
• Stream your
tunes with
Cherry Music

• Make your own
smart car with

an ODROID-XU4

ODROID
Magazine

WEB
• SETUP A TOR RELAY ON YOUR ODROID

• UNDERSTAND WIRELESS CODE INJECTION

THE DEEP

Night Activity Program • Augumented Reality • Android Development

Year Three
Issue #29
May 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://pollin.de

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Our theme this month is Internet security and anonymity.
The Deep Web is a large portion of the Internet that is
not indexed by traditional search engines, and requires a

custom browser called Tor in order to explore it. Tor provides a
secure browsing experience by giving users access to special

relays that provide a secure en-
trance and exit from the Deep Web
network. As David describes in his
article, an ODROID can be used to

set up an inexpensive TOR relay that
provides anonymous browsing services.

Because so much financial information is
transferred via the World Wide Web, it’s im-

portant to maintain a secure local network. A
common technique for maliciously monitoring router traffic is

wireless injection, and Adrian details ways to protect a network using
Kali Linux, a powerful penetration testing suite.
Tobias also takes a closer look at the Atari Jaguar, Nanik details the Android Support
Library for maintaining code compatibility with previous Android versions, and Marian
shows us how to monitor a baby’s nap remotely. Our DIY projects this month include in-
stalling Cherry Music, building a Car PC, and creating augmented reality with an oCAM.

http://ameridroid.com
http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
What does our goofy dude is doing lately? Organizing all his collected music libraries that he got over the last 20 years.

We think it is mostly an exercise in dubious taste, specially when we see Bruno going from Death metal to Depeche Mode for
babies. But what we can do, right? At least he listen using headphones most of the time!

Besides this task, he still is a sucker against David, that now trounces him on card games using his own ODROID pow-
ered XMAGE server. Less users at the same server means that Bruno now loses his games faster than ever.

Tough life.

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
years.We
years.We
http://bit.ly/1fsaXQs

INDEX

lINUX GAMing: bATTLE fOR THE sOLAR sYSTEM - 31

CHERRY MUSIC - 10

WIRELESS INJECTION - 12

ANDROID DEVELOPMENT: ANDROID SUPPORT LIBRARY - 28

LINUX GAMING: aTARI JAGUAR - 23

CAR PC - 36

MEET AN ODROIDIAN - 40

BABY NAP (NIGHT ACTIVITY PROGRAM - 32

ODROID PRODUCTION - 9

AUGMENTED REALITY - 19

TOR Relay - 6

commands:

$ sudo apt-get update

$ sudo apt-get upgrade

Then, install the Tor application and its dependencies with
the following command:

$ sudo apt-get install tor

Optionally, you can also install Arm (short-form for: ano-
nymizing relay monitor), which is an application for monitor-
ing and configuring Tor. It works much like the linux utility
called top, and can be installed with the following command:

$ sudo apt-get install tor-arm

Configuration
Tor can be customized by modifying the Tor configuration

file. You can use your favourite text-editor to edit the /etc/
tor/torrc file and add the commented (using #) options listed
below:

Log notice file /var/log/tor/notices.log # Log file

Turning your ODROID
into a Tor relay
Protecting freedom one odroid at a time
by David Gabriel

TOR RELAY

Although the Internet services of big companies are popular,
some find the obtrusiveness invasive, and Tor is a way to create
an access relay that is free of prying eyesTor is free software that enables access to an open net-

work useful in anonymous communications. The
name is derived from the acronym of the original

project name, The Onion Router. It protects your privacy
by redirecting internet traffic through a network of thousands
of relays, and prevents network surveillance and traffic analy-
sis utilities from collecting your data while you navigate. In
other words, this makes you “invisible” so that websites do
not know your location by your IP address or your Internet
Service Provider (ISP). People monitoring your network will
not be able to see the websites or resources you access.

All communications inside Tor are encrypted. When data
is sent, it is encrypted in the application layer multiple times,
and nested like the layers of an onion. Data paths include
randomly selected relays. Each relay decrypts a layer of en-
cryption revealing only the next relay and passes the remain-
ing information to it. The process continues until the final
relay decrypts the original data and sends it to the destination
without revealing the source IP address.

The disadvantage of using Tor is that your effective Inter-
net connectivity will become slower than normal, due to all the
encryption and decryption steps and passage through multiple
relays. The information transfer speed would be perceivably
lower.

Installation
First, ensure the system is updated using the following

ODROID MAGAZINE	 6

notices.log

TOR RELAY

destination

RunAsDaemon 1 # Start process in background as a daemon

ORPort 9001 # Port to be used by incoming connections

DirPort 9030 # Port to be used by directory connections

ExitPolicy reject *:* # Implies that your relay will be used for

 # relaying traffic inside the Tor network, but

 # not for connections to external websites or

 # other services

Nickname odroid-tor-relay # Can be anything you like, so people

 # don’t have to refer to your relay by key

RelayBandwidthRate 100 KB # Throttle traffic to 100KB/s (800Kbps)

RelayBandwidthBurst 200 KB # But allow bursts up to 200KB/s (1600Kbps)

If you installed the optional Arm application, you need to include the following
configuration lines in the above mentioned file:

ControlPort 9051 # Port to be used by controller applica-

tions.

CookieAuthentication 1 # Authentication method to be used by the

 # controller application

DisableDebuggerAttachment 0 # Required by Arm application to be able to

use

 # commands like netstat to monitor the network

 # traffic

Then restart Tor for the updated configuration to take effect, using the com-
mand:

Your relay will act as a mid point for sending
encrypted data back and forth, ensuring an
anonymous and secure connection

ODROID MAGAZINE	 7

TOR RELAY

$ sudo service tor restart

If all goes fine, you should see an entry in the /varlog/tor/log like so:

Jan 15 11:38:53.000 [notice] Tor has successfully opened a circuit.

Looks like client functionality is working.

Note that if your network is behind a firewall, you will have to configure it
to allow incoming requests on ports, 9030 (for directory service) and 9001 (for
relay operation). You may have to refer to the User Guide for your particular
firewall, to configure this option. If you have installed Arm, you can start it by
using the command:

$ sudo arm

While there are many options you can configure, the most interesting one
is related to the graphics generated for you to monitor all traffic going through
you relay. Check the Arm application help option, for more information on
how leverage the Arm application.

By default, Tor also supports the Socket Secure protocol (SOCKS), over the
default port 9050. You can setup your browser to be a Tor client and redirect
all connections through Tor relays protecting your privacy and maintain ano-
nymity. In Firefox, for example, you can go to the Preferences > Advanced >
Network > Settings > Change option to manual setup the proxy configuration
and add 127.0.0.1 on port 9050 to the SOCKS line and enter OK to confirm.

To check your configuration, visit the Tor project website http://bit.
ly/1oh1f82 using a browser. You will notice that the public IP appearing on this
page will be different from your real IP. This is the exit node of your request,
ensuring that you cannot be traced back for location or personal information.
Note that data is encrypted only while it goes through the Tor network. Data
will be sent as-is, so anything that was not encrypted from the beginning will
continue to remain so, after leaving the exit node.

If you want to disable this SOCKS feature and keep your ODROID only
as a relay, add the following line to /etc/tor/torrc file and restart the Tor service:

SocksPort 0 # Disable torsocks

The Tor client can also be used on other operating systems. Configuration
may differ slightly depending on the OS and browser, but the above listed op-
tions is a good starting point.

References
http://bit.ly/1cqlVa3

http://bit.ly/1PvVIqy

http://bit.ly/1U9oXqa

http://bit.ly/1U9pgkM

http://bit.ly/19QYR47

http://bit.ly/1MOsQPE

http://bit.ly/1nBUETC

ODROID MAGAZINE	 8

http://bit.ly/1oh1f82
http://bit.ly/1oh1f82
http://bit.ly/1cqlVa3
http://bit.ly/1PvVIqy
http://bit.ly/1U9oXqa
http://bit.ly/1U9pgkM
http://bit.ly/19QYR47
http://bit.ly/1MOsQPE
http://bit.ly/1nBUETC

Have you ever wondered how ODROIDs are made? Al-
though the process has changed over the years, here’s
an interesting look into how the first line of Hardker-

nel products, the ODROID-X and the ODROID-Q, were
produced in July 2012.

ODROID Production
A Retrospective From Hardkernel’s Early Years
edited by Rob Roy

ODROID PRODUCTION

Figure 1 - The first stage of process is a machine called the
“Solder cream printer”

Figure 2 - The Surface Mount Technology (SMT) machine
mounts devices on the PCB

Figure 3 - The boards enter a reflow soldering machine

Figure 4 - SMT soldering is done, and the boards are ready for
the inspection process

Figure 5 - X-ray inspection to check soldering quality

Figure 6 - Factory lines, where the PCBs move to another sol-
dering machine for various connectors after inspection pro-
cess, and the go through all the functionality tests

ODROID MAGAZINE	 9

CherryMusic
Your Own Private Music Stream
by @synportack24

CherryMusic is a music streaming server based on CherryPy and jPlayer. It
plays music files stored in your PC, smartphone, tablet, ODROID, or any
device that has an HTML5-compliant browser installed. CherryMusic is

AJAX-based, so it doesn’t require page refreshes, making it very fast. The browser-
based user interface works on either desktops or mobile devices, and is feature rich,
with the ability to create playlists, browse music, setup multiple user-accounts, and
much more.

A CherryMusic-based system can match any good
HTPC system you may come across. It is lightweight
and can easily run in the background, without overload-
ing the processors. For the setup described in this ar-
ticle, I used an ODROID-XU4 as a media center. It
utilizes a large-capacity hard-drive to store all of the mu-
sic files. It allows me to stream music to any device in
the house, while others are free to watch simultaneously
streamed video content using Kodi.

Prerequisites
The following software dependencies need to be met first:

Python (version 2.6 or 3.2)
git
screen

They can be installed using the following command:

$ sudo apt-get install python git screen

Installation
Setup is easy and straightforward. First, get terminal access (ssh or local) to the

device that holds your music files to be streamed. Then, install CherryMusic using
the following commands:

$ cd ~

$ git clone -b master \

Desktop Webpage

Mobile Webview

CHERRY MUSIC

ODROID MAGAZINE	 10

 https://github.com/devsnd/cherrymusic.git

It gets installed in a subdirectory named ~/cherrymusic.

The best way to start CherryMusic is to use the screen utility, which allows you to
run CherryMusic in the background. This can be accomplished using the following
command:

	
$ screen -mS cherrymusic ~/cherrymusic/cherrymusic --setup --port 8080

The CherryPy framework includes a web server, which is used to serve the brows-
er-based user interface. If port 8080 is already in use by another application, you can
select another available port by changing the port in above command.

You may be prompted to download cherrypy as well, so select ‘Y’ for ‘yes’.
Setup is finished once the you receive a waiting prompt. Your screen should look
similar to Figure 3, at which point you should press Ctrl+A+D to ensure that
CherryMusic runs in the background.

Open a web browser, either on the device that
has CherryMusic installed, or on a remote net-
worked device and enter the following address.
Note that you need to use the appropriate HTTP
port if it is not 8080:

https://<hostname-of-cherrymusic-de-

vice>:8080

You can now configure CherryMusic. The “Me-
dia base directory” is the directory that contains the
music files. Most of the other settings can be left
with default values. Click “Save Configuration and
start CherryMusic” to move on to create an admin account.

That’s it! Next time you connect, you will be asked for username and password. After
a successful login, you can stream any and all your music!

Here are some commands for you to experiment with:

Switch to Cherrymusic that was running in the background
screen -r cherrymusic

Stop CherryMusic from running
pkill cherrymusic

Further Reading

CherryMusic GitHub

http://bit.ly/1NCqFtb

CherryMusic Home Page
http://bit.ly/1r1eeTf

Installation

CherryPy Home Page
http://bit.ly/1NlW5t3

jPlayer Library
http://bit.ly/1VlDyzQ

CHERRY MUSIC

ODROID MAGAZINE	 11

https://github.com/devsnd/cherrymusic.git
http://bit.ly/1NCqFtb
http://bit.ly/1r1eeTf
http://bit.ly/1NlW5t3
http://bit.ly/1VlDyzQ

WIRELESS INJECTION

Wireless
Injection
A hands-on approach to learning 802.11
by Adrian Popa

In my previous article, we learned how to set all the differ-
ent ODROID WiFi Modules into monitor mode, which
allows us to listen to wireless traffic using Kismet. In this

article, we will test traffic injection and analyze open networks
which use various protection methods including encryption.
We will finish off with some attacks that don’t involve breaking
the network’s encryption. Although this article is technical,
its purpose is to familiarize you with how wireless networks
work. It is not designed to turn you into a script kiddie who
doesn’t understand what they’re doing. If you have not read
last month’s ODROID Magazine article about Kismet, avalible
at http://bit.ly/20YG7Yg, do so now, since we will be building
on past experience. As always, breaking somebody’s network
without their consent is punishable by law, so only try this
against your own networks.

