

Home Assistant: Designing A Fancy Dashboard
 January 1, 2018

In this article we’re going to look at a Home Assistant companion – AppDaemon

Orange eMMC module: The Samsung 5.1 chipset arrives
 January 1, 2018

Hardkernel Orange eMMC module, which uses the Samsung eMMC 5.1 chipset, which has been shipping since October
2017.

Rebuilding x86/amd64 Docker Images For An ARM Swarm
 January 1, 2018

Rebuilding x86/amd64 Docker Images For An ARM Swarm follow the recent articles about building a Docker swarm on ARM,
and as no ARM image was available, or no ARM image with a recent version was available it was certainly time to change
this.

Android Gaming: Monument Valley, Hopscotch, Aqueducts
 January 1, 2018

It is not always that we stray from the indie weird games for Android, but on the holidays the play store we were gifted with
a great title, so without further ado, lets go to:

Android TV: ODROID-C2 with Amazon Prime Video and Net�ix
 January 1, 2018

I have been using a ODROID-C2 with LibreELEC for quite a while, but was frustrated by the lack of Amazon Prime Video and
Net�ix support. I was also using a wireless keyboard/mouse to control it, which led to the disapproval from the spouse, so I
wanted a proper TV remote

Ambilight on the ODROID-C2 Using LibreElec: Adapting the
Ambilight for the ODROID-C2
 January 1, 2018

I managed to build a working Ambilight system using an ODROID-C2 and LibreElec.

Having Fun with GPIO on Android
 January 1, 2018

The ODROID-C1/C1+, ODROID-C2, and ODROID-XU4 have on-board GPIO (General Purpose Input/Output) pins that allow the
control of external devices through software. In order to access the GPIO port properly, you must install the Android
Marshmallow version 2.8 image or higher on the ODROID-C2, the Android KitKat version 3.2 image or

UART Daisy Chain: Expert Debugging With The ODROID-C2
 January 1, 2018

This article explains how to use multiple UART ports on ODROID-C2 running the Android OS

Linux Gaming: Mech Warrior 2
 January 1, 2018

Mech Warrior is a combat simulation game about so-called “Mechs” which are giant robot vehicles piloted by a human

Meet An ODROIDAN: Dongjin Kim
 January 1, 2018

Please tell us a little about yourself. I am an embedded software engineer and have been involved in many di�erent
commercial projects since 1994. Currently, I am developing the software for a mobile device runs on the ARM processor and
mainly working on a device driver or a HAL/framework layer.

Home Assistant: Designing A Fancy Dashboard
 January 1, 2018  By Adrian Popa  Linux, Tinkering

In this article we’re going to look at a Home Assistant
companion – AppDaemon (https://goo.gl/UD3hDA). This is
a framework that allows you to build your own Python
applications and have them react to events and interact
directly with Home Assistant. It gives you the �exibility to
write complex automations directly in Python, and if you
have a programming background, this will be easier than
writing long automations in YAML. An added bonus is that
it comes with a framework to build pretty-looking
dashboards.

AppDaemon can be installed either on the same system as
Home Assistant, also known as HA, or on a di�erent
system since it communicates with HA over a network
socket. Installation is straightforward, and you can �nd
instructions at https://goo.gl/Hci4zm.

$ sudo pip3 install appdaemon

In the future, you can easily upgrade appdaemon with:

$ sudo pip3 install ­­upgrade appdaemon

You should also create this systemd service to handle
automatic startup:

$ cat /etc/systemd/system/appdaemon.service

[Unit]

Description=AppDaemon

After=homeassistant.service

[Service]

Type=simple

User=homeassistant

ExecStart=/usr/local/bin/appdaemon ­c

/home/homeassistant/.homeassistant

[Install]

WantedBy=multi­user.target

$ sudo systemctl enable appdaemon

$ sudo systemctl start appdaemon

You will need to create a default con�guration preferably
inside your HA con�guration directory and add a default
application to test your setup. The appdaemon.yaml
con�guration �le also stores the credentials to access your
Home Assistant instance, or can read them from the �le
‘secrets.yaml’.

$ sudo su ­ homeassistant

$ cat

/home/homeassistant/.homeassistant/appdaemon

.yaml

 AppDaemon:

 logfile: STDOUT

 errorfile: STDERR

 logsize: 100000

 log_generations: 3

 threads: 10

 HASS:

 ha_url: http://127.0.0.1:8123

 ha_key: !secret api_password

$ mkdir

/home/homeassistant/.homeassistant/apps

$ cat

/home/homeassistant/.homeassistant/apps/hell

o.py

import appdaemon.appapi as appapi

Hello World App

Args:

class HelloWorld(appapi.AppDaemon):

def initialize(self):

 self.log("Hello from AppDaemon")

 self.log("You are now ready to run Apps!")

The hello.py code above was taken from the installation
instructions, but you can �nd some useful apps in this
repository as well at https://goo.gl/6nkzhm. In order to
activate and con�gure an app you will need to add the
following inside ‘apps.yaml’:

$ cat

/home/homeassistant/.homeassistant/apps.yaml

 hello_world:

 module: hello

 class: HelloWorld

Once you restart AppDaemon, the apps will automatically
load. In this case, you should see a “Hello from
AppDaemon” message in your logs indicating that the
initial setup is done, you can check for this with:

$ sudo journalctl ­f ­u appdaemon

The best way to get started is to read the documentation.
There is a comprehensive tutorial that walks you through
all the steps here: https://goo.gl/ha5iC8. Additionally,
there is an API reference for quick lookup:
https://goo.gl/QeJSYu. The framework is event-driven, so
you need to set up listeners for various events that happen
in Home Assistant, so your code will be called

https://goo.gl/UD3hDA
https://goo.gl/Hci4zm
https://goo.gl/6nkzhm
https://goo.gl/ha5iC8
https://goo.gl/QeJSYu

automatically. You can also access all the states and
attributes of Home Assistant entities. When you are
familiar with the framework, you can look at the example
apps to get an idea how things are done.

Do you remember the heater project in Home Assistant,
published in the last issue of ODROID magazine? Well,
maybe because I’m getting older, I feel the need to turn
the heat on during certain hours of the day and night, so I
wanted to create an app to do it for me. There’s a catch
though: I want to have some sort of user-friendly
switchboard inside Home Assistant to allow me to select at
what times I want the heater to be on, as some sort of cron
job replacement. I estimated that having 15 minute
intervals per switch should be �ne, so, if I want to turn the
heater on during 4:00 to 4:30, I would need to turn on two
switches in the user interface (4:00 and 4:15).

A quick calculation shows us that a day consists of 96 15-
minute intervals, and since I’m a lazy person and don’t
want to write all that con�guration code, I made a script to
generate the con�guration for me (https://goo.gl/DYY5Mj).
If you run the script above, it will create 96 input_boolean
switches (https://goo.gl/BtJZ41), and distribute them into
4-hour groups. You can then copy/paste this into your
con�guration �le under the relevant sections and restart
Home Assistant. Don’t forget to add the
‘heater_timer_group’ in the ‘heater’ view:

$ wget

https://raw.githubusercontent.com/mad­

ady/home­assistant­

customizations/master/configuration_helper/m

ake_heater_switches.py

$ python make_heater_switches.py

Con�guration.yaml will look something like this:

input_boolean:

 …

 heater_timer_00_00:

 name: Heater timer 00:00

 initial: off

 icon: mdi:fire

 heater_timer_00_15:

 name: Heater timer 00:15

 initial: off

 icon: mdi:fire

 …

group:

 heater_timer_group_0:

 name: Timer group 00:00 ­ 04:00

 control: hidden

 entities:

 ­ input_boolean.heater_timer_00_00

 ­ input_boolean.heater_timer_00_15

 ­ input_boolean.heater_timer_00_30

 …

 heater_timer_group:

 name: Heater timer

 control: hidden

 entities:

 ­ group.heater_timer_group_0

 ­ group.heater_timer_group_1

 ­ group.heater_timer_group_2

 ­ group.heater_timer_group_3

 ­ group.heater_timer_group_4

 ­ group.heater_timer_group_5

…

 heater:

 name: Gas heater

 view: yes

 icon: mdi:fire

 entities:

 ­ switch.heater

 ­ climate.heater_thermostat

 ­ group.heater_timer_group

You should get the view shown in Figure 1 when done.

Figure 1 – Lots of timer switches

In order to give these switches functionality, there has to
be some application to listen to their state changes in
order to do the desired actions. I’ve written an code for
AppDaemon which does the following:

On startup, it begins listening for events from
input_boolean entities called heater_timer_*,
which iterates through all entities and registers a
listener for each one.

When it detects that a boolean has been toggled,
it checks if the name of the boolean is the same
as the current time, and if yes, controls the
heater

Every minute that the corresponding
input_boolean for the current time interval is
checked. If it is on, then the heater is turned on.

The full source code is available at https://goo.gl/WGvoAL,
and can be installed with the following commands:

$ cd ~homeassistant/.homeassistant/apps/

$ wget

 https://raw.githubusercontent.com/mad­

ady/home­assistant­

customizations/master/appdaemon_apps/manual_

heater.py

You will also need to edit the apps.yaml �le and add the
following:

manual_heater:

 module: manual_heater

 class: ManualHeater

 climate: "climate.heater_thermostat"

 heater: "switch.heater"

 interval_length: 15

Now, when you restart AppDaemon the new app will load
and will react to the state of your input_booleans. You can
follow its progress by reading the AppDaemon’s log.

All might seem �ne, however, there’s a new problem. If you
restart HomeAssistant, or if there’s a power outage in the
middle of the night, all 96 switches will default to the o�
position. There has to be a way to save their state and
have them load the previous state on reboot. Luckily there
already is an app for that: switch_reset.py, available at
https://goo.gl/LVYdD2. Here’s how you can con�gure it:

$ cd ~homeassistant/.homeassistant/apps/

$ wget ­O switch_reset.py

 https://raw.githubusercontent.com/home­

assistant/appdaemon/dev/conf/example_apps/sw

itch_reset.py

$ wget ­O globals.py

 https://raw.githubusercontent.com/home­

assistant/appdaemon/dev/conf/example_apps/gl

obals.py

Add the following con�guration to apps.yaml:

switch_reset:

 module: switch_reset

 class: SwitchReset

 log: ""

 file:

"/home/homeassistant/.homeassistant/switch_s

tates"

 delay: 10

After restarting AppDaemon, the changes to
input_boolean, input_number, input_select and
device_tracker entities will be stored inside
/home/homeassistant/.homeassistant/switch_states,
providing our switch state persistence.

Although we’re using automated applications, the major
reason why people use AppDaemon is because it provides
a dashboard interface so that you can expose and control
Home Assistant entities on a touchscreen. Usually people
use a TV or a tablet to show the dasboard, but, I’ve used
the HardKernel 3.5″ LCD
(http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G147435282441), with an ODROID-C2 as the
computer backend.

Figure 2 – Example dashboard

In order to enable the dashboard (https://goo.gl/Z8iMW8),
you will need to add the following section to
appdaemon.yaml:

HADashboard:

 dash_url: http://0.0.0.0:5050

 dash_password: !secret api_password

 dash_dir:

/home/homeassistant/.homeassistant/dashboard

s

The dash_password directive is optional. For ease of use,
it’s best not to use a password, so that the dashboards can
load on boot with no user intervention. You will need to
create a sample dashboard under
~homeassistant/.homeassistant/dashboards. Create the
directory �rst, then name it hello.dash:

$ mkdir

~homeassistant/.homeassistant/dashboards

$ mkdir ­p

 /home/homeassistant/.homeassistant/compiled

/javascript/css

$ mkdir ­p

/home/homeassistant/.homeassistant/compiled/

css

$ mkdir ­p

 /home/homeassistant/.homeassistant/compiled

/html/default

$ cd

~homeassistant/.homeassistant/dashboards

$ vi hello.dash

hello.dash

Main arguments, all optional

title: Hello Panel

widget_dimensions: [120, 120]

widget_margins: [5, 5]

https://goo.gl/DYY5Mj
https://goo.gl/BtJZ41
https://goo.gl/WGvoAL
https://goo.gl/LVYdD2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G147435282441
https://goo.gl/Z8iMW8

columns: 8

label:

 widget_type: label

 text: Hello World

layout:

 ­ label(2x2)

After restarting AppDaemon, you will be able to access this
at http://[odroid-ip]:5050/hello, where [odroid-ip] is the IP
address of the ODROID-C2.

Figure 3 – Hello from the other side

Dashboards are dynamically generate web pages which
can render and control the states of Home Assistant
entities. Most entities have corresponding snippets of
dashboard con�guration, which can control appearances.
The reference documentation is available at
https://goo.gl/G6iYib.

