
WWW.LINUXPROMAGAZINE.COM

L
IN

U
X

 P
R

O
 M

A
G

A
Z

IN
E

 IS
S

U
E

 2
6

3
O

C
T

O
B

E
R

 2
0

2
2

B
uild an IoT Linux M

kD
ocs LO

 M
acros Find Fake N

ew
s RFID

 w
ith Rasp Pi Rocky Linux Pigpio O

liveTin and Script Server Im
ageM

agick

Create a User-Friendly Front
End for Your Bash Scripts

0 A.D.: Bring the past to life
with this free strategy game

ISSUE 263 – OCTOBER 2022

Tools for Detecting
Fake News

ImageMagick Tricks:
Paint an image in a script

Read RFID Tags
with a Rasp Pi

Shrink your OS to fit the device

Build an
IoT Linux

10 MORE KILLER
FREE TOOLS!

HUGE SAVINGS! $49.90 VALUE!FREE ARCHIVE DVD
ALL 262 ISSUES ON A SEARCHABLE DISC!

I feel like we entered a new era earlier this year when
Google scientist Blake Lemoine declared that he thought
Google’s LaMDA artificial intelligence is “sentient,” and
that the company should probably be asking LaMDA’s
permission before studying it. The news this month is
that Google fired Lemoine. The stated reason was that
he violated a confidentiality agreement, but few observers
could separate the termination from Lemoine’s announce-
ment and the controversy that followed.

Let me explain, I don’t think this story is important be-
cause the computer was sentient – in fact, I’m quite sure
it wasn’t. I just find it strange that we’re even talking about
it, and the way we’re talking about it is even stranger.
Several leading computer scientists, and Google as a
company, have gone on record stating that the claim
was preposterous. The story wasn’t much as a computer
science event, but as a pop culture phenomenon, it was
pure gold. Was this the classic dystopian sci-fi story of a
man falling in love with a machine? Or is there a chance
that this program is seriously a life form? (“Whoa, kind
of makes you think, doesn’t it…?”)

The oddest part was that these several leading computer
scientists thought it was important to explain that, despite
what you’re thinking, no seriously, the program really
doesn’t feel things the way that we do. To be fair, they
were probably working peacefully in their labs when a
press guy showed up and turned a TV camera on them,
but still I wonder if we’re approaching this the right way –
and if this “is it alive?” question is a diversion from the
serious questions we should be asking.

The term “sentient,” in this case, relates to the state of
having feelings, rather than just knowledge. Many have
equated this to experiencing a state of consciousness. So
this debate has migrated from the cold, analytical realm
of computer science to the fuzzy sphere of metaphysics,
where these concepts are quite difficult to define.

Before you say whether a computer has consciousness,
you kind of have to define what consciousness is, and
there is a vast range of answers for that, depending on
whether you are talking to a priest, a psychologist, a
neurologist, or a new age mystic. But the point is, AIs like
LaMDA are not created to be human – they are created to
make people think they are human. If you learn to tap into
human response patterns and emotional cues, humans
will treat you differently. (Sorry dog lovers: That’s what
your dog is doing.)

Computer scientists are working overtime right now try-
ing to create systems that behave as through they are
conscious so that humans will react to them more “nat-
urally.” In other words, these systems will manipulate
us emotionally.

We will then have two choices:

•	� Fall for these artificial response patterns and emotional
cues (react to the machines as if they were our friends –
in other words, be manipulated)

•	� Ignore the artificial response patterns and emotional
cues (in other words, get practice every day treating en-
tities that behave like humans in a callous and uncaring
manner that denies their humanity)

Neither option sounds particularly appealing to me. Of
course, Google, Meta, and the other for-profit corpora-
tions who are working on these kinds of solutions will say
they just want to build a better chatbot, but that’s the
whole problem with this tech space: We’re not so good at
putting genies back in bottles once they get out.

SENTIENCE AND SENSIBILITY

Joe Casad,
Editor in Chief

Dear Reader,

3

EDITORIAL

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

Welcome

08	 News
• Kali Linux 2022.3 Released
• 14" Pinebook Pro Linux Laptop Ships
• OpenMandriva Lx ROME Technical Preview Released
• Linux Mint 21 Now Available
• Firefox Adds Long-Anticipated Feature
• �System76 Oryx Pro Laptop Refreshed with a New CPU

12	 Kernel News
• Chasing the Dream
• The Power of the FUSE Side
• NTFS3 Maintainership Issues
• Crashing and Warning

26	 Distro Walk – Many Hats
The Red Hat family and its many derivatives.

16	 Yocto
The Yocto project gives you all the tools you’ll need to
build a custom Linux for an IoT device.

22	 Buildroot
Whether you need a tiny OS for 1MB of flash memory or a
complex Linux with a graphical stack, you can quickly set
up a working operating system using Buildroot.

IN-DEPTH

COVER STORIES

NEWS

REVIEW

ON THE COVER
30	� Detecting

Disinformation
Use these free tools and
browser extensions to
check the accuracy of
photos, videos, and
news information you
find online.

46	� OliveTin and Script
Server
You don’t need to be a coder to
create a polished web-based
front end for a Bash script.

60	 RFID with SPI
Convert your Rasp Pi to an
RFID reader using the RC522
RFID kit and an SPI display.

76	 0 A.D.
Navigate through lost civilizations
with this classic game.

90	� Drawing with
ImageMagick
This handy image fixer can do
more than touch up photos.
We’ll show you how to draw
pictures with scripts.

30	 Disinformation Detector
Fake information is experiencing a boom, but given the right
tools, you can reliably separate the wheat from the chaff.

34	 Command Line – Bash History
The versatile Bash history command can save you time and
effort at the command line.

38	 LibreOffice Macros with ScriptForge
ScriptForge helps you automate LibreOffice by building
portable macros.

42	 MkDocs
MkDocs, a static site generator, lets you easily transform
Markdown files into ready-to-use, user-friendly project
documentation.

46	 OliveTin and Script Server
Create a user-friendly front end for your Bash scripts
without writing a single line of HTML, CSS, or JavaScript.

52	� Programming Snapshot – Smart Predictions
with Go
Because shell command sequences tend to reoccur, smart
predictions can save you time typing. We first let the shell
keep notes on what gets typed, before a Go program
guesses the next command and runs it for you.

56	 Introducing Rocky Linux
Rocky Linux emerges as a free alternative to Red Hat
Enterprise Linux.

OCTOBER 2022

4 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

60	 RFID over SPI
Inexpensive components for the SPI interface let you
upgrade a Raspberry Pi 4 to a display system for zero-
contact RFID-based data acquisition.

66	 Pigpio
The wiringPi library, which many Raspberry Pi fans have
grown attached to over the years, is no longer under
maintenance by its developer. An alternative called Pigpio
has arrived just in time.

MakerSpace

Build an IoT Linux
The most amazing thing about
Linux is its flexibility. Linux
systems run on the biggest
computers in the world – and
on many of the diminutive
devices that populate your home
environment. If you’ve always
wondered how developers adapt
Linux to run on tiny tech, you’ll
appreciate this month’s stories on
Buildroot and the Yocto project.

69	 Welcome
This month in Linux Voice.

71	 Doghouse – Algorithms and Books
A look at the history of computer memory and a
classic algorithm text.

72	 KOReader E-reader
KOReader offers enough features to give your humble
ebook reader new powers and completely transform
your reading experience.

76	 0 A.D.
Steer the fortunes of ancient civilizations with this
real-time strategy game.

84	 FOSSPicks
This month Graham looks at Cecilia 5, chezmoi, Viddy,
EmuDeck, Paperless-ngx, MegaGlest, and more!

90	 Tutorial – ImageMagick
ImageMagick can do more than just edit existing
images. You can even write a script that will create a
simple drawing.

FREE
ARCHIVE
DVD
All 262 issues
on a searchable
disc!

SEE PAGE 6
FOR DETAILS

5LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

Linux Magazine Archive DVD

Defective discs will be replaced.
Please send an email to subs@linux-magazine.com.

Although this Linux Magazine disc has been tested and is to the best of
our knowledge free of malicious software and defects, Linux Magazine
cannot be held responsible and is not liable for any disruption, loss, or
damage to data and computer systems related to the use of this disc.

Linux Magazine Archive DVD
This month’s DVD includes the 2022 edition of the Linux

Magazine Archive DVD – every previous issue of Linux
Magazine on a single, searchable disc. Browse the

pages of every article we’ve ever published, and
experience our special brand of technical yet
accessible how-to insights.

If you want to learn about a common tool in the
open source space, search this disc – we’ve
probably written about it more than once over
the last 22 years. Catch all the articles you
missed – on scripting, system administration,
security, containers, cloud computing, Raspberry
Pi, and more! Discover desktop applications that
will save you time and simplify your life, and

relive important moments in the history of Linux:
the SCO case, the Novell/​Microsoft pact, the birth of

Git, the mobile revolution, and more.

Many older issues are out of print, experience them
all through the Linux Magazine Archive DVD!

6 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

DVD
This Month’s DVD

 �Kali Linux 2022.3 Released
Kali Linux has been one of the most widely-used penetration testing Linux distri-
butions on the market. With a vast number of preinstalled tools available, security
experts and pen testers can use the platform to uncover just about any vulnerabil-
ity or weakness on your network.

The 2022.3 release, has a few new tricks up its sleeve, including a new VirtualBox
image format, weekly images, and build scripts (so you can roll your own); new Net-
Hunter updates; and five new tools, which are BruteShark (a network analysis tool),
DefectDojo (an open source application vulnerability correlation and security orches-
tration tool), phpsploit (a post-exploitation framework), shellfire (a tool for exploiting
LFI/RFI and command injection vulnerabilities), and SprayingToolkit (a tool for testing
password spraying attacks).

Another addition to Kali Linux is their new Discord server (Kali Linux & Friends)
(https://discord.kali.org/), where the community can chat in real time about Kali
Linux. According to the Kali Linux blog, the Discord server is “a community server,
all with common interests. We do not have the goal to get as many users as pos-
sible, instead, we are growing a place for each other to help one another. We are
focusing on quality not quantity.”

Finally, there’s also a new Test Lab Environment, where you can create a test
bed to learn, practice, and benchmark. To make it easier to build a test lab, the
developers have packaged DVWA (https://www.kali.org/tools/dvwa/), to practice
with some of the most common web vulnerabilities, and Juice Shop (https://www.
kali.org/tools/juice-shop/), which encompasses vulnerabilities from the entire
OWASP Top Ten.

Download a copy of Kali Linux 2022.3 (https://www.kali.org/get-kali/) and read the offi-
cial release notes (https://www.kali.org/blog/kali-linux-2022-3-release/) to find out more.

 14" Pinebook Pro Linux Laptop Ships
After a lengthy shipping delay caused by COVID-19 limitations in China, the ARM-
based 14" Pinebook Pro laptop is available again from Pine64. The device ships with
a 64-bit Dual-Core ARM 1.8GHz Cortex A72 and Quad-Core ARM 1.4GHz Cortex
A53, with a Quad-Core MALI T-860 GPU, 4GB LPDDR4 dual-channel system DRAM,
and 64GB eMMC 5.0 internal storage.

The Pinebook Pro 14" audience mostly focuses on those who want to experiment
with Linux on ARM devices. In fact, Pine64 goes so far as to say, “Please do not

08	 • �Kali Linux 2022.3
Released

	 • �14" Pinebook Pro Linux
Laptop Ships

09	 • �OpenMandriva Lx ROME
Technical Preview
Released

	 • �Linux Mint 21 Now
Available

	 • �More Online

10	 • �Firefox Adds Long-
Anticipated Feature

	 • �System76 Oryx Pro
Laptop Refreshed with a
New CPU

8 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools

https://discord.kali.org/
https://www.kali.org/tools/dvwa/
https://www.kali.org/tools/juice-shop/
https://www.kali.org/tools/juice-shop/
https://www.kali.org/get-kali/
https://www.kali.org/blog/kali-linux-2022-3-release/

order the Pinebook Pro if you’re seeking a substitute for your X86 laptop, or are just
curious and you’re ordering it with an intent to file a return/refund return request.
These pre-orders are meant for enthusiasts familiar with the ARM architecture and
interested in the PineBook Pro for this specific reason.”

Other specs for the laptop include WiFi 802.11 AC, Bluetooth 5.0, one USB
3.0 and one USB 2.0 type A, one USB type C port, microSD card, headphone
jack, built-in mic, full-sized ANSI (US-only) keyboard, multitouch trackpad,
9600mAH battery, a 14.1" IPS LCD display (at 1920x1080), and a 2.0-megapixel
front-facing camera.

You can learn more about the Pinebook Pro 14" and purchase your own from the
official Pine64 site (https://pine64.com/product/14%e2%80%b3-pinebook-pro-linux-
laptop-ansi-us-keyboard/). Currently, the Pinebook Pro 14" laptop costs only $219.99,
and the company makes zero profit from the devices, as the laptops are offered as a
community service to the Pine64, Linux, and BSD communities.

 �OpenMandriva Lx ROME Technical Preview
Released

Once upon a time, I hung out with the Mandrake Linux team at a Linux conven-
tion. That was back in the late 1990s, and things have changed quite a bit since
then. Mandrake Linux ceased being developed in 2011. Arising from the its
ashes, OpenMandriva, a fusion of the Brazilian Connectiva Linux and Mandrake,
has since flourished.

Recently, the OpenMandriva developers have announced the latest technical pre-
view release of their Lx ROME distribution, which is a rolling release take on the
open source operating system. One thing of note is that the developers have
switched off the auto-updater tool for ROME because they’ve been making some
major changes to the tool-chain/system packages in the Cooker branch. These
changes have resulted in updates being unsafe (which is why the tool was shut off).

So, for those who want to get a taste of what’s coming up for OpenMandriva Lx
ROME, the technical preview is a great source.

The biggest changes coming to OpenMandriva Lx ROME include Python 3.11,
Java 20, kernel 5.18.12 (which is a Clang-built kernel), the latest KDE software
(Plasma v5.25.3), /usr merge (which is a major change for the Linux filesystem hier-
archy), Btrfs and XFS support have been restored, DNF 5 and zypper are both avail-
able, and over 31,343 bug fixes have been applied.

Download a copy of the OpenMandriva Lx ROME technical preview from Source-
Forge (https://sourceforge.net/projects/openmandriva/files/release/5.0/Technical-
Preview/) and read this official OpenMandriva blog post (https://www.openmand-
riva.org/en/news/article/openmandriva-lx-rome-rolling-technical-preview) for more
information about the preview release.

 �Linux Mint 21 Now Available
Linux Mint 21 has arrived and it includes some interesting updates and features
that will please both new and previous users alike. One big addition is the new up-
grade tool that makes it even easier to upgrade to a major version with just a few
clicks of a graphical tool. The new updater displays packages that have been up-
graded, as well as those that won’t, and reports if any PPAs will no longer be sup-
ported in the new version.

Linux Mint 21 also ships with a new Bluetooth application, Blueman, and the
BlueZ back end. This was done for two reasons. First, Blueman is a superior ap-
plication. The second reason is explained by Clement Lefebvre (Linux Mint lead
developer) when he said in a blog post back in March (https://blog.linuxmint.
com/?p=4285):

“On the development side of things, the latest version of gnome-bluetooth intro-
duced changes which broke compatibility with Blueberry, and its main developer
isn’t keen on seeing his work used outside of Gnome. Blueman on the other hand

ADMIN HPC
http://www.admin-magazine.com/HPC/

Sharing a Linux Terminal Over the Web
• Jeff Layton
The ability to share a terminal over the web
could multiply the effectiveness of admins
and users. The tty-share tool might be the
answer.

Sharing Linux Terminals
• Jeff Layton
Sometimes sharing a screen between two
users is enormously helpful. We look at two
terminal sharing tools: screen and tmux.

ADMIN Online
http://www.admin-magazine.com/

Load testing with Locust
• Matthias Wübbeling
The Locust load test tool assesses the
resiliency of your infrastructure to help you
determine whether it can withstand a flood
of requests.

Remote maintenance and automation
with RPort
• Thorsten Kramm
Firewalls and network address translation
often stand in the way of access to remote
systems, but the free RPort software works
around these obstacles and supports remote
maintenance through a tunnel locally, in the
cloud, and from your home office.

Comparing startup times of Linux distros
in the cloud
• Federico Lucifredi
A cloud speed test pits Linux distributions
against one another.

Linux Magazine
www.linux-magazine.com

9

NEWS

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

MORE ONLINE

Linux News

https://pine64.com/product/14%e2%80%b3-pinebook-pro-linux-laptop-ansi-us-keyboard/
https://pine64.com/product/14%e2%80%b3-pinebook-pro-linux-laptop-ansi-us-keyboard/
https://sourceforge.net/projects/openmandriva/files/release/5.0/Technical-Preview
https://sourceforge.net/projects/openmandriva/files/release/5.0/Technical-Preview
https://www.openmandriva.org/en/news/article/openmandriva-lx-rome-rolling-technical-preview
https://www.openmandriva.org/en/news/article/openmandriva-lx-rome-rolling-technical-preview
https://blog.linuxmint.com/?p=4285
https://blog.linuxmint.com/?p=4285
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/
http://www.linux-magazine.com

Get the latest news
in your inbox every
two weeks

Subscribe FREE
to Linux Update
bit.ly/Linux-Update

welcomed a Mint migration and is open to changes. We’re currently testing Blue-
man and working on its integration within Linux Mint.”

Other new features found in Linux Mint 21 include Timeshift becoming an
official Linux Mint tool, WebP image support, better thumbnails via XAPP, new
wallpapers, the including of libfuse2 and libfuse3-3 for AppImage applications,
Cinnamon 5.4.2, kernel 5.15, an improved Sticky Notes app (which allows for
note duplication), and a new process manager system tray app for monitoring
automated tasks.

One thing the Linux Mint Developers didn’t add to version 21 is systemd-oomd,
which is a service that automatically manages out-of-memory issues by killing
running applications. Ubuntu 22.04 introduced this feature, which has since
caused numerous problems in user space. Because of this, the developers of Linux
Mint opted to nix the inclusion of this feature.

Download your copy of Linux Mint 21 now (https://www.linuxmint.com/down-
load.php).

 �Firefox Adds Long-Anticipated Feature
With the release of Firefox 103, a few new additions are aimed at greatly im-
proving the experience of some users. One of the biggest additions to the open
source web browser is two-finger horizontal swipe gesture support for navigat-
ing back and forward with a trackpad. This feature has been in the works for
some time and is now seeing the light of day. However, there is a caveat to the
new addition. The developers’ goal was to have the feature fully supported with
version 103; however, upon release, the only way to use the two-finger swipe
gesture is to first press and hold the Alt key on your keyboard. Hopefully, some-
where in the next few updates, that requirement will be removed and the fea-
ture will work exactly as expected.

Other goodies added to Firefox 103 include highlighted required fields on PDFs,
significant performance improvements for monitors with 120Hz+ refresh rates, im-
proved Picture-in-Picture subtitles, and buttons in the Tabs toolbar can now be ac-
cessed with Tab, Tab+Shift, and keyboard arrow keys.

Several issues have also been fixed, such as preserving non-breaking spaces,
WebGL performance issues, and start-up time slowdowns due to processing web
content local storage.

To find out more about what’s new with Firefox 103, check out the official re-
lease notes (https://www.mozilla.org/en-US/firefox/103.0/releasenotes/). As of
now, this new version has yet to hit the official repositories for most distributions,
but you can download it from the official Mozilla site (https://www.mozilla.org/
en-US/firefox/new/).

 �System76 Oryx Pro Laptop Refreshed with a
New CPU

Linux hardware vendor System76 has announced an update to their Oryx Pro
laptop computer. The Oryx Pro, which is a popular option for gaming as well as
artificial intelligence/machine learning, comes with a new 12th Gen Intel CPU
boasting 14 cores and 20 threads running between 1.7 to 4.7GHz. System76 has
also made it so you can configure the Oryx Pro with either NVIDIA RTX 3070 Ti
or 3080 Ti graphics (along with the RTX 3070 and 3080 that were previously
available).

The Oryx Pro includes a 15.6" or 17.3" FHD (1920x1080) matte finish display, up to
64GB dual-channel DDR4, and up to 4TB M.2 PCIe Gen4x4 internal storage. As for
ports/expansion, the Oryx Pro includes 1 Thunderbolt 4, 2 USB 3.2 Gen 1, 1 USB 3.2
Gen 2, and 1 microSD card reader. The Oryx Pro battery is a 6-cell, 80Wh polymer,
so you can get plenty of usage from a full charge.

The Oryx Pro base price starts at $2,199 and is available now (https://system76.com/
laptops/oryp9/configure).

10 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Linux News

NEWS

https://www.linuxmint.com/download.php
https://www.linuxmint.com/download.php
https://www.mozilla.org/en-US/firefox/103.0/releasenotes/
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
https://system76.com/laptops/oryp9/configure
https://system76.com/laptops/oryp9/configure

12 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

NEWS
Kernel News

triggers a potential lockdep issue on high
memory usage – lockdep complains
about fs-reclaim lock. I’ve a patch set
that works but I’m working through
making it bisectable. I think the easiest
thing is to integrate these fixes and the
others sent to Andrew into a v8. I hope
to have this done by the end of the day
tomorrow.”

And the thread ended there. Clearly
the feature as a whole will be a wel-
come addition to the kernel, and the
bug hunt is a normal part of any new
feature submitted for wider use and
consideration.

One thing I personally like is that the
Maple Tree is not intended to add some-
thing that was missing or fix something
that was broken – although I like those
objectives too. The Maple Tree is in-
tended to make the kernel faster and to
make the code itself cleaner. It’s easy to
forget, among the various security dis-
cussions and other more high profile is-
sues, that the main purpose of the
Linux kernel is to put as much of the
power of our hardware into our hands
as possible, while disappearing as much
as possible into the background and the
sidelines. It’s the little uncelebrated
things like Liam and Matthew’s Maple
Tree that continually edge Linux closer
and closer to that ideal.

The Power of the FUSE Side

Dharmendra Singh wanted to extend
Filesystem in USErspace (FUSE) to
allow multiple users to write to a file at
the same time. He said, “As of now, in
FUSE, direct writes on the same file are
serialized over inode lock, i.e we hold
inode lock for the whole duration of
the write request. This serialization
works pretty well for the FUSE user
space implementations which rely on
this inode lock for their cache/​data in-
tegrity etc. But it hurts badly such
FUSE implementations which has their
own ways of maintaining data/​cache
integrity and does not use this serial-
ization at all.”

Chasing the Dream

Liam Howlett, speaking for himself
and Matthew Wilcox, recently an-
nounced the Maple Tree, which he
wished to have included in Linux. An-
drew Morton asked for a nice explana-
tion of what the Maple Tree was. So,
despite whatever lovely pastoral scene
you might have envisioned would
come next, Liam actually said, “the
maple tree is an RCU-safe range based
B-tree designed to use modern proces-
sor cache efficiently.”

A B-tree is a data structure designed to
let the user find and retrieve big pieces
of data extremely efficiently. The “tree”
in the name refers to a branching search
path, where you ditch the wrong paths
and narrow down the remaining search
quickly. This is similar to the fun guess-
ing game, where one person picks a se-
cret number between 1 and 100 and then
tells whether each of their friends'
guesses is higher or lower than the se-
cret number. However, instead of the
“binary” high/​low way of narrowing
down the search, B-trees can split into
more than two branches at a time.

As Liam put it, “With the increased
branching factor, it is significantly
shorter than the rbtree so it has fewer
cache misses. The removal of the linked
list between subsequent entries also re-
duces the cache misses and the need to
pull in the previous and next VMA dur-
ing many tree alterations.”

Yu Zhao liked the patch and offered to
do some testing, as needed. In fact, he
posted a crash report with some debug-
ging data, which Liam looked over with
interest, and the two of them had a bug
hunting session together. Finally Liam
said, “the cause is that I was not cleaning
up after the kmem bulk allocation failure
on my side.” After a few iterations of
patches to fix it, he continued, “The
above fix stopped the suspicious rcu
dereference. I’ve found another issue in
the mlock() code which I’ve also fixed …
but I needed to change my allocations
from within the immap rwsem lock as it

Zack’s Kernel News

Chronicler Zack Brown reports
on the latest news, views,
dilemmas, and developments
within the Linux kernel
community.
By Zack Brown

The Linux kernel mailing list comprises
the core of Linux development activities.
Traffic volumes are immense, often
reaching 10,000 messages in a week, and
keeping up to date with the entire scope
of development is a virtually impossible
task for one person. One of the few brave
souls to take on this task is Zack Brown.

Author

Kernel News

13LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

NEWS

FUSE is one of those insanely cool
things that makes your jaw hang open and
your eyes widen while you consider the
possibilities. It’s a kernel mechanism that
lets regular users design whole new ways
of representing pretty much anything they
can conceive of in the form of files and di-
rectories. You (yes, you) could make an
email-sending filesystem where directory
names are email addresses, and you auto-
matically send mail to someone by putting
a file containing the text of the email into
their directory. It’s ridiculous.

So, Dharmendra wanted to make it
even better and posted a patch to do so.
As he explained, “This patch allows
parallel direct writes on the same file
with the help of a flag called FOPEN_
PARALLEL_WRITES. If this flag is set
on the file (flag is passed from libfuse to
fuse kernel as part of file open/​create),
we do not hold inode lock for the whole
duration of the request [and] instead
acquire it only to protect updates on
certain fields of the inode. FUSE imple-
mentations which rely on this inode
lock can continue to do so and this is
default behaviour.”

Miklos Szeredi looked the patch over
and offered some technical feedback re-
garding exactly when and under what
circumstances the inode lock would be
needed by each process attempting a si-
multaneous write. When a process
holds the inode lock, it means that for
that tiny fraction of a second, it has the
file all to itself. The goal for parallel
writes would be to minimize holding
the inode lock as much as possible, to
make the write parallelization as
smooth as possible.

The two of them went back and forth,
considering the possible specific conflicts
that two processes might encounter during
parallel writes to a file and how those con-
flicts might be resolved. Each and every
such case would need to be understood
and handled in kernel space in order for
Dharmendra’s patch to work safely.

The conversation ended after a while,
with work ongoing. This is the sort of
feature that a small subset of FUSE users
will find extremely useful, while the rest
won’t care one way or the other. Your
auto-emailer filesystem, for example,
would probably not notice the addition
of this patch. On the other hand, your
high performance, distributed database
filesystem just might.

NTFS3 Maintainership
Issues

Some time back, Paragon Software
submitted NTFS3, a replacement for
the old and ailing NTFS filesystem.
Rafał Miłecki initiated the process, and
then Konstantin Komarov, also from
Paragon, became the official main-
tainer. A half year or so later, Kari Ar-
gillander complained on the Linux ker-
nel mailing list that after NTFS3 had
been merged the “ntfs3 maintainer has
kept total radio silence. I have tried to
contact him with personal mails with
no luck. […] There is lot of bug reports
which are ignored completely. Lot of
patches which nobody applies. […] I
did my best try to help Konstantin with
maintainer things, but I have to say
that it was quite difficult as he mostly
ignored emails and do many things like
he wanted. He did not suggest any-
thing to anyone if someone send patch.
He just applied those or ignored. Also
sometimes he just applied [his] own
patch without sending it to review pro-
cess. […] I also did suggest that I could
co maintain this driver to take burden
from Konstantin, but haven’t got any
reply.”

Kari went on to say, “Now is time to
think what we should do. Should ntfs3
just be removed? As I really wanted to
see that ntfs3 will be big thing I have to
say that I vote for removing unless
someone comes to rescue this catastro-
phe. Yes we break userspace, but we
might break it silently if nobody is main-
taining this. I also do not believe that if
someone is just accepting patches that it
is enough.”

Linus Torvalds replied, saying:
“If you are willing to maintain it (and

maybe find other like-minded people to
help you), I think that would certainly be
a thing to try.

“And if we can find *nobody* that
ends up caring and maintaining, then I
guess we should remove it, rather than
end up with *two* effectively unmain-
tained copies of NTFS drivers.”

Leonidas-Panagiotis Papadakos sug-
gested that if one of them did have to
be removed, it might be better to re-
move the old one rather than the new
NTFS3 code.

Namjae Jeon volunteered to help Kari
maintain NTFS3 if things went in that

direction. He also added, regarding the
original NTFS code, “I’m currently work-
ing write support on read-only NTFS(fs/​
ntfs) with the goal of being released in a
few months.”

Kari sent an update to the mailing list,
saying he and Namjae had talked it over,
and he would start the process of be-
coming a maintainer, get his PGP key
signed, and take care of the rest of the
formal maintainership process.

At this point Konstantin, the official
maintainer from Paragon, joined the dis-
cussion, saying:

“Active work on NTFS3 driver has
never stopped, and it was never de-
cided to ‘orphan’ NTFS3. Currently we
are still in the middle of the process of
getting the Kernel.org account. We need
to sign our PGP key to move forward,
but the process is not so clear (will be
grateful to get some process descrip-
tion), so it is going quite slow trying to
unravel the topic.

“As for now, we can prepare patches/​
pull requests through the github, and
submit them right now (we have quite a
bunch of fixes for new Kernels support,
bugfixes and fstests fixes) – if Linus ap-
proves this approach until we set up the
proper git.kernel.org repo.

“Also, to clarify this explicitly: in addi-
tion to the driver, we’re working of ntfs3
utilities as well.

“Overall, nevertheless the NTFS3 devel-
opment pace has been slowed down a bit
for previous couple of months; its state is
still the same as before: it is fully main-
tained and being developed.”

Kari thanked Konstantin for the
email, though Kari chided him, saying,
“I have to disagree that it is fully main-
tained right now. Half year radio si-
lence is not ‘fully maintained’. But we
can work this out so that this driver
will be fully maintained.”

Kari went on to say, “the offer is still
that you do not have to maintain this
fully by yourself if this is too much
work. There is many other subsystem
where there are multiple maintainers.
Also I would like to point once again
that we really need to check that stable
gets fixes also. But those are just what
are fixes not new features. Also only
merge window should be new code.
Every other should only contain fixes.
This is why usually couple different
branch is needed. If you have any

14 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Kernel News

NEWS

CONFIG_DEBUG_VM? I don’t think so,
because it defeats the purpose of those
distros enabling it in the first place.

“The bottomline is that none of RHEL
8.5, SLES 15, [or] Debian 11 enables
CONFIG_DEBUG_VM.”

Andrew went to obtain the proof in
the pudding and found specific in-
stances of Red Hat Linux enabling CON-
FIG_DEBUG_VM in its build system. He
showed these to Yu, who replied, “Yes,
Fedora/​RHEL is one concrete example
of the model I mentioned above (experi-
mental/​stable). I added Justin, the Fe-
dora kernel maintainer, and he can fur-
ther clarify. If we don’t want more VM_
BUG_ONs, I’ll remove them. But (let me
reiterate) it seems to me that just de-
feats the purpose of having CONFIG_
DEBUG_VM.”

Andrew was not unsympathetic and
said, “It was never expected that VM_
BUG_ON() would get subverted in this
fashion.” He suggested potentially de-
signing an additional BUG_ON() function
that would be better. But he also
pointed out, “none of this addresses the
core problem: *_BUG_ON() often kills
the kernel. So guess what we just did?
We killed the user’s kernel at the exact
time when we least wished to do so:
when they have a bug to report to us.
So the thing is self-defeating. It’s much
much better to WARN and to attempt to
continue. This makes it much more
likely that we’ll get to hear about the
kernel flaw.”

Linus Torvalds joined the discussion
at this point, saying, “There is abso-
lutely _zero_ advantage to killing the
machine. If you want to be notified
about ‘this must not happen’, then
WARN_ON_ONCE() is the right thing
to use. BUG_ON() is basically always
the wrong thing to do.”

Yu stood his ground, replying to Linus,
“for the greater good, do we want to in-
flict more pain on a small group of users
running experimental kernels so that
they’d come back and yell at us quicker
and louder? BUG_ONs are harmful but
problems that trigger them would be
presumably less penetrating to the user
base; on the other hand, from my experi-
ence working with some testers (ordi-
nary users), they ignore WARN_ON_
ONCEs until the kernel crashes.”

But Linus felt that argument did not
hold water. He replied:

questions please feel to always ask me
or from mailing list.”

The discussion ended there. Paragon
is not having the greatest of all debuts
as a maintainer of kernel code, but this
can also be seen as par for the course.
Ultimately the handshaking process
between corporate and kernel culture
can be jarring for both sides, and the
kernel people are generally very famil-
iar with the various jolts and stumbles
that can befall the process. I expect
Konstantin and Paragon to keep im-
proving and to essentially become
“good kernel citizens.”

Crashing and Warning

While submitting a patch, Yu Zhao made
the lovely statement, “To further exploit
spatial locality, the aging prefers to walk
page tables to search for young PTEs and
promote hot pages. A kill switch will be
added in the next patch to disable this
behavior. When disabled, the aging re-
lies on the rmap only.”

His patch itself was not discussed, be-
cause a deeper issue came up. It turned
out that in Yu’s code he had several
BUG_ON() calls. This function is a debug-
ging feature that tests if a certain horri-
fying condition occurs and, if so, in-
duces a crash (either of a specific pro-
cess or the kernel itself). Andrew Mor-
ton noticed Yu’s use of this call and
pointed out, “General rule: don’t add
new BUG_ONs, because they crash the
kernel. It’s better to use WARN_ON or
WARN_ON_ONCE [and] then try to fig-
ure out a way to keep the kernel limp-
ing along. At least so the poor user can
gather logs.”

