
Year Two
Issue #21
Sep 2015ODROID

Magazine

Running Netflix with Linux • ODROID C1+ • Android Gaming • SAMIIO

Logical
Volume
Basics

Discover a new way
to play the piano
with Arjuna

Create your own
NAS and Cloud
with Cloudshell

Lamp
Learn how to build a fully automated
robotic companion using an ODROID

ROBOT

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

The geniuses at Hardkernel have recently created an excit-
ing new personal DIY cloud server kit called Cloudshell.
Intended for users who desire maximum privacy, it can

hold an ODROID-XU4 along with a hard drive and 3.2” LCD
panel that can be accessed remotely using open source cloud

software such as OwnCloud. The
new ODROID-C1+, an update to the
popular ODROID-C1, is also now
available at the Hardkernel store.

ODROID owners are very creative, and
this month features several projects

that push the boundaries of ARM computing.
Meet Luci, the robot lamp, who is modeled af-

ter the famous Pixar mascot with a unique per-
sonality all her own. Learn how to play the piano using Arjuna,

build a single application interface with QT5, create powerful I/O appli-
cations with SAMIIO, and manage your disk space better using LVM. We also present
two of the most recent community images to be released: Ubuntu Server 14.04 LTS by
@meveric, and a unique unified Android/Debian distribution by VolksPC. As usual, we
show how to have fun with ODROIDs by running Netflix under Linux and highlighting
two of our favorite Android games: Plague Inc. and Sword of Xolan.

http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://www.ameridroid.com/

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Robert Cleere,
Editor

I am a hardware and
software designer cur-

rently living in Hunts-
ville, Alabama. While

semi-retired from a career in embed-
ded systems design, including more
than a decade working on the Space
Shuttle program, I remain active with
hardware and software product design
work as well as dabbling in audio/video
production and still artwork. My pro-
gramming languages of choice are Java,
C, and C++, and I have experience with
a wide range of embedded Operating
Systems. Currently, my primary proj-
ects are marine monitoring and control
systems, environmental monitoring,
and solar power. I am currently working
with several ARM Cortex-class proces-
sors, but my ODROID-C1 is far and
away the most powerful of the bunch!

Bruno Doiche,
Senior
Art Editor

Bruno managed to
laugh at the possibility

of having an electrical fire in the heat
of editing this same magazine that you
are reading due to a very old power
cord. What happened? He was re-
motely setting up his mother’s Skype
account with the articles open and
needed to recharge an iPhone 4 that
was close to death, then went straight
with the charger to the outlet only to
be zapped! Some quick thinking was
needed to see what could instantly be
unplugged and get everything back to
normal. The only casualty was that the
power cord melted down.

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities, the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX

OS SpOTlIghT: UbUnTU Server - 12

andrOId gamIng: pIxelS - 18

SamIO- 32

andrOId gamIng: plagUe Inc. - 16

OS SpOTlIghT: andrOId debIan - 14

lvm - 26

fOrUmS- 39

meeT an OdrOIdIan - 40

xU4 clUSTer - 17

arjUna - 24

qT5 - 28

rObOTIc cOmpanIOn - 19

neTflIx On lInUx - 8

OdrOId-c1+ - 10

xU4 clOUdShell - 6

The Cloudshell for the ODROID-XU4 is an affordable
DIY Network Attached Storage (NAS) Solution for cre-
ating your own personal cloud! It includes a color LCD

console display on the front, a USB3.0 to SATA bridge (Gen-
esis GL3321G), and has room for a 2.5inch HDD/SSD along
with the XU4 board mounted inside. It’s a great way to have
an XU4 with lots of storage inside a portable, compact case.

Specifications
dimensions: 47mm x 25mm x 21 mm (assembled)
Weight: approximately 248g
color: Smoky blue and Smoky White
circuit board: includes Ir receiver, 2.2” 320 x 240 TfT lcd,
SaTa connector, USb3.0 connector and 30-pin I/O connector
hard drive bay: 12-14mm (15mm is not compatible)

Further information is available in the Hardkernel wiki at
http://bit.ly/1Laq7IS.

More information
Check out a demonstration video of the Cloudshell

at https://youtu.be/0c2CxuFzKtI. To purchase the XU4
Cloudshell for USD$39 or to obtain step-by-step assembly
instructions, please visit the product page at http://bit.
ly/1N3xNm7.

CLOuDSHELL
FOR ODROID-Xu4
A DIY PERSONAL CLOuD SERVER KIT
by justin lee

XU4 CLOUDSHELL

What was the number one request of linux fans for the OdrOId?
Well here it is: a case with an awesome USb 3.0 to SaTa converter
and a lcd console, which also come in white and blue

for instructions on setting up a personal cloud server, refer to the
january 2015 issue of OdrOId magazine, available for free download
at http://magazine.odroid.com/#201501

ODROID MAGAZINE 6

http://bit.ly/1Laq7IS
https://youtu.be/0c2CxuFzKtI
http://bit.ly/1N3xNm7
http://bit.ly/1N3xNm7
http://magazine.odroid.com/#201501

In this annotated diagram, you can see that the hardkernel team had
the genius insight of offering the expansions on a dual sided board
containing a lcd, the SaTa controller and an extra infrared receiver

When assembling the cloudshell with hard drive, re-
member that the bay is compatible with 2.5 SaTa disks
sized between 12 to 14mm. If you try to assemble it with
a 15mm drive it won’t fit!

here is the assembled cloudshell. needless to say, it
is good practice to keep the ventilation window clear of
obstacles in order to allow adequate air flow.

Ir receiver 320 x 240 TfT lcd module 30pin I/O connector

SaTa connector

USb 3.0 connector

gl3321g USb 3.0 to STaT3 bridge controller

XU4 CLOUDSHELL

ODROID MAGAZINE 7

NETFLIX ON LINUX

Netflix runs well under Android on the ODROID-C1 simply by installing the
mobile app from the Google Play Store, but the technique for getting it to
work under Linux requires more steps. This article describes how to enjoy

Netflix movies while running Arch Linux or Ubuntu.

Installation
Chromium v43.0.2357.134 or higher is needed to run Netflix, which is avail-

able for most ARM Linux distributions. You can check the version of Chromium
by typing “chromium-browser --version” in a Terminal window. Make sure to
upgrade Chromium if the version is lower than the requirement.

1. download the chrome OS recovery package at http://bit.ly/1jUOqqw, then extract
the .zip file.

2. Install the qemu-nbd package via the package installer available for the operating
system that you’re using. for example, here is the Ubuntu command for installing
qemu-nbd:

$ sudo apt-get install qemu-nbd

3. register the nbd protocol:

$ sudo modprobe nbd max_part=16

4. mount the recovery image using qemu-nbd:

$ sudo qemu-nbd -r -c /dev/nbd0 /path/to/chromeos_6946.86.0_daisy-skate_\

 recovery_stable-channel_skate-mp.bin

$ sudo mount -o ro /dev/nbd0p3 /mnt/an/empty/folder

5. copy the libwidevine files into the chromium library directory:

NETFLIX
uNDER LINuX
ON THE ODROID-C1
CHILL OuT WITH A MOVIE
by @daemon32

ODROID MAGAZINE 8

http://bit.ly/1JUOQQw
recovery_stable-channel_skate-mp.bin

NETFLIX ON LINUX

$ sudo cp /mnt/an/empty/folder/opt/google/chrome/libwidevine* \

 /usr/lib/chromium/

6. launch chromium with the following parameters from a Terminal window:

$ chromium --use-gl=egl --user-agent=”Mozilla/5.0 (X11; CrOS armv7l

6946.86.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 \

 Safari/537.36”

You should now be able to visit the Netflix site and play any movie or TV show
of your choice.

Notes
If you’d also like to install the Pepper Flash player for Chromium, copy the

package from the mounted recovery image:

$ sudo cp /opt/google/chrome/pepper/libpepflashplayer.so /usr/lib/chromium

Then, add the following parameters to the Chromium command line shown
above:

--ppapi-flash-path=/path/to/libpepflashplayer.so --ppapi-flash-ver-

sion=18.0.0.209

It is normal for Netflix to report a “Netflix Site Error” at first. Since the
ODROID-C1 is slower than a regular computer, it takes a bit longer to load the
page. Also, there is no video acceleration for chromium on the ODROID-C1, so
the video stutters slightly, and plays best at 720p resolution. For questions, com-
ments or suggestions, please visit the original thread at http://bit.ly/1EGr1Qn.

ODROID MAGAZINE 9

libpepflashplayer.so
libpepflashplayer.so
http://bit.ly/1EGr1Qn

ODROID-C1+
A BOARD FOR EVERYONE
by justin lee

ODROID-C1+

The ODROID-C1+ is esteemed to be the
most powerful low-cost single board com-
puter available, as well as being an extreme-

ly versatile device. Featuring a quad-core Amlogic
processor, advanced Mali GPU, and Gigabit Ethernet,
it can function as a home theater set-top box, a general
purpose computer for web browsing, gaming and social-
izing, a compact tool for college or office work, a prototyping
device for hardware tinkering, a controller for home automation,
a workstation for software development, and much more.

Some of the modern operating systems that run on the ODROID-C1+ are
Ubuntu, Android, Fedora, ARCHLinux, Debian, and OpenELEC, with thou-
sands of free open-source software packages available. The ODROID-C1+ is an
ARM device, which is the most widely used architecture for mobile devices and
embedded 32-bit computing. The ARM processor’s small size, reduced complexity
and low power consumption makes it very suitable for miniaturized devices such as
wearables and embedded controllers.

Next generation
At Hardkernel, we had received many requests for the following model of

ODROID-W. So, we started a survey for components for ODROID-W2. Find-
ing the right CPU was the key part of the project. Our target was a similar cost
and performance as the ODROID-W. The Amlogic S805 1.5Ghz quad core pro-
cessor outperforms the Broadcom BCM2835. We launched the ODROID-C1 in
December 2014 and, and the Raspberry Pi 2 was released in February 2015. The
ODROID-C1 was superseded by the ODROID-C1+ in August 2015.

Here are some comparisons to give you better understanding of ODROID-C1.
Both are Linux-friendly, $35 ARM® single-board computers for various applica-
tions and purposes.

Hardware comparison
The ODROID-C1 has many advantages over the Raspberry Pi. The processor

is an S805 1.5GHz Quad-core from Amlogic with 1GByte DDR3 RAM, Gigabit
Ethernet and infrared receiver. The size of this computer is still only 85 x 56 mm
with a weight of 40g, and offers silent operation, 2-3W average power usage, and
instant portability, since it fits in a shirt pocket.

ODROID MAGAZINE 10

ODROID-C1+

One powerful feature of the ODROID-C1 is the row of GPIO (general pur-
pose input/output) pins along the edge of the device. These pins are a physical
interface between the board and the outside world. The 40-pin interface header
includes SPI, I2C, UART, ADC and GPIO function.

