

ESSENTIALS

CONQUER

TH
E COMMAND

LINE
�e Raspberry Pi

TERMINAL GUIDE
Written by Richard Smedley

with a Newsstand
subscription

SAVE
45%

(limited time offer)

 or

Download the app – it’s free!
 Get all 31 legacy issues free

 Instant downloads every month

 Fast rendering performance

 Live links & interactivity

Magazine

for smartphones & tablets
Available now

From just
£2.29
rolling subscription

£19.99
full year subscription

TAKE US ANYWHERE

ALL 30 LEGACY ISSUES NOW INCLUDED!FREE:

https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

3 [Chapter One]

EDITORIAL
Managing Editor: Russell Barnes
russell@raspberrypi.org
Technical Editor: David Whale
Sub Editors: Laura Clay, Phil King, Lorna Lynch

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay
Illustrator: Sam Alder

The MagPi magazine is published by Raspberry Pi (Trading) Ltd., Mount Pleasant House, Cambridge,
CB3 0RN. The publisher, editor and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in the magazine. Except
where otherwise noted, content in this magazine is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISSN: 2051-9982.

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London
EC1A 9PT | +44 (0)207 429 4000

SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337
Bournemouth
BH1 9EH | +44 (0)1202 586 848

ometimes only words will do. Graphic user
interfaces (GUIs) were a great advance,
creating an easy route into computer use

for many non-technical users. For complex tasks,
though, the interface can become a limitation:
blocking off choices, and leaving a circuitous route
even for only moderately complicated jobs.

(Re-)Enter the command line: the blinking cursor
that many thought had faded away some time in
the 1990s. For getting instructions from user to
computer - in a clear, quick and unambiguous form
- the command line is often the best way. It never
disappeared on Unix systems, and now, thanks to
Raspbian on the Raspberry Pi, a new generation
are discovering the power of the command line
to simplify complex tasks, or instantly carry
out simple ones.

If you’re not comfortable when faced with the
$ prompt, then don’t panic! We’ll quickly make
you feel at home, and able to find your way around
the terminal on the Pi, or any other GNU/Linux
computer: getting things done, and unlocking the
power of the command line.

WELCOME TO
CONQUER THE
COMMAND LINE

S

mailto:russell@raspberrypi.org
http://criticalmedia.co.uk
mailto:magpi@raspberrypi.org
http://raspberrypi.org/magpi
http://creativecommons.org/licenses/by-nc-sa/3.0/

4

 [CONQUER THE COMMAND LINE]

[Don’t Panic] 4[Contents]

CONTENTS

ESSENTIALS

05 [CHAPTER ONE]
DON’T PANIC
Take a look around
and discover things

10 [CHAPTER TWO]
READ/WRITE TEXT
Get working on files

15 [CHAPTER THREE]
PERMISSION TO INSTALL
Raspbian’s system for installing

 and updating

20 [CHAPTER FOUR]
MANIPULATING TEXT
Connect together multiple
simple commands

[RICHARD
SMEDLEY]

Since soldering
together his first
computer - a ZX81
kit - and gaining
an amateur
radio licence as
GW6PCB, Richard
has fallen in
and out of love
with technology.
Swapping the
ZX81 for a guitar,
and dropping ham
radio for organic
horticulture,
he eventually
returned to the
command line,
beginning with a
computer to run
his own business,
and progressing
to running all the
computers of
an international
sustainability
institution. Now
he writes about
Free Software and
teaches edible
landscaping.

25 [CHAPTER FIVE]
CUSTOMISE
THE COMMAND LINE
Make Raspbian a little more personal

30 [CHAPTER SIX]
CONNECTING DISKS
Tackle the management
of removable storage

35 [CHAPTER SEVEN]
PREDICTABLE NETWORKING
Give the Pi a permanent network
address of its own

40 [CHAPTER EIGHT]
COMMAND LINE PI
No need to turn it off and on again:
just kill the process!

45 [CHAPTER NINE]
REMOTE PI
Accessing the Pi from remote PCs
and devices with Secure Shell

50 [CHAPTER TEN]
DOWNLOADING & INSTALLING
Downloading and unpacking software,
and creating new Raspbian SD cards

5

ESSENTIALS

[Chapter One]

[CHAPTER ONE]

DON’T PANIC
In the first chapter, we take a look around and discover
that things aren’t as strange as they might appear…

ESSENTIALS

5 [Chapter One]

6

 [CONQUER THE COMMAND LINE]

[Don’t Panic] 6

Commands are
terse, but, once
learned, they’re
a quick way of
navigating and
reading your files
and folders

The command
line is only a click
away: it is called
Terminal and you
can find it under
Accessories in
the menu

[READ THE
MANUAL]
Help is included,
with man(ual)
pages, but they
can be a little
overwhelming.
Use them to
check out some
extra options
beyond the
switches like -a
we used here.
To read the ls
man page, type
man ls.

t’s not a throwback to the past, but a quick and powerful
way of getting your Pi to do what you want, without all
that RSI-inducing menu chasing and icon clicking. The

command-line interface was a great step up from manually toggling
in your instructions in octal (base-8), using switches on the front of
the machine! Graphical user interfaces (GUIs) brought friendly visual
metaphor to the computer, losing some power and expressiveness.
With the Pi, you can get the best of both worlds by knowing both:
after reading through this guide, you’ll soon be as comfortable at the
command prompt as you are at your desktop.

When you boot up your Pi with Raspbian Wheezy installed, you
arrive at the command line by default. You log in and type startx to
get to the desktop. If you hold down the ALT+CTRL keys and press F1
(the first function key on the keyboard), you’ll see that the command
line is still there. Press ALT+F2 through to F6 and you’ll find five
further virtual consoles waiting for you to log in.

You can drop into these any time you like, but for now press
ALT+F7 and you’ll be back in mouse and menu land. The command
line is also available through a program called a terminal emulator
(often referred to as a term or xterm). You’ll also find people referring
to the shell, or Bash. Don’t worry about that for now; just click on the
icon at the top of the screen that looks like a black television screen,

I

[Don’t Panic]

7

ESSENTIALS

[Chapter One]

ESSENTIALS

7

or go to Accessories>Terminal in the menu: the terminal now awaits
your commands.

Look around
If you’re used to looking at files and folders in a file manager, try to
clear your mind of the icons and concentrate on the names. Type ls
and press Return (see the ‘Press Return’ boxout on this page). On a
fresh Raspbian install you’ll just see two directories: python_games
and Desktop. Type ls python_games (also see the Lazy Completion
boxout on page 8) and you should see a listing like Fig 1.

Commands like ls are not cryptic (at least not intentionally) but they
are terse, dating back to a time when the connection to the computer
was over a 110 baud serial line, from an ASR 33 teletype terminal. If
you think it’s strange to be defined by 50-year-old technology, just
remember that your QWERTY keyboard layout was reputedly designed
both to stop mechanical typewriter keys jamming, and to enable
salespeople to quickly type ‘typewriter’ using the top row!

File path
You can list files and folders anywhere in your system (or other
connected systems) by providing the path as an argument to your

Fig 1 Switches
modify behaviour
in commands; ls
-a shows (dot) files
in your listing that
are usually hidden
from view

To save
repeating it in the
text, we’ll confirm
here that each
time you type
in a command,
you need to hit
the Return key
at the end, to
tell the Pi you’ve
issued Bash with
a command.

[PRESS
RETURN]

[Chapter One]

8

 [CONQUER THE COMMAND LINE]

[Don’t Panic]

command. The path is the folder hierarchy: on a Windows computer,
in a graphical file browser, it starts with ‘My Computer’; on your Pi it
starts at /, pronounced ‘root’ when used on its own as the root of your
filesystem. Try entering ls / – again we get terseness, and names
like ‘bin’, which is short for binary, and is the directory where many
programs are kept (enter ls /bin to see the details). ls /dev shows
hardware devices in the Pi. Try ls /home – see that ‘pi’? That’s you:
you are logged in as user pi. If you’ve changed your login name, or if
you have created extra users, they’ll all be listed there too: every user
gets their own home directory; yours is the /home/pi folder in which
we found ourselves in earlier. Before, with python_games, we used the
relative path (the absolute path would be /home/pi/python_games)
because we’re already home. If you need to check your location, type pwd
(present working directory).

There’s no place like ~
For any logged-in user, their home directory is abbreviated as ~ (the
tilde character). Type ls ~ and you’ll see. There’s apparently not much
in your home directory yet, but Raspbian keeps a lot hidden from the
casual glance: files and folders beginning with a dot, known as ‘dot files’,
contain configuration information for your system and its programs.
You don’t need to see these files normally, but when you do, just ask ls
to show you all files with a command switch. You can do this with either
the full switch --all, or the abbreviation -a like so: ls -a ~. Traversing
the pathways of the directory hierarchy can be easier from the command
line than clicking up and down a directory tree, particularly with all
the shortcuts given. Your ls -a showed you . and .. as the first two
directories; these shortcuts represent the current and the parent directory
respectively. Try listing the parent directory – from /home/pi, ls ../../
will show you two layers up. If you want to list the hidden files without
the . and .. appearing (after all, they’re present in every directory, so you
don’t need to be told), then the switch to use is -A.

