
ODROID
Magazine

Android Booting Process • Compile and play the classic game DOOM

Year One
Issue #5
May 2014

THE REAL MEANING OF MOBILE
COMPUTING WITHIN YOUR
REACH AT LAST!

AND ALSO:
• DUAL BOOT YOUR ODROID WITH ANDROID AND LINUX
• THE THERMAL BEHAVIOR OF ODROIDS U3 AND XU
• RECOMPILE THE MALI VIDEO DRIVERS FOR UBUNTU 14.04
• OS SPOTLIGHT: FULLY LOADED

HARDKERNEL DOES IT AGAIN! EXPAND YOUR ODROID U3 WITH:

BUILD AN ODROID
POWERED ROBOT

ODROID-SHOW:
AN ARDUINO
COMPATIBLE DEVICE

ODROID-UPS:
UNINTERRUPTABLE

POWER SUPPLY

What we stand for.
We strive to symbolize the edge technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID U3
devices to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone : +49 (0) 8403 / 920-920
email : service@pollin.de

Our ODROID products can be found at:
http://www.pollin.de/shop/suchergebnis.html?S_
TEXT=odroid&log=internal

http://www.hardkernel.com
http://www.pollin.de/shop/suchergebnis.html?S_TEXT=odroid&log=internal
http://www.pollin.de/shop/suchergebnis.html?S_TEXT=odroid&log=internal

ODROID MAGAZINE 3

EDITORIAL

Our DIY edition last month was one of the most popular is-
sues we’ve had so far, and really showed off how flexible
and useful the ODROID boards can be in realizing affordable

high-end Maker projects in your home. The latest exciting news
comes from Chris McMurrough, who publishes the Ubuntu Robot-

ics Edition on the ODROID forms, and
is very talented when it comes to ro-
botics and hardware automation. His
Off-road Unmanned Ground Vehicle

Robot, which looks like it comes straight
from NASA’s space program, demon-
strates how easy it can be to build your

own robot using an ODROID and a few readily
available parts.

Hardkernel has once again created a couple very
useful peripherals for the ODROID-U3: the ODROID-SHOW and

ODROID-UPS. The ODROID-SHOW is a 2.2” 320x240 pixel LCD panel that
connects to any computer, and is capable of displaying text, statistics, images,
and other useful real-time information. It fits neatly on top of the ODROID-U3, is
reasonably priced, and provides a more robust alternative to the Arduino One’s
2-line text display.

The ODROID-UPS (Uninterruptible Power Supply) is designed to keep your
mission-critical applications running during power failure. Instead of using an
expensive and bulky battery backup, the ODROID-UPS fits in the palm of your
hand, and can keep the computer running for up to 4 hours without recharging,
depending on the processing load. Our article also includes a simple script exam-
ple for shutting down the ODROID safely when AC power is no longer available.
Both the ODROID-SHOW and ODROID-UPS are available from the Hardkernel
store at http://hardkernel.com/main/shop/good_list.php.

Also featured in this issue is a beginner’s guide to flashing prebuilt OS image
files, which can be challenging for those who are used to the typical PC “instal-
lation disk” method. Image files provide a convenient way to install an entire
operating system in a single step, and save hours of configuration by getting your
ODROID up and running quickly. For more advanced users, we also present a
highly requested feature: How to setup an Android/Ubuntu dual boot system on
a single hard drive.

Our regular columnists have been hard at work creating step-by-step guides
for software enthusiasts. Tobias presents a comprehensive guide on compiling
your favorite games such as Doom, I outline the features of the popular Fully
Loaded community image, Jussi shows us exactly how the ODROID-U3 and
ODROID-XU compare under heavy load, and Nanik helps us understand how the
Android boot process works. We will continue to color-code the article titles in
order to categorize them as Beginner, Intermediate and Expert material, to make
sure that there is always something for everyone!

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

http://hardkernel.com/main/shop/good_list.php
http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE 4

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I am a computer
programmer living

and working in San
Francisco, CA, designing

and building websites. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my cluster of
ODROIDs for a variety of purposes,
including media center, web server,
application development, worksta-
tion, and gaming console. You can
check out my 100GB collection of
ODROID software and images at
http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of
Respectech, Inc., a

technology consultancy
in Ukiah, CA, USA that I founded in
2001. From my background in elec-
tronics and computer programming, I
manage a team of technologists, plus
develop custom solutions for compa-
nies ranging from small businesses to
worldwide corporations. ODROIDs
are one of the weapons in my arsenal
for tackling these projects. My favor-
ite development languages are Rebol
and Red, both of which run fabu-
lously on ARM-based systems like the
ODROID-U3. Regarding hobbies, if
you need some, I’d be happy to give
you some of mine as I have too many.
That would help me to have more time
to spend with my wonderful wife of
23 years and my four beautiful chil-

dren.
Bruno Doi-
che, Art Edi-
tor

Is now contemplat-
ing to go into a coffee absti-
nence rehab after discovering H20 air-
press coffee and drinking it by buckets.
Also managing a black belt on multi-
national reorganizations. Just don’t ask
him what his job is right now as he can’t
explain it even for himself. Only that it
involves lots and lots of SAN storage
devices and tons of bureaucracy.

News from Art Editor Bruno:
And the changes keep going! The

forums ask, we attend when it makes
sense to make it done. We got a bunch
of requests to eliminate the green
screen terminals to make it easy to
print the magazine. Now we unified
the monospaced code on the yellow
blocks. Together with our new shift col-
umn scheme, it came quite well. Also,
to make even more clear which level
each article is about, we will be placing
a star to differentiate the skill required
for each article.

There is also elasticity on the mono-
space font on some code blocks, where
we are now using a smaller type to get
things a little neater (albeit harder to

edit) and easier to read. believe me, I’m
the guy that gets the most frustration
on the little graphic issues.

As proof that there are all kinds
of synchronicity on the forums, I saw
a tip from a user that uses fortune
|cowsay on his bashrc file to greet the
user. That was a tip that was reserved
for the Linux tips column this month,
but didn’t make it into this edition. I’ll
leave you with a motto that was a man-
tra for me this month.

/ You’d like to do it instantaneously, \
\ but that’s too slow. /

 \

 /@ ~-.
 \/ __ .- |
 // // @

http://bit.ly/1fsaXQs

ODROID MAGAZINE 5

INDEXANDROID BOOTING PROCESS - 6

GET MORE INTERACTIVE WITH YOUT DATA PROGRESS TOOLS - 8

THE FORCE IS STRONG WITH TRACEROUTE - 8

HOW TO COMPILE DOOM ON YOUR ODROID - 10

RECOMPILE THE MALI VIDEO DRIVERS - 13

HOW TO MAKE A DUAL BOOT SYSTEM - 14

COPY AN IMAGE FILE TO AN SD CARD OR EMMC - 18

MORE PERSONALITY ON YOUR SUDO - 20

SUDO SECURITY TIP - 20

SORT BY FILE SIZE - 21

ON THE THERMAL BEHAVIOR OF ODROIDS - 22

SAY GOODBYE TO NANO - 26

INDIEGOGO ODROID CAMPAIGN - 26

ODROID-SHOW - 27

ODROID-UPS KIT - 32

MONITOR YOUR LINUX WITH NMON - 37

MEET AN ODROIDIAN - 41

OS SPOTLIGHT: FULLY LOADED - 34

BUILD AN ODROID POWERED OFFROAD UGV - 38

SPLIT A HUGE FILE - 21

ODROID MAGAZINE 6

TECHNICAL ARTICLE

All computer platforms, including
the ODROID-U3, have some
predefined way of booting up

in order to load the operating system.
For example, in a conventional PC, the
BIOS will be the first binary that gets
executed, and the subsequent chain of
boot sequence events are controlled by
the microprocessor when power is ap-
plied to the device. Different processor
architectures have their own ways of
booting, and ARM processors power up
in a different way than an x86 processor.
In this article, we will look at what hap-
pens when you plug in the ODROID-
U3 device up until the time that the An-
droid screen appears.

Figure 1 illustrates, at a high level,
what is happening during the boot pro-
cess. We are going to use this diagram to
go into detail on each of the steps.

Boot ROM
This is the first program that is run

by the microprocessor when it starts
up, and resides “inside” the processor,
usually installed by the manufacturer.
Normally, this program runs in the tens

of kilobytes and it’s main function is to
setup the hardware to a particular state
that will enable the next step of the boot
process to continue. This ROM is a bit
of a “black box” for developers, as the
source code is generally not available due
to proprietary restrictions. The ROM is
responsible for making sure that boot-
ing devices are initialized and ready to
be used, as the next stage will begin by
reading from the external storage (SD
Card, eMMC, etc) in order to continue
the boot process.

Bootloader
Initializing the hardware at the Boot

ROM stage is crucial for the bootloader,
since the bootloader resides inside a stor-
age device. In the case of the ODROID-
U3, this device is the SD card or eMMC
module. During the execution of the
ROM code, it will read the bootloader
binaries from the storage device and
start executing the loaded code.

As can be seen in Figure 2, for the
ODROID-U3 platform, there are couple
of files that are used as bootloaders. The
bl1.bin files are proprietary bootloaders
from Samsung containing a number of
activities that initialize the hardware even
further. The u-boot bootloader source

is available for ODROID-U3 and can be
easily modified and recompiled. The 2
main binaries (bl1.bin and bl2.bin) are files
that have been signed and are required for
booting. The file bl1.bin will be the first to
be looked up and executed when the Boot
ROM completes its execution.

On completion of bl1.bin, the code
will look up bl2.bin and continue from
that point on. We are not going to dis-
cuss what exactly bl1.bin is doing since it
is unknown to anyone outside Samsung.
The other file, bl2.bin, is generated as
part of building u-boot. However, this
file needs to be signed by Hardkernel in
order to work with the ODROID-U3.

Figure 1 : High level boot process

Figure 2 : SD card
bootloader layout

ANDROID
BOOTING PROCESS
UNDERSTAND THE INNARDS
OF HOW YOUR ODROID
BOOTS UP ANDROID
by Nanik Tolaram

ODROID MAGAZINE 7

TECHNICAL ARTICLE

Finally, the tzsw.bin file is a proprietary
file from Samsung/ARM that allows
code to be run in a secured zone.

Kernel
Once u-boot completes success-

fully, it will load the Linux kernel and
run it. The executed kernel is the same
kernel that is used to boot up Ubuntu
or any other Linux distro, but contains
Android-specific drivers that are needed
to run the Android stack. At this stage,
there is nothing special going on, as it
is the same kernel that you normally see
when booting Linux.

Init
When the Linux kernel has complet-

ed all of the initialization routines, and

all the services are running, it will run a program called init. From this point forward
everything that runs is related to Android, or what is known in the Linux world as
the userspace layer, from loading the HAL (Hardware Abstraction Layer) drivers
all the way to running your application. The init application in Android is different
compared to a normal Linux environment, and resides inside the /system folder of
the Android source code.

The primary function of the init application is to initialize all the necessary direc-
tories, permissions, services and environment variables and properties. The init ap-
plication operates by reading a configuration file called init.rc inside the out/target/
product/odroidu/root directory. The init.rc simply includes other .rc files.

The init.rc contains what is known as Android Init Language. Explanations of
the different available commands can be found at http://bit.ly/1kfCibb.
Let’s explore the contents of the .rc files in detail.

on boot
 setprop ro.build.product odroidu
 setprop ro.product.device odroidu
 setprop ro.radio.noril yes
 setprop ro.kernel.android.ril 0
 setprop ril.work 0

Run sysinit
 start sysinit

The above snippet is taken from the init.odroid.rc file under the on boot com-
mand. Its purpose is to set different environment properties for ro.build.product,
ro.radio.noril, and other services. These different environment variables are used
internally by the Android framework as part of the initialization process. A service
called sysinit is also started. The following list shows the execution command se-
quence when init completes reading the init.rc:

early-init
init
early-fs

 Figure 3 - The Init application Figure 4 - Other .rc files inside init.rc

Figure 5 - Complete list of init .rc files for the
ODROID-U3

http://bit.ly/1kfCibb

ODROID MAGAZINE 8

TECHNICAL ARTICLE

fs
post-fs
post-fs-data
charger
early-boot
boot

The core function of the init application is to start different Android services
that are needed to run the complete Android framework stack. Let’s take a look at
few of the services included inside the init.rc.

service servicemanager /system/bin/servicemanager
 class core
 user system
 group system
 critical
 onrestart restart zygote
 onrestart restart media
 onrestart restart surfaceflinger
 onrestart restart drm

The above service command starts the servicemanager service. This application,
and other binaries, reside inside Android in the /system/bin directory, and keeps
track of the different services that Android starts up during the init process. The pa-
rameters below the service command specify the characteristics of servicemanager.

There is one particular line that I want to highlight here: onrestart restart zygote.
The onrestart command indicates that when the servicemanager application gets
restarted, it will also need to restart the zygote service. This is important is because
zygote is the key application necessary for your Java layer application to run, so if
the servicemanager failed to start or get restarted, the running application will also
be shut down.

The service command in Android is the preferred method of launching system
services during the boot process, so when you run the ps command from the An-
droid shell (using adb shell) you will see the output shown in Figure 6.

If you open up the init.rc and cross check the service command, you will see
most of the services that are needed are running in the system. The init.rc is the

Figure 6 : Application run from service command

PIPE VIEWER
GET MORE
INTERACTIVE WITH
YOUR DATA PROGRESS
TOOLS
by Bruno Doiche

T ired of getting no output on dd
whenever you need to backup
or flash your eMMC?

Then install pv, it is a program that you
can put between 2 processes to handle
the stdin and stdout getting you the
progress of your operation.
First, install it:

sudo apt-get install pv

And use it like this:

dd if=/dev/sdX bs=1M | pv |
dd of=/dev/sdY

You will get a progress output, look!

Output:
1,74MB 0:00:09 [198kB/s] [<=>

]

Now you no longer have to guess if
your dd is going or not and how much
was already copied.

THE FORCE
IS STRONG WITH
TRACEROUTE
by Bruno Doiche

Nothing to do on your Termi-
nal? Well, then have some ultra
nerdy fun running the follow-

ing command:

traceroute 216.81.59.173

Wait a little hops, and you will see the
text of a strangely famililar movie’s
opening crawl .