Yu replied that his particular use of
BUG_ON() (i.e., VM_BUG_ON()) was some-
thing that would only affect the kernel
build process, not runtime. But An-
drew replied, “I’m told that many pro-
duction builds enable runtime VM_
BUG_ONning.”

But Yu pushed back, arguing:
“Nobody wants to debug VM in pro-

duction. Some distros that offer both the
latest/​LTS kernels do enable CONFIG_
DEBUG_VM in the former so the latter
can have better test coverage when it be-
comes available. Do people use the for-
mer in production? Absolutely, otherwise
we won’t have enough test coverage. Are
we supposed to avoid

Kernel News

15LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

NEWS

“First you say that VM_BUG_ON() is
only for VM developers.

“Then you say ‘some testers (ordinary
users) ignore WARN_ON_ONCEs until
the kernel crashes’.

“So which is it?
“VM developers, or ordinary users?
“Honestly, if a VM developer is ignoring

a WARN_ON_ONCE() from the VM sub-
system, I don’t even know what to say.

“And for ordinary users, a WARN_ON_
ONCE() is about a million times better,
because:
•	 the machine will hopefully continue

working, so they can report the warning
•	 even when they don’t notice them, dis-

tros tend to have automated reporting
infrastructure

“That’s why I absolutely *DETEST* those
stupid BUG_ON() cases – they will often
kill the machine with nasty locks held,
resulting in a completely undebuggable
thing that never gets reported.

“Yes, you can be careful and only put
BUG_ON() in places where recovery is
possible. But even then, they have no ac-
tual _advantages_ over just a WARN_
ON_ONCE.”

Yu clarified that he was not talking
about kernel developers ignoring warn-
ings or that he believed VM_BUG_ON()
was only for VM developers. He said
he really was concerned with the ordi-
nary user who might be more inclined
to report a crash to the kernel develop-
ers than only a warning. To Linus’s
point, he said, “I hear you, and I
wasn’t arguing about anything, just
sharing my two cents.”

Meanwhile, Justin Forbes from Red
Hat explained some of the thinking be-
hind their use of CONFIG_DEBUG_VM. He
said, “We almost split into 3 scenarios.

In rawhide we run a standard Fedora
config for rcX releases and .0, but git
snapshots are built with debug configs
only. The trade off is that we can’t turn
on certain options which kill perfor-
mance, but we do get more users run-
ning these kernels which expose real
bugs. The rawhide kernel follows Linus’
tree and is rebuilt most weekdays. Sta-
ble Fedora is not a full debug config,
but in cases where we can keep a debug
feature on without it much getting in
the way of performance, as is the case
with CONFIG_DEBUG_VM, I think
there is value in keeping those on, until
there is not. And of course RHEL is a
much more conservative config, and a
much more conservative rebase/​back-
port codebase.”

He added, “If keeping the option on
becomes problematic, we can simply
turn it off. Fedora certainly has a more
diverse installed base than typical enter-
prise distributions, and much more di-
verse than most QA pools. Both in the
array of hardware, and in the use pat-
terns, so things do get uncovered that
would not be seen otherwise.”

And, regarding the desire to warn
rather than crash, Justin said, “I agree
very much with this. We hear about
warnings from users, they don’t go un-
noticed, and several of these users are
willing to spend time to help get to the
bottom of an issue. They may not know
the code, but plenty are willing to test
various patches or scenarios.”

At a certain point in the discussion, Yu
said, “Based on all the feedback, my ac-
tion item is to replace all VM_BUG_ONs
with VM_WARN_ON_ONCEs.”

And that was the end of the
discussion. nnn

nnn

•	 a reference embedded distribution, which they call Pokey
•	 the OpenEmbedded build system, which is co-maintained by

Yocto and the OpenEmbedded project
The overall goal of Yocto is to provide a complete development
environment for adapting Linux to run on embedded or IoT de-
vices. That environment includes templates, tools, methods,
and working code. The Pokey reference distribution gives the
user an example to follow, with instruction files called recipes
that the user can adapt as needed.

One of the most powerful features of Yocto is a modular
architecture built around layers. A layer is a collection of

H ardware has always been a challenge for the Linux
community. Although it is possible to compile the
Linux kernel and its surrounding applications for al-
most any hardware, doing so can be complicated. It

actually takes significant effort to adapt an operating system
for a hardware platform. Giant companies such as Microsoft
and Apple have unlimited resources to work out the details
with hardware vendors, but Linux has been left largely to its
own resources for most of its history.

Today Linux developers are in close contact with mega chip
vendor Intel, and Linux has proven its value on ARM, AMD,
MIPS, and several other leading hardware platforms. Debian
alone supports 10 major architectures, some in multiple
variations.

But what happens if you’re starting from scratch on a wholly
new hardware system? Or if you’re designing a new product
and the available OS alternatives for the board you’re using
don’t meet your needs? Is Linux an option?

Some Linux distros are already designed for the embedded
space, but if they don’t offer the features you need – or if they
offer too many features you don’t need – they can be difficult
to adapt. (See the box entitled “OS Options.”) The complica-
tions of rolling your own system used to rule out Linux for
many embedded projects, but Yocto is working to change that
perception.

The Yocto project [1] describes itself as “…an open source
collaboration project that helps developers create custom
Linux-based systems for embedded products, regardless of the
hardware architecture. The project provides a flexible set of
tools and a space where embedded developers worldwide can
share technologies, software stacks, configurations, and best
practices that can be used to create tailored Linux images for
embedded devices [2].”

Yocto, which has been around since 2010, is supported by
the Linux Foundation and evolved through a collaboration with
the OpenEmbedded project. The Yocto project “…combines,
maintains, and validates three key development elements”:
•	 a set of integrated tools, such as “tools for automated build-

ing and testing, processes for board support and license com-
pliance, and component information for custom Linux-based
embedded operating systems”

How the Yocto framework brings Linux to IoT devices

Favorite Recipe
The Yocto project gives you all the tools you’ll need to build a
custom Linux for IoT device.

By Mohammed Billoo and Joe Casad

One key decision in the development of any IoT project con-
cerns the choice of operating system. The choice of OS could
depend on the nature of the project.

For a bare metal environment, no special operating system is
needed. Instead, it is up to the application developer to build
capabilities into the application. If developers opt for a bare-
metal application, they usually implement a hardware abstrac-
tion layer (HAL) that removes the need for the application to
have to directly access hardware registers.

Other projects require a real-time operating system (RTOS).
Data and event processing is always time-critical in RTOS envi-
ronments, and you can always expect a limit on processing
time. RTOS systems are common in the field of robotics, where
the consequences can be catastrophic if certain reaction times
are exceeded. Much like bare-metal systems, RTOS environ-
ments often integrate the operating system and application.

A third category of IoT projects calls for a more complete oper-
ating system such as Linux. Unlike with bare metal or RTOS,
the application developer does not need access to the OS
source code. Instead, the application uses syscalls or device
drivers to access the underlying resources.

Figure 1 shows the resource consumption of the three alterna-
tives. Bare-metal systems have the lowest resource require-
ments, followed by RTOS. Linux consumes by far the most re-
sources, and it requires a processor that has a Memory Man-
agement Unit (MMU). On the other hand, Linux as an operat-
ing system allows access to a huge selection of ready-made
applications and services that are not available for bare metal
and RTOS.

OS Options

Le
ad

 Im
ag

e
©

 k
h

u
n

as
p

ix
, 1

23
R

F.
co

m
 a

n
d

 r
as

p
b

er
ry

p
i.c

o
m

COVER STORY

16 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Yocto

files and instructions for the build system. Users can mix
and match, customizing individual layers as needed while
maintaining the simplicity of the overall system. The layer
model makes it easy for the hardware vendor to provide
support for the OS developer through a Board Support Pack-
age (BSP), a layered collection of files used for building in
hardware support.

IoT Components
Every Linux for IoT device consists of five main components
(Figure 2). First, is the cross-compiler, which makes it possible
to compile source code on the developer’s PC that will later be
executed on the IoT device. The second component is the boot-
loader, which is executed by the code in the CPU’s ROM as
soon as the power is turned on. The ROM knows where it can
find the boot loader, for example, on an eMMC or MicroSD
card, from the status of certain pins of the CPU.

The code in ROM then configures the boot medium and
searches for the boot loader at a preset address. If the boot
loader is found, the ROM transfers the code to RAM, where the
CPU processes it. The boot loader is responsible for setting up

the environment so that the CPU can load and execute the ker-
nel. This could include downloading the kernel from a TFTP
server on the network. The most widely used bootloader for
IoT devices is called U-Boot.

The third component is the kernel itself, which is used to run
various applications simultaneously on the device and provide
them with hardware access. The fourth component is the De-
vice Tree (DTS), a part of the kernel sources that informs the
CPU about which peripherals the board has and how they are
configured. The fifth and final component consists of the ac-
tual applications, which are usually found in the root file sys-
tem (RFS).

Although desktop Linux users are accustomed to download-
ing an ISO file to a USB flash drive and then using the flash
drive to install Linux on their PC, the process works differently
for IoT systems. To create all five of the essential components I
just described, a framework is required.

The framework is selected by the hardware manufacturer of
the System-on-Module (SoM), which contains the CPU and all
necessary circuits for power management and signal condition-
ing. If a company designates a particular SoM for its IoT

Figure 1: Bare metal, RTOS, and Linux embedded sys-
tems differ in their demand for system resources.

Figure 2: The Linux image for an IoT device consists
of five main components.

17LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

from the organizations that manage these repositories. Figure 4
shows the typical structure of the individual layers.

Each layer contains a configuration directory named conf.
This directory in turn contains at least one configuration file
that tells the Yocto framework how to handle the recipes
brought along by the layer and the Yocto version with which
the layer is compatible. In addition, there may be other files
that tell the framework how to handle certain configuration op-
tions for accessing the hardware.

Each layer includes a set of directories with recipes. A recipe
consists of a set of instructions for the make-style build tool Bit-
Bake to help it build a particular package. A package can be an
application, the Linux kernel, or the whole Linux image. The re-
sult is always a single file that can be flashed to the IoT device.

Recipes with similar functionality or ones that address a spe-
cific component of the Linux system can be found in the same
directory. For example, all recipes that create a kernel module
that interacts with custom hardware belong in a recipes‑kernel
directory. Strict rules for organizing recipes do not exist.

product, you’ll benefit from using the framework provided by
the SoM in the form of a BSP.

Layers
The BSP consists of different layers, each with its own reposi-
tory. An SoM provider usually grants third parties access to its
BSP in the form of an XML file, which is then called a manifest
and lists the appropriate repository for each layer. An example
is shown in Figure 3 – this is a BSP from Digi for the System on
a Module (SoM) CC6.

The file from Figure 3 uses Android’s Repo tool to download
all layers. Each layer is created and maintained by a specific or-
ganization. For example, in the file, the designations yocto and
oe refer to repositories managed by “The Yocto Project.” These
repos act as the foundation for the entire BSP, providing critical
applications such as the BitBake build tool maintained by Yocto
and the OpenEmbedded project, as well as reference imple-
mentations upon which other layers build.

In Figure 3 you can see that the Meta Freescale layer is also a
part of the Yocto layer, although you
would actually expect it to be in a repos-
itory that manages Freescale/​NXP. How-
ever, because of the great popularity and
frequent use of Freescale CPUs, the
Yocto project has adopted this layer.
However, there is also a repository pro-
vided by NXP, and named NXP, which
contains the meta‑imx layer. This layer
contains configurations, resources, and
applications for the iMX series CPUs
manufactured by NXP.

You will also find layers managed by
Digi, the producer of the SoM, such as
meta‑digi and meta‑digi‑dualboot. Fi-
nally, you can see that Digi also includes
other repositories in the reference BSP, for
example, qt5 and swu, which eventually
leads to layers named meta‑qt5 and
meta‑swupdate. Digi adds these layers to
the BSP to allow it to include frameworks,
services, and applications that originate

Figure 3: The manifest lists the individual repositories for all layers.

Figure 4: The structure of a typical layer: In addition to a configuration
file, it mainly contains recipes intended for the BitBake build tool.

18 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

COVER STORY
Yocto

Instead, the community and manufacturers follow a set of best
practices designed to make finding the right recipe easier.

Figure 4 also shows some files with the .bbappend extension.
These files are designed to extend or modify existing recipes.
The name of the extension recipe must match the name of the
recipe to be extended.

Practical Steps
So far I have described the structure of a BSP based on the
Yocto framework. The next steps are to build an image, flash it
to an IoT device, customize it, and roll out a small “Hello,
World” app. I will used the Digi-CC6N-SBC as the hardware.

The developer’s PC needs to meet the requirements for the
development computer (see Table 1). In addition, certain soft-
ware packages must be installed on the machine. You can set
up the software using the commands in Listing 1. Additionally,
you need the Repo tool from Google (see Listing 2).

Using the Repo tool, you can now move on to the Digi mani-
fest file (Listing 3, first two lines). You then need to configure
the BSP for the CC6 (third line). The directory structure now
looks like what you can see in Figure 5. You can now create the
image with a single call (last line).

The image will appear in tmp/deploy/images/ccim6sbc/. You
can flash the image to a MicroSD card, which you can then
plug into the CC6N board. Then connect the computer to the
board via a serial cable and turn on the power. Follow the boot
process on the screen (Figure 6).

An Application
The last step is to run a custom application or modify the
kernel to support your custom hardware. The first thing you

need to do is create two new reposito-
ries. One repository houses your own
layer, and the other is for the manifest
used to download all layers, including
yours, via the Repo tool. Because the
vendor (Digi in this example) controls
the manifest, you need to copy it, add
your layer to the repository, and finally
upload the modified manifest to your
own repo.

The second thing you need is the files
for your layer. You can simply copy the
configuration file from another layer and
create your own recipes using the struc-
ture shown previously. For a “Hello,
World” application in C, the resulting di-
rectory structure would be like the one
in Listing 4.

Processor 64 bit, 8 cores

Operating system Ubuntu 18.04 LTS

RAM 8GB

Mass media 250GB free space

Table 1: Development Computer

$ sudo apt‑get install gawk wget git‑core diffstat unzip texinfo gcc‑multilib \

 g++‑multilib build‑essential chrpath socat libsdl1.2‑dev xterm minicom

Listing 1: Software Installation

$ su�do curl ‑o /usr/local/bin/repo

http://commondatastorage.googleapis.com/git‑repo‑downloads/repo

$ sudo chmod a+x /usr/local/bin/repo

Listing 2: Set Up Repo

$ repo init ‑u https://github.com/digi‑embedded/dey‑manifest.git ‑b gatesgarth

$ repo sync ‑j8 ‑‑no‑repo‑verify

$ source ./mkproject.sh ‑p ccimx6sbc

$ bitbake dey‑image‑qt

Listing 3: Using the Manifest

Figure 5: The subdirectories of a BSP mostly represent the layers the BSP contains.

Figure 6: The screen displays the boot process.

19LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

COVER STORY
Yocto

The SRC_URI in Line 5 tells BitBake where to find the files as-
sociated with the recipe. In this example, the only file is a sin-
gle C file. However, you can also specify complete repositories
that are managed by Git or Subversion.

The end of the recipe contains two more functions (from
Lines 7 and 10) that compile the source file of the applica-
tions and install the results. The Yocto framework comes
with basic versions of these functions, which the user can
then overwrite. The framework also already contains tem-
plates for other frequently used functions, such as for down-
loading sources.

The actual application is a very simple C file (Listing 6).
To create the recipe, just use the short bitbake hello‑world
command.

For the IoT device to run the “Hello, World” application,
you need to add it to the final image. So far, the bitbake
dey‑image‑qt command has told BitBake to build the image
from the dey‑image‑qt recipe. All you need to append the pack-
age that creates the hello‑world.bb recipe is an append file
named dey‑image‑qt.bbappend with the contents in Listing 7.

If you now call bitbake dey‑image‑qt, the “Hello, World” bi-
nary will also be created and placed in the final image, which
you can now load onto the IoT device.

Conclusions
If you need to adapt an operating system to run on an em-
bedded device, and you want to use Linux, the Yocto project
will give you a head start with sorting through the details.
The tools, layers, and recipes of the Yocto project will save
you time and simplify the task of adapting Linux to the
hardware. Alternative frameworks also exist, for example,
Buildroot [3], which you will read about elsewhere in this
issue. The advantage of Yocto is that it is very popular
among SoM vendors and has become the predominant
framework for Linux builds. The disadvantage: It requires
significantly more resources than Buildroot. nnn

The hello‑world.bb file must be specially formatted; Listing 5
shows the contents. The first four lines describe the recipe and
its license. If this is derived from the GPL, the checksum must
be specified. If you do not want to publish the recipe under a
free license, you can enter the value CLOSED in the License field.

meta‑custom

|‑‑ apps

| |‑‑ files

| | |‑‑ hello‑world.c

| |‑‑ hello‑world.bb

Listing 4: Directory Structure

01 �DESCRIPTION = "Simple Hello World Application"

02 �SECTION = "examples"

03 �LICENSE = "WITH

04 �LI�C_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/

MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

05 �SRC_URI = "file://helloworld.c"

06 �S = "${WORKDIR}"

07 �do_compile() {

08 � ${CC} hello‑world.c ‑o hello‑world

09 �}

10 �do_install() {

11 � install ‑d ${D}${bindir}

12 � install ‑m 0755 hello‑world ${D}${bindir}

13 �}

Listing 5: hello-world.bb

#include <stdio.h>

{

 printf("Hello, world!\n");

}

Listing 6: hello-world.c

IMAGE_INSTALL_append = " hello‑world"

Listing 7: Append file

[1]	� Yocto Project/​OpenEmbedded Framework:

https://​www.​yoctoproject.​org

[2]	� Getting Started: The Yocto Project Overview:

https://​www.​yoctoproject.​org/​software‑overview/

[3]	� Buildroot: https://​buildroot.​org

Info

nnn

20 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

COVER STORY
Yocto

https://www.yoctoproject.org
https://www.yoctoproject.org/software-overview/
https://buildroot.org

T o put together a Linux-based IoT
system, you need a quick and
easy approach to getting a base
system up and running. And

while you are at it, you also need to keep
an eye on the flash footprint – some IoT
platforms only have 64MB flash memory.
You will want to keep control of the soft-
ware included in the system, and you’ll want to be able to add
your own applications easily. Last but not least, you will need
to pay attention to security and comply with both open source
and proprietary licenses.

The Buildroot build system [1] will help you with these
tasks. Buildroot, which emerged in the early 2000s from the
µClinux and Busybox projects, focuses on creating systems
with a minimal footprint. Buildroot is easier to use and concep-
tually simpler than Yocto (see the article on Yocto starting on p.
16 of this issue). If you don’t need Yocto’s expansive capabili-
ties, with its modular layer system and other advanced fea-
tures, and you just want to generate an OS for an embedded
device, Buildroot is often the better choice.

Buildroot can generate:
•	 a cross-compilation toolchain
•	 a root file system
•	 a Linux kernel image
•	 a bootloader for the target device
A selection tool based on the menu
system of the Linux kernel lets you
specify the required packages and the
associated configuration options. This
menu-driven approach helps ensure
you have the components you need
and makes it easy to leave out any
components you don’t need to mini-
mize the flash footprint.

Once you decide which packages to include, Buildroot helps
with downloading, patching, configuring, compiling, and finally
installing each package (Figure 1). In addition, you can generate
some metadata if so desired: a manifest of installed packages, li-
cense information (legal‑info), the footprint of each package
(graph‑size), and the dependencies between the components
(graph‑depends). All packages are built from the source code,
which gives you maximum control over the configuration.

Unlike Ubuntu Core and Linux from Scratch, Buildroot relies
on cross-compiling, which means the build happens on a pro-
cessor architecture that is different from the system on which
the build will eventually run. For example, you can build on a
computer with an x86 architecture, even though the target sys-
tem is an ARM. For many processor architectures in the

Roll your own IoT Linux with Buildroot

Getting Small
Whether you need a tiny OS for
1MB of flash memory or a
complex Linux with a graphical
stack, you can quickly set up a
working operating system using
Buildroot.
By Arnout Vandercapelle

Figure 1: After downloading and patching the packages, some configu-
ration and compilation work is required before you can install. Le

ad
 Im

ag
e

©
 k

h
u

n
as

p
ix

, 1
23

R
F.

co
m

 a
n

d
 r

as
p

b
er

ry
p

i.c
o

m

22 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

embedded space, cross-compiling is the only realistic way to
compile, because the target system is often far too slow and
does not have enough memory. Additionally, cross-compiling
lets you work with a different standard C library (such as Musl
or uClibc) and a different Linux kernel.

However, cross-compiling presents a few challenges. Much
of the work done by Buildroot is to overcome these chal-
lenges through special compilation options or source code
patches. Cross-compiling requires a special toolchain consist-
ing of the compiler, linker, and assembler for the target sys-
tem, the Linux kernel headers, the C and C++ standard li-
braries, and optionally the cross-debugger. Buildroot creates
this toolchain and optimizes it for the target platform as part
of the build process. Alternatively, you can load and use an
existing toolchain, such as the ARM GNU toolchain or the
Bootlin toolchain.

Flexibility
One of the most important principles of Buildroot is flexibility.
You need to be able to make all kinds of tweaks to the system
to get exactly the results you require. The distribution primarily
achieves this through a selection of packages. For example,
Buildroot offers several basic options for the init system (sys-
temd, classic SysVinit, its stripped-down Busybox version, or
OpenRC) and more than 10 different web servers. Buildroot
supports the Glibc, Musl, and uClibc C libraries. On top of this,
15 different root file systems are available. In addition to classic
options like ext4 and embedded-specific variants like UBIFS for
NAND flash, the file system options include a RAM file system
that is linked into the Linux kernel.

You can store your choice of packages in a configuration file,
which, in turn, can reference a number of other files that fur-
ther specify the requirements. Some packages, such as the
Linux kernel, have their own configuration file. There are also
a number of items that are too complicated to save in the con-
figuration file, including file ownership and permissions, as
well as user names and passwords. You can define separate
files for these items. Using rootfs, you then copy a directory
structure (the rootfs overlay) and run a script after creating all
the packages. The additional configuration files are usually
stored in the boards/ directory.

Figure 2 shows the configuration files used in an example.
Two different variants exist, each with a defconfig: bmax_b1 and
raspberrypi4_64. The two variants share most of the rootfs
overlay in the common/ directory, the user-defined table, and a
post-build script that generates version and platform informa-
tion. The two boards require slightly different configurations
for the graphics stack though, and this is why they each have
their own rootfs overlays.

To help you get started, Buildroot comes with configurations
for around 230 recent SBCs (Single Board Computers) and
SoMs (System-on-Modules) and about 40 configurations for
simulations in Qemu. These are minimal configurations con-
taining just a toolchain, a kernel, a bootloader, and a busybox.
If required, the configurations might include firmware, for ex-
ample, for a WiFi chip or a GPU. You then upload the results –
usually an SD card image – directly to the board. Use the SD
card to boot the device and access a shell, which you can adapt
to your needs if necessary. As long as you know which CPU

variant you are dealing with, and which bootloader and kernel
options (device tree) you need to use, you can quite easily set
up a basic configuration.

Buildroot’s flexibility even allows it to incorporate non-stan-
dard features. For instance, you could include a read-only root
filesystem with a separate writable partition, kernel and rootfs
updates, along with A-B swapping between two partitions, and
verified booting using a trusted hardware root. All of this is pos-
sible, but it can involve some hard work in individual cases.

Some projects use Buildroot to build a more managed and
therefore less flexible distribution. They include SkiffOS,
DahliaOS, Recalbox, Batocera Linux, and Home Assistant Op-
erating System, among others. These distros are designed for
specific use cases and make use of Buildroot’s flexibility.

Figure 2: Two versions of the configuration files,
each with a defconfig: bmax_b1 and
raspberrypi4_64.

COVER STORY
Buildroot

23LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

fixes take place; the release is then maintained (bug fixes and
security updates) for three months. A minor version is released
about every month. The 20XX.02 release is an LTS (Long Term
Support) release that will be maintained for a little over a year
and again has minor releases added monthly.

Buildroot is community-driven, with about 100 people con-
tributing to each release and a total of 1,500 changes per re-
lease. The community mainly communicates via the mailing
list (lists.buildroot.org) and on IRC #buildroot on Open and
Free Technology Community (OFTC). Twice a year, a developer
meeting is held, with problems and new features on the
agenda. In addition, the community discusses and decides on
controversial changes in this scope. There is no controlling
company behind the distribution. However, some companies
and freelance consultants offer services related to Buildroot.
These companies help customers get the operating system run-
ning on the IoT platform with all the necessary features. See
the Buildroot website for more information.

The developers provide some tools to help you maintain
buildroot. You can use make pkg‑stats to keep the packages in
Buildroot up to date. Calling make pkg‑stats collects version in-
formation about the packages you select, searches for newer
versions on the network, checks for Common Vulnerabilities
and Exposures (CVE) reported via the NIST National Vulnera-
bility Database, and prints the results in HTML and JSON. This
report appears weekly for all packages [3]. Run it for your own
configuration if you want a personalized report.

Further testing goes on continuously – 440 tests a week. The
270 configurations for SBCs, SoMs, and Qemu are bundled
with Buildroot are also created weekly. Finally, there are 10
build servers that steadily generate arbitrary configurations.
The reports from these servers are available online [4].

Conclusions
Buildroot has evolved over the years into a build system that is
well established and proven in the embedded world. Buildroot
supports numerous use cases, from systems with as little as
1MB flash memory to Docker images for cloud deployment, to
complex systems with a graphical stack or database. The prin-
ciples of simplicity, flexibility, reproducibility, and maintain-
ability make Buildroot an excellent choice for IoT systems.
After cloning Buildroot via its Git repository [5], configuring it
takes a little more than an hour. The reward is a final product
that works very well. nnn

Your Own Applications
To generate a working product, an application needs to de-
liver the functionality of the IoT device. Sometimes this is
limited to a few scripts such as PHP files that you use through
the web server and are simply part of the rootfs overlay. How-
ever, you will usually need to compile and install one or more
custom components.

Buildroot offers two approaches to compiling your own
components. You will often set up separate package defini-
tions for each of your components, consisting of just a few
lines, especially if one of the supported build systems is used
(Figure 1). For C/​C++, these are Meson, Cmake, the Qmake
autotools, and Waf. Other languages have language-specific
build systems: Go for Golang, Cargo for Rust, Rebar for Er-
lang, Luarocks for Lua, MB or EUMM for Perl. Python plays
a special role because it supports several build systems with
Distutils, Setuptools, Pep517, Flit, and Maturin. The compre-
hensive Buildroot manual [2] explains how to create a pack-
age definition and which variables you need to use to fine-
tune the build process.

Developers often look to avoid mixing their own package
definitions with Buildroot’s open source packages. The BR2_
EXTERNAL mechanism supports this desire by allowing the
user to add custom package definitions to those belonging to
Buildroot. Additionally, you can store your configuration
and other files, such as the rootfs overlay, in the same BR2_
EXTERNAL repository. This keeps all your customizations
neatly in one place.

Sometimes it is more convenient to compile application code
outside of Buildroot. For example, in larger projects, you might
find software developers who do not work with Buildroot on a
daily basis. Also, it is easier to compile from an IDE if you are
working directly with a build system that the development en-
vironment supports. This is why Buildroot provides an SDK
containing the cross-compilation toolchain, all configured li-
braries, and the host tools. After all, you will need some of
these host tools for the build. pkg‑config, for example, defines
the compile options of a library, and protoc generates the code
for a Google protobuf definition. The SDK is available as a
tarball that you can unpack anywhere. If you set up the IDE to
use the SDK’s cross-compiler, you can compile and debug di-
rectly from it.

Management
Once an IoT system is developed, updates and new generations
will usually follow. It is important to maintain the underlying
distribution with fixes for security issues and new features.

Buildroot has been around since 2001, making it one the old-
est IoT build tools, and the project’s continuity definitely
makes it a proven product. Since 2009, the developers have
kept to a fixed release schedule of four releases per year:
20XX.02, 20XX.05, 20XX.08, and 20XX.11. Each release goes
through a one-month stabilization period, during which only

[1]	� Buildroot: https://​buildroot.​org/

[2]	� Buildroot manual: https://​nightly.​buildroot.​org/​manual.​html

[3]	� NIST CVE report:
http://​autobuild.​buildroot.​org/​stats/​master.​html

[4]	� Build server reports: http://​autobuild.​buildroot.​org

[5]	� Buildroot (Git repository): https://​git.​buildroot.​net/​buildroot

Info

nnn

24 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

COVER STORY
Buildroot

https://buildroot.org/
https://nightly.buildroot.org/manual.html
http://autobuild.buildroot.org/stats/master.html
http://autobuild.buildroot.org
https://git.buildroot.net/buildroot

releases to work smoothly in most cir-
cumstances, but Fedora remains one of
the best distributions to learn about
emerging technologies.

Moreover, not withstanding its innova-
tions, Fedora almost always delivers a re-
lease that is as stable as many other dis-
tributions. However, Fedora contains
only free software, so if you want propri-
etary software, you may need to track
down an unofficial repository – and use
it at your own risk.

RHEL
RHEL [2] is a direct competitor to SUSE
Linux Enterprise and Ubuntu. Tradition-
ally, RHEL has been downstream from
the Fedora Project, using the same pack-
ages but testing them more extensively
and providing formal long term support
for them – a process now publicly visible
in CentOS Stream. Each RHEL release is

W hen Linux was just starting
to be known in the late
1990s, Red Hat Linux was
one of the top half dozen

distributions, largely because of its un-
usually complete documentation and its
efforts at making Linux accessible. That
changed on August 11, 1999, when the
company called Red Hat became the first
Linux company to go public. Red Hat
went on to become a multi-billion dollar
subsidiary of IBM, and created Fedora
Linux for its community-based distribu-
tion and testing ground for its Red Hat
Enterprise Linux (RHEL) product. More
recently, because of Red Hat’s ending of
CentOS development and the start of Cen-
tOS Stream, derivatives such as Rocky
Linux and AlmaLinux were forked from
RHEL. Add Fedora’s and RHEL’s deriva-
tives, and the result is an ecosystem of in-
ter-related distributions second only to

Debian’s, but focusing on innovation and
on networks and servers. How are these
distributions related? How do they differ?
Here’s a brief overview.

The Fedora Project
The Fedora Project [1] is the replacement
for the original Red Hat distribution.
Red Hat appoints the Fedora Leader and
has half the seats on the Fedora Coun-
cil, but appears to operate at arm’s
length, with many decisions made by
consensus or a majority, or by Fedora’s
technical working groups.

Fedora mainly functions as an initial
test platform for RHEL, with releases
every six months. In this role, Fedora has
been the first distribution to use many
new technologies such as DNF,
PipeWire, or Wayland, especially ones
developed by Red Hat. Occasionally,
these new technologies take a few

The Red Hat extended family

The Clash of Community
and Corporation
Red Hat has spawned an outgrowth of corporate and community-based distributions. Here's how
these distributions are related and how they differ. By Bruce Byfield

Le
ad

 Im
ag

e
©

 r
a2

st
u

d
io

, 1
23

R
F.

co
m

26

REVIEW

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Distro Walk – The Red Hat Ecosystem

generally based on several Fedora re-
leases, so that the numberings of the two
distributions do not coincide.

Although RHEL is a commercial suc-
cess, in the free software community it
evokes mixed reactions. On the one hand,
Red Hat is a major contributor to the
Linux kernel. In addition, it contributes to
a wide variety of ongoing projects, rang-
ing from open fonts to SELinux [3], and
has developed numerous core technolo-
gies, including PulseAudio, Flatpak, and
PipeWire. On the other hand, much of its
activities are in-house or mainly so,
which many consider not in the best tra-
dition of free software. In particular,
RHEL’s requirement for a subscription to
try or install is often disparaged as a loop-
hole in free licenses, despite the availabil-
ity of Fedora and CentOS stream, both of
which share most of the same code. How-
ever, RHEL’s commercial outlook and

orientation are
likely to appeal to
traditional busi-
nesses – especially
those still uncer-
tain about Linux –
and RHEL contin-

ues to thrive, with 17 percent growth in
2021 [4].

CentOS
CentOS [5] was a community fork of
RHEL that appealed to those who pre-
ferred a more transparent development
process. With a reputation for robust se-
curity, it often rivaled Debian for use in
web servers. Red Hat purchased CentOS
in 2014, but let it operate mostly indepen-
dently until December 2021, when it an-
nounced the end of CentOS development
and started using the name of CentOS
Stream for other
purposes. CentOS 7
will continue to be
maintained until
June 30, 2024, but
many users have
already switched

to derivatives such as AlmaLinux and
Rocky Linux.

