
April 2015 £5.99 Printed in the UK

Why you need the next-generation machine that’s changing everything

Astro Pi : send your ideas into space!!

Six times the
processing

power of your old
Raspberry Pi

Still made in Wales/
dal a wnaed yng

Nghymru

Run Chrome and
LibreOffice at the

same time!

Same GPIO pins –
all your robots are

still belong to Pi

Double the RAM!

Still only $35

PROFIT SHARING Cast your votes to help the FOSS community
DDRESCUE When disaster strikes, your data is not lost
BRUCE SCHNEIER Cameron plan “completely idiotic”

CYANOGENMOD
FREEDOM FOR PHONES

Take back control of your
phone with the non-evil
Android alternative

GLOBAL XPRIZE

JONO BACON
How to harness a
worldwide community
of geeks to save the world

36+ PAGES OF TUTORIALS SQUEEZELITE ANDROID DDRESCUE IRC PYTHON LANGUAGES ARDUINO QT ASSEMBLER

Raspberry Pi 2
April 2015

THE BIGGEST AND BEST LINUX MAGAZINE IN THE WORLD

LV013 001 Cover.indd 1 05/02/2015 14:59

LV013 002 Inside Front Cover.indd 2 05/02/2015 14:22

WELCOME

www.linuxvoice.com

The April issue

The future is penguin

As I write this, February’s frost is still biting the snowdrops
and yet 2015 has already been an exciting year for lovers
of Free Software. In the UK, we’ve had politicians expound

their usual (and contrived? and wilful? and negligent?) ignorance of
technology, with their comments on end-to-end encryption. We’ve
witnessed a new and particularly awesome Raspberry Pi launch
(see page 20) and I’m heading off to London tomorrow for the
insiders’ launch of Canonical’s long-awaited and awesome-looking
Ubuntu Phone. In the US, the Federal Communications
Commission has just backed Net Neutrality after a long fight to
ensure the internet remains a level playing field for our data.

Computer technology has obviously been vital for half a century
or more. But it finally feels like it’s becoming part of our social
fabric, and Linux and open source is the facilitator for helping many
people achieve what they want to achieve – it’s the keystone in the
technological arch. It’s corny, but it’s true.

Graham Morrison
Editor, Linux Voice

What’s hot in LV#013

MAYANK SHARMA
“I loved Andrew Conway’s tutorial
on using the command line to
grab share prices in an attempt
to shed light on the markets.” p90

“Ben does his usual exceptional
job at dissecting the new
Raspberry Pi hardware – I can’t
wait to get mine!” p20

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
“Mike was able to meet a
longtime hero of mine – Bruce
Schneier. It was only brief chat,
but truth is indivisible.” p28

MIKE SAUNDERS

GRAHAM MORRISON

3

Linux Voice is different.
Linux Voice is special.
Here’s why…

1 At the end of each financial
year we’ll give 50% of our

profits to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after first publication, we will

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers.

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Liam Dawe
liam@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Andrew Conway, Liam
Dawe, Richard Delaney, Marco Fioretti,
Juliet Kemp, John Lane, Vincent
Mealing, Simon Phipps, Les Pounder,
Mayank Sharma.

SUBSCRIBE
ON PAGE 64

LV013 003 Welcome.indd 3 06/02/2015 10:02

www.linuxvoice.com4

40

CONTENTS

FAQ: PULSEAUDIO
The force at the heart
of your Linux setup’s
sound system
unveiled, explained
and demystified.

38

20

Ap
ril

 LV
01

3

Why you need one (or two, or three) of these brilliant
little machines in your life.

CYANOGENMOD
How one company is
fighting back against
Google’s attempts to
harvest every last bit
of your phone’s data.

PROFIT SHARING
We promised to make
a contribution to help
Free Software – help
us decide which
projects to help.

30 34

SUBSCRIBE
ON PAGE 64

Builds communities,
solves problems, helps
humanity and records
music to scare small
children. Oh, and he
used to be the Ubuntu
community chap.

Jono Bacon

Welcome to 114 pages of Linux and Free Software goodness.

Raspberry Pi v2

06 LibreOffice comes to Android
and Systemd continues to
take over the world.

News

Masterclass
Keep unwanted packets out
of your network with the Linux
kernel’s built-in firewall.

108

My Linux desktop
Kernel hacker and Pi tinkerer
Mark Einon show us the goods.

114

Distrohopper
Bodhi Linux makes a
welcome return to the Linux
distro landscape.

08

Gaming
The best time-wasters for
Linux – including a Syndicate
reboot. We can’t wait.

10

Speak your brains
Email letters@linuxvoice.com
to share your words with the
Linux Voice hive mind.

12

LV on tour
The Antipodes’ biggest Linux
conference, live from the land
of the long white cloud.

16

Bonus interview
Security guru Bruce Schneier
on the flaws inherent in
banning encryption.

28

Group test
BSD distros – because Linux
isn’t the only alternative
operating system.

58

Core technologies
Get more out of your terminal
sessions with two essential
tools – screen and tmux.

66

Subscribe!
Get Linux Voice every month,
plus all our back issues in
PDF format, from just £38.

64

FOSSpicks
The freshest Free Software,
rounded up and herded into
six winning pages.

68

REGULARS

Inside the FSFE
The Free Software
Foundation’s European
cousin says hello.

44

LV013 004 Contents.indd 4 06/02/2015 12:33

www.linuxvoice.com 5

Ap
ril

 LV
01

3

KDE Plasma 5.2
This desktop environment
is getting slicker with each
release, and more stable too.

REVIEWS

Books Outside of a dog, a book
is man’s best friend. Inside of a
dog it’s too dark to read.

54

50

TUTORIALS

82 86

78

Arduino hardware
enablement
Write a driver for a
cheap display.

98 Code Ninja:
Python and Qt
Build a browser in
20 lines of code.

102 Assembly
language
Conditions, loops
and variables.

104

Stream audio with
Logitech Media Server

Get work off a broken
disk with ddrescue

IRC:
Internet Relay Chat

App Inventor 2:
Create an Android app

Pipe your music through the
house from a central server.

Know the tools that will save
your hide when disaster strikes.

Understand the protocol, then
write your own chat client.

Drag and drop blocks of code to
build a simple smartphone app.

Olde Code:
A languages primer
Brace yourself for a whirlwind
tour through programming.

Python: Keep an eye on
the stock market
Analyse masses of financial data
with Free Software.

76

90 94

LibreOffice 4.4
The “most beautiful” release yet
of our favourite office suite. It
even makes us better writers!

52

Icaros Desktop 2.0.3
Re-live the glory days of the
Amiga with this simple, retro
operating system.

53

CubieBoard A20
The latest ARM board to
enhance your home hardware
hacking projects.

54

LV013 004 Contents.indd 5 06/02/2015 12:33

ANALYSIS

www.linuxvoice.com6

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

The flagship conference of America’s
open source communities is holding
its 16th event this year. Back in 1997,

Tim O’Reilly was making an impact with his
technology books. His core business idea,
built over a decade of publishing experience
preceded by a decade of consulting, was to
find the innovators who were writing the
emerging software tools – usually for UNIX
and its compadres – and getting them to
write the sort of manuals that proprietary
vendors would issue with their software.
Having been one of the first businesses to
benefit from what would become the web
bubble, after selling the Global Network
Navigator search portal to AOL, O’Reilly
Media was ready for growth.

As anyone building a software-related
business soon realises, you have to run
conferences for your customers to gather.
That attracts more people to become
customers, as well as gathering people
from the wider ecosystem. O’Reilly’s growth
strategy was thus to start a conference
to serve his community. Given the power
of programmers to set the agenda in the
emerging web industry, it was natural
to focus the event on the powerhouse

of the LAMP stack –including the Perl
programming language. Perl’s creator Larry
Wall became an institution with his State Of
The Onion speeches.

From Perl to open source
In 1998 a gathering of people convened by
O’Reilly and concerned about helping
businesses benefit from free software
coined the term “open source” to avoid the
ambiguous word “free” and describe the
pragmatic embrace of software freedom.
The term caught hold and in 1999, O’Reilly
renamed his conference “The Open Source
Convention” – OSCON. Starting out as a
California event and then moving to
Portland, Oregon, the conference became a
fixture in the American open source scene.

I’ve been attending it since the 2000
edition in Monterey, CA, when Sun released
OpenOffice.org as open source for the first
time. While I’ve been a keynote speaker
more than once as well as a regular session
speaker, I attend because of who else is
there. It attracts a Who’s Who of open
source, and the “hallway track” – meeting
people casually outside sessions – is the
best value destination of open source
relationship building outside Europe’s
enormous FOSDEM event.

OSCON is showing renewed attendance
as a new generation of developers shows
up to hear about a new generation of
technologies. These days, open source is
the default rather than an exception, with
open source components dominating every
mainstream technology stack from bottom
to top.

Given the O’Reilly focus on programming
languages and tools, the conference
has traditionally been arranged around
them. But the 2015 edition is going to be
different. Rather than arranging the event
around technology families, the organisers
have decided to pivot and organise
around aspects of technology life. Rachel
Roumeliotis, O’Reilly’s new content director
and OSCON co-chair, says “our new track
system is set to focus on issues that
engineers face during a project and in their
daily job. This reflects the open source world
that we see around us. Rarely is an engineer
solely using one language or framework–
these days, there are often several great
tools for the job, including SaaS, PaaS,
proprietary and open source offerings.”

Fresh start
The content at OSCON comes from
community experts and has historically
been much more diverse than would be
expected at conferences run by technology
vendors. Traditionally the paper selection
process has involved a large volunteer
committee vetting proposals and then
the conference co-chairs shaping the
final agenda based on their input. That
has often left a feeling that the content is
somewhat random. But this year, O’Reilly
is introducing the concept of track chairs.
Roumeliotis reckons “Track chairing will
involve managing the reviewing for that
track, setting the tone and schedule for the
day or half day, and working to ensure that
an attendee would be able to stay with one
track from beginning to end.”

OSCON in 2015 is beginning to sound like
a conference reborn. More than that, OSCON
Europe is back too, in Amsterdam at the
end of October. It’s good to see that some
traditions are durable!

Opinion

OSCON – a tradition endures
Welcome back to the European side of the Atlantic.

“OSCON is showing renewed attendance as a new
generation of developers show up.”

LV013 006 News.indd 6 06/02/2015 13:27

ANALYSIS

www.linuxvoice.com 7

Tizen • Laptops • Systemd • Compute Stick • LibreOffice for Android • Gnome

Summarised: the biggest news
stories from the last monthCATCHUP

Samsung launches its
first Tizen smartphone
Samsung’s Android-based

devices have largely been market
successes, but the company isn’t
hedging all its bets on a single OS. It has
also been working on Tizen, another
Linux-based platform, and has now
announced the first mobile phone to
ship it. The Z1 is only available in India
right now, has a 1.2GHz dual-core CPU,
768MB RAM and a 4-inch screen, and
costs a smidgen over £60. So it’s not a
powerhouse, but an entry-level model.
http://tinyurl.com/samsungz1

1
Big vulnerability in Glibc
gethostbyname routine
After Heartbleed and

Shellshock, it seems that all high-
impact security vulnerabilities now
need catchy nicknames. “Ghost” is a
buffer overflow in the GNU C library’s
gethostbyname routine, which is used
by a huge number of programs and
could potentially lead to arbitrary code
execution. Strangely enough, this was
actually fixed in the Glibc source code in
2013, but it wasn’t marked as a security
fix and therefore not backported to
older long-term-support distros.

2
Dell announces M3800
laptop running Ubuntu
If the XPS 13 isn’t beefy

enough for you, Dell has announced
a more powerful “mobile workstation”
with a 15-inch screen, Core i7 chip and
up to 16GB RAM. We’re being sent
one – stay tuned. http://tinyurl.com/
kqmcvy6

3

Intel Compute Stick turns
TVs into Linux boxes
It’s four inches long, plugs into

a TV’s HDMI port, and contains pretty
much everything you need in a basic
computer: a quad-core Atom CPU, 1GB
of RAM, 8GB of on-board storage, a
micro-SD slot, Wi-Fi and a USB port. Not
bad for $89. Intel is marketing these
gizmos at consumers (eg for browsing
the web from your couch or watching
streaming media services), embedded
devices (such as web kiosks) and
businesses (thin-client solutions).
http://tinyurl.com/nrmx5n2

4
Systemd keeps growing;
gets a boot loader
If you’re not a fan of Systemd,

you might find this overkill, but there are
technical arguments about linking the
bootloader, PID 1 (init system) and basic
low-level utilities together for a more
cohesive system. Lennart Poettering
and Kay Sievers are considering adding
the Gummiboot loader into Systemd, to
“implement the full trust chain from the
firmware to the host OS, if SecureBoot is
available”. Here’s more on what’s to
come in Systemd this year:
http://tinyurl.com/systemd2015

5
Party like it’s 1995: EISA
support stays in Linux
A useful discussion came

up on the Linux kernel mailing list in
January: one developer posted a patch
to remove support for EISA, a bus
standard for connecting add-on cards
that was popular in the late 80s and
early 90s. Linus Torvalds rejected the
patch, however, stating: “If we actually
have a user, and it works, then no, we’re
not removing EISA support. It’s not like
it hurts us or is in some way
fundamentally broken”. So there’s the
proof: Linus can indeed be nice.

6

LibreOffice Viewer
available for Android
It’s currently in beta, and

it can’t do much aside from looking
at basic documents right now, but
LibreOffice is gradually heading to
our mobile devices. Support for
more complex documents – along
with editing facilities – will follow. It’s
available as a free download in the
Google Play store, and is a joint effort
between Collabera and Smoose BV.
Early user reviews have been positive,
despite the inevitable bugs.
http://tinyurl.com/lo4android

7
Gnome (briefly) takes first
place in Arch statistics
Which is the most popular

desktop among Arch Linux users?
Something packed with features like
KDE, or minimalist and keyboard-driven
like i3, right? Well, Gnome 3 managed
to take the top spot for a while, which
surprised many due to that desktop’s
focus on new users and limited
customisation options. It certainly got
plenty of debates raging on the web.
KDE has since grabbed the top slot, but
the other stats are worth a look: www.
archlinux.de/?page=FunStatistics

8

LV013 006 News.indd 7 06/02/2015 13:27

DISTROHOPPER

www.linuxvoice.com8

Evolve OS
A new distro with a new look.

There are two things that make
EvolveOS unique: The desktop and
the package manager. The Budgie

desktop environment takes the best of GTK 3
and brings it into one really good looking
desktop. If feels like the Budgie developers
have taken the good bits of Gnome 3 and
Unity and combined them with the simple
usability of Gnome 2 to create something
wonderful. They haven’t recreated all the
basic software; instead they rely on the
Gnome 3 software stack even for things as
integral as the file manager and the terminal.

Our one reservation is about the menu. At
the moment, it consists of all your software
in a big list with no hierarchy (although it is
grouped by type). We tend to have a lot of
software installed, and this approach feels
like it could get cumbersome quite quickly.
Hopefully this is something that will be
changeable in the final release.

The package manager is called eopkg, and
is a fork of Pisi, which was developed for

Pardus (which has now dropped it in favour
of apt-get). The idea behind eopkg (and Pisi)
is to build a new package manager that cuts
out the cruft that older package managers
like Yum and apt-get have acquired from
themselves being wrappers over other

Netrunner
Regular or rolling releases: take your pick.

KDE is a wonderful desktop
environment, but it has terrible
default settings. That means you

either have to find a distro that makes it look
nice, or do it yourself. Netrunner comes with
one of the best KDE configurations around.
The cashew is tucked out of the way and not
left to confuse users, the Homerun kicker
provides an easy way of launching
applications, and the blue and grey colour
scheme is inoffensive without being boring.
The one thing we’re not sure about is the
transparent blue window decoration, but at
least it’s better than the usual blue glow.

Netrunner comes in two versions: the
standard version is based on Ubuntu, and
Netrunner is sponsored by the same
company as Kubuntu (Blue Systems), while
Netrunner Rolling is based on Arch (via
Manjaro) and is compatible with the Arch
User Repository. Which one is best depends
on how you feel about rolling releases. Both
have the same great KDE interface, but they
offer quite different experiences because the
standard version is built on Ubuntu LTS,
which should remain fairly unchanged for
the next four years (unless you want to
update it sooner).

Evolve OS comes from Ikey Doherty, the man behind the excellent SolusOS.

Our pick of the latest releases will whet your appetite for new Linux distributions.

DISTROHOPPER

Want a good-looking KDE version without
spending hours configuring it yourself?
Netrunner could be for you.

systems, leaving a simpler command
syntax.

We’re rarely excited about a new distro,
but we are about Evolve OS. It’s still in Beta
at the moment, but we’re expecting great
things from it.

The rolling release, on the other hand, will
constantly chase the latest software giving
you a more up-to-date system, but with a
higher potential for breaking things. The
choice, as they say, is yours.

LV013 008 DistroHopper.indd 8 05/02/2015 21:14

DISTROHOPPER

www.linuxvoice.com 9

Bodhi 3.0.0
In search of Enlightenment.

In September 2014, Jeff Hoogland
stepped down from his role leading
Bodhi Linux. Others offered to take on

the job, but it seems that he just couldn’t
stay away. Jeff’s back at the helm of the
project, and version three is on the way. The
second release candidate of Bodhi 3 is out,
so we have a chance to see what’s in store.

Bodhi is based on the Enlightenment
desktop, so looks unlike almost any other
distro out there. It’s particularly well suited to
lower-specced computers, but still comes
with graphical flourishes. There’s a legacy
version designed to support older
computers, which is designed to work with
machines too old to support the PAE
processor feature. The legacy version also
has a slightly older version of Enlightenment.

Perhaps the most unusual thing about
Bodhi is the web-based App Centre, which
enables you to install software straight from
your web browser. Actually, it’s not that
unusual. It comes to Bodhi from Ubuntu and
most Ubuntu derivatives have it. There’s also
a similar feature in OpenSuse. The problem
is that users of these distros have never

really taken to the idea of installing software
through a web browser, so we’re looking
forward to seeing whether Bodhi can make
this work where others have failed.

DISTROHOPPER

Don’t let the eye candy fool you. Bodhi really does run well on older hardware.

Ubuntu 4.10 The birth of a new age

Back in the early years of the new millennium, Linux was a complex
beast to use. Things broke – a lot – it fixing them wasn’t easy. Even
installing most distros required more knowledge about your
computer than the average user had. One man set out to change this,
and create “Linux for human beings”. That man was Mark
Shuttleworth, and the distro was Ubuntu.

Warty Warthog, the first version, released in October 2004, came
as both a live CD and an installable distro. At the time, that was quite
a rare thing. There were live distros (such as Knoppix and Demo
Linux), and there were normal distros, but bringing the two together
meant you could try out Linux, then install exactly the same thing.

The earthy tones of the colour scheme may not have been to
everyone’s taste, but the Gnome 2 desktop worked well, and the
publicity the distro received attracted many people from outside the
Linux world. We meet many people today who trace their Linux using
back to Warty Warthog.

These days, Ubuntu is best known for the controversies over Mir
and Unity, but these are blips in its 10-year history. Ubuntu was – and
still is – Linux for regular people who want a distro to just work. By
focussing on this aspect, it changed the trajectory of desktop Linux
as a whole and made it more accessible. For this it should be
commended. We look forward to another 10 years.

We’re glad to see Bodhi back, and Jeff
Hoogland at the helm. It’s a great distro, and
the Linux world would be a poorer place
without it.

In hindsight, shades of brown may not have been
the most flattering colour scheme, but they did
make Linux look less threatening.

LV013 008 DistroHopper.indd 9 05/02/2015 21:14

GAMING ON LINUX

www.linuxvoice.com10

“You get a lot of time to plan your attack: are you going
to conquer by land, sea, air or space?”

Planetary Annihilation
Strategy on the grandest scale we’ve ever seen.

The tastiest brain candy to relax those tired neurons

P lanetary Annihilation is a game we’ve
covered before, albeit quite briefly, and
since we last looked at it the real-time-

strategy game has come on in leaps and bounds
compared to the earlier releases.

This is the biggest strategy game Linux has,
and now that we have been able to spend a lot
of hours with it we can safely recommend it for
strategy fans, as to put it simply it’s “smashing”.
If you don’t get that pun here’s a tip: you can
smash entire moons into planets by building
massive engines on them, hence the use of the
word “smashing”.

One of the most recent updates added a
building that fires units from one planet to
another, giving the game another possible
strategy element.

It’s not for gamers looking to hop in and out, as
the average game will last at least half an hour
for anyone reasonably good at it. That’s actually
one of the highlights, as you get a lot of time to
plan your attack: are you going to conquer by
land, sea, air or space?

GAMING ON LINUX
R.I.P. ETHELRED

OpenGL has been getting a lot
of flak from some prominent
names, and a lot of people

have agreed that something needs to
be done, and soon. Luckily, Khronos
Group, who oversee OpenGL
development, have been listening,
and glNext will be unveiled this year
at the Game Developer Conference.

The major problems with OpenGL
include vastly different driver support
across manufacturers like AMD,
Nvidia and Intel. AMD graphics card
users will have seen this the most,
with the official Catalyst driver often
performing far worse than Nvidia
across many games.

Luckily, glNext already has backing
from big companies like Valve, Unity
and Electronic Arts, so we could see
some bigger games coming to Linux
if companies like EA are already
interested in the new API.

For gamers, glNext should mean
better performance, and that’s what
we all really care about, right? We
have some serious competition from
Microsoft with DirectX12 and AMD
with their Mantle API, so OpenGL has
a lot of catching up to do with glNext,
and plenty of developers hearts to
win over.

The problem with glNext is that it
needs driver support from the big
three (AMD, Nvidia and Intel), and it’s
not likely they will update a lot of
their older cards to support it, so it
will take a long time before it
becomes useful. It probably won’t
even be ready this year, but we’re
keeping an eye out.
http://forums.linuxvoice.com

Liam Dawe is our Games Editor and
the founder of gamingonlinux.com,
the home of Tux gaming on the web.

Another highlight of the game is the minimap,
which is essentially the game being played again
in a small window that you can move around,
and you can switch your main view to where
you’re looking on the minimap at any time.

There’s a lot to like about Planetary Annihilation,
with multiplayer lobbies enabling you to easily
join games with other players, and ranked
matchmaking to test your mettle against other
players, and gain places in the leaderboards.
It turns out we are pretty pants at the game
compared to most people. There are a couple
of rough edges, but it’s being polished up to be
a good experience, as with our testing we didn’t
find too many crashes for the Linux version at all.

You will also need a fairly decent gaming rig
to get full enjoyment out of it, as even on one
of our best rigs the game became increasingly
sluggish as more units and buildings are created
on each side, and the problem gets worse with
more players.

Store http://store.steampowered.com/app/233250

Is that the death
star? Oh god it’s

firing at me!

LV013 010 Gaming.indd 10 06/02/2015 13:28

GAMING ON LINUX

www.linuxvoice.com 11

VoidExpanse
Do you miss playing Eve Online from your days
as a Windows drone? Well miss it no longer!
VoidExpanse is a great-looking 2D single-
player and multi-player space sandbox game,
that feels a little bit like Eve Online. It’s a bit
more fun too!

You can fight, trade and mine your way
through the game, everything you would
expect in a sandbox space game.
http://voidexpanse.com

ALSO RELEASED…

Audiosurf 2
Music and Gaming fused together perfectly!

Sadly, Linux never gained a port
of the original Audiosurf, which is
arguably one of the best music-

orientated games around. Luckily, the
second iteration has been ported over
recently, so you can get your groove on to
your favourite tunes in this arcade game.

We can’t really compare this to anything
else, as there isn’t much out there like it –
which is one of the things we love about
it. The original was very unique and this
sequel carries that spirit on perfectly.

It may look a lot like a racing game, but
it’s more like a single-player time trial that
goes with the flow of the current music
track you’re listening to in the game. It’s
not exactly easier either, as we found out
when playing some rather fast music and
it gets a little intense when you’re trying
to dodge spikes and the game speeds up
with the beats of the music.

One of the truly great things about
Audiosurf 2 is that you can discover new
music with it, as there is a feature where
they highlight a specific song each day,
and doing this ourselves we have found a
few new loves and frustrations.

It’s a little on the rough side at times,
and this goes with it being yet another
game in Steam’s Early Access section.

Satellite Reign
The spiritual successor to Syndicate.

We have very fond memories of
playing the original Syndicate
game on the Amiga, so this

is a bit like walking down nostalgia lane,
but with prettier graphics and updated
game-play.

It’s a real-time strategy game played
with a team of four different agents with
unique abilities, and it looks absolutely
fantastic already. The graphics are vibrant,
and any fans of cyberpunk-styled games
and art will probably love it at first sight.

You can customise your team with
different abilities, and this is what makes
it really fun, as with many different

combinations each play-through will be
different.

It’s played from a top-down perspective,
and anyone who has played class-based
strategy games before should find it
pretty easy to manage. If you’ve played
Wasteland 2, XCOM or anything like that, it
should seem pretty familiar.

The developers have been quick to
pump out new versions with new features
and bugfixes, so we feel it’s pretty safe to
pick up and play now.

LISA
We know you love your quirky platformer
games, and LISA is one of the quirkiest we’ve
come across. It’s a side-scrolling RPG set in a
bleak world, with a bleak character.

The opening scene sets the tone of the game
perfectly, and the small nod to the power
rangers in one scene was highly amusing.
http://store.steampowered.com/app/335670

Desura
Desura is the online game store that has been
through a few different owners, and the new
proprietors seem like a really good bunch.

Desura’s desktop client is once again open
source under the GPL licence, and they have
released a Linux beta. It’s a little on the buggy
side right now, but it’s good to see the newer
owners of Desura try to please us Linux
gamers.
http://www.desura.com

Store http://store.steampowered.com/
app/268870

Website http://store.steampowered.com/
app/235800

Satellite Reign isn’t
finished, as it’s in Steam’s
Early Access section, so
bugs are to be expected.

LV013 010 Gaming.indd 11 06/02/2015 13:28

MAIL

www.linuxvoice.com12

MANY GOOD IDEAS

Got something to say? An idea for a new magazine feature?
Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS

I just want to write that I really
appreciate the magazine,
I enjoy reading the Core
Technology section as well as
the community-related topics,
interviews and tutorials. I
like the informal style of your
writing and the broad range of
topics – good job guys.

For quite some time I
wanted to write on a few of
my ideas for the magazine –
mostly some topics you could
cover in the future issues.

1 It would be nice to have a
newbie-box in the tutorials to
get a clear distinction where is
the introductory part and
where is the main topic and to
give additional information to
newbies – eg on the one hand
I know a thing or two about
Python programming so I
could happily skip the first
part of the article on
Mandelbrot sets. On the other
hand I am not that good at
electronics so I sometimes
miss a thorough explanation
why do you use specific
resistors or wiring.

2 Give us a fishing rod, not
only a fish! I liked the article
about the USB-car controller
because, apart from showing
an example of reverse
engineering, it also explained a
little bit of the USB protocol so
one can try some other USB
devices – way to go! So
maybe some further tutorials

could cover, for example, I2C
and other general-purpose
protocols/applications?

3 How to free your hardware?
I’m very interested in replacing
software in various devices
with free alternatives. I know
about OpenWrt, but how about
putting Free Software on to a
TV set, car, fridge, house-entry
system etc? A series on
setting free different hardware
would be nice.

4 How to run a LUG? – I found
that the LUG that used to run
in my city is effectively dead,
so I’m wondering how it could
be organised, how to make the
first meetings and so on.

5 How to talk about Free
Software to people that are
not technically-oriented? I’ve
been recently amazed by what
Tim Bray said when
interviewed by Graham
Morrison: “...I don’t think we
should expect the general
population to have educated
opinions about internet safety
any more than they have
educated opinions about
emission control systems in
automobiles ...” – I realised
that this is also true with
regard do many other areas of
IT, maybe also with regard to
the computing as a whole. So
how to talk about Free
Software to people who don’t
know what software is?
Dawid Grzegorz Węckowski

PS The word ‘free’ is
ambiguous not only in English.
In Polish we’ve got the word
‘wolne’ which can mean ‘free’
(as in freedom) but it can
also mean ‘slow’ :) So there is
another level of difficulty when
talking about Free Software :)

Andrew says: Wow, thanks Dawid!
We can all have a rest from
thinking up ideas for a couple
of months thanks to you. Sorry
for cutting your letter short but
there’s a limit to how much of
your excellence we can fit in!

With regard to flagging up the
newbie and advanced sections
of tutorials, I’m not sure this
is practical, as one man’s easy
is another man’s difficult. The
best we can do is make sure
we include as diverse a range

of topics as possible, which is
exactly what we’re trying to do.

There’s definitely more security
stuff on the Linux Voice radar, not
least next issue’s cover feature,
which will be a start-to-finish
look at how to and we’ve always
wanted to include more on the
Linux kernel. I should get in touch
with Dr Sinitsyn (who wrote the
USB control tutorial) and find
out if he’s in the mood to write
some more on the kernel. And to
everyone else: let us know what
you want to see more of, and we’ll
do our best to provide it.

The community aspect
is another great idea – as it
happens we do know an expert
(who we interview on page 40)
– I’m sure we can get something
useful together for you in the
near future.

LINUX VOICE STAR LETTER

Once you’ve written a driver for one USB device, you pretty much know
how to writer drivers for all sorts of other hardware.

LV013 012 Mail.indd 12 06/02/2015 11:47

MAIL

www.linuxvoice.com 1313

If in doubt, ban it.

I just listened to the latest Linux
Voice podcast today, and listened
with interest to your discussion
of David Cameron’s call for the
elimination of encryption on the
internet. While you all made very
valid points, I think you missed the
mark on what they’re really up to.

Obviously the politicos don’t
want to eliminate encryption on
the net. That would stop all net/
web-based commerce, and would
lead to a loss of tax revenue (VAT,
sales, wages, etc) and a potential
collapse of the high-tech sector.
But the politicos also want to read
everything we send over the web
to maintain their power. So how
are these two things reconciled?
Enter the Hegelian Dialectic.

The Hegelian Dialectic is as
follows: Problem, Antithesis,
Synthesis. As Cameron stated, the
government can’t see everything
on the net but needs to under the
guise of the fight against terrorism
(the Problem).

Cameron stands up in front of
everybody and says he wants
to eliminate all encryption, the
worst possible solution to solve
the problem (Antithesis). The
public say they want to maintain
their encryption to keep out the
evil hackers and keep shopping
on Amazon. Parliament/
Congress then passes a law
requiring everyone to register

their private encryption keys with
the government, or else their
communications will be treated as
an act of terrorism and prosecuted
(Synthesis).

Lost in all of this is the question
of whether the government should
have free and clear access to
anybody’s communications (the
public is easily distracted and will
lose sight of the actual question
– similar to what you were
saying about how the politicos
have changed the role of the
government before our very eyes).

I don’t know about the UK
government, but the feds here
in the US have floated the idea
of government-run private key
registries for years, which would
give them access to all of our
communications. This is what
they’re ultimately after and what
must ultimately be resisted.

Keep up the good work,
Paul Olson, Oklahoma USA

Andrew says: Ooh, this is brilliant. I
can feel a dystopian novel brewing
somewhere. “The public is easily
distracted” is brilliantly understated
and completely accurate, and your
idea of a legally enforced registry
of encryption keys is wearyingly
plausible. However, I think you give
our lords and masters too much
credit. During a debate in January
in the House of Lords, Lord King of

SHADOWS IN THE DARK

Bridgewater admitted that “I’m not
a tweeter. But we’ve got Facebook,
we’ve got Twitter. The other day,
somebody tried to explain to me
what WhatsApp is. Somebody tried
to explain to me about Snapchat. But,
my Lords, I don’t know about them.
What is absolutely clear is that the
terrorists and jihadists do.” In other
words: “I don’t understand what we’re
talking about, but I want to ban it
anyway because terrorism”.

It’s easy to caricature the Lords
as a place where out-of-touch
establishment figures go for a nap
after a nice taxpayer-subsidised lunch,
but Lord King is a former Secretary of
State for Defence. Scary!

LV013 012 Mail.indd 13 06/02/2015 11:47

MAIL

I found out yesterday (January 25,
2015, Pacific Standard Time) that
typing
$ cat <<’EOF’ | tee input.sh | bash
> lines
> of
> script
> EOF
will cause the script reading “lines\
nof\nscript” to be executed.

This way, it can be possible
to execute the same kind of
program you’d read from a book
or magazine in the ’80s! (Only the
program is in Bash’s language,
not BASIC. input.sh is the location
where the script typed would be
saved for later execution and
editing.)

I have had discussions with
Richard M. Stallman, founder of
the Free Software Foundation;
and with fellow subscribers to the
bug-bash mailing list, about this
interesting discovery.

Therefore, I suggest that you
begin publishing type-in programs,
at a rate of no more than twenty-
four pages thereof per issue.

DISCOVERY FIND OF THE ISSUE

14

I got my inspiration from a
July 1984 issue of COMPUTE!
Magazine (obtained via the
Internet Archive’s OpenLibrary
Project), which likewise featured
type-in programs.

If you (this means readers, too)
want to see my discussion with
bug-bash, open your Internet
browser and enter the URL http://
lists.gnu.org/archive/html/bug-
bash/2015-01/threads.html. It
should be near the top of the list.
Ryan Cunningham

Graham says: We’ve often discussed
among ourselves the anachronism
and usability of printing code in 2015,
but we all think it’s still a good way
of digesting ideas and techniques,
even if it’s not the best way of getting
things to run on your computer. That’s
also why we try and include the code
online whenever possible. And I still
fondly remember a summer spent
typing in the code for the Mystery
of Silver Mountain adventure game,
only to lose it all when the cassette
stopped saving the last save block.

I totally agree with Simon Phipps
in his News analysis piece about
the attack on Charlie Hebdo and
the rush to make ‘security’ better
by restricting the liberties of
everyone.

I am reminded of the following
quote which I first saw in a
newspaper article shortly after
9/11, but it is a quote from
much earlier in the life of what
became the USA: “They who
would give up an essential liberty
for temporary security deserve
neither liberty nor security”.
Benjamin Franklin (1706 – 1790)
John Paton

LIBERTY

First, congratulations on your
first year looking forward to many
more Linux goodies from the Voice
stable over the coming years. I
started using Linux 8 years ago
to enable me to give away fully
working older PC’s that I had
refurbished from donated parts on
Freecycle (now freegle).

The reason for using Linux was
that all donated items have to be
legal and many of the PC’s did
not have a valid windows licence
or had originally run windows
98/2000 (or horror of horrors,
ME) So if I wanted to give away a
working PC ready to use it had to
have a Free/Libre OS on board.

I’ve recently given away five PCs
with Mint Mate on them, and apart
from forgetting to inform them
of the password on a couple of
occasions it seems that they are
getting on fine. I also put the Mint

HAPPY BIRTHDAY TO US!
user guide on the desktop when
installing the PC and tell everyone
they can email me if they have
any questions. Apart from the
password questions, I’ve had zero
calls for support. I have had emails
thanking me for the PC my son/
daughter loves it kind of thing.

The best was yesterday when
a woman I gave a PC tower to a
couple of days previously, emailed
me to ask if Linux could be
installed on her daughter’s laptop.
Quote: “As she is getting fed up of
Windows updates that don’t work.”

Most people don’t care what OS
they’re using as long as it works
for them and does what they
want it to, so as long as we give
them a system they can use; for
some this will be Windows-like, as
that is what they are used to and
fits the hardware they are using.
For others with touchscreens

Sometimes the old-
fashioned way is the
best. The Mate desktop
is the perfect example
of this.

and portable devises this will be
Android or Unity as this works for
those devices.
Tony Hughes, Blackpool LUG/
Makerspace

Mike says: You’re a hero for spreading
Linux to the good people of Blackpool,
but I wonder if anyone else has had
a similar experience? Is Mate really
the best desktop for new Linux
users, or has anyone else had a good
experience with Unity – or even a
properly configured KDE?

Simon’s right –
terrorism must not
become an excuse
to make us give up
essential liberties.

LV013 012 Mail.indd 14 06/02/2015 11:47

MAIL

www.linuxvoice.com 15

I’m sure you’ll get quite a few
emails about your Group Test
of remote desktop client but
somehow you overlooked X2Go
in your list. A quick search will
uncover that X2Go is basically a
fork of the GPL’ed NoMachine NX
3.x libraries with a custom client/
server. It is generally used to
connect to a virtual desktop but
they do offer a “desktop sharing”
package to share an existing,
physical X11 session.

NoMachine’s NX 4.x product
is based on a completely new
protocol which is, to the best of
my knowledge, not “open” (as
mentioned under the screenshot

VIRTUAL DESKTOPS
on page 63). Version 3.x of the
NX libraries is open. Maybe there
is a difference between library
and protocol? Anyway, perhaps
someone would be interested
in doing a follow-up for X2Go?
X2Go is included in a few distro
stock package repos (Fedora
for example) . One problem it
does have is that it does not
support anything that requires
3D acceleration, so for example,
Gnome 3 can’t be used over X2Go.
Other than that, X2Go is full of
features.

BTW according to the Wikipedia
page, NX 4 can use SSH but, “SSH
authentication is available only on

It’s proprietary, but
NoMachine NX was
the clear winner of our
remote desktops Group
Test.

enterprise-version servers”… which
to me means the free download
version of NX 4.x doesn’t work
over SSH.
Scott Dowdle, Belgrade, MT

Graham says: Thanks for bringing
that to our attention Scott, we’ll give
it a look.

If only 2015 really were the
year of Linux. I worked most of
my working life in engineering
materials supply and purchasing,
and every so often some kind soul
in the drawing office would design
into our product a component
only available from one company,
thereby bringing the buyer face
to face with his worst nightmare
– a monopoly supplier. These
companies are always expensive
and nearly always have a one-
sided approach to dealing with the
customer.

For the vast majority of
computer users Microsoft has
managed to maintain a monopoly.
This is partly done by ensuring
that we cannot buy a computer
on the high street without a
Microsoft operating system. I tried
to raise a people’s petition on the
government’s website to the effect
that shops must offer a choice
of operating systems including
at least one Linux system; it was
refused.

The magazine that I first read
about Linux in back in 2010,
Computeractive, has not mentioned
Linux since being bought by
Dennis Publishing. A letter to the
editor has not been answered. I
have written to Which magazine

2015: THE YEAR OF LINUX
asking them to run an article on
alternative operating systems,
again with no answer. I am not one
for conspiracy theories, but I am
starting to wonder about the size
of Microsoft’s slush fund and who
is bankrolling it.

The other problem Linux faces
is simply a lack of knowledge of
the existence of the systems.
If you buy a computer new and
eventually replace it with a new
one you never need to look
elsewhere. It’s only people who
buy second-hand machines and
need something better than an
obsolete Windows XP system
who search for and find Linux.
The only bright point is that
there are an unknown number of
schoolchildren out there using a
Linux DVD to get around parental
controls. I even came across two
young ladies who had managed
to hide a Linux OS within the
Windows 7 partition and made it
invisible until required by reducing
the Grub menu’s countdown to 0.
John Bourne

Graham says: Sometimes we worry
about the youth of the nation, but if
those girls are anything to go by, the
kids are all right. It is, as you say, a
constant gripe that there’s so litle

There’s a load of great
stuff coming for Free
Software this year; just
don’t think that this is
“the year of Linux on the
desktop”.

choice on the high street, but the
much-heralded death of the high
street is making this less of a worry.
The advantages of having a bricks-
and-mortar shop are reducing, and as
more consumers buy their hardware
online, the barriers for entry will fall
for the likes of PC Specialist and
Zareason (which both offer excellent
hardware with Linux pre-installed).

Have faith.

LV013 012 Mail.indd 15 06/02/2015 11:47

LUGS ON TOUR

www.linuxvoice.com16

LUGS ON TOUR
Daniel Rossbach reports from this year’s event in Auckland.

Each year during winter in the
places in which most open
source conferences are held

- which happen to be in the northern
hemisphere - some far warmer and
more sunny place in Australia or
New Zealand hosts one of the most
significant conferences in the Linux
world: linux.conf.au (LCA).

This year, from 12–16 January,
this place was Auckland in the
north of New Zealand, were the
conference was staged at the quite
flashy facilities of the University
of Auckland’s Business School.
Over those five days, roughly 170
presentations were given and
attended by almost 700 Linux
professionals and enthusiasts.

As in previous years, LCA
managed to attract many
prominent personalities as
speakers, with Eben Moglen
(Executive director of the Software
Freedom Law Center), Bob Young
(co-founder of Red Hat and
chairman of Lulu) and a certain
Linus Torvalds delivering keynote
addresses.

At the same time, LCA is a
gathering of the regional Linux
community and has a far less
corporate atmosphere and
structure than most of the
other equally well-known Linux
conferences around the world.
Organised each year by a team of
volunteers, which changes along
with the host city and venue, the
conference has a familial feel as
regular attendees (who make up a
large proportion of the audience)
meet up and some speaker’s
talks and surrounding events are
traditional fixtures.

Fittingly for a community-centric
conference, a defining marker of

linux.conf.au 2015 was the range
of opinions, interests and styles
represented, all of which made
for a multi-faceted conference
programme, and some controversy
sparking discussions.

Linux flying
While there were a large number of
highly technical presentations on
the inner workings of Linux and the
(database and virtualisation) server-
side software commonly run on it,
LCA also offers a forum for projects
in the wider world of ‘open culture’.
Talks and interactive sessions
belonging to the later group
seemed to be the most engaging
events within the conference.

Examples for this at this year’s
LCA were numerous: The use
of free and open software in
humanitarian aide was the topic
of one of the 10 ‘miniconfs’ that
make up the first two days of the
schedule, which were given even
more prominence.

Political aspects of using FLOSS
were discussed in multiple talks
concerned with the potential and
difficulties associated with its
use inside and to interact with
governments and bureaucracies.
And, unsurprisingly, there were
reports on yet more embedded
Linux deployments.

One highlight of the week in this
vein was an impressive demo in

photos: Sim
on Lyall CC BY-SA

Linux.conf.au is a
refreshing antidote to
some of the corporate-
sponsored events that
take place in the US.

linux.conf.au 2015

LV013 016 LUGS.indd 16 06/02/2015 13:29

LUGS ON TOUR

www.linuxvoice.com 17

TELL US ABOUT YOUR LUG!

We want to know more about your
LUG or hackspace, so please write
to us at lugs@linuxvoice.com and
we might send one of our roving
reporters to your next LUG meeting

Judging by the
conference talks, Kiwis
seem to be obsessed
with flight. Oh, the irony.

Andrew Tridgell’s presentation
entitled “Flying with Linux”. In it,
he made a small plane fly on a
predetermined course and land
in one piece – with the plane
being hundreds of miles away (in
Canberra), and simultaneously
compiling the Linux kernel on the
BeagleBone Black unit inside the
aircraft.

Further fascinating avionics
were on show outside of the
conference schedule at a rocket-
launch organised as one of the
many ‘birds of a feather’ events
traditionally surrounding the
conference. The largest rockets,
launched at the New Zealand
Rocketry Association in Taupiri
south of Auckland reached an
altitude of up to 10 kilometres!

Making things
Actually making things was
the centre of two miniconfs, an
open-radio session and a robotics
workshop. At the latter, attendees
were given the opportunity to
assemble a robot-vehicle out of
a Raspberry Pi (model B+), an
Arduino and two servo engines
before finally steering it over
wireless with Node.js scripts.

Beyond these specialised
sections, the main conference
programme was not short on
interesting hardware projects
either, as evident in presentations
on OneRNG, a successfully kick-
started random number generator
(the campaign is still running),
deploying Linux in automotive
systems, and current developments
and hacks in 3D-printing.

The biggest news story to come
out of LCA 2015 turned out to be

based on Linus’ appearance on
stage. Instead of giving a keynote
speech, Torvalds invited questions
from the audience. Reminiscing
over a similar occasion twelve
years ago, Torvalds was joined on
stage by the kernel developers and
LCA regulars Andrew Tridgell, Bdale
Garbee and Rusty Russell.