An SD 3.01 standard compatible UHS-1 microSD card, as well as the faster
eMMC module, can be ordered with the ODROID-C1, and both arrive with
either an Ubuntu or Android operating system already installed. Insert the SD
card into the slot, connect a monitor, a keyboard, a mouse, Ethernet and power
cable, and that’s all you need to do to use the ODROID-C1! Browse the web, play
games, run office programs, edit photos, develop software, and watch videos right
away. The RTC, IR receiver and ADC features on the ODROID-C1 also offer
many options for building great DIY projects.

Specifications
amlogic arm® cortex®-a5(armv7) 1.5ghz quad core cpUs
mali™-450 mp2 gpU (Opengl eS 2.0/1.1 enabled for linux and android)
1gb ddr3 Sdram
gigabit ethernet
40pin gpIOs + 7pin I2S
emmc4.5 hS200 flash Storage slot / UhS-1 Sdr50 microSd card slot
USb 2.0 host x 4, USb OTg x 1 (power + data capable)
Infrared (Ir) receiver
Ubuntu or android OS

Improvements over the C1
Standard Type-a hdmI connector
Includes heat sink
I2S bus to support hifi audio add-on boards
cec function that doesn’t require the rTc backup battery
a power path from USb OTg port as well as dc barrel connector
Improved Sd card compatibility

Because of the above changes, the original C1 case and heatsink are not com-
patible. To download software for the C1+, please visit the wiki at http://bit.
ly/1KRKoGV, and the user manual may be downloaded from http://goo.gl/iWGYcz.
The C1+ is available for purchase for USD$37 at http://bit.ly/1Upx5yI.

Demonstration videos

hardware introduction:
https://youtu.be/LlxYBIVBRgk

performance overview
https://youtu.be/L2ZRW-AagSQ

Opengl eS2.0 with myahrS+ on Ubuntu
https://youtu.be/L2ZRW-AagSQ

Tinkering kit
https://youtu.be/zocRA1oNY60

lcd shield
https://youtu.be/SkbZLDl5zTU

Tekken 6 pSp emulation
https://youtu.be/p8yGS2SHqpA

ODROID MAGAZINE 11

http://bit.ly/1KRKoGV
http://bit.ly/1KRKoGV
http://goo.gl/iWGYcz
http://bit.ly/1Upx5yI
https://youtu.be/LlxYBIVBRgk
https://youtu.be/L2ZRW-AagSQ
https://youtu.be/L2ZRW-AagSQ
https://youtu.be/zocRA1oNY60
https://youtu.be/SkbZLDl5zTU
https://youtu.be/p8yGS2SHqpA

OS SPOTLIGHT

I am known on the ODROID forums for producing a pre-
built desktop image intended for entertainment called
ODROID GameStation Turbo. In addition to this image,

I also offer a dedicated server image based on Ubuntu 14.04
LTS. In this article, I want to go into detail about this server
image and what you can expect from it.

Downloading
Like all of my images, the server image is available on my

webspace hosted by Mauro from Hardkernel (@mdrjr) at
http://bit.ly/1N43pXs, where you can download the image
that matches your system. I currently offer images for the
ODROID-X, X2, U2/U3, XU3/XU4 and the C1/C1+.

Overview
The image is small and clean, offering a very small server

environment with no desktop. It is designed to be a pure
server environment. I included my repository on each im-
age, but only for automated kernel updates via apt-get com-
mands. Besides that, it offers a script collection that allows
you to easily install and configure server components, which
is detailed later in this article.

Differences from official image
My image was originally created from a Linaro server im-

age, therefore the standard login and password is “linaro” in-
stead of “odroid”, but since it’s very common to rename the
default user on a server system and set a new password for
that user, this shouldn’t be an issue. Besides that, I wanted
to increase the security of the system by fixing some issues
that are common with the images from HardKernel. For
example, if you use the UART to connect to your ODROID
on the HardKernel image, you are already logged in as root,
which means that no login or password is required and you,
or anyone else, has full access to your server and has the pow-
er to change, install, or delete whatever they want.

I also deactivated the option to login as root via password
to make it harder for attackers to get access to the server,

uBuNTu SERVER
14.04 LTS
AN OPTIMIzED SERVER ENVIRONMENT
FOR YOuR ODROID
by Tobias Schaaf

since they normally try to connect as “root” to get full access.
However, since this server image has no login for root, this
modification creates another layer of security. I also generate
new SSH keys on the first boot, so that not every server that
is based on my image has the same SSH host key files.

Another issue present in the Hardkernel image is the
method of waiting for network timeouts. The default Ubuntu
Server image waits nearly two minutes if there’s an issue with
the network during boot. This means the boot process can be
delayed cause the server is idling while waiting for network.
Since it’s not critical to wait for the LAN, I deactivated that
option in order to reduce the boot time significantly.

I also added a script that increases the partition size of the
rootfs system to the full size during the first boot. Therefore,
the image can be kept very small (around 1GB) which allows
for fast flashing, then later resizing of the partition the the
full size of the eMMC or SD card on boot. Another major
difference is the kernel updates via apt-get that I offer for
all ODROID boards, as well as the script collection that I
include with my server images.

Script collection
If you are logged into the image, either via SSH, UART

or directly with keyboard on your ODROID, you can type
“sudo odroid-server”, and it will bring up a menu that can

Startup screen of the script collection

ODROID MAGAZINE 12

http://bit.ly/1N43pXs

OS SPOTLIGHT

guide you through different server tasks, as shown in Figure
1. From this menu, you can select if you want to config-
ure the server itself or install and configure different services,
such as Samba Share, Samba4 Active Directory Domain,
OpenVPN server, and many other packages.

I created these scripts in order to make it easier to setup
new systems, especially for often used tasks. For instance, it’s
easy to change the password for users that exist on your sys-
tem, or even rename a user. As mentioned earlier, the default
user “linaro” should be changed to increase security. To do
so, go to “Server Maintenance” -> “Change username” and
change the user to anything you want. The home folder will
be renamed together with the user. The same method applies
if you want to change the password for the user.

I tried to make it easy for you to change basic settings
like the name of the server, or set up a static IP address for
your system, but there is more to it than that. If you want
to install a simple Samba share and exchange files over your
network, there is an easy way to install a Samba server and
add shared folders as well. If you’d like to set up the newest
OwnCloud server on your system, it’s just a few clicks away
with my server scripts.

These scripts are part of my git repository at http://bit.
ly/1ECywYQ and can be used on other images as well, but are
primarily intended for Ubuntu 14.04 LTS which address
some specifics that only exist in Ubuntu 14.04 LTS. When-
ever I have time, I try to work and improve the scripts or
implement new functions. The scripts are not perfect yet,
but I like to fix issues and improve it. This also means other
people are free to do pull requests, or ask for new features, or
help me figure out some bugs. I will probably restructure the
menu over time in order to make it easier to navigate.

Useful tips

• It’s best to change the default user and password to
something only you know to further increase security on the
system.

• These server images are not meant to run Kodi or similar
programs, nor to have a desktop to control them. These are
pure server images and should be handled as such. although
it’s possible to add a desktop and other things, it’s not recom-
mended, since there are no libmali.so blobs or framebuffer
drivers installed, such as armsoc or mali ddx.

• Ubuntu 14.04 LTS uses irqbalance, which is normally is
used to distribute Irq interrupts over multiple cores, rather
than let them always be handled by the first core. This should
improve I/O opts and other things. however, on Ubuntu 14.04,
irqbalance has a bug which causes it to use up 100% of avail-
able ram over a period of several days or weeks. Therefore,
you should either deactivate or remove this service, or create
a cron job that restarts the service once a day.

• It’s good practice to add an SSH certificate for the user
root for any computer that is allowed to connect directly as
root, rather than adding a password for “root”. That way,
even if the system is hosting services on the Internet, no
one can access the server as root with a password, but ths
server can still be managed from your local network from a
dedicated computer.

maintaining the server itself

different servers that you can install and manage

ODROID MAGAZINE 13

http://bit.ly/1ECywYQ
http://bit.ly/1ECywYQ
libMali.so

OS SPOTLIGHT

Although the Linux kernel has been extremely success-
ful, we are still waiting for a large scale deployment
of the Linux desktop. Most of the current desktop

deployments are on the x86 platform, and projects such as
WINE try to provide a glue layer that allows us to run Win-
dows applications on an x86 Linux desktop. Using Debian
on the x86 can reduce the software licensing cost, but a move
to an ARM based Linux PC can also reduce the hardware cost
as there many semiconductor manufacturers selling cheap
and reasonably powerful ARM SOC’s. Debian desktop soft-
ware running on an ARM based PC could provide a low cost
computing solution for the underdeveloped world. In fact,
many countries use Android tablets in their colleges as a part
of their e-learning program. Android has become extremely
successful, and fortunately is based on the same Linux kernel
used by the Linux desktop. Independent software developers
are also interested in writing applications for Android, which
has been a big problem for Linux desktops because of their
limited penetration

VOLKSPC
At VOLKSPC (http://www.volkspc.org) we have devel-

oped a solution to integrate both Android and Debian with
the following features:

• Full support for running Android applications.
• Multi-windowed Debian applications that work well with

the keyboard.
• Instantaneous switching between the Android and Debian

desktops.
• Quick launch of Android applications from the Debian

desktop.
• Users can install applications from both Google play and

the debian repository.

This unified distribution, based on Android KitKat and
Debian Jessie ARMHF, currently runs on the ODROID-C1.
Even though I frequently refer to the Debian desktop in this

uNIFIED ANDROID AND
DEBIAN DISTRIBuTION
THE BEST OF BOTH WORLDS
by Vasant Kanchan

document, this solution is applicable to other X-Windows
based distributions such as Fedora and Ubuntu.

Benefits of running
Android With Debian

android has many advantages such as:
• Large number of available applications and games.
• Very good support for touch interface.
• Hardware accelerated multi-media.
• Large number of ARM SOC’s with Android implementation.
• Runs on enhanced Linux kernel.

however there are some android limitations with used with
large displays:

• Each application uses the whole screen.
• Cannot view multiple applications at the same time and

cannot easily switch between them.
• No support for desktop style word processing, email, etc

with keyboard and mouse input.

Linux desktop distributions such as Debian have very
good support for legacy desktop-style applications such as
LibreOffice, the Firefox browser, and the Thunderbird email
client. These applications also work very well with keyboard
and mouse input.

a unified android and debian distribution would be a good
solution for some classes of devices or users:

• A large screen tablet with detachable keyboard such as
the asus Transformer. for this class of devices Windows 10
is too expensive and android is too limited.

• A solid-state cloud PC with attached keyboard and mouse.
• In underdeveloped economies, consumers may not have

access to multiple computing platforms. a single device
should meet all their computing needs. android by itself can-
not fulfill this need.

ODROID MAGAZINE 14

http://www.volkspc.org

OS SPOTLIGHT

Implementation Overview
Android and Debian desktop share the same kernel, so

despite the fact that the user space libraries are different, both
applications can run simultaneously. The biggest difficulty in
integrating the two systems is with the graphics technology.
Android uses SurfaceFlinger and Debian uses X-Windows for
drawing graphics.

