in tbl

145 ldr w1, [x29, x2] // w1 = contents of gpfseln

146 ldr w3, [x0, #FOUR] // w3 = offect in gpfseln ‑ 2nd val in tbl

147 mov w0, #CLEAR_MASK // w0 = mask to clear 3 bits (111)

148 lsl w0, w0, w3 // shift CLEAR_MASK into position

149 bic w1, w1, w0 // clr the 3 bits of gpfseln ‑ 000 = input

150 str w1, [x29, x2] // write it to gpfseln

151 ret

...

Listing 2: libgpio.asm (excerpt)

To begin, open a terminal on the Rasp-
berry Pi, make sure your operating sys-
tem is up to date, and install the tools
you’ll need:

$ sudo apt update

$ sudo apt upgrade

$ sudo apt install make

$ sudo apt install gcc

$ cd

Now, create a ~/Development folder and
install gpiosource.zip in the new direc-
tory:

$ mkdir Development

$ cd Development

$ mkdir lib

$ unzip gpiosource.zip

Next, open the Bash initialization file,

$ cd

$ nano .bashrc

and add the following line at the end to
set the shared library search path:

export LD_LIBRARY_PATH=~/U

Development/lib

Now, save the file and close nano,
close and reopen the terminal, and
check your work:

$ echo $LD_LIBRARY_path

/home/<username>/Development/lib

Finally, make and run the code:

$ cd ~/Development/lkm_gpio

$ make

$ cd ~/Development/gpiomux

$ make

$./gpiocount

Installing the Source Code

63LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

ARM64 Assembly and GPIO MAKERSPACE

Bootup” box to see how to set the per-
missions automatically every time you
boot up the Raspberry Pi).

Now look at the operation and instal-
lation of the loadable kernel module lkm_
gpio.c (Listing 3), which is pretty much
self-explanatory. An init() function
(line 104) configures the interrupt mech-
anism with irq_config() (line 44), and a
cleanup() function (line 112) releases the
interrupt mechanism.

The interrupt mechanism behaves
differently depending on whether __
HW__DEBOUNCE__ is defined at the top of
this program. The default behavior is to
use software debugging, but you can
change that by uncommenting line 16,
if you decide you want to add the com-
ponents necessary for hardware debug-
ging. Note that the irq_handler func-
tion, which is called when you depress
switch_0, sets pin 22 to 0.

In gpiocount.asm, before sleeping for 1s,
countUp() and countDown() invoke gpio-
ReadPin() on GPIO pin 22. Then, countUp()
and countDown() check the Z (zero) flag
and exit if Z == 1, which returns the ac-
tion to main() (in countmain.cpp) or main
(in gpiocount.asm), launching its next
subroutine and changing the program’s
mode.

When gpiocount finishes its initializa-
tion, it starts gpiomux in background
mode with:

1. �Create a new group and add yourself to it:

sudo groupadd gpio
sudo usermod ‑a ‑G gpio <your_user_name>

2. �Create file /usr/sbin/gpiopermission.sh:

sudo nano /usr/sbin/gpiopermission.sh

#/bin/bash
/usr/bin/chown root.gpio /dev/gpiomem && /usr/bin/chmod g+rw /dev/gpiomem
exit 0

3. Make gpiopermission.sh executable:

sudo chmod +x /usr/sbin/gpiopermission.sh

4. Create file /etc/systemd/system/gpiopermission.service:

[Unit]
Description=Grants rw permission to /dev/gpiomem

After=network.target

[Service]
Type=simple
ExecStart=/bin/bash /usr/sbin/gpiopermission.sh
TimeoutStartSec=0
[Install]
WantedBy=multi‑user.target

5. Reload services, generate dependencies, and enable the new service:

systemctl daemon‑reload
systemctl enable gpiopermission.service

6. Confirm that all went well:

systemctl ‑all | grep gpiopermission.service

7. Reboot:

sudo reboot

8. �Verify that dev/gpiomem belongs to root:gpio and that group gpio has read/​write
permissions:

ls ‑l dev/gpiomem
crw‑rw‑‑‑‑ 1 root gpio 240, 0 Jan 6 15:40 /dev/gpiomem

Setting Permissions at Bootup

01 �//***

02 �// @file lkm_gpio.c

03 �// @author John Schwartzman

04 �// @date 04/11/2021

05 �// @version 1.0

06 �// @brief �A loadable kernel module (LKM) that handles
interrupts

07 �// from user space.

08 �//***

09 �

10 �#include <linux/init.h>

11 �#include <linux/module.h>

12 �#include <linux/kernel.h>

13 �#include <linux/interrupt.h>

14 �#include <linux/gpio.h>

15 �

16 �// #�define __HW__DEBOUNCE__ // uncomment this line for
__HW__DEBOUNCE__

17 �

18 �static unsigned int irq_number;

19 �s�tatic unsigned int gpio_button = 17;
// switch connects to Pin 17

20 �s�tatic unsigned int pin_to_control = 22;
// Pin 22 ‑ tell user about int.

21 �

22 �//***

23 �// irq handler ‑ fired on interrupt

24 �s�tatic irqreturn_t irq_handler(int irq, void* dev_id,
struct pt_regs* regs)

25 �{

26 � unsigned long flags;

27 �

28 � // disable this hardware interrupt

29 � local_irq_save(flags);

30 �

31 � // Turn on GPIO pin 22).

32 � // �That's how the user space program determines that it

33 � // has been interrupted. It reads pin 22

34 � // �It reads pin 22 and if it gets a 0 then it knows it
should finish.

35 � gpio_set_value(pin_to_control, 0);

36 �

37 � // restore this hardware interrupt

38 � local_irq_restore(flags);

39 � return IRQ_HANDLED;

40 �}

41 �

42 �//***

Listing 3: lkm_gpio.c (excerpt)

64 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

ARM64 Assembly and GPIOMAKERSPACE

traps and handles a Ctrl+C from the
keyboard.

Components
Any general-purpose NPN transistor
(2N4400, 2N2222A, BC548, etc.) will
work. Likewise, any four-digit, common
anode, seven-segment display will be fine.
Because this project uses AArch64 assem-
bly language, your Raspberry Pi must be
running a 64-bit distro like Ubuntu 20.10.

Have fun! nnn

system("./gpiomux &")

When gpiocount finishes its assigned
work or if it detects a Ctrl+C, it finishes
counting, cleans up, and stops gpiomux
with the hang-up signal:

signal("killall ‑HUP gpiomux")

To build lkm_gpio, type make at the com-
mand prompt in the lkm_gpio directory.
The makefile auto-loads lkm_gpio. At the
command line, type

lsmod | grep lkm_gpio

to see whether lkm_gpio has been in-
stalled. You might have to reboot Linux
to get it running the first time.

Next, go to the gpiomux directory
and type make at the command prompt
to build gpiolib, gpiocount, and gpio-
mux. The shared object file gpiolib is
used by both gpiocount and gpiomux.
You can type make to build the stan-
dard version, or

make OPT=__MAIN__

to build without countmain.cpp and
muxmain.cpp. You can also type

make debug

(with or without OPT=__MAIN__), so you
can execute the programs in the GNU
project debugger, gdb.

To start the action, launch the gpio-
count executable (with ./gpiocount at the
command line), which will start up the
gpiomux executable and stop it when gpi-
ocount finishes.

Clicking switch_0 changes the mode
from countUp(2) to countUp(7) to coun-
tUp(10) to countUp(16) to countDown(16)
to countDown(10) to countDown(7) to
countDown(2). On the last click of
switch_1, gpiocount cleans up and ter-
minates because it has no more work
to do and signals gpiomux with a SI-
GHUP to tell it to clean up and termi-
nate. Because gpiocount must clean up
and tell gpiomux to clean up, it also

43 �// configure interrupts

44 �static void irq_config(void)

45 �{

46 �#ifndef __HW__DEBOUNCE__

47 � int retval;

48 �#endif

49 �

50 � gpio_request(gpio_button, "gpio_button");

51 � gpio_direction_input(gpio_button);

52 � gpio_direction_output(pin_to_control, 1);

53 �

54 � // I�f you don't debounce the switch with hardware,

55 � // uncomment g�pio_set_debounce(), and the kernel

56 � // module will do it for you in software.

57 � irq_number = gpio_to_irq(gpio_button);

58 � p�rintk(KERN_INFO "lkm_gpio: gpio_button is currently
%d\n", gpio_get_value(gpio_button));

59 � p�rintk(KERN_INFO "lkm_gpio: Mapped irq number to %d\n",
irq_number);

60 �

61 � #ifndef __HW__DEBOUNCE__

62 � // Use IRQF_TRIGGER_FALLING if the switch is

63 � // connected directly to gpio_button.

64 � // I�f the switch is debounced using an Schmitt

65 � // trigger inverter chip then use IRQF_TRIGGER_RISING.

66 � r�etval = gpio_set_debounce(gpio_button, 600);
// recheck after 600µs

67 � if (retval != 0)

68 � {

69 � printk(�KERN_WARNING "lkm_gpio: gpio_set_debounce()
returned %d\n", retval);

70 � }

71 � if (request_irq(irq_number,

72 � (irq_handler_t)irq_handler,

73 � I�RQF_TRIGGER_FALLING,

// falling if software debouncing

74 � "R�PI_gpio_handler",

// identify owner in /proc/interrupts

75 � NULL))

76 � {

77 � printk(KERN_INFO "lkm_gpio: Irq request failure");

78 � }

79 � #else // we're doing our debouncing in hardware

80 � // Use IRQF_TRIGGER_FALLING if the switch is

81 � // connected directly to gpio_button.

82 � // If the switch is debounced using an Schmitt trigger

83 � // inverter chip then use IRQF_TRIGGER_RISING.

84 � if (request_irq(irq_number,

85 � (irq_handler_t)irq_handler,

86 � I�RQF_TRIGGER_RISING, // �rising if debounced

switch

87 � "R�PI_gpio_handler", // �identify owner in /proc/

interrupts

88 � NULL))

89 � {

90 � printk(KERN_INFO "lkm_gpio: Irq request failure");

91 � }

92 � #endif

93 �}

94 �...

Listing 3: lkm_gpio.c (excerpt continued)

[1]	� Code for this article:
ftp://​ftp.​linux‑magazine.​com/​pub/​
listings/​linux‑magazine.​com/​247/

Info

John Schwartzman has
enjoyed an active ca-
reer as an engineer,
college professor, and
consultant to business
and government. He
can be reached at john@fortesystem.​com.

Author

65LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

ARM64 Assembly and GPIO MAKERSPACE

ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/247/

manager by Wayland, and before that
the switch from the SysVinit to systemd,
and before that the integration of the
PulseAudio sound server.

PulseAudio
The advanced Linux sound architecture
(ALSA) provides drivers in the kernel to
integrate sound cards and takes care of
configuration. However, ALSA reaches
its limits on modern systems; for exam-
ple, only one application can output
sound at any given time. For example,
while a YouTube video plays in the
browser, a messenger program cannot
play a notification sound. Also, Blue-
tooth devices can only be connected in
a roundabout way.

As an intermediate layer, many distri-
butions now use PulseAudio [2], and the
latest version of Raspberry Pi OS is one
of them. Right-clicking on the volume
slider icon in the panel brings up a dia-
log that lets you select the current output
and input devices (Figure 1). For exam-
ple, if you switch from AV Jack to HDMI,
the Raspberry Pi will no longer output
sounds through the jack plug, but
through the connected TV, and switching
between audio devices no longer inter-
rupts playback.

The Device Profiles menu item can be
used specifically to disable individual
audio devices or, especially for USB or

I n practice, Raspberry Pi OS fulfills
many of the functions supplied by
other operating systems and the
popular Linux distributions; how-

ever, a few deficiencies exist. In particu-
lar, the configuration of printers and
sound devices has never been trivial –
until now. In the latest update [1], Rasp-
berry Pi OS was extended to include Pul-

seAudio and a bet-
ter print manager.
Bluetooth speakers
can now be inte-
grated more easily,
and sounds from
multiple sources
can be output si-
multaneously.

Linux is a his-
torically evolved
system that
changes continu-
ously. New ver-
sions fix bugs or
add features but
do not bring about
fundamental
change. However,
every few years,
more profound in-
novations occur,
such as the re-
placement of the
X.Org display Le

ad
 Im

ag
e

©
 p

ik
o

72
, 1

23
R

F.
co

m

MakerSpace
Raspberry Pi OS now comes with Pulse-
Audio and a graphical printer manager

Big Presents
The Raspberry Pi Foundation regularly adds new features to
the official operating system, Raspberry Pi OS. The December
2020 update added the PulseAudio sound server and a print
manager. By Christoph Langner

Figure 1: PulseAudio not only plays sound from
multiple applications, but also facilitates the integra-
tion of Bluetooth speakers and headphones.

66 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Pi OS 2020-12-02

Bluetooth audio devices (see the “Cou-
pling” box), configure a device and select
a different profile. For a Bluetooth head-
set, for example, you can choose between
headset profile (HSP) and advanced
audio distribution profile (A2DP). HSP
lets you use the microphone and the
headphones at the same time, but with
far inferior audio quality compared with
A2DP, whereas A2DP completely disables
the microphone. PulseAudio is configured
in such a way that the system automati-
cally selects HSP as soon as you select a
Bluetooth headset as the input device. If
you use the headset as an output device,
PulseAudio switches to A2DP.