CentOS Stream
CentOS Stream uses the old CentOS
logo [6] and continues CentOS’s version
numbering, but the continuity of the
name is misleading. CentOS was a re-
build of RHEL, while CentOS Stream is
an intermediary between Fedora and
RHEL. In other words, while CentOS
was downstream from RHEL, CentOS
Stream is upstream. That means that,
although CentOS Stream’s next release
will be 9, it is not built on CentOS 7,
which is still supported, or on CentOS
8, which was abandoned after develop-
ment stopped. Instead, its starting point
is RHEL. Nor is it clear how Fedora and
CentOS Stream relate to each other,
aside from the fact that both are

Distro Walk – The Red Hat Ecosystem

REVIEW

Which to Choose
If you think that these descriptions em-
phasize open source politics and pref-
erences, you are right. The codebase in
most of these distributions is much the
same, although both AlmaLinux and
Rocky Linux are already showing signs
of differentiating themselves. For this
reason, deciding which distribution to
use is likely to be based on other fac-
tors. A single user who wants to follow
the latest developments in Linux might
prefer Fedora, while a corporate user
might prefer CentOS Stream for the lat-
est innovations with more testing. Sim-
ilarly, a traditionally minded corporate
user might prefer RHEL’s behavior,
while AlmaLinux or Rocky Linux ap-
peal equally to both home users and
corporate users who prefer a more
community-oriented approach than
Red Hat has chosen. For the time
being, for many, such considerations
may be more important than any tech-
nical considerations. nnn

upstream from RHEL. Still, its newness
alone is enough for it to be frequently
downloaded, at least in the short term.
For now, many in the community seem
unsure what to make of it, and some
condemn it for replacing CentOS. How-
ever, the start of CentOS Stream does
mean that at least an early version of
RHEL’s code will now be available.

AlmaLinux
The end of CentOS was quickly an-
swered by the announcement of at
least two successor distributions, both
of which had a first release a mere four
months after the end of CentOS devel-
opment. The first of these successors is
AlmaLinux [7], which is supported by
CloudLinux, ARM, AWS, Equinix, and
Microsoft. The distribution implicitly
responds to Red Hat and the end of
CentOS by describing itself on its home
page as an “Open Source, community
owned and governed, forever-free en-
terprise Linux distribution, focused on
long-term stability, providing a robust
production-grade platform,” adding
that “AlmaLinux OS is 1:1 binary com-
patible with RHEL® and pre-Stream
CentOS.” Another hint is the name of
AlmaLinux’s Elevate project, which is
designed to assist migrations between
RHEL derivatives.

Rocky Linux
The other main CentOS successor is
Rocky Linux [8], named for CentOS co-
founder Rocky McGaugh. Like AlmaL-
inux, Rocky has
widespread sup-
port, notably from
Amazon Web Ser-
vices, Google
Cloud, Microsoft
Azure, and

VMware. The development team de-
scribes the project in terms much like
those AlmaLinux uses to describe itself,
as a “bug-for-bug compatible” and freely
available implementation of RHEL. In
deliberate contrast to RHEL, Rocky
Linux also emphasizes the transparency
of its build process. For instance, in its
latest release, Rocky introduces Peridot,
an open source, cloud-based build sys-
tem. In addition, Rocky is pursuing ac-
creditation from standard groups for its
security implementation, especially for
cryptography. In July 2022, the latest re-
lease of Rocky rivaled and even sur-
passed downloads of RHEL and CentOS
in the Extra Packages for Enterprise
Linux (EPEL) repository.

Alternatives and
Derivatives
Besides the Workstation and Server edi-
tions, Fedora also offers spins – images
with a desktop environment other than
Gnome, such as Cinnamon, Plasma, or
Xfce [9]. Also available from the down-
load page are Labs, or images for specific
purposes, such as neuroscience or
games, or Alternatives for testing or dif-
ferent architectures [10].

In addition, two dozen Fedora and
RHEL derivatives also exist, often over-
lapping and derived from both [11].
Some, like VzLinux, Springdale Linux,
and Oracle Linux, are built from RHEL
source packages, like CentOS and its
successors. Other Fedora derivatives in-
clude Network Security Toolkit (NST):
Berry Linux, which is the Fedora equiv-
alent of KNOPPIX and useful as a live
rescue disk, and Ultramarine Linux,
which includes enhancements not
found in Fedora, ranging from alterna-
tive desktops to proprietary sound co-
decs. Perhaps the most interesting is
Qube OS, which assigns applications to
security domains that are listed and
color-coded in the desktop menu. The
result is an easy-to-use secure system,
but at least 16MB of RAM is needed be-
cause of the additional overhead.

[1]	� Fedora: https://​getfedora.​org/

[2]	� RHEL: https://​www.​redhat.​com/​en/​

technologies/​linux‑platforms/​

enterprise‑linux

[3]	� Red Hat supported projects:

https://​fedoraproject.​org/​wiki/​Red_

Hat_contributions

[4]	� Red Hat growth: https://​techcrunch.​

com/​2021/​10/​21/​red‑​hat‑​continues‑​

to‑grow‑​but‑ibms‑​struggles‑​continue/

[5]	� CentOS: https://​centos.​org/

[6]	� CentOS Stream: https://​www.​centos.​

org/​centos‑stream/

[7]	� AlmaLinux: https://​almalinux.​org/

[8]	� Rocky Linux: https://​rockylinux.​org/

[9]	� Fedora Spins:

https://​spins.​fedoraproject.​org/

[10]	�Fedora variations:

https://​getfedora.​org/

[11]	�Fedora derivatives:

https://​distrowatch.​com/​search.​php?​

ostype=All&​category=​All&​origin=​All&​

basedon=​Fedora&​notbasedon=​

None&​desktop=​All&​architecture=​All&​

package=​All&​rolling=​All&​isosize=​All&​

netinstall=​All&​language=​All&​

defaultinit=​All&​status=​Active#​simple

Info

28

Distro Walk – The Red Hat Ecosystem

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

REVIEW

https://getfedora.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://fedoraproject.org/wiki/Red_Hat_contributions
https://fedoraproject.org/wiki/Red_Hat_contributions
https://techcrunch.com/2021/10/21/red-hat-continues-to-grow-but-ibms-struggles-continue/
https://techcrunch.com/2021/10/21/red-hat-continues-to-grow-but-ibms-struggles-continue/
https://techcrunch.com/2021/10/21/red-hat-continues-to-grow-but-ibms-struggles-continue/
https://centos.org/
https://www.centos.org/centos-stream/
https://www.centos.org/centos-stream/
https://almalinux.org/
https://rockylinux.org/
https://spins.fedoraproject.org/
https://getfedora.org/
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple
https://distrowatch.com/search.php?ostype=All&category=All&origin=All&basedon=Fedora¬basedon=None&desktop=All&architecture=All&package=All&rolling=All&isosize=All&netinstall=All&language=All&defaultinit=All&status=Active#simple

about what data they use for what pur-
poses or whether they aggregate data to
generated profiles, you might want to
avoid such extensions if you’re con-
cerned about privacy.

RevEye and TinEye
RevEye [1], a browser extension for
Chrome and Firefox, makes it easier to
check images with the help of several
search engines. After installation, activate
the image search by right-clicking on the
image you wish to check and select the
Reverse image search entry from the con-
text menu that opens. You then need to
click on one of the four image search en-
gines: Google, Bing, Yandex, or TinEye.

TinEye [2] is an engine that special-
izes in image searches and does not
store any data. The fact that TinEye
doesn’t store user data makes it espe-
cially suitable for security-conscious
users. (TinEye is also available as an ex-
tension for Firefox and Chrome.)

Click on the All search engines option
in TinEye to open four tabs in the
browser that display the results from all
four search engines. In testing, TinEye’s
results were clearly superior to those of
the other engines. For example, Bing dis-
played a hodgepodge of similar images

A s the volume of information on
the Internet increases, so does
the volume of misinformation. It
is almost impossible to check all

the information you read every day.
Even media companies find it difficult to
correctly classify and evaluate all the in-
formation coming in from the various
social media channels.

In the meantime, political groups,
fringe actors, and hostile foreign states
have made a science out of passing dis-
information intentionally to further their
political ends. Normal users are finding
it increasingly difficult to distinguish
genuine news from manipulated news.

The good news is that various devel-
opers have identified this shortcoming
and are providing extensions for popular
web browsers to help distinguish be-
tween fake and genuine information.
Many of these tools are based on artifi-
cial intelligence techniques, but some in-
clude support for manual checks or data-
base comparisons for cases where artifi-
cial intelligence is not yet up to the task
of fully automated checking.

Fake information also affects product
reviews, where a company's aim is to
sell more of its own items or discredit
competitors’ products. Browser

extensions can scan product reviews, es-
pecially on large platforms like Amazon,
and alert you to false information.

The currently available browser exten-
sions focus on different areas that serve
as the distribution channels for fake
news (see the box entitled “Tech-
niques”). Some of the add-ons are exclu-
sively designed for use on the major so-
cial networks. Others focus on checking
YouTube videos. Others check images
published on the Internet, making it eas-
ier to expose images that have been al-
tered or misrepresented.

If you really want to cover all the
bases, you might need to install several
of these browser extensions. It is impor-
tant to note that some of these exten-
sions are only available for Chrome and
its derivatives. Some extensions will also
run on Mozilla Firefox, but if you need
to access the full range of these services,
it is a good idea to keep a Chrome-based
browser on hand.

When using the extensions discussed
here, you should pay attention to pri-
vacy. Some of these extensions require
you to log in with a Google account,
while others want Twitter and Facebook
accounts. Because some of these exten-
sion providers do not go into detail

Fake information is experiencing a boom, but given the right tools, you can reliably separate the
wheat from the chaff. By Erik Bärwaldt

Ph
o

to
 b

y
Jo

rg
e

Fr
an

g
an

ill
o

 o
n

 U
n

sp
la

sh

Using browser extensions to uncover
online disinformation

Trust Tools

30

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

 Disinformation Detector

in the test, but hardly any exact matches.
In addition, Bing also lacked most of the
relevant data for the individual images.
The results for Yandex and Google were
also less meaningful than the TinEye re-
sults. TinEye, on the other hand, listed
the virtually identical images it found,
including the metadata, and also pro-
vided a comparison of the matches with
the original (Figure 1).

To compare the matches with the sub-
ject of the search, move the mouse
pointer to one of the listed images and
then click on the Compare link. The
image will then appear in a separate win-
dow. To view the images in comparison,
click on Image match or Your image.

TinEye also displays the publication
date to the right of each image in a list,
as well as the origin URL and the image
size. This summary of statistics in list
form makes it easy to determine whether
an image has actually been created re-
cently – or whether the image has been
manipulated by subsequent retouching.
TinEye also lets you track down copy-
right infringements on images.

The Factual
The Factual [5] is available as a browser
add-on for Chrome and its derivatives
and can be displayed using the toolbar
after installation. The Factual portal,
which belongs to the California-based
CivikOwl organization and provides the
browser add-on of the same name, also
relies on a mixture of artificial intelli-
gence and manual checking for its text
analysis; it also references databases.

The Factual bills itself as the “world’s
largest news ratings engine.” The project

claims to have analyzed 10 million news
stories from 50,000 journalists and 2,000
news sources to develop a grading sys-
tem that evaluates a news story based on
four factors:
•	 Diversity and extent of sources
•	 Author’s tone (neutral vs. opinionated

language)
•	 Author’s expertise on topic
•	 Site’s historical reputation
The browser extension opens a small
window when launched. Colored tiles
appear after completing the analysis,
with the tiles providing visual informa-
tion on the status of the article that was
checked. The four tiles available in the
basic setting evaluate the general quality
of the investigated medium, the exper-
tise of the article’s author, the quality of
the sources used, and the objectivity of
the article. Using an overall quota, the
extension also presents the quality of all
factors as an absolute percentage value
and identifies the political orientation of
the medium (Figure 2).

The Show details link displayed at the
bottom of the window lets you view
more detailed information about the re-
viewed article. You will then also see the
number of sources and links mentioned.
The color spectrum of the individual
evaluation criteria, ranging from green to
red, helps you see at a glance how to
rate the article (Figure 3).

TrustedNews
TrustedNews [6], another browser exten-
sion, uses artificial intelligence to ana-
lyze media articles on English-language

Many of the browser extensions for
finding fake content use artificial intelli-
gence methods. For example, on text
pages, certain phrases, such as “in my
opinion” or “I think,” already allow
conclusions to be drawn about the con-
tent’s objectivity. These browser exten-
sions also often use databases to com-
pare messages and analytically check
their truthfulness.

On Facebook and other social net-
works, the add-ons can also be used to
sort out comments that appear to have
been posted by bots. When checking
images, some extensions scan the
media and check whether an image
has already been published elsewhere.
If you find the same image on other
earlier web pages, and it is not marked
as an archive or icon image on the
page you are checking, someone
might be trying to mislead you. You
can also search for other copies of the
image, a practice known as a reverse
image search, to detect copyright in-
fringement.

Fake videos are far more difficult to de-
tect, and a manual check is usually still
required. Services such as CaptainFact
[3] offer an online forum for collabora-
tive verification and annotation of vid-
eos as well as other web images.

Amnesty International’s Citizen Evi-
dence Lab [4] includes an online video
verification facility that extracts meta-
data. If the video is found to be from a
far earlier date than the content it pur-
ports to describe, you are very likely
looking at a fake.

Techniques

Figure 1: TinEye’s image search supports quick matching of similar
images.

Figure 2: The Factual incorporates
a wide variety of criteria into its
analysis.

IN-DEPTH
Disinformation Detector

31LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

in Chrome, or use Open InVID in
Firefox (Figure 5).

To analyze a YouTube, Facebook, or
Twitter video, choose the Analysis but-
ton in the selection menu. In the subse-
quent Video contextual verification win-
dow, enter the URL of the video you
want to verify, and then click Submit.
After a short while, the browser will dis-
play the retrieved data in a table. The re-
port includes the title of the movie and a
summary of its contents, followed by
some important statistics like the num-
ber of views, the duration, and the time
of the upload. The steps are slightly dif-
ferent but similar in Chrome and its de-
rivatives.

WeVerify
WeVerify, an open source platform, pro-
vides the following methods and tools to
address online disinformation [8]:
•	 Cross-modal disinformation detection

and content verification tools
•	 Blockchain-based database of “known

fakes”
•	 An open source content verification

browser plugin
•	 A collaborative cross-media verification

workbench
•	 Citizen-oriented verification chatbot
•	 Tools for sourcing and tracking disin-

formation flows
WeVerify offers forensic analysis of im-

ages (Figure 6). In Chrome-based brows-
ers, click on Images and then select the
Forensics option. Type the URL of the
image you wish to check. WeVerify
checks the image for inconsistencies and
presents the results with links to expla-
nations. In the lower third of the

websites. The tool features an Objectivity
category that checks an article’s objec-
tivity and highlights the more objective
sentences in yellow. In addition, it gives
a value for a news story’s objectivity on
a scale of one to five (Figure 4). The
lower this value, the more subjective the
report. TrustedNews also determines an
additional value for the medium based
on multiple criteria. For example, users
can press a radio button to say whether
they feel an article is objective or subjec-
tive in terms of its content.

InVID
The InVID toolkit, originally developed
with financial support from the EU,
claims to be a source checking Swiss
army knife for journalists and political
activists [7]. InVID, which is provided
under a free MIT license, bills itself as
“… a platform providing services to de-
tect, authenticate, and check the reliabil-
ity and accuracy of newsworthy video

files and video content spread via social
media.” You can use InVID as a browser
extension for Firefox, Chrome, and their
derivatives. The tool analyzes images
and video files, from which it also ex-
tracts the metadata if desired.

For videos found on Twitter and You-
Tube, InVID displays the licenses associ-
ated with the video. For image searches,
the app also breaks down YouTube, Face-
book, or Twitter videos, and even MP4
files, into their individual keyframes, so
that search engines such as TinEye can
check the authenticity of the data.

After installation, you will find a but-
ton for InVID in the toolbar. Clicking on
the button opens a small menu where
you can select the desired function. De-
pending on the browser, the menus will
use different designs. Use the Open
Toolbox option to open the main menu

Figure 3: A color-coded, detailed
display breaks down the
individual evaluation criteria.

Figure 4: TrustedNews rates the
objectivity of articles.

Figure 5: The InVID toolkit’s interface differs depending on the browser.
Firefox is on the left, and Chrome is on the right.

32

Disinformation Detector

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

window, you will find metadata that will
help you draw conclusions about fakes.

WeVerify also includes an option that
lets you magnify an image published on
the Internet, because sometimes magni-
fying the image can be enough to ex-
pose a fake.

YouTube Metadata
The free YouTube Metadata [9] online
service extracts metadata from You-
Tube videos and displays the results in
a web browser. Enter the video’s
cached URL in the field provided on
the main page, and then click Submit.
After a short time, the analysis results
appear below the input line. The re-
sults contain various statistics about

the analyzed video to let you deter-
mine the upload time, which will help
you determine the age of the clip.

ReviewMeta
ReviewMeta, a browser add-on for
Firefox and Chrome, helps detect fake
reviews on Amazon’s websites [10].
After accessing an Amazon product
web page, click on the ReviewMeta icon
in a new tab to open the ReviewMeta
website. ReviewMeta automatically
searches the reviews for the product
based on various criteria.

Some of the criteria look at the quality
of the individual reviews. ReviewMeta
also examines linguistic aspects of the
reviews, as well as the classification of

the commentators as verified or unveri-
fied buyers on Amazon. To perform
these tasks, ReviewMeta accesses data-
bases and lists the results on the website
with color highlighting. You can see at a
glance whether negative or positive as-
pects predominate. ReviewMeta gener-
ates a new rating index based on the
trusted ratings. If there are numerous
dubious comments about a product on
the page, the portal hides them. You only
see the new rating index and the number
of existing trusted ratings (Figure 7). You
will find the evaluation criteria listed at
the top of the web page described in de-
tail below, sometimes with illustrations.

Conclusions
The tools discussed in this article can
help you detect disinformation on the In-
ternet. Some of these extensions evalu-
ate news content, while others help de-
tect fake images and videos. There’s
even a tool for weeding out fake reviews
on Amazon. Because analysis tech-
niques vary depending on the source
medium, it is always good idea to use
several tools to separate the geniune
content from the fake. nnn

Figure 6: The WeVerify toolkit also performs forensic analysis on images.

Figure 7: ReviewMeta searches reviews for fakes.

[1]	� RevEye:
https://​chrome.​google.​com/​webstore/​
detail/​reveye‑reverse‑image‑sear/​
keaaclcjhehbbapnphnmpiklalfhelgf

[2]	� TinEye: https://​tineye.​com

[3]	� CaptainFact: https://​captainfact.​io/

[4]	� Citizen Evidence Lab:
https://​citizenevidence.​org/

[5]	� The Factual:
https://​www.​thefactual.​com

[6]	� TrustedNews:
https://​trusted‑news.​com

[7]	� InVID: https://​www.​invid‑project.​eu/​
tools‑and‑services/​
invid‑verification‑plugin/

[8]	� WeVerify: https://​weverify.​eu/​
verification‑plugin/​overview/

[9]	� YouTube Metadata:
https://​mattw.​io/​youtube‑metadata/

[10]	�ReviewMeta: https://​reviewmeta.​com

Info

nnn

Disinformation Detector

33LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

https://chrome.google.com/webstore/detail/reveye-reverse-image-sear/keaaclcjhehbbapnphnmpiklalfhelgf
https://chrome.google.com/webstore/detail/reveye-reverse-image-sear/keaaclcjhehbbapnphnmpiklalfhelgf
https://chrome.google.com/webstore/detail/reveye-reverse-image-sear/keaaclcjhehbbapnphnmpiklalfhelgf
https://tineye.com
https://captainfact.io/
https://citizenevidence.org/
https://www.thefactual.com
https://trusted-news.com
https://www.invid-project.eu/tools-and-services/invid-verification-plugin/
https://www.invid-project.eu/tools-and-services/invid-verification-plugin/
https://www.invid-project.eu/tools-and-services/invid-verification-plugin/
https://weverify.eu/verification-plugin/overview/
https://weverify.eu/verification-plugin/overview/
https://mattw.io/youtube-metadata/
https://reviewmeta.com

Environmental Variables
The history commmand has several
environmental variables. All are added
or modified in .profile or .bashrc in
your home directory, depending on the
distribution. The size of the history file
is limited by HISTSIZE, which sets the
number of entries in the history, and/​
or by HISTFILESIZE, the maximum
memory to allot for the history. Both
have similar structures:

HISTSIZE=NUMBER

HISTFILESIZE=NUMBER

When the maximum for either variable is
reached, earlier entries are deleted and
replaced by new ones. Many users’ first
impulse is to use a high number, such as
10,000 entries. Because the history is a
text file, there should usually be no prob-
lem with how much space the history file

I f you work in a terminal, you’ve
likely used Bash’s history com-
mand to save yourself the trouble
of retyping a command [1] (Fig-

ure 1). However, if you’re like most
people, your use of history may have
been confined to scrolling through the

list of previously used commands. If all
you are interested in are the most re-
cently used commands, the arrow keys
may be all that you need. However, the
history command is capable of doing
much more and in an economical way –
especially if you have a good memory.
You can start by adjusting history’s en-
vironmental variables and then learn
how to modify history entries for easier
searching and for repurposing them
using three types of editing options:
event designators, word designators,
and modifiers. The flexibility of all
these options can be combined so that,
with a little memorization, you can
make the Bash history work for you to
save time with minimal effort.

Enhancing efficiency with history

Don’t Know Much
About History
The versatile Bash history command can save you time and effort
at the command line. By Bruce Byfield

Bruce Byfield is a computer journalist and
a freelance writer and editor specializing
in free and open source software. In
addition to his writing projects, he also
teaches live and e-learning courses. In his
spare time, Bruce writes about Northwest
Coast art (http://​brucebyfield.​wordpress.​
com). He is also co-founder of Prentice
Pieces, a blog about writing and fantasy at
https://prenticepieces.com/.

Author

Figure 1: An excerpt from the default history command. Ph
o

to
 b

y
Fe

d
er

ic
o

 D
i D

io
 p

h
o

to
g

ra
p

h
y

o
n

 U
n

sp
la

sh

34

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Command Line – Bash History

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/

occupies. However, too large a number
can make locating entries much harder.
Unless you have a clear need for such a
large number, a smaller one can be more
efficient. In any event, you can use
Ctrl+R to cycle through entries. If you
have a rough idea of where an entry
might be, you can use history NUMBER to
list the entries displayed, starting with
the most recent, or a specific number to
go directly to the entry. You can even
clear your history with the command
history ‑c, followed by history ‑w if a
long history gets too confusing. Learning
designators and modifiers will also make
a longer history easier to use.

Another environmental variable for
history is HISTTIMEFORMAT. As the name
suggests, this variable adds a timestamp,
which can help you locate entries more
easily. The format is
HISTTIMEFORMAT=DATE&TIME (Figure 2).

The date and time are structured using
the common values shown in Table 1.
Their use and order is a matter of choice,
but you may soon consider HISTTIMEFOR‑
MAT essential.

Values can also be assigned to HIST‑
CONTROL. A value of ignorespace excludes
any command that has a space before it,
while ignoredup ignores one of the same
commands when run one after the other.
If you want to use both variables, use
ignoreboth.

Event Designators
An event designator calls on a specific
previous command and always starts

with an exclama-
tion mark (!). In
its simplest form,
an event designator follows ! with a
command’s number in the history.
However, as you might expect, from a
user account, you cannot run a com-
mand such as apt that can only be run
as root (Figure 3). You can also call a
command by how many previous com-
mands ago it was used; for example,
!‑4 shows the command used four en-
tries ago. Alternatively, you can enter a
string so that !pipewire shows the last
command that contains “pipewire.”
You can even find a string and replace
it with another. For example, if you
typed

cd /home/jlw/music

you could replace the cd command with
ls with ^cd^ls and save yourself the
trouble of retyping the path.

Word Designators
Word designators select the words from
the most recent matching entry in the
history. To use word designators, enter
the new command and its options, fol-
lowed by EVENT:!WORD‑DESIGNATOR^. For
example,

less !cat:^

will replace the most recent history entry
found starting with cat with less and
then run the rest of the command in
the entry using less. The word desig-
nator can be a string or specify the
word at an exact position, counting
from the start of the event. For exam-
ple, is the first word, 3 is the fourth
word, and $ is the last. In addition, you
can specify a range of words, such as
4‑8, or every word except the first
using an asterisk (*) if you recall
enough to be specific.

Modifiers
Modifiers edit a history entry, allowing
it to be repurposed. Some modifiers
simply remove part of the entry. For in-
stance, h removes everything that
comes after the modifier, so specifying
‑h home/jwl would remove /music/
pogues from the entry /home/jwl/music/
pogues. Conversely, using /music/pogues
would delete /home/jwl/ from the same
entry. Similarly, using r with .odt
would omit the extension from a Libre-
Office file, while e would leave only
.odt. With p, though, the event would
only display without being executed,
which could be handy if you are unsure
exactly which history entry you want or
decide to check the syntax before run-
ning it. Still other modifiers use a sed-
like replacement that can save typing.
For example, if you were backing up a
file called draft1.odt but typed darft for
the name of both the source and target
file, you could correct both misspellings
at the same time with

!!:gs/draft/darft

to run the command correctly. Should
you require the same correction again,
!!:g& will reapply it.

Alternate Histories
If all these possibilities are not enough,
there are at least two alternatives. In-
stead of using the history command’s
options, you could pipe through grep,
using the structure

history | grep TEXT

which, if you are already familiar with
grep, could save you the need to learn the
intricacies of another command and avoid
the need to guess the location of the

Figure 2: An excerpt from history with HISTTIMEFOR-
MAT enabled. Figure 3: A command can be run directly from the his-

tory. However, in this example, the user has tried to
run apt while not logged in as root, so the command
cannot be run.

%d Day

%m Month

%Y Year

%H Hours

%M Minutes

%S Seconds

Table 1: Values for Setting
HISTTIMEFORMAT

IN-DEPTH
Command Line – Bash History

35LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

correct entry, although you would have to
copy and paste to run it (Figure 4).

A more comprehensive alternative might
be McFly [2], a replacement named for the
main character in the Back to the Future
movies (Figure 5). Using an SQLite data-
base, McFly takes context into consider-
ation in its output, doing the HISTTIMEFORMAT
variable several times better. Among other
things, McFly’s suggestions are influenced
by how often you run a command, when
you last ran the command, and whether
you’ve previously selected the command
from McFly. In addition, McFly lets you run
the command in the same directory as be-
fore, consider the commands you’ve previ-
ously run before the command you are
searching for, and tell whether the com-
mand failed last time, which probably
means you would not want to run it again.
However, McFly is not yet a complete re-
placement for history.

Conclusion
The history command offers plenty of
ways to enhance your work at the com-
mand line. The fact that a direct substi-
tution has not arrived before now is a
tribute to the efficiency and versatility of
the history command. nnn

[1]	� history man page:
https://​linux.​die.​net/​man/​5/​history

[2]	� McFly:
https://​github.​com/​cantino/​mcfly

Info

Figure 4: Piping history through grep can be an efficient way to search
the history entries.

Figure 5: McFly is a history alternative that uses AI to select results.

nnn

36

Command Line – Bash History

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

https://linux.die.net/man/5/history
https://github.com/cantino/mcfly

ScriptForge files end up inside several di-
rectories under /usr/lib/libreoffice/
share/basic/.

In addition to system-wide macros,
you can also create user-specific macros,
which LibreOffice will display under My
Macros (Figure 2). On Linux, the corre-
sponding source files will be placed in-
side $HOME/.config/libreoffice/4/user/
Scripts, which you should remember to
add to your backups as soon as you start
creating user-specfic macros!

System-wide and user-specific macros
can be run on any document that a user
opens with LibreOffice using their ac-
count on that specific computer.

If you want to make a macro available
to any LibreOffice user (who has the
right system libraries), you can embed
the macro in the document. If a docu-
ment-specific macro is available for a

A ll great software programs, espe-
cially free and open source soft-
ware, share one common fea-
ture: You can easily customize

and extend the software as you wish.
The LibreOffice productivity suite is no
exception, thanks to its support for those
“saved sequence[s] of commands or key-
strokes that are stored for later use” [1],
otherwise known as macros.

I like to think of macros as the LibreOf-
fice equivalent of Unix scripts: Whether
they are keyboard sequences or code
written in a programming language, these
simple programs may be created quickly,
possibly with very little programming
skill, to automate all sorts of tasks.

ScriptForge [2], a LibreOffice library
for building scripts, along with the APSO
extension needed to run ScriptForge,
provides a great tool to learn how to au-
tomate LibreOffice because it solves a
general, but very important, problem
with the LibreOffice macro environment.

In this article, I will provide a brief back-
ground of LibreOffice macros, talk about
using Python in LibreOffice, and then
show you how to use ScriptForge to create
portable macros to automate LibreOffice.

LibreOffice Macros
Regardless of the programming language
used to write a macro, there are three

types of LibreOffice macros: system-wide,
user-specific, and document-specific.

A system-wide LibreOffice macro con-
sists of code shipped and installed with
LibreOffice. You will find system-wide
macros in a system folder (usually /usr/
lib/libreoffice/share/Scripts/ on
Linux systems), which makes these mac-
ros accessible to everyone using that in-
stallation. When you select Tools | Mac-
ros | Run Macros in LibreOffice, the con-
tents of that system folder show up in
the LibreOffice Macros section as shown
in Figure 1. As of mid-2022, a standard
LibreOffice installation on Ubuntu in-
cludes a large number of system-wide
macros in four different languages:
BeanShell, Java,
JavaScript, and
Python.

If you install ad-
ditional macros,
depending on
their configura-
tion, these macros
may be placed in
some other sec-
tion of the /usr/
lib/libreoffice
hierarchy or even
as user-specific
macros. For ex-
ample, the

Automating LibreOffice with macros

 Macro Maker
ScriptForge helps you automate LibreOffice by building portable
macros. By Marco Fioretti

Figure 1: LibreOffice comes with many ready-to-use
macros, in several programming languages. Le

ad
 Im

ag
e

©
 s

eb
as

ti
en

 d
ec

o
re

t,
 1

23
R

F.
co

m

38

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

LibreOffice Macros with ScriptForge

given document, it will appear in the
menus shown in Figures 1 and 2 inside a
separate folder named after that file,
only when that document is open.

A final note on LibreOffice macros: By
default, your LibreOffice installation may
refuse to run all the macros you attempt to
install (either ones you create or find in-
side a document). You can change this set-
ting (but think twice before doing it) by
going to Tools | Options | LibreOffice | Se-
curity, clicking on Macro Security, and
then adjusting Security Levels and/​or
Trusted Sources to meet your requirements.

Macros vs. Scripts
In addition to macros, LibreOffice also
uses the term “scripts” for third-party
code run from inside LibreOffice to auto-
mate a task. You may wonder (as do I)
what the real difference between the two
categories is, but a single, clear, and sim-
ple answer seems hard to find. From per-
sonal experience, there seems to be little
or no difference between the two con-
cepts for all practical purposes, at least
for end users and beginner program-
mers. The main difference seems to be
that a “script” (as opposed to a “macro”)
might need an extra configuration step
or package in order to run it.

Python in LibreOffice
Of the four languages that are “natively”
supported by LibreOffice, I prefer to use
Python because that is the language I
use most frequently, even outside of Li-
breOffice. As far as LibreOffice automa-
tion with Python is concerned, it seems

that the only way to easily embed Py-
thon code inside a document is to install
an extension called Alternative Script Or-
ganizer for Python (APSO) [3]. From my
understanding, APSO is necessary, at
least on Ubuntu and (I assume) most
other Linux distributions, because the
glue code to run Python scripts is only
available as a separate package. In gen-
eral, with APSO you get an integrated
Python interpreter and debugger, which
are really useful if you want to do seri-
ous LibreOffice programming with Py-
thon, with or without ScriptForge.

Even if you just want to run some
ScriptForge-based Python script you
found online, you will need APSO (or
equivalent extensions), at least to
embed or extract scripts in the files you
manage with LibreOffice (if their format
allows it, of course). I will show how to
actually use APSO for this purpose later
in this article.

To install APSO, just visit the website,
download the latest version, select Yes
when asked if you would like to open
that file with LibreOffice, and follow the
instructions. Once APSO is installed,
you will find an extra entry in the Libre-
Office Macros submenu as shown in
Figure 3: a macro organizer, whose de-
fault shortcut is Alt+Shift+F11, dedi-
cated to Python scripts.

The ScriptForge Solution
Judging from an online search, LibreOf-
fice macros and scripts are very popular.
Besides countless third-party tutorials,
you will find plenty of official documen-
tation, as well as a collection of the most
popular, ready-to-use macros in the Doc-
ument Foundation’s wiki [4]. Despite all
this documentation, most users will find
LibreOffice’s macro/​scripting subsystem
and its corresponding API overwhelming
enough that they never try to write their
own scripts or
macros. Indeed,
writing your own
code for LibreOf-
fice can be pretty
difficult and time
consuming.

ScriptForge
aims to make
writing macros
and scripts easier.
With ScriptForge,
you can quickly

and easily find, recognize, and use the
functions that are most frequently
needed when writing code. These func-
tions include – primarily, but not exclu-
sively – user- and document-specific
macros. These functions are packaged
as reusable services (as seen in Figure
4) that can be loaded from code written
in LibreOffice Basic or Python. Most
ScriptForge services are deliberately
written to work exactly the same in
both Python and Basic. The main differ-
ence is the way you load ScriptForge. In
LibreOffice Basic, you must insert the
following command at the beginning of
your macro:

GlobalScope.BasicLibraries.LoadLibrary(U

 "ScriptForge")

With Python, you import the ScriptForge
service as follows:

from scriptforge import U

 CreateScriptService

The ScriptForge Library [2] provides sev-
eral examples of ScriptForge services
that process strings, process arrays of ge-
neric elements (e.g., cell ranges in
spreadsheets or lists in text documents),
or read and write full files. Using these
functions, you can sort data, read or
write CVS tables or databases, search
and replace text with regular expres-
sions, or browse folders.