Unified Android and Debian with
VNC

 A common approach to running Debian on Android is
to send X11 graphics to a VNC viewer running on android
(ref: http://whiteboard.ping.se/Android/Debian).

The debian distribution with its own set of libraries can run
in a chroot and not interfere with any android libraries. With
vnc, debian applications can redirect all graphics to android.
There are two problems with this approach:

• Graphics commands are sent through several layers of
software, resulting in poor performance.

• Some screen real estate is lost to the Android panel.

Although this is a good proof of concept, it is not an ac-

ceptable solution.

X Window System
The X Window System is a network-oriented windowing

system used by all Linux desktop distributions. The X server
controls the display ,and is responsible for the drawing of
on-screen graphics. Typical applications are X clients which
exchange messages with the X server via the X Window pro-
tocol. Applications are typically written through high level
toolkits such as GTK, QT, Tcl/TK, etc.

The Figure 2 shows an application communicating with the
X server in a Linux desktop environment. Most of the complex-
ity of X Windows is due to the client-server architecture. The
design aspects that make X Windows complex and slow are:

• Both the client and server have to buffer and format com-
mands and responses as per the x Window protocol.

• Synchronous and round-trip requests are inefficient.
• Frequent context switching between applications and the

x server degrade performance.
• Graphics rendering can only start after the X server starts

running.

There are efforts within the open source community to
move to new display server technologies such as Wayland
and MIR.

MicroXwin Graphics
MicroXwin implements graphics processing in the kernel

as a load module and provides a character driver interface to
the associated X11 library.

The advantages of this design are:
• Low latency and round trip.
• Minimal buffering of requests and responses.
• No context switch overhead.

figure 1 - android-debian

figure 2 - x Windows

figure 3 - microxWin

ODROID MAGAZINE 15

http://whiteboard.ping.se/Android/Debian

OS SPOTLIGHTANDROID GAMING

• Direct rendering of all graphics by the client.
• No changes required for existing Xlib applications.
• 2X faster than standard X-Windows.

Unified Android and Debian
with MicroXwin

With MicroXwin, Debian applications can write di-
rectly to the frame buffer without going through Android’s
SurfaceFlinger. This requires that both MicroXwin and
Android graphics co-exist and run simultaneously without
interfering with each other. In addition to providing Xlib
API support to Debian applications, the MicroXwin ker-
nel module also provides following features:

- monitors keyboard shortcuts (leftalt + leftmeta) and
facilitates switching between the android and debian dis-
plays.

- The state of the android graphics and debian graphics
is maintained.

- at any given instance, only debian or android occupies
the whole screen, and switching is instantaneous..

- applications are unaware of which desktop is currently
being displayed on the screen.

- provide a simple apI for switching between the android
and debian desktop.

Application performance with a unified distribution
will be similar to what is expected when they run under
their respective environments. However since many more
applications will be running after boot up, it will be neces-
sary to provide sufficient system memory.

performance of the unified distribution on the OdrOId-c1
This unified distribution https://www.youtube.com/

watch?v=USNISy17-YU has been ported to the ODROID-C1
board and a download link is available on the ODROID-
C1 general forum. We have ported the XFCE desktop that
is available on Jessie.

We used gtkperf to measure graphics performance on
both Ubuntu and our unified distribution.

On Ubuntu, gtkperf took about 43 seconds to com-
plete versus 12.62 second on our unified distribution - a 3X
speedup.

The Debian lxtask application reports 566MB of free
memory at a display resolution of 720P, and about 500MB
of free memory at 1080P. So there is a slight increase in
memory usage. If necessary, the user can exit completely
from the Debian XFCE desktop.

NEED SOMETHING TO DO
WHILE YOu’RE SICK?
EXTERMINATE MANKIND WHILE
YOu RECOVER WITH
PLAGuE INC.
by bruno doiche

The worst thing about
catching a cold or flu
is when you graduate

from “well, a couple of days
rest; I’ll enjoy the free time!”
to: “Netflix binged, Inter-
net fully browsed, ODROID forum totally read, now
what?” Have you ever wondered what would it be like
if you were patient zero of a plague that was bound to
end all of humanity? Now you can do your best to be
the worst thing ever to happen to human civilization
since the Black Plague!

https://play.google.com/store/apps/details?id=com.

miniclip.plagueinc&hl=en

now do you see what happens when you don’t wash your
hands after using the bathroom?

ODROID MAGAZINE 16

https://www.youtube.com/watch?v=USNISy17-YU
https://www.youtube.com/watch?v=USNISy17-YU
https://play.google.com/store/apps/details?id=com.miniclip.plagueinc&hl=en
https://play.google.com/store/apps/details?id=com.miniclip.plagueinc&hl=en

XU4 CLUSTER

I evaluated a set of ODROID-XU4/XU3 devices as an
embedded cluster platform for parallel computing with
OpenCL and MPI using Heterogeneous Multi-Processing

(HMP) Linux. As a software consultant, the purpose of this
evaluation was to add more tools to my toolbox so that I can
offer better service to my clients.

Project goals
I started with a few requirements in mind. I was look-

ing for a platform based on ARM Cortex-A9 CPU cores at
a minimum, paired with a GPU which could run Ubuntu
Unity desktop with hardware accelerated graphics, supporting
OpenGL, OpenCL and CUDA with floating point and vector
math hardware. I just didn’t want to run the cluster nodes in
headless mode. Having a popular desktop on each node was
and still is on my wish list. A WiFi interface would also be a
bonus so that I can evaluate wireless clusters.

Evaluations
At first, I considered platforms based on the Freescale i.MX6

Quad processor, which has four Cortex-A9 cores. I evaluated the
Wandboard Quad board which pairs a Vivante GC2000 GPU
with the i.MX6 CPU. It also includes a Broadcom BCM4329
WiFi interface. I had used a Wandboard Duo a few years before
with an earlier version of Ubuntu desktop running on it. Howev-
er, no matter what I tried, I just couldn’t get Ubuntu 14.04 Unity
desktop to run on the Wandboard Quad and detect my Samsung
SyncMaster BX2431 HDMI monitor at the time that I tried.

 To run Ubuntu 14.04 Unity desktop smoothly, I would
need a platform that supported the full desktop OpenGL, not
just OpenGLES. I also needed hardware acceleration for X-
Windows. I started considering platforms based on Samsung
Exynos 5 Octa which has four Cortex-A15 and four Cortex-A7
CPU cores as well as an integrated ARM Mali T628MP6 GPU.
I purchased a Samsung Chromebook II which ran ChromeOS
with graphics acceleration. The Chromebook has a built in
monitor, keyboard, track-pad, and WiFi. This seemed to be an
advantage in my case, considering the cost of the USB HDMI
KVM switches and HDMI monitors. Each Chromebook II

Xu4 CLuSTER
A THOROuGH LOOK AT SEVERAL
AVAILABLE OPTIONS FOR HIGH
PERFORMANCE COMPuTING
by alan mikhak

node would be self-sufficient. I put the Chromebook II in
developer mode and installed Ubuntu 14.04 but again couldn’t
get Unity desktop to run on it at that time.

 I then evaluated an Arndale Octa board which is also based
on the Exynos 5 Octa. Arndale Octa seemed promising be-
cause www.linaro.org listed recent support for it. Again, no
matter what I tried, I still couldn’t get Ubuntu 14.04 Unity
desktop to come up on the Arndale Octa board and detect my
Samsung HDMI monitor.

 I moved on to evaluating the ODROID-XU3 which is also
based on the Exynos 5 Octa. The Hardkernel website showed that
the Ubuntu MATE desktop was already running with smooth ac-
celeration. HMP support was also on the horizon in Ubuntu Linux
kernel. The ODROID-XU3 was the best match so far because it
actually booted into an Ubuntu graphical desktop with my Sam-
sung HDMI monitor. However, I decided to keep looking for a
platform that could run the Unity desktop which I was used to.

 I switched to evaluating the Nvidia Jetson TK1 develop-
ment kit based on the Nvidia Tegra K1 SoC which integrates
four ARM Cortex-A15 CPU cores and 192 Nvidia Kepler
GK20A CUDA GPU cores. The Jetson TK1 is actually the
first platform I evaluated that runs Ubuntu 14.04 Unity desk-
top smoothly with graphics acceleration. I then added a sec-
ond Jetson TK1 to bring up a two-node cluster for evaluating

a xU4 cluster being managed by an xU3 console

ODROID MAGAZINE 17

i.MX
i.MX
www.linaro.org

CUDA-aware MPI programs. The only missing requirement
was OpenCL. The Jetson TK1 doesn’t support OpenCL even
though the Nvidia Tegra K1 SoC does.

 To evaluate both CUDA and OpenCL on an MPI cluster,
I would need to get into custom boards based on the Tegra K1
SoC. Alternatively, I could bring up a second cluster for evaluat-
ing OpenCL with MPI and leave the evaluation of CUDA and
MPI to the Jetson TK1 cluster. Right about that time, I saw the
news announcing the ODROID-XU4 at about half the price of
the ODROID-XU3, Jetson TK1, and Arndale Octa. That’s how
I ended up with a five-node cluster of four ODROID-XU4s and
one ODROID-XU3, which is working well so far.

Final setup
Bringing up the cluster of four ODROID-XU4 boards was fair-

ly straight forward. I ordered the boards from www.ameriDroid.
com and some aluminum standoffs from www.pololu.com. Both
vendors delivered the components extremely fast, and everything
worked right out of the box. I didn’t have to return any boards at
all, which was a relief and a timesaver. I stacked the boards with
1.25” 4-40 thread M-F standoffs, using 0.25” standoffs for the bot-
tom of stack, and fastening the stack with 5/16” screws.

The XU4 boards share two ASUS VX238H HDMI moni-
tors and two pairs of USB keyboards and mice, alongside one
ODROID-XU3 and a cluster of Nvidia Jetson TK1 boards
through two Bytecc 4-port USB HDMI KVM switches, which
came with USB+HDMI cables and convenient infrared remote
controls. I purchased a powered USB hub in order to supply
power to one of the keyboards, a Corsair K70 gaming keyboard
with lights, without which my Microsoft mouse wouldn’t work
when connected to XU4 USB 2.0 port through a USB switch.
I initially tried using Bytecc 5-Port HDMI switches for sharing
the monitors while using separate USB switches for the mice
and keyboards. The caveat was that neither ASUS VX238H nor
Samsung SyncMaster BX2431 HDMI monitors were detected
correctly. So, I ditched that switching scheme in favor of using
Bytecc 4-port USB HDMI KVM switches.

I flashed the Ubuntu 15.04 image for XU3/XU4 boards
onto four 16GB Patriot microSD UHS-1 cards which I inserted
into microSD slot on XU4 boards. With the boot mode switch
set to boot from microSD, three boards came up to Ubuntu
MATE desktop. The fourth board also booted properly after I
replaced its Patriot microSD card with a fifth card. I confirmed
that all 8 cores were in use by Ubuntu in HMP mode.

