Ker 414 LTS
_ A
: Yeat Fém
-'5-
A ;i i

Magazm9/7 _

THELATEST OPEN SOURCE FURYUURUDRIJI[P ﬁ

LINEAGE

CACONPLETEGUIDETD | i
COMPILEONODROD 4 .
“YU3AND ODROID XUA -~ ®’

GOOGLE ASSISTANT
AL AR 0TI ON ODROID-XU4 AND

STORAGEWITHGLUSTERES WEILUTTAITTIT

Building Android LineageOS: A Step-By-Step Guide

@ November 1,2017 & By Justin Lee &= Android, Tutorial

This guide will show you how to download and compile the
Android kernel for ODROID-XU3/XU4. If you have not built
Android on your desktop yet, please read Google's official
build environment setup guide at http://bit.ly/THd3Z3P.
Carefully review this before you proceed, or you may have
unexpected errors and will need to read through long and
complicated build logs to find the problem.

We used Ubuntu 14.04 64bit with 8GB of RAM since other
newer versions of Ubuntu have had some issues while
building the Android OS. http://bit.ly/2yGT5Tw If you want
to build the full Android source tree, don't download and
build the kernel source separately. A separated Kernel
build might break the Android build process.

Install the openjdk-8-jdk

If your build environment is Ubuntu 14.04 or 12.40, enter
the following:

$ sudo add-apt-repository ppa:openjdk-r/ppa
$ sudo apt-get update

And you can install the openjdk-8-jdk using apt:

$ sudo apt-get install openjdk-8-jdk

$ java -version

openjdk version "1.8.0_131"

OpenJdDK Runtime Environment (build
1.8.0_131-8ul31-bll-2ubuntul.16.04.3-bll)
OpenJDK 64-Bit Server VM (build 25.131-bll,

mixed mode)

If you have more the one Java versions installed, you can
change the Java version:

$ sudo update-alternatives --config java

$ sudo update alternatives --config javac

Please note that we distribute the Linux kernel in different
branches for Android and other Linux distributions.

Android platform and kernel
The repository s
http://bit.ly/1Syr1sf. Android's full downloaded source
code size is around 70GB, so make sure to prepare enough
space before building the Android platform:

available for download at

$ mkdir

$ cd

$ repo init -u
https://github.com/voodik/android.git -b cm-
14.1 5422

$ repo sync

Opengapps (optional)

To include Opengapps to the target image, create the
“opengapps.xml” file in /.repo/local_manifests folder with
this content:

< manifest>

< remote name="opengapps"
fetch="https://github.com/opengapps/" />
< project path="vendor/opengapps/build"
name="aosp _build" revision="master"
remote="opengapps" />

< project

path="vendor/opengapps/sources/all"

name="all" clone-depth="1" revision="master"
remote="opengapps" />

< project
path="vendor/opengapps/sources/arm" clone-
depth="1" revision="master"

remote="opengapps" />

Then, run the following commands:

$ cd

$ repo sync --force-sync

Before compiling, you must configure the ODROID-XU3
with the following commands.

$./build.sh odroidxu3

Once you complete the long build process, the img files
can be found in the “/tmp/odroidxu3/” directory. To use
ADB over a TCP/IP connection, please refer to
http://bit.ly/2gtWzAo.

Installation for XU3/XU3-Lite

There are different instructions for installing a Linux kernel
image for Android and Linux. Since Android loads both
from a kernel partition, we have to use fastboot to install
into the dedicated partition. Before beginning, please refer
to the partition table at http://bit.ly/2irbjnC. By contrast,
Linux boots by the instructions described in boot.ini on the
1st FAT partition.

First, install the kernel image zImage-dtb, onto the boot
board.

http://bit.ly/1Hd3Z3P
http://bit.ly/2yGT5Tw
http://bit.ly/1Syr1sf
http://bit.ly/2gtWzAo
http://bit.ly/2irbjnC

$ sudo fastboot flash kernel

Next, install the android platform files system.img,
userdata.img, and cache.img:

$ sudo
$ sudo fastboot

$ sudo fastboot flash system
fastboot flash userdata

flash cache

Finally, initialize the FAT partition:

$ sudo fastboot erase fat

Xu4

You can avoid using fastboot on an ODROID-XU4, because
it doesn't have an USB OTG port. First, setup an ADB
connection or copy an image to the FAT partition:

$ adb push xxxx.img /sdcard/
$ adb reboot

View the U-Boot logs by connecting to the ODROID-XU4
with a USB-UART kit:

U-Boot 2017.05-12209-g43745f3
09:37:39 +0900) for ODROID-XU4

(Aug 17 2017 -

CPU: Exynos5422 @ 800 MHz
Model: Odroid XU4 based on EXYNOS5422
Board: Odroid XU4 based on EXYNOS5422
xu3

2 GiB

MMC: EXYNOS DWMMC: O,
(eMMC)
Info eMMC rst_n_ func status = enabled
MMC Device 1 (SD): 7.4 GiB

Type:
DRAM:
EXYNOS DWMMC: 1

MMC Device 0 14.7 GiB

*** Warning - bad CRC, using default

environment

In: serial

Out: serial
Err: serial
Net: No ethernet found.

Press quickly 'Enter' twice to stop

autoboot: 0

Type the following commands after pressing “Enter” twice
to pause the booting process:

Exynos5422 # extd4load mmc 0:3 40000000
media/0/system.img

379342968 bytes read in 13284 ms
MiB/s)

Exynos5422 # fastboot flash system 40000000
0

(27.2

*** Partition Information for Android ***

Control Device ID : 0

pNo Start Block Block Count
pName
0 1 30
fwbll (15 KB)
1 31 32 bl2
(16 KB)

2 63 1440

bootloader (720 KB)

3 1503 512 tzsw
(256 KB)

4 2015 32 env
(16 KB)

5 2047 16384

kernel (8192 KB)

6 2752512 204800 fat
(102400 KB)

7 131072 2097152
system (1048576 KB)

8 2957312 27688960
userdata (13844480 KB)

9 2228224 524288
cache (262144 KB)
Erasing partition(system)... blk st =

131072, blk cnt = 2097152
*** erase block start 0x20000,

* ok k

cnt 0x200000

write compressed_ext4 total chunk = 1373

mmc write dev 0, blk = 0x00020008, size =
0x00000008, remain chunks = 1372

mmc write dev 0, blk = 0x00020010, size =
0x00000008, remain chunks = 1371

mmc write dev 0, blk = 0x00160010, size =
0x00000008, remain chunks = 10

none chunk

mmc write dev 0, blk = 0x00160208, size =
0x000001£8, remain chunks = 9

mmc write dev 0, blk = 0x00160218, size =
0x00000010, remain chunks = 8

none chunk

mmc write dev 0, blk = 0x001a0000, size =
0x0003fde8, remain chunks = 7

mmc write dev 0, blk = 0x001a0010, size =
0x00000010, remain chunks = 6

none chunk

mmc write dev 0, blk = 0x001e0000, size =
0x0003fff0, remain chunks = 5

mmc write dev 0, blk = 0x001e0008, size =
0x00000008, remain chunks = 4

mmc write dev 0, blk = 0x001e0010, size =
0x00000008, remain chunks = 3

none chunk

mmc write dev 0, blk = 0x001e0208, size =
0x000001£f8, remain chunks = 2

mmc write dev 0, blk = 0x001e0218, size =
0x00000010, remain chunks = 1

none chunk

mmc write dev 0, blk = 0x00220000, size =

0x0003fde8, remain chunks = 0
write done
partition 'system' flashed.

Exynos5422 #

ODROID Updater
You can update from Stock Android Kitkat 4.4.4 to Android
7.1 using the ODROID Updater verison 5.6 or higher
(http://bit.ly/2yFzolf). Always check the option “Format
userdata” when updating from other Android revision, as
shown in Figure 1.

tpicn ook comyfproducilupdte. o
Getthelaest verson.

Figure 1 - Using the ODROID Updater

adb connect 192.168.x.x
cd out/target/products/odroidxu3/
adb push update.zip /sdcard/

w v »

adb push update.zip.md5sum /sdcard/

Open “Internal storage”, as shown in Figure 2, then copy
update.zip and update.zip.md5sum as shown in Figure 3.
Enable the “Validate file” button as shown in Figure 4.

i .- Unnamed Device

< > @ odroid Q= =

Places
©Recent
A Home
B Desktop
D Documents
¥ Downloads
Amusic
B Pictures
Hvideos
ash

Internal FAT storage Internal storage UsB storage

Devices
@projects
@data
8 Odroid.
@ computer

» 0

Bookmarks

Figure 2 - Opening the Internal Storage link in LineageOS

® Internal storage

< > | Bodroid Internal storage

Places

Q
Onecent d - e —d

Download

A Home Alarms
[Desktop
D Documents.

Android oaiM

& Downloads Movies Music
43 Music
@ Pictures
Hvideos
@Trash

Podeasts

Ringtones.

Devices
Bprojects
Bdata
& odroid
8 Computer

[N

Bookmarks 2items selected (219.3M8)

Figure 3 - Selecting the update.zip and update.zip.md5sum files

tpch otid comproducilupdte 2o

Getthelsest version.