Printer
Until now, Raspberry Pi OS also lacked a
user-friendly tool for setting up a printer.
Most Linux distributions include the
CUPS [3] printing service for this pur-
pose, as well as configuration tools pro-
vided by the desktop environment. Al-
ternatively, CUPS – and therefore a
printer connected to the system – can be
set up from the service’s web front end.
CUPS has always been in the Raspberry
Pi OS package sources, but now the ser-
vice forms a fixed part of the system to-
gether with a graphical front end.

To configure a printer, go to Settings |
Print Settings. In this dialog, you can set
up new printers, delete printers that are
no longer in use, set a device as the de-
fault printer, or take a look at the printer
maintenance queue. When adding a
printer, CUPS tries to find the printer
(Figure 3) and is usually very successful

with network-capable printers. CUPS
should also recognize most USB printers
reliably. However, multifunction devices
with integrated scanners often require
drivers from the manufacturer – if the
manufacturer supports Linux at all.

With an older laser printer from Sam-
sung, mounting worked without any
problems. A list of all printers and multi-
function devices supported by CUPS can
be found on Openprinting.org [4]. If a
function or a certain setting is missing in
the configuration interface, you can
reach the CUPS service’s web front end
by calling http://​localhost:631 in the
browser. For administrative activities,
the web front end requires you to enter
access credentials. The username (usu-
ally pi) and password matches the data
you use when logging in to the system.

Chromium
Chromium browser updates always
mean a bit more work on Raspberry Pi
OS than just pushing the latest build of
the software into the package sources.
The developers have to make sure, espe-
cially with hardware acceleration, that
the web browser still harmonizes with
the graphics hardware of the Raspberry
Pi. Without proper hardware support,
many modern web services would be re-
stricted in how they work, especially
video platforms or videoconferencing so-
lutions. At the time of writing, the ver-
sion of the preinstalled Chromium
browser sits at 86.0.4240.197.

The computing power of a Raspberry
Pi 4 is not yet sufficient to play YouTube
videos in Full HD in the browser without
dropping some frames. Only the C64-
style keyboard computer, the Raspberry
Pi 400, offers enough power. It plays
most YouTube videos so efficiently at
1080p resolution (with its processor
clocked at 1.8GHz – vs. 1.5GHz on the
Raspberry Pi 4) that hardly any frames
are lost. Videoconferencing solutions
such as Jitsi and Google Meet also bene-
fit from the latest optimizations. In this
test, both services worked without prob-
lems, but sharing the desktop or individ-
ual application windows only worked
under Jitsi (Figure 4).

Some maintenance has also been done
to the Raspberry Pi configuration tool.
On a device with a single status LED

Figure 2: When adding a
Bluetooth speaker, you have to
wait until the system identifies
the new device (speaker icon in
front of the name).

The revamped Raspberry Pi OS now
connects far more easily with Blue-
tooth audio devices. In principle, you
just have to left-click on the Bluetooth
icon in the panel and select Add Device
to call the wizard for adding new de-
vices. As soon as you put the device
into pairing mode, it appears in the dia-
log. However, before you pair it by
clicking Pair, you do need to wait until
the system has identified the headset
or speaker as an audio device. This is
signaled by the change from the yellow
question mark icon to the speaker icon
(Figure 2). If you close the dialog too
quickly, the system will connect to it,
but the device will not show up in the
PulseAudio Manager.

Coupling

Figure 3: Printers used to be configured by the less intuitive web front
end of the CUPS print service. The December update now includes the
graphical printer manager shown here.

67LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Pi OS 2020-12-02 MAKERSPACEMAKERSPACE

and tools (e.g., Raspberry Pi Configura-
tion and Appearance Settings under Pref-
erences) were optimized for Orca. Addi-
tionally, switching to PulseAudio makes
it easier to redirect the audio output to
Bluetooth headsets.

However, if users want to set up the
system themselves, they have faced a
problem up to now: Orca is not in-
cluded in the standard system and has
to be installed retroactively, which is
more or less impossible for a user with
visual impairment and without a
screen reader. In the current version of
Raspberry Pi OS, the installation can
be triggered after starting the system
by pressing Ctrl+Alt+Space. The as-
sistant announces the procedure by
voice output, installs Orca, and then
reloads the graphical interface with the
voice assistant.

Pressing Ctrl+Caps Lock+Space
opens the program settings. For example,
the reading speed can be adjusted, or the
Orca modifier key (Caps Lock in the de-
fault configuration) can be changed. To-
gether with magnification, which you
can enable (after installing the magnifier
program through Recommended Soft-
ware) by clicking on the magnifier icon
in the panel, the Raspberry Pi OS system
is accessible to users who rely entirely
on hearing (Figure 6).

Conclusions
Raspberry Pi Foundation developers are
working to add more and more refine-
ments. The integration of PulseAudio
and a CUPS front end makes the use of
Bluetooth speakers or headphones and
configuring printers far easier. Users
with special needs are no longer left be-
hind: The system can now be set up and
configured independently by users who
rely entirely on hearing, without requir-
ing help for the first steps. nnn

(e.g., the Pi Zero or the new Raspberry
Pi 400), you can now set whether the
LED flickers to indicate read/​write ac-
cess to the memory card or is perma-
nently lit to indicate the operating status.
If the Raspberry Pi is in a case with a fan
connected to the GPIO, the system now

supports simple fan control by entering
the GPIO pin in the Performance tab, as
well as the temperature above which the
fan should switch on (Figure 5).

Accessibility
For users who rely entirely on hearing,

the Raspberry Pi
Foundation in
early 2020 imple-
mented the Orca
screen reader,
which is being de-
veloped as part of
the Gnome desk-
top environment
[5]. The program
reads aloud the
content of applica-
tion interfaces,
web pages, and
documents, so the
graphical desktop
is no longer an ob-
stacle. In collabo-
ration with the
Orca project, bugs
were removed
from the program,

Figure 4: Videoconferencing solutions such as Jitsi
and Google Meet benefit from optimizations to the
graphics driver.

Figure 5: In the Raspberry Pi configuration tool, the Power LED of the
Raspberry Pi 400 can now be configured, and a temperature threshold
for fans connected over GPIO can be defined.

[1]	� Pi OS 2020-12-02: https://​www.​
raspberrypi.​org/​blog/​new‑​raspberry‑​
pi‑​os‑​release‑​december‑​2020

[2]	� PulseAudio: https://​www.​freedesktop.​
org/​wiki/​Software/​PulseAudio/

[3]	� CUPS: https://​www.​cups.​org

[4]	� Printers supported by CUPS: https://​
www.​openprinting.​org/​printers

[5]	� Orca: https://​help.​gnome.​org/​users/​
orca/​stable

Info

68 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Pi OS 2020-12-02MAKERSPACE

https://www.raspberrypi.org/blog/new-raspberry-pi-os-release-december-2020
https://www.raspberrypi.org/blog/new-raspberry-pi-os-release-december-2020
https://www.raspberrypi.org/blog/new-raspberry-pi-os-release-december-2020
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.cups.org
https://www.openprinting.org/printers
https://www.openprinting.org/printers
https://help.gnome.org/users/orca/stable
https://help.gnome.org/users/orca/stable

Figure 6: Users who rely entirely on hearing can now install the Orca screen reader via a shortcut. Together
with the screen magnifier, the system is therefore a good choice for users with special needs.

Pi OS 2020-12-02 MAKERSPACE

 ‑‑url="https://developer.gnome.org" U

 ‑‑checkbox=U

 "I read it...and I'm good to go"

For dialogs with OK and Cancel buttons,
Zenity returns a 0 to confirm and a 1 to
cancel. Zenity will not process JavaS-
cript on a web page.

Simple dialogs like the info, warning
and error dialogs will only have an OK
button. All the other dialogs will have
Cancel buttons, as well. The button
text can be changed with the ‑‑ok‑la‑
bel and the ‑‑cancel‑label options.
More buttons can be added with the
‑‑extra‑button option.

zenity ‑‑info ‑‑text="Some text" U

 ‑‑title="My Title"

Information from command-line tools
and utilities can be passed to Zenity.
For example, the instantaneous CPU
idle time from the top utility can be
parsed and passed to a Zenity dialog
(Figure 1):

zenity ‑‑info U

 ‑‑text=$(top ‑n 1 | U

 grep %Cpu | U

 awk '{print $8}') U

 ‑‑title="CPU Idle Time"

Text font and size can be modified in
message dialogs in Pango markup lan-
guage syntax [2]. Pango is similar to
HTML, and the … set of
tags is typically used to encode font and
color definitions (Figure 2):

zenity ‑‑warning ‑‑text=U

 ' U

 HIGH Temperature' U

 ‑‑title="HDD Check"

For scripting applications that need to
pass more information to users,
text‑info dialogs can pass text files and
URL links (Figure 3):

zenity ‑‑text‑info U

 ‑‑title="Background Reading" U

 ‑‑html U

Z enity is a command-line GUI
creator that has been around
since 2012 and is pre-installed
on most versions of Linux, in-

cluding Raspberry Pis. Zenity isn’t de-
signed to be a high-level GUI develop-
ment tool, but if you just need some
basic scripting with dialogs, then Zenity
might be a perfect fit.

I was amazed that in one line of Bash
code I was able to show:
•	 stats in a message dialog
•	 a web page in a dialog
•	 CSV data or SQL queries in a list dialog
After looking at slightly more complex
applications, I found I was able to cre-
ate:
•	 a progress bar with dynamic values

(about seven lines)
•	 a form to insert user data into an SQL

database (about eight lines)
•	 a four-button dialog to control a Rasp

PI Rover (~20 lines)
In this article, I introduce Zenity with
some examples.

Getting Started
The Zenity [1] command-line utility is sup-
ported on Linux, macOS, and Windows.
Zenity can display calendar, color selector,
file selector, form, list, message, notifica-
tion, progress, scale, and text dialogs.

The Zenity message dialog can be
used like a Bash echo statement; for ex-
ample, to show an information mes-
sage, enter: Le

ad
 Im

ag
e

©
 M

ar
ti

n
 C

ap
ek

, 1
23

R
F.

co
m

MakerSpace
Create GUI dialogs in one line of code

Finding a Little Zen
The Zenity command-line utility lets you create simple dialog boxes with your own data or
with the output of utilities and applications. By Pete Metcalfe

Figure 1: Message dialog with
CPU idle time.

Figure 2: Message dialog with
font changes.

70 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Zenity Dialogs

Dynamic Values
A Zenity progress dialog can show dy-
namic updates with scripts that use sub-
shells. A subshell is configured with pa-
rentheses. Step executions within the
subshell are paused by sleep statements.

The following code shows a three-step
example of a subshell with a Zenity

progress dialog
(Figure 4):

(

echo "33"; echo "# 1/3 done" ; sleep 5;

echo "66"; echo "# 2/3 done" ; sleep 5;

echo "100";echo "# Finished") | U

 zenity ‑‑progress ‑‑title="3 step test"

When a step outputs a value, the
progress bar updates. The text on the
progress dialog is changed by output-
ting a text string that starts with a #
character.

Listing 1 and Figure 5 show an exam-
ple of current seconds with the progress
bar rescaled from 0 to 60.

The Bash while statement lets you
show dynamic values continuously
until the Cancel button is pressed.

CSV Data in List Dialogs
For simple text files and known datas-
ets, the list dialog works quite well.
The dialog expects the data to be se-
quential. The following code creates a
two-column example (Figure 6) with
inline data:

zenity ‑‑list U

 ‑‑title="2 Column Example" U

 ‑‑column="Month" ‑‑column="Sales" U

 Jan 100 Feb 95 Mar 77 Apr 110 May 111

To pass a data file (CSV or text) into Ze-
nity, the text needs to be reformatted.
The tr command can replace CSV field
separators like commas with a newline
(\n) character (Listing 2).

The output can then be passed to a Ze-
nity list with column headings (Figure 7):

cat pidata.csv | tr ',' '\n' | U

 zenity ‑‑list ‑‑title="Pi Data" U

 ‑‑column="Time" ‑‑column="Temp" U

 ‑‑column="Pump"

Once you have some Zenity and Bash
basics down, you can start doing more
advanced operations, such as:

awk ‑F "\"*,\"*" '{print $3 "\n" $1}' U

 pidata.csv | zenity ‑‑list U

 ‑‑column="field3" ‑‑column="field1"

This one-line example uses Awk to
parse specific data (fields 1 and 3) in
the CSV file.

SQL Data in List Dialogs
SQL command-line utilities can output
SQL queries to a Zenity list dialog. Like
the earlier CSV examples, the SQL output

Figure 3: Web page within a dialog.

Figure 4: A three-step progress
dialog.

Figure 5: Continuous updates in
a progress dialog.

Figure 6: List dialog showing
inline data.

Figure 7: List dialog showing CSV
data.

#!/bin/bash

show_seconds.sh ‑ progress dialog to show seconds

echo "Press [CTRL+C] to stop..."

(

 while :; do

 echo "# $(date +'%S')"

 # Scale 0‑60 to 0‑100

 echo "$(date +'%S')*100/60" | bc

 sleep 1

 done

) | zenity ‑‑progress ‑‑title="Show Time in Seconds"

Listing 1: Scaled Progress Bar

$ cat pidata.csv

10:00,12,running

10:20,14,stopped

10:30,13,running

$ cat pidata.csv | tr ',' '\n'

10:00

12

running

10:20

14

stopped

10:30

13

running

Listing 2: Reformatting Data

71LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Zenity Dialogs MAKERSPACEMAKERSPACE

The formatting can be done by setting
the Zenity ‑‑separator option to a
comma, defined with single quotes
within double quotes (line 2).