ScriptForge organizes these features
into three main sections, two of which
are shown in Figure 5, which you should
compare with Figure 4: Besides a Core li-
brary and Associated libraries, which are
both developed by ScriptForge develop-
ers, you will find Guest libraries and ex-
tensions developed by third parties.

Among other things, the Core library
holds code to process all the low-level

Figure 2: User-specific macros and
scripts will be saved in your Libre-
Office configuration folder and
available under My Macros.

Figure 3: The APSO extension for LibreOffice adds
another interface to execute Python code while run-
ning LibreOffice.

IN-DEPTH
LibreOffice Macros with ScriptForge

39LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

very powerful programming environ-
ments: LibreOffice Calc’s number pro-
cessing and charting capabilities and Py-
thon’s countless modules and features.
Sure, fetching the content of a cell just to
increment it is not a big deal, but it just
shows how simple reading and writing
spreadsheet cells is with ScriptForge
(lines 5 and 7). Instead of an increment
operator in line 6, you could use Python
code (as shown in an earlier article [6])
that assigns to value some number
fetched from the web in real time every
time you call that macro. With similar
techniques, you may download head-
lines from the Internet [7] (or any other
content) and insert them inside a Libre-
Office text document. Due to space con-
straints, I cannot show full examples of
such applications here, but by using my
earlier articles, it should not be too diffi-
cult an exercise.

Running ScriptForge
I will now show how to make LibreOf-
fice actually recognize and run the code
in Listing 1, first as a user-specific script
and then as an embedded one. For a
user-specific script, you should open
your preferred text editor, copy the code

data structures, manage files and folders,
and handle localization issues. The As-
sociated libraries are divided in three
groups, which handle the contents of Li-
breOffice files (SFDocuments), user dia-
logs (SFDialogs), and databases (SFData-
bases). SFDatabases can access data-
bases inside LibreOffice Base files or ex-
ternal ones, reading and writing records
with standard SQL queries.

You may write complete, useful mac-
ros using only these ScriptForge libraries.
Once you have become familiar with
them, you can use these macros as con-
nectors to move raw data back and forth
between a document (e.g., a spread-
sheet) and Basic or Python data struc-
tures for more sophisticated processing.

Getting
Started
In this article, I
focus on how to
get started using
ScriptForge by
showing how to
load and run, first
as a user-specific
macro and then as
an embedded one
(document-spe-
cific), some ele-
mentary Script-
Forge-based code
written in Python,
because that is the
most complicated
case to set up.

Consider the Py-
thon code in List-
ing 1, which is
taken straight
from the Script-
Forge documenta-
tion. The first

things Listing 1 does are declare (line 1)
that the script must use the ScriptForge
libraries and load from these libraries
the specific methods needed to process
cells inside LibreOffice
Calc spreadsheets (line 2).
Lines 4 to 7 define a func-
tion (increment_cell) that
copies the current contents
of Cell A1 in a Python vari-
able called value, incre-
ments that variable, and
then copies the result back
into the same spreadsheet
cell. Line 9 shows how to
actually call that function.
The last part of the script
imports the ScriptForge
service that handles dialog
boxes and creates
one with a “Hello”
message.

The simple code
in Listing 1 should
be enough to high-
light ScriptForge’s
real potential and
the roads ScriptForge
opens up for its
users. Listing 1 es-
sentially shows a di-
rect, simple-to-use
bridge between two

Figure 4: ScriptForge offers services for a variety of
tasks: spreadsheet processing, string substitutions,
database queries, and more.

Figure 5: The internal organiza-
tion of the ScriptForge library [5].

01 �from scriptforge import CreateScriptService

02 �doc = CreateScriptService("Calc")

03 �

04 �def increment_cell(args=None):

05 � value = doc.GetValue("A1")

06 � value += 1

07 � doc.SetValue("A1", value)

08 �

09 �g_exportedScripts = (increment_cell,)

10 �from scriptforge import CreateScriptService

11 �bas = CreateScriptService("Basic")

12 �bas.MsgBox("Hello!")

Listing 1: Sample ScriptForge Script

Figure 6: Once installed properly, user-specific
Python scripts can be run just like ordinary macros.

40

LibreOffice Macros with ScriptForge

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

from Listing 1 to the new file, and save
the file as test.py in your local LibreOf-
fice scripts folder, which on Linux will
be $HOME/.config/libreoffice/4/user/
Scripts/python/.

When you now go to Tools | Macros |
Run Macro, you will see the contents of
that script under My Macros of your Li-
breOffice Macros manager and can click
on increment_cell to execute the script
(Figure 6).

This script will be a local, user-specific
macro, usable on every spreadsheet you
open with LibreOffice using your ac-
count on your computer. To make this
script a document-specific macro, you
need to embed the macro into the
spreadsheet. However, for other LibreOf-
fice users to immediately find and run
the macro (if they have ScriptForge, of
course) in that same spreadsheet, a bit
more work is needed.

This is where the APSO script organizer
enters the picture. You can use APSO both
to embed already existing macros or cre-
ate new macros inside a document. To
embed an existing macro, open the
spreadsheet in
which you want to
embed the macro
and select Tools |
Macros | Organize
Python scripts,
which will open
the simple inter-
face shown in Fig-
ure 7. From here,
you can select the
macro and then
choose Menu |

Embed in document (you can also execute
the macro from this interface). You may
use the same interface to export an em-
bedded macro from a file.

You can easily see where and how the
macros were embedded, because the
OpenDocument file format that LibreOf-
fice uses by default is really just a ZIP ar-
chive. If you embed the script from List-
ing 1 inside a spreadsheet called test.
ods, save that file as test.zip, and unzip
it, you will obtain (among other things)
a Scripts folder containing a python sub-
folder inside of which you’ll find a file
called test.pys, whose contents will be
the code from Listing 1!

Once you embed the script and save
the spreadsheet (named testmacro‑2.ods
in my example), anyone who opens the
spreadsheet on a computer with LibreOf-
fice and ScriptForge will see that macro
under testmacro‑2.ods and be able to
run it, both in APSO (Figure 8) and in Li-
breOffice’s standard macro manager
(Figure 9).

If you want to create new Python
scripts with APSO, open APSO, select (for

an embedded script) the current file and
then go to Menu | Create module. After
naming the module, you can select it and
click on Menu | Edit to open a text editor
and code directly from there, using AP-
SO’s Python shell to test your work.

Conclusion
Automating LibreOffice is less complicated
than it first seems thanks to ScriptForge
and Python. However, this article just
touches on the basics. If you want to learn
more about the power of Python and
ScriptForge in creating LibreOffice macros
and scripts, visit LibreOffice.​org [5]. If
you are interested in ScriptForge’s inter-
nal architecture, check out the Script-
Forge presentation given at the 2020 Li-
breOffice conference [8]. nnn

Figure 7: With APSO, you can
embed macros inside LibreOffice
documents with a few clicks.

Figure 8: Thanks to APSO, the
user-specific macro first seen in
Figure 6 is now embedded inside
the current spreadsheet.

Figure 9: Macros embedded with APSO are usable
also through LibreOffice’s standard macro manager.

[1]	� Getting Started Guide 7.0, 2020:
https://​books.​libreoffice.​org/​en/​GS70/​
GS7013‑GettingStartedWithMacros.​html

[2]	� ScriptForge: https://​help.​libreoffice.​
org/​7.​2/​en‑US/​text/​sbasic/​shared/​03/​
lib_ScriptForge.​html

[3]	� APSO: https://​extensions.​libreoffice.​
org/​en/​extensions/​show/​apso‑​
alternative‑script‑​organizer‑for‑python

[4]	� LibreOffice macros: https://​wiki.​
documentfoundation.​org/​Macros

[5]	� Creating Python Scripts with Script-
Forge: https://​help.​libreoffice.​org/​latest/​
ro/​text/​sbasic/​shared/​03/​sf_intro.​html

[6]	� “Scraping the web for data” by Marco
Fioretti, Linux Magazine, issue 233,
April 2020, www.​linux‑magazine.​com/​
Issues/​2020/​233/​Web‑Scraping

[7]	� “Tutorial: Desktop News Feeds” by
Marco Fioretti, Linux Magazine, issue
217, December 2018,
www.​linux‑magazine.​com/​Issues/​
2018/​217/​Read‑Me

[8]	� “ScriptForge: Scripting resources for
Basic [& Python] coders” by Jean-
Pierre Ledure: https://​conference.​
libreoffice.​org/​assets/​libocon2020/​
Slides/​oSLO‑ScriptForge‑2020‑10.​pdf

Info

Marco Fioretti (https://​mfioretti.​com) is a
freelance author, trainer, and researcher
based in Rome, Italy, who has been
working with free and
open source software
since 1995 and on open
digital standards since
2005. Marco also blogs
about digital rights at
https://​stop.​zona‑m.​net.

Author

LibreOffice Macros with ScriptForge

41LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

https://books.libreoffice.org/en/GS70/GS7013-GettingStartedWithMacros.html
https://books.libreoffice.org/en/GS70/GS7013-GettingStartedWithMacros.html
https://help.libreoffice.org/7.2/en-US/text/sbasic/shared/03/lib_ScriptForge.html
https://help.libreoffice.org/7.2/en-US/text/sbasic/shared/03/lib_ScriptForge.html
https://help.libreoffice.org/7.2/en-US/text/sbasic/shared/03/lib_ScriptForge.html
https://extensions.libreoffice.org/en/extensions/show/apso-alternative-script-organizer-for-python
https://extensions.libreoffice.org/en/extensions/show/apso-alternative-script-organizer-for-python
https://extensions.libreoffice.org/en/extensions/show/apso-alternative-script-organizer-for-python
https://wiki.documentfoundation.org/Macros
https://wiki.documentfoundation.org/Macros
https://help.libreoffice.org/latest/ro/text/sbasic/shared/03/sf_intro.html
https://help.libreoffice.org/latest/ro/text/sbasic/shared/03/sf_intro.html
http://www.linux-magazine.com/Issues/2020/233/Web-Scraping
http://www.linux-magazine.com/Issues/2020/233/Web-Scraping
http://www.linux-magazine.com/Issues/2018/217/Read-Me
http://www.linux-magazine.com/Issues/2018/217/Read-Me
https://conference.libreoffice.org/assets/libocon2020/Slides/oSLO-ScriptForge-2020-10.pdf
https://conference.libreoffice.org/assets/libocon2020/Slides/oSLO-ScriptForge-2020-10.pdf
https://conference.libreoffice.org/assets/libocon2020/Slides/oSLO-ScriptForge-2020-10.pdf
https://mfioretti.com
https://stop.zona-m.net

While you are at it, you can also install
the Material theme [2] with:

pip3 install mkdocs‑material

Although technically correct, to call Ma-
terial a theme would be doing it a great

D ocumentation: Everybody
needs it, but not everyone
wants to deal with it, especially
for smaller projects where time

and resources are limited. Even if you
manage to find time to create technical
content, turning it into user-friendly,
searchable, and
easy-to-navigate
documentation is
no mean feat – un-
less you use Mk-
Docs [1]. This un-
assuming tool is
manna from heaven
for anyone looking
for a straightfor-
ward and low effort
way to publish and
maintain documen-
tation (Figure 1).
You can also use
MkDocs for any
content that needs
to be presented in a
structured and eas-
ily searchable for-
mat, from research
notes to a knowl-
edge base.

First Steps
If you have Python 3 and pip installed
on your machine, you can deploy Mk-
Docs by running the following command
as root:

pip3 install mkdocs

Building project documentation
from Markdown files

 Documentation,
 Please!

MkDocs, a static site generator, lets you easily transform Markdown files into ready-to-use, user-
friendly project documentation. By Dmitri Popov

Figure 1: MkDocs allows you to build documentation for your projects with a minimum
of effort. Le

ad
 Im

ag
e

©
 s

to
kk

et
e,

 1
23

R
F.

co
m

42

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MkDocs

disservice. Instead of merely giving Mk-
Docs a new look, Material adds an en-
tire new level of functionality, making it
worth installing for that reason alone.
While certain capabilities of Material
are available only to paying supporters,
all the features described in this article
are free.

When you are ready to create your
first documentation project, run the
command

mkdocs new documentation

(replace documentation with your proj-
ect name). This creates a project skele-
ton that includes two items: the mk‑
docs.yml configuration file and the docs
directory for storing the actual content.
The content in this case is Markdown-
formatted files, and it’s up to you how
to organize them inside the directory.
For example, you can create a separate
file for each topic and then group the
files into subdirectories, such as Get-
ting started, Tutorials, References, etc.
Want to quickly preview the documen-
tation you’re working on? Switch to
the created project directory, run the
mkdocs serve command, and point the
browser to 127.0.0.1:8000. The clever
part is that whenever you edit the files
in the project directory, the server au-
tomatically rebuilds the content to re-
flect the changes.

While the built-in server allows you
to preview the documentation site, you
still need to convert raw source into a
self-contained publishable static site.
When you’re ready to publish the docu-
mentation, run the mkdocs build com-
mand, and MkDocs creates the site di-
rectory containing the static pages and
all the required components. You can
then either upload the contents of the
site directory to your server or use Mk-
Docs to deploy documentation on
GitHub (more about that later). That’s
what the most basic MkDocs workflow
looks like: Create a project skeleton,
populate the docs directory with Mark-
down-formatted text files, preview the
result in the browser, and use the mkdocs
build command to generate ready-to-
publish static documentation.

Configuration
MkDoc’s default configuration does the
job, but it only uses a fraction of the

available features. To make use of these
features lurking beneath the surface,
you need to enable and configure them
by editing the mkdocs.yml configuration
file. Initially, the file contains a single
configuration parameter: site_name: My
Docs. Listing 1 shows a real world con-
figuration file. The first four parameters
(site_name, site_description, site_au‑
thor, and site_url) are pretty much self-
explanatory.

Things get a bit more interesting
starting with the repo_url parameter.
MkDocs assumes that you manage
your documentation project’s source
code using Git. You don’t have to use
Git, but if you choose this approach
and opt to use GitHub or GitLab public
or private instances for hosting the
source code, you can specify the URL
of the repository. This adds the link in
the upper-right corner of the finished
documentation site. If you use GitHub,
MkDocs even adds Stars and Forks
counters. But that’s not all. If you want
to encourage readers to contribute to
the documentation, specify edit_uri to
add an edit link to each page. This link
points to the page in the GitHub repos-
itory where the reader can make edits
and create pull requests. The exact
URL depends on the platform you’re
using. For GitHub, it’s blob/main/docs/;
for GitLab, it’s ‑/blob/main/docs (where
main is the name of the branch).

The copyright parameter requires no
explanation, so I’ll move on to the plug—
ins section. MkDocs’ functionality can
be extended by installing plugins. I’ll
discuss third-party plugins later, but
what you need to know now is that to
enable a plugin you must specify it in
the plugins list. The search plugin is en-
abled by default, but you must add it to
the list if you use other plugins.

MkDocs comes with a handful of
themes, and you can specify the desired
theme in the theme section. Because
you’ve installed Material, it makes sense
to enable it for use with MkDocs. It also
makes sense to replace the default logo
and favicon with your own. To do this,
specify their paths and file names as the
logo and favicon parameters. In List-
ing 1, the logo.png file is used both as a
logo and a favicon, and the file itself is
stored in the docs directory.

Material comes with its own features
that can be enabled by adding them to the

features list. For example, if you want the
header bar to automatically hide when the
user scrolls past a certain threshold, en-
able header.autohide as follows:

features:

 ‑ header.autohide

Material makes it possible to adjust its
color palette by specifying primary and
accent colors using the appropriate en-
tries under the palette parameter. To
quickly figure out what colors you
want to use, open the Changing the col-
ors page [3] and pick the desired pri-
mary and accent colors to see the re-
sult in real time. A dark mode with the
ability to toggle it makes the reading
experience more comfortable. To en-
able this feature in Material, you have
to specify a dark mode theme in addi-
tion to the default (light) one and then
define toggles for each theme. In List-
ing 1, the toggle for the default theme
is as follows:

‑ scheme: default

 <...>

 toggle:

 icon: material/lightbulb‑outline

 name: Switch to dark mode

And the toggle for the dark theme looks
like this:

‑ scheme: slate

 <...>

 toggle:

 icon: material/lightbulb

 name: Switch to light mode

In the example, slate is used as the dark
theme.

You can also replace the default font.
Using the font list, you can specify any
font available through Google Fonts:

font:

 text: Lato

And if you want to use a specific mono-
spaced font for code, you can do that too:

font:

 text: Lato

 code: JetBrains Mono

If you want to bypass Google Fonts and
use the fonts you include with your

IN-DEPTH
MkDocs

43LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

plugins:

 ‑ git‑revision‑date‑localized:

 enable_creation_date: true

 type: date

Another plugin worth adding right
from the start is Awesome Pages. By
default, MkDocs arranges pages alpha-
betically, which is rarely how you’d
want to organize your content. An ugly
workaround is to prepend pages with
numbers (e.g., 01_quickstart.md, 02_
advanced_config.md). But if you have a
lot of pages and often add new con-
tent, keeping the content structured
can quickly become a time-consuming
and laborious process. The Awesome
Pages plugin provides an elegant solu-
tion to the problem. Install the plugin
using the command

sudo pip3 install U

 mkdocs‑awesome‑pages‑plugin

and add awesome‑pages to the plugins
list in mkdocs.yml. Then create a .pages
file in the docs directory and add the
pages in the order you want them to
appear in the documentation as
follows:

nav:

 ‑ quickstart.md

 ‑ advanced_config.md

documentation, you can do that by spec-
ifying a custom CSS stylesheet:

extra_css:

 ‑ css/extra.css

Then add a font definition to the extra.
css file:

@font‑face {

 font‑family: "Lato";

 src: "fonts/Lato.ttf";

}

What makes Material particularly suit-
able for technical writing is the fact that
it supports a wide range of Python
Markdown extensions. The admonition
extension, for example, makes it possi-
ble to add notes, tips, examples, quotes,
warnings, etc. To enable the desired ex-
tension, add it to the markdown_exten‑
sions list:

markdown_extensions:

 ‑ admonition

The extensions you choose to enable
depend entirely on your needs. The Py-
thon Markdown Extensions page [4]
provides a list of all the supported ex-
tensions, with detailed descriptions
and usage examples. The extensions
listed in Listing 1 are the bare

minimum that you would want to in-
clude. In addition to admonition, List-
ing 1 enables syntax highlighting (pym‑
downx.highlight), both inline (pym‑
downx.inlinehilite) and fenced code
blocks (pymdownx.superfences), as well
the ability to render keys and keyboard
shortcuts (pymdownx.keys).

MkDocs Plugins
While MkDocs and Material make a
rather powerful combination, you can
also add other features and capabilities
using MkDocs plugins. Need to add an
RSS feed to your documentation site?
There is a plugin for that. Want to in-
clude charts? There is a plugin for that,
too. Similar to MkDocs itself, most pl-
ugins are available through the PyPI
package repository [5]; to see a list of
MkDocs plugins, simply search for mk-
docs. To deploy a plugin, install it using
the pip package manager. For example,
the following command installs the plu-
gin that adds the localized date of the
last modification date to every page:

sudo pip3 install U

 mkdocs‑git‑revision‑date‑U

 localized‑plugin

Once the plugin has been installed, en-
able and configure it in the configura-
tion file:

site_name: KOReader compendium

site_description: KOReader knowledgebase

site_url: https://dmpop.github.io/koreader‑compendium/

site_author: Dmitri Popov

repo_url: https://github.com/dmpop/koreader‑compendium/

edit_uri: blob/main/docs/

copyright: �Attribution‑NonCommercial‑ShareAlike 4.0

International (CC BY‑NC‑SA 4.0)

plugins:

 ‑ search

 ‑ git‑revision‑date‑localized:

 enable_creation_date: true

 type: date

theme:

 name: material

 logo: logo.png

 favicon: logo.png

 palette:

 ‑ scheme: default

 primary: green

 accent: teal

 toggle:

 icon: material/lightbulb‑outline

 name: Switch to dark mode

 ‑ scheme: slate

 primary: green

 accent: teal

 toggle:

 icon: material/lightbulb

 name: Switch to light mode

 font:

 text: Lato

 code: JetBrains Mono

markdown_extensions:

 ‑ admonition

 ‑ pymdownx.details

 ‑ pymdownx.highlight:

 linenums: true

 ‑ pymdownx.superfences

 ‑ pymdownx.inlinehilite

 ‑ pymdownx.keys

Listing 1: Sample Configuration File

44

MkDocs

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

Check the plugin’s documentation for
other options you can use [6].

Publish on GitHub
The mkdocs build command generates a
ready-to-publish static documentation site
that you can upload to a remote server. To
optimize the publishing process, you can
create a shell script that uses rsync to push
changes to the remote server every time
you rebuild the documentation.

MkDocs has yet another clever fea-
ture that further simplifies the task of
publishing documentation. If you hap-
pen to use GitHub, you can use MkDocs
to deploy documentation to GitHub
Pages. To do this, switch to the docu-
mentation project repository and run

the mkdocs gh‑deploy command. This
publishes the documentation in the
gh‑pages branch of the project. That’s
all there is to it.

Wrap-Up
MkDocs is not the only documentation
publishing tool out there. But if you need
a solution that is easy to master, pro-
vides all basic capabilities right out of

the box, and can grow with your needs,
you should give MkDocs a try. nnn

[1]	� MkDocs: https://​www.​mkdocs.​org

[2]	� Material for MkDocs: https://​
squidfunk.​github.​io/​mkdocs‑material/

[3]	� Material color settings:
https://​squidfunk.​github.​io/​mkdocs‑​
material/​setup/​changing‑​the‑colors/

[4]	� Python Markdown Extensions:
https://​squidfunk.​github.​io/​mkdocs‑​
material/​setup/​extensions/​python‑​
markdown‑​extensions/

[5]	� PyPI: https://​pypi.​org

[6]	� Awesome Pages:
https://​github.​com/​lukasgeiter/​
mkdocs‑awesome‑pages‑plugin/​blob/​
master/​README.​md

Info

Dmitri Popov has been writing exclusively
about Linux and open source software for
many years. His articles have appeared in
Danish, British, US, German, Spanish, and
Russian magazines and websites. You can
find more on his website at tokyoma.​de.

Author

nnn

MkDocs

IN-DEPTH

https://www.mkdocs.org
https://squidfunk.github.io/mkdocs-material/
https://squidfunk.github.io/mkdocs-material/
https://squidfunk.github.io/mkdocs-material/setup/changing-the-colors/
https://squidfunk.github.io/mkdocs-material/setup/changing-the-colors/
https://squidfunk.github.io/mkdocs-material/setup/extensions/python-markdown-extensions/
https://squidfunk.github.io/mkdocs-material/setup/extensions/python-markdown-extensions/
https://squidfunk.github.io/mkdocs-material/setup/extensions/python-markdown-extensions/
https://pypi.org
https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin/blob/master/README.md
https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin/blob/master/README.md
https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin/blob/master/README.md

yaml file in Listing 1 and then execute the
following command in your terminal:

docker run ‑d ‑‑rm U

 ‑v ${PWD}/config.yaml:/etc/OliveTin/U

 config.yaml:ro U

 ‑v /var/run/docker.sock:/var/run/U

 docker.sock:ro U

 ‑p 51337:1337 jamesread/olivetin

Once the command is executed success-
fully, go to localhost:51337 in your web
browser to access the web interface
shown in Figure 1.

W hile Bash scripts are the
glue that holds the GNU/​
Linux back end together, a
web-based front end makes

these scripts more user-friendly for end
users. In the last decade, web user inter-
faces (web UIs) have become the front
end of choice, even for daily local desk-
top usage. However, creating a web UI
takes some effort, even for very simple
interfaces, because a web UI requires
using HTML, CSS, JavaScript, and more.

Luckily, two free and open source util-
ities, OliveTin and Script Server, let you
create a web UI for your scripts without
writing a single line of HTML, CSS, and
JavaScript (and its hundreds of web UI
libraries). In this article, I will show you
how to create a simple web UI to drive
your scripts with OliveTin, followed by a
more feature-rich interface using Script
Server.

OliveTin
OliveTin [1] lets you create a web inter-
face that allows your end users to access
predefined shell commands. The Olive-
Tin interface consists of various buttons
used to invoke configured shell com-
mands. OliveTin uses declarative

programming driven by a YAML configu-
ration: You just create a simple declara-
tive configuration, feed it to OliveTin,
and out pops a web page that functions
as an interface for the shell commands
available on your system. Instead of
memorizing and typing the actual com-
mands into the command line, OliveTin
lets you automate your daily tasks with a
user-friendly button. Because of its sim-
plicity, OliveTin lets you open up
your system to internal non-com-
mand-line users.

OliveTin is distributed as a Golang
static binary, so you do not need to install
it. Just grab the proper binary version for
your machine architecture, put the exe-
cutable in a system-wide accessible loca-
tion, and you are done. Because a Docker
Engine is very common on most GNU/​
Linux distributions, I prefer to run Olive-
Tin out of the box with Docker. If you are
running native commands that cannot be
run with Docker, you can also install
OliveTin as a system service using distri-
bution specific packages. Refer to the
documentation [2] to set up OliveTin na-
tively with DEB/​RPM packages.

To generate a simple web interface
with OliveTin, first create the config.

A web user interface
for Bash scripts

Masquerade
Create a user-friendly front end for your Bash scripts without
writing a single line of HTML, CSS, or JavaScript. By Ankur Kumar

actions:

 ‑ title: "Hello FLOSS Rockstar!!!"

 icon: '<img src =

"�https://www.popiconsblog.com/

uploads/9/9/4/4/9944728/pink‑floyd

‑wish‑you‑were‑here‑pop‑icons‑behind‑

the‑song_orig.jpg" width = "100px"/>'

 shell: sleep 5 && echo 'Hello

FLOSS!!!'

 timeout: 6

 ‑ title: "Nuke Dangling Docker

Images"

 shell: docker image prune ‑f

 icon: "🧨"

 timeout: 10

Listing 1: config.yaml
Le

ad
 Im

ag
e

©
 E

ln
u

r
A

m
ik

is
h

iy
ev

, 1
23

R
F.

co
m

46

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

OliveTin and Script Server

You now have an interface with two
buttons. Try pressing both buttons indi-
vidually or at the same time to see how
the interface behaves. OliveTin simply
runs the command specified for each
button in Listing 1. Following the stan-
dard Unix-like convention, OliveTin
treats commands with a non-zero return
as a failure. OliveTin executes each but-
ton command with a default time out,
which you can configure in seconds
using the timeout value in Listing 1.
Once the time out is reached, the com-
mand is killed.

To customize the action button icon as
shown in Listing 1, you can use either an
HTML image from the web or a Unicode
emoji. You can find the HTML codes for
many Unicode emojis online [3]. You
can also save and use the icons in an of-
fline mode (see the OliveTin documenta-
tion for instructions [2]).

Clicking on the Logs button (top right
corner in Figure 1) displays the logs (Fig-
ure 2) of the commands that were

Figure 1: The OliveTin web interface generated from Listing 1.

Figure 2: The command log shows the actions executed for each button.

logLevel: "DEBUG"

hideNavigation: true

actions:

 ‑ title: "Hello FLOSS Rockstar!!!"

 icon: '<img src =

"�https://www.popiconsblog.com/uploads/9/9/4/4/9944728/
pink‑floyd‑wish‑you‑were‑here‑pop‑icons‑behind‑the‑song_
orig.jpg" width = "100px"/>'

 shell: sleep "{{delay}}" && echo 'Hello FLOSS!!!'

 arguments:

 ‑ name: delay

 choices:

 ‑ title: 1 sec

 value: 1

 ‑ title: 5 sec

 value: 5

 ‑ title: 10 sec

 value: 10

 timeout: 6

 ‑ title: "Nuke Dangling Docker Images"

 shell: docker image prune ‑f

 icon: "🧨"

 timeout: 10

 ‑ title: Ping An Address

 shell: ping {{address}} ‑c {{count}}

 icon: ping

 timeout: 3

 arguments:

 ‑ name: count

 type: int

 ‑ name: address

 type: ascii_identifier

Listing 2: Updated config.yaml

IN-DEPTH
OliveTin and Script Server

47LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

executed when an action button was
pressed.

OliveTin offers further customization
options. You can configure OliveTin to
display command options as a text box
or drop-down list showing the exact op-
tion type to validate. You can also hide
the Actions and Logs buttons (top right)
with hideNavigation: true in your con-
fig.yaml file or set logLevel to DEBUG,
ERROR, WARN, or INFO. Listing 2 shows
these configuration customizations in
action in the updated config.yaml.

Once you’ve updated the configura-
tion file, you then need to run the fol-
lowing command for the new customiza-
tions to display in your web UI:

docker restart $(docker ps|U

 grep olivetin|awk '{print $1}')

Thanks to the updates in Listing 2, your
OliveTin web UI now has hidden naviga-
tion (Figure 3), a drop-down box to se-
lect delay time (Figure 4), and an error
message that flashes when you try to
ping with a non-int count (Figure 5).

Script Server
Script Server, a web UI for scripts, ren-
ders a web front end that will display all
of your scripts configured to execute.
You can configure each script execution
with various visual controls to accept

Figure 3: Navigation is now hidden: You can no longer see the Actions and Logs buttons.

Figure 4: Delay the execution of the Hello FLOSS Rockstar!!! button via
the delay drop-down field.

Figure 5: You get an error message if you enter an invalid argument.

Figure 6: The Script Server web interface.

Figure 7: A drop-down list lets you select a delay value.

48

OliveTin and Script Server

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

and verify different types of options and
parameters that are passed to the respec-
tive script.

The Script Server web UI also provides
different access control methods, making
it a multiuser scripts execution portal.
You can further configure the portal to fil-
ter who can see and execute the scripts.

To run Script Server out of the box,
you can use Docker, with bind-mounted
configurations and scripts. If some of
your scripts cannot be run in a Docker
container, you can run Script Server na-
tively (see the Script Server wiki [4] for
instructions).

To run a test version of Script Server,
you first need to
prepare the neces-
sary configura-
tions and scripts
by executing the
code from Listing
3 in a terminal.
Then, launch the
Script Server con-
tainer using the

command in Listing 4. Now, navigate to
localhost:55000 in your web browser:
The Script Server web UI is ready to exe-
cute your scripts (Figure 6).

If you click on the sleep hello script,
you will see script controls, such as the
drop-down list to select a delay value
(Figure 7), as well as the EXECUTE and
STOP buttons. You can also configure an
option checkbox as shown in Figure 8.
Other options include adding files for
upload/​download, IP input, and more,
but these options are beyond the scope
of this article. If you are interested in
learning more about Script Server’s other
options, see the Script Server wiki [4]
and the Script Server examples on
GitHub [5].

mkdir ‑p /tmp/configs/{runner,scripts}s

tee /tmp/configs/conf.json <<EOF

{

 "title": "Test Script Server",

 "security": {

 "xsrf_protection": "token"

 }

}

EOF

tee /tmp/configs/runners/sleephello.json <<EOF

{

 "name": "sleep hello",

 "description": "sleep first then hello",

 "script_path": "/app/scripts/sleephello.sh",

 "parameters": [

 {

 "name": "delay",

 "type": "list",

 "required": true,

 "description": "sec to sleep before printing
greeting",

 "default": "3",

 "values": ["1", "3", "5", "10"]

 }

]

}

EOF

tee /tmp/configs/scripts/sleephello.sh <<'EOF'

#!/bin/bash

sleep "${1}" && echo 'Hello to script‑server, from FLOSS!!!'

EOF

tee /tmp/configs/runners/dckrimgprune.json <<EOF

{

 "name": "docker image prune",

 "description": "cleanup dangling docker images",

 "script_path": "/app/scripts/dckrimgprune.sh",

 "parameters": [

 {

 "name": "unused images",

 "description": "all unused images cleanup",

 "no_value": true

 }

]

}

EOF

tee /tmp/configs/scripts/dckrimgprune.sh <<'EOF'

#! /bin/bash

if [["${1}"]]

then

 docker image prune ‑f ‑a

else

 docker image prune ‑f

fi

EOF

chmod +x /tmp/configs/scripts/*.sh

Listing 3: Configuring and Preparing Scripts

docker run ‑d ‑‑rm \

 ‑v /tmp/configs/conf.json:/app/conf/conf.json:ro \

 ‑v /tmp/configs/runners/:/app/conf/runners/:ro \

 ‑v /tmp/configs/scripts/:/app/scripts/:ro \

 ‑v /var/run/docker.sock:/var/run/docker.sock:ro \

 ‑p 55000:5000 bugy/script‑server

Listing 4: Launching Script Server

Figure 8: Configure a checkbox to give your scripts additional control options.

OliveTin and Script Server

49LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

To remove the existing Script Server
container, execute the following com-
mand:

docker rm ‑f $(docker ps|U

 grep script‑server|awk '{print $1}')

Then, launch a new instance of Script
Server with the newly created image
using the command shown in Listing 7.

In the bottom left corner of the main
web page, you will find the HISTORY
button, which lets you browse through a
script’s execution output (Figure 9).

To fix the missing Docker command
shown in the history in Figure 9, you
need to create a Docker image with the
missing Docker command-line interface
necessary to successfully execute the

docker image prune script. You can do
this by executing the code in Listing 5.