Vit fle

Figure 4 - Validating the update files in the ODROID Updater

Storage Information

/storage/sdcard0 fat partition of eMMC or microSD
INTERNAL STORAGE /storage/sdcard1 microSD slot SD
CARD

/storage/usb2host USB 2.0 Host port USB STORAGE
/storage/usb3host USB 3.0 Host port USB STORAGE
/storage/usb3device USB 3.0 Device port USB STORAGE

For comments, questions, and suggestions, please visit the
original article at http://bit.ly/2yUeqvm.

http://bit.ly/2yFz9lf
http://bit.ly/2yUeqvm

ODROID-Powered LIDAR: Light Detection and Ranging with the
ODROID-XU4

| just recently ordered an ODROID-XU4 to power my latest
project, an Earth Rover, which is a 6-wheeled rover, with
the aim to navigate inside and outside areas
autonomously. I'm using a LIDAR pulled out of an old
robotic vacuum cleaner, the Neato XV-11 LIDAR. This
project covers interfacing the ODROID with the LIDAR,
receiving scan measurements, and integrating them into a
SLAM, Simultaneous Localisation and Mapping, system for
building a map of the area. | chose the ODROID because it
was the only board powerful enough to process the

measurements into a map in real time.

It has eight cores, four run at 2Ghz, and four run at 1.6Ghz.
Remember your original Pentium 133Mhz? This thing runs
fifteen times faster than it, and does it four times at once—
and has another four cores just for kicks, and it fits inside
your coffee cup. How much is it? $59.

Plug it in, HDMI, power, USB keyboard & mouse, USB wifi.
And first up, run the following commands to completely
update your system:

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get dist-upgrade

Due to the NEON multi-processing instruction set, the
performance is quite good, http://bit.ly/2zG12Ix, for
particular tasks such as SLAM, even compared to the
powerful Pi, as shown in Figure 1.

Scans Per Second

ooron siso | EEG_
seagie Neon |
seage siso [l
Raspbery P [l
rokuyo URG-04Lx [l

0 20 a0 60 80 100 120 140

Figure 1 - Scans Per Second comparison for various SBC devices
First, clone the installation system and run it:

$ sudo apt-get install git
$ git clone
https://github.com/tjacobs/betabot
$ cd betabot/install

$./install

Now we have lots of good applications such as Python, PIP,
OpenCV, FFMPEG, and Alsa, let's install BreezySLAM:

$ git clone

https:

/github.com/simondlevy/BreezySLAM
cd BreezySLAM/python
sudo python setup.py install

w v »

cd ../examples

RS

make pytest

32000

28000

24000

20000

16000

¥ (mm)

12000

8000 12000 16000 20000 24000 28000 32000

200+ B\ oy
Figure 2 - A preliminary image of a SLAMed room using LIDAR

As shown in Figure 2, we're seeing a SLAMed room! This is
from its built-in data file, so no external physical LIDAR is
available yet. Let's try watching the thing run live, which
requires matplotlib:

$ sudo apt-get install python-matplotlib

$ make movie

http://bit.ly/2zG12Ix

expl

20000

¥ (mm)

12000 16000 20000 24000 28000 32000

X (mm)

200+« TR

Figure 3 - A live movie version of a SLAMed room using LIDAR

As shown in Figure 3, we can see it run, and a map is being
generated. The next step is to try out the LIDAR, which
requires xvlidar, pip, and pyrserial:

$ git clone
https://github.com/simondlevy/xvlidar

$ sudo python setup.py install

$ python lidarplot.py

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py

$ sudo pip install pyserial

The output now reads:

SerialException could not open port

/dev/ttyACMO

Since it's trying to access the serial port, we can check that
device:

$ 1ls /dev/tty*
$ /dev/ttyACM99

It turns out that the device is actually in another port:

$ /dev/ttySACO

To find out where to plug the LIDAR, we can refer to the
ODROID-XU4 manual at http://bit.ly/2xYZhco, but it's not
mentioned. The information that we need is at
http://bit.ly/2hYj8NQ, and Figure 4 illustrates the pins that
we are looking for.

'ODROID XU4 (CON10 Header)

~
J

50V Power - gol- Ground
AINO ADC_OAINO (ADC#0) @ ° . UART.OCTSN (#173) 1
0 UART ORTSN (#174) o o » UART_ORXD (#171) 16
12 SPI_LMOSI (#192) - o o - UART_0.TXD (#172) 15
13 SPLIMISO (#19) o o 5 SPL1CLK (#189) 14
10 SPI1CSN (#190) O Oz PwroNGopisv-sy
2 GPIO (#21) o g c1scao 9
7 GPIO (#18) 0 % % W 12C LSDA (#209) 8
3 GPIO (#22) 5 @ @ i GPIO (#19) 4
22 GPIO (#30) a @ @ 5 GPIO (#28) 21
26 GPIO (#29) = @ @ 8 GPIO (#31) 23
e Aocoans pocr) o | () @) x GPIO (425) 1
GPIO (#23) - GPIO (#24)
257 GPIO (#33) S % % 8 Ground 8
18V Power 20 0 Ground

Figure 4 - GPIO configuration for a LIDAR project on the ODROID-
Xu4

The receive and transmit pins are UART_0.RXD (#6) and
UART_0.TXD (#8). Let's take a ground (#2) and a 5v power
(#1) as well. Most XV Lidars are 5v, as described at
http://bit.ly/2gBSiPc. | used the 1.8v pin to power the
LIDAR motor, which hopefully supplies enough amperage.
After running lidarplot.py again, | get a spinning lidar, and
a blank plot with a single dot in it, and the occasional
“Checksum fail” when | wiggle the plugs. So it's getting
something, but not anything useful yet, as shown in Figure
5.

e XV Lidar [ESC to quit]

Figure 5 - The initial output of the LIDAR configuration on the
ODROID-XU4

After adding some printouts, | see that the serial port is
generating lots of 82's along the 360 degree array. |
assume that means “Not spinning fast enough”, because |
used a Raspberry Pi 2 to generate the correct voltage at

3.3v, and was able to get LIDAR scans. It also updates very
quickly, since when | put my hand in front of it, the change
is reflected within a second or so.

XV Lidar [ESC to quit]

Figure 6 - The tweaked output using a 3.3v motor of the LIDAR
configuration on the ODROID-XU4

Now we are ready to run the SLAM application:

$ cd BreezySLAM/examples
$ python xvslam.py

¥ (mm)

200+~ EE
Figure 7 - SLAM on the ODROID-XU4

For comments, questions, and suggestions, please visit the
original article at: http://bit.ly/2xX60bL.

http://bit.ly/2xYZhco
http://bit.ly/2hYj8NQ
http://bit.ly/2gBSiPc
http://bit.ly/2xX6ObL

LEMP stack web server: Linux, NGINX, MariaDB, and PHP on the

ODROID-HC1

@ November 1,2017 & By Justin Lee = Linux, ODROID-HC1

=NGil=

This guide will let you build an inexpensive but powerful
web server using an ODROID-HC1 (XU4 family, including
the ODROD-HC?2) fitted with a SATA-based SSD.

Prepare boot media

Before you proceed, burn the latest official Hardkernel
Ubuntu Minimal image onto your boot media - 8GB+ Class
10 microSD card. A Hardkernel offered eMMC may also be
used, in conjunction with a USB3 microSD card reader.

Go to the http://bit.ly/2xaucO8 link and download the
Ubuntu Also,
https://etcher.io/ link and download the appropriate

latest Minimal image. access the
version of Etcher for your operating system. Insert your
microSD card in your computer and run Etcher, then burn

the image onto your microSD.

Set up your ODROID

Install the SSD using the SATA port on your ODROID-HC1.
Make sure you use the official 5V 4A+ Hardkernel PSU, to
ensure the SSD has adequate power. Once this is done,
insert the prepared boot disk into your ODROID and turn
on the power to the ODROID-HC1.

The first boot can take about 5 minutes to initialize the OS.
If it does not turn on after about 5 minutes, you can reboot
it by turning the power off, disconnecting the power cord,
re-plugging the power cord and turning the power back
on.

Note that if you use an ODROID-XU4, you can build a high
performance NAS using a powered USB hub, one
SSD/eMMC for the operating system, and one or more

hard drives for the NAS. Bus-powered hubs may not work
well, due to inadequate power.

SSH Access and system update

Connect to your ODROID-HC1 via SSH and build your web
server. It is highly recommended to update the image on
the microSD card. That will let you take advantage of the
latest fixes and possible support for additional features.
After SSH access, update Ubuntu and the kernel with the
following commands:

$ sudo apt-get update && sudo apt-get dist-
upgrade
$ sudo apt-get install linux-image-xu3

$ reboot

Make your SSD a root partition

Boot media such as the microSD card makes for an
inefficient system because the microSD card will be slow
(for the OS and applications running on it, such as the web
server) and subject to early failure after excessive writes.
Although an eMMC is a viable option for an ODROID-XU4,
it is not available for the ODROID-HC1. Therefore, the
installation and use of an SSD is highly recommended for
hosting websites using databases. To efficiently use the
SSD for boot up and applications, follow the step by step
guide below to prepare your SSD with a root partition. You
can refer to the forum post at http://bit.ly/2gpT90R for
additional details.

Re-partition your SSD
First, you should partition your SSD to use two partitions:

MySal.

ubuntu

one as the root partition for the OS, and the other for a
data. Obtain information on your SSD using the fdisk tool:

$ sudo fdisk -1

results

Disk /dev/sda: 111.8 GiB, 120034123776

bytes, 234441648 sectors

Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes /
4096 bytes

I/0 size (minimum/optimal): 4096 bytes /

33553920 bytes
Disklabel type: gpt

Disk identifier: 0412F7EC-4E8C-4610-ABFF-

D6293387ADB6

To partition the SSD, use the fdisk tool with entering
proper device name (/dev/sda as noted in the output
earlier):

$ sudo fdisk /dev/sda

The useful fdisk-options are listed below:

= p:print the partition table

= n:add a new partition

= d:delete a partition

= w: write table to disk and exit

= g :quit without saving changes

http://bit.ly/2xaucO8
https://etcher.io/

= g:create a new empty GPT partition table

= m: help (menu)

While referring to the menu above, delete current
partitions, if any, and create a new GPT partition table.
Then create one new partition for a root partition, and
another new partition for a data. In our case, the root
partition has a capacity of 16G and the rest is a data
partition. You can specify the capacity of the partition by
typing a capacity unit, for example, “+16G".