Fans often turn on and off randomly, generating some noise
during operation. After shutting down Ubuntu and turning the
A/C power off, the red LED stays on, although unplugging the
HDMI cable turns the red LED off. The cluster is connected
through a NETGEAR GS-116 16-port Gigabit Ethernet switch.
I used a simple MPI program with MPICH to verify operation
of XU4 and XU3 as a cluster. Everything is working well so far.

XU4 CLUSTERXU4 CLOUDSHELLANDROID GAMING

SLAY THE DRAGON,
SAVE THE VILLAGE
SWORD OF XOLAN PROVES
THAT NO MATTER HOW HIGH DEF
OuR DISPLAYS GET,
WE WILL ALWAYS
LOVE PIXELS
by bruno doiche

One of my all time fa-
vourite games ever
was an arcade game

called Black Tiger, a clas-
sic Capcom platformer that
blended adventure with
some RPG elements, where you would look for coins
in order to get better items and progress in the game. I
love to emulate it whenever I can, and couldn’t be hap-
pier to stumble across this gem from a Turkish indie
game developer that managed to capture the thrill that
I felt when first playing it. It comes with the added
bonus of having excellent controller support!

https://play.google.com/store/apps/details?id=com.

Alper.SwordOfXolan&hl=en

platforming, check. runs on all OdrOIds, check. controller
support, check. awesome swashbuckling fun, check!

ODROID MAGAZINE 18

www.ameriDroid.com
www.ameriDroid.com
www.pololu.com
https://play.google.com/store/apps/details?id=com.Alper.SwordOfXolan&hl=en
https://play.google.com/store/apps/details?id=com.Alper.SwordOfXolan&hl=en

A lamp is nearly useless in the daytime. By itself, it does
not talk, cannot dance, and is boring. This is where I
try to help with my new project called Luci. Luci is

an autonomous lamp with a webcam, a high power LED in
the lampshade, and five servo motors. She is controlled by an
ODROID-U3. Once switched on, she looks around, checks
the environment for any sentient beings, and then does what
she wants. Check out her video at http://bit.ly/1hLVtOt.

LuCI, MY LAMP
A SuPERCOOL ROBOTIC COMPANION
POWERED BY AN ODROID-u3
by jochen alt

RObOTIC COMPANION

Mechanics
The riskiest part of the project is the mechanics, so I started with that. I bought a

desk lamp, measured the basic dimensions and tried to give it more childlike charac-
teristic by making the lampshade too big and the arms too short. TurboCAD helped
to model the lampshade and the hinges.

After having spent many hours in the basement and cutting the hinges out of
multi-layered birch wood, it turned out that the friction between arm and joint was
too high. So, I reconstructed it with ball bearings, went back to the basement, tried
again, and noticed that the springs needed different mounting points, changed that,
went back into the darkness and breathed in the fine dust again. Especially after
adding the ball bearings I was glad to have used TurboCAD, since this required four

ODROID MAGAZINE 19

http://bit.ly/1hLVtOt

slices per hinge with very precise drill holes.
I did not want to repeat that dusty experience

with the lampshade, so 3D printing became very
tempting, and I wanted to try it out anyway. I can’t
report too much on that, since I just gave the CAD
model to a 3D printer shop. The biggest challenge
of that step was to withstand their desperate at-
tempts to sell me a printer.

Hardware
I started with a BeagleBoard, but it became clear

soon that it is too slow for facial recognition. So I
ordered an ODROID-U3. Unfortunately, it does
not provide five PWM outputs for the servos, so I
needed a separate μC to produce the PWM signal
for the servos and the High Power LED. In ad-
dition, the ODROID is sensitive to voltage flaws,
so after having connected the servos to a separate
board with its own power supply, sudden resets
of the ODROID did not occur anymore. The
ODROID with the self-made Arduino shield was supposed to
be placed in the base housing of the lamp but, in the end, I did
not place it there, since I was wary of having a hot ODROID
under full load within a wooden box full of splints.

RObOTIC COMPANION

cad diagram of luci

hinge closeups

ODROID MAGAZINE 20

RObOTIC COMPANION

hinge explosion diagram

pcb closeups

Software
The program runs under Ubuntu using C++ with mul-

tiple threads in order to leverage most of the four cores.
The first thread grabs the image from the webcam; a second
thread takes these images and tries to find all faces currently
looking at Luci. The result is a list of faces, and Luci focuses
on the biggest one.

A third thread runs the trajectory planning algorithm,
which produces a sequence of points and orientations in
3-dimensional space generated by certain patterns. When
no face is detected, Luci runs a search pattern looking for
faces by sampling the environment until a face has been
found. Then, Luci carries out a pattern simulating real
emotions like nodding without knowing why, pretending to
listen, coming closer or retreating depending on the move-
ments of the face. It’s like in real life at home.

Trajectory Planning
The implementation of the trajectory patterns is rather

simple: whenever Luci runs short of queued points to be
approached, she invokes a pattern point generator which is
parameterized with the current pattern. There, the next point
of a predefined sequence of movements is generated. In case of
the pattern that interacts with a face, this is:

move back quickly (surprise, recognizing a familiar face)
move slowly towards the face (first shy contact)
Watch face from various angles (closer inspection)
move down and watch the face from a frog’s perspective

(looking cute)
go up again and nod (pretending an agreement)

The ideas were borrowed from Eliza (http://bit.ly/1Co34ab),
but coded in a robot instead of Emacs. Some patterns with
special movements are hard-coded. For example, when Luci
pushes a box from the table or looks guilty for watching dirty
pictures (1:34 and 2:00 in the video).

Finally, the main loop takes the previous and next point

of the trajectory and interpolates all intermediate points with
60Hz using a cubic Bézier curve to smooth the movement.
The support points of the Bézier curve are geometrically de-
rived from the trajectory’s prevprev (A) and nextnext (D) point
by the rule shown in the picture: Since any polynomial with
higher grade tends to oscillate when support points are too far
away, I kept them in a constant distance of |BC|/3 to B resp.
C.

Mass inertia
The last step also computes the lampshade’s acceleration,

since the Bézier curve does not take into account that, in total,
400 grams are moved. As a consequence, I limited the mass ac-
celeration by ½ g to prevent flapping caused by the elastic con-
struction and the backlash of the servo motors. This is done by
checking whether the next position can be reached without ac-
celerating above the limit. If not, the new position is computed
by taking the current position and adding the maximum dis-

ODROID MAGAZINE 21

http://bit.ly/1Co34ab

tance (on the basis of the current speed and maximum accelera-
tion capped by ½ g) along the current speed vector. In the end,
the result curve leaves the Bézier curve where it is too sharp. Pro-
fessional robots do this on the basis of fully modelled inertia, but
at this point the methematics tired me out, so I did not try that.

Kinematics
The output of all this is a 3D point which is passed to the

kinematics module that computes the angles of all servo mo-
tors. This part is textbook robotics, it works as follows:

The algorithm starts with the point / orientation (=tensor)
of the head’s centre A. First step is to compute position B and
C out of the head orientation. This can be done by comput-
ing the point C relative to the position of A (C.point-A.point),
rotating that by the orientation of the head (A.rotation), and
adding it to the point A:

C := A.point + rotate(C.point-A.point, A.rotation)

Then, the base angle at F, which is the servo angle, can be
computed by:

RObOTIC COMPANION

Software structure

bezier support points diagram

acceleration limit diagram

F.angle := atan2(A.point.z, A.point.x)

The angles at E and D are computed by considering the
triangle EDC and computing its angles with the cosine law:

E.angle := 90° + acos(distance(E,D)2 +

 distance(E,C) 2 – distance(D,C)) /

 (2*distance(E,D) * distance(E,C))

The angle at D is computed in the same manner

D.angle := acos(distance(E,D)2 +

 distance(D,C) 2 – distance(E,C)) /

 (2*distance(E,D) * distance(D,C))

The ,ast servo is C, which angle is the orientation of the
head around the z-axis minus the angle of CD to the horizon:

ODROID MAGAZINE 22

C.point-A.point
A.rotation
A.point
C.point-A.point
A.rotation
F.angle
A.point
A.point
E.angle
D.angle

C.angle := A.rotation.z + 270° -

 acos(C.point.y-E.point.y / C.distance(E))

These angles are passed via I2C to the ATmega, where the
Arduino library generates a 60Hz PWM signal for the servos.
In the beginning, I was concerned about the high CPU use
of 3D kinematics, and tried to implement it with fixed point
integers and interpolated trigonometry, since I was used to a
24MHz ATmega. What a surprise it was when I recognized
that using floats and sin/cos with no caching or table lookup
had no noticeable performance impact.

Facial recognition
The facial recognition module uses OpenCV 3.0 with Haar

cascade classifiers. Although the newer LBP cascades are signif-
icantly faster, they had many more false positives, so I thought
10 fps with Haar cascades is sufficient. From the 2D position
of the detected face, the 3D position is estimated assuming a
standard face size, which worked surprisingly well. Later on,
Luci’s trajectory planning module moves towards the face if it
is very close, in order to simulate real interest, then moves away
if it violates the European intimacy distance. Tracking a face
in real time was a bit tricky, since grabbing images from the
video stream and facial recognition has a latency of 250ms .
So, the computation of the face’s 3D position needs to be done
relatively to the webcam’s position 250ms ago. Consequently,
when Luci moves quickly, this does not work well when the
image becomes blurry, so the orientation of the head is directed
towards the last stable face position until Luci moves slower
and following the face in real time becomes possible again.

The trajectory planning module computes the next two

RObOTIC COMPANION

Kinematics diagram

points in advance for calculating the Bézier curve.
Therefore, the detected face position is not valid any-
more when the Kinematics module is sending a posi-
tion to the servos a couple of seconds afterwards. The
solution is to permanently compute the current 3D
position and send that to the Kinematics module, in
order to change the head orientation towards the face
in real-time.

Conclusions
Similar to my experience with my work at my job,

everything just took longer than expected. Surprising-
ly, the software and hardware worked out quickly, but
getting the construction and the mechanics in a shape
that worked without being too heavy, with properly
mounted servos and springs, took me a couple of week-
ends in the basement. The mathematics were definitely
challenging. Getting facial recognition done was the

simplest part, but gets the most ahhs and ohhs. The guys from
OpenCV did a pretty good job at making this really easy. The
most fun part was the trajectory planning, such as how Luci
should move when the webcam recognizes a face moving.

I have been thinking of enhancing Luci with a microphone
and a beat detection module allowing her doing cool moves
according to the music. My first thought was that it wouldn’t
be difficult, but rhythm detection seems to be extremely tricky.

Parts List
OdrOId-U3 running Ubuntu 14.04.02 with the latest g++

compiler
Software uses Opencv 3.0 and boost 1.57 as base libraries
aTmega 328 running c++ firmware based on arduino li-

brary for Servos and I2c
Servos from hitec: 77b (for turning base & nicking the

head), 7954Sh (lower strut, strong & expensive), 7775mg
(upper strut, also expensive), 5065mg (turn head inside the
lampshade)

3d print of a Turbocad model made of abS
Springs from my local dealer, 20 ball bearings, 0.5m2 multi-

layered birch, and several brass axis
Source code on http://bit.ly/1iq9amT

Other projects
Two years ago, I was bored by using Excel too much at the

office. Since I’m a professional software architect, I started
learning electronics and embedded technology, and made my
first robot, which can be viewed at http://bit.ly/1VHg7OX.
His name is Paul, and his main purpose is to balance on a ball.