In order to get started, you need to specify the screen
dimensions and think about how you want to divide the
screen into widgets. Usually the screen is divided into x*y
cells, and each cell has a �xed width and height. You have
some �exibility because you can merge cells to create a
bigger one, and you can also have empty cells or rows. The
standard cell size is 120×120 pixels. Since the 3.5″ display
has a small resolution (480×320), we’ll need to get creative
and implement some sort of menu to jump between
di�erent dashboards. We will also use small cells, 38×38,
with a 1 pixel margin and combine them together to create
larger widgets when needed. Note that if you are using a
large enough screen you can use, and should use, larger
widget sizes to avoid layout issues.

Regarding navigation with a menu, HADashboard has a
navigation widget which can be used to load a di�erent
dashboard. The plan is to create an 8-item vertical menu
which will be imported in all dashboards for quick
navigation, then populate the dashboards according to my
needs with internal data from Home Assistant, sensors,
switches, media players, cameras, and external data such
as Netdata Dashboard graphs or online weather. One of
the buttons can serve as a menu and load a di�erent
dashboard with more buttons, so you have a lot of
options.

Here is an example dashboard head that I’ve duplicated on
all dashboards:

Main arguments, all optional

title: 3.5in LCD panel ­ 480x320 divided

into 12x8 cells ­ Home

widget_dimensions: [38, 38]

widget_margins: [1, 1]

columns: 12

use_gass_icon: 1

In order to set up navigation, I’ve set up a list of “buttons”
in a di�erent �le called

~homeassistant/.homeassistant/dashboards/navigation-
de�nition.yaml, which is imported in all dashboards and
looks like this, just a few items are shown to give you an
idea:

home:

 widget_type: navigate

 dashboard: "lcd35­hq"

 icon_active: fa­home

 icon_inactive: fa­home

mpd:

 widget_type: navigate

 dashboard: "mpdkitchen"

 icon_active: fa­music

 icon_inactive: fa­music

tv:

 widget_type: navigate

 dashboard: "tv"

 icon_active: mdi­television­classic

 icon_inactive: mdi­television­classic

 icon_style: "font­size: 1.5em !important;"

 …

extendedmenu:

 widget_type: navigate

 dashboard: "extendedmenu"

 args:

 timeout: 10

 return: lcd35­hq

 icon_active: mdi­menu

 icon_inactive: mdi­menu

You can get a copy of the complete �le at
https://goo.gl/vwYD33. As you can see, most entries are
navigation widgets which get a dashboard �le name as a
parameter and can have a custom icon or style. The
“extendedmenu” item causes that dashboard to be loaded
for 10 seconds, then the “lcd35-hq” dashboard is loaded, if
there is no other action. This allows you to simulate a
popup menu that goes away by itself.

The layout of the widgets on the page is done by creating a
layout directive with the rows enumerated below it. For
each cell in a row, you would write the widget name as
de�ned in the dashboard, or imported �les. Widget names
may have their size appended to the name. In order to
reuse the con�guration as much as possible, you can also
import external de�nitions from other dashboards, like the
navigation snippet above. The following snippet is from
the main dashboard:

layout:

 ­ include: navigation­definition

 ­ include: sensors

 ­ home, clock(4x4), weather(7x4)

 ­ mpd

 ­ webcams

 ­ tv

 ­ heating, sensorliving(2x4),

sensorkids(2x4), heater(2x4), forecast(5x4)

 ­ cooling

 ­ blinds

 ­ extendedmenu

The leftmost items on the list are the navigation targets
de�ned in the navigation-de�nition.yaml �le.
Unfortunately, since I wanted to have a vertical menu, I
need to explicitly add them to each dashboard. If I had
only a horizontal row, I could have done the layout inside
the navigation-de�nition.yaml �le.

The top row begins with a small “home” widget used to
navigate back here, then a 4×4 clock widget and a 7×4
weather widget. The next row lists only “mpd”, which is
part of the menu. The rest of the row is occupied by the
big clock and weather widgets, so no new items are
appended. Using this logic you can get a mental image of
how it’s supposed to look. The rest of the items are

de�ned in the dashboard and in the included
sensors.yaml, like this:

clock:

 widget_type: clock

 time_format: 24hr

 show_seconds: 0

 time_style: "color: yellow; font­size:

40pt; font­weight: bold;"

 date_style: "font­size: 16pt; font­weight:

bold;"

weather:

 widget_type: weather

 units: "°C"

 sub_style: "font­size: 110%; font­weight:

bold;"

 main_style: "font­size: 75%; font­weight:

bold;"

 unit_style: "font­size: 250%;"

forecast:

 widget_type: sensor

 title: Prognoza

 title_style: "font­size: 14pt;"

 text_style: "font­size: 16pt; font­weight:

bold;"

 precision: 0

 entity: sensor.dark_sky_forecast_ro

As you can see, most widgets require an entity which
provides the glue to Home Assistant items, a type and the
rest of con�guration deals with fonts, colors and icons. The
icons of various widgets can come from Home Assistant,
but can be overridden with icons from Material Design,
https://materialdesignicons.com, pre�xed with mdi, or
from Font Awesome,http://fontawesome.io, pre�xed with
fa.

If you were to load this dashboard right now in a browser
by navigating to http://odroid-ip:5050/lcd35-hq, it would
look like Figure 4.

Figure 4 – Dashboard with broken navigation

However, there seems to be a problem with the layout of
the navigation widgets. If you were to use Developer Tools
in your browser and inspect the layout, you’d see that
while the widgets are placed correctly, the icons inherit a
CSS style which uses absolute positioning to o�set the icon
by 43 pixels downward. This is a problem because the
dashboard was designed for larger displays with bigger
widgets. In order to get around the issue, it’s best if we
create a skin that loads a custom javascript �le that resets
the absolute layout of icons and also adjusts the size. In
order to do this, you’ll need some Javascript, HTML and
CSS know-how, but you can get the �nished skin from at
https://goo.gl/Fwcbti.

$ sudo su ­ homeassistant

$ cd .homeassistant/

$ mkdir ­p custom_css/defaultsmall

$ cd custom_css/defaultsmall

$ wget ­O dashboard.css

 https://raw.githubusercontent.com/mad­

ady/home­assistant­

customizations/master/appdaemon_skins/defaul

https://goo.gl/G6iYib
https://goo.gl/vwYD33
https://materialdesignicons.com/
http://fontawesome.io/
https://goo.gl/Fwcbti

tsmall/dashboard.css

$ wget ­O dashboardsmall.js

 https://raw.githubusercontent.com/mad­

ady/home­assistant­

customizations/master/appdaemon_skins/defaul

tsmall/dashboardsmall.js

$ wget ­O variables.yaml

 https://github.com/mad­ady/home­assistant­

customizations/blob/master/appdaemon_skins/d

efaultsmall/variables.yaml

Now, if you reload the dashboard and specify an explicit
skin you’ll get much better results (http://[odroid-
ip]:5050/lcd35-hq?skin=defaultsmall)

Figure 5 – Dashboard with navigation

Now you can take a look at my dashboards. All the
con�guration is at https://goo.gl/VuB9sr. The MPD
dashboard consists of 3 similar dashboards that I can cycle
through by using the top navigate widgets. They load 3
di�erent MPD instances around the house. The di�erence
between the dashboards are just the instance loaded (see
mpdkitchen below). The dashboard’s layout is pretty
simple:

layout:

 ­ include: navigation­definition

 ­ include: mpd

 ­ home, navigationmpdliving(4x1),

navigationmpdkids(4x1),

navigationmpdkitchen(3x1)

 ­ mpd, mpdkitchen(11x7)

 ­ webcams

 ­ tv

 ­ heating

 ­ cooling

 ­ blinds

 ­ extendedmenu

Figure 6 – Three MPD instances

I also have a dashboard view to control my TV, which was
imported in Home Assistant as described at
https://magazine.odroid.com/article/home-
assistantscripts-customization/. We are getting the image
from a camera component inside Home Assistant and
using the Camera Widget. The buttons are used to control
the virtual remote and connect to script components in
Home Assistant as well as to the script entity in
HADashboard. An example for layout and widgets can be
found below:

layout:

 ­ include: navigation­definition

 ­ home, streamtv(10x8), tv_living_off

 ­ mpd, tv_living_on

 ­ webcams, tv_living_source

 ­ tv, tv_living_mute

 ­ heating, tv_living_volume_up

 ­ cooling, tv_living_volume_down

 ­ blinds, tv_living_ch_up

 ­ extendedmenu, tv_living_ch_down

streamtv:

 widget_type: camera

 entity_picture:

http://192.168.1.4:8123/api/camera_proxy/cam

era.tv_living_image?

token=62f78994c790a89459e2f60cc6ed80bdfce3e9

b5ff5473633ba60e3d7089f0a6&api_password=odro

id

 refresh: 2

tv_living_off:

 widget_type: script

 entity: script.tv_living_power_off

 icon_on: mdi­power­plug­off

 icon_off: mdi­power­plug­off

tv_living_on:

 widget_type: script

 entity: script.tv_living_power_on

 icon_on: mdi­power

 icon_off: mdi­power

What’s di�erent about the camera widget is that it requires
a URL via Home Assistant’s API. This URL has to include the
API key and also a token which is visible in Home Assistant
-> Entities view for the entity in question. If you also use a
password to access Home Assistant, you’ll need to append
the password to the URL. Figure 7 shows you the end
result.

Figure 7 – Dashboard to monitor the TV

Another dashboard allows you to control the heater,
manually, and the thermostat. The con�guration for the
thermostat widget looks like this, and the end result is in
Figure 8.

layout:

 ­ include: navigation­definition

 ­ include: sensors

 ­ home, heater(4x4), thermostat(6x8)

 ­ mpd

 ­ webcams

 ­ tv

 ­ heating, sensorliving(2x4),

sensorkids(2x4)

 ­ cooling

 ­ blinds

 ­ extendedmenu

thermostat:

 widget_type: climate

 title: Thermostat

 step: 0.5

 precision: 1

 entity: climate.heater_thermostat

 unit_style: "color: yellow;"

 level_style: "color: yellow; font­size:

48pt;"

 unit2_style: "color: yellow;"

 level2_style: "color: yellow; font­size:

40pt;"

 level_up_style: "font­size: 20pt;"

 level_down_style: "font­size: 20pt;"

Figure 8 – Heater dashboard

During the summer, the Cooling dashboard will see some
use. Here are placed the sensors, switches and timers that
control the AC system, as described in
https://magazine.odroid.com/article/home-
assistantscripts-customization/ . The dashboard looks like
Figure 9.

Figure 9 – AC control

The extended menu is nothing more than a dashboard
with more navigate widgets. In it, I have links to a Netdata
dashboard and an Hourly forecast and images from my
webcams, with room for more in the future.
The Hourly Weather forecast dashboard makes use of the
iframe widget to load a URL, while the Netdata Dashboard
cycles through a list of URLs every 5 seconds:

mynetdata:

 widget_type: iframe

 refresh: 5

 url_list:

 ­ http://192.168.1.5:19999/server1.html

 ­ http://192.168.1.5:19999/server2.html

 ­ http://192.168.1.5:19999/server3.html

 ­ http://192.168.1.5:19999/server4.html

 ­ http://192.168.1.5:19999/server5.html

https://goo.gl/VuB9sr
https://magazine.odroid.com/article/home-assistantscripts-customization/
https://magazine.odroid.com/article/home-assistantscripts-customization/

Figure 10 – Extended menu

Now that the dashboard is working to your liking, you’ll
have to invest a bit of time on the display side. You can
start with @FourDee’s installation script for the display at
https://forum.odroid.com/viewtopic.php?t=24248. You
will also need to enable autologin inside lightdm
(https://wiki.odroid.com/accessory/display/3.5inch_lcd_s
hield/autox#auto_login). Once this is done, it’s time for
some cleanup. It’s best to remove programs that display
popups on screen, like the Update Manager and
screensaver:

$ sudo apt­get remove update­manager gnome­

screensaver

We will also prepare a script that runs Chromium in Kiosk
mode, with no password store, so that it won’t ask you
every time to unlock your password store. Chromium will

also be set up with a �x that makes it forget it crashed, so
in case of an unclean shutdown, it won’t ask you if you
want to restore the previous session. In addition to this,
we’ll set the monitor to always on:

$ cat /usr/local/bin/kiosk­mode.sh

 #!/bin/bash

 /usr/bin/xset s off

 /usr/bin/xset ­dpms

 /usr/bin/xset s noblank

 /bin/sed ­i 's/"exited_cleanly":

false/"exited_cleanly": true/'

~/.config/chromium/Default/Preferences

 dashboard=lcd35­hq

 /usr/bin/chromium­browser ­­noerrdialogs ­­

incognito ­­password­store=basic ­­kiosk

http://odroid­ip:5050/$dashboard?

skin=defaultsmall

$ sudo chmod a+x /usr/local/bin/kiosk­

mode.sh

You can also add the Scrollbar Anywhere Chrome
extension (https://goo.gl/UD3hDA). Con�gure it to react to
the left button and enable “Use Grab-and-drag style
scrolling” so that you can scroll, if needed, with your �nger
on the dashboard.