Commands are not cryptic (at least
not intentionally), but they are terse

[LAZY
COMPLETION]
You don’t need
to type all of ls
python_games
– after ls p, hit
the Tab key
and it will auto-
complete. If
you’ve more
than one file
beginning with
p, they’ll all be
listed and you
can type more
letters and hit
Tab again.

[Don’t Panic]

 [CONQUER THE COMMAND LINE]

9

ESSENTIALS

[Chapter One]9 [Chapter One]

Before we move on to other commands, let’s look briefly at chaining
switches together: ls -lAh ~
 -l gives you more information about the files and folders, and -h

changes the units from bytes to KB, MB or GB as appropriate. We’ll
look at some of the extras the -l listing shows you in more detail later,
particularly in chapters two and three.

Time for change
That’s enough looking: let’s start moving. cd is short for change

directory, and moves you to anywhere you want in the filesystem: try
cd /var/log and have a look (ls, remember). Files here are logs,
or messages on the state of your system that are saved for analysis
later. It’s not something you’ll often need to think about: Raspbian
is a version of an operating system that also runs across data centres
and supercomputers, where problem monitoring is very important.
It is, however, useful to know, particularly if you have a problem and
someone on a forum advises you to check your logs.
cd ~ will take you where you expect it. Try it, then pwd to check. Now

try cd - (that’s a hyphen, or dash), the ‘-’ is a shortcut for ‘wherever I
was before I came here’. Now we’ve looked around, we can move on to
beginning to do things to our files.

Fig 2 Who needs
icons when you
can fit a listing

of 78 files into a
small window?
Coloured fonts

indicate file types

ESSENTIALS

10[Don’t Panic] 10[Read/Write Text]

[CHAPTER TWO]

READ/WRITE
TEXT
In this chapter, we get working on files.

ESSENTIALS

11

ESSENTIALS

[Chapter Two]

ow that we can navigate folders and list files, it’s time to learn
how to create, view, and alter both files and folders. Once
more, it’s not that the task is difficult, rather that the forms

of the commands (particularly when editing) are unfamiliar, coming
from an era before Common User Access (CUA) standards were created
to ease switching between applications and operating systems.

Stick with it: with just the first two chapters of this book under your
belt, you’ll be able to do plenty of work at the command line, and start
getting comfortable there.

Creating a directory
We’re going to dive straight into working with files and folders by
creating a new directory. Assuming you already have a terminal open
(see ‘Instant applications’ box on page 13), and you’re in your home
directory (pwd to check, cd ~ to get back there if necessary), type
mkdir tempfolder and have a look with ls.
mkdir, as you’ve probably guessed, creates a new directory or folder.

Let’s use it to experiment with altering one of the included Python
games. Don’t worry: we’re not going to be programming Python, just
making a small change by way of illustration. cd tempfolder (use
tab completion, cd t then hit the TAB key). We’ll copy over the files
from the games directory:

N
Many utilities
have info pages,
giving far more
information
than their man
page. If you’re
feeling brave, try
info nano for a
comprehensive
guide to nano.

[MORE
INFO]

Create and name
files and directories
with keystrokes,
rather than
mouse-clicks and
keystrokes

The command line
offers tools to get
text from different
parts of a file, like
skipping to the
conclusion

12

 [CONQUER THE COMMAND LINE]

cp ../python_games/fourinarow.py .
cp ../python_games/4row_* .

Wildcard
You may remember that the .. refers to the directory above. The .
(dot) at the end of the commands refers to ‘just here’, which is where
we want the files copied. Lastly, 4row_* is read by the Pi as ‘every
file beginning 4row_’ – the * is known as a wildcard, and this one
represents any number of characters (including none); there are other
wildcards, including ?, which means any single character.

Before we make any changes, try python fourinarow.py (after
running startx) and you’ll see you can run the local copy of the
game (the Python Games part of the menu still reaches the original
copy, of course). To change the game, we need an editor: there is a
long and honourable tradition in the Unix and Linux world of having
strong opinions on the merits or otherwise of various text editors
– after all, they are an important tool for anyone who works daily
with command scripts – but we’ll sidestep the debate and use the
Pi’s built-in editor: nano. Unless you’ve previously used the Pico

editor, which accompanied the Pine email client on many university
terminals in the 1980s and 1990s, it will seem a little odd (Fig 1).
That’s because its conventions predate the CTRL+C for copy type
standards found in most modern programs. Bear with us.

Editing and paging
nano fourinarow.py will open the game for editing; use the arrow
keys to go down nine lines, and along to the BOARDHEIGHT value of
6. Change it to 10 (both the BACKSPACE and DELETE keys will work
in nano). The last two lines of the screen show some shortcuts, with

We’re going to dive straight into
working with files and folders
by creating a new directory.

 [CONQUER THE COMMAND LINE]

[Read/Write Text]

You don’t need
to wade through
the man page
to see what
switches are
available: type
--help after
the command
to be shown
your options, e.g.
rm --help

[SWITCHING
HELP]

13

ESSENTIALS

^ (the caret symbol) representing the CTRL key: CTRL+O, followed
by RETURN will ‘write out’ (save) the file; then use CTRL+X to exit.
Now, python fourinarow.py will open an oversize board, giving
you more time to beat the computer, should you need it. However,
there’s now no room to drag the token over the top of the board:
go back and change the BOARDHEIGHT value to 9, with nano.

If you want to take a look through the fourinarow.py listing
without entering the strange environment of nano, you can see
the entire text of any file using cat: eg cat fourinarow.py.
Unfortunately, a big file quickly scrolls off the screen; to look through
a page at a time, you need a ‘pager’ program. less fourinarow.py
will let you scroll up and down through the text with the PAGE UP and
PAGE DOWN keys. Other keys will do the same job, but we’ll leave
you to discover these yourself. To exit less, hit Q (this also works
from man and info pages, which use a pager to display text).

Cats, heads & tails
If editor wars are a Unix tradition we can safely ignore, there’s
no getting away from another tradition: bad puns. less is an
improvement over more, a simple pager; the respective man pages
will show you the differences. One advantage the relatively primitive
more has is that at the end of a file it exits automatically, saving you
reaching for the Q button. Admittedly, this is not a huge advantage,
and you can always use cat.

Fortunately, cat is not a feline-based pun, but simply short for
‘concatenate’: use it with more
than one file and it concatenates
them together. Used with
no argument – type cat – it
echoes back what you type
after each ENTER. Hit CTRL+C
to get out of this when you’ve
finished typing in silly words
to try it. And remember that
CTRL+C shortcut: it closes most
command-line programs, in the
same way that ALT+F4 closes
most windowed programs.

Fig 1 The default
editor, Nano, has

unusual command
shortcuts, but
they’re worth

learning, as you’ll
find Nano installed

on virtually all Linux
boxes, such as your

web host

Although you
can open
the terminal
emulator from
the menu –
Accessories >
Terminal – for
this, and any
other app, just
hit ALT+F2
and type its
command name:
lxterminal.

[INSTANT
APPLICATIONS]

[Chapter Two]

14

 [CONQUER THE COMMAND LINE]

You can peek at the first or
last few lines of a text file with
head and tail commands.
head fourinarow.py will show
you the first ten lines of the
file. head -n 5 fourinarow.
py shows just five lines, as does
tail -n 5 fourinarow.py
with the last five lines. On the Pi,
head -5 fourinarow.py will
also work.

Remove with care
nano afile.txt will create a
new file if afile.txt does not already exist: try it, and see if it works
when you exit the file before writing and saving anything. We’ve
done a lot already (at least, nano makes it feel like a lot), but it’s
never too early to learn how to clean up after ourselves. We’ll
remove the files we’ve created with rm. The remove tool should
always be used with care: it has some built-in safeguards, but even
these are easy to override (Fig 2). In particular, never let anyone
persuade you to type rm -rf / - this will delete the entire
contents of your Pi, all the programs, everything, with little to no
chance of recovery.

Have a look at what files we have: if you’re still in the
tempfolder/ you made, then ls will show you the Four-in-a-Row
files you copied here. Remove the program, then the .png files
with careful use of the * wildcard.

rm fourinarow.py
rm 4row_*.png

cd .. to get back to /home/pi and rm -r tempfolder
will remove the now empty folder. The -r (recursive) option
is necessary for directories, and will also remove the contents
if any remain.

In the next chapter, we’ll delve into file permissions and updating
your Pi’s software from the command line.

Fig 2 rm is a
powerful removal
tool: use with great
care!

[Read/Write Text]

15 [Chapter Three]

[CHAPTER THREE]

PERMISSION
TO INSTALL

In chapter three, we look at Raspbian’s efficient
system for installing and updating software,
among other things.

ESSENTIALS

16

 [CONQUER THE COMMAND LINE]

[Permission to Install]

[SHARED
RESPONSIBILITY]

If you share your
Pi, it’s worth
reading up on
sudo, and the
visudo command
to find how to
give limited but
useful admin
privileges to the
other users.

nstalling software should be easy, but behind every piece of
software is an evolving set of dependencies that also need
installing and updating. Keeping them separate reduces

unnecessary bloat and duplication, but adds the potential for bugs,
missing files, and even totally unresolvable clashes.