ODROID MAGAZINE 23

C.angle
A.rotation
C.point.y-E.point
C.distance
http://bit.ly/1iq9amT
http://bit.ly/1VHg7OX

Students can use this device with ei-
ther a traditional piano or a digital piano.

Arjuna Function
The function of Arjuna is straight-

forward: the MPU receives data from
the instrument, processes that data, and
issues a command to the Hand Modules
to guide the student. The MPU and
MIDI keyboard are connected to either
the keyboard’s USB cable, or to the key-
board’s MIDI port by using a MIDI-to-
USB Converter. Therefore all keyboards
and digital pianos with a USB-MIDI or
a standard MIDI port are compatible
with this device.

For the MPU, we choose the
ODROID-C1 because of its flex-
ibility, power, and ease of use. A trans-
ceiver module based on the Nordic
nRF24L01+ IC is used to wirelessly
connect the MPU to the Hand Mod-
ules. The transceiver is connected to the
ODROID-C1 through the SPI inter-
face. MPU control is performed by us-
ing a keypad, which is interfaced to the
ODROID-C1 through its General Pur-
pose Input / Output (GPIO). The code
for the SPI and GPIO I/O was written
to use the WiringPi library.

Arjuna Hand Module
The Hand Module is a collection of

five 3D printed rings, one for each fin-
ger, with two vibration motors on each
ring. The vibration motors are placed on
both the left and right side of each ring.
This is used for guiding the student to

Many people would love to learn
how to play the piano, but be-
coming proficient on this 88

key instrument is quite difficult. Many
people have a problem with recognizing
and understanding the scale of a note
relative to the key’s position. Another
problem occurs when the player at-
tempts to balance the fingers of the right
and the left hand while playing different
notes. In view of these common learn-
ing problems, we had an idea to create
a device that would help piano students
with learning some of the basic skills of
piano playing in a simple fashion.

In this article, we are introducing ‘Ar-
juna’, a device that will assist the student
by guiding each finger, of both hands, to
the correct note in the key which is be-
ing played.

Arjuna Components
Arjuna consists of two primary com-

ponents, the MPU (MIDI Processing
Unit), and the Hand Module.

Here are the components for both
parts:

mIdI processing Unit
- OdrOId-c1
- nrf24l01+ Transceiver module
- Keypad

hand module
- arduino pro micro
- nrf24l01+ Transceiver module
- Small vibration motors
- 1 cell lipo battery
- 5v Step-up regulator
- 3d printed ring
- 3d printed case

ARjuNA
AN ODROID-BASED PIANO TEACHING DEVICE
by Ilham Imaduddin

ARJUNA

figure 1 - OdrOId-c1 in a clear case

figure 2 - OdrOId-c1 with keypad

ODROID MAGAZINE 24

Arjuna has two modes: Listen Mode
and Evaluation Mode. Both modes re-
quire two sets of data, one for the song,
and one for the fingering data. Songs
are stored in a MIDI file (.mid), which
could be found at several Internet sites,
or can even be your own song made with
any MIDI song creator (and there a lot
of them out there). The fingering data
can be created from the MIDI song file
with software we call MidiFGR. In this
software, you can manually set the cor-
rect finger to play for each note, and it
will then generate a new file. This file is
needed for guiding the student in play-
ing the correct key, with the correct fin-
ger.

In Listen Mode, the MPU will read

the position of the key that should be
pressed. We used the smallest vibration
motors that we could find in order to
minimize any discomfort to the student
while playing with this device.

The vibration motors are controlled
by a microcontroller. We choose to use
the Arduino Pro Micro because of its
small size, and for the number of librar-
ies available to simplify software devel-
opment. Another transceiver module
is used to connect the hand modules
with the ODROID-C1 MPU wirelessly.
All components of the Hand Module
are powered by a single cell LiPo bat-
tery, boosted with a 5V step-up voltage
regulator. We use a 180 mAh battery,
which is small enough to fit in the small
case, yet has enough capacity to supply
the hand module for a reasonably usable
time. All components except for the
rings are packaged in a 3D printed case.
A strap is attached to the case so that stu-
dents can use the hand module on their
wrist, just like a watch. Arjuna uses two
hand modules, one for each hand.

How Arjuna Works

Arjuna communicates with keyboards
by using the MIDI (Musical Instrument
Digital Interface) protocol, a protocol
which enables digital musical instru-
ments, computers, and other supported
devices to communicate with each other.
With this protocol, the MPU can receive
data, such as notes and velocity from the
keyboard, while the student is playing.

ARJUNA

figure 4 - hands module top view

the chosen song, and play the song thru
the keyboard. At the same time, the
MPU will send commands to the hand
modules, which will vibrate the cor-
rect finger for every notes that should
be played. In this way, the student can
learn the proper fingering skill.

In Evaluation Mode, the student can
play the keyboard, and receive guidance.
While the student is playing, the MPU
evaluates the data received from the key-
board by comparing it with the song file.
And when the student presses the wrong
piano key, the MPU will detect this and
send a command to the hand module.
This command will then vibrate the
motor either on the left, or on the right
side of the correct finger. The side will
depend on which position the key that
should be pressed is located, relative to
the incorrectly pressed key. For exam-
ple: If the correct key is located to the
right of the wrongly pressed key, the left
motor will vibrate. On the other hand,
if the correct key is located to the left of
the wrongly pressed key, the right motor
will vibrate. Of course this behavior can
be reversed in the MPU settings.

About The Arjuna
Project

We are a three person team from
Gadjah Mada University, Indonesia.
Originally, this project was dedicated to
helping the visually impaired in learning
how to play the piano. Learning to play
the piano is not easy for anyone, but for
someone with limited vision capability,
it is much more difficult. This device
was created to introduce the visually im-
paired to some of the basic piano skills
without the need for sight. With Arju-
na, we hope to open a new window for
the visually impaired, a window into the
beautiful world of music.

Arjuna is open source. Currently we
are rebuilding our public repository for
easier installation, and it is available at
http://github.com/ArjunaElins/Arjuna.
Every source such as schematics, 3D
files, and codes, are stored here.

figure 3- promicro unit

figure 5 - hands with modules attached

figure 6 - playing the keyboard

ODROID MAGAZINE 25

http://github.com/ArjunaElins/Arjuna

You can never have enough stor-
age. We always dream of getting
a bigger storage unit, such as a

hard drive, or like that time when you
were counting your pennies and decided
to get a smaller eMMC for your first
ODROID only to find out that what
you want now is space: much more
space. I’m talking to you, XBMC users!

At the most basic level, when you
needed a bigger volume than your previ-
ous one, you could insert a new and larg-
er disk on your machine, format it, copy
your data to it and just be happy, which
is simple as we have been taught from
the beginning. It is what you do regu-
larly, as we are nothing less than fond of
having, in most cases, a 1TB USB drive
plugged into our ODROIDs.

However, if you stop to think about
it, you just committed an entire terabyte
of data for a single purpose. Worry no
more, I am here to teach you can do a
lot more with your drive. From now on,
you won’t need to use all of your space
on a single file system, or keep trying
to guess the best partition scheme, or
worse, reformat the disk, change the par-
tition scheme and reinstall everything
just because you bought a new disk.

First of all, backup your files. I know
this may sound obvious, but most of us
don’t do a regular backup, right? We will
be messing with space allocation, parti-
tions, and file systems. So, even if you

LOGICAL VOLuME
MANAGEMENT BASICS
WORK DIFFERENTLY WITH YOuR
DISK SPACE FROM NOW ON
by david gabriel

LVM

don’t have bad fingers where everything
you touch just blows up, it is always a
good idea to just relax and know that if
you arrive at the moment where you say
“Whoops, where is all my data,” you can
say afterwards, “No problem, I have it all
on my backup”.

To proceed with these steps, you
will need some free space. It can be any
blank drive that you might have, or that
old partition that you don’t use anymore.
All you need is a logical device on which
to save your data.

Installation
That is the easy part. You just need to

install lvm on your system:

$ sudo apt-get install lvm2

Configuration
Here is where the magic happens. If

you have never heard of LVM before,
you should know that the volumes are
divided into physical volumes, volume
groups and logical volumes. Physical
volumes are your actual disk partitions.
Volume groups are where all of your raw
space is located, and logical volumes
are equivalent to the normal partitions
that you are used to. So, let’s create our
physical volume first. To do that, type
the following into a Terminal window,
where /dev/sda1 is the partition you
want to “format” as LVM. This makes it

available for use on our new LVM.

$ pvcreate /dev/sda1

Then, we create the volume group,
where rootvg is just a label you give to
the volume group, and /dev/sd1 is the
physical volume we just created.

$ vgcreate rootvg /dev/sda1

By now, you can see the volume
group created. Just type:

$ vgs(information)

or

$ vgdisplay(attributes)

Now we have to create logical vol-
umes so that we can use the space:

$ lvcreate -L 10G -n homelv

This will create a new logical vol-
ume with 10 gigabytes named homelv.
Note that this will create a new device
under /dev label dm-0, which will in-
ternally point to the actual physical disk
/dev/sda. It also creates a link under /
dev/mapper/rootvg-homelv to the /dev/
dm-0 so that you won’t have to remem-
ber numbers in the future. To check the
status of the logical partitions, type:

ODROID MAGAZINE 26

LVM

need a new file system in order to install
an application. However, you realize
that you gave all the space that you had
left on the volume group to the homelv.
What now? Just add a new partition to
it:

$ vgextend rootvg /dev/sda2

You can add as many partitions/disks
as you want to the volume group in or-
der to create a big pool of free space. Af-
ter that, just repeat the steps to create/
extent logical volumes and file systems
as you wish.

Now you know how to make the ex-
perience of creating partitioning schemes
a lot easier. One thing to note is that you
can do this with all of your file systems.
Just create a temporary mount point,
move all of your data there, and then ad-
just /etc/fstab to the right devices. It is
important to note that you can’t tamper
with /media/boot, since that is where
the bootloader looks for the first files in
order to send them to RAM and actu-
ally boot the system. All of this happens
long before the lvm services are initiated,
so it will make your system unbootable
if you do so, so be careful.

These are the basics to set up LVM
on your system. There is a lot more that
you can do with it, but this should be
enough to start experimenting with it
and discovering all of its possibilities.

$ lvs(information)

or

$ lvdisplay(attributes)

From now on you can proceed just
like any other method. Create a new
filesystem and mount it in order to start
saving data to it. Remember to use the
device created previously:

$ mkfs -t ext4 /dev/mapper/root-

vg-homelv

$ mount /dev/mapper/rootvg-homelv

/home

Now you have your disk up and run-
ning with LVM. But you will only see
the difference from LVM to normal par-
tition when you need to change it.