This example is quite basic, so the next
step would be to add data validation.

Final Comments
For simple dialogs, Zenity works amaz-
ingly well. I found that as the require-
ments started to get more complicated,
a Python solution appeared to be
cleaner and simpler. I was able to con-
trol a Raspberry Pi rover in about 20
lines of Bash and Zenity code, but it
only took 15 lines of Python and
Tkinter code.

There is a Python library (Zenity 2.0)
that emulates Zenity, so if you’re
feeling comfortable with the Zenity
dialogs and you don’t need complex
dialogs, this might be something to
consider.

If you are looking for a more complete
command-line GUI tool, try YAD [3]. nnn

needs to reformatted to a sequential list.
The SQL output from the command-line
tools will vary by database; for example,
MySQL uses tabs between the fields,
whereas SQLite uses a vertical bar (|).

For my testing, I used an SQLite3 data-
base (someuser.db) with a table (users) of
fields containing first and last names, age,
and job. To output a SELECT query, I entered:

$ sqlite3 someuser.db "select fname,U

 lname,age,job from users"

Brooke|Metcalfe|18|Student

Leah|Metcalfe|18|Co‑op

Pete|Metcalfe|100|Old dude

...

Willy|Coyote|99|Evil genius

The SQLite query output can be modi-
fied with the tr command and shown in
a Zenity list dialog (Figure 8):

$ sqlite3 someuser.db "select fname,U

 lname,age,job from users" U

 | tr '|' '\n' | zenity ‑‑list U

 ‑‑title="My Database" U

 ‑‑column="first name" U

 ‑‑column="last name" ‑‑column=age U

 ‑‑column=job

The Zenity list dialog supports a num-
ber of useful options, such as radio but-
tons and checkboxes. The lists are edit-
able, and the selected fields or rows can
be used in further scripting.

Insert SQL Data in a Zenity
Form
Zenity forms allows for the creation of
basic data entry dialogs. In about eight
lines of Bash code (Listing 3), I created a
Zenity form (Figure 9) I can use to insert
data into my SQLite users table.

The OK button will pass the user-en-
tered data as a string, whereas the Can-
cel button will not pass any data. An if
statement checks to see whether any
data has been entered.

The SQL INSERT statement needs VALUES
to be in the format

("value1","value2,"value3,"value4")

Figure 8: List dialog showing SQL
query. Figure 9: SQL input form.

01 �#!/bin/bash

02 �row=$(�zenity ‑‑forms ‑‑title="Create user" ‑‑text="Add new user" ‑‑add‑entry="First Name" ‑‑add‑entry="Last Name"

‑‑add‑entry="Age" ‑‑add‑entry="Job" ‑‑separator="','")

03 �if [[‑n $row]] # Some data found

04 �then

05 � cmd="sqlite3 someuser.db \"INSERT INTO users (Fname,Lname,Age,Job) VALUES ('$row')\""

06 � eval $cmd

07 � echo "Added data: '$row'"

08 �fi

Listing 3: SQL Input Form

You can investigate more neat projects
by Pete Metcalfe and his daughters at
https://​funprojects.​blog.

Author

[1]	� Zenity documentation:
https://​help.​gnome.​org/​users/​zenity/​3.​
32/​index.​html

[2]	� Pango markup language:
https://​developer.​gnome.​org/​pygtk/​
stable/​pango‑markup‑language.​html

[3]	� YAD: https://​sourceforge.​net/​projects/​
yad‑dialog/

Info

nnn

72 JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Zenity DialogsMAKERSPACE

https://funprojects.blog
https://help.gnome.org/users/zenity/3.32/index.html
https://help.gnome.org/users/zenity/3.32/index.html
https://developer.gnome.org/pygtk/stable/pango-markup-language.html
https://developer.gnome.org/pygtk/stable/pango-markup-language.html
https://sourceforge.net/projects/yad-dialog/
https://sourceforge.net/projects/yad-dialog/

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 73

LINUX VOICEINTRODUCTION

First there was Ubuntu, and then the user base began to
innovate, rolling out alternatives to highlight favorite
desktops and tools. Some of the leading flavors are now
supported by Canonical and the Ubuntu project, including
Kubuntu, Lubuntu, Xubuntu, and Ubuntu Studio. But the
user base is still innovating. This month you’ll hear from a
teacher who spun up his own version of Ubuntu Budgie to
include a collection of education tools (called, you
guessed it, EdUBudgie).

Also in this issue, we introduce
you to Kit Scenarist, a free tool
for creating and formatting
screenplays, and we show
you how to organize your
thoughts and notes with
the expressive Obsidian
knowledge base.

Doghouse – Code Longevity	 74
Jon “maddog” Hall
Maddog discusses the long history of text
editors and the RAND message handling
system.

EdUBudgie	 75
Adam Dix
EdUBudgie Linux is an Ubuntu clone created
by a teacher and aimed directly at the
education market.

Kit Scenarist	 78
Sirko Kemter
Creative writers take note! Kit Scenarist
is a free application designed to simplify
the process of writing a screenplay.

FOSSPicks	 82
Graham Morrison
This month Graham looks at SonoBus,
NewsFlash, Kinto.sh, RetroShare, Emilia
Pinball, and much more!

Tutorial – Obsidian	 88
Marco Fioretti
Obsidian helps you work more effectively
by giving you a tool to record, connect,
and catalog your ideas and notes.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m

R ecently I was discussing with friends how long certain
pieces of code have lasted … perhaps not exactly the
same piece of code, but a recognizable version of the

original that has continued to evolve.
One example of this is the simple text editor.
When I started programming, I used 80-column punched

cards and the Fortran language. If you made a mistake, you
could stick the bad card into a particular slot on the card punch,
duplicate the correct part of the card, and then continue typing to
complete the statement. It was horrible, but it was all we had.

The first editor I ever used was on a small mini-computer
called the PDP-8. The PDP-8 had 4,000 12-bit words of mem-
ory and no storage other than paper tape. The computer had
to hold all of the text editor and all of the source code of your
program in memory at the same time. You had a paper-driven
terminal called the ASR-33 Teletype, and the rolls of paper
were expensive, so the text editor tended to print as little as
possible. It was a modal editor, which meant that you were ei-
ther inputting part of your program in input mode or giving ed-
iting commands to the program in command mode.

It was also what we called a “dot editor,” since an invisible
dot controlled where you were inputting data or from where
the command was being given.

As an example, a command to print from the beginning of
the line to where the dot was would be 0t. and from where the
dot was to the end of the line would be .t$. The command 0t$
would type the entire line.

You could also move the dot without the editor typing any
output, and there were dozens of other commands for deleting
characters, lines, and even blocks of characters.

This simple dot editor was called e. As more commands were
added and it moved to early Unix, it became known as ed. Today
this editor, like a lot of other Unix commands, might be called
“user-unfriendly,” but to people used to cards, it was great.

As memory sizes in computers grew, both the editor pro-
gram and the text that it was manipulating could get larger.
The editor’s name was eventually changed to em, and then it
was introduced to Bill Joy at the University of California,
Berkeley. He improved it, and it became ex, which could be
used for both hard copy terminals and “those new-fangled
character-cell video terminals” in command-line mode.

Eventually Bill Joy wrote a full-screen text editor called vi that
still had the modal commands of ex, and vi became one of the
mainstream Unix editors for a long time.

The other mainstream editor was, of course, emacs, and these
two editors created one of the longest running cyberwars of all
time – the arguments of which are best left to another place
and time over beer and pizza.

Eventually the functionality of vi was cloned into vim, allow-
ing me to use (more or less) the same text editor for close to
50 years.

Yes, I know that somewhere emacs people are screaming, but I
like vim.

Another fine example of a long-lived program is the RAND
MH message handling system.

MH was really a series of command-line tools that created a
front end for importing and reading email in the early days of
Unix. It used the filesystem to hold all the email, so its “data-
base” was very readable and could be manipulated with other
Unix commands. I loved using MH.

Eventually email started including non-character data such
as graphics and music. Since Unix at that time used 7-bit
ASCII characters, an extension was needed to be able to en-
code the binary data into 7-bit data bytes, and this was called
MIME. MH was then extended to handle MIME, and cat pic-
tures began to flourish. On the command line, mh became nmh
(new MH).

Eventually windowing came to Unix in the form of the X
Window System, and a sort of “graphical shell” was made
over nmh called exmh. Later still, Motif (another set of graphi-
cal widgets) was added to become another extension of the
venerable MH system.

Since MH was first released in 1978 (and I first used it in
1983), it has gone through many incremental upgrades with
the last release of the base nmh being in 2018.

Do not think of MH as dead, however, for the sources are still
there for people to pick it up and keep improving.

This is the point of this entire article: Free and Open Source
invites extensions of good functionality to meet changing
needs, and often the code that you think may be dead is only
resting somewhere waiting for the next person to look at it
and update it again. nnn

MADDOG’S
DOGHOUSE
As two examples of how open source code can evolve, maddog
discusses the long history of text editors and of the RAND
message handling system. BY JON “MADDOG” HALL

Jon “maddog” Hall is an author,
educator, computer scientist,
and free software pioneer
who has been a passionate
advocate for Linux since 1994
when he first met Linus Torvalds
and facilitated the port of
Linux to a 64-bit system. He
serves as president of Linux
International®.The Long Life of Open Source Code

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM74

LINUX VOICE DOGHOUSE – CODE LONGEVITY

Installation
As previously mentioned, EdUBudgie Linux is an
Ubuntu Budgie clone, and it uses the typical
Ubiquity installer with a few small changes.

The most important change is the difference
between the Normal and Minimal installations.
Typically, a Normal Budgie install would include
all programs, and that is still true of EdUBudgie.
However, the EdUBudgie Minimal installation op-
tion will include many education-oriented pro-
grams alongside the typical Budgie accoutre-
ment. The Normal installation option is typically
recommended.

While the installation ISO occupies a rather in-
credible 5.8GB of space, the complete installation
falls within 20GB. This allows EdUBudgie Linux to
fit within a 32GB drive with a bit of extra space for
files, so that it may be installed onto out-of-sup-
port Chromebooks without having to rely entirely
on cloud storage options (see the “System Re-
quirements” box). Many Chromebooks (especially
older models) have replaceable solid state drives,
and this upgrade may be needed to fit an EdUBud-
gie Linux onto some Chromebook models.

A few other factors should be considered
when deciding whether EdUBudgie is a suitable
replacement for Chrome OS on a school’s exist-
ing devices. While I tailored this distribution with
Chromebook conversions in mind, not all
Chromebooks are the same, and the installation
techniques needed may vary from one manu-
facturer or model to another. Given my limited
resources in developing this distribution, you
will need to test it on your school’s specific de-
vices, and you may need to research how best
to install it on them.

I developed this project with the aging Acer
C720P in mind, as it is a commonly used Chrome-
book in schools. After changing from a 16GB disk
to a 32GB disk, installation was straightforward.
Specific and detailed instructions can be found
from a number of sources, but essentially, for the
C720P model it required removing the 13 screws
on the bottom of the device to access and replace

E dUBudgie Linux [1] is a distribution based
on Ubuntu Budgie [2] but specifically tai-
lored for use in high schools. I am an Eng-

lish teacher, and I put this project together with
high school education in mind – although many
first and second year university students may also
find it suitable.

I started with the standard Budgie offering and
added or removed packages based on their appli-
cability to high school education. The education-fo-
cused IT market is a crowded one, and in deciding
how to build and market this distribution I carefully
considered package selection, initial setup, post-in-
stall system administration, the learning curve
needed, and finally performance and longevity.
With all that in mind, I did make some compro-
mises in the build that I will discuss shortly.

I have intended EdUBudgie Linux to be as sim-
ple to learn as possible and not a distracting or
overly complex distribution. My goal was to offer
an operating system that could be used out of the
box without needing to use the command line for
setup, while still including all of the programs and
pre-configured settings needed by a typical high
school student or teacher.

Of course, EdUBudgie Linux should be used as
part of a school or school district’s carefully
thought out, multi-generational IT plan. But by in-
cluding EdUBudgie Linux in that plan, a school can
expect to benefit from a free and simple alterna-
tive to Windows or Chrome OS. EdUBudgie Linux
can be installed on new or old devices (including
most x86-based Chromebooks) and can help
solve many common problems plaguing students,
teachers, and IT administrators.

While many readers will argue that any IT team
with Ubuntu experience could put this package to-
gether, this distribution aims to take some of the
guesswork out of the equation. The idea is not to
limit the freedom that Linux users love, but rather to
avoid choice paralysis. EdUBudgie Linux should also
be suitable for Linux novices, which will be especially
helpful in the many schools worldwide that have re-
lied upon the Windows ecosystem for years.

EdUBudgie Linux is an Ubuntu clone created by a teacher and
aimed directly at the education market. BY ADAM DIX

New Linux distro for high school education

A Clone on a Mission

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 75

LINUX VOICEEDUBUDGIE

the 16GB SSD with a 32GB one, as well as access-
ing and removing the write protect screw that
serves as a security feature on some Chrome-
book models. After completing these hardware
changes, it was a matter of enabling developer
mode, the developer BIOS (SeaBIOS), and USB
boot so that EdUBudgie Linux could be perma-
nently installed [3]. To be clear, the method for
doing this will vary based on the specific device
you’re using, and that will void any remaining de-
vice warranty from Google.