Preparation
The term “injection” is used to indicate the generation of

wireless management traffic based on specially crafted packets
that bypass the regular internet stack of your wireless adapter.
This means that a program generates packets with whatever
fields it needs and sends it to the driver, via the monitor inter-
face, to be sent out even if the packet might not be compliant
with the protocol used.

To do our first injection test,, we will need a monitor in-
terface and aireplay-ng, which was covered in the last Kismet
article. Optionally, you can specify the channel you want to
operate on when creating the mon0 interface:

$ sudo airmon-ng start wlan0 6

$ sudo aireplay-ng -9 mon0

The program initially sends out broadcast probe requests.
These are probe requests which ask any AP listening to re-
spond with a description of itself. Not every AP will re-
spond to this type of request. A list of responding APs is as-
sembled to be used in subsequent steps. If any AP responds,
a message is printed on the screen indicating that the card
can successfully inject.

Injection testing can help you keep your network secure from
unknown intruders

At the same time, any AP identified via a beacon packet
is also added to the list of APs to be processed in subsequent
steps. If a specific AP was optionally listed on the command
line ,BSSID and SSID, it is also added to the list of APs to be
processed. Then, for each AP in the list, 30 directed probe
requests are sent out. A directed probe request is addressed to
a specific AP. The number of probe responses received plus the
percentage is printed on the screen, this indicates if you can
communicate with the AP and how well.

Open networks
We are going to take a closer look at how wireless networks

operate under normal conditions by setting up an open net-
work and sniffing its traffic. On my router, I setup a test net-
work called “NASA-HQ-Guests”, because “FBI-Surveillance-

Figure 1 - An injection test running

ODROID MAGAZINE	 12

http://bit.ly/20YG7Yg

WIRELESS INJECTION

Van-3” was already taken.
In order to monitor a specific network, you could use either

airodump-ng or Kismet, as both tools can do the same job. To
list available networks and their clients, run the following com-
mand, assuming your monitoring interface is already up:

$ sudo airodump-ng mon0

You should see a list of networks with their ESSIDs, net-
work name, and BSSIDs, and AP MAC addresses, along with
their power, encryption type, and channel. In this case, we
want to capture all traffic for the network with the ESSID
“NASA-HQ-Guests”, which has a corresponding BSSID of
“9C:C1:72:3A:5F:E1” and which operates on channel 1:

$ sudo airodump-ng --write open-network-NASAHQ --out-

put-format pcap --bssid 9C:C1:72:3A:5F:E1 --channel 1

mon0

For my tests, I had my client, my smartphone, connected to
the wireless network and ran the following commands:

$ ping -c 3 8.8.8.8

$ ping -c 3 www.google.com

$ ping -c 3 www.hardkernel.com

$ wget -p http://www.hardkernel.com/main/main.php

The commands do some basic connectivity tests and simu-
late a browser loading up Hardkernel’s main page, assuming
it’s not cached. Best of all, it’s repeatable and generates about
10MB of traffic.

If you take a look inside your packet capture, you might
notice one of two possibilities.

Scenario 1: You will see lots of management traffic, but little
or no data traffic. This happened to me when I first tested and
I struggled for a while to understand the cause. I suspected
problems with modulation, interference from neighbors, direc-
tional and multipath transmissions, aliens; you name it! After
many tests on the ODROID-C1 with Wifi Module 3, I tried
the same test on a PC, with the same wifi card, and I was able to
miraculously capture traffic. This means the most likely prob-
lem is the kernel and driver combination. I have tried to run
the mainline kernel on the C1 to redo the tests but, have failed
so far. Wifi Module 0 and Wifi Module 4 don’t experience the
same issues and allow you to capture traffic on the C1 without
issues.

Scenario 2: You will see lots of management traffic and
some data traffic. The amount of data traffic you see may vary
based on your antenna position, relative to the AP and client,

your current wireless interference pattern, and possibly other
factors as well. Based on some of my tests, the WiFi Module
0 seemed to have fewer lost packets. However, the tests I ran
were in the same room as the access-point, so I can’t comment
on the range you can get.

I saved a packet capture, which is available from github
at http://bit.ly/242cdEq. If you analyze the capture in Wire-
shark, you will find the following:

• Packets 254, 256 and 258 represent IEEE802.11 Authentica-
tion and Association traffic.
• Once associated, the client makes DHCP requests to get an IP
address: packets 268, 269. The complete DHCP transaction is
not captured.
• ARP traffic to find out the MAC address of the gateway: pack-
ets 431, 435.
• ICMP Echo Requests to 8.8.8.8, packet 437. As you can see
three pings were issued, but we were only able to capture one
request and no replies.
• DNS reply for a www.google.com query: packet 484.
• ICMP Echo Reply for a ping to Google, packet 486, and the sec-
ond request, 616, followed shortly by the third request: packets
627-629. You will notice that the requests packets have been
retransmitted several times by the MAC layer. This is trans-
parent to the layer 3 protocols, but may introduce additional
latency and jitter.
• DNS query for www.hardkernel.com, retransmitted 4 times:
packets 638-641.
• ICMP Echo Request to Hardkernel’s IP, two packets out of
three: 728, 737, 738.
• Finally, a DNS query and response for www.hardkernel.com,
this time we ask 8.8.8.8: packets 814, 816.
• HTTP traffic, starting with a three way handshake - only two
packets captured: packets 818, 824, and an HTTP GET, packet
825.
• HTTP traffic with a lot of retransmissions, such as packets:
925, 927, 929, 931.
• Dissociation from the WiFi network: packets 27219, 27223.

To do HTTP analysis in Wireshark, you can either find
GET requests and use the “Follow TCP Stream” option, or you
can do bulk processing of all HTTP traffic by going into File
-> Export Objects -> HTTP. Here you can see all the queries
made and can potentially extract data, such as images. Unfor-
tunately, if you try to save the site data, you will find out that
most of the images are corrupted and text is truncated. This
is because the receiver was unable to pick up all the traffic on
the wireless medium. This is quite different from capturing
packets on Ethernet, where collisions are avoided and the me-
dium is usually reliable. Summary analysis on captured traffic
can show you what limitations you might face when trying to
capture encrypted traffic, so you’ll know what to expect.

ODROID MAGAZINE	 13

www.google.com
www.hardkernel.com
http://www.hardkernel.com/main/main.php
http://bit.ly/242cdEq
www.google.com
www.hardkernel.com
www.hardkernel.com

If you were to listen to an open network that didn’t have
active traffic, you will probably still see interesting things
from active stations on the network. For instance, you
can expect to see some ARP traffic, NetBIOS broadcasts
from Windows hosts, UPNP/SSDP multicast packets from
DLNA devices such as media players or routers and even
multicast DNS (port 5353) from Linux and Apple hosts
that advertise their capabilities.

Even if you don’t get much data, it can still be useful
because you can analyze the user’s requests and potentially
pick up unencrypted passwords and cookies sent with POST
requests. I encourage you to browse my captured data, or
try capturing your own on an open network. Remember
what can be seen next time you connect to an open network
in a restaurant or airport!

How network association works
Connecting to a wireless network involves the following

two steps, as shown below:

A mobile station sends probe requests to discover 802.11
networks within its proximity. The probe requests advertise
the mobile stations supported data rates and 802.11 capabili-
ties such as 802.11n. Since the probe request is sent from the
mobile station to the destination layer-2 address and BSSID
of ff:ff:ff:ff:ff:ff, sometimes represented as “Broadcast”, all AP’s
that receive it will respond.

APs receiving the probe request check to see if the mobile
station has at least one common supported data rate. If they
have a compatible data rate, a probe response is sent advertis-
ing the SSID, wireless network name, supported data rates,
encryption types if required, and other 802.11 capabilities of
the AP.

A mobile station chooses compatible networks from the
probe responses it receives. Additionally, compatibility can
also be based on encryption type. Once compatible net-
works are discovered, the mobile station will attempt low-level
802.11 authentication with compatible APs. Keep in mind
that 802.11 authentication is not the same as WPA2 or 802.1X
authentication mechanisms, which occur after a mobile station
is authenticated and associated. Originally, 802.11 authentica-
tion frames were designed for WEP encryption, however this
security scheme has been proven to be insecure and therefore
deprecated. Due to this, 802.11 authentication frames are
open and almost always succeed.

A mobile station sends a low-level 802.11 authentication
frame to an AP, setting the authentication to open, and the
sequence to 0x0001.

The AP receives the authentication frame and responds to
the mobile station with authentication frame set to open indi-
cating a sequence of 0x0002.

If an AP receives any frame other than an authentication
or probe request from a mobile station, it is not authenticated.
Then, it will respond with a deauthentication frame placing the
mobile station into an unauthenticated and unassociated state.
The station will have to begin the association process from the
low level authentication step. At this point, the mobile station
is authenticated but not yet associated. Some 802.11 capa-
bilities allow a mobile station to have low-level authentication
to multiple APs. This speeds up the association process when
moving between APs, known as “roaming”. A mobile station
can be 802.11 authenticated to multiple APs. However, it can
only be actively associated and transferring data through a sin-
gle AP at one time.

Once a mobile station determines which AP it would like to
associate to, it will send an association request to that AP. The
association request contains chosen encryption types if required,
and other compatible 802.11 capabilities. If an AP receives a
frame from a mobile station that is authenticated but not yet as-

ANDROID DEVELOPMENT

Figure 2 - Open network analysis

Figure 3 - Authentication/association process

WIRELESS INJECTION

ODROID MAGAZINE	 14

sociated, it will respond with a disassociation frame, which places
the mobile into an authenticated but unassociated state.

If the elements in the association request match the capabili-
ties of the AP, the AP will create an Association ID for the mobile
station and respond with an association response containing a
success message granting network access to the mobile station.

The mobile station is then successfully associated to the AP,
and data transfer can begin.

For WPA, WPA2, or 802.1X, additional steps are taken af-
ter the association step before data is allowed.

Even after a client is connected to an AP it continues to send
probe requests, both broadcasted and also “directed” in order to
discover new and potentially better access points in its vicinity.
The directed probe requests contain the SSID of access points
known to the client in hopes that the access point is nearby.
Somebody listening on the wireless medium can use this to get
a list of a client’s trusted SSIDs and use them for tracking, or
to set up “evil twin” access points. A good video on the subject
can be found at http://bit.ly/1WLAkVH.

Hidden SSIDs
One way you can try to protect a network is to hide its

SSID. Most routers have an option so you can set your SSID
to be “non-broadcasting”. This means that the router still
broadcasts beacon frames, but the frames will contain a blank
SSID. Clients that want to connect to the network need to
know the SSID in advance and send probe requests. In theory,
this is great, since an attacker would have to guess a possibly
hard SSID. However, in practice, it offers little protection.

When a client sends a probe request it will broadcast the
SSIDs it knows about. This broadcast includes the SSIDs for
hidden access points too. Anyone listening can pick it up, since
it’s unencrypted even on encrypted networks, and can use the
SSID information. It’s not even too hard to expose hidden
networks - airodump-ng does it by default.

Let’s set up our network to be non-broadcasting and let’s
have airodump-ng listen to the traffic, only for open networks
in our case. You will notice that hidden networks are displayed
typically as “<length: xx>” instead of SSID. As soon as a client
is in the neighborhood, it doesn’t need to actually connect be-
cause it will be leaking directed probe requests, and airodump
will show you the network name. It’s very easy, since all you
have to do is wait.

$ sudo airodump-ng -t OPN --channel 1 mon0

You can find out how this works by looking inside the
packet capture, as shown in Figure 5. For your convenience,
the capture with those three frames is available at http://bit.
ly/1U9L2F4.

MAC access lists
Another popular way of securing networks is by using a

MAC access list on the access point. This list specifies which
devices can connect to the network. Since the MAC address is
unique and doesn’t change, this gives the administrator control
over which devices can join the network. An attacker would
have to find a valid MAC address on that list, and then replace
his own MAC to be able to join the network.

If this were a guessing game, the worst case an attacker
would need to go through all 2^48 addresses, although proba-
bilistically half would suffice. If it takes 2 seconds to test an
address, it would take about 17 million years to go through
all of them. If the attacker is not willing to wait that long, he
might test with MACs of a particular vendor, such as Apple,
Samsung, HTC, etc, in hopes of getting in faster. The first
three bytes, 24 bits, of a MAC address represent the vendor ID
and a list of vendors can be downloaded from IEEE at http://
bit.ly/1Idlxf2.