After having been set up LVM for
some time and having a lot of users log-
ging and saving their files under /home
directory, it will eventually get full, un-
less you increase it. How? First, un-
mount your file system:

$ umount /home

Increase the logical volume first:

$ lvextend -L +10G /dev/mapper/

rootvg-homelv

This will give you an extra 10 giga-
bytes on the logical volume. However,
we still have to increase the file system to
match with the logical volume. You can
do that with:

$ e2fsck -f /dev/mapper/rootvg-

homelv

$ resize2fs /dev/mapper/rootvg-

homelv

The first command will check for any
inconsistencies on the file system, and
the second will resize it with new logical
volume size. After some time, you also

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

ODROID MAGAZINE 27

http://www.reddit.com/r/odroid

This article describes how to use the Qt5 programming
language and the Qt5 Developer’s Dream image in or-
der to create a Single Application User Interface. This

is helpful for individuals building kiosks, media players, medi-
cal equipment, and other embedded Linux systems. We will
quickly jump into creating a simple Qt5 application, and then
learn how to configure the session to run the application on
startup.

Getting started
The first thing is to download and flash the latest Qt5 De-

veloper’s Dream image to your SD card or eMMC module.
Download links for the image may be downloaded from http://
bit.ly/1PMDwKP.

Sample application
After booting into the image, we can now create our first

Qt5 application! Open Qt Creator from the application draw-
er at the top left of the Lubuntu desktop environment by se-
lecting Menu -> Programming -> QtCreator. After QtCreator
launches, choose File -> New File or Project from the action

QT5
DEVELOPMENT
BuILDING A SINGLE APPLICATION
uSER INTERFACE
by christopher dean

QT5

figure 1 - qt5 developer’s dream desktop

figure 3 - naming the project

figure 2 - creating a new project

figure 4 - choosing the desktop kit

ODROID MAGAZINE 28

http://bit.ly/1PMDwKP
http://bit.ly/1PMDwKP

QT5

figure 5 - changing the text element to “blinky for OdrOId”

figure 6 - cloning the qgpIO project

figure 7 - adding the qgpIO class to the project

figure 8 - modifying the qgpIO class

figure 9 - modifying the main.qml file

the C++, create a QGpio element and set the ID to gpio200
and the number to “200”. Next, create the function callback
that will be invoked when the component is complete. In the
function, set the GPIO direction to Out, set the edge to Fall-
ing, set active_low to false, and the value to false. Then, in the
MouseArea object, replace the onClicked function statements
to simple toggle the GPIO value:

gpio200.value = !gpio200.value;

Run the program and click on the center, then observe the
value of GPIO 200 changing by typing the following com-
mand into a Terminal window:

bar, then choose Qt Quick Application. Next, give the project
a name and choose the directory, and configure the Qt5 project
using the “Desktop” kit.

Continue through the dialogs until the project is created.
Then, under the projects dock on the left, navigate and open
Resources -> qml.qrc-> / -> main.qml. After opening the file,
change the text inside the Text element to from “Hello World”
to “Blinky For ODROID”. Then, build and run the project
by pressing Ctrl + R. After clicking the application to close it,
open a terminal and navigate to the projects directory. At the
top of the project directory, run the following command in
order to clone the QGPIO class:

$ git clone http://github.com/Tpimp/qgpio.git

Go back to the QtCreator application and right-click
“blinky-ODROID” in the project dock, select “Add Existing
Directory…” from the context menu, then choose the directo-
ries as shown in Figure 7. After adding the directory from the
projects dock, navigate and open Sources -> main.cpp. Alter
it to look like Figure 8. Note that this step is related to using
QGPIO, not writing a general Qt5 application.

Next, we can make the “Blinky” part of the application. Re-
open the main.qml file for editing.

After importing the com.embedded.io module defined in

ODROID MAGAZINE 29

main.qml
gpio200.value
gpio200.value
qml.qrc
main.qml
http://github.com/Tpimp/qgpio.git
main.cpp
main.qml
com.embedded.io

Create a desktop configuration
There are many ways to configure X11 to startup with just

a single application. Technically, we should set the default
Desktop Environment to be “Blinky” instead of Lubuntu and
remove the other option to ensure the user boots only into
“Blinky”. However, creating the desktop configuration file al-
lows us to switch back and forth between testing our appli-
cation and the development environment. Create a blinky.
desktop Xsession configuration file in the /usr/share/xsessions
directory as shown in Figure 13. The next step is to compile
the blinky-ODROID application and place it into /usr/bin/.
However, if we run blinky-ODROID in its current form, we
cannot logout, which happens on the program exit. Before
testing the Blinky desktop environment, we should make some
changes.

Adding features
First, we need to add some code to make our blinky dem-

onstration work automatically, as well as manually. First, add
the width and height to match your current resolution, then
add the flasher button, which is simply a rectangle with an-
other MouseArea in it. The mouse click will then start and
stop a timer, which will be defined in main.qml, as shown in
Figure 14.

figure 10 - checking the value of gpIO 200

figure 11 - blinky-OdrOId wiring diagram

figure 12 - blinky-OdrOId wiring example

figure 13 - example blink.desktop xsession configuration file

figures 14 and 15 - blinky-OdrOId interface code

QT5

$ cat /sys/class/gpio/gpio200/value

Now you are ready to blink! Connect a low amperage LED
to pin 200 and ground, as shown in Figure 3. If you do not
have a low amperage LED, use a resistor or a transistor with a
separate power source. The scope of LEDs and GPIO voltage
are too large for this article, but make sure not to overdraw
your GPIO port with a big LED! Wire your LED, then run
the application. The program should then flash the LED when
clicking in the center. The next step is making the Blinky ap-
plication our startup X11 application, which definitely is an
overly simple task for an ODROID, but is fun for demonstra-
tion purposes.

ODROID MAGAZINE 30

blinky.desktop
blinky.desktop
main.qml
blink.desktop

figure 16 - building the blinky-OdrOId binary

figure 17 - copying the blink-OdrOId binary to /usr/bin

figure 18 - Selecting the blinky desktop environment using lightdm

QT5

build it, install it by copying the executable to the /usr/bin
directory:

$ sudo cp blinky-ODROID /usr/bin/blinky-ODROID

Testing Blinky
Testing is very easy after creating the xsession configuration

file. First, log out of the Lubuntu session with the normal log-
out button. You should be back at the LightDM screen wait-
ing to login. At the top right, click the icon in order to open
the Desktop Environment list, and choose “Blinky”. Then, log
in with the normal ODROID/ODROID credentials. If all
went well, you should see the blinky-ODROID example ap-
pear on the screen. This was a very simple project, but you can
use it to build very complex desktop environments. The largest
drawback is the lack of a WiFi manager and other convenient
settings dialogs.

Further reading
If you want to learn more about Qt5 or building desktop

environments, here are some links:

Desktop Environments: http://bit.ly/1MyywH5
Embedded Linux: http://bit.ly/1LMrksN
Qt5 Desktop Services: http://bit.ly/1fWjtxk
Plasma 5 Desktop Environment: http://bit.ly/1EAUtax

The logic is that if the timer is not running, then we start
it, else we stop it. First, give the rectangle a height, a width,
and a color. Add text to the button and anchor it to a location
on the screen. Below that, create the “flasher timer” and give
it an interval of 500ms, which is equivalent to half of a second.
The timer is then set to repeat, and an “onTriggered” callback
is created, which states “while running, toggle GPIO 200 every
half second.”

Finally, add an exit button, which is very similar to the
flasher button, but colored red and located in the bottom right.
Also, instead of toggling the timer, the exit button will close the
application. If this was a real replacement for the desktop envi-
ronment, we would shut down instead of quit. Quitting brings
you back to the LightDM screen in order to choose where to
go next.

Creating the binary
Until now, QtCreator has likely been performing a shadow

build and operating in “debug” mode. When deploying the
application, we want to build for “release”. Open a Terminal
window and navigate to the project directory. Once in the
directory, run the following commands:

$ qmake –config release blinky-ODROID.pro

$ make –j4

It should build without any issues. If you encounter errors,
download the source from http://bit.ly/1KsPX0z. After you

ODROID MAGAZINE 31

http://bit.ly/1MyywH5
http://bit.ly/1LMrksN
http://bit.ly/1fWjtxk%0D
http://bit.ly/1EAUtax
blinky-ODROID.pro
http://bit.ly/1KsPX0z

Install Lubuntu
Install latest C1+ image on to the eMMC card. Attach the

eMMC card to the C1+. With the VU display attached, boot
up the system. Run the ODROID Utility program and set
the display resolution to say 800p. Reboot, then expand the
installation partition to use the entire eMMC by selecting the
“Resize your root partition” option. Reboot and re-run the
ODROID Utility again, configuring and updating all remain-
ing relevant aspects of the system, rebooting afterward. Ensure
you are always logged in as the default “odroid” user, unless
otherwise specified. For the most recent images, you would
need to run the following commands in order to update the

About a year ago, Samsung introduced a secure open-
cloud based data exchange platform, called Samsung
Architecture Multimodal Interactions IO (SAMIIO).

Using this platform, one can develop applications and services
utilizing simple open APIs and SDKs to send, receive and visu-
ally examine data of diverse types. These applications can writ-
ten using languages such as Python, Ruby, Javascript, and PHP.

Through a real-world example, this article illustrates the
simplicity of the SAMIIO platform, by using an ODROID-
C1+ and a Python application in order to publish weather data
collected through an ODROID-SHOW and an ODROID
Weather Board.

Requirements
•	 An ODROID-C1+. Although this article utilizes a C1+,

the technique can apply to any ODROID device that
is compatible with the ODROID-SHOW and Weather
Board.

•	 ODROID-SHOW & Weather Board
•	 C1+ accessories such as an HDMI cable, CAT 5E+ eth-

ernet cable or WIFI 3 adapter, Bluetooth adapter mod-
ule 2 (BT 4.0+), recommended PSU, RTC battery, and
ODROID-VU or 3.2” Touchscreen

•	 A 16GB+ eMMC 5.0 card with latest C1+ specific
Lubuntu desktop image and/or an 16GB+ Class 10 Mi-
croSD with an SDCard reader/writer

•	 A network where the device has access to the internet and
the ODROID forums

•	 Networked access to the C1+ via utilities like PuTTY,
FileZilla, TightVNC Viewer (MS Windows 7+), terminal
(Mac, linux), etc., from a testing desktop

System setup
The setup is shown in Figure 1.