I have also added some basic authenti-
cation for the web UI using htpasswd. I
used an online htpasswd generator [6] to
generate .htpasswd file entries. Listing 6
generates an updated conf.json to show-
case some new Script Server features
that I added.

Figure 9: History for the docker image prune script.

tee Dockerfile <<'EOF'

FROM bugy/script‑server:latest

SHELL ["/bin/bash", "‑o", "pipefail", "‑c"]

RUN apt‑get update \

 && apt‑get install ‑‑no‑install‑recommends curl ‑y \

 && �curl ‑sSLk ‑o /tmp/docker.tgz "https://download.docker.com/linux/static/

stable/x86_64/$(curl ‑sSkL https://download.docker.com/linux/static/stable/

x86_64/|grep '^ *<a'|grep docker|grep ‑v rootless|awk ‑F '"' '{print $2}'|

sort ‑nr|head ‑1)" \

 && cd /tmp \

 && tar zxf docker.tgz \

 && mv docker/docker /usr/local/bin \

 && rm ‑rf docker docker.tgz \

 && apt‑get remove curl ‑y \

 && apt‑get clean \

&& �echo ‑e 'test:{SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=\nadmin:

{SHA}0DPiKuNIrrVmD8IUCuw1hQxNqZc=' > /etc/.htpasswd

EOF

docker build . ‑t script‑server

Listing 5: Updated Docker Image

tee /tmp/configs/conf.json <<EOF

{

 "title": "Test Script Server",

 "access": {

 "admin_users": ["admin"]

 },

 "auth": {

 "type": "htpasswd",

 "htpasswd_path": "/etc/.htpasswd"

 },

 "security": {

 "xsrf_protection": "token"

 }

}

EOF

Listing 6: Updated conf.json

Figure 10: Script Server login page.

Figure 11: Configured users can log out (bottom left), and docker image prune executes successfully.

50

OliveTin and Script Server

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

Once you refresh your browser page,
you should see a login screen asking for
your username and password (Figure
10). I also added test and admin users
(the password is the same as the re-
spective username) in the new Docker
image; only these two users can log in
to Script Server. In addition, I added a
new log out functionality below HIS-
TORY (bottom left), which allows
switching between the configured users

(Figure 11). You will
also notice in Figure 11
that docker image
prune now executes
successfully.

When you switch to
the admin user, you
will see a wheel control
(upper left, Figure 12).
Clicking on this wheel

will take you to an admin page where
you can interactively add and/​or config-
ure the back-end scripts with all the
possible properties (Figures 13 and 14),
which is handy when you want to add
your scripts quickly without swimming
through the documentation and JSON
configuration files. To successfully save
your changes in interactive mode, you
must remove the ro (read only) option
from the Docker commands used (with

the exception of the Docker socket bind
mount).

With the information covered here,
you should be able to get started and be
productive right away with Script Server.
The documentation [4] and examples [5]
will help you to unleash Script Server’s
full potential.

Conclusion
With these simple, yet powerful utilities,
you can create user-friendly front ends
for your scripts without needing to delve
into web programming. When it comes
to wrapping your predefined shell com-
mands in a web UI, OliveTin offers a
simple button-based web UI that is quick
to deploy. For more complicated use
cases, Script Server provides a feature-
rich web UI that offers detailed configu-
ration and controls to drive your back-
end scripts in controlled multiuser envi-
ronments. As an added bonus, I’ve cre-
ated a set of driver scripts, Dockerfiles,
and Docker Compose manifests to set
up and maintain the lifecycle of these
Dockerized utilities using only single
line commands available on my
GitHub repository [7]. nnn

docker run ‑d ‑‑rm \

 ‑v /tmp/configs/conf.json:/app/conf/conf.json:ro \

 ‑v /tmp/configs/runners/:/app/conf/runners/:ro \

 ‑v /tmp/configs/scripts/:/app/scripts/:ro \

 ‑v /var/run/docker.sock:/var/run/docker.sock:ro \

 ‑p 55000:5000 script‑server

Listing 7: Launching New Image

Figure 12: Logged in as the admin user.

Figure 13: The Script Server admin page.

Figure 14: The Script Server interactive page lets you add and configure
scripts

[1]	� OliveTin: https://​www.​olivetin.​app

[2]	� OliveTin documentation:
https://​docs.​olivetin.​app/​index.​html

[3]	� Emoji Unicode codes: https://​
unicode‑table.​com/​en/​emoji/

[4]	� Script Server wiki: https://​github.​com/​
bugy/​script‑server/​wiki

[5]	� Script Server configuration examples:
https://​github.​com/​bugy/​script‑server/​
tree/​master/​samples

[6]	� htpasswd generator:
https://​hostingcanada.​org/​
htpasswd‑generator/

[7]	� Additional resources:
https://​github.​com/​richnusgeeks/​
devops/​tree/​master/​WebFrontends

Info

Ankur Kumar, a passionate free and open
source hacker/​researcher and seeker of
mystical life knowledge, loves to explore
cutting edge technologies, ancient sci-
ences, quantum spirituality, various genres
of music, and mystical literature and art.
You can reach him at https://​www.​linkedin.​
com/​in/​richnusgeeks or visit his GitHub
page (https://​github.​com/​richnusgeeks) for
other useful FOSS pieces.

Author

OliveTin and Script Server

51LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

https://www.olivetin.app
https://docs.olivetin.app/index.html
https://unicode-table.com/en/emoji/
https://unicode-table.com/en/emoji/
https://github.com/bugy/script-server/wiki
https://github.com/bugy/script-server/wiki
https://github.com/bugy/script-server/tree/master/samples
https://github.com/bugy/script-server/tree/master/samples
https://hostingcanada.org/htpasswd-generator/
https://hostingcanada.org/htpasswd-generator/
https://github.com/richnusgeeks/devops/tree/master/WebFrontends
https://github.com/richnusgeeks/devops/tree/master/WebFrontends
https://www.linkedin.com/in/richnusgeeks
https://www.linkedin.com/in/richnusgeeks
https://github.com/richnusgeeks

transitions between the commands and
the percentages next to them the proba-
bility – derived from the history file – of
a certain transition taking place. All
paths originating from a state therefore
add up to 100 percent.

Logger and Predictor
To analyze which command sequences
the user has typed in the shell so far, I
first need a process to continuously log
every single manually typed command.
The Bash or Z shell (Zsh) history mech-
anisms are not suitable for this, because
they at best record the commands them-
selves along with a timestamp [1]. For
the predictor, however, I at least want
the tool to include the directory in which
the command was run for useful sugges-
tions to be generated later.

W hen I’m developing new
Snapshot articles, I regu-
larly catch myself typing the
same commands in the ter-

minal window time and time again. Text
or code files modified by vi are sent to a
staging area by git add foo.go, git com‑
mit feeds them to the local repository
clone, and git push origin v1:v1 backs
them up on the server. New builds of the
Go source code in programming exam-
ples are triggered by the go build foo.go
bar.go command, before tests are run by
go test, and so on. Excessive typing like
this needs to be automated. Because
software development dinosaurs like my-
self keep fighting IDEs, I need a home-
grown approach.

Although the shell history will find old
commands, locating the command you
need in this massive list, and running it
again, requires some manual work. This

is rarely worthwhile because re-
typing is often quicker than browsing 10
entries up the list or using a search
string. The key is that you normally type
shell commands in a defined order. For
example, vi edits a Go file, then git
saves the results, and go build compiles
them. Learning this context, a smart tool
would be quite capable of determining
what comes next. Also the command se-
quences I use seem to depend on the di-
rectory in which I run them. In a Go
project, I use the commands I listed ear-
lier. For a text project, I would possibly
use others, such as make publish to gen-
erate HTML or PDF files.

If a tool had access to the historical se-
quence of commands I issued in the
past, and of the directories in which I
ran them in, it could offer a good prese-
lection of the commands likely to follow.
In 90 percent of the cases, users would
be able to find the next command and
run it again. A
dash of artificial
intelligence accel-
erates and im-
proves the whole
thing, too. Figure
1 shows an exam-
ple of a flowchart
for a shell session.
The edges in the
graph mark the

Use AI and Go to program a
command-line predictor

Astrology
Hotline
Because shell command sequences tend to reoccur, smart
predictions can save you time typing. We first let the shell
keep notes on what gets typed, before a Go program guesses
the next command and runs it for you. By Mike Schilli

Mike Schilli works as a
software engineer in the
San Francisco Bay Area,
California. Each month
in his column, which has
been running since 1997,
he researches practical applications of
various programming languages. If you
email him at mschilli@perlmeister.​com
he will gladly answer any questions.

Author

Figure 1: A typical workflow in the terminal during
development work. Le

ad
 Im

ag
e

©
 a

lp
h

as
p

ir
it

, 1
23

R
F.

co
m

52 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH
Programming Snapshot – Smart Predictions with Go

make (an alias named m for me) to gener-
ate an article from it, a re-edit of the file
with vi, and finally the command

git add ‑p .

that I often use to interactively promote
modified file contents to the staging area.

However, instead of Zsh, Linux distri-
butions traditionally tend to use Bash,
which does not offer the preexec() hook
used by my new logging component.
Lucky for me that someone on GitHub
has gone through the trouble of porting
this eminently useful function to
Bash [3]. As the first step, I installed the
shell script stored on GitHub. To run it
on new logins to the shell, I inserted the
line from Listing 3 into the .bash_profile
file. After checking it’s there, the second
step involves loading the .bash‑preexec.
sh script and running it.

The algorithm that predicts what is
likely to be the next user command
learns from the sequence of previously
entered shell commands that the pre‑
exec() hook has written to myhist.log.
Listing 4 iterates through the logfile in
the history() function, creating a
HistEntry type entry from each line. This
structure, defined in line 8, contains an
attribute for the Cmd and Cwd fields, which
are the command entered by the user
and the directory where the shell was lo-
cated when this happened, respectively.

In the for loop that starts in line 21,
the scanner from the bufio package loads
the logfile lines, ignores the timestamp
in the first column, and checks whether
the command in the third column looks
okay. The loop also ignores all

The newer Zsh offers a preexec()
hook for general interception of a
typed command. I assigned a function
body to the hook in line 4 of Listing 1.
The shell always triggers it just before
executing a command line and passes
the contents of the command line to it
as a string in the first parameter. My
preexec() hook in turn calls the cmd‑
hook() function defined directly before
it. It strings together the current time
and directory, adds the command line
after this, separates the three compo-
nents with spaces, and appends the re-
sults as a new line at the end of the my‑
hist.log file in my home directory.
Listing 2 shows some entries that accu-
mulated there after I spent some time
writing this article.

Line 5 in Listing 1 defines the shell
function g(), which I’ll call later to re-
ceive suggestions from the shell for the
next command to execute. I wanted the
command to be just one letter in length
in order to avoid typing, and “g” makes
sense if you’re programming in Go.

After setting g() in motion with the g
command followed by the Enter key, the
shell function calls the pick command
(line 6). This is a Go program (which
you can see starting in Listing 4) that
scans the myhist.log file, using an algo-
rithm to decide on a list of the most
likely commands to follow the last one.

From the list of likely commands, the
user needs to select the desired com-
mand using the arrow keys (or the vi
mappings J and K) and then press the
Enter key (Figure 2). The shell then exe-
cutes the selected command directly – it
could hardly be more finger-friendly. To
do so, the shell function in g() fields the
command string returned by pick and ex-
ecutes it with the built-in eval function.

Teaching a New Dog Old
Tricks
Using an old trick from a Snapshot col-
umn three years ago [2], the compiled
Go program (pick) outputs the user
menu to Stdout (file descriptor num-
ber 1, because the promptui Go library I
used can’t do it any other way) and lets
the user pick an item. It finally outputs
the choice to Stderr (file descriptor num-
ber 2), which the g() shell function in
Listing 1 then receives. The wacky 3>&1
1>&2 2>&3 construction (in line 6) redi-
rects Stderr (number 2) back to Stdout
(number 1), so that the command line to
be executed ends up in the shell cmd vari-
able (line 6). Last but not least, eval
then takes the variable and executes the
string it contains (line 8).

Figure 2 shows the predictive shell
tool in action. For historical reasons, I
still write articles in the plain new docu-
mentation (PND) format, which borrows
slightly from Perl’s plain old documenta-
tion (POD) format. After editing the arti-
cle text in t.pnd, I call g, which offers the
most likely subsequent commands for
selection based on the shell history
gleaned from myhist.log. These com-
mands include git add for the text file,

53

Programming Snapshot – Smart Predictions with Go

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

01 �cmdhook() {

02 � echo "$(date +%s) $(pwd) $1"

>>~/.myhist.log;

03 �}

04 �preexec() { cmdhook "$1"; }

05 �function g() {

06 � cmd=$(pick 3>&1 1>&2 2>&3);

07 � cmdhook "$cmd";

08 � eval $cmd;

09 �}

Listing 1: zshrc.sh

1653801083 /home/mschilli vi .zshrc

1653801106 /home/mschilli/git/

articles/predict vi t.pnd

1653801863 /home/mschilli/git/

articles/predict ls eg

1653801870 /home/mschilli/git/

articles/predict vi ~/.myhist.log

Listing 2: myhist.log

Figure 2: The shell function g lists commands that will probably follow.

[[‑f ~/.bash‑preexec.sh]] && source ~/.bash‑preexec.sh

Listing 3: bashrc.sh

commands that only consist of the g
shortcut; although preexec logs this too,
the predictor runs aren’t going to help
the oracle with its predictions.

If an empty command makes its way
into the logfile (e.g., because the user
quit prediction mode by pressing
Ctrl+C), continue skips the line in ques-
tion. The history() function adds valid
entries to the end of the hist array slice
as HistEntry type variables, which re‑
turn hist finally returns to the caller in
line 36.

Memory Aid
Based on historic data, the predictor in
Listing 5 now runs the predict()

function for
the current di-
rectory (cwd) to
guesstimate the
next command the
user will probably
want to run. It
fields the array
slice with the
HistEntry struc-
tures and iterates
through them in
the for loop start-
ing in line 8.

In each round,
the predictor
stores the shell

01 �package main

02 � import (

03 � "bufio"

04 � "os"

05 � "regexp"

06 � "strings"

07 �)

08 �type HistEntry struct {

09 � Cwd string

10 � Cmd string

11 � }

12 �func history(histFile string) []HistEntry{

13 � f, err := os.Open(histFile)

14 � if err != nil {

15 � panic(err)

16 � }

17 � defer f.Close()

18 � hist := []HistEntry{}

19 � scanner := bufio.NewScanner(f)

20 � cmdSane := regexp.MustCompile(`^\S`)

21 � for scanner.Scan() {

22 � // epoch cwd cmd

23 � flds := strings.SplitN(scanner.Text(), " ", 3)

24 � if len(flds) != 3 ||

25 � !cmdSane.MatchString(flds[2]) ||

26 � flds[2] == "g" {

27 � continue

28 � }

29 � hist = append(hist, HistEntry{

30 � Cwd: flds[1], Cmd: flds[2]

31 � })

32 � }

33 � if err := scanner.Err(); err != nil {

34 � panic(err)

35 � }

36 � return hist

37 � }

Listing 4: history.go

01 �package main

02 �import (

03 � "sort"

04 �)

05 �func predict(hist []HistEntry, cwd string) []string {

06 � lastCmd := ""

07 � followMap := map[string]map[string]int{}

08 � for _, h := range hist {

09 � if h.Cwd != cwd {

10 � continue

11 � }

12 � if lastCmd == "" {

13 � lastCmd = h.Cmd

14 � continue

15 � }

16 � cmdMap, ok := followMap[lastCmd]

17 � if !ok {

18 � cmdMap = map[string]int{}

19 � followMap[lastCmd] = cmdMap

20 � }

21 � cmdMap[h.Cmd] += 1

22 � lastCmd = h.Cmd

23 � }

24 � if lastCmd == "" {

25 � // first time in this dir

26 � return []string{"ls"}

27 � }

28 � items := []string{}

29 � follows, ok := followMap[lastCmd]

30 � if !ok {

31 � // no follow defined, just

32 � // return all cmds known

33 � for from, _ := range followMap {

34 � items = append(items, from)

35 � }

36 � return items

37 � }

38 � // Return best‑scoring follows

39 � type score struct {

40 � to string

41 � weight int

42 � }

43 � scores := []score{}

44 � for to, v := range follows {

45 � scores = append(scores, score{to: to, weight: v})

46 � }

47 � sort.Slice(scores, func(i, j int) bool {

48 � return scores[i].weight > scores[j].weight

49 � })

50 � for _, score := range scores {

51 � items = append(items, score.to)

52 � }

53 � return items

54 �}

Listing 5: predict.go

54

Programming Snapshot – Smart Predictions with Go

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

command currently processed, which
lies in h.Cmd, and saves it in the lastCmd
variable, so that the next round of the
loop can access the previous value.
Starting in the second round, the code
saves information about which com-
mand followed which previous one in a
two-level hash map named followMap
starting in line 16 and increments the
associated integer value. In other words,
at the end of the for loop, the program
knows how often command B followed
command A. Accordingly, the algorithm
evaluates the probability of command B
following command A.

If there is only a single command for
the current directory in the logged his-
tory, the algorithm cannot do much and
takes the diplomatic approach of sug-
gesting ls in line 26. However, if follow‑
Map lists some commands that usually
follow the preceding command stored in
lastCmd, the algorithm dumps each of
those subsequent commands into a
structure with a counter that reflects
their frequency. It then uses sort.
Slice() to sort an array slice of these
structures in descending order by the
counter, starting in line 47. Sorting a
hash map like this by its numeric values
would be a snap in a scripting language

such as Python, but Go requires signifi-
cantly more overhead because of its
strict type checking.

The output, at the end of the pre‑
dict() function, is the items variable –
an array slice containing the commands
that, based on their order, are most
likely to follow the current shell com-
mand. Finally, the pick program in List-
ing 6 offers them up to the user.

Hand-Picked Commands
The main program in Listing 6 then just
needs to pass the path to the ~/.myhist.
log file to history() (Listing 4), which
includes the commands typed so far, in-
cluding the timestamps and directories.
The returned entries then get passed on
to the predict() predictor (Listing 5).
The result is a prioritized list, which the
promptui package (which I discovered
on GitHub) shows us in a graphically
appealing way on the command line.

The Run() package function makes the
command-line user interface interact
with the user, lets the user select an
item with the arrow keys or with vi
mappings, cleans up the menu display
nicely when done, and returns the cho-
sen command as the result variable. If
everything works without error (i.e., the

user did not press Ctrl+C to escape),
line 25 outputs the selected command to
Stderr, where the g shell function from
Listing 1 picks it up, writes it, and exe-
cutes it.

Conclusions
My DIY command-line predictor signifi-
cantly reduces typing work during de-
velopment. Of course, there are no lim-
its to your imagination in DIY projects
like this: The algorithm in predict() is
still very simple and just cries out to be
pimped out using AI tools like Markov
chains. Let your creativity run wild. nnn

01 �package main

02 �import (

03 � "fmt"

04 � "github.com/manifoldco/promptui"

05 � "os"

06 � "os/user"

07 � "path"

08 �)

09 �func main() {

10 � cwd, err := os.Getwd()

11 � if err != nil {

12 � panic(err)

13 � }

14 � usr, _ := user.Current()

15 � logFile := path.Join(usr.HomeDir, ".myhist.log")

16 � hist := history(logFile)

17 � items := predict(hist, cwd)

18 � prompt := promptui.Select{

19 � Label: "Pick next command",

20 � Items: items,

21 � Size: 10,

22 � }

23 � _, result, err := prompt.Run()

24 � if err == nil {

25 � fmt.Fprintf(os.Stderr, "%s\n", result)

26 � }

27 �}

Listing 6: pick.go

[1]	� “Programming Snapshot – Run statis-
tics on typed shell commands” by
Mike Schilli, Linux Magazine, issue
243, February 2021,
https://​www.​linux‑magazine.​com/​
Issues/​2021/​243/​Making‑History

[2]	� “Programming Snapshot – Go pro-
gram stores directory paths” by Mike
Schilli, Linux Magazine, issue 228, No-
vember 2019,
https://​www.​linux‑magazine.​com/​
Issues/​2019/​228/​Pathfinder/​(offset)/​3

[3]	� Bash preexec: https://​github.​com/​
rcaloras/​bash‑preexec

Info

nnn

Programming Snapshot – Smart Predictions with Go

55LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

IN-DEPTH

https://www.linux-magazine.com/Issues/2021/243/Making-History
https://www.linux-magazine.com/Issues/2021/243/Making-History
https://www.linux-magazine.com/Issues/2019/228/Pathfinder/(offset)/3
https://www.linux-magazine.com/Issues/2019/228/Pathfinder/(offset)/3
https://github.com/rcaloras/bash-preexec
https://github.com/rcaloras/bash-preexec

different name. At the heyday, several
projects offered free, recompiled versions
of RHEL. Over time, a leader emerged
among the RHEL clones, and it was Cen-
tOS. The CentOS community had a loyal
community of users and volunteers, and
it ran on file servers, web servers, and
corporate workstations around the world.
Whenever Red Hat put out a new version
of RHEL, the CentOS team would perform
the necessary adaptations and put out a
new version of CentOS. CentOS became
one of the most popular Linux variants –
and why wouldn’t it be: It was absolutely
free, and it came with all the testing and
refinements of an enterprise-grade Linux.

In 2014, Red Hat announced that it
would sponsor the CentOS project and
hired several of its developers. Their game
plan had changed by that point, and they
didn’t see it as a problem to maintain free
and subscription versions of the same
code. It seemed they had come to the view
that it could actually help them sell RHEL
if users would get started on CentOS and
then make the change to RHEL when they
were ready to sign on for technical support.

IBM’s acquisition of Red Hat caused a
reordering of priorities, and the company
changed course again in 2020, announc-
ing that CentOS would no longer be a
clone of the enterprise edition. It would
still exist, but it was relegated to an up-
stream status, much like Fedora.

Once again the community scrambled,
searching for a new distro that would
play the role that CentOS had played for
so long. One of the leading contenders to
emerge as a free Linux based on RHEL
source is Rocky Linux.

T he open source world is con-
stantly evolving, and new Linux
distributions tend to appear
whenever there is a need for

them. Rocky Linux [1] just appeared last
year, partly in response to a shake-up in
the enterprise Linux space, but, as is often
the case in the open source world, change
can lead to opportunity. Rocky is already
finding its way into professional server
rooms, workstations, and cloud instances.

What is Rocky Linux and where did it
come from? The best way to tell the
story is to start from the beginning.

A Bit of History
Once upon a time, a free and open
source OS called Red Hat Linux served
as a cornerstone for the Linux commu-
nity. Although Red Hat the company was
a for-profit business, Red Hat Linux was
very much a community effort. Anyone
could use it, and many volunteers
around the world gave their time for
testing, development, and help forums.

Then one day Red Hat (the company)
announced that it would no longer pro-
vide a binary version of their flagship OS
for free download. The binary version
would instead require a subscription,
which came at a cost and included some
support services. If you’re wondering
whether charging for Linux is consistent
with Linux’s GNU General Public License
(GPL), rest assured that it is. The GPL re-
quires that the source code be made

available if the program is modified – it
doesn’t require the distributor to circulate
the compiled, binary version for free. As
long as Red Hat posted the source code
somewhere for download, they were free
to charge whatever they wanted for the
binary version – and they charged every
bit as much as Microsoft was charging for
Windows at the time. (Why not, since
Linux was better than Windows?)

In an effort to maintain their ties with
the Linux community, Red Hat an-
nounced that they would indeed still pro-
vide a free version of Linux, which they
dubbed Fedora. Many users made the
switch from Red Hat to Fedora, and Fe-
dora continues to have fans to this day,
but everyone knew that Fedora wasn’t ex-
actly the same. First of all, it was up-
stream from Red Hat Enterprise Linux
(RHEL) and therefore did not face the
same level of testing. Secondly, it was
missing many of the tools and features in-
cluded with RHEL. Red Hat Linux had
morphed into the familiar duality of a
“community” and an “enterprise” edi-
tion, like so many other open source
products in the corporate space.

But the GPL meant they couldn’t ex-
actly put their enterprise code away for-
ever. The source code was still out there,
as was required by the terms of the GPL,
and anyone who wanted to go to the
trouble could take the source, remove the
trademarks and other proprietary compo-
nents, and then compile it and give it a

Rocky Linux looks for
a place in the enterprise

Answering
the Call
Rocky Linux emerges as a free alternative to Red Hat Enterprise
Linux. By Joe Casad

Ph
o

to
 b

y
M

ar
k

Pa
n

4r
at

te
 o

n
 U

n
sp

la
sh

56

IN-DEPTH

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

Introducing Rocky Linux

Introducing Rocky
On the same day that IBM and Red Hat
announced they were moving CentOS
upstream, CentOS co-creator Greg
Kurtzer floated the idea of starting a new
project that would continue to work with
the latest Red Hat Enterprise source. As
a CentOS veteran, Kurtzer was interested
in more than an enterprise code base –
he was also tuned in to the community
and focused on the process.

The founding sponsor for the Rocky
project is CIQ [2], a company with
around 50 employees that provides
Rocky support and offers add-on compo-
nents and services. Unlike RHEL, how-
ever, Rocky is an independent project
that has several other sponsors, includ-
ing AWS, Google Cloud, and Microsoft
Azure. The storage company 45Drives,
another sponsor, uses Rocky as a base
for their storage platform. The Sponsors
page at the website [3] lists 12 sponsors
so far, and Rocky is looking for more.

Rocky bills itself as a system that is
“…designed to be 100% bug-for-bug com-
patible with Red Hat Enterprise Linux,”
which means the latest version of Rocky
comes with all the new stuff in the latest
version of RHEL. Rocky 9 has all the fea-
tures and updates you’ll find in RHEL 9.
Like other enterprise distros, Rocky doesn’t
purport to offer the most cutting-edge, ex-
perimental components. The enterprise au-
dience is more interested in stability, thor-
ough testing, and hardware compatibility.
Like RHEL, Rocky offers regular updates
and 10 years of support for each release.

Peridot
The Rocky developers strive for seamless-
ness as they keep pace with new releases

and updates to the source code reposi-
tory. In that context, they have contrib-
uted one new tool to the community that
is attracting lots of positive attention.

Peridot (and yes, you do pronounce the
“t”) is a cloud-native build system created
by the Rocky developers to help them turn
out updates. The Rocky team has released
Peridot as open source software and
makes it available through GitHub. To un-
derstand what Peridot does, it is best to
start with a look at what the Rocky project
does. When Red Hat updates the source
code for RHEL, they upload the new code
to the CentOS website. (It is confusing, but
yes, RHEL code source code is stored on
the CentOS site even though the CentOS
distro is no longer based on RHEL.) Rocky
then downloads that source code and ap-
plies patches to it, such as removing trade-
marks and proprietary art, as well as cus-
tomizing any settings and components as
needed for the Rocky environment (Fig-
ure 1). The code is then built and pack-
aged in RPM form and made available to
Rocky users. Rocky, and CentOS before it,
have been employing some version of this
process for years.

In the past, this meant that they had to
repeat the same steps for every new re-
lease. However, although the source files
are unique with each new update, the
patches applied to the code often don’t
change. The Rocky developers therefore
built Peridot to automate the patching
process. When an update to the RHEL
source code appears, you just click one
button and Peridot grabs the code, ap-
plies the predefined patches automati-
cally, and builds the package (Figure 2).

The Rocky team uses Peridot to build
all of Rocky Linux, and you can use it to

build your own customized distribution,
or to build a single package. If you have
source code that you maintain locally,
Peridot will perform the same service for
your local files.

Rocky is betting that Peridot will help
them keep up with Red Hat’s schedule
of new releases and security updates.
Peridot could also be just the thing to
help support the community of special
interest users working on modified ver-
sions of Rocky.

SIGs
Rocky encourages users with similar in-
terests to gather together online to share
solutions and ideas. These Special Inter-
est Groups (SIGs) bring diverse view-
points and energy to the Rocky project.
Rocky has SIGs for Linux kernel, storage,
virtualization, desktops, alternative ar-
chitectures, high-performance comput-
ing, and legacy systems. The desktop
SIG works on alternative versions for
Gnome, KDE, and Xfce. The alternative
architectures SIG is hard at work with a
version of Rocky for the Raspberry Pi.
Other SIGs specialize in containers, hy-
perscale, and embedded systems.

The Rocky team hopes the SIGs will be
more than just chat groups, with several
working on alternative spins of the
Rocky distribution to support their spe-
cial interests. High-performance comput-
ing (HPC) is a particular area of interest
for the Rocky team. HPC systems require
extensive testing and tuned-up perfor-
mance, but at the same time, a massively
parallel HPC system can include hun-
dreds (or even thousands) of OS in-
stances, which gives a competitive ad-
vantage to systems that are available at a

Figure 1: The old method: Rocky patches are
applied separately to each release, even if the
contents of the patch is the same or nearly the
same with each new version.

Figure 2: The new method: Peridot is preconfigured with
the location of the source code and the location of the
patches. When a new version of the source code arrives,
the user can click one button to trigger an update.

IN-DEPTH
Introducing Rocky Linux

57LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

These values will take the Rocky project a
long way as they seek to build a commu-
nity around their free enterprise Linux.

Conclusion
Rocky does everything RHEL can do,
and you don’t have to pay for it unless
you want support. The Rocky team
knows that their mission depends on ef-
ficient processes and a strong commu-
nity, and they are investing heavily in
building a process that runs well. The
Peridot build system is a big part of that
investment. Peridot makes it easy to put
out a custom Rocky spin if you have a
special need, but before you reinvent the
wheel, check out the SIGs at the Rocky
chat site – you might find a SIG with a
similar vision that would be happy to
help with your efforts. nnn

lower cost. CentOS was once a favorite
for many HPC users, and Rocky is trying
to capture that niche. Rocky creator Greg
Kurtzer has a long history with HPC – he
also created the Singularity/Apptainer
container system for HPC – and CIQ is
heavily invested in supporting the HPC
space. CIQ’s HPC offering includes the
Fuzzball (coming Fall 2022) federated
computing platform, which is designed
to “orchestrate workflows, services, and
data globally across data centers while
maintaining supply chain integrity from
on premise, to cloud, and to the edge.”

Community Matters
The Rocky project is officially owned by
Rocky Enterprise Software Foundation
(RESF). RESF is a public benefit corpora-
tion owned by Rocky creator Greg Kurtzer
designed with a system of checks and
balances to prevent co-option. The com-
munity hangs out on a Mattermost chat
platform [4] (Figure 3). Currently over
7,700 members are registered on Rocky’s
chat site, not including users who con-
nect through IRC. Rocky also supports
a collection of public forums [5] for
users with more general information on
Rocky and related topics.

To underscore its support for commu-
nity, the Rocky team has adopted a char-
ter, which is posted online at the Rocky
forum. The Rocky Linux charter comes

with a statement of values, which in-
cludes the following:
•	 Be practical. As open source advo-

cates, our inclination toward solving
problems is to use tools that are them-
selves permissible open source, but
the best practical solution to a prob-
lem may preclude that. We use the
right tool for the right job.

•	 Be reasonable. Respect is given and trust
is earned. Input from all contributors are
valued, and all perspectives are sought
after and considered. Knowledge and
righteousness does not follow seniority.

•	 Team ahead of self. Sycophants are
not valuable to an organization, but
neither are contrarians. We respect-
fully vocalize our concerns but pull
together to drive forward once a de-
cision has been reached.

•	 Enable the enterprise community.
While we are starting with creating a
stable downstream enterprise distri-
bution of Linux, our goals are much
broader, including attention to the
needs of special interests, project
hosting, education, collaboration,
workshops, meetups, and individuals.

•	 Consider the human. Rocky Linux is
developed and supported by a wide
group of diverse individuals from all
walks of life. We are strictly apolitical
and will always assume the best inten-
tions of others.

[1]	� Rocky Linux: https://​rockylinux.​org/
[2]	� CIQ: https://​ciq.​co/
[3] �Rocky Sponsors:

https://​rockylinux.​org/​sponsors/
[4]	� Rocky chat platform:

https://​chat.​rockylinux.​org
[5]	� Rocky forum:

https://​forums.​rockylinux.​org/

Info

Figure 3: If you have a question about Rocky – or if you just want to get the pulse of the Rocky community –
pay a visit to https://​chat.​rockylinux.​org.

This article was made possible by support
from CIQ through Linux New Media’s
Topic Subsidy Program (https://www.
linuxnewmedia.com/Topic_Subsidy).

58

Introducing Rocky Linux

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

IN-DEPTH

https://rockylinux.org/
https://ciq.co/
https://rockylinux.org/sponsors/
https://chat.rockylinux.org
https://forums.rockylinux.org/
https://www.linuxnewmedia.com/Topic_Subsidy
https://www.linuxnewmedia.com/Topic_Subsidy

ST7735 serial peripheral interface (SPI)
thin-film transistor (TFT) display [2] to a
Raspberry Pi 4. Together, the two mod-
ules can cost less than $15 (EUR15, £14)
in online stores. The pumpkins contain
simple RFID tags [3], also available for
very little cash. Although at first glance
the project seems clear-cut and sounds
as if it should work right away, check
out the “Mishaps, Misfortunes, and
Breakdowns” box to find out what can
go wrong.