ANDROID DEVELOPMENT

Figure 4 - airodump fills in the SSID when it hears it

Figure 5 - Packet analysis of hidden SSID connection

WIRELESS INJECTION

ODROID MAGAZINE	 15

http://bit.ly/1WLAkVH
http://bit.ly/1U9L2F4
http://bit.ly/1U9L2F4
http://bit.ly/1Idlxf2
http://bit.ly/1Idlxf2

ANDROID DEVELOPMENT

$ wget standards-oui.ieee.org/oui.txt

$ grep ‘(hex)’ oui.txt | grep -i Samsung | wc -l

Even if it’s still a lot of time, scanning one OUI, 24 bits,
takes a bit over 6 months. By speeding up the process, using
multiple cards, narrowing down which OUI are still relevant,
you could carry out an attack that might succeed in a number
of months.

Clearly, this is not the way hackers get into your system.
Let’s explore a faster option, which is listening for a MAC ad-
dress that already has access. The simplest way is to use Kismet
to listen to a network and see which clients are associated with
it. If there’s little activity ,you will need to wait for a while, but
if it’s a busy access point, the clients will be revealed instantly.
Having a list of connected clients means you have a list of al-
lowed MAC addresses, so your search is over quickly. How-
ever, having two devices with the same MAC on the same LAN
is serious trouble, so in order not to break the network you can
kick the real user off the network by sending him a bunch of
deauthentication packets, as we’ll see later.

However, knowing what an allowed MAC is and having a
device with that MAC are two different things. Luckily, you
can temporarily change the MAC address of a wifi adapter, ei-
ther through GUI, NetworkManager, or through macchanger:

$ sudo apt-get install macchanger

$ ifconfig wlan0

$ sudo macchanger --mac 88:30:8a:3f:44:b7 wlan0

$ ifconfig wlan0

Table 1 - Maximum search time in years for several vendors

Figure 6 - Changing your MAC address

Up to this point, we’ve explored mostly theoretical concepts
of wireless networks. These will help you become a better net-
work engineer, but you’re not a “haxtor” yet. Now that the
theory is behind us we can get to the “133t” part.

Deauthentication packets
There’s a simple and guaranteed way to make trouble in

your wireless neighborhood; start flooding the network with
deauthentication packets. These frames signal to the access
point that a client has left the network. There is no encryption
and no protection mechanism around the frames, so anyone
with a powerful enough transmitter can spoof these packets
and cause the clients to be disconnected. There are some legiti-
mate cases where this should be done:

Wireless intrusion prevention systems (WIPS) routinely
send fake deauthentication packets in order to disconnect cli-
ents connected to other APs. This is to enforce a set of APs in a
specific geographical area for certain businesses or government
agencies, as described at http://bit.ly/1T5lNi6.

Kicking the mother in law or kid off the network. This
probably can be done easier through your AP’s management,
but it’s technically not illegal to do so with deauthentication
packets.

There are also several illegitimate cases for use of deauthen-
tication packets:

• To reveal hidden SSIDs
• To capture WPA and WPA2 handshakes by forcing clients to
reconnect
• Perform Denial of Service attacks

To send a deauthentication packet you need only aireplay-ng:

$ sudo aireplay-ng -0 10 -a 9C:C1:72:3A:5F:E1\

 -c 88:30:8A:3F:44:B7 mon0

The parameters are as follows:

-0 : means deauthentication
10 : how many tries to make. Each try sends 64 packets to the
client and 64 packets to the AP. Setting it to zero will keep
sending deauthentication packets forever.
-a : is the MAC address of the access point to which the client
is connected.
-c : is the MAC address of the client. If you omit it, aireplay will
send broadcast frames to disconnect all clients connected to
that AP. This is how you do a Denial of Service attack.

WIRELESS INJECTION

ODROID MAGAZINE	 16

standards-oui.ieee.org/oui.txt
oui.txt
http://bit.ly/1T5lNi6

ANDROID DEVELOPMENT

Figure 7 - Deauthentication attack

Figure 8 - So many networks to choose from!

While aireplay is a powerful tool, there are even better tools
available. For instance, if you install mdk3, described at http://
bit.ly/1psIKUw, you have the ability to disconnect all wireless
clients from all visible access-points, or do other types of at-
tacks, upsetting all your neighbors at once. To install it, you
have to download and compile it yourself:

$ git clone \

https://github.com/wi-fi-analyzer/mdk3-master

$ cd mdk3-master

$ make

$ sudo make install

To disconnect every client that is connected to any access-
point on channel 6, you can run the following command:

$ sudo mdk3 mon0 d -c 6

But wait, there’s more! Mdk3 can also emit broadcasts for
fake access-points. For instance, I’ve announced fake access
points with WEP encryption on channel 11 that have random
names. If this doesn’t crash or slow down your neighbor’s com-
puters, it will at least baffle them when trying to connect to a
new network. Note that the AP broadcast feature didn’t work
correctly with the ODROID Wifi Module 3, but worked great
with the other two wifi modules.

$ sudo mdk3 mon0 b -c 11 -h 11 -w -g

Visiting Hardkernel’s HQ
So far we’ve played with listening to wifi networks, kicking

people off and testing transmission range. Now, let’s try some-
thing more audacious; let’s broadcast specific access-points and
influence nearby devices to think they are in a different place.

We’re going to visit Hardkernel’s Headquarters in South Ko-
rea, so buckle up!

Network based geo-location on mobile devices works by
collecting the MAC addresses of your nearby access points and
sending the data to a location provider service, which is typi-
cally Google if you’re on Android. The location service looks
up the list of MAC addresses in an internal database and re-
ports back an approximate location. It’s funny that network
location doesn’t rely on IP addresses at all. Maybe because you
could be connecting to the Internet through a series of tunnels
and the end point could be far away geographically. What
we’re going to do now is generate enough access-points using
mdk3 to fool the mobile device.

To extract access point information we can use wigle.net,
available at http://wigle.net/search. Fill in the coordinates and
click Search, which is available only for registered users. You
can copy and paste the results in a text file. I tried two ap-
proaches, but the small area worked for me:

Wide area:
320 access points: http://bit.ly/1NHtIjX
Small area:
45 access points: http://bit.ly/217LBAa

You can process this file and extract only BSSID and SSID:

$ cat hardkernel-small.txt | grep ‘infra’\

 | sed ‘s/infra.*//’ | sed -r ‘s/^map\s+//’\

 | sed -r ‘s/\t/ /’ > hardkernel-small-ssid.txt

In order for the attack to be successful, the victim needs to
have network location active, set to WiFi - Battery Saving, and
not have other location sources available. This means that GPS
must be off, or have no GPS satellites in view. If the device is
in Airplane Mode, it helps to keep the lock for longer, but it
isn’t mandatory. Wifi needs to be on and the victim needs to
be able to access the Internet in order to communicate with the
network location service. Your typical victim can be a tablet
without a 3G data connection.

To start broadcasting the networks use mdk3, use the following com-
mand:

WIRELESS INJECTION

ODROID MAGAZINE	 17

http://bit.ly/1psIKUw
http://bit.ly/1psIKUw
https://github.com/wi-fi-analyzer/mdk3
wigle.net
http://wigle.net/search
http://bit.ly/1NHtIjX
http://bit.ly/217LBAa
hardkernel-small.txt
hardkernel-small-ssid.txt

$ sudo mdk3 mon0 b -v\

 hardkernel-small-ssid.txt -g -t

You should see the networks appearing in your network list,
but if you wait and wait some more… nothing seems to hap-
pen. I had Google Maps open on my phone and it stubbornly
refused to move. This is because the new networks were con-
flicting, in terms of location, with the current networks in my
area and the location service was confused. In this “confused”
state, the location service preferred to keep my current location
where it originally was. If you don’t have many wireless net-
works around you, you can skip the next step.

In order to silence the networks around me we need some-
thing more drastic - a faraday cage. This is a metallic cage
that shields out electromagnetic waves and can cut off wireless
networks and 3G data. How do you build a faraday cage out
of household items? I tried with tin foil but it wasn’t any good.
I needed something stronger, like a microwave oven. If I put
my phone inside the microwave oven, with the power discon-
nected, and close the door, I could see that the network signal
of available wifi hotspots would significantly decrease.

So, grab your ODROID, power it from a power bank, start
mdk3 and pop it into the microwave together with the victim’s
phone. Sound like a horror story? Don’t be alarmed, but make
sure that you’ve unplugged the microwave oven!

I left the phone and ODROID inside for a few minutes and
nothing happened. It still had the same location on the map.
However, when I had given up and opened the oven door, the
location jumped off to Hardkernel’s HQ. So, what happened?
It turns out the wireless data connection I was using had failed
as well, the signal couldn’t get through the oven, and the phone

couldn’t contact the location provider. However, while it was
in the microwave, it had collected enough Korean access points
that it firmly believed to be in the other location. More inter-
estingly, the phone kept its location even when taken out of the
faraday cage. It could still see the same access points and was
a bit confused about the other ones around it, but preferred to
keep the location until the ODROID stopped broadcasting.

Conclusion
In light of the tests we’ve performed, we can see that

802.11 is far from secure even when using strong AES encryp-
tion. An attacker can easily disconnect any target, and with
sufficient disconnect attempts can force the target to connect
to a different access-point. The attacker can now perform
man-in-the-middle attacks against the victim, without the
victim knowing. One method of defence against some of
these attacks is the 802.11w standard (http://bit.ly/1rrivQh)
which adds protected management frames, but it’s not widely
supported by all clients.

In terms of privacy, wireless networks are terrible. Every de-
vice will broadcast its known networks every few seconds, even
if you are already connected. To get around this issue, either
delete the known networks from your wireless configuration or
keep wifi off when not needed.

Hidden networks and MAC access lists are only effective if
the network you’re trying to secure is only rarely accessed. For
example, the wifi in your vacation house could benefit from
these settings. Otherwise they can be considered broken, since
they can be circumvented with little effort.

Services based on Wireless hotspots, such as location, are
unreliable and can be easily spoofed. For instance, if your tar-
get’s phone has programs like Tasker that run certain actions
based on location data, such as unlocking the phone when
it’s near a specific AP, you could use a wireless attack to open
up new attack avenues. For questions, comments, and fur-
ther discussion, please visit the support thread at http://bit.
ly/1r7wLNv.

ANDROID DEVELOPMENT

Figure 9 - Messing with location

WIRELESS INJECTION

ODROID MAGAZINE	 18

hardkernel-small-ssid.txt
http://bit.ly/1rrivQh
http://bit.ly/1r7wLNv
http://bit.ly/1r7wLNv

Start by entering the following com-
mand, which makes sure that you have
the latest package list:

$ sudo apt-get update

Prepare a “Project” directory to
handle the sample code for ArUco and
Orge3D by entering the following com-
mands:

$ cd ~

$ mkdir Project

$ cd Project

Net, install latest version of OpenCV,
which is 2.4.9:

$ sudo apt-get install libopencv-

dev

Build
To build ArUco, we need to install

the libraries using the following com-
mand:

$ sudo apt-get install cmake

build-essential\

 libicu-dev freeglut3 freeglut3-

dev\

 Libgstreamer0.10-dev\

 libgstreamer-plugins-base0.10-

dev libxine2-dev

We are now ready to download and
uncompress the ArUco source code. To
do so, type the following commands:

artificial character at the correct location
with proper posture.

For the special marker, we will use
ArUco which is a part of the OpenCV
library. For further details about ArU-
CO, please refer the relevant documents
at http://goo.gl/Ao6hBg. To make an
animated character, we will use Ogre3D

which is an open source graphic render-
ing engine. You can find more infor-
mation about Ogre3D at http://goo.gl/
k1bMO4 .

Since various libraries are used in this
application, it may seem a little compli-
cated. However, when you see that cute
little character running in AR, you will
agree that it was worth the trouble.

Setup
We need the following items to run

the sample application:

•	 ODROID-XU4
•	 oCam
•	 Printer for printing ArUco marker

board
•	 Libraries for OpenCV, ArUco, and

Ogre3D

Augmented reality, or AR, is a part
of the virtual reality, VR, which
have become a buzzword these

days. Simply speaking, AR overlays arti-
ficial objects or information over an im-
age of the real world. Although it has
been around for a very long time, AR
becomes popular with the recent wide
use of mobile devices.

In this tutorial, example code will be
shown, built and executed. The appli-
cation will put an interesting animated
character over a special marker.