While Linus went on to make
some interesting remarks on
disclosure of security flaws (siding,
without naming names, with
Google in their recent argument
with Microsoft), and documentation
for the kernel (it is inherently
difficult but could and should be
improved), the most quotable and
controversial lines were delivered
regarding the social interactions in
the kernel community.

Challenged by Matthew Garrett
on Torvalds’ abrasive comments
on the kernel mailing list and their
potentially chilling effects on people
getting involved with Linux, Linus
replied that he feels under no
obligation to conduct himself more
amicably.

For Torvalds, his less than polite
comments are solely directed at
the technical merits of the subject
matter, and otherwise merely
expressions of him being “a really
unpleasant person”.

Torvalds claimed that the task
of making the Linux community
inclusive and conducive for
diversity can be delegated among
the people who are influential in the
Linux community.

This reply was criticised by many
as failing to acknowledge the way in
which prominent figures, and Linus

first among them, set the tone
for interaction in the community.
The disappointment with Linus’
stance was shared by some of the
prominent advocates of a more
concerted effort to make the Linux
community open for people with a
background and identity that isn’t
mainstream in the community.

One of these advocates is Karen
Sandler, former executive director
of the Gnome Foundation and
still co-organising its Outreach for
Women programme.

As Sandler, now in charge of the
Software Freedom Conservancy,
told Linux Voice in the aftermath
of LCA, experiences of sexist
behaviour are still common for
women at events in the open
source community. According to
her, prominent figures are called
upon to exert their influence in
the community to change the
climate in such a way as that
bad experiences for women or
minorities don’t occur.

Where this development will lead
we will be able to see at the next
few editions of LCA: in Geelong in
2016, and Hobart in 2017.
All the talks (https://linux.conf.au/
programme/schedule) from LCA
2015 are available online at http://
mirror.linux.org.au/pub/linux.conf.
au/2015/ and on YouTube.

20% of speakers were
women (which is far
from parity but on an
upward trajectory).

linux.conf.au 2015

LV013 016 LUGS.indd 17 06/02/2015 13:29

www.linuxvoice.com

SHOW REPORT CYBERSECURITY

L ille is a medium-sized town in northern France,
just a croissant’s throw away from the Belgian
border. It has cobbled streets, decent beer, and

for the last few years it has hosted FIC, the
International Forum on Cybersecurity. This conference
is organised in part by the French Gendarmerie and
Interior Ministry, and is funded by the regional
government of Nord-Pas de Calais along with various
sponsors such as Symantec, IBM and Sophos. And it’s
serious business: security at the entrance was tight,
and there were plenty of well-armed guards keeping
tabs on the show.

Some big names in politics were there, such as the
Ministers of the Interior of France (Bernard
Cazeneuve) and Germany (Thomas de Maizière). We
found the latter’s presence somewhat ironic, though,
given that he recently expressed support for David
Cameron’s plans to have a back door in all end-to-end
encryption. Many experts in computing security have
described these plans as ridiculous and impossible to
implement, so hopefully de Maizière actually learned
something during his visit.

But anyway. On the show floor, the French Ministry
of the Interior stand dominated, telling the world how
it’s on top of cybercrime and security in general. FIC
took place only a few weeks after the Charlie Hebdo

killings, so issues around monitoring suspected
terrorists, encrypted communications and freedom of
speech came up with many people we talked to. Most
of the show stands were from small or medium sized
companies touting cybersecurity wares – usually
server-side programs, but some for end-users as well.

Some companies were offering Linux versions of
their solutions, although one we chatted to – Titania, a
vendor of security auditing software – spoke of the
frustration and complexity in dealing with the niggling
differences between distros. This is a recurring theme
with third-party vendors who don’t have their software
in distro repositories, and even Linus Torvalds has
ranted about it recently, so hopefully there will be
some progress in the future.

Challenge time
But our favourite (and by far the geekiest) section of
the show floor was the challenge area. Here, teams
worked together to perform forensic analysis of
systems that had malware installed or other
vulnerabilities. This included Android phones that had
unrequested software installed, databases with
suspicious entries, and USB keys that were trying to
spread viruses. A number of tasks were set up (eg find
out who is responsible from the logs, or work out what

18

Cybersecurity experts met in Lille to prepare for
upcoming attacks. Mike Saunders was there.

The show floor was mostly filled with shiny
company stands trying to woo visitors.

The French Ministry of the Interior was
one of the event’s biggest sponsors, and
had a huge stand to show it.

FIC 2015

LV013 018 Feature Cybersecurity.indd 18 06/02/2015 13:31

www.linuxvoice.com

CYBERSECURITY SHOW REPORT

19

the malware is doing on this phone from a memory
dump), and the first team to complete them won
glittering prizes including consoles, quadcopters and
Raspberry Pis.

The show floor was just one part of FIC though. We
attended a few fascinating presentations and talks,
such as “How to shut down a botnet”. In case you’re
not aware, a botnet is a group of thousands of cracked
computers (almost always running Windows) that are
scattered across the world, in homes and in
businesses, that are all controlled via back-doors from
a single point. They are used by nefarious types in
situations where having a large number of IP
addresses is beneficial, such as sending spam or
performing denial-of-service attacks.

This talk was given by a investigators working for
the FBI and the UK National Crime Agency, and
described Operation Tovar, an international operation
to shut down the Gameover Zeus botnet. You may
wonder if law enforcement agencies should be
worrying about botnets when there are bigger crimes
to solve, but Gameover Zeus had been used to
distribute CryptoLocker, a piece of “ransomware” for
Windows. CryptoLocker encrypts a user’s personal
files, and then demands money to be sent to an
anonymous address within a certain time limit –
otherwise it will delete them forever. And it has been
successful: tens of thousands of people have been
affected, and it’s estimated that CryptoLocker’s
creators have netted over £3m.

So taking down the botnet that distributes it was a
worthy goal. But also a complicated one, which
involved various tricks such as registering 2,600
domain names to stop computers on the botnet from
being able to communicate with one another. (For the
full technical lowdown on how Gameover Zeus was
stopped, see http://tinyurl.com/kso7fea – it’s heavy
going in places, but a good read.)

Head in the clouds
Security expert Bruce Schneier (www.schneier.com)
arrived in Lille just in time to give his speech in front of
a packed auditorium. He described how companies
are rushing to outsource
their infrastructure –
using “cloud” services,
hosting email on Google,
and so forth. It may
seem attractive to hand
over the workload to
someone else, but ultimately you lose control over
your security.

Schneier also attacked the security software
market: “The stuff that wins isn’t the best stuff – it’s
the easiest to use stuff, the cheapest stuff”. He
referenced prospect theory, and how people are risk
adverse when it comes to gains, but risk supportive
when it comes to losses. Imagine someone offers you
$1,000, or a coin flip where one side gets you $2,000,
and the other means you end up with zero. 75% of

Over at the challenge
area, geeks had some
respite from the
corporate tone of the
conference and could
get some white-hat
cracking done.

We’re not sure if we were
allowed to photograph this,
but the army had lots of
fancy kit to look at.

people are risk averse in this case, and would take the
definite $1,000.

But turn this the other way round: you could either
lose $1,000, or take a coin flip where one side means a
loss of $2,000, and the other side means you break
even. Only 25% of people take the definite $1,000 loss
here – so people are more risk supportive in this
situation. This impacts how people look at security,
and how IT middle management types don’t want to
spend more money on securing their systems.

Schneier characterises the 1990s as the decade of
protection, when anti-virus software boomed. The

2000s were the decade
of detection, with
intrusion detection
systems and forensic
analysis becoming more
widespread, while the
2010s will be the decade

of response. (We managed to get a quick interview
with Bruce at FIC – see page 28.)

FIC 2015 was a good opportunity for like-minded
people to meet and share ideas about security, but
there was something odd about a government-
sponsored cybersecurity event, given how much they
want to spy on us. We can only hope that our
overlords have learnt from the talks and presentations,
and realise that we won’t defeat terrorism simply by
giving them our encryption keys.

Lille is a pretty place, and
Belgian-style beers abound
due to that country’s proximity.

“It’s estimated that the creators
of CryptoLocker have netted
over £3 million.”

LV013 018 Feature Cybersecurity.indd 19 06/02/2015 13:31

RASPBERRY PI VERSION 2

20 www.linuxvoice.com

The world’s most popular computer has
a brand-new version. Take a look!

RASPBERRY PI
VERSION

Stick it behind your
television to make a

DIY smart TV

Still proudly
made in the land

of dragons

More and faster
RAM – replace your
old desktop machine

no problem

GPIO pins to control
your robot army

Quad-core ARM
CPU – lots more

processing power

Pocket money
price – still
only $35!

The first Raspberry Pi launched on 29 February
2012. Over the next three years it was used as
the brains of a submarine, sent into space,

and even used to make delicious beer, but it didn’t
really change, bar a tweak to the model B+ to improve
power handling. This has now changed – Raspberry
Pi version 2 is here!

Version 2 is completely compatible with the old
board both in terms of hardware and software, and it

remains the same price – $35. New computers aren’t
about what’s the same though, they’re about what’s
different. The new board features a new processor
and new memory, but it looks almost identical
to the older version. What does this mean to the
performance, and how will it change the usability? Will
it still be used by tinkerers up and down the land, or
has the Raspberry Pi Foundation spoilt its creation?
Read on for our in-depth exploration…

2

RASPBERRY PI VERSION 2

LV013 020 Cover Feature.indd 20 06/02/2015 13:46

RASPBERRY PI VERSION 2

www.linuxvoice.com 21

What has changed?
Don’t panic – the Raspberry Pi is the same machine we know and love.

a bit more power than the previous ARMv6
single-core SoC. The RAM has doubled to
1GB, and is also clocked slightly faster at
450MHz. Combined, these give the board
much more processing power.

On the software side of things, the latest
version of Raspbian has been updated to
support everything out-of-the-box, but other
distros may take a little time to catch up.

The architecture is now the more common
ARMv7 rather than ARMv6-hardfloat. This
change means it’s much less effort to port
other Linux distros to the Pi. This is unlikely
to mean we end up with the massive over-
abundance of distros like we have on the
x86 architecture, but it could mean that a
few more of the big names distros produce
Raspberry Pi versions.

A t first glance, version 2 of the
Raspberry Pi looks very similar to
the Model B+. It has the same

inputs and outputs, and an almost identical
layout. You’d have to look quite closely to
notice the difference, and that’s that the
RAM is no longer on top of the SoC (System
on Chip). It’s now on a separate chip
mounted on the underside of the PCB.

The reason they’re so similar is that the
model B+ was designed with this upgrade
in mind, and space was left on the board
to allow the new features. In fact, if you
compare the two devices, you can see that
there’s a patch of empty space beside the
SoC on the B+ that the memory now takes
up on version 2.

This similarity goes further than just looks,
and the GPIOs are the same. This means
that the new board should still work with
every circuit and expansion board that’s
worked with previous versions. Hardware
Attached on Top (HATs) should also still all
work, and the holes for bolting these onto
the Pi are still in the same place.

It’s not just the GPIOs that are the same.
All the physical connections on the board
are in the same place as on the model B+.
This means that cases and other enclosures
should still work without modification.
This particular aspect will be particularly
important for developers working on
embedded systems.

So what’s new?
The big changes are the SoC and the
memory. The first is upgraded to include
four ARM Cortex A7 cores, which give quite

The Raspberry Pi version 2 features exactly the
same GPU as the version 1: Broadcom’s Video
Core IV. Currently, the driver for this is capable of
running OpenGL ES programs and decoding video
(it can decode H264 and MPEG4 videos at full
HD resolutions without problems). You can also
purchase additional licences for MPEG2 and VP1
should you need them.

There are also codecs for VP8 and Theora. These
run on the GPU, but aren’t able to take advantage
of the video-playing hardware in the GPU. This
means that they are effectively software codecs
that happen to run on the GPU rather than the CPU.
You should find that playing these files doesn’t
significantly increase CPU usage, but you may get

problems decoding high-definition files. All this is
dependent on the compression format.

There are also different container formats.
The container is the bit that brings the video and
audio together into a file. Therefore, the filename
corresponds to the container, not the video
compression method. If you want to know whether
a file will play well on your Pi, you need to know
what the underlying compression method is, not
what file format it’s in.

The Pi can run OpenGL ES 2.0 software. This
is a stripped-down version of OpenGL designed
specifically for Embedded Systems (ES). It’s the
graphics standard used on most mobile phones;
however, desktop machines use full OpenGL,

so most 3D software for Linux won’t run on the
Raspberry Pi.

This may be about to change. Eric Anholt, who
works on open source graphics at Intel, is working
on a restructured driver for the Video Core IV. It
should mean a performance improvement, the
ability to run 3D applications in windows (rather
than just taking over a chunk of the screen) and
it should mean full OpenGL applications can run.
Potentially, this means much more software should
be available for the Pi, but we will have to wait to
find out what the performance is like. Eric gave an
excellent overview of his work at Linux.conf.au, and
you can watch it on YouTube at
https://www.youtube.com/watch?v=EXDeketJNdk.

Video Core IV Understanding the Raspberry Pi’s graphics engine

Eben Upton with a box of the
new Raspberry Pis. 200,000
were available on the launch

day, and a similar number will
be made each month.

LV013 020 Cover Feature.indd 21 06/02/2015 13:46

www.linuxvoice.com

RASPBERRY PI VERSION 2

22

Raspberry Pi 2 model B in detail
The new components, and what it means for you.

4

3

1
2

11

10

5

6
9

7

8

12

You can now see the wave of the
Broadcom logo on the SoC as it’s no
longer obscured by the memory. [1]

Version 2 looks almost
identical to version 1 model B+.

The underside of the new Pi reveals
the new, higher-speed RAM. [10]

The USB and
networking setup
remain unchanged,
so the speed for
networking and
external storage
haven’t increased
significantly.

LV013 020 Cover Feature.indd 22 06/02/2015 13:46

RASPBERRY PI VERSION 2

www.linuxvoice.com 23

Raspberry Pi 2 model B in detail
The new components, and what it means for you.

1 Quad-core ARM Coretex A7 processor
The shining jewel in the Pi version 2 is the
new System on a Chip (SoC). This consists
of four ARM cores, each of which is by
itself more powerful than the single
processor in the previous version. The
impact of this can be seen on the
benchmarks on the next page.
2 Video Core IV GPU The graphics
processor is the same as on the previous
incarnation of the Pi, so you can still expect
full HD video playback and smooth
OpenGL ES 2.0 graphics.
3 Display connector Although there is no
display yet released for the Raspberry Pi
that can use the display connector, the
Foundation tell us that they’re just making
the final adjustments to the design and it
should be released soon. In the meantime,
you’ll have to make do with HDMI and RCA.
4 GPIO There are 26 usable input or
outputs on the 40-pin GPIO header, which
include UART, I2C and SPI buses. This is
the same layout as the model B+, and is
backwards-compatible with all Raspberry
Pis made since September 2012. The very
first models had a slightly different pin
numbering, so if you’re upgrading from an
early Pi you’ll need to make sure that any
expansions you have are compatible with
revision 2.0 (almost all are).
5 Switching regulator The Raspberry Pi
version 2 retains the same switching

regulator introduced in the model B+. This
offered a significant improvement on the
linear regulator in the original version.
However, the increased power of the
processors on version 2 means that power
consumption is increased by about 1 watt
(or 0.2A at 5V). This means that it’s more
important to have a good power supply
with the Version 2 than it is for the B+.
6 HDMI The main video output can also be
used for digital audio. The HDMI bus is
two-way and can be used to send
information from the display to the Pi
through the Consumer Electronics Control
(CEC) protocol. This is most commonly
used in media centres to send instructions
from a TV remote control to the Pi.
7 Camera connector This still connects
with the normal and low-light cameras
from the Raspberry Pi Foundation. The
increased processing power of the new

model means that advanced picture
processing will run faster.
8 Networking The one slight
disappointment for us was the fact that
the USB and networking still share the

same connection to the CPU. This limits
the speed, especially when several USB
ports are in use at the same time as the
network (such as when you’re using a USB
hard drive).
9 Audio and analogue video out The
analogue outputs run just as they did on
earlier versions, and we haven’t found any
problems with them.
10 Memory The memory has come off the
SoC, been beefed up to 1GB and increased
in speed. All this means the new Pi is far
more responsive when multi-tasking. Web
browsing, in particular, is noticeably better
on the new version.
11 Micro SD If you still have a version 1
model B (before B+) then you’ll need to
switch from an SD card to a micro SD card,
but otherwise you shouldn’t have a
problem. The latest version of Raspbian
runs on both new and old RasPis, so you

can still share storage
between different versions.
12 USB There are still four
USB ports, and the higher
power draw of the new SoC
could lead to problems if you
have several high-power USB

peripherals and a weak power supply. This
should be roughly comparable to the
situation with the model B before the B+. A
powered USB hub will enable you to use
more devices.

There are many different ARM processors on the
market, and they each have different performance
characteristics. The first Raspberry Pi features
an ARMv6 processor (also known – somewhat
confusingly – as ARM11), while the newer version
features ARMv7. These are different instruction
sets. ARMv7 is backwards-compatible with v6, so
you should be able to run software compiled for the
older processor on the newer one. However, there
are additional features in ARMv7 that software can
take advantage of to run faster .

Most ARM processors available today are
ARMv7, but there are still significant differences
between different chips, even when they understand
the same instructions. Almost all System-on-Chips
(SoCs) that run Linux use ARM Cortex A cores (the
A stands for application) – these are all ARMv7 or
higher. Within this designation the most common
cores for small Linux Computers are the Cortex A5
(such as the Odroid C1), Cortex A7 (such as the
Raspberry Pi 2) or Cortex A9 (such as the Udoo).

A little confusingly, a company called AllWinner
makes SoCs that are also numbered with A’s. For
example, the AllWinner A20 is quite popular with
small Linux computers. However, in this case, the
A20 is the name of the chip, not the core, and the
AllWinner A20 actually uses a Cortex A7 processor.

In general, as the numbers on Cortex A series
processors go up, the processors become more
powerful. In this context, more powerful means
capable of doing more in a single clock cycle. So,
for example, a Cortex A7 processor would perform
most tasks about 20% faster than a Cortex A5
processor at the same clock speed. Cortex A9s are
also noticeably faster than A7s.

It isn’t always performance that differs between
differently numbered Cortex A series chips.
Sometimes it’s that one core has different features
(such as hardware virtualisation) than others.

When looking at the specifications of an ARM
SoC, it’s important to understand that even though
Cortex chips are all ARMv7, they don’t all have the
same performance cycle-for-cycle or core-for-core.

There is a counterpoint to the performance
difference, and that’s that the lower-performance
cores also tend to use less power, so it sometimes
makes sense to use a lower-powered chip if you’re
running off a battery.

To make matters even more complex, some
newer SoC’s feature more than one type of core.
For example, the AllWinner A80 SoC features eight
cores. Four of them are Cortex A15s and four are
Cortex A7s. This combination of core types is
know as the ‘big.LITTLE’ configuration, and allows

operating system to select the lower-powered
Cortex A7 cores to run more energy efficiently when
the load is low, then dynamically switch to the
more powerful Cortex A15 cores to run faster when
there’s a higher load.

You may also come across ARM Cortex M series
chips. These are for microcontrollers, so they’re
not designed to run Linux (or any other OS). For
example, the Arduino Due has a Cortex M3.

Understanding ARM cores Overloading on numbers and letters

“The memory has come off the
SoC, been beefed up to 1GB and
increased in speed.”

Thanks to their low power draw, ARM chips
are found in many smartphones.

LV013 020 Cover Feature.indd 23 06/02/2015 13:46

www.linuxvoice.com

RASPBERRY PI VERSION 2

24

Moore’s law (as interpreted by
David House) states that the
power of computer processors

should double every 18 months. If that’s
true, then the new Raspberry Pi should be
four times more powerful than the original,
which was released three years earlier. To
find out what the actual difference is, we ran
a wide range of benchmarks to stress the Pi
in different ways. All the tests were carried
out at the default clock speed on both
versions of the Raspberry Pi (with different
levels of overclocking on version 1).

Our battery of CPU tests showed that
the combined processing cores on the Pi
version 2 can crunch data about 6 times
the speed of the single core on version 1.
These tests were performed using highly
parallelisable tasks such as zipping and
unzipping files using the bzip2 algorithm
(7.29 times faster) and calculating
cryptographic hashes (an average of 5.54
times faster). All these tasks are efficient at

splitting the load across the four cores in
version 2.

Not all computing tasks are parallelisable
like this, and often, you only end up using a

single core on a multi-core processor for a
particular task. We also ran some single-
threaded CPU tests from the hardinfo tool
that stressed just a single core of the Pi
version 2. However, the other cores were
running, so background tasks could take
place on other cores. These tests weren’t
necessary a perfect comparison of the
processing power of the cores, but a test
to see how much of a speedup you should
expect to see on single-threaded tasks.
The results varied from a speed up of 1.87
(Fast Fourier transforms) to 1.51 times
(Blowfish encryption). The average speed
improvement was 1.69 times.

Not just the CPU
Of course, there’s much more to a
computer’s speed than just raw CPU power.
The new Pi also has different memory,
which is clocked slightly faster. We were
able to write data to memory 1.50 times
faster on the new model. One thing these
tests don’t show is that the new Pi has
twice the amount of RAM as the old version.
This difference hasn’t show itself in any of
these benchmarks, but can have a dramatic
impact on RAM-heavy tasks, particularly if
you’re running several tasks as once, like
web browsing with multiple tabs open.

Both models use micro SD cards for
storage, and a similar setup. Using identical
SD cards, we found a modest 1.12 times
speedup on the new Pi.

The new Pi has the same network
interface using the USB bus as the old Pi.

The speedup of the extra processing power isn’t matched in other areas, but normal usage should
see a significant improvement.

Regular workloads tax almost all parts of the system from the CPU to memory to storage,
and they do it in different ways.

Performance comparison: Raspberry Pi version 1 vs version 2

Benchmarks for typical desktop workloads
on Raspi versions 1 and 2

Kraken JavaScript
Benchmark

Test group

Sp
ee

du
p

fa
ct

or
 c

m
pa

re
d

to

Ra
sp

be
rry

 P
i v

er
si

on
 1

 m
od

el
 B

+
wi

th
 n

o
ov

er
cl

oc
ki

ng

Typical desktop workloads Single thread CPU Multiple thread CPU Memory Disk Network 3D acceleration

Pi version 1
Pi version 1 with turbo
overclocking enabled
Pi version 2

Speedup factor compared to RasPi version 1
without overclocking

Pi version 1
Pi version 1 with turbo
overclocking enabled
Pi version 2

SunSpider JavaScript
benchmark

Install Pygame
library from source

LibreOffice time
To open spreadsheet

LibreOffice time
To open Writer

Benchmarking
Just how much faster is the new Pi?

LV013 020 Cover Feature.indd 24 06/02/2015 13:46

RASPBERRY PI VERSION 2

www.linuxvoice.com 25

Here we ran two tests: one to see how the
new Pi handled network throughput (using
wget), and another that tested how the Pi
coped with an encrypted download (via
scp). In the unencrypted test, the new Pi
performed about 14% faster than the old
Pi. There was relatively low CPU load, so
the more powerful SoC didn’t have much
advantage. However, in the encrypted
transfer, the older processor struggled to
keep up, and the new Pi performed 50%
faster in the encrypted transfer (scp) test.

The new Pi has exactly the same
VideoCore IV graphics processor as the old
Pi, so we didn’t expect to see any difference
in performance here. We ran a range of tests
with a steadily increasing number of objects
in the 3D scene, and with varying levels of
texture. Across them all, we saw a fairly
consistent 6% improvement in speed, which
we suspect is due to the CPU side of the
benchmark running faster. In other words,
we wouldn’t expect a noticeable increase in
performance using accelerated graphics.

It’s telling to see how the two versions
compare on
benchmarks
that target
specific
subsystems,
but most
computing
tasks run
across many of the different areas. They
have some parallelisable aspects, and some
aspects that aren’t. The memory, CPU, and

disk speeds all factor into the speed as well.
We put together some benchmarks to try
to capture the overall speed of the Pi under

normal use.
This included
tests on
LibreOffice,
web browsing
and installing
software.
Despite

very different workloads, they all reported
a fairly similar speed up with the new
Pi, about a factor of three. The biggest

improvement was opening LibreOffice
(3.78 times faster), while the smallest was
the Kraken JavaScript benchmark (3.03
times improvement). Opening a complex
spreadsheet in LibreOffice Calc came in 3.51
times faster.

When we added them all up and averaged
them out, we found that the new Pi is 3.38
times faster than the old Pi under common
loads. We’re confident that this is accurate
for typical workloads, but obviously, different
tasks will vary as they will depend on the
speeds of the different parts of the Pi in
different ways.

The speedup factors were calculated by
comparing the new Pi to an old one at the
normal level of overclocking. However, it is
possible to overclock version 1, so we also
ran all the tests with turbo overclocking
enabled. In this case, we found that the
single-threaded performance was only
slightly faster on version 2. However, the
new Pi still dramatically outperformed
the turbo overclocked Pi in multithreaded
benchmarks, and was almost twice as fast
at typical desktop tasks.

All of these benchmarks evaluate some
form of measurable metric, but they also
hide the important but hard-to-measure
aspect of how the computer feels to use.
The biggest improvement in this area is the
responsiveness of the new version. The old
single-core machine was prone to locking
up and becoming unresponsive under heavy
load. This aspect of the Pi is now gone.

What does all this mean? Turn the page to
find out how the different performance will
affect different types of use.The speedup in encrypted transfer came as a bit of a surprise to us, but is useful for many setups.

The multithreaded CPU tests were perfect for version 2 to show off its processing power.

“The new Pi dramatically
outperformed the overclocked old
Pi in multithreaded benchmarks.”

Breakdown of multi-threaded performance
for RasPi version 1 and 2

Network performance comparison
for Raspberry Pi versions 1 and 2

compression
(bpnzip2

Encrypted data
Transfer (scp)

Pi version 1
Pi version 1 with turbo
Overclocking enabled
Pi version 2

Pi version 1
Pi version 1 with turbo
Overclocking enabled
Pi version 2

Speedup factor compared to RasPi version 1
without overclocking

Speedup factor compared to RasPi version 1
without overclocking

decompression
(bpunzip2

MD5 hash
Cracking

Bcrypt hash
Cracking

Unencrypted data
Transfer (wget)

Benchmarking
Just how much faster is the new Pi?

LV013 020 Cover Feature.indd 25 06/02/2015 13:46

www.linuxvoice.com

RASPBERRY PI VERSION 2

26

There are only two common uses for the
Raspberry Pi in gaming: Minecraft and
console emulation. There hasn’t been an
update to Minecraft for the Pi since it was
first released, and we’ve no indication that a
new version is likely. Even if a new version
did come, the Pi 2 is unlikely to perform
significantly better. Perhaps the biggest
improvement here is for people writing
programs that interact with the Minecraft
world, as they now have significantly more
processing power to use.

Playing old games on the Pi is well
supported through distributions like
RetroPie. The original Pi handled the
emulation of most older consoles fairly well,
albeit with occasional jitters. The newer
version’s processor is only about 50% faster
on single-threaded tasks and only marginally
faster than a turbo-overclocked Pi 1. Since
most emulators don’t take advantage of
multiple cores, we wouldn’t expect the
new Pi to really shine here unless some of
the multi-core emulators are ported. That
said, the new Pi shouldn’t experience and
problems if background tasks start during
the emulation.

The developers of XBMC (now known as
Kodi) have done an excellent job of making
sure the Pi version 1 can be used as a home
theatre PC (HTPC) to play videos and music.
The Pi version 2 uses exactly the same GPU
as version 1, so all that good work
automatically flows over and the Pi 2 should
make an excellent HTPC. Using the same
GPU means that you shouldn’t expect any
significant improvement in the video
playback. That said, video playback usually
works well on the Pi.

The improvements on the new Pi should
be noticeable in other areas. Most media
centre interfaces aren’t accelerated, so the
improved speed of the new Pi should result
in a better user experience. Exactly how
much better will depend on what media
player you’re using, and what skin it has.

The Pi 2 has more in common with other
ARM boards than the Pi 1 did. This is both

Minecraft now has a more Pythonic Python 3 API for controlling the world from your programs.

We covered setting up a Kodi-based media
centre in issue 12.

Desktop usage is probably the area where
the improved performance of the new Pi will
be most obvious. In our general-purpose
benchmarks on the previous page, we found a
roughly 3.4 times increase in most tasks, which
is a huge difference.

The biggest difference, though, isn’t in the
time it takes to run a single task, but in multi-
tasking. Things like apt-getting software don’t
render the machine unresponsive, and neither
does a single JavaScript-heavy web page. The
increase in RAM is also important, because it
means you can run a lot more software before
the system grinds to a halt as it shuffles
memory in and out of swap space.

If you’re currently using a Pi as a desktop
computer, we’d strongly recommend you
get a new Pi 2. The performance increase is
definitely worth the $35. We can’t think of a
time in the history of computing where such a
small amount of money could have such a big
performance impact.

We also expect both versions of the Pi to get
a noticeable performance improvement with
Wayland, which is currently under development.

Desktop computing

Gaming

Home theatre PC

Party like it’s 1989.

A DIY smart telly that you control.

down to the instruction set and the memory
layout. This means that – in theory at least
– it should be easier to build Android for the
Pi. There isn’t likely to be an official release
from the Foundation, but a community
project is possible. This would provide
another option for HTPC interfaces, and
should mean that streaming media services
like Netflix would work on the Pi.

Popular projects
How the new performance profile will change the way you use the Pi.

LV013 020 Cover Feature.indd 26 06/02/2015 13:46

RASPBERRY PI VERSION 2

www.linuxvoice.com 27

Pure processing power is very rarely a
problem in hobbyist robotics. The first
version of the Pi easily has enough power to
control motors, fetch data from sensors, and
handle the camera. The limiting factor with
controllers for robots is almost always the
connectivity (GPIOs, I2C busses, UARTs,
etc). In this regard, version 2 offers no
advantages over the older B+. In fact, the
higher power usage could actually make it a
little worse in some cases. Generally, the A+
is the best board for robotics when power
consumption is at stake, and the A+ will
continue to use the same SoC as before.

There are, however, a few cases where
robots need more processing power. For
example, in machine vision. OpenCV, a
library written for object recognition, and
has some uses in robotics – we used it in
our face-tracking Nerf gun in issue 4. It does
run on the Raspberry Pi version 1, but only
just. You have to limit the resolution, and you
still get quite a slow framerate. This means
you don’t get as accurate recognition as on
more powerful computers. Version 2 should
significantly improve things here, and make
Raspberry Pi robots’ vision more powerful. Now your robot weaponry can have better vison, yet still have the portability of the Raspberry Pi.

Robotics
More brains for your mechanical army.

The primary purpose of the Raspberry Pi is
to teach computing to school children. The
new version makes this task easier. A
significant part of this is that general
desktop computing runs better.

One task that always frustrated us with
the earlier version was installing libraries.
Sometimes it felt like we were waiting five
or 10 minutes before we could get back to
programming, and this was very off-putting
for beginners (and quite a problem when
teaching a class). The task also locked up
the only core, so we couldn’t do anything
while the libraries were installing. Version 2
ran 3.33 times faster than version 1 when
compiling and installing the Pygame module.
Obviously when coding in a compiled
language, you should expect similar speed
ups in general compilation runs.

Scratch, a graphical language for getting
children interested in programming, should
also perform significantly better on the
new Pi. The new model is all round a better
machine for people new to programming

Programming and more
The ultimate tool for teaching children to code?

and experienced coders. That said, it’s still
not suitable for heavy programming tasks,
and it struggles to run heavyweight IDEs
such as Eclipse.

Personal server
Then there’s the use of the Pi as a personal
server. At the simple end, this could be a
machine hosting Samba shares; on the
other end, it could be a full LAMP stack
running a range of web applications.

The new model has the same network
and storage setup, so you should only see
fairly modest improvements in simple file-
sharing, unless you use encryption, in which
case you may see a 50%+ improvement.

Most web servers (including Apache) are
good at splitting load across multiple cores,
so if you’re using a web front-end, you could
expect a more significant speed up. The
exact speedup will depend on how you use
the server, but the new Pi should be much
better at serving more than one request at
a time.

We’re excited by the new version
of the Pi, and you should be too.
Part of this excitement, however, comes not
from what’s new, but from what has been
retained from the last version. The Raspberry
Pi’s video capabilities have always been
excellent and video is still excellent in the Pi
Version 2. The same goes for the layout of the
GPIO pins. Countless hackers have built robots,
submarines, weather stations and more with
Raspberry Pi, and the GPIO pins provide the
interface between the brains of the computer
and whatever sensors, motors and servos are
used. If this changed it would damage the work
that third parties have put into building the
Raspberry Pi community, so we’re pleased to
see it stay the same.

What has changed though is the feel of using
the Pi. Plug it into a keyboard and monitor and it
feels so much more like a grown-up PC, and we
think that this will make it even more attractive
to schools who need cheap hardware to teach
kids that computers aren’t mysterious black
boxes. Add to that the improved capabilities in
just about every area and the new Raspberry Pi
Version 2 is on to a massive winner. We can’t
wait to see what’s next.

The road ahead

LV013 020 Cover Feature.indd 27 06/02/2015 13:46

BRUCE SCHNEIER A QUICK CHAT WITHA QUICK CHAT WITH BRUCE SCHNEIER

www.linuxvoice.com28

Schneier was at FIC 2015 to talk about
how companies lose control of security
when they outsource infrastructure.
(Photos: Laurine Dutot)

Bruce Schneier is one of the best
known experts on security and
encryption issues. He has written

many books on security and cartography
over the last two decades, and maintains a
well-followed blog at www.schneier.com. He
coined the term ‘security theatre’ to describe
the ludicrous hoops we have to jump
through at airports that don’t actually make
us safer, but are instead aimed at making us

feel safer, and he’s the first person we google
when we want to find out the real truth
behind the latest ‘think of the children’
security scare. So we were delighted to get
the chance to meet him at the FIC 2015
cybersecurity conference in late January
(see page 18), to ask about Edward
Snowden, privacy and recent government
plans to spy even further into our
communications.

You’ve no doubt heard that
 Prime Minister David Cameron in
the UK and now President Obama have
said that they want access to all
encrypted communication on the
internet. What was your reaction when
you read that?
Bruce Schneier: It’s completely idiotic!
We’ve heard about this idea since the mid
90s – it’s not new at all.

BRUCE
SCHNEIER

One of the biggest names in security responds to government snooping plans.

A QUICK CHAT WITH

LV013 028 Feature Bruce Schneier.indd 28 06/02/2015 10:10

BRUCE SCHNEIER A QUICK CHAT WITHA QUICK CHAT WITH BRUCE SCHNEIER

www.linuxvoice.com 29

Is it workable in any way?
BS: Of course not. Only someone

who is not a technologist would say
such a thing. The problem is, I can’t
build a back door that only works for
people of certain morals. I just
technically can’t do that – I can’t design
a filter that filters for morality. So if the
US government can break in, anyone
else can break in.

Or someone from the
government leaves a laptop on

a train, containing the encryption
keys. It’s happened before…
BS: Right. So it’s unworkable and
impossible, but we heard FBI director
James Comey talk about this in
November. But this is like former FBI
director Louis Freeh in the 90s, this is
like the Crypto Wars*, and it’s back
again. Not only will it make us all
insecure, it won’t even do what the
government wants.

But politicians will always use
arguments like “think of the

children”, and people will keep
voting for them…
BS: Indeed they will, because fear sells.
In the 90s I talked about the “four
horsemen of the internet apocalypse”
and they were: terrorists, drug dealers,
child pornographers and kidnappers. All
this fear. So we have to win this. We
can’t say that we will all be insecure
forever on the internet. That’s just crazy.

You would expect, after the
Snowden revelations, that

everyone would be fighting more for
privacy on the net.
BS: You know, some people are – the
IETF [Internet Engineering Task Force]
is. Certainly Google is and Microsoft is.
What Google is doing about the US
data in Ireland – they are encrypting
more of their stuff. I think the Snowden
leaks caused the company to step back
and say “we shouldn’t cooperate here”.

You don’t think it’s just bluster
from companies trying to keep

hold of their customers?
BS: I think it’s half bluster and half real.
But there is progress there – we are
seeing that companies are fighting.

You worked with Glenn
Greenwald going through the

Snowden documents. What
surprised you the most?
BS: The thing that was most surprising
was: there were no surprises. The
amazing thing about the NSA is that
they’re not made of magic. You’d think,
with their budget and the amount of
personnel they have working for them,
they’d have some magic in there. But
they kind of don’t. We learnt that they
don’t have quantum computers doing
amazing things – they’re just better
funded than the typical hacker.

Like: wow, they’ve broken
some encryption system that

looked almost impossible to break?
BS: Right. There was no “oh my god,
they can do that?” Their stuff is just

souped-up hacker tools. I thought
there’d be something big, like a break on
AES [Advanced Encryption Standard].

Do you think much has
changed in the meantime?

There’s a drive towards HTTPS
everywhere, for instance.
BS: I think there has been. It’s around
the edges, but there have been
changes. WhatsApp is encrypted for
instance – that’s 700 million people
encrypting. That’s amazing.

Some services like Google Mail
rely on being able to see

content, to sell advertising...
BS: I think Google could say: “You know,
there’s not a lot of money in email
advertising, so let’s just encrypt it”. They
could do different sorts of advertising
– just not content-based.

Anyway, there’s a lot we can all do
to make things better. Every time you
use encryption with nothing to hide,
someone else who needs encryption to
stay alive benefits, because he’s hiding
in a bigger pool of encrypted data. Just
like every time you use Tor, you make it
better for someone else who needs to
use Tor. There’s safety in numbers.

* LV note: Louis Freeh was Director of
the FBI from 1993 to 2001, and
described encryption “one of the most
difficult problems for law enforcement
as the next century approaches”.
Crypto Wars refers to the US
government’s attempts to limit general
access to encryption technologies
that it couldn’t break itself.

Schneier’s next book is due out in April –
stay tuned for a review in a future issue.

LV013 028 Feature Bruce Schneier.indd 29 06/02/2015 10:10

www.linuxvoice.com

FEATURE CYANOGENMOD

30

“CyanogenMod is built on the
open source release of Google’s
Android operating system.”

The CyanogenMod project is the quintessential
open source success story. It’s got open
source code, an individual hacker burning the

midnight oil, and community endorsement that led
the project to the big leagues. From a forum board to
the executive board, the CyanogenMod project has
come a long way riding on the shoulder of its
community of users and developers.

With over 12 million active users as of June 2014,
CyanogenMod is the
most popular free and
open source aftermarket
firmware for Android
smartphones and tablets.
The tricked-out version
of Android replaces the
stock OS that ships with your device and essentially
gives you more control over it.

CyanogenMod is built upon the open source release
of Google’s Android, known as the Android Open
Source Project (AOSP). In 2008, developers found a
way to gain root access to the HTC Dream G1, which
shipped with Android 1.0. This allowed those with

the technical know-how to replace the stock Android
with a customised flavour of their own built atop the
AOSP. This development spawned a community of
modders who showcased their mods at places like
the XDA Developers forum. Steve Kondik was one
such developer. He called himself Cyanogen online,
and therefore named his creation CyanogenMod.

CyanogenMod quickly grew in popularity and
started to attract modifications and improvements

from other developers
as well. Kondik rallied
a bunch of active
contributors into the
CyanogenMod Core
Team to accept code
based on the feedback

from their community of users.

Anatomy of a hack
CyanogenMod officially supports over 200 devices
and there are experimental builds for a lot more, which
is an incredible achievement once you take into
account the elaborate process it takes to get

Root your way inside the most popular
Android hack with Mayank Sharma.

Inside
CyanogenMod

LV013 030 Feature Cyanogen.indd 30 05/02/2015 21:38

CYANOGENMOD FEATURE

www.linuxvoice.com 31

CyanogenMod to run on a device. Add to this the fact
that the developers have to create a different version
of CyanogenMod for each new Android release, and
that each device has different hardware components,
and you have some idea of the scale of the job.

To keep up with the proliferation of Android devices,
the CyanogenMod team is divided into various device
maintainers, who manage the code for different
devices and make sure the device they’re in charge
of runs CyanogenMod properly. One such device
manager is Chirayu Desai, who is currently in the last
year of high school. The young padawan is in-charge
of “almost all” supported Sony devices. However, he
got his start with another device. Recounting the start
of his association with the project, which dates back
to before Android 4.0 Ice Cream Sandwich (ICS) was
released in 2011, Desai says “I had a Samsung Galaxy
Tab, which was one of the first Android tablets, and it
shipped with Android 2.3, which was not something
you would like using on a tablet.”

Desai almost immediately swapped out the stock
Android and replaced it with CyanogenMod: “When
ICS was announced, I collaborated with some other
developers, and seeing that it was working on two
other very similar devices (the Nexus S and Galaxy
S) we wanted to get it working on the Tab too.”
That’s when he started porting the current release
of CyanogenMod: “When it was in a decent state, I
contacted the CyanogenMod developers and was
able to get it officially supported.”

We asked Desai to outline the process a developer
needs to go through to port CyanogenMod to a device:
“One of the first things that you need to find out is
what hardware the device has, and what information
can you get about that – what System-on-Chip (SoC),
which sensors, etc. Then you need to see what kind
of source code is available from the concerned OEMs,
and for devices similar to the one you are working on,
which is to say, other devices that have the same or
a very similar SoC. Then you put everything together,
adapt it for the Android version you’re porting, and

for standard interfaces as needed.” Since the project
supports a lot of devices and many different hardware
platforms and shares code between them, Desai adds
that the developers also “have to keep in mind that
if our device needs a ‘hack’ somewhere it should not
affect the others. Every release breaks things in ways
that can be fixed, worked around, or need a hack – it
varies a lot by device.”

The empire strikes back
CyanogenMod owes its existence to the open source
vanilla Android, but Google adds a different flavour to
the mix. CyanogenMod initially bundled Google’s
proprietary apps, Gmail, Calendar, and others along
with its software, but Google intervened with a
cease-and-desist letter and prevented the project from
distributing its mod until the project stopped including
Google’s apps in CyanogenMod.

The two also had an exchange over CyanogenMod’s
installer. The project pulled it voluntarily from the
Play Store after Google communicated that it was at
odds with its terms, since it encouraged users to void
their warranty. Despite these run-ins, many mobile

CyanogenMod’s co-founder
and CTO Steve Kondik (left)
and CEO Kirt McMaster.

Kondik rallying his troops,
startup style, in Cyanogen
Inc’s Seattle office.

LV013 030 Feature Cyanogen.indd 31 05/02/2015 21:38

www.linuxvoice.com

FEATURE CYANOGENMOD

32

Feeling lazy? Borrow
a Windows machine
and save yourself a
considerable amount
of effort by installing
CyanogenMod with the
graphical installer.

settings (for example), whereas in CyanogenMod,
that same tap would immediately toggle Wi-Fi on or
off. As we look at Google’s implementation in Android
Lollipop, you can see that they’ve adopted the same
behavioural change.” In the end, he sums up, “it’s
always nice to see this cycle of changes between
community projects and Google alike.”

An Inc.ling
One of the core issues that the project’s leadership
has been working to address is to simplify the process
of getting their mod onto a device. Given that the
process of replacing the firmware on a device requires
considerable technical expertise, the project is doing
well to have won such a large userbase. Also, the
CyanogenMod project has always been vocal about
its ambition of being more than just a software mod.
In a Wired article in 2011, Chris Soyers, who has been
associated with the project for a long time, said that
one of the project’s biggest dreams is to see a phone
ship with CyanogenMod on it.

In fact, these were the two main catalysts that
propelled Kondik to act on his plans to commercialise
CyanogenMod. Cyanogen Inc. was announced in
September 2013 and managed to raise $7 million
(about £4.6 million) from venture capitalists and
another $23 million (about £15 million) later that year.
Kondik says that having a company with full-time
staff and dedicated resources enables them to make
bets on larger projects, particularly those that would
take too high of an investment from the community
alone, or would be a challenge to coordinate.