The circuit diagram in Figure 1 shows
how the modules connect to the Rasp-
berry Pi, along with two pushbuttons
and LEDs for testing purposes. The

R adio-frequency identification
(RFID) tags have become in-
dispensable in industry and
government, as well as the

wholesale and retail spaces. The inex-
pensive transponder chips can be found
on clothing labels, identification cards,
and credit cards. Armed with just a
Raspberry Pi and an RFID kit, you can
read the data from these chips and view
it on a display.

In this project, I read serial numbers
from RFID tags stuck on 3D-printed
pumpkins – a slightly different kind of
detection task. To do this, I connect an
RC522 [1] RFID kit and a 1.8-inch

MakerSpace
RFID reader on a Raspberry Pi

Counting Pumpkins
Inexpensive components for the SPI interface let you
upgrade a Raspberry Pi 4 to a display system for zero-contact
RFID-based data acquisition. By Martin Mohr

After some brief research, I decided
which libraries I was going to use to con-
trol the modules. After a day of ponder-
ing and programming, it turned out that
the library for the RFID reader had not
been maintained for several years. The
only way to get it to work in Python 3
was to make several code changes. In
open source projects, you should always
take a look at the date of the last commit,
and the issues, which will inform you as
to whether the project is still under de-
velopment by the community.

I have stumbled across many pieces of
orphaned software on the web recently.
At first sight, they might still seem ac-

tive, but in fact, they have already been
gathering dust for years. For example,
the very popular wiringPi tool has not
seen any support for a long time (see the
Pigpio article in this issue) and has been
removed from the Raspberry Pi OS pack-
age sources. However, the Internet never
forgets, which means users are continu-
ally tripped up over outdated manuals
and how-to articles.

Unfortunately, it looks like some low-
level Python libraries have been hastily
hot-wired without extensive testing,
which results in incompatibilities. There-
fore, I had to separate the reader and dis-
play programs in this project.

Mishaps, Misfortunes, and Breakdowns

Le
ad

 Im
ag

e
©

 r
as

p
b

er
ry

p
i.c

o
m

60 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE RFID over SPI

KiCad layout of the project is included in
the download section of this article [4].

Display and RFID Reader
Each of the modules is connected to its
own SPI interface. Figure 2 shows the
project after the build; the RFID tags are
hidden in the pumpkins. Please note that
only the Raspberry Pi 4 has multiple on-
board SPI interfaces.

The Raspberry Pi 4 has a total of seven
SPI interfaces, all of which can be ac-
cessed from the 40-pin GPIO header. The

previous models came with just three
SPI interfaces, of which only two were
routed to the header. Table 1 shows
which pins correspond to the individual
interfaces on the header by default.

Reading from the SPI
Interface
Notice in Table 1 that some ports overlap
and that interface SPI2 is not available
on the header in the default configura-
tion. However, the SPI interface configu-
ration can be adjusted with the

dtoverlay command, which also lets you
output a list of all predefined SPI devices
(Listing 1).

The individual interfaces have several
configurations, each with a different
number of chip select (CS) lines. There-
fore, you can configure the interfaces
very precisely to suit your project

Figure 1: The circuit diagram for the test setup. You can see the display and RFID reader connections on the right.

Figure 2: The complete test setup with a horde of pumpkins, the
reader at front left, and the display at back left.

$ dtoverlay ‑‑all | grep spi.‑

 spi0‑1cs

 spi0‑2cs

 spi1‑1cs

 spi1‑2cs

 spi1‑3cs

 spi2‑1cs

 spi2‑2cs

 spi2‑3cs

 spi3‑1cs

 spi3‑2cs

 spi4‑1cs

 spi4‑2cs

 spi5‑1cs

 spi5‑2cs

 spi6‑1cs

 spi6‑2cs

Listing 1: SPI Interfaces

61LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

RFID over SPI MAKERSPACEMAKERSPACE

requirements. To get the currently loaded
overlays, use the ‑l option. To view the
concrete definition of an SPI device,
along with the default pins on the
header, use the ‑h option (Listing 2).

To output a list of available SPI de-
vices, run:

ls /dev/spi*

Make sure you enable SPI support up
front with a dtparam=spi=on line in the /
boot/config.txt file. Alternatively, you
can use the Raspberry Pi OS configura-
tion tool and the 3 Interface Options | I4
SPI option.

If you want to enable certain overlays
directly at boot time, you could also add
them to the /boot/config.txt file (e.g.,
dtoverlay=spi1‑2cs). In principle, you
could do a software rewire of the indi-
vidual lines of the SPI interfaces with
dtoverlay, but that would be a bit over
the top at this point.

Prepping the Pi
The operating system for the Raspberry
Pi is an up-to-date 32-bit Raspberry Pi
OS Lite. Listing 3 shows the commands
for updating the system and installing
the required programs and libraries from
the package sources. The libraries for in-
tegrating the display and reader come
from the pip Python Package Index
(PyPI).

When you are done, do not forget to
enable SPI support for the SPI0 and SPI1
interfaces by opening the /boot/config.
txt file in your favorite text editor and
adding two lines,

dtparam=spi=on

dtoverlay=spi1‑1cs

to the end of the file. You will need to re-
start the Raspberry Pi for the changes to
take effect.

Setting Up the Display
The sample program Display.py shown
in Listing 4 is designed to display the
text passed in as a parameter on the dis-
play. The system controls the screen
with the help of the ST7735 library [5],
which was specially developed to trans-
fer image data to the display.

To generate the appropriate image
data, access the Pillow [6] image pro-
cessing library. Pillow (also known as

SPI Header Pin SPI Header Pin
SPI0 MOSI 19 SPI4 MOSI 31

MISO 21 MISO 29

SCLK 23 SCLK 26

CE0 24 CE0 7

CE1 26 CE1 22

SPI1 MOSI 38 SPI5 MOSI 8

MISO 35 MISO 33

SCLK 40 SCLK 10

CE0 12 CE0 32

CE1 11 CE1 37

CE2 36

SPI3 MOSI 3 SPI6 MOSI 38

MISO 28 MISO 35

SCLK 5 SCLK 40

CE0 27 CE0 12

CE1 18 CE1 13

Table 1: Default SPI Pins

$ dtoverlay ‑h spi1‑3cs

Name: spi1‑3cs

Info: Enables spi1 with three chip select (CS) lines and associated

 spidev dev nodes. The gpio pin numbers for the CS lines and

 spidev device node creation are configurable.

 N.B.: spi1 is only accessible on devices with a 40pin header,

 eg: A+, B+, Zero and PI2 B; as well as the Compute Module.

Usage: dtoverlay=spi1‑3cs,<param>=<val>

Params: cs0_pin GPIO pin for CS0 (default 18 ‑ BCM SPI1_CE0).

 cs1_pin GPIO pin for CS1 (default 17 ‑ BCM SPI1_CE1).

 cs2_pin GPIO pin for CS2 (default 16 ‑ BCM SPI1_CE2).

 cs0_spidev Set to 'disabled' to stop the creation of a

 userspace device node /dev/spidev1.0 (default

 is 'okay' or enabled).

 cs1_spidev Set to 'disabled' to stop the creation of a

 userspace device node /dev/spidev1.1 (default

 is 'okay' or enabled).

 cs2_spidev Set to 'disabled' to stop the creation of a

 userspace device node /dev/spidev1.2 (default

 is 'okay' or enabled).

Listing 2: dtoverlay Output

Update Raspberry Pi

$ sudo apt update

$ sudo apt upgrade

Install Pi OS packages

$ sudo apt install python3‑pip libopenjp2‑7‑dev libatlas‑base‑dev
ttf‑ubuntu‑font‑family

SPI and graphics libraries

$ sudo python3 ‑m pip install RPi.GPIO spidev Pillow numpy

Library for the display

$ sudo python3 ‑m pip install st7735

Library for the RFID reader

$ sudo python3 ‑m pip install pi‑rc522

Listing 3: Preparations

62 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

RFID over SPIMAKERSPACE

each other’s way. After outputting the
UID, the program reads the first four
data blocks from the RFID chip in a
loop (starting in line 14) and displays
them, too.

Note that the reader does not authenti-
cate against the chip, which means that

PIL) is a very powerful library with a
large number of functions, of which I
will only be using a few. The documen-
tation [7] will give you a rough idea of
what you can do with Pillow.

When launched, the Display.py script
first imports (lines 1 through 5) the
ST7735 library, the required parts of Pil-
low, and the sys library, which lets you
read the arguments from the command
line. After that, the code creates a dis‑
play object with parameters suitable for
the hardware you are using (line 7).

Line 8 generates an image of a size
suitable for the display and stores it in
the image object. The commands that fol-
low generate text from the parameter
passed in at the command line and in-
sert the text into the image (line 14). The
last command then transfers the image
to the display.

If you run the program with the

python3 Display.py "Hello world!"

command, the Hello world! output im-
mediately pops up on the screen.

Configuring the RFID Reader
The program in Listing 5 reads the indi-
vidual UIDs from the RFID chips (line
10) and displays them on the screen
(line 13). The display is addressed by
an external call to avoid the libraries for
the display and the reader getting in

01 �from PIL import Image

02 �from PIL import ImageDraw

03 �from PIL import ImageFont

04 �import ST7735

05 �import sys

06 �

07 �display = ST7735.ST7735(port=1, cs=0, dc=23, backlight=None, rst=16, width=128,

height=160, rotation=0, invert=False, offset_left=0, offset_top=0)

08 �image = Image.new('RGB', (display.width, display.height))

09 �draw = ImageDraw.Draw(image)

10 �print (len(sys.argv))

11 �if len(sys.argv) < 2:

12 � print ("Usage: Display.py <TEXT>")

13 � sys.exit()

14 �draw.text((0, 70), sys.argv[1], font=ImageFont.truetype("UbuntuMono‑RI",10),

fill=(255, 255, 255))

15 �display.display(image)

Listing 4: Display.py

RFID over SPI MAKERSPACE

breaking the functions down into two
apps makes the tools easier to use.

The MIFARE Classic Tool [12] is opti-
mized for working with RFID chips
from Mifare and supports authentica-
tion. The S50 card included with the
reader kit I used in the test, and the
RFID tag also included, both support
this method.

Conclusions
This article can provide a basis for
your own experiments with RFID
chips. For many applications, simply

reading the tags is enough to get a re-
sult. The Pillow library, which I used
for the screen output, is also well
worth a closer look. Its capabilities go
far beyond simply popping up text on a
display. nnn

the sample program can only read un-
protected chips. If you want to delve a
little deeper into the topic of RFID au-
thentication, you can refer to the RC522
library documentation [8].

I used several smartphone apps to pro-
gram the chips. NFC Tag Reader [9] is
great for getting started and offers nu-
merous functions, although it does have
a lot of annoying advertising.

The ad-free team of NFC TagInfo [10]
and NFC TagWriter [11] delivers a
plethora of information that can be a
bit confusing for newcomers; however,

[1]	� RC522 RFID kit: https://​www.​amazon.​
com/​SunFounder‑Mifare‑​Reader‑​
Arduino‑​Raspberry/​dp/​B07KGBJ9VG/

[2]	� ST7735 SPI TFT display: https://​www.​
amazon.​com/​Display‑Module‑4‑Wire‑​
Driver‑128x160/​dp/​B07QLY3ZB1/

[3]	� RFID tags: https://​www.​amazon.​com/​
NTAG215‑Compatible‑​Programmable‑​
NFC‑Enabled‑Devices/​dp/​B08Z7P7L3R/

[4]	� Files for this project:
https://​linuxnewmedia.​thegood.​cloud/​
s/5Rzx9tQW2FJ6N3Z

[5]	� ST7735 library: https://​github.​com/​
pimoroni/​st7735‑python

[6]	� Pillow: https://​python‑pillow.​org/

[7]	� Pillow documentation: https://​pillow.​
readthedocs.​io/​en/​stable/

[8]	� RFID Reader library: https://​github.​
com/​ondryaso/​pi‑rc522

[9]	� NFC tag reader: https://​play.​google.​
com/​store/​apps/​details?​id=com.​
gonext.​nfcreader

[10]	�NFC TagInfo by NXP: https://​play.​
google.​com/​store/​apps/​details?​
id=com.​nxp.​taginfolite

[11]	�NFC TagWriter by NXP: https://​play.​
google.​com/​store/​apps/​details?​
id=com.​nxp.​nfc.​tagwriter

[12]	�MIFARE Classic Tool: https://​play.​
google.​com/​store/​apps/​details?​id=de.​
syss.​MifareClassicTool

Info

01 �import os

02 �from pirc522 import RFID

03 �rdr = RFID()

04 �

05 �while True:

06 � rdr.wait_for_tag()

07 � (error, tag_type) = rdr.request()

08 � if not error:

09 � print("Tag detected")

10 � (error, uid) = rdr.anticoll()

11 � if not error:

12 � print("UID: " + str(uid))

13 � os.system('python Display.py "'+str(uid)+' "')

14 � for block in [0,4,8,12]:

15 � (error,data)=rdr.read(block)

16 � print("[%02d]:"%(block),end="")

17 � for c in data:

18 � if c<=15:

19 � print ("0%x "%(c),end="")

20 � else:

21 � print ("%x "%(c),end="")

22 � print("|",end="")

23 � for c in data:

24 � if c>65 and c<123:

25 � print (chr(c),end="")

26 � else:

27 � print(" ",end="")

28 � print("|")

29 �# Calls GPIO cleanup

30 �rdr.cleanup()

Listing 5: RFID Reader

Martin Mohr has experienced the complete
development of modern computer
technology live. After completing
university, he mainly developed Java
applications. The Raspberry Pi helped
him rediscover his old love of electronics.

Author

nnn

64 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

RFID over SPIMAKERSPACE

https://www.amazon.com/SunFounder-Mifare-Reader-Arduino-Raspberry/dp/B07KGBJ9VG/
https://www.amazon.com/SunFounder-Mifare-Reader-Arduino-Raspberry/dp/B07KGBJ9VG/
https://www.amazon.com/SunFounder-Mifare-Reader-Arduino-Raspberry/dp/B07KGBJ9VG/
https://www.amazon.com/Display-Module-4-Wire-Driver-128x160/dp/B07QLY3ZB1/
https://www.amazon.com/Display-Module-4-Wire-Driver-128x160/dp/B07QLY3ZB1/
https://www.amazon.com/Display-Module-4-Wire-Driver-128x160/dp/B07QLY3ZB1/
https://www.amazon.com/NTAG215-Compatible-Programmable-NFC-Enabled-Devices/dp/B08Z7P7L3R/
https://www.amazon.com/NTAG215-Compatible-Programmable-NFC-Enabled-Devices/dp/B08Z7P7L3R/
https://www.amazon.com/NTAG215-Compatible-Programmable-NFC-Enabled-Devices/dp/B08Z7P7L3R/
https://linuxnewmedia.thegood.cloud/s/5Rzx9tQW2FJ6N3Z
https://linuxnewmedia.thegood.cloud/s/5Rzx9tQW2FJ6N3Z
https://github.com/pimoroni/st7735-python
https://github.com/pimoroni/st7735-python
https://python-pillow.org/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://github.com/ondryaso/pi-rc522
https://github.com/ondryaso/pi-rc522
https://play.google.com/store/apps/details?id=com.gonext.nfcreader
https://play.google.com/store/apps/details?id=com.gonext.nfcreader
https://play.google.com/store/apps/details?id=com.gonext.nfcreader
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
https://play.google.com/store/apps/details?id=de.syss.MifareClassicTool
https://play.google.com/store/apps/details?id=de.syss.MifareClassicTool
https://play.google.com/store/apps/details?id=de.syss.MifareClassicTool

why he had stopped developing the li-
brary. The post, which has since been
deleted, is still available on the Wayback
Machine internet archive [1]. For more
information, see the box “The Two Sides
of Open Source.”

If you want to continue using the
Raspberry Pi’s GPIO, you need to look
for an alternative to wiringPi. The suc-
cessor is Pigpio, which also reads the
Raspberry Pi’s GPIO but uses a daemon
to do so. At first glance, the Pigpio li-
brary seems to offer everything you
might need for your projects. In this arti-
cle, I take a closer look at the library to
see if this first impression is correct.

Pigpio
Much like wiringPi, Pigpio lets you ac-
cess the GPIO of the Raspberry Pi.
However, you need to be aware of
some differences. The first thing to no-
tice about the pigpio library is that it
requires a running daemon to work.
On the one hand, the daemon continu-
ously consumes a bit of the Raspberry
Pi’s CPU time, which is not a problem
for most projects. On the other hand, a
daemon has some advantages – more
on that later.

Both wiringPi and Pigpio are based
on C code. Similar to wiringPi, Pigpio
has a tool to access the GPIO ports at

F or as long as the Raspberry Pi
has been around, wiringPi has
served as a library for accessing
the GPIO. With the related gpio

tool, programmers could quickly manage
the GPIO at the command line. Many
Raspberry Pi projects build on this library.

Not least because of frustration about
what were in part rude email communi-
cations from some users, developer Gor-
don Henderson decided to discontinue
his one-man wiringPi project in August
2019 after releasing his last version. He
explained in great detail on his website

The wiringPi library, which many Raspberry Pi fans have
grown attached to over the years, is no longer under
maintenance by its developer. An alternative, in the form of
Pigpio, has arrived just in time. By Martin Mohr

The open source community makes many
software projects available to the general
public. Open source thrives on enthusiasts
who develop projects in their spare time.
All too often, however, it happens that
these developers do not get any recogni-
tion for their work. On the contrary, many
people expect developers to provide the
kind of professional support you would
want from a corporate vendor, and people
are even insulted if bugs are not fixed im-
mediately. As a result, projects repeatedly
disappear because developers no longer
want to work under these conditions.

Another phenomenon relates to develop-
ers who upload a library or tool to GitHub
and simply leave it orphaned after some

time. Usually, it takes some time to notice

that a particular library no longer works

with the current version of the underlying

programming language. I have often stum-

bled across Python libraries that develop-

ers never ported to Python 3. Oddly

enough, the people responsible often don’t

remove their outdated projects. To make

matters worse, you also find a plethora of

documentation that no longer works. Espe-

cially with beginners, for whom the Rasp-

berry Pi is the first step into the world of

programming, this outdated detritus often

causes people to drop the small-board

computer (SBC) in frustration.

The Two Sides of Open Source

Le
ad

 Im
ag

e
©

 e
vg

en
y

tu
ra

ev
, 1

23
R

F.
co

m

MakerSpace
Access the Raspberry Pi’s GPIO

Pig Pen

66 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Pigpio

Just remove the ‑l switch to get auto-
start to work.

Pigs
The pigs command-line utility is a sim-
ple tool to access the GPIO through the
daemon. Simple functions like digital in
and out can be accessed, but you can
also access I2C, SPI, UART, and the com-
plete range of PWM functions. Myriad
parameters let it address all the func-
tions of each GPIO port. Listing 1 shows
some sample commands that illustrate
how pigs works in principle. An over-
view with all the parameters can be
found on the project website [4].

PiScope
Among the many possibilities offered by
pigs, nothing maps the wiringPi gpio
‑readall function – and for good reason:
To read the status of the GPIOs, Pigpio
uses the PiScope tool (a Raspberry Pi-
based oscilloscope), which is a GTK+3
application that runs on all operating
systems. It connects directly to the Pig-
pio daemon and fetches the GPIO data,
even if other programs are already con-
nected to the daemon. In this way, you
can conveniently debug projects that use
the GPIO.

Figure 2 gives you an impression of
how the tool comes up. The output
shown here was generated by a pro-
gram that switches GPIOs 0 to 15 on
and off one after another. So I could ac-
cess GPIOs 0 and 1, as well, I started
the Pigpio daemon with the masking
parameter ‑x 0xFFFFFF.

I go into two of the several ways to in-
stall and use PiScope in detail. The most
obvious variant is to install the tool

the command line. Unlike wiringPi,
though, it uses the BCM pin designa-
tions (Figure 1), which although not a
genuine problem, does require some
getting used to.

Wrappers for Java, Node.js, Ruby,
and Perl, among others, help integrate
the library into different programming
languages. The Python module is part
of the library itself. The complete docu-
mentation of the library with many ex-
amples can be found on the project
website [2].

Installation
Pigpio installs to Raspberry Pi OS with
the commands:

$ sudo apt update

$ sudo apt upgrade

$ sudo apt install pigpio

The commands you need to start,
stop, and enable daemon autostart on
boot are:

$ sudo systemctl start pigpiod

$ sudo systemctl stop pigpiod

$ sudo systemctl enable pigpiod

The daemon expects a number of pa-
rameters at startup. An overview, in-
cluding a description, can be found on
the Pigpio homepage [3]. To change the
parameters of the daemon permanently,
make the appropriate changes in the
systemd service unit (/lib/systemd/sys‑
tem/pigpiod.service). The most com-
mon parameter change needed is in the
line that disables the remote socket in-
terface by default:

ExecStart=/usr/bin/pigpiod ‑l

Figure 1: Pigpio uses the BCM designations of the GPIO pins instead of
the old wiringPi numbering system.

Set GPIO10 to 1

$ pigs w 10 1

Set GPIO10 to 0

$ pigs w 10 0

PWM base frequency fr

Set GPIO4 to 8 kHz

$ pigs pfs 4 8000

Set GPIO4 PWM to 0% $ pigs p 4 0

$ pigs p 4 0

Set GPIO4 PWM to 50% $ pigs p 4

$ pigs p 4 127

Set GPIO4 PWM to 100% $ pigs p 4

$ pigs p 4 255@KE:

Listing 1: Pigs Functions

67LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

Pigpio MAKERSPACE

directly on the Raspberry Pi and run the
output through the Raspberry Pi:

$ wget U

 abyz.me.uk/rpi/pigpio/piscope.tar

$ tar xvf piscope.tar

$ cd PISCOPE/

$ make hf

$ make install

$./piscope

This approach downloads the sources
directly to the Pi and compiles them
on the spot. PiScope then connects to
the Pigpio daemon over the localhost
interface. Depending on which basic
installation of Raspberry Pi OS you
use, you might need to resolve some
dependencies.

The second variant is a bit more tricky.
You need to download the binary version
of PiScope to a Linux machine and connect
to the daemon on the Raspberry Pi over the
network. In this case, PiScope takes the IP
address of the Raspberry Pi from the PIG‑
PIO_ADDR environment variable, which you
will need to set up accordingly:

$ wget https://abyz.me.uk/rpi/U

 pigpio/piscope.tar

$ tar ‑xvf piscope.tar

$ cd PISCOPE/

$ export PIGPIO_ADDR=U

 <raspberrypi.local>

$./piscope.x86_64

In the test, I was able to run PiScope on
Ubuntu in this way without any

problems. If you are interested in the
other installation variants, you will find
more details on the tool’s website [5].

Conclusions
The Pigpio library is without a doubt
useful as a powerful alternative to wir-
ingPi. All common programming lan-
guages have wrappers and modules.
The available tools let you work
smoothly, and the daemon even sup-
ports monitoring the GPIO over the
network.

You will quickly get used to the differ-
ent naming convention for the individ-
ual GPIO pins, compared with wiringPi,
when working with Pigpio. However,
one small thing stood out: For more
than a year, the project has been dor-
mant on GitHub. I hope this is simply
because no changes have been neces-
sary since then. nnn

Figure 2: PiScope in use. Reading the continuously changing states of
pins 0 to 15.

[1]	� wiringPi project suspension:
https://​web.​archive.​org/​web/​
20190823214617/​http://​wiringpi.​com/​
wiringpi‑deprecated/

[2]	� Pigpio: https://​abyz.​me.​uk/​rpi/​pigpio/

[3]	� pigpiod parameters: https://​abyz.​me.​
uk/​rpi/​pigpio/​pigpiod.​html

[4]	� Pigs parameters:
https://​abyz.​me.​uk/​rpi/​pigpio/​pigs.​html

[5]	� PiScope installation options: https://​
abyz.​me.​uk/​rpi/​pigpio/​piscope.​html

Info

Martin Mohr has experienced the
complete development of modern
computer technology. After finishing
university, he mainly developed Java
applications. The Raspberry Pi woke his
old passion for electronics.

Author

nnn

68 OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

PigpioMAKERSPACE

https://web.archive.org/web/20190823214617/http://wiringpi.com/wiringpi-deprecated/
https://web.archive.org/web/20190823214617/http://wiringpi.com/wiringpi-deprecated/
https://web.archive.org/web/20190823214617/http://wiringpi.com/wiringpi-deprecated/
https://abyz.me.uk/rpi/pigpio/
https://abyz.me.uk/rpi/pigpio/pigpiod.html
https://abyz.me.uk/rpi/pigpio/pigpiod.html
https://abyz.me.uk/rpi/pigpio/pigs.html
https://abyz.me.uk/rpi/pigpio/piscope.html
https://abyz.me.uk/rpi/pigpio/piscope.html

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 69

LINUX VOICEINTRODUCTION

The ImageMagick image processing tool is one of the
gems of the open source toolkit. You can use ImageMagick
to tweak images from the command line. If you have a
collection of digital photos and they all need the same
tweak, why slow down for a GUI when you can fix them all
using ImageMagick. But ImageMagick can do more than
just edit images. This month we bring you a tutorial on
drawing images from scratch using ImageMagick and
simple scripts. Also this month, we
delve into the KOReader ebook
reader, and we introduce you to
the classic Linux strategy
game 0 A.D.

Doghouse – Algorithms and Books	 71
Jon “maddog” Hall
A look at the history of computer memory
and a classic algorithm text.

KOReader E-reader	 72
Dmitri Popov
KOReader offers enough features to give
your humble ebook reader new powers
and completely transform your reading
experience.

0 A.D.	 76
Daniel Tibi
Steer the fortunes of ancient civilizations
with this real-time strategy game.

FOSSPicks	 84
Graham Morrison
This month Graham looks at Cecilia 5,
chezmoi, Viddy, EmuDeck, Paperless-ngx,
MegaGlest, and more!

Tutorial – ImageMagick	 90
Ralf Kirschner
ImageMagick can do more than just edit
existing images. You can even write a
script that will create a simple drawing.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m

W hen I started programming in 1969, even mainframe
computers from IBM might have had only 1MB of
main memory and two or three disk drives that

were measured in hundreds of megabytes, with multitrack
tape drives that would supplement that storage. Any type of
parallelism in programming typically stressed the goal of keep-
ing the data that you needed coming into main memory, while
you were also trying to get the processed data out to “stable
storage,” either to a disk or directly to a magnetic tape.

Some of the first IBM computers I programmed used an oper-
ating system called MFT (Multiple Fixed Tasking) which had up
to 16 “partitions” in memory, each of a fixed size set when the
operating system was configured.

When a job was started by the operators, the Job Control
Language (JCL) told the operating system how much main
memory it would take, and the job was slotted into a memory
slot that was large enough to hold it. If the creator of the JCL
specified too much memory, that meant memory was wasted.
Too small an amount and the program might not finish, or
even start.

Later the operating system was changed to Multiprogram-
ming with a Variable number of Tasks (MVT), which allowed the
programmer (who typically was the one who generated the JCL)
to specify the exact size of one of the 16 possible slots. The
problem with MVT was that it could create a series of small, un-
usable holes in the physical main memory of the system, and
only when several small holes were joined together could a larger
program run, a rather crude form of garbage collection.

If this sounds a bit complex, and even unbelievable, in the day
of demand-paged virtual memory systems, I will throw in the
additional information that the address space of these IBM
mainframes was originally only 24 bits (instead of 32 or 64)
meaning that any program could only address a maximum of
16 million bytes of main memory at a time.

Of course while these machines were incredibly slow, and log-
ically small, by today’s standards, we thought they were “magic”
when we were programming them.

Still, we gave great thought to how much storage was needed
for each piece of data and how much computation would be
given to each calculation. Sometimes this worked against us in
the long run, and some were pretty famous, such as the “Y2K”

problem, where we we thought two digits, and not four, were
enough for the date.

Many people will remember that as we moved toward the
year 2000, panic started to erupt about what would happen
near or at midnight of December 31, 1999, as we turned to the
next century. Fortunately people started thinking about this
early enough and working to negate the effects.

However, some years earlier, a series of books named The
Art of Computer Programming, by Donald E. Knuth, was being
published. Volume 3 of that work, Sorting and Searching, was
first published in 1973, when I started programming IBM
mainframes, and slightly before I started my masters degree
in computer science.

The algorithms in the book carefully explained the different
methods of sorting and searching and how they could take ad-
vantage of the levels of storage from disk to CPU registers and
everything between (main memory, cache, etc.). The book
pointed out that with the 24 bit address space limitations of that
day (often 16 bit or less in mini computers), hash tables and
hash searching techniques were often inefficient due to the
number of collisions the search might have.

However, it is the combination of knowing the efficiency of
the algorithm, the size of the sort, and the architecture of the
machine that can avoid drastic consequences.

I once took a program that was supposed to sort 1,206 32-byte
records, which ran on a PDP-11/​70 computer (with a 64KB data
address space) running RSTS/​E as an operating system, that
took 10.5 hours to finish the sort. The program used a bubble
sort, and if all the data had been able to be held in main memory
it would not have been that bad, but, unfortunately, it used a vir-
tual array that was implemented on disk. The program made
over 13 million comparisons and 700,000 accesses to the disk.

Rewriting the program using a tree sort and a sort merge as
defined in Knuth’s book broke the 1,206 records into seven files
of 173 records, each of which could reside and be sorted in
main memory. Finally, I merged the seven sorted files together
into the resultant output file. The entire time was reduced to
three minutes from 10.5 hours.

Knuth is not the only good author on algorithm study, but the
depth of analysis makes these books way more timeless than
the editions of other popular computer books. nnn

MADDOG’S
DOGHOUSE
A look at the history of computer memory and a classic
algorithm text. BY JON “MADDOG” HALL

Jon “maddog” Hall is an author,
educator, computer scientist,
and free software pioneer
who has been a passionate
advocate for Linux since 1994
when he first met Linus Torvalds
and facilitated the port of
Linux to a 64-bit system. He
serves as president of Linux
International®.Sorting and Searching

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 71

LINUX VOICEDOGHOUSE – ALGORITHMS AND BOOKS

First Things First
While KOReader comes with sensible defaults, there
are several settings you’ll want to tweak for an opti-
mal reading experience. The first thing to do is add
custom fonts to KOReader, which is a rather
straightforward affair. KOReader supports TrueType
fonts (TTF), so all you have to do is to copy a folder
with .ttf files to the koreader/​fonts directory on the
ebook reader. To enable any of the added fonts,
open KOReader, tap on the upper edge of the screen
to open the top bar, and choose Document | Font
(Figure 1). To set the desired font as the new default,
long tap on the font’s menu entry and tap the Set as
default button.

Long tap on a configuration option prompt to set
it as default. For example, long tap on the desired
value of the Line Spacing option in the bottom menu,
and tap Set as default. Speaking of the bottom menu,
by default, activating the top bar also opens the bot-
tom menu. While it’s probably meant as a conve-
nience, it becomes a nuisance rather quickly. To dis-
able this option, open the top bar, choose Settings |
Taps and gestures | Activate menu, and disable the
Auto-show bottom menu option (Figure 2).

By default, when you launch KOReader, it
opens the file manager, so you have to manually
select the book you want every single time you
launch KOReader. Making KOReader automati-
cally open the last viewed book when the appli-
cation starts is more practical in most situations.
Open the top bar and switch to the file manager.
Tap on the top header to open the main menu,
switch to the file manager section, and select
Start with | Start with last file.

The status bar at the bottom of the screen pro-
vides useful information, such as reading prog-
ress, time, etc. By default, you can cycle through
the available views by tapping on the status bar.
But you can also squeeze all the information you
find useful into a single view. To do this, open the
top bar, choose Settings | Status Bar | Settings, and
enable the Show all at once option. Return to the
Settings | Status Bar menu and toggle the desired
options (Figure 3).

A t first sight, KOReader [1] looks disappoint-
ingly bare bones. But behind its unassum-
ing interface hides a powerful application

with an impressive array of features, from exten-
sive gesture support to a built-in SSH server. Com-
bined with a handful of hacks and a bit of creative
thinking, you can use KOReader to unlock the full
potential of your ebook reading device.

Installing KOReader
Although KOReader is available as an Android app
and a Linux desktop application, its natural habi-
tat is e-ink devices. How you install KOReader de-
pends entirely on the ebook reader you have. For-
tunately, the project’s wiki [2] provides detailed in-
stallation instructions for all supported devices.
Normally, installing KOReader requires copying
files in the appropriate directories in the ebook
reader’s filesystem, so the process requires nei-
ther deep technical knowledge nor effort.

BY DMITRI POPOV

KOReader offers enough features to give your humble ebook reader new powers
and completely transform your reading experience.

Turbocharge your ebook reader with KOReader

Hack Your Read

Figure 1: Selecting a custom
font with KOReader.

Figure 2: Disabling the Auto-show bottom menu feature.

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM72

LINUX VOICE KOREADER E-READER

While an e-ink display doesn’t require a screen-
saver, there is nothing wrong with replacing the plain
Sleeping message with something more informative,
such as the current book along with your reading
progress. Open the top bar, choose Settings | Screen |
Screensaver, and enable the Use last book’s cover as
screensaver option. Enable Add message to screen-
saver, then choose Settings | Screensaver message,
and specify the Page %c of %t message to show the
current and total page count (Figure 4).