My hope is that schools with budget concerns
may be able to extract a few more precious years
out of the devices they have already purchased. If
well-planned, this can fall in line with a school’s
overall technology plan. An administration may
choose to utilize tablets or iPads through say, 6th
grade, then transition students to supported
Chromebooks, and finally use older Chromebooks
and laptops with EdUBudgie installed for students

from perhaps 9th grade on up. This segmentation
makes sense in terms of a student’s development.
Younger students are able to easily produce qual-
ity work with simple devices, while they are less
likely to divert their time away from work toward
games. Middle school-aged students would bene-
fit greatly from becoming accustomed to using
full keyboards on a minimal OS like Chrome OS.
Finally, high school-aged students need a full suite
of programs to prepare them for university.

Included Programs
Aside from the desktop environment, package se-
lection is the major differentiating factor between
EdUBudgie Linux and any other Ubuntu clone or
education-focused operating system in general.
More than anything else, this is what will make or
break the distribution, and therefore I have put
much thought into package selection.

Quite likely the first thing that comes to mind
when choosing an operating system for educa-
tion is office software, and the particular needs
will vary greatly from school to school. For this
reason, EdUBudgie includes LibreOffice and
WPS Office and can of course be used with on-
line office suites such as Google Workplace and
Microsoft 365.

LibreOffice has some unique features that
teachers and students may want to use, such as
the LibreOffice Math component. However, WPS
Office is often perceived as more familiar and in-
viting, especially when migrating from Microsoft,
the de facto standard for office programs. Addi-
tional office-like or office-adjacent programs in-
cluded are FocusWriter (Figure 1), Dia (Figure 2),
Scribus, and MindMaster.

The default browser is Chrome – we can
pause here for gasps, curses, and cleaning up
spilt or spit coffee – but for good reason. I did
not intend EdUBudgie to be a completely FOSS
offering at present, and simply put, it cannot be.
Any time teachers or students spend installing
extensions, or researching and learning work-
arounds on Chromium or Firefox, is time that
could be spent on education. Other browsers

System Requirements

Minimum System Requirements
n �1.4GHz dual-core Nehalem microarchi-

tecture 64-bit processor
n �2GB system memory
n �32GB drive
n �Intel-integrated graphics

Recommended System for Average
Performance
n �2.4GHz dual-core or 2.0GHz quad-core

Sandy Bridge microarchitecture 64-bit
processor or newer

n �4GB system memory or greater
n �64GB drive or larger
n �AMD Radeon dedicated graphics of at

least R7 class or better

Figure 1: The FocusWriter program encourages distraction-
free writing.

Figure 2: The Dia diagram-
ing program is useful for
brainstorming and creating
all sorts of systems.

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM76

EDUBUDGIELINUX VOICE

Chrome OS have somewhat obfuscated in the
minds of many what is and what is not Linux.
Most students who own a Samsung phone have
no idea that it has any relationship to Linux.
EdUBudgie Linux is clearly, unabashedly, unapolo-
getically, Ubuntu Linux.

The vision of EdUBudgie Linux is twofold – to
expand the Linux and open source communities
so that future creators can rely less or, ideally, not
at all on giants such as Microsoft, Google, and
Apple, while also offering high school students of
all socioeconomic backgrounds equal access to
the latest that the community has to offer. n n n

cannot offer the practicality that Chrome does at
the time of this writing. Chrome OS cemented
Chrome’s position as the dominant browser in
education. While the Linux community yearns
for and works toward an acceptable open alter-
native, none currently exists. This should be
looked at in a positive light: As soon as a suit-
able alternative exists, it will be incorporated into
EdUBudgie Linux. Until then, education relies
heavily on Chrome.

Along with Chrome come many web apps com-
monly used in the classroom. Additionally, Geary
can be used for email, and the Gnome Calendar al-
lows for easy integration with Google Workplace.
EdUBudgie Linux installs OpenDrive by default for
those who prefer to have local copies of the files
they are working on, and the Online Accounts sec-
tion of Settings (Figure 3) allows for seamless
Google Drive integration in the file explorer. Using a
Windows 10-like set of icons should make file and
folder manipulation second nature for those mi-
grating from Windows-based machines.

For most schools these will be the most-often
used programs, but many others will be in-
stalled by default. I selected many programs be-
cause of their relation to specific disciplines.
Among many other programs, these include the
following:
n �Gimp, Inkscape, and darktable for art classes
n	Blender, LibreCAD, and FreeCAD for engineering

and other technical disciplines
n	KdenLive, OpenShot, OBS, Kazam, and Cheese

for video production and editing
n	Scratch, Atom, Geany, and Basic-256 for coding
n	GeoGebra (Figure 4), KAlgebra, Tilink, and Qal-

culate for mathematics
n	Kalzium for chemistry
n	KGeography for social science classes
n	Calibre for language classes

Conclusions
The intent of EdUBudgie Linux is to offer a com-
plete Linux distribution for education and to hope-
fully bring many new users into the Linux commu-
nity. The open source model relies upon a vast
community of intelligent and creative individuals
to advance the cause. Unfortunately, Android and

Adam Dix is a mechani-
cal engineer and Linux
enthusiast posing as an
English teacher after
playing around a bit in
sales and marketing. You
can check out some of his
Linux work at the EdUBudgie Linux website.

The Author

[1]	� EdUBudgie Linux:
https://​www.​edubudgie.​com/

[2]	� Ubuntu Budgie: https://​ubuntubudgie.​org/
[3]	� Installing Ubuntu on the Acer Chromebook

C720P: https://​samsclass.​info/​128/​proj/​
chromebooks3.​htm

Info

Figure 3: A typical Gnome/​
Budgie Settings interface.

Figure 4: The GeoGebra pro-
gram is useful for mathe-
matics classes.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 77

EDUBUDGIE LINUX VOICE

https://www.edubudgie.com/
https://ubuntubudgie.org/
https://samsclass.info/128/proj/chromebooks3.htm
https://samsclass.info/128/proj/chromebooks3.htm

the program directly in the repositories where it
goes by the name of scenarist.

When the application is first launched, a wiz-
ard helps set up the language and theme for the
interface (Figure 1), various modules, and the
template for the script. Here, if you do not al-
ready have concrete specifications from a com-
pany, it is best to choose one of the options for
Final Draft, either A4 (for the European format)
or Letter (for the US format), as shown in Fig-
ure 2. Both templates are based on the film in-
dustry’s quasi-standard.

First Steps
After starting the program, the first thing that ap-
pears is an overview of the projects that have al-
ready been created. You have the option to open
or import a project or to change basic parameters
via Settings. Open the corresponding dialog and
activate the spell checker in Program. The soft-
ware first tries to load the preset Russian diction-
ary from the Internet, but you can select English
or one of many other options as your preferred
language.

The next step is to create a new project and start
writing. Clicking Create project opens a dialog

S creenplays require a specific format and
make special demands on the author. Un-
like a novel, a screenplay virtually reduces

the story to the dialogue. You’ll also need to use a
special layout based on a fixed-width font and
wide margins – a standardized format that makes
it easier for production companies to estimate the
length of the film.

Rather than messing around with setting up
this layout in a word processor, professionals
use special programs, which may also include
useful functions such as helping keep track of
characters and locations. If you’re looking for
these tools in a free application available on your
Linux distribution, you won’t find many options,
but one that may fit your needs is Kit Scenarist [1].

Installation
Although the cross-platform software is cur-
rently not available in the package sources of
most distributions, the project website has many
options for Linux users, offering RPM and DEB
packages for Fedora and openSUSE or Ubuntu
and Debian, among others, and the installation is
usually a fairly convenient process. Only Arch
Linux and its derivatives, such as Manjaro, have

BY SIRKO KEMTER

Creative writers take note! Kit Scenarist is a free application designed to simplify
the process of writing a screenplay.

Write screenplays with Kit Scenarist

Writing Workshop

Figure 1: When first launched, a wizard helps you set up the
software, including the language for the interface.

Figure 2: You can either select the document format during the
installation or change it later in the project under Settings.

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM78

LINUX VOICE KIT SCENARIST

where you give the project a name (Figure 3). The
program will use this later when saving the file.
With the Advanced options you can change the
storage location.

Research Window
After creating the project, the software will di-
rect you to the Research window, where you
enter further basic data and create the title
page. You can save characters and locations
here, as well as link external data such as docu-
ments, images, and links. The concept is similar
to the Snowflake Method [2] for creative writers.
You’ll find this information useful when writing
the actual document.

The program has some helpful automatic fea-
tures. If you name a location later on in the script,
the program automatically creates it in the Re-
search section. However, this does not work for
characters. If you add a new character as you’re
working on the script, it’s a good idea to create

them in the Research section first and then use
them in the script (Figure 4).

If you create characters as Scene Characters,
they are automatically also created in the Re-
search window. If you mention a role in the script,
an auto-complete will be available for that charac-
ter in the future. Renaming a character later in the
book, however, is a process that can only be han-
dled through the Research section.

Right-clicking on Characters opens a context
menu where you can search for characters in the
script using the Find characters in script entry.
This function lets you transfer roles from a script
to your research.

In the Cards overview, the background changes
to a pinboard. Small cards represent the scenes.
At the top, you have the option to rearrange the
order of the scenes and print these cards as an
overview.

Centerpiece
The Script window is the heart of the program.
Here you can see one way that screenwriting
software makes your work easier. On the left
side of the window is the overview with the
scenes; here you can simply re-sort the order
using drag and drop. On the right there are but-
tons to format elements directly. In the center is
the area for writing.

Since you start with an empty document, the
program knows that a Scene Heading is missing –
pressing the spacebar immediately prompts the pro-
gram to suggest appropriate words for a heading.

If you want to insert the Scene Characters, click
on the corresponding button on the right; other-
wise just start writing – the program formats your
input automatically.

Figure 3: To create a new project, simply enter the project
name and choose where to save the file.

Figure 4: The Research overview, with the selected document overview here, helps you to arrange the roles, locations, and
events in the script.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 79

KIT SCENARIST LINUX VOICE

It’s a good idea to record the Scene Characters,
though, because there are always scenes where
characters appear but have no dialogue – for ex-
ample, when a character witnesses an action be-
cause they need to report on it later on. Among
other things, the Statistics module lists Scene
Characters with and without dialogue.

The software also offers the possibility to com-
pare versions, but only if you saved them manu-
ally. Automatically saved versions are left out here
for some unknown reason.

If you use the Character button, the software
will immediately offer the characters known so far,
whether from the research or from the roles men-
tioned so far. This saves you a good deal of typing
and makes your writing more efficient.

Figure 5: The heart of the program, the screenplay view, formats all parts of the script according to the specifications from
the template.

Figure 6: The Cast Report shows the number of scenes in which a role appears and where it has dialogue.

Format Keyboard shortcut

Scene heading Ctrl+Enter

Scroll Ctrl+E

Action Ctrl+J

Role Ctrl+U

Dialogue Ctrl+L

Stage Direction Ctrl+H

Shot Ctrl+P

Transition Ctrl+G

Do not print Ctrl+Esc

Lyrics Ctrl+K

Table 1: Kit Scenarist Shortcuts

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM80

KIT SCENARISTLINUX VOICE

After the Character, the program will switch to
the format for a dialogue and then back to Char-
acter the next time the Enter key is pressed (Fig-
ure 5). You can start a new scene manually by
clicking the corresponding button or by using the
shortcut Ctrl+Enter in the line. For more keyboard
shortcuts, refer to Table 1.

Statistics
Although most of the overviews offered are more
useful for the later implementation of the script,
they can already be of some help in the writing
process. In particular, it can be tricky to develop a
script that meets specific targets for running time.
The use of clearly defined formats helps to esti-
mate the approximate length, and Kit Scenarist
even helps with this as you write, displaying the
time for each scene as well as the total time in the
upper right corner.

Kit Scenarist provides overviews of the distri-
bution of dialogue among characters (Figure 6).
It also shows the locations, as well as the over-
all structure of the script – that is, how much
dialogue, how much action, and how much
stage direction or other elements it contains
(Figure 7). This will help you find places you
could restructure or perhaps cut to reduce the
length of the screenplay.

The last module gives you the ability to restore
backup versions. Kit Scenarist saves the current
document every five minutes by default unless
you change this.

Conclusions
I did have some difficulty with a few aspects of
the program. The developers seem unfamiliar
with many of the mechanisms used for free

software in general and Linux distributions in
particular. When I contacted the developers to
suggest that it was inconvenient to have to reg-
ularly check the website to see if a new version
was ready, there was only a reference to new
websites that offer push messages. The fact
that dictionaries can be installed and updated
as files via the distribution seems completely
unfamiliar to the developers. They also struggle
with security issues: In my experience, none of
the packages on the project’s download pages
were signed.

However, if you can live with these issues,
there are many reasons to like Kit Scenarist. It
offers a tidy user interface, and all the
important functions are present and work
excellently. While there are some less useful
components, such as the card overview, and
many of the statistics are not especially helpful
during the initial writing, the program is still
quite practical, and far more convenient than a
word processor. nnn

Figure 7: Kit Scenarist provides extensive statistics, including a summary report that provides great detail about the
script’s structure.

[1]	� Kit Scenarist:
https://​kitscenarist.​ru/​en/​download.​html

[2]	� Snowflake Method:
https://​www.​advancedfictionwriting.​com/​
articles/​snowflake‑method/

Info

Sirko Kemter uses screenwriting in language
classes to get young people interested in
reading and to teach them the function of
grammar.