“The enhanced theming capabilities that we
bought last year and the Encrypted Text Messaging
(partnering with Open Whisper Systems) the year
before are both examples of these larger long-term
and impactful projects,” he illustrates. Furthermore, he
adds that since the code is open source, these new
additions are not only beneficial to the company but
to the community as well.

commentators have said that Google has borrowed
several features from its popular replacement.

“Google’s methodology seems to be re-imagining
community-driven features, much like we re-imagine
their Android updates”, said Steve Kondik in an email
exchange with us. “One of the earliest examples of
this was incognito mode on the Android browser, prior
to Chrome for Android. The implementations were
different, but the idea – privacy on mobile browsing –
was the same.”

Another feature Kondik points out is the Android
Quick Shortcuts: “Not only did we have a working
implementation before Google, called Notification
Power Widgets, but even after Google implemented
their own system in Android Jellybean, a single
tap in their implementation would launch the Wi-Fi

Top The Oppo N1 has a
swivelling camera and
includes CyanogenMod’s
advanced camera app.
Top right The OnePlusOne
includes CyanogenMod’s
Trebuchet Launcher as the
default home screen.

LV013 030 Feature Cyanogen.indd 32 05/02/2015 21:38

CYANOGENMOD FEATURE

www.linuxvoice.com 33

Having a company also allows them to impress
upon device vendors their approach to total access
to the hardware “without voiding the warranty and
preventing support for hardware issues,” explains
Kondik, adding that the community will “not only
benefit from the tighter integration that such
partnerships naturally bring, but also gives them
peace of mind and a larger value when they begin
tinkering with their devices.”

Soon after the company’s formation there were
concerns among the CyanogenMod community
following the announcement that it plans to adopt
closed-source licensing
for some of the future
developments. Kondik
responded to the
concerns and made it
clear that the company
had no plans to close-
source any of the existing stuff. He also reaffirmed
their commitment to the community and explain how
the dual licensing model will offer “a stronger degree
of protection for contributors” and also gives the
company a competitive edge.

One such closed-sourced product is the
CyanogenMod installer. It’s an easy-to-use app that
lets you install CyanogenMod onto your device in
a couple of simple steps. Kondik explains why the
installer is currently only available for Windows and
Mac OS X: “When we were building the installer
we took a look at our user demographic from our
IRC support, user forums and community website.
By and large those who were hitting obstacles
during a manual command-line install came from
the Windows and Mac families – and as such, we
focussed our first releases of the installer to those
platforms.” That said, Kondik adds that while a Linux
version of the installer is on their roadmap, “given the

task of deciding where to use our resources, the other
two platforms carry priority.”

Since the formation of the for-profit enterprise,
instead of one product, the team now works on two
release branches – CyanogenMod and Cyanogen OS.
CyanogenMod is the open-source, community-driven
Android OS that’s supported by Cyanogen Inc. On
the other hand, Cyanogen OS is the commercially-
distributed operating system that comes with
proprietary features, services and enhancements.
Cyanogen OS is what you get when you buy a device
that ships with CyanogenMod pre-installed.

Going places
As CyanogenMod enters its second year of existence,
the company has inked deals with a bunch of device
vendors who are already shipping smartphones
preinstalled with Cyanogen OS all around the world.
Their latest handset, the Micromax Yureka Yu, has hit

a chord in price-
conscious markets like
India, and Google is
also aggressively
targeting India with its
low-cost Android One
devices, and

interestingly these devices are now officially
supported by the CyanogenMod project.

So can we expect a Cyanogen-branded phone in
the near future? “We are very aware of our strengths,
and currently that is in the scope of software and web
services around them,” explains Kondik adding that
“the hardware manufacturing market is a game of
volumes and margins, and not something we’d jump
into without a team dedicated to figuring out all the
intricacies and hurdles around it.”

For now, the team plans to stick to software and
relegate the hardware bits to experienced hardware
partners. “We want to see CyanogenMod, and our
commercial offering Cyanogen OS, perceived as a
premium OS, a must-have, instead of the underdog
perception that followed coming from a community
project. [We’re] continuing to push forward what
makes CyanogenMod so great – that fearlessness to
innovate and improve upon the Android experience”.

The Replicant OS based
on CyanogenMod replaces
all proprietary Android
components with their free
software alternatives.

The CyanogenMod advantage

Why would millions of users go through the pain of
replacing the stock OS on their Android device with
CyanogenMod, at the risk of voiding the warranty? What
makes CyanogenMod so special?

While Android allows access to things that other vendors
(Apple) prevent, such as installing apps from unofficial
sources, CyanogenMod takes this control to a higher level.
For starters, CyanogenMod gives you root access to your
device, which enables you to remove any app, including
systems apps, from the device. The mod is also known for
its customisation and privacy-enhancing features.

CyanogenMod’s theme engine lets you modify the
look and feel of the entire OS. It also comes with privacy
features such as the Privacy Guard, with which you can
control the information your device shares with individual
apps. The mod also includes a global blacklist that lets
you block messages and calls from unwanted contacts.
Furthermore, if you get yourself a CyanogenMod account
you’ll have the ability to locate and wipe your device
remotely should it be stolen. There’s also a hardware
assisted disk encryption in the newer version.

“Cyanogen OS is what you get
when you buy a device that ships
with CyanogenMod pre-installed.”

LV013 030 Feature Cyanogen.indd 33 05/02/2015 21:38

www.linuxvoice.com

FEATURE GIVING MONEY BACK

34

Back at the end of 2013, when we decided to
create Linux Voice, we had many discussions
about what form the magazine should take.

We all had various ideas about the content, the style
and the design, but one thing was absolutely clear: we
wanted to give something back. We depend on Linux
and Free Software, and because many FOSS projects
have little (or zero) outside funding, we wanted to help
them somehow. We all use Linux and FOSS every day,
so it was important to us that we get involved in the
community that serves us and you, the readers.

We had several ideas about how do this, and
eventually we settled on this: we will give 50% of our
year-end profits back to the software, services and
communities that help us. In this way we can really
help some projects, and still keep some money to
grow our little company and hopefully win over more
people to Linux as the years go by. As this is our first
year, where we’ve invested a lot in establishing and

growing the magazine in newsagents around the
world, we don’t have a huge pile of cash to throw
around. But after juggling the maths, we’ve worked
out that we can give £3,000 back.

It’s also important to us that you, the Linux Voice
readers and subscribers, have a say in where this
money should go. You’ve helped to get us off the
ground and build us up to a successful magazine, and
we’re endlessly grateful to the awesome community
that has talked about us on Twitter, recommended
Linux Voice to friends, and given us valuable feedback
to improve the magazine over the last 12 months.

In late January we asked our website visitors to
come up with ideas for a shortlist of projects and
services that deserve our profits (http://tinyurl.com/
kt9hgnk). Over the next few pages we’ll explore the
most popular suggestions, and then, at the end of the
article, we’ll invite you to cast your vote. So first of all,
let’s see who could really benefit from our money…

WHERE SHOULD OUR
PROFITS GO?
This magazine donates
50% of its profits back to
the community. But who
should get the money?
You decide...

LV013 034 Feature ProfitShare.indd 34 06/02/2015 13:48

GIVING MONEY BACK FEATURE

www.linuxvoice.com 35

Scribus is the flagship FOSS DTP software –
we’d love to be able to use it to make the mag.

In making Linux Voice, we use Free
Software extensively: Debian, Arch,
Xubuntu, Fedora, Nano, Vim, LibreOffice,

Gimp, Inkscape and many other tools. There’s
one component in our workflow that’s not
FOSS, though, and it’s InDesign. Yes, we
use Adobe’s proprietary tool for layout, and
we know that many readers would love us
to jettison it. It’s not a simple job, though:
InDesign (for all its proprietary badness)
is a hugely capable program, and most
designers are innately familiar with it. We
(the editorial team) are geeks focusing on
tweaking and hacking our installations, so
when we set up Linux Voice, we needed a
layout solution quickly. InDesign was the
sensible choice at the time.

But! Since then, we’ve started to
investigate Scribus (www.scribus.net)
more and more. We know that Scribus is
also a very versatile desktop publishing
program, and has been used commercially
in newsletters and other publications.

Scribus
For a 100% FOSS-built magazine.

It’s not a change we can make overnight,
but our art editor is learning its tricks and
foibles, and we may be able to make the
transition. Many commenters on our
website suggested that we fund Scribus
development for features and fixes we need
– but how doable is it?

Money talks
Fortunately, it looks very doable. We talked
to Craig Bradney, one of the lead developers
of the program, who said: “We’d certainly
appreciate some extra funds to help us be
able to meet up more and develop and
release faster etc, so if that were possible,
then great.” He suggested that during our
Scribus testing, we set up a bug tracker
account and use it to report problems
we encounter, or features that we need in
our workflow.

If our profits could also be used for a
Scribus developer meetup, that would also
be great. Because most FOSS development

Tor, “The Onion Router”, is a
vital weapon in the battle for
privacy and security online.L inux Voice reader Félim Whiteley had

an unusual idea: “Rent a beefy virtual
machine for a year to run some extra

Tor exit nodes. You are in a much stronger
position (freedom of press maybe!) than
a home connection to fight any frivolous
lawsuits if it were abused.” He has a great
point, and the more exit nodes there are in
existence, the more robust the Tor network
becomes. Tor provides an extra level of
security (and partial anonymity) when
browsing the web, by routing your HTTP(S)
traffic through a series of machines on the
Tor network. In this way, you can access
sites without telling them your IP address.

So, you connect to one Tor server (node),
which then passes on your web request to
another, which then passes it on to another,
and so forth. Your request goes through
several different nodes before leaving an
“exit” node and going out onto the internet.
You can’t easily be traced back through the
sequence of Tor nodes, but you still have
to be careful. Many people operate the in-
between Tor nodes, as it’s perfectly safe to

Tor exit nodes
Free access to information for all.

do so, but operating a web-facing exit node
can be dangerous. If you have a Tor exit node
running in your house, and someone is using
it to access illegal material, it could look like
you are accessing that material yourself.

However, it would be possible for us to
rent a virtual server and host an exit node.
Tor is immensely useful for people living in

is done over the net, it doesn’t seem like
face-to-face meetings would make a big
difference in terms of code output. But as
we’ve seen from countless meetups and
hackathons around the globe, when a bunch
of coders get together in person, they spur
each other on and can get a huge amount of
creativity out of just a few days.

oppressive regimes, where they could get
into trouble for simply looking at resources
like Wikipedia. It also helps whistleblowers
spread information by giving them a certain
level of anonymity. We could run an exit
node, or donate to www.torservers.net,
which looks after many exit nodes around
the world.

LV013 034 Feature ProfitShare.indd 35 06/02/2015 13:48

www.linuxvoice.com

FEATURE GIVING MONEY BACK

36

Donations from big companies and individuals
alike help to promote FOSS and defend
copyright infringements in the courts.

The Software Freedom Conservancy
(www.sfconservancy.org) isn’t as
well known as the Free Software

Foundation, but it does important work in
providing infrastructure and legal support
for Free Software projects. It’s a non-profit
organisation based in New York that looks
after a bunch of well-known projects such as
BusyBox, Inkscape, Git, Wine, Foresight Linux
and PhpMyAdmin. It’s also responsible for
identifying GPL violations and coordinating
legal responses – such as when the
BusyBox suite of command line utilities is

Software Freedom Conservancy
Promoting, developing and defending FOSS projects.

used in embedded devices, and the vendors
don’t release the source code (which has
happened many times).

The Conservancy also aims to help other
non-profit organisations by developing
accounting software. This should “help all
non-profits (in free software and in other
fields) to avoid paying millions of dollars
in licensing fees for sub-par accounting
software”. The Conservancy also has
backing from various large companies and
organisations such as Google, Samsung,
Red Hat, and the Mozilla Foundation.

It’s been a long while since a major Gimp
release – maybe we can speed up development!

Sometimes it looks like Gimp
development is in the doldrums.
We’ve been waiting years for a full

implementation of GEGL (the Generic
Graphics Library), which will bring in support
for higher bit-depth images than the current
release, along with non-destructive editing
operations. Gimp 2.10 is supposed to have
mostly complete GEGL support, but when
will it arrive? The last major release,
Gimp 2.8, came out almost three years ago.
And the project’s roadmap doesn’t help
much either – it hasn’t been updated for
nearly two years.

Gimp
Maybe we can speed up the 3.0 release?

Then there are plans for Gimp 3.0, which
will be ported to GTK 3. This will help it to
integrate well with Gnome 3 and Cinnamon
desktops, and make the program look and
work far better on high resolution displays,
which are increasingly popular among
graphics artists.

A portion of our profits could help Gimp
on the road to its 2.8 and 3.0 releases. The
software accepts donations via the Gnome
Foundation, and a chunk of such money
goes towards the annual Libre Graphics
Meeting event, which brings developers
together to share ideas and hack on code.

The Open Rights Group hopes to make
mass surveillance a critical issue during
this year’s UK elections.

Another organisation that came up
is the Open Rights Group (ORG,
www.openrightsgroup.org). This is

similar to the US-based Electronic Frontier
Foundation, but it operates out of the UK.
With UK Prime Minister David Cameron
suggesting that the government should have
access to all encrypted communication, the
ORG has plenty of work to do, convincing
politicians that people have a right to private
communications in their personal lives.

The ORG runs a number of campaigns
to raise awareness of various issues. For
instance, “Blocked!” (www.blocked.org.uk)

Open Rights Group
Promoting rights in the digital age.

scrutinises the UK government’s recently
implemented web filters, which ostensibly
protect children from accessing adult
material. But many other websites are
being blocked as well, and we should all be
concerned that the government has the
ability to simply block any site it doesn’t like.

Another campaign is Don’t Spy On Us
(www.dontspyonus.org.uk), which notes
that the UK intelligence agencies process
a whopping 21 terabytes of data every day.
ORG is encouraging citizens to protest
against unwarranted mass surveillance, and
to campaign about the situation.

LV013 034 Feature ProfitShare.indd 36 06/02/2015 13:48

GIVING MONEY BACK FEATURE

www.linuxvoice.com 37

Trisquel has no commercial backing; it depends
solely on donations from the community.

T risquel is one of our favourite
distributions, even though we don’t
run it on all our machines. It’s an

Ubuntu-based distro that takes a no-
compromises approach to Free Software:
everything is completely free and open.
Contrast this with most other desktop-
oriented Linux distributions, which include
various firmware binary blobs or provide
access to non-free software such as Flash
and video drivers.

Trisquel takes Ubuntu LTS (Long Term
Support) releases and strips out all of the
non-free components, producing a very pure
distro. It’s one of the few distros endorsed
by the Free Software Foundation (hence the

Trisquel GNU/Linux
A distro with no binary blobs in sight.

“GNU/Linux” in the title), and while there are
other distros with the same goals, we think
Trisquel is the most polished. Its website
is slick, the desktop is attractive, and it
shares Ubuntu’s solid installer. There’s no
compromise in quality here.

Currently Trisquel is a part-time project for
its development team, and is funded entirely
by the community. However, the developers
accept donations to cover hosting costs,
and there’s a long-term goal to pay people
to work full-time on the project. Having a
newbie-friendly completely free distribution
is important, we feel, even if most of us use
other distros, so Trisquel will be one of the
options in the vote.

We had many other great
suggestions as well. Some
readers asked that we put other

graphic and design tools on the list, such
as the very awesome Krita and Inkscape.
KDE came up several times – Karl Ove
Hufthammer noted that the desktop’s
developers produce detailed quarterly
reports of their activities, showing how
donations are used to improve the project
(https://ev.kde.org/reports).

Or perhaps we could fund the future, so
to speak, by encouraging children to take up
programming. Code Club (www.codeclub.
org.uk) provides a network of after-school
programming clubs in the UK, targeted at
children aged 9–11. This might seem rather
young, but then many of us in our 30s and
40s cut our teeth on 8-bit computers such
as the ZX Spectrum and Commodore 64. A

Other projects
Krita, KDE, Inkscape, Code Club…

£120 donation from us would fund a club
for 15 children.

Then there’s Ardour,
The Document
Foundation, GCompris,
GnuPG, OpenSSL (or one
of its spin-offs), science
apps, privacy tools and
much more. But to finish,
we really have to give
a mention to HEGX64’s
idea: “I think some of the
money should be spent
on porting Systemd to
MikeOS”. Well, if you insist…

Over to you!

So, those are just some of the potential recipients
of our profits. Now it’s your turn to vote. We’ve
decided to split up the recipients into two
categories: the first is for organisations, and also
includes Linux distributions. The second is for
software projects. Because our donation pool is
£3,000 in total, that’s £1,500 for each category. And
then we want to have a main winner and two runners

up for each category: the winner gets £1,000,
second place £300, and third place £200. So in total,
six organisations, distros or profits will receive some
financial assistance from us. As mentioned earlier,
it’s not a huge amount of money right now – it’s still
early days for us as a business, but hopefully as
the magazine grows we’ll be able to offer more and
more at the end of each financial year!

To have your say, go to www.linuxvoice.com/
profitsvote1 and choose your favourites in each
category. It’s important to us that our readers decide
the results, so you’ll also need to enter this code to
confirm that you’ve got the magazine: LV3276XJA.
We will keep the voting open until all readers around
the world have the magazine, and then announce
the results. Thanks for taking part!

LV013 034 Feature ProfitShare.indd 37 06/02/2015 13:48

FAQ PULSEAUDIO

www.linuxvoice.com

PULSEAUDIO
Don’t run away screaming in terror. Linux audio is easier to understand than
the, er, boot system, as these two pages will demonstrate.

Hasn’t PulseAudio been with
us since the dawn of time?
Yes, it’s been around for over a
decade. PulseAudio has been

quietly doing its job for years (we’re on
the cusp of version 6.0 in February
2015) amid a cacophony of debate
surrounding its complexity and
effectiveness. And that job is providing
to get sound out of your computer.

Why have you chosen to cover
it now?
There are huge chunks of Linux
that we think need demystifying,

especially when the technology is vital
and current and still being actively
developed. Sound is one of computing’s
fundamental senses, along with video.
We’re also certain that lots of users
don’t appreciate what PulseAudio does
and why it’s so important.

Didn’t the original Sound
Blaster sound card do a decent

enough job for sound?
Ah, the venerable Sound Blaster
expansion card – bringing audio

to PCs since 1989. Things were simpler
then – you’d typically run only one thing
at a time, and that one thing would talk
to your Sound Blaster directly. If you
had a competing Gravis Ultrasound
card, for example, you’d have to make
sure that whatever you were running
supported it. And you also had to worry
about IRQ and DMA addresses. Sound
is more complex now, but at least we
don’t have to worry about IRQs.

But why has sound become so
complicated?
We think the best way of
explaining this is to use a visual

metaphor. Both video and audio suffer
from many of the same problems. With
video, the solution to running lots of
different applications at once is a
desktop and window manager. These
surround the things you want to run
and allow them all to share the same
screen. This is what PulseAudio does for
audio. It allows lots of different
applications and processes to share
your audio hardware, allowing the user
to change their position – or their
relative level – in the final output mix.
This metaphor can be extended
indefinitely: audio sample rate is
synonymous with frame rate – 44100
samples per second for compact discs.
The number of bits used to store a
sample is equivalent to the bit depth of
your display. CDs use 16 bits, or 65536
different levels. Most video hardware
outputs 24-bit depth – 16.7 million

colours. Anti-aliasing, re-sampling, error
rates and compression all have
analogous causes and solutions in
video and audio processing.

But what has all this got to do
with PulseAudio?
In those years since the Sound
Blaster, and we know Linux came

a few years later, Linux experimented
with all kinds of different audio
frameworks – OSS, ALSA, ESD, Jack,
GStreamer, Xine and many more. To a
greater or lesser extent, they were all
trying to simplify audio by hiding the
complexity of what they were doing
from the user. PulseAudio encapsulates
some of these frameworks and ideas,
and tries to augment them with a
modern network transparent framework
that’s responsive and powerful while
remaining simple enough for anyone to
use. Mostly, it succeeds and it’s only
when you need some specific
configuration that you notice its
complexity, or its inability to play nicely
with other audio frameworks. That’s
when it helps to understand a little of
what it’s trying to do.

What is PulseAudio trying to do
that’s so special?
If PulseAudio had a mission
statement, it would be something

simple like, “Initiate a sound and hear it.”
And that’s what makes understanding
what it does relatively difficult. You hear
the results, but you don’t see how

38

“PulseAudio allows lots of
different applications to share
your audio hardware.”

GRAHAM MORRISON

LV013 038 FAQ.indd 38 05/02/2015 21:40

PULSEAUDIO FAQ

www.linuxvoice.com

they’ve been produced. To be able to
perform this one simple task,
PulseAudio needs to bridge the many
layers of Linux audio, some of which we
just mentioned, and it starts at the very
bottom – talking to the hardware.

Isn’t that where you’d normally
need a driver?
Exactly, yes. PulseAudio talks to
audio drivers directly. But these

drivers aren’t specific to PulseAudio.
Instead, it uses the part of the ALSA
framework that talks to your audio
hardware – the bit embedded within
the kernel. ALSA, like PulseAudio,
bridges several different layers, which
may be why there’s so much confusion.
Above the hardware/driver layer, ALSA
is replaced by PulseAudio, because only
one framework can access the
hardware at any one time. That means
your audio hardware only needs to
support ALSA, as used within the Linux
kernel, and it supports PulseAudio too.
This can lead to confusion as you can’t
run ALSA alongside PulseAudio, at least
not without some manual intervention.
So while both use the ALSA driver
element, only one framework can talk
to that driver. If you do want to use
ALSA-only, you have to run it through
PulseAudio or kill of PulseAudio’s access
to your hardware.

Alongside drivers that talk to your
hardware, PulseAudio is also capable of
talking to your network. This is a
little-used feature, but it means that you
should be able to use any of your
machines running PulseAudio as audio
input and outputs for another machine
on the network. You could have Spotify
installed on one machine, for example,
and play its output via another
machine. It’s also the perfect example
of how well engineered PulseAudio is
– the engine is running independently
of the input and output hardware.

How does this all come
together on your desktop?
On top of the driver layer there’s
PulseAudio’s core. This is where

the real work is done, connecting the
capabilities of your hardware drivers to
the software you’re running on the
desktop. Using our audio and video
metaphor, this is where all the images
are combined with the output
capabilities and sent on their way. To

ensure that PulseAudio can be as
compatible as possible with older
systems, a library layer sits atop the
core, allowing applications that know
nothing about PulseAudio to still play
their audio through a compatibility layer.
This is how native ALSA applications
behave, for example, as the ALSA library
is replaced by one that talks to
PulseAudio instead. But the main
desktops are also capable of talking
directly to the core and managing
which parts of their own sub-system
are sending audio. This is what
Ubuntu’s Unity is doing, for example,
and that’s why you have a good degree
of control over what applications are
currently playing back and how loud
they are. Gnome is the same.

This is great, but it still doesn’t
give me access to all that

power you’ve been talking about.
The ultimate in PulseAudio control
comes from the command line,

and specifically, a command called
pactl. For example, typing pactl
load-module module-raop-discover

will load a dynamic network discovery
module that will detect any AirPlay
devices on your network (as long as
roap is compiled into your version of
PulseAudio, which it should be).
Pavucontrol should now list any AirPlay
devices, such as Kano or XBMC, and
allow you to select these as outputs,
enabling you to play music from one
machine that outputs on another, and
there are many more different modules
and combinations.

This sounds straightforward,
should I be worried if

PulseAudio no longer scares me?
Not at all. When it works it’s
brilliant and you don’t have to

worry about it. But hopefully, you’ve got
some appreciation of its complexity
and how it’s performing all this magic,
as well as knowing it can be used for
some advanced trickery too. If you
want to know more about the advanced
stuff and grab version 6 as soon as it’s
been released, PulseAudio lives at
www.freedesktop.org/wiki/Software/
PulseAudio/

39

Get much better control over PulseAudio with the pavucontrol mixer.

LV013 038 FAQ.indd 39 05/02/2015 21:40

JONO BACON INTERVIEWINTERVIEW JONO BACON

www.linuxvoice.com40

Jono Bacon is the co-founder of
LUG Radio, LUG Radio Live and
the brilliant Bad Voltage (www.

badvoltage.org) podcast. He was also
the Ubuntu Community Manager at
Canonical for eight years, providing a

bridge between the company and its
community of users, while at the same
time writing books about community
and conflict, as well as founding the
Community Leadership Summit. Last
summer, he switched streams to join

Has it felt like a natural
progression, going from

Canonical to XPRIZE?
Jono Bacon: I think so. When I joined
XPRIZE and started to think about
building a new community that is
designed to create a brighter future, the
first thing I thought was that
communities share many of the same
principles, so I could pull from much of
my existing experience.

The XPRIZE ethos is based on
solving problems with technology, and
that technology grows at an
exponential rate. I then realised that
communities have this exponential
growth curve in many ways too – we
saw that with Wikipedia, we saw that
with open source, we’ve seen it
politically with the Arab Spring. I never
really realised that communities were
an exponential entity. With that in mind,
when we start socialising that as a
concept, we can define these broader
goals. Much of this is inspired by open
source and my work at Canonical, but I
think we can actually do way more in
the world in new and different areas.

Is this is the emergent
philanthropist in Jono Bacon?

JB: [laughter] Worst philanthropist
ever! I believe that technology can solve
all these major problems but I also
believe that communities are a critical
part of solving these major problems
too. They just need to be better
organised. We’ve been through the dark
ages of community management, now
we’re starting to see people write it
down – we’re in the Renaissance
period. My job at XPRIZE is obviously
focused on the XPRIZE community,

and growing that out. But in a broader
sense as well, I want to get people to
think about what we can do with
communities and how well structured
and organised communities can be
world-changing.

Will exponential growth
happen outside of social

media? That’s a huge challenge.
JB: When I was thinking of going to
XPRIZE, I watched this talk that Peter
[Peter Diamandis – Chairman and CEO
of XPRIZE] did in the Arab Emirates. He
said that as human beings we think in
this local and linear way, because our
brains are designed that way, because
a thousand years ago the changes in
technology or the surroundings
between one generation and another
were very very small. But even the
difference between my dad’s generation
and my generation is huge already, if
we think about what’s happened.

Take the maker movement, for
example. Chris Anderson, who used to
edit Wired, has written this book where
he talks about his granddad moving
from Switzerland, and he basically
invented an automated sprinkler
system in his garage. He spent some
money on getting it patented, and he
sold it to a company and it made a little
bit of money. But it didn’t really have
that much of an effect, and Chris
wondered whether he could do the
same thing using 3D printing, Arduino,
and other pieces.

So he tried to do what his grandfather
did, but designed for today. He did it for
a few hundred dollars. His sprinkler
system would listen to weather.com
and based upon that would apply the

relevant level of moisture. A lot of the
pieces were already there for him
because a community was already
trying to automate ways of growing
weed [laughs] more effectively. So
there’s this massive community of
people who are building these
advanced sprinkler systems basically
driven by hydroponics. What was
interesting was that he could build
something unique because a lot of the
pieces were created by different
communities of people coming
together. And that’s the reason why the
community piece is so important.

Will you have room in your new
job to do that?

JB: With an open source company,
what a community looks like is fairly
well defined. You have the technology
and you get people involved in building
that technology. What’s different with
XPRIZE is that there are going to be lots
of smaller communities because we
have lots of different areas of focus,
from oceans to space to education to
life sciences and more.

The work I am doing is to provide an
on-ramp for anyone to have a practical
effect in changing the world. This
includes people writing code, running
local XPRIZE Think Tank groups,
designing user interfaces for teaching
kids literacy and more. What is fun
about this is that it’s a totally new
community. The job was pitched to me
by Peter and he said, “I want you to
transform our progress at XPRIZE
ten-fold with communities.” We didn’t
get into a lot of the details about how
exactly how it would work: he is the
visionary, the big thinker, and he wanted

JONO BACON
He’s the Pharaoh of community management, but what led him to switch
from Ubuntu to the millionaire philanthropic prize fund, XPRIZE?

the XPRIZE Foundation as its Senior
Director of Community. We sent
Graham Morrison to find out where the
crossover might be, and what open
source and XPRIZE could learn from
each other.

LV013 040 Interview.indd 40 06/02/2015 09:19

JONO BACON INTERVIEWINTERVIEW JONO BACON

www.linuxvoice.com 41

me to come and disrupt our normal
way of working at XPRIZE to explore
how we make it more collaborative and
so anyone can play a role in building
this brighter future.

That’s probably the best way…
JB: It’s great but it’s a bit scary

because this is all new and success is

not assured. We just don’t know exactly
what it’s going to look like. Right now
we are starting with some logical
building blocks and I want to connect
my prior experience to see what makes
sense and what interesting ideas the
community comes up with for areas
where people can collaborate and get
involved. Importantly, our community

will play a key role in what path we
choose to follow; I want this to be a
really collaborative experience.

It could be a great opportunity.
JB: Exactly. But it’s challenging. I

found out from one of my new
colleagues, who is on the Google Lunar
XPRIZE to get a drone on the moon…

“Technology can
solve all these
major problems,
but communities
are a critical part of
solving them too.”

LV013 040 Interview.indd 41 06/02/2015 09:19

JONO BACON INTERVIEWINTERVIEW JONO BACON

www.linuxvoice.com42

That’s just so cool, the fact
that you can just drop that into

the conversation…
JB: I know [laughs]… well, I said to my
colleague that one of the things I want
to do is set up a forum in which teams
can collaborate together on areas of
common interest, instead of all of them
solving the same problems over and
over again. It would be interesting, for
example, to bring industry experts into
the discussion to better support the
teams, and he said, that’s doable with
certain types of space research, but not
all. The challenge today with space is
that if you’re building space technology
over a particular size, then the
government makes you restrict how
that information is shared; they
consider over a certain size to be
creating weaponised space technology.

It’s very diffi cult to build collaboration
within that world, when the government
locks it down. But then that doesn’t
apply to other areas such as oceans,
literacy or whatever else. I went into it
initially thinking we needed to create
one massive XPRIZE community, like
we did with Ubuntu. Now I’m thinking a
little differently about that. I think it will
manifest in lots of different areas.

I guess you could start with
small ideas and see which gain

any momentum?
JB: Exactly. There’s so much we can

do. I know so many smart people that
aren’t currently connected. And when
we connect them together, it is going to
be pretty amazing.

What do you think the open
source communities could

learn from XPRIZE communities?
JB: The thing that XPRIZE does that I
think is really interesting is evolve how
you defi ne incentives for solving these
issues. The prize development process
is really expansive. There’s a lot that
goes into it. It is not just making sure
that the technology exists in the fi rst
place; you want to look at the
technology where we are today,
predictions around where technologies
are going in the next 3–5 years…

Is there a laboratory with
charts somewhere?

JB: Yeah! They bring in industry
experts, consultants, scientists,
business leaders and more. They have
these multiple phases about how a
prize goes from being an idea to
something more.

There are ideas around weather
control, building flying vehicles, curing
diseases, producing better cleanup
technologies, and more. Each idea goes
through this process, but it’s not just
about if technology will get you there
– is there an interest there? Does it
affect hundreds of millions of people?

The goal here is not to build cool
gadgets; it is to bring profound impact
to the world.

But it is also about creating new
industries. Creating great R&D is
nothing if we can’t get it to the market
and get people competing to drive
prices down. This is a big chunk of the
picture too.

A lot of that knowledge of the
challenges in the world, and what we
can do to fi x them, can bubble out in so
many different directions. Some of the
work that’s gone into XPRIZE may
provide inspiration for where developers
may want to focus their efforts, for
example, on software that could be
used as part of these solutions.

It sounds like a dream job.
JB: It is pretty neat. When I

started my career, I wanted to focus my
efforts on having a contribution to
something that has a wider-reaching
benefi t to the world. Canonical was a
great place to do this focusing on
building free and open technology that
empowers people to educate
themselves, start small businesses,
create art, collaborate, and more.

I wasn’t really looking to leave
Canonical, but when this thing came up
– I’d heard of XPRIZE, but I didn’t really
know what it was, so I started looking
at it and thought ‘wow.’ There’s a lot that
could happen here, a lot of potential,

“There’s a mantra at XPRIZE:
‘The day before something is a
breakthrough, it is a crazy idea’”.

LV013 040 Interview.indd 42 06/02/2015 09:19

JONO BACON INTERVIEWINTERVIEW JONO BACON

www.linuxvoice.com 43

but a lot of new and culturally different
work to do. It seemed like the right mix
of a great opportunity but also a real
challenge to get my teeth into.

What’s the most important
lesson you’ve taken from

Canonical?
JB: I think there’s probably two things;
one thing that Canonical really helped
me with is to think in a very strategic
way. To really think about what we want

to do. Where do we want to go? What’s
it going to look like? I learnt a lot of
project and people management from
some amazing people.

The most important thing for a lot of
this stuff is having the passion, and one
of the things I learnt most from Mark
[Shuttleworth – Ubuntu founder and
Earth’s second space tourist], is not that
we’re going to “try” to do this, we’re
going to go out and “do it”. Having that
level of confi dence but not arrogance,
and not dominance, is critical. Ubuntu
doesn’t go out to crush the competition,
it’s out to be better than the
competition, and I think that’s the right
kind of approach, and I learnt a lot from
Mark in that regard. He’s got an
unbending level of positivity and
forward momentum – one of the
hardest things about leaving Canonical
is not working for Mark any more.

Are you still using Ubuntu?
JB: Yeah, but I do have to use a

Mac for work, because XPRIZE has a
small IT team and a limited set of
platforms they can support within the
remit of that team. I use Ubuntu for
everything else and I am working to get
Ubuntu into XPRIZE more.

How do you think your ebook
(Dealing With Disrespect) has

been received? It was a brave thing
to do; stating your case can often be
asking for trouble and it’s so much
easier to just keep your head down.
JB: The thing I was most scared about
in writing that book was that people
might interpret it as tolerating bullying. I
don’t think it’s about that. The book
touches on a big source of conflict
which I think are the different
ingredients that make up a human
being. Age, culture, gender – all those
different pieces. As we all know, when
you start talking about those kinds of
areas, it doesn’t matter what you say,
some people are going to read it in the
way they want to.

Was there anything in
particular that pushed you to

the point of writing it?
JB: Yeah. I can tell you exactly what it
was, and this is going to sound a bit
weird actually. I bought a Playstation 4
– I was sadly one of those people who
lined up outside of a Best Buy at 7
o’clock in the morning – what a nerd.
There’s a feature on Playstation 4 called
Playstation Live, and people can stream
videos live. I’m a big Reddit fan and I

was following the Playstation 4
subreddit and there was post on there
at the top that said there was a guy live
streaming right now who’s drunk and
he’s just kicked his dog and he’s hitting
his wife or girlfriend – and the post said
“He’s live streaming now, go and check
it out.”

So I went to check it out and he was
surrounded by cans of Bud Lite and he
was on the phone – this is a little bit
funny – but basically, he gave his phone
number out on the live stream so
people were prank calling him
pretending to be this MMA fi ghter or
something, Reddit had conspired
around this. On the one hand it was
funny, and people were egging him on.

What was clear to me though was
that this guy was having a breakdown. I
started typing in, “Turn the Playstation 4
off. Go to bed and sober up. Just, stop
this.” And people started giving me grief,
saying, “What the hell is wrong with you.
This is brilliant, blah, blah…” People were
insulting me and I was just trying to be
a good citizen.

I was really angered by this. These
people are absolute idiots, and it got me
thinking about the conduct of people on
the internet and how mean spirited
people can be to serve their own
interests and opinions. And that was
the night I had the idea for the book. I
had the benefi t of being the community
manager for a large open source
project and I’d learned a set of things
that are now in the book. Most people
don’t go through that experience so
they’ve not had that opportunity to learn
how to put things in context and
develop a thicker skin.

There’s some weird voyeurism
going on. They’ve got a games

console and they’re sitting with a
beer watching other people
watching other people.
JB: One of my goals for the book is that
when someone’s in that position and
someone has said something mean,
and it dings that person’s confi dence, I
want someone else to say, “You should
read this book. It’s really quick and easy
– you can read it in a couple of hours.
That will help.” And that’s the reason
why it’s free to download and it’s
available online. I hope it helps people
stay focused and positive on creativity
and not negativity.

Jono says the worst thing about moving from
Wolverhampton to California is being so far
away from the Black Country Living Museum.

“The goal here is not to build
cool gadgets; it is to bring
profound impact to the world.”

LV013 040 Interview.indd 43 06/02/2015 09:19

www.linuxvoice.com

INSIDE THE FSFE

You’ve almost certainly heard of the Free
Software Foundation before. This is a
US-based non-profit organisation set up by

Richard Stallman, the creator of GNU, in 1985.
Originally it was established to fund programmers, but
over the years it has moved into other realms, handling
legal issues and promoting Free Software.

Since 2001, a European spin-off has existed: the
Free Software Foundation Europe (FSFE – www.fsfe.
org). It’s a sister organisation of the FSF, but also a
financially and legally
separate entity. On a recent
trip to Berlin, we poked our
heads into the FSFE office
to see how they work on a
daily basis.

We spoke to Matthias
Kirschner, the Vice President, and asked him what the
organisation does: “Along with promotional materials
like leaflets, which we provide to people who want to
spread the word about Free Software, our other
activities include lobbying work. We go to Brussels,
participate in meetings, talk to people in the parliament
and the European Council. We explain digital
sovereignty, that you should control your own
infrastructure and talk about device ownership.”

Dealing with politicians is tough, though, especially
when they’re not technically inclined. Matthias
described how in the early 2000s, when he
approached politicians to talk about Free Software and

44

Mike Saunders and Graham Morrison popped by the FSFE
head office in Berlin to see how the organisation is spreading

the word about FOSS.

INSIDE THE

related issues, he felt he was often dismissed. “They
would think: who are these freaks, talking about
source code and digital rights and stuff?” But as time
went on, as more and more people started
approaching their local politicians and MEPs about
these issues, they had to take it more seriously – or at
least, ask their staff to find out what it’s all about.

Along with lobbying, the FSFE works to distribute
materials that help people to understand Free
Software and the importance of having control of your

own data and
devices. The
Snowden
revelations have
been particularly
important in this
respect, and in

recent years the FSFE has moved from preaching to
the choir – that is, telling people who already use
GNU/Linux about the importance of Free Software –
to spreading the word among the uninitiated:

“We have started to go to more events where Free
Software is usually not represented. For instance, our
Munich group has been to two street festivals, where
they have a pavilion and give out information about
Free Software. We hand out thousands of leaflets at
street festivals in Düsseldorf too. Our Vienna group
goes to a big game conference – they wanted to have
more general information about Free Software, for
people who don’t know what it is at all.”

“We have to fight for our freedoms…
but it’s important to recognise your

successes as well.”

LV013 044 Feature FSFE.indd 44 05/02/2015 21:43

www.linuxvoice.com

INSIDE THE FSFE

45

When Citizenfour (a film covering the NSA spying
scandal) hit the cinemas in Berlin, FSFE supporters
stood in front of the cinemas, handing out leaflets
explaining the importance of email encryption and
how to use GnuPG. In one cinema in the UK, these
leaflets were also handed out when people bought
tickets, so this targeting is becoming increasingly
important to the FSFE.

This good work can only happen if the organisation
is well funded. Thankfully, it is. “Around one third of our
donations come from our Fellowship”, says Matthias,
“those are sustaining members. The rest is from
company donations or one-time donations from
individuals. Sometimes we also have EU projects that
provide funds. Then there are speaker fees and
merchandise, but the main thing is donations.”

Join us now and share the software
We were also curious to learn about Richard
Stallman’s involvement in the FSFE today. Matthias
explained that for daily jobs and short-term projects,
they don’t coordinate with him all the time. “But
sometimes Richard sees something and gets
involved. Like, we originally had a Free Your Android
page on our website. It was just a simple wiki page.
But Richard emailed and said: ‘This is a nice

campaign, but you should change X and Y and Z, and
that would make it better’.”

But what would happen if Stallman were to step
down? Matthias doesn’t think this is likely any time
soon – he may go slower as the years roll on, but his
passion and enthusiasm are as strong as ever. But
Matthias also noted that Free Software has become
much bigger than just a single personality, and the
principles are what really drives the movement now.

At the end of our visit, we asked Matthias if he was
happy with what the Free Software Foundations have
achieved so far. He noted that a lot has been done, but
it’s a long-term battle, comparing it to freedom of the
press. That didn’t come in overnight, but was a long
process and has to be maintained and fought for. Free
Software is doing well, but to get it into more
government, schools and other public institutions, a
long slog is required.

“We have to fight for our freedoms, again and again
and again. But it’s important to recognise your
successes as well. Look at all the devices around the
world running Free Software. Look at all those
companies that thought Free Software was a virus in
the IT field, and now they publish their work under Free
Software licences. Lots of companies now talk about
Free Software as if they invented it!”

FSFE’s Berlin Office
For the 2014 European
elections, the FSFE created
the “Free Software Pact” a
document that candidates
for the European
Parliament could sign
saying that they favour
Free Software and will
protect it from potentially
harmful legislation (www.
freesoftwarepact.eu). 162
candidates signed up, and
33 were elected.

LV013 044 Feature FSFE.indd 45 05/02/2015 21:43

46

LV013 046 Ad FSFE.indd 46 06/02/2015 10:43

47

LV013 046 Ad FSFE.indd 47 06/02/2015 10:43

Email andrew@linuxvoice.com to advertise here

LV013 048 Ad Advertise.indd 48 06/02/2015 10:44

 INTRO REVIEWS

www.linuxvoice.com 49

The latest software and hardware for your Linux box, reviewed
and rated by the most experienced writers in the business

REVIEWS

Andrew Gregory
Wise man say, the best way to start a new
project is to finish the old one.

The selection of reviews over the
next few pages illustrates a
truism of Linux and Free

Software: choice is good. Like the verse
on Ozymandias’ plinth, these words will
reach down through the generations
long after all else is dust. Choice gave
us a fork of OpenOffice. Choice gave us
OpenOffice in the first place, when the
pragmatic majority would just have
stuck with Microsoft Office.

Choice gives us the CubieBoard.
Surely there’s no point launching an
ARM board in the teeth of the 4.5
million-selling Raspberry Pi? Oh but
there is – with a slightly different focus
on what users want, this little device will
carve out its own nice, and the two will
live happily side by side.

Let a hundred flowers bloom
Icaros may seem pointless to many.
But its ultra-low system requirements
mean that, despite its roots in a
20-years defunct OS, it could yet get a
new lease of life in embedded, mobile
or otherwise Internet of Things
appliances. And KDE? Once dominant,
it lost ground by failing to listen to its
users; it had to fight back to survive,
and has now improved beyond
measure to reclaim its position as king
of the desktops. That’s what choice is
about. We’re lucky to have it.
andrew@linuxvoice.com

On test this issue...

BOOKS AND GROUP TEST
Lawrence Lessig is a man well worth listening to, and
his book Free Culture is a great read. On the one hand
it’s about copyright law; on the other, it’s a story of
the way in which big companies are monopolising
(ologopolising?) parts of our culture that have
traditionally always belonged to everyone.

In the Group Test we’re looking at the BSDs. This
Unix-derived operating system very nearly grew to
become the operating system that Linux is today, but
a historical quirk has largely kept it in the server
room. Spin up a virtual machine and try one out!

KDE Plasma 5.2
Ardent Prince fan Graham Morrison plays
with the desktop environment formerly
known as plain old KDE.

52

LibreOffice 4.4
The Free Software world’s favourite office
application is back, and Mike Saunders is
here to put it through its paces.

50

Icaros Desktop 2.0.3
Mike Saunders investigates a retrostalgic
alternative desktop experience born out
of the Amiga OS of the early 90s.

54

CubieBoard A20
ARM-based boards are all the rage at the
moment. John Lane tests one with huge
amounts of potential.

53

LV013 049 Reviews Intro.indd 49 06/02/2015 10:12

KDE PLASMA 5.2 REVIEWSREVIEWS KDE PLASMA 5.2

www.linuxvoice.com50

KDE Plasma 5.2
Graham Morrison finds another way of spreading the good word about KDE –
reviewing a release he can recommend.