Going Further
With the basic settings sorted out, it’s time to ex-
plore what else KOReader has to offer. Using KO-
Reader’s profiles functionality, you can create
multiple reading configurations and quickly
switch between them. For example, you can cre-
ate a dedicated profile for night reading, with
specific front light settings (brightness and color
temperature), night mode enabled, etc. And you
can create a daytime profile with both the front
light and night mode off. To create a profile, open
the top bar and choose Tools | Profiles | New, con-
figure the desired settings, and you are done. To
enable the created profile, long tap on it.

Like any reading application worth its salt, KO-
Reader supports highlights, and it can export
them as HTML, JSON, and plain text files. If you
happen to use Joplin [3] as your preferred note-
taking application, you’ll be pleased to learn that
KOReader can push highlights directly into it. The
initial setup process requires some work, but
once it’s done, transferring notes to Joplin is easy.

First, you need to configure Joplin. Launch the
application, choose Tools | Options, and switch to

the Web clipper section. Press Enable Web Clipper
Service and copy the automatically generated au-
thorization token (Figure 5). Leave Joplin running.

Install the socat package. To do this on Ubuntu
and Linux Mint, run the command:

sudo apt install socat

Connect your e-reader to the machine, enable
Start USB storage in KOReader, and open the kore‑
ader/​settings.reader.lua file for editing. Locate
the ["exporter"] section and add the following en-
tries to it (replace 127.0.0.1 with the actual IP ad-
dress of the machine running Joplin, and replace
authorization_token with the copied token):

Figure 3: Configuring the status bar. Figure 4: Configuring a custom screensaver message.

Figure 5: Enabling Web Clip-
per in Joplin.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 73

KOREADER E-READER LINUX VOICE

changes. From now on, you don’t have to enter a
password when you connect to the e-reader from
the authorized machine.

Backing Up KOReader’s Data
For each book, KOReader creates a metadata file
that contains book settings, notes, current position,
etc. While you can sync the current position and ex-
port notes, it also makes sense to keep a backup of
all the important data. To make it easier to manage
both the content and metadata, use a dedicated di-
rectory on your e-reader for storing all ebooks (for
example, Library). This way, you can back up every-
thing by syncing the directory and its entire contents
using rsync. There are two ways to do that.

The simplest approach is to connect the e-
reader on a machine that has rsync. Most Linux
distributions automatically detect and mount a
connected e-reader. Then it’s a matter of running
the appropriate rsync command. For example:

rsync ‑avh ‑‑delete /path/to/ereader/Library/ U

 /path/to/backup/dir

Replace /path/to/ereader/Library/ with the ac-
tual path to the Library directory on the mounted
e-reader and /path/to/backup/dir with the path to
the directory for storing backup data.

A slightly more technical but versatile ap-
proach is to install rsync on the e-reader so you
can run backup operations directly on the device
itself. To install rsync on a Kobo device, down-
load and install the KoboStuff package [4].
Launch KOReader, open the top bar, switch to
Tools | More tools | Terminal emulator, and tap
Open terminal session. Run the rsync command
that syncs the content of the Library directory to
a Linux machine. Here’s an example command
you can use to back up the data to a Linux server
running on a local network:

rsync ‑avhz ‑‑delete ‑P ‑e "ssh ‑p 22" /mnt/U

 onboard/Library/ user@127.0.0.1:/path/to/library

Instead of typing long rsync commands using the
built-in keyboard, you can speed up the process
by adding the desired commands to the koreader/​
.ash_history file. Alternatively, you can write a
shell script to automate the task. Create a text file
named backup.sh in the koreader/​scripts/​ direc-
tory and add the following code (adjust the exam-
ples as needed):

#!/bin/sh

rsync ‑avhz ‑‑delete ‑P ‑e "ssh ‑p 22" /mnt/U

 onboard/Library/ USER@127.0.0.1:/path/to/library

rsync ‑avhz ‑‑delete ‑P ‑e "ssh ‑p 22" U

 /mnt/onboard/.adds/koreader/clipboard/ U

 USER@127.0.0.1:/path/to/export

["joplin_IP"] = "127.0.0.1",

["joplin_token"] = "authorization_token",

["joplin_port"] = 41185,

["joplin_export"] = true,

Save the changes and safely disconnect the e-
reader. On the machine running Joplin, open the
terminal, and run the following command:

socat tcp‑listen:41185,reuseaddr,fork U

 tcp:localhost:41184

In KOReader, open the top bar, choose Tools |
Choose formats and services, make sure the Jop-
lin option is enabled, and tap either Export all
notes in this book or Export all notes in your library.

Unlike any other available ebook reading appli-
cations, KOReader comes with a built-in SSH
server. Enable it, and you can connect to your
ebook reader from any machine on the same net-
work. Not only can you move books to and from
the device, but you can also have full access to its
filesystem. To enable the SSH server in KOReader,
open the top bar, switch to Settings | Network | SSH
Server, enable the Login without password option,
and start the SSH server.

Once the SSH server is running, KOReader dis-
plays a dialog with connection information. Note the
IP address of the e-reader. Using a machine on the
same network, establish an SSH connection to the
e-reader using the following command (replace
127.0.0.1 with the actual IP address of the e-reader):

ssh ‑p 2222 root@127.0.0.1

On most Linux distributions, the default file
browser can handle the SSH and SFTP protocols.
So you can access the e-reader’s filesystem by
specifying its address in the location bar of the file
browser. For example, ssh://​root@127.0.0.1:2222.

The easiest way to connect to KOReader via
SSH is to enable the Login without password op-
tion. The easiest approach is also the least secure
one, as anyone on the same network can get root
access to the e-reader. So it’s a good idea to allow
SSH access only to authorized devices. To do this,
you need to generate an SSH key pair on the de-
vice you want to connect from to your e-reader.

To generate an SSH key pair on a Linux ma-
chine, run the ssh‑keygen command in the termi-
nal. Follow the prompts, but skip specifying a
passphrase. Run the command

cat .ssh/*.pub

and copy the key. Connect the e-reader to the ma-
chine and create the authorized_keys file in the ko‑
reader/​settings/​SSH directory. Open the file for ed-
iting, paste the copied key in it, and save the

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM74

KOREADER E-READERLINUX VOICE

Save the file and make it executable using:

chmod +x /koreader/scripts/up.sh

To launch the script in the e-reader, open the
terminal emulator and run the koreader/scripts/
backup.sh command.

If you happen to use a second e-reader, and you
want to download the saved settings and data, all
you have to do is to create a shell script that runs
the following commands:

rsync ‑avhz ‑‑delete ‑‑no‑g ‑‑no‑o ‑P ‑e "ssh U

 ‑p 22" USER@127.0.0.1:/path/to/library/ U

 /mnt/onboard/Library

rsync ‑avhz ‑‑delete ‑‑no‑g ‑‑no‑o ‑P ‑e "ssh U

 ‑p 22" USER@127.0.0.1:/path/to/clipboard/ U

 /mnt/onboard/.adds/koreader/clipboard

Every time you run the scripts described above,
you'll be prompted to enter the password twice,
which can quickly become a nuisance. To fix this,
generate an SSH key pair in KOReader, and add the
public key to the list of authorized keys on the re-
mote machine.

To generate an SSH key pair, launch the ter-
minal emulator in KOReader and run the
ssh‑keygen command. Follow the prompts, but
skip specifying a passphrase. This generates a
key pair in the /usr/​local/​niluje/​usbnet/​etc/​
dot.ssh/​ directory. To make sure that the keys
are there, run:

ssh‑agent sh ‑c 'ssh‑add; ssh‑add ‑L'

Copy the /usr/​local/​niluje/​usbnet/​etc/​dot.
ssh/​id_rsa.pub file to a Linux machine, and use
the command below to add it to the autho‑
rized_keys file on the remote server:

cat id_rsa.pub | ssh USER@127.0.0.1 "mkdir ‑p U

 ~/.ssh && cat >> ~/.ssh/authorized_keys"

From now on you can run the shell scripts (or any
commands and actions that require an SSH connec-
tion to the remote machine) without a password.

Wrap Up
You don’t have to stop here, because KOReader
has so much more to offer. Dive into its gesture
controls, and you’ll discover that you can con-
trol practically every aspect of the application
via gestures. Once you’ve configured gestures
to your liking, explore KOReader’s reading statis-
tics. In short, you’d be hard pressed to find a
better and more powerful reading application.
And if you are willing to put some effort and
time into learning its functionality, you’ll be re-
warded with a reading experience you never
thought was possible. nnn

[1]	� KOReader:
https://​github.​com/​koreader/​koreader

[2]	� KOReader wiki:
https://​github.​com/​koreader/​koreader/​wiki

[3]	� Joplin: https://​joplinapp.​org
[4]	� KoboStuff: https://​www.​mobileread.​com/​

forums/​showthread.​php?​t=254214

Info

Dmitri Popov has been writing exclusively
about Linux and open source software for
many years. His articles have appeared in
Danish, British, US, German, Spanish, and
Russian magazines and websites. You can
find more on his website at tokyoma.​de.

The Author

nnn

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 75

KOREADER E-READER LINUX VOICE

https://github.com/koreader/koreader
https://github.com/koreader/koreader/wiki
https://joplinapp.org
https://www.mobileread.com/forums/showthread.php?t=254214
https://www.mobileread.com/forums/showthread.php?t=254214

0 A.D. is one of classic Linux games, and all
popular distributions have it in their package
sources. But if you install the game via your dis-
tribution’s package manager, you will probably
not get the latest version, which is why I would
recommend downloading the latest release from
the project’s website [2]. You will find packages
for various distributions along with matching in-
stallation instructions. 0 A.D. is also available in
the AppImage and Flatpak package formats.
(AppImage is a distribution-independent pack-
age format for Linux. Programs can be started
immediately after downloading without

M aybe you liked history at school, or
maybe you just found the subject bor-
ing. But in any case, it’s worth taking a

look at the 0 A.D. real-time strategy game [1],
which takes you back to the year 1 (there is no
year 0 in our calendar) and puts the fate of an an-
cient culture in your hands. Buildings, units, and
technologies are based on real history. The game
brings history to life without players getting bored.

Installation
The beginnings of 0 A.D. are rooted more than 20
years in the past. Strangely, the development of
the game has still not progressed beyond the
alpha phase, although this does not detract from
its fun factor. The current version (at the time of
testing), Alpha 25 “Yāuna,” was released on Au-
gust 8, 2021. The successor, Alpha 26, had al-
ready entered the Feature Freeze phase (the point
at which new features stop being added to the
current alpha version) by April 2022.

BY DANIEL TIBI

Steer the fortunes of ancient civilizations in the real-time strategy game 0 A.D. and
revive history.

Immerse yourself in living history with 0 A.D.

Ancient Times
Reloaded

Figure 1: The start-up screen is uncluttered. You can use the menu on the left to enter the game.

0 A.D. comes with its own map editor, Atlas,
which you can use to create your own maps
and campaigns. To do this, click on Scenario
Editor in the left sidebar on the home screen.

Map Editor

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM76

LINUX VOICE 0 A.D.

installation. Flatpak is a cross-distribution alter-
native package manager.)

Back to the Past
The uncluttered home screen shows the most im-
portant functions in the menubar top left (Figure 1).
This is where you start a new game or campaign,
host a multiplayer game, or create and edit maps via
a map editor (see the “Map Editor” box). A tutorial for
learning the game can also be found in the list.

To get started, it’s best to start with a single-
player match against the computer. To do this,
choose Single-player | Skirmish from the menu in
the upper left corner. A window will open in which
you can make all the necessary settings for the
new match (Figure 2).

Then, in the area at the top, select one of the 13
civilizations whose fate you want to steer, as well
as the civilizations of the computer opponent.

Among others, you can go for the classic Gauls vs.
Romans (see the “Choosing a Civilization” box).

In the field for the computer opponent, you will
see a gear icon to the left of the civilization drop-
down menu. You can press it to set the difficulty
level of the computer opponent and whether the
opponent should adopt a defensive or offensive
approach.

Then, in the right pane of the Map tab, set a suit-
able location for the encounter. For example, you
can move the Gauls vs. Romans encounter to the
Gallic highlands. Switch to the Players tab to ad-
just the number of players, the population limit,
and the starting resources.

Figure 2: 0 A.D. offers a variety of settings. In particular, you decide on a civilization whose fate you want to direct and choose a map.

Each of the 13 civilizations available in 0 A.D.
offers its own special characteristics (Fig-
ure 3), including specific buildings and tech-
nologies, as well as specifics of civilization
development. The respective heroes of each
civilization are strong warlords who lead the
troops. The special characteristics of each
civilization are based on historical events. A
detailed overview can be accessed via the
start screen Learn to Play | Civilization Over-
view menu.

Choosing a Civilization

Figure 3: Each civilization
comes with its own special
features that influence the
course of the game.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 77

0 A.D. LINUX VOICE

If you prefer a less warlike scenario, you can
choose the game type Capture Treasures. The
winner here is whoever collects all of the trea-
sures scattered over the map and keeps them
for a certain amount of time. You can also se-
lect the Miracles game type. The goal here is to
build wonders for your civilization and protect
them against destruction by the enemy for a
certain time. You can also combine the individ-
ual game types.

When you get started on your first encounter, it
makes sense to use the Ceasefire slider to prevent
attacks for up to 45 minutes. Otherwise, very soon

Game Type lets you define how the winner is de-
termined. The game uses Conquest by default,
meaning that the winner is whoever destroys all of
their opponent’s buildings and units. Another op-
tion requires you to slay your opponent’s king be-
fore you can leave the field as the victor.

You can also replay battles from history: On
the home screen, click Single Player |New Cam-
paign in the left sidebar to start one of the cam-
paigns and replay historical battles. The list of
available campaigns is currently quite short, but
one can always hope that more will be made
available in the future.

Figure 4: At the start of the game, you have only an administrative headquarters and some citizens. You now need to collect resources: Berries and free-
roaming pigs are available as food; trees, stones, and ore are used for building and forging.

Figure 5: Sustainable food
is obtained by farming and
raising livestock.

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM78

0 A.D.LINUX VOICE

the opponents will be at the gates of your young
empire. If all the conditions are right, you can start
the game by pressing Start Game!.

Collecting Resources
At the start you have an administrative headquar-
ters and citizens (Figure 4), who are divided into citi-
zens (females) and citizen soldiers (males). The citi-
zens are civilian-only units. They collect resources
and construct buildings, but do not carry weapons.
Citizen soldiers move around either on foot or horse-
back. Those on foot gather resources and construct
buildings, but also carry weapons and use them to
defend themselves against attacks. Mounted citizen
soldiers limit their resource gathering to hunting. But
they also make themselves useful by exploring the
area or fending off attacks.

You can select a unit by left-clicking on it,
while the right button lets you define a destina-
tion for the selected units. The first thing you
want to do is to replenish your stock of re-
sources and forage for food, wood, stone, and
metal. If you choose the Gallic civilization, your
people will initially consist of four citizens, plus
four citizen soldiers on foot and one mounted
citizen soldier.

Select one of the four citizens and then right-click
on a berry bush near the administrative headquar-
ters. The citizen will now start picking berries and
deliver her haul to the administrative headquarters.

Besides berries, free-roaming animals also pro-
vide a source of food. Near the administrative
headquarters there are some farm animals – de-
pending on the map, for example, pigs, sheep,
chickens, or goats. In the wider surroundings,
there are also wild animals running around –
again, depending on the map, deer, wild boars,
bears, wolves, zebras, giraffes, lions, elephants,
wildebeests, or crocodiles. Select the mounted
citizen soldier and send him hunting by clicking
one of the animals with the right mouse button.
He also delivers his prey to the administrative
headquarters. If your settlement area is by the
sea, fish also serve as a food source.

Only limited quantities of natural food re-
sources are available. This means that your civ-
ilization needs to cultivate crops and raise live-
stock to prevent running out of food (Figure 5).
To do this, left-click on one of the citizens. Sym-
bols for everything they can build will now

appear in the lower part of the screen. If you de-
cide on the Field icon, you can establish a field
near the administrative headquarters. Fields are
always resown, providing a renewable food
source. Use the two remaining citizens to farm
two more fields. If you hunt all the free-roaming
animals, you will need to build a pen and enter
the livestock business.

Next, send one each of your citizen soldiers to
the forest to chop wood, to a stone pit to mine
stone, and to an ore mine to procure metal. The
citizen soldiers also deliver these resources to the
administrative headquarters. Depending on the
distance between the resource source and the ad-
ministrative headquarters, a lot of time can be
lost on the move. This is why it makes sense to
dispatch the fourth citizen soldier, who is not cur-
rently doing anything, to build warehouses near
the forest, the stone pit, and the ore mine. Re-
sources can now be delivered to the warehouses,
which saves a lot of time.

On the left in the bar at the top of the screen,
you can see the levels of resources you have for
food, wood, stone, and metal, as well as the
number of citizens currently working to obtain a
resource.

Population Growth
While the citizens go about their business, take a
closer look at the administrative headquarters.
Left-clicking on the building reveals more details
in the lower part of the screen (Figure 6). There, as
with any building, you will see the units you cre-
ated in that building in the top right pane. In the
case of a Gallic administrative headquarters,
these are a citizen, a spearman (for close com-
bat), a spear thrower (for long-range combat), and
a mounted citizen soldier.

In the lower area you will see the technologies
that you are researching in this building. Right-
click on a unit or technology icon to learn more
about its capabilities or importance, and the re-
sources you need in order to create or research it.

Before you can create more citizens via your
administrative headquarters, you first need to
build homes. The population limit is set at the
beginning, which is 300 people by default. This
is the absolute upper limit. The actual popula-
tion size within this limit is a function of the
number of houses.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 79

0 A.D. LINUX VOICE

Figure 6: Administrative headquarters are where you create new citizens and research technologies.

You can dispatch a currently idle citizen soldier
to build new houses. The bar at the top of the
screen shows you the population count on the
left. After building a few new houses, create more
citizens, who can then be dispatched to forage for
more resources.

Exploring the Map
A colored line marks the settlement area you con-
trol. You can see only what lies within this area. To
explore the map, you need to create some
mounted citizen soldiers and send them out to ex-
plore. In this way, you can see where there are
more resources and where the enemy has settled.
Areas outside your area that have not yet been ex-
plored will be displayed in black. Previously ex-
plored areas outside your area are covered by a
fog of war: You will see them in the condition that
existed when one of your units (for example, the
mounted explorer) last went there.

As the game progresses, you will need to ex-
pand your settlement area. You can do this by
constructing new buildings. Each building has a
certain radius that it occupies for your settle-
ment area. If you build on the edge of your area,
your settlement area increases. Most buildings
can only be erected within your own settlement
area, with the exception of the administrative
headquarters. You can also build this on neutral
territory, as it has the largest radius of influence.

To expand your settlement area, it is advis-
able to build more administrative headquarters.
But be careful: Because of their importance,
your enemies will also attack these headquar-
ters frequently.

Exploring Technologies
With your population growing and your barns
filling up with resources, you now need to re-
search new technologies to push forward your
civilization’s development. This is what goes on
in the buildings. For example, at the administra-
tive headquarters you can research cartogra-
phy, and at the stores you can develop tools for
mining resources.

Now is also a good time to construct more
buildings. A marketplace lets you trade with al-
lies. And you can exchange resources there to
keep your barns full. At the forge, you’ll develop
techniques for metalworking. You can train
healers at the temple and improve their skills
there (Figure 7). If your settlement area is lo-
cated near a body of water, you can construct a
harbor and build fishing boats or merchant and
war ships (Figure 8).

Once you have enough resources in your store-
house and have constructed enough buildings
and researched enough technology, you can ad-
vance from the village phase to the city phase by

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM80

0 A.D.LINUX VOICE

Figure 7: The Druids are the Gallic healers. They heal wounded units that are within the
colored circle around the druid.

Figure 8: If your settlement area is located by the sea, you can build a harbor and everything
a seafaring nation needs, from fishing boats to warships.

Figure 9: Training foot soldiers at the barracks (left), mounted soldiers at the stables
(center), and building siege weapons such as battering rams (right) at the arsenal.

clicking on the appropriate button in the adminis-
tration center, and then from the city phase to the
metropolis phase as you progress.

Defending Your Settlement Area
Your opponents have certainly not been idle in
the meantime and are bound to attack your set-
tlement area with an army in the foreseeable
future. This is why you need to build good de-
fenses. Citizen soldiers see themselves as a
militia. In addition, you need professional sol-
diers and weapons. At the barracks you can
create foot soldiers. The stables give you
mounted warriors, and the arsenal produces
siege weapons such as catapults and battering
rams (Figure 9).

These buildings are also where you can re-
search weapons and combat techniques. Differ-
ent civilizations also have other military buildings
or special units. For example, the Romans build
military camps in enemy territory. The Britons
train war dogs, the Carthaginians war elephants.
To protect your settlement area from overly ag-
gressive opponents, you can surround it with a
wooden or stone wall and build watchtowers and
fortresses (Figure 10).

Each civilization comes with three heroes
that you train during the game, each of which
you can create only once. No more than one of

them per civilization can enter the game at the
same time. These heroes are based on histori-
cal characters. They are especially strong war-
riors, and if there are soldiers near them, this in-
creases their combat power (Figure 11). You
usually create heroes in a fortress, but depend-
ing on the civilization, they can also be created
in other buildings. In the case of the Gauls, the
gathering of princes specific to this civilization
serves this purpose.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 81

0 A.D. LINUX VOICE

Figure 10: This well-secured
Gallic settlement poses a
real challenge to the attack-
ing Romans.

Figure 11: The heroes in 0 A.D. are based on historical figures. They are particularly strong warriors who lead their
soldiers in battle.

Real Politics
If your civilization is in a development crisis or the
enemy threatens to overrun it, it’s time for politics
in the form of various cheats (see Table 1, where
you’ll also see, as a small Easter Egg, that the
game lets you build a P-51 Mustang, a US fighter
plane from World War II). To create units, first se-
lect any building. If that building belongs to you,
the newly created unit also belongs to you. If, on
the other hand, the building is under the control of
an enemy, the newly created unit will also take on
their color.

Conclusions
Considering that 0 A.D. is only in the alpha phase,
it is already very easy to play. The attention to de-
tail, both in terms of the historical references and
the graphic design, makes it very enjoyable. The
game is already worthy of a clear recommenda-
tion, and it is well worth keeping an eye on its fu-
ture roadmap. nnnCreating Wonders

Each civilization reaches the peak of its develop-
ment by building the wonder specific to it (Fig-
ure 12). For example, the Romans built the Capito-
line Temple, the Greeks the Parthenon. Depending
on the game settings, one way to win the game is
to build a wonder and defend it for a certain
amount of time.

nnn

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM82

0 A.D.LINUX VOICE

Figure 12: The construction
of its own wonder marks the
pinnacle of development for
a civilization. For example,
in 0 A.D., this is the Hanging
Gardens of Babylon for Per-
sians.

Code Impact
Gift from the gods + 100,000 of all resources, accelerates development to the metropolis

phase, construction of buildings or creation of units
i want pizza + 1000 food
bring me my axe + 1000 wood
i see a mountain here + 1000 stones
your money or your life + 1000 metal
jame jam Reveal the map
salad bowl Create citizen soldiers
iwanttopwnthem Create warriors
wololo Convert selected building or unit
black death Destroy selected building or selected unit
i am too busy Speed up construction of buildings or creation of units
exodia <player> Defeat specified player
back to the future Advance to the next higher stage of development
the hive master Increase the population limit to maximum without having to build houses
how do you turn this on? Create a P-51 Mustang fighter plane

Table 1: Cheats

[1]	� 0 A.D.:
https://​play0ad.​com

[2]	� Download 0 A.D. for Linux:
https://​play0ad.​com/​download/​linux/

Info

https://play0ad.com
https://play0ad.com/download/linux/

Sparkling gems and new
releases from the world of
Free and Open Source Software FOSSPicks

It won’t be much of a surprise after reading this month’s picks, but Graham
finally received his Steam Deck this month – 12 months after a long
virtual quest for the right to pre-order. BY GRAHAM MORRISON

Ear bender

Cecilia 5
W e’ve looked at eso-

teric audio manipula-
tion software in the

past, but there has been nothing
to compare with Cecilia. It’s like
a concrete bunker for sound ex-
ploration with a user interface
designed for a nuclear power
station. It’s probably capable of
emulating the sound of a nuclear
meltdown, too. In fact, one of its
best uses is to generate sound
effects, although it’s equally ca-
pable of producing musical or
soothing sounds. Cecilia is a
desktop application designed for

audio manipulation and, at a
basic level, it loads a sound and
allows you to process that sound
with various modules. There are
dozens of modules, and they
vary hugely in what they do.
Some aren’t too destructive and
will add echo, create 3D space,
or blend two sounds together.
Other modules add tens of pa-
rameters to the user interface
and let you mangle sound be-
yond all natural limitations. It’s
an incredible array of sound po-
tential, and it’s so purely driven
by DSP experimentation that it’s

unlike any other applica-
tion we can think of. Every
parameter, in whatever
module you choose, can
be changed over time with
a line or curve in the main
panel. Curves can be as
simple or as complicated
as you need them to be,
and there are three further
options for generating
curves mathematically.
These let you generate a
sine or square waveform,
or a randomly distributed
pattern, all of which can
then be further smoothed
or warped with options
from another menu.

Curves are central to Ce-
cilia, and you can create a
curve for almost anything
you see on the screen, in-
cluding loop lengths and
pitch, and any parameters
from the post-processing
effects section listed in a
second tab on the left. This
section hides an excellent
reverb effect and harmo-
nizer, alongside a gate, cho-
rus, and phaser effects, as
well as many others. You
can even adjust the FFT
size for the output process-
ing and generate more than
one output at a time. Each
output can be tuned to a
specific chord or interval.

All of this might sound
complicated, but you don’t
need to know what you’re
doing to create something
useful. Cecilia is all about
experimentation, and you

can always press Play at
any point to hear the re-
sults of your tinkering.

The sound you hear as
the output can bear little re-
semblance to the sounds
you feed into Cecilia. You
often end up with long, re-
verb-soaked drones or
atonal granular noise. But
with judicious tweaking
and careful curve editing,
you can also generate
beautiful shimmery pads
and synthesized textures
that could not be easily
generated by anything else.
Despite the initial complex-
ity, the user interface is also
easy to understand. The
real struggle is in trying not
to add one more curve, pa-
rameter change, or effect
and to try and keep things
minimal. In this way, you
can keep some of the char-
acter of the sounds you
start with, while generating
something new at the
same time, though this al-
ways depends on the mod-
ule you’ve chosen in the be-
ginning. Whether you’re an
avant-garde musician, a
sound effect artist, an
audio geek, or just a Linux
user wanting some new no-
tification sounds, Cecilia
will always generate some-
thing utterly unique. And it’s
marvelous.

1. Input and output: Cecilia takes your files and recordings as a source and generates
a new output with the record button. 2. Time stretch: Set a length for the output and
your audio will be stretched or shrunk to fit. 3. Modules: The main sound processing
is dependent on which of the many modules is selected. 4. Curves: Any parameter in
Cecilia can be automated with a curve. 5. Curve generators: Curves can be drawn
manually or generated from function processors. 6. Module parameters: This is a
simple example, but more complex modules have dozens of automatable parame-
ters. 7. Granular effects: All sounds can be distorted with FFT and tone processing.
8. Effects: Finally, send your sounds through some gorgeous audio effects.

Project Website
http://​ajaxsoundstudio.​com/​
software/​cecilia/

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM84

LINUX VOICE FOSSPICKS

http://ajaxsoundstudio.com/software/cecilia/
http://ajaxsoundstudio.com/software/cecilia/

Ebook manager

Calibre 6.1

C alibre is one of those first-
class open source applica-
tions that we keep revisit-

ing. It’s brilliant in its own right, and
performs an important function,
but it’s also an application with a
solid release cadence and signifi-
cant updates. This release is a
good example because it comes
after 18 months of development
effort and includes a few impor-
tant features that any digital media
hoarder will want to use. Topping
the list of these is a global search,
which allows you to search
through your entire library of publi-
cations for words and phrases and
even includes Boolean options
(“calibre AND ebook,” for instance)
and searching for words near
other words. The latter is useful if
you want to try and find words or
numbers related to something,

such as “population” and “europe,”
or “harry” and “dobby.”

Before all this can magically
work, however, you need to manu-
ally build an index for your collec-
tion, and this can take some time.
This is a one-off though, because
new titles added to your collection
are automatically scanned. If you
don’t need to search, the feature
isn’t enabled by default. But it’s
very useful if you do, especially if
you to organize your media into
different collections so you can
better isolate your results across
categories. When you do find
what you’re looking for, another
new feature will read a book aloud
from the ebook view. This could
be done with a plugin before, but
it’s great to see the option built-in.

Behind the scenes, a lot of work
has gone into migrating Calibre

from Qt 5 to Qt 6, making it one of the few Qt applications
to have made the switch. This obviously brings better fu-
ture-proofing, but it does mean 32-bit support has been
dropped due to lacking Qt 6 i386 libraries. To balance this
slightly, the burgeoning ARM platform is now officially sup-
ported, which will be useful for people wanting to run Cali-
bre on their Raspberry Pis or ARM laptops. Unfortunately,
with such major architectural changes comes some plugin
incompatibility, and it’s going to take a while for some pl-
ugins to catch up with the Calibre 6 release.

Project Website
https://​calibre‑ebook.​com

Config manager

chezmoi

L inux configuration files
exist in a strange twilight
between the old world and

the new. Their existence is an old
tradition, and their contents are
usually deeply personal, holding
values such as your POP3 server
and login details, your Vim bind-
ings, and your terminal paths.
They all pretend to be hidden be-
hind the .dotfile prefix. Modern
applications will often use the
same format and locations, al-
beit often migrated to the .con‑
fig directory, and it can all
quickly become unmanageable.
A solution I’ve used for many
years is to use a private and en-
crypted Git repository to hold all
the configuration files I care
about. This has the advantage of
keeping your configuration files
version controlled, but it also

means you have to go through
the arduous process of recreat-
ing all the symbolic links in your
home directory whenever you
start using a new machine. And
this is exactly the problem that
chezmoi hopes to improve upon.

Chezmoi is a little tool that has
been designed to help you safely
store your .dotfiles and do
away with all the manual com-
plexity and uncertain security of
doing it yourself. After it’s been
installed, you run chezmoi to cre-
ate a new Git-tracked directory
(in ~/​.local/​share/​chezmoi) and
then you simply add files to your
own repository with chezmoi add
followed by the configuration file
you wish to manage. This is the
equivalent of moving the file and
creating the necessary symbolic
link in one step, and it means if

the source config file is updated, you’re really editing the
source state of the file in the chezmoi directory. To apply
and see any changes, type chezmoi ‑v apply. This all
works locally, but you can optionally add a remote (pri-
vate) Git repository and enable a feature to automatically
track any changes to the upstream repository. It’s a lot
simpler than working with Git directly and saves you from
the trouble of recreating your configuration on a new ma-
chine. To do this, you use chezmoi init ‑‑apply followed
by the destination repository. Everything else is handled
automatically.

Project Website
https://​www.​chezmoi.​io

It’s possible to use both Calibre 5 and 6 at the same time, but if you do,
books must be added to the more recent version to work with both.

Manage your configuration files directly with chezmoi, without the
complexity of dealing with Git.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 85

FOSSPICKS LINUX VOICE

https://calibre-ebook.com
https://www.chezmoi.io

Process launcher

mprocs

M any of us are surely ac-
customed to using
semicolons on the

command line to separate and
run multiple commands at the
same time. Or even using the old
nohup and & stanza to fork new
tasks into the background, quite
apart from the task management
offered by the average terminal
environment. What’s missing is a
user interface for all this task
management frippery, and that’s
what mprocs is. mprocs provides
the same multiple command
launching functionality but with a
far more manageable interface.
Run mprocs, followed by the list of
commands you want to run si-
multaneously, and you’ll be pre-
sented with a Tux-like interface
with the list of commands as
tabs on the left and a pane

containing the selected com-
mand’s output on the right. The
words UP and DOWN are used to
show whether a command is still
running, and you can switch be-
tween the output for any of the
commands with the cursor or
Vim navigation keys. It’s perfect
for small client and server setups.

A variety of shortcuts can be
used to focus on the output
panes for your commands, letting
you interact with an editor or
change the order of htop, but also
perform more drastic operations
such as kill and add new pro-
cesses entirely. As shown in the
bottom of the main panel, there
are also keys to help you start,
stop, and restart a process, and
it’s a lot easier to manage these
commands from mprocs than try
to remember the secret key

commands for your terminal manager. If you have a com-
mon setup you need to recreate, all of this can be put into
a YAML-formatted configuration file to describe the com-
mands you want to install and the environments they’ll run
in. An even more advanced feature is controlling mprocs re-
motely, via a TCP connection. With this enabled, you can
remotely manage whatever is running on an mprocs
“server” with a local version of the same command send-
ing control commands. It works brilliantly and is a genuine
alternative to the more complex and over-engineered Tux.