Test that the script is working correctly when started from
the graphical environment, and when ready, you can add it
to the list of autostarted applications in Control Center ->
Personal -> Startup Applications. Just click “add”, use “Kiosk

mode” for the name, and /usr/local/bin/kiosk-mode.sh as
the command. Once you restart lightdm, you should see a
full screen dashboard.

Show in Figure 11 is the end result, running on the 3.5″
display. Hardkernel’s 3.5″ display is perfect for a small
dashboard. The font sizes and colors used are optimized
for easy reading from 2-3 meters away and the contrast
helps with reading from wider angles. The display’s low
refresh rate of 10 fps is not noticeable with the dashboard.

Figure 11 – 3.5″ display with the dashboard

You can get the dashboard con�guration �les from the
GitHub project at https://github.com/mad-ady/home-
assistant-customizations, and view a demonstration video
at youtu.be/fEoHs3-_3B0. Please note that they were
tested with appdaemon 2.1.12, but version 3 is currently
under development ,and by the time you implement this,
some things may have changed slightly. Keep an eye on
the GitHub repository and on the support thread at
https://forum.odroid.com/viewtopic.php?t=27321.

https://forum.odroid.com/viewtopic.php?t=24248
https://wiki.odroid.com/accessory/display/3.5inch_lcd_shield/autox#auto_login
https://goo.gl/UD3hDA
https://github.com/mad-ady/home-assistant-customizations
http://youtu.be/fEoHs3-_3B0
https://forum.odroid.com/viewtopic.php?t=27321

Orange eMMC module: The Samsung 5.1 chipset arrives
 January 1, 2018  By Justin Lee  ODROID-C2

Figure 1 – Hardkernel now o�ers an orange eMMC module)

Hardkernel has now introduced an orange eMMC module,
which uses the Samsung eMMC 5.1 chipset, which has
been shipping since October 2017.

It works with C1/C2/XU4 series with a proper OS. The latest
o�cial OS images all work �ne. The schematics are
available at eMMC PCB Rev 0.4.
Orange eMMC compatibility status with XU4 series OS
images

OS image Image �le
information

Status

Ubuntu Mate ubuntu-
16.04.3-4.14-
mate-odroid-
xu4-
20171212.img

OK

Ubuntu
Minimal

ubuntu-
16.04.3-4.14-
minimal-

OK

odroid-xu4-
20171213.img

Android 7.1.1 Alpha-
1.1_14.11.17

OK

Android TV
7.1.1

Alpha-
1.0_20.11.17

OK

Android 4.4.4 Android 4.4.4
(v5.8)

OK

Debian Jessie Debian-Jessie-
1.1.4-
20171121-
XU3+XU4.img

OK

ODROID Game
Station Turbo
(OGST)

ODROID-
GameStation-
Turbo-3.9.5-
20171115-
XU3+XU4-
Jessie.img

OK

Armbian All Armbian
variants
starting with
version 5.35

OK

OMV OMV_3_0_92_O
droidxu4_4.9.6
1

OK

DietPi DietPi_OdroidX
U4-armv7-
(Jessie).7z 22-
Nov-2017

OK

Yocto project No Flashable Untested

�le reference

Kali-Linux No Flashable
�le reference

Untested

Arch-Linux No Flashable
�le reference

Untested

ROS No Flashable
�le reference

Untested

Lakka Lakka-
OdroidXU3.arm
-2.1-rc6.img.gz

OK

Batocera batocera-5.12-
xu4-
20171214.img.g
z

OK

RecalBox recalbox
(17.11.10.2)

OK-ish?

RetroPie No Flashable
�le reference

Untested

The eMMCs from Sandisk will be version up to 5.1 with
slightly faster data transfer speed starting from July 20,
2017. As shown in Figure 2, the QR code is on the left side
of the ver5.1 chipset while eMMC ver 5.0 has it on the right
side.

Kernel version 3.10 should have the following patches
applied in order to make it work with XU4 series properly:
Github, Github, Github.

References
eMMC module Revison 0.3 schematics
Yellow eMMC Module Revision 0.4 schematics

https://dn.odroid.com/eMMCModule/EMMC_REV0.4.pdf
https://github.com/hardkernel/linux/commit/71f8db62a340aa59624aa18662d3b565ccd0b52c
https://github.com/hardkernel/linux/commit/7a61d71ab6eb28c47a134c8dfd5e379c94da2c33
https://github.com/hardkernel/linux/commit/4953eafacf5f55fdca73ebb1100d0de0fb491a16
http://forum.odroid.com/download/file.php?id=433
https://wiki.odroid.com/_media/accessory/emmc/emmc_rev0.4.pdf

Figure 2 – eMMC version 5.0 (left) has the QR code on the
right side, and eMMC version 5.1 (right) has the QR code on
the left side)

Figure 3 – Chart of eMMC modules for current running products
2016

Figure 4 – eMMC modules for old products

eMM
C
read
er
boar
d
sche
mati
cs

eMMC board dimensions : 18.5mm x 13.5mm

Gap between the PCBs : 1.1mm (Height of
assembled B2B connectors

The connector is made by LS-Mtron Korea. On the eMMC
module, the GB042-34S-H10 (Socket-34pin) was used. On
the host board, the GB042-34P-H10 (Plug-34pin) was used.
The connector speci�cation is here
Information about Sandisk eMMC (iDisk Extreme)
Information about Samsung eMMC

Information about Essencore eMMC (8GB eMMC is used
for XU4)
Information about Toshiba eMMC

eMMC Read/Write test on ODROID-C2 HS400 mode
(Unit : MByte/sec)

Samsu
ng

Toshib
a

Sandisk

8G Write 45.4 21.9 N/A

8G Read 113 148 N/A

16G Write 80.1 N/A 25.6

16G Read 126 N/A 153

32G Write 124 N/A 98.7

32G Read 125 N/A 153

64G Write 124 83.7 107

64G Read 124 153 153

Read/write command for the eMMC benchmark:

$ dd if=/dev/zero of=test.tmp oflag=direct

bs=1M count=1024

$ dd if=test.tmp of=/dev/null iflag=direct

bs=1M

ODROID-C2 + Black eMMC Performance Test of File I/O
test conditions

Ubuntu 16.04

Kernel version : Linux odroid64 3.14.79-115

Test tool : iozone revision 3.429

iozone installation and performance test:

$ sudo apt install iozone3

$ iozone ­e ­I ­a ­s 100M ­r 4k ­r 16k ­r

512k ­r 1024k ­r 16384k ­i 0 ­i 1 ­i 2<

/* 8G */

random random

kB reclen write rewrite read reread read

write

102400 4 9290 13582 13570 13568 11900 8787

102400 16 10934 15680 27511 27484 25976 7699

102400 512 14943 23761 42163 42121 41361

15122

102400 1024 15140 28564 41951 41915 41196

16743

102400 16384 16559 24001 42308 42267 42287

28604

/* 16G */

random random

kB reclen write rewrite read reread read

write

102400 4 14602 14622 18102 17953 16768 14421

102400 16 49363 49279 52902 52808 47450

48389

102400 512 49779 49993 138268 138315 137171

48836

102400 1024 50005 49870 137522 137709 136958

49027

102400 16384 49861 50058 139358 139154

139299 50024

/* 32G */

random random

kB reclen write rewrite read reread read

write

102400 4 14608 14670 18333 18343 17935 14624

102400 16 58393 66157 56412 56766 55744

56371

102400 512 80356 81074 136828 137132 137503

79224

102400 1024 80464 81036 137368 137278 136896

79191

102400 16384 80388 81070 139486 139612

139446 80560

/* 64G */

random random

kB reclen write rewrite read reread read

write

102400 4 14240 14299 17619 17548 16012 14216

102400 16 49991 57484 53245 53405 50001

59302

102400 512 132316 135079 134154 134016

134208 129755

102400 1024 132476 134966 133753 133840

133677 130054

102400 16384 135772 139140 136133 136019

135821 135107

/* 128G */

random random

kB reclen write rewrite read reread read

write

102400 4 14162 14152 18161 18184 17833 14200

102400 16 56527 64906 55057 55684 54492

66525

102400 512 131327 131444 137307 137040

137358 132500

102400 1024 131908 131896 137570 137495

136844 132365

102400 16384 136418 134070 139940 133304

121160 134002

The black eMMC module is made with the Samsung eMMC
chipset. The red and blue (normal) eMMC module is made
with Sandisk or Toshiba or AIO chipset. The ODROID-
C1/C0/C1+/C2 devices works with the black and red eMMC
modules. The ODROID-XU4/XU3/U3/X2/U2 devices do NOT
work with black eMMC module.

New 8GB eMMC test on XU4 Ubuntu
The new 8GB eMMC red PCB for the ODROID-XU4 model is
based on Essencore/AIO’s eMMC 5.0 technology.
Sequential speed with “dd” test:

dd write : 15.1 MB/s

dd read : 104 MB/s

Random access(IOPS) speed test with 4k block.

Random write : io=993228KB, bw=9928.2KB/s,
iops=2482

Random read : io=1479.1MB, bw=15149KB/s,
iops=3787

eMMC vs SD card performance comparison on C2 Android
using a 16GB eMMC Black PCB and a 16GB UHS-1 SDHC
Card (Sandisk SDSDQAD-016G UHS-I 50 OEM model), with
a cleanly �ashed Android 5.1 V2.8 image and installed
GApps Pico package:

eMMC booting time from power on event :
18~20 seconds

SDHC booting time from power on event : 32~35
seconds

Check points for system software developers
Do not overwrite the hidden eMMC boot partition. If you
have, visit How to recover the eMMC boot loader to �x it.
The eMMC must be partitioned as follows:

FAT16 partition with UUID 6E35-5356 (boot)

EXT4 partition with UUID e139ce78-9841-40fe-
8823-96a304a09859 (Linux)

Copy the contents from Ubuntu image partitions to the
boot and Linux partitions using “cp -afpv source
destination”, then insert the eMMC module and boot
normally.

http://forum.odroid.com/download/file.php?id=1036&mode=view
http://www.lsmtron.com/pdf/Connector&Antenna_catalog.PDF
http://www.sandisk.com/products/embedded/inand/inand-extreme
http://www.samsung.com/semiconductor/products/flash-storage/emmc/
http://www.the-aio.com/emmcfeature
https://toshiba.semicon-storage.com/us/product/memory/nand-flash/mlc-nand/emmc.html

For comments, questions, and suggestions, please visit the
original Wiki page at

https://wiki.odroid.com/accessory/emmc/reference_char
t.

https://wiki.odroid.com/accessory/emmc/reference_chart

Rebuilding x86/amd64 Docker Images For An ARM Swarm
 January 1, 2018  By Mike Partin  Docker, Linux, Tutorial

After following the recent articles about building a Docker
swarm on ARM (https://goo.gl/2FjP8f) and
(https://goo.gl/ZTXcp), I found myself wanting to spin up
services, for which no ARM image was available, or no ARM
image with a recent version was available. The alternatives
are trinary: 1) do without the thing I want, 2) settle for an
older version of the thing I want, or 3) �gure out how to
build the thing I want. I am a bit of a tinkerer, and I like to
have at least a working knowledge of my tools, so I went
with the third option. For the most part, this is a very
straight-forward process, but every once in a while, you
end up having to tweak some things. Do not be
intimidated by that, because it is worth it, and not that
di�cult of a journey. To help with this, let us set up a
graphite stack. For this stack I will need several elements,
plus some support in the form of an internally hosted
image registry.

A registry
We will be using an already created image for this at
http://dockr.ly/2kmNgod. The registry provides a place to
store your custom images and deploy from. It is a great
staging ground before you push your �nal product up to
https://hub.docker.com or whatever other registry you
choose.

The registry front end is just a handy little service to have
going if you have a registry (http://dockr.ly/2D5DRt3). We
will not go into the advanced features like deleting images,
which requires additional setup on the registry side, but
we will be able to browse our images and get information
about them.