Check the result of your actions by obtaining partition
using the “p” option. If the partition information match
your intentions, then press “w" to save and exit.

In fdisk

Command (m for help): p

Disk /dev/sda: 111.8 GiB, 120034123776
bytes, 234441648 sectors

Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes /
4096 bytes

I/0 size (minimum/optimal): 4096 bytes /

33553920 bytes
Disklabel type: gpt

Disk identifier: 0412F7EC-4E8C-4610-ABFF-

D6293387ADB6

Device Start End Sectors
Size Type

/dev/sdal 2048 33556479 33554432

16G Linux filesystem
/dev/sda2 33556480 234441614 200885135
95.8G Linux filesystem

Format and mount as an EXT4 partition
A modern Linux system typically uses an EXT4 file system,
so it is advisable to create ext4 type partitions:

$ sudo mkfs.extd /dev/sdal
$ sudo mkfs.ext4 /dev/sda2

Once you done, you should mount it to specific directory
to use your SSD. Make new directories for your SSD:

$ sudo mkdir -p /media/systemdrive

$ sudo mkdir -p /media/data

We will use /media/systemdrive as a root partition, and
/media/data as a data partition:

$ sudo mount /dev/sdal /media/systemdrive

$ sudo mount /dev/sda2 /media/data

Next, verify that it is mounted properly:

$ df -h

Filesystem Size Used Avail Use%
Mounted on

/dev/sdal 166G 44M 156 1%
/media/systemdrive

/dev/sda2 95G 60M 90G 1%
/media/data

The next step is to modify your system related files to boot
with your SSD.

Modifying boot.ini
First, check the UUID of the root:

$ sudo 1lsblk -f

results

NAME FSTYPE LABEL UUID
MOUNTPOINT

mmcblkl

| -mmcblklpl vfat boot 52ARA-6867
/media/boot

‘-mmcblklp2 ext4 rootfs e139ce78-9841-
40fe-8823-96a304a09859 /

sda

| -sda2 extd 6553d8f1-6224-
450f-aecl-3b6f5fc09bd0 /media/data
“-sdal ext4d £00945e6-46ea-

47db-893a-6a74548c3af7 /media/systemdrive

Note down the UUID for /media/systemdrive, then change
the UUID of the root file system in boot.ini so that your
bootloader recognizes the SSD's partition as a root
partition:

$ sudo cp /media/boot/boot.ini
/media/boot/boot.ini.bak

$ sudo vi /media/boot/boot.ini

Search for the phrase “Basic Ubuntu Setup” in the file:

Basic Ubuntu Setup. Don't touch unless you

know what you are doing.

setenv bootrootfs "console=ttyl
console=ttySAC2,115200n8 root=UUID=el39ce78-
9841-40fe-8823-96a304a09859 rootwait ro

fsck.repair=yes net.ifnames=0"

Change the root UUID to match the above value. Note that
your UUID values may be different from what is
mentioned here.

Updating fstab
To mount your partitions automatically, add needed
entries in the /etc/fstab file.

$ sudo vi /etc/fstab
UUID=e139ce78-9841-40fe-8823-96a304a09859 /
ext4 errors=remount-ro,noatime 0 1

LABEL=boot /media/boot vfat defaults 0 1

Comment out the first line and add new lines, as shown
below:

#UUID=e139ce78-9841-40fe-8823-96a304a09859 /
ext4 errors=remount-ro,noatime 0 1
LABEL=boot /media/boot vfat defaults 0 1
/dev/sdal / ext4 defaults,noatime 0 1
/dev/sda2 /media/data ext4 defaults 0 2

Copy a root partition
Copy the root partition from microSD to the SSD using the
rsync utility:

$ sudo apt-get install rsync

$ sudo rsync -axv / /media/systemdrive

After the copy process has completed, you are ready for
the next step.

Verify the partitions
Reboot your ODROID-HC1 and check if the mounted root
partition is visible in your SSD:

$ 1lsblk -f
NAME FSTYPE LABEL UUID
MOUNTPOINT

mmcblkl

| -mmcblklpl vfat
/media/boot

boot 52AA-6867
‘-mmcblklp2 ext4 rootfs e139ce78-9841-
40fe-8823-96a304a09859

sda

|-sda2 ext4 dafflfaa-3895-
46cb-896f-bfe67£78535e /media/data
‘-sdal extd 07ac0233-7d4a-
49ac-baf0-4a4ebd07741c /

As shown above, sdal’s MOUNTPOINT is “/, which means
that the system booted from SSD successfully.

LEMP (Linux, NGINX, MariaDB, PHP) stack

We have opted to use nginx for the web server. It uses an
asynchronous, event-driven approach to handling
connections, which is fast and has room for serving
requests from many users, as well as offering reliable
performance. It has been designed to be lightweight
software that offers many features. If you wish to avail use
features as addon modules, Apache would be a better
choice.

PHP

To install PHP, you should add a repository for PHP in
advance. And you can install latest PHP for ARM, version
7.1 or above.

$ sudo add-apt-repository ppa:ondrej/php
$ sudo apt-get update && sudo apt-get
install php7.1-fpm

Once the installation is done, you should change timezone
specified in a setting file of PHP.

$ sudo vi /etc/php/7.1/fpm/php.ini

Find “date.timezone” and change it to your location, which
may be initially commented out by default.

MariaDB

An official PPA for MariaDB (http://bit.ly/2zktcMs) based
on ARM architecture is not available. You should just install
it from the repository which is provided from Ubuntu.
Additionally, you should install php-mysql package to
interlock your MariaDB and PHP. The installation of the
needed packages could take a little while.

$ sudo apt-get update && sudo apt-get
install mariadb-server mariadb-client php-

mysql

You should set the language set MariaDB uses to UTF-8.

$ sudo vi /etc/mysgl/conf.d/mysql.cnf

Delete all of the existing content, and copy-paste a new
contents below.

MariaDB-specific config file.

Read by /etc/mysqgl/my.cnf

[client]
Default is Latinl,
this

if you need UTF-8 set

(also in server section)

default-character-set = utf8mb4

[mysqld]

#

* Character sets
#

Default is Latinl,
all this

if you need UTF-8 set

http://bit.ly/2zktcMs

(also in client section)

#

character-set-server = utf8mb4
collation-server = utf8mb4_unicode_ci
character_set_server = utf8mb4

collation server = utf8mb4 unicode ci

Finally, restart MariaDB service.

$ sudo service mysql restart

Installing nginx

To install nginx, you should add a repository for nginx in
advance. You can install the latest version for ARM (version
1.12+4):

$ sudo add-apt-repository ppa:nginx/stable
$ sudo apt-get update && sudo apt-get

install nginx

If you want to use it with PHP, the server settings must be
modified:

$ sudo mv /etc/nginx/sites-available/default
/etc/nginx/sites-available/default.bak

$ sudo vi /etc/nginx/sites-available/default

Put below into the new default server file.

server {
listen 80 default_server;

listen [::]:80 default server;
root /var/www/html;

index index.html index.php;
server_name _;

location / {

try files $uri $uri/ =404;

This option is important for using
PHP.
location ~ \.php$ {
include snippets/fastcgi-
php.conf;
fastcgi pass
unix:/var/run/php/php7.1-fpm.sock;
}

Restart the nginx service:

$ sudo service nginx reload

Testing

You can test whether it is operated properly or not by
creating simple PHP information page:

$ echo "?php phpinfo();" | sudo tee
/var/www/html/index.php

When you access http://{ODROID [P}/, it will show you PHP
related information.
The test conditions include:

= LEMP stack

= Ubuntu Minimal 16.04.3 LTS with
Kernel 4.9.51-64

= Nginx 1.12.1
= PHP7.1.9
= MariaDB 10.0.31

= Benchmark tools

= Apache JMeter 3.2 r1790748
= sysbench 0.4.12
= |Ozone 3.471

To test its performance, we ran the tests shown below
under the test conditions listed above.

Figure 1 - LEMP performance using Apache JMeter

Sysbench

Create the ‘test’ database first and then run the

performance test.

$ sudo sysbench --test=oltp --oltp-table-
51ize=1000000 --mysgl-db=test --mysql-
user=root prepare

$ sudo sysbench --test=oltp --oltp-table-
size=1000000 --mysgl-db=test --mysqgl-
user=root --max-time=60 --oltp-read-only=on
--max-requests=0 --num-threads=8 run

$ sudo sysbench --test=oltp --mysqgl-db=test
—--mysqgl-user=root cleanup

To test file I/0, run the following test:

$ sudo sysbench --test=fileio --file-total-
size=4G prepare

$ sudo sysbench --test=fileio --file-total-
size=4G --file-test-mode=rndrw --init-rng=on
--max-time=300 --max-requests=0 --num-
threads=8 run

$ sudo sysbench --test=fileio --file-total-
size=4G cleanup

$ sudo iozone -e -I -a -s 100M -r 4k -r
16384k -i 0 -i 1 -1 2

Results

= Note that eMMC tests were run on the ODROID-
XU4 and the remaining tests were performed on
the ODROID-HC1

All results have their own error ranges

= Since WordPress runs using PHP, MariaDB
(MySQL) and Nginx (Apache), we installed
WordPress at each system to create natural test
conditions. JMeter tests were run accessing
WordPress's default main page

= We noticed that the response failed if more than
140 parallel users accessed the simple
WordPress-based web-page)

= TPS is abbreviation for Transaction Per Second,
so this is the closest test to the user’s
environment.