Operation Principle
To run our AR demo, we need a vid-

eo frame that contains the special mark-
er. The program detects the marker and
estimates the position and the orienta-
tion of it. Using this data, we can put an

Augmented Reality
Using the oCam and ODROID-XU4
by nowdac@withrobot.com

Figure 1 - Example setup of AR with VR
(Source: ARToolKit)

Figure 2 - Operation principle of AR
(Source: ARToolkit)

AUGMENTED REALITY

ODROID MAGAZINE	 19

http://goo.gl/Ao6hBg
http://goo.gl/k1bMO4
http://goo.gl/k1bMO4
mailto:nowdac@withrobot.com

0.025

When viewing the ArUco marker
board with oCam, the program will de-
tect the markers and shows their IDs and
positions in 3D.

The next step is to check if we can
detect the board:

$./aruco_test_board live board.

yml camera.yml 0.025

Here, you can see that we specified
“board.yml” and “camera.yml” as the
parameters to detect the board.

Just like the ArUco marker test pro-
gram, this ArUco board test program de-
tects the board and shows the posture of

XML/YAML format. If you are not fa-
miliar with camera calibration, in any
text editor create a “camera.yml” and fill
it with the following content.

%YAML:1.0

image_width: 640

image_height: 480

camera_matrix: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [500., 0., 320.,

 0., 500., 240.,

 0., 0., 1.]

distortion_coefficients: !!opencv-

matrix

 rows: 1

 cols: 4

 dt: d

 data: [0., 0., 0., 0.]

You may want to use the GUI editor,
such as Pluma, which works similarly to
Notepad for Windows.

$ pluma camera.yml

You can find further information
about camera calibration at http://goo.
gl/j3j0Xn.

Run
Once the oCam is connected to

ODROID-XU4, we are ready to test the
ArUco using the following command:

$./aruco_test live camera.yml

$ cd ~/Project

$ mkdir aruco && cd aruco

$ wget http://sourceforge.net/

projects/aruco/\

files/1.3.0/aruco-1.3.0.tgz

$ tar xzvf aruco-1.3.0.tgz

$ cd aruco-1.3.0

Finally we can build ArUco:

$ mkdir build && cd build

$ cmake ..

$ make -j 4

$ sudo make install

The argument after the “make” com-
mand, “-j 4” is used to create 4 build
jobs. With 8 cores available on the
ODROID-XU4, this will help the build
process finish much faster.

Test
Once the build step has finished suc-

cessfully, it is time to test ArUco. For
this test, we will need a ArUco marker
board, oCam, and the intrinsic param-
eters of the camera.

To create an ArUco marker board, we
can use these commands:

$ cd utils

$./aruco_create_board 6:4 board.

png board.yml

The arguments for aruco_create_
board are:

aruco_create_board

 [cols:rows]

 [board image filename]

 [board information filename]

The board information file, “board.
yml”, contains the information about
the markers, such as IDs and corner po-
sitions. By printing “board.png”, we can
get an ArUco marker board, as shown in
Figure 3.

If you know how to calibrate the
camera, you can run the calibration and
use the intrinsic parameters of OpenCV

AUGMENTED REALITY

Figure 3 - Printed ArUco board of 6 x 4
makers

Figure 4 - Creation of camera.yml using
the Pluma editor

Figure 5 - ArUco marker test program
screen

Figure 6 - ArUco board test program
screen

ODROID MAGAZINE	 20

board.yml
board.yml
camera.yml
board.yml
camera.yml
camera.yml
camera.yml
http://goo.gl/j3j0Xn
http://goo.gl/j3j0Xn
camera.yml
http://sourceforge.net/projects/aruco
http://sourceforge.net/projects/aruco
1.3.0/aruco-1.3.0.tgz
aruco-1.3.0.tgz
board.png
board.png
board.yml
board.yml
board.yml
board.png
camera.yml

the board in 3D as well.
We are almost to the point where we

can add our animated green creature to
the board. To use Ogre, we need to in-
stall the library:

$ sudo apt-get install libo-

gre-1.8-dev libois-dev

To get the source code containing
ArUco and Ogre, use the following com-
mands:

$ cd ~/Project

$ mkdir ogre-test && cd ogre-test

$ wget https://sourceforge.net/

projects/aruco/\

 files/ogre-test/ogre-test-

0.0.3.tgz

$ tar xzvf ogre-test-0.0.3.tgz

$ cd ogre-test-0.0.3

Unfortunately, this publicly avail-
able source code has a few errors. You
will need to open up the three source,
“*.cpp” files and edit them in order to
correct the errors. The fix is the same
for each file, and the position where the
patch needs to be applied appears next
to the file name.

aruco_test_ogre.cpp (line 164)
aruco_test_board_ogre.cpp (line

161)
aruco_test_board_ogre_mask.cpp

(line 179)

For the fix, change the following line:

if (argv[1]==”live”) TheVideoCap-

turer.open(0);

To this:

if (string(argv[1]).

compare(“live”)==0) TheVideoCap-

turer.open(0);

We also need to correct “CMakeL-
ists.txt” at line 41 by adding “boost_sys-
tem” as shown below:

build/utils/board.yml

$ cp ~/Project/aruco/aruco-1.3.0/

build/utils/camera.yml

Finally, we are ready to start our AR
demo.

$./aruco_test_board_ogre live\

 camera.yml board.yml 0.025

Accept all the default settings and
click “Accept”. Viewing the ArUco

marker board with the oCam, we can
finally meet our little creature, Sinbad!

Please refer the video at http://goo.gl/
PYRQpw to see this AR demo in action
using an oCam and an ODROID-XU4.

set (REQUIRED_LIBRARIES ${OpenCV_

LIBS} ${aruco_LIBS} ${OGRE_LI-

BRARY} ${OIS_LIBRARY} boost_sys-

tem)

After these 4 corrections, we are ready
to build the edited code:

$ cmake -DCMAKE_BUILD_

TYPE=Release

$ make -j 4

We now have two more things to do.
The first one is to modify the path to
Ogre library defined in “plugins.cfg” at
line 4 to be suitable to our ODROID
environment.

Change from this:

PluginFolder=/usr/lib/i386-linux-

gnu/OGRE-1.7.4

To this:

PluginFolder=/usr/lib/arm-linux-

gnueabihf/OGRE-1.8.0

The last thing is to prepare the board
parameters and the camera intrinsic pa-
rameters. For this, we can just use the
files already prepared for the detection
tests.

Copy the files “board.yml” and “cam-
era.yml” using the following commands.

$ cp ~/Project/aruco/aruco-1.3.0/

AUGMENTED REALITY

Figure 7 - Source code correction

Figure 8 - Modification of the path to
Ogre library

Figure 9 - Launcher to run the AR demo

Figure 10 - AR character, Sinbad

ODROID MAGAZINE	 21

https://sourceforge.net/projects/aruco
https://sourceforge.net/projects/aruco
ogre-test-0.0.3.tgz
ogre-test-0.0.3.tgz
ogre-test-0.0.3.tgz
aruco_test_ogre.cpp
aruco_test_board_ogre.cpp
aruco_test_board_ogre_mask.cpp
TheVideoCapturer.open
TheVideoCapturer.open
TheVideoCapturer.open
TheVideoCapturer.open
CMakeLists.txt
CMakeLists.txt
aruco-1.3.0/build/utils/board.yml
aruco-1.3.0/build/utils/camera.yml
aruco-1.3.0/build/utils/camera.yml
camera.yml
board.yml
http://goo.gl/PYRQpw
http://goo.gl/PYRQpw
plugins.cfg
board.yml
camera.yml
camera.yml
aruco-1.3.0/build/utils/board.yml

Linux Gaming
Atari Jaguar
on ODROID-XU3/XU4
by Tobias Schaaf

Recently, I did a lot of work on my images, especially on
the emulators. I tried to improve the performance and
did a lot of testing. In the process of testing, I spoke

with @ptitSeb from the OpenPandora forums, and we talked
about the Virtual Jaguar core of the libretro project, which
is quite slow on all ODROID devices, even on the powerful
ODROID-XU3/XU4. He said that they use the Virtual Jag-
uar standalone emulator to run Atari Jaguar games on Open-
Pandora, which is a single core ARM board with a Cortex-A8
1GHz CPU). According to him, it should work much better
on a powerful board such as the ODROID-XU3/XU4 than
it already does on OpenPandora. We checked the code to-
gether, and with some patches made by @ptitSeb for OpenPan-
dora device, we were able to port the Virtual Jaguar standalone
emulator to ODROID using Qt5 in order to enable OpenGL
ES acceleration. After that, I did a lot of testing to see what
you can actually do with the emulator and how well it runs on
ODROIDs, which is what I will discuss in this article.

Introduction
The Atari Jaguar was the last console from Atari, and was

marketed as a 64 bit console to compete with existing 16 and
32 bit consoles, such as the SNES, Sega Genesis, or 3DO. It
was first released in November 1993 in North America, and lat-
er in Europe and Japan. It had multiple processors for different
tasks and was quite fast (13.295MHz) as compared to a SNES
(3.58MHz) or Sega Genesis (7.6Mhz). Later, it got a CD and
VR headset as an add-on. Although not a bad console, it was
already discontinued by 1996, which was not even 3 years after
its first appearance. One of the reasons for the low sales might
be the weird looking controller, which was not well-designed.

Games
The design of the Atari Jaguar with different chips for differ-

ent tasks made it hard to develop games for the console because
of the fact that Atari wasn’t really pushing the development,
since only 67 licensed titles were released for the Atari Jaguar.
The Jaguar CD add-on got another 15 titles which adds up
to a total of 82 games, most of which were released by Atari
themselves. Although there are only a few licensed games for
the console, in the late 1990s, the console was put under public

LINUX GAMING

domain and declared an open platform, and some new games
were developed as homebrew games. Even today, new games
pop up every now and then, like Alice’s Mom’s Rescue for the
Jaguar CD, which was released for the Atari Jaguar in 2015.

Our art editor, Bruno, worked as a teenager on a game store
and had the dubious privilege of being able to play games with
a Jaguar but not having to actually purchase it

2D Platformer Alice’s Mom’s Rescue released in 2015 for Atari
Jaguar CD

ODROID MAGAZINE	 22

LINUX GAMING

Although the Atari Jaguar library is quite limited, it has
some very good titles, such as Raiden, Rayman, Pitfall and
Cannon Fodder, which are also known from other consoles.

The Atari Jaguar CD added more games to the library which
were improved with movie cutscenes, better graphics and bet-
ter sound. Still, there were only a few titles, so the Atari Jaguar
CD could not compete with the Playstation 1 or Sega Saturn.

ODROID support
So how good is the Atari Jaguar supported on ODROIDs?

I’m afraid it’s actually not that well supported. There is a libret-
ro core for Virtual Jaguar which can be used for retroarch, but
I found it to be very slow and only a few games actually work
with it at all. Some games run nearly full speed on an XU3/
XU4 like Cannon Fodder, but these games are rare. Other
games such as Pitfall or Alien vs. Predator run at a very low
frame-rate (below 30 FPS), and, as I already said, many games
don’t work at all. For example, Rayman won’t start on the
libretro core.

The alternative is the standalone emulator. The Virtual Jag-
uar emulator is working well, but not well enough to run on
all ODROIDs. The C1 will never be able to run a game flu-
ently. I’m not sure about the C2 since I’m not sure if it even
works without X11 drivers. Nor do I know the quality of the
drivers yet, since at the time of the creation of this article there
were no X11 drivers for C2 yet. The U3, although twice as
fast as the C1, is probably too slow for many games as well.
Some games, like Cannon Fodder, might work, but generally I
wouldn’t count on it. That means that the Atari Jaguar is most
likely limited to the XU3/XU4 only. The emulator actually
has a filter that allows you to use bilinear filtering for graphics,
which can greatly increase picture quality:

I took the time to test 56 different ROMs for the Atari
Jaguar and will add a compatibility list for it. I also would like
to highlight some of the games and tell you what I think about
them.

Cannon Fodder
Cannon Fodder is a strategic action game where you send

a small group of soldiers into battle to fight other soldier and
destroy buildings. The game is very fun to play, and although
the original game was controlled via a mouse, such as on the

The Atari Jaguar Controller was not well designed, and was so
bad that even if you were kidnapped by it for a long time, you
wouldn’t develop Stockholm Syndrome

Rayman for the Atari Jaguar vs Rayman for the Playstation 1

Differences between no filter and with bilinear filter - the upper
half uses the filter and the lower half does not

ODROID MAGAZINE	 23

Amiga, it works surprisingly well on the Atari Jaguar. The vir-
tual mouse is very responsive using a controller, and since you
only need two buttons to control the game it’s easy to handle.

You have a lot of soldiers, called recruits, waiting for you
to send into battle, so if one of your soldiers dies, he’s simply
replaced by a new recruit. The sheer number of recruits you
get should show you how often you can die. It also shows that
soldiers are very replaceable. You fight in different settings:
Jungle, Arctic, and Desert.