Project Website
https://​github.​com/​pvolok/​mprocs

Watch replacement

Viddy

T here can’t be too many al-
ternatives to the watch
command. It’s a brilliant

little utility that is typically used to
run a certain command at a set
interval so you can monitor any
changing output. You might use it
to check the temperature of
something, for example, or track
the amount of free memory you
have left. It’s a great little tool for
building simple scripts to monitor
changes or catch errors. What
watch lacks, however, is more dy-
namic output options, and this is
something that the Go-written
Viddy attempts to address. Viddy
is named after a famous quote in
A Clockwork Orange (which likely
was itself inspired by vidi, the
Latin word for “I saw”), and it per-
forms exactly the same function
as watch with some modern

augmentation. The
most useful of
these augmenta-
tions is a diff mode
to highlight exactly
which parts of any
output have
changed. This is
very useful on more complicated
commands because any changes
are immediately colored in yellow,
letting you easily see which val-
ues are new.

If you do happen to miss the
moment when a value changes,
another Viddy feature will let you
roll back the output through its
history so you can see what
changed and when. All this can
be controlled with Vim-like bind-
ings, which can be edited, and in
full color, which can also be con-
figured to your own taste. The

output is pageable so you can
easily scroll up or down, or page
through large volumes of output,
and you can suspend and resume
whatever you’re running directly
from within Viddy. The resulting
upgrades to watch are likely to
make Viddy a far more common
occurrence in your command his-
tory, and the perfect tool for any
ad hoc monitoring and system
data tracking jobs.

Project Website
https://​github.​com/​sachaos/​viddy

mprocs is like Tux for specific repeatable sets of commands you
might want to control remotely.

Viddy can be used to track output changes and even to monitor suspicious journal
activity.

FOSSPICKSLINUX VOICE

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM86

https://github.com/pvolok/mprocs
https://github.com/sachaos/viddy

Emulator configuration

EmuDeck

O ne of the best things to
come from Valve’s Steam
Deck is the extra scrutiny

our community and software is
coming under from a wave of
Linux newcomers. Thanks to the
Steam Deck running its own vari-
ation on Arch, along with a touch-
enabled KDE Plasma desktop,
more people than ever are config-
uring KDE or using its Discover
software center to install new ap-
plications. And when they run into
problems, these new users are or-
ganized enough around a com-
mon platform that when some-
one finds a solution, it can be
shared with a reasonable degree
of confidence. It was the same
popularity that helped Ubuntu via
the many forum posts and Stack
Exchange questions, and it sus-
tains Ubuntu to this day.

EmuDeck is one such project
born from Steam Deck’s new
popularity. It helps new users
navigate the horrendously com-
plex world of multiformat emula-
tor configuration, and it does this
by asking a few simple questions.
At its heart, EmuDeck is a com-
plex Bash script that bootstraps
the installation of RetroArch by
detecting which emulator back
ends you wish to install, configur-
ing them for your library, and
building a working configuration
to add individual games to Steam
with appropriate controller bind-
ings. It will even add shaders, au-
tosave states, fixed aspect ratios,
and game bezels, helping your
emulated games fit side-by-side
with your native Steam games. If
you need more control over how
these elements are configured, its

expert mode will ask you more questions and also let you
run each stage independently. It’s useful for changing
something specific about your already-working configura-
tion, or for only updating the emulator executables, espe-
cially as only the latest versions of everything are installed.
But the whole project comes together brilliantly and now
has dozens of contributors helping with configuration files
and more esoteric configurations, making EmuDeck prob-
ably the best emulation platform ever created.

Project Website
https://www.emudeck.com

Game manager

Steam ROM Manager

O ne of the final steps in the
EmuDeck emulator setup
process is to preconfigure

and run Steam ROM Manager
(SRM). This is a graphical applica-
tion that has been at the core of
adding emulated and homebrew
games to a Steam library for a few
years, and it does something that
isn’t feasible manually. It creates
game entries in Steam for an indi-
vidual emulated title, a game from
another game store, a homebrew
game, or any other executable you
wish to add to Steam. It augments
these entries with graphics, bevels,
and anything else it can find via a
parser that will scan the Internet for
matching assets. It’s brilliant for
those of us who want our non-
Steam games and Steam games
to look the same when browsed in
Steam, and Steam ROM Manager
does this as a batch process, rather

than having to add (or remove)
every entry one by one. Doing the
same thing manually requires re-
membering exactly where each
asset can be uploaded, sometimes
from the box view, sometimes from
the banner view, and sometimes
from the game properties menu.
SRM does away with all this and
works brilliantly with the Steam
Deck, but it also works just as well
in the desktop Steam library view,
or Big Picture Mode when you’re
browsing Steam on a TV.

The only downside is configur-
ing your games, and this can take
some time even outside of the
Steam client. The native installed
approach involves creating a
parser for each emulator you wish
to use, and you can detail things
such as the command-line argu-
ments, the Steam category to use,
and where assets might be

downloaded from. You can often find example parsers on-
line, and EmuDeck (see above) includes a huge list that will
work with RetroArch’s various cores. With the parsers added,
you then scan your games collection and SRM will automati-
cally grab and organize what it can. If you like the preview of
what it finds, you can add them all to Steam with a single
click. If not, you can easily change any titles you don’t like or
modify those that might have been wrongly detected. Assets
include banners, posters, and other images associated with
the titles you have, and you can freely configure how those
assets are searched for and where they come from.

Project Website
https://​github.​com/​SteamGridDB/​steam‑rom‑manager

While EmuDeck was created to solve a specific Steam Deck issue,
the developers plan to port the project to Android and various other
devices, too.

Steam ROM Manager can also be used to change the artwork for
native Steam-installed games.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 87

https://www.emudeck.com
https://github.com/SteamGridDB/steam-rom-manager

Document manager

 Paperless-ngx

W e’ve all been waiting
to go paperless for a
couple of decades

now (wonderful, tactile, recycla-
ble magazines notwithstanding),
but still those slivers of pulp per-
sist. This isn’t so much a prob-
lem for us as individuals. We can
manage the occasional impor-
tant piece of paper with a scan-
ner or smartphone photograph
and perhaps a local NAS or re-
mote drive for long-term storage.
If we’re happy to forgo some pri-
vacy, a cloud service can scan
and host those files to make
them searchable. If not, then a
self-hosted version of Nextcloud
is another good option. But none
of these scale particularly well,
and they’re not built specifically
to manage sets of scanned,
printed documentation over a
long period of time. Which is
what Paperless-ngx has been
built to do.

Paperless-ngx is a document
management system for
scanned documents that can
handle a busy non-paperless
office’s worth of pages. It’s a re-
spectful fork of a long estab-
lished project called

Paperless-ng, and like its pro-
genitor, runs as a web-ac-
cessed server. This is impor-
tant because it means you have
complete control over where
your documents are stored and
how they’re accessed, albeit
with the overhead of having to
run the background service
yourself. Another great feature
is that it is account- and group-
based, like Linux, which means
different users can have their
own accounts and belong to
one or more groups. A whole
series of permissions can be
added or revoked to limit ac-
cess to specific sets of docu-
mentation. Most importantly,
Paperless-ngx performs optical
character recognition on your
document collections so you
can easily search for any text
across multiple documents.

Installation is relatively easy,
especially if you choose to go
the Docker route, but both this
method and a native Linux in-
stallation are excellently docu-
mented. There are also several
ways to get a document into
Paperless-ngx. The most prac-
tical is a physical scanner that

can either save to a mutually accessible
network location or is connected locally to
your server where it can save documents
to a shared directory. But there are other
options too, including uploads via the web
interface, via an accompanying Android
app, or even by sending documents to a
preconfigured IMAP email address. There’s
also an excellent REST API for integration
with your own tools and for potentially au-
tomating the scanning and archiving. Pa-
perless-ngx will pick up these documents
automatically, run them through an OCR
process, archive a version as a PDF, and
then add any matching tags or correspon-
dents it recognizes to the eventual data-
base entry. Only then do documents be-
come accessible from the web interface.

This is where Paperless-ngx really shines,
because its user interface is fast and re-
sponsive, even when dealing with a huge
number of documents. One or more can be
opened at the same time, and they become
small tabs in the left pane, letting you go
back to the dashboard. Using an external
viewer is a configuration option away, and
the latest release has overhauled the look
and feel of the whole experience. The only
slight downside is that none of your docu-
ments nor the database are encrypted,
which means it’s up to you to find a solution
if you need to safeguard the contents of
your collection. There are obviously plenty
of Linux solutions to this problem, but it’s
something to consider if Paperless-ngx be-
comes the hub of your office’s document
management, as it should.

Project Website
https://​github.​com/​paperless‑ngx/

You can either upload files manually with the web interface, via a
scanner, through an Android app, or even by sending an email.

Paperless-ngx has been written with Django and is brilliant at archiving and
accessing printed documents, especially in an office environment.

FOSSPICKSLINUX VOICE

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM88

https://github.com/paperless-ngx/

Train simulator

Libre TrainSim

T here are two things at
work here with Libre
TrainSim. The first is ob-

viously that trains, and model
trains, are hugely popular with a
certain geeky crowd in ways not
unlike Linux fandom. The sec-
ond is that ambient games are
becoming increasingly popular.
These are the kind of games
that don’t require quick thinking
or sugar-rush reactions and in-
stead let you relax or listen to
music while keeping yourself oc-
cupied. Libre TrainSim is that
kind of game, although it’s also
a game with a lot of depth. For
players who simply wish to ex-
perience TrainSim, the easiest
way to get started is by loading
up the game and loading up the
training track (pun intended).
You’ll soon find yourself behind

the controls of a 3D virtual train
with a virtual view of the trees,
track, and rails in front of you.
The graphics are simplistic but
also effective at conveying the
same field of view real drivers
must have. You can also switch
from the first-person driver view
to a fully rendered external view
of the entire train.

The training mode will guide
you through the basics of start-
ing and stopping the train, and
prompt you to stick to the timeta-
ble. This information is contained
in a small panel on the right. You
have extra buttons for lights,
doors, and – the most important
thing – sounding the horn! You
also have to learn how to obey
signals and various speed limits.
Libre TrainSim was originally cre-
ated by a student in their spare

time with the Godot games engine, but the
project now has a small team of developers
behind it, all working to add new trains,
tracks, routes, and functions to the editor and
background functionality. You can do all this
yourself too, and there’s some excellent doc-
umentation that accompanies the project
and explains how to create your own tracks,
trains, scenery, and even how to contribute
the logic for routes and services with a little
Godot scripting.

Project Website
https://​www.​libretrainsim.​org

Real-time strategy

MegaGlest

M egaGlest is a real-time
strategy (RTS) game
that’s a reinterpreta-

tion of an older game called Glest.
Both games have been aban-
doned at various points in the
past, but MegaGlest has recently
relaunched its website and
started tweaking its source code,
and it’s great to see the project
back again. It’s also conveniently
available from Steam if you want
to support the developers and get
a one-click install for your Steam
Deck, but of course, the game it-
self is also open source and can
be installed from packages or
built yourself. MegaGlest will im-
mediately feel familiar to anyone
who has played an RTS. There are
elements that feel like the ancient
Settlers game and battles that
look like they’re from the brilliant
Magicka. You look down on your

people as the local deity – re-
flected literally in the tilted top-
down 3D graphic view of your
lands and figuratively in the way
your denizens react to your in-
structions without question. You
need to put them to task mining
resources, building structures,
and fighting neighbors across
many different kinds of terrain
and seven different factions.
These include tech, magic, Egyp-
tian, Native American, Norse, Per-
sian, and Roman. Your choice of
faction will affect what you can
build, which resources are
needed, and which technology is
unlocked through the faction’s
“tech tree.”

The game offers a beginner
scenario to ease you into the
game’s mechanics. While you
can start fighting immediately,
you’re better off gathering

resources and building up your infrastructure. In this way,
you can develop a large army before finally revealing your
narcissistic tendencies by invading your neighbor and
hopefully winning their territory and resources. It’s tough,
and there’s a learning curve, but you can play alone first
against some excellent computer-controlled opponents,
before going online against some equally adept humans.
Either way, it’s great fun and, for an open source game,
relatively complete and fully realized.

Project Website
https://​megaglest.​org

The austere 3D graphics in Libre TrainSim lend a genuine sense of
serious training and practice to the game.

MegaGlest offers a huge range of terrain and playing scenarios, plus
online opponents, making it both deep and diverse.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 89

https://www.libretrainsim.org
https://megaglest.org

at the command line. ImageMagick will create the
logo.gif file in the current directory. It shows the
magician seen in the upper right corner of Fig-
ure 1. You can easily check this by opening the file
in a suitable image viewer. Image names ending
with a colon are internal test images in Im-
ageMagick. You can create more test images with
the rose: and wizard: [2] options.

To demonstrate that you can actually draw at
the command line with ImageMagick, see the
command in Listing 1.

What this does is to first set the image size with
the ‑size parameter. Then xc:skyblue paints the
background of the image sky blue. Historically, xc:
stands for “X Constant Image,” but today it stands
for canvas. The instruction expects a color name

A lthough you would normally use a bona
fide graphics program for drawing and
painting, there are definitely situations in

which you need to draw regular shapes in an
image repeatedly at fixed intervals – as shown
here, for example, when creating the silhouette of
an imaginary city (Figure 1). This does not require
an expensive graphics program with a sophisti-
cated macro language. Using the free and open
source ImageMagick software package at the
command line is more than up to this task.

To compose more extensive images, you will
need the support of a scripting language such
as Bash, which uses loops and other control
structures to repeatedly insert image content
into the graphic. ImageMagick can be found in
the package sources of most Linux distribu-
tions, but it can also be downloaded for installa-
tion from the download section of the project
page [1].

Painting by Commands
After completing the install, type

magick logo: logo.gif

ImageMagick can do more than just edit existing images. The free software can
even be scripted to create simple drawings.

BY RALF KIRSCHNER

Scripted drawing with ImageMagick

Silhouette

Figure 1: Picture of a sky-
line created with
ImageMagick. You can pass
in the number of windows
and floors as parameters.

$ magick ‑size 500x300 \

 xc:skyblue ‑fill red \

 ‑draw 'roundrectangle \

 100,50,400,250,80,60' \

 image.png

Listing 1: Rectangle

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM90

LINUX VOICE TUTORIAL – IMAGEMAGICK

from the X Window System palette, which Im-
ageMagick adopted [3].

You can also specify a gradient, for example,
by typing gradient:blue instead of xc:skyblue.
The built-in gradient image generator would
then create a blue gradient background image
for you. For an idea of the possibilities, check
out the ImageMagick documentation. The man-
ual goes into the details of plasma canvases [4]
and gradients [5], for example.

The ‑fill parameter is followed by the defini-
tion of the drawing color for the subsequent draw-
ing command, which is introduced by ‑draw and
quoted. The last parameter is the name of the
image file to be created.

The resulting image is a red rectangle, rounded
at the corners, on a light blue background. You cre-
ate more complex drawings by stringing together
several drawing commands (Listing 2, lines 1 to 3).

Three-Box Car
The result of the first call from Listing 2 is shown in
Figure 2: a very simplified image of a notchback
based on the three-box principle. By passing in the
drawing command from line 4 of Listing 2, you can
improve the boxy shape a little. The command an-
gles the passenger compartment a bit at the front.

The auto.png file I just created provides the
basis for subsequent beveling of the passenger
compartment. The command writes the results to
the auto‑bevel.png file. If you want to avoid con-
stantly recreating files, use the command from
the last line of Listing 2 instead. This modifies the
auto.png file directly.

Although both methods have advantages for
your first steps in getting to know ImageMagick,
they have one decisive disadvantage. They are

both comparatively slow. As you can imagine,
drawing an entire skyscraper this way is compli-
cated. You would have to string together several
draw commands, and a separate call would be re-
quired for each individual window. And you would
have to manually calculate the positions of the
windows up front.

Faster with Scripts
The slowness in drawing a skyscraper can rem-
edied by using a script that determines the
image size based on the information it receives
about the desired number of floors and win-
dows per floor. It also defines a color gradient
for the background and saves the image. It then
calculates all the drawing instructions for the
actual building and the windows and doors and
collects them in an XML-formatted Magick
Scripting Language (MSL) file.

Finally, the script uses a conjure statement to
process the mess of drawing commands. This
greatly improves speed over incrementally devel-
oping the image using individual mogrify state-
ments. Listing 3 shows an MSL file for a small
two-story house with a foundation, five windows,
and a front door.

01 �$ magick ‑size 500x300 xc:skyblue ‑fill red ‑draw 'roundrectangle 100,150,400,225,55,10' \

02 � ‑draw 'roundrectangle 200,100,350,180,50,10' ‑fill black ‑draw 'circle 150,225 180,225' \

03 � ‑draw 'circle 350,225 380,225' auto.png

04 �$ magick auto.png ‑fill red ‑draw 'polygon 175,150 200,110 200,150' auto‑bevel.png

05 �$ mogrify ‑fill red ‑draw 'polygon 175,150 200,110 200,150' auto.png

Listing 2: Multiple Elements

Figure 2: A notchback created with simple draw commands.

<?xml version="1.0" encoding="UTF‑8"?>



Listing 3: miniHouse.msl

$./buildhouse <File> <Floors> <WindowsPerFloor>

Listing 4: Sample Syntax

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 91

TUTORIAL – IMAGEMAGICK LINUX VOICE

.png extensions are added automatically by the
code. If you leave the option for the number of
floors and the number of windows per floor
empty, the script will use default values. The file
name, on the other hand, must always be speci-
fied, otherwise the program will abort. You always
need to append the number of floors and windows
per floor together, otherwise the script will not
evaluate the parameters completely and will re-
place both with default values.

Once you have made all the entries, you can op-
tionally specify a fourth parameter for correcting
the boundary distance to the neighboring property

You call the buildHouse shell script, on which
this workshop is based, using the syntax in Listing
4. Its contents are taken unchanged from Listing
5. For the sake of simplicity, the script does not
perform an extensive check of the parameters
you pass in. In addition, only positioning parame-
ters are used. The call sequence in the command
line determines the assignment in the script for
this. If you want to improve this script, you need
to look into the shell’s error checking options and
also consider using getopts in the script.

When calling the script, you need to specify the
file name without a file extension. The .msl and

#/bin/bash

if [‑z "$1"]; then

 echo "�Please specify at least the name of the output file

without a file extension as the parameters, optionally

also the number of floors and windows per floor."

 exit

fi

rows=5

columns=10

ox=250 # X‑offset of the house

oy=2500 # Y‑offset of the house

if [$# ‑ge 3]; then

 rows=`expr $2`

 columns=`expr $3`

 if [$# ‑ge 4]; then

 ox=`expr $4`

 fi

fi

rh=250 # room height

fh=120 # window height

fb=100 # window width

dh=30 # ceiling height

fa=20 # window distance

ma=300 # center distance/staircase bay width

mslfile="$1.msl"

housewidth=`expr $columns * \($fa + $fb \) + $fa + $ma`

househeight=`expr $rows * \($rh + $dh \)`

t="�$ox, `expr $oy ‑ $househeight`, `expr $housewidth + $ox`,

$oy"

center=`expr $housewidth / 2 + $ox`

mahalb=`expr $ma / 2`

center‑left=`expr $center ‑ $mahalb + \(3 * $fa \)`

center‑right=`expr $center + $mahalb ‑ \(3 * $fa \)`

magi�ck ‑size"`expr $ox + $housewidth + $ox`"x3000

gradient:#0000ff‑#ffffff ‑draw "rectangle $t" $1.png

str="0, 2500, `expr $ox + $housewidth + $ox`, 3000"

echo '<?xml version="1.0" encoding="UTF‑8"?>' > $mslfile

echo '' >> $mslfile

conjure msl:$mslfile

Listing 5: buildHouse

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM92

TUTORIAL – IMAGEMAGICKLINUX VOICE

if you want to recreate the sample settlement
from Figure 1 as shown in Listing 6. Table 1 ex-
plains the meaning of the assembly and composite
tools, among other things.

Conclusions
ImageMagick mutates into a very powerful tool
when combined with DIY shell scripts. Of
course, you can still work with existing images.
However, if necessary, you can even automate

the process of creating new images. This
makes it all the more worthwhile to take a look
at ImageMagick. nnn

$./buildHouse house1 8 8

$./buildHouse house2 4 10 0

$./buildHouse house3 5 10 0

$./buildHouse house4 1 8 250

$ magick composite house1.png house2.png house3.png house4.png ‑geometry +0 ‑tile x1 street.png

$ magick composite logo: street.png ‑gravity NorthEast street‑magick.png

Listing 6: Building a Skyline

Tool Name Function
convert A standard tool from the ImageMagick package, it can convert file formats and scale,

blur, crop, denoise, dither, rotate, flip images, and much more.
identify Outputs a description of the format and characteristics of one or more graphics files.

mogrify Offers the same functions as convert, but unlike the latter, overwrites the source file.
composite Overlaps two images.
assemble Assembles multiple images into one.
compare Displays the differences between two graphs (as a report of a mathematical analysis

and visually).

stream Copies single or multiple pixel components of an image to another format (mainly in-
tended for very large image files).

display Displays an image or image sequence via an X server.
import Creates screenshots in X11. The function optionally saves the entire screen area, the

area of a window, or a defined rectangle.

conjure Interprets scripts in the MSL and executes them.

Table 1: Command Line Tools in the ImageMagick package

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022 93

TUTORIAL – IMAGEMAGICK LINUX VOICE

[1]	� ImageMagick:
https://​imagemagick.​org/​index.​php

[2]	� Built-in test patterns, fill patterns, etc.:
https://​imagemagick.​org/​script/​formats.​php

[3]	� X-Window color names:
https://​imagemagick.​org/​script/​color.​php

[4]	� Plasma gradients: https://​legacy.​
imagemagick.​org/​Usage/​canvas/​#​plasma

[5]	� Creating canvases: https://​legacy.​
imagemagick.​org/​Usage/​canvas/​#​gradient

Info

Ralf Kirschner works as a Visual Basic pro-
grammer for a software and system vendor.
Ralf is a qualified system administrator who
also offers freelance computer training.

The Author

nnn

https://imagemagick.org/index.php
https://imagemagick.org/script/formats.php
https://imagemagick.org/script/color.php
https://legacy.imagemagick.org/Usage/canvas/#plasma
https://legacy.imagemagick.org/Usage/canvas/#plasma
https://legacy.imagemagick.org/Usage/canvas/#gradient
https://legacy.imagemagick.org/Usage/canvas/#gradient

LINUX
 NEWSSTAND
Linux Magazine is your guide to the world of Linux. Monthly issues are packed with advanced technical
articles and tutorials you won't find anywhere else. Explore our full catalog of back issues for specific
topics or to complete your collection.

Order online:
https://bit.ly/Linux-Newsstand

#257/April 2022

Encryption

This month, we survey the state of encryption in Linux. We look beyond the basics to explore
some of the tools and technologies that underpin the system of secrecy – and we show you what
you need to know to ensure your privacy is airtight.

On the DVD: Linux Mint 20.3 Cinnamon Edition and deepin 20.4

#258/May 2022

Clean IT

Most people know you can save energy by changing to more efficient light bulbs, but did you
know you can save energy with more efficient software? This month we examine the ongoing
efforts to bring sustainability to the IT industry.

On the DVD: Manjaro 21.2 Qonos and DragonFly BSD 6.2.1

#259/June 2022

Zero Trust

Twenty Years ago, everyone thought a gateway firewall was all you needed to stay safe from
intruders, but recent history has told a different story. Today, the best advice is: Don’t trust
anyone. Your internal network could be just as dangerous as the Internet.

On the DVD: Zorin OS 16.1 Core and Super GRUB2 Disk

#262/September 2022

Beyond 5G

Behind the scenes, the cellular phone network has always been the preserve of highly specialized
and proprietary equipment, but some recent innovations could be changing that. This month we
explore the Open RAN specification, which could one day allow more of the mobile phone
network to operate on off-the-shelf hardware.

On the DVD: openSUSE Leap 15.4 and MX Linux 21.1

#261/August 2022

USB Boot

Live boot was such an exciting idea 15 years ago – just carry a CD with you and boot from
anywhere. But old-style boot CDs had some limitations. Today’s USB boot tools solve those
problems plus offer a feature that no one even thought about back then: access to several
boot images on a single stick.

On the DVD: Linux Mint MATE 20.3 and FreeBSD 13.1

#260/July 2022

Privacy

If you are really serious about privacy, you’ll need to lean on more than your browser’s no
tracking button. Those who need anonymity the most depend on the Tor network – a global
project offering safe surfing even in surveillance states. We also look at Portmaster, an application
firewall with some useful privacy features.

On the DVD: Ubuntu 22.04 and Fedora Workstation 36

95

SERVICE
Back Issues

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

FEATURED
EVENTS
Users, developers, and vendors meet at Linux events around the world.
We at Linux Magazine are proud to sponsor the Featured Events shown here.

For other events near you, check our extensive events calendar online at
https://www.linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar,
please send a message with all the details to info@linux-magazine.com.

Im
ag

es
 ©

 A
le

x
W

h
it

e,
 1

23
R

F.
co

m

KVM Forum	 Sept. 12-14	 Dublin, Ireland + Virtual	 https://events.linuxfoundation.org/

Storage Developer Conference 	 Sept. 12-15	 Fremont, California 	 https://storagedeveloper.org/?utm_source=
(SDC22)			 LinuxMagazine+Event+Calendar

Open Source Summit Europe	 Sept. 13-16	 Dublin, Ireland + Virtual	 https://events.linuxfoundation.org/

Linux Security Summit Europe	 Sept. 15-16	 Dublin, Ireland + Virtual	 https://events.linuxfoundation.org/

DrupalCon Prague 2022	 Sept. 20-23	 Prague, Czech Republic	 https://events.drupal.org/

Open Mainframe Summit	 Sept. 21-22	 Philadelphia, Pennsylvania	 https://events.linuxfoundation.org/

Akademy 2022	 Oct. 1-7	 Barcelona, Spain + Virtual	 https://akademy.kde.org/2022

JAX London 2022	 Oct. 3-6	 London, UK + Virtual	 https://jaxlondon.com/

KubeCon + CloudNativeCon 	 Oct. 24-28	 Detroit, Michigan	 https://events.linuxfoundation.org/
North America 2022

CyberDefenceCon 2022	 Oct. 27-28	 Orlando, Florida	 https://cyberdefenseconferences.com/

All Things Open 2022	 Oct. 30 - Nov. 2	 Raleigh, North Carolina	 https://2021.allthingsopen.org/save-the-date-2022/

SeaGL GNU/Linux Conference	 Nov. 4-5	 Virtual	 https://seagl.org/

Open Source Monitoring	 Nov. 14-16	 Nurember, Germany	 https://osmc.de/
Conference

@Hack: Infosec on the Edge	 Nov. 15-17	 Riyadh, Saudi Arabia	 https://athack.com/

Open Source Summit Japan	 Dec 5-6	 Yokohama, Japan + Virtual	 https://events.linuxfoundation.org/

Open Compliance Summit	 Dec. 7	 Yokohama, Japan + Virtual	 https://events.linuxfoundation.org/

 Events

 NOTICE
Be sure to check the event
website before booking any
travel, as many events are
being canceled or converted
to virtual events due to the
effects of COVID-19.

 Akademy

Date: October 1-7, 2022

Location: Barcelona, Spain and Virtual

Website: https://akademy.kde.org/2022

Akademy is the annual world summit of
KDE, one of the largest Free Software
communities in the world. It is a free,
non-commercial event organized by the
KDE Community. Come to Barcelona,
the vibrant city of Gaudí, Barça Football
Club, and Mediterranean haute cuisine
to meet in person, or online, and enjoy
the best conference experience.

 SC22

Date: November 13-18, 2022

Location: Dallas, Texas

Website: �https://sc22.supercomputing.org/

Come see your friends and colleagues in
Dallas and explore incredible learning
experiences in HPC at one of the largest
HPC conferences in the world November
13-18. If you can't attend in person, SC
offers a robust digital experience with
most sessions synchronously live-
streamed and made available on-demand
24 hours after each session occurs.

96

SERVICE
Events

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

We are always looking for good articles on Linux and the
tools of the Linux environment. Although we will consider
any topic, the following themes are of special interest:

•	 System administration

•	 Useful tips and tools

•	 Security, both news and techniques

•	 Product reviews, especially from real-world experience

•	 Community news and projects

If you have an idea, send a proposal with an outline, an esti-
mate of the length, a description of your background, and
contact information to edit@​linux-magazine.com.

The technical level of the article should be consistent with
what you normally read in Linux Magazine. Remember
that Linux Magazine is read in many countries, and your
article may be translated into one of our sister publica-
tions. Therefore, it is best to avoid using slang and idioms
that might not be understood by all readers.

Be careful when referring to dates or events in the future.
Many weeks could pass between your manuscript sub-
mission and the final copy reaching the reader’s hands.
When submitting proposals or manuscripts, please use a
subject line in your email message that helps us identify
your message as an article proposal. Screenshots and
other supporting materials are always welcome.

Additional information is available at:
http://www.linux-magazine.com/contact/write_for_us.

CALL FOR PAPERS

Editor in Chief
	 Joe Casad, jcasad@linux-magazine.com
Copy Editors
	 Amy Pettle, Aubrey Vaughn
News Editors
	 Jack Wallen, Amber Ankorholz
Editor Emerita Nomadica
	� Rita L Sooby
Managing Editor
	� Lori White
Localization & Translation
	� Ian Travis
Layout
	 Dena Friesen, Lori White
Cover Design
	 Lori White
Cover Image
	 © khunaspix, 123RF.com and raspberrypi.com
Advertising
	 Brian Osborn, bosborn@linuxnewmedia.com
	 phone 	 +49 8093 7679420
Marketing Communications
	 Gwen Clark, gclark@linuxnewmedia.com
	 Linux New Media USA, LLC
	 4840 Bob Billings Parkway, Ste 104
	 Lawrence, KS 66049 USA
Publisher
	 Brian Osborn
Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@linuxpromagazine.com
	 Phone: 1-866-247-2802
	 (Toll Free from the US and Canada)

	 For all other countries:
	 Email: subs@linux-magazine.com

www.linuxpromagazine.com – North America
www.linux-magazine.com – Worldwide

While every care has been taken in the content of
the magazine, the publishers cannot be held respon-
sible for the accuracy of the information contained
within it or any consequences arising from the use of
it. The use of the disc provided with the magazine or
any material provided on it is at your own risk.

Copyright and Trademarks © 2022 Linux New
Media USA, LLC.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the publishers. It is assumed that all cor-
respondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are sup-
plied for publication or license to third parties on
a non-exclusive worldwide basis by Linux New
Media USA, LLC, unless otherwise stated in writing.

Linux is a trademark of Linus Torvalds.

All brand or product names are trademarks
of their respective owners. Contact us if we
haven’t credited your copyright; we will always
correct any oversight.

Printed in Nuremberg, Germany by Zeitfracht GmbH.

Distributed by Seymour Distribution Ltd, United
Kingdom

Represented in Europe and other territories by:
Sparkhaus Media GmbH, Bialasstr. 1a, 85625
Glonn, Germany.

Published monthly as Linux Pro Magazine (ISSN
1752-9050) for the USA and Canada and Linux
Magazine (ISSN 1471-5678) for Europe and other
territories by Linux New Media USA, LLC, 4840 Bob
Billings Parkway, Ste 104, Lawrence, KS 66049,
USA. Periodicals Postage paid at Lawrence, KS
and additional mailing offices. Ride-Along En-
closed. POSTMASTER: Please send address
changes to Linux Pro Magazine, 4840 Bob Billings
Parkway, Ste 104, Lawrence, KS 66049, USA.

 Contact Info

Erik Bärwaldt	 30

Mohammed Billoo	 16

Zack Brown	 12

Bruce Byfield	 26, 34

Joe Casad	 3, 16, 56

Mark Crutch	 69

Marco Fioretti	 38

Jon “maddog” Hall	 71

Ralf Kirschner	 90

Ankur Kumar	 46

Vincent Mealing	 69

Martin Mohr	 60, 66

Graham Morrison	 84

Dmitri Popov	 42, 72

Mike Schilli	 52

Daniel Tibi	 76

Arnout Vandercapelle	 22

Jack Wallen	 8

Authors

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM	 ISSUE 263	 OCTOBER 2022

 Approximate
UK / Europe	 Oct 08
USA / Canada	 Nov 04
Australia	 Dec 05

 On Sale Date Issue 264 / November 2022

Artificial
Intelligence
Artificial Intelligence is part of your life – even if you don’t
notice it. Business software, Internet applications, delivery
services, and process managers increasingly rely on AI for
saving time and returning greater value. Next month we
examine some AI technologies and tools for Linux.

Preview Newsletter
The Linux Magazine Preview is a monthly email
newsletter that gives you a sneak peek at the next
issue, including links to articles posted online.

Sign up at: https://bit.ly/Linux-Update

Lead Image © Kheng Ho Toh, 123RF.com

Please note: On sale dates are
approximate and may be delayed
because of logistical issues.

98

NEXT MONTH
Issue 264

OCTOBER 2022	 ISSUE 263	 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

	Linux Magazine 263
	Welcome
	Contents
	On the DVD
	News
	Kernel News
	Yocto
	Roll your own IoT Linux with Buildroot
	Distro Walk – The Red Hat Ecosystem
	Disinformation Detector
	Command Line – Bash History
	LibreOffice Macros with ScriptForge
	MkDocs
	OliveTin and Script Server
	Programming Snapshot – Smart Predictions with Go
	Introducing Rocky Linux
	RFID over SPI
	Pigpio
	Linux Voice Introduction
	Doghouse – Algorithms and Books
	KOReader-E-Reader
	0 A.D.
	FOSSPicks
	Tutorial – ImageMagick
	Masthead / Authors
	Preview Issue 264