The KDE desktop, or KDE Plasma 5 as it is now
known, is developing at quite a pace. The
major 5.0 upgrade came in August 2014 with

this major update following less than six months later.
In the past, this could signal that stability has been
thrown out with the demands of adding new features.
But not this time. We’re very happy to report that the
one new feature in this new release that you can’t see
– it’s stability – is the best reason for making the
upgrade. After weeks of running KDE Plasma 5.2 on
our two main machines, we’ve experienced fewer
crashes and stability issues than with any previous
KDE release. The panel does occasionally crash, and a
few wayward widgets can force you to restart Plasma
manually, but nothing caused us any loss of data or
complete loss of our desktop session.

Other than the sisyphean chore of bug squashing,
a huge amount of effort has been expended polishing
the visuals. Not only does this make everything
far prettier, we think it’s a great sign that the APIs
have reached maturity and that the developers
have enough confidence in their capabilities to start
fleshing out Plasma’s appearance. If you’ve got a
high-resolution display, the first you’ll notice of this are
the system tray icons in the panel. These show your

Wi-Fi signal or highlight any notifications. So too are
the global icons you find in the launch menu. They’re
now all monochrome, pristine and perfectly scaled, as
befits their vector sources.

To go along with these, there’s an entirely new
icon set which has been designed to complement
the minimal aesthetic. Design is always going to
be subjective, but we love the new designs. They’re
abstract and colourful with a kind of solarized 1980s
neon palette that gives an overall impression of
lightness and simplicity. Even better, there are dark
versions for those of us who prefer a reversed colour
palette. In-keeping with appearances, we also really
like the Breeze window decoration that retains the air
of minimalism while injecting a little character into
your desktop.

Warm and GUI
These icons also scale perfectly in the launch panel,
which is brilliant for higher resolution or high-DPI
displays, although the same doesn’t happen for the
bitmaps used by the task manager applet. We’re also
slightly bemused by the lack of a higher resolution
version of the desktop background image. The panel
itself has had some refinement, with the main feature

DATA
Web
kde.org
Developer
Team KDE
Licence
LGPL/GPL

We experience a couple of
glitches – such as option
selection in the launch
menu – but this is the
most stable release of
KDE yet.

LV013 050 Review Plasma.indd 50 05/02/2015 21:44

KDE PLASMA 5.2 REVIEWS

www.linuxvoice.com 51

LINUX VOICE VERDICT

being the ability to undo the removal of a widget. We
appreciate this feature, but we feel it highlights a
problem with panel and widget placement in general.
It’s difficult to hit the target when you’re click-dragging
something, and the addition of an undo only mitigates
this issue rather than providing a genuine solution. The
new ‘Add Widgets’ window, for example, is now shown
vertically against the left edge of your screen, and it’s a
long click and drag to install a widget from the top-left
of your display to the bottom-right of your panel.

Widget creation is now officially based on QML
2, and older 4.x widgets will need porting. This
has left Plasma with very few widgets to choose
from, and the skeletal list that greets you when you
click on ‘Download New Plasma Widgets’ is very
disappointing. The technical documentation that
should describe how to create your own widgets
is also lacking, with only the guide to their abstract
structure currently visible at techbase.kde.org. We
wanted to create our own ‘show the date’ widget,
which should be the simplest of the simple things
to create. But with a missing tutorial and no real
guidance, we had to postpone our plans. The lack of
decent guidance is also going to hinder adoption.

With each new release, more of KDE’s native
applications get ported to the new frameworks.
Old applications aren’t a huge issue because it’s
now perfectly feasible to run both KDE 4 and KDE 5
applications side by side with no noticeable side-

effects, but it does mean newer applications can take
advantage of all the new developments. These include
Kate, Konsole, Muon and Gwenview alongside new
tools for managing Bluetooth devices and SSH keys
in this release. There are many more that need to be
ported, but this is firm progress and when you check
the Git repositories for many of the other components,
you’ll often find versions using the newer frameworks.
The old KDM login manager has been replaced by the
long-recommended SDDM, which now includes its
own configuration panel. And the reordering of results
in our default application launcher, Kickoff, has finally
made it usable again.

This is the first KDE Plasma 5 release we’d
recommend to avid KDE 4.x users, because the
appearance, stability and refinements are worth
braving the missing elements. More conservative
users will be better off waiting for a proper audio mixer
applet and a fully populated configuration panel and
file manager, but if you enjoy using KDE for the sake of
it, this is the strongest release yet and one that fills us
with excitement for the future of its development.

A great release that gets us excited
about the next 18 months of KDE
development.

Inside Digia and Qt 5.4

KDE Plasma 5.2 is built on Qt, can be run on either version
5.3 of Qt, or version 5.4, which was released in December
2014. We had a chance to visit the Qt/Digia offices in Berlin
at the same time, where were able to talk with Maurice
Kalinowski, one of Qt’s first two developers in Germany back
in 2006.
We asked how he balanced the commercial interests of Digia
and Qt with the obligation that Qt has to open source and
the KDE project.

“Everyone here in the company is an open source
advocate, but clearly we also need to see how we can make
a living out of that. The general idea is that, at least with
the basic offering, everyone should be able to use what we
do,” Maurice told us, adding that this means the project is
committed to both the GPL and the LGPL licences currently
used. Any licensing changes come afterwards, “when it
comes to very tailored user cases or very deep core user
cases – when it comes to deep profiling tools,
for example. We then make an offering that is then attractive
to somebody.” Maurice is referring to the QML compiler, first
released in Qt 5.3 only for paying users of Qt, along with an
additional profiler that’s being developed to speed up those
users’ code.

The non-free nature of these tools has caused some
criticism, with Aaron Siego saying in May 2014 that he
hoped there would be an open source version by the release
of 5.4, or that the community may have to provide one. But
other Digia/Qt initiatives, such as the open governance
model, have had a positive effect on Qt and its relationship
with KDE. Maurice told us that this in particular has helped
KDE get closed to Qt core, simplifying KDE’s own libraries
and building a better experience for everyone.

We had a quick chat with the Senior Manager of Qt
tools, Maurice Kalinowski, just as Qt 5.4 was being
unleashed onto the world.

LV013 050 Review Plasma.indd 51 05/02/2015 21:44

REVIEWS OFFICE SUITE

52

LibreOffice 4.4
It’s the “most beautiful” release yet, according to the developers,
but is it more usable? Mike Saunders investigates.

It’s now possible to update and edit styles directly from
the drop-down list.

A comparison of Writer
toolbars between the
current and previous
release – and note the new
sidebar on the right.

Over the years, we’ve had a love-hate
relationship with LibreOffice (and its previous
incarnation as OpenOffice.org). We love it

because it’s a hugely versatile and well-integrated
office suite that does 99% of typical jobs that people
use MS Office for, and is therefore a great way to wean
people off Microsoft’s wares. We use it extensively in
making this magazine – not just in writing articles, but
in managing our subscriber database and other
non-editorial jobs.

So any improvement is most welcome, and
LibreOffice 4.4 – described as “the most beautiful
version ever” by The Document Foundation – is
one of the most ambitious releases we’ve seen in
a while, with some fairly significant changes to the
interface. No, LibreOffice hasn’t adopted the “ribbon”
menu of Microsoft’s suite, but the toolbars have been
redesigned to remove rarely-used buttons and add
quick access to other features.

In Writer’s top toolbar, for instance, the “document
as email” and “edit file” buttons are gone, while
buttons for adding page breaks and comments
have been added – very sensible decisions, we
feel. The second (formatting) toolbar has also been
redesigned, with easy access to extra formatting such
as strikethrough, superscript and subscript. Styles in
the drop-down list can now be edited in place, while a
sidebar is enabled by default to provide quick access
to properties for the current character or paragraph,
along with a document navigator and image gallery.

Ch-ch-ch-ch-changes
Calc and Impress, LibreOffice’s spreadsheet and
presentation components, have seen overhauls of
their toolbars and interfaces. And in general, we’re

happy with the changes: they’re significant enough
to make the suite more pleasant to use, especially for
newcomers, but they’re not too invasive that long-time
users will feel like it’s an entirely different program.

But there’s a lot more than just cosmetic changes.
Document import and export has improved greatly:
there are new import filters for Adobe Pagemaker,
MacDraw and RagTime (a German DTP program) files,
while the existing filters for Microsoft Visio, Publisher
and Works spreadsheets have seen lots of work. The
OOXML filters have been tuned for greater fidelity
to the original documents, and it’s now possible to
connect LibreOffice directly to SharePoint installations
– a boon for enterprise users.

Another new feature is master document
templates. Previously, master documents could be
used to group a number of documents together, such
as chapters in a book. It’s now possible to create a
template from a master document based on some
initial content, so you can re-use it to create other
master documents with that content in the future.

Outside of these major changes, there have also
been hundreds of small tweaks across the whole
suite. The LibreOffice team has spent much of the
last five years cleaning up and refactoring old code –
doing a lot of work under the hood to make the suite
faster and easier to build – and while that was an
admirable job, we’re happy to see more user-facing
changes in this version. A brilliant future awaits.

LINUX VOICE VERDICT
The GUI changes are very welcome –
they make the suite more accessible
without baffling existing users.

DATA
Web
www.libreoffice.org
Developer
The Document
Foundation
Price
Free (open source
licences)

www.linuxvoice.com

LV013 052 Review LibreOffice.indd 52 05/02/2015 21:45

OPERATING SYSTEM REVIEWSREVIEWS GOOGLE CARDBOARD

www.linuxvoice.com 53

Icaros Desktop 2.0.3
The Amiga lives! Well, sort of. Mike Saunders explores this distribution of AROS,
an Amiga-ish open source operating system.

Amiga fans will remember Directory Opus – it was open
sourced in 2000 and runs on AROS/Icaros!

Icaros has the basic Amiga
Workbench layout, and
spruces it up with extra
panels and utilities.

Many of us at Linux Voice cut our teeth on
the Commodore Amiga, arguably the best
home computer of the late 80s and early

90s. When most PCs only had a buzzing piezo
speaker for sound and struggled to display more than
16 colours, the Amiga’s custom chipsets provided
fantastic audio and graphics. And then you had a
multi-tasking, lightning fast GUI operating system, a
wealth of games and productivity tools, and a
passionate community. Those were great days.

Still, Commodore was utterly abysmal at marketing
and made a bunch of inexcusable errors. Dangerous
Streets, for instance, was a detestably bad Street
Fighter II clone that received a 3% score in Amiga
Power – yet Commodore bundled it as the main
game with its CD32 console. In short, the Amiga was
awesome and everyone at the time ended up hating
Commodore for being so rubbish.

Today, we have an open source AmigaOS-like
operating system in the form of AROS (www.
aros.org). It’s small fry compared to other FOSS
platforms like Linux and FreeBSD, but it has an active
development community and keeps the spirit of the
90s alive. AROS implements many AmigaOS 3.1 APIs,
and the x86 PC version includes a Motorola 68k CPU
emulator, making it possible to run some games and
programs that were written for the original machines.

Icaros Desktop is a distribution of AROS, taking the
core OS and adding various programs and desktop
tweaks on top. You can burn it to a DVD and boot it on
a real machine, and then install it to your hard drive –
or test it out in a PC emulator such as VirtualBox.

Down memory lane
If you’ve used Amiga Workbench before, AROS
will be immediately familiar: it’s prettier and more
colourful, but largely the same, with utilities and
filesystem locations that have barely changed since

the glory days. If you never had the opportunity to
play around with an Amiga (and our hearts go out
to you in that case), you’ll find that it’s not a difficult
OS to explore. Double-clicking the AROS live CD icon
on the desktop opens a file manager; this provides
access to the utilities and demos included with the
Icaros distribution. There’s even a command line shell,
although it’s very different to those in Linux/Unix.

Icaros is supplied with a small collection of desktop
programs: a web browser, a media player, a simple
word processor and others. These applications are
rather limited compared to the likes of Firefox and
LibreOffice, as expected, but they run at a blistering
pace. Of course, there’s plenty more Amiga software
out there, some of which is open source and still being
updated – see http://archives.aros-exec.org.

AROS isn’t going to replace your favourite desktop
Linux distro any time soon, and it’s very lacking in
places. But it’s a fascinating project, and we want to
give it more recognition. As much as we feel at home
in the comfy combination of GNU and Linux, we’re
always intrigued by other OS projects with different
designs and goals. Maybe there are some things
Linux developers can learn from AROS, or indeed
other OS-recreation projects like Haiku OS…

LINUX VOICE VERDICT
Everything that we loved on the
Amiga, running on modern hardware.
Just don’t expect loads of features.

DATA
Web
http://vmwaros.
blogspot.it
Developer
Icaros and AROS teams
Price
Free (open source
licences)

LV013 053 Review Icaros.indd 53 05/02/2015 21:47

CUBIEBOARD A20 REVIEWSREVIEWS CUBIEBOARD A20

www.linuxvoice.com54

CubieBoard A20
Looking for a little more power than the Raspberry Pi offers, John Lane wonders if
the CubieBoard A20 can deliver…

The Raspberry Pi is great, as you’ll know if
you’ve not ben stuck under a rock for the past
three years. But there’s so much more out

there. You can now choose from loads of alternative
small-board computers, including many that are
packed with additional features for not much more
money than the Pi. One such board, the CubieBoard,
was launched in 2012 with native Ethernet, a built-in
4GB NAND flash drive and an on-board SATA
connector. An upgrade in 2013 giving it a dual-core
CPU and 1GB of memory was released as the
CubieBoard 2, sometimes referred to as the
CubieBoard A20 after the AllWinner A20 chip at its
core. Although roughly twice the price of a Pi, it’s still
affordable, and it can run Linux and Android.

For your £45 you get the power, SATA and USB
cables that you need to get started. You just need to
add a power supply (a USB phone charger will do),
keyboard, mouse and a HDMI display.

The underside of the board sports two 48-pin
connectors among a
heap of connection
options. One such is
VGA video – you can
directly wire up a VGA
port and use any old
VGA monitor, opening
up a the possibility of using it with hardware that may
otherwise be thrown away, which could potentially be
a huge factor when assessing total cost of ownership.
Other nice touches include a reset button, audio line-in
and an infrared port that will come in handy if you
want to use a remote control with it.

There is a micro-SD card slot, which is one of
several places the board will boot from – you can also
boot from the NAND flash ROM or via the network

but you can’t boot from the on-board SATA interface.
There is also a variant of the board that has a second
micro-SD card slot instead of the NAND flash ROM.

An additional mini-USB On The Go port is provided
to connect the CubieBoard to a desktop PC to perform
flash updates using AllWinner’s LiveSuit software. This
mode of operation is called FEL mode and operates
similarly to the recovery mode available on some
smartphones.

The on-board NAND flash ROM comes pre-loaded
with Android, so you can plug in and use the device
straight away. But you’ll most likely want to install a
Linux distro to use it for your own projects, and this is
where the fun begins…

It’s good to keep talking
Something to bear in mind is that, unlike the
Raspberry Pi, the primary way of communicating with
the CubieBoard is over its serial port. You can activate
its HDMI port during boot, but a serial port is handy if

you want to see early boot
messages, something we
found essential for
troubleshooting. We used
a USB serial adapter and
the GNU screen tool for
this. To install another

operating system you’ll need an SD card; the easiest
way to get started is to download a prepared image
for your chosen Linux distro. For those coming from a
Pi background, the obvious choice is a distro called
Cubian, a Debian spin inspired by Raspbian. For a
more hardcore experience, “ArchLinux ARM” supports
it too.

Cubian comes in three flavours, a desktop version
with the Mate desktop or a text mode called Nano,
either with or without the HDMI display support; the
latter leaves more memory free for you to use. It’s a
2GB image that will require a micro SD card of at least
that size. The download is a 7-Zip archive so you’ll
need to install the appropriate tool to unpack it (try
apt-get install p7zip-full or pacman -S p7zip).

Install your chosen image onto a spare micro SD
card. Do this from another machine with dd (take the
usual precautions to ensure you write to the correct
device). Insert the card into the CubieBoard, attach a
keyboard and monitor and start it up.

You’re given the chance to change some options
when you start Cubian for the first time, and this is a
good time to localise your install and set a password.
You can then log in and you’ll find the usual gamut of
applications. The included SMPlayer gave good results
streaming full-screen standard video across the

DATA
Web
cubieboard.org
Price
£45.95

The CubieBoard 2 is
marginally larger than the
Raspberry Pi but offers a
lot more connection
options.

SPECIFICATIONS
CPU Mali400mp2,
OpenGL ES GPU
RAM 1GB DDR3
@480MHz
Video out HDMI 1080p
Networking 10/100
Ethernet
Storage 4GB NAND flash
Connectors 2 x USB
Host, 1 x micro SD slot,
1 x SATA, 1 x infrared,
2 x 48-pin headers
exposing I2C, SPI, RGB/
LVDS, CSI/TS, FM-IN,
ADC, CVBS, VGA, SPDIF-
OUT, R-TP

“Those comfortable with a more
bare-bones approach may prefer
to use Arch Linux ARM.” BUY MUGS AND T-SHIRTS!

LV013 054 Review Cubieboard.indd 54 05/02/2015 21:48

CUBIEBOARD A20 REVIEWS

www.linuxvoice.com 55

LINUX VOICE VERDICT

network, but the device struggled with high definition
material, even after installing the more capable VLC.

Cubian includes a tool to transfer your installation
from an SD card onto the internal NAND ROM. All you
need to do is install and run the cubian-nandinstall
package, shut down, remove the SD card and then re-
start. However, this failed for us, and attempts to gain
answers via the forums were unfruitful.

Those comfortable with a more bare-bones
approach may prefer Arch Linux ARM. If you follow
the CubieBoard 2 install instructions to the letter,
you’ll be able to boot the board without any problems
and log in to Arch Linux over SSH. The default Arch
install leaves you on your own, however – you’ll have
to manually configure the HDMI output unless you’re
happy with the serial port and/or SSH. However, the
active forum is a haven when in need of support.

The inclusion of a powered SATA port sets it apart
from most of the other small-board computers
available, while having twice as many cores and
memory affords more acceptable performance.

The CubieBoard and Linux-sunxi forums are good
but there is nothing like the ecosystem that has grown
up around the Pi. However, this has the greater impact
on beginners, and we feel that the CubieBoard isn’t
aimed at more advanced users. Experts can use Arch
Linux ARM and its forum, where there is a dedicated
AllWinner sub-forum.

A well-capable board with varied
connectivity options and good support
for Linux and Android.

Use the LiveSuit installer to
upload images to the
NAND Flash ROM.

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com
LV013 054 Review Cubieboard.indd 55 05/02/2015 21:48

REVIEWS BOOKS

www.linuxvoice.com56

Ben Everard saves £1,000 by reading about San Francisco instead of going there.

Liz Ryerson, the artist featured on the
cover, also wrote the afterword sharing her
experiences in the industry.

C lipping Through is a travel book about
a computer games conference. We’ll
be honest, that sounds like a strange

premise for a book. However, like many good
travel books, it’s not really about the place
– the Games Developer Conference is just
the backdrop to Leigh Alexander’s treaty on
the state of the video games industry. She
interweaves tales from her long journalistic
career in video games with a warts-and-all
diary of the conference.

Actually, it’s less of a diary and more a
series of snapshots. These snapshots
include interviews, discussions on
interpretations of games, and the inequality
evident in San Fransisco. It’s well written, and
surprisingly coherent given the wide range of
subjects covered.

This book is a view of all the aspects of the
video games industry that don’t get covered
elsewhere: The odds-and-ends, the ugly bits,

the alcohol-fuelled bits. It’s a book for people
who want to know what goes on behind the
scenes of games, but not the conventional
behind-the-scenes coverage.

There’s no print version, but for $5 (with
the option to pay more), you get the book in a
range of digital formats (Epub, MOBI, PDF
and DOCX). We have serious concerns about
anyone who wishes to read a book in DOCX
format. Oh, and before you ask, no, this isn’t
a book about ethics in video games.

Surprisingly readable for its breadth of subjects,
and very evocative of a place and time.

LINUX VOICE VERDICT
Author Leigh Alexander
Publisher Gum Road
ISBN None
Price $5+

Free Culture: The nature and
future of creativity
You’ll never take Ben Everard’s freedom.

There are a few books that we would
consider essential reading for
anyone interested in open source,

and Free Culture by Larry Lessig is one of
them. It’s a decade old, but age hasn’t
lessened its importance. Perhaps the last 10
years have actually lead to the message of
the book being more acute now. As you can
probably tell from the title, it’s not about
software specifically, but about the ability to
share any creative works. This should come
as no surprise, since Lessig is one of the
authors of the Creative Commons licences.

Lessig is a lawyer by training, and that
inevitably means the book is heavily
influenced by the legalities and legal
challenges around sharing, particularly in
America. This may not sound like a great
read, but let us assure you that it is. Lessig’s
passion flows through every word in his
highly thought-out defence of the right to
share. His primary argument is against the

continued lengthening of copyright terms at
a rate which appears to make them infinite.
For anyone who is unsure which side of the
debate they sit on, Lessig’s arguments in
favour of freedom are compelling, at least to
this reviewer. Free Culture puts the fight for
freedom in its historical context (it goes back
to Shakespeare) and highlights the forces
that are working against it. It shows the
weapons and tactics that the enemies of
freedom are using to bring all content into
their protected domain.

Probably the most interesting book ever written
on the subject of copyright law.

LINUX VOICE VERDICT
Author Lawrence Lessig
Publisher Penguin Books
ISBN 978-0143034650
Price £10.56

We use Creative Common’s licences – co-
written by Lessig – when we free our issues
because we believe in Free Culture.

Clipping Through

LV013 056 Reviews Books.indd 56 06/02/2015 13:56

REVIEWS BOOKS

www.linuxvoice.com 57

The end of
IPv4 is nigh.

We’ve been told for a while that
IPv4 is untenable for the future
of the internet. It’s going to be

impossible to have a shiny new Internet of
Things, with its conferences in California
and ear sensors, with IPv4’s pathetic 4.3
billion address limitation. But like ADSL,
it keeps hanging on and adapting to
whatever our crazy world of computers
can throw at it.

IPv6 is the answer, and it’s finally
becoming more prevalent. Many ISPs
now provide compatible routers, even
if they’ve not turned the facility on, and
Google’s IPv6 adoption statistics have
started to ramp up – currently at 6% of
internet traffic. This is where this book
comes in. It’s not too long, and while its
style is CompSci rather than entertaining,
we liked the practical examples that used
WireShark to monitor IPv6 DNS traffic, even
when most chapters finish with a huge list
of RFCs for reference. But the best thing
about this book is that it’s relatively easy

A great overview that leaves you knowing
what you need to do next.

LINUX VOICE VERDICT
Author Silvia Hagen
Publisher O’Reilly
ISBN 978-1-449-31921-2
Price 26.50

to understand. That’s not a simple trick to
pull off with network concepts, and it’s the
reason why we’d recommend this book as
any reader’s first step to IPv6 migration.

Pack this for the IPv4 apocalypse, says Graham Morrison
IPv6 Essentials (3rd edition)

Badass: Making Users Awesome
It’s fantastic to see Kathy Sierra back.
We’ve loved many of her Head First titles, and
she has a wonderful knack of writing insightful
things about users. This is a book about
creating successful users, and we can’t wait
to read it.

ALSO RELEASED…

Kathy Sierra is back
and she’s writing
about users!

BeagleBone for Dummies
After enjoying Raspberry Pi for Dummies (see
left), we’re now looking forward to the release
of this – hopefully the same treatment but for
the more open and equally cool BeagleBone
hardware. Arguably, a book like this is more
important as there’s less help available online.

Be the cool kid
in class with a
Beaglebone.

How Linux Works
This is the second edition of a book we already
think is good. It’s ideal for those users who
want to take their Linux knowledge further, and
is perfect if you’ve been messing around with
the desktop and command line for a while and
want to know what makes it all tick.

Raspberry Pi for Dummies (2nd Edition)
Graham Morrison finds the perfect book for David Cameron.

Mike Cook
used to write
a column for
Micro User in
the 80s .

Despite the launch of a new
Raspberry Pi model, and the likely
glut of new book editions that are

going to flood the market, there’s nothing
in the new model that breaks compatibility
with the old, which means books like this
will remain just as useful in the quad-core
era of Raspberry Pi 2.0.

This is just as well, because this
Dummies title is an excellent introduction
for the complete beginner to both the
hardware and Linux itself. A lot of pages
are dedicated to setting up, for example,
discussing what should be plugged in and
where. There are chapters on using the
desktop, and an introduction to the shell.

 We also like the creativity of
the sections dealing with Scratch
programming, followed quite naturally
with some more advanced ideas written
in Python. The book is topped off with a
substantial section on building your own
circuits for more ambitious projects. It’s
exactly this kind of progression that the

Raspberry Pi was created to nurture, and
it’s good to see a well written book from
such a successful brand taking the trouble
to get this right.

A comprehensive and gentle overview of
everything you need to get started.

LINUX VOICE VERDICT
Author Sean McManus & Mike Cook
Publisher Wiley
ISBN 978-1-118-90491-6
Price £17.99

Shouldn’t that
be GNU/Linux?

LV013 056 Reviews Books.indd 57 06/02/2015 13:56

GROUP TEST BSD DISTROS

www.linuxvoice.com

For the distro hoppers among
us, a Linux distribution is just
a collection of applications

and utilities. We can be productive
with any distro as long as it gives us
access to our cherished and trusted
tools. So how about a diversion into
the land of the BSDs?

While they haven’t caught the
fancy of the mainstream tech
press, the BSDs are known for their
robustness, reliability and security
and are fairly popular with system
administrators. That said, you can
slap popular open source apps
on top and use BSDs for everyday
desktop computing tasks, such
as browsing the web, listening to
music, watching DVDs, playing
games and reading PDFs. Also of
note is their devoted community of
developers and users.

The modern day BSDs that we
have on test in this feature can
be traced back to the 1970s. BSD
stands for the Berkeley Software
Distribution. It was the name of the
toolkit of enhancements for UNIX

that was created at the University
of California, Berkeley. In contrast to
UNIX, which was developed at Bell
Labs, BSD was created by students
and faculty at the University. BSD
was distributed as a package of
software enhancements for UNIX
that made it useful in the real world,
outside of a research laboratory.
Over time, BSD evolved and
replaced every part of UNIX and
became a usable operating system
in itself. The current stable of BSD
distros are a family of OSes that are
derived from the original.

The three most notable
descendants in current use are
FreeBSD, OpenBSD and NetBSD.
The majority of current BSD OSes
are open source and available for
download for free under the BSD
Licence, with Mac’s OS X being
the most notable exception. In
this group test we’ll evaluate the
strengths of the most popular BSD
distros and help you pick one that’s
both easy to use and can be used
for a wide variety of applications.

There’s more to open source than Linux. Mayank Sharma takes
an excursion to test some BSD distros.

GROUP TESTBSD DISTROS

“The modern day BSDs that we have
here can be traced back to the 1970s.”

58

URL www.freebsd.org
VERSION 10.1
LICENCE Simplified BSD
Can the most prominent daemon
cast a spell on the rest?

FreeBSD

BSD DistrosOn Test

URL www.openbsd.org
VERSION 5.6
LICENCE ISC
Unflashy OS with an unrivalled
focus on security.

OpenBSD

URL www.netbsd.org
VERSION 6.1.5
LICENCE Simplified BSD
One of the oldest BSDs in existence.

NetBSD

URL www.dragonflybsd.org
VERSION 4.0.2
LICENCE Modified BSD
Has this FreeBSD fork been able to
carve a user-base?

DragonFly BSD

URL www.ghostbsd.org
VERSION 4.0
LICENCE BSD
Does this BSD designed for the desktop
offer anything of note?

GhostBSD

URL www.pcbsd.org
VERSION 10.1
LICENCE BSD
Bucks theBSD convention with
a focus on usability.

PC-BSD

BSD vs Linux
Both Linux and the BSDs are free and
open source, Unix-like operating
systems, and use much of the same
software. So what sets them apart from
each other? For starters, Linux and BSD
have a different lineage. Technically
speaking, Linux is just a kernel. To
produce a usable OS, each distro must
glue a bunch of software on top of the

kernel. On the other hand, a BSD project
maintains the entire OS and not only the
kernel. Another significant difference is
the licensing. Linux uses the GPL, which
requires that developers release the
source code for their modifications.
BSDs, in contrast use the BSD Licence
which allows modifications to be kept
under wraps if the developer so requires.

LV013 058 Group Test.indd 58 05/02/2015 21:51

BSD DISTROS GROUP TEST

www.linuxvoice.com

OpenBSD is regarded as one of the
safest operating systems. Thanks to
its rigorous code audit and security-

first development model, it’s a popular
option for security-conscious applications
such as firewalls, intrusion-detection
systems, and general-purpose servers.
OpenBSD is designed for experienced users
who know what they are getting themselves
into and are willing to tussle with its
peculiarities in order to get the job done. So
although it doesn’t ship as a desktop out of
the box, you can configure it as one if you’re
willing to spend time getting used to it.

To get the distro on your machine you
have to labour through its text-based
installer. It’s well laid-out and presents each
option with ample information, but does
require a competent and knowledgeable
operator. That said, the default options are
sensible and it even suggests an auto-
partitioning scheme, which is a definite aid
for new users.

Build from scratch
Also, since it’s designed for specialised
usage, OpenBSD’s hardware support
focuses more on enterprise-grade and even
virtual hardware. Still, unless you’ve got
some exotic top-of-the line hardware or a
brand-new device, you should be able to get
it to work with OpenBSD. The developers
keep adding drivers and have recently
added a new touchpad driver that supports
Broadcom multi-touch trackpads found
on newer Apple MacBook, MacBook Pro,

There are many open source as well
as commercial products based on
BSD, due to its technical prowess

and permissive licensing. Popular open
source products include NAS distros like
FreeNAS and NAS4Free and firewall projects
such as the embedded Monowall distro and
its fork for regular computers, PFSense.

Then there’s the open source Darwin
project by Apple, which produces the core
components upon which the company’s

OpenBSD
Is it open for all?

59

Popular products based on BSD
Daemons at work.

VERDICT
A stable OS with a
rock-solid foundation and
a security-first approach.

and MacBook Air laptops. OpenBSD now
also supports AMD Radeon graphics cards
thanks to code ported from FreeBSD.

After installation you get a fairly
barebones (but incredibly fast) system
with a handful of services enabled, and a
minimal desktop running the FVWM window
manager, if you’ve selected it during the
installation. This base has all the tools you
need to transform it into a dedicated server
or a desktop.

The latest version of OpenBSD includes
popular desktop software including KDE
4.13, Gnome 3.12, Xfce 4.10, Firefox 31,
LibreOffice 4.1.6 and others. As expected, the
thorough security vetting means that some
of these are a couple of versions behind their
latest iterations. OpenBSD is also popular for
its documentation and you can find loads
of information on the web that’ll help you
transform this bare-bones OpenBSD install

into a full-fledged desktop. Depending on
how fast your internet connection lets you
fetch packages from OpenBSD’s mirrors,
you can set up a desktop in under an hour.

But all said and done, OpenBSD isn’t
designed to be a comfortable desktop distro.
It’s certainly possible to use it as desktop
platform, but that isn’t a top priority for its
developers. Unlike regular desktop distros,
OpenBSD isn’t meant to make decisions
on your behalf or make your life easier with
automated routines. Rather, OpenBSD is
designed to be secure and reliable, and this
is something it’s very adept at. The fact that
you can use such a system as a regular
desktop is an additional benefit.

proprietary OSes, OS X and iOS, are based.
Darwin integrates a customised version of
BSD. BSD is also used as the basis for the
filesystems and networking of OS X.

There are other commercial products
based on BSD by multinational hardware
and software companies, such as Dell’s
iSCSI SAN arrays. Silicon Graphics
International also uses FreeBSD in its
ArcFiniti MAID (Massive Array of Idle
Drives) disk arrays and so does Sony in its

PlayStation 3, PlayStation 4 and PlayStation
Vita gaming consoles.

FreeBSD seems to be the most popular
of the BSDs that is found powering both
open source and proprietary products.
Juniper Network’s JUNOS is based on
FreeBSD, and is also used in the Netflix Open
Connect appliance. FreeBSD also powers
the popular messaging app, WhatsApp, and
the project received $1 million recently from
WhatsApp’s co-founder.

OpenBSD’s sole purpose is to be the most secure OS, which usually puts it at odds with convenience.

LV013 058 Group Test.indd 59 05/02/2015 21:51

GROUP TEST BSD DISTROS

www.linuxvoice.com60

Here’s a BSD that closely
resembles a desktop Linux
distro in form and function.

GhostBSD is available for 32-bit and
64-bit machines both as ISO and IMG
files for optical drives and flash disks
respectively. Unlike most of the other
BSDs on test here, GhostBSD boots
straight into a live graphical desktop
environment. Earlier versions of the OS
shipped multiple desktops, but the
current release is available with only the
lightweight Mate desktop.

On the desktop, the live environment
offers three different layouts. There’s
the classic look, with the menu on top
and a panel at the bottom; a minimalist
view; and a layout with a simple dock at
the bottom. Since GhostBSD is based
on FreeBSD, it allows users to access
FreeBSD’s repository of packages via its
new command-line package manager,
pkgng. However, GhostBSD doesn’t
have a package management system
of its own and also lacks a graphical

GhostBSD
I see desktop users!

app for installing packages, so like
most others BSDs you can’t escape the
command-line.

That said, in contrast to most other
BSDs, GhostBSD includes a multilingual
graphical installer, which offers an
automated partitioning scheme if you
wish GhostBSD to take over the entire
disk. Unfortunately, the installer is
pretty buggy and crashed several times
without spitting any error messages.

Also, GhostBSD includes older
versions of some apps, such as its
Mate desktop. It includes Mate 1.6
while the latest version is 1.8. This
version is available in its repositories,
but again, upgrading it is easier for
someone familiar with FreeBSD’s pkgng
utility. GhostBSD is a good attempt at

shipping a FreeBSD-based OS with the
convenience of a familiar desktop. It’s
lightweight and functional, but doesn’t
really help new users escape the
clutches of the command-line utilities.

While the current release includes the Mate desktop, the
developer is looking at alternatives for future releases.

“GhostBSD boots straight
into a live graphical desktop
environment.”

DragonFly BSD was started by Matt Dillon, who had earlier
developed the Dice C compiler for the Amiga.

D ragonFly BSD is a popular fork
of FreeBSD that is now
developed in a direction of its

own and is considered one of the main
BSD distros. The OS has diverged
significantly from FreeBSD and is
popular for its implementation of virtual
kernels and a feature-rich 64-bit
filesystem called HAMMER, which has
built-in mirroring, instant crash recovery,
and historic access functionality. It’s
popular for its Sun ZFS-like features
with a friendlier licence. However, since
HAMMER doesn’t perform well on
drives smaller than 50GB, DragonFly
BSD’s installer also lets you use the
BSD standard UFS filesystem.

The installation medium for the OS is
available for 64-bit architectures only.
The project releases an ISO image for
optical drives and an IMG file for
installing via USB. Both boot into a live
environment and let you log in as root

DragonFly BSD
Hovering on the desktop.

and check the compatibility of your
hardware from the command line. Once
you’re satisfied you can fire up the
installer. DragonFly BSD also has a
menu-driven text-based installer that’ll
help you set up a single OS installation
in a matter of minutes. There’s also a
configuration tool that you must run
through at the end of the install to set
up key aspects of the system such as
the networking options.

Like most BSDs, DragonFly doesn’t
install a graphical desktop, but don’t
underestimate its graphical prowess.
The latest version of the OS supports
GPUs from the Haswell family, and
OpenGL acceleration is available out of
the box on supported i915 and Radeon
GPUs. There’s also a touchscreen driver
for the Acer C720P notebook.

To set up a desktop environment like
Xfce, KDE, Gnome or Mate, you’ll have
to labour through the documentation

available on the project’s website.
Again, the saving grace is its support
for binaries and third-party apps.
DragonFly BSD uses FreeBSD Ports as
a base for its own ports collection
(called Delta Ports), and you can also
install packages using FreeBSD’s
pkgng. DragonFly BSD focuses more
on the desktop users than some other
BSDs, it still requires considerable
dexterity on the command-line.

VERDICT
Though it doesn’t ignore
desktop users, it’s best for
stable server
deployments.

VERDICT
Lightweight BSD loaded
with apps that ships as a
live desktop.

LV013 058 Group Test.indd 60 05/02/2015 21:51

BSD DISTROS GROUP TEST

www.linuxvoice.com 61

There’s a long list of BSD-based OSes
that are under active development.
ArchBSD is a lightweight operating

system that aims to club the flexibility and
philosophy of Arch Linux with BSD-based
operating systems. Then there’s Debian GNU/
kFreeBSD, which swaps out the Linux kernel
and instead uses the FreeBSD kernel together
with GNU-based userland utilities and glibc. It’s
developed by the Debian project, which
maintains two ports based on the FreeBSD
kernel, ‘kfreebsd-i386’ and ‘kfreebsd-amd64’.
Similarly, there’s Gentoo/FreeBSD, which is a
subproject to port unique Gentoo features
such as the Portage package management
system to FreeBSD. There’s also the Evoke
project, which produces a small live FreeBSD
environment geared toward developers and
system administrators.

FreeBSD is also the basis for the popular
Monowall embedded firewall distro that
provides a small image that users can put on
CF cards. While you can use Monowall on a
generic PC, the PFSense project produces a
firewall designed for computers.

MidnightBSD is a FreeBSD fork that aims
to create a desktop-friendly BSD operating
system and has also forked FreeBSD’s ports
package management system to create its
own called mports. There are several NetBSD-
based projects as well, such as the Jibbed
bootable live CD. Another is BlackBSD, which
is a live CD that includes a bunch of security
tools such as Nmap, Nessus, Snort, Rapid7 and
others.

BSD-based distros

Bitrig is an OpenBSD fork that aims to be more
modern in development and support than
OpenBSD and has recently hit version 1.0.

NetBSD’s rock-solid foundation and portability were a big draw for NASA, which used it for a
project on the International Space Station.

T rue to its tagline, which reads “Of
course it runs NetBSD”, this BSD
distro that’s been around since the

early 90s is very portable and runs on over
50 different hardware platforms across 15
processor architectures.

Another major feature of the OS is that
unlike typical desktop Linux releases that
come out about every six months, new
NetBSD releases are fairly infrequent.
This release schedule is preferred by its
primary users, who wouldn’t want to pull
down their servers for upgrades often.
However, you aren’t necessarily stuck
with outdated software, as its package
management system, pkgsrc, tracks the
latest version of upstream software. While
it does give access to all kinds of software,
the fact that it lacks a graphical package
management app is rather limiting.

NetBSD uses an ncurses-based menu-
driven installer, which is pretty simple
to navigate and besides the partition
management steps, shouldn’t pose any
issues to experienced distro-hoppers. At
the end of the installation, you’ll be asked
to configure some essential aspects. Also,
while the Full installation scheme installs
the basic X window system components,
it doesn’t include a graphical desktop.

Finger flexing
The default installation is pretty minimal.
You’ll have to set up the package manager
and then install the required packages.
This isn’t much of a task thanks to
NetBSD’s binary package, pkgin, using

NetBSD
The Universal BSD.

VERDICT
The open source distro
that can run on everything
from a toaster to the
space station.

which you can install popular open
source desktops and apps. A couple of
years back there was news of a light-
desktop initiative to quickly turn a NetBSD
installation into a lightweight desktop
based on LXDE and modelled after
Lubuntu, but it seems to have died.

Furthermore, if you’re spoilt by graphical
configuration tools on modern Linux
distros, you wouldn’t get very far with
NetBSD as it requires everything to be set
up by hand. Editing files under
/etc to get the wireless card to connect
bought back bittersweet memories. You’ll
have to add users from the command
line and also create mount points and
mount optical discs manually. You’ll also
have to get familiar with NetBSD’s use
of the rc.d system to control services,
which is similar to System V but without
runlevels. In fact, you wouldn’t get very
far with NetBSD without having first read
through the very detailed NetBSD Guide.
The project has extensive documentation
and a detailed wiki that’ll help you get
familiar with its peculiarities. NetBSD isn’t
the easiest of OSes to get started with,
but its vanilla approach makes it ideal for
security-conscious users who like to be
in charge of each and every component
running inside their computer.

Wait! There’s more?

LV013 058 Group Test.indd 61 05/02/2015 21:51

GROUP TEST BSD DISTROS

www.linuxvoice.com62

FreeBSD is all about DIY. Heck, you’ll even have to install
the package management tool before pulling in packages!

PC-BSD also lets you manage installed apps and jails from a remote machine.

F reeBSD is the most used of the
BSDs. The OS had its first
release back in 1993. FreeBSD

uses a text-based installer that is also
used by several other derivatives as
well. It’s feature-rich and extensive with
adequate defaults to aid first-time
users. The installer hands off to a
post-installation configuration screen
from where you can set up important
aspects of your computer such as the
network interfaces.

FreeBSD doesn’t install a graphical
environment by default, but all the
popular ones are available in the
FreeBSD ports collection. Because
of the ports collection, you can easily
configure and use FreeBSD as a web
server, mail server, or a firewall.

New users will have to follow the
guides on the internet to turn their
bare minimum FreeBSD install into
something useful since there’s nothing
intuitive about the process. In addition
to pulling in packages you’ll also have
to tweak configuration files. This might
sound cumbersome, but is actually
pretty straightforward and at the end
produces a finely tuned aerodynamic
system that does exactly what you
want it to do and nothing else.

Angels and daemons
FreeBSD’s popularity has spawned
several derivatives. PC-BSD is one such
descendant that’s made a name for
itself by extending FreeBSD’s famed
stability to everyday desktop users.

FreeBSD vs PC-BSD
The Jedi and his prodigious padawan.

PC-BSD employs a graphical installer
that’s easy to navigate. It offers good
defaults for new users as well as plenty
of options for advanced users,
especially in the disk partitioning step.
By default the OS installs the KDE
desktop on all machines that have
more than 2GB of RAM and LXDE on
those with less. The installer gives you
access to full-featured desktops such
as Gnome and Cinnamon as well as
lightweight alternatives such as Xfce,
Mate and even minuscule ones like
Openbox and IceWM. You can also
install additional components such as
drivers for Nvidia cards, OpenJDK, the
Chromium web browser and a lot more.

Post-installation, PC-BSD takes you
through a series of steps to set up your
computer. The OS also includes several
custom tools to ease management. Its
Control Panel app helps you manage
different aspects of your installation,
such as adding new users, configuring
network connections, setting up the
firewall and more. Then there’s the
backup tool, called Life Preserver, which
can sync to a remote FreeNAS system
securely, using rsync and SSH.

PC-BSD also has all the popular
open source desktop apps that you
can find on a typical Linux desktop
distro. The Firefox browser is equipped
to play Flash content and it includes
the VLC media player to handle files
in proprietary formats. PC-BSD uses
FreeBSD’s ports and also publishes
packages in its own push-button

installer (PBI) file format, which you can
install via its AppCafe graphical package
manager. AppCafe is a very modern
and user-friendly package manager. It
displays latest releases, recommends
apps and also lets you search for
particular apps. The tool also lets you
know when newer versions for installed
apps are available.

Furthermore, if you wish to deploy a
BSD-based server instead of a desktop,

you can use the PC-BSD installer to
setup TrueOS. This is basically a vanilla
FreeBSD installation with a bunch
of extra PC-BSD packages for easier
management. One such tool is Warden,
which is used for creating isolated
instances of the OS that can each run
different services such as the Apache
web server, or the MySQL database
server. These isolated instances are
known as jails and are one of the
best examples of FreeBSD’s technical
superiority. PC-BSD’s Warden tool lets
you manage these jails both graphically
and from the command line.

VERDICT
PC-BSD Deliver the
same open source
goodness with a
different base.

“PC-BSD has all the popular
desktop apps that you’ll find
on a typical Linux distro.”