TIPS AND TRICKS

ODROID MAGAZINE 9

place where all the critical services need to be defined, along with the dependencies
that each service depends on, including the characteristics (user, group, onrestart,
etc) of each service. Failure to run any of the defined services will result in the non-
functioning of Android and any relevant user applications.

Zygote
As we have seen in the previous section, Android starts a number of services that

it depends on, including Zygote. It’s important to note that zygote is a name of the
service that is given in Android for an application that takes care of “running” user
applications through the Dalvik virtual machine, as can be seen from the service
shown below:

service zygote /system/bin/app_process -Xzygote /system/
bin --zygote --start-system-server

 class main
 socket zygote stream 660 root system
 onrestart write /sys/android_power/request_state

wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

When the service starts up, it will create a local socket that is used by the internal
framework to launch applications. In summary, zygote is a very thin socket-based
layer that takes care of executing user application. All Android applications that you
use on your device (phones, tablets, etc) are all “launched” via zygote, so if zygote is
not operating, your application will not be able to launch in Android.

Let’s see what will happen if you shutdown zygote from the command line. Use
‘adb shell’ to connect to your ODROID-U3 and execute the command stop zygote.
You will immediately see the entire Android stack shut down. To start zygote again,
just type start zygote.

System Services
This is the final step in the boot process, and is also essential to making life easy

for developers.
These services
are a mixture of
native and Java
code that exist to
fulfill the needs
of user applica-
tions and servic-
es such as USB,
Accelerometer,
Wifi and more.
When writing an

Figure 6 : Appli-
cation run from
service com-
mand

TECHNICAL ARTICLE

Android application, you will inevitably
come across these services and use them
either directly or indirectly.

Without services, it would take a
long time and effort to write Android
applications. Imagine a project where
you wanted to write a USB-based appli-
cation, but there is no service available.
You would need to write a lot of code
both in Java and the native layer for
your application to have access to the
USB ports. You can view the currently
available services by using the com-
mand service list from the ADB shell.

The class that takes care of the suc-
cessful running of the services resides at
frameworks/base/services/java/com/
android/server/SystemServer.java. If
you have a hardware project that needs
to provide services to developers, it’s
better to have it running as an Android
service so that the client application
code doesn’t need to be rewritten if the
interface requires updates or changes.

Nanik Tolaram Lives in Sydney with
his wife and 2 boys. His day job is
wrestling with Android source code
- customizing, troubleshooting and en-
hancing it to make sure it works in the
hardware of choice (ARM and x86).
His hobbies include breeding fish, teach-
ing Android and electronics to other
people and making stuff out of wood.
He also runs the Android websites
www.ozandroid.info and kernel.
ozandroid.info

ODROID MAGAZINE 10

LINUX GAMING

I have compiled and published many
games for the ODROID, and of-
ten receive user requests for in-

formation on how to do the same for
their favorite games. As an example
of compiling your own games and ap-
plications, I present a comprehensive
guide to compiling id Software’s Doom
for the ODROID U or X series.

To begin, you should have at least
two copies of ODROID GameSta-
tion Turbo, available for download
from the ODROID forums, burnt
to SD cards. Although it’s not com-
pletely necessary to have two images,
you will probably want to reuse what
you’ve already done in case you have
to reinstall your OS. Also, although
you have everything you need to run a
certain game on the image with which
you compiled it, you will need another
“stock” image to test the installation
script in order to make sure all of the
necessary libraries are included in the
final package.

I don’t recommend compiling on
an eMMC, since it will greatly reduce
the lifetime of your eMMC mod-
ule over time. I have already ruined
3 or 4 SD cards and a USB Stick by
using them for heavy compiling, and
I’ve switched over to a standard 1TB
HDD instead.

WGET
Wget is a rather easy tool to use. It simply downloads single files from the

Internet by supplying the URL as a command argument. In this case, we give it
the link address of the SDL version of Doom:

wget http://www.libsdl.org/projects/doom/src/\
sdldoom-1.10.tar.gz

This command downloads the file sdldoom-1.10.tar.gz into the current direc-
tory. Just remember you won’t be able to download a folder or multiple files with
wget - it’s just for single files.

Setting up an build environment
Here is a list of recommended programs that should be installed before the

compilation begins:

apt-get install build-essential cmake automake autoconf
git subversion checkinstall

You will probably need a lot more applications than those listed, but it is a
good start. Next, create a dedicated folder in which to build your binaries.

mkdir sources

HOW TO COMPILE
DOOM ON YOUR
ODROID
PLAY THIS TIMELESS CLASSIC
CUSTOM COMPILED
FOR YOUR MACHINE
by Tobias Schaaf

There, now you even have a cover to go with your
fresh build of DOOM on your ODROID

ODROID MAGAZINE 11

This folder can be located on an external device like a
USB stick or HDD as well, which makes it easier to use on
a different image, a different ODROID, or even on another
PC.

Start with an easy build
To begin building the Doom SDL application, type the

following:

cd sources
wget http://www.libsdl.org/projects/

doom/src/sdldoom-1.10.tar.gz
tar xzvf wget sdldoom-1.10.tar.gz
cd sdldoom-1.10

In the sdldoom-1.10 folder, you’ll find a very important
file called “configure”, which many programs include in
their source code.

Configure
Configure is a program that scans your system and

checks your build environment for the necessary pieces re-
quired for compiling the program. It normally informs you
about missing files, and often allows you to add special pa-
rameters to tweak your build. To see what parameters are
offered by a certain program you want to compile you can
start configure with the --help parameter.

./configure --help

Oh, the memories of being a teenager struggling to kill cyberdemons! For a long time, I thought he
was the final boss of the game because I died so many times there.

LINUX GAMING

There are a lot of parameters, but
don’t get confused, since most of them
are not needed for most standard builds.
By default, typing make install will copy
all of the compiled files to the system
directories such as /usr/local/bin and /
usr/local/lib. If you wish to change the
installation directory, you can specify an
installation prefix other than /usr/local
using the configure --prefix option, for
example, ./configure --prefix=$HOME.

Compiling the sdl-
doom source code

Normally, there is a README file
which tells you what dependencies are
needed. This version of Doom does
not actually have such a README file.
However, the configure command will
highlight any missing dependencies. In
the following example, the library called
“libsdl1.2-dev” is missing:

./configure
loading cache ./config.cache
checking for a BSD compatible install...

(cached) /usr/bin/install -c
[...]
checking for sdl-config... (cached) /usr/

bin/sdl-config
checking for SDL - version >= 1.0.1...

./configure: 1: ./configure: /usr/bin/sdl-
config: not found

./configure: 1: ./configure: /usr/bin/sdl-
config: not found

no
*** Could not run SDL test program,

checking why...
*** The test program failed to compile

or link. See the file config.log for the
*** exact error that occured. This usu-

ally means SDL was incorrectly installed
*** or that you have moved SDL since it

was installed. In the latter case, you
*** may want to edit the sdl-config script:

/usr/bin/sdl-config
configure: error: *** SDL version 1.0.1

not found!

This is where the compilation process gets a little bit cryp-

ODROID MAGAZINE 12

tic and you will need some experience to figure certain stuff
out. In this case, configure is reporting that it could not find
sdl-config and also complains that SDL version 1.0.1 was not
found. However, since the source code messages are meant to
be generic, it does not tell you EXACTLY want you need to
install but rather gives you a name you need to work with.

In this case, it tells you the program is called SDL but
we already know the required file in fact is a program called
“libsdl1.2-dev”. In most cases, you will need some experience
to figure out what is needed, but there are a couple of tools
that might help you figure out what you need.

apt-cache search

With the command apt-cache search you can try to find
certain packages that you do not know the full name of.

apt-cache search SDL

Depending on your search words, these lists can be rath-
er long, since it’s searching on files name as well as descrip-
tions. It’s better to search for something that might not be
too common, such as the term “libsdl”:

apt-cache search libsdl

By using the “lib” prefix, the list is shorter and shows us that
there are actually a few libraries that start with libsdl. It’s impor-
tant to remember that when compiling a package, the dependent
libraries are always development libraries, containing the the head-
er files. So when running the apt-search command, we are only
interested in the libraries ending with “-dev”. We can just search
for these dev libraries by adding another keyword to our search:

apt-cache search libsdl dev

With the additional search terms, the resulting list is nice and
short, and shows us that there is a libsdl1.2-dev library that matches
the version mentioned by the configure command, which requires
version 1.0.1 or above. We can then install it with the following:

apt-get install libsdl1.2-dev

Now that the libsdl1.2-dev package is installed, let’s try
configure again:

./configure
loading cache ./config.cache
checking for a BSD compatible install...

(cached) /usr/bin/install -c
checking whether build environment is

sane... yes
checking whether make sets ${MAKE}...

(cached) yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... missing
checking whether make sets ${MAKE}...

(cached) yes
checking for gcc... (cached) gcc-4.7
checking whether the C compiler (gcc-4.7

) works... yes
checking whether the C compiler (gcc-4.7

) is a cross-compiler... no
checking whether we are using GNU C...

(cached) yes
checking whether gcc-4.7 accepts -g...

(cached) yes
checking for a BSD compatible install...

/usr/bin/install -c
checking for sdl-config... (cached) /usr/

bin/sdl-config
checking for SDL - version >= 1.0.1...

yes
creating ./config.status
creating Makefile

Now that no errors are being reported, we are ready to
go! Notice the last line: “creating Makefile”. A Makefile is
always something that you need nearly all of the time. If you
have a Makefile in your folder you can simply type “make”
and it will start compiling your program automatically. You
can also add the parameter make -j4 which will use 4 threads
to create a program, increasing the build speed since it uses
all 4 cores of the ODROID.

Grinning faces, guns blazing — this is what makes this one of the best
games ever! Playing all night… I regret nothing!

LINUX GAMING LINUX GAMING

ODROID MAGAZINE 13

Advanced information about
configure

Sometimes configure will instead complain about something
like “-lSDL_mixer” missing. The leading “-l” gives you the hint this
is a library, and the rest tells you to look for something with mixer.

apt-cache search libsdl mixer dev
libsdl-mixer1.2-dev - Mixer library for Sim-

ple DirectMedia Layer 1.2, development files

Other times, the configuration step might complain about
some missing header files (files ending with .h) like “SDL/
SDL_net.h”. There are certain sites on the net for Debian and
Ubuntu, where you can search for files within certain packages
and find out what the names of the missing packages are:

Ubuntu: http://bit.ly/PSihOu
Debian: http://bit.ly/1rQEbzW

Completing the build
You now should have a fully running program called “doom”

in your folder and can run Doom from here if you give it the .wad
file from your original Doom disks. All done, right?

Well, not entirely. Doom is done building and you can play
it by copying your .wad files into the same folder, but it’s not yet
“installed”. Most programs allow you to do a simply type make
install which will copy all necessary files in the right folder to com-
plete the installation.

make install
make[1]: Entering directory `/home/

odroid/sources/sdldoom-1.10’
/bin/sh ./mkinstalldirs /usr/local/bin
 /usr/bin/install -c doom /usr/local/

bin/doom
make[1]: Nothing to be done for ̀ install-

data-am’.
make[1]: Leaving directory ̀ /home/odroid/

sources/sdldoom-1.10’

With doomsdl it’s only the binary file (doom) that’s getting
installed, but depending on what you’re building, the installa-
tion can be a lot bigger and install thousands of files.

So how do you install it to another system? You could
copy the files manually, but if it’s a large number of files,
this can be time-consuming, and may not include all of the
dependencies and libraries required to run the application.
This is where checkinstall comes in handy, which creates
portable .deb files which you can install on another system.
In next month’s article, I’ll cover how to use checkinstall to
copy Doom to a fresh installation of Linux.

LINUX GAMING

RECOMPILE THE MALI
VIDEO DRIVERS
FIXING GRAPHICS ISSUES WHEN
UPGRADING TO UBUNTU 14.04
by Rob Roy

When upgrading to Ubuntu 14.04, it’s likely
that the current version of Xorg Server
1.14, the software responsible for creating

the graphical user interface, is no longer compatible
with the Mali video drivers that worked with Ubuntu
13. This can cause slow windows and blank screen
issues. To compile the latest version of the Mali soft-
ware, type the following into a Terminal window or an
SSH session:

$ wget http://malideveloper.arm.com/
downloads/drivers/DX910/r3p2-01rel4/
DX910-SW-99003-r3p2-01rel4.tgz
$ tar xzvf \

DX910-SW-99003-r3p2-01rel4.tgz
$ cd DX910-SW-99003-r3p2-01rel4/x11/

xf86-video-mali-0.0.1
$ sudo apt-get install autoconf \

xutils-dev libtool \
xserver-xorg-dev

$ cd src
$ rm compat-api.h
$ wget http://cgit.freedesktop.org/ \

~cooperyuan/compat-api/plain/ \
compat-api.h

$ cd ..
$./autogen.sh
$./configure --prefix=/usr
$ make
$ sudo make install
$ cd /etc/X11/xorg.conf.d
$ sudo mv \

exynos.conf \
exynos.conf.original

$ sudo reboot

The most popular version of the Mali 400 frame buf-
fer drivers as of April 2014 is r3p2-01rel4, and you can
check for an updated release of the Mali software by visit-
ing the developer site at http://bit.ly/1f5Jk51.

After rebooting, the Xorg Server version (14) will
match the Mali driver version, and the HDMI signal
should be working properly. If the HDMI signal is
working, but the desktop windows are moving slowly,
typing the lines below restore the Mali drivers upon re-
boot. The Mali configuration is stored in /etc/X11/
xorg.conf, and renaming the ARM SoC configura-
tion file prevents it from overriding the Mali version.