Fortunately, Debian GNU/Linux cracked the problem back in
the 1990s with the Debian Package Management system and the
Advanced Package Tool (APT), and Debian-based systems, like
Ubuntu and the Pi’s Raspbian, inherit all of the benefits. Here we’ll
show you the basics you need to know to install new software and
keep your system up to date from the command line, and then look at
the not entirely unrelated field of file ownership and permissions.

Using the apt command to update your system’s list of installable
software should be as simple as issuing the command like so: apt-
get update. Try this logged in as user pi, though, and you’ll just get
error messages. The reason for this is that changing system software
on a GNU/Linux (or any type of Unix) system is a task restricted to
those with administrative permissions: the godlike superuser, or
admin, also known as root.

I

Every file, folder,
and even hardware

component should have
just enough permission

for you to use it – but not
be over-accessible at

the risk of security

Raspbian’s software
repository contains many

thousands of freely
installable apps, just a

command away from use

17

ESSENTIALS

[Chapter Three]

Pseudo root, su do
We’ll get onto permissions properly a bit later, but for now you’ll be
pleased to know that you can fake it, using the sudo command. sudo
potentially offers a fine-grained choice of permissions for users and
groups to access portions of the admin user’s powers. However, on
the Pi, Raspbian assumes, quite rightly, that the default user will be
someone just wanting to get on with things, and sudo in front of a
command will pretty much let you do anything.You have been warned!

The following two commands will update Raspbian’s installed
software (Fig 1):

sudo apt-get update
sudo apt-get upgrade

You can wait for one to finish, check everything is okay, then issue the
other command, or you can save waiting and enter both together with:

sudo apt-get update && sudo apt-get upgrade

The && is a Boolean (logical) AND, so if the first command doesn’t
run properly, the second one will not run at all. This is because for a
logical AND to be true, both of its conditions must be true.

It’s always worth running the update command before installing
new software too, as minor updates are made in even stable
distributions: should a security problem be found in any of Raspbian’s

Fig 1 Raspbian
updates its listing
of thousands of
available apps,
providing you give it
admin permissions

18[Permission to Install]

software. We’ve just run an update, so no need to repeat that
for now. Sticking with a command-line theme, we’re going
to install an old suite of terminal games:

sudo apt-get install bsdgames

Searchable list
It is possible to find particular apps with apt-cache search: apt-
cache search games. You can also examine individual packages
with apt-cache show: apt-cache show bsdgames.

Apt is actually a front end to the lower-level dpkg, which you can
call to see what you have installed on the system: dpkg -l. Even
on a fresh system, that’s a large listing: we’ll show you how to get
useful information from such listings another time.

Downloaded packages hang around in /var/cache/apt and if you

find yourself short on disk space, issuing sudo apt-get clean will
clear out the archive, without affecting the installed software.

Now, remember the extra details that ls -lh showed us in part 1?
Try ls -lh /etc/apt.

 That -rw-rw-r-- at the beginning of the listing for sources.list
comprises file attributes, telling you who may use the file. Other
entries in the listing have a d at the beginning, indicating they are
directories. You’ll also see hardware devices have a c here, for character
device – ls -l on /dev/input, for example. On Linux, everything is
a file, even your mouse! An a tells us this is just a regular file; it’s the
remaining nine characters of the group that cover permissions.

Every file has an owner and a group membership. Files in your home
directory belong to you. If you’re logged in as user pi and ls ~ -l, you’ll
see pi pi in each listing, telling you the owner and the group.

[FREE TO USE]
Software in the
main repository
is not just free to
use, but freely
modifiable and
redistributable
too. Free
software, like
Raspbian’s
Debian base, is
built on sharing:
for education
and for building
community.

 [CONQUER THE COMMAND LINE]

It’s always worth running
the update command before
installing new software...

[Chapter Three]19

ESSENTIALS

Note that we put the switch at the end this time: that’s a bad habit
under certain circumstances, but we’re just showing you what’s
possible. Owner and group aren’t always the same, as ls -l /dev
will show you.

Octal version
Those numbers are an octal representation of user, group, and
others’ permissions: in each case, read is represented by 4, write
by 2, and execute by 1, all added together. So here we have 7s for
read+write+execute for user and group, and 5 for read+execute for all
other users. ls -l and you’ll see we’re back to -rwxrwxr-x.

You can use chown to change who owns a file and chgrp to change
which group it belongs to. Make a new text file and sudo chown
root myfile.txt – now try editing it and you’ll find that while you
can read the file, you can no longer write to it. You can also make a
file that you can write to and run, but not read!

In the next chapter, we’ll be doing useful things with the output
of our commands; before moving on, though, why not try your hand
at robots from the bsdgames package we installed? It will come in
handy later for another purpose.

[PROBLEMS?]
Fine-grained
permissions
make for greater
security, but
can trip you up.
Typing sudo
in front of a
command that
doesn’t work is
both a diagnosis
and a quick
workaround of
a permissions
problem.

Fig 2 Raspbian
tells you who

you are, and
what group

access you have,
for permission

to use and alter
files and devices

20[Manipulating Text]

[CHAPTER FOUR]
MANIPULATING
TEXT
Discover pipes and learn how to connect multiple simple
commands together for more powerful text processing.

ESSENTIALS

20

21

ESSENTIALS

[Chapter Four]

he Unix family of operating systems, which includes other
flavours of GNU/Linux and also Apple’s Mac OS X, deals with
data from commands as streams of text. This means that

commands can be chained together in countless useful ways. For now,
though, we’ll focus on giving you a firm foundation to building your
own custom commands.

Getting our feet wet
When a command is called at the terminal, it is given three streams,
known as standard input (stdin), standard output (stdout), and
standard error (stderr). These streams are plain text, and treated by the
Pi as special files. As we noted in chapter 3, ‘everything is a file’: this
is what gives the Pi and other Unix family systems the ability to put
together simple commands and programs to build complex but reliable
systems.

Normally, stdin is what you enter into the terminal, while stdout
(command output) and stderr (any error messages) appear together.
The reason the last two have a separate existence is that you may want
to redirect one of them – error messages, for example – somewhere
away from the regular output your commands produce. We’ll look
at separate error messages later, but first we need to know how to
redirect and connect our output to other commands or files.

Connecting commands together are pipes, the ‘|’ symbol found
above the backslash on both GB and US keyboards (although the two

T

If you know there’s more
than one item the same

and you don’t want to
see it, or need a new list
without duplicates, uniq
will get rid of the spares

Building on simple
commands. The arrows
connect to streams and

files (input or output)
while pipes chain the

output of one program
to the input of another

[ABSOLUTE
PATH]
We’re using ~/
mylisting4.txt
with ~ short for
/home/pi. If you
cd to ~ then you
can simply use
the filename
without the ~/

22

 [CONQUER THE COMMAND LINE]

[Manipulating Text]

 [CONQUER THE COMMAND LINE]

keyboards for English speakers place the \ respectively to the left
of Z, and at the far right of the home row). When you type a command
such as ls -l, the output is sent by Raspbian to the stdout stream,
which by default is shown in your terminal. Adding a pipe connects that
output to the input (stdin stream) of the next command you type. So…

 ls -l /usr/bin | wc -l

…will pass the long listing of the /usr/bin directory to the wordcount
(wc) program which, called with the -l (line) option, will tell you how
many lines of output ls has. In other words, it’s a way of counting how
many files and folders are in a particular directory.

Search with grep
One of the most useful commands to pass output to is grep, which
searches for words (or Regular Expressions, which are powerful
search patterns understood by a number of commands and
languages), like so:

grep if ~/python_games/catanimation.py

This displays every line in the catanimation.py file containing the
character sequence ‘if’ (Fig 1)– in other words not just the word ‘if’,
but words like ‘elif’ (Python’s else if), and words like ‘gift’ if they
were present. You can use Regular Expressions to just find lines with
‘if’, or lines beginning with ‘if’, for example.

Piping search results and listings to grep is the way we find a needle
in one of Pi’s haystacks. Remember dpkg from the last chapter, to see
what was installed? Try…

dpkg -l | grep -i game

…to remind yourself which games you’ve installed (or are already
installed). The -i switch makes the search case insensitive, as the
program may be a ‘Game’ or ‘game’ in the description column.
A simple dpkg -l | more lets you see output a page at a time.
sort will, as the name suggests, sort a listing into order, with various

tweaks available such as -f to bring upper and lower case together.

23

ESSENTIALS

[Chapter Four]

One way to collect unsorted data is to combine lists. sort will put the
combined listing back in alphabetical order:

ls ~ ~/python_games | sort -f

Suppose you copied one of the games to your home directory to
modify: you know it’s there, but you don’t want to see the same name
twice in the listings. uniq will omit the duplicated lines or, with the -d
switch, show only those duplicates.

ls ~ ~/python_games | sort -f| uniq

File it away
Pipes are not the only form of redirection. > (the ‘greater than’ symbol)
sends the output of a program into a text file, either creating that text
file in the process, or writing over the contents of an existing one.

ls /usr/bin > ~/mylisting4.txt

Now look in mylisting4.txt and you’ll see the output of ls /usr/
bin. Note that each item is on a separate line (Fig 2). Your terminal
displays multiple listings per line for space efficiency; however, for
easy compatibility between commands, one listing per line is used.
Most commands operate on lines of text: for example, grep showed
you in which lines it found ‘if’. Note that some commands need a dash
as a placeholder for the stdin stream being piped to them:

 echo “zzzz is not a real program here” | cat mylisting4.txt -

Fig 1 No matter
how long the
file, grep will

dig out the
lines you need

. It’s also handy
for finding the

results you want
from a multi-
page output

[FILING
HOMEWORK]
There are many
more commands
beyond grep,
sort and
uniq that can
be chained
together. Take
a look at cut if
you’re feeling
adventurous.