FREEBSD The best
enterprise-grade and
proven BSD for your
tuning pleasure.

LV013 058 Group Test.indd 62 05/02/2015 21:51

BSD DISTROS GROUP TEST

www.linuxvoice.com

Despite them both being
open source operating
systems that share a lot of

similar tools and utilities, finding a
BSD replacement for Linux isn’t a
straightforward task. It takes more
effort to get the BSDs set up as a
desktop or even as a production-
ready server when compared to
most Linux distributions. The
process is involved and manual:
Mandriva and Ubuntu put a huge
amount of work into making Linux
more accessible in the mid-2000s,
but a similar change hasn’t
happened yet in the BSD world.

While the BSDs all share a

common ancestor, they have all
diverged significantly over the
years and have managed to create
a niche for themselves. NetBSD is
similar to FreeBSD in many ways,
and the teams share developers
and code. However, NetBSD’s main
purpose is to provide an OS that
can be ported to any hardware
platform. Then there’s OpenBSD,
which branched off from NetBSD
with the goal of becoming the most
secure BSD, even if that comes at
the price of making it less user-
friendly. Another popular FreeBSD-
fork, DragonFly BSD, is popular
for setting up virtual hosting
environments on shared servers.

1st PC-BSD
Licence BSD Version 10.1

www.pcbsd.org
Drop-in replacement for Linux on the desktop and on the servers.

OUR VERDICT
GhostBSD is a nice attempt, but
at its current stage it’s more of a
teaser of what a FreeBSD-based
lightweight desktop might look like.

FreeBSD has made a name for
itself with its stability and is used
by internet-oriented companies
such as Yahoo and WhatsApp. If
you’re willing to spend some time
with it, you can use FreeBSD as a
full-featured and stable desktop or
development workstation. Its ports
package management system
has eased software installation
considerably and has been adopted
by several other BSD projects as
well. FreeBSD also trumps the other

BSDs with its strong community
and extensive documentation.

Double win
But if you’re looking for
point-and-click simplicity, there’s no
better bet than PC-BSD. This
operating system is as close as
BSD can get to Linux. It offers the
same functionality, convenience
and applications that Linux users
are used to. In addition to its skills
on the desktop, you can also use it
to power your servers. PC-BSD
proudly exposes its FreeBSD base
and makes it accessible to new
users by adding convenient tools
for the administrators.

2nd FreeBSD
Licence Simplified BSD Version 10.1

www.freebsd.org
Put in a little time and effort to build a stable server
or a functional desktop.

3rd GhostBSD
Licence BSD Version 4.0

www.ghostbsd.org
A usable lightweight desktop BSD.

4th OpenBSD
Licence ISC Version 5.6

www.openbsd.org
Best suited for security-centric implementations.

5th DragonFly BSD
Licence 4.0.2 Version Modified BSD

www.dragonflybsd.org
Its kernel enhancements make it ideal for stable
server-centric deployments.

6th NetBSD
Licence Simplified BSD Version 6.1.5

www.netbsd.org
The most portable BSD that you can use on virtually all
kinds of hardware.

FreeBSD

OpenBSD

NetBSD

GhostBSD

DragonFly BSD

PC-BSD

Kernel type Installer Default GUI Package management Config tools

Monolithic with modules

Monolithic

Monolithic with modules

Monolithic with modules

Hybrid

Monolithic with modules

Text

Text

Text

Graphical

Text

Graphical

None

FVWM

None

Mate

None

KDE

Ports

Ports

Pkgsrc

Ports

DPorts

PBI

None

Text

None

None

None

Graphical

63

PC-BSD is backed by iXsystems, a company that has strong ties
with FreeBSD and also sponsors the development of FreeNAS.

BSD distros

“Finding a BSD replacement for Linux
isn’t a straightforward task.”

LV013 058 Group Test.indd 63 05/02/2015 21:51

www.linuxvoice.com

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

64

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

 Licenses its content
CC BY-SA within 9 months

12-month print & digital: £55
12-month digital only: £38

UK subs prices

SUBSCRIBE TO

TODAY!

LV013 064 Subs UK.indd 64 06/02/2015 10:51

SUBSCRIBE

www.linuxvoice.com

All subscribers get access to every
single digital back issue –
that’s about 1,000,000 words of
tutorials, reviews and free software
hackery at your fingertips

Overseas subs prices
12-month print & digital:
Europe: £85
US/Canada: £95
Rest of world: £99

65

DIGITAL
SUBSCRIPTION*

ONLY £38
*WHEREVER IN THE WORLD YOU
ARE – IT’S DIGITAL, SO THERE ARE

NO POSTAGE COSTS

LV013 064 Subs UK.indd 65 06/02/2015 10:51

SYSADMIN

www.linuxvoice.com66

Many of us use the command line
for lots of tasks – from the
mundane to the complicated. But

there’s one single type of command that, if
you’re not already using it, will transform
every command you type. This is a class of
command known as the humble terminal
multiplexer. You might be thinking that
anything called a multiplexer might not
sound so humble, but bear with us. It’s not
difficult to understand and it can make a
huge difference to the way you use any
Linux machine. The term ‘multiplexer’ comes
from electronics jargon, where it’s used to
describe a device that transforms multiple
inputs and a single output before being
‘demultiplexed’ into its composite parts at a
destination.

With a terminal multiplexor on the
command line, the multiple inputs are shell
sessions and the single output is your
display or single physical terminal. When
described like this, it might not sound like
the most exciting kind of command, but
after you’ve got used to working within
its environment, it’s difficult to go back
to a terminal that doesn’t offer the same
features; among a huge list, our favourites
are the ability to spawn other terminals
dynamically, switch between terminal
sessions at any point, split the screen into
different views and restore a running session
at any point, even after disconnecting from
the session completely. If you like running
command line applications like Mutt for
email, or Irssi for IRC, they’re also perfect for
persistent remote sessions.

They work best when you don’t have
access to a windowed environment,
because it’s easier to open multiple
shell windows, although we’d argue less

productive. The natural environment for a
terminal multiplexer is the headless server.
These are running somewhere remotely,
and usually only accessible via SSH. You’re
often connected for long periods and often
want to do more than one task at the same
time. NAS boxes, Raspberry Pis, set-top-
boxes and family PCs are equally well suited
targets. A terminal multiplexer will allow you
to open a single connection to any of these
devices and use the same terminal session
for multiple tasks. They should also allow
you to disconnect from a session, complete
with running processes, and re-connect at a
later time.

They’re synonymous with window
managers in X – the part of your desktop
that remembers where Firefox is running
and lets you move the window around,
restore its position when you reconnect or
switch between running applications with
a keyboard combination. They could even
be thought of as the ultimate tiling window
managers, albeit without visible tiles or

We take a brief break from our normal our sysadmin coverage to reveal two of the most
important commands you should learn: screen and tmux.

SYSADMIN:
TERMINAL
MULTIPLEXERS

window management, although with a little
configuration, you can get close.

Screen test
This being open source there’s more than
one solution, and the two most popular are
probably equally used and mostly matched
for functionality. The first is the venerable
GNU Screen and this is the command you’re
most likely to find pre-installed on your
remote server or local NAS. Just type screen
-h to check. If it’s not there, screen will
always be part of your distribution’s principle
repository or software archive. The other
popular alternative is called tmux, a more
descriptive name – terminal multiplexer.
We’re going to cover the basics of both so
that you get a good idea of what they’re
capable of, and perhaps, which one you
prefer. They start off working in much the
same way before diverging slightly.

If we had to recommend just one terminal
multiplexer, it would be tmux. It’s a project
that’s still actively developed and had a few

Screen and tmux shortcuts

Function screen tmux
New Window C C

Next Window N N

Previous Window P P

Jump to window 0-9 0–9

Detach D D

Show shortcuts ? ?

List windows “ S

Split vertically Shift+S “

Next region Tab cursor keys

Close region Shift+X X

LV013 066 Command of the Month.indd 66 05/02/2015 21:52

SYSADMIN

www.linuxvoice.com 67

more advanced features. But we’re also
covering screen because you might already
have it installed.

Learning something of both also means
that if you already know how to use one
you should be able to migrate to the other
tool by focusing on the similarities. This
is particularly useful if you’ve always used
screen and yet want to move to tmux. Tmux
is often considered the more modern option,
thanks to its better code and config files, but
the ubiquity of screen means that this is the
one you’re more likely to have used already,
and for that reason, this is the one most
people already know about, but there’s also
lots both tools have in common, and looking
at this commonality is the best place to start
if you want to learn how to use either.

Both screen and tmux are launched by
invoking their names on the command
line. Screen will display a text-based splash
screen asking you to press Space. After
you’ve pressed Space and you’re dropped
back to the normal command line, it gives
no other indication that screen is running in
the background, other than changing the
name of the session, usually visible in the
window border at the top. And unless you
use a special keyboard shortcut to summon
screen’s control mode, the new session will
perform exactly like a native session, and it’s
sometimes easy to forget whether you’re
operating within the confines of screen, or
you’ve not run screen yet.

The tmux option
Tmux, by comparison, makes it much more
obvious, because it places a coloured bar at
the bottom of the session. Like the launch
bar of a desktop, this can be configured to
your preference, as much of the experience
can be after you’ve become acquainted with
the way that tmux works.

The super special secret escape
sequence keyboard shortcut that puts both
screen and tmux into their meta-command
mode is slightly different: for screen, it’s
pressing Ctrl and A together. For tmux, it’s
Ctrl and B. What isn’t immediately obvious,
and something that will catch you out the
first time you use either tool, is that there’s
no feedback to indicate the change of input
mode that comes when you successfully
hold down the keyboard shortcut. You just
have to take it on faith that any further keys
you press will be interpreted by either screen
or tmux, rather than by the command line
session you’re running.

To give you some idea of what these tools
are capable of, we’ll run through how you

might typically use either screen or tmux.
From this silent entry point, press C to create
a new session. If there was anything visible
in your old session, this will disappear and
new blank session will appear. But worry
not! That previous session is still running
and is still easily accessible. You may even
have noticed that the status line at the

bottom of tmux will have updated to show
the presence of the new Bash terminal.

Enter the escape sequence combo and
press N. This is the terminal equivalent to
switching to the next virtual desktop, and as
we’ve only created two, this command will
take you back to the previous session. You
can switch between sessions directly by
entering a number instead – sessions start
at zero, and pressing P will take you back to
your previous session. Now start something
running, such as top and enter the escape
sequence followed by D. This will ‘detach’ the
terminal from all the sessions running within
screen and tmux. You can now disconnect
from the server, close the terminal, or go and
make a cup of tea. Everything you started in
your various sessions will keep executing.

There’s some variation in the way that
screen and tmux re-attach to a running
session. Typing screen -r will re-attach to
the running screen session, while tmux a will

re-attach to tmux. If more than one session
is running, screen will list them while tmux
will simply connect to the first. If you want
to specify a session, add the number value
from the list. You can list running sessions
in tmux by typing tmux ls and connecting
to your chosen session with tmux a -t
session-name. And that’s all there is to
the basics of using both tools. You can
now start sessions and do all your usual
command-line magic, safe in the knowledge
you can disconnect and resume, and switch
between any number of persistent terminal
sessions. It’s a serious upgrade to the way
the terminal normally behaves.

Taking it further
Both screen and tmux will allow you to split
the display, for example, so you can see two
or more sessions at the same time. Use S
in screen and double quotes in tmux for this.
Screen won’t automatically create a new
terminal though, so you need to press the
escape sequence followed by Tab to switch
focus to the new region and then the escape
sequence again, followed by C to create a
new terminal.

This is where tmux starts to pull ahead,
because it’s more adaptable to both
horizontal and vertical splits and how you
can arrange them within sub-groups and
move between them. You really can use
tmux like a tiling window manager for the
terminal, and it can be brilliant if you’re
reconnecting to view a server’s logs, or
building and developing code, or even if
you’re just copy files somewhere.

Both tmux and screen are similar, but tmux wins for splitting and user configuration.

“You can use tmux like a
tiling window manager
for the terminal”

LV013 066 Command of the Month.indd 67 05/02/2015 21:52

FOSSPICKS

www.linuxvoice.com68

Freenode is one of the most popular IRC servers, and most major
open source projects have a channel, including us (#linuxvoice).

As well as the various user guides, there’s also built-in help that can be accessed
with /help <command>.

Sparkling gems and new
releases from the world of
Free and Open Source Software

Hunting snarks is for amateurs – Ben Everard spends his time in
the long grass, stalking the hottest, free-est Linux software around.

IRC is so old it predates the web,
yet it’s still extremely popular
because it works well, and it’s

widely supported by open source
software. This means that anyone
can quickly set up a server and
have their own group chat.
Alternatively, there are many public
servers that you can create or join
channels on. Almost every free
software project has an IRC
channel for developers and users to
discuss the software. It’s also the
method of choice we use at Linux
Voice for keeping in contact with
each other while working on the
magazine.

Weechat is a terminal-based
client for IRC. In this age of
graphical applications, a terminal-
based client might sound old-
fashioned, but actually, since IRC
was designed as a text-based
protocol in a world where graphical
tools were a rare novelty, the
protocol works well in a terminal,
and many of the most widely used
IRC clients are terminal-based.

FOSSpicks

IRC servers don’t save histories
of chats. That means that if you’re
client is not logged in to a server,
then you can’t go back and see
what was said. This isn’t always
ideal. One solution many people
use is to run a terminal-based IRC
client on a server, then SSH into the
server to access IRC. This works
provided you have an SSH client on
every machine you want to access
IRC on. This is certainly possible
given that even mobile phones can
use SSH, but it’s not always the

most convenient option on mobile
devices. Weechat can also act as a
relay enabling you to connect
another client to your Weechat
session. For example, www.
glowing-bear.org is a website that
can connect to a Weechat client and

give you access to your Weechat
session from any machine with a
web browser.

There’s comprehensive
documentation in English, French,
Japanese, German, Italian and
Polish, so you should be able to get
started without any problems. You’ll
find them at https://weechat.org/
doc/stable.

One feature of IRC that’s missing
from most other chat protocols is
the support for scripting, and to this
end Weechat supports six scripting
languages, so most programmers
should find at least one they’re
familiar with. There’s a repository of
scripts at https://weechat.org/
scripts that you can use if you don’t
want to write your own.

Although we have no figures to
support this, we get the impression
that Weechat is the fastest growing
IRC client in terms of users. In the
last couple of years, it’s become
widely talked about, and rightly so.
It’s an excellent client.

Weechat
 IRC Client

PROJECT WEBSITE
https://weechat.org/

“Almost every free software project
has an IRC channel for developers
and users to discuss the software.”

LV013 068 Fosspicks.indd 68 05/02/2015 21:54

FOSSPICKS

www.linuxvoice.com 69

Virtual Machine Manager

Virtualisation allows
you to try out many
distros without
rebooting your machine.

There’s a wide variety of
virtualisation software
available. VirtualBox is great

because the graphical interface
makes it easy to learn to use. Qemu
and KVM are really powerful, but it
can take time to learn to use the
command line tools. Linux
containers (LXC) aren’t true
virtualisation, but can also be really
useful if you know how to use
them. Wouldn’t it be great if there
were a tool that brought VirtualBox’s
ease of use to the power of Qemu,
KVM, LXC and others? Well there is,
and it’s called virt-manager (or Virtual
Machine Manager).

Red Hat developed virt-manager
to help users easily take advantage
of the full range of virtualisation
options available on their enterprise
distro, but it’s open source and runs
on most other distros as well.
However, installing virt-manager can
be a bit tricky because you have to
make sure all the requisite
components are installed, and that
you have the right user permissions.
You should look for distro-specific
information before getting started.

Once up and running, virt-
manager enables you to create new
machines, edit their hardware, start
and stop them, and all the other
features you’d expect from a virtual
machine manager. You can also
use the specific options for the
different types of virtual machine.

For example, if you use Qemu, you
can select from any of the
architectures your install supports.

Once your machines are running,
you can connect a display and use
their graphical output, or connect to
their serial console to see what’s
going on.

Perhaps the biggest
disappointment with virt-manager is
the documentation. Its website only
contains a single piece, the FAQ,
and this just contains three trivial
questions. There’s a bit more
information on the man page, but
this doesn’t help much as it’s a GUI
application. Frankly, we expect a
little better from Red Hat. Still, it’s
fairly straightforward to use, and
most people should be able to get
started without any problems.

Management layer
Virt-manager is in reality just a
graphical layer that sits on top of
libvirt. It’s this library that manages
the communication between all the
different hypervisors. Since it
doesn’t actually run the virtual
machines (it’s just used to manage
them), it can distance itself from
the virtual machines to a certain
degree. For example, you can use
virt-manager to start a virtual
machine, then close virt-manager
and the virtual machine will
continue running. You can then
reopen virt-manager and use it to

shut down the VM. This
architecture also means that you
can connect it to virtual machines
running on different physical
computers, provided you have the
appropriate permissions. The
machines don’t have to have been
created by virt-manager: as long as
they’re running on one of the
supported platforms, then you can
connect to them.

While virt-manager is great for
setting up machines and getting
them running, it’s not so great for
managing whole groups of them.
There are whole other toolsets
designed for just this task (such as
the ones that come with CoreOS).
But for simple use, especially
desktop use, virt-manager is an
excellent tool for taking the pain out
of virtual machines.

Pretend computer manipulator

PROJECT WEBSITE
https://virt-manager.org/

The huge range of
configuration options in
virt-manager allows you
to tailor almost every
aspect of your virtual
machines.

LV013 068 Fosspicks.indd 69 05/02/2015 21:54

FOSSPICKS

www.linuxvoice.com70

Impress friends and
colleagues with
complex-looking 3D
graphics – just don’t tell
them how easy they are
to code.

Most modern computers
– and even most phones
– come with some form

of 3D graphical acceleration. This
hardware enables the computer to
render incredibly complex scenes in
real time. OpenGL is the standard
rendering library for Linux, and it’s
very powerful, but it’s also quite
low-level and requires the
programmer to use vector-matrix
algebra to manipulate the scene.

Soya 3D is a Python library that
aims to free the programmer from
this low-level detail while still getting
the advantage of accelerated
graphics. It lets you import models
created in 3D modelling software
(such as Blender) and manipulate
them in your Python code.

Soya’s stand-out feature is the
number of really well commented
tutorials that make it easy for
anyone who knows Python to get

started with 3D programming. You
can get them from http://home.
gna.org/oomadness/en/soya3d/
tutorials. These take you through
everything from creating a simple
scene with just a single object in it,
to creating complex animated
scenes with interacting objects and
varied lighting effects.

Accessible modelling
However, ‘tutorials’ is a bit of a
misnomer. In reality, they’re very
well commented examples, but
someone with basic knowledge of
Python should find it quite easy to
follow them and understand how
Soya works. The only caveat with
the tutorials is that they haven’t
been updated in quite some time,
so they don’t include all the latest
features of Soya 3. However, they
should include enough information
to get you started and help you

understand the principals behind
the library.

If you want to get into 3D
programming, Soya is a great place
to start, because while it abstracts
out a lot of the detail, it follows the
same process as lower-level
toolkits, so if you want to move on,
you should find it quite easy.

Soya 3D
Python 3D library

As well as recovering
data, you could use
DDRescue-GUI as a
graphical tool for
writing an ISO image to
a USB stick to make a
live distro, or for
backing up drives.

One of our most-used
command line tools when it
comes to manipulating

disks is dd. This is a great tool for
copying data to and from block
devices such as hard drives and
USB sticks. It’s an old Unix tool, and
the origins of its name have been
lost in the mists of time (though
some people claim it means ‘data
destroyer’ because a misplaced
argument can wipe all the data off a
disk. This tendency to wipe data,
provided the impetus for ddrescue,
a newer program with more options
to make it better suited to fetching
data off a block device that’s in the
process of breaking. It enables you
to specify the read order, and try
particular blocks multiple times
until you get a successful read. It’s
arguably the best tool for recovering
data from a failing drive.

Unless you’re very unlucky, you
won’t experience failing drives very
often, and that means that you
won’t need ddrescue very often.
The problem with command line
tools that you don’t use very often
is that it can be hard to remember
the correct options. In a situation
where you’ve got a failing drive,
missing an option can mean data is
lost forever. DDRescue-GUI is a
simple GUI wrapper for ddrescue
that enables you to view and select
the appropriate options, thus
eliminating the risk of forgotten
options.

As with all rescue tools, the worst
time to learn it is when you need to

use it, so it’s worth trying out this
software to make sure you’re
familiar with it should the worst
happen. When a drive fails, it can
deteriorate rapidly, and the longer
you spend working out how to use
the software, the more data you
could lose. Once you’ve got the data
off the broken disk, you can then
spend as long as you need figuring
out how to extract the information
you need from the image file.

DDRescue-GUI
Disk-saving GUI

PROJECT WEBSITE
www.lesfleursdunormal.fr/static/
informatique/soya3d/index_en.html

PROJECT WEBSITE
https://launchpad.net/ddrescue-gui

“The worst time to learn a rescue
tool is when you need to use it.”

LV013 068 Fosspicks.indd 70 05/02/2015 21:54

FOSSPICKS

www.linuxvoice.com 71

Forks, spoons and
sporks? Cutlery gone
mad, or the spirit of
democracy in open
source software?

IO.js describes itself as a spork
of Node.js, but that just adds
more confusion, not less. A

spork – for those of you unfamiliar
with the term – is like a fork, but it’s
designed to supersede the original
project so the two end up merging.
This is in contrast to a true fork,
which is designed to take the
codebase in a new direction.

So that’s a spork, but what’s
Node.js, and why would anyone
want to spork it? Node.js is a
JavaScript runtime that’s designed
for running event-driven, non-
blocking applications. It’s become
particularly popular for building the
back-ends for interactive web apps.

Node.js is open source, however,
under the aegis of its current
steward, an organisation called
Joyent, development of Node.js
appears to have stalled. Although
there still appear to be people

working on it, the pace of releases
has slowed down.

For quite some time, Node.js has
been based on an unsupported
version of Google’s V8 JavaScript
engine. The people behind IO.js
hope to increase the pace of
releases, and they’re already
working on a more up-to-date
version of V8 including support for
the latest features in EMCA Script 6
(ES6). Unlike Node.js, IO.js isn’t run
by a company, but by developers
from the community. The hope is
that this will mean the project will
not be dominated by a single party.

IO.js is compatible with the Node
Package Manager, so many
projects should work on both

Node.js and IO.js at the moment,
although this may change if the two
projects diverge further. It may be
slightly confusing to some new
users that Node.js (the older
project) is on version 0.10, while
IO.js has just released version 1.0.
This isn’t intended to signify that
IO.js is more mature; they’re just
using a different release numbering
system and using 1.0 to show that
they’re a fully independent project.

IO.js
JavaScript framework

“The people behind IO.js hope to
increase the pace of releases.”

Powerful functionality,
not graphical frivolity, is
what makes Quod Libet
stand out.

There are some really good
music players for Linux, so
in order to stand out a

player has to do something special.
In Quod Libet’s case, that something
special is its search feature. It
allows you to search tags, and also
combine different tags, negate
particular search options and
others. Basically, it enables you to
very easily specify exactly what
music you want on your playlist.

For example, do you want all rock
music, but want to keep it short and
snappy? Well, you can search for all
songs that have the tag rock, but
are less that five minutes long. How
about all pop music released before
1979? No problem. This is all done
through Quod Libet’s text-based
search language, detailed at
https://quodlibet.readthedocs.org/
en/latest/guide/searching.html

Quod Libet works on the principal
that you know wha you want to
listen to, so gives you the power to
specify it. This is in direct contrast
to some other music players that
try to guess what you want and
make the decision for you.

Of course, all this requires you to
have a good source of properly
tagged music, otherwise Quod Libet
will struggle to find the songs you
specify. Quod Libet does come with
some tools to help you tag you files,
but it doesn’t support automatic
tagging. Provided all your songs are
well tagged, Quod Libet will easily
scale to collections with large
numbers of songs. In fact, its
powerful search features are
probably best suited to albums with
thousands of songs or more.

The latest version (3.3) comes
with a few new features including

better handling of diacritic marks in
searches, easier access to song
lyrics (via lyrics.wikia.com) and
support for more file formats.

If you’ve been struggling to
manage a large audio collection on
Linux, and you’re comfortable using
text-based search tools, Quod Libet
could be the music player you’ve
been waiting for.

Quod Libet
Music manager

PROJECT WEBSITE
https://iojs.org

PROJECT WEBSITE
https://code.google.com/p/quodlibet

LV013 068 Fosspicks.indd 71 05/02/2015 21:54

FOSSPICKS

www.linuxvoice.com72

One of these images is compressed 9% more than the other. Can
you tell which one? We can’t, but we know that one loads faster.

Images: without them, the web
would be a boring place.
Whether they’re cute kittens,

flashy logos, or textured
backgrounds, images are what
change web page from piles of text
into an enjoyable medium.
However, they take up bandwidth,
and that means they slow down
page loads, and cost more money.

You can – and should –
compress images. However, the
most common form of image
compression is JPEG, and that’s
over 20 years old. There are better
options, but the nasty world of
patent enforcement means they’re
rarely used.

Mozjpeg isn’t a new compression
standard, but an optimised JPEG
compression tool using newer
techniques behind the scenes to
squeeze images down to the
smallest possible size while

retaining as much detail as
possible. The gains aren’t huge
(around 5–10%), but if images take
up a significant portion of your web
traffic, this could be a meaningful
difference. After all, a 5% reduction
in bandwidth bills and storage
requirements could result in a huge
saving for popular websites.
Similarly, a 5% speedup in page
load times will result in a better
experience for your users.

The images from Mozjpeg are
completely compatible with normal
JPEG decoders, so you can view
them in older web browsers without
any plugins or additional codecs.

Mozilla, the creator of the tool, is
keen to point out that Mozjpeg is

specifically tuned for web images,
and isn’t intended as a general
purpose JPEG tool. If you’re
planning on printing images, then
you should stick with a standard
JPEG library, as this will give better
images at this quality.

Mozjpeg
Image compressor

Never before has it been
so easy to get started
with grep.

The Unix shell interface is an
amazingly powerful thing.
It’s arguably the most

powerful interface ever created for
computing. However, it can be
intimidating for new users.
CmdLauncher is a GUI for command
line tools to allow new users to use
things like grep without delving
down into the text interface.

CmdLauncher isn’t built for a
specific set of commands; instead
it uses configuration files created
for each command. These are fairly
straightforward and can easily be
created for new commands. It only
comes with two: grep and upx (a
tool for creating compressed
executable files).

Another way of looking at
CmdLauncher is as a GUI builder for
text-based tools. If you need to help
someone use some particular

arcane command line tool, you can
quickly create a config file that
means they can use the tool in a
friendly window without having to
know what’s going on underneath.
By deciding on the particular
options you make available, and
how you name them, you can help
them use particular tasks. You
could even use it to create an
interface for any shell scripts you
create. If you do create useful
config files, be sure to share them
as it would be helpful if the software
came with more than the two
examples.

CmdLauncher can only be used
for individual commands, and you
can’t set up chains of CmdLauncher
instances that each pipe data into
the next, so it’s not a complete
replacement for the shell interface.
Advanced users will always have to

run the command line, but this is
just powerful enough to help some
people who aren’t interested in
computing get things done without
making the plunge to the shell.

CmdLauncher
Graphical command tool

PROJECT WEBSITE
https://github.com/mozilla/mozjpeg

PROJECT WEBSITE
 http://cmdlauncher.topbug.net

“Mozjpeg is an optimised JPEG
compression tool for the web.”

LV013 068 Fosspicks.indd 72 05/02/2015 21:54

FOSSPICKS

www.linuxvoice.com 73

https://launchpad.net/pybik/

PROJECT WEBSITE
http://sourceforge.net/projects/
dustrac/

The card game Mau Mau
is similar to the game
Uno: you have to get rid of

all your cards by playing a card of
the same suit or number as the
one previously played. A few
cards have special rules, but
there doesn’t seem to be a
general consensus on which
cards have what special rules.
Instead, it’s common for different
groups of people to play by
slightly different rules. The
makers of NetMauMau outline
their rules on the GitHub page
(https://github.com/velnias75/
NetMauMau) and far be it from
us to claim these are wrong. If
you disagree, there are a few
command line options to change
the rules to something that suits
you better.

NetMauMau is a client–server
based game that you can play
either with other players across the
internet, or with a computer AI on
the network, and there can be up to
five people in each game.

We didn’t find the AI especially
challenging, but we should point
out that the reviewer spent many
nights perfecting his Mau Mau
skills in Tanzania where he didn’t
have a TV or computer, so had
nothing else to do apart from create
increasingly complex techniques
for shedding cards in Last Cardi (as
Mau Mau is known in Swahili). The
trick, as with so many games, is to
always think not of what you can
play now, but what you’ll want to
play in the future. There’s more to
this game than it initially seems.
The one thing missing from

NetMauMau is any way to search
for public servers. If you fancy a
game, you’re limited to either
playing against AI, or locating
opponents for yourself. Perhaps
this is for the best, as our
memory of Mau Mau is as a
social game, and that would be
lost on people you didn’t know.

FOSSPICKS Brain Relaxers

The internet has a full
list of optional rules,
though few of them are
implemented in
NetMauMau.

NetMauMau
Online card game

Car racing games are hard
to do well. To feel right,
they need to have smooth

graphics, physics that work
properly, and AI players that
present the right levels of
difficulty. Dust Racing 2D is a
top-down car racing game that
gets all these right.

It sometimes feels a little like
you’re driving on an oil slick, and
learning to handle the car is a key
part of advancing in the game. It
claims to be a 2D game, but this
isn’t quite right. Although it
doesn’t have full 3D, it does have
some effects that gives a 3D feel
to the top-down view. Our test
system has Intel HD graphics
and no graphics card, and on this
it ran smoothly and looked great,

so you don’t need a top-spec
graphics card or proprietary blobs
to play.

The controls are simple (by
default just the arrow keys), so it’s
quick to get started, even for people
not used to racing games. There
are five tracks to play by default
(although only one is unlocked until
you prove your racing chops), or
you can design your own with the
level editor.

Overall, Dust Racing 2D isn’t a
complex game, but it is great fun to
slide around corners and bounce
off your competitors in a mad dash

to the finish. There are various
two-player options (regular race,
duel and time trials), so you can
challenge your mates to some
open-source racing fun.

Car control isn’t our strong point, but what we lack in finesse,
we more than make up pure speed.

Dust Racing 2D
Racing game

“It’s great fun to slide round corners
and bounce off your competitors.”

PROJECT WEBSITE
nhttps://github.com/velnias75/
NetMauMau

LV013 068 Fosspicks.indd 73 05/02/2015 21:54

LV013 074 Ad Floss UK.indd 74 06/02/2015 10:16

TUTORIALS INTRO

www.linuxvoice.com 75

PROGRAMMING

Dip your toe into a pool full of Linux knowledge with nine
tutorials lovingly crafted to expand your Linux consciousness

TUTORIALS

Ben Everard
is using technology as an excuse not to venture
out into the cold, dark world.

This month I’ve been mostly
playing with the new Raspberry
Pi. It’s quite an impressive piece

of kit, and it’s joined my collection of
small ARM boards along with the Udoo,
Odroid, Matrix TBS, BeagleBone Black,
and others. In fact, I’ve owned more
ARM computers than x86 – and that’s
excluding embedded devices, mobile
phones and tablets.

This means most of my processors
were designed right here on this
precious stone set in the silver sea (as
Shakespeare put it). However, the fact
that they were designed in Britain isn’t
as important as the fact that they
weren’t designed in America.

Has Silicon Valley lost its touch? To
take just one example, the most
innovative new phone systems are no
longer American (Sailfish from Finland,
Tizen from Korea and Ubuntu Touch
from the UK). OK, you could also
include Firefox OS in that list, but even
though Mozilla is based in America, it’s
international and the phones aren’t
targeted at the USA.

It’s starting to feel like the only things
left in the Valley are outdated but
entrenched companies, and new
startups creating overvalued websites.
That doesn’t matter though, because
the rest of the world is more innovative
than it’s ever been.
ben@linuxvoice.com

94

In this issue…

Easy Android
Time to move to a
smartphone? Les Pounder
reveals the easiest way to
develop applications for
Google’s Android OS.

76 78 82

86 90

Arduino
98

Turn bytes into fonts and
fonts into images to turn

noiseless electronic signals from
an Arduino into a readable
interface – and do it all while
using as little memory as possible.
Nick Veitch is the man with the
cheap microcontroller board, a lot
of patience and a smattering of
C++ skills.

Code Ninja
102

As the only one of us in the
office to use the KDE

desktop, Graham Morrison has a
responsibility to show the rest of
us how good KDE and its graphical
toolkit, Qt can be. So here’s how to
build a fully functional web
browser with Qt and a few lines of
Python. Oh, and the PyQt bindings
to stick them together.

Assembly language
104

In part two of this series,
we look at conditions, loops

and libraries – the key to building
blocks of more complex programs.
You’ll also get a better
understanding of how to use
registers. Once you’ve mastered
these, you can graduate beyond
hello world to make your programs
do real work.

ddrescue
Corrupt hard drive? Lost
hours of work and Apple
holding your disk hostage?
Let superhero Mark Crutch
fix it with Linux.

Olde languages
Juliet Kemp takes a look
back at how programming
languages evolved to
become what they are
today.

Squeezelite
Stream your favourite tunes
to different devices around
the house, controlled
by your phone, just like
Graham Morrison.

IRC clients
Protocols aren’t just for
C-3PO. Richey Delaney
uncovers the mysteries of
the IRC protocol and show
you how to build a client.

Shares
Tame the stockmarket
and make millions using
just command line tools.
Andrew Conway shows you
how to get rich*. *your mileage may vary

LV013 075 Tutorials Intro.indd 75 06/02/2015 13:58

TUTORIAL AUDIO STREAMING

www.linuxvoice.com

WHY DO THIS?
• Stream music from one
source throughout the
whole house.
• Put dusty old hardware
to work as a music client.
• Never be without your
faourite tunes.

There used to be a product not so long ago that
enabled you to simply run a custom developed
and open source music server on a PC or

NAS and plug the player into an amplifier, and get
complete access to your music. The company was
called Slim Devices and its product was called a
Squeezebox. In 2006, the company was bought by
Logitech, which continued to make lovely boxes until
last year, when the whole project was canned.
Fortunately, the server was open source and has
continued to be developed. This is a wonderful thing,
because it’s the best piece of music streaming
software we’ve found – and to demonstrate this, we’re
going to get it up and running in just six easy steps.

SIX STEPS TO AUDIO
STREAMING PARADISE
Install and configure the best audio streaming solution we’ve
found: Logitech Media Server.

 TUTORIAL

76

GRAHAM MORRISON

1 Install the server
The server component manages your local music
collection, streams your music to clients, and offers a
web interface and a way to remotely control your
music playback. We’re going to install the latest server
package on Xubuntu 14.10, but you should find the
process similar for many other distributions,
especially as we’re installing the package ourselves.

As Logitech no longer supports the product, its
official repositories are now out of date, so we
grabbed the Debian Installer Package version of the
latest bleeding-edge community release (7.9.0) from
http://downloads.slimdevices.com/nightly. This is a
Deb file that can be installed on Ubuntu derivatives
with a simple click – though you’ll need to accept the
caveat that you’re installing a package from an
insecure source. The command line equivalent is to
type sudo dpkg -i followed by the package name.

Step by step: Music streaming with Logitech Media Server
2 Setting up the server

If you point a local web browser at localhost:9000 (or
replace localhost with the IP address of your server
for LAN access), you’ll be presented with the first page
of the startup wizard. The first page asks you to
create an account with mysqueezebox.com, but we’d
recommend skipping this step and pressing Next. The
next page asks for the location of your music
collection, so you need to navigate to the root folder of
your files. You can also install plugins onto Media
Server to give you access to music from internet radio,
iPlayer, YouTube and subscription services like Spotify.
The next step asks where you keep your playlists, and
you can make this the same as your music folder.
Click on Finish and the server will start scanning your
collection and creating a database.

Logitech Media Server (LMS) is a brilliant solution for
controlling and playing music from an Android app.

LV013 076 Tutorial Squeezelite 3gm.indd 76 05/02/2015 21:57

AUDIO STREAMING TUTORIAL

www.linuxvoice.com 77

6 Playing the music
To get playing music, open up your web browser and
point it again at port 9000 on the IP address of your
server. In the top-right, next to the Logitech logo,
there’s a small drop-down menu and you’ll be able to
select your Squeezelite player from here. You can add
players for different rooms and control them all from
here. With a player selected, use the left panel to
navigate through your music and either add tracks to
the dynamic playlist or play whole albums. You can
play music from your other music sources in the
same way, and as soon as you click Play, the
Squeezelite client will make a sound – if MP3 sources
don’t work, make sure you installed the libmad0 or
mpg123 libraries. You can remotely control the
volume from the web browser and we’d also
recommend installing the free Squeezebox app in
Android for complete remote control.

5 Run the client
Our client of choice, Squeezelite, needs to be told what
audio interface to use and the address of your server.
You can list all detected sound devices by typing
squeezelite -l. If your system is running PulseAudio,
you should see this listed as ‘pulse’ and we’d
recommend using it. The argument for telling
Squeezelite which audio device to use is -o “EXACT_
DEVICE_NAME’. While you can also tell Squeezelite the
specifics of your audio interface’s capabilities, it
always will try the best option based on the source
material. You’ll need to add -s IP_ADDRESS to tell the
client the IP address of your server – ‘localhost’ works
too if you’re running the client on the same machine
as the server, and we like to provide a name for the
player with the -n argument. Here’s our invocation for
reference: squeezelite -o pulse -s localhost -n
xubuntu (adding -z will run the player in the
background, silently as a daemon).

3 Add some plugins
The server’s web page should now transform itself
into the playing interface with two panels. On the left
panel you’ll find your music sources, including your
own collection within ‘My Music’. to the right, you find
the area that holds your dynamic playlist. It will show
track names and images as you add and play them. If
you want to add extra sources, click on the Settings
button on the bottom-right. This is where you can
change everything about your server installation, but
for now, just click on Plugins. If you use Spotify, we’d
highly recommend Triode’s unofficial plugin. If you’re
in the UK, the iPlayer plugin is also excellent for
catching up on BBC radio. Some plugins will need the
server to be restarted, and if you need to add login
credentials, such as for Spotify, you can do this by
clicking on Customise in this list afterwards.

4 Install the client
It’s not time to connect your client hardware to your
network and your speakers and it would discover the
server and allow you access to your music through
the bundled remote control. Fortunately, there are two
open source projects that re-create the hardware in
software, enabling you to add as many clients as you
want. You can even install them into the same
machine as the server. One option is called
SoftSqueeze. This is a Java-based tool that recreates
the look and feel of the hardware. We like it. But we
prefer a more lightweight option called Squeezelite.
This is a command-line tool that takes little resources.
Most repositories will have Squeezelite available from
their default repositories and you’ll need to install this
along with flac, libfaad2 and libmad0 packages for
Flac, AAC and MP3 support.

LV013 076 Tutorial Squeezelite 3gm.indd 77 05/02/2015 21:57

TUTORIAL APP INVENTOR 2

www.linuxvoice.com

S ince the introduction of smartphones in the mid
2000s the world has been gripped by the latest
apps. From Angry Birds to lifestyle guides the

app has become part of our daily lives. Typically an
application for the Android operating system is written
using an application such as Android Studio, which
uses a traditional textual language that closely
resembles Java. For some this may prove daunting as
the editor is rather a large beast to deal with. So how
can we enable children to learn the basics of creating
an app? Well by following this tutorial of course.

In this tutorial we will be using an online editor
called MIT App Inventor 2, which enables anyone
to create their own Android application using an
interface that's not too different to Scratch.

First, open up a web browser and visit http://
appinventor.mit.edu then click on Create, which is in
the top-right of the screen. In order to use App Inventor
you will need to register for an account; this enables
you to create and store your projects in the cloud
enabling access from another machine.

The first interface that you can see is the Designer
interface, and in here you will create the look and feel
for your application, for example adding images, text
and buttons. The Designer interface is split into four
panes, and they are from left to right:

Palette
Just like Scratch has a palette of commands, so does
App Inventor. In here you'll find user interface
components such as buttons, lists and picker applets.
There are also components for layout, working with
media such as audio and video, canvas tools to create
graphics. You can also utilise sensors such as
location, barcodes and accelerometer using this tool.
In the Social menu you have tools for accessing
contacts, sending and receiving text messages and
even Twitter. In the Storage menu you'll find different

storage formats for your projects data. In the last two
menus, Connectivity and Lego Mindstorms, you'll find
components that enable your device to talk over
Bluetooth and work with Lego Mindstorms devices.

Viewer
Components from the palette can be dragged into the
centre of the screen, the Viewer, where there's a
simulation of a phone screen. Components such as
buttons, lists and images are known as visible
components, in that they can be seen on screen.
Non-visible components such as TextToSpeech or
Sound can be controlled using visible components.

To the right of the Android device simulation we can
see the Components pane, which shows all of the
components that are in use for our project. By clicking
on a component the final pane, labelled Properties,
changes focus to reflect the component that has

The Designer interface
contains all of the
components that are
used to interact with the
application and other
forms of input, such as
sensors and cameras.

Our application is a QR code scanner app that triggers the
playback of multimedia content.

CREATING AN ANDROID APP
WITH APP INVENTOR 2
Did you think that building your first Android app world be difficult?
Let us guide you through a tool that's as easy as Scratch.

 TUTORIAL

LES POUNDER

78

WHY DO THIS?
• We will learn the

basics of building an
application using MIT
App Inventor 2 and how
we can use coding
concepts within our
application.

TOOLS REQUIRED
• A computer running a

recent version of Firefox
or Chrome/Chromium.

• An Android device with a
camera.

• An internet connection.
• A barcode scanning

app installed on your
Android device. We
used Barcode Scanner
by ZXing Team. https://
play.google.com/store/
apps/details?id=com.
google.zxing.client.
android

LV013 078 Tutorial Education.indd 78 05/02/2015 21:58

APP INVENTOR 2 TUTORIAL

www.linuxvoice.com 79

been selected. In the Properties pane we can alter
various aspects of components.

So where the Designer interface provides a means
to alter the look of a project, our next interface will
enable us to program the behaviour of our project.

Our project
In our project we will be creating an application that
can read QR codes and use the data contained in the
code to trigger the playback of audio, video and
images. Potential use cases for this type of project
can be interactive art installations, notice boards in
schools and public places and audio guides for
working with equipment in a makerspace.

The project works like this.
User presses button.
 Button is programmed to launch a barcode scanner app

A QR code is scanned and the value contained in the code is
translated.
The value is then compared to three known values using If...Else
If...Else If.
If the value is equal to “RPI”.
 Create a pop up window to display a message.
 Play audio.
 Play a Youtube video.

Else If the value is equal to “Pibrella”.
 Create a pop up window to display a message.
 Play audio.
 Play a Youtube video.

Else If the value is equal to “ROBOT”
 Create a pop up window to display a message.
 Play audio.
 Open an image on your phone.

We’ll start by creating a new project, so make sure
that you're in the Designer interface. You can create a
new project via the Projects drop-down at the top-left
of the screen. Select Start New Project and give your
project a name followed by pressing OK to continue.
After a few seconds the screen will update and
present a blank representation of an Android device.

For our project we will need the following visible
components

 Image x 3
 TableArrangement
 Button
 WebViewer
And the following non-visible components

 BarcodeScanner
 Notifier
 Sound
 ActivityStarter

Visible components
From the User Interface section of the Palette we will
grab the image component and drag it into the Viewer
area, ensuring that the component is hovering over
the Android screen. Let go of the image component
and it will snap to the top-left of the screen. This will
be the image for the top of our app. If you would like
the image to stretch across the screen look in the
Properties pane for the width option and change it to
Fill Parent. With the image in place our next
component is an invisible TableArrangement
component that can be found in the Layout section.
Place this underneath the image and change its
properties so that it has one row and three columns,
as this will help us later in the project. Next, insert a
Button component into the middle cell of the table
that you have just created, and change the text
property of the button so that it instructs the user to
press it.