I’ll be using go-carbon for the cache
(https://goo.gl/hgjGZo). The choice was a simple one, since
go-carbon will use more than one core in a single instance.
It is really easy to setup, and if you have any schema

de�nitions it may work just �ne, and it also supports pickle
format.

I will be using graphite-api for the render API endpoint
https://goo.gl/P43pHC. There are other choices like
carbonserverand carbonzipper. I believe go-carbon has
support for carbonserver now, but I have not yet tried it. I
think going the stock way is not so bad in this instance. It is
only occasionally queried, so it does not need to be as high
performance as the cache.

I will be using grafana for the display UI, since it is pretty
standard (https://grafana.com). We could use the
graphite-web package, but the graphing capabilities, while
being the same, are much less accessible than grafana’s.
There are other options as well, and you should check
them out before making any �nal decisions about what is
right for you.

Deploy the infrastructure
Since the point of the swarm is really high availability and
load balancing of those services (both hardware and
network balancing), the services listed above will be
launched as separate services. Please note that there are
multiple options for each of these, but covering them is
beyond the scope of this article. Having said that, let us get
our infrastructure needs met, and deploy our registry:

$ docker service create ­­name=docker­

registry ­­publish=5000:5000/tcp

cblomart/rpi­registry

After this command completes, we have a registry.
However, we have a problem that none of our Docker
instances will use it because it is not secure. There are two
approaches: the �rst is to con�gure your docker instances

to use an insecure registry (speci�cally whitelisted), and
the second is to get a certi�cate (self signed, or publicly
veri�able). This is an internal registry. To get things moving
along, I have chosen the �rst option. To do so on all of the
docker nodes, add the following to
/etc/docker/daemon.json, which assumes you have a
default setup, and that this is the entire �le:

{

 "insecure­registries":

["10.0.0.15:5000"]

}

Docker Registry UI
Now let us move to get the registry frontend in place,
which will let us build our �rst image. Note that I used the
hostname swarm. This is accurate in my setup, since I have
a CNAME record in my DNS server, although your setup
may be di�erent:

$ git clone

https://github.com/parabuzzle/craneoperator.

git

$ cd craneoperator

$ docker build ­t docker­registry­ui .

$ docker tag docker­registry­ui

swarm:5000/docker­registry­ui­arm

$ docker push swarm:5000/docker­registry­ui­

arm

Now we can launch our service. This one, like many others,
makes use of environment variables to in�uence its
operation. You will, of course, need to edit these to taste:

https://goo.gl/2FjP8f
https://goo.gl/ZTXcp
http://dockr.ly/2kmNgod
https://hub.docker.com/
http://dockr.ly/2D5DRt3
https://goo.gl/hgjGZo
https://goo.gl/P43pHC
https://grafana.com/

$ docker service create ­­name=docker­

registry­ui ­­publish=8081:80/tcp ­e

REGISTRY_HOST=swarm ­e

REGISTRY_PROTOCOL=http ­e SSL_VERIFY=false

swarm:5000/docker­registry­ui­arm

Carbon cache and render API
Go-carbon is a Go application, and it requires Go 1.8+. So
that we do not introduce any unnecessary issues by relying
on a recent version of Go being available in my favorite
package manager, we will just drop the latest version into
a custom location. At the time of this writing, Go 1.9.2 is
the latest version, so we will use that. I am also assuming
you are running Linux, on an ARM machine, such as an
ODROID-XU4, which makes a wonderful workstation. I
drive each of my 3 monitors with an XU4, and use x2x to
allow keyboard and mouse sharing, but that is an article
for another time.

$ cd ~

$ mkdir ­p ~/.golang/path

$ wget

https://redirector.gvt1.com/edgedl/go/go1.9.

2.linux­armv6l.tar.gz

$ tar ­zxf go1.9.2.linux­armv6l.tar.gz

$ mv go .golang/root

$ export GOROOT=${HOME}/.golang/root

$ export GOPATH=${HOME}/.golang/path

$ export

PATH=${GOROOT}/bin:${GOPATH}/bin:${PATH}

Now we are ready to start working on go-carbon. This one
is nice, since it has a Docker�le already made, and all we
have to do is build the binary and set up our con�g �les.
Fetching the source, and building the binary can be done
in one fell swoop:

$ go get ­v github.com/lomik/go­carbon

Now that we have that out of the way, let us go set about
building our Docker image:

$ cd ${GOPATH}/src/github.com/lomik/go­

carbon

$ cp ${GOPATH}/bin/go­carbon .

$ mkdir config­examples

We will go ahead and stop here, since we are going to
need to tweak the con�g �le. There are a fair number of
options, but you likely will not need any. I will leave it up to
you to deal with any customizations and just assume that
the defaults are good enough for now. The only edit we
will make is to point to the correct schemas �le and our
data directory we can do this with a simple sed command:

$./go­carbon ­config­print­default | sed ­E

's,(schemas­file =).*, "/data/graphite/go­

carbon­schemas.conf",g' | sed ­E 's,(data­

dir =).*, "/data/graphite/whisper",' >

./conf­examples/go­carbon.conf

Next, we can get our schemas �le in order at /conf-
examples/go-carbon-schemas.conf:

[default]

pattern = .*

retentions = 10s:1h, 30s:3h, 60s:6h, 1h:1d,

6h:1w, 12h:1m, 24h:1y

This gives us plenty of space for our metrics to aggregate
and stick around for historical reasons. At this point, we
are ready to start building our Docker image. I assume for
the purposes of this article that this is the same machine
you built go-carbon on and that it has Docker installed.

$ docker build ­t go­carbon . &&

$ docker tag go­carbon swarm:5000/go­carbon­

arm &&

$ docker push swarm:5000/go­carbon­arm

Now we can publish our service to our swarm. We have
already done this a few times, so it should be familiar:

$ docker service create ­­name=carbon­cache

­­publish=2003:2003/tcp ­­

publish=2003:2003/udp swarm:5000/go­carbon­

arm

However, now we hit another snag. We need graphite-api
installed into the image, because it needs access to the
whisper �les. You could create a shared �lesystem and
mount it for both the cache and the api images, but for the
purposes of instruction, I think we will just modify our go-
carbon image to support both. The �rst thing to note is the
docker image is called “busybox”. Since I need Python, I
chose to move this to ‘debian:stretch’. The �rst thing is to
get our graphite-api.yaml ready, which resides at ./conf-
examples/graphite-api.yaml:

search_index: /data/graphite/index

finders:

 ­

graphite_api.finders.whisper.WhisperFinder

functions:

 ­ graphite_api.functions.SeriesFunctions

 ­ graphite_api.functions.PieFunctions

whisper:

 directories:

 ­ /data/graphite/whisper

Since we are starting more than one service, we should
use a custom entrypoint script. Let us go ahead and write
that now.

#!/bin/sh

gunicorn ­b 0.0.0.0:8000 ­w 2

graphite_api.app:app &

sleep 2

/go­carbon ­config /data/graphite/go­

carbon.conf

After moving over to debian:stretch and installing our
packages and con�g, our Docker�le in our go-carbon
directory should now look something like this:

FROM debian:stretch

RUN mkdir ­p /data/graphite/whisper/

RUN apt update && apt upgrade ­y && apt

dist­upgrade ­y && apt autoremove ­y

RUN apt install ­y gunicorn graphite­api

ADD go­carbon /

ADD entrypoint.sh /

ADD conf­examples/* /data/graphite/

RUN chmod +x /entrypoint.sh

RUN rm /etc/graphite­api.y* ; ln ­s

/data/graphite/graphite­api.yaml

/etc/graphite­api.yaml

CMD ["/entrypoint.sh"]

EXPOSE 2003 2004 7002 7007 2003/udp 8000

VOLUME /data/graphite/

Let us go ahead and rebuild, then push our new image:

$ docker build ­t go­carbon . &&

$ docker tag go­carbon swarm:5000/carbon­

cache­arm &&

$ docker push swarm:5000/carbon­cache­arm

We will then remove our old service and recreate them. I
am aware of the upgrade processes for running services,
but I felt that a fair amount could be written on that
subject alone, so i would leave it as-is.

$ docker service rm carbon­cach

$ docker service create ­­name=carbon­cache

­­publish=2003:2003/tcp ­­

publish=2003:2003/udp ­­

publish=8000:8000/tcp swarm:5000/go­carbon­

arm

Graphite setup
At this point, we are ready for the �nal piece of the project,
which is another image that we will need to rebuild.
However, thanks to Docker’s “fat manifests” or manifest
lists, referencing “debian” will get you the appropriate
image for your architecture. Almost all o�cial builds are
done this way, so you no longer need to go hunting down
an image for the ARM architecture.

Hopefully, in my next article, we will explore setting up
your own “fat manifests” in your private registry. This is
very useful if you, like me, have mixed architectures like
amd64 into your swarm and would like any of your
services to be able to deploy to any of your nodes. So let
us get started on the Grafanas image. I chose the image at
https://goo.gl/pfpVef, since it has all of the plugins you
could want already loaded, and that saves a bunch of work
for everyone. You can, of course, grab the o�cial image
and go through the same process:

$ git clone

https://github.com/monitoringartist/grafana­

xxl.git

$ cd grafana­xxl

$ cp Dockerfile Dockerfile.arm

We need to change line 17 from:

$ curl https://s3­us­west­

2.amazonaws.com/grafana­

releases/release/grafana_${GRAFANA_VERSION}_

amd64.deb > /tmp/grafana.deb &&

To the following:

$ curl https://github.com/fg2it/grafana­on­

raspberry/releases/download/v${GRAFANA_VERSI

ON}/grafana_${GRAFANA_VERSION}_armhf.deb >

/tmp/grafana.deb && \

Then, line 20 needs to change from:

$ curl ­L

https://github.com/tianon/gosu/releases/down

load/1.10/gosu­amd64 > /usr/sbin/gosu && \

To this:

$ curl ­L

https://github.com/tianon/gosu/releases/down

load/1.10/gosu­armhf > /usr/sbin/gosu && \

Once that is done, we are ready to rebuild, push, and
deploy our service. We will use those increasingly handy
and familiar commands again:

$ docker build ­t grafana­xxl­arm ­f

Dockerfile.arm .

$ docker tag grafana­xxl­arm

swarm:5000/grafana­xxl­arm

$ docker push swarm:5000/grafana­xxl­arm

$ docker service create ­­name=grafana ­­

publish=3000:3000/tcp swarm:5000/grafana­

xxl­arm

The �nal step is to login to your grafana instance at
http://swarm:3000/ with the default username and
password of “admin” and “admin”. Once you have logged
in, simply add http://swarm:8000/ as your default grafana
data source, and you are ready to use Docker.

Android Gaming: Monument Valley, Hopscotch, Aqueducts
 January 1, 2018  By Bruno Doiche  Android, Gaming

Figure 1 – Monument Valley will capture you from the beginning Figure 2 – I mentioned in the article, but please use your
headphones for maximum enjoyment

It is not always that we stray from the indie weird games
for Android, but on the holidays the play store we were
gifted with a great title, so without further ado, lets to to:

Monument Valley
I could ramble about this game so much, but the best
description comes �rst from the play store description
itself: “In Monument Valley, you will manipulate impossible
architecture and guide a silent princess through a
stunningly beautiful world. Monument Valley is a surreal
exploration through fantastical architecture and
impossible geometry. Guide the silent princess Ida through
mysterious monuments, uncovering hidden paths,
unfolding optical illusions and outsmarting the enigmatic
Crow People.”

This is a game that push your gaming experience as few
do, use it with your best headphones, you will not regret
having this game on your collection. A game that channels
the spirit of M.C. Escher, and takes you into a quest that
will only end with you �nishing this amazing game, then
taking the ODROID that you played with to shop i order to
frame it with a plaque with the following phrase: “I played
Monument Valley on this hardware” (buy another ODROID
afterwards, of course)

Monument Valley at Play Store

Hopscotch
After such magni�cence that was Monument Valley, which
game should we pursuit on our gaming quest? Everything
seems so trivial, and pointless. It was so much easier when
we were in school, where everything was simpler and we
had so much fun. Can we capture this feeling? It just so
happens that yes we can! Just plug your touchscreen to
your ODROID, and install Hopscotch. I don’t have much
else to say about it besides: “prepare to have your device

taken from you, but this time it is not the teacher, but
anyone that wants to feel the bliss that you are having
when you are playing this game”.