TIPS AND TRICKS

http://bit.ly/PSihOu
http://bit.ly/1rQEbzW
http://bit.ly/1f5Jk51

ODROID MAGAZINE 14

MULTIBOOT YOUR ODROID

Ubuntu and Android are two popular operating systems
available for the ODROID, and can be combined to run
together in several ways. You can create a multi-boxed

system by installing each OS on a separate ODROID and con-
necting them using communication protocols, run a headless
version of Linux inside Android using the chroot command,
connect them via USB cable for fast file transfers, or create a
client-server relationship using a web server and development
environment. This article outlines yet another method of com-
bining Ubuntu and Android: By creating a flexible dual boot sys-
tem that allows either OS to be run from the same hard drive.

The Android operating system offers many consumer-ori-
ented applications like Netflix, Hulu, Skype, Google Hangout,
modern 3D/2D games, 1080p capable XBMC, and other apps
aimed at entertainment and social interaction. On the other
hand, Ubuntu OS offers a PC-like experience, with many pro-
ductivity applications and developers’ utilities like LibreOffice,
GIMP, Apache server, Eclipse, Arduino IDE, OpenMP/CV li-
braries, C/C++/JAVA/Python programming tools, and many
other technical applications.

However, the file systems in both Android and Ubuntu are very
different from each other, and the user can waste a lot of storage as
well as not be able to share content easily between the two systems.
There are 5 main steps in building a dual boot OS image:

For best performance, an eMMC module or very fast
(20MB/s) SD card is recommended, as the Android operating
system will perform poorly when using a slow SD card.

Modify the Android
source code for the MTP

Download the odroidu.zip file from http://bit.ly/
PXpjkR, then unzip and overwrite it into the device/hardker-
nel/odroidu/ directory of the Android platform source code.
It’s also necessary to modify the package/app/Utility/src/
com/hardkernel/odroid/MainActivity.java file to access the
MTP in Android instead of VFAT, as shown below.

$ svn diff packages/apps/Utility/
Index: packages/apps/Utility/src/com/

hardkernel/odroid/MainActivity.java
@@ -20,6 +20,7 @@
import android.app.Activity;
import android.content.Context;
import android.content.SharedPreferenc-

es;
+import android.os.Environment;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
@@ -44,7 +45,7 @@
 public final static String MIN_FREQ_NODE

= “/sys/devices/system/cpu/cpu0/cpufreq/
scaling_min_freq”;

 //private final static String BOOT_INI
= “/storage/sdcard1/boot.ini”; //”/mnt/sd-
card/boot.ini”;

- private final static String BOOT_INI =
“/mnt/sdcard/boot.ini”;

2 SYSTEMS,
1 ODROID,
PURE FUN!
HOW TO MAKE A DUAL BOOT SYSTEM
WITH ANDROID AND UBUNTU
by Yong-Oh Kim, Hardkernel Developer

Modify the Android
source code for the MTP
and build the platform
source.
Grab the Xubuntu root
file system and modify
the odroid-config for
new partition table.

Create new partition ta-
ble and format partitions
in your eMMC storage.
Copy Xubuntu root file
system and change the
UUID.
Transfer Android root
file system via fastboot
protocol.

http://bit.ly/PXpjkR
http://bit.ly/PXpjkR

ODROID MAGAZINE 15

MULTIBOOT YOUR ODROID

+ private String BOOT_INI = “/mnt/sdcard/
boot.ini”;

 public int mCurrentMaxFreq;
 public int mCurrentMinFreq;
@@ -371,6 +372,14 @@
 tv.setVisibility(View.GONE);
 }

+ File sdcard1 = new File(“/stor-

age/sdcard1”);
+ if (sdcard1.exists()) {
+ Log.e(TAG, “MTP”);
+ BOOT_INI = “/storage/sdcard1/

boot.ini”;
+ } else {
+ Log.e(TAG, “Mass Storage”);
+ }
+
 File boot_ini = new File(BOOT_INI);
 if (boot_ini.exists()) {
 try {

After building the full Android source code, you will have
the system.img which packages the entire Android root file
system. If you don’t want to build the full Android source
code, you can use a prebuilt image, available for download from
http://bit.ly/1i5ZJB3 or http://bit.ly/1rWMMB9.

Copy the Xubuntu root file sys-
tem

A Linux host PC should be used to store and transfer the
files needed for dual boot.

mkdir boot
sudo cp -a /media/codewalker/BOOT/*

boot/
mkdir rootfs
sudo cp -a /media/codewalker/rootfs/*

rootfs/

Modify the odroid-config script
Update the script located at rootfs/usr/local/sbin/odroid-

config and expand the file system functions by changing
“mmcblk0p2” to “mmcblk0p3”.

40 do_expand_rootfs() {
42 p2_start=`fdisk -l /dev/mmcblk0 |

grep mmcblk0p3 | awk ‘{print $2}’`
43 fdisk /dev/mmcblk0 <<EOF
44 p
45 d

46 3
47 n
48 p
49 3
50 $p2_start

72 case “$1” in
73 start)
74 log_daemon_msg “Starting resize2fs_

once” &&
75 resize2fs /dev/mmcblk0p3 &&
76 rm /etc/init.d/resize2fs_once &&
77 update-rc.d resize2fs_once remove

&&
78 log_end_msg $?
79 ;;
80 *)

Check the u-boot version
You should use the latest u-boot (Jan 12 2014 or later), oth-

erwise the fdisk command will not work properly. To do so, in-
stall the Android release 2.6 onto your eMMC from http://
bit.ly/PXriWq. Then, check for the version by using the
USB-UART serial console (cable sold separately), which should
look like this:

OK

U-Boot 2010.12-svn (Jan 27 2014 - 15:07:10)
for Exynox4412

CPU: S5PC220 [Samsung SOC on SMP Platform
Base on ARM CortexA9]

APLL = 1000MHz, MPLL = 880MHz
DRAM: 2 GiB

Generate a new partition table
Using the USB-UART console, enter into the u-boot prompt

and use the fdisk command to create the partition table. The
format of the command is fdisk -c [boot device:0] [system]
[userdata] [cache] [vfat]

Exynos4412 # fdisk -c 0 512 -1 128 300
Count: 10000
NAME: S5P_MSHC4
fdisk is completed

partion # size(MB) block start #
block count partition_Id

 1 306 1462846
626934 0x0C

http://bit.ly/1i5ZJB3
http://bit.ly/1rWMMB9
http://bit.ly/PXriWq
http://bit.ly/PXriWq

ODROID MAGAZINE 16

MULTIBOOT YOUR ODROID

 2 517 134343
1059817 0x83

 3 6362 2089780
13031271 0x83

 4 131 1194160
268686 0x83

The chart below outlines the different parts of the partition
table, with each part color-coded for the operating system that
uses it (Common, Android, Ubuntu)

Format the partitions
To prepare the partitions, power down the ODROID and

remove the eMMC module. Then, plug it into any Linux host
using the adapter that came with the eMMC and a USB SD
Card adapter. Note that the partition table entries listed are
in logical order instead of the physical order that they appear
on disk.

$ sudo fdisk -l
Disk /dev/sdX: 7818 MB, 7818182656 bytes
253 heads, 59 sectors/track, 1022 cylin-

ders, total 15269888 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes

/ 512 bytes
I/O size (minimum/optimal): 512 bytes /

512 bytes
Disk identifier: 0x00000000

 Device Boot Start End
Blocks Id System

/dev/sdX1 1462846 2089779
313467 c W95 FAT32 (LBA)

/dev/sdX2 134343 1194159
529908+ 83 Linux

/dev/sdX3 2089780 15121050

6515635+ 83 Linux
/dev/sdX4 1194160 1462845

134343 83 Linux

Next, format the eMMC in preparation for the Ubuntu
and Android root file systems.

[~]$ sudo mkfs.vfat /dev/sdX1
mkfs.vfat 3.0.16 (01 Mar 2013)
[~]$ sudo mkfs.ext4 /dev/sdX2
mke2fs 1.42.8 (20-Jun-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
...

[~]$ sudo mkfs.ext4 /dev/sdX3
mke2fs 1.42.8 (20-Jun-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
...

[~]$ sudo mkfs.ext4 /dev/sdX4
mke2fs 1.42.8 (20-Jun-2013)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
...

Install the Ubuntu rootfs

$ sudo cp –a boot/* /media/[user]/[mount_
point]/

$ sudo cp –a rootfs/* /media/[user]/
[mount_point]/

The [user]/[mount_point] corresponds to the directo-
ry where the eMMC adapter is mounted on the Linux host.
The boot partition corresponds to /dev/sdX1 (FAT), and

Item Description File System Size
Boot
zImage
ramdisk

BL1/BL2/U-boot/ENV
Android Kernel
Android Ramdisk(not used)

RAW 66MB

SYSTEM
(mmcblk0p2)

Android System
Gapps size is considered

EXT4 512MB

CACHE
(mmcblk0p4)

Android Cache EXT4 128M

BOOT
(mmcblk0p1)

Linux Kernel
boot.scr or boot.ini

FAT16 300M

USERDATA
(mmcblk0p3)

Android Userdata
Ubuntu rootfs

EXT4 All the rest

Check the partitions with GParted

ODROID MAGAZINE 17

MULTIBOOT YOUR ODROID

the rootfs partition corresponds to the /dev/sdX3 partition
(EXT4 userdata).

Replace UUID in boot.scr
Inspect the boot.scr file in the “boot” partition and update

the /dev/sdX3 partition so that the UUID matches the one
listed in boot.scr:

$ cat /media/codewalker/5145-2E60/boot.
scr

 ‘^E^YVOÚ<9f>7R}-
>^@^@^A<^@^@^@^@^@^@^@^@^E^?ß9^E^
B^F^@boot.scr for X with HDMI auto-
pr^@^@^A4^@^@^@^@setenv initrd_high
“0xffffffff”

setenv fdt_high “0xffffffff”
setenv bootcmd “fatload mmc 0:1 0x40008000

zImage; fatload mmc 0:1 0x42000000 uInitrd;
bootm 0x40008000 0x42000000”

setenv bootargs “console=tty1
c o n s o l e = t t y S A C 1 , 1 1 5 2 0 0 n 8
root=UUID=e139ce78-9841-40fe-8823-
96a304a09859 rootwait ro mem=2047M”

 boot

$ sudo tune2fs /dev/sdX3 -U e139ce78-
9841-40fe-8823-96a304a09859

tune2fs 1.42.8 (20-Jun-2013)

Install the Android system files
Since the original image already contains the Android files,

the Android partitions can be populated by entering the u-boot
prompt and typing the following fastboot commands:

fastboot
$ fastboot flash system system.img
$ fastboot reboot

Now that both Ubuntu and Android are installed, the
eMMC module is ready to use!

Using the prebuilt image
If you are not an Android platform developer or want to

use the dual boot system right away, we provide a prebuilt im-
age, which can be downloaded from http://bit.ly/1i11nII
or http://bit.ly/1i6bSWQ and flashed onto your eMMC.

The prebuilt image uses Xubuntu as its default OS. Just
expand the file system and restart the OS on first boot. The
expanded Ubuntu root file partition will be accessible from
Android as a data partition.

Switching between Android and
Ubuntu

When you want to change the default boot option to An-
droid, open a terminal window in Xubuntu and run the bootA.
sh script using super user permissions by typing sudo /media/
boot/bootA.sh. If you created your own dual boot system,
you should add the bootA.sh script manually:

#!/bin/sh
cd /media/boot
mv boot.ini.android boot.ini
mv boot.scr boot.scr.ubuntu
sync
reboot

If you want to change the default boot option back to
Ubuntu from Android, open the Android Terminal app, and
run the bootL.sh script, which will also require superuser per-
missions:

su
sh /storage/sdcard1/bootL.sh

For manually created systems, the bootL.sh script to switch
back to Xubuntu should contain the following:

#!/bin/sh
cd /storage/sdcard1
mv boot.scr.ubuntu boot.scr
mv boot.ini boot.ini.android
sync
reboot

For a demonstration of the dual boot system, please refer
to our instructional video at http://youtu.be/osERBvQN5ME.

Odroid Configuration Tool, nothing says clean build and
install as running this chap!

http://bit.ly/1i11nII
http://bit.ly/1i6bSWQ
http://youtu.be/osERBvQN5ME

ODROID MAGAZINE 18

ODROID BASICS

Many official and community
prebuilt images are avail-
able for download from the

ODROID forums at http://forum.
odroid.com, but it is sometimes dif-
ficult for new ODROID owners to
learn how to use the images to create a
bootable disk. This article outlines the
process of downloading, verifying and
installing an .img or .img.xz file using a
Linux, Mac OSX or Windows host.

General
Requirements

1. Any ODROID computer, with an appro-
priate power adapter
2. A MicroSD card (with an SD card
reader/writer) or an 8+ GB eMMC
3. A downloaded image file whose file-
name ends in either .img or .img.xz

Obtain the image and
checksum files

To download the image file, first cre-
ate a working folder in which to place the
image on a Linux, OSX or Windows host
computer. For instance, If you intend to
use a prebuilt official Ubuntu Hardkernel
image, the compressed .img.xz file(s) can
be downloaded from http://bit.
ly/1iPCvzf. Note that any U2 image
would also work with the U3 board (and
vice versa). To ensure file integrity, also
make sure to download the correspond-
ing checksum (.xz.md5sum) file from the
same location. For this example, the set of
downloaded files used in this article is:

GETTING STARTED
WITH YOUR ODROID
HOW TO COPY AN IMAGE FILE
TO AN SD CARD OR EMMC
by Venkat Bommakanti

xubuntu-13.10-desktop-armhf_odroidu_20140211.img.xz
xubuntu-13.10-desktop-armhf_odroidu_20140211.img.

xz.md5sum

If you intend to use an image from elsewhere, note that you would need to ensure
the authenticity of the image and that it is safe to be used. Download the image files
only from a trusted source such as the ODROID forums, community repository, or
the Hardkernel site.

Linux
Please note that the procedure listed here uses the Linux disk-duplicate (dd) com-

mand. As with numerous Linux commands, it needs to be used with proper care - if
not, you may inadvertently render the host Linux system useless, as critical disk parti-
tions have the potential to be overwritten. Some of the parameters in the commands
listed here may need to be altered to use information specific to your setup.