Next we need to do a little hacking to ensure that
our button is centred. The best way to do this is to
create an image that is 100 pixels wide by 10 tall
using the Gimp image editor, upload it to App Inventor
and place it in each of the cells to the left and right of
the button using Image components. For each image
edit its properties so that it Fills Parent, and hey presto
your button will be centred.

Initially the if construction only has one possible
condition. You can add more using else if, which can be
found via the blue cog icon.

Running and installing apps

MIT App Inventor 2 comes with two solutions
to test your apps. The first is a companion
app that can be installed via the Play Store,
it’s called MIT AI2 Companion and it is a free
download. This app connects your Android
device to your app and enables you to test
and amend your app, with changes being
instantly reflected on your Android device.
This is the best way to test your app as you
will be testing on real hardware. For this
tutorial I tested compatibility using two
devices, an HTC Desire HD running Android
2.3 and a Motorola Moto G running Android
4.4.

If you do not have access to an Android
device then you can use the Android
Emulator which can be found via their
website http://appinventor.mit.edu/explore/
ai2/linux.html

Installation of the emulator for Debian

based systems is made easier thanks to a
dedicated DEB file. For other Linux distros
download the tar.gz archive and follow the
instructions for installation.

Once installed the emulator should be
called from the terminal using the following
command
/usr/google/appinventor/commands-for-
Appinventor/aiStarter &

The emulator will now work in the
background, return back to the App Inventor
interface and click on Connect > Emulator,
found at the top centre on the screen. This
will now enable your project to connect
to the Emulator and run a virtual Android
device. On the home screen of the device is
the MIT AI2 Companion app. Use your mouse
to activate the Companion app, and in a few
seconds your project will be on the virtual
Android device.

LV013 078 Tutorial Education.indd 79 05/02/2015 21:58

TUTORIAL APP INVENTOR 2

www.linuxvoice.com80

For our last visible component we'll use a
WebViewer from the User Interface section. The
WebViewer enables web content to be displayed
inside an app. We changed the HomeUrl property to
the Linux Voice website.

Non-visible components
In the Sensors section we can see the
BarcodeScanner component; drag this on to the
Viewer pane. The component will not rest in the
Android device, rather it will drop to the bottom of the
Viewer pane due to it being a non-visible component.
From the User Interface section grab the Notifier
component and drop it into the Viewer. Our next
component is the Sound Player, which can be found in
the Media section. Drag this in the same way as the
other components. With the Sound Player component
highlighted you'll see the Properties panel change to
reflect the properties of this component. In this case
we see the Minimum Interval and the Source; we are
interested in the Source. Click on the white box under
the source and a simple menu will pop up. Click on
“Upload File…” and select the audio file from your
computer. MIT App Inventor is compatible with WAV
files and MP3. The last component to add to the app
is ActivityStarter, which can be found in the
Connectivity section. This component enables us to
open other applications with our app, for example
YouTube or Google Maps.

With the design of our app complete for now, let's
turn our attention to creating the code that will make
our app come to life. Change to the Blocks interface
via the button in the top-right of the screen. In the
Blocks interface we can see the blocks that we
can use in our project – these comprise the built-
in programming concepts that are specific to the
components used in the Designer interface.

We’ll start with creating the Button Clicked event. In
the Blocks pane find Button 1(it will be under Screen
1). Click on Button 1 and a new menu full of blocks
will appear. We're interested in the top block, which is
a C-shaped block labelled “When Button1.Click”. Click
and drag the block on to the viewer. C-shaped blocks
such as this are used for control and events, such as
pressing a button. Inside the “When Button1.Click”
block we need to add “call BarcodeScanner1.DoScan”
which is found inside the BarcodeScanner1 blocks
menu. So what have we just achieved? We have
created an event (the button press), and an output
that is triggered by the event (launching the barcode
scanner app).

Evaluate the QR code
With the barcode-scanning aspect of the project
complete, we need to build an algorithm that
evaluates the code presented and acts accordingly.
When the barcode scanner reads a QR code, the code
contained within is decoded into plain text. This is
then compared to the hard-coded values in our
algorithm. To start we need another C-shaped block
from BarcodeScanner1 labelled “When
BarcodeScanner1.AfterScan” and inside it we will
store the algorithm to run after a successful scan. To
start our algorithm open the Control Blocks and locate
“If...Then” and drag it into the Viewer pane. You will
notice that there's only room for one condition and the
resulting output triggered by it. For our algorithm we
need to have two further conditions to evaluate
against and to add them we need to click on the small
blue icon located in the top-left of the C-shaped block.
This will create a pop-up window that enables us to
alter the structure of the block to accept further
conditions by dragging the else if into the smaller
representation of the algorithm, once completed you
must click on another part of the screen to close the
small pop up. Our C-shaped If block now has two
further conditional checks that we can now use in our
code. Inside the first of our conditions, “If”, we set the
first test
If the results of the scan are the same as “RPI”

To create this test we need to use a number of
blocks. First, look inside the Logic blocks for '_ = _'.
This block uses comparative logic to evaluate the left
value to the right. If both are the same, the answer will
be True, and the condition is met. In the first blank we
need to place the “BarcodeScanner1.Result” from the
BarcodeScanner1 Blocks and in the second blank we
need to use a block from Text, which is just a blank

The companion app, which
enables you to test and
debug your application
before installing it, can be
found in the Google Play
store.

Project code

You can find the complete code for this project at our
GitHub repository https://github.com/lesp/LinuxVoice_
Issue13_AppInventor, or those of you unfamiliar with Git
can download the complete package as a ZIP file from
https://github.com/lesp/LinuxVoice_Issue13_AppInventor/
archive/master.zip.

LV013 078 Tutorial Education.indd 80 05/02/2015 21:58

APP INVENTOR 2 TUTORIAL

www.linuxvoice.com 81

Les Pounder divides his time between tinkering with
hardware and travelling the United Kingdom training teachers
in the new IT curriculum.

string. Inside that string we need to type in the text
that will be contained in our QR code. With the first
condition created now we need to create the code
that will run once it is met. We’d like to have a pop-up
message appear on the screen. For this we can find
the block in Notifier1 called “call Notifier1.ShowAlert
notice”. Attach this block to the “then” section of the If
condition. Next we need to use a Text block labelled
“ " (for a blank string) and attach it to the ShowAlert
block that we have just placed – remember to add
your own text to the blank string. This now creates
a pop-up that will produce a message once a known
code has been scanned. Now we need to add the “Call
Sound1.Play” block from Sound1 and attach it to the
pop-up message that we just created. This will play
the audio file that we earlier uploaded.

Our next series of blocks inside of the If condition
control opening an external application, in this case
YouTube. From the ActivityStarter1 blocks use “set
ActivityStarter1.Action to” and also grab a blank string
block from Text. Inside the blank string box, type the
following.
android.intent.action.VIEW

This instructs the app to open an external
viewer application. Our next block is also from the
ActivityStarter1 palette and is “set ActivityStarter1.
DataUri to”. Again, you will need a blank string block
from the Text palette. Inside the blank string block,
paste in the link to a YouTube video. Our last block in
the If condition is “Call ActivityStarter1.StartActivity”
and this block will start the process of calling the

external viewer application, in this case YouTube, and
pass it the URL for the video.

For the next “Else If” condition we can duplicate
the code already written for “If” by right-clicking on
the code and selecting “Duplicate”; once you have the
duplicate blocks, arrange them inside of each “Else
If” section just like before. Remember to change the
text that we expect to see in the QR code, and the
message contained in the pop up.

For the last “Else If” condition the blocks contained
are a little different. The condition test, comparing the
QR code to a keyword is the same, but the code that
is run once this condition is true is different. A pop up
is still created and a sound is played, but rather than
call a YouTube video the app will open an image inside
the app. To do this grab “call WebViewer1.GoToUrl”
from WebViewer1 palette, and grab a blank string
from Text. Inside the blank string block paste a link to
an image. This action will trigger an image to appear
inside of our app. Well done: you've made an app!

To test your app on your Android device you'll need
to connect your device to the internet and then start
the MIT AI2 Companion app on your Android device.
On your PC in the Blocks or Designer interface, click
on Connect and then AI Companion. You can enter
the code from the PC into the Companion app on your
device or you can scan the QR code. The two should
now connect up and your app will be on the screen of
your device. Once you're happy with your app you can
build it into an installable file for use on many devices.
To do this, navigate to the Build menu and select
“App (provide QR code for .apk)”. This will build the
application on MIT's servers and provide you with a
QR code to download the app to your Android device.
Use the barcode scanner app installed on your device
to download the file.

Once downloaded you can simply click on the
file to install it on to your device. Typically apps are
installed from a “trusted” source, which is the Play
store. Installing your own apps requires that you allow
installation from “Unknown Sources”, and you can find
this option in your device's Settings > Security. Put a
tick in the box and retry installation of your app.

QR codes

QR codes have been with us for many years and have been
used to create an automated method of launching a web
browser to a specific page and been used to automatically
send an SMS to a specific number.

QR stands for Quick Response and was developed in
1994 by Denso Wave as a means to track vehicles during
the manufacture process for the Japanese motor industry.

In this project we created a series of QR codes that
stored a plain text value that was passed to our app once
the code was scanned. To create your own QR codes there
are many online resources; for this project we used the
resources at http://qrcode.kaywa.com, which are free of
charge. To use the site, select the type of code that you
require, in this case text, which can be found under the
More drop-down menu. In the white box type in the text –
we used RPI for our first code – then click Generate. Hey
presto you have created a QR code.

The final application should look something similar to this
layout which we used in this tutorial.

The blocks used to
program your application
should end up looking
like this. A high resolution
version can be found in the
Github repository for this
project.

LV013 078 Tutorial Education.indd 81 05/02/2015 21:58

TUTORIAL DDRESCUE

www.linuxvoice.com

Come with us, gentle reader, on an exciting
adventure into the world of data recovery.
There will be loss and sadness, a hostage-

taking mega corporation, a triumphant recovery, and
lessons learned. Plus a comic book bear with an
eye-patch. Welcome to the first draft of Bertie Bear and
the Disk of Corruption…

Chapter 1: An artist’s grief
It seemed like any other day for independent artist
Andy Clift, as he booted his Apple Mac to continue
work on the latest instalment of his comic book
series, “Bertie Bear and the Dagger of a Thousand
Souls”. But within seconds of hearing the familiar
start-up chime, his Apple turned sour. “Drive Error”, it
reported, refusing to proceed any further. Andy looked
on in dismay, his mind churning with frantic thoughts;
he knew he had backups of most of his files, but the
latest drawings of Bertie’s adventures had yet to make
their way off the reluctant drive. He packed his iMac
into a box and headed off to the nearest Apple store’s
“Genius Bar”.

Too late he found that the “Genius Bar” is something
of a misnomer. The staff there are better trained than
most sales assistants, but it transpires that there’s
not even an IQ test required, let alone membership of
Mensa, before a keen employee can be promoted to
the position. Suffice to say that the “genius” failed to
demonstrate any advanced skills beyond the ability to
send the machine to Apple’s service centre for a new
drive to be fitted. Resigned to never seeing his latest
creations again, Andy made his way to one of the

mockingly intact Macs in Apple’s store, and proceeded
to post to his blog.

Chapter 2: A drive held hostage
Meanwhile, at Linux Voice HQ, a Raspberry Pi was
grepping its way through the internet. It paused to
parse Andy’s message, before triggering the launch of
a foam dart and the careering dance of an ice-cream
tub with wheels. This was our signal to leap tigerish
into action.

“Somebody on the internet’s got a hard drive
problem!” cried our illustrious leader, his fingers
already walking over to a pile of Linux CDs as he
contemplated his rescue plan.

“But it’s only a Mac user,” replied a cynical voice
from the corner, rising on a column of solder fumes
and flux.

“We’re better than that!” came the response. “We
should be prepared to help our fellow man wherever
we can. Besides, it’s a good opportunity to see how
effective Linux’s HFS+ support is.”

So we contacted Andy to offer our meagre skills in
trying to recover his work from the drive, just as soon
as he received it back from Apple.

You might expect that, having paid Apple over
£200 to replace the hard drive, the old disk would
be returned with the refurbished machine. Instead
Apple demanded a ransom (our term, not theirs) of
an extra £90 for its return! At first Andy was reluctant
to increase his spend to almost £300, but when we
pointed out that his credit card details, usernames
and passwords would soon be in the hands of some
third party salvage company, he decided to pay the
ransom and reclaim the drive. Any data we could get
off it would be a bonus.

When the disk arrived our first step was a visual
inspection. We’ve seen several drives rendered
useless by bad power supplies, but with no obvious
burn marks or charred components on the visible
side of the drive’s circuit board, we connected it to
our recovery machine. Attaching it straight to the
motherboard would give us the fastest transfer
speeds, but unseen electrical problems would be
more likely to damage the host machine. We chose,
instead, to place it into an external drive caddy,
to provide a little extra electrical insulation, at the
expense of limiting the data transfer to USB2 speeds.

We plugged in the USB connector and to our delight
the drive was picked up instantly, our Mate desktop

DDRESCUE: SALVAGE DATA
FROM DAMAGED DISKS
How a GNU and a penguin rescued a bear from a broken hard drive
and the clutches of the evil empire.

 TUTORIAL

82

WHY DO THIS?
• Earn respect and

admiration by
recovering ‘lost’ data.

• Learn about disk
images.

• Remind yourself that it’s
time to make another
backup!

The scorch marks show
where a single bad PSU
simultaneously destroyed
the electronics of both
these drives.

MARK CRUTCH

PRO TIP
Some distros’ repositories
contain both dd_rescue
and GNU ddrescue, so
double-check which one
you’re installing. Debian
derivatives use gddrescue
as the package name for
the GNU version and
ddrescue for
Kurt Garloff’s dd_rescue
command.

LV013 082 Tutorial ddrescue.indd 82 06/02/2015 10:17

DDRESCUE TUTORIAL

www.linuxvoice.com

promptly opening a window showing the drive’s
contents. This told us that the device was basically
working, and we listened for the tell-tale sounds of
mechanical issues emanating from the disk’s moving
components. We also took the opportunity to examine
the structure of the drive using Mate’s ‘Disks’ program
and found that there were three partitions: ‘boot’, ‘data’
and ‘recovery’.

With everything appearing – and sounding – as a
good drive should, we guessed that the problem was
down to a few bad sectors that had been enough to
annoy OS X. With no idea where on the disk those bad
sectors might lie, it would be foolish to simply copy
the data using the normal desktop tools, so we opted
to create a full disk image to work with. Now we ask
you, honoured reader, to imagine the strumming of a
harp and a wobbly fade effect, as we take a break in
our narrative to switch to the flashback section…

Chapter 3: A tale of four DDs
As the soft sound of the harp dwindles to nothing, we
find ourselves at the dawn of time. Okay, a little after
the dawn of time, but still pretty early in the annals of
history. And, of course, we mean shortly after the
dawn of “Unix time” – 1 January 1970.

Back in those early days of Unix the dd command
was created as a means of copying blocks of data
between devices. You can read more about it in Linux
Voice #08, but it falls into our story because it’s a
classic method for cloning from a drive to an image
file. Because dd deals with blocks of data directly, it
can be used to create a sector-for-sector clone of a
drive even if it has foreign partitions. Unfortunately the
way dd works makes it less than ideal for recovery
tasks: it aborts on read errors, for example, which

is definitely not what you want when dealing with a
suspect drive.

Years later, building on the name and basic
premise of dd, Kurt Garloff created dd_rescue, a tool
specifically designed to recover data from failing
drives. It has error handling that enables it to keep
going where dd would fail. But that also means that
it can take a very long time to image a drive with
lots of read errors.
To speed up this
process, Valentin
Lab created a
Bash script called
dd_rhelp, which
optimises the way
in which dd_rescue performs its job. When dd_rescue
finds errors dd_rhelp makes it re-start at a later sector,
hoping to find another good section of the drive,
while keeping a log of the recovered parts of the drive
so that it can work out which ones still need to be
revisited. In this way it aims to recover the readable
parts of the drive as quickly as possible, before going
back to areas that may not yield any useful results.

It seemed that the combination of dd_rescue and
dd_rhelp is just what we needed, but there was one
more contender to consider: the confusingly named
ddrescue (without the underscore).

Officially known as “GNU ddrescue”, ddrescue aims
to do the job of the dd_rescue/dd_rhelp combination,
but in a single application. It keeps a log file of its
progress, and attempts to speed through the readable
data on a drive as quickly as possible, coming back to
bad areas later. It can be stopped and then resumed
at another time, and you can run it repeatedly without
affecting previously recovered blocks. On our Linux
Mint box, sudo apt-get install gddrescue was the
right invocation to install it. With our weapon of choice
in place, it’s time to return to our adventure. Cue harp
and wobbly fade as we head back to the present day…

83

The first pass took 28
hours. Thankfully the
subsequent runs only took
minutes.

PRO TIP
Use Ctrl+C to stop
ddrescue. Provided you
use a log file you can just
start it again later and it
will resume from where it
left off. This even works
if your machine crashes
mid-recovery!

Alternative tools
During this little adventure we used the Mate Disks
application. This was formerly known as Gnome Disk
Utility or Palimpsest, and is available in most Gnome-
derived desktop environments. If you’re using a different
environment you can still do everything in the article, but
you’ll need an alternative set of tools.

For simply looking at the partition structure of a disk or
mounted image, the venerable fdisk command line tool is
present on almost all distributions, as is the GNU parted
application. If you prefer a GUI then GParted is a great
GTK front-end to parted, or you might prefer the KDE
Partition Manager, which also uses GNU’s libparted library
under the hood.

Mounting a partition within a full disk image is a little
more tricky, with a general lack of GUI tools. It is possible
to manually calculate the start position of your partition,
then use it as an offset to the mount command. A less
masochistic option is the kpartx utility, which can list
partitions in a disk image and mount them all for you,
without the need for maths.
kpartx -av hard_drive.img

This will mount all the partitions to devices under /dev/
mapper in the filesystem – see the kpartx man page for
more details. Once you’re done remember to delete the
partition mapping and unmount the image:
kpartx -d hard_drive.img

“dd can be used to create a
sector-for-sector clone of a drive
even if it has foreign partitions. ”

LV013 082 Tutorial ddrescue.indd 83 06/02/2015 10:17

TUTORIAL DDRESCUE

www.linuxvoice.com84

Chapter 4: An ursine rescue
With Andy’s drive showing up as /dev/sdb on our
penguin-powered machine it was time to send
ddrescue stampeding in to flush out the easily
recoverable data. We just had to specify the source
drive followed by the names of the image and log files.
Note that the command is ddrescue, even though the
package we installed was gddrescue.
sudo ddrescue /dev/sdb hard_drive.img rescue_log

To our dismay the first errors arrived quickly. The
errsize figure in the output grew rapidly. 40,000
bytes… 50,000… then at just over 60kB the figure
stopped increasing. Could we really have been so
lucky? Was the damaged data confined solely to the
boot partition, meaning that Andy’s personal files
were all intact? We wouldn’t know the answer for
some time – over 28 hours at USB2 speed – when
ddrescue finished its first pass.

The errsize still stood at 60kB!
We didn’t want anything from the boot partition,

so there was no real need to continue. But we were
curious to discover just how much ddrescue might be
able to recover from those damaged sectors. We let it
run on, continuing through its remaining phases, and
quickly the errsize dropped to about 20kB.

20kB of bad data after just a single run was
certainly impressive. But stubborn sectors can
sometimes be persuaded to give up their data if you
just ask them often enough, so we ran ddrescue a
second time, instructing it to retry each bad sector up
to three times.
sudo ddrescue -r3 /dev/sdb hard_drive.img rescue_log

That recovered another half a kilobyte of data.
Perhaps we could surprise the drive into responding
by sneaking up on it from the other direction? Adding
-R to the command told it to read the sectors in
reverse order, working back into the damaged areas.

sudo ddrescue -R -r3 /dev/sdb hard_drive.img rescue_log
Almost 15kB was recovered by that approach,

leaving us with only 5,120 bytes of unreadable data.
We tried a few more passes, but no additional data
was forthcoming. Still, 5kB of bad data seemed pretty
good to us – and as it was all on the boot partition
we were confident that Bertie Bear would live to fight
another day. Had the errors been on the data partition
then we might have persevered a little more. With
any suspect drive, however, there’s always a danger
that you’ll speed up the degradation of the device,
so the rule should usually be to get as much data as
possible, as quickly as you can, and only spend extra
time on stubborn sectors if you really need to.

Chapter 5: A bear in a gilded cage
Although we now had an image of the drive to work
with, in some respects we’d actually taken a step
backwards. Whereas we had previously been able to
access the files on the drive directly from the desktop,
now the crown jewels we sought were trapped inside
a partition which was in turn inside a disk image.

We were only really interested in one of the three
partitions. Had we imaged each one individually
we would be able to mount it directly using Linux’s
loopback interface. But we’d imaged a whole drive,
with partitions inside it. We needed a way to tell Linux
to mount the drive, then mount the partitions within it,
before we could gain access to the files themselves.

It turns out that Mate’s Disks application has a
secret ability. It does such a god job of looking like
a simple, single dialog application that few people
notice it has a menu bar, hiding in plain sight. Clicking
on the lone menu reveals that it holds an entry that
reads “Attach Disk Image”.

Using that option to attach our disk image
immediately placed it into the list of drives alongside

Yes, that bit of text in the
corner that says “Disks” is
actually a menu.

PRO TIP
dd, dd_rescue and
ddrescue all use different
command line options
and parameters, so make
sure you know which one
you’re using, as a mistake
could be disastrous.

PRO TIP
Sometimes a damaged
drive is more cooperative
when it’s had a chance
to cool down. Stop
ddrescue, detach the
drive for a while, then
reattach and resume a
little later.

LV013 082 Tutorial ddrescue.indd 84 06/02/2015 10:17

DDRESCUE TUTORIAL

www.linuxvoice.com 85

our other, physical devices. Selecting it populated the
rest of the window with the same overview of the
partitions as we had previously seen with the real
drive. Then we selected the data partition and clicked
the “mount” button. A link appeared, proclaiming the
path to the mount point. With some scepticism we
clicked the link, paused for a second, then released a
sigh of relief as a window opened before us, displaying
the contents of Andy’s drive in all its Mac-based glory.

You would be forgiven for thinking that the rest
was easy. But this is the tale of data recovery across
disparate operating systems, and for all the hubris of
Silicon Valley the truth is that computers rarely make
things that straightforward. Quickly we were stymied
by permissions issues preventing us accessing all the
files we wanted.

The problem is that Linux’s HFS+ support is a
little too good. As OS X is a Unix system at heart, so
its filesystem carries with it all the finer details of
ownership and access rights that you might expect
from a Linux-native format. On the Linux box our user
ID was 1000. Andy’s Mac had given him an ID of 500
– and that ID was gladly honoured by Linux, denying
us access to many of the files. In a pique of laziness
we used sudo to launch Mate’s Caja file manager,
elevating ourselves to a position of computer
godhood, so that trivialities like file permissions would
no longer impede us. But ask yourself, dear reader,
who among you would not have taken the same

approach, so long as you thought that nobody was
looking?
sudo caja --no-desktop

The external drive that Andy had sent us was
formatted using Microsoft’s NTFS filesystem – which
doesn’t preserve Unix permissions. Knowing that
OS X is quite capable of reading from such a drive, we
just selected everything in Andy’s home directory and
dragged it straight to the external drive, assured that
the pesky user ID wouldn’t be preserved, so wouldn’t
cause Andy a problem later. Finally Bertie Bear was
freed from captivity.

Epilogue
A few days later we received news that Andy was able
to read the files from the backup drive. Andy’s files
were intact, and he had learned a vital lesson about
making backups. We had discovered a little more
about ddrescue and how to recover data from inside a
partition in a disk image. And we had a rip-roaring
adventure to write up for Linux Voice.

Thanks to our efforts, Bertie Bear and the Dagger of a
Thousand Souls, Volume 3 was released on schedule.
Interested readers can find this, and the previous two
instalments at http://bertiebear.bigcartel.com.

But alas! as is so often the case in such tales, the
antagonist of our story still lives on and continues
with their evil ways. Who knows how many drives are
being held hostage by Apple and their ilk? Despite our
slight dramatisation it really wasn’t too hard to get
Andy’s personal data from his drive. Imagine what
that means for all the “dead” drives that Apple has
sent for salvage, or for those that grace the listings of
Ebay, that fill the shelves of pawn shops, or that reside
in the carcasses of abandoned computers at rubbish
dumps across the land. Remember this tale the next
time you’re tempted to let an old hard drive out of your
hands. Oh, and one final thing: go and make a backup.
Now. We can’t always be there to save you.

Mark Crutch has been helping the world through Linux for a
while, but more importantly, he’s one half of the team that
creates the Elvie cartoon in our letters pages: peppertop.com.

When recovery gets tough
We were lucky with this recovery job because the damaged
sectors were all in an unneeded partition. But what would we
have done if the damage had been to a partition we wanted?
In any data recovery situation you should always make a
disk image first, rather than working directly on the suspect
drive, so the ddrescue step would be similar – but we would
probably have been a little more careful in our subsequent
runs to recover as much as possible. The most likely result
would be a readable disk image with some missing data. In
that case it’s simply time to keep your fingers crossed that the
rogue bytes aren’t in any files you actually want.

If the partition information itself is unrecoverable it’s time
to install TestDisk and PhotoRec, a pair of applications written
by Christophe Grenier. These are often bundled together:
installing them both on a Debian-based system just requires a
single sudo apt-get install testdisk command.

TestDisk (though the executable name is testdisk) can be
used to recover lost and damaged partitions by analysing the
disk structure and recognising a number of partition types.
If TestDisk is unable to recover the partition, PhotoRec can
often recover files at an even lower level. Despite its name,
PhotoRec can find more than just photos: it understands an
extensive list of file types, and it’s possible to add your own
file signatures should you need something more esoteric.
It works by reading blocks from the disk or image directly,
so can recover files even if the partition format is unknown.
PhotoRec only works reliably on unfragmented data, though,
so don’t expect miracles when dealing with a well-used drive
that’s full to bursting.

You can find out more about TestDisk and PhotoRec,
including worked examples, at Christophe’s website:
www.cgsecurity.org.

PRO TIP
You can use GNU
ddrescue as a
replacement for dd in
a lot of cases – such
as writing an OS to an
SD card for use in a
Raspberry Pi. They will
do the same job, but
ddrescue provides more
feedback as it progresses.

At last Bertie could relax with a drink, now he was back at
home in Photoshop on Andy’s Mac.

LV013 082 Tutorial ddrescue.indd 85 06/02/2015 10:17

TUTORIAL IRC

www.linuxvoice.com

For whatever reason, humans seem to want to
communicate. Whether it’s snapping non-stop
selfies or handwriting beautifully crafted

manuscripts to send to one another, expressing our
opinions remains a staple part of the intellectual diet
of most humans. IRC is an open protocol for group
communication. It provides a way to transfer simple
plain text messages over the TCP protocol.

The beauty of IRC is its simplicity: it’s a plain text
protocol, which means that you can experience IRC
without even having a dedicated client. Later in the
tutorial, we’ll show how you can use a tool like Telnet
to use IRC at the socket level. It has clients on almost
every platform imaginable, most with a list of useful
plugins.

IRC had its inception in 1988, so it’s by no means a
new technology. It was born of a need for a better
instant communication mechanism when all that was
available was bulletin board systems. There are other
standards for messaging, both in a group and directly;
for example, in the open source world, XMPP is an
open standard for real-time communication. Despite
these other standards, IRC still holds a special place in
the open-source world. Many Linux distributions for
example offer a lot of their customer support through
IRC, and a lot of development discussion and
coordination happens on IRC channels. An example of
these would be the #linuxmint-help channel on the
spotchat IRC network: when a user first installs Linux
Mint, the welcome screen has the option of a “chat
room” which directs the user to the IRC channel.

IRC is also a great way to get involved and up to
speed quickly with an open source initiative. Linux
Voice is a good example of this, as most of the

magazine founders are on IRC at #linuxvoice. It’s a
great means of sharing feedback and discussing what
you enjoyed and perhaps didn’t enjoy about the latest
issue or podcast. IRC is often a great way to start
contributing to an open source project – projects will
often have an IRC channel with some of the main
developers present who can likely help with any
issues you encounter.

Getting started
The easiest way to demonstrate the IRC protocol is
using the very simplest of IRC clients, Telnet. Telnet, in
case you haven’t come across it, is a tool for logging
into remote machines similar to SSH. It does not
default to a secure connection and therefore these
days it is more commonly used as a raw interactive
TCP session. This enables the user to type the exact
data that they want to send and receive any raw data
on the socket. We can use it as a very basic IRC client.

For this example, and for further examples, the IRC
network we’re using will be irc.freenode.org and the
port we will be using will be 6667. The port for IRC is
officially 194, however as this is a privileged port it
means IRC server software cannot be run by anyone
other than root. As a result, the unofficial standard
port for IRC is 6667.

To connect to the server, run Telnet as follows:
$ telnet irc.freenode.org 6667

After the connection, you will need to complete the
registration phase within a certain time frame or else
the server will terminate the connection. If the
connection is closed, just start over.

All interactions with the IRC server adhere to a
structure. They are plain text messages, and take the
following format:
[<source>] <command> <parameters> <crlf>

Messages being sent from the IRC server to the
client will often have a ‘source’, for example when
someone sends a message using the PRIVMSG
command to a channel of which a user is a member,
the source portion of the message will be the user’s
details. The ‘command’ will be one of the supported
IRC commands. Examples of commands will be seen
in the registration phase such as NICK and USER.
Some commands optionally take parameters; for
example, the NICK command takes the user’s
nickname as a parameter. The crlf in the command
above stands for “carriage return line feed” which is
how each message is terminated. In some settings,

INTERNET RELAY CHAT: GET TO
GRIPS WITH THE IRC PROTOCOL
Get to know the IRC protocol, using Telnet and coding a
client in Python.

 TUTORIAL

86

WHY DO THIS?
• Communicate with like-

minded people across
the internet.

• See inside the workings
of a simple IRC client.

Go to #linuxvoice, then talk
Linux on IRC with Pidgin or
good old Telnet!

RICHEY DELANEY

LV013 086 Tutorial IRC.indd 86 06/02/2015 10:20

IRC TUTORIAL

www.linuxvoice.com

this is written as \r\n.
The registration phase of IRC connection consists

of the following:
1 The NICK message is sent to register a nickname

for the user.
2 The USER message is sent to specify the

username, hostname and real name of the user.
In this example, the nickname and username

“LinuxVoiceTest” and real name “Linux Voice IRC
TEST” will be used.
$ telnet irc.freenode.org 6667
Trying 185.30.166.38...
Connected to chat.freenode.net.
Escape character is ‘^]’.
NICK LinuxVoiceTest
USER LinuxVoiceTest 0 * :Linux Voice IRC Test

In the USER command the first parameter after the
command is used to set special user modes, such as
making the user invisible by default. For now, we use 0
to log in as a normal user. The IRC defines the third
parameter as unused hence the, * parameter. The real
name is prefaced by a : character. Once the USER
command has been sent successfully, you will get the
normal message of the day from the freenode server
to signify a successful login.

Congratulations, with these few commands you
have officially registered with the freenode IRC server.
This illustrates just how simple the protocol is, and
how quickly you can get started. If the connection to
the server has been left open but inactive for an
extended period of time, the server will eventually
terminate the connection. Before the connection was
disconnected, Telnet will report something like:
PING :orwell.freenode.net
:LinuxVoiceTest!~LinuxVoic@<IP ADDRESS> QUIT :Ping timeout:
245 seconds
ERROR :Closing Link: <IP ADDRESS> (Ping timeout: 245
seconds)
Connection closed by foreign host.

At certain intervals, the server will send a PING to
inactive clients to establish whether they should be
disconnected. The PING will contain some text after it,
prefaced with a : character. The client must return
with a corresponding PONG message echoing the
same text. In the above case, the connection could
have been kept alive by using the PONG command.
PONG :orwell.freenode.net

Now that the normal administration of registering
and maintaining an IRC connection is complete, the
next step is being able to talk to others on the server.
There are a number of different ways to talk on IRC.
The two most common of these are private
messages, which are one-to-one conversations with
other people on the IRC network; and IRC channels,
which are group conversations. You can start a
channel on freenode simply by using a channel that
doesn’t currently exist. To get a list of all the available
channels and a short description of each, you can use
the list command with no parameters. Exercise
caution with this, as the room list is large for popular

servers. For now, we’ll join the #linuxvoice channel.
JOIN #linuxvoice
:LinuxVoiceTest!~LinuxVoic@<IP ADDRESS> JOIN #linuxvoice
:verne.freenode.net 332 LinuxVoiceTest #linuxvoice :An exciting
new IRC channel for an exciting new dawn of exciting Linux
MAGAZINES. It’s very exciting. In accordance with #linuxformat
tradition, the topic title will never, ever be changed.
:verne.freenode.net 353 LinuxVoiceTest = #linuxvoice
:LinuxVoiceTest Manj-811-Xfce2 Newky1 ubiquitous1980 huw
hamgammon red_xanadu zmoylan-pi bkidwell Extremulus
RavetcoFX skellat DonOregano1 nomad_dw flexiondotorg Dave2
popey grifferz kabads einonm Zeadar Cadair Stilvoid vertreko
obXiDeJSFQ gregoriosw_vp M-Saunders nsc jaake Secret_
Hamster davel james_olympus pwaring IceMonkey blahdeblah
N3wbs amoe quaisi thesilentboatman bdmc aptanet
Sammy8806 Cueball daswort dizzylizzy theru Devilment
brianhunter
:verne.freenode.net 353 LinuxVoiceTest = #linuxvoice :phil1
Yenrabbi1 @degville NYbill benoliver999
:verne.freenode.net 366 LinuxVoiceTest #linuxvoice :End of /
NAMES list.

The server first echoes back the JOIN command
with the source as our registered
user. It is followed by the topic
for the channel, followed by the
names of each user in the
channel already. To find the
names of all users in a channel,
use NAMES #linuxvoice.

Next, we finally get to share some thoughts with the
world. For communicating either privately or with a
channel, the PRIVMSG command is used. The
command specification is simple:
PRIVMSG <msgtarget> <text to be sent>

As always, the text to be sent should be prefaced
with a : sign. To send a “Hello, World!” to the
#linuxvoice channel:
PRIVMSG #linuxvoice :Hello, World!

If you are lucky enough that someone says Hi back,
you should see something like the following:
:Newky1!~<USERNAME>@<IP ADDRESS> PRIVMSG #linuxvoice
:Hello LinuxVoiceTest

This message tells us that Newky1 has sent a
message to the #linuxvoice channel and with a
message text of “Hello LinuxVoiceTest”. If Newky1
decides that he wants to talk to us privately and not in
front of everyone subscribed to a particular channel,
the message target will be our nickname rather than
the channel.
:Newky1!~<USERNAME>@<IP ADDRESS> PRIVMSG
LinuxVoiceTest :Super secret

To reply, the PRIVMSG command is used with the
message target set to “Newky1”.
PRIVMSG Newky1 :Super secret reply

To leave a channel, we can use the PART command
with the channel name as the only parameter as
follows:
PART #linuxvoice

You can quit your IRC session altogether by using
the QUIT command, this will also disconnect you from

87

“IRC provides a way to
transfer simple plain text
messages over TCP.”

LV013 086 Tutorial IRC.indd 87 06/02/2015 10:20

TUTORIAL IRC

www.linuxvoice.com88

any channels that you are a part of. Both the QUIT and
the PART commands take a part message (part
messages are displayed to others when you leave, for
example “Gone to lunch”).

Coding a client
Although Telnet is a convenient and simple way to
experiment with the protocol, it’s clearly not ideal for
anything but experimentation. The next section of this
tutorial will deal with using the IRC protocol in a
Python program. We will build the infrastructure for a
simple IRC bot. There are some very sophisticated
IRC bots that perform a range of functions including
FAQs and helping out new channel members. There
are also bots that listen and aggregate links or other

statistics from channels
conversations.

The entire source
code will be available at
https://github.com/
Newky/irc_linuxvoice.
The code snippets here

will not necessarily appear in the order they appear in
the source code.

The goal is to get a working IRC client that registers
on the server and responds to pings. First, we look at
the high-level view from the main function, and then
we’ll go into deeper detail on each function.
def main():
 args = parse_args()
 sock = create_irc_socket(args.host, args.port)
 register(sock, args.nick, args.real_name)
 join_channel(sock, args.channel)
 read_loop(sock)
 sock.close()

First, the Python module argparse is used for
parsing command line arguments. The defaults are
configured to connect as we did with Telnet.
 parser = argparse.ArgumentParser()
 parser.add_argument(“--host”, dest=”host”,
 help=”IRC host to connect to”, default=”irc.freenode.org”)
 parser.add_argument(“--port”, “-p”, dest=”port”,
 help=”IRC port to connect to”, default=6667)
 parser.add_argument(“--nick”, “-n”, dest=”nick”,
 help=”IRC nick to use.”, default=”LinuxVoiceTest”)
 parser.add_argument(“--real-name”, “-r”, dest=”real_name”,
 help=”IRC real name to use.”, default=”Linux Voice IRC
Test”)
 parser.add_argument(“--channel”, “-c”, dest=”channel”,
 help=”Channel for bot to join.”, default=”#linuxvoice”)
 args = parser.parse_args()

Once the location of the server is established, the
program establishes a connection with the IRC server.
This is done in the create_irc_socket function.
def create_irc_socket(host, port):
 sock = socket.socket()
 sock.connect((host, port))
 return sock

This creates a socket, by default using the IPv4
address family as the default argument, which then

connects to the given host and port. This is the raw
socket that will be used for all interaction after this
point. Once the connection is established, the
program registers with the IRC server using the same
registration flow as was used with Telnet. The register
function is used to send both a NICK and a USER
message. The actual message strings are handled by
separate functions nick_msg and user_msg.
def nick_msg(nick):
 return “NICK {}\r\n”.format(nick)

def user_msg(nick, real_name):
 return “USER {} 0 * :{}\r\n”.format(nick, real_name)

def register(sock, nick, real_name):
 sock.send(nick_msg(nick))
 sock.send(user_msg(nick, real_name))

Before the program enters the read_loop, it joins a
channel specified in the command line arguments.
This is achieved in the join_channel function. This
sends the JOIN message, which is constructed in the
join_msg function.
def join_channel(sock, channel):
 sock.send(join_msg(channel))

def join_msg(channel):
 return “JOIN {}\r\n”.format(channel)

A response is not read from the server at this point,
as this is handled next in the read_loop function. The
read loop is an infinite loop, which will break if a
keyboard interrupt (Control + C) is detected. Each loop
will read bytes from the socket, up to a maximum of
1024 bytes. However, if \r\n are not the last
characters received (meaning that the message is not
complete) it will continue to read until it has got a \r\n
terminated string.
def read_loop(sock):
 try:
 while 1:
 data = sock.recv(1024)
 # if the data ends with a \r\n everything is fine.
 # if it doesn’t we need to keep appending until it does
 while not data.endswith(“\r\n”):
 data += sock.recv(1024)

 for message in data.split(“\r\n”):
 # skip final empty string after split.
 if not message:
 continue
 source, command, rest = parse_message(part)
 action_on_commands(sock, source, command, rest)
 except KeyboardInterrupt:
 pass

The read buffer (in this case called data) is split into
IRC messages using \r\n as the delimiter. Each
message is then passed to the parse_message
function, which splits it into source (if present),
command and rest.
def parse_message(msg):
 # get rid of newlines and whitespace.

“Our goal is to get a working
IRC client that registers on the
server and responds to pings.”

LV013 086 Tutorial IRC.indd 88 06/02/2015 10:20

IRC TUTORIAL

www.linuxvoice.com 89

 msg = msg.rstrip()
 # split by space
 components = msg.split()

 # if the first part starts with a : the message includes a
 # source.
 if components[0].startswith(“:”):
 source = components[0]
 command = components[1]
 rest = ‘ ‘.join(components[2:])
 else:
 source = None
 command = components[0]
 rest = ‘ ‘.join(components[1:])

 return source, command, rest
The purpose of an IRC bot is to carry out some

action based on certain messages. When the
program receives a message from the server, it has to
decide what, if any, action must be taken. The
action_on_commands function handles this; it takes
the socket and the three arguments of the parse_
message function as parameters and triggers an
action based on how our program is set up.
COMMANDS = {
 “PING”: pong_msg_responder,
}

def action_on_commands(sock, source, command, rest):
 responder_func = COMMANDS.get(command)
 # command has no responder defined:
 if not responder_func:
 return

 return responder_func(sock, source, rest)

Mission accomplished!
The function uses the COMMANDS dictionary to react
to certain commands. The dictionary has commands
as keys (such as PING) and functions as the values.
This is one of the values of having functions as first
class citizens in Python. All the functions should take
source and rest as arguments. The action_on_
commands function will look up the COMMANDS
dictionary for the command; if it doesn’t exist (for
example if there is no LEAVE command configured),
no action is taken and the function returns. However, if
it does exist, it passes the socket along with the
source and rest into the function.

Above, the PING command has been configured
with the pong_msg_responder as its action function.
This is a simple function which sends a pong
message to the server with the content of the ping
message as its parameters.
def pong_msg(body):
 return “PONG {}\r\n”.format(body)

def pong_msg_responder(sock, source, rest):
 sock.send(pong_msg(rest))

With that, we have a working IRC client in that it will

stay on the network until the program exits via a
keyboard interrupt. But with this we can write some
nice action functions to react to messages. Below, we
add a way to greet people who join a channel. The
COMMANDS dictionary is modified to add an action
for the JOIN command, and the corresponding action
function join_msg_responder.
COMMANDS = {
 “PING”: pong_msg_responder,
 “JOIN”: join_responder
}

def join_responder(sock, source, channel):
 sock.send(
 priv_msg(
 channel,
 ‘Welcome to {}, {}!’.format(
 channel,
 source
)
)
)

def priv_msg(target, message):
 return “PRIVMSG {} :{}\r\n”.format(target, message)

This is very similar to the PING example, but instead
a PRIVMSG message is sent to the channel that the
source has joined. To better illustrate this, an example
of the original message would look like:
:Newky1~Newky1@127.0.0.1 JOIN #linuxvoice

Using this information, the program can craft a
PRIVMSG message to send back to the channel
specified in the parameters of the JOIN command.
This is a very basic IRC bot. With some more
commands added to the COMMANDS dictionary, it’s
possible to build a system which responds to
keywords mentioned in users messages to channels.
I look forward to seeing a range of IRC bots popping
up on #linuxvoice which do all sorts of things.

Richy Delaney is a software engineer with Demonware
Ireland, working on back-end web services using Python and
Linux. He has been an avid Linux user for the past five years.

RFC

An RFC is a “Request for Comments”
document, which is authored by engineers
or individuals involved with a specific
technology. The IETF (Internet Engineering
Task Force) adopts some of these
documents as internet standards. They are
in-depth documents which can help when
writing an implementation of a standard
such as IRC.

IRC has its own RFC as it is an open
protocol. I encourage you to check it out if
this article has piqued your interest in IRC.
It is a document which has information on
the general workings of an IRC server and

client, while also going into finer detail on
each of the supported commands. Given the
scope of this article, we only cover the client
portion of IRC, and only concentrate on some
of the most common commands.

The basic IRC RFC can be found at
http://tools.ietf.org/html/rfc1459.
Additionally, since new versions of the IRC
protocol have been released, there have been
new RFCs released, but adoption of these
are not widespread among IRC servers and
clients. For your own interest, you can check
out RFC 2810, RFC 2811, RFC 2812 and RFC
2813, which detail these new changes.