Hopscotch at Play Store

Aqueducts

And �nally for this edition of Android Gaming, another
plumbing-style puzzle game: Aqueducts. This game gives
you the task of the most powerful telekinetic in existence

as you move gigantic pieces that seems to be placed by
some sort of angry delivery guy, or the least funded
engineer project ever. But jokes aside, you are about to
face a game that is very well crafted and makes a very
common gaming trope into a enjoyable experience. Try it,
you will have the best time.

Aqueducts at Play Store

https://play.google.com/store/apps/details?id=com.ustwo.monumentvalley
https://play.google.com/store/apps/details?id=ua.krou.hopscotch
https://play.google.com/store/apps/details?id=ua.krou.aqueducts

After playing a bunch of this game, try it in reverse!

Figure 4 – Aqueducts is so much fun in such a simple concept.

Android TV: ODROID-C2 with Amazon Prime Video and Net�ix
 January 1, 2018  By @goldpizza44  Android, ODROID-C2, Tutorial

I have been using a ODROID-C2 with LibreELEC for quite a
while, but was frustrated by the lack of Amazon Prime
Video and Net�ix support. I was also using a wireless
keyboard/mouse to control it, which led to the disapproval
from the spouse, so I wanted a proper TV remote control
to control both the TV (power/volume) and the ODROID-
C2.

Here is the procedure I followed. It assumes you are
somewhat comfortable with Android, such as �nding Apps,
and Settings, and will require use of Linux via the Android
Terminal Emulator.

This procedure is to install not only Kodi, but also Youtube
TV, Amazon Prime Video, Net�ix and some individual
Channel Apps. It also helps with installing apps from the
Google Playstore. Although Net�ix would not install from
the Playstore one can download the APK and install that.
The Remote Control con�guration took the most time,
because I could not �nd a single online tutorial detailed
the entire process. Hopefully this article will help others
with that.

The �rst step is to install Android on a Flash Card. Android
for C2 can be downloaded from https://goo.gl/cuLqSU. At
the time of this article, v3.5 is the latest version, and that is
what I used. Download the image, uncompress it and
install it to the �ash card using Etcher, which is available
for many operatins systems, or win32diskimager, which
runs on Microsoft Windows, or the Linux dd utility. More
information may be found at https://goo.gl/RPyiwr.

Install the �ash card into the ODROID-C2 plugged into a TV
via HDMI along with a USB keyboard/mouse and power
on. It takes a few minutes, but eventually you should end
up with a shiny new Android system, and the mouse
should allow you to navigate.

The �rst step after Android is running is to adjust the
overscan on the screen. I found on my TV that all the
edges were missing. I could not see the noti�cation bar at
the top and the soft-keys at the bottom were mostly
truncated. This is easily �xed by using the “ODROID Utility”
app. Through this utility you can set the resolution (the
default “autodetect” also works for me), use the arrows to
adjust overscan and turn o� the blue LED, which blinks to
distraction. After adjusting the settings in this app, you
must click “Apply and Reboot”, which will reboot the
system.

The next step is to install Google Apps to get the Google
Play store utility. Using the stock default browser, the
Google Apps APK can be downloaded from
http://opengapps.org/.

On this page I selected the following:

Platform: ARM

Android: 6.0

Variant: pico

Pico is the minimum collection. You can also try to install
nano and micro. Although I did not install the Calendar
and other apps on my TV box, I believe they will work.

Selecting Download will pull a ZIP �le into the Download
folder. This ZIP �le needs to be treated as an Android
Update, and hence is loaded using the same Odroid Utility
App used to update the Overscan and Blue LED above. Run
the Odroid Utility app, and click on the upper right corner
(three dots). The menu present will have an option
“Package install from storage” which is clicked. On the next
page, choose “File Manager” and navigate to the Download

folder where you will select the open_gapps ZIP �le. You
will be prompted to proceed, after which time the odroid
will reboot and the Google Apps will be installed.

After the installation is complete, you can open the Google
Play Store app and install the following:

Amazon Prime Video

Kodi

Chrome Browser

Pluto TV

VPN client (if desired…I use OpenVPN)

Although there are numerous video apps, not all of them
are TV-friendly. Install them one by one and test them to
ensure they work as expected. You can uninstall the apps
that do not work.

By default the Android setting “Settings -> Security ->
Untrusted Sources” is set to “Yes”. This is needed to install
Net�ix. Net�ix was the one app that is not available on
Google Play Store. However, Net�ix has a help page with a
link to their v4.16 version of the APK at
https://goo.gl/22XXZi.

I downloaded that APK and installed it with FileManager. It
runs well with the remote control. There are newer
versions of the Net�ix APKs available from
https://goo.gl/tkDbkz. However, when I downloaded a
couple of them, I found they were not remote-control
friendly. It is unclear why.

Con�guring the apps is the same on all platforms. My Kodi
installation communicates with a MythTV backend on
another server which does all the LiveTV recording and

https://goo.gl/cuLqSU
https://goo.gl/RPyiwr
http://opengapps.org/
https://goo.gl/22XXZi
https://goo.gl/tkDbkz

manages my Movie collection. Finding the MythTV PVR
addon was a bit of a challenge in Krypton. It is already in
Addons->My Addons, but in a disabled state.

Remote control
I use an ODROID-C2 TV box with some old TVs that I
inherited, and the original remotes were lost long ago.
However, I have lying around some old Dish Network 3.0 IR
PVR remote controls. These can be had on Ebay for under
$10. In my opinion these are good sturdy remotes with
good tactile feel and enough buttons that I should be able
to do what I need. They are also “programmable” in that
they come with a list of TV and other Device Codes which
cause them to emulate the other manufacturer’s remotes.

It was pretty easy to �nd the code to control my old TV.
Power, Volume Up, Volume Down and Mute are all I really
need. I thought I wanted “Input select” to work so that I can
change HDMI ports, but nothing I did could get that
remote button to work. Fortunately, the ODROID-C2 is the
only input device I have, so no switching is needed. If I ever
add a second HDMI device, it will probably require a revisit
to the research process, to �nd a viable solution.

The �rst source of frustration was �nding a device code
that would activate all the buttons with the right protocol.
The ODROID-C2 uses the Amlogic S905 chip which contains
an interface to the Infrared receiver. The Hardkernel
Android OS install contains the “amremote” driver built
into the kernel (i.e., not loaded as a module). As far as I can
tell, the “amremote” driver only recognizes the NEC
Infrared Protocol. IR codes in other protocols (R5/R6 or
Sony) simply are ignored by the “amremote” driver. If you
want to read more on Consumer IR, check out
https://goo.gl/WLgtv9.

Armed with a list of a few hundred codes, I sought out a
remote control device code that would send NEC codes for
all the buttons. Frustration set in when I found that many
devices supported in the Dish Network remote control
would only send codes for a limited set of buttons. I had a
really hard time �nding one that would send codes on the
5 navigation buttons (up, down, left, right and center).
Many codes would facilitate only 3 options
(up/down/center or left/right/center), or 4 or 5 of the
options. I �nally found a Memorex DVD player (code 709)
which o�ered all 5 navigation directions and all the
number buttons on the remote. It would not send the ‘*’,
‘#’, Volume or Mute codes. The Volume and Mute codes
are relegated to the TV code and so I can only control the
TV Volume using the buttons, not the Android Volume.

Since the “number keys” are mostly useless for a TV box
(except for channel numbers), I re-purposed them in the
remote.conf to perform operations such as the Android
Home, Android Volume Up/Down/Mute and Fast
Forward/Reverse.

To understand how an incoming IR signal gets to the App
correctly you need to realize that there are 3 separate
signals involved:

the IR code as sent by the Remote

the Linux KEYCODE, and

the Android ACTION code

The trick is to map the incoming IR code to the correct
Android ACTION code via a Linux KEYCODE, and this
conversion is done by two separate �les in Android:

/system/etc/remote.conf ­­ maps IR code to

Linux KEYCODE

/system/usr/keylayout/Vendor_0001_Product_00

01.kl ­­ maps Linux KEYCODE to Android

ACTION

In my case, both of these �les required manipulation,
although I tried to limit the changes to the keylayout. To
change these �les, I used the Android Terminal Emulator
app, which gets me a “bash” shell, and the “vi” editor. If you

do not know to use the “vi” editor, you may be able to copy
the �les to /storage, use the FileManager App that is
installed and edit using that, and then copy back to the
/system location. Below I rely on “vi” and various Linux
commands to get the job done.

The �rst task is to change /system �lesystem from
ReadOnly to ReadWrite so that we can update the �les.
Open the Android Terminal Emulator app and type:

$ su ­

mount ­o remount,rw /system

The �rst command (su -) gives you SuperUser privileges.
The �rst time you use it you will get a popup asking
whether this app (Android Terminal Emulator) should
always get this privilege. I answered “Yes” and made it
permanent. It is assumed that all following commands will
be done in with SuperUser privileges. If you leave Android
Terminal Emulator and come back, you may need to run
the ‘su -‘ command, again.

The second command will change the /system �lesystem
from ReadOnly to ReadWrite. Next, we need to edit
/system/etc/remote.conf to turn on Debugging. Debugging
will allow us to determine what codes we are receiving.
Change “debug_enable” from “0” to “1” with vi and activate
with remotecfg:

vi /system/etc/remote.conf

remotecfg /system/etc/remote.conf

The �le remote.conf is read by remotecfg which will parse
the contents and then send the information to the
amremote software in the Linux kernel. This is normally
done once on boot as speci�ed in /system/init.odroidc2.rc.
It is convenient because we can make changes and then
immediately activate them.

With debug_enable set to “1”, any remote sending an NEC
protocol will be detected, and the amremote software will
log errors to the system log. We will use “dmesg” to see
that system log. Test the change now by using these
commands:

$ dmesg ­c > /dev/null # clear previous log

contents

$ while sleep 1; do dmesg; dmesg ­c >

/dev/null; done

With the “while sleep” running pressing a button on the
remote control should elicit something like this:

[98086.788285@0] remote: Wrong custom code

is 0x7c83ff00

The last four digits of the number at the end of the log
message tells us what what remote type this is (0x�00 in
my case). The default remote.conf from Odroid Android
looks for code 0x4db2. I am not sure what the odds are
that you have a remote with that code if you are not using
the Remote available from HardKernel
(https://goo.gl/yVLVLC). If you are unlucky, and the remote
you are using does transmit 0x4db2, then you will see
something else in dmesg. If you see nothing in dmesg,
then you are not using a remote that transmits NEC
protocol and must �nd another remote (or device code).

In my case, this is where I started searching the Dish
Network 3.0 IR device codes looking for a suitable device. I
set the device code in the remote, and hit the buttons to
see if I got responses in dmesg. I tried many many codes
until I was close enough to my requirements with the
Memorex DVD code 709, which transmits remote type
0x�00.

The long HEX number 0x7c83�00 is actually 2 pieces of
real info. Break it up in into bytes: 7c 83 � 00, and you
should notice that the �rst 2 bytes are ones complement
of each other (ie 01111100 -> 10000011 — zeros and ones
�ipped). Similarly, the 3rd/4th bytes are ones complement
in many (but not all) cases. The “real” information is in

bytes 2 and 3/4 (0x83 is the button, 0x�00 is the type of
remote).

In remote.conf, it is now time to set the type of remote you
are using in remote.conf by setting the entry for
“factory_code” and replacing the XXXX with the 4 digit code
found above (I set mine to 0x�000001):

$ vi remote.conf

$ remotecfg /system/etc/remote.conf

$ while sleep 1;do dmesg;dmesg ­c >

/dev/null;done

After these commands, you should again be able to press
buttons and one of two things will happen: You will see an
error indicating the remote button does not map to
anything, or you will see information on what the button
mapped to.

[101131.973324@0] remote: scancode is

0x00c5,invalid key is 0x0000.

or

[101214.803355@0] remote: press ircode =

0xc5

[101214.903456@0] remote: scancode =

0x74,maptable = 0,code:0x3ac5ff00

[101214.903492@0]

[101214.993555@0] remote: release ircode

0xc5

[101214.997312@0] remote: scancode =

0x74,maptable = 0,code:0x00000000

The �rst one occurs because the button 0xc5 is not in
remote.cfg. The second one occurs when the button is
found in remote.cfg. If the remote you are using sends
codes similar to those of the Hardkernel remote, you may
see the second type of message.

This is where the fun begins. You need to press every
button and see what code it sends, and note that. Then
you need to �gure out what you want it to do and �nd the
Android action in the Vendor_0001_Product_0001.kl �le
that corresponds to the action you want the button to do.
Finally, you need to get the Linux KEYCODE from
Vendor_0001_Product_0001.kl that will be used to tie
everything together.