HDD SsD eMM eMM Micr

2TB 120G C64G C16G oSD

8G
Apache JMeter

100 51.1
Parall

53.1 54.5 53.4 52.3
el

Users

Avg

TPS

100 1578
Parall

1519 1477 1510 1540
el

Users

Avg

Res

Time

(ms)

sysbench

OLTP(361.8 4015 3964 395.1 340.0
MysQ 1 9 3 4 5

L

Avg

TPS

FilelO 1.935 17.98 24.59 16.73 0.094
Avg 9 2 3 8 831
Trans

fer

Spee

d

(Mbp

s)

10zone (Kbps)

Rand 1580 2093 1546 1520
om 7 6 3
Read

Spee

d (4K)

9139

Rand 1275 2107 1580 1793 827
om 8 3 9

Write

Spee

d (4K)

Sequ 1152 3632 1425 1477 4288
ence 09 69 35 90 5
Read

Spee

d

(16M)

Sequ 1089 2782 8852 3370 1302
ence 79 23 9 9 2
Write

Spee

d

(16M)

As you can see the table above, a HDD is slightly more
faster than a MicroSD card for random access speed. The
result of OLTP TPS and sequence access speed are quite
good, but random access speed is not acceptable. The
average TPS shown above is just an average value, and you
need to know that random access speed is one of the most
important value for the overall system speed. The OLTP
results of the HDD ODROID varied a lot between tests.
However, for sequence access speed, it is almost as fast as
a desktop. So, using an HDD in the ODROID-HC1 for a NAS
can be a good choice.

In the 100 parallel users TPS test, there is not much of a
difference among them. However, in the other tests such
as, the OLTP TPS and IOzone test, the SSD or eMMC 64G

https://wiki.odroid.com/odroid-xu4/software/microsd
https://wiki.odroid.com/odroid-xu4/software/microsd
https://wiki.odroid.com/odroid-xu4/software/mysql
https://wiki.odroid.com/odroid-xu4/software/fileio

seems faster than the others. In the file 10 test, the SSDis Based on above results, it is not recommended that an hosting a website and/or using it as a NAS. For additional
the fastest at per-request statistics result. HDD or MicroSD card be used with a LEMP or LAMP stack. details, please visit the original article at
We recommend that you use an eMMC or SSD for the best http://bit.ly/215aUs1.
performance with an ODROID-XU4/HC1/HC2 when you are

http://bit.ly/2l5aUs1

Linux Kernel 4.14: ODROID-XU3/4/MC1/HC1 Support

© November 1,2017 & By Marian Mihailescu £ Linux

Exynos 5422 is a Samsung System-on-a-chip (SoC) that has
been at the core of Hardkernel's products for several
years. Starting with the high-end ODROID-XU3, it has been
released later in a more affordable variant, the ODROID-
XU3 Lite; went through a completely redesign in the
ODROID-XU4 and XU4Q, and recently found itself at the
core of the new ODROID-HC1 and MC1, geared towards
NAS usage and clusters, respectively.

Initially released with Linux kernel version 3.10, there has
been many tries to update the Exynos 5422-based ODROID
products to a more recent kernel, with experimental
kernels released for versions 4.0, 4.2, 4.4, and 4.8 by the
Hardkernel helped developed and
released a stable kernel version 4.9.

community, until

During each kernel development cycle, the SoC gained
more updates in the mainline kernel due to the efforts of
Samsung and the community. Thus, it is getting easier to
get updated to the latest version of the kernel. In fact, for a
while, Exynos 5422-based ODROIDs can use the mainline
kernel without modifications. The issue however is that
mainline version does not have all the drivers included and
some systems won't work.

The next kernel with Long Time Support (LTS) is version
4.14, due to be released in November. Coincidentally, it
was recently revealed that LTS kernel support is being
extended to 6 years. This means that version 4.14 will get
support until the end of 2022. This is great news for the
owners of small, extensible, powerful and inexpensive
boards such as the ODROIDs.

This kernel version becomes particularly attractive for the

Exynos 5422 ODROIDs, especially since it includes

important fixes for the hardware video decoder and
encoder (MFC), the hardware scaler and color space
converter (GScaler), and a brand new driver for the HDMI
CEC, that exposes the device as a infrared remote control.

In addition, there are a myriad of fixes from the version 4.9
maintained by Hardkernel that can benefit ODROID users,
such as improvements to the EXT4 and BTRFS filesystems,
improvements to the kernel-based virtual machine (KVM),
new and updated WiFi drivers, and improvements to the
media drivers (for e.g. better TV tuners support).

The community stepped in and started fixing the
remaining issues even before the 4.14 kernel is released:

= Mali drivers were updated to version r20p0

= Support was added for the Heterogeneous Multi-
Processing (HMP) CPU scheduler

= Fixes for the USB3 ports in the ODROID
= Fix for the Gigabit Ethernet interface

= Added support for interfaces such as the power
button, SPI, ADC, GPIOs

= HDMI Sound driver for the ODROID-XU4

= Improvements for the emmc/sd card including
support for higher speeds

= |mproved support for the virtual machine
hypervisor

= Enabled support for the hardware watchdog

= Added support for the CPU hardware
performance counters (PMU)

= |ncluded the official support for ODROID-HC1
(scheduled for the kernel version 4.15)

= Added support for extra CPU frequencies, and
improved thermal characteristics

= Added support for Samsung CPU ASV tables to
improve CPU voltage selection and thermals

With most fixes and patches developed or imported from
kernel 4.9, kernel version 4.14 is already ready for public
testing. Those interested can download, compile, and
on the official Hardkernel Ubuntu

install the kernel

distribution using these instructions:

$ git clone --depth 1 --single-branch -b
odroidxué4-4.14.y
https://github.com/mihailescu2m/linux

$ cd linux

$ wget
https://gist.github.com/mihailescu2m/115c%e2
135f9b12£3d05669e18137c3d -O .config
$ make -j 8 zImage dtbs modules

$ sudo cp arch/arm/boot/zImage
arch/arm/boot/dts/*.dtb /media/boot
$ sudo cp .config /media/boot/config

$ sudo make modules_install

$ kver='"make kernelrelease’

$ sudo cp .config /boot/config-${kver}

$ cd /boot

$ sudo update-initramfs -c -k ${kver}

$ sudo mkimage -A arm -O linux -T ramdisk -a
0x0 -e 0x0 -n initrd.img-${kver} -d
initrd.img-${kver} uInitrd-${kver}

$ sudo cp ulnitrd-${kver}
/media/boot/ulnitrd

Feedback and testing results are welcomed on the “Kernel http://bit.ly/2ItTPbD.
4.14 debugging party” forum thread at

http://bit.ly/2ltTPbD

ODROID-C2: Power Off and Wake Up Using a Simple GPIO Button

This article describes how to setup a GPIO key button for
power off and wake up purposes. The brief setup steps
include the following:

Connecting a tab button to the pin port you
want to use

Setting the GPIO number using boot.ini
Compiling and flashing the modified kernel
DTS, which is only needed for Android

Hardware Setup

First, you need to prepare a tab switch that will be
connected to two GPIO lines. The red wire will be for
power and the gray wire will be for the active level line
(ground or 3.3V power).

Figure 1 - Material for ODROID-C2 Power Button project

The ODROID-C2 pin layout diagram at
http://bit.ly/2aXAlmt will come in very handy for this
project. In our case, we will use Pin# 29 of the 40-pin
expansion connector. The pin is assigned to GPIOX.BITO
and its GPIO number is 228. Connect the red line to Pin#
29. Its default pin pulled status is high and switch active
will be low. So, you should connect the gray line of tab
switch to Ground (GND), Pin# 30.

Pin Number GPIO Number Active Level
(Red Line) (Gray Line)
29 GPIO# 228 Active Low (Pin

30)

Available Keys

Here are the available key examples on the 40-pin
connector and 7-pin connector. You can find the pin assign
examples for Red Line and Gray Line.

(1) J2 - 2x20 pins

Activ GPIO Pin # Pin # GPIO Activ

e # # e

Level (Red (Red Level
Line) Line)

(Gray (Gray

Line) Line)

- 3.3V 1 2 - -

Activ
e Low
(Pin
9)

Activ
e Low
(Pin
14)

Activ
e Low
(Pin
14)

Activ
e Low
(Pin
14)

Activ
e Low

GPIO
249

Grou
nd

GPIO
#247

GPIO

239

GPIO
#237

3.3V
Powe

GPIO
#235

20

Grou
nd

GPIO
#238

Grou
nd

GPIO
#236

GPIO
#233

Grou
nd

Active
Low
(Pin
14)

Active
Low
(Pin
14)

Active
Low
(Pin
20)

http://bit.ly/2aXAlmt

(Pin

20)

Activ GPIO
elow #232
(Pin

20)

Activ GPIO
elow #230
(Pin

25)

- Grou

nd

Activ GPIO
elow #1228
(Pin

30)

Activ GPIO
elow #219
(Pin

30)

Activ GPIO
e #234
High

(Pin

17)

Activ GPIO
elow #2114
(Pin

34)

- Grou

nd

(2) J7 - 1x7 pins

Pin #

(Red Line)

21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
GPIO #
Ground
GPIO# 128
5.0V Power
GPIO# 130
GPIO# 132
GPIO# 131

GPIO Active
#231 Low
(Pin
20)
GPIO Active
#229 Low
(Pin
25)

GPIO Active

#225 High
(Pin
17)

Grou -

nd

GPIO Active

224 Low
(Pin
34)

Grou

nd

GPIO Active

#218 Low
(Pin
34)

Active Level

(Gray Line)

Active Low (Pin
1)

Active Low (Pin
1)

Active Low (Pin
1)

Active Low (Pin
1

7 GPIO# 133 Active Low (Pin

n

You can find the detailed information about 40-pin and 7-
pin expansion connectors at http://bit.ly/2gzCA7c.