The Author

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 81

KIT SCENARIST LINUX VOICE

https://kitscenarist.ru/en/download.html
https://www.advancedfictionwriting.com/articles/snowflake-method/
https://www.advancedfictionwriting.com/articles/snowflake-method/

 FOSSPicks
Following the news of official Widevine support on the Raspberry Pi, used
to play Netflix, Prime, and Disney+, Graham has finally been able to ditch
his Amazon Fire TV advertising conduit for Kodi. BY GRAHAM MORRISON

Sparkling gems and new
releases from the world of
Free and Open Source Software

Project Website
https://​github.​com/​essej/​sonobus

W hen it comes to com-
munication, it’s amaz-
ing how adaptable the

human brain can be. In conversa-
tion, it can almost completely filter
out background noise, accommo-
date strong accents, and error cor-
rect sentences better than 200
percent checksum redundancy.
What it can’t do, at least not com-
fortably, is predict and iron out tim-
ing issues. If you’ve ever watched
a film with the audio out of sync,
you’ll know that a certain amount
of delay is imperceptible. But
there’s a threshold where it quickly

becomes impossible to tie the
spoken words to the people who
spoke them, and the same thing
happens in a video chat and with
musicians, where distance can
have an effect on latency and per-
formance. A significant delay
makes any kind of musical collab-
oration impossible, and that
means that while the modern In-
ternet can easily accommodate
Zoom calls with two dozen people,
it’s more difficult to satisfactorily
connect even a couple of musi-
cians together, despite the lesser
requirement in bandwidth.

Over the years, there have been many attempts to
solve this problem, such as the closed source Team-
Speak and the open source Mumble. Mumble perhaps
gets closest with relatively low latency and uncom-
pressed multitrack audio options. But it’s never felt right
for musicians. SonoBus, however, does feel right. It’s an
open source peer-to-peer audio streaming solution that
promises both high quality and low-latency audio across
a LAN or the Internet. It’s easy to install. After launching
the application, the first thing you notice is that the UI is
simple, well designed, and easy to use. The first thing you
need to do is either connect to another user or share your
own session. Both these actions can be accomplished
through either a public or private group created on a
server, which defaults to aoo.sonobus.net, or via a direct
connection to the ports and IP addresses of the ma-
chines you wish to connect to. You can even run your
own connection server to get the best of both worlds.

With this done, a new row will start to appear in the UI
for each machine connected to the session, and everyone
can speak or listen at the same time. Each row includes
controls to adjust volume and left/​right pan, as well as an
input meter and the ability to add compression, and a
noise gate effect to help with legibility and remove back-
ground noise. Latency will depend on hardware and net-
work conditions, and each row includes specific details
on the upstream and downstream latency, bitrate per
channel, and the size of the jitter buffer that is used to
iron out variations. The results can be staggering and far
better than other chat or audio streaming solutions we’ve
used. Even across hundreds of miles, latency was typi-
cally less than 50ms, and often lower, making not just
conversation more natural but also opening up the very
real possibility of musical collaboration or direct podcast
recording. This is helped by the ability to adjust audio
quality anywhere between an Opus compressed low
(16Kbps) bitrate to a fully uncompressed 32-bit PCM,
perfectly acceptable for professional audio production.

Network audio

SonoBus

1. Audio back end: SonoBus can use either ALSA or JACK to get the lowest possible
latency from a configuration. 2. Effects (FX): Each client has compression and gate
effects, with more effects for the global output. 3. Monitoring: Listen to your own mic
and carefully control the volumes of everyone in the chat. 4. No security: By default,
audio streams are not encrypted. If you’re going to be chatting about film spoilers, we
suggest using a VPN. 5. Quality: SonoBus is capable of professional quality recordings,
as well as offering low-bandwidth friendly compression. 6. Mixdown: Record an entire
meeting or session as a single file or multiple files. 7. Metronome: If you’re recording
music together, use the metronome to keep everyone in sync.

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM82

LINUX VOICE FOSSPICKS

https://github.com/essej/sonobus

RSS reader

NewsFlash
R emarkably, it’s been eight

years since Google
closed its RSS Reader

project. And yet, RSS survives
and is more relevant now in the
push information age than ever.
Fortunately, there are still many
websites that publish their own
diminutive XML feeds containing
brief synopses of their updates.
Any RSS reader can then track
and pull these updates, free of
cookies and click-through adver-
tising. Despite its age, RSS re-
mains a refreshing alternative to
the commercialization of the In-
ternet, from sponsored newslet-
ter placement and paid-for-
tweets, to GIFs as non-fungible
tokens (NFTs). Which is why it’s
brilliant to see another new RSS
reader, NewsFlash, and a sign
that RSS might be going through

a small renaissance. News-
Flash is a new, small, and beau-
tifully designed RSS reader that
makes RSS feel more like an in-
tegrated part of a modern desk-
top, rather than something from
a bygone era.
If you exported your Google
Reader subscriptions to some
RSS enclave, there’s a good
chance NewsFlash can use it. It
will import your current RSS sub-
scriptions from Feedly, Fever,
NewsBlur, Feedbin, and Miniflux,
as well as letting you add feeds
yourself. The latter is made easier
by an excellent integrated RSS
browser that helps you to dis-
cover quality feeds from a cate-
gorized list. The modern Gnome
design is perfectly suited to an
RSS reader like this because the
UI is both minimal and functional,

with very little wasted space. The three column view first
lists the categorized feeds you’re subscribed to, and then
an aggregated list of stories from the selected feeds or cat-
egory, before the rightmost pane shows the contents for
the selected item. It’s perfectly augmented by titlebar icons
to favorite an item, grab an attachment, and even scrape
the full story, which is something you can’t do with any
other desktop toolkit and a great reason to choose News-
Flash whatever your desktop environment.

Project Website
https://​gitlab.​com/​news‑flash/​news_flash_gtk

Forget the distractions of social media and get your news with an
old school method that still actually works: RSS.

Audio editor

Audacity 3.0

I t’s a cliche, but Audacity re-
ally is one of those flagship
open source applications

that many people simply
couldn’t do their jobs without. It
allows podcasters, community
radio stations, and amateur mu-
sicians the world over to create
serious, professional results
without the serious outlay com-
mercial applications often re-
quire, none of which work na-
tively on Linux anyway (except
BitWig!). Which is why, despite
its modest set of new features,
the release of Audacity 3.0 is
still significant. We’re simply
grateful that the application con-
tinues to be developed, and
we’re particularly excited by the
news that work is being under-
taken to overhaul the outdated
UI that has held it back from

properly integrating with mod-
ern desktops, even if that isn’t in
this release. But this isn’t a rea-
son to discount version 3.0. In
releases prior to this one, a proj-
ect’s AUP file only linked to the
audio files, which means things
could easily break if the AUP
was lost or corrupted. Audacity 3
solves this problem.

A new .aup3 format embeds
the metadata alongside the
audio in a single file, allowing
you to archive work and restore
a session regardless of where
you move the file or load it
from. This has been accom-
plished by using a SQLite3 da-
tabase internally to handle stor-
age and retrieval, and it’s much
easier and even quicker to use
than the old method. It’s disap-
pointing that you can’t make

the default save requester simply choose a WAV or
MP3 file, but we do understand why it selects the inter-
nal format to save every parameter in a project. It’s
much like XCF being used by Gimp, but both projects
are more likely to be used for quick import and export
edits rather than prolonged projects. We think they’d
both benefit by aligning the save requesters with what
users expect.

Project Website
https://​www.​audacityteam.​org

Alongside a new audio project format, Audacity 3 has updated the
noise gate effect and the analyzer.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 83

FOSSPICKS LINUX VOICE

https://gitlab.com/news-flash/news_flash_gtk
https://www.audacityteam.org

macOS shortcuts

Kinto.sh

M apping special keys
from your keyboard
into meaningful Linux

commands is a common prob-
lem that can be brilliantly solved
by Key Mapper (above) or magi-
cal xmodmap incantations. But the
inverse is also a common issue;
mapping Linux keyboard com-
mands to their macOS or Win-
dows equivalents. This can help
if you’re running macOS or Win-
dows in a VM, in a remote desk-
top, or via a remote command-
line session. It’s particularly no-
ticeable when you’re using
macOS, because it relies heavily
on its special keys for fundamen-
tal functions such as copy and
paste. This is where Kinto.sh can
help. It’s a small Python script
alongside a few configuration
panels that can take over your

keyboard and map those Linux
special keys to macOS special
keys, enabling you to invoke the
same shortcuts regardless of
which operating system you’re
interacting with. For instance, by
default on macOS, Ctrl is
mapped to Command, Alt to Op-
tion, and your Super key to Ctrl.

Much like when you install Linux
and are asked to press a few keys
so that your keyboard layout can
be detected, Kinto.sh does the
same thing so it can identify which
key is most analogous to Apple’s
Command and Option keys. With
this done, a background daemon
will run and a terminal will open
showing the system log filtered for
the Kinto.sh service. This shows
when keyboard shortcuts have
been successfully transformed
into their destination equivalents,

which should work without any further configuration.
The system claims to be a complete system-wide
remap of base modifier keys while retaining the com-
mands for your native environment. You can use the
well-known keyboard remapping tool xkeysnail to make
your own keyboard mapping configurations that work
with Kinto.sh, and per-app definitions can be added to a
configuration file. It may be niche, but Kinto.sh solves a
huge problem if you work daily with these other operat-
ing systems from your Linux machine.

Project Website
https://​github.​com/​rbreaves/​kinto/

Kinto.sh transforms native Linux keyboard shortcuts into macOS
and Windows equivalents. It also has some unexpected moments of
humor.

Map buttons

Key Mapper
A s someone who uses an

older MacBook Pro with
Linux natively installed,

it’s imperative that Apple’s special
Control and Option keys are
mapped to work with Linux effec-
tively. This is a rather arcane two-
step process, first because you
run the ancient xv command to di-
vine the raw keycodes for those
keys, and second because you
enter those keycodes into an
equally ancient xmodmap file to map
those raw keycodes into key
presses. As the x in both tools
suggest, this process is unlikely to
work with Wayland. Key Mapper
is a Python application with a
modern GTK+ front end that does
all this easily and adds the ability
to map buttons and keys from al-
most any input device. This is the
clever part, because input devices

can include joysticks and control-
lers, as well as keyboards, which
you select from the device drop-
down at the top of the window.
With a device selected, you use
the key pane on the right to press
the input you want mapped be-
fore selecting from a drop-down
list what you want it mapped to.
This list is absolutely huge and in-
cludes all the XF86 shortcuts, as
well as triggers, special keys, and
touchpad controls.
If you’re mapping a games con-
troller, you can map its joysticks
to mouse movement, the mouse-
wheel, buttons, or a single joy-
stick, complete with mouse
speed. This is brilliant if you’re
building a Linux arcade machine,
for example and want the joy-
stick to control the mouse cursor
while at the same time mapping

some of the buttons to launch the games you want. This
entire configuration can be saved as a preset for easy re-
call, and you can have as many presets as you need. Pre-
sets are useful if you want to step away from the com-
puter, for example, and control it remotely, or if you switch
keyboards between an Apple keyboard on the road and a
more conventional keyboard when you’re home. A back-
ground daemon is also installed and activated by default,
and this takes care of the changing configuration, as well
as making any necessary changes when you reboot. It
works perfectly.

Project Website
https://​github.​com/​sezanzeb/​key‑mapper

One of the best things about Key Mapper is that it will work with Wayland,
giving you a migration path from Xorg mappings to the brave new world.

FOSSPICKSLINUX VOICE

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM84

https://github.com/rbreaves/kinto/
https://github.com/sezanzeb/key-mapper

Unofficial Spotify client

spotify-qt
S potify has become

hugely successful. While
there is a semi-official

Linux client, it has always felt
more like a hobby project than
a first class citizen. It’s perpetu-
ally in beta and seldom has fea-
ture parity with the Windows or
macOS versions. What’s worse
is that it’s built on Electron,
making it resource hungry and
not particularly well integrated
into the Linux desktop and its
various window managers. It’s
hard to use with a tiling window
manager, for example. Fortu-
nately, and to Spotify’s credit,
third-party libraries have been
developed that can access
Spotify’s API and consequently
allow alternative clients to be
easily developed. The best of
these is a background daemon

called spotifyd, and there are
now several clients that take
advantage of this. The brilliant
spotify-qt is one of them.

You need to be a paying Spo-
tify subscriber to get the required
API access in spotifyd, which you
then run with your username and
password. Any spotifyd clients,
including spotify-qt, can then
connect through the daemon to
present their improved user in-
terfaces. Spotify-qt, for instance,
looks and operates just like a na-
tive Qt or KDE application, with
support for playlists, searching,
favoriting, and keyboard control.
There’s a dark mode and the op-
tion to change its panel icon into
album art. A separate panel can
be opened to show you details
about a song that you can’t see
in the official client, including its

key, tempo, time signature, “acousticness,” and “dance-
ability,” although it’s not always accurate. All of these de-
tails are from the official Spotify metadata, and the devel-
oper is working on adding support for lyrics. You can
even beam your music selections to other Spotify clients
on your network, such as a television or amplifier. It’s a
much slicker application than the official client and will in-
tegrate perfectly with your local themes, fonts, and audio
back end.

Project Website
https://​github.​com/​kraxarn/​spotify‑qt

The application supports many features including playlists,
searching, and favoriting.