 [CONQUER THE COMMAND LINE]

24[Manipulating text]

Appending
If you want to add something to the end of a file without overwriting
the contents, you need >>.

 echo “& one more for luck!” >> ~/mylisting4.txt

echo simply displays whatever is in the quote marks to stdout; the -e
switch lets you add in special characters, like \n for newline (see below).
Remember, you can look at the last few lines of a file with tail ~/
mylisting4.txt. < will link a program’s input stream to the contents
of a file or stream. Make an unsorted list to work on, and sort it:

echo -e “aardvark\nplatypus\njellyfish\
naardvark” > list1
sort < list1

You can also combine < and >:

head -n 2 < list1 > list2

…will read from list1, passing it to head to take the first two lines,
then putting these in a file called list2. Add in a pipe:

sort < list1 | uniq > list3

Lastly, let’s separate that stderr stream: it has file descriptor 2 (don’t
worry too much about this), and 2> sends the error messages to any file
you choose:

cat list1 list2 list3
list42 2>errors.txt

The screen will display the ‘list’
files you do have, and the ‘No such
file or directory’ message(s) will end
up in errors.txt – 2>> will append
the messages to the file without
overwriting previous contents.

Fig 2 With redirection, you can get all of the output from
a command saved straight into a text file. Save your error
messages to ask about them on the forums!

25 [Chapter One]25 [Chapter Five]

[CHAPTER FIVE]
CUSTOMISE THE
COMMAND LINE

In this chapter, we make Raspbian a little more personal
as we get it to behave and look just the way we want it to.

ESSENTIALS

26

 [CONQUER THE COMMAND LINE]

[Customise the Command Line]

ake a look at that blinking cursor on your terminal, and at
what’s behind it: pi@raspberrypi ~ $

The $ is known as the ‘dollar prompt’, awaiting your
command; before it you see the ~ (tilde), shorthand for ‘home’ - which
is /home/pi in this case. Before that is [user name]@[computer name],
in the form pi@raspberrypi. Not only is this informative (at least if
you’ve forgotten who and where you are), but it’s also something you
can change and personalise.

New user
Let’s start with that user name: pi. If more than one person in your
family uses the Pi, you may want to keep the pi user for shared
projects, but set up individual login accounts for family members,
including yourself. Creating a new user in Raspbian is easy: sudo
adduser jo …will create a new user account named jo. You will be
prompted for a password (pick a good one) and lots of irrelevant info
(dating back to shared university computers of the 1970s) that you can
safely ignore by just pressing ENTER at each prompt. Now we have a
user account for jo, have a look at /home/jo. Does it look empty? Use ls
-A. Jo has never logged into the computer, so you will see the absence
of most of the contents of /home/pi for now, such as ~/.gconf, but
there is a .bashrc and a couple of other config files.

T

Share your Pi:
make new user

accounts and
others can log

in or switch
users from a

command-line
session

The command-
line environment
is personal to
each user. You
can change your
identity with or
without a change
of environment,
depending upon
what you need to
do in another role

27

ESSENTIALS

[Chapter Five]

Not every user has a home
directory and logs in: cat /
etc/passwd …and you’ll see
a lot of users listed that aren’t
people. This is because files and
programs running on a Unix-

type system have to belong to a user (and a group – take a look at /
etc/group), as we saw back in chapter 1 when we did ls -l. The
user passwords are fortunately not listed in the /etc/passwd file in
plain text, so if you want to change a password you’ll need to use the
passwd command: sudo passwd jo will change the password for
user jo. If you’re logged in as user pi, then simply calling passwd will
prompt you to change pi’s password.

Transformations in the virtual world are always easier than those
in nature, and this is the case with switching from being ‘pi’ to ‘jo’: we
use the change (or substitute) user command, su, like so: su jo. After
typing this, you should see the prompt change to jo@raspberry; you
can also confirm who you are logged in as with whoami.

Changing identity
su - jo (note the dash) is usually preferred, as you’ll gain all of jo’s
specific environment settings, including placing you in /home/jo.
Note that on many other Linux systems, su on its own will enable you
to become the root or superuser, with absolute powers (permissions
to run, edit, or delete anything). Raspbian (and some other popular
GNU/Linux systems like Ubuntu) prefer sudo to run individual
programs with root permissions. Root’s godlike powers may be
temporarily attained with sudo -s - try it and note how the prompt
changes - but it’s generally a bad idea to run with more permissions
than you need, for the same reason it’s a bad idea to run with scissors!
For any user, you can customise elements of their command-line

Above Bash stores
information, from

your previous
‘present working

directory’ to
who you are, in
environmental

variables like
OLDPWD and USER.

See individual
variables with e.g.

echo $USER,
or view them all

with env

[HOME RUN]
If you’re logged
in as user pi, then
~ is a shortcut to
/home/pi
– but ls ~jo
can be used as
a shortcut to
list /home/jo,
substituting any
other user name
as desired, with
tab completion
working after ~j
is typed.

28

 [CONQUER THE COMMAND LINE]

[Customise the Command Line]

use most simply by editing ~/.bashrc. Take a look through that
configuration file now: more ~/.bashrc. Note a number of variables
in all capital letters, such as PATH, HISTSIZE, and PS1. The last of
these controls the prompt you see, currently jo@raspberry ~ $.
To change it (for the duration of your current terminal session),
try something like: export PS1=”tutorial@magpi > “

This is a temporary change: type exit and you’ve left the su value
of jo, so you’ll see pi@raspberry ~ $ once more. If you su back to jo,
the magpi prompt will still be gone. To make your change permanent,
you need to put the PS1 value you want into ~/.bashrc. A search around
the web will bring up many fancy options for better customising the
Bash prompt.

The ~/.bashrc file is read upon each login to a Bash session, or in
other words, every time you log into a console or open a terminal.
That’s unless you change Raspbian’s default shell away from Bash,

something you may have reason to do in the future - there are
interesting alternatives available for extra features or for smaller
memory footprint - but let’s not worry about that for now. You can
put all sorts of commands in there to personalise your environment:
command aliases are great for regularly used combinations.

Alias
See what’s already there with: grep alias ~/.bashrc

There are a few already in there, particularly for the ls command.
One entry is: # alias ll=’ls -l’. This sounds quite useful, although
the # indicates that it is ‘commented out’, which means that it will not
be read by Bash. Open .bashrc in your text editor; the simple text editor
from the Accessories menu will do for now, as although we’ve touched
on using nano for editing text from the command line, we aren’t going
to go into this in detail until the next chapter. Removing the # will

Transformations in the
virtual world are always
easier than those in nature...

[BASIC
ACCOUNT]
adduser creates
a new user, then
takes care of
all of the extra
details like
making a home
directory. If all
you want is a
user created
with no extra
frills, then the
command you
want is useradd.

29

ESSENTIALS

[Chapter Five]

mean that now when you type ll, you’ll get the action of running ls
-l. Handy, but we could make it better. Change it to: alias ll=’ls
-lAhF’…and you’ll get an output in KB or MB, rather than bytes,
along with trailing slashes on directory names and the omission of
the ever present . and .. (current and parent) directories. Changes
take effect after you next start a Bash session, but you can just run
that alias as a command (Fig 1). To disable an alias for a session, use:
unalias ll

Key point
We’ll end with the very first thing many users need to change:
the keyboard map. The system-wide setting is in /etc/default/
keyboard, but often you need to change it just for individual
users. If £ signs and letters without accents are not sufficient for
them, log in as the user who wants a different keyboard, or add
sudo and the correct path to the commands below. For example,
for a Greek keyboard:

touch ~/.xsessionrc
echo “setxkbmap el” > ~/.xsessionrc

Replace el with pt, us, or whatever language you desire. Note that
config file we created - .xsessionrc – it holds settings that are read
when we start the GUI with startx, so the keyboard setting will cover
not just the terminal, but every app used in the session.

[WHO AM I?]
From a virtual
console (before
typing startx),
su and that’s
who you’re
logged in as.
From an xterm,
you can change
to someone else,
but start another
app from the
menu and you’ll
be back to your
original login.

Fig 1 Those
terse, two- or

three-letter
commands are

not set in stone:
make your own

shortcuts to
keep, or just

for use over a
specific session

30[Don’t Panic] 30[Connecting Disks]

[CHAPTER SIX]
CONNECTING
DISKS
For chapter six, we’re tackling the management
of removable storage.

ESSENTIALS

30

31

ESSENTIALS

[Chapter Six]

lthough Raspbian Wheezy will, when booted as far as the GUI,
automatically mount any disk-type device (USB flash key,
camera, etc.) plugged into the USB port and offer to open it

for you (Fig 1), you may wish to get more direct control of the process.
Or, as is more often the case, you may want to mount a disk when the
Raspberry Pi is running a project that doesn’t involve anyone getting as
far as typing startx at the command line, as such graphical fripperies
aren’t necessary for most connected devices.