Ubuntu software setup

The release version should be 3.14.79-107 (Feb 26, 2017)
or higher. You can assign GPIO number with env
gpiopower in boot.ini:

gpio power key : J2 (2x20) Pin#29 ,
GPIOX.BITO

setenv gpiopower "228"

Add gpiopower like "setenv bootargs
${bootargs} gpiopower=${gpiopower}"

setenv bootargs "root=UUID=el39ce78-9841-
40fe-8823-96a304a09859 rootwait ro ${condev}
no_console_suspend hdmimode=${m} ${cmode}
m_bpp=${m_bpp} vout=${vout} fsck.repair=yes
net.ifnames=0 elevator=noop
disablehpd=${hpd} max_freg=${max_freq}
maxcpus=$ {maxcpus}

monitor onoff=${monitor onoff}
disableuhs=${disableuhs}
mmc_removable=$(mmc_removable)
usbmulticam=${usbmulticam} ${hid_quirks}

gpiopower=${gpiopower}"

Setting Power Button Action for Power Off

If you intend to turn the board off using the power button,
you will need to change the power key action pattern. To
facilitate that, first open the Power Management
Preferences dialog ([System] — [Preferences] —
[Hardware] — [Power Management]) and select the
[General] tab.

On ACPower | On Battery Power | General

Actions

When the power button is pressed: shutdown

When the suspend butlan is pressed Suspend
Hotification Ares
Mever display an icon
only display an icon when battery power is low
Only display an ican when charging ot discharging
@ Onlydisplay an icon when a battery is present

Always display an icon

@rielp ® Close

Figure 2: Power management preferences

Wake up Action
To wake the system up after power off, a long-duration (2-
3 seconds) pressing of the power button is needed.

Android software setup

In Android, you have to modify the DTS file in Android
Marshmallow (v2.4) and higher version to use this
functionality.

You will have to modify the DTS file to activate the GPIO
key functionality:

/arch/arm64/boot/dts/meson64_odroidc2.dts

gpio_keypad{

status = "okay";

}i

After compiling the DTS file, you can flash the DTB file to
the board:

$ make odroidc2 defconfig

$ make dtbs

$ fastboot flash dtb
arch/armé64/boot/dts/meson64_odroidc2.dtb
$ fastboot reboot

You have to flash the DTBS file when the board is in u-boot
fastboot mode:

$ reboot fastboot

Setting boot.ini

In the Android boot.ini, you can uncomment the
“gpipower” entry and modify the number to the number
relevant in your case:

gpio power key : J2 (2x20) Pin#29 ,
GPIOX.BITO

setenv gpiopower "228"

Setting Power Button Action for Power Off
In Android, you do not need to select any menu options for
power button actions. It is already defined as follows:

One short power key event is used for sleep, and
with long key event, you can handle options of power
off/reboot.

With Android Marshmallow v2.4 or higher version, it is
possible to enter power off using a long-duration press (5
seconds).

Wake up Action
To wake-up after power off, a long-duration press (2-3
seconds) will be needed.

Troubleshooting

You can refer to the forum posts at http://bit.ly/2gtE4AMA
and http://bit.ly/2zGwB4X for troubleshooting tips. For
comments, questions, and
http://bit.ly/2yYFWrB.

suggestions, visit

http://bit.ly/2gzCA7c
http://bit.ly/2gtE4MA
http://bit.ly/2zGwB4X
http://bit.ly/2yYFWrB

Google Assistant: Using A Bluetooth Speaker And Microphone
On The ODROID-XU4 and ODROID-HC1 Ubuntu Platform

O November 1,2017 & By Brian Kim = ODROID-HC1, ODROID-XU4

Google Assistant SDK

This article describes how to implement an Al Speaker on
the ODROID-HC1 using Google Assistant SDK.

Hardware Requirements

= ODROID-HC1 (http://bit.ly/2wjNToV) with 5V/4A
power supply

Bluetooth Module 2 (http://bit.ly/2gNybJW)

Bluetooth Speaker including microphone
(http://amzn.to/2z6dBz5)

= MicroSD Card for OS, 8GB Class 10 or higher
version is required

= LAN cable

Figure 1 - Hardware requirements for the Google Assistant project

Insert the Bluetooth dongle into the USB port of the
ODROID-HC1, then turn on the ODROID-HC1
Bluetooth speaker to begin.

Sound settings

To access the ODROID-HC1 console, get the IP address of
the board as described at http://bit.ly/2yXFLwp. This
guide is based on the latest Ubuntu 16.04 minimal OS. To
get the OS image, download it from http://bit.ly/2yXYs3h.

and

Before starting the system settings, add the new user
account ODROID as a sudo user, because Ubuntu minimal
does not have any user accounts:

adduser odroid
usermod -aG sudo odroid

su - odroid

Install the alsa and pulseaudio sound related packages:

$ sudo apt update

$ sudo apt install libasound2 libasound2-
plugins alsa-utils alsa-oss

$ sudo apt install pulseaudio pulseaudio-

utils pulseaudio-module-bluetooth

Add the pulseaudio permission to the user account. Add
the “load-module module-switch-on-connect” line to the
pulseaudio configuration file. This setting changes the
audio output to the Bluetooth speaker automatically:

$ sudo usermod -aG pulse,pulse-access odroid

$ sudo nano /etc/pulse/default.pa

/etc/pulse/default.pa

.ifexists module-bluetooth-discover.so
load-module module-bluetooth-discover
load-module module-switch-on-connect # this
is new!

.endif

Start pulseaudio:

$ pulseaudio --start

Bluetooth settings

Install the Bluetooth related package. In this instance, use
the bluez package for bluetooth:

$ sudo apt install bluez
$ bluetoothctl

If the bluetoothctl command does not work on the user
account, modify the dbus configuration file by adding the
following configurations to the file:

$ sudo nano /etc/dbus-
1/system.d/bluetooth.conf

/etc/dbus-1/system.d/bluetooth.conf

< policy user="odroid">

< allow send destination="org.bluez"/>

< allow
send_interface="org.bluez.Agentl"/>

< allow
send_interface="org.bluez.GattCharacteristic
/>

http://bit.ly/2wjNToV
http://bit.ly/2gNybJW
http://amzn.to/2z6dBz5
http://bit.ly/2yXFLwp
http://bit.ly/2yXYs3h

< allow
send_interface="org.bluez.GattDescriptorl"/>

< allow
send_interface="org.freedesktop.DBus.ObjectM
anager"/>

< allow
send_interface="org.freedesktop.DBus.Propert
ies"/>

< /policy>

Enter the following commands on the bluetoothctl
console. Note that the MAC address of the Bluetooth
speaker should be changed from 00:11:67:AE:25:C6 to
your own MAC address. This address will be different for
each Bluetooth device, so be sure to replace the address
by adding yours:

[bluetooth] # agent on

[bluetooth] # default-agent
[bluetooth]# scan on

[bluetooth]# pair 00:11:67:AE:25:C6
[bluetooth]# trust 00:11:67:AE:25:C6
[bluetooth] # connect 00:11:67:AE:25:C6
[bluetooth] # quit

The Bluetooth speaker must have a set default. In order to
set the A2DP (Advanced Audio Distribution Profile) as the
default, change the profile to HSP (Head Set Profile)
because A2DP cannot use the microphone.

$ pacmd 1ls

Check the card index of the Bluetooth speaker, and
assume the index is 1:

$ pacmd set-card-profile 1 headset head unit

To verify sound and Bluetooth setup was done correctly,
play a test sound:

$ speaker-test -t wav

Record and playback some audio using the ALSA
command-line tools:

$ arecord --format=S16_LE --duration=5 --
rate=16k --file-type=raw out.raw
$ aplay --format=S16_LE --rate=16k --file-

type=raw out.raw

To easily use Bluetooth speaker, some configurations are
necessary:

/etc/bluetooth/main.conf

[Policy]
AutoEnable=true

($HOME)/.bashrc

pulseaudio --start
echo "connect 00:11:67:AE:25:C6" |
bluetoothctl

Enable Google Assistant API

In order to enable the Google Assistant API, refer to the
Google Assistant SDK Guides page at
http://bit.ly/2pXwqfC. Use a Google account to sign in. If a
Google account has yet to be produced, create one. Trying
the Google Assistant APl is free for personal use.

Configure a Google Developer Project
A Google Developer Project allows any ODROID device

access to the Google Assistant API. The project tracks
quota usage and gives valuable metrics for the requests
made from ODROID devices on the network.

To enable access to the Google Assistant AP, first go to the
Projects page in the Cloud Platform Console at and select
an existing project or create a new project. Go to the
Projects page at http://bit.ly/2gY7pSV. Next, enable the
Google Assistant API on the project you selected and click
Enable. More information about enabling the API is
available at http://bit.ly/2A1ewic.