SAMIIO
EASILY BuILD
POWERFuL I/O
APPLICATIONS
by venkat bommakanti

SAMIIO

figure 1: c1+ setup for SamIIO

ODROID MAGAZINE 32

Ensure that the weather_board.ino
sketch file is present at ~/zBU/sami/
ODROID-SHOW/firmware/weather_
board/weather_board.ino

Create an empty patch file called
weather_board-ino-changes, in the cur-
rent directory, copy the following con-
tents and save it:

20c20

< const char version[] = “v1.3”;

> const char version[] = “v1.4-

vb”;

74c74

< tft.setCursor(250,

200);

> tft.setCursor(200,

200);

88,89c88,89

< tft.println(“Temp :

“);

< tft.

println(“Humidity :”);

> tft.println(“ Temp:

“);

> tft.println(“ Hu-

midity:”);

94,96c94,96

< tft.println(“UV In-

dex : “);

< tft.

println(“Visible :”);

< tft.println(“IR

:”);

> tft.println(“ UV

Index: “);

> tft.println(“ Vis-

ible:”);

> tft.println(“

IR:”);

101,103c101,103

< tft.println(“Temp :

“);

< tft.

println(“Pressure :”);

< tft.

system and kernel packages, which may
be outdated on the pre-built image:

$ sudo apt-get autoremove &&

 sudo apt-get update

$ sudo apt-get dist-upgrade

$ sudo apt-get install \

 linux-image-c1

The last command fetches the latest
C1+ kernel, just in case it was held back.
Shutdown the device, then attach all the
accessories and cables to the C1+, in-
cluding the SHOW and Weather Board
accessories. Reboot. Check the USB
port associated with the ODROID-
Show with the following command:

$ ls -lsa /dev/ttyUSB*

0 crw-rw---- 1 root dialout 188,

0 Aug 12 10:25 /dev/ttyUSB0

Check the system version from a ter-
minal to ensure you have the latest (as of
this writing):

$ uname -a

Linux c1-1 3.10.80-122 #1 SMP

PREEMPT Mon Aug 10 20:27:04 BRT

2015 armv7l armv7l armv7l GNU/

Linux

Update Weather
Board sketch

While the weather board sketch is not
directly needed to update the SAMIIO
website with the weather data, it is useful
to visually validate the accuracy of the
data being submitted. Shown below are
the steps to upload a modified sketch,
that make the presented data well orga-
nized, so one can quickly find the data
being submitted. Install the Arduino
IDE for C1+, if not already present.

$ sudo apt-get install arduino

$ cd ~ && mkdir zBU && cd zBU &&

mkdir sami && cd sami

$ git clone https://github.com/

hardkernel/ODROID-SHOW.git

$ cd ODROID-SHOW/weather_board

SAMIIO

println(“Altitude :”);

> tft.println(“ Temp:

“);

> tft.println(“ Pres-

sure:”);

> tft.println(“ Alti-

tude:”);

246c246

< tft.setCharCursor(7, 11);

> tft.setCharCursor(11, 11);

248c248

< tft.println(“ *C

“);

> tft.println(“ ‘C

“);

264c264

< tft.setCharCursor(7, 2);

> tft.setCharCursor(11, 2);

266c266

< tft.println(“ *C

“);

> tft.println(“ ‘C”);

282c282

< tft.setCharCursor(10, 7);

> tft.setCharCursor(11, 7);

287c287

< tft.setCharCursor(5, 8);

> tft.setCharCursor(11, 8);

Update the sketch with this patch

figure 2: launch arduino Ide

ODROID MAGAZINE 33

weather_board.ino
weather_board.ino
tft.setCursor
tft.setCursor
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
tft.println
https://github.com/hardkernel/ODROID-SHOW.git
https://github.com/hardkernel/ODROID-SHOW.git
tft.println
tft.println
tft.println
tft.println
tft.setCharCursor
tft.setCharCursor
tft.println
tft.println
tft.setCharCursor
tft.setCharCursor
tft.println
tft.println
tft.setCharCursor
tft.setCharCursor
tft.setCharCursor
tft.setCharCursor

$ patch -input weather_board.ino patch.txt

To add the proper libraries, Select the Sketch → Import Li-
brary → Add Library menu options and point it to the ~/zBU/
sami/ODROID-SHOW/libraries folder as shown in Figure 4.
Open the sketch using the File → Open menu items as shown
in Figure 5.

The sketch (code) should appear in the window. The jump-
er on the ODROID-SHOW (near the Reset button) must be
installed. Also, select the serial port using the Tools → Se-
rial Port → /dev/ttyUSB0 menu items. Upload the sketch by
clicking the Right Arrow circular icon. The upload progress
will be visible as shown in Figure 6.

You should start observing the ODROID-SHOW display-
ing the weather data. You can also check to see if you can ac-
cess the output from the command line, as shown in Figure 7.

file, then launch the Arduino IDE as shown in Figure 2. Next,
select the Preferences menu item under the File menu, and se-
lect the ODROID-SHOW folder as the sketch folder, as shown
in Figure 3.

figure 3: arduino preferences

figure 4: arduino libraries location

figure 5: Open sketch

figure 6: Sketch upload progress

figure 7: raw output on /dev/ttyUSb0

SAMIIO

ODROID MAGAZINE 34

weather_board.ino
patch.txt

communication process.
The SAMIIO website provides a

mechanism to obtain additional device
data (bearer-id for authentication) and
test the SAMIIO API to submit data.
Before writing an application to submit
the data, the API can be tested via this
test website.

Access the API test site at http://bit.
ly/1NeVs1I. Login to the site using your
credentials that you setup earlier. Under

field should appear that re-displays the
phrase Temp Sensor. Change that new
name phrase to C1-temp-sensor, so it is
obvious what we will be working with.
We will essentially be submitting tem-
perature data from the weather board.
You will be presented with an updated
page as shown in Figure 11. Click on
the blue CONNECT DEVICE button.

It will take you to a new page as shown
in Figure 12.

Click on the blue gear icon to create
some IDs useful in the communication
process. You will be presented with a
page that looks like Figure 13. Note the
Device ID that is generated by the sys-
tem. Click on the link that has the cap-
tion: GENERATE DEVICE TOKEN.
You will be presented with the screen as
shown in Figure 14. Note the Device
Token that is generated by the system.
The device ID is especially used in the

The output format is useful to write
the Python application to submit the
weather data to the SAMIIO website.

SAMIIO account and
device setup

Details of the SAMIIO platform can
be found at the main SAMIIO web-
site. Access the SAMIIO account setup
website at http://bit.ly/1ds2ONj. You
should see a page as shown in Figure 8.
Since a user account has not been setup
yet, we cannot login yet. Click on the
Sign up here link and you should see the
page as shown in Figure 9.

Enter information relevant to your
account and click the Continue button.
Get back to the login screen as shown in
Figure 8, enter the login info click the
Sign In button. You will be presented a
page as shown in Figure 10:

Enter the phrase Temp Sensor in the
field that has a grayed-our prompt: Start
typing the name of your sensor. A new

figure 8: SamIIO account access

figure 9: SamIIO account setup

figure 10: post-login screen

figure 11: device creation

figure 12: device main screen

figure 13: device Id

figure 14: device Token

figure 15: User information

SAMIIO

ODROID MAGAZINE 35

http://bit.ly/1NeVs1I
http://bit.ly/1NeVs1I
http://bit.ly/1ds2ONj

the Users set of API, click the Get Current User Profile link.
You will be presented with a temporary page with the TRY IT
blue button. Click it and it will produce output as shown in
Figure 15.

The bearer-id (for authentication purposes) is useful in
submitting the weather data through an application. Next,
traverse the page to the Messages section. Enter some sample
temperature data in json format, as shown in Figure 16. Use

figure 17: messages apI output

figure 16: messages apI input

SAMIIO

the Device ID obtained earlier and enter the integer value (#
of milliseconds since Jan 1 1970) of current time for the ts
field. Click the TRY IT blue button. You will be presented
with the screen as shown in Figure 17. Note the response body
reflecting the successful submission of temperature data, with a
message response id.

SAMIIO Python prerequisites
At present, we have Python 2.7.6 installed on the standard

C1 images. Versions of Python earlier than 2.7.9 have restric-
tions in their ssl module that limit the configuration that url-
lib3 can apply. In order to address this issue, install the follow-
ing components:

$ sudo apt-get install libffi-dev libssl-dev

$ sudo apt-get install python-pip python-dev build-

essential

$ sudo pip install pyopenssl ndg-httpsclient pyasn1

The use of the urllib python package results in verbose
code. Install the requests package to simplify the Python code
using the commands:

$ cd `/zBU

$ git clone git://github.com/kennethreitz/requests.

git

$ cd requests

$ sudo python setup.py install

Sample SAMIIO aware
application

Given the information obtained so far, we can create a
python script called sami-req-client.py in the folder: ~/zBU/
sami/. Ensure that it has the permit execution attribute
(chmod 755) set. Following is the content of that script. Take
a few minutes to see how information gathered so far, has been
used in the script:

#!/usr/bin/python

#

sami-req-client: Util to post weatherboard info

to Samsung’s SAMI service. Presumes

weatherboard works off ttyUSB0.

#

(c) Venkat Bommakanti

08/05/15, CA, USA

#

Free to use at your own risk. No warranties im-

plied.

import sys, time

ODROID MAGAZINE 36

github.com/kennethreitz/requests.git
github.com/kennethreitz/requests.git
setup.py
sami-req-client.py

import serial, json, requests

SAMI service & device info

sami_url = “https://api.sam-

sungsami.io/v1.1/messages”;

bearer: device-token: use your

bearer token here

bearer = “Bear-

er 75bced8e1e456095673d-

a70f375e187a1”;

sdid: device-id (source-id); :

use your device token here

sdid = “3f1047dcd36c-

345678760f8872af96”;

weather board ttyport: check on

your setup

weather_board_ttyport = “/dev/

ttyUSB0”;

ttyport_speed = 500000;

headers

headers = {

 “Content-type”: “applica-

tion/json”,

 “Authorization”: bearer

}

initialize

close_ok = True

#

We’ll be reading only 8 chars

off tty port.

The data (char) pattern will be

something like:

wnabcdefg

where ‘wn’ could range from

‘w0’ to ‘w8’, and

‘abcdefg’

could be a string equivalent of

any number between

‘00000.00’ and ‘99999.99’

and any integer in between.

#

1 char length

A_CHAR = 1

to clear a 10-char buffer

cl_phrase = [‘\0’, ‘\0’, ‘\0’,

‘\0’, ‘\0’, ‘\0’, ‘\0’, ‘\0’,

‘\0’, ‘\0’]

place holders

EMPTY_STR = “”

temp_val = EMPTY_STR

pres_str = EMPTY_STR

alti_str = EMPTY_STR

time_val = 0

try:

 iter = 0

 # setup serial port

 ser = serial.Serial(weather_

board_ttyport, ttyport_speed,

timeout=1)

 print “\n0: TTY-port: “ +

ser.name

 ser.close()

 while True:

 if (close_ok):

 # open device to

read weather data

 sys.stdin =

open(weather_board_ttyport, ‘r’)

 close_ok = False

 print “\n1: opened

tty”

 # warning: no

timeout, could hang.

 # wait 10 secs for

init

 time.sleep(5)

 # first get welcome

lines

 wl_line = sys.

stdin.readline()

 print “\n2: “ +

wl_line + “\n”

 # now start read-

ing data

 data_coll = 0

 iter = iter + 1

 wb_char = sys.

stdin.read(A_CHAR)

 print “\n3: “ +

wb_char + “\n”

 while ((wb_char ==

‘w’) and (data_coll < 3)):

 # clear

buffer that will hold weather

board data

 wb_phrase =

cl_phrase

 # read all

chars for a given piece of data.