In a Terminal window, navigate to the folder where you downloaded the image using
the cd command. Then, evaluate the md5sum for the downloaded image file by typing:

md5sum xubuntu-13.10-desktop-armhf_odroidu_20140211.
img.xz

Compare the result with the contents of the md5sum file obtained from the
server. In this particular case, the md5sum to be used for matching would be:

605ac6805feb2867d78c45dd660acc80

If they match, the file integrity is ensured and one can proceed to the next step.
If not, the image file may have been corrupted and should be re-downloaded. A
mismatch in the md5sum may imply an altered or corrupt image, especially possible
when the authenticity of the download website is questionable.

Once the md5sum has been verified to match, unpack the compressed image us-
ing the xz command:

xz -d xubuntu-13.10-desktop-armhf_odroidu_20140211.
img.xz

http://forum.odroid.com
http://forum.odroid.com
http://bit.ly/1iPCvzf
http://bit.ly/1iPCvzf

ODROID MAGAZINE 19

This will replace the compressed file with an image file end-
ing in .img. The next step is to determine what label the Linux
host has given to the SD or eMMC module to which the image
will be written. In the already running Terminal window, with-
out inserting the SD card, run the df -h command and note
the output reflecting various mounted drives. The output may
be something like this:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 46G 3.4G 40G 8% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 2.0G 4.0K 2.0G 1% /dev
tmpfs 396M 880K 395M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 2.0G 152K 2.0G 1% /run/shm
none 100M 76K 100M 1% /run/user

Note that in this case, /dev/sda1 reflects the filesystem
corresponding to the first partition of the first storage device,
which in this example is 50 GB.

Now, insert the SD card and rerun the same command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 46G 3.4G 40G 8% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 2.0G 4.0K 2.0G 1% /dev
tmpfs 396M 880K 395M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 2.0G 152K 2.0G 1% /run/shm
none 100M 76K 100M 1% /run/user
/dev/sdb1 15G 32K 15G 1% /media/terrapin/XFER

Note that in this case, /dev/sdb1 is the only new entry, and
will reflect that the target SD card has been inserted and that
the first partition has been mounted. Although the partition
number is appended to the name, the SD card raw disk device
actually has the name /dev/sdb (without the number 1). If
using an eMMC, the system may assign a label such as /dev/
mmcblk0 instead, and the first partition will be mounted as /
dev/mmcblk0p1.

If your SD card is new and unformatted, you can skip the
next step, which is to clear out the SD card by writing zeros
to it. Zeroing the card assures that no previously leftover data
is present on the disk, which may disrupt the new partition
scheme as well as making any backup copies larger than neces-
sary when compressed.

In this example, we have seen that the SD card contains one for-
matted partition. It needs to be unmounted first, using the umount
command, substituting the disk label specific to your scenario:

sudo umount /dev/sdb1

Then, zero out the above partition using the command:

sudo dd if=/dev/zero bs=4M of=/dev/sdb
&& sync

ODROID BASICS

It is worth reiterating that, since partitions are being de-
leted and the SD card is being formatted, one should exercise
extreme caution. If unsure of the usage of these powerful
commands, it may be safer to create a Linux Virtual Machine
(VM) using Oracle’s VirtualBox (https://www.virtual-
box.org/) and then execute the commands from within the
VM. In the worst case scenario, the VM instance would get
ruined, leaving the actual host Linux system intact.

Wait for completion of the formatting process before pro-
ceeding to the next step, which may take anywhere from 15
minutes to 2 hours, depending on the speed of the SD card or
eMMC module. Once completed, the Terminal window will
report that the card is out of disk space (which is normal), in-
dicating that the zeros have been written successfully to disk.

From the folder that has the extracted image, write the im-
age to the formatted SD card using the raw disk device name
as follows:

sudo dd bs=4m if=xubuntu-13.10-desktop-
armhf_odroidu_20140211.img \

of=/dev/sdb

The device name needs to be specified carefully in this com-
mand as noted earlier, leaving off any integers, which corre-
spond to the individual partitions rather than the entire disk.

This write process will again take a while (up to 2 hours) to com-
plete. In case of success, the output will contain the number of
records (in and out), bytes copied, data copy-rate and duration of
the copy. The sync command flushes data from the write-cache,
ensuring that the image has been completely written to disk.

In case of failure, follow the actionable output, if any. It
may be worthwhile to reformat the SD card and retry the pro-
cedure. If it fails again, it is preferable to use another SD card
of similar capacity, that is known to be working properly.

Upon completion of the dd command and display of suc-
cessful output, the SD card will be automatically re-mounted.
Re-run the df command listed earlier, to ensure successful re-
mount of the SD card, then eject the card using the command:

sudo eject /dev/sdb

The image is now ready for booting! If the ODROID is
currently running, shut it down gracefully, then insert the SD
card and power it back on. It should now start up using the
new OS image, and be ready for you to enjoy.

OSX
In addition to the general requirements mentioned above, the

OSX system should also have an installed copy of Unarchiver,
which is a useful utility for compressing and decompressing image
files, available at http://bit.ly/1iLr5m3. Note that Unar-

https://www.virtualbox.org/
https://www.virtualbox.org/
http://bit.ly/1iLr5m3

ODROID MAGAZINE 20

chiver has several Macintosh-specific versions, so make sure to download and install the
OSX version appropriate for your system.

The procedure for checking the md5sum of the downloaded file is similar to Linux,
but uses the command md5 instead of md5sum. A handy shortcut for inspecting the
checksum is to open a Terminal window and type md5 followed by a [SPACE] charac-
ter. Then, using the mouse, drag the compressed image file (*.img.xz) into the terminal
window. The command line will be updated with the compressed file name. Now hit
the [ENTER] key. The md5sum of the compressed image file is returned as the output.
Compare the result with the contents of the md5sum file to make sure that the file has
been downloaded correctly. For more information on checking the md5sum, please
refer to Ubuntu’s OSX md5sum help page at http://bit.ly/1nTVz7q.

Assume the Unarchiver Version 3.9.1 utility, which is the latest as of this article, has
been installed on your Mac and is set to be the default utility to unpack compressed files.
Start the program and configure the utility to:

1. Retain the original downloaded file (post unpacking)
2. Place the unpacked image file in the same folder as the location of the compressed file
3. Retain the modification date of the compressed file (to keep track of the image
information)

Decompressing the file with these options should result in the creation of a file
ending in .img in the same folder as the original .img.xz file.

Although df -h can also be used to check the available mounted drives, OSX pro-
vides a customized command called diskutil which can be used instead and provides
more straightforward output. In the Terminal window, type the following command
before inserting the SD card:

diskutil list

Note that, in OSX, mounted drives are named as /dev/diskX rather than the
Linux convention of /dev/sdX. If the SD card is new, skip the next step as it is not
necessary to zero out a fresh card.

To prepare the SD card or eMMC module, start the OSX Disk Utility application
and click on the target SD card on the left of the window. Press the “Security Options”
button at the bottom center, and select the “Zero Out Data” option in the popup win-
dow. Press OK, then click the “Erase” button and wait until the progress bar reaches
100%. Once the disk has been zeroed, it is ready to accept the new image.

Because OSX auto-mounts any pluggable media, the drive must be first un-
mounted by using the command:

sudo diskutil unmountdisk /dev/disk2

Then, write the image to the SD card using the raw disk device name in the dd com-
mand. Note the lowercase “1m” which differs from the uppercase Linux syntax:

sudo dd bs=1m if=odroidu2_20130125-linaro-ubuntu-desktop_
SDeMMC.img of=/dev/disk2

The raw disk device name needs to be specified carefully in this command as noted
earlier. Wait for the completion of the command to be notified of success or failure.

Once the dd command successfully completes, the SD card will again be auto-
matically re-mounted. You can eject the card using the following command:

GET YOURSELF
A LITTLE MORE
PERSONALITY ON
YOUR SUDO
by Bruno Doiche

N o one likes being insulted, of
course, but sometimes your
Linux looks like a souless ma-

chine when you issue a sudo su - and
by mistake an incorrect password:

odroid@goonix:~$ sudo su -
[sudo] password for odroid:
Sorry, try again.

How boring is that, right? Nothing that
can’t be fixed by issuing:

sudo visudo

Add the following line:

Defaults insults

And now, when you sudo a command
and put the wrong password it goes po-
litely as that:

odroid@goonix:~$ sudo su -
[sudo] password for odroid:
Hold it up to the light --- not
a brain in sight!
[sudo] password for odroid:
You can’t get the wood, you
know.
[sudo] password for odroid:
There must be cure for it!

It’s like having your own snarky art
editor living in your Terminal!

ANOTHER
SUDO SECURITY TIP

A good security practice, is to
never set your user to sudo au-
tomatically on a machine that

another person can access. And after
exiting sudo, it doesn’t ask immediate-
ly for your password! Save yourself by
typing the command below:

 sudo -K

TIPS AND TRICKS ODROID BASICS

http://bit.ly/1nTVz7q

ODROID MAGAZINE 21

sudo diskutil unmountdisk /dev/disk2

Wait until the disk’s icon disappears from the desktop, remove the SD card or
eMMC module from the Macintosh, insert into the ODROID and apply power to
begin using the new operating system.

Windows
Windows does not natively support the Linux ext3/ext4 partition type, so several

additional utilities are required in order to copy an image file to disk:

1. 7-Zip (http://www.7-zip.org) file compression utility to extract the SD
card image from either the downloaded .xz file.
2. Improved Win32DiskImager (http://bit.ly/1q1HTsW) utility to write the
.img file to your SD-Card.
3. MD5sums (http://bit.ly/1ukeVUZ) utility to evaluate the checksum (in-
tegrity) of a downloaded file. This is optional but useful to ensure that an image file
matches the version on the server.

After downloading the .img.xz file as described above, evaluate the md5sum us-
ing the command:

c:\Program Files (x86)\md5sums-1.2\md5sums
xubuntu-13.10-desktop-armhf_odroidu_20140211.img.xz

Compare the result with the contents of the md5sum file and continue on to the
next step if they match. Once the file has been verified to be intact, use the 7-Zip
utility to extract the image from the compressed file:

c:\Program Files (x86)\7-zip-7z920 -z
xubuntu-13.10-desktop-armhf_odroidu_20140211.img.xz

For convenience of Windows users, Hardkernel publishes a special purpose
Win32DiskImager utility which automatically writes zeros to the SD card before

copying the image, so that every-
thing can be done in a single step.
When launched, it will display a
similar interface to that shown in
the screenshot here at left.

Select the desired parameters as
shown, and start the image installa-
tion by clicking the “Write” button.
The extra time needed to write ze-

roes to the image may add about 30 minutes or more to
the writing process.

Finally, eject the disk by right-clicking on the SD
card in File Explorer and selecting the “Eject” option. Insert the SD card into
the ODROID, power it up, wait for the boot process to complete, and enjoy your
new operating system.

For additional information or questions on copying image files to SD card, please
refer to Osterluk’s ODROID wiki at http://bit.ly/1rQgqWH.

SORT BY
FILE SIZE
INSIDE A DIRECTORY
by Bruno Doiche

Want to know which files are
the largest inside a specific
directory? Type the follow-

ing command in the Terminal window:

find . -type f -exec ls -s {} \;
| sort -n -r | head -5

This is useful when you have to do
some housekeeping! Need to see only
files greater than a certain size? Use
this command, which lists all files that
are larger than 100MB:

find ~ -size +100M

SPLIT
A HUGE FILE

Have you finally gotten ahold of
that wonderful show filmed in
pristine high definition at your

friend’s computer, but found that it is
7GB while all you have is two 4GB
flash drives? Use this command:

split -b 1GB [yourvideofile.
mkv] [yoursplitvideofile]

The file will be sliced into 1GB chunks
which you can then copy to your flash
drives. When at home, copy them back
to your hard disk and type this com-
mand to reassemble the original file:

cat [yoursplitvideofile*] >
[yourvideofile.mkv]

TIPS AND TRICKSODROID BASICS

Image installation using
Improved WinDiskImager

http://www.7-zip.org
http://bit.ly/1q1HTsW
http://bit.ly/1ukeVUZ
http://bit.ly/1rQgqWH

ODROID MAGAZINE 22

We know that you do that comparsion a dozen
times a day when thinking which one you are

going to buy,
so we did a
nice little
table here

TECHNICAL ARTICLE

W or comparison, two
ODROIDs, the XU and
U3, were tested in parallel in

order to gauge their relative difference
in performance, temperature, and fre-
quency scaling behavior. We can safely
assume that XU is faster than U3, but
the question is, how much faster is it?
So that we can have a more informed
opinion than just intuition, we generated
some measurement statistics between
the two machines. For these test, the
stock XU board has a heatsink and at-
tached fan, while the U3 has a heat sink
without a fan, as an example of a pas-
sively cooled system.

The two computers have very dif-
ferent specifications, as has been shown
in the table below. The U3 has a quad-
core ARM Cortex A9 processor, while
the XU has a big.LITTLE processor
having two separate process clusters:
one with four A7 ARM cortex cores
and another with four A15 cores. Both
boards come with a 2GB PoP (package

ON THE THERMAL
BEHAVIOR OF
ODROIDS
THE PERFORMANCE DIFFERENCE
BETWEEN THE XU AND U3 IN GREATER DETAIL
by Jussi Opas

on package) memory, but the type of
memory included with the XU is faster
than the memory that comes with the
U3. When running the official Hardk-
ernel Ubuntu distributions, the default
frequency scaling governor of the U3
is set to “performance” while the XU
uses the “ondemand” setting by default.
The factory-set clock frequency of the
1.7GHz U3 is 100 MHz higher than the
XU’s 1.6GHz frequency. The ability
to overclock each board may vary, and
the values given in the table are based
on one unit of each. The U3 was tested
with 3.8 Linux kernel, and a self-tuned
3.4 kernel was used to test the XU.

Each ODROID potentially behaves
differently when the processors are ful-
ly utilized by an intensive application.
Both SoCs have also a GPU, but their
behavior is not of concern here, because
no graphical computations are assigned
to them by our test application.