These are the ANDROID actions I am using:

POWER — key 116

HOME — key 102

BACK — key 15

MENU — key 139

DPAD_CENTER — key 97

DPAD_LEFT 1 — key 105

DPAD_RIGHT — key 106

DPAD_UP — key 103

DPAD_DOWN — key 108

VOLUME_UP — key 115

VOLUME_DOWN — key 114

VOLUME_MUTE — key 113

MEDIA_REWIND — key 121

MEDIA_FAST_FORWARD — key 120

APP_SWITCH — NO KEY available!

The last one, “APP_SWITCH”, is not in
Vendor_0001_Product_0001.kl! It took me 2 hours to �gure
that one out. So I appropriated a key (158, which was
formerly BACK) by updating Vendor_0001_Product_0001.kl
with vi and changing “BACK” to “APP_SWITCH” on the
appropriate line.

Now glue everything together by updating remote.conf in
the key_begin/key_end section and possibly in the
repeat_key_begin/repeat_key_end section. I do not rely on
key repeats, so my repeat_key_begin/repeat_key_end

https://goo.gl/WLgtv9
https://goo.gl/yVLVLC

section is empty. Also, I am not relying on the
mouse_begin/mouse_end section either.

My resulting remote.conf �le looks like:

work_mode = 0

repeat_enable = 1

repeat_delay = 40

repeat_period = 39

release_delay = 121

debug_enable = 0

factory_code = 0xff000001

left_key_scancode = 0x88

right_key_scancode = 0xc8

up_key_scancode = 0xc9

down_key_scancode = 0xd7

ok_key_scancode = 0x8b

mouse_begin

mouse_end

key_begin

0xc5 116 # Power

0x8b 97 # Center

0xc9 103 # Up

0xd7 108 # down

0x88 105 # Left

0xc8 106 # Right

0x93 15 # cancel

0x93 15 # Info

0x81 114 # 1 ­­ becomes VOLUME DOWN

0x83 113 # 2 ­­ becomes MUTE

0xc1 115 # 3 ­­ becomes VOLUME UP

0x82 121 # 4 ­­ becomes REWIND

0x80 139 # 5 ­­ becomes MENU

0xc0 120 # 6 ­­ becomes FF

0x8d 8 # 7

0x8f 158 # 8 ­­ APP SWITCH

0xcd 10 # 9

0x8c 102 # 0 ­­ becomes HOME

key_end

repeat_key_begin

repeat_key_end

Note that I also turned “debug_enable” o� again by setting
it to zero. After updating remote.conf again, type the

following command:

$ remotecfg /system/etc/remote.conf

Now it is the time to test the remote. You want to test each
app, since they can react di�erently to a particular code or
ignore it completely. I am still not sure that I have all the
keys where I want them, but the system is functional and
usable.

Make a backup of Vendor_0001_Product_0001.kl and
remote.conf by copying them to
/storage/emulated/0/Download and make sure they are
saved in the /system �lesystem. If you upgrade Android,
you may �nd that these �les need restoration or your
remote will not work anymore. Hope this is useful to at
least one person. I will probably need to dig it up in the
future so I can remember what I did. For comments,
questions and suggestions, please visit the original forum
post at https://goo.gl/6sc8GU.

https://goo.gl/6sc8GU

Ambilight on the ODROID-C2 Using LibreElec: Adapting the
Ambilight for the ODROID-C2
 January 1, 2018  By @rokapet  ODROID-C2, Tinkering

In this article, I’d like to share how I managed to build a
working Ambilight system using an ODROID-C2 and
LibreElec. Other guides I previously found mainly targeted
the Raspberry Pi, so I had to collect the information using
Google and a bit of trial and error.

The high-level design uses Hyperion installed as an add-on
for Kodi, from the LibreElec repo– installing by HyperCon is
not possible due to the CPU for it being unknown–and an
Arduino for controlling the LEDs using the FastLED library.
The Arduino is connected to the ODROID-C2 via USB cable
(the Arduino contains an USB-to-Serial converter). My TV is
FullHD, so I needed no magic (i.e. RAM overclock and stu�
like this) for 4K.

I used the below guides as a base for assembling and
con�guration. But since these guides are aimed toward
use with the Raspberry Pi, I needed to adapt for ODROID-
C2.

Raspberry Pi 3 Mediacenter + Hyperion Ambilight + NO
soldering: https://goo.gl/q8q6PK
Amblight project/guide – Hyperion – WS2801/ WS2812B /
APA102: https://goo.gl/CEgT1U

It turns out that my con�guration is a�ected by the rather
annoying bug described here: https://goo.gl/HUwa2k

Video playback of starts to slow down after an arbitrary
amount of time (between 30-70 minutes in my case) while
the audio continues to play at proper speed, causing the
audio and video to go out of sync with each other. After
30-60 seconds there is a small pause and skip, then
afterwards the audio and video are in sync again, until it
happens again in 30-70 minutes.

The above topic in the LibreElec forum is still unresolved,
as the issue is proving quite di�cult to �x. If anyone has a
working system (ODROID-C2 running LE 8/Kodi 17 with
Hyperion) that is not a�ected by this bug, please feel free
to contribute the Hyperion con�g �le! I plan to �ddle with
Hyperion settings to see if something makes a di�erence,
but that may take quite a bit of time.

Hardware

ODROID-C2 plus case and power supply from
Hardkernel, which cost about €72 when I bought
it from https://www.pollin.de last year

Kingston 16GB Class10 MicroSD card, which cost
about €8 from eBay

Chinese clone of the Arduino Uno R3 board plus
case and USB cable, which cost about €8.50 from
eBay

WS2812B 3-pin RGB LED strip, 30 LEDs per
meter, 5m roll, which cost about €13.50 from
eBay

5V 10A power supply. I had one laying around, so
there was no cost, but you could probably �nd
one for €10-20 on eBay or Aliexpress

DIN power plug, which cost about €1.50 from
eBay

3-pin JST male and female connector cables,
which cost about €1.50 from eBay for 5 pieces

3-pin connectors 10mm for WS2812 set, which
cost about €2 from eBay for 5 pieces

Dupont male jumper cables, which cost about €1
from eBay for 40 pieces

Heat shrink tubes, which cost about €EUR 1 from
eBay for 70 pieces

500 ohm resistor, or 2 x 1K ohm resistors wired
in parallel

HDMI cable

Electric welder for soldering the plugs and cables

Software

LibreElec 8.2.1 MR image for ODROID-C2
downloaded from https://libreelec.tv

Hyperion AddOn for Kodi from LibreElec repo

HyperCon tool for Hyperion
(https://goo.gl/7F5fDc)

Arduino IDE (https://goo.gl/wqP28G)

FastLED library for Arduino (download ZIP –
https://github.com/FastLED/FastLED)

Control sketch (script) for Arduino
(https://pastebin.com/2L9ZBhYe)

#include "FastLED.h"

// How many leds in your strip?

#define NUM_LEDS 92

// For led chips like Neopixels, which have

a data line, ground, and power, you just

// need to define DATA_PIN. For led chipsets

that are SPI based (four wires ­ data,

clock,

// ground, and power), like the LPD8806

define both DATA_PIN and CLOCK_PIN

#define DATA_PIN 12

//#define CLOCK_PIN 13

#define COLOR_ORDER GRB

// Adalight sends a "Magic Word" (defined in

/etc/boblight.conf) before sending the pixel

data

uint8_t prefix[] = {'A', 'd', 'a'}, hi, lo,

chk, i;

// Baudrate, higher rate allows faster

refresh rate and more LEDs (defined in

/etc/boblight.conf)

#define serialRate 115200

// Define the array of leds

CRGB leds[NUM_LEDS];

void setup() {

 // Uncomment/edit one of the following

lines for your leds arrangement.

 // FastLED.addLeds<TM1803, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<TM1804, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<TM1809, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<WS2811, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<WS2812, DATA_PIN, RGB>

(leds, NUM_LEDS);

 FastLED.addLeds<WS2812B, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<NEOPIXEL, DATA_PIN>

(leds, NUM_LEDS);

 // FastLED.addLeds<UCS1903, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<UCS1903B, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<GW6205, DATA_PIN, RGB>

(leds, NUM_LEDS);

 // FastLED.addLeds<GW6205_400, DATA_PIN,

RGB>(leds, NUM_LEDS);

 // FastLED.addLeds<WS2801, RGB>(leds,

NUM_LEDS);

 // FastLED.addLeds<SM16716, RGB>(leds,

NUM_LEDS);

 // FastLED.addLeds<LPD8806, RGB>(leds,

NUM_LEDS);

 // FastLED.addLeds<WS2801, DATA_PIN,

CLOCK_PIN, RGB>(leds, NUM_LEDS);

 // FastLED.addLeds<SM16716, DATA_PIN,

CLOCK_PIN, RGB>(leds, NUM_LEDS);

 // FastLED.addLeds<LPD8806, DATA_PIN,

CLOCK_PIN, RGB>(leds, NUM_LEDS);

 // initial RGB flash

 LEDS.showColor(CRGB(255, 0, 0));

 delay(500);

 LEDS.showColor(CRGB(0, 255, 0));

 delay(500);

 LEDS.showColor(CRGB(0, 0, 255));

 delay(500);

 LEDS.showColor(CRGB(0, 0, 0));

 Serial.begin(serialRate);

 Serial.print("Ada

"); // Send "Magic Word" string to host

}

void loop() {

 // wait for first byte of Magic Word

 for(i = 0; i < sizeof prefix; ++i) {

 waitLoop: while (!Serial.available()) ;;

 // Check next byte in Magic Word

 if(prefix[i] == Serial.read()) continue;

 // otherwise, start over

 i = 0;

 goto waitLoop;

}

// Hi, Lo, Checksum

while (!Serial.available()) ;;

 hi=Serial.read();

 while (!Serial.available()) ;;

 lo=Serial.read();

 while (!Serial.available()) ;;

 chk=Serial.read();

// if checksum does not match go back to

wait

 if (chk != (hi ^ lo ^ 0x55))

 {

 i=0;

 goto waitLoop;

 }

memset(leds, 0, NUM_LEDS * sizeof(struct

CRGB));

// read the transmission data and set LED

values

for (uint8_t i = 0; i < NUM_LEDS; i++) {

byte r, g, b; while(!Serial.available()); r

= Serial.read(); while(!Serial.available());

g = Serial.read();

while(!Serial.available()); b =

Serial.read(); leds[i].r = r; leds[i].g = g;

leds[i].b = b; } // shows new values

FastLED.show(); }

Assembling the LED strip

The LED strip I purchased already had a 3-pin JST female
socket built to the starting end, plus two additional wires
(without a socket) for 5V and GND. I soldered used the
latter two wires to the DIN power plug so that I could
power the LEDs from the power supply. Make sure to use
a plug that is compatible with your power supply!

I took a male JST connector cable and soldered Dupont
wires to the end of GND and DATA wires so I could plug
them into the pinouts of the Arduino board. The 5V wire is
not used here, since it is not connected, so it can be cut
and/or insulated. I soldered the 500 ohm resistor between
the DATA wire and the Dupont cable so that control signals
could go through it. All solder-joints have been secured by
heat shrink tubes.

I started HyperCon on my computer and planned the
con�guration and the LED layout on the TV, making sure to
measure the dimensions of my TV. I explored other
con�guration options on the Hyperion Wiki site and saved
the LED con�g to the hyperion.con�g.json �le. I then used
the calculated LED numbers to cut the strip into
appropriately sized pieces and used the 3-pin connector
cables to attach them to each other. The 3-pin connector
cables are required for the corners of the TV as the LED
strip alone cannot be bent for 90 degrees.

Please note that these LED strips have a direction. Only the
starting end can be used for input controls and distinct
LEDs are addressed following each other. Look for “DI
(Data Input) marking on the strip, near the LEDs
themselves. The other end has “DO (Data Out) marking.
You can use Google to �nd the WS2812b speci�cations.

My experience is that the 3-pin connectors cannot hold the
strip too tightly, so exercise caution when mounting it to

the back of your TV. If you have experience in precision
soldering, you may be better o� soldering wires to connect
the strip parts instead of using the 3-pin connectors.

I installed LibreElec onto the micro SD card as per the
instructions on https://libreelec.tv, then assembled the
ODROID-C2 and con�gured Kodi to my taste. I went to
Settings -> Services -> Control in Kodi interface, and
enabled both “Allow remote control from applications on
this system” and “Allow remote control from applications
on other systems”. I installed Arduino IDE to my computer,
then extracted the FastLed library ZIP �le to a separate
subfolder under the libraries folder. When I started the
Arduino IDE after this, the FastLED library became
available under the Sketch -> Available libraries menu.