I really like the game, but there are some alternatives to
choose from. The game came out for many different consoles.
I used to play it on the Amiga, where there’s even an Cannon
Fodder 2 and some other spin-offs of the series. Still, the Atari
Jaguar version is nice and you should try it.

Flashback
Flashback – The Quest for Identity is another nice game

that I know and love from the Amiga. This port to the Atari

Jaguar is also very good and it’s a nice action platformer game
to have for the Atari Jaguar.

Although I miss the better tunes of the Amiga, which had
much better music quality in my opinion, it’s also missing
some of the cinematic scenes of other consoles. However, the
game is fully there and as great to play as any other version
of the game. I guess there’s a reason why this game holds the
Guinness World Record as the best-selling French game of all
time, and from my childhood and playing this games for many
many many hours on the Amiga, I can tell that it’s well earned.

The game can be very hard at times, especially when find-
ing out the right way how to deal with enemies. Sometimes
it’s best to distract them rather than directly confront them,
and other times you just hope your shield will save you. I still

As the name implies, your soldiers are basically Cannon Fodder,
and are very replaceable

The Jungle is where you start your journey

Fighting in futuristic settings, mines, and teleporting enemies
are only a few obstacles you face

A nice arctic level on Cannon Fodder where you fight with your
soldier

LINUX GAMING

ODROID MAGAZINE	 24

prefer the Amiga version over the Atari version, but it’s a good
game no matter what.

There are also some very good arcade shooters for the Atari
Jaguar, for example Raiden and Tempest 2000. Raiden actually
has nice graphics and very good music which I can say I really
enjoy. The gameplay, on the other hand, is somewhat hard, at
least for me. There are some power ups spread throughout the
level, but they are still rare, and if you die, you lose all power
ups and have to start anew with collecting them, which doesn’t
mean you’re going to get them again in the same level. With-
out power ups your craft will be extremely weak. Even “mid-
boss” enemies will take a very long time to kill if you don’t have
any power ups for your weapons, which makes the game very
hard in my opinion. You do so little damage, that without
bombs you probably don’t have the chance to kill an enemy at
all. Still, the game is fun to play and I guess multiplayer is the
best way to beat the game.

Tempest 2000 is very interesting, although it doesn’t look
like much at first, it’s actually quite fun to play. It has nice
music, and the graphics are actually not that bad, even if they
are very minimalistic. It comes with nice particle effects for
explosions and items to collect. You can collect a couple of
power ups and even get an NPC supporter that helps you shoot
enemies. It’s slightly laggy on the ODROID, but still very
playable. It’s actually quite addicting.

There are more arcade shooters which are notable, such
as Defender 2000 andProtector. Atari Carts is a nice racing
game similar to Mario Carts. Pinball Fantasies is a good Pin-
ball game on the Atari. I also love the port of Worms which
plays quite nice on the Atari Jaguar, although also originally
controlled with mouse and keyboard.

General thoughts
Overall, the Atari Jaguar is a good console similar to a Sega

Genesis or the SNES. Sadly. there are only a few games avail-
able and not even all games are working. Only the XU3/XU4
are currently able to play Atari Jaguar at an acceptable speed.
The Libretro core of Virtual Jaguar is not working well, since
only a few games work with it. The standalone emulator works
much better.

Many of the games are actually ports from other consoles,
and are either as good as on the Atari or might even be a little
bit better, so it is worth trying other versions of the games to
see what you like the best. Many games that I know from the
Amiga are actually best played as the original version. Other
games, like Pitfall, also exist on other consoles, which are less
demanding, like Sega 32X, and can therefore run on more de-
vices than just the XU3/XU4. Atari Jaguar CD games don’t
seem to work so these games can’t even be played. Fortunately,
you can now play the games on controllers like the XBox360
controller rather than the clunky Atari Jaguar controller. The
setup of the controller is rather easy thanks to the Qt5 based
GUI and the SDL2 drivers for joystick support.

It’s an interesting console for the XU4, but it’s not too
much of a problem if your ODROID is not able to run the
games, since there are probably ports for other consoles as well.
If you want to try it Atari Jaguar on your ODROID XU3/XU4
you can download it from my repository. I hope you will have
some fun with the piece of gaming history on your ODROID.

Raiden for the Atari Jaguar nice to play and should even support
2 player mode

Tempest 2000 was an effort from Atari to catch up on with
games that had 3D environments, and show how different they
were from what was available on the PS1/Sega Saturn systems

We all have a place in our old
school gaming hearts for Atari,
which could have been a better
console, but was outclassed the
likes of the Sega Dreamcast

LINUX GAMING

ODROID MAGAZINE	 25

LINUX GAMING

ODROID MAGAZINE	 26

LINUX GAMING

ODROID MAGAZINE	 27

Setup
The first thing to do is to make sure

you have the support library installed in
Android Studio. Use the “android” ap-
plication that resides inside <android_
sdk_folder>/tools directory. Under the
Extras section, select “Android Support
Library” to download it into your SDK.
Refer to Figure 2 to see how your SDK
directory should look once the library is
downloaded.

Library Versions
As seen in Table 1, there are a num-

ber of support libraries available, but you
only need to use what is right for your
project. The directory listed in the table
contains the all the relevant files such as
source code, resources, and config files of
the library.

Looking at the table, you can see that
majority of the support libraries are re-
lated to user interface, which is a large
source of problems that developers have
to deal with when designing Android

One common problem with An-
droid app development is the
number of different Android

version that need to be supported, which
can be daunting at times. In the early
days of Android, most developers strug-
gled to make sure that their app could
be run on older version of Android.
As time passed, Google came out with
a library to make developing apps eas-
ier. For the last few years, Google has
strongly encouraged developers to use
the Android Support Libraries. The end
goal of the library is to reduce the level
of code needed for application to run
on different Android versions. Google
has been frequently releasing updates to
this library. With the help of Android
Support Library, developers just have to
focus on writing their apps and leave the
hard work of Android version portability
to the library. In this article we’re going
to take a look at the Android Support
Libraries and how to use them.

Android Development
Android Support Library
by Nanik Tolaram

Figure 1 - Android SDK Downloader

Figure 2 - Support library inside the
SDK folder

ANDROID DEVELOPMENT

ODROID MAGAZINE	 28

ANDROID DEVELOPMENT

can checkout from the GitHub repository at http://bit.
ly/1QuHhmK. Figure 5 shows the app running on the three
different Android devices: Nexus S - Android 4.1.2, Nexus 5
- Android 6.0, and Samsung Galaxy Express - Android 4.1.2.
Notice how the app still looks and behave the same on all the
devices.

One thing that you need to decide when writing an An-
droid app is the lowest version of Android you want your app
to support. There is no rule, since it all depends on the market
that you are targeting, resources that you have, and many other
things. The demo app we are looking at supports devices from

application. Also notice that the library uses numbering
such as, v7, v13, v14, etc. Table 2 outlines the different mean-
ing for each of the version number

Let’s take a look at the content of the Design Support Li-
brary that resides inside the “<sdk>/extras/android/support/
design” directory. The content of the directory can be seen in
Figure 3.

There is a /src directory, which is empty. The source code for
the support library is available for download from the AOSP
repository at http://bit.ly/1Ua2clG.

Demo
We’re going to take a look at some demo code that you

Table 1 - Android Support Libraries and SDK Location

Table 2 : Android Support Libraries Version

Figure 3 - Design Support Library directory

Figure 4 - Support Library Source Repository

figure 5 - Three different devices with two different Android
versions running on them

ODROID MAGAZINE	 29

http://bit.ly/1QuHhmK
http://bit.ly/1QuHhmK
http://bit.ly/1Ua2clG

ANDROID DEVELOPMENT

height=”match_parent”

 android:layout_

width=”wrap_content”

 android:layout_

gravity=”start”

 android:fitsSystemWindows

=”true”

 app:headerLayout=”@lay-

out/nav_header”

 app:menu=”@menu/drawer_

view”/>

</android.support.v4.widget.Draw-

erLayout>

Figure 7 shows which part of the app
is using the new support library’s custom
view, called android.support.design.wid-
get.NavigationView.

There are 2 parameters inside the
new widget: app:headerLayout and
app:menu. These point to the file res/
layout/nav_header.xml and res/layout/
drawer_view.xml. The drawer_view
contains the submenu text along with
the icons to be displayed while the nav_
header contains the top part of the view.
In Figure 7, it’s the text “Username”.

The other custom view used is an

android.designlibdemo”

 minSdkVersion 9

 targetSdkVersion 23

 versionCode 1

 versionName “1.0”

}

The code below shows the declared
dependencies inside the build.gradle file
that indicates to the build system which
support library to use. The demo app
uses the Design Support and Cardview
library, v7, both using version 23.1.1.

dependencies {

 compile ‘com.android.

support:design:23.1.1’

 compile ‘com.android.

support:cardview-v7:23.1.1’

 compile ‘com.github.bumptech.

glide:glide:3.6.0’

 compile ‘de.hdodenhof:circlei

mageview:1.3.0’

}

The custom view that the app is us-
ing is shown below, which can be found
inside the res/layout/activity_main.xml
file:

<android.support.v4.widget.Draw-

erLayout xmlns:android=”http://

schemas.android.com/apk/res/an-

droid”

 xmlns:app=”http://schemas.

android.com/apk/res-auto”

 android:id=”@+id/drawer_lay-

out”

 android:layout_height=”match_

parent”

 android:layout_width=”match_

parent”

 android:fitsSystemWindows=”t

rue”>

 <include layout=”@layout/in-

clude_list_viewpager”/>

 <android.support.design.wid-

get.NavigationView

 android:id=”@+id/nav_

view”

 android:layout_

Gingerbread, Android 2.3 API Level
9, and later. You can see the devices in
Figures 6a and 6b.

The configuration that specifies the
lowest Android version your app wants
to run on is set in the build.gradle file.
The code below shows the minSdkVer-
sion attribute that controls this. Android
API and version numbering information
can be found at http://bit.ly/1Ua4mlk.

defaultConfig {

 applicationId “com.support.

figure 6a – Nexus S Gingerbread

Figure 6b – Nexus S Device Configuration

Figure 7 - NavigationView widget

ANDROID DEVELOPMENT

ODROID MAGAZINE	 30

android.support.v4.widget.DrawerLayout
android.support.v4.widget.DrawerLayout
android.support.design.widget.NavigationView
android.support.design.widget.NavigationView
nav_header.xml
drawer_view.xml
com.support.android.designlibdemo
build.gradle
com.android.support
com.android.support
com.android.support
com.android.support
com.github.bumptech.glide
com.github.bumptech.glide
de.hdodenhof
activity_main.xml
android.support.v4.widget.DrawerLayout
android.support.v4.widget.DrawerLayout
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res
http://schemas.android.com/apk/res
android.support.design.widget.NavigationView
android.support.design.widget.NavigationView
build.gradle
http://bit.ly/1Ua4mlk
com.support.android.designlibdemo

Battle for
the Solar System:
Pandoran War
A Fun 2D Mission-Based
Space Shooter
by Tobias Schaaf

The Pandoran War offers a very straightforward gam-
ing experience for your ODROID. The game is a
non-linear mission system, which means that you

simply jump in by choosing any one of the dozens of mis-
sions that interest you across the entire game. It takes place
between books 2 and 3 of the novel trilogy, so it might be
worth reading some of the free chapter samples on the Pan-
doran War website at http://bit.ly/1YRi6Rj to learn more
about the game’s backstory. The game runs on SDL2 and
OpenGL ES, so it will take advantage of the Mali GPU and
powerful 4 or 8 core processors available on devices like the
ODROID-XU4 or ODROID-C2.

Installation
To install the Pandoran War, you’ll need to first add @mev-
eric’s repository to your distribution, if you haven’t already:

$ su
cd /etc/apt/sources.list.d/
wget http://oph.mdrjr.net/meveric/\
sources.lists/meveric-all-main.list
wget -O- http://oph.mdrjr.net/meveric/meveric.asc
| apt-key add -

Next, simply install it as you would any other game or
application via apt-get:

$ apt-get update
$ apt-get install tbftss-odroid

For questions, comments and suggestions, please visit
the original thread on the ODROID forums at http://
bit.ly/1prxGY1.

droid.support.v4.widget.DrawerLayout which, is the main
layout for the whole app encapsulating the android.support.de-
sign.widget.NavigationView. The DrawerLayout view knows
which view to popup based on the code below:

switch (item.getItemId()) {

 case android.R.id.home:

 mDrawerLayout.openDrawer(GravityCompat.