Connected or mounted?
Plugging a drive or flash memory device into your Pi (connecting it to
your computer) is not the same as making it available for the Pi to
interact with (mounting it) so that Raspbian knows what’s on it and
can read, write, and alter files there. It’s an odd concept to accept: the
computer knows there’s a disk plugged in, but its contents remain
invisible until the Pi is told to mount it. It’s a bit like seeing a book on
your shelf, but not being allowed to open or read it.

Disks and disk-like devices are mounted by Raspbian on a virtual file
system, and you’ll rarely need to worry about what goes on beneath
that layer of abstraction, but to see some of it, type mount. The
information displayed is of the form device on mount point, file-system

A

Raspbian, while
presenting a simple
surface, also lets
you dig deep for
information when you
need to change default
behaviour. That’s real
user-friendliness!

Even simple
utilities have

multiple uses: df,
by showing space
available, reminds

the user which disks
are mounted and
can be accessed

by the Pi

[IN DEPTH]
If you want to
delve deeper
into what
goes on inside
Raspbian and
other GNU/
Linux systems,
try Brian
Ward’s How
Linux Works,
which we
reviewed in
The MagPi #32.

 [CONQUER THE COMMAND LINE]

32[Connecting Disks]

type, options. You’ll see lots of device ‘none’ for parts of the virtual
system that you don’t need to worry about; the devices that concern us
start with /dev/ and have names like /dev/mmcblk0p1 for partitions of
the Pi’s SD card, and /dev/sda1 for plugged-in USB drives.

Plug in a USB drive (remember that the Pi is not happy to power
drives itself: either use a powered drive, or plug a USB flash drive into a
powered USB hub). If you haven’t yet typed startx, then the disk will
not get automatically mounted; if you have, then you need to unmount
it. mount will show an entry beginning something like ‘/dev/sda1 on /
media/FLASH DRIVE…’ and you can unmount with sudo umount /
dev/sda1 (yes, that is umount without an ‘n’). An error will result if
the device is in use, so change directory and/or close apps using files
from the device. Now we can mount it just the way we want.

Finding the disk
The /dev/sda1 refers to the first (or only) partition on /dev/sda. The next
device plugged in will be /dev/sdb1. You can see what’s being assigned
by running tail -f /var/log/messages, then plugging in the USB
device. On other Linux systems, if /var/log/messages draws a blank,

try /var/log/syslog. Stop the tail with CTRL+C. Another way of seeing
connected devices that aren’t necessarily mounted is fdisk, a low-level
tool used to divide disks up into partitions, before creating file systems
on those disks (see the ‘Format’ boxout on page 34). Called with the list
option sudo fdisk -l, it performs no partitioning, but simply lists
partitions on those disks connected to your Pi. It also gives file-system
information, which you need in order to mount the disk. Lastly, you
need a mount point (somewhere to place the device on the file-system
hierarchy) with appropriate permissions. Create one with:

sudo mkdir /media/usb
sudo chmod 775 /media/usb

[DISK &
DISK SPACE]

The df
command
shows you
space on
mounted
drives: just
type df and
you’ll also
get a list of
connected
drives. It’s
more readable
than mount -l,
though lacking
file type info.
It’s also quicker
to type!

An error will result if the device is in use,
so change directory and/or close apps

33

ESSENTIALS

[Chapter Six]

You can then mount the disk with sudo mount -t vfat /dev/sda1
/media/usb, where VFAT (or NTFS or ext2) is the file-system type.

File-system table
Raspbian knows which disks to mount at boot time by reading the
file-system table (/etc/fstab), and we could put our /dev/sda1 in
there, but if we start up with two drives plugged in, the wrong one
may be selected. Fortunately, disks (or rather, disk partitions) have
unique labels known as UUIDs randomly allocated when the partition
is created. Find them with sudo blkid, which also helpfully tells you
the label, if any, that often contains the make and model of external
drives, or look in /dev/disk/by-uuid.

For an NTFS-formatted drive, we called sudo nano /etc/fstab and
added the following to the end of the file:

/dev/disk/by-uuid/E4EE32B4EE327EBC /media/usb1t
ntfs defaults 0 0

This gives the device name (yours will be different, of course),
mount point, file-system type, options, and two numeric fields: the
first of these should be zero (it relates to the unused dump backup
program), while the second is the order of check and repair at boot:
1 for the root file system, 2 for other permanently mounted disks for
data, and 0 (no check) for all others. man mount will tell you about
possible options.

Fig 1 Raspbian
wants to mount

plugged-in disks,
and take care of

the details for
you – note that

the GUI tells you
it’s ‘Windows

software’ – while
the command

line beneath has
information for

you to take control
when you need
the job done in

a particular way,
telling you it’s an
NTFS file system

Editing with nano
We touched briefly on nano in
chapter 2. Looking in a little more
depth, the first thing to be aware
of is the dozen shortcuts listed
across the bottom two lines of the
terminal: each is the CTRL key
(represented by the caret ^) held
at the same time as a single letter
key. For example, ^R for ReadFile
(i.e. open), ^O for WriteOut (in
other words, save), and ^X for
Exit. Remember those last two for
now, and you’ll be able to manage nano. However, if you learn more of
them, you will really race through your editing tasks.

While nano lacks the power features of Emacs and Vim, its two
main command-line code editor rivals, it has useful features such
as a powerful Justify (^J), which will reassemble a paragraph of line-
break strewn text into an unbroken paragraph, or apply line breaks at
a fixed character length.This is a legacy of its development for email
composition. ^K cuts the line of text the cursor is on, but it isn’t just
a delete function: each cut is added to a clipboard. ^U will paste the
entire clipboard at the cursor position: it’s great for gathering together
useful snippets from a longer text.

Hit ^O to save fstab, and the shortcut listing changes, with many
now beginning M instead of ^ – this is short for Meta, which means
the ALT key on your keyboard (once upon a time, some computers had
several modifier keys, such as Super and Hyper). One ‘hidden’ shortcut
after ^O is that at this point, ^T now opens a file manager to search for
the file/directory where you want to save.

After saving, exit nano; now sudo mount -a will mount the external
drive at the desired mount point (Fig 2), regardless of what else is
plugged in. If you have other new entries in /etc/fstab, then sudo
mount /media/usb1t (or whatever entry you put in fstab) will mount
just that chosen device if you don’t want to mount any of the others.

Having got inside connected disks, the next chapter will see us
accessing all of the Pi, but remotely, from anywhere on the planet with
an internet connection.

 [CONQUER THE COMMAND LINE]

34

Fig 2 Once we’ve
put our removable
disk in the file-
system table
(/etc/fstab),
mount -a will read
the config from
there to mount
your disks, saving
you from having
to remember
the details

[FORMAT]
Copying a disk
image negates
the need to
format the
disk. Should
you need to
format a new
partition, or
convert a disk
to ext4 format,
read the
manual: man
mkfs and for
individual file-
system types
such as man
mkfs.ext4

[Connecting Disks]

35

ESSENTIALS

[Chapter One]35 [Chapter One]35 [Chapter One]35 [Chapter Seven]

[CHAPTER SEVEN]
PREDICTABLE
NETWORKING
In this chapter, we give the Pi a permanent network address of its own.

ESSENTIALS

36

 [CONQUER THE COMMAND LINE]

[Predictable Networking]

hey say that the network is the computer: something
becoming more vital as connected devices integrate more
and more real world interactivity with data and processing

across the internet. Raspbian takes care of automatically connecting
in most situations, but sometimes you need to override automatic
configurations, to ensure a consistent network setting for your Pi
project: Raspbian has the tools, and we’ll show you the essentials you
need to stay connected.

Plug a network cable from your ADSL router to your Pi and,
automagically, Raspbian knows where it is on the network, and can talk
to the outside world. How? Because it’s setting itself up the way your
router tells it to. This is thanks to DHCP - Dynamic Host Configuration
Protocol – which provides network configuration for every device
connected into a network.

Check you’re using it by issuing the command: cat /etc/network/
interfaces. This should show, amongst others, a line like: iface eth0
inet dhcp which means you’re set up to receive configuration via
DHCP. The eth0 is the name of your ethernet port into which you
plug your network cable; a wlan0 here is for any wifi adaptor you may
connect to your board.

For many projects on your Pi – whether something cutting edge
with sensors, or something as useful but mundane as a VPN to protect
your mobile browsing from intrusive location-based advertising –
you’ll need an Internet address that doesn’t change, so that whatever

T

ifconfig gives
you your Internet

address; unless
your Pi is sitting in a

data centre, this is
likely to be a private

address such as in
the range beginning

192.168.0.0.

/etc/network/
interfaces contains

an entry telling
the Pi to use DHCP

to allocate an
address. Change

it to static, and
give your board a

permanent address

37

ESSENTIALS

[Chapter Seven]

remotely connects to you can always find you. We’re using local
addresses here, but we touch on remotely accessing a Pi behind a
router in chapter nine.