Next, create an OAuth Client ID by first creating the client
ID, as described at http://bit.ly/2xBjll6. You may need to
set a product name for the product consent screen. On the
OAuth consent screen tab, give the product a name and
click Save, then click Other and give the client ID a name,
and click Create. A dialog box appears that shows you a
client ID and secret. There's no need to remember or save
this, just close the dialog. Next, click at the far right of
screen for the client ID to download the client secret JSON
file (client_secret_.json). The client_secret_.json file must be
located on the device to authorize the Google Assistant
SDK sample to make Google Assistant queries, and should
not be renamed. Finally, copy client_secret_json to the
ODROID-HC1:

$ scp ~/Downloads/client_secret_client-

id.json odroid@:~/

Set activity controls for your Google account

In order to use the Google Assistant, certain activity data
must be shared with Google. The Google Assistant needs
this data to function properly, and it is not specific to the
SDK. To do this, open the Activity Controls page for the
Google account to be used with the Assistant at
http://bit.ly/2igdQIB. Any Google account has this option,
and it does not need to be your developer account. Ensure
the following toggle switches are enabled (blue):

= Web & App Activity
= Device Information

= Voice & Audio Activity

Download and run the Google Assistant APl sample
Use a Python virtual environment to isolate the SDK and its
dependencies from the system Python packages:

$ sudo apt update

$ sudo apt install python-dev python-
virtualenv git portaudiol9-dev libffi-dev
libssl-dev

$ virtualenv env --no-site-packages

If you face the locale problem as shown below, set the
LC_ALL environment variable:

Complete output from command
/home/odroid/env/bin/python2 - setuptools
pkg_resources pip wheel:

Traceback (most recent call last):

File "",

File "/usr/share/python-wheels/pip-8.1.1-

line 24, in

py2.py3-none-any.whl/pip/__init__.py", line
215,
File

in main

"/home/odroid/env/1lib/python2.7/locale.py"
line 581, in setlocale
return _setlocale (category, locale)
locale.Error: unsupported locale setting
$ export LC_ALL=C

$ virtualenv env --no-site-packages
Activate Python virtual environment.

$ env/bin/python -m pip install --upgrade

pip setuptools

$ source env/bin/activate

After activating the Python virtual environment, the “(env)”
string is added in front of the prompt.

Authorize the Google Assistant SDK sample to make
Google Assistant queries for the given Google Account.
Reference the JSON file that was copied over to the device
in a previous step and install the authorization tool:

(env) $ python -m pip install --upgrade

google-auth-oauthlib[tool]

Run the tool, making sure to remove the -headless flag if
you are running this from a terminal on the device (not an
SSH session):

(env) $ google-oauthlib-tool --client-
secrets /path/to/client_secret client-
id.json --scope
https://www.googleapis.com/auth/assistant—

sdk-prototype --save --headless

You should see a URL displayed in the terminal:

Please go to this URL: https://

Copy the URL and paste it into a browser. This can be done
on a development machine, or any other machine. After it
is approved, a code will appear in the browser, such as
“4/XXXX". Copy and paste this code into the terminal:

Enter the authorization code:

If authorization was successful, OAuth credentials will be
If InvalidGrantError shows
instead, then an invalid code was entered. If this occurs,

initialized in the terminal.
try again, taking care to copy and paste the entire code. If

the correct authorization code is entered, then the

credentials.json file is generated:

credentials saved:
/home/odroid/.config/google-oauthlib-

tool/credentials.json

Get the sample codes from the github repository:

$ git clone
https://github.com/googlesamples/assistant—
sdk-python

$ cd assistant-sdk-python

Install Python packages requirements for the sample
program. We use pushtotalk sample.

cd google-assistant-sdk
python setup.py install
cd googlesamples/assistant/grpc

pip install --upgrade -r requirements.txt

w» v »

nano pushtotalk.py

To run the sample, we have to modify the sample code.
Change the exception type SystemError to ValueError in
the sample code (line 35):

pushtotalk.py
except ValueError:

import assistant_helpers

import audio_helpers

http://bit.ly/2pXwqfC
http://bit.ly/2gY7pSV
http://bit.ly/2A1ewic
http://bit.ly/2xBjII6
http://bit.ly/2ig4QIB

Run and test the pushtotalk sample. If the sample program
is working well, this work is almost done:

(env) $ python pushtotalk.py
INFO:root:Connecting to

embeddedassistant.googleapis.com

Press Enter to send a new request...

Copy the sample to the working directory. Deactivate the
Python virtual environment. There are additional steps to
take to produce a useful Al speaker. In order to that,
navigate to the $(HOME)/ai_speaker directory:

(env) $ cd

(env) $ cp -r grpc ~/ai_speaker

(env) $ cd ~/ai_speaker

(env) $ cp pushtotalk.py ai_speaker.py
(env) $ deactivate

$ cd

Wake-Up-Word

The push-to-talk sample looks like it will interact with the
Al assistant. However, before communicating with the Al
assistant, press the enter key first. To detect a Wake-Up-
Word like “Okay, Google”, “Alexa” or “Jarvis”, use
CMUSphinx at https://cmusphinx.github.io , which is the
open source local speech recognition toolkit. It is best to
build and install SphinxBase, because SphinxBase provides
common functionality across all CMUSphinx projects:

$ sudo apt install libtool bison swig
python-dev autoconf libtool automake

$ git clone --depth 1
https://github.com/cmusphinx/sphinxbase.git
$ cd sphinxbase

$./autogen.sh

$ make -3j8

$ sudo make install

S ed

Sphinxbase will be installed in the “/usr/local/" directory by
default. Not all systems load libraries from this folder
automatically. In order to load them, configure the path to
look for shared libraries. This can be done either in the
“/etc/Id.so.conf” file, or by exporting the environment
variables:

export LD_LIBRARY PATH=/usr/local/lib
export
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

Build and
lightweight speech recognition engine specifically tuned

install PocketSphinx. PocketSphinx is a
for handheld and mobile devices, although it works equally

well on the desktop:

$ git clone --depth 1
https://github.com/cmusphinx/pocketsphinx.gi

$ cd pocketsphinx

$ make -3j8

$ sudo make install
S ed

To test the installation, run pocketsphinx_continuous and
check that it recognizes words you speak into your
microphone:

$ pocketsphinx continuous -inmic yes

For more information about building PocketSphinx, please
refer to the “Building an application with PocketSphinx”
page at http://bit.ly/2gZhHT5.

Add the pocketsphinx_continuous program as a
subprocess in the Al speaker program. The program
pocketsphinx_continuous is a good tool for detecting
hotwords because it recognizes speech asynchronously.
Remove the wait_for_user_trigger related lines, because
the hotwords are the trigger:

$ source env/bin/activate

(env) $ pip install --upgrade subprocess

$ (HOME) /ai_speaker/ai_speaker.py

"""Sample that implements gRPC client for
Google Assistant API."""

Add subprocess module
import subprocess
import json
import logging

import os.path

Add below's routines in the 'While True:'
loop

while True:

p = subprocess.Popen(args =
['pocketsphinx_continuous','-inmic', 'yes',
'-kws_threshold', 'le-16',

'hey dude'],

'-keyphrase',

stdin = subprocess.PIPE,
stdout = subprocess.PIPE,
universal newlines=True)
while p.poll() is None:
data = p.stdout.readline ()
if data.find("hey dude") is not -1:
print "Detected Hotwords"
p.stdout.flush ()

break

p.terminate ()

The Wake-Up-Word is “hey dude”. Run the program, say
“hey dude,” and then state anything desired to the Al
assistant:

(env) $ cd ai_speaker

(env) $ python ai_speaker.py

Detection sound

There is a problem after initially adding Wake-Up-Words,
because there is no apparatus in place to detect whether
the Al speaker detects hotwords or not. The timing must
be known in order to command the Al assistant by voice.
This can be fixed by adding the detection sound to the
program. Download the sample detection sound at
http://bit.ly/2zkSV3b, then copy the detect.wav file to the
ODROID-HC1:

$ scp ~/Downloads/detect.wav odroid@:~/

Use the pyaudio and wave module in order to play the
.wav file in the Python source code:

(env) $ pip install --upgrade pyaudio wave

Add the detection sound play routine to the program. Full
differences including the Wake-Up-Words routines are the
following:

(env) $ nano ai_speaker.py

diff file between original sample code pushtotalk.py and
modified program ai_speaker.py

--- pushtotalk.py 2017-10-19
15:42:12.164741800 +0000

+++ ai_speaker.py 2017-10-19
15:41:49.644811151 +0000

@@ -14,6 +14,9 @@

"""Sample that implements gRPC client for
Google Assistant API."""

+import pyaudio

+import wave

+import subprocess

import json

import logging

import os.path

@@ -310,14 +313,38 Qe

keep recording voice requests using the
microphone

and playing back assistant response using
the speaker.

When the once flag is set, don't wait for
a trigger. Otherwise, wait.

- wait_for_ user_trigger = not once

+ chunk = 1024

+ pa = pyaudio.PyAudio (

+ while True:

- if wait_for user_ trigger:

- click.pause (info='Press Enter to send a
new request...')

+ p = subprocess.Popen(args =
['pocketsphinx continuous','-inmic', 'yes',
'-kws_threshold', 'le-16',
'hey dude'],

'-keyphrase',

stdin = subprocess.PIPE,
stdout = subprocess.PIPE,
universal newlines=True)
while p.poll() is None:
data = p.stdout.readline ()
if data.find("hey dude™) is not -1:
p.stdout.flush ()

break

p.terminate ()

+
+

+

+

+

+

+ print "Detected Hotwords"
+

+

+

+

+ # Play the detection sound

+ f =

wave.open (r"/home/odroid/detect .wav", "rb")
+ stream = pa.open (format =
pa.get_format from width (f.getsampwidth()),
channels = f.getnchannels(),

rate = f.getframerate(),

output = True)

wav_data = f.readframes (chunk)

while wav_data:

stream.write (wav_data)
wav_data = f.readframes (chunk)
stream.stop_stream()
stream.close ()

f.close()

+ o+ o+ o+ o+ o+ o+ o+ o+ A+ o+

continue conversation = assistant.converse ()
- # wait for user trigger if there is no
follow-up turn in

- # the conversation.

- wait_for_user_trigger = not
continue conversation

If we only want one conversation, break.
if once and (not continue_conversation) :

Run the AI speaker program.