START);

 return true;

}

The GravityCompat.START tells the library to look inside
the DrawerLayout view to iterate through its child views to
find which view has set the layout_gravity to “start”, which is
defined inside activity_main.xml in the NavigationView.

This should give you a headstart on using the Android Sup-
port Library. We will look more in depth at the support library
in future articles.

Resources
Android Support Library Features
http://bit.ly/1ei6hQ5

Android Support Library
http://bit.ly/1qIpxiK

ANDROID DEVELOPMENT LINUX GAMING

A fun 2D shooter that is a gem for Linux gamers on ODROID

ODROID MAGAZINE	 31

http://bit.ly/1YRi6Rj
sources.list
http://oph.mdrjr.net/meveric
sources.lists/meveric-all-main.list
http://oph.mdrjr.net/meveric/meveric.asc
http://bit.ly/1prxGY1
http://bit.ly/1prxGY1
droid.support.v4.widget.DrawerLayout
android.support.design.widget.NavigationView
android.support.design.widget.NavigationView
item.getItemId
android.R.id.home
mDrawerLayout.openDrawer
GravityCompat.START
GravityCompat.START
GravityCompat.START
activity_main.xml
http://bit.ly/1ei6hQ5
http://bit.ly/1qIpxiK

that is in putting the baby to sleep, and
so on.

With an AWS lambda function and
a dashboard with all the sensor readings,
the parents can make intelligent conclu-
sions about the baby’s sleep preferences
such as:

•	 does (s)he prefer a certain ambi-
ent light color?

•	 does (s)he like to be moved
around when put to sleep?

•	 is (s)he getting asleep faster when
singing?

•	 is (s)he waking up more when
there is light in the room?

Parents can also check how much
night time they spend with the baby,
to settle more quickly the discussion on
whose turn it is to put the baby to sleep.
Although this project does not intend to
replace a baby monitor, it could send no-
tifications to the parents when the baby
starts crying using Amazon Simple No-
tification Service (SNS).

Components used
•	 ODROID C1/C1+
•	 Adafruit PN532 NFC/RFID

controller breakout board
•	 http://bit.ly/1O0wK30
•	 Adafruit 13.56MHz RFID/NFC

Bracelet
•	 http://bit.ly/1pP4Q3G
•	 Adafruit RFID/NFC Smart Ring
•	 http://bit.ly/1WXBrSi

Being a parent for the first time is
a big challenge. Having a cry-
ing baby and not knowing how

to calm him/her down quickly can be
extremely taxing, especially on working
parents that take turns taking care of the
baby. I hope the Baby Night Activity
Program (Baby NAP) will help parents
in this predicament.

Consider a baby crib with a pres-
sure mat sensor that would go under the
child. A Radio-frequency identification
(RFID) reader attached to the baby crib,
coupled with RFID bracelets or rings
worn by the parents, can determine
when the baby is picked up, for how
long, and by which parent. A sound sen-
sor can be used to record the amplitude
of baby’s voice and determine if the baby
is crying, for how long, and how hard.
A Pyroelectric (Passive) InfraRed sensor
(PIR) sensor and a light sensor can be
used to record the ambient motion and
light. All these sensors can be connected
a Single Board Computer (SBC) like
the ODROID C1/C1+. This board can
upload the sensor data to a cloud based
service like the Amazon Web Services
(AWS), for additional processing.

For those wanting to extend this set-
up, they can for example, use a Philips
Hue bulb to control the light color in
the baby room, and a microphone can
filter out the baby noise and determine,
if the parents are singing, how effective

•	 Adafruit TSL2561 Digital Lumi-
nosity/Lux/Light Sensor Break-
out

•	 http://bit.ly/1rFj0WX
•	 PIR Motion Sensor (Ebay)
•	 SparkFun Sound Detector
•	 http://bit.ly/1HZN6Y1
•	 Pressure Mat PM1 (Ebay)

Hardware
connections

The ODROID C1 has a 40-pin con-
nector that is mostly compatible with
the 40-pin connector of the Raspberry
Pi (except the 2 analog inputs), so I will
be using a Pi Cobbler+ in the accom-
panying diagrams. There are 2 power
rails on the breadboard, one for 5V (red
wires) and one for 3.3V (orange wires).
There are also 2 rails for ground (black
wires), on each side of the breadboard.
I will be using some test programs for

Baby NAP
(Night Activity Program)
Part 1 - Hardware configuration
by Marian Mihailescu

Figure 1 - First step of wiring

BABY NAP

ODROID MAGAZINE	 32

http://bit.ly/1O0wK30%0D
http://bit.ly/1pP4Q3G%0D
http://bit.ly/1WXBrSi%0D
http://bit.ly/1rFj0WX%0D
http://bit.ly/1HZN6Y1%0D

BABY NAP

input every second:

import wiringpi2 as wpi

import time

wpi.wiringPiSetup()

GPIO pin setup

wpi.pinMode(2, wpi.GPIO.INPUT)

while True:

	 i=wpi.digitalRead(2)

	 if i==0:

 	 print “no motion “, i

	 elif i==1:

 	 print “motion detected “, i

	 time.sleep(1)

Running the program and moving
around the sensor should result in an
output similar to this:

python pir.py

no motion 0

no motion 0

no motion 0

motion detected 1

motion detected 1

motion detected 1

motion detected 1

motion detected 1

motion detected 1

motion detected 1

motion detected 1

motion detected 1

no motion 0

no motion 0

Pressure Mat
The pressure mat acts as a switch:

when the mat is pressed, the switch
is turned on. There are 2 wires to be
connected - one to 3.3V (with orange
wire) and one to the GPIO input pin
#15 (WiringPi GPIO 3, with purple
wire). We will be using a pulldown 10k
resistor to connect the data wire to the
ground (the black wire), which means
that when the switch is open there is a
path to ground and the GPIO will read
0. When the mat is pressed, because of
the pin connected to 3.3V there will be
a lower resistance path to high and the
GPIO will read 1. We will be using also

each sensor, written in Python and us-
ing the WiringPi2 library, available for
the ODROID at http://bit.ly/23Rwf7T.
The WiringPi GPIO mapping for the
C1 is available at http://bit.ly/1Ejubsm.
Figure 1 illustrates the circuit used.

Note that one can also use relevant
components from Hardkernel’s C1 Tin-
kering Kit (http://bit.ly/1YNPN6k). If
using this kit, one would have to pay at-
tention to the pin assignments on the T-
Breakout PCB and alter the information
presented here to match the variations.

PIR Motion Sensor
The PIR motion sensor has 3 pins:

VCC, going to the 5V rail, GND and
DATA (yellow wire). We will be using
header #13 for the DATA pin, exported
by WiringPi as GPIO 2. The input from
the PIR sensor is 1 when there is motion
and 0 otherwise. The sensor has 2 po-
tentiometers, one for sensitivity and one
for time (how long after the motion was
detected - the DATA output will be 1).
Using trial and error, I set the potenti-
ometer to output 1 for a 10-second de-
tection duration. Figure 2 indicates the
relevant section of the circuit.

The test program used is a very sim-
ple Python script that polls the GPIO

a 1k current limiting resistor on the data
wire, to make sure the board will handle
the current drawn when the switch is
ON. Figure 3 reflects this setup.

The test program used here is also
very simple:

import wiringpi2 as wpi

import time

wpi.wiringPiSetup()

GPIO pin setup

wpi.pinMode(3, 0)

while True:

	 i=wpi.digitalRead(3)

	 if i==0:

 	 print “not pressed “, i

	 elif i==1:

 	 print “pressed “, i

	 time.sleep(1)

Figure 2 - Second step of wiring

Figure 3 - Third step of wiring

Figure 4 - Fourth step of wiring

ODROID MAGAZINE	 33

wpi.wiringPiSetup
wpi.pinMode
wpi.GPIO.INPUT
wpi.digitalRead
time.sleep
pir.py
http://bit.ly/23Rwf7T
http://bit.ly/1Ejubsm
http://bit.ly/1YNPN6k
wpi.wiringPiSetup
wpi.pinMode
wpi.digitalRead
time.sleep

3V3 to 3.3V rail (orange wire), GND to
ground (black wire), SDA to SDA (green
wire) and SCL to SCL (white wire). Fig-
ure 5 demonstrates this part of the setup.

To enable I2C on the ODROID
C1, you need to load the aml_i2c ker-
nel module. It can be done by append-
ing aml_i2c to the /etc/modules file.
We will also be using the tentacle_pi
python module, available at http://bit.
ly/1AiDZfk. It allows for communica-
tion with TSL2561 from a Python ap-
plication outputting the light intensity
in lux units:

from tentacle_pi.TSL2561 import

TSL2561

import time

tsl = TSL2561(0x39,”/dev/i2c-1”)

tsl.enable_autogain()

tsl.set_time(0x00)

while True:

	 print “lux %s” % tsl.lux()

	 time.sleep(1)

RFID Reader
The RFID card reader can be con-

nected to the ODROID C1 using the
SPI, I2C or UART interface. We will be
using the nfc Linux library, which is the
easiest option is to use the UART serial
connection. For this mode, both SEL0
and SEL1 on the PN532 RFID break-
out board need to be set to OFF state.
As with any serial connection, we will

	 if ampl <= 10:

 	 print “quiet: “, ampl, “,

“, i

	 elif ampl <= 30:

 	 print “moderate: “, ampl,

“, “, i

	 else:

 	 print “loud: “, ampl, “, “,

i

	 time.sleep(0.5)

When run, it produces output simi-
lar to that below:

python sound-env.py

quiet: 10 , 88

quiet: 3 , 31

moderate: 27 , 220

moderate: 24 , 199

moderate: 28 , 229

moderate: 16 , 130

loud: 52 , 419

moderate: 16 , 129

moderate: 30 , 244

quiet: 4 , 33

quiet: 6 , 49

quiet: 3 , 31

quiet: 5 , 44

Light sensor
The Adafruit TSL2561 can be con-

nected to the ODROID board via I2C.
The connections are straightforward:

Sound Sensor
The Sparkfun sound detector that

we will be using has 5 pins: VCC (5V),
GND, GATE, ENVELOPE and AU-
DIO. We will be using the GATE digi-
tal output, which is 1 when sound is
detected and 0 otherwise, and the EN-
VELOPE analog output, which repre-
sents the amplitude of the sound. We
will be connecting the GATE pin to
header #29 (WiringPi GPIO 21, using
yellow wire) and the ENVELOPE pin to
ADC.AIN0 on header #40 (blue wire).
Figure 4 illustrates this part of the overall
setup.

The following script can be used to
test sound detection:

import wiringpi2 as wpi

import time

wpi.wiringPiSetup()

GPIO pin setup

wpi.pinMode(21, 0)

while True:

	 i=wpi.digitalRead(21)

	 if i==0:

 	 print “no sound “, i

	 elif i==1:

 	 print “sound detected “, i

	 time.sleep(1)

The sound volume can be determined
by trial and error. In my case, I reduced
the output to the 0-127 value range and
used the 10-30 range as moderate (con-
versational) sound volume. An output
below 10 means the room is quiet and
a value above 30 implies there is a high
volume sound, with a likelihood that the
baby is crying.

Below is another test application,
which should be saved to a file caled
sound-env.py:

import wiringpi2 as wpi

import time

wpi.wiringPiSetup()

while True:

	 i=wpi.analogRead(0)

	 ampl = i*255/2047 # not

sure this is correct

Figure 5 - Fifth step of wiring

Figure 6 - Sixth step of wiring

BABY NAP

ODROID MAGAZINE	 34

http://bit.ly/1AiDZfk
http://bit.ly/1AiDZfk
tentacle_pi.TSL
tsl.enable
tsl.set
tsl.lux
time.sleep
time.sleep
sound-env.py
ADC.AIN
wpi.wiringPiSetup
wpi.pinMode
wpi.digitalRead
time.sleep
sound-env.py
wpi.wiringPiSetup
wpi.analogRead

>>> clf.connect(rdwr={‘on-con-

nect’: connected}) # now touch a

tag

Type3Tag IDm=01010501b00ac30b

PMm=03014b024f4993ff SYS=12fc

<nfc.tag.tt3.Type3Tag object at

0x7f9e8302bfd0>

Since the connect function is block-
ing, the final code will be written to read
the NFC tag in a separate thread.

Part 2 of this series, available in next
month’s issue, will detail the software
components required.

References
•	 ODROID-C Tinkering Kit
•	 http://bit.ly/1YNPN6k
•	 Hardkernel’s WiringPi2 GitHub

repository
•	 http://bit.ly/23Rwf7T
•	 ODROID-C2
•	 http://bit.ly/1oTJBya
•	 Userspace Python drivers for

TWI/I2C sensors
•	 http://bit.ly/1AiDZfk

be using 5 wires: VCC (5V, red wire),
ground (black wire), RX and TX (green
and white) - connected to TX and RX
of UART1 (/dev/ttyS2) on the board on
headers #8 and #10. Figure 6 indicates
this part of the setup.