LV013 086 Tutorial IRC.indd 89 06/02/2015 10:20

TUTORIAL SHARES

www.linuxvoice.com

Many tools for processing data are based on
free and open software (FOSS), especially if
it’s available online. That’s because the

people who write the software are often interested in
such things. A few numerate techno-geeks even end
up working for banks in the city analysing all kinds of
stock market data. They are paid handsomely
because their bosses make a tidy profit from financial
transactions involving shares. In fact, the image of
brace-wearing stockbrokers shouting and waving
slips of paper on the exchange floor has become a
thing of the past, having been largely superseded by
clever algorithms that sprawl across the internet.

Before going any further, we’d like to be clear on one
point: this tutorial is not on how to get rich quick by
coding and hacking the stock market. Instead, we’re
going to focus on getting started with stock market
data and examining the history of share price time
series. Given the quantity of data involved we’ll need
to automate the process, and command line scripting
is the ideal tool for the job. Next issue we’ll move on to
constructing some basic algorithms and writing code
to evaluate trading strategies on past data.

The next step of trading on the real stock market
requires either that you do some serious homework,
or, better still, take professional advice on the risks
and responsibilities involved. There’s also the ethical

consideration of whether speculating – frankly,
gambling – on shares is harmful to the economy,
causing bubbles that burst harming productive
businesses. We’ll deftly dodge such thorny issues and
concentrate on working with the data.

Take the long view
Before dipping your toe into the sea of data on the
web, let’s start by looking at the history of the FTSE
100, which is an index tracking the share price of 100
leading UK companies. It is calculated by taking the
average over the total value of shares available for
each of the 100 companies, and scaled so that it had
a value of exactly 1000 when it began in 1984.

A convenient place to get the data is Yahoo’s
finance pages. Fire up your web browser and go to
https://uk.finance.yahoo.com/q/hp?s=^FTSE and
you’ll see its present value, which will be updated live if
trading is open on the London Stock Exchange. Select
Monthly from the options on the right, and leave the
date range on the left set at its default, which will
get the entire history of FTSE 100 data, and click on
the Get Prices button. The table will now be updated
to show recent monthly values, but let’s get the
spreadsheet: scroll down to the bottom of the table
and click Download To Spreadsheet.

You will now have a CSV (Comma Separated
Variable) file called table.csv in your Downloads folder,
but it’s a good idea to rename it to something more
meaningful, eg ftse100.csv. The structure is simple
enough that you can open it up for a quick look in a
text editor, such as Geany or Kate, or a pager on the
command line, such as less. Clicking on the icon
in your file manager will open it up in your default
spreadsheet application.

You’ll see that there are many rows, each one
having a date, which will be the first working day of the
month (stock exchanges are closed on weekends and
public holidays). It will list the price when the stock
exchange opened for trading, and when it closed,
along with the highest and lowest values between
times. For historical analysis, it’s recommended to
use the final column, which is called “Adj Close” – this
is the close price adjusted to account for important
information that came to light after trading.

We’ll start by graphing the data using the standard
spreadsheet approach because, for one thing,
it’s probably familiar to you, but also it highlights
how inefficient this workflow is compared with

KEEP AN EYE ON SHARES WITH
SHARED CODE – PART 1
Take big data from the stockmarket and parse it into something
human beings can understand.

 TUTORIAL

90

WHY DO THIS?
• Make sense of the sea

of financial data.
• Do better with your

savings than the paltry
1.5% offered by high
street banks.

• Fund an extensive
collection of red braces.

The share prices of AMD
and Intel. Buying shares
in either one in the early
1990s would have made
you a great return if you
sold at the 2000 peak, and
although both fell sharply
after the dot com bubble
burst, and again in 2008,
the Intel shares have been
on an upward trend in
recent years.

ANDREW CONWAY

LV013 090 Tutorial Shares.indd 90 06/02/2015 13:37

SHARES TUTORIAL

www.linuxvoice.com

the command-line equivalent that we’ll describe
next. We’re using a recent version (4.x) version of
LibreOffice, but the procedure is common to many
spreadsheet applications. Click on the A at the top
of the Date column, then hold the Ctrl key down and
click on G at the top of the Adj Close column. These
columns should now be highlighted, but not columns
B–F. Now click on the Chart button on the toolbar
(or the Insert > Object > Chart menu item). For us,
LibreOffice chose sensible defaults for this data and
the graph it produced is shown in the boxout.

After inspecting the FTSE 100 graph, and especially
after accounting for inflation, you might conclude that
investing in shares has been a mug’s game since the
year 2000. But you might know that the wealthiest
people have seen their wealth increase since 2000,
and that they have their wealth invested in shares.
This is thoroughly documented in Thomas Piketty’s
famous book Capital in the Twenty-First Century.
How can we explain this apparent contradiction?
The answer is in two parts. Firstly, remember that
shares pay dividends, ie they divide the profits to
shareholders, so there is a return even if the share
price does not rise. Secondly, basing your portfolio on
the FTSE 100 companies is a poor strategy; instead
it’s better to buy and sell shares from a wider pool to
maximise returns. If you have the know-how to do
this, or the wealth to pay a fund manager to do it for

you, then it’s possible that your portfolio will grow in
value even when stock market indices are falling.

Building a portfolio
Extending a portfolio beyond the FTSE 100 is clearly
desirable. For example, if we chose to follow the FTSE
250, the index tracking the next 250 most significant
UK-based companies, then we’d have enjoyed seeing
its index rise from about 1,500 in 1986 to 16,000 in
late 2014. A portfolio minimises risks by keeping your
eggs spread across many baskets, but also gives you
the freedom to swap shares in and out to maximise
your returns. Quite apart from any profit incentive,
there is the enticing challenge of constructing
algorithms to manage the buying and selling of
shares. But, before we can do that, we need to mine
the huge history of time series data for information.

In case you’re wondering if you’ve picked up a copy
of Stock Market Voice by mistake, let’s get back to
Linux – specifically, the command line. Clicking
around on stock market web pages can soon give you
a headache from information overload, and that’s
assuming you can see the content – it’s often
delivered via Flash, Java and Linux-unfriendly plugins
such as Silverlight. You can, as we did above,
download CSV files from Yahoo and open them up as
spreadsheets. But doing this for the thousands of
shares available, and for many rows of data for each
one, will gobble time and cause repetitive strain
injuries to your mouse hand, eye and brain. Instead,
the command line offers a viable path to automation
of this workflow.

Let’s start by looking at a famous company – ARM
Holdings, which provides the CPUs for most phones
and also the Raspberry Pi. To get its data from Yahoo,
issue this command:
wget “http://ichart.finance.yahoo.com/table.csv?s=ARM.L” -O
ARM.L.csv

This sends a standard HTTP request asking for
data on the share with abbreviation ARM.L and writes
the returned data into the file ARM.L.csv. There will be
a row in the CSV file for every day the share has been
traded. As such, it’s rather large, but you can use any
of the following commands, and their variants, to help
browse through the data:

91

There are a few free finance services out there; Yahoo is
just one, but it’s particularly easy to extract data from.

Stock market jargon

 Shares The ownership of a company can be split into many
small pieces called shares. For example, if MyCorps Inc has
a million shares and you have 500,000 of them, then you
own half of MyCorps Inc. If the company makes a profit then
it will pay out a share of the profit to you, called dividends,
in proportion to your share ownership. So if the profit is
$10m, you’ll get $5m of it. But this isn’t the only way you
can make money. If a company is profitable, or people think
it will be so in the future, then they will pay more for a share.
So shares in MyCorps that you bought for $1 might become
worth $2 and you can sell them and double your money.
 The stock market The stock market is a catch-all term for all
trading in shares. Some companies only trade in private, but

certain companies, called public companies, have shares
that can be bought and sold at stock exchanges, such as
those in London and New York. We’ll concentrate on public
companies because their data is released openly by the
stock exchanges according to strict rules.

 Stock market index In order to judge how the stock market
as a whole is behaving, indices are constructed that track
the share prices of groups of large public companies. An
increasing index means that most companies have share
prices that are rising, and likewise a falling index means
share prices are dropping. The most famous indices include
the Dow Jones (USA), FTSE (UK), Nikkei (Japan) and
NASDAQ (USA technology).

PRO TIP
Yahoo finance allows
you to access its data
service for free, but bear
in mind that being free
it may change or be
withdrawn with little or no
notice. Paid-for options
are available if you need
defined terms of service.

LV013 090 Tutorial Shares.indd 91 06/02/2015 13:37

TUTORIAL SHARES

www.linuxvoice.com92

less ARM.L.csv
head -5 ARM.L.csv
tail -5 ARM.L.csv
cut -d, -f1,7 ARM.L.csv | less

The less command lets you page through the text
of the CSV file. The head -5 and tail -5 lines show
you the first 5 and last 5 lines of the file. The cut
command splits each line using a comma delimiter
and outputs only columns 1 (Date) and column 7 (Adj.
close), which is then sent to less so you can page
through it, though you could send it to head or tail.

If you want to download data for another company,
you need only replace ARM.L in the above wget
command with its stock market abbreviation. For
example, Intel is INTC, and Apple is AAPL. The Yahoo
Finance web interface has a Look Up field at its top
left which will help you with this.

Let’s take a first step in automating the data
download. First, create a new directory and a list of
shares that you wish to download and save it into
shares.txt. You can list as many shares as you wish,
but here’s a concise example of just a few shares:
ARM.L
INTC
AMD

BRCM
Next, create a file called download_shares.sh

containing these lines:
#!/bin/bash
URL=http://ichart.finance.yahoo.com/table.csv?s=
for share in $(cat shares.txt)
do
 wget “$URL”$share -O $share.csv
 sleep 2
done

To run this Bash script you’ll need to make it
executable:
chmod u+x download_shares.sh
so you can run it with
./download_shares.sh

The script takes each line of output from cat
shares.txt, so $share becomes the abbreviation used
in the wget line, which is used both to append to
$URL and also to name the CSV file for output. The
sleep 2 line means that the script waits at least
two seconds between sending requests – it’s a free
service so a bit of courtesy won’t go amiss.

Once the data is downloaded we can use standard
text processing commands to make short work of
extracting interesting information. To see all share

FTSE 100 history and inflation

This plot (generated by LibreOffice) shows that
shares generally rose in price until the dot com
crash in 2000, after which share prices recovered
until crashing again in the recession of 2008. At the
time of writing, the FTSE is back up to about 6500,
close to its all-time high.

If you spent a sum of money buying a portfolio of
FTSE 100 shares in early 1984, when the FTSE was
at 1000, you would have received about six times
that amount back if you sold them in early 2000,
when it was about 6500. But if you’d bought them
at the peak in 2000, then you would, at best, only

break even if you sold them at any time thereafter.
However, if you account for inflation – the effect of
prices of everyday goods rising – a value of 6500
today is not the same as 6500 in 2000. Correcting
for inflation, the FTSE 100 would need to be 10,000
if it were to equal its year 2000 peak in real terms.

The history of the FTSE 100 stock market index from when it began on 1 Jan 1984 to late 2014.

LV013 090 Tutorial Shares.indd 92 06/02/2015 13:37

SHARES TUTORIAL

www.linuxvoice.com 93

prices for a particular date:
grep 2014-12-01 *.csv | cut -d, -f1,7

Or to compare the share prices between two dates:
grep “2014-12-01\|2010-12-01” *.csv | cut -d, -f1,7

The output from this last command suggests that
investing in ARM or Intel was a better bet than either
AMD or Broadcom in recent years.

Commanding graphs
We can draw some pretty cool graphs from the
command line with the venerable Gnuplot. If you don’t
have it, you can get it via your package manager for
Debian-based distros with sudo apt-get install
gnuplot or you can use yum install gnuplot for
RedHat derivatives.

You can run Gnuplot in interactive mode, but as our
goal is automation, we’ll get straight to writing a quick
script for it:
set datafile separator “,”
set xdata time
set timefmt ‘%Y-%m-%d’
set xtics format “%Y”
set key off
plot filename every::1 using 1:7
pause -1 filename.” Hit any ENTER to continue”

Save the file as gnuplotter.gp, then run the following
command, which tells it to plot the data for Broadcom
(though you can use any of the CSV files we’ve
mentioned above) and you should see a window open
with a plot of the data:
gnuplot -e “filename=’BRCM.csv’” gnuplotter.gp

Note the single quotes inside the double quotes
around the filename.

In the first line of the script, we tell it to use commas
to separate values on each line of data. The next two
lines say that the horizontal axis will be used for time
data and the date format is specified. The xtics line
tells it to display just the year (%Y) for labels, and the
next line tells it not to display a key. Next we have the
plot command, which instructs Gnuplot to graph the
data with column 1 on the horizontal axis and column
7 on the vertical axis, and every::1 makes it to skip the
first line of the file, which is a non-numerical header.
Finally, the pause command tells Gnuplot to wait
until Enter is pressed before quitting – if you forget
this line, the window with the graph will open then
immediately close.

If you are a command line die-hard and are
disappointed that you have to leave the terminal
window, put this line at the start of gnuplotter.gp:
set term dumb
and a graph will be plotted with text characters.

Bring it all together
Let’s put what we’ve seen above into one script so we
can quickly review graphs of shares in your portfolio.
Enter the following lines in a file called review_shares.
sh and save it in the same directory as gnuplotter.gp
and your downloaded CSV files:
#!/bin/bash

for share in $(cat shares.txt)
do
 head -5 $share.csv
 gnuplot -e “filename=’$share.csv’” gnuplotter.gp
done

Make it executable with chmod and run it, just like
we did above for download_shares.sh. Each plot will
be displayed in turn and you just hit the Enter key to
show the next plot. The head -5 line shows the most
recent data to accompany the graph, but you can add
lines to display whatever information you wish to see
on your portfolio.

Next steps
Although the command line tools such as grep and
cut are powerful, they deal only with text and can’t
perform numerical operations such as finding
minimum and maximum values or calculating
averages. If you want to stay close to the command
line and augment the above scripts to provide
statistics to accompany the graphs, then you could try
using awk – it can perform the text functions of grep
and cut but can also perform numerical operations.
Beyond that, using a full-blown programming language
such as Python, Ruby or Perl is probably best.

There is a huge amount of information to digest on
the Yahoo Finance pages, and we’ve only scratched
the surface of what’s on offer. It’s well worth spending
time browsing through it, and if you’re database
minded you might find its YQL facility interesting, and
if you’re into web apps, there’s an API to play with. It’s
also worth going to the horses’ mouths and visiting
the websites of various stock exchanges. If you’d like
to experiment with simulated buying and selling of
shares using real data, there are mobile apps such
Stock Trainer that will give you a feel for the workings
of the stock market without risking any of your money.

Next issue we’ll turn to turn our attention to devising
algorithms to decide when to buy and sell shares.

Andrew Conway, millionaire philanthropist, tracks the stars to
predict the future – just like real economists!

A graph of the FTSE 100
data rendered by Gnuplot
in a terminal window. Much
detail is lost compared to
its graphical equivalent
(see above), but it clearly
shows the long-term
trends of this time series.

LV013 090 Tutorial Shares.indd 93 06/02/2015 13:37

TUTORIAL COMPUTER LANGUAGES

www.linuxvoice.com

Ada Lovelace wrote the first ever computer
program without even having a computer.
She wrote out a detailed description of how

one would calculate Bernoulli numbers on Babbage’s
Analytical Engine (sadly never built). She, and others,
also considered punch cards as a means of encoding
the instructions to an Engine-like device. For more on
this, see LV001 (if you haven’t seen it yet, you can
download the full PDF from here: www.linuxvoice.
com/download-linux-voice-issue-1-with-audio).

The first computers that were successfully built, in
the 1940s, were programmed in machine code, or at
best in assembly language, with mnemonics rather
than numeric codes. Whilst this lent itself to a high
degree of fine-tuning, it was also error-prone and very
hard work.

Those early programmers were interested in
developing high-level languages; languages that were
abstracted from the details of the machine doing the
work. This allows a programmer to specify what they
want without worrying about the details of memory
location, chip instructions, and so on. The first high-
level language ever designed was Zuse’s Plankalkül,
but as he lacked a functional computer at the time it
wasn’t implemented until over 50 years later.

The early 1950s saw several more attempts.
Short Code (designed by John Mauchley) was
implemented for UNIVAC, and aimed to make
mathematical expressions easier to code. However,
it was interpreted rather than compiled, so had to be
translated every time, running about 50 times slower
than assembly. The first compiled language was
Autocode, developed at the University of Manchester
for the Mark 1. Grace Hopper’s FLOW-MATIC was
a couple of years later, and was aimed at business
customers who might be uncomfortable with
mathematical notation. None of these are still in use

today; but their successors, Fortran, Lisp and COBOL,
have all survived.

Fortran was created in 1957. It had 32 statements,
and was of course stored on punchcards, one
card per line of code. Compilers for many different
computers were rapidly developed due to its growing
popularity, making it arguably the first cross-platform
language. Here’s an example (save as hello.f95):
! Hello World
program hello
 print *,”Hello World”
end program hello
Install the gfortran package, and compile it with f95 -o hello
hello.f95, then run it with ./hello.

Lisp emerged in 1958. The name derives from
LISt Processing, and Lisp is heavily list-based (and,
famously, involves a lot of brackets). Here’s a Hello
World (save as hello.lisp):
(write-line “Hello World”)

Install sbcl (if you want to do much Lisp
development you’ll also want to install and set up
Slime (the Superior Lisp Interaction Mode for Emacs)
and Emacs), and run this with sbcl --script hello.lisp.

COBOL was designed in 1959–1960, by a steering
committee, and took a lot of features from FLOW-
MATIC. It was intended to be verbose and easy to
understand for non-experts, and to be highly flexible
for multiple uses. Although it’s often derided, a
significant number of large organisations still have
COBOL legacy code on mainframes. Here’s a Hello
World example (save as hello-cobol):
IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO-COBOL.
PROCEDURE DIVISION.
 DISPLAY ‘Hello World!’.
 STOP RUN.
Install the open-cobol package, compile with cobc
-free -x -o hellocobol-exe hello-cobol and execute.

After these first language pioneers, as the 1960s
and 1970s progressed, more languages, and more
programming theory, began to develop; along with
various distinctions and coding structures (some of
which overlap with one another).

Array programming
The basic idea of array programming is to apply an
operation to a range of values at the same time. So an
operation will, instead of adding two single numbers,
add two arrays (or vectors, or matrices, or other

A BRIEF HISTORY OF COMPUTER
LANGUAGES
Or: a whistle-stop tour through ways people have talked to
computers, before we kick off with more in-depth tutorials.

 TUTORIAL

94

JULIET KEMP

Fortran code and code
compiling/running, again.
The ! line is a comment.

LV013 094 Tutorial Olde Code.indd 94 06/02/2015 10:24

COMPUTER LANGUAGES TUTORIAL

www.linuxvoice.com

grouped data, depending on the language and the
problem being handled). This is particularly useful for
mathematicians, who often want to deal with grouped
data like this.

Given that early computing was closely linked with
mathematics, it’s not surprising that dealing with
arrays was of immediate interest. Fortran had some
array handling from the start, but was more multi-
purpose, and full array handling wasn’t introduced
until Fortran 90. APL (A Programming Language), one
of the best-known array programming languages,
was developed between 1957 and 1967. It was
explicitly intended to provide a language for applied
mathematics. It uses a multi-dimensional array as
its basic data type, and has special characters to
represent specific operations. This makes for code
which is concise, but baffling to read for the non-
expert. Here’s an example:
#!/usr/bin/apl
a ← 1 2 3
b ← (-2) 4 (-6)
a + b
a Є b
a ° . × b

APL uses ← (Unicode leftward arrow) for
assignment. a + b simply adds.The Є character
(Unicode element of) returns 1 if the element
in position n is the same in both a and b, and 0
otherwise. Finally, - . is the outer product operator,
which applies a specific operation to all the
combinations of the elements of the operands. So
here, we multiply (× – not the character x but the
Unicode multiplication character) b by each of the
elements of a in turn.

Run with ./test.apl, to get the output
-1 6 -3

0 0 0

-2 4 -6
-4 8 -12
-6 12 -18

The supercomputers of the 1960s and 1970s were
designed to handle vectors and arrays with particular

ease. Other modern array programming languages
include J, MATLAB, and S-Lang.

Imperative vs declarative programming
Imperative programming involves issuing a series of
commands to the computer. At the hardware level,
almost all computers operate in an imperative style,
with machine code consisting of instructions
operating on memory contents. Initially, computer
programmers were using machine language, and thus
an imperative style; so the first high-level languages
(such as Fortran and COBOL) were similar. It does
make a certain cognitive sense to write your code as a
set of algorithmic steps.

Declarative programming takes a different
approach. Instead of telling the computer how to
perform a task (what steps to take), it describes
what computation should be carried out, and the
compiler then translates this into specific steps. Pure
declarative programming also avoids “side effects”
(functions that modify state rather than just returning
something) and has immutable variables. Imperative
programming, on the other hand, makes frequent use
of side effects, and happily alters variables.

If you’ve ever written any SQL, that’s declarative:
you describe the result you want (a certain selection
of records), and the code chooses how it returns that
result. In general, many languages can be written in
either an imperative or a declarative style, although
some are much more inclined one way than the other.
C, for example, is highly imperative; Haskell is highly
declarative (as are other functional languages).

If your main experience is in imperative
programming, the declarative approach can feel
awkward. Here’s a Python example of doing the same
thing in two different styles. You can try it out in a
browser at www.skulpt.org.
Declarative
fours = [x for x in range(100) if x%4 == 0]
print fours

Imperative
fours = []
for i in range(100):
 if i%4 == 0:
 fours.append(i)

95

Both Vim (using digraphs) and Emacs (using an
appropriate Lisp file and chords) will support APL
characters.

PRO TIP
Reconfigurable
computing is not
imperative at machine-
code level; there is a
main processor which
reconfigures subsidary
systems on the fly to suit
the requirements of the
instructions provided.

Our simple COBOL example
running in the right-hand
window (note syntax error
on first compile!).

LV013 094 Tutorial Olde Code.indd 95 06/02/2015 10:24

TUTORIAL COMPUTER LANGUAGES

www.linuxvoice.com96

print fours
(With thanks to Mark Rushakoff.) The first one says

what you want – numbers which are multiples of 4 (%
is the modulo operator) – and the implementation is
up to the machine. The second one describes exactly
how to construct the required array.

Functional programming
Functional programming is declarative; functional
languages construct and evaluate functions and treat
data as unchangeable. So you can’t alter data in-place;
instead you have to apply a function to one data item
and store the result in another data item. It’s based
on lambda calculus, which is a theoretical
mathematical framework for describing functions. It
will also use higher-order functions (functions that
operate on functions) where an imperative language
might use a loop.

The avoidance of side-effects makes programs
easier to verify and to parallelise. However, some
things (I/O being one notable example) do seem best
suited to some kind of state approach. Functional
languages will ‘fake’ this in various ways: Haskell
uses monads; other languages use data structures to
represent the current state of a thing.

Lisp was the earliest functional-type language; it
was followed by APL (see above) and ML, which has
various offshoots. Probably the best known modern
functional language is Haskell. There’s a Haskell
example above; here’s another one (save as hello.hs):
main = helloworld

x = “Me!”
helloworld = print (“Hello World from “ ++ x)

Compile and run it with ghc hello.hs; ./hello.
helloworld is a function, and x is a variable, but they
can both be defined in the same way. main is the
main program control structure (what runs when
you execute the compiled file). There’s lots more
information and tutorials on the Haskell web page.

Structured programming
Structured programming argues that programs are
composed of three control structures:
1 Sequence A set of statements or subroutines

ordered in a particular sequence.
2 Selection A statement or statements executed

based on the program state (eg if/then structures).
3 Iteration A statement executed until a certain

condition is achieved (eg while, for, do/until).
Blocks and subroutines group statements together.
The structured program theorem states that these,
when combined, are sufficient to describe any
computable function.

Non-structured programming simply has a
sequence of commands, although usually these are
labelled so that execution can jump to that point.
Loops, branches, and jumps exist, and sometimes
basic subroutines.

Today, all high-level languages have some form of
programming structure (including older languages like
Fortran, COBOL, and BASIC), and structured coding is
the norm. But early programmers were accustomed
to machine code or assembly language, which had
only an ordered sequence of commands. A single
statement in a high-level language will be spread
over multiple statements in assembler. Assembly
language coders were skilled at manipulating code
in complex and highly efficient ways and it seemed
far from obvious that all of this was even conceivably
structurable. COBOL was notoriously unstructured
and made extensive use of GO TO statements. Edsger
Dijkstra’s letter Go To Statement Considered Harmful
is probably best-known contribution to the debate.

Structured programming at its most basic means
writing code that looks like this:
$a = 3;

Haskell is a functional,
rather than a declarative
language.

Interpreted vs compiled

In the very early days, programs were neither interpreted nor
compiled. Instead, programmers wrote machine code, which
ran directly on the hardware. Once languages began to be
developed, the distinction between compiled and interpreted
developed alongside them.

Broadly speaking, a compiled language is one in which the
instructions written by the programmer are translated (by
the compiler) into machine code all at one go. The compiled
program can then be run on the machine. Parse everything,
then run it.

Interpreted languages, in contrast, are read at runtime by
another program, an interpreter, which then translates each
instruction, one at a time, into machine code. So parsing and

execution happen at the same time. Parse a statement, run it,
parse the next statement, and so on.

In modern languages, the distinction can be quite blurry.
Some modern compilers can parse and execute in memory, so
although the steps are distinct, the programmer issues only
one command. Other languages compile to virtual machine
bytecode, which is another step (or more!) away from the
metal. Ultimately, any program has to be translated into
machine code; the question is how that process occurs and
which steps occur in what order.

Interpreted and compiled languages both have their
advantages and disadvantages; as ever, it’s about using the
best tool for the job.

PRO TIP
The haskell-platform
package is available via
the package repository
of several distributions;
check out the Haskell
platform webpage for
details for your distro or
to build from source.

LV013 094 Tutorial Olde Code.indd 96 06/02/2015 10:24

COMPUTER LANGUAGES TUTORIAL

www.linuxvoice.com 97

$pi = 3.14;

sub area($_) { return $_[0] * $pi * $pi; }

print area($a);
instead of code that looks like this:
print 3 * 3.14^2;

The second might be shorter, but it is less reusable
and less maintainable.

Procedural programming is derived from structured
programming, and is based on the idea of procedures
(or methods, or functions), consisting of a series
of steps. It is often contrasted with object-oriented
programming (OOP).

Object-oriented programming
It’s nearly impossible these days not to have
encountered OOP (whether or not you like it). Many
modern languages are multi-paradigm and support
OO alongside a more imperative style (eg Perl, PHP,
Python). Java, in contrast, is exclusively OO.

The basic OOP idea is to fold both code and data
into objects with behaviour (code) and state (data).
Code is executed by creating an object and causing it
to behave in a particular way. So to add X and Y, you
would pass X into Y’s “add” method (Y.add(X)).

Objects can inherit methods and data from one
another, so OO languages have a class (object)
hierarchy. OOP encourages modular programming
(though non-OO languages can also support
modules), intended to simplify code reuse, by bundling
together objects and everything associated with them.

Some of the advantages claimed for OOP are:
 Improved code reusability; great for modules and
code libraries.
 Interfaces and encapsulation make it easier to use
others’ code; you need only understand the
interface, not the details of the code.
 Encapsulation makes it easy to hide values that
shouldn’t be changed.
 Improved code organisation and simpler syntax.
 Forces better advance planning, and is easier to
maintain afterwards.
There are also, of course, disadvantages:

 OO programs tend to be large. This is less of a
problem on modern machines with lots of memory
and hard drive space.
 Programs are often slower, although again with
modern machine resources this is less important.
 More effort required up-front, which some may
consider wasteful. The larger the project, the less
true this is, but for a small project the effort may be
overkill.
 Lots of code boilerplate. (This is less hassle with a
decent IDE.)

Both advantages and disadvantages are true; which
way they balance will depend on the project and the
people working on it.

Here’s a brief Java example (save as HelloWorld.
java):

public class HelloWorld {
 public static void main(String[] args) {
 HelloName name;
 if ((args == null) || (args.length == 0)) { name = new
HelloName(); }
 else { name = new HelloName(args[0]); }
 System.out.println(“Hello World from “ + HelloName.
getName());
 }

 private static class HelloName {
 private String name;
 HelloName() { this.name = “me”; }
 HelloName(String name) { this.name = name; }
 public String getName() { return name; }
 }
}

This is deliberately a little verbose to demonstrate
objects. The HelloName object stores a name;
you could easily extend it to store more data. The
HelloWorld class creates the new object, then uses
the getName() method to retrieve the string. Compile
it with javac HelloWorld.java and run it with java
HelloWorld NAME.

More out there...
There are a bunch of types and areas of programming
language I haven’t been able to cover here, including
systems programming, logic programming, reflection
programming; ideas around modularity, security,
concurrency, and other aspects of modern computing
also inform current thinking.

Language development continues at a fair old clip,
to the point that any attempt to list languages
available as I write would probably be out of date by
the time we go to print. And all of them – all the
languages, all the paradigms, all the tweaks and
mechanisms and constructs – have their places
where they’re useful and their places where they don’t
fit. One of the joys of programming is just how many
options there are out there to explore.

Juliet Kemp is a scary polymath, and is the author of
Apress’s Linux System Administration Recipes.

Our HelloName example
in Java runs both with and
without a name provided
on the command line.

PRO TIP
Java is available from
your distribution’s
package manager or from
the Java website. Make
sure you install the Java
Development Kit (JDK)
as well as the Runtime
Environment (JRE).

LV013 094 Tutorial Olde Code.indd 97 06/02/2015 10:24

CODING ARDUINO

www.linuxvoice.com

Last month, we covered the schematics of the
project, using the I2C library as an interface and
writing some driver code to make it easy to

display things. Now we’re going to play around with
the display, starting with the long-promised splash
screen. This is non-essential, but nice, as it means
when the display starts up, you can see that it is
actually working. It is also a useful way of breaking
into the topic of displaying stuff on the screen.

The first thing is to have some data to put on the
screen. We can convert an image into a bitmapped
array of chars we can write to the screen (see Python
To The Rescue box for how we generate this data). If
you think that storing a huge array of chars rather flies
in the face of our intention to save runtime memory
then you are very right. That’s why we aren’t going to
put it in runtime memory. We are going to store it in
the program memory, by using the PROGMEM macro
(see the Memories boxout for why this works).

So, in our .cpp file, we simply need to define a giant
array of bitmap data:
const char fb[1024] PROGMEM = {
B00000000, B00000000, B00000000, …
...
}

Obviously, we are not going to show the full
1k of data here; this is just to show you how it is
constructed (think yourself lucky we aren’t still living
in the age where you had to type in listings from
magazines. This way, it is only my fingers which hurt).

All we need to do now is write a function that will
read this data from the flash memory and send it
a byte at a time to the display. This is made slightly
more complicated by a) the page addressing mode of
the device and b) the fact that we stored the data in
flash memory.

The page mode means that we need to read the
data 8-bit lines at a time until we have filled an 8x8

square, then move on to the next. When we get to the
end of a line (after 16 blocks) we have to set the page
index to the next value. The command to address
page0 is ‘B0’, and thankfully, the other page address
commands follow sequentially, so we can simply loop
and address ‘B0 + offset’ (literally, if we make ‘offset’ a
char value).

Each ‘page’ is then 16 x 8 bytes of data, or 128
bytes. We can make a loop that reads the next 128
bytes from our declared array and sends it to the
display. If we keep an independent index value, we
don’t need to come up with complex maths to work
out where in the data we should be. Like this:
for (int n=0;n<128;n++)
 {
 sendByte(pgm_read_byte(&(fb[index++])));
 }

This uses the special pgm_read_byte function
to read from flash memory (check the Memories
boxout for more details on this and why we use the
&() construct), and increments the index variable
each time it is called so we can read the image data
sequentially. The rest of this whole function is just
another loop which goes through the pages of display
memory, and the corresponding commands to the
display to set the usual stuff (page mode, start and
end of data, slave address and such):
void evilOLED::splash ()
{
 int index = 0;
 sendCmd(0x00);// -> page mode
 sendCmd(0x00);// lower page
 sendCmd(0x07);
 for (int p=0; p<8;p++){
 sendCmd(0xb0 + p);

ARDUINO HARDWARE
ENABLEMENT (PART DEUX)
In which we complete our project to connect a cheap OLED display
into our Arduino, while building a driver and learning some C++.

 TUTORIAL

98

NICK VEITCH

It is a good idea to convert
to a bitmap first before
you run the converter,
otherwise the dither
patterns may surprise you.

WHY DO THIS?
• Learn how to plug

awesome displays into
cheap hardware and
code your own interface
using the Arduino IDE
and a smattering of
learner-level C++.

When you make your own font, you can choose how to
represent a 7. And other things. Just make sure you use
consistent spacing.

LV013 098 Coding Arduino.indd 98 06/02/2015 10:26

ARDUINO CODING

www.linuxvoice.com

 sendCmd(0x00);
 sendCmd(0x10);
 dataStart();
 sendByte(0x78);
 sendByte(0x40);

 for (int n=0;n<128;n++)
 {
 sendByte(pgm_read_byte(&(fb[index++])));

 }
 dataStop();

 }
}

So, as well as making a nice splash screen, that’s
how you dump a whole screen of data to the display.

Font pun goes here
A screen of data is one thing, but we promised we’d
cover character mapping the display. This is a similar

but not the same procedure – in this case, you want
to fill one of those 8x8 blocks at a time. Of course, you
could choose a different size, but 8x8 is very
convenient for the way the device memory is
organised, and also a good size for a minimalist text
font. We can construct the font as a bitmap, in more
or less the same way as the splash screen, except this
time we want to have it only 8 pixels high by however
long we need.

However long we need may be a surprise, but it falls
in line with our space-saving ethos. Sure, we could
implement a full ASCII-type character set. But fully
half of those characters are useless (SYNCHRONOUS
IDLE anyone) and if we were to map them all, we’d be
using up another 256x8 bytes, or, yes, another 1k of
precious memory.

If you want to do this, then there are plenty of fonts
you can crib from various libraries that already exist
(check out www.henningkarlsen.com/electronics/r_
fonts.php for some good examples, or fish through
https://github.com/adafruit/Adafruit-SSD1351-
library to find the Adafruit ones.

Defining your own font means you can make
your own symbols. If you want a battery or network
indicator, you can just draw one. Bar displays
become just 8 characters worth of progressively filled
blocks, and you can still have text and numbers. The
example font included with the source for this tutorial
has some strange symbols, but also the standard
numbers and upper case letters, and all in half the
amount of space a standard font would take up.

The only real trick here is that you want to make
it easy to convert from ‘normal’ text in your Arduino
code (which is ASCII) to your custom font. For the
example font, this is achieved by ignoring the first 47
characters and starting with ‘0’. This means that we
can more or less easily convert from ASCII to custom

99

Buffered side down
So, what are framebuffers, why would you want one,
and why do I specifically not want one?

A framebuffer is a buffer, for a frame. In
this context, the frame is a graphical one. The
framebuffer is basically just an exact copy of the
memory containing the image or text you want to
display. Framebuffers are often very useful and
desirable. You may want to buffer video frames in
order to display them quickly (you don’t have to
draw anything, just dump all the memory to the
display device) or for drawing effects which require
knowing what is currently on the screen.

As memory tends to be written in bytes (and
the device we’re looking at here is no exception),
if you want to write a single pixel somewhere, you
need to know which other pixels in the same byte of
memory are already turned on (otherwise you will
be overwriting them). In many cases, you may find
yourself communicating with a display device to
ask it what is in its display memory so you can then
superimpose your pixel and write the whole byte
back. This is time consuming (in terms of actual
processor time, not just because you have to write

extra code) and sometimes not actually possible.
The particular display we are using doesn’t have a
read mode for I2C communication – there is no way
of reading the display memory.

In that case, you may surmise, having a
framebuffer is a good idea. You can keep a copy
of what should be on the display, make your
adjustments to that and then just update the bits of
the display memory that are required.

That is a reasonable suggestion, and one used by
many device enablement libraries. However, there
is a problem with this approach. A 128x64 display
requires a framebuffer capable of holding 8192 bits
of data, which is 1024 bytes of data. That doesn’t
sound like a lot, but depending on which Arduino
you are using, you may have as little as 2560 bytes
of dynamic memory available. That means the
framebuffer will take up nearly half of your working
memory. Sure, this isn’t too much of a problem if all
you are doing is displaying something on screen,
but what if you’re trying to do something else with
your project – what if you need to address other
hardware like GPS or network devices which can

also consume a lot of RAM? in such circumstances,
using half your RAM just to be able to display the
output is a little annoying.

No buffers
What is the answer then? It turns out that it is to
borrow an idea from the past, and simply writing
to the screen in predefined graphical blocks or
characters. If we define characters we want to use
on screen, and imagine that we will never want to
combine characters in the same space, then we
can happily overwrite the contents of the display
memory without needing a copy of it. Essentially,
we take the 128x64 pixel display and turn it into
a 16x8 character display (although, of course you
could define characters of any size if you wanted,
this is just assuming 8x8 characters). This does
mean you lose the ability to plot individual pixels
or create arbitrary shapes, but on the plus side it
saves a lot of memory and results in faster display
updates. There is also nothing stopping you from
creating a font containing all sorts of useful
symbols or graphical elements if you want them.

Google a standard ASCII table and you will see most of
the characters are rubbish. And who needs lower case!

LV013 098 Coding Arduino.indd 99 06/02/2015 10:26

CODING ARDUINO

www.linuxvoice.com100

font just by shifting everything so many spaces back.
Ah. Space. The space character is one we have left
out, so we have to add a special capture routine to
remap that. It isn’t as tricky as it sounds:
void evilOLED::putChar(char c)
 {
 //assumes cursor is set to correct place
 if (c == 0x20) // trap SPACE character
 {
 c = 0x30; //this is where I put it
 }
 else

 {
 c -= 0x30; //remove offset to match ASCII value
 }
 dataStart();
 sendByte(0x78);
 sendByte(0x40);
 for (char i=0; i<8; i++)
 {
 sendByte(pgm_read_byte(&(font_bmap[8*c+i])));
 }
 dataStop();
 }

Memories
Not all memory is created equal. For a start, there
are all different sorts of memory – SRAM, EEPROM,
DRAM, PSRAM and so on. There are enough
different types to fill a few pages just defining
them all. However, we are more interested in how
memory is used, and how in particular, your Arduino
handles memory.

Depending on the model of Arduino, you will
have a certain amount of EEPROM memory, an
amount of Flash program memory and some
dynamic memory – which, confusingly enough,
uses SRAM (static random access memory) on the
AVR chip itself. The ‘Static’ here refers to the way
the memory is built; it uses bistable latches so it
doesn’t need to be refreshed periodically like DRAM.

The standard ATmega328 chip, used in the
second-generation Duemilanove and many other
Arduino boards, has the following:

 Flash memory 32kB (2kB used by bootloader) for
storing the program
 SRAM 2kB runtime memory, for dynamic
variables, etc.
 EEPROM 1kB persistent storage (but limited
lifespan).
In general computing, there are two schools

of thought on how memory should be organised;
the Von Neumann architecture (all memory is just
memory) and the Harvard architecture (it’s more
efficient to split memory into pools – one for the
program, and one for run-time memory the program
will use. As it turns out, there are advantages and
disadvantages on both sides. As a result, complex
computers (like your desktop or even your phone)
use a hybrid system – all memory seems to be
just memory, but at a low level it is cached and
organised in pools by the processor. The ATmega
chips are designed for efficient, embedded and low-
cost systems – there is no way complex memory
management is going to be included, so you have
a fairly straightforward Harvard architecture. The
SRAM contains the runtime memory, the flash RAM
contains the program memory.

However, 2kB of RAM is not really very much,
and when you’re dealing with arrays and such, it
gets eaten up very quickly. Also, because of the
way the memory stack and heap is organised and
used, it doesn’t even have to get full to cause you
problems – it would be really painful to go into
the details here, but basically ‘freed’ memory isn’t
always returned in a useful way, and when the stack
and heap collide, all bets are off.

The solution to all of this is to try and be as
memory efficient as possible. There are two

particularly useful tricks you can use on the
Arduino here:

PROGMEM
The first of these is to use the flash RAM of the
Arduino to store variables in. This means that
instead of using up your limited SRAM space for
variables, you can store them in the substantially
larger flash RAM instead.

There are a few caveats to this though. For a
start, reading and especially writing values to the
flash RAM is a slow process, partly due to the
different types of storage, but more to do with the
extra hoops that have to be jumped through to
access memory that is outside of the architecture’s
stack. So, the flash RAM storage is not suitable for
everything – loop counters, comms buffers and
things that need to change regularly and be both
read and written to are not good things to store in
flash. Big lookup tables that you only rarely need to
lookup, or other arrays of data that only need to be
read infrequently are ideal for flash RAM.

In order to use flash RAM, there is a macro
defined that takes care of storing data where
you want it – you just need to add the keyword
PROGMEM at the end of your variable definition (if
you are using pre-1.5 versions of the Arduino IDE,
you may need to check the official documentation
for your specific version), and include the relevant
header. For example:
#include “Arduino.h”
#include <avr/pgmspace.h>
 const char fred[8] PROGMEM = {
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00
}

As you can see, just applying the PROGMEM
keyword is enough. Theoretically, it can go
anywhere on that line before the = sign. In practice,
different versions of the IDE and the underlying
compiler can throw up errors or strangeness. If you
get any of these, just try moving the keyword to a
different position.

Declaring your data is one thing; you also have
to negotiate retrieving it. For example, to read this
array back and do something to each byte, you
would need to do the following:
char c;
for (char i=0; i<8; i++)
 {
 c = pgm_read_byte(&(fred[i]));
 myFunction(c);
 }
The pgm_read_byte function is one supplied by

the library we included earlier, and is the only way
to read a byte from the flash memory. To do so we
need to supply it with an address, which we get with
the construct &(), which basically means “address
of”. So, by passing in the reference to the array, the
function knows the address it needs to read data
from. You can also iterate over this address in other
ways, but remember that the difference between
one data item and the next may vary depending on
the size of what is being stored.

Writing to the array is not easily possible – flash
memory needs to be written in large blocks, so
aside from assigning values at runtime, you are
pretty much stuck with it. Thankfully, for a lot
of the stuff we would like to use it for – storing
fonts, static arrays, maybe lookup tables – all the
big users of storage, we don’t need to alter the
contents.

F()ing strings
Another handy macro is the F() function. One of
the biggest memory hogs is storing string values.
Each character takes a byte, then there is a stop
byte at the end. You would be surprised how much
memory they can take up. Strings though are ideal
candidates to store in flash memory, at least the
kind of message strings that we might use.

Fortunately, there is a macro for this too. Just
wrap the string in F() and it will be magically stored
in flash memory and fetched from there when
required. You can easily see this in action with
the following examples; enter this as a complete
program in the Arduino IDE and press the tick
button to compile it:
void setup() {
 Serial.begin(9600);
}

void loop() {
 delay(1000);
 Serial.println(“Hello, I am a string.”);
}
now replace the serial output line with:
Serial.println(F(“Hello, I am a string.”));
…and press the tick again. If you check the compiler
output, you will see the second example uses 22
bytes less “dynamic memory” (SRAM) and 30 bytes
more of “program storage space” (flash RAM). the
extra bytes are due to the additional operations
required to fetch the string from flash, but that’s a
pretty good exchange rate. Storing all your static
strings like this can make a huge difference if you
are running out of storage space.

LV013 098 Coding Arduino.indd 100 06/02/2015 10:26

ARDUINO CODING

www.linuxvoice.com 101

This does assume the ‘cursor’ is in the correct
place. This is simply a matter of setting up the
addressing modes correctly :
void evilOLED::setCursor(char x, char y)
{
 _row= (
 (y >7)
 ? 7
 : y
);

 _col=(
 (x > 15)
 ? 15
 : x
);

 sendCmd(0xB0+_row); //set page from row
 sendCmd(0x00+(_col & 0x01)*8);
 sendCmd(0x10+(_col>>1));
}

This may look like gibberish if you haven’t used the
ternary operators in C or C++ before, but it merely
forces the x,y values to be 0–15 and 0–7 respectively,
before doing some shift operations to set the row and
page address.