(env) $ python ai_speaker.py

To view the speaker in action, check out the video at
https://youtu.be/6Ez782BxxdQ.

https://cmusphinx.github.io/
http://bit.ly/2gZhHT5
http://bit.ly/2zkSV3b
https://youtu.be/6Ez782BxxdQ

The final step

The detection rate of the Wake-Up-Words is less than
ideal. Whether using pocketsphinx or another solution, the
Wake-Up-Words routine needs improvement, so adding
custom commands is useful for this particular project. For
example, it is easy to control loT devices by voice by using
the Google Assistant SDK. Different solutions can be found
by entering the search query “action on google” to learn
more about extending the Google Assistant.

To save time, an easy custom command solution can be
used by simply adding the custom command to the
ai_speaker.py program. In the pushtotalk sample, find the
request text which is already recognized by voice:

--- pushtotalk.py 2017-10-19
16:07:46.753689882 +0000

+++ pushtotalk new.py 2017-10-19
16:09:58.165799271 +0000

@@ -119,6 +119,15 Qe

logging.info ('Transcript of user request:
TR, Uy

resp.result.spoken request_text)

logging.info ('Playing assistant response.')

#Add your custom voice commands here
#Ex>

#import os

#if r text.find("play music") is not -1:

os.system("mplayer ~/Music/*&")

+ o+ + 4+ + + o+

#if r_text.find("turn on light") is not

#r_text = resp.resut.spoken_request_text

=g

+ # os.system("echo 1 >
/sys/class/gpio/gpiol/value")

+

if len(resp.audio_out.audio_data) > 0:
self.conversation_ stream.write(resp.audio_ou
t.audio_data)

if resp.result.spoken_response_text:

After this modification has been saved, you can begin
experimenting with controlling the home electronic
devices using the IOT controller with voice commands. For
comments, questions, and suggestions, please visit the
original article at http://bit.ly/2iQ629K.

http://bit.ly/2iQ629K

Exploring Software-Defined Storage with GlusterFS on the
ODROID-HC1: Part 1 - Server Setup

© November 1,2017 & By Andy Yuen & ODROID-HC1

“Software-defined storage (SDS) is a computer program
that manages data storage resources and functionality and
has no dependencies on the underlying physical storage
hardware.” - whatis.com.

“Gluster File System (GlusterFS) is an SDS platform
designed to handle the requirements of traditional file
storage: high-capacity tasks like backup and archival, as
well as tasks

high-performance of analytics and

virtualization.” - Red Hat.

While GlusterFS is clearly an enterprise technology, that
does not mean that it cannot be used at home. To the
contrary, | find it more flexible and scalable than those off-
the-shelf Network Attached Storage (NAS) boxes. NAS
servers for home users usually come in 2 or 4 bays. When
the time comes to expand your system, it is not that
flexible. You either need to change to a bigger box with
more bays, or replace all of your disks with higher capacity
ones. GlusterFS scales horizontally, meaning that you can
add more servers to expand your storage capacity. For
home users, adding more servers does not make any
sense, since servers are quite expensive. This is true until
you consider the ODROID-HC1, which retails for only $49
USD. Four ODROID-HC1s can be equated to a single 4-bay
NAS at roughly 50% of the price. Furthermore, the
ODROID-XU4 processor, consisting of four A15 cores and
four A7 cores on each HC1, is already more powerful than
the average NAS targeting the home market, which usually
comes with a dual-core A15 processor.

In this article, | am going to use four ODROID-HC1s to
create a highly scalable and highly available distributed

replicated GlusterFS volume, similar to a RAID 1+0
configuration. Don’t worry if you only have two HC1s on

hand. | will describe how you can create a replicated
GlusterFS volume that is the equivalent of RAID 1. But
before that, let's explore a bit more on the different
GlusterFS volume types.

GlusterFS Volume Types

GlusterFS is a POSIX-compatible distributed file system. It
uses the Elastic Hash Algorithm to intelligently hash to
locations based on path and filename, instead of relying
on a metadata server like some other distributed file
systems. Consequently, it avoids the metadata
performance bottleneck, and can run on heterogeneous

commodity hardware.

A volume is a collection of bricks. A brick is any directory
on an underlying disk file system. Most of the GlusterFS
operations happen on the volume. GlusterFS supports
different types of volumes which are optimised for scaling
storage capacity, improving performance, or both. You
may want to refer to Gluster Docs at http://bit.ly/2zh151S
for a complete rundown. In this article, | will explore two
types, namely replicated volume and distributed replicated
volume which require two and four servers (or HC1s),
respectively. In my opinion, these are the configurations
most suitable for home use.

Replicated volume means that files are always written to
the bricks of the two servers. This is equivalent to RAID 1.
In a distributed replicated volume, files are written either
to the brick on one server or the brick on another server,
in a trusted pool of GlusterFS nodes. | will discuss trusted

pools later. The bricks on the two servers are replicated to
the other two servers in the pool. This is similar to RAID
1+0 but with one major difference: RAID 1+0 uses striping,
meaning that different blocks of a file are written to
different servers. In distribution, a file is either completely
written to one server or another and the contents on the
two servers are replicated to another two servers as
illustrated in the diagram below.

_ g Distributed Volume
(Replicated (Replicated
Mount Point 3 Volume 0 ! Volume 1

server1 server3

server2 server4

=
File 2

Figure 1 - Distributed Replicated

Using a distributed replicated volume guards against data
loss when one server fails. It also enhances performance
when you are concurrently accessing files which have been
distributed to two separate servers. Instead of having one
server serving up the files, two are serving up the files.
Now that we've discussed the theory, let's get our hands
dirty building these volumes.

Building a distributed replicated GlusterFS volume
Figure 2 shows a photo of my setup. On the left are the
four stacked ODROID-HC1s, and on the right is the

http://bit.ly/2zhI51S

ODROID-MC1 cluster. Both are resting on and connected
to a 16-port Gigabit switch.

N Al R
Figure 2 - Lab Environment

Setting up the ODROID-HC1s

You'll need to copy the OS image to your SD card in order
to boot up your HC1s. Then, set a static IP address and a
unique hostname to each HC1. You may want to follow the
instructions under “Setting Up the OS on Each Computer
on the Cluster” in my MC1 article at http://bit.ly/2lrzVhb.
Change the host names to xu4-gluster0, xu-4-gluster1, xu-
4-gluster2, and so on.

Install and Format the Hard Disk

Insert the hard disks into the SATA connectors of your
HC1s. Type “sudo -as” to access root privileges and create
a Linux partition using fdisk, then create an ext4 file

system, as shown in Figure 3.

Figure 3 - fdisk

Create a directory called /gds/brick1, add an entry to
/etc/fstab, and mount the file system. The result is shown
in Figure 4.

Figure 4 - fstab

This is done using the following commands:

$ fdisk /dev/sdal
$ mkfs.extd4 /dev/sdal
$ mkdir -p /gfs/brickl

Add the following line to your /etc/fstab (without the
quotation marks): “/dev/sdal /gfs/brick1 ext4 defaults 0 1",
then type the following commands:

$ mount -a

$ mount

Install and configure Gluster server and volume

= |nstall the GlusterFS server

= (Create a trusted pool of GlusterFS nodes. A
storage pool is a trusted network of storage
servers. Before one can configure a GlusterFS
volume, one must create a trusted (storage) pool
consisting of the storage servers that provide
bricks to a volume.

= (Create a directory for volume

= Create a distributed replicated volume named
gvolume0

= Start the volume and display its status

The commands used are summarised below (run as root):

= Execute on all HC1 servers the following
commands:

$ apt-get update

$ apt-get install glusterfs-server

attr

= From xu4-glusterO (or other GlusterFS server)
issue commands to create a trusted pool of
GlusterFS nodes consisting of our 4 HC1s:

$ gluster peer probe xud-glusterl

$ gluster peer probe xud-gluster2

$ gluster peer probe xu4d-gluster3

= Create directory: /gfs/brick1/gvolume0 on all
servers. Then issue the gluster commands
below:
$ gluster volume create gvolumeO

replica 2 transport tcp

$ xud-gluster0:/gfs/brickl/gvolume0
xud-glusterl:/gfs/brickl/gvolume0

$ xud-gluster2:/gfs/brickl/gvolume0
xud-gluster3:/gfs/brickl/gvolume0

$ gluster volume start gvolumeO

$ gluster volume info gvolumeO

In a distributed replicated volume, files are distributed
across replicated sets of bricks. The number of bricks must
be a multiple of the replica count, which in our case is two.
The order in which the bricks are specified is important. In
the “gluster volume create” command, adjacent bricks
become replicas of each other. This type of volume
provides high availability via replication and scaling via
distribution. In our command, we use four bricks and
replica count two, resulting in the first two bricks becoming
replicas of each other. This volume is denoted as 2 x 2.
Figure 5 shows the output of some of the commands.

2 @t g pamefodca

Figure 5 - Create Volume

For those who only have two HC1s to create a replicated
volume, you only have to use the command “gluster peer
probe” on the other server and replace the “gluster volume
create” command with the following command:

$ gluster volume create gvolume0O replica 2
transport tcp xuéd-
gluster0:/gfs/brickl/gvolume0 $ xu4-
glusterl:/gfs/brickl/gvolume0

Testing the Volume Using Gluster Client

On another machine (in my case | used one of the servers
of the ODROID-MC1 cluster), install the GlusterFS client as
root and mount the volume:

$ apt-get update
$ apt-get install gluserfs-client attr
$ mkdir /mnt/gfs
$ mount -t glusterfs -oacl xud-

gluster0:/gvolume0 /mnt/gfs

Note that if you want the mount to be permanent, you
have to add an entry in the /etc/fstab file.

A simple test

This a simple test showing the distribution of files on a
distributed replicated GlusterFS volume.