Private communication hub

RetroShare

O ne of Mozilla’s best proj-
ects for Firefox was
Send, an inbuilt mecha-

nism for sharing files securely
and anonymously with other
users. It was incredibly conve-
nient if you wanted to send a
document to a family member,
or share even a large file with a
group of friends. Unfortunately,
this convenience came at a cost
– both in terms of the interim
storage used by Mozilla and be-
cause “some abusive users
were beginning to use Send to
ship malware and conduct
spear phishing attacks.” Send
development stopped, and the
service was discontinued. Of
course, there have always been
alternatives, and one of our fa-
vorites is a command-line tool
called Magic-Wormhole, which

works brilliantly even across
networks. But it does require
both the sender and the receiver
to use the command line, and
they also both need a side chan-
nel in which the receiver’s code
word can be shared.

RetroShare is a Qt-based
desktop application that solves
this problem while adding se-
cure and decentralized chat,
group discussions, mail mes-
saging, and forums into the
mix. It does this through a
friend-to-friend network proto-
col, which is basically a peer-to-
peer network where your
friends make up a chain of trust
and users outside of your chain
of trust on the same network
are undiscoverable. It accom-
plishes this by asking you to
create an account with your

GPG ID, which then becomes visible to your friends so
they can verify your identity via a certificate. After add-
ing a contact or three, you can then make use of the
various communication channels built into the app,
from creating a chat room to choosing to share files
with your friends or anonymous friends of friends. Ret-
roShare can even use Tor v3 as the transport layer to
help keep your transfers and communication as pri-
vate as possible.

Project Website
https://​github.​com/​RetroShare

RetroShare is the modern equivalent to old school P2P networks,
only just with your friends and whatever you choose to share.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 85

https://github.com/kraxarn/spotify-qt
https://github.com/RetroShare

T echnology has trans-
formed education in un-
precedented ways, from

easy and free access to in-depth
video tutorials and complete on-
line educational courses, to
group learning and one-on-one
virtual coaching. But technology
hasn’t been quite as successful
at transforming the actual way
that we learn, despite brave at-
tempts from the likes of Khan
Academy and Duolingo. Learning
still requires hard work. There
are, however, lots of tools that
can help, and one of the best of
them is Anki. Anki is an applica-
tion that helps you create flash-
card decks and train yourself
from their contents. For a piece
of software, this premise may
not seem too adventurous, but
Anki has been hugely successful
already by helping students
across the globe study for exams
using their tablets, smartphones,
and web browsers. It’s success-
ful precisely because it’s simple,
concise, and ultimately helpful.
This success has also fueled the
development of hundreds of
decks you can easily use for your
own learning.

When you start the application
for the first time, you need to first
either create a new deck of flash-
cards or import a previously cre-
ated set. This second option is
perhaps Anki’s biggest advan-
tage because, thanks to its edu-
cational ubiquity, there are hun-
dreds of often freely available
sets you can download and in-
stall, as well as commercial sets
if you’re willing to pay. The appli-
cation itself links to its own com-
munity where sets can be freely
downloaded and rated, from
5,000 of the most common
French words to the anatomy of
lower limb muscles. It’s also in-
credibly easy to create your own
sets, and this can be particularly
helpful when you’re working from
your own notes or specific
course material.

After creating a deck, cards are
added via a variety of forms. The
simplest asks you for something
to put on the front of the virtual
card and something on the back.
This is typically a question or
word to translate. When you
eventually study the pack, you
see the question and press the
spacebar to see the “answer” on

Anki helps you create your own multimedia flashcards, or pre-built stacks, to make
it easier to accelerate your learning.

Virtual flashcard deck

Anki

the reverse of the card. You have
to personally judge whether your
answer was correct, rather than
being scored. You also need to
select a button to show whether
remembering the answer was
Hard, Good, Easy, or if you need to
see it Again. Each of these op-
tions sets how soon the same
card will reappear. The delay is
shown above the answers, and it
could be less than a minute for
Again or four days for Easy. This,
and setting a practical card limit
for each practice session, is
what makes Anki so effective.

Alongside the simple front/​
back example styles that are in-
cluded by default is the card
type called “cloze deletion.” This
lets you easily paste text into a
card and mark sections that
need to be guessed at, with the
complete text only being re-
vealed when you flip the card
over. But you can also easily
create new card types, adding
images and even sounds that
can reveal certain answers or
pose specific questions. The
popular French word deck, for
example, includes audio pro-
nunciation files as part of the
answer, and it automatically re-
trieves the Wiktionary entry for
a word. You can create or in-
stall as many types as you
need, or use those from decks
you’ve already imported, help-
ing you get the most out of
whatever time you can spare to
enhance your learning.

Project Website
https://​apps.​ankiweb.​net/

The frequency with
which a card is
presented is dependent
on how hard you find
recalling its information.

FOSSPICKSLINUX VOICE

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM86

https://apps.ankiweb.net/

Cannon Fodder engine

Open Fodder
T here can be few old-

school Amiga types who
didn’t play the classic

Cannon Fodder. It was a remark-
able game with an emotional and
strategic complexity that belied
its cute graphics and sardonic
portrayal of war. Created by Sen-
sible Software in the UK, and
using the same tiny pixelated
character sprites and top-down
view as their insanely addictive
Sensible Soccer, Cannon Fodder
saw you control a squad of sol-
diers as they made their way
through various terrains. It was
controlled by the mouse, with a
left-click setting a target destina-
tion and the right-click reserved
for shooting. This meant your
squad could move in one direc-
tion and shoot in another at the
same time. The terrain was also

cleverly designed to hide your op-
ponents and to offer various kinds
of cover. You would run from one
bit of cover to the next, or even
split the squad into teams so that
one could cover the progress of
the other, or try a completely dif-
ferent strategy from the flanks.

Open Fodder is an open source
reimplementation of the game
engine behind Cannon Fodder, al-
lowing you to play the game on
modern hardware and with a
mouse that actually works. As
the game is still under copyright,
and even available to purchase
on GOG.com, you do need a legal
copy of the original data files to
play the original games. But even
if you don’t, Open Fodder in-
cludes its own data directory
with various magazine demos of
the game from the time. Even

better than these, though, are the custom levels other
people have created using the new level editor that ac-
companies the project. And you can obviously dive in and
create your own. The 2D top-down graphics may be
dated, but there’s still nothing like this kind of gameplay,
and Open Fodder manages to make a game that’s almost
three decades old feel like a cool future-retro remake.

Project Website
http://​openfodder.​com/

Every soldier in Cannon Fodder had a unique name, which meant
you became irrationally bonded to their eight pixels and did
everything to protect them.

Virtual arcade game

Emilia Pinball

T hanks to their high frame
rates and realistic phys-
ics, virtual pinball games

running on modern hardware
are a long way from the early
Amiga 2D titles that started the
genre. You can even find entire
arcades in virtual reality along
with properly licensed recre-
ations of dozens of actual pin-
ball games from the ‘70s, ‘80s,
and ‘90s. Developers have lov-
ingly written code to emulate
both the circuits of the solid
state era and the CPUs of the
digital era that replaced it, and
players have even attached low
latency switches and large
screens to help play these emu-
lations at their best. You can do
something similar with Emilia
Pinball, an open source pinball
environment designed to be run

on an embedded device with
OpenGL acceleration.
Even without a specific device,
the source to this game can be
built and run on any ordinary
Linux machine, and it performs
blisteringly well. Left and right
Shift keys act as the left and
right buttons on the real thing,
with Enter to launch your ball.
These controls are also
mapped to a mouse, which
opens up the possibility of
building a physical pinball con-
troller from an old mouse.
There’s a clever nudge system
for virtually knocking the table
to shove the ball, and the phys-
ics of the ball’s movement
seem indistinguishable from
the real thing. There’s a selec-
tion of tables, and these have
their own project repositories

so you can easily fork them and modify them. They all
feature open source and GNU-like names, and include
graphics of Tux and other Linux tributes. It can’t yet
compete with similar projects on Windows, which can
often run on Wine, but as an open source alternative
with decent graphics and accurate physics, Emilia Pin-
ball is a great foundation to build into your own project
or onto which you can recreate your favorite table.

Project Website
https://​github.​com/​adoptware/​pinball

The game runs on your Linux desktop but has also been designed to
run on a “pincab” embedded system with a screen laid flat.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 87

http://openfodder.com/
https://github.com/adoptware/pinball

almost self-explanatory. In the Obsidian interface,
you can view and edit as many notes as your
screen and eyesight allow, each in its own pane.
Each separate collection of notes (text files) is
stored in a “Vault,” which is just a normal folder in
your filesystem.

To try out Obsidian, I used it for two separate
projects. The first, seen Figures 1-7, was created
from scratch and includes the initial raw material
for an essay on what could be the ideal Linux dis-
tribution. The second, discussed later, is visible in
Figures 8 and 9 and shows Obsidian handling a
full copy of my blog.

A main graph for the “Ideal Distribution project”
(Figure 1), shows how the notes are connected to
each other visualized as nodes on a graph. The list
of all notes that mention the current note, or ex-
plicitly link to it (backlinks) is also easily available.
For these reasons, some people call Obsidian a
Markdown editor with mind-mapping support.
Notes can be further organized with tags and
other metadata.

The first time you start Obsidian, the only exist-
ing Vault is the one that contains all the program
documentation. To browse its content, click on
the question mark button in the lower left corner.
Each Vault you create is independent from the
other Vaults, meaning that you cannot link notes
across Vaults. For the same reason, each Vault
gets its own, separate configuration that defines
everything from which plugins it can use, to visual
settings like background color and graphic theme.
All this data is stored in the .obsidian subfolder in-
side the Vault itself.

The Obsidian documentation says that this “per-
Vault” configuration “is useful, for example, if you
have one Vault where you keep notes but a differ-
ent one in which you do long-form writing.” That
makes a lot of sense, not to mention that fully self-
contained Vaults are completely portable from
one computer to another. Personally, however, I
found it a bit annoying that it seems impossible,
from the graphical interface, to import all the cus-
tomizations already applied to an existing Vault

O ur minds work in mysterious ways. No mat-
ter how hard we try, we cannot always di-
rect our thoughts in an ordered succession

of steps, ignoring distractions. It can be equally hard
to spot useful links between apparently unrelated
pieces of data or to remember all the relevant infor-
mation connected to a particular issue.

Software programs attempting to make these
processes more efficient can take many forms,
from desktop or personal “wikis,” to “knowledge
bases,” or “mind mappers.” But their general goal
is the same: to help users document and connect
their ideas as efficiently as possible. This tutorial
describes one of these tools, the basic version of
Obsidian [1], which runs on Linux and other plat-
forms and is free of charge for personal and edu-
cational use.

Main Features
Obsidian, describes itself as a “knowledge base,” a
“second brain,” and a “note multiplexer.” It’s an
Electron application for making notes that makes
it easier to catalog, connect, and even publish
them. Each Obsidian note is a plain text file, for-
matted according to the Markdown syntax [2],
which is very efficient for formatting text and re-
cording ideas, and so straightforward to use it is

BY MARCO FIORETTI

Obsidian helps you think and work more effectively by giving you a tool to record,
connect, and catalog your ideas and related notes.

Markdown-based knowledge base

Personal Knowledge Managers

Figure 1: An Obsidian Vault graph shows how your different
notes are connected to each other.

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM88

LINUX VOICE TUTORIAL – OBSIDIAN

into a new one. The quickest way to do that
seems to be to just copy the .obsidian folder from
the old Vault to the new one and then restart Ob-
sidian to load those settings.

Obsidian’s Openness
In trying out Obsidian, I was most interested in
questions that should be the first concern for ev-
eryone who understands the importance of open
standards and data ownership: Even when all your
data remains on your computer, how much of
what you do with that program is reusable outside
it, and how easy is that to do? Is it possible, for ex-
ample, to import or generate the initial data for
that program automatically with some scripting?
Can you edit the data with third-party tools? What
about publishing it where and how you want?

With Obsidian, the answers to all these ques-
tions were positive, thanks to its “local folders of
Markdown files” nature.

Format-wise, besides vanilla Markdown, Obsidian
supports constructs for diagrams and math formu-
las, and the Markdown dialects called Common-
Mark [3] and GitHub Flavored Markdown (GFM) [4].
There is a plugin called “Markdown Format Im-
porter” that I would not call exactly an importer, but
which is useful anyway: it just replaces certain Mark-
down elements with the ones in the dialects it sup-
ports. Obsidian can also directly import notes from
Roam Research [5] and zettelkasten-based [6]
knowledge-management systems.

You can directly edit Obsidian notes with any
text editor, from any platform, in any moment, and
even rearrange them in subfolders with a normal
file manager. Obsidian will notice the changes and
import them automatically, without problems.
Coupled with a file synchronization system, this
makes it relatively painless to edit the content of a
Vault even from smartphones, for which at time of
writing there is no Obsidian app. On desktop sys-
tems, if you copy and paste text directly from a
web page into an Obsidian note, the software will
try to automatically convert it to Markdown! Copy-
ing the same text with browser plugins like Mark-
Download [7] will even add metadata, like source
URL and date, to the same note.

On the publishing side, you may export your
notes as PDF files or publish them online very eas-
ily as one wiki on the Obsidian website through
their paid service. However, you may never need
any of those options. There are plenty of tools on
Linux and any other operating system to convert
Markdown files to many other formats and ways
to put them online, for example with static website
generators like Hugo or Jekyll.

Installation and Configuration
The free version of Obsidian is available for Linux in
several package formats. On my Ubuntu desktop,

Obsidian was up and running one minute after
downloading the Snap package of version 0.11.0
from the website, and installing it with this com-
mand:

sudo snap install U

obsidian_0.11.0_amd64.snap ‑‑dangerous

The ‑‑dangerous option was necessary, at time of
writing, because the package was not registered
or digitally signed.