I attached the Arduino board to my computer using the
USB cable. I copied the sketch into Arduino IDE, set the
number of LEDs in the strip in row #4 (you will have this
number from HyperCon), and the pin used for LED control
in row #9. Then I uploaded the sketch into the Arduino
board, which only took a few seconds.

Assembly
I used the adhesive on the back the LED strip to stick it to
the back of my TV. Some extra adhesive was required in a
few places in order for it to stick �rmly. I unplugged the
Arduino board from my PC and plugged it into one of the
USB ports on the ODROID-C2. I plugged the Dupont cable
jumper soldered to the GND wire of the strip to the GND
pin and the Dupont cable jumper soldered to the DATA
wire of the strip to pin 12 of the Arduino. Finally, I plugged
the power supply into the power plug soldered to the end
of the strip.

Software con�guration
LibreElec loaded the CH341 module automatically upon
connection of the Arduino board to USB, and device
/dev/ttyUSB0 appeared. This might, however, be di�erent
for you.
I installed the Hyperion add-on on the Kodi interface, from
the LibreElec repo.
I opened the previously saved hypercon.con�g.json �le on
my computer, and edited it in 3 locations: device, frame-
grabber, and e�ects. Updating the e�ects folder is
necessary because it is di�erent when Hyperion is installed
as an add-on, instead of installing by HyperCon.

Note that other guides state to use 100000, 200000, and so
on for the baud rate. For me, this resulted a repeated
“Unable to open RS232 device (IO Exception (25):
Inappropriate ioctl for device” error message in the
Hyperion log. Switching to a 115200 baud rate made the
issue go away. Make sure to notice the reversed “GRB”
color order!

// DEVICE CONFIGURATION

"device" :

 {

 "name" : "MyHyperionConfig",

 "type" : "adalight",

 "output" : "/dev/ttyUSB0",

 "rate" : 115200,

 "delayAfterConnect" : 0,

 "colorOrder" : "grb"

 },

"amlgrabber" :

 {

 "width" : 64,

 "height" : 64,

 "frequency_Hz" : 20.0,

 "priority" : 880

 },

 "framegrabber" :

 {

 "width" : 64,

 "height" : 64,

 "frequency_Hz" : 10.0,

 "priority" : 890

 },

"effects" :

 {

 "paths" :

 [

 "/storage/.kodi/addons/service.hyperion/eff

ects"

]

 },

I uploaded my updated hyperion.con�g.json �le to
/storage/.kodi/userdata/addon_data/service.hyperion/
folder in LibreElec. This is the folder where the Hyperion
add-on looks for the con�g �le. The UserData share can be
used for the upload if the SMB server is enabled. I then

rebooted LibreElec and, the Ambilight system now works
properly for me. Hopefully I haven’t forgot anything above
and someone will make use of this information. Any
comments or suggestions for improvement are welcome!

For comments, questions, and suggestions, please visit the
original forum post at
https://forum.odroid.com/viewtopic.php?f=144&t=29334.

Having Fun with GPIO on Android
 January 1, 2018  By Justin Lee  Android, Tinkering

The ODROID-C1/C1+, ODROID-C2, and ODROID-XU4 have
on-board GPIO (General Purpose Input/Output) pins that
allow the control of external devices through software. In
order to access the GPIO port properly, you must install
the Android Marshmallow version 2.8 image or higher on
the ODROID-C2, the Android KitKat version 3.2 image or
higher on the ODROID-C1/C1+, and either the Android
KitKat version 6.0 image or higher, or the Android Nougat
version 1.3 20171214 image or higher on the ODROID-XU4.

This WiKi explains how to make an Android app which can
access GPIO ports. You need to install Google Android
Studio on your host PC. Add NDK and tools �rst before
starting below steps. We tested the following steps on
Android Studio 2.3 and NDK R14.

Ubuntu/Linux
You can �nd the Android SDK location on this menu (File →
Settings → Appearance & Behavior → System Settings →
Android SDK)

Figure 1 – Android SDK location

After editing the bashrc �le, you have to login again or type
“source ~/.bashrc” on the command line. Then, download
the WiringPi NDK library and App source code Project
from GitHub.

ODROID-C1+/C2

$ sudo apt install git

$ git clone

https://github.com/codewalkerster/example­

wiringPi ­b odroid­c

ODROID-XU4

$ sudo apt install git

$ git clone

https://github.com/codewalkerster/example­

wiringPi ­b odroid­xu

Run Android Studio and open the downloaded project.

Figure 2 – Opening the wiringPi project

(Figure 2 – Opening the wiringPi project)

Build the project to make an apk package
Select Build -> Make Project from the menu. You will see a
couple of error messages, and will need to click the
following options to complete the build process, which will
produce an APK �le to run on your ODROID:

Install missing platform(s) and sync project

Install Build Tools 25.0.2 and sync project

https://wiki.odroid.com/odroid-c2/application_note/gpio/wiki
https://developer.android.com/studio/index.html
https://developer.android.com/ndk/guides/index.html
https://wiki.odroid.com/odroid-c2/application_note/gpio/wiringpi
https://github.com/codewalkerster/example-wiringPi

Windows
In Window, set the environment PATH to point to the NDK
folder path, then reboot Windows.

Figure 3 – Setting the environment path to point to the NDK folder
path

Figure 4 – Setting the environment path to point to the NDK folder
path

Figure 5 – Setting the environment path to point to the NDK folder
path

Next, install the Git client program from https://git-for-
windows.github.io/, and clone the wiringPi project, as
shown in Figure 6.

Figure 6 – Cloning the project

The project is available at
https://github.com/codewalkerster/example-wiringPi.
Select origin/odroid-c or origin/odroid-xu.

Figure 7 – Checking out the GitHub branch

Then, install the NDK by selecting Tools -> Android -> SDK
Manager from the menu.

Figure 8 – Installing the SDK

Figure 9 – Installing the SDK

Features of the example project
You can read the analog-to-digital converter (ADC) value
and show the voltage level with 19 LEDs on the GPIO
output. You can view a demo video at
https://youtu.be/lGqyhvd3q9U and
https://youtu.be/lGqyhvd3q9U.

Figure 10 – Reading the ADC value on the ODROID-C1+/C2

Figure 11 – Reading the ADC value on the ODROID-XU4

PWM
Figure 12 shows a basic PWM control example. You can
choose the number of PWM outputs (1 or 2), as well as
control the frequency and duty ratio.

Figure 12 – Basic PWM control example

Gmail Noti�er example
This is a fun and useful project using the PWM port. When
you are watching videos or playing games, you may miss
noti�cation of an important email or message. The �ag is
moved by servo motor which is connected to a PWM pin
on 40pin GPIO port. The code may be downloaded from
https://github.com/codewalkerster/GMailNoti�er. A
demo of the project may be viewed at
https://youtu.be/Vvq77w87RWQ.

I2C
Figure 15 shows example code for accessing our Weather
Board is available in order to measure the temperature,
humidity, atmospheric pressure, altitude and
visible/invisible light intensities via I2C interface.

Figure 13 – Hardkernel’s Weather Board measures environmental
statistics

Figure 14 – Hardkernel’s Weather Board measures environmental
statistics

Figure 15 – A demo software for Sending and Receiving characters
via UART interface

https://git-for-windows.github.io/
https://github.com/codewalkerster/example-wiringPi
https://youtu.be/lGqyhvd3q9U
https://youtu.be/lGqyhvd3q9U
https://github.com/codewalkerster/GMailNotifier
https://youtu.be/Vvq77w87RWQ

Figure 16 – Demo software to access 1-wire protocol interfaced
DS18S20 temperature sensor

Kernel for I2C
Open the File Manager app, and edit the �le

/storage/internal/boot.ini as shown below:

Original

movi read dtb 0 ${dtbaddr}

load kernel from vat or boot partition.

movi read boot 0 ${loadaddr}

#fatload mmc 0:1 ${loadaddr} Image

booti ${loadaddr} ­ ${dtbaddr}

After edit

movi read dtb 0 ${dtbaddr}

load kernel from vat or boot partition.

#movi read boot 0 ${loadaddr}

fatload mmc 0:1 ${loadaddr} Image

booti ${loadaddr} ­ ${dtbaddr}

Load the kernel image from the vfat partition built i2c. If
you cannot �nd the “fatload” command, remove
/storage/internal/boot.ini �le and reboot the system. For
comments, questions and suggestions, please visit the
original Wiki article at https://wiki.odroid.com/odroid-
c2/application_note/gpio/enhancement_40pins_on_andr
oid.

https://wiki.odroid.com/odroid-c2/application_note/gpio/enhancement_40pins_on_android

UART Daisy Chain: Expert Debugging With The ODROID-C2
 January 1, 2018  By Justin Lee  ODROID-C2, Tinkering

This article explains how to use multiple UART ports on
ODROID-C2 running the Android OS. We will use 3 UART
ports and create a data �ow called a Daisy Chain. The basic
�ow of data is out from TX of UART 1 into RX of UART 2
then going to TX UART 2, which will send the data to RX of
UART 3. Once RX of the UART 3 receives the data is send it
out of UART 3’s TX back to UART 1 RX. For this you need to
use the latest Android 6.0.1 image version 3.6 or higher to
use 3 UART ports simultaneously.

Figure 1 – Annotated schematic of an ODROID-C2

Hardware
Before starting there are a few things that need to be
done. First, download the Fritzing diagram at
https://goo.gl/Q1YhP3. Check the J2 2×20 pin layout at
https://goo.gl/44XGpB.

PORT PIN

TX RX

UART_A (ttyS1) 8 10

UART_B (ttyS2) 3 5

UART_C (ttyS3) 32 26

Software
You need to modify the Device Tree �le to enable
UART_B(ttyS2) and UART_C(ttyS3) since stock Android uses
it for other purpose like GPIO/I2C.

Disable I2C

 $ diff ­­git

a/arch/arm64/boot/dts/meson64_odroidc2.dts

b/arch/arm64/boot/dts/meson64_odroidc2.dts

 index e6a25b0..db09b04 100755

 ­­­

a/arch/arm64/boot/dts/meson64_odroidc2.dts

 +++

b/arch/arm64/boot/dts/meson64_odroidc2.dts

 @@ ­813,18 +813,6 @@

};

­&i2c_a {

 ­ status = "okay";

 ­

 ­ /* Hardkernel I2C RTC */

 ­ pcf8563: pcf8563@51 {

 ­ status = "disabled";

 ­ compatible = "nxp,pcf8563";

 ­ reg = <0x51>;

 ­ #clock­cells = <0>;

 ­ };

 ­};

 ­

&i2c_b {

 status = "okay";

Add UART_B and UART_C de�nitions
The kernel/arch/arm64/boot/dts/meson64_odroidc2.dts
�le can be found at https://goo.gl/Y7c5Wr, as shown
below:

$ diff ­­git

a/arch/arm64/boot/dts/meson64_odroidc2.dts

b/arch/arm64/boot/dts/meson64_odroidc2.dts

 index e6a25b0..fd41552 100755

 ­­­

a/arch/arm64/boot/dts/meson64_odroidc2.dts

 +++

b/arch/arm64/boot/dts/meson64_odroidc2.dts

 @@ ­31,6 +31,8 @@

aliases {

 serial0 = &uart_AO;

 serial1 = &uart_A;

 + serial2 = &uart_B;

 + serial3 = &uart_C;

};

gpu_dvfs_tbl: gpu_dvfs_tbl {

 @@ ­459,6 +461,32 @@

 pinctrl­0 = <&a_uart_pins>;

};

+ uart_B: serial@c11084dc {

 + compatible = "amlogic, meson­uart";

 + reg = <0x0 0xc11084dc 0x0 0x18>;

 + interrupts = <0 75 1>;

 + status = "okay";

 + clocks = <&clock CLK_XTAL>;

https://goo.gl/Q1YhP3
https://goo.gl/44XGpB
https://goo.gl/Y7c5Wr

 + clock­names = "clk_uart";

 + fifosize = < 64 >;

 + pinctrl­names = "default";

 + pinctrl­0 = <&b_uart_pins>;

 + resets = <&clock GCLK_IDX_UART1>;

 + };

 +

 + uart_C: serial@c1108700 {

 + compatible = "amlogic, meson­uart";

 + reg = <0x0 0xc1108700 0x0 0x14>;

 + interrupts = <0 93 1>;

 + status = "okay";

 + clocks = <&clock CLK_XTAL>;

 + clock­names = "clk_uart";

 + fifosize = < 64 >;

 + pinctrl­names = "default";