Static address
Network settings are found in /etc/network/interfaces; before
changing them, make a back-up copy of your current working
set-up with:

sudo cp /etc/network/interfaces /etc/network/interfaces.bak

Open /etc/network/interfaces with your favourite editor (or nano)
and change iface eth0 inet dhcp to iface eth0 inet static (and the later
mention of dhcp, under default, if you have it in your config file). Then
add the following information below it, or rather, a version appropriate
for your network:

address 192.168.0.207
netmask 255.255.255.0
gateway 192.0.0.1

Here, address is either the IP (version 4) address already allocated
by DHCP to your Pi, or one with the last of the four numbers (together
they’re known as a dotted quad) changed to a higher number, which
is unlikely to be allocated by your router’s DHCP server. You can
usually configure your router’s range of addresses allocated, or reserve
particular addresses.

The gateway address is the address of the device sitting between you
and the Internet: your ADSL router. You can discover this with sudo
route -n, the -n requesting the numeric address, rather than the
name of the gateway. The address the Pi is currently using is shown
with sudo ifconfig, as is netmask, which is listed as Mask.

If you look at example /etc/network/interfaces files online, or from
other people’s projects, you may also see entries for network and
broadcast, showing the first three numbers of the dotted quad address
of the device, followed by a 0 and a 255, respectively. These tell your
computer a little more about the network that it is on, but aren’t
strictly necessary to getting things working. After editing the network

[IPV6]
Despite the
world of
connected
devices crying
out for the
billions of
addresses
of IPv6, IPv4
remains the
norm. Adding
IPv6 to the Pi
simply involves
putting ipv6 on
a line by itself
at the end of /
etc/modules.

38

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

configuration you need to restart the service:

sudo ifdown eth0 && sudo ifup eth0

Check that all is now well both with ifconfig, and trying a ping from
another computer on the network.

Ping!
Ping is the most basic tool in the network testing armoury, but one
which is often called upon. It sends ICMP (The Internet Control
Message Protocol) ECHO_REQUEST to a device on the network. ICMP
is built into every connected device and used for diagnostics and error
messages: a ping will produce a reply from the pinged machine, which
tells you it is on, and connected, and that the network is working
between you and it. Information about packets lost, and time taken
also helps with fault diagnosis.

A successful ping localhost from the Pi tells you not just that the
local loopback interface is working, but that localhost resolves to
127.0.0.1, the local loopback address. Name resolution is the cause of
many computing problems, so we’ll come back to that further down
the page. Now ping the Pi from another machine on your local network:
ping 192.168.0.207: you’ll need to use the static IPv4 address you
set, rather than ours, of course. If you’re doing this from a Windows
machine ping defaults to five attempts; from another Unix machine
(another Pi, a Mac, or Ubuntu or other GNU/Linux), it will carry on until
you stop it with Ctrl-C, unless you set a number of ECHO_REQUEST
sends with -c like so: ping -c 5 raspberrypi.org

What’s in a name?
Numeric addresses are how

connected devices see the
internet, but humans prefer to
remember names so DNS – the
Domain Name System – exists to
translate (resolve) addresses like
raspberrypi.org into something
your PC can find on the Internet,
like 93.93.130.214.

[COMMAND
LINE WIFI]

If you add
wifi to your Pi,
Raspbian is
ready, but the
Wicd Wireless
Network
Connection
Manager also
has command
line clients
for both
interactive
and scripting
use: apt-cache
search wicd

Fig 1 The humble
ping is a useful
diagnostic tool,
telling you if a
connection is
working, a device
is connected, and
DNS is resolving

[Predictable Networking]

39

ESSENTIALS

[Chapter Seven]

The file /etc/hosts contains mappings of host (computer) names to
IP addresses for local network computers without publicly registered
addresses: typically it will only have localhost mapping to 127.0.0.1,
unless you add further addresses. For the rest of the Internet, a DNS
server is queried – if the address of your ADSL router is listed in /etc/
resolv.conf then your router is getting DNS details from your ISP and
passing them on with DHCP having told the Pi to ask the router.

Without DHCP to tell the Pi this, it’s a good idea to add an entry for
DNS servers to /etc/network/interfaces below the information we
added earlier:

dns-nameservers 8.8.8.8 8.8.4.4

Here we’ve added Google’s public DNS servers, which work reliably
from anywhere. Other public DNS servers are available, some of which
may guarantee not to log your IP address when you use them, or get
your ISP’s DNS server addresses from their FAQ or help website.

MyPiName
The line 127.0.1.1 raspberrypi found in /etc/hosts is there for
compatibility with some software which expects the hostname to
resolve. If you changed to a static IP address, then you can change
127.0.1.1 to that new static address too.

Should you wish to have your Pi change its name, then change
the raspberrypi side of this entry too, as well as changing from
raspberrypi in /etc/hostname. After this change of identity, a system
restart would be a good idea. sudo reboot is essentially a pseudonym
for sudo shutdown -r 0 which will securely reboot your system from
the command line. Replacing the -r with an -h will just shut the Pi
down, as will sudo halt. However, sudo /etc/init.d/hostname.sh will
tell Raspbian’s Linux kernel about the new name without the need to
reboot the Pi.

Lastly, to add a .local domain to your devices on the local network,
use apt-get to install avahi-daemon for mDNS (Multicast Domain
Name Servicing), using Apple’s Bonjour, which works on most
platforms. You should now be able to connect to <yournewPiname>.
local from other Bonjour-enabled computers on your network without
even needing to use the static IP address you allocated.

[FREE /
PUBLIC DNS]

As well as
dynamic DNS
providers,
some of those
found listed
at FreeDNS.
com offer
public DNS
servers. For a
wider listing of
alternatives to
Google’s DNS
servers, have
a search on
Google itself.

40[Don’t Panic] 40[Don’t Panic] 40[Command Line Pi]

[CHAPTER EIGHT]
COMMAND
LINE PI
As close to perfect as Raspbian is, things can go wrong . In this chapter,
we learn that there’s no need to turn the Raspberry Pi off and on again:
just kill the process!

ESSENTIALS

40

41

ESSENTIALS

[Chapter Eight]

ver lost the ‘off switch’ for a program? Sometimes a piece of
software you’re running seems to have no inclination to stop:
either you cannot find how to quit, or the app has a problem,

and won’t respond to your q, Ctrl-C, or whatever command should
close it down.

There’s no need to panic, and certainly no need to reboot: just
identify the process and quietly kill it. We’ll show you how, and look at
what else can be done with knowledge of processes.

Processes
Find the many processes running on your Pi with the ps command. As
a minimum, on Raspbian, it’s usually called with the a and x switches –
which together give all processes, rather than just those belonging to a
user, and attached to a tty – and with u to see processes by user. w adds
wider output, and ww will wrap over the line end to display information
without truncating.

Type ps auxww to see, then try with just a or other combinations.
You will notice that these options work without the leading dash
seen for other commands. Both the lack of dashes, and the particular
letters, a and x, date back to the original Unix ps of the early 1970s,
maintained through various revisions by one of Unix’s two family

E

Programs running in
the terminal can be put

to sleep by sending to
the background – from

where they can easily be
brought back with fg.

Keep an eye on your
processes, and you’ll also

be able to see what’s
hogging the Pi’s CPU and

memory resources

42

 [CONQUER THE COMMAND LINE]

branches, BSD, and baked into the first GNU/Linux ps. Unix’s other
branch, System V, had extended and changed ps with new options and
new abbreviations for command switches, so for ps ax you may see
elsewhere ps -e (or -ef or -ely to show in long format).

The ps aux listing has various headers, including the USER which
owns the process, and the PID, or Process IDentification number. This
starts with 1 for init, the parent process of everything that happens in
userspace after the Linux kernel starts up when you switch the Pi on.

Knowing the PID makes it easy to kill a process, should that be the
easiest way of shutting it down. For example, to kill a program with
a PID of 3012, simply enter kill 3012, and to quickly find the process
in the first place, use grep on the ps list. For example, locating vi
processes:

ps aux | grep -i vi

The -i (ignore case) isn’t usually necessary, but occasionally a
program may break convention, and contain upper case letters in
its filename. You can also use killall to kill by program name: killall
firefox

Piping commands
Naturally you can pipe ps’s output to select the PID and feed directly to
the kill command:

kill $(ps aux | grep ‘[f]irefox’ | awk ‘{print $2}’)

We don’t have space for an in-depth look at awk (we’re using it here
to print the second field of grep’s output: the PID), but the [f] trick at
the beginning of Firefox (or whatever named process you want to kill)
singles out the Firefox process; in the vi example above, grep found the
grep process itself as well as vi (and anything with the letter sequence
vi in its name).

The output of ps also shows you useful information like percentage
of memory and CPU time used, but it’s more useful to see these
changing in real time. For this, use top, which also shows total CPU
and memory use in the header lines, the latter in the format that you
can also find by issuing the command free. For an improved top:

[Command Line Pi]

[KEEP ON TOP]

Using a virtual
console, it
can be worth
keeping htop
running so that
if there are any
problems you
can Ctrl-Alt-
Fn there for a
quick look for
any problems –
even if the GUI
freezes

43

ESSENTIALS

[Chapter Eight]

apt-get install htop

htop is scrollable, both horizontally and vertically, and allows you
to issue commands (such as k for kill) to highlighted processes. When
you’ve finished, both top and htop are exited with q, although in htop
you may care to practice by highlighting the htop process and killing it
from there (see Fig 1). htop also shows load over the separate cores of
the processor if you have a Pi 2.