By default, Obsidian comes in two “base”
themes, light and dark. The dark mode is the de-
fault, but if like me, you find it really hard to read,
click on the Settings gear icon in the lower left cor-
ner, open the Appearance tab, and switch it to
light. Whatever base mode you choose, you can
further customize Obsidian by enabling a theme,
or even creating your own with CSS rules. Activat-
ing the Custom CSS feature allows you to install
any of the graphic themes provided by the Obsid-
ian community from the configuration tab. In this
tutorial, Figures 1-7 show the Obsidian Solarized
theme, and Figures 8 and 9 the default Obsidian
look and feel, in the light base mode.

Even before setting the appearance and loca-
tion of a Vault, you may want to configure how to
delete notes, because there are three distinct
ways to do it. You can send deleted notes to an
Obsidian-only trash folder, send them to the sys-
tem trash bin, or actually delete them right away.

Most Useful Plugins
The other thing to do, ideally before starting to use
Obsidian, is to figure out which plugins you may
need and activate them if necessary. The configu-
ration panel lists the official plugins, most of
which are enabled by default, separately from the
many more provided by Obsidian users. Before in-
stalling any of the latter, however, you must explic-
itly disable the Obsidian “safe mode.”

After a quick look at the available plugins, I im-
mediately installed some that I thought would
likely be useful for a large number of users. I
started with a calendar widget, a mind mapper,
and an outliner. After a second look at the plugins
list, I also activated a tool to quickly find notes not
connected to any other, and a “Quick switcher,” to
create notes, or move from note to note, without
using the mouse. There are many more possibili-
ties, however. To mention just a few examples,
there are plugins to convert notes to slide shows
(with additional, but minimal Markdown format-
ting), save audio recordings as notes, highlight
syntax in software code, or open a random note
every time, to stimulate creativity and serendipity.

I would also like to mention two plugins that I
am using very little myself, but may be reason
enough to try Obsidian for others: Workbench,

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 89

TUTORIAL – OBSIDIAN LINUX VOICE

tions. Depending on which plugins you have acti-
vated, other buttons or options may appear, for ex-
ample to list or search tags.

The Preview button is necessary because the edi-
tor is not What You See Is What You Get (WYSI-
WYG). Click there, and Obsidian will show you, in
another pane, how the text will actually look, click-
able hyperlinks included, when converted to
HTML or other rich text formats. Figure 2 shows
the editing and preview pane of the same note,
side by side.

Of course, the real power of Obsidian is creating
and displaying links and backlinks. Just type two
left square brackets ([[). If there already are other
notes in the same Vault, Obsidian will list them in
a pop-up window (Figure 3), to let you select the
one you want. Otherwise just type whatever you
want in the brackets. The first time you click on
the link to a note that doesn’t exist yet, Obsidian
will automatically create the corresponding file
and open it in its editor. Should you change the
title of that file, no problem: Obsidian will automat-
ically update all the links to it.

To issue commands inside any pane, type Ctrl+P,
and an autocompleting list of available commands
will appear (Figure 4). If you want to keep some
notes always at hand, you can activate the “Starred
notes” plugin, and all the notes you mark with a
star will be listed in a dedicated panel.

Figure 5 shows the mind map generated by
Obsidian for the note in Figure 2. It is clean and
readable, but I was disappointed to find that,
just like the outline generated by the plugin, it is
static. You can click on an outline heading, or
mind map element, to view the corresponding
text, but you cannot drag and drop elements
around to change the structure of a note. That
functionality is available, but hidden among
other Obsidian settings that would take more
space than available to explain here.

Besides the basic formatting features, the
ones that are particularly useful in a knowledge

and Text {{expand}}. Workbench may be de-
scribed as a special area where you may tempo-
rarily “remix” links and text snippets among notes,
or from external sources, more quickly than you
may do otherwise, that is in a standard Obsidian
note. Text {{expand}}, instead, pastes the result of
a search done with the Obsidian search function
into the current note.

Working with Obsidian
To start working in Obsidian, you must create at
least one Vault by clicking on the button right
above the Settings one, in the left border of the
main window. Vaults are just folders that can stay
anywhere in your filesystem. The only thing to
avoid is creating a Vault inside another Vault.
However, a Vault may certainly contain subfolders
to help you keep your files organized, and also
easier to navigate with normal file managers.

As I said, each note gets at least one separate
pane. You can pin the most important panes in
fixed positions, combine them in different work-
spaces, or link together all the panes that contain
different views (e.g. Markdown source, Mind Map,
and outline) of the same note.

The text editor embedded in Obsidian is as sim-
ple as it is efficient. No menus or rows of icons,
just an area to type in, with three small buttons in
the top right corner: Preview, Close, and More Op-

Figure 2: Markdown editing,
Obsidian style: The left pane
contains the editable source
of a note, and the right one
shows how it will look in
HTML format.

Figure 4: Autocompletion
also works for commands.
As shown here, you can eas-
ily find and run the Mind
Map generator for the cur-
rent node.

Figure 3: Adding links is as simple as in all wikis, if not sim-
pler. Type two left square brackets, and then add a new link
or choose an existing node.

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM90

TUTORIAL – OBSIDIANLINUX VOICE

manager are dynamic task lists and footnote
support. If you write something like the list
shown in Listing 1, Obsidian will render it as
shown in Figure 6. If you check one of the un-
marked boxes, it will automatically fill the empty
brackets of the item with an X. The same code
sample also shows how to insert footnotes.
Other markup rules let you add tables or even
formulas in LaTeX format.

Another very useful markup that I may use very
heavily in the future is the one that embeds im-
ages or other text files in a note. If you prepend a
link to a note (or image) with an exclamation mark
(![[Filename]]), the Obsidian preview will replace
that link with the actual content of that file.

If you intend to reuse your notes outside Obsid-
ian with other Markdown-compatible software, you
need to know that the format with the two square
brackets, called “Wikilink,” that Obsidian uses by de-
fault, is slightly different from the standard Mark-
down syntax for links, that looks like this:

[text linking to some file]U

(location of the file)

So, if you plan to heavily reuse Obsidian notes in
other Markdown systems, you may want to se-
lect Use Markdown Links in the Obsidian editor
settings.

Tags, Metadata, and Aliases
No software intended to organize and connect
bits of knowledge can do it just with direct links.
That’s why you can also organize your notes by
assigning tags to them, and of course browse
notes by tag, or use tags as links.

Tags are really simple to add and use: just
prepend a hash character (#) to a word, and Ob-
sidian will highlight and use it as a tag. You can
search by tag and then browse the related
notes or examine all the tags you are using in a
dedicated pane, sorted by name or frequency
(Figure 7). In this way, Obsidian also facilitates
the identification and removal, of inconsisten-
cies in your tags. For example, if you tagged al-
most all your notes about smartphones with the
#smartphone (singular) tag and just a few with
#smartphones (plural), this will be very easy to
spot and fix.

I also like how Obsidian lets me organize tags
hierarchically. In a Vault about free software, for
example, you could have a #Linux tag, as well as
one tag per distribution (e.g., #Centos, #Debian,
#Ubuntu, and so on). However, writing tags sepa-
rated by slashes, such as:

#Linux/Debian

#Linux/Ubuntu

#Linux/Centos

would make Debian, Ubuntu, and Centos sub-tags
of Linux. Then, searching for #Centos would find
just the notes about Centos, but searching for
#Linux would also return all your notes about any
of those distributions.

Figure 5: The Obsidian mind map of the note shown in Figure 2.

‑ [x] done

‑ [] not done

‑ [] done^[This is a footnote]

‑ [x] maybe done

Listing 1: Dynamic Task List

Figure 6: This is how Obsid-
ian renders footnotes and
(clickable!) checklists.

Figure 7: Obsidian has pow-
erful functions for tag man-
agement, display, and
search.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 91

TUTORIAL – OBSIDIAN LINUX VOICE

specific note, even if you change its title after-
wards. Very convenient, isn’t it? In practice, the
only problems with YAML metadata happen if you
must use two Markdown applications that do not
parse the same key in exactly the same way. This,
as I will show in a moment, is a problem you may
encounter with Obsidian.

New Insights into Past Work
Here is the other issue I wondered about when I
came across Obsidian: Taking new notes for
new projects is all well and good, but what
about past work? Can Obsidian give me more
insights than I could discover myself about my
previous writing activities? That is, can Obsid-
ian help me to write more efficiently or to find
new uses for my past work?

Right now, I still do not have a final answer to
these questions. But I already know enough to be-
lieve that the answers may be at least partially
positive.

As of February 2021, my main blog [8] contains
over 1,200 posts, written over 13 years. The posts
contain more than 700K words total, and are pub-
lished online with the Hugo static site generator
[9]. Each post is a Markdown file, with tags and
other metadata in its own frontmatter, and all
links among posts are relative URLS (that is, the
URL of the About page is just /about, without the
full domain name).

After practicing with the Ideal Linux Distro Vault,
I copied all the Markdown files of that blog in an-
other folder, told Obsidian to open it as Vault, and
began to explore the result. On one hand, I was
pleased to see that Obsidian correctly recognized
all the links between my posts, as well as most of
the tags in the frontmatter. On the other hand, I
was disappointed to find that Obsidian and Hugo
do not parse frontmatter tags in exactly the same
way. In Hugo, a frontmatter line like this:

‑ open source

defines one single tag, open source. Obsidian, in-
stead does recognize such lines as tags, but
seems to stop parsing at the first whitespace,
thus treating tags like open source or open hard-
ware as if they all were the same tag, called open
(Figure 8). Enclosing words between quotes
seemed to make no difference. For other users,
this may be a totally irrelevant issue. For me, so
far this mismatch has made analyzing my tags
with Obsidian much less effective than it could be.
But it’s just plain text files, remember? Should I
find that I really need it, I could probably patch the
problem with some script that automatically re-
moves all the spaces inside tags.

Apart from tags, I have found the way Obsid-
ian shows me my own past work intriguing, at a

In addition to tags, Obsidian also supports
metadata in a format widely used by many Mark-
down-processing tools, called YAML. Nothing dif-
ficult here! YAML is a recursive acronym for YAML
Ain’t Markup Language. What it is however, is an
extremely simple way to declare all of a file’s prop-
erties. Listing 2 shows what a YAML-formatted
description of this tutorial might look like.

In the Markdown world, and in many other
markup systems too, metadata in YAML or similar
formats is called “frontmatter,” because it is always
placed at the very beginning of a file, delimited by
two lines, each containing just three dashes. When
a Markdown application finds a YAML key that it
does not recognize inside frontmatter, it just ig-
nores it. This is good, because it makes the format
extremely customizable without breaking compati-
bility. Obsidian exploits this flexibility with an
aliases key. If you place a key like this:

aliases: ["Internet of Things", IoT]

in the frontmatter of a note titled “What is the In-
ternet of Things?” then Obsidian will understand
that every occurrence of strings like [[Internet of
Things]] or [[IoT]] in other notes is a link to that

‑‑‑

title: An Obsidian tutorial

date: 2021‑02‑28

author: M. Fioretti

tag:

‑ linux

‑ knowledge bases

‑ writing

‑ productivity

url: <actual URL here>

magazine: Linux Magazine

‑‑‑

Listing 2: YAML-Formatted Description

Figure 8: Obsidian recognizes the tags presents in files
generated with other tools … as long as they don’t contain
spaces!

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM92

TUTORIAL – OBSIDIANLINUX VOICE

minimum, and potentially very useful, even if it
requires time. Figure 9 shows what my whole
corpus of more 1,200 blog posts looks like
through Obsidian. Some groups of posts (e.g.
those numbered 1 to 5 in Figure 9) rightly ap-
pear as mostly independent clusters. (Number
6 does not really matter, because it is the clus-
ter of all the posts that link to the About page of
the whole blog.)

Those five clusters, in fact, are long essays that
at some point I republished on the blog after split-
ting them into multiple short posts, with an “index”
post that is now the hub of the cluster. Further
study of the Obsidian graph will help me to see if
those clusters should also be linked from other
nodes. Then there are many posts without any link
to or from the others. Obsidian can list them in a
special pane, but the graph (see number 7 in Fig-
ure 9) really makes them stand out. The last
marker in Figure 9 indicates the graph menu,
which offers many options to customize the
graph. Hopefully, those graph visualization op-
tions, combined with the backlink listing function
of Obsidian, will give me many suggestions to
make my blog more interesting, and more useful,
for all its readers.

Conclusions
Let’s be clear: It takes a lot of self-discipline to re-
ally take advantage of any tool like Obsidian, but if
you can gather that discipline, it is really worth it.
While this software is not open source, it is “open”
in the sense explained above (i.e., highly interoper-
able with other tools and without lock-ins). For
these reasons, plus its graphic presentation, link
management, and tagging functions, Obsidian
can be quite helpful for anyone who has a lot of
mainly textual material to record, organize, and
reuse with the smallest possible effort, and that
doesn’t mean just students, academics, and other
professionals of the written word, from lawyers to
journalists. I half suspect, half hope, that Obsidian
can really help to discover what an essay I read
calls “the adjacent possible” [10].

Its web page says that “Obsidian works better if
you have large screens and atomic short notes.”
As true as this is, surely it is not the only valid set-
ting for Obsidian.