All computations are made by the CPU,
and RAM is not a limiting factor,
Computations are made with mul-
tiple threads using Java with a real
world like application, so the appli-
cation has not been written only for
testing purposes,
The same test run is made with differ-
ing numbers of threads so that cores
are 100% utilized, therefore we need
not consider CPU utilization,
No file IO is used,
All computations consist of integer,
float, and double adds, subtractions,
divisions, multiplications, square
roots, some Java Math methods, array
access and assignments, and object
creation and deletion.

We hope that the application used
for testing has been hardened that it
does not have internal flaws, and that we
can trust the results that are shown in
my previous article [OP14].

The test application, as used here,
takes a computer to the edge of its capa-
bilities, which rarely happens during nor-
mal everyday use. The trials were done at
normal room temperature, which is about
22C degrees. The comparison uses the
default frequencies (1.6 and 1.7 GHz).

Based on the numbers in the figure, we
can conclude that the XU is about 25%
faster than the U3. However, the U3 can

ODROID U3 ODROID XU
SoC Exynos 4412 Prime Exynos5 5410
CPU ARM 4xA9 ARM 4xA15 and 4xA7
Memory 2 GB, LPDDR2 2 GB, LPDDR3
Default governor performance ondemand
Default max frequency 1.7 GHz 1.6 GHz
Overclockability 1.92 GHz 1.8 GHz or more
Cooling Heat sink Heat sink with embedded fan
Kernel 3.8.13.18 3.4.74 (customized)

ODROID MAGAZINE 23

TECHNICAL ARTICLE

be easily overclocked by adding the fol-
lowing line to the /etc/rc.local file:

echo 1920000 > /sys/de-
vices/system/cpu/cpu0/cpu-
freq/scaling_max_freq

We also performed a similar test
run with 1.92 GHz overclock and show
graphically how much faster or better
XU is when compared to U3, as seen in
Figure 2.

Now we can conclude that with the
U3 overclocked , the XU is 15 – 20 %
faster. However, we are not yet done. If
we repeat the performance test and draft
a figure of many trials with the over-
clocked U3, we get the flattened curve
shown in Figure 3.

Performance decreases when tests
are repeated back-to-back (without a
cooldown period) at an overclocked
frequency. The performance is steady

with three first cores loaded, but then
decreases when the 4th core is also fully
utilized. The XU instead gives similar
performance in all repeated tests at its de-
fault 1.6 GHz frequency. Therefore, we
should also consider the thermal behav-
ior and frequency scaling of each plat-
form. The used frequency can be easily
inspected manually with the command:

cat /sys/devices/system/
cpu/cpu0/cpufreq/scaling_
cur_freq

The temperature of cores in XU are
stored in a file in Linux and it can be
shown as follows:

cat /sys/devices/plat-
form/exynos5-tmu/temp

The U3 temperature can be found by
checking a similar file:

cat /sys/class/thermal/
thermal_zone0/temp

The value 50000 means temperature
of 50 degrees. We implemented read-
ing of temperature and current clock
frequency into our test application, and
therefore we were able to also collect the
related thermal and clock frequency data
right after the execution of each sub run
at different thread configurations. Fig-
ure 4 shows the superimposed tempera-
ture and clock frequencies.

When the temperature of the chip
increases, the clock frequency decreases,
but increases again towards maximum
frequency, when the temperature gets
lower. Therefore, the U3 board keeps
the temperature at a level of about 80C
degrees. This behavior is very consis-
tent, and avoids overheating very ef-
fectively and keeps the board stabilized.
Therefore, the performance governor is
the appropriate default setting for man-

 Figure 1 - XU and U3 compared with a multi-threaded Java application

Figure 3 - Repeated U3 test runs at 1.92 GHz overclocked frequency

Figure 4 - U3 frequency adjusted by temperature at 1.92GHz
overclocked frequency

Figure 2 - Performance comparison of XU/U3

ODROID MAGAZINE 24

TECHNICAL ARTICLE

aging the clock frequency of the U3, and we did not need to take the time to try the
“ondemand” governor with the U3.

To make a fair comparison between the A9 and A15 processors, both boards are
run at 1.7 GHz. The XU shows better performance with all thread configurations from
one thread to 12. The temperature of U3 gets hotter over the whole test run, from 60
degrees up to 78 degrees. However, the temperature of XU increases faster than the
U3, from 62 degrees up to 88 degrees, which shows that the XU runs hotter than the U3
at the same frequency. On the other hand, the temperature of the XU decreases more
quickly after the test is over. This is due to the included fan, which keeps rotating until
the temperature gets below 55 degrees. Since a stock U3 has just a heat sink and no fan,
its temperature remains higher for longer time after the test run has ended.

The XU can be configured to use only LITTLE cores by using two different
means: 1) by configuring cluster switching, or 2) by setting maximum scaling fre-
quency to no more than 600 MHz [ME13]. In both of these cases, the “ondemand”
frequency governor must be used.

The first method of using the LITTLE cores is done issuing the following com-
mands as root:

echo ondemand > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_governor

only LITTLE
echo 01 > /dev/b.L_operator
it is better to wait a while and inspect that the only

A7 cores are in use
cat /dev/bL_status
the output will be as follows
 0 1 2 3 L2 CCI
[A15] 0 0 0 0 0
[A7] 0 1 0 0 1
to disable cluster switching
echo 00 > /dev/b.L_operator

When we want again enable also A15 cores and cluster switching we can type the
following:

echo 11 > /dev/b.L_operator

The second method of isolating the A7 cluster is to set the processor frequency as root:

echo ondemand > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_governor

echo 600000 > /sys/devices/system/cpu/cpu0/cpufreq/scal-
ing_max_freq

The board treats low frequency values as doubled, so the effectively used value is
1.2 GHz, although 600 MHz is shown. See, for instance, the output of the following
cat command:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

The raw value 600000 means that current frequency is 2 x 600 MHz = 1.2 GHz.

We made a test comparison of A7 and
A15 clusters by running both at 1.2 GHz
to see the difference in performance and
temperature purely based on architecture.
The left illustration in the above figure
shows the performance and temperature
of LITTLE cluster. Performance im-
proves as expected when more threads
are added to do the same work. At the
same time, temperature remains stable at
about 52-54C degrees, and the fan does
not start rotating during the test.

With the “ondemand” governor, the
frequency is stable at its initial maximum of
1.2 GHz. The behavior of the A15 clus-
ter is shown in the right side of Figure 5,
and its performance is about 40-50% better
than the A7 cluster. The temperature rises
in the beginning of the test until 4 threads or
more have been added and all 4 cores have
been loaded. At that point, the fan starts
rotating and temperature remains stable at
about 63C degrees. The clock frequency
stays at 1.2 GHz both in “ondemand” and
“performance” governors.

The XU board is completely silent
when only the A7 cluster is being used and
is still very quiet when using the A15 cores,
because the fan rotates slowly. Obviously,
the XU can be overclocked with higher
frequencies such as 1.4, 1.6 and up to 1.7
GHz. The next figure shows comparison
of tests made at 1.4 and 1.7 GHz.

The left side of Figure 6 shows tem-
perature and performance graphs using
1.4 GHz, and the right side shows the
same tests at 1.7 GHz. At 1.4 GHz, the
temperature stays below 70 C and fre-
quency is steadily at 1.4 GHz. The per-
formance of the 1.7GHz graph shows
that it is faster, but the temperature rises
more. During the test with 4 threads, the
fan starts to rotate faster while the tem-
perature rises, therefore the temperature
drops during the run with 5 threads.

We prepared two different graphs
to find out what should we think about
“ondemand” governor against a consis-
tently high frequency on XU. In the first
graph, the relation of temperature and
performance is shown, and the second

ODROID MAGAZINE 25

TECHNICAL ARTICLE

graph shows the frequency and tempera-
ture together. When a constant 1.7 GHz
frequency is used, the temperature rises
continuously until it is 90 degrees during
the test with 12 threads. Performance is
stable when all 4 cores are utilized with
tests that invoke 4-12 threads. When
the “ondemand” governor is used with
a maximum frequency of 1.8 GHz, the
temperature rises more slowly. Howev-
er, performance has some degradation
during tests using 6 and 9 threads.

Figure 8 shows the relation between
temperature and used frequency with a
test using the “ondemand” governor vs.
using a constant 1.7 GHz frequency.

In the leftmost graph, the “onde-
mand” governor keeps temperature
lower by variating frequency. The high-
est used frequency is 1.8 which has been
read from file right after the sub run
with one thread. After that, different
frequencies have been used; 1.6, 1.3 and
also 1.2 GHz. The right graph shows
that frequency is at constant 1.7 GHz.
The temperature rises more over the

entire test run. Additionally, we know
that the LITTLE A7 cores are not used
when performance governor is on or
when a constant high frequency (> 1.2
GHz) has been assigned as maximum
scaling frequency. The recommenda-
tion, based on these results, is to use the
ODROID-XU’s “ondemand” governor
for the optimum setting. Constant fre-
quency can be assigned, or the “perfor-
mance” governor used when one needs
it, for instance, to study the behavior of
an application under development.

Conclusions
Both computers tolerated all vari-

ous test configurations very well. With
the ODROID, it is safe to do different
kind of overclocking experiments, be-
cause the SoCs have thermal protection
against overheating.

- The processor of the XU is hotter
than the the processor of the U3 at
identical frequencies.
- On the basis of what has been tested

here, we can conclude that the XU is
25-30 % faster than the U3. However,
file IO and GPU performance have not
been considered here.
- If one wants to have a perfectly si-
lent computer, then the choice is a
stock U3 without a fan.
- If one needs more power, the XU is
the option to take. To address any fan
noise concerns, the XU can be config-
ured also so that fan is always off, or
rotating at a low speed.
- With the XU, one gets two different
computers in one single box.
- With better cooling, even higher over-
clocked frequencies can be attained,
achieving even better performance.

The frequency behavior of U3 with
the “performance” governor is easy to
understand and is flawless. The frequen-
cy scaling behavior of the XU is more
difficult to understand, and has not been
fully covered in this article. For instance,
we don’t describe when and why a core
is switched on or off during execution.

Figure 5 - XU big.LITTLE clusters @ 1.2GHz, 4xA7 (left), 4xA15 (right)

Figure 7 - ODROID-XU temperature vs. performance
using the “ondemand” governor

Figure 6 - A15 @ 1.4GHz (left) and @ 1.7 GHz (right)

Figure 8 - ODROID-XU temperature vs. frequency using the
“ondemand” governor (left) and constant frequency (right)

ODROID MAGAZINE 26

An impression is that there is some devel-
opment potential. Let’s say that XU can
fully load all 4 cores at 1.6 GHz, then 100
MHz higher frequency could be used at
each core count decrement. Therefore,
a turbo boost governor could run at 1.9
with one core, at 1.8 with two cores, at 1.7
with three cores and at 1.6 GHz with 4
cores fully utilized. We shall see what ca-
pabilities can be leveraged in the future.

References
[ME13] Memeka. Get to Know and Con-
trol big.LITTLE, ODROID Forum,
2013.http://bit.ly/1oOODGP

[HK14] Hardkernel product pages, 2013.
http://bit.ly/1hD2dIn.

[OP14] Opas J. Estimating Radio
Network Interference with Multi-
threaded Java. ODROID Magazine,
Issue #2, 2014.

NEWS FROM ODROID WORLD

SAY GOODBYE
TO NANO AND SET
YOUR EDITOR TO VI
by Bruno Doiche

Even now and then, you end
up needing to edit your sudo-
ers filer, and the default way

to do this is issuing the visudo com-
mand and going to Vim to edit a file.
So why not default your text editor
once and for all?
Just use the update-alternatives com-
mand by typing this:

update-alternatives --config
editor

Now, you can feel like a true hacker
while learning to use Vim to edit
your files. Start by using the cheat
sheet that we gave you in Issue 2 on
Page 27.

INDIEGOGO CAMPAIGN
PROMISES ODROID COMPATIBILITY
WITH STRETCH GOAL
INTER-INTEGRATED CIRCUITS
FOR THE REST OF US
by Bo Lechnowsky

P ascal Papara, developer of
the Aeros operating system,
has launched a new Indi-

egogo campaign that ends on July
8th, 2014. It has a relatively low
€800 goal ($1100 USD), with the
ODROID version being developed
and released at €1500 ($2000 USD).
The campaign promises to convert

any number of devices, including
the ODROID-U3, into a low-cost
system similar to Steam Box.

Supporters who donate €20 ($27
USD) will get an ODROID-U3 com-
patible distribution on microSD card if
the ODROID stretch goal is hit. You
can read more about the campaign and
donate at http://bit.ly/1nppPXT.

TECHNICAL ARTICLE

http://bit.ly/1oOODGP
http://bit.ly/1hD2dIn
http://bit.ly/1nppPXT

ODROID MAGAZINE 27

ODROID-SHOW

ODROID-SHOW
A POWERFUL MINI LCD
SCREEN FOR THE U3
By Justin Lee and John Lee

The ODROID-SHOW is a new
Arduino compatible device from
Hardkernel that lets you see what

your ODROID or PC is thinking by using
a small 2.2” TFT LCD. It is priced afford-
ably at US$25, and is designed for stacking
on the ODROID-U3. A set of PCB spac-
ers and a and a USB cable are included.

You can show colorful texts and
pictures via the USB interface with
VT100/ANSI-style commands, elimi-
nating the need to use an HDMI mon-
itor. You can not only connect this
tiny display to your ODROID, but to a
Mac, Linux PC, Windows PC, or even
an enterprise server as well.

The ODROID-SHOW comes with
I2C, ADC, and GPIO pins for further
expansion, with plans to introduce an
add-on board with some specialized
sensor chips for robotics applications. It
can be turned into a completely portable
device by adding 3 or 4 alkaline batteries.
Because of very low power consump-
tion, it is perfect for wearable projects.

Hardware
Architecture

The ATmega328 is the “main brain”
of the ODROID-SHOW, which can
parse the stream from UART and dis-
play the data on the TFT-LCD. The
UART is connected to the host PC or
ODROID via CP2104, which then con-
verts the UART to a USB interface. The
CP2104 also has a 3.45V voltage regu-
lator to supply the power for the LCD.
The on-chip regulator allows for a sim-
pler board design.