To go further than this, it is more useful to have
a routine to print an actual string, rather than a
character at a time. This is also in the source listing –
it merely adapts the above code to work from a string
pointer, looping through and printing each character.

Further, we can also overload this function to print
integers too, by first converting to a string:
void evilOLED::putString(int s)
 {
 char buffer[16];
 itoa(s, buffer,10);
 putString(buffer);
 }

Wrapping it up
So, we have seen how we can manipulate bytes into
fonts, bytes into images and save a lot of precious
memory in the process. We have also seen how to do
some hardware enablement and write a functioning
Arduino library. The overriding point here is that if you
are willing to get your hands dirty with some (quite
complicated at times) manipulation of bits and bytes,
you can create a custom implementation of
something that exactly suits your needs.

This code can be extended in so many ways – you
could just create different fonts for different scenarios.
It would also be possible to display the fonts double-
size for example (just write each pixel twice in each
direction) or even invert them (invert each byte before
you write it).

And much though we weren’t keen on framebuffers,
you could maybe create a framebuffer for part of the
screen, say the last two lines or whatever. If you were
cunning, this could be allocated on demand so it didn’t
waste memory if it wasn’t used. The possibilities are
limited only by the laws of physics and the endurance
of your typing fingers.

The complete code, including the utilities and
sample font and splash screen, are conveniently
located on GitHub for your delight. And mine. If you
come up with some useful variants (or find any
bugs!) please fork or contribute : https://github.com/
evilnick/evilOLED

Nick Veitch has edited computer magazines for 1,000 years.
He now works at Canonical and collects gin bottles.

The Adafruit libraries (which are in general, excellent) are
on GitHub too, and may be useful for further inspiration:
https://github.com/adafruit.

GitHub is great
Even if you are working on a particular library purely for
yourself, there are great advantages to using some sort of
online version control system. For a start, you will always
know where the latest version is, even if your local copies
get deleted by solar storms or eaten by the dog. And though
you may believe that you and only you are interested in your
library, you may be surprised that other people are willing to
help out and add stuff/fix bugs too.

GitHub is one of the most popular online versioning
systems, even if a lot of the Git commands might be
strange and confusing. It is completely free for open source
projects, and is great for Arduino libraries (you will find a
few on there), if only because it conveniently allows you to
download the latest version as a Zip file with one click (the
Arduino IDE can automagically add Zip files).

If you run out of ideas, you
can always sell advertising
space…

LV013 098 Coding Arduino.indd 101 06/02/2015 10:26

CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• Learn how to quickly

prototype ideas.
• Develop rich GUI

applications with a little
Python.

• Delve into the Qt API.

The Qt graphical toolkit has been at the heart of
the KDE desktop since its inception, and it’s
used by many other cross-platform

applications. It’s a great because it does so much of
the hard work for you, even at a low level. There’s a Qt
class for dealing with string manipulation, for
example, or sorting lists. There’s exceptional
networking support and transparency, file handling,
native XML and image handling. Using Qt to perform
all these tasks means you don’t have to re-invent the
wheel or import yet another library into your project.
But Qt is still best known for it’s high level user-
interface design, where you can quickly construct an
application from buttons, sliders, forms and images
and tie them all together from your code.

Most developers have always used C++ to develop
their Qt applications, but recent years have seen
user-interface designers embrace Qt’s native QML
language for adding non-API functionality without the
formality of a C++ build environment. QML is much
like JavaScript and enables you to quickly fix
components together. It’s the magic behind the new
widgets in KDE 5, for instance, hopefully allowing lots
more people to quickly add functionality to their
desktops. But there have always been other options
too. In particular, and the focus for these two pages,
there are Python bindings provided by two separate
projects – PySide and PyQt. Unfortunately, PySide
development has slowed to a snail’s pace and the
project hasn’t been able to support Qt 5. Which leaves
us with PyQt. It’s a brilliant open source
implementation that’s slightly less liberal than PySide,
perhaps because of a commercial version, but it offers
a great community and documentation. And because
it’s still open source, you can install it from almost any
distribution. What we’re going to do with just 20 lines
of Python is create a fully interactive web browser,
hopefully showing Python and Qt are a brilliant match
for quick and easy application development, with all
the advantages of both Python and Qt.

Get coding
One of the best things about developing Qt Python
apps is that you don’t need a build system and you
don’t need to compile anything. You could even use
the Python interpreter if you wanted to – typing
commands and seeing the results in real time. To get
started, you’ll need Qt 5 installed, alongside the PyQt5
packages. We’re using version 3.4.2 of Python. You

should also make sure you’ve got the package that
includes the pyuic5 utility, as we’ll be using this to
generate Python from the user interface GUI designer
for added power. With all of that added to your
distribution, it’s time to create some code.

To illustrate how easy it is to write a Python/Qt
application, we’ll start off with a very simple and
self-contained web browser that loads a specific
page. Launch a text editor. The first thing we need to
do is import the bits from Qt 5 that we’re going to need
– just insert the following lines in the top of a new file:
from PyQt5.QtCore import QUrl
from PyQt5.QtWidgets import QApplication
from PyQt5.QtWebKitWidgets import QWebView
import sys

How do you know which parts you’re going to need
before you’ve written the code? You don’t. Normally
when programming something like this you add to the
‘from’ section as and when you need to add
components. In the above three lines, we’re importing
the ability to handle a Qt datatype called QUrl. As you
might expect, this is a type that holds a URL, or a
location on the internet. The reason this is its own
type and not a text string is that Qt is able to test the
value to make sure it’s valid, and add functions to the
data type so the programmer can do other things with
the URL. Exactly what can and can’t be done can be
discovered from the Qt API documentation, which
although it’s written for C++, is just as relevant to PyQt
as all the methods and types are the same. QUrls has
functions to return a plain string or a filename, for
instance, and it’s the same with everything else you
import from Qt. The other two components we import
here are for the GUI. QApplication is the main
application class for the GUI and its associated
function and QWebView, as you might expect, is a Qt
widget that uses WebKit to display websites. Finally,
import sys adds a selection of system functions –
we’ll be using one of these to parse command line
arguments. Here’s the final section of code to add:
app = QApplication(sys.argv)
view = QWebView()
view.show()
view.setUrl(QUrl(“http://linuxvoice.com”))
app.exec()

With the above short piece of code we create a fully
functional web browser, albeit one where you can’t
manually enter your own URL. The first line creates
the new application and window instance, passing the

BUILD A WEB BROWSER WITH
20 LINES OF PYTHON
Drag and drop your user interface and tie it all together with a
few simple lines of Python.

 TUTORIAL

102

GRAHAM MORRISON

LV013 102 Coding Ninja.indd 102 05/02/2015 21:59

NINJA CODING

www.linuxvoice.com 103

command line arguments for politeness (they’re not
used). After this, we instantiate the web view widget
and assign this to view. This is made visible with the
show() function, and updated with our own URL in the
following line. The use of QUrl like this is known as
casting because, we’re using QUrl to force format a
text string http://linuxvoice.com into a QUrl type
because that’s the only type accepted by the
QWebView widget. After this, we run the application.

Save this file with the .py extension and switch to
the command line. You can run the code by preceding
the name of the file with the word python or python3.
You should see a window appear and, as long as
you’ve got an internet connection, a few moments
later you’ll see our web page. You can now navigate
the site just as you would with any other browser.

GUI designer
The biggest problem with our program is that you
can’t enter your own URL. We’re going to solve this by
adding both a URL input box and a button that tells
your application to load the URL. But to make this
more interesting, we’re going to design this user-
interface with one application, export the design and
convert it into Python and then write another small
script to add a little functionality. The application we’re
going to use to design the GUI is Qt Designer, and you
should already have this installed as part of Qt.

Launch Qt Designer and from the startup wizard
select a new design using QWidget as a base class.
This will open an empty window into which you want
to drag the QLineEdit, QPushButton and QWebView
widgets. Layout in Qt is a little weird to get your head
around, but to create a dynamically scalable version of
a layout, place them into rough positions and select
the Layout Using Grid option from the Form menu.
Layouts are usually a careful balancing act that
involves the horizontal and vertical grouping of
objects that are again grouped together. We didn’t
change the name of any of the widgets created, nor
the name of the main Form object. Usually you’d want
to make these more descriptive.

Save the project and make a note of where the .ui
XML file, is stored – ideally in the same place you’re
going to write your next Python script. Go back to the
command line and navigate to that location. Now type
pyuic5 input.ui > ui_output.py, changing the input and
output names to fit yours. We’d recommend keeping
the ui_ prefix though, as we’ll refer to this in the code.
The pyuic5 command will cleverly turn your user
interface file into a Python script – take a look at the
contents of the file to see what it’s done. We’re going
to create a new script that inherits its properties from
this and uses the form you create as the basis for the
application.

The first section of our previous code needs a
couple of additions. Firstly, QWidget need to be added
after QApplication, because we use this in our
inherited class. Secondly, we need to import the
Python file generated by the user interface:

from PyQt5.QtWidgets import QApplication, QWidget
from ui_output import Ui_Form

The next step is to add a block of code to manage
our new class that inherits the user interface:
class MainWindow(QWidget, Ui_Form):
 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)
 self.setupUi(self)
 self.pushButton.clicked.connect(self.pressed)

def pressed(self):
 self.webView.setUrl(QUrl(self.lineEdit.displayText()))

All we’re doing here is creating a class we’re calling
MainWindow that inherits its layout properties from
Ui_Form, which was imported from the user interface
file we converted earlier. We then define the function
that handles its initation. The crucial line is self.
pushButton.clicked.connect because this is utilising
Qt’s SIGNAL/SLOT mechanism to call a function
called pressed when we click the button in the user
interface. You can check what SIGNALs and SLOTs
are supported by Qt’s functions from the API
documentation. Following this, we write the short
pressed function connected to the clicked event. This
simply sets the QUrl used by the web view to the
contents of the lineEdit widget. The web view
automatically reloads when it gets this signal.

Finally, The only change to the main bit of code we
need is to make our main view use our new class
rather than QWebView:
view = MainWindow()

Saving and running this will now give you a very
functional web browser and also fill you with ideas of
how to use this for rapidly developing Qt applications
with Python.

As Qt uses WebKit, your
browser will be able to
access almost any modern
website.

LV013 102 Coding Ninja.indd 103 05/02/2015 21:59

CODING MACHINE CODE

www.linuxvoice.com

WHY DO THIS?
• Learn what compilers do

behind the scenes.
• Understand the

language of CPUs.
• Fine-tune your code for

better performance.

ASMSCHOOL: CONDITIONS,
LOOPS AND LIBRARIES
Part 2: Start to write full programs and create your
own library of useful subroutines.

 TUTORIAL

104

MIKE SAUNDERS

Last month we took our first steps along the
path of assembly language programming, and
saw that it’s not as daunting as you might

imagine. Yes, it feels rather alien when compared with
high-level languages, and you don’t have lots of fancy
data types and levels of abstraction to protect you
from juggling memory directly. But that’s what we love
about assembly – it’s a very pure form of coding,
letting you speak to the CPU and operating system

directly, without all that other fluff getting in the way.
This issue we’ll look at program flow, including loops
and conditions, to help you create more powerful
programs. We’ll also show how to make your own
subroutines to automate common tasks, and build up
a library of useful code chunks that you can use in
other programs. So, dim the lights, choose a retro
green-on-black theme for your terminal emulator, and
let’s start hacking like in the good old days…

REUSE CODE WITH ROUTINES1

It’s perfectly possible to make modular and reusable
code in assembly language. You have to be careful
that you don’t overwrite data used elsewhere in the
program, but with the right approach you can create
little black-box routines that you write once and never
have to delve into again – you just call them when
needed. For instance, in last month’s program we
used the kernel to print a text to the screen. If your
program does lots of text printing, it could be a chore
(and a waste of space) to set up the registers each
time – if you remember, you have to put the system
call number in eax, the output stream in ebx, the
length in edx and so forth.

So let’s move the string printing code into its own
subroutine that we can call whenever we want. But!
Let’s also make it easier to use, in that we don’t even
need to specify the length of the string in the edx
register. Our new subroutine can work that out itself.

First of all, create a variant of last month’s sample
program like this, and save it as test.asm:

section .text
 global _start

_start:
 mov ecx, mymsg
 call lib_print_string

 mov eax, 1
 mov ebx, 0
 int 80h

section .data
 mymsg db ‘Pretty cool, huh?’, 10, 0

 %include “lib.asm”
This is similar to last month’s code, but the string

printing part has changed. Instead of setting up all the
registers and calling int 80h, we just put the string
location in ecx and then “call” a subroutine called lib_
print_string. A “call” is a bit like a GOSUB in the basics
of yesterday – it hands control to another routine,
which will do its work and then return back into the
main program.

Now, whereabouts does this lib_print_string routine
live? Well, we haven’t written it yet, but we’re going to
place it in lib.asm, another assembly language source
file. In the listing above, you can see the %include line
at the bottom, which simply adds the contents of
lib.asm to the current code listing during the assembly
phase. So, you can write commonly accessed routines
in lib.asm and keep them separate, without them
clutting up the main part of your program.

Another important thing to note here is the string of
bytes next to the mymsg label. This time, as well as
appending a 10 for a newline character, we’ve also
added a zero. This turns it into a “null-terminated

Our lib.asm library will
grow to be a useful
resource of code snippets,
such as number-to-string
conversion.

LV013 104 Coding ASM.indd 104 06/02/2015 10:29

MACHINE CODE CODING

www.linuxvoice.com

ASMSCHOOL: CONDITIONS,
LOOPS AND LIBRARIES

105

string” – and we can look for this zero in our code to
determine the string length.

Building up the toolbox
Let’s create the lib_print_string routine. This is longer
and more complicated than the process we used last
month, which may leave you thinking: what’s the
point? Why not just do it manually each time? Well, if
you end up with a large program that has hundreds of
string-printing parts, the overall code will be smaller if
you use the same subroutine each time, rather than
setting up all the registers manually. And as we
mentioned earlier, this routine can work out string
lengths too.

Put this code into lib.asm (you’ll also find it in
www.linuxvoice.com/code/lv013/lib.asm with some
other routines you may find useful):
section .text

; Print text string
; In: ecx = string loc
; Out: Nothing

lib_print_string:
 pusha ; Save all regs

 mov eax, ecx ; Save ecx for later
 mov edx, 0 ; Character counter
.loop:
 cmp byte [eax], 0 ; Is it zero?
 je .done ; Jump ahead if so
 inc edx ; Increment counter
 inc eax ; And string loc
 jmp .loop ; And carry on

.done:
 mov eax, 4 ; sys_write
 mov ebx, 1 ; stdout
 int 80h ; Call kernel

 popa ; Restore all regs
 ret ; Back to caller

There’s quite a lot going on here, but it introduces
various new concepts such as loops and conditionals,

so we’ll go through it carefully. One important point to
note at the start: semi-colon characters are used to
denote comments, so anything after them (until the
end of the line) will be ignored by NASM. In assembly
language, it’s a very good idea to be verbose with your
comments, otherwise you may come back to the
code in several months and be completely
bamboozled.

So, we start this off by telling NASM that the
following code should be in the “text” section of the
resulting binary file – that is, executable code and not
data. Then we have three lines of comments, saying
what the subroutine does, which registers it uses, and
which registers it changes when it exits. We can see
here that our lib_print_string routine just needs the
string location in ecx, and doesn’t change anything
else – the registers will remain the same when control
is handed back to the main program.

What is hexadecimal?
We use the base 10 (decimal) number system because
that’s how many fingers we’ve got, so it’s useful for
counting. But it doesn’t make much sense in terms of a
CPU, so in low-level programming you’ll often see base 16
instead – aka hexadecimal. This takes some time to get
your head around if you’ve never used it before, but after a
while you can switch your brain into hex mode.

Like decimal, hex digits go from 0 to 9. But for 10
decimal, hex switches to A and then counts up to F (15
decimal). Then, for 16 decimal, it carries over – 10 in hex.
Makes sense? This chart should help:

Hexadecimal 19 is followed by 1A, and FF is followed by
100, and so forth.

Other registers
Along with the four main general-purpose data registers, eax,
ebx, ecx and edx, there are a few more that are worth knowing
about. Two are used primarily for string handling: esi and edi.
The first can be used as a “source index” for strings – ie a
pointer to a position inside a string that’s being read from
– while the latter is a “destination index” for storing data.
Consider this code:
mov esi, mystring
mov edi, blankstring
lodsb
stosb

Say that mystring points to a string containing “Hello” here,
and blankstring just to a series of zeroed-out bytes. The lodsb
instructions retrieves a byte from the location esi points to,
storing it in eax (specifically, the al byte portion of that

register), and then the stosb instruction stores the byte in ah
at the position pointed to by edi. So it copies “H” from one
string to another. But! To make string handling even easier,
lodsb automatically increments the esi register each time by a
byte (thereby pointing it to the next character), and stosb does
the same thing for edi.

Meanwhile, the esp register points to the current location
on the stack. This moves around as you push items onto it and
pop them off. The eip register is the “instruction pointer” – it
simply points to the current instruction in the code. This is
changed when you do a jmp or call operation. And then there’s
the EFLAGS register, also known as the status register, which
has various bits set to show the results of operations (eg
whether the result was zero, or there was an overflow). This is
used by many conditional instructions.

Dec: 1 2 3 4 5 6 7 8

Hex: 1 2 3 4 5 6 7 8

Dec: 9 10 11 12 13 14

Hex: 0 A B C D E

Dec: 15 16 17 18 19...

Hex: F 10 11 12 13...

LV013 104 Coding ASM.indd 105 06/02/2015 10:29

CODING MACHINE CODE

www.linuxvoice.com106

LOOPS AND CONDITIONALS2

The first instruction in the previous block is “pusha”,
which means “push all registers onto the stack”. You
may remember the stack from last issue: it’s a
temporary storage space where you can place
register contents when you need to use those
registers for something else. We push all of the
registers on to the stack at the start of the subroutine,
do our own work with them, and then pop them all
back off (with popa) just before we return back to the
main code (with ret). This means that the calling
program doesn’t need to save the registers – it
assumes they will be in the same state after the
subroutine has been executed.

Now, the string location has been provided in the
ecx register, but we want to keep that for later. We
need to count the characters in the string though, so
we copy ecx into eax and work with the former,
leaving the latter well alone. We’re going to go through
the string until we find a zero byte (remember, we’re
using zero-terminated strings), counting up along the
way to determine the string length. And the counter
we’re going to use is the edx register. In pseudocode:
10 Look at byte in string
20 Is it a zero?
30 If yes, exit the loop
40 If not, increment the counter and string position
50 Goto 10
Our loop begins with the .loop label, and the period at

In the next couple of issues, we’ll prepare for running
code on bare hardware – no OS required!

the start means that it’s a local label. In other words, it
expands to lib_print_string.local. Why do we need
this? Well, it means we can use .loop as a label in
other routines, which is very handy – otherwise you’d
need to come up with a different name each time. Of
course, you can still only have one instance of .loop

Do the math

So far we’ve focused on moving numbers into registers, but we
can also perform mathematical operations on registers as
well. For example, here’s some addition:
mov eax, 10
mov ebx, 15
add eax, ebx
add eax, 7

Remember that operations go from right to left in assembly
language (at least, in NASM syntax). So what does eax contain
by the end? First of all we place 10 into it, and then 15 into
ebx. We add ebx on to eax, so the latter now contains 25. Then
we add a number (7) so the result is 32. Subtraction can also
use registers and numbers:
mov eax, 100
sub eax, 99

Now eax just contains 1. Multiplication and division work in
a slightly different way – you’ll find a lot of these oddities in
x86 programming, due to the long history of the architecture!
For multiplication, you first need to place a number in eax;
then you multiply it using another register. For instance:
mov eax, 10
mov ebx, 5
mul ebx

After this, eax contains 50. Division works in a similar way,
with the remainder being stored in the edx register:
mov eax, 10
mov ebx, 4
div ebx

After this, eax contains 2 (as there are two fours in 10), and
edx contains 2 as well, as that’s the remainder.

Note that you can’t use lib_print_string to print the contents
of registers directly, as they need to be converted into ASCII
text format first. This is beyond the scope of this tutorial, but
if you download www.linuxvoice.com/code/lv013/lib.asm
you’ll see there are two extra routines: lib_int_to_string (which
takes a number in eax, and returns the location of a string with
the converted form in ecx), along with lib_print_registers,
which simply shows the contents of all registers. So, try doing
some maths and then:
call lib_print_registers
to see what the results are.

Use lib_print_registers from our lib.asm to quickly view
the contents of the main registers.

LV013 104 Coding ASM.indd 106 06/02/2015 10:29

MACHINE CODE CODING

www.linuxvoice.com 107

Mike Saunders has written a whole OS in assembly
(http://mikeos.sf.net) and is contemplating a Pi version.

Early CPUs with tiny sets of instructions could still do a
lot – look at Elite on the 6502 for instance.

under each parent label.
So, we have the string position in eax. The first thing

we do is to get a byte from the string like so:
cmp byte [eax], 0

The cmp instruction means “compare one number
(or register) with another”, and the square brackets are
extremely important here. They mean: don’t compare
the number inside eax to zero, but the byte inside the
memory location that eax points to. You see, eax will
contain a big number pointing to a string somewhere
in memory, like 2187612. We’re not interested in that
location, but we’re interested in the exact byte stored
inside that location, which is why we’re using the
square brackets. So here we’re comparing a byte in
the string to zero. The next line, je .done, is a
conditional jump operation: it says, “if the numbers are
equal, jump to the specified point in the code”. There
are other conditional jump operations that you can do
after a cmp, such as jg (jump if first number is greater
than second), which works with signed numbers, or ja
(jump if above) which works with unsigned ones. We’ll
look at these in more detail next month.

Back to the code: if the byte from the current
position in the string (pointed to by eax) is zero, it
means it’s the end of the string, so jump ahead to the
.done label. But if it’s not zero, the lines ahead of the je
instruction are executed instead. First we increment
edx, our counter, by one byte, and then we increment
eax so that it points to the next character in the string.
Then we jump back up to our .loop label, and perform
the next comparison.

Do more with less
As we’ve mentioned before, this is exactly how CPUs
work: they move numbers around between memory
and registers, perform calculations on them, and then
jump to different parts of the code accordingly.
Assembly language is actually very simple in some
ways – it just takes time to build up advanced
functionality from a relatively small set of instructions.
Look at Elite, the 8-bit space trading classic, for
instance: it was originally written for a CPU (the 6502)
that had only 56 instructions. Yet with this small range
of instructions, it’s possible to create a complete 3D
engine and an absorbing game around it!

Anyway, at the .done label in our code, we have
everything we need to call the kernel. We need to put
the value 4 into eax to specify the sys_write kernel
routine, and 1 into ebx to print the string to standard
output, but we’ve already populated the other registers
accordingly. We left ecx alone since the start of the
routine, and our loop has calculated the length of the
string in edx, so the kernel can use that too! So all we
need to do is call int 80h and the job’s a good ’un, as
they say.

Then we pop the registers back off the stack, as
described earlier, and use ret to return to the calling
program. There’s something important to note here:
when you “call” a different piece of code, the current
location is placed onto the stack for later retrieval. The

ret instruction then retrieves that location from the
stack and places it inside the eip (instruction pointer)
register, so execution continues from the previous
point. This is why you
have to be careful
when managing the
stack: if you pop off
more numbers than
you’ve pushed on, you
could end up popping
off the return address from a call instruction, and your
program will end up executing somewhere else!

You can assemble and link the program with the
same instruction as last month:
nasm -f elf -o test.o test.asm
ld -m elf_i386 -o test test.o
Then run the program in place with ./test. Yes, it prints
a string, just like last month! But it does much more
under the hood, and will prepare you for building up a
library of useful routines in the future.

You now know how to repeat operations using
loops, which is vital in more advanced programs, and
you can also perform conditional operations
depending on the contents of a register. You can also
create your own subroutines to handle common
tasks, and make them sufficiently modular that they
won’t interfere with the workings of the calling code.
(This is why it’s a good idea to use pusha at the start
and popa at the end of a subroutine, when the
subroutine works with several registers – you can
guarantee the calling code that everything will be in
the same state when you ret back to it.

Next issue we’ll look at input and handling files, so
you’ll be ready to write proper, functional (and
blisteringly fast) programs. And we’ll get even closer
to the ultimate goal of running code on the bare metal
of your PC. See you then…

“Assembly language is very
simple – it just takes time to
build up advanced functionality.”

LV013 104 Coding ASM.indd 107 06/02/2015 10:29

MASTERCLASS FIREWALL

www.linuxvoice.com108

A firewall is a security system that gives you
control over data that applications running on
your computer may send and receive across

any networks it’s connected to. This network traffic is
sent and received in chunks called “data packets” that
can be inspected and filtered according to rules, a
technique known as “packet filtering”.

The Linux kernel has, since its early versions, had a
built-in packet filter. The current implementation,
introduced with version 2.4 of the kernel, is called
Netfilter and, along with its command-line iptables
tool, provides the foundation for firewalls on Linux.
Earlier kernels used now-superseded tools called
ipfwadm and ipchains.

The easiest way to protect your computer is to use
a firewall application. These sit above and use iptables
so you don’t have to. They provide a more user-
friendly way to create and maintain firewall rules,
often through a GUI interface. There are several such
applications and, in this month’s Masterclass, we’ll
take a look at a few of them.

FIREWALLING MADE EASY
Use the kernel’s network filter to block unwanted network traffic.

A good way to get started is to keep things simple
– something that ufw (the Uncomplicated Firewall),
and its GTK application Gufw aims to do. In its own
words, it’s “an uncomplicated way to manage your
firewall”. It’s part of the default Ubuntu installation but
it’s in other distributions’ repositories too. You can
head over to gufw.org for the latest.

You need privileged access to use iptables, so Gufw
requires you to enter the root password. You can
instead start it with sudo or while logged in as root.

The firewall is initially disabled and all network
traffic is permitted. Switching the status to ‘on’ on the
main screen enables a basic firewall that allows
outbound network traffic but blocks anything coming
in. You can change this behaviour using the ‘incoming’
and ‘ouggoing’ options at the top of the Gufw window.
As firewalls go, it isn’t really get any much simpler
than that.

Let me in
You probably won’t want to be quite that black-and-
white, however, and this is where rules come in. Rules
enable you customise the firewall’s configuration. As
an example, imagine we have another machine and
want to use SSH to connect from it. With the firewall
enabled, that’s no longer possible – not until we add a
rule to allow it.

Click on the ‘Rules’ button to display the rules page
and then click on the plus sign to add a new rule.
There are preset configurations for many applications
and system services – use the available drop-downs
to locate what you want or type a name in the
Application Filter box. In our case, we want to allow
SSH, so search for that. Also choose the appropriate
direction and policy – one of “Allow”, “Deny”, “Reject” or
“Limit” – we want to allow inbound SSH.

You’ll see a warning that using a default Allow policy
is a security risk. These helpful messages make Gufw
a good choice for beginners. The default Allow policy
accepts all connections, but it’s more secure to
restrict access to the machine that we’ll SSH from. To
do this, click on either the Advanced tab or the

BEN EVERARD

JOHN LANE

Flick the status switch to
on to start your firewall. It
doesn’t get much easier
than Gufw.

You wouldn’t want other people coming into your machine
and poking around – so set up a firewall!

MASTERCLASS

LV013 108 Masterclass.indd 110 06/02/2015 10:35

FIREWALL MASTERCLASS

www.linuxvoice.com 109

PRO TIP
KDE users may wish to try
kcm-ufw as an alternative
to Gufw. It’s a KDE control
centre module for
configuring and
controlling ufw.

right-arrow button next to the search box to view the
advanced options. Here you can specify the IP
addresses to allow. Once you have your firewall
configured, you can use the Listening Report to
monitor it. This is on the Report tab and shows
listening TCP and open UDP ports.

Beyond the basics
If you want a little more control, fwbuilder (the Firewall
Builder), is another option that you can use to
configure and manage iptables as well as firewalls on
other platforms such as BSD, OS X and Windows as
well as some dedicated firewall hardware appliances.
It’s a Qt application and is therefore a little heavier than
Gufw. You should find it in your package repositories
and you can go to www.fwbuilder.org for more
information.

A key difference between Firewall Builder and Gufw is
that you can use it to prepare firewalls to be installed
on other computers or devices. You don’t need
privileged access to use it, so regular users can build
firewall configurations; however, installing them does
require such access to wherever they will be installed.

This build and install paradigm is one way that
fwbuilder differs from Gufw, where changes take
effect immediately.

When you launch fwbuilder you’re offered the online
quick start guide, which opens in your browser and
introduces the main concepts. It’s a much more
comprehensive application than Gufw, so it’s worth
working through the guide. There’s also a
comprehensive user manual and tutorial videos on
the website.

Firewall Builder uses “Objects” to represent the
things you’ll write rules for. They’re grouped into
libraries and there are two of these object libraries by
default: one is called “User” and is where user-created
objects are stored; the other one is called “Standard”
and is a read-only library that contains predefined
objects such as common TCP and UDP services.

You create a policy containing your firewall rules
and compile this to convert your rules from the
Firewall Builder syntax into the command syntax used
by the target firewall platform (on Linux, that’s
iptables). The policy needs to be compiled and
re-installed whenever any changes are made to it. You
begin by creating a new firewall – click the button for

this (it’s got a picture of a brick wall on it). Give it a
name, choose the iptables firewall software and
(obviously) the Linux operating system. There’s a
checkbox that you can enable if you want to start with
a preconfigured firewall; this is a good way to get
started because the basic rules will be added for you.

When you’re happy with your configuration, press
the “install” button to compile and install it. This
generates a shell script containing the iptables
commands that implement your configuration and
then uses SSH to copy the generated script to the
firewall host and execute it (you’ll need to enter
credentials for SSH when requested).

Be persistent
The kernel’s netfilter state doesn’t survive reboots, so
you’ll probably want your system to configure it each
time it boots. How you do this will depend on your
distribution and choice of firewall. ufw has a service
that takes care of this for you – Ubuntu users can
enable it with Upstart:
$ sudo ufw enable

A similar service is provided for Systemd.
Distributions that use Systemd also have generic
iptables services that load its configuration from a file
stored in /etc/iptables. Firewall Builder makes it easy
to use this without having to open a command-
prompt. Double-click the firewall entry and then press
“Firewall Settings” and select the “Prolog/Epilog” tab.
Enter the following commands into the lower box;
they will be added verbatim to the generated
configuration to save and restore your settings:
systemctl enable iptables ip6tables
iptables-save > /etc/iptables/iptables.rules
ip6tables-save > /etc/iptables/ip6tables.rules

These tools make it easy to implement a firewall
without needing to understand the inner workings of
netfilter and iptables. Gufw is sufficient to protect your
own computer but if you if you have many machines
or just want more control, fwbuilder is the way to go.

Starting Firewall Builder with a preconfigured firewall is a good place to begin, and the
drag-and-drop interface makes customising easy.

Firewall policies

The firewall policies determine the action when a packet
matches a rule. A packet may be accepted, which lets it
through, or not. In the latter case, the netfilter may or
may not send a rejection message to the source; such
packets are said to be dropped and the port appears
closed to the source.

Unfortunately the firewall applications use different
terminology. Gufw has ‘policies’ called Accept, Reject and
Drop. In fwbuilder the so-called “Actions” are Accept, Reject
and Deny as well as a few others for logging and custom
functionality.

LV013 108 Masterclass.indd 111 06/02/2015 10:35

www.linuxvoice.com

MASTERCLASS FIREWALL

110

The “Uncomplicated Firewall” is the easiest way
to create a firewall on your computer. We’ve
looked at its GUI application, but that’s just a

wrapper around its command line tool, ufw, which you
can use directly from the command line to quickly
establish a firewall.
$ ufw enable
Firewall is active and enabled on system startup

The default behaviour is to allow outbound
connections and block inbound ones. You can
explicitly set these or other behaviours:
$ ufw default deny incoming
$ ufw default allow outgoing

Writing custom rules is also straightforward. We
can allow inbound ssh like this:
$ ufw allow ssh

You’ll want to list your rules. You can list them with
their numeric ID, which makes deleting them easier:
$ ufw status numbered
Status: active
 To Action From
 1 22 ALLOW IN Anywhere

You can then delete rules:
$ ufw delete 1

Writing more specific rules follows a
straightforward syntax that is described on the
manual page (see man ufw for a complete
description). You can, for example, add a rule for a
specific host:
$ ufw allow from 192.168.5.10 to any port ssh

Although ufw presents a very simple command line
interface, it is capable of doing anything that netfilter
can do because it uses the standard iptables
configuration underneath, and you can modify this to
meet your needs. Before we can do this, it’s worth
understanding iptables a little.

A LOOK AT COMMAND-LINE
TOOLS FOR NETWORK SECURITY

The kernel’s netfilter configuration is a collection of
“tables” comprising “chains” of “rules”. There are four
built-in tables: the Filter table is the default table for
packet filtering rules and is what we’ll focus on. The
other tables are NAT and Mangle for packet alteration,
and a Raw table exists for configuration exemptions:

 INPUT for inbound packets.
 OUTPUT for outbound packets.
 FORWARD for packets routed through the local
server.
Each chain can contain zero or more rules and has

a default policy that defines what to do with packets
that don’t match any of the chain’s rules. The default
policy is to accept.

Chains contain rules that are basically a condition
and a “target” that describes what happens when the
condition is matched. The main targets are ACCEPT
and DROP, and only the first matching rule is applied.
Rules should be ordered so that less-specific ones
come first, and rules in a chain oppose the chain’s
default policy – a chain with a default DROP policy
usually contains ACCEPT rules. Rules should be
considered as exceptions to the default policy.

A good place to start getting to know the netfilter is
to use iptables to list the current rules. A clean netfilter
with no configuration would look like this:
$ iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)

JOHN LANE

Factory reset

To reset netfilter to its default state, you have to delete all
custom rules and chains and return the built-in chains’
default policies to “Accept”. You can also reset its built-in
counters to zero. There isn’t a single reset command, but
here is a short script that you can use:
#!/bin/sh
 [$EUID == 0] || { sudo $0 “$@”; exit; }
for iptables in iptables ip6tables; do
 echo --flush --delete-chain --zero | xargs -n1 $iptables
 echo -n INPUT OUTPUT FORWARD | xargs -n1 -I% -d\
$iptables --policy % ACCEPT
done

It must be run while logged in as root.

Build an uncomplicated firewall and pimp it up with iptables…

PRO TIP
Using ufw or iptables
requires root privileges,
so log in as root or use
sudo.

PRO TIP
Use ufw show added to
list your rules when the
firewall is stopped.

The Shorewall firewall is well documented and contains all
the information you’ll need to produce your ultimate
firewall without having to learn iptables.

LV013 108 Masterclass.indd 112 06/02/2015 10:35

www.linuxvoice.com

FIREWALL MASTERCLASS

111

target prot opt source
You can see the three chains we previously

described, each with a default ACCEPT policy but no
rules. We’ll add some rules to prevent inbound
connections except for SSH; it goes like this:
$ iptables -A INPUT -i lo -j ACCEPT
$ iptables -A INPUT -m conntrack --ctstate
ESTABLISHED,RELATED -j ACCEPT
$ iptables -A INPUT -p tcp --dport 22 -j ACCEPT
$ iptables -P INPUT DROP

This illustrates the more complex nature of iptables.
We begin with some generic rules that are necessary
for the general operation of the system. The first
accepts any traffic on the loopback interface that
processes use to talk to other processes on the same
system. The next rule accepts packets that are part of
an already established session. It uses a netfilter
module called “conntrack” that inspects packets to
identify those associated with such sessions (the
netfilter architecture is extendable through modules in
a similar fashion to the kernel and stateful packet
inspection is implemented as a module). The third rule
is what accepts new SSH connections, and the final
thing we do is change the input chain’s default policy
so that it drops packets unmatched by our rules.

With these rules, the input chain now looks like this
(iptables -vL for more verbose output):
Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 ACCEPT all -- lo any anywhere anywhere
 0 0 ACCEPT all -- any any anywhere anywhere ctstate
RELATED,ESTABLISHED
 0 0 ACCEPT tcp -- any any anywhere anywhere tcp
dpt:ssh

Any configuration that you perform using iptables is
lost when you shut down or restart your system.
These means that your firewall configuration needs to
be applied each time your system boots. There are
two tools provided to help you persist your netfilter
configuration; one saves and another restores:
$ iptables-save > /etc/iptables/iptables.rules
$ iptables-restore < /etc/iptables/iptables.rules

You still need to perform the restore process during
reboot, and there isn’t a consistent way to achieve
this. Ubuntu users can look at the iptables-persistent
packagem and those using Systemd can use its
iptables service (this loads rules from the file we used
in the iptables-save example):
$ systemctl enable iptables

Hacking ufw
If you look at the output of iptables-save, you’ll see
that it contains the command line arguments we used
to create our rules. You can use this knowledge to
write rule files directly, and this brings us back to ufw:
its configuration files use the same iptables-save
format and are stored in the /etc/ufw directory.

Like iptables, ufw has separate configurations for
IPv4 and IPv6. Each has before.rules and after.rules

files that are applied before and after your own ufw
rules, which are stored in the same format at /lib/ufw/
user.rules – look there to see the iptables arguments
generated by your ufw commands.

As your knowledge of iptables develops, you can
use it to customise your ufw rules while also retaining
the benefits of its easy-to-use command line tool. You
win both ways.

The ultimate Linux firewall?
If you need more than what ufw offers yet see iptables
as a step too far, or if you need to configure firewalls
for multiple computers, another popular choice is the
Shorewall, command-line netfilter configuration tool
that can meet the needs of users with more complex
requirements. It has a comprehensive website (http://
shorewall.net) where there’s lots of documentation
including a Getting Started guide. There’s
documentation for various scenarios, and its
“Universal Configuration” provides a default firewall
similar to ufw. To use this basic Shorewall firewall
configuration, after installing the package from your
distro’s repository, copy the configuration into place
and start it:
$ cp -a /usr/share/doc/shorewall/Samples/Universal/* /etc/
shorewall
$ shorewall start

The lowdown
All the firewall tools that we have looked at are built on
top of iptables. They all create netfilter rules and apply
them using iptables, but they present a higher level of
abstraction to the user that hides its complexity. While
the intention is to simplify things for the user, a
disadvantage of this approach is that some netfilter
capabilities may not be available.

Whichever of these tools you eventually adopt, you’ll
be better placed to implement secure systems.

John Lane provides technical solutions to business
problems. He has yet to find something that Linux can’t
solve.

PRO TIP
There are completely
separate netfilters for
IPv4 and IPv6, and
separate iptables and
ip6tables commands to
manage them. Remember
to use the appropriate
tools when using either or
both protocols.

You can use a probing
service such as
ShieldsUP!! to check your
firewall from outside your
network.

LV013 108 Masterclass.indd 113 06/02/2015 10:35

www.linuxvoice.com

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

112

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

SUBSCRIBE TO

TODAY!

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

1-year print & digital: £95
12-month digital only: £38

 Licenses its content
CC-BY-SA within 9 months

US/Canada subs prices

LV013 112 Subs US.indd 112 06/02/2015 14:04

NEXT MONTH

www.linuxvoice.com

Learn how the bad guys work and use that
knowledge to protect yourself. Starring
Ben Everard and the Metasploit framework.

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

ETHICAL HACKING

EVEN MORE AWESOME!

The benign overlord
of the Raspberry Pi
Foundation gets us
all excited over
what’s to come after
the Raspberry Pi
Version 2 fuss has
died down.

Eben Upton

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, Blue
Fin Building, 110 Southwark Street, London,
SE1 0SU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until November 2015 when all content
(including our images) is re-licensed CC-
BY-SA.
©Linux Voice Ltd 2014
ISSN 2054-3778

Subscribe: shop.linuxvoice.com

We’ve been looking
forward to it for
ages, and now the
first smartphones to
ship Ubuntu’s phone
OS are with us at
last. Here’s how they
measure up.

Ubuntu phones

Explore the inner
workings of the most
common PC
architecture – the
ubiquitous x86 –
with our kernel
superstar
Dr Valentine Sinitsyn.

Inside x86

ON SALE
THURSDAY
26 MARCH

COMPLETE GUIDE TO

HACKING

LV013 112 Subs US.indd 113 06/02/2015 14:04

www.linuxvoice.com

/DEV/RANDOM/

Final thoughts, musings and reflections

My Linux Setup Mark Einon

114

I have fallen out with my phone. I was never
really that much into phones to be honest. I
reluctantly joined the mobile-toting brigade

when I was travelling for work a lot and
apparently I had to have one in case I was
needed for something. It seemed to upset people
that I rarely turned it on. As far as I was
concerned, the phone was for my convenience,
not theirs.

I only really started using a mobile phone
when I got my first smartphone. Well, I say
smart, it was I recall running some version of
Windows. But it had a slide-out keyboard, and
that made it infinitely more useful.

Grumpiness amplifier
These days I work from home. I don’t need a
phone, and even when I travel, I am more likely to
be carrying a laptop or tablet, or both. They are
just so much more useful (although they do
make more of a racket if you forget to turn them
off in the cinema). SMS messages are annoying
(not to mention unreliable – do you know how
they work? Don’t bother finding out, it will just
scare you). And if I really want to actually ‘talk’ to
someone (which means it is a personal call) then
I generally like to see them as well, which leaves
the phone as the worst option. The things it does
well are things I don’t actually want to do. I
sometimes check what the time is on it…

So, really, the relationship is over. I don’t want a
phone, I want a computer. I want to do the things
a computer can do, I don’t care about the things
a phone can do. I think ‘phones’ should go the
way of fax machines – only used by people you
are better off avoiding. Someone should make a
computer that is sort of phone-sized for
portability, then I might be interested again. And
could they do it soon? My contract is almost up…

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

Software consultant, mainly with civil aviation software,
part-time kernel hacker and kernel maintainer, tinkerer.

Eee PC – great
robust PC for
travelling.

Speccy 128k.

PCIe cards for
which I maintain
the kernel driver.

Old Dell 9150 tower
PC, with audio
breakout panel

Self-built RepRap
3D printer. Works
great with Linux!

Lots of books on random subjects
– these cover the entire wall, and
 includes the obligatory collection
of Linux Voices.

What version of Linux are you
using now?
Left to right – Debian Wheezy on
the tower, along with many VMs –

CentOS, Arch and whatever else I’m
playing with. Wheezy on the Eee PC,
Wheezy on the battered i7 laptop. To
summarise: Debian Wheezy. I also
have two RasPi’s in a cupboard, one
running an email server and the
other irrsi/tmux, so I can keep up to date
with the #LinuxVoice channel.

Oh, also The Kernel on the VIC-20,
Kickstart on the Amiga A600 with a CF
card hardware mod.

And what desktop are using on
these machines?
Xfce for less capable machines,
otherwise the default Gnome. I’m

not a big desktop user, preferring a
terminal running tmux; with Mutt, Vim,
Taskwarrior, SSH etc, the setup for which I
keep on GitHub and pull down when
needed to any machine.

What was the first Linux
distribution you used?
Fedora Core sometime around
2004, which I dumped when it got

harder to install your own kernels and I
swapped to Ubuntu. Ubuntu was always
troublesome to do kernel development on
due to their random frequent userspace
changes, so I later moved to Debian which
is lovely, transparent and stable, and have
been using it ever since.

What Free Software/open source
can’t you live without?
The bread-and-butter of the Linux
kernel. Everything else on top is jam.

What do other people love but
you can’t get on with?
This newfangled internet thing –
particularly social media sites and

their quest to monetise you. It’s very
useful but can also be a waste of time. I
stopped using Twitter as it became more
wasteful than useful. G+ is OK though.

LV013 114 Geek Desktop.indd 114 06/02/2015 10:41

This is what we’ve done in the last 12 issues.
Subscribe to the next 12 from just £38.

shop.linuxvoice.com
Every subscription includes access to every PDF, ePub and audio edition we’ve ever published.

LV013 115 Inside Back Cover.indd 115 05/02/2015 14:54

LV013 116 Back Cover.indd 116 05/02/2015 14:24