Personally, I will continue to test Obsidian as an or-
ganizer and assistant for preparing ebooks and
other long-form texts or data catalogs. But the best
way for you to use Obsidian depends on how your
own brain works and on the kind of material you need
to organize and analyze. I encourage everybody to try
Obsidian to discover what their way may be. nnn

[1]	� Obsidian: https://​obsidian.​md/

[2]	� Markdown format and tools:
https://​daringfireball.​net/​projects/​markdown/

[3]	� CommonMark: https://​commonmark.​org/

[4]	� GitHub Flavored Markdown (GFM):
https://​github.​github.​com/​gfm/

[5]	� Roam Research: https://​roamresearch.​com/

[6]	� Zettelkasten:
https://​en.​wikipedia.​org/​wiki/​Zettelkasten

[7]	� MarkDownload: https://​addons.​mozilla.​org/​
en‑GB/​firefox/​addon/​markdownload/

[8]	� My “Stop!” blog: https://​stop.​zona‑m.​net

[9]	� Hugo: https://​gohugo.​io/

[10]	� “Exploring the adjacent possible — The origin
of good ideas” by Ulf Ehlert, Understanding In-
novation (blog), January 3, 2019:
https://​understandinginnovation.​blog/​2019/​
01/​03/​exploring‑the‑adjacent‑possible‑​the‑​
origin‑of‑​good‑ideas/

Info

Figure 9: More than 1,200
blog posts, all connected in
one zoomable graph!

Marco Fioretti (http://​
mfioretti.​com) is a free-
lance author, trainer, and
researcher based in
Rome, Italy. He has been
working with free/​open
source software since
1995 and on open digital
standards since 2005. Marco also is a Board
Member of the Free Knowledge Institute
(http://​freeknowledge.​eu) and blogs about
digital rights at https://​stop.​zona‑m.​net.

The Author

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021 93

TUTORIAL – OBSIDIAN LINUX VOICE

https://obsidian.md/
https://daringfireball.net/projects/markdown/
https://commonmark.org/
https://github.github.com/gfm/
https://roamresearch.com/
https://en.wikipedia.org/wiki/Zettelkasten
https://addons.mozilla.org/en-GB/firefox/addon/markdownload/
https://addons.mozilla.org/en-GB/firefox/addon/markdownload/
https://stop.zona-m.net
https://gohugo.io/
https://understandinginnovation.blog/2019/01/03/exploring-the-adjacent-possible-the-origin-of-good-ideas/
https://understandinginnovation.blog/2019/01/03/exploring-the-adjacent-possible-the-origin-of-good-ideas/
https://understandinginnovation.blog/2019/01/03/exploring-the-adjacent-possible-the-origin-of-good-ideas/
http://mfioretti.com
http://mfioretti.com
http://freeknowledge.eu
https://stop.zona-m.net

LINUX
 NEWSSTAND
Linux Magazine is your guide to the world of Linux. Monthly issues are packed with advanced technical
articles and tutorials you won't find anywhere else. Explore our full catalog of back issues for specific
topics or to complete your collection.

Order online:
https://bit.ly/Linux-Newsstand

#244/March 2021

Stream Processing

The explosion of real-time data from sensors and monitoring devices is fueling
new interest in alternative programming techniques. This month we wade into
stream processing.

On the DVD: FreeBSD 12.2 and GhostBSD 20.11.28

#246/May 2021

Faster Startup

Weary of waiting for a login window? Your driver-drenched Linux distro was
configured for all systems, not for your system. This month we show you how to
optimize your system for faster startup.

On the DVD: Manjaro KDE Plasma 20.2.1 and Clonezilla Live 2.7.1

#245/April 2021

Choose a Shell

You’re never stuck with the same old command shell – unless you want to be.
This month we review some of the leading alternatives.

On the DVD: Arch Linux 2021.02.01 and MX Linux mx-19.03

#242/January 2021

3D Printing

The weird, wonderful, futuristic world of 3D printing is waiting for you right now if
you’re willing to invest a little time and energy. This month we help you get started
with practical 3D printing in Linux.

On the DVD: Ubuntu 20.10 “Groovy Gorilla” and Fedora 33 Workstation

#241/December 2020

Secure Your System

Security often means sophisticated tools like firewalls and intrusion detection systems,
but you can also do a lot with some common-sense configuration. This month we study
some simple steps for securing your Linux.

On the DVD: KDE neon 5.20.0 and elementary OS 5.2

#243/February 2021

iNet

With Linux, more innovation is always on the way. This month we take a look at the
iNet wireless daemon, a new wireless client that is poised to replace the venerable
WPA Supplicant.

On the DVD: Linux Mint 20 and Kali Linux 2020.4

95

SERVICE
Back Issues

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

FEATURED
EVENTS
Users, developers, and vendors meet at Linux events around the world.
We at Linux Magazine are proud to sponsor the Featured Events shown here.

For other events near you, check our extensive events calendar online at
https://www.linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar,
please send a message with all the details to events@linux-magazine.com.

Im
ag

es
 ©

 A
le

x
W

h
it

e,
 1

23
R

F.
co

m

SUSECON Digital 2021	 May 18-20	 Virtual Event	 https://www.susecon.com/

LISA21	 June 1-3	 Anaheim, California	 https://www.usenix.org/conference/lisa21

Global Maintainer Summit	 June 8-9	 Virtual Event	 https://globalmaintainersummit.github.com/

ODSC Europe	 June 8-10	 Virtual Conference	 https://odsc.com/europe/	

SYSTOR 2021 Hybrid	 June 14-16	 Haifa, Israel	 https://www.systor.org/2021/venue.html

stackconf online 2021	 June 15-16	 Virtual Event	 https://stackconf.eu/

openSUSE Virtual Conference 2021	 June 18-20	 Virtual Event	 https://events.opensuse.org/

Akademy 2021	 June 18-25	 Virtual Event	 https://akademy.kde.org/2021

ISC High Performance 2021 Digital	 June 24-July 2	 Virtual Event	 https://www.isc-hpc.com/

USENIX ATC '21	 July 14-16	 Santa Clara, California	 https://www.usenix.org/conference/atc21

Embedded Linux Conference 	 August 3-6	 Vancouver, British Columbia	 https://events.linuxfoundation.org/
North America

Open Source Summit North America	 August 3-6	 Vancouver, British Columbia	 https://events.linuxfoundation.org/

USENIX Security '21	 August 11-13	 Vancouver, British Columbia	 https://www.usenix.org/conferences

Kubernetes Community Days 	 September 9-10	 Amsterdam, Netherlands	 https://sessionize.com/kcdams2021/

DeveloperWeek Global: Cloud	 September 14-15	Virtual Event	� https://www.developerweek.com/global/

KVM Forum	 September 27-29	Dublin, Ireland	 https://events.linuxfoundation.org/

Embedded Linux Conference Europe	 Sept 28-Oct 1	 Dublin, Ireland	 https://events.linuxfoundation.org/

Open Source Summit Europe	 Sept 28-Oct 1	 Dublin, Ireland	 https://events.linuxfoundation.org/

 Events

 NOTICE
Be sure to check the event
website before booking any
travel, as many events are
being canceled or converted
to virtual events due to the
effects of COVID-19.

 stackconf online 2021

Date: June 15-17, 2021

Location: �Virtual Event

Website: �https://stackconf.eu/

Get to know innovative solutions in
the spectrum of container, hybrid, and
cloud technologies and learn what will
shape the future of open source
infrastructures. Follow the streamed
presentations of renowned experts,
ask your questions directly via live
chat, and network with participants
from all over the world.

 openSUSE Virtual Conference
 2021

Date: June 18-20, 2021

Location: Virtual Event

Website: �https://events.opensuse.org/

Join the annual openSUSE community
event that brings people from around
the world together to meet and collab-
orate. This virtual conference includes
organized talks, workshops, and BoF
sessions to provide a framework
around more casual meet ups and
hack sessions.

96

SERVICE
Events

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

We are always looking for good articles on Linux and the
tools of the Linux environment. Although we will consider
any topic, the following themes are of special interest:

•	 System administration

•	 Useful tips and tools

•	 Security, both news and techniques

•	 Product reviews, especially from real-world experience

•	 Community news and projects

If you have an idea, send a proposal with an outline, an esti-
mate of the length, a description of your background, and
contact information to edit@​linux-magazine.com.

The technical level of the article should be consistent with
what you normally read in Linux Magazine. Remember
that Linux Magazine is read in many countries, and your
article may be translated into one of our sister publica-
tions. Therefore, it is best to avoid using slang and idioms
that might not be understood by all readers.

Be careful when referring to dates or events in the future.
Many weeks could pass between your manuscript sub-
mission and the final copy reaching the reader’s hands.
When submitting proposals or manuscripts, please use a
subject line in your email message that helps us identify
your message as an article proposal. Screenshots and
other supporting materials are always welcome.

Additional information is available at:
http://www.linux-magazine.com/contact/write_for_us.

CALL FOR PAPERS

Zack Brown	 12

Bruce Byfield	 6, 22, 30

Joe Casad	 3

Mark Crutch	 73

Adam Dix	 75

Marco Fioretti	 88

Tobias Guggemos	 16

Jon “maddog” Hall	 74

Frank Hofmann	 38

Sirko Kemter	 78

Charly Kühnast	 51

Andrei Kuzmenko	 34

Christoph Langner	 66

Rubén Llorente	 46

Vincent Mealing	 73

Pete Metcalfe	 70

Graham Morrison	 82

Veit Schiele	 38

Mike Schilli	 52

John Schwartzman	 56

Ferdinand Thommes	 26

Jack Wallen	 8

Authors

Editor in Chief
	 Joe Casad, jcasad@linux-magazine.com
Copy Editors
	 Amy Pettle, Megan Phelps
News Editor
	 Jack Wallen
Editor Emerita Nomadica
	� Rita L Sooby
Managing Editor
	� Lori White
Localization & Translation
	� Ian Travis
Layout
	 Dena Friesen, Lori White
Cover Design
	 Dena Friesen
Cover Image
	 © mackoflower, 123RF.com
Advertising
	 Brian Osborn, bosborn@linuxnewmedia.com
	 phone 	 +49 8093 7679420
Marketing Communications
	 Gwen Clark, gclark@linuxnewmedia.com
	 Linux New Media USA, LLC
	 4840 Bob Billings Parkway, Ste 104
	 Lawrence, KS 66049 USA
Publisher
	 Brian Osborn
Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@linuxpromagazine.com
	 Phone: 1-866-247-2802
	 (Toll Free from the US and Canada)

	 For all other countries:
	 Email: subs@linux-magazine.com

www.linuxpromagazine.com – North America
www.linux-magazine.com – Worldwide

While every care has been taken in the content of
the magazine, the publishers cannot be held respon-
sible for the accuracy of the information contained
within it or any consequences arising from the use of
it. The use of the disc provided with the magazine or
any material provided on it is at your own risk.

Copyright and Trademarks © 2021 Linux New
Media USA, LLC.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the publishers. It is assumed that all cor-
respondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are sup-
plied for publication or license to third parties on
a non-exclusive worldwide basis by Linux New
Media USA, LLC, unless otherwise stated in writing.

Linux is a trademark of Linus Torvalds.

All brand or product names are trademarks
of their respective owners. Contact us if we
haven’t credited your copyright; we will always
correct any oversight.

Printed in Nuremberg, Germany by hofmann
infocom GmbH.

Distributed by Seymour Distribution Ltd, United
Kingdom

LINUX PRO MAGAZINE (ISSN 1752-9050) is
published monthly by Linux New Media USA, LLC,
4840 Bob Billings Parkway, Ste 104, Lawrence, KS
66049, USA. Periodicals Postage paid at
Lawrence, KS and additional mailing offices.
Ride-Along Enclosed. POSTMASTER: Please
send address changes to Linux Pro Magazine,
4840 Bob Billings Parkway, Ste 104, Lawrence,
KS 66049, USA.

Published monthly in Europe as Linux Magazine
(ISSN 1471-5678) by: Sparkhaus Media GmbH,
Bialasstr. 1a, 85625 Glonn, Germany.

 Contact Info

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 247	 JUNE 2021

Image © o_du _van, 123RF.com

Preview Newsletter
The Linux Magazine Preview is a monthly email
newsletter that gives you a sneak peek at the next
issue, including links to articles posted online.

Sign up at: https://bit.ly/Linux-Update

 Approximate
UK / Europe	 Jun 05
USA / Canada	 Jul 02
Australia	 Aug 02

 On Sale Date
Please note: On sale dates are
approximate and may be delayed
because of logistical issues. Brain Tools

Issue 248 / July 2021

The open source space is home to thousands
of useful utilities for almost any task. Next
month we explore some free desktop
applications for the brain, including tools for
help with memorization, mind mapping, logical
puzzles, and mathematical visualization.

98

NEXT MONTH
Issue 248

JUNE 2021	 ISSUE 247	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

	Linux Pro Magazine 247
	Welcome
	Contents
	On the DVD
	News
	Kernel News
	Quantum Computing and Encryption
	Distro Walk – Knoppix
	Distri
	Command Line – Installers
	DTLS – Encryption for UDP
	JSON Deep Dive
	dgamelaunch
	Charly’s Column – Zint
	Programming Snapshot – fsnotify
	ARM64 Assembly and GPIO
	Pi OS 2020-12-02
	Zenity Dialogs
	LInux Voice Introduction
	Doghouse – Code Longevity
	EdUBudgie
	Kit Scenarist
	FOSSPicks
	Tutorial – Obsidian
	Back Issues
	Events / Authors
	Linux Pro Magazine 248 Preview