ODROID-SHOW with batteries Hardware Block Diagram

ODROID-SHOW Specifications

MCU ATmega328P at 16Mhz
LCD 2.2” 240x320 TFT-LCD (SPI 8Mhz interface)
Host interface USB to UART via on-board CP2104
Input Voltage 3.7 ~ 5.5 Volt
Power consumption 60mA @ 5Volt
Serial Port Settings Baud rate : 500,000 bps (0.5Mbps)
 Stop bits: 8-N-1
 No H/W, S/W Flow Control
MCU/LCD Voltage 3.45 V from CP2104 on-chip voltage regulator

ODROID MAGAZINE 28

ODROID-SHOW

The MCU contains the boot loader (Optiboot) in its flash
memory and is fully compatible with the Arduino IDE. The
flash memory permits changing and improving the firmware
very easily.

Firmware
Architecture

Esc [3 3 m Set foreground to color #3 - yellow
Esc [3 4 m Set foreground to color #4 - blue
Esc [3 5 m Set foreground to color #5 - magenta
Esc [3 6 m Set foreground to color #6 - cyan
Esc [3 7 m Set foreground to color #7 - white
Esc [3 9 m Set default color as fg color - black

Background coloring
ANSI Description
Esc [4 0 m Set background to color #0 - black
Esc [4 1 m Set background to color #1 - red
Esc [4 2 m Set background to color #2 - green
Esc [4 3 m Set background to color #3 - yellow
Esc [4 4 m Set background to color #4 - blue
Esc [4 5 m Set background to color #5 - magenta
Esc [4 6 m Set background to color #6 - cyan
Esc [4 7 m Set background to color #7 - white
Esc [4 9 m Set default color as bg color - black

VT100 Escape Commands
(Pn = Numeric Parameter)
VT100 Description
Linefeed(\n) Cursor Down
Esc D Cursor Down
Esc E Cursor Down to row 1
Esc M Cursor Up
Esc c Resets LCD
Esc [Pn A Keyboard UP Arrow
Esc [Pn B Keyboard Down Arrow
Esc [Pn C Keyboard Right Arrow
Esc [Pn D Keyboard Left Arrow
Esc [Pn ; Pn H Cursor Position
Esc [H Cursor to Home
Esc [2 J Erase entire screen
Esc [6 n Reports cursor position(serial port)

Extended VT100 Escape Commands for ODROID-SHOW
Extended VT100 Description
Esc [s Save cursor pos
Esc [u Restore cursor pos
Esc [Pn s Set text size
 (width = textsize*6,
 height = textsize*8)
Esc [r Set rotation 0 to 3
 (rotate to 90° in a clockwise)
Esc [0 q Turn off LED backlight
Esc [1 q Turn on LED backlight

Esc [Pn;Pn , Pn;Pn i Start image-drawing mode

First, create and run the daemon service described at the
end of this article before moving on to the tutorials.
Tutorial #1: Text output

The bash script shown below can display 2 text strings with dif-
ferent colors and font sizes. To test, open the “/dev/ttyUSB0”
port and send VT100/ANSI commands with a couple of strings:

#!/bin/bash

flag=0
trap “flag=1” SIGINT SIGKILL SIGTERM
./port_open &
subppid=$!

The default firmware in the ODROID-SHOW was com-
posed with the ANSI/VT100 command parser and the TFT-
LCD library, and the full source code firmware can be down-
loaded from our GitHub repository at http://www.github.
com/hardkernel/ODROID-SHOW. The code for the TFT-
LCD library was originally developed by Adafruit, and we im-
proved it for our purposes.

How to use it
To send information (such as text strings) to ODROID-SHOW,

you need to know the ANSI/VT100 Escape Commands.

ANSI Escape Commands
Terminal codes are needed to send specific commands

to your ODROID-SHOW. This can be related to switching
colors or positioning the cursor.
Name decimal octal hex Description
ESC 27 033 0x1B Escape character
CR 13 015 0x0D Carriage return
LF 10 012 0x0A Linefeed (newline)

Foreground coloring
ANSI Description
Esc [3 0 m Set foreground to color #0 - black
Esc [3 1 m Set foreground to color #1 - red
Esc [3 2 m Set foreground to color #2 - green

Firmware Architecture

http://www.github.com/hardkernel/ODROID-SHOW
http://www.github.com/hardkernel/ODROID-SHOW

ODROID MAGAZINE 29

ODROID-SHOW with statistics

ODROID-SHOW

serialPort=”/dev/ttyUSB0”

DATA[0]=”ODROID”
DATA[1]=”SHOW”

echo -ne “\e[5s\e[0r\ec” > $serialPort

sleep 0.1

while true
do
 if [$flag -ne 0] ; then
 kill $subppid
 exit
 fi
 for ((j=1; j<8; j++)); do
 echo -ne “\e[25;100H” > $serialPort
 for ((i=0; i<6; i++)); do
 echo -ne “\e[3”$j”m\

e[3”$j”m${DATA[0]:$i:1}” > $serialPort
 sleep 0.02
 done
 echo -ne “\eE\e[55;150H” > $serial-

Port
 for ((i=0; i<4; i++)); do
 echo -ne “\e[3”$j”m\

e[3”$j”m${DATA[1]:$i:1}” > $serialPort
 sleep 0.02
 done
 done
done

Tutorial #2:
Show your ODROID’s Stats

ODROID SHOW with text display

This bash script shows useful ODROID statistics such as
the 4-core load status, CPU frequency and CPU temperature,
along with a real-time clock. To run this script, you first need
to install sysstat using sudo apt-get install sysstat.

!/bin/bash

flag=0

trap “flag=1” SIGINT SIGKILL SIGTERM

./port_open &
subppid=$!

function cpu_state {
cpuFreqM=$(echo “scale=0; “ `cat \
/sys/devices/system/cpu/cpu0/cpufreq/

scaling_cur_freq` “/1000” | bc)
cpuTempM=$(echo “scale=1; “ `cat \
/sys/class/thermal/thermal_zone0/temp`

“/1000” | bc)
}

echo -ne “\e[2s\e[3r\ec” > /dev/ttyUSB0
sleep 0.1

while true
do

ODROID MAGAZINE 30

ODROID-SHOW

 if [$flag -ne 0] ; then
 kill $subppid
 exit
 fi
 echo -ne “\e[0;0H\e[35mTime : \e[36m” >

/dev/ttyUSB0
 date +”%T” > /dev/ttyUSB0
 sleep 0.1
 echo -ne “\eE\eM\e[32mcore0 : \e[31m” >

/dev/ttyUSB0
 sleep 0.1
 mpstat -P 0 | grep -A1 “usr” | grep -v

“usr” | awk ‘{print “”$4”% “}’ > \
 /dev/ttyUSB0
 sleep 0.1
 echo -ne “\eE\eM\e[32mcore1 : \e[31m” >

/dev/ttyUSB0
 sleep 0.1
 mpstat -P 1 | grep -A1 “usr” | grep -v

“usr” | awk ‘{print “”$4”% “}’ > \
 /dev/ttyUSB0
 sleep 0.1
 echo -ne “\eE\eM\e[32mcore2 : \e[31m” >

/dev/ttyUSB0
 sleep 0.1
 mpstat -P 2 | grep -A1 “usr” | grep -v

“usr” | awk ‘{print “”$4”% “}’ > \
 /dev/ttyUSB0
 sleep 0.1
 echo -ne “\eE\eM\e[32mcore3 : \e[31m” >

/dev/ttyUSB0
 sleep 0.1
 mpstat -P 3 | grep -A1 “usr” | grep -v

“usr” | awk ‘{print “”$4”% “}’ > \
 /dev/ttyUSB0
 sleep 0.1
 cpu_state
 echo -ne “\eE\eM” > /dev/ttyUSB0
 sleep 0.1
 echo -ne “\e[33mCPU Freq:

\e[37m”$cpuFreqM”MHz \eE” > /dev/ttyUSB0
 echo -ne “\e[33mCPU Temp: \e[37m$cpuTempM\e

“ > /dev/ttyUSB0
 sleep 1
done

Tutorial #3: Image display
In addition to text, you can also display a graphical image

on the ODROID-SHOW. In order to do so, we recommend
using ffmpeg to convert a normal PNG file into a raw RGB-
565 file (RGB-565 is the preferred format for compatibility).
For best results, the PNG file should first be resized to fit the
display, which is 240x320 pixels.

ffmpeg -vcodec png -i penguin.png \
-vcodec rawvideo -f rawvideo -pix_fmt

rgb565 penguin.raw

The resulting penguin.raw file will be ready for display on
the ODROID-SHOW. The image load mode may be set using
the pixel coordinate parameters.

#!/bin/bash

flag=0
serial=”/dev/ttyUSB0”

trap “flag=1” SIGINT SIGKILL SIGTERM

./port_open &
subppid=$!

echo -ne “\e[0r\ec” > $serial

while true
do

ODROID MAGAZINE 31

ODROID-SHOW

 if [$flag -ne 0] ; then
 kill $subppid
 exit
 fi
 echo -ne “\e[0r” > $serial
 sleep 0.2
 echo -ne “\e[0;0,240;320i” > $serial
 cat penguin.raw > $serial
 sleep 0.2
 echo -ne “\e[1r” > $serial
 sleep 0.2
 echo -ne “\e[0;0,320;240i” > $serial
 cat butterfly.raw > $serial
 sleep 0.2
 echo -ne “\e[0r” > $serial
 sleep 0.2
 echo -ne “\e[0;0,240;320i” > $serial
 cat woof.raw > $serial
 sleep 0.2
done

Because the “cat” and “echo” commands with redirection
to the “/dev/ttyUSB0” always open and close the serial port
automatically, the data flowing to the ODROID-SHOW can
become corrupted. To prevent this problem, we wrote a small
program which acts like a daemon to handle communication
with the serial port.

#include <stdio.h>
#include <fcntl.h>
#include <termios.h>
#include <errno.h>

#define baudrate B500000

const char serialPort[] = “/dev/tty-

USB0”;

int main(void)
{
 int usbdev;
 struct termios options;

 usbdev = open(serialPort, O_RDWR | O_

NOCTTY | O_NDELAY);

 if (usbdev == -1)
 perror(“open_port : Unable to

open:”);

 tcgetattr(usbdev, &options);

 cfsetispeed(&options, baudrate);
 cfsetospeed(&options, baudrate);

 options.c_cflag |= CS8;
 options.c_iflag |= IGNBRK;
 options.c_iflag &= ~(BRKINT | ICRNL |

IMAXBEL | IXON);
 options.c_oflag &= ~(OPOST | ONLCR);
 options.c_lflag &= ~(ISIG | ICANON |

IEXTEN | ECHO | ECHOE | ECHOK | ECHOCTL |
ECHOKE);

 options.c_lflag |= NOFLSH;
 options.c_cflag &= ~CRTSCTS;

 tcsetattr(usbdev, TCSANOW, &options);

 while(1)
 sleep(0.2);

 return 0;
}

First, modify the serial port number in the above source
code, then compile the daemon by typing gcc -o port_open
port_open.c. Launch the resulting executable port_open be-
fore running any of the above example scripts to avoid data
corruption during transfer to the ODROID-SHOW.

For more detailed information on setting up your
ODROID-SHOW, please visit http://odroid.com/doku-
wiki/doku.php?id=en:odroidshow.

http://odroid.com/dokuwiki/doku.php?id=en:odroidshow
http://odroid.com/dokuwiki/doku.php?id=en:odroidshow

ODROID MAGAZINE 32

ODROID-UPS KIT

H ardkernel is proud to announce
the newest addition to its fam-
ily of U3 peripherals: the

ODROID Uninterruptible Power Sup-
ply (ODROID-UPS). For mission-criti-
cal industrial applications, it’s important
to ensure that power to the ODROID
remains constant in case the main pow-
er supply fails or is disconnected. Be-
cause it has the same form factor as
the ODROID-U3, the ODROID-UPS
stacks neatly on top of the board with
PCB spacers, and connects to the 8-pin
header socket on the U3.

The UPS kit contains the charger
circuit, batteries and a 5V output DC-
DC converter circuit. The full schemat-
ics can be downloaded from http://
bit.ly/1fDb3ds. With a 3000mA bat-
tery capacity, the ODROID-U3 can run
about 1~2 hours of heavy computing
without needing AC power.

ODROID-UPS
KIT
A COMPACT
AFFORDABLE
BACKUP SOLUTION
by Justin Lee

The MAX8903C is integrated using
1-cell Li+ chargers and Smart Power
Selectors™ with variable power input.
The switch-mode charger uses a high
switching frequency to eliminate heat
and protect external components. All
power switches for charging and shifting
the load between battery and external
power are included on-chip so that no
external MOSFETs, blocking diodes, or
current-sense resistors are required.

The MAX8903C features optimized
smart power control which makes the

best use of limited USB or adapter pow-
er. The battery charger’s current and SYS
output current limit are independently
set (up to 2A), and the system charges
the battery using any leftover power
from the ODROID’s power adapter.
Automatic input selection switches the
system from battery to external power,
and the DC input operates from 4.15V
to 16V with up to 20V protection.

The MAX8903C internally blocks
current from the battery and system
back to the DC input when no input
supply is present. Other features include
pre-qual charging and timer, fast charge
timer, overvoltage protection, charge
status and fault outputs, and power-OK
monitors. In addition, on-chip thermal
limiting reduces battery charge rate and
AC adapter current to prevent charger
overheating.

This baby can extend your ODROID
uptime for months!

ODROID-UPS Schematic

http://bit.ly/1fDb3ds
http://bit.ly/1fDb3ds

ODROID MAGAZINE 33

ODROID-UPS KIT

Li-ion Polymer battery
The UPS kit has two Li-ion Polymer batteries which are connected in parallel.

Each battery’s capacity is 1500mA for a total capacity of 3000mA. The maximum
charging voltage is 4.2V.

DC-DC S Boost Converter IC Maxim’s MAX8627
We added a boost converter because the Li-ion battery output voltage varies from

3.6 to 4.2V, but the ODROID-U3 needs a 5V input. The MAX8627 step-up con-
verter is a high-efficiency, low-quiescent current, synchronous boost converter with
True Shutdown™ and inrush current limiting. The MAX8627 generates 5V using a
single-cell Li+/Li polymer battery.