The libnfc library and related compo-
nents can be installed easily on Ubuntu
with the following command:

$ sudo apt-get install \

 libnfc-bin libnfc-examples \

 libnfc-pn53x-examples

The python wrapper can be down-
loaded and installed from http://nfcpy.
org. In order to use libnfc, you need to
configure the connection by creating a
file called /etc/nfc/devices.d/pn532_
uart.conf, which contains the following
code:

Typical configuration file for

PN532 device connected using UART

name = “PN532 board via UART”

connstring = pn532_uart:/dev/

ttyS2

allow_intrusive_scan = true

You can then test the connection
with the pn53x-diagnose program:

$ sudo pn53x-diagnose

pn53x-diagnose uses libnfc 1.7.0

NFC device [pn532_uart:/dev/

ttyS2] opened.

 Communication line test: OK

 ROM test: OK

 RAM test: OK

The nfcpy application is well docu-
mented and easy to use. To read a tag,
you only need a few python lines. Note
the tty:S2:pn532 connection string that
needs to be used.

>>> def connected(tag):

print(tag); return False

...

>>> clf = nfc.ContactlessFrontend

(‘tty:S2:pn532’)

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

BABY NAP

ODROID MAGAZINE	 35

clf.connect
nfc.tag.tt3.Type
http://bit.ly/1YNPN6k
http://bit.ly/23Rwf7T
http://bit.ly/1oTJBya
http://bit.ly/1AiDZfk
http://nfcpy.org
http://nfcpy.org
devices.d/pn532_uart.conf
devices.d/pn532_uart.conf
nfc.ContactlessFrontend

U3, and I bought it without doing a lot
of homework necessary to make this all
work. The Chinese, no-name 7-inch
touchscreen I found had a 1280x800
resolution, and I found he out that
the ODROID-U3 can only handle a
1920x1080 or 1280x720 resolution,
creating a distorted image on the screen
I tested it with. There were also some
touchscreen issues as I tried to get po-
sitioning to work accurately on the re-
sistive touch controller. It was an even
greater challenge to do so on Android,
where it expects a capacitive screen in
the first place.

I needed something to just work with
this touchscreen, so it looked into an al-
ternative, including the XU3. The XU3
seemed like a better fit with its improved
resolution compatibility and other fea-
tures, but it was just too expensive for
my project. But when the ODROID-
XU4 came out and offered a far better
price tag, I was able to finally afford a
device that could meet my needs.

Finding a display
device

After receiving my ODROID-XU4
two weeks later, I went ahead and got
started with an Android image on my
eMMC. Thankfully Android booted
and the touchscreen worked immedi-
ately. However, I still wasn’t happy with
the display’s quality and touchscreen,

I’m an electronics engineer who also
works in computer systems engineer-
ing, and am certified in the United

Kingdom’s City and Guilds Electronic
Servicing to level three. I have been
inspired with electronics ever since my
father built a color TV from scratch in
his spare time. This project brings the
power of an ODROID-XU4 into your
car for added functionality and features
while on the road. This is a look at my
journey from getting started with the
project to getting everything in working
order.

I’ve always wanted to build a PC for
use in my car. It’s something I’ve seen
with a lot of potential ever since MP3s
were made digital and could be played
from a PC, bringing the ability to listen
to music and other capabilities to my
car. I’ve experimented in the past, but
most devices just didn’t meet my needs.
The x86-based machines I used were far
too slow, and the Android computer-on-
a-stick I tried in the past couldn’t easily
use a touchscreen or GPS for the features
I wanted. I also once tried this a Nook
HD, which showed promise, but its bat-
tery created a lot of problems during
testing.

Trial and error
All of these previous issues led

me to trying this project out with an
ODROID. My first ODROID was the

so I decided to see what else was out
there. In the meantime, I found out
about the 7-inch touchscreen offered by
Chalkboard Electronics. It offered the
capacitive multi-touch experience that
I needed for Android, as well as better
quality display overall than my Chinese
no-name screen.

When the touchscreen arrived, I no-
ticed that the bezel was quite large on
the Chalkboard 7-inch touchscreen. It’s
interesting to also note that it’s upside
down, with the connections for the in-
terfaces on top, rather than on the bot-
tom of the screen as you may expect with
other displays. This is something to bear
in mind depending on how you plan out
your own Car PC project, as you’ll need
to allow for about 7mm of space at the
top when mounting your display.

I realized that the firmware that came
with this touch screen emulated a mouse
pointer, rather than the touch experience

Make your own
smart car with the
ODROID-XU4
Bring new functionality to your vehicle
by Jon Westgate

CAR PCCAR PC

ODROID MAGAZINE	 36

When I switched to the XU4, I was
able to trash the old Chinese display
built into my WinCE device, and in-
stead use the bezel and dashboard to fit
in my new, higher quality Chalkboard
touchscreen display instead. I was also
using a Denison Gateway Pro in order
to program my car’s buttons and features
with the custom display and XU4 I was
installing. This gave me a seamless Blue-
tooth connection for hands-free calling
and music through the car’s speakers.

Rather than use an ODROID GPS
Module, I ended up using a Chinese
unbranded GPS module, which con-
nected to a 4-in-1 antenna to save space
and make things easier. This was all
then connected to my XU4 using a se-
rial to USB adapter. The goal was to use
a single antenna that could handle not
only my GPS, but also my AM, FM, and
DAB radio connectivity as well through
this 4-in-1 antenna connector. I ended
up placing the antenna near the rear view
mirror after experimenting with several
antenna systems, including a powered
GPS antenna that didn’t work out in my
current setup.

The GPS Software I used to use on
WinCE was called iGO Primo. But now
that I’m using Android, everything can
be handled through an app available on
the Play Store, which includes numer-
ous offline GPS apps, as well as Google
Maps. However, one last challenge with

you’d expect from a tablet or similar An-
droid device. That way the device will
register a swipe when you move your fin-
ger, rather than move a mouse cursor on
the screen. There’s a different firmware
you need to flash for this touchscreen in
order to get that working, according to
the documentation that I read.

Flashing the touch-
screen firmware

For this project with my ODROID-
XU4, I used @voodik’s CyanogenMod
12, featuring Android 5.1.1 (http://bit.
ly/1VyXFKW). It’s best to start with an
out-of-the-box experience and add fea-
tures as you experiment and get the ba-
sic hardware working. After finding the
right driver to update the firmware, you’ll
need to use a Windows PC in order to
update the firmware for the touchscreen
to work with this project properly. The
full details of these instructions are on
the Chalkboard Electronics Website at
http://bit.ly/1MULs0y. Once you finish
the firmware update, you should be able
to use pinch-to-zoom and all the other
intuitive features that make this project
easy to use from your car.

Getting GPS
working

For this project to succeed, I wanted
to also get a GPS working for satellite
navigation. This was something not al-
ready available on my Citreon C4 Coupe.
I tried and failed to get satellite naviga-
tion through other third party methods,
and the manufacturer’s GPS technology
was far too expensive, and not worth
installing on my car. Before beginning
this project, I had, among other project
experiments, gotten a WinCE device
working with a 7-inch GPS unit along
with a Bluetooth entertainment system
tied into it all on a dashboard. But after
having some crashes, bugs, and general
poor performance, it was finally time to
upgrade to my new XU4 with its power-
ful 8-core processor and Android operat-
ing system.

the GPS was ensuring that the real time
clock could synchronize with the GPS
satellites for time accuracy, which re-
quired an RTC battery so that the time
wasn’t lost each time the device lost pow-
er. I had a spare battery on hand and
simply replicated something very similar
to what Hardkernel offers on its website.
I also figured out a way to gracefully turn
off the XU4 through the PIO connector
on the board.

A minor mishap
While working on getting the PIO

connector working to gracefully shut
down my XU4, I ended up accidentally
shorting the 5V line, killing my XU4
and leaving it with a flashing LED. In
case anyone is wondering, I was able to
get it fixed by shorting out the protec-
tion circuits (ICs), which can be seen in
Figure 5. If you ever make this mistake,
you can try this in order to figure out
how to bring your XU4 back from the
dead.

By making this mistake, I ended up
ruining my RTC circuit, making the
battery useless. After searching around
the Plays Store, I was able to find an app
called “Smart Time Sync” (http://bit.
ly/1rw76yA), which uses the GPS to set
the time and adjust your Android clock
after each boot. You might find this use-
ful if you don’t want to deal with a bat-
tery, or can’t deal with it due to a mistake
like mine. It’s also just a really useful app
for those interested in getting their XU4
to work with a GPS on Android.

Getting a radio
working

What’s a car without a radio? Since
the goal is to create a single experience

CAR PC

ODROID MAGAZINE	 37

http://bit.ly/1VyXFKW
http://bit.ly/1VyXFKW
http://bit.ly/1MULs0y
http://bit.ly/1rw76yA
http://bit.ly/1rw76yA

CAR PCCAR PC

cludes a direct sampling modification,
it’s also able to support AM radio and
other frequencies too. In total, the de-
vice can sample signals between 100
KHz and 1.8 GHz, a wide range that
covers AM and FM radio, CB radio,
and even private radio signals for police
and fire departments too. Having such a
broad scanner is very useful in my car if I
ever want to track down a nearby signal.

Getting everything
into the car

Now that everything was working
and compacted, it was time to get every-
thing configured and ready for installa-
tion into my car. This required installing
the 4-in-1 antenna, as well as getting the
right wiring between my new dashboard
system and my car’s own power systems.
I cannot emphasize enough the impor-
tance of using fuses to prevent an elec-
trical malfunction that can cause dam-
age to your electronics, or worse harm
to a friend or family member. It’s also
important to properly earth or ground
your electronics, as you’ll be stepping
down a 12V DC connection to the 5V
connectivity your XU4 and peripherals
need. Even at these low wattages, it can
be very dangerous to get a shock from
these electronics. You really want to give
everything the power it needs.

You can do everything through USB,
but in my case it was easy to run power
from the 12V power to a CPT compo-
nent that stepped the 12V connection
into a 5V 10A connection. Then ev-
erything is passed on through direct sol-
dering to the USB hub, and finally the
ODROID-XU4. This saves the redun-
dant step of using an inverter or other
AC adapter when everything will end up
in DC power, and makes it easy to power

Putting everything
together

As I continued testing, everything
started to slowly come together. There
was a working XU4 with Android, a
working touchscreen, GPS connectiv-
ity, FM radio with DAB, and Internet
connectivity. With all these different
dongles connected, I needed to install a
powered hub in order to maximize the
power available to the XU4 without af-
fecting all of the peripherals’ own power
needs.

Space is limited in a car’s dash, so I
wanted to minimize the space taken up
by all of the different dongles and radi-
os. It took some careful soldering and
cutting, but I was able to break down
the entire power module, XU4, and at-
tached peripherals in a single, compact
device, taking up far less room than
when everything was connected for test-
ing purposes.

Since the RTL-SDR I purchased in-

from my XU4, I also wanted to get a
radio working with the help of Software
Defined Radio (SDR). The RTL-SDR
is a $25 gadget that lets you pick up a
wide range of radio signals, including
FM radio stations with DAB for station
information for a rich experience.

However, the DAB app I was using
did require an Internet connection to
check its license, even though it needed
no Internet connection to work on its
own. This required some creativity and
yet another gadget to get things work-
ing: a cellular data connection. On
the bright side, it meant Google Maps
would work too, but it required more
work in order to get everything work-
ing. I eventually settled on a Huawei
3G/4G dongle that was compatible with
my local British carrier, Everything Ev-
erywhere (EE).

The Dongle I chose was one that
connected via WiFi to my XU4 for sim-
plicity’s sake. It could be designed to
connect natively via Android, but this
meant one less thing to wire, as it could
be done right from the car’s 12V socket
plug. I ended up upgrading the antenna
for improved connectivity.

ODROID MAGAZINE	 38

for improved visibility. I recommend
using an SDI-HD camera, which will
convert the composite HD signal over
coaxial cable to your upconverter, which
then connects flawlessly to your Chalk-
board touchscreen. This enables you to
get up to 4K UHD resolutions from a
single coaxial cable with BNC connec-
tors, along with a 12V DC power con-
nector, and no aspect ratio issues. This
is still a work in progress though, as I’m
currently developing a circuit that will
detect the car’s reverse mode, and switch
the Chalkboard display from the XU4
and instead show the backup camera for
a seamless experience.