 # ‘\’’

(decimal 27) is delimeter

 idx = 0

 while

(ord(wb_char) != 27):

 wb_

char = sys.stdin.read(A_CHAR)

print “\n4: “ + wb_char + “, ord:

“ + \

 str(ord(wb_char)) + “\n”

 wb_

phrase[idx] = wb_char

 idx

= idx + 1

 if

(idx > 8):

 break

 # null ter-

minate

 if (idx >

0):

 wb_

phrase[idx-1] = ‘\0’

 print “\n5:

“ + “”.join(wb_phrase) + “\n”

 # typically

data arrives in order:

 # w0, w1

and then w2

 print “\n6:

“ + str(wb_phrase[0]) + “\n”

 # skip the

1st char in buffer as it is

 # just a

SAMIIO

ODROID MAGAZINE 37

https://api.samsungsami.io/v1.1/messages
https://api.samsungsami.io/v1.1/messages
serial.Serial
ser.name
ser.close
sys.stdin
time.sleep
sys.stdin.readline
sys.stdin.readline
sys.stdin.read
sys.stdin.read
sys.stdin.read

 # cleanup data

(long time val) to create good

json data

 jsami_params =

json.dumps(sami_params)

 print ‘\n16: jsa-

mi: ‘ + str(jsami_params)

 try:

 print ‘\

n17: preparing to send data to

SAMI service’

 req =

requests.post(url=sami_url,

data=jsami_params, \

headers=headers)

 print ‘\

n18: sent data successfully !!!’

 except:

 # catch any exception

 e = sys.

exc_info()[0]

 print “\

n18: failed to send. error: “ +

str(e)

 # repeat search every 2 mins

 print “\n19:

waiting 2 mins to send next

data...\n”

 time.sleep(120)

 # repeat whole process

 print “\n20: next

teration......\n”

 # while block ends

except:

 # some error

 e = sys.exc_info()[0]

 print “\nErr: “ + str(e) +

“\n”

 print “\nExiting...\n”

print “Done!”

Type the following to run the script:

$ cd ~/zBU/sami/

$ python ./sami-req-client.py

code for data type (temp, press,

alti).

 if (wb_

phrase[0] == ‘0’):

 #

found start of weatherboard data

- w0 -

 # for temperature

temp_str = “”.join(wb_phrase[1:])

print “\n7: “ + temp_str + “\n”

data_coll = data_coll + 1

 elif (wb_

phrase[0] == ‘1’):

 # found pressure data

 press_str = “”.join(wb_

phrase[1:])

print “\n8: “ + press_str + “\n”

data_coll = data_coll + 1

 elif (wb_

phrase[0] == ‘2’):

 # found altitude data

alti_str = “”.join(wb_phrase[1:])

print “\n9: “ + alti_str + “\n”

data_coll = data_coll + 1

 else:

 #

ignore other pieces of data

 print “\n10: ignoring next piece

of data\n”

 if (data_

coll < 3):

 #

read next piece of data

 wb_

char = sys.stdin.read(A_CHAR)

 print “\n11: getting next piece

of data\n”

 else:

 # found all 3 pieces of desired

data. ignore others.

 #

time to quit this iteration

print “\n12: all 3 pieces of data

collected\n”

 # close tty read

 close_ok = True

 sys.stdin.close()

 print “\n13:

closed tty”

 # timestamp (int)

to be sent to SAMI service

 time_val =

int(time.time()*1000)

 print ‘\n14: iter:

‘ + str(iter) + “, “ + str(time_

val) + ‘, \

Temp: ‘ + temp_str + ‘, Press: ‘

+ press_str + ‘, \

Alti: ‘ + alti_str + ‘\n’

 #temp_str[5] is

bogus non-printable char

 [c + ‘\0’ for c in

temp_str]

 temp_val =

float(temp_str[0:4])

 print ‘\n15: tem-

perature val: ‘, temp_val

 # prepare rest api

data params per SAMI service API

requirements

 sami_params = {

“sdid”: sdid,

“ts”: time_val,

“type”: “message”,

“data”: {

 “temperature”: temp_val

},

 }

SAMIIO

ODROID MAGAZINE 38

json.dumps
requests.post
sys.exc
sys.exc
time.sleep
sys.exc
sami-req-client.py
sys.stdin.read
sys.stdin.close
time.time

It should start running and gather
the weather data from the ttyUSB0 port
and submit it to the SAMI website, once
every iteration, and submits tempera-
ture values once every 2 minutes. You
can vary the temperature by moving the
sensor closer to or away from a hot light
source, such as a desk lamp. Figure 18
illustrates the temperature chart as seen
from the SAMIIO website at http://bit.
ly/1IVhfoZ. The website logs of the
submitted data are shown in Figure 19.

The above script can be modified to
show additional data such as the atmo-
spheric pressure and altitude obtained
from the weather board. The SAMIIO
platform also provides SDKs for a vari-
ety of programming languages, which
can be used to develop applications.

Additional resources
http://bit.ly/1O9FKFZ
http://bit.ly/1ds2ONj
http://bit.ly/1LUqbPP
http://bit.ly/1KBbpjQ
http://bit.ly/1NeVs1I
http://bit.ly/1IVhfoZ
http://bit.ly/1g6FbPj
http://bit.ly/1IVhcJI

figure 18: Temperature chart on SamIIO
website

figure 19: Temperature log on SamIIO
website

SAMIIO FORUMS

ODROID FORuMS
THE PERFECT PLACE TO COMMuNICATE
WITH HARDKERNEL DEVELOPERS
by rob roy

The ODROID forums have been the central meeting place for the growing
Hardkernel community for several years, with over 12,500 members as of
September 2015. You can discuss ODROIDs with Mauro, the lead Linux

kernel developer, and Justin, the CEO of Hardkernel, along with a growing team of
developers who donate their time to helping you get the most out of your ODROID.
Check it out at http://forum.odroid.com!

ODROID MAGAZINE 39

http://bit.ly/1IVhfoZ
http://bit.ly/1IVhfoZ
http://bit.ly/1O9FKFZ
http://bit.ly/1ds2ONj
http://bit.ly/1LUqbPP
http://bit.ly/1KBbpjQ
http://bit.ly/1NeVs1I
http://bit.ly/1IVhfoZ
http://bit.ly/1g6FbPj
http://bit.ly/1IVhcJI
http://forum.odroid.com
http://forum.odroid.com

Please tell us a little about yourself.
I’m living in Hamburg, Germany to-

gether with my wife and my two children.
I’m 45 and working for a German newspa-
per publisher.

How did you get started with computers?
My first computer was an Atari ST

1040, where I learned programming (Pas-
cal, MODULA 2, C, M86k Assembler). I
was lucky to work with an Acron Archime-
des A3000, which was light years ahead of
everything else that I had access to at that
time. At university, I was really happy to
find a bunch of brand new NeXT Cubes
and NeXT Stations that the computer sci-
ence department has bought recently.

What attracted you to the ODROID platform?
The ODROID-C1 wasn’t the first ARM

device I’ve tried. When compared to the
Raspberry Pi, it gives much better perfor-
mance. Compared to the imx6 based de-
vices, you’ll experience a vivid user com-
munity and a very responsive support. The
Hardkernel developers are open minded to
contributions coming from the community, which makes it
easy to integrate custom projects like Docker into the main-
stream kernel. And I’m curious to see what ODROID de-
vice will be announced next.

How do you use your ODROIDs?
Currently I have a C1 only. I’m using it for develop-

ing, and for things like home automation using openHAB.
I want to use it as a private syncing device together with
OwnCloud in the future, but first I need to enable crypto-
dev support for offloading TLS/AES. I’m about to buy a
C1+ and the audio board as a replacement for my CD player
as well as a XU4 for developing purposes. Tools like Docker
help you to move workloads between different devices easily,
so maybe I’ll move the OwnCloud service to the XU4, once

MEET AN ODROIDIAN
uLI MIDDELBERG (@uMIDDELBERG)
LINuX WIzARD AND DOCKER SPECIALIST
edited by rob roy

MEET AN ODROIDIAN

I’ve managed to get Docker up and running there.

You are very knowledgeable about Linux, especially kernels. How
did you become so proficient?

I started to use Linux in 1994, and two years later I
worked as a system administrator at our university research
group and started system administration by reading the Sys-
tem Administration book at http://oreil.ly/1Y1yWhH. At
that time, compiling your own Linux kernel was a usual
task. I continued to work as an administrator for a couple
of years, but today I run Linux for my private purposes only.
On the PC platform, there is almost no need to compile a
custom Linux kernel anymore, since the distribution main-

Uli regularly contributes his docker expertise to the forums

ODROID MAGAZINE 40

http://oreil.ly/1Y1yWhH

tainers/vendors do the job for you. When I started to work
with ARM based Linux devices in 2013, I remembered the
time when I had my first lessons in Linux. Today there are
a lot of helpful resources available online, and it’s very likely
that someone else has raised your specific question before.

Which ODROID is your favorite?
I haven’t worked with the U3 which most people would

name as their favourite ODROID board. The XU4 has a
very interesting price/performance ratio, but I’d love to see
a 64-bit ARMv8 ODROID board.

Are you involved with any other computer projects unrelated to the
ODROID?

I discovered Docker as a very fascinating way to develop,
deploy and operate applications, but saw a lack of support
for ARM based devices. So I started to port Docker on
ARM, along with several others, and I wrote down all the
necessary steps to do this in my GitHub wiki at http://bit.
ly/1M5Iphp. This gives other interested people the chance
to repeat these steps with their own boards, which I prefer in
favour of issuing and maintaining custom images.

I really like the idea of running Linux on this small ARM
boxes due to the power consumption vs performance ratio.
Especially in small environments, an ARM based Linux
Server will offer more than enough performance. So, I will
continue writing down interesting things about Linux on
ARM, just in case I need to remember how I did this par-
ticular thing.

This simplistic setup belies the powerful software running on Uli’s trusty OdrOId-c1

What hobbies and interests do you have
aside from computers?

Sports! I’m really keen on doing
windsurfing, like my whole family. I
like riding my bicycle instead of using
a car, and I love to go jogging.

What type of hardware innovations would
you like to see for future Hardkernel boards?

I’m certainly not the first one asking
for this, but a fanless ARMv8/AArch64
board supporting more than 2 GB
of RAM, SATA port or independent
USB3 ports and mainline Linux kernel
hardware support would be really cool.

What advice do you have for someone want
to learn more about programming and/or
hardware?

Start reading good books, set-up up
your own Linux box, learn Python or
Java, create your own project by mod-

ifying and extending existing ones, and get familiar with
GitHub. There are also a lot of excellent MOOCs (http://
bit.ly/1EX2vLx) covering a vast variety of different topics.

MEET AN ODROIDIAN

Uli enjoys windsurfing and other water sports with his children

ODROID MAGAZINE 41

http://bit.ly/1M5Iphp
http://bit.ly/1M5Iphp
http://bit.ly/1EX2vLx
http://bit.ly/1EX2vLx