If the typical voltage is 3.8V, the average battery capacity is about 11.5Wh. If
the chemical and electrical efficiency runs at approximately 70%, the real capacity is
8Wh. If your system consumes 2W, the UPS kit can run for about 4 hours before
needing to be recharged.

Example of automatic shutdown
The AC_OK signals are connected to GPIO199/GPIO200 in the 8-pin header

socket of ODROID-U3. When a blackout or sudden disconnection of AC power
happens, the system will shutdown automatically after 1 minute by using the follow-
ing bash script, which continuously checks the status of the AC power.

#!/bin/bash
echo 199 > /sys/class/gpio/export
echo 200 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio199/direction
echo in > /sys/class/gpio/gpio200/direction

get_ac_status() {
 ac1=`cat /sys/class/gpio/gpio199/value`
 ac2=`cat /sys/class/gpio/gpio200/value`

 if [“0$ac1” -eq 1 -o “0$ac2” -eq “1”]; then
 export ACJACK=”off”
 else
 export ACJACK=”on”
 fi
}

while :
do
 get_ac_status

 if [“$ACJACK” == “off”]; then
 shutdown -P 1
 fi

 sleep 1;
done

Closeup of circuit board

If the USB host ports of ODROID-U3 don’t
work, solder the DC plug cable on the UPS
board and connect it to DC-Jack on ODROID-
U3. It will make a stable power supply for
the USB devices.

Design note
The UPS project was created because we had an

overstock of battery packs in our inventory. Howev-
er, the internal protection circuit in our battery packs
were too sensitive to heavy current load, so we de-
cided to use 2 cells in parallel. Another concern was
the unbalanced energy in the two separated batteries,
which may lead to a chemical hazard. In order to ad-
dress this, we implemented all of the circuits twice on
the UPS board design, which means the schematics
are not well optimized.

If you are considering making your own power
bank, be sure to check the maximum output current
of the battery pack first. When the electrical load is
very heavy, the protection circuit in the battery pack
disconnects the load automatically. To reset the pro-
tection circuit, you must unplug and replug the battery
connectors. Although you can check for the maximum
AC input state (AC_OK) using a script , it may not
be sufficient. When using the ODROID-UPS with a
power bank, you will want to include additional circuits
for conveying the battery level to the intelligent power
management.

For more detailed specifications and to pur-
chase your own ODROID-UPS, please visit
http://bit.ly/1fDb3ds.

http://bit.ly/1fDb3ds

ODROID MAGAZINE 34

OS SPOTLIGHT

T he ODROID forum offers many
excellent community prebuilt op-
erating system images, with each

one containing unique customizations
for such diverse applications as media
players, software development, music,
and robotics. Because the ODROID
family of single board computers is
intended as a development platform,
many users prefer to compile their own
operating systems in order to have full
control over all aspects of the hardware.
In the previous issue of ODROID Mag-
azine, Hardkernel developer Mauro Ri-
beiro presented a useful guide to build-
ing your own version of Ubuntu from
source code to assist those who want to
learn how to “do it yourself ”. But what
if you just want to use your ODROID
immediately, without investing the tech-
nical expertise and time in compiling
your own operating system?

Fully Loaded, which was first intro-
duced to the forums in 2013 and has
been updated regularly, was one of the
first community images to offer an out-
of-the-box desktop experience, which
eliminated the need to spend time con-
figuring software, installing applications
and debugging desktop environments.
It contains nearly every flavor of Ubun-
tu available for 12.11, including Gnome,
Lubuntu (LXDE), Kubuntu (KDE),
Blackbox, Openbox, Fluxbox, Unity
and Xubuntu (XFCE). You can switch
the desktop environment by using the
circular icon next to the username on
the login screen. I personally recom-

OS SPOTLIGHT:
FULLY LOADED
UBUNTU 12.11 WITH
UNITY 2D DESKTOP ENVIRONMENT
by Rob Roy, Editor-In-Chief

mend KDE Plasma Workspace for its
hardware-accelerated visual effects and
Windows 7-style interface, but each one
has its own unique advantages.

To get started, download and copy the
Fully Loaded image for your hardware
(X, X2, U2/U3), to an eMMC module or
SD card. For more information on do-
ing so, refer to the “Copying an Image
File” article, also included in this issue of
ODROID Magazine. Once the image
boots, you will see the familiar Ubuntu
login screen with an image of its 12.11
mascot, the Precise Pangolin. If you
have your sound turned on, you will also
hear the classic “Flute Flute Slap” drum
sound that is unique to Ubuntu.

The default username for Fully Load-
ed is “linaro” with the password “linaro”.
After logging in, you can set up your local
time zone, choose the language settings,
and create users by clicking on the “System
Settings” menu option in the top right cor-
ner of the desktop. The root password is
also “linaro”, but this login should only be
used for maintenance rather than everyday
use to prevent ac-
cidental damage
to the file system.

One of the
first things that
you’ll see when
using Fully
Loaded is that
the Unity desk-
top is set as the
default, as it has
been proven to

Ubuntu 12.11 is one of the most stable
operating systems available for the ODROID

be very popular with both beginners
and experts for its friendly icons, con-
venient taskbar, and incomparable sta-
bility. Because the ODROID platform
supports the GLES graphics library
rather than OpenGL, the 2D version
of Unity is preferred for its superior
performance. It runs much faster than
the standard 3D version by eliminating
much of the extraneous “eye candy”
and corresponding graphical lag that
was introduced in Ubuntu 13.04.

The desktop environment is a mat-
ter of personal preference, since your
choice of environment doesn’t affect
the software library available. Ubuntu
is designed to remain consistent in its
applications while allowing complete
customization of the graphical user in-
terface (GUI). This article presents is
an overview of the major applications
available on Fully Loaded, all of which
are open-source and freely available
from the Ubuntu Software Center.

Fully Loaded with
Kernel 3.0 for the

U2/U3/X/X2 may be
downloaded from

http://bit.ly/1rhHymu

http://bit.ly/1rhHymu

ODROID MAGAZINE 35

OS SPOTLIGHT

GIMP (GNU Image
Manipulation
Program)

Who needs to buy Photoshop
when you can have one of the most
powerful graphics program avail-
able for absolutely no cost? GIMP
has been in active development since
1996, and includes a rich library of
user-submitted enhancements and
contributions. It requires a moderate
amount of expertise to use, but the
results can be amazing.

GIMP has just about everything
that Photoshop offers, with the abil-
ity to create, modify, and enhance and
save to many image formats, including
JPG, GIF, PNG, PSD, and AutoCAD.
The familiar toolbox on the left side
contains buttons used for area selec-
tion, brushes, text editing, color swap-
ping, masking, cloning, and shapes.
Many visual effects are also available
from the central window’s Filters
menu, such as blurring, sharpening,
noise, edge detection, shadows, and
other useful graphics processors.

GIMP also includes a powerful
plugin called “Script-Fu”, based on
a language called Scheme. You can
design your own visual effects and
processors using complex math-
ematical transformations, then share
your work with others. More in-
formation on using Script-Fu to
enhance GIMP can be found at
http://bit.ly/1fBPgTA.

Web Browsers
No modern computer environment

would be complete without a web brows-
er. Fully Loaded includes both Firefox
and Chromium, which both give a full-
featured browsing experience with sup-
port for both Java and Flash. The open-
source plugin called IcedTea is enabled
in both Firefox and Chromium, which
gives Java applets the ability to run inside
a browser. Adblock Plus is also installed
in both applications, which prevents ad-
vertisements and pop-ups from interfer-
ing with your Internet session.

GIMP, the GNU Image Manipulation Program,
has a long development history.

Java applets in the web browser offer true
cross-platform compatibility.

Oh darn! No Flash. Really?

Yaaay! Flash is here, but not from Adobe.

Look Ma! We can watch stuff without Flash!

Torrent, the way to go to get all the things!

When browsing Youtube or oth-
er similar sites, both Chromium and
Firefox support the recently added
HTML5 player, but not all videos on
the Internet are available in this updat-
ed format. Although Firefox doesn’t
include an open-source Flash player,
the optional PepperFlash plugin for
Chromium replaces the standard
Flash player and allows ARM devices
such as the ODROID to play Flash-
based videos, even though Adobe no
longer supports it.

Transmission
Transmission is the standard Linux cli-

ent for the BitTorrent protocol, which al-
lows files to be downloaded from a peer-
to-peer network, yielding much higher
download speeds by utilizing a network
of machines rather than accessing a
single computer. To use Transmission,
start Firefox and navigate to any web-
site that offers torrents, then click on the
Magnet link to download the torrent file.
Transmission will automatically launch
and start the download, saving it to the
Downloads directory once completed.
Chromium can also be configured to use
torrents, but Firefox is already associated
with Transmission by default.

ODROID MAGAZINE 36

OS SPOTLIGHT

Xine and ffmpeg
If you want to watch a downloaded

video on your ODROID, Xine is the
best application available for 12.11, and
supports many popular formats includ-
ing .mp4, .avi, and .mkv (Matroska). Al-
though it’s software-decoded, most 720p
videos will play very well on the U3, and
1080p videos are watchable even though
some frames will be dropped. Because
hardware video decoding is not available
with Kernel 3.0, the updated Ubuntu
13 Dream Machine with XBMC image
should be used in cases where 1080p
video on Linux is desired.

To use Xine, simply double-click on
any video from the File Manager, and
press “g” to display the HUD which
contains seek controls, volume buttons,
and other useful features. It is essentially

a wrapper for the powerful ffmpeg vid-
eo player utility. Fully Loaded includes
a special version of ffmpeg compiled
specifically for the NEON architecture
of the Mali GPU. FFmpeg may also be
invoked without Xine by typing ffmpeg
on the command line.

Synaptic Package
Manager

Synaptic is the main application for
downloading new software packages
and upgrading existing ones. It offers
thousands of development libraries,
full packages, desktop environments,
and much more. If you are using the
ODROID for software development and
wish to install any missing dependencies,
this is the place to find them. There are
many hidden gems available in Synaptic,
if you take the time to look through the
enormous list of open-source packages.
The password for starting Synaptic is the
root password of “linaro”.

Ubuntu Software
Center

The Ubuntu Software Center is a
user-friendly interface to the Canoncial
software repositories, and offers similar
packages to the Synaptic Package Man-
ager, but in a friendlier format. Its ad-
vantage over Synaptic is that the software
is categorized and includes short expla-
nations of the purpose of each applica-
tion, but does not include development
libraries in its lists. It is the equivalent

of iTunes for OSX or the Google Play
Store for Android.

Terminal
Many how-to articles in both the

forums and this magazine require en-
tering strings of commands into the
Terminal window, which is the standard
Command Line Interface (CLI) that
comes with almost all Linux distribu-
tions. Several useful commands include
sudo, which permits a command to be
run with superuser access, ls, which
shows the contents of a directory, and
cd, which navigates to a specified folder.
Type cd ~ to go to your home folder,
and press Tab to use the auto-complete
feature. You can also press the Up ar-
row to reuse recently typed commands.
A useful shortcut for Terminal in most
Ubuntu desktop environments is press-
ing the key combination Ctrl-Alt-T.

Mali 3D Drivers
The Mali GPU included with the X,

X2, U2 and U3 has great 3D capabili-
ties, and you can run a graphical test by
typing either es2gears or glmark2-es2
in the Terminal window. The jellyfish
animation in glmark2-es2 is especially
nice! Game and graphics develop-
ers should become familiar with the
OpenGL ES 2.0 commands in order
to program for the ODROID, which
is an optimized subset of the original
OpenGL language.

Xine is so cool, that we will list here all that
it supports for your playback needs:
•Physical media: CDs, DVDs, Video CDs[6]
•Container formats: 3gp, AVI, ASF, FLV, Ma-
troska, MOV (QuickTime), MP4, NUT, Ogg,
OGM, RealMedia
•Audio formats: AAC, AC3, ALAC, AMR,
FLAC, MP3, RealAudio, Shorten, Speex,
Vorbis, WMA
•Video formats: Cinepak, DV, H.263, H.264/
MPEG-4 AVC, HuffYUV, Indeo, MJPEG,
MPEG-1, MPEG-2, MPEG-4 ASP, RealVideo,
Sorenson, Theora, WMV (partial, including
WMV1, WMV2 and WMV3; via FFmpeg)
•Video devices: V4L, DVB, PVR
•Network protocols: HTTP, TCP, UDP, RTP,
SMB, MMS, PNM, RTSP
(and the crowd cheers for the largest
screenshot caption ever!)

The graphic interface way to apt-get?
Synaptic of course!

ODROID MAGAZINE 37

OS SPOTLIGHT

MONITOR YOUR
LINUX WITH NMON
by Bruno Doiche

Are you still using top to monitor
your overall system statistics?
Try using NMON. It is a great

tool to monitor everything, from your
processes to your network connec-
tions in a single handy program. Plus,
it can monitor your system and export
the data as a .csv file to create detailed
reports of your ODROID’s long-term
performance!

sudo apt-get install nmon

To collect data, run nmon like the ex-
ample below (-f means that the nmon
will log a data file, -s is the time be-
tween refreshes and -c the count of
refreshes nmon will do to end the data
collection) that will run for 1 hour:

nmon -f -s 30 -c 120

Nmon will create a file in your current
directory:

<hostname>_date_time.nmon

When run with these flags, nmon
does not show the graphical inter-
face itself, but instead runs as a back-
ground job, disconnected from your
shell, so that you can logoff while it
collects your data for future review.

Happy data analysis!

TIPS AND TRICKS

Oracle Java
Development Kit
(JDK8)

Fully Loaded comes with Oracle
JDK8 installed, which allows Java pro-
grams such as Minecraft Server to be
run from the command line. The Java
Virtual Machine can be invoked by typ-
ing java in the Terminal window. Many
useful programs that have been written
for other hardware will generally also
run well on the ODROID, since Java is a
platform-independent language.