Background job
Placing an ampersand after a command in the shell, places the
program in the background – try with: man top & and you’ll get an
output like: [1] 12768

The first number is a job number, assigned by the shell, and the
second the PID we’ve been working with above. man top is now running
in the background, and you can use the job control number to work with
the process in the shell. Start some other processes in the background
if you wish (by appending &), then bring the first – man top – to the
foreground with fg 1. Now you should see man running again.

You can place a running shell program in the background by
‘suspending’ it with Ctrl-z. fg will always bring back the most recently
suspended or backgrounded job, unless a job number is specified. Note
that these job numbers apply only within the shell where the process
started. Type jobs to see background processes; jobs -l adds in Process
IDs (PID) to the listing.

Signals
When we sent a kill signal from
htop, we were given a choice
of signal to send. The most
important are SIGTERM, SIGINT
and SIGKILL. The first was the
default when we killed from
htop, and is the signal kill sends
if not called with a modifier: it
tells a process to stop, and most
programs will respond by catching

Fig 1 htop tells you
what’s running,
what resources

it’s using, and lets
you interact with

the process, even
killing htop from

within htop

[QUICKER BOOT]

The start-up
process of
Raspbian
Wheezy is
controlled
by SysVinit,
but like other
GNU/Linux
distributions
will eventually
change to the
new, faster
SystemD. This
will change
start up
processes, but
instructions
here will still be
relevant

 [CONQUER THE COMMAND LINE]

44[Command Line Pi]

the signal, and first saving any data
they need to save and releasing system
resources before quitting.

kill -2 sends SIGINT which is
equivalent to stopping a program from
the terminal with Ctrl-C: you could
lose data. Most drastic is kill -9 to send
SIGKILL, telling the kernel to let the
process go with no warning. Save this
one for when nothing else works.

Mildest of all is the Hang Up (HUP)
signal, called with kill -1, which many daemons are programmed to
treat as a call to simply re-read their configuration files and carry on
running. It’s certainly the safest signal to send on a critical machine.

Staying on
nohup will run a program which will continue after the terminal
from which it is started has closed, ignoring the consequent SIGHUP
(hangup) signal. As the process is detached from the terminal, error
messages and output are sent to the file nohup.out in whichever
directory you were in when you started the process. You can redirect
it – as we did in part 4 – with 1> for stdout and 2> for stderr; &> is a
special case for redirecting both stdout and stderr:

nohup myprog &>backgroundoutput.txt &

One use of NOHUP for Pi users is to be able to set something in
motion from a SSH session, that will continue after an interruption to
that session. For example restarting the network connection to which
you are connected:

sudo nohup sh -c “ifdown eth0 && ifup eth0”

Note that the nohup.out log file created here will need sudo
priveleges to read - or reassign with:

sudo chown pi:pi nohup.out

Fig 2 Everything
running has a
process ID (PID),
that can be used
to control that
program, find them
all with ps aux.

[KEEP ON
RUNNING]

nohup is
useful for a
program that
will be running
for some
time in the
background
– perhaps
a sensor
project you
are working
on – until you
feel happy
enough to add
it to Raspbian’s
start up
processes

45

ESSENTIALS

[Chapter One]45 [Chapter One]45 [Chapter Nine]

[CHAPTER NINE]

REMOTE PI
In this chapter, we cover accessing the Pi from remote
PCs and devices with Secure Shell.

ESSENTIALS

46

 [CONQUER THE COMMAND LINE]

[Remote Pi]

t’s great that the Raspberry Pi is so portable, but sometimes
you may want to use it without taking it with you. Here, the
Pi’s default operating system is a real strength, as Unix-like

operating systems have been used this way for over 40 years.
Over time, as the internet has given the opportunity for malicious

users to connect to your computers, old standards like telnet and
rlogin have been replaced by Secure Shell (SSH), based on public-key
cryptography. The good news is that once set up, secure connections
are just as easy, and are open to scripted, automatic connection for
your projects.

With Raspbian, the SSH server is enabled by default. If not, run sudo
raspi-config, then enable SSH (found in the advanced settings). Check
the IP address assigned to the Pi with ifconfig (‘inet addr’ for the
eth0 interface). Now you can try connecting from another computer
on your network.

Connecting with SSH
From a Mac or GNU/Linux computer, just use ssh from a terminal
to connect to your Pi. Assuming a default setup, and ifconfig revealing
an IP address of 192.168.0.2, connect with ssh pi@192.168.0.2 and
enter your password when asked. From a Windows PC, you’ll need to
install an SSH client: we recommend Putty (bit.ly/1dTlX8g), which also
works with SCP, telnet, and rlogin, and can connect to a serial port.
Android users can try the ConnectBot client.

I

The Raspbian install
image shares its

keys with everyone
else who has a

copy. Generate your
own, and personal

keys for the user
account, for secure

remote access

You can test on the
Pi if SSH is running,

and start the service
from the command

line – as you can any
service (look in

/etc/init.d/ and
/etc/init/ if you’re
curious about other

services)

47

ESSENTIALS

[Chapter Nine]

You should now be at the command-line
interface of your Pi. If you got any sort of error,
check from the Pi that SSH is really up and
running by entering ssh@localhost on the Pi
itself. If that works, SSH is up and running on
the Pi, so take a closer look at network settings
at both ends.

Hello, World
Now we can access the Pi on the local network,
it’s time to share with the world. Step one,
before even thinking about going further,

change the PermitRootLogin yes entry in /etc/ssh/sshd_config to read:
PermitRootLogin no using sudo nano. After making any changes to the
SSH server’s configuration, you must restart the service for them to take
effect, or at least reload the configuration file: sudo service ssh reload.
Note there’s also a file in /etc/ssh/ called ssh_config, which is for the SSH
client; the d in sshd_config is short for ‘daemon’, the Unix term for a
service which runs constantly in the background.

You can also change port 22 to any unlikely number, but be sure to check
it still works. You’ll need to begin ssh -p 12123 (or whichever port you
have chosen) to tell your client you’re not using the default port 22.

To reach your Pi from anywhere on the internet, you need an IP address,
which will connect you to your board even though it’s behind an ADSL
router. Of course, if your Pi is in a data centre, with its own public IP
address, you don’t need any workaround.

There are numerous services such as DuckDNS.org providing free-of-
charge dynamic DNS (DDNS), to point a constant IP address to the changing
one allocated to you by your ISP. However, the largest of these, DynDNS,
has ended its free service, which provides a useful reminder that you
cannot assume that a free service will be around for ever.

There are several steps to configuring a DDNS setup, no matter
which service and software client you choose. Some are detailed in
the raspberrypi.org forums, and there’s a good guide to ddclient
at samhobbs.co.uk.

Otherwise, if your broadband router can handle both port forwarding and
dynamic DNS, you can set it up to point to port 22 (or a chosen alternate
port) on the Pi. You may even find your ISP offers static IP addresses.

Fig 1 There’s a lot
of configuration

in Samba, but
simply adding

your WORKGROUP
name to the default
settings should get
you up and running

[INTERRUPTED
SERVICE]
While you can
restart most
services with
sudo service
ssh restart,
replacing
restart with
reload permits
configuration
changes to be
registered with
less disruption,
which is key for
some projects.

48

 [CONQUER THE COMMAND LINE]

[Remote Pi]

Bye bye FTP
FTP, dating back to 1971, was not designed for security: data,
and even passwords, are transmitted unencrypted. The Secure Copy
Program (SCP), which runs over SSH, is included in the Pi’s SSH packages.
The syntax of the command is familiar, as it mimics the command-line
cp program, adding in the path for the remote side of the transaction’s
network address scp pi@192.168.0.2:/home/pi/bin/lein.

Here we’re transferring a file from the Pi, across a local network, to
the current location (the dot shortcut). Note that you can use wildcards
for groups of similarly named files, and can recursively copy directories
and their contents with the -r switch after scp.

A secure key
If you’re trying this on something other than Raspbian, you may not
have the SSH server installed. It’s often found in a package called
openssh-server. With Raspbian, you have a pair of keys (public and
private) in /etc/ssh/. Unfortunately, they’ll be the same as those
held by everyone else with a copy of the Raspbian image that you
downloaded. Follow these steps to create new keys.

First, remove the existing keys:

sudo rm /etc/ssh/ssh_host_*

Alternatively, you can move them somewhere out of the way.
Regenerate the system-wide keys with:

sudo dpkg-reconfigure openssh-server

For keys personal to you as a user, type ssh-keygen -t rsa -C
“comment”, where “comment” is anything you want to identify
the key with: name, email, or machine and project, for example.
If you press ENTER at the passphrase step, you’ll get a key with
no passphrase, which makes life easier when making scripted
(automated) connections, but removes an extra layer of security.
You can create keys from any computer with the SSH package, and
move the public key to the Pi, but we’ll work on the assumption
that the Pi is the only handy Unix-like computer, and we’ll be
generating the keys there.

[SAMBA STEPS]

Samba is
extremely well
documented,
with separate
man pages for
everything from
smb.conf to
smbpasswd,
and excellent
online books
at samba.org –
look for smb.conf
examples.