Create 100 files using the command:

$ cd /mnt/gfs

$ mkdir testdir
$ cd testdir
$

for i in ‘seq 1 100°
$ do
$ echo message$i > fileS$i
$ done
$ 1s

The output of these commands are shown in Figure 6.

E e ——

Figure 6 - Client Files

Login to xu4-gluster0 and issue the following commands:

$ cd /gfs/brickl/gvolume0/testdir
S 1s
$1ls | we -1

You will notice in Figure 7 that 46 of the 100 files are saved
on this server, since we are using a distributed replicated
volume.

T ——

Figure 7 - GlusterO Files

Login to xu4-gluster1 and issue the same commands:

http://bit.ly/2lrzVhb

$ cd /gfs/brickl/gvolume0/testdir
S 1s

$ 1s | we -1

You will see from the screenshot that there are 54 files on
this server. The total on both servers adds up to the 100
files that we created earlier. For our distributed replicated
volume, the 100 files are distributed between the two
servers, although not exactly in a 50/50 ratio. You will find

the same result if you log into the other two servers (xu4-
gluster2 and xu4-gluster3). For those of you who created a
replicated volume using two ODROID-HC1s, you will see
the 100 files on both servers as yours is a replicated
volume and not distribution volume.

What Next?
| have described how to build distributed replicated and
replicated GlusterFS volumes using four and two ODROID-

HC1s respectively. | have also shown how to access the
GlusterFS volume using a GlusterFS client. In Part 2 of this
article, | will describe how to install and use other clients
including NFS and Samba (for Windows) to access the
GlusterFS volume and compare the performance of these
clients.

ODROID-Vu7+ Backlight Control Hack: Controlling the Backlight
on the ODROID-C1 and ODROID-C2 Android platforms

© November 1,2017 & By Jorg Wolff &= ODROID-C1+, ODROID-C2, Tinkering

Recently, | made a driver to control the backlight for the
ODROID-C1 and ODROID-C2 using PWM (pin 33). To use
the driver, it the folder
system/lib/hw/. After rebooting, the driver should work
properly.

needs to be copied to

The driver loads the PWM
automatically, so pwm-meson.ko and pwm-ctrl.ko must be

kernel modules for
present, as they are normally. Keep in mind that if you use
this driver, you'll only be able to use the PWM as well as
pin 33 for the backlight. The driver is available for
download at http://bit.ly/2ysMPAS.

To copy the driver to the ODROID-C1, type the following
command from a host machine running Android Debug
Bridge (ADB) connected to the ODROID-C1 via a USB cable:

$ adb push lights.odroidc.so /system/lib/hw/

To support the ODROID-VU8, the
“backlight_pwm=yes|no|invert” must be added to the

boot.ini:

boot argument

Enable backlight pwm
backlight pwm=yes, no, invert

backlight_ pwm=yes

Booting

setenv bootargs "root=/dev/mmcblkOp2 rw
console=ttyS0,115200n8 no_console_ suspend
vdaccfg=${vdac_config}

logo=osdl, loaded, ${fb_addr}, ${outputmode}, fu

11 hdmimode=${hdmimode} cvbsmode=${cvbsmode}
hdmitx=${cecconfig} vout=${vout_mode}
disablehpd=${disablehpd} ${disableuhs}
androidboot.serialno=${fbt_id#}

ir remote=${ir_remote}
usbcore.autosuspend=-1 ${selinuxopt}
suspend_hdmiphy=${suspend_hdmiphy} }
backlight pwm=${backlight pwm}"

The source code is available at

https://github.com/joerg65/lights.

To control the backlight of the VU7+ you'll need to do a
little tinkering. On pin 4 of the PT4103 backlight driver,
you'll need to solder a resistor. | used a 330 Ohm resistor.
It should, however, also be possible without a resistor.
Other than in this picture from the datasheet of the 4103,
the EN pin of the 4103 on the VU7+ has a pull-up 10k
resistor. Therefore, the backlight of the VU7 is always
measured the current with the EN pin
connected to GND. It is about 0.5mA, which comes from

enabled. |

the pull-up resistor: 5V divided by 10k. | took a resistor and
glued it on the board, soldering it carefully to the pin 4.
This can then be connected to pin 33 of the ODROID.

Figure 1 - Schematic diagram

Figure 2 - Closeup of the soldered connection

http://bit.ly/2ysMPAS
https://github.com/joerg65/lights

Figure 3 - Overview of the soldered connection

To see a detailed video of the project, check out
https://youtu.be/mVvnLiKiksw. For comments, questions
and suggestions, please visit the original post at
https://forum.odroid.com/viewtopic.php?f=1138&t=27227.

https://youtu.be/mVvnLiKiksw
https://forum.odroid.com/viewtopic.php?f=113&t=27227

Meet An ODROIDian: Laurent Caneiro

O November 1,2017 & By Laurent Caneiro (@tipoto) & Meet an ODROIDian

Please tell us a little about yourself.

I'm 40 years old and was born in Bordeaux, France. | live
now in Los Angeles in California, with my wonderful wife
Nathalie and my young daughter Hanaé, who is years old. |
work for DreamWorks animation studios as an animator. |
have been working in the animation industry since 2000. |
have worked on movies like “How to Train Your Dragon 1
and 2", “Puss in Boots”, “Kung Fu Panda 3", “Trolls” and a
few more. I'm currently working on “How to train your
Dragon 3" which is due to be released in March 2019. Prior
to DreamWorks, | worked for several animation studios in
Luxembourg, France, Belgium and Spain), which allowed
me to discover different countries along with building my
experience.

Figure 1 - Laurent at his workstation at DreamWorks Animation

What is your educational background?

| was not very studious when | was younger, which placed
me in a tricky situation at the end of middle school. |
basically couldn't choose my branch, and my only choice
was between secretarial and accounting studies. | chose
accounting, even though | didn't even know what it was all
about, but | studied 4 years of accounting anyway and
eventually got my diploma. Fortunately, | never stopped

drawing and painting during my spare time, and after my
accounting studies, | decided to attempt the entrance
examination of an animation school in Luxembourg
(LT.AM.) and | passed it! That is when | fell in love with
animation.

How did you get started with computers?

| started with computers when | was 8 or 9. At the time, |
had a computer called Thompson TO7-70, which was
released in France only | believe. | mainly played games
with it, but my initiation in programming also started here.
The computer used the BASIC language, and since my
parents subscribed to a monthly BASIC magazine, | was
able to learn a few things and start playing with the
language.

Figure 2 - Laurent’s first computer, a Thompson T07-70

I'm not a programmer and my knowledge is pretty limited
in this area, but I'm fascinated with it. I'm self-taught and |
like to write useful little tools to make my day to day easier
at work. | mainly use Shell script language, but | also use
Python, Squirrel, C/C++ and other languages sometimes.

What attracted you to the ODROID platform?

I had a project in mind that | really wanted to realize. | first
bought a Raspberry Pi 2, which is a great micro-controller,
but it wasn't powerful enough for my needs, so |
investigated other boards as a replacement. | found the
Hardkernel website and discovered the XU4. | was
impressed by the specifications, but | also wanted to know
if the community was big enough, so | went to the ODROID
forums and did a lot of reading. After a few hours, my
conclusion was that the forum was very active and the
members were always available to help and were
technically excellent. | decided to buy an XU4 and migrate

my current project onto it.

How do you use your ODROID?

| use my ODROID as a retro gaming console. | have been
working on this project since 2015, because I'm very slow.
My project is split in two pieces of hardware, one is the
console itself and the other one is an arcade joystick for 2
players. For the console, | use a tiny PC case which I slightly
modified, | designed an acrylic plate in which | attached all
my components (XU4, USB hub, voltage regulator, HDD).

N

Figure 3 - Laurent has been building a custom gaming console
since 2015

Figure 4 - Inside Laurent’s custom-built gaming console

For the joysticks, | completely designed it from scratch, it's
also done with acrylic sheets. | use an Arduino combined
with a RGB module board to control all the RGB leds inside
the buttons. | use an IPAC2 to communicate between the
button switches and the XU4. The hardware part is
completely done and fully functional, I'm working now on
the software side. | started with the OGST image from
@meveric, but I'm customizing everything and I'm adding
plenty of features to make it look unique and attractive.

s

Figure 5 - The joysticks that Laurent designed for his gaming
console are a work of art!

Which ODROID is your favorite and why?

It's very hard for me to tell, since | only own the ODROID-
XU4, but | really love this board.
What innovations would you like to see in future
Hardkernel products?

I would like to see a board with an integrated Wifi module,
an efficient cooling solution available for it that would
avoid any throttle when the CPUs are working at a 100%
load, and a great GPU support on Linux.

What hobbies and interests do you have apart from
computers?
| enjoy photography, and play guitar and piano.

What advice do you have for someone wanting to learn
more about programming?

tart with a friendly language with a great support on the
Internet, so that you can always find solutions to your
problems. Challenge yourself with fun little projects. Don't
try to go too big too fast, because you need to challenge
yourself step-by-step so that you can learn and stay
motivated at the same time. You dont want to feel
completely overwhelmed with something which is way too
complicated for a beginning project. If you plan your
progress slowly, you will always be ready to solve the next
problem that you'll be facing.

| personally do what | call a “blocking” before starting an
“elaborate” code, which is to create a schematic view of
what | want to do on paper, so that | have an overview of
my entire code before starting it. | also recommend using
the Internet as much as you can as an education resource.

You can learn more about Laurent and his portfolio by
visiting his website at http://www.laurentcaneiro.com/,
IMDB profile at
http://www.imdb.com/name/nm3140121/.

and his

http://www.laurentcaneiro.com/
http://www.imdb.com/name/nm3140121/