Mednafen
There is an enormous library of games

available for the ODROID, and Mednafen
supports many different emulated systems,
including Gameboy, NES, SNES and Sega.
A convenient script comes with Fully Load-
ed called play_rom, which automatically sets
the optimum values for scaling and resolu-
tion in Mednafen. ROM files can be either
double-clicked from the File Manager, or
invoked using the play_rom <rom file>
command in the Terminal Window. For
detailed information on Mednafen and its
supported formats, refer to the How-To
guide at http://bit.ly/1pYi1hu.

Other Tips and
Tricks

To boot directly to the most recently
used desktop environment, type:

sudo /usr/lib/lightdm/
lightdm-set-defaults
--autologin linaro

in the Terminal window. This command
bypasses the login screen which saves time
when rebooting frequently. To change the
default environment, simply log out of the
current desktop and choose another one
at the login screen.

To get even more speed and perfor-
mance from your ODROID, Fully Loaded
allows overclocking to 1.92GHz by typing
sudo gedit /etc/rc.local in the
Terminal window and removing the “#”
from the beginning of the line that starts
with “echo 1920000”. It’s highly recom-
mended to use a fan when overclocking to
prevent shutdowns due to overheating.

If you own more than one ODROID,
a useful kernel swap script is included on
the Fully Loaded image to allow booting
from a single MicroSD shared between a
U2 and an X2. To do so, type ./media/
boot/tools/swap_odroid.sh [u2
| x2] in the Terminal window before
shutting down. For more details, please
refer to http://bit.ly/1lIDHtQ.

The Fully Loaded kernel also in-
cludes Virtual Memory support to ex-
tend your ODROID’s memory above
2GB. To learn more about the swap
file and how to enable it, visit http://
bit.ly/1pYfWSY.

Is that a screenshot showing the simultaneous use of Terminal and Mali 3D driver, or a secret
reference to our cat-napping article from an earlier issue?

http://bit.ly/1pYi1hu
http://bit.ly/1lIDHtQ
http://bit.ly/1pYfWSY
http://bit.ly/1pYfWSY

ODROID MAGAZINE 38

BUILD AN ODROID UGV

In this series of articles, we will build
our very own off-road Unmanned
Ground Vehicle (UGV) using the

ODROID-XU development board.
Our goal will be to create a robot that
is capable of traversing outdoor terrain
while moving between GPS waypoints,
and also to provide the reader with a sol-
id platform for future development. We
will use navigational data provided by an
external Android device and 3D scene
information provided by an RGB-D
camera. The series will be divided into
3 articles covering general platform de-
sign and power distribution, interfacing
motors and sensors with the ODROID,
and programming the robot to autono-
mously follow GPS waypoints.

Introduction
I am going to assume that you, the

reader, must really like ODROIDs (after
all, you are reading ODROID Magazine).
Chances are, you probably like robots

BUILD AN
ODROID-POWERED
OFF-ROAD UNMANNED
GROUND VEHICLE
PART 1: OVERVIEW, PLATFORM ASSEMBLY,
AND POWER DISTRIBUTION
by Christopher D. McMurrough

Component Qty Price Source
ODROID-XU 1 169.00 Hardkernel
Wild Thumper 6WD Chassis 1 249.95 Pololu
Nexus 7 Tegra 3 1 149.99 Newegg
Asus XTION PRO LIVE 1 169.99 Newegg
HB-25 Motor Controller 2 49.99 Parallax
M2596 Buck DC-DC Adjustable PSU 1 3.45 Amazon

too. The good news is that ODROIDS
are perfect for robots! However, keep
in mind that building your own robot
is always challenging. Whether you are
just getting started on your own or have
worked on robots before, each robot

is different and requires
many different consider-
ations for the project to
be a success. This series
is intended to provide
an overview of creating
a complete UGV system
using as many commer-

cially available, off-the-shelf (COTS)
components as possible. We will cover
the mechanical, electrical, and software
design aspects of our system, and pro-
vide as much supplemental material as
possible such as schematics and source
code. In this first article, we will focus
on the general mechanical assembly and
power distribution of our system. While
this is not intended to be a fully compre-
hensive “how-to” guide showing every
step of the build process, I encourage
questions and comments regarding this
article series in the “ODROID Robot-

If this were a classic magazine sold at a newsstand, this picture of Chris’ UGV
would require us to use drool-proof paper!

ODROID MAGAZINE 39

BUILD AN ODROID UGV

ics” discussion in the ODROID Forum
(Board index / Hardkernel / General
Chat / ODROID Robotics). I will re-
spond to questions and provide more
details as requested. My intention for
the series is to start an active robotics
discussion within the ODROID com-
munity, so please join in!

System Overview
Our robot, when complete, will be

able to move between sequential GPS
waypoints while avoiding obstacles. We
will use GPS and compass input from a
Nexus 7 Android tablet for position sens-
ing, and 3D information from an Xtion
Pro Live RGB-D camera for obstacle
avoidance. These devices both provide
lots of information that we don’t nec-
essarily need for our waypoint follow-
ing demonstration, but may be useful
in future projects. The ODROID-XU
running Ubuntu Linux will process in-
formation from these devices using Ro-
botic Operating System (ROS), which
we will discuss more thoroughly in the
next article of the series.

The chassis that we will be using is
the 6WD Wild Thumper. This platform

is ideal for off-road
environments, giv-
en that each of the
6 motor and wheel
assemblies feature
independent sus-
pension. The mo-
tors are designed
to work with stan-
dard 7.2 volt RC
battery packs, and
the chassis has
room to accom-
modate 4 such
batteries under
the top mount-
ing plate. We will
power our chassis
with 3 NiMh bat-
tery packs (rated at
3000 mAh) wired

in parallel, giving us a total of 9000
mAh of motor power. A fourth battery
pack will be dedicated to powering the
ODROID, sensors, and other electron-
ics. Separating this battery from the oth-
ers provides our electronics with a layer
of electrical isolation, and will prevent
our system from resetting due to motor
current related power fluctuations. The
electronics battery will be regulated to a
clean 5 volts using an LM2596 DC-DC
power supply.

We will use dual HB-25 motor con-
trollers to drive the 6 motors on the
Wild Thumper chassis. The 3 left mo-
tors will be connected to one HB-25 in
parallel, while the 3 right motors will be
connected to the other. The stall cur-
rent of each of the 6 motors
is 6.6 Amps, which will require
each HB-25 to provide a maxi-
mum of 19.8 Amps. The HB-
25 can provide a maximum of
25 Amps, but we will replace
the provided fuse with one
rated for 20 Amps. This is
not mandatory, but it will en-
sure that the HB-25 does not
provide more than 20 Amps
in the event of a short circuit.
If at any time in the future we

notice fuses blowing frequently, we will
know that the motors are drawing more
than the specified maximum amount of
current and can troubleshoot accord-
ingly.

The final electrical component that
we will be using is a Teensy USB Board.
This microcontroller allows us to gen-
erate the control signals for the HB-25
(PPM servo pulses), as well as interface
with additional sensors and components
in the future. We won’t do anything more
than mechanically mount this device for
now, but in Part 2 we will explore device
interfacing in much greater detail.

Platform Assembly
The 6WD chassis, once assembled

according to the manufacturer instruc-
tions, is ready to accommodate our sen-
sors and devices. We will be mounting
the RGB-D camera and motor control-
lers directly to the top chassis plate. The
motor controllers are each placed on a
pair of aluminum spacers and secured
with 6-32 screws. The RGB-D cam-
era will also be mounted with a pair of
6-32 screws by drilling two small holes
through the plastic base.

The ODROID-XU, Teensy, LM2596
module, and power switches will be
mounted inside of a rugged enclosure.
The enclosure we will be using is a plas-
tic equipment case, which is mounted to
the vehicle chassis using 4 1-1/2” alu-
minum spacers and 6-32 screws. The

UGV System Architecture

With its built-in ODROID-XU, this UGV is
able to do its fair share of exploring while
also offering amazing processing power.

ODROID MAGAZINE 40

BUILD AN ODROID UGV

height of the spacers prevent the rear
wheels from rubbing against the enclo-
sure when driving over rough terrain,
since the equipment case is a bit wider
than the top chassis plate (but narrower
than the wheelbase). We will similarly
secure our electronics to the enclosure
using screws and spacers, and will drill
small holes in the case as needed to cre-
ate the mounting points.

Using the equipment case allows us
to shield the electronics from the out-
doors, but we will need to take care to
ensure that the enclosure is properly
cooled. For now, we will just prop the
lid open until we finish the rest of the
assembly and setup. Before we start do-
ing actual field testing in Part 3, we will
add cooling fans to regulate the internal
temperature of the case.

Power Distribution
As previously mentioned, we will be

supplying power to the case electron-
ics (regulated by the LM2596) and mo-
tor controllers using separate battery
sources, so we will mount two switches
to the enclosure. This is important for
two reasons. First, we want to
ensure that the Teensy is gen-
erating control signals before
the motor controllers are pro-
vided power. If the control-
lers are powered before receiv-
ing a proper signal, the driver
state cannot be guaranteed and
could possibly result in the mo-
tors being provided power in an
uncontrolled manner. Second,
there will be times during de-
velopment when we don’t want
to provide power to the motor side
branch at all (an example being when
the robot is sitting on your desk while
the ODROID is connected to a moni-
tor and keyboard). Using two switches
will allow us to disable either power
branch independently. We will also
place inline fuse holders on each power
branch to protect against short circuits.

The fuse for the motor
branch will be 40 Amp,
while the electronics
branch will be 5 Amp.
The HB-25 controllers
each have their own 20
Amp fuse, but we will
include a master fuse on
each branch as an added
layer of protection.

Once the LM2596
regulator is connect-
ed to the electronics
branch battery, we need
to set the voltage to a
steady 5V before con-

necting it to the ODROID-XU. Ad-
ditionally, we must solder a barrel con-
nector to the output solder pads of
the device so that we can power the
ODROID, and indirectly, the addi-
tional devices which are powered from
the USB bus. Barrel connectors can
be found at some electronics stores,
but the receptacle on the ODROID-
XU is fairly common and can easily be
salvaged off of an old DC power sup-
ply. After soldering your cable to the
LM2596, use a voltmeter to verify the

polarity of the connector. Next, with
the voltmeter attached to the barrel
connector, adjust the potentiometer
on the LM2596 until it reads a steady
5.0 volts. It is critical that the polar-
ity and voltage level is checked before
connecting the ODROID! Once you
have verified the polarity and voltage
level, you can connect the PSU power
jack to the ODROID when you are
ready to power it up.

Conclusion
This article is the first installment of

the our 3 part series on ODROID pow-
ered robotics. In Part 2, we will focus on
getting Linux and Robot Operating Sys-
tem (ROS) running on the ODROID-
XU and interfacing with our devices to
control motors and read sensors. Be
sure to follow the forum discussion for
more details on our robot project at
http://forum.odroid.com.

Electronics power branch

Motor power branch

In an earlier development prototype, the
UGV used an XBOX 360 Kinect.

http://forum.odroid.com

ODROID MAGAZINE 41

MEET AN ODROIDIAN

The man himself, @sert00 is everywhere
to be found at our forums.

Please tell us a little about yourself.
I’m a 27 year-old industrial electrician,

working as an electro-mechanical opera-
tor in a big company in Italy alongside
more than 2700 people. We process and
sell food, in particular chicken meat. For
the most part, my job is about finding
and repairing all the problems with the
machines involved in the production line,
such as communication, automation, mo-
tors and pneumatic systems.

How did you get started with computers?
I started with computers at the age of 9.

My father would bring me the PCs, printers,
monitors and peripherals that were obsolete
at his work and destined for the trash bin.
I began with DOS, then used Windows
Workgroup 3.11.

What types of projects have you done with your
ODROIDs?

I initially bought my first ODROID, a
U2, without any use of it in mind. I love
the ARM world, followed Android develop-
ment for some years, and then decided to
try an Android-based board to see how it
worked. In the meantime, I also switched to
using Linux after years of using Windows,
and thought it would be a good start with
the U2, since my old laptop broke.

I then won another U2 from Hardkernel
as a monthly award, which was mostly used
for learning how to do things like recompile
the kernel for Android and my phones and
tablet. I also went deeper with Linux by us-
ing it as a web and media server.

Last year, I received from Hardkernel

an XU-E beta version (rev. 0.2) as an engi-
neering sample, then bought another XU-E
(rev. 0.3), which more reliably handled input
voltage spikes. With it, I tried everything
possible, from creating a media center to
tinkering with the electronics. What I like
about ODROIDs is the fact that I can try
something, use it, and then change the con-
figuration and focus on something else.

The last board that I bought was the
U3, which is awesome. Sadly, I haven’t had
enough free time to use it. However, my
goal will be to do what I did with my old
Arduino by controlling some things in my
bedroom like the lights and TV using a Java
APK over a wireless connection. I put the
project on hold because I needed the Ar-
duino for other things.

I have all the addons and gadgets offered
by Hardkernel, and especially like the touch-
screen that I use with my XU-E running
Android from 64GB eMMC. It’s sort of
a homemade tablet. In fact, that will be my
next project when I have some time avail-
able, borrowing some ideas from Mauro’s
article (in the April issue) where he present-
ed a guide for building a rugged tablet.

What other hobbies and interests do you have?
I like to walk in nature and ride my

mountain bike in the spring season. Where
I live, there are many great places for that.

What do you like most about the Odroid com-
munity?

I really like the kindness of the Hardker-
nel staff like Justin, Lisa and Mauro. All of
the forum members are there to help out,
and there are some very talented and skilled
people in the ODROID community.

Are you involved with any other software or
hardware projects?

Recently, I’ve been focusing on some-
thing different that I always wanted to learn.
I bought an S7-200, analog module and
ethernet module from Siemens, and I’m
studying PLC programming. PLC will be
useful in my work, and I also plan to use it
to automate my house in conjunction with
my ODROID-U3 and IO shield.

MEET
AN ODROIDIAN
SIMONE (@SERT00), A LONG-TIME
ODROID ENTHUSIAST
AND HELPFUL COMPUTER EXPERT
edited by Rob Roy

A small sample of @sert00’s workbench.
He also has a gigantic monitor on the wall
and lots of network routers.