49

ESSENTIALS

[Chapter Nine]

If you accepted the defaults, your personal keys will now be in
~/.ssh with the correct permissions. By default, sshd looks in ~/.ssh/
authorized_keys for public keys, so copy the contents of id_rsa.pub to
there. The following will work even if you already have an authorized_
keys with contents (make sure you use both >> symbols with no gap
between them):

cd ~/.ssh && cat id_rsa.pub
 >> authorized_keys

Using SCP, copy the private key to ~/.ssh on your laptop, or wherever
you will access the Pi from, removing it from the Pi if it’s to act as the
server. Once you confirm SSH works without passwords, you can edit /
etc/ssh/sshd_config to include PasswordAuthentication no. If you are
sticking with passwords, replace ‘raspberry’ with something stronger.

Shared drive
You may be using a service like Dropbox to share files between
machines. There is no need to do this on a local network, as
putting Samba on the Pi lets even Windows PCs see it in Network
Neighbourhood, and access it as a shared drive:

sudo apt-get install samba samba-common-bin

Now edit /etc/samba/smb.conf with a WORKGROUP value (for
Windows XP and earlier; try workgroup = WORKGROUP) and/
or HOME (For Windows 7 and above). Ensure that Samba knows
pi is a network user:

sudo smbpasswd -a pi

Then restart with:

sudo service samba restart

The Pi should now show up in Windows Explorer under Network.
You can fine-tune smb.conf for what’s shared (including printers),
and permissions.

[LOST KEYS?]

The private key
half of your key
pair should be
kept secure – but
safe, too. Keep
a backup of the
private key on a
memory card in
a safe place.

50[Don’t Panic] 50[Don’t Panic] 50

[CHAPTER TEN]
DOWNLOADING
& INSTALLING
In this chapter, we look at downloading and unpacking
software, and learn how to create new Raspbian SD cards.

ESSENTIALS

50[Downloading & Installing]

51

ESSENTIALS

[Chapter Ten]

The tar command packs or unpacks
an archive of files and directories;
it also handles uncompressing
the download first

curl can be used in place of wget for simply downloading
files, but its strengths lie elsewhere, in its extensive
features – these take in everything from proxy support
and user authentication, to FTP upload and cookies

unning an apt command (see chapter 3) allows access to a
huge collection of software – several thousands of packages in
the main Raspbian repository - but sometimes we need to add
software from outside the main repository.

If we are lucky, we find that someone has packaged up the software
in the .deb format used by Raspbian, or even created a whole repository
to take care of the dependencies. We’ll look briefly both at adding
repositories, and dealing with other kinds of downloads, trying the
venerable vi editor along the way.

Information about repositories is kept in the /etc/apt/sources.list
file, which on a new install just contains the Raspbian repository. There
are actually two of these repositories: one for the binaries you use, and
one to get the source code, which enables you to learn from or modify
any Raspbian software. To add a new repository, edit the file and add it
in the same format:

deb http://apt.adafruit.com/raspbian/ wheezy main

R

 [CONQUER THE COMMAND LINE]

52[Downloading & Installing]

Wheezy is a Debian release name: all Debian releases have been
named after characters in the Toy Story series of films since 1996 (former
Debian project leader Bruce Perens was involved in the early development
of Debian while working at Pixar). Jessie followed Wheezy in April 2015.

Most software is in the main repository. Other components, like non-
free, allow repositories to contain software you may not be free to pass on,
keeping it separate from Raspbian’s FOSS repository. Main can be freely
copied or mirrored anywhere.

vi editor
If you tried robots after chapter 3, you’ll be used to the hjkl keys for
directional movement. If you’re feeling brave, now is the chance to try
them in a serious task: editing the sources.list file. It’s not compulsory –
use nano if you wish – but sooner or later you could come across a Linux
or BSD computer without nano; vi is always the default on such machines.
It’s there in Raspbian in the form of vim.tiny, which you can call as vi.

vi /etc/apt/sources.list

vi is a modal editor: you start in command mode, moving
to the line you wish to modify (hjkl in place of arrow keys); to edit,
hit i for insert mode, and you can now edit the line under the cursor.
The ESC key gets you back to command mode. If editing has gone
okay, then ESC followed by :wq will get you out of vi; if not, :q!
will leave without saving.

There’s a lot more to vi: in the form of the more powerful vim (vi
improved), it’s a popular editor in the Ruby community. For now, be
happy that when faced with a lack of nano, you’ll get by: there’s an
old joke of someone running vi for years, not because they liked it, but
because they couldn’t figure out how to exit it!

wget & curl
Having added our repository to sources.list, we need to get the key and
use apt-key to install it. Packages authenticated using keys added by
apt-key will be considered trusted.

wget -O - -q https://apt.adafruit.com/apt.adafruit.
com.gpg.key | apt-key add -

[VI IMPROVED]

If you really want
to get to grips
with vim, you’ll
need to apt-get
install vim
– the vim.tiny
package already
in Raspbian is
very limited.

53

ESSENTIALS

[Chapter Ten]

Wget downloads from the URL given. The -O directs the download to
stdout, from where it is piped to apt-key (the trailing dash there tells apt-
key to read its input from the stdin stream, which is where it receives the
output from wget). After any change to the sources.list file, you must run:

sudo apt-get update

This updates Raspbian’s knowledge of what’s available to install from
Adafruit’s packages: see apt.adafruit.com for details, e.g. apt-get
install wiringpi.

Wget is a simple but robust download tool, with a powerful recursive
feature that helps fetch entire websites, but it does have mild security
risks, so be careful using it to fetch scripts. curl is a file transfer tool,
working with many protocols, that can be used for simple downloads.
It dumps to stdout by default; to save as a file with the same name
as the resource in the URL, use the -O switch:

curl -O http://raspberry-gpio-python.googlecode.com/
files/RPi.GPIO-0.4.1a.tar.gz

Unzip
The Python GPIO library downloaded above is compressed with gzip, which
losslessly reduces the size of files, and can be decompressed with gunzip.
The contents here are files rolled into a tar archive (instead of .tar.gz, you’ll
sometimes find similar archives ending .tgz), and the tar command can do
the decompression and untarring in one:

tar zxvf Rpi.GPIO-0.4.1a.tar.gz

Note that the dash is not needed for single letter options in tar. The
first switch, z, calls gzip to decompress the archive, then x extracts the
contents. v is verbose, informing you of the process as it happens, and f
tells tar to work with the named file(s), rather than stdin. Miss out the z
and tar should automatically detect the necessary compression operation.

The result in this case is a folder containing, among other things, a
setup script to run the installation (read the INSTALL.txt file first):

 [CONQUER THE COMMAND LINE]

54[Downloading & Installing]

cd RPi.GPIO-0.4.1a
sudo python setup.py install

While gzip is more efficient than zip (and even more efficient options
like bzip2 are available), sometimes you’ll get a plain old zip file, in which
case unzip is the command you want.

unzip 2014-12-24-wheezy-raspbian.zip

Disk image
Having downloaded and unzipped an image for Raspbian, you cannot
copy it across to a microSD card with regular cp, which would simply put
a copy of it as a file on the card. We need something to replace the SD
card’s file system with the file system and contents that exist inside the
Raspbian disk image, byte-for-byte, and for this we can use a handy little
built-in utility called dd.

dd converts and copies files – any files, even special devices like
/dev/zero or /dev/random (you can make a file full of zeroes or random
noise) – precisely copying blocks of bytes. To copy our Raspbian image, we
need to unmount the SD card we’ve plugged in. Use sudo fdisk -l both
before and after plugging in the SD card (you can also use df to see what’s
mounted). If, say, a /dev/sdb appears, with the size equal to the SD card,
then unmount with umount /dev/sdb1. Now copy the disk image with:

sudo dd if=~/Downloads/2015-05-05-wheezy-raspbian.img
of=/dev/sdb bs=1M

Development of Raspbian’s ancestor Unix started in 1969, so we’ve
covered a few utilities with a long heritage in this book, but that if=... in
place of the usual dashes for command-line options indicates a lineage
stretching back to the early 1960s, and IBM’s Data Definition (DD)
statement from the OS/360 Job Control Language (JCL).

Be very careful that the destination matches the correct disk, or you
will lose the contents of another storage device! The bs=1M is a block size
default; 4M would be another safe option. Now put the card in another Pi
and go and have fun!

[EASTER EGG]

Read man apt,
and you may
see: “This APT
has Super Cow
Powers.” If it’s
there, try typing
apt-get moo
to see what
happens.

55

ESSENTIALS

[Chapter One]

Subscribe to the Official Raspberry Pi mag today for a whole host of benefits

Subscription benefits
 Save up to 25% on the price

 Free delivery to your door

 Never miss a single issue

Pricing
Get the first six issues:

£30 (UK)

£45 (EU)

$69 (US)

£50 (Rest of World)

Subscribe for a year:

£55 (UK)

£80 (EU)

$129 (US)

£90 (Rest of World)

Direct Debit
£12.99 (UK) (quarterly)

How to subscribe:

 bit.ly/MagPiSubs (UK - ROW)

 Local call +44 (0)1202 586848

 imsnews.com/magpi (US)

 Call toll free 800-428-3003 (US)

& SAVE UP TO 25%
SUBSCRIBE TODAY!

NEWUS SUBS OFFER!imsnews.com/magpi

http://bit.ly/MagPiSubs
http://imsnews.com/magpi
http://imsnews.com/magpi
http://imsnews.com/magpi
http://imsnews.com/magpi
http://imsnews.com/magpi

ESSENTIALS

raspberrypi.org/magpi