Software
Here’s a list of all the software I used:

•	 Voodik’s Cya-
nogenMod 12.1
running Android
5.1.1

•	 Google Apps in-
cluding the Google Play Store

•	 Smart Time Sync Pro
•	 Google Chrome, as Firefox

doesn’t work well on the XU4
and needs to be woken up with
the power button

•	 iGo GPS, but there are plenty of
offline GPS apps available

•	 Autorun (FIT009C Soft Tools)
•	 K@mail, but note that you’ll get

an email certificate error you
should ignore, due to Smart
Time Sync Pro

•	 Google Maps and Google Street-
view

For those who may need it, here are
the changes I made to my build.prop file:

config.disable_bluetooth=false

wlan.modname=8192cu

ro.kernel.android.gps=ttyUSB0

ro.kernel.android.gps.speed=9600

Thanks for joining me on my journey
to build a Car PC, and happy modding!

ress with plans to purchase a better DAC
with an amplifier. There’s also an imped-
ance mismatch between the audio jack
in my Denison Gateway Pro, causing a
tinny, thin, and quiet sound. This will
continue to be something to look into
and figure out as I continue tinkering
with my Car PC.

Other odds and ends
There are a number of small modi-

fications I’ve made as I fine tuned this
project. This includes using a dremel to
drill the Chalkboard touchscreen so that
it fits into the bezel and dashboard per-
fectly. I also added a new connector to
the XU4 so that a power button could be
added through new external controls on
a circuit board in the future. The goal is
to also support future USB joysticks and
other connectivity without having to re-
open everything.

For this project, I ended up using a
full size SD card for cheaper, larger stor-
age capacities on the device, and this re-
quired an extension cable due to the lim-
ited space near the bezel and an HDMI
connector blocking a spot where my full
size SD card would have went.

Another innovative idea that I had
was to use a reversing camera. The Chi-
nese-made GPS system I used supported
a reversing camera, although my Chalk-
board touchscreen had no way to sup-
port this. The reversing camera works
by detecting a composite video signal
and forwarding that along to the screen,
which can be converted for the Chalk-
board’s HDMI input. The only problem
is that the composite signal looks really
bad and has a poor aspect ratio on the
screen.

The solution is two-fold. First, you
need to install an upconverter to bring
the composite signal up to a proper
HDMI signal without aspect ratio is-
sues. However, this will add yet another
peripheral to install in your car in or-
der to get everything working. You’ll
also need to find a camera that is good
enough to provide an HD-quality signal

the antenna for a better signal. The CPT
components are very helpful too, as they
have protections built in to prevent an
electrical short or other damage.

Right now, everything is switched on
when the car is turned on with the igni-
tion switch. This is how everything is
currently configured, though I hope to
change this with a timed supply in case
I quickly turn off the car to make a stop
or get fuel. USB will be the key here,
though it will take some time in the fu-
ture to figure it all out and effectively
control how the device receives power
from the battery even when the car is
not on.

In the meantime, I carefully installed
all the components into the bezel and
dashboard of my car, taking care to en-
sure all the media buttons and other
components would work once rein-
stalled.

Getting audio
working

Getting audio working on this new
Car PC configuration with my XU4
was a lot harder than first expected.
There was a lot of bad noise due to the
grounded connectivity using normal de-
fault outputs. The solution was to use an
HDMI audio extractor to prevent all the
noise you’d otherwise hear when playing
music or listening to the radio.

I’ve tried a number of different op-
tions, including a USB digital audio
controller rather than an HDMI audio
extractor, but the goal was to make sure
this new Car PC could support any au-
dio device, such as an iPod that I plug in,
a hands-free call on my smartphone, or
the GPS navigation system. The entire
process continues to be a work in prog-

CAR PCCAR PC

ODROID MAGAZINE	 39

build.prop
config.disable
wlan.modname
ro.kernel.android.gps
ro.kernel.android.gps.speed

Please tell us a little about yourself.
My personal history begins back in 1965 in northern Greece

and in the beautiful town of Xanthi. At the age of 18, I moved to
Athens for my academic studies, and 5 years later I settled to the
enchanting island of Corfu, where I work and evolve.

I got my Bachelor’s degree as an Electronics Engineer together
with the Pedagogical adequacy back in 1988. Shortly afterward,
I worked for nearly 5 years with Barclays as an operator of the
bank’s Unix online system, and later continued with 2.5 years
with Scotiabank holding the same position. In 1997, I resigned
from the banks’ working field and became a State Employee in
a High School teaching Technology, a position that I still hold
today. In 2006, I got my Master’s of Science in Information
Technology, and in 2012, I was promoted to a Sub-manager in
the High School where I teach Technology and Electronics. My
Master’s of Education is pending, and my academic interests lie
in the ontology field of organizing the information.

My career evolved alongside my personal life. I married my
lovely wife Dori in 1995, and it’s her continuing support and
encouragement that made all things possible to our lives. My
son Apostolos was accepted last year at Glyndwr University in
Wales, studying Game Development: “Like father, like son”.
His dream is to work with the big names in the industry. The
last member of our family, but not least is my daughter Eri. Eri
is studying nursery in high school. She is only 16 years old but
has a strong and firm career orientation.

How did you get started with computers?
In 1985, I purchased my first “home computer”: the epic

Commodore 64. With 64K of memory and a price less than
$600, Commodore 64 was really a breakthrough at that time.
That 8-bit machine was capable of drawing fantastic graphics
using sprites, and outclassed every other computer in the mar-
ket with its 3-channel sound card circuit. I can recall endless
times of joy playing games like “Head over Heels” and the all
times classic “Pacman”. But the real power of Commodore 64
was its ease of programming. Mastering BASIC was a chal-
lenge back in the 1980s. Some of my first programming at-
tempts were an address book, a phonebook and a database of
recipes. Commodore 64 was actually a school in and of itself.
I got all my knowledge of structured programming from this
machine, and I went even deeper with some basic knowledge
of assembly language afterwards. In subsequent years, I fol-

Meet An ODROIDian
Miltiadis Melissas
edited by Rob Roy

lowed the evolution line of Intel’s computers with Windows
as the main OS, and it was in 2006 when I switched gears to
Linux. The main reason for the switch was the sense of free-
dom that the open source programming had to offer, along
with the strong supporting community behind Linux. Ad-
ditionally, Linux is a challenge for every Electronics Engineer,
since it can be found in many apparatus other than computers,
such as set-top boxes, appliances, modems, phones, gaming
machines, and embedded systems. It was Linux that brought
me to Hardkernel’s excellent line of products.

What attracted you to the ODROID platform?
Always keen to learn, I’ve came across an online manual from

the creators of makeuseof.com (http://bit.ly/SInIlr) dealing with
the Raspberry Pi. At the end of the book, the author proposed
some Raspberry Pi alternatives, and the ODROID-U3 from
Hardkernel was of course at the top of the list. It had better
hardware specifications, more software OS implementations,
and ran many flavors of both desktop and server editions of
Linux, including Android, OpenVault, and Media Center OS.
For me, it was “love at the first sight”. I ordered the U3 almost
immediately, and after six months of use I purchased another
one. I was impressed from the very beginning as an Electronics
Engineer by the quality of the board and its durability not to
mention its small size and the low power consumption.

That was the time when the Rob Roy’s excellent commu-
nity images came into place. I enjoyed using “Fully Loaded:
Ubuntu 12.11”, “Quiet Giant: Ubuntu Server 13.05”, and
“Pocket Rocket: Android Jelly Bean 4.1.2”, just to name a few.
I discovered the strong supporting community (the ODROID-
ians) when I started to build my own images and compile some
specific hardware drivers. Without their help I couldn’t have
gone far! The Odroid-C1 followed as a purchase and then 2
ODROID-XU4 units, which are my favorite.

Miltiadis, known as Miltos, has been using program-
ming and using computers since the early days of
the Commodore 64

MEET AN ODROIDIAN

ODROID MAGAZINE	 40

makeuseof.com
http://bit.ly/SInIlr

Miltos and his wife, Dori, live on an island in Greece

How do you use your ODROIDs?
I’ve got OpenElec running perfectly on my ODROID-U3,

allowing me to listen to music and stream videos, as well as watch
YouTube channels, movies, live TV channels and programs from
all over the world. The motto “cut that cord” became a reality
in my life, and I’ve never looked back. On the other hand, my
ODROID-C1 is sitting on my desk running “Pocket Rocket II:
Android KitKat 4.4.4” with all the bells and whistles this OS has
to offer. The XU4 serves as my main desktop PC, and frankly
it’s been months since I opened my high power consumption
Windows PC. The ODROID-XU4 satisfies most, if not all, of
my needs as a workstation and I even can play games with the
excellent GameStation Turbo image provided by @meveric, an-
other ODROIDian. The PPSSPP emulator works very well on
this image, and most of the PSP games run at 60 fps flawlessly.

Lastly, I’ve created my own desktop environment based on the
ArchLinux distribution, and installed the Mate desktop on top of
it as a GUI. Undoubtedly there is a lot of work that has been done
behind this excellent desktop environment. Surprisingly, this im-
age doesn’t have the black screen bug and the missing icons bug
from the LibreOffice suite, and everything seems to work flaw-
lessly. Hopefully, I will soon post a guide to the forum for ev-
eryone who wishes to have the same type of environment. The
ODROID-XU4 is a real gem, and if those uses aren’t enough, my
second XU4 is used as a server. The possibilities are endless.

What innovations would you like to see in future Hardkernel prod-
ucts?

It couldn’t be difficult for Hardkernel to include a wifi and
bluetooth circuit on their next development board. On the oth-
er hand, I personally believe that there is a lot of room left for
the software development of the boards. Surely, Android OS is
quite mature for the C line of products (i.e C1, C1+, C2), as well
as the XU4, but Linux OS can be evolved to its full potentiality
in upcoming years. Furthermore, recent development operat-
ing systems like “Remix OS” look promising, even though it is
not implemented yet on the Hardkernel’s line of products, and
I don’t know if it can never be. Finally, some extra memory
(RAM) could be added to all boards with unavoidably some ex-
tra cost of money of course. Personally I don’t believe that the
extra amount of 1 or 2 GB of RAM will surpass the cost of 100
dollars for even the most expensive ODROID.

What hobbies and interests do you have apart from computers?
“A healthy mind in a healthy body” it’s a very famous ancient

Greek saying. Besides computers, I love swimming and walk-
ing. I swim a lot, especially after some serious problems with
my waist a year ago. The fact that I live in an island gives me the
opportunity to swim almost the entire year. I cover a distance of
about 35km per week on foot and another 8km by swimming.
I am also motivated by my smart wristband and ODROID-C1,

MEET AN ODROIDIAN

which run an Android app to help me to keep track of my activi-
ties, collect usage data and statistics, and view information about
my health and fitness. In addition, I love reading educational
and philosophical books and watching black and white movies
from the old American cinema. I also take unique photos dur-
ing my daily walks in the city. I’ve rediscovered my own city
after 25 years of living through those walks and activities. I
have also been thinking seriously of buying a bicycle.

What advice do you have for learning more about programming?
Programming is like learning a new language. It always

takes time. Moreover it’s more like a personal curve of de-
velopment, since everyone learns and comprehends knowledge
differently. There were periods where I was learning by leaps
and bounds, and others where I was advancing very slowly. I
started with BASIC a long time ago on the Commodore 64.
BASIC helped me to learn the fundamentals of structured pro-
gramming. I carried on with Visual BASIC back in 2000 by
grasping the knowledge of optical programming, a computer
language that I still use for educational purposes. Ten years
ago, I took the “big leap” to object oriented programming us-
ing Python. I love Python because it’s a general purpose, ver-
satile and educational computer language with a big coding
library and a vast supporting community behind it.

I advise starting with structured programming, and steadily
and slowly go on to object oriented programming. Python
(http://bit.ly/1oDM6iq) is a programming language that lets
you work quickly and integrate systems more effectively. It
provides a clean syntax and indentation structure that is easy
to learn. I encourage my high school students to learn Python
and have it as a basic set of skills. The Python programming
environment can be installed very easily on every ODROID
Linux computer, which greatly minimizes the cost of imple-
mentation. In addition, there are many free online courses on
the web offered by various developers. Other online resources
include Coursera (http://bit.ly/18HdJkD), Edx (http://bit.
ly/1bxqyhn), and Udacity (http://bit.ly/1dy71Lz). As I teach
my students, with the ODROID, the world wide web and Py-
thon, the sky’s the limit, and the possibilities are endless.

ODROID MAGAZINE	 41

http://bit.ly/1oDM6iq
http://bit.ly/18HdJkD
http://bit.ly/1bxqyhn
http://bit.ly/1bxqyhn
http://bit.ly/1dy71Lz