 + pinctrl­0 = <&c_uart_pins>;

 + resets = <&clock GCLK_IDX_UART2>;

+ };

+

canvas {

 compatible = "amlogic, meson, canvas";

 dev_name = "amlogic­canvas";

Compile dts to dtb
Meson64_odroidc2.dtd �le can be downloaded at
https://goo.gl/qha1vx, as shown below:

$ make odroidc2_[i2c_]defconfig

 KBUILD_CFLAGS_MODULE:­DMODULE

configuration written to .config

make completed successfully ####

[~/projects/c2/marshmallow/kernel]$ make

dtbs

 KBUILD_CFLAGS_MODULE:­DMODULE

 KBUILD_CFLAGS_MODULE:­DMODULE

 scripts/kconfig/conf ­­silentoldconfig

Kconfig

 KBUILD_CFLAGS_MODULE:­DMODULE

 WRAP arch/arm64/include/generated/asm/bug.h

 WRAP

arch/arm64/include/generated/asm/bugs.h

 WRAP

arch/arm64/include/generated/asm/checksum.h

 WRAP

arch/arm64/include/generated/asm/clkdev.h

 WRAP

arch/arm64/include/generated/asm/cputime.h

 WRAP

arch/arm64/include/generated/asm/current.h

 WRAP

arch/arm64/include/generated/asm/delay.h

 WRAP

arch/arm64/include/generated/asm/div64.h

 WRAP arch/arm64/include/generated/asm/dma.h

 WRAP

arch/arm64/include/generated/asm/emergency­

restart.h

 WRAP

arch/arm64/include/generated/asm/early_iorem

ap.h

 WRAP

arch/arm64/include/generated/asm/errno.h

 WRAP

arch/arm64/include/generated/asm/ftrace.h

 WRAP

arch/arm64/include/generated/asm/hw_irq.h

 WRAP

arch/arm64/include/generated/asm/ioctl.h

 WRAP

arch/arm64/include/generated/asm/ioctls.h

 WRAP

arch/arm64/include/generated/asm/ipcbuf.h

 WRAP

arch/arm64/include/generated/asm/irq_regs.h

 WRAP

arch/arm64/include/generated/asm/kdebug.h

 WRAP

arch/arm64/include/generated/asm/kmap_types.

h

 WRAP

arch/arm64/include/generated/asm/kvm_para.h

 WRAP

arch/arm64/include/generated/asm/local.h

 WRAP

arch/arm64/include/generated/asm/local64.h

 WRAP

arch/arm64/include/generated/asm/mman.h

 WRAP

arch/arm64/include/generated/asm/msgbuf.h

 WRAP

arch/arm64/include/generated/asm/mutex.h

 WRAP arch/arm64/include/generated/asm/pci.h

 WRAP

arch/arm64/include/generated/asm/poll.h

 WRAP

arch/arm64/include/generated/asm/posix_types

.h

 WRAP

arch/arm64/include/generated/asm/resource.h

 WRAP

arch/arm64/include/generated/asm/scatterlist

.h

 WRAP

arch/arm64/include/generated/asm/sections.h

 WRAP

arch/arm64/include/generated/asm/segment.h

 WRAP

arch/arm64/include/generated/asm/sembuf.h

 WRAP

arch/arm64/include/generated/asm/serial.h

 WRAP

arch/arm64/include/generated/asm/shmbuf.h

 WRAP

arch/arm64/include/generated/asm/simd.h

 WRAP

arch/arm64/include/generated/asm/sizes.h

 WRAP

arch/arm64/include/generated/asm/socket.h

 WRAP

arch/arm64/include/generated/asm/sockios.h

 WRAP

arch/arm64/include/generated/asm/switch_to.h

 WRAP

arch/arm64/include/generated/asm/swab.h

 WRAP

arch/arm64/include/generated/asm/termbits.h

 WRAP

arch/arm64/include/generated/asm/termios.h

 WRAP

arch/arm64/include/generated/asm/topology.h

 WRAP

arch/arm64/include/generated/asm/trace_clock

.h

 WRAP

arch/arm64/include/generated/asm/types.h

 WRAP

arch/arm64/include/generated/asm/unaligned.h

 WRAP

arch/arm64/include/generated/asm/user.h

 WRAP arch/arm64/include/generated/asm/vga.h

 WRAP arch/arm64/include/generated/asm/xor.h

 WRAP

arch/arm64/include/generated/asm/preempt.h

 WRAP

arch/arm64/include/generated/asm/hash.h

 WRAP

arch/arm64/include/generated/uapi/asm/kvm_pa

ra.h

 HOSTCC scripts/dtc/checks.o

 HOSTCC scripts/dtc/data.o

 SHIPPED scripts/dtc/dtc­lexer.lex.c

 SHIPPED scripts/dtc/dtc­parser.tab.h

 HOSTCC scripts/dtc/dtc­lexer.lex.o

 SHIPPED scripts/dtc/dtc­parser.tab.c

 HOSTCC scripts/dtc/dtc­parser.tab.o

 HOSTCC scripts/dtc/dtc.o

 HOSTCC scripts/dtc/flattree.o

 HOSTCC scripts/dtc/fstree.o

 HOSTCC scripts/dtc/livetree.o

 HOSTCC scripts/dtc/srcpos.o

 HOSTCC scripts/dtc/treesource.o

 HOSTCC scripts/dtc/util.o

 HOSTLD scripts/dtc/dtc

 CC scripts/mod/empty.o

 HOSTCC scripts/mod/mk_elfconfig

 MKELF scripts/mod/elfconfig.h

 CC scripts/mod/devicetable­offsets.s

 GEN scripts/mod/devicetable­offsets.h

 HOSTCC scripts/mod/file2alias.o

 HOSTCC scripts/mod/modpost.o

 HOSTCC scripts/mod/sumversion.o

 HOSTLD scripts/mod/modpost

 HOSTCC

scripts/selinux/genheaders/genheaders

 HOSTCC scripts/selinux/mdp/mdp

 HOSTCC scripts/kallsyms

 HOSTCC scripts/pnmtologo

 HOSTCC scripts/conmakehash

 HOSTCC scripts/bin2c

 HOSTCC scripts/recordmcount

 HOSTCC scripts/sortextable

 DTC

arch/arm64/boot/dts/meson64_odroidc2.dtb

 Warning (reg_format): "reg" property in

/spi­gpio/spi­gpio@0 has invalid length (4

bytes) (#address­cells == 2, #size­cells ==

1)

 Warning (avoid_default_addr_size): Relying

on default #address­cells value for /spi­

gpio/spi­gpio@0

 Warning (avoid_default_addr_size): Relying

on default #size­cells value for /spi­

gpio/spi­gpio@0

make completed successfully (4 seconds)

####

Install modi�ed dtb �le

$ sudo fastboot flash dtb

 out/target/product/odroidc2/obj/KERNEL_OBJ/

arch/arm64/boot/dts/meson64_odroidc2.dtb

You have to edit /storage/internal/boot.ini �le to load
alternative Kernel image. There is an alternative kernel
image to use the I2C pins for UART function.

movi read boot 0 ${loadaddr}

fatload mmc 0:1 ${loadaddr} Image_android

Edit ueventd.odroidc2.rc
Change the permission of ttyS2 and ttyS3 for system
access.

shell@odroidc2:/ $ su

root@odroidc2:/ # mount ­o rw,remount /

[1243.002784@2] EXT4­fs (mmcblk0p2): re­

mounted. Opts: (null)

root@odroidc2:/ # vi /ueueventd.odroidc2.rc

ueventd.rc

root@odroidc2:/ # vi /ueventd.odroidc2.rc

/dev/ttyS* 0666 system system

Set-up Android app example code
Download the WiringPi NDK library at
https://goo.gl/uuDeys, and the App source code Project
from GitHub at https://goo.gl/YNXTUn.

https://goo.gl/qha1vx
https://goo.gl/uuDeys
https://goo.gl/YNXTUn

$ sudo apt install git

$ git clone

https://github.com/codewalkerster/example­

wiringPi ­b odroid­c_3_uart

Figure 2 – wire connection for three daisy-chained UART ports

Figure 3 – Test the daisy-chained UART by typing a string Figure 4 – Results of the daisy-chained UART test

For comments, questions and suggestions, please visit the
original post at https://goo.gl/jteQuV.

https://goo.gl/jteQuV

Linux Gaming: Mech Warrior 2
 January 1, 2018  By Tobias Schaaf  Gaming, Linux

One of my fondest childhood memories is of the Mech
Warrior game series. I remember spending hours in the
mid-to-late 1990s and early 2000s playing all the games
that were were available at the time. Playing this game
brings back memories of mastering the joystick and
keyboard at the same time: con�guring the Mech to
optimize my weapon, cooling, and armor to their
maximum capacity; and feeling the huge, self-made, 5-foot
bass box rumbling under my feet every time my pal pulled
the trigger on his joystick.

For those who don’t know, Mech Warrior is a combat
simulation game about so-called “Mechs” which are giant
robot vehicles piloted by a human. These pilots are called
“Mech Warriors”. “Mechs”, also known as Mechas,
Gundams, or Sentinels, are rather common in Japanese
culture. Although a good deal of manga and anime exists
around the topic, Mech Warrior is a western production
and not based on Japanese mecha culture.

Mech Warrior is based around the BattleTech
universe/franchise from FASA Corporation. Di�erent clans
and the so-called “Inner Sphere” �ght each other for
territory and leadership. Although in the end the clans are
bound to fail, it’s often the clans that are picked up in the
games. Mech Warrior 2 is no di�erent. Here you �ght
either as Clan Jade Falcon or Clan Wolf.

Figure 1 – Mech Warrior 2 Menu – Play Clan Jade Falcon, Clan Wolf,
or simulated battles

Mech Warrior 2 �rst came out for DOS but was eventually
ported to Windows 95, PlayStation, and Sega Saturn. Since
it was re-released a couple of times, there are many
di�erent versions and add-ons out there. There are
rumoured to be up to 38 di�erent releases for Mech
Warrior 2, and the game was quite popular and rather
impressive.

Released in 1995, it was a technical masterpiece for its
time, o�ering full motion videos, 3D graphics, resolutions
up to 1024×768 (higher than most available games at that
time), a CD soundtrack, and many more things that are
standard today but were not standard in 1995.

Figure 2 – Combat variables for Mech Warrior 2 with build-in cheat
options

By default, the game came with 320×240 resolution, which
was quite common for DOS games of that era. It also
supported 640×480 and 1024×768 resolutions.

Figure 3 – Mech Warrior 2 with 320×240 resolution

Figure 4 – Mech Warrior 2 with 1024×768 resolution

The di�erence is quite remarkable and makes the game
look decent even today.

The DOS software version, despite having a very high
resolution for the time, used only a few textures, making
the world look rather �at. However, they also used a lot of
color gradings to build up atmosphere, even creating a
night and day cycle using di�erent color gradings.

There was also an option to activate “Chunky Explosions”
which meant that every time you blew something up
chunks of dirt and debris were thrown into the air, which
also made the game look more realistic.

Figure 5 – Color grading on Mech Warrior 2

Figure 6 – Color grading on Mech Warrior 2

Figure 7 – Some nice explosions with debris �ying everywhere

Obviously, most of the graphic details went into the Mechs
themselves, which not only made them look good but also
allowed the player to target certain points on an enemy to
cripple them. For example, shooting o� one leg could
immobilize the enemy completely. Shooting o� an arm
stripped the enemy of their main weapons. If you were

lucky or had very good aim, you could even shot the
cockpit of the Mech, killing the pilot without in�icting much
damage to the Mech itself.

This also meant your own Mech needed to be handled
with care. If you lost an arm, and with it, most of your
weapon, it could be near-impossible to continue the
mission. You’d also need to deal with ammunition for your
weapons. If you ran out of ammo, the weapons would be
rendered useless.
If you had energy-based weapons that did not require any
ammunition, you still had to make sure your Mech did not
overheat, since energy based weapons produced a lot of
heat when �red. For this, you had heat sink modules that
were supposed to cool your Mech. However, if some of
your parts were destroyed in combat you could lose heat
sinks and your Mech would overheat more quickly. There
was also the possibility of receiving a critical hit which
would cause an ammunition explosion, damaging your
Mech from the inside.

The game allowed you to modify your Mech, limited only
by the missions, the Mechs weight limit, and sometimes
the space inside your Mech, as storing each component
required a certain amount of space. The ability to modify
your Mech was one of the main things that made the Mech
Warrior series so popular at the time.

Every player could adapt the mech to their own playing
style, such as picking huge weapons where a single hit had
devastating results, but were slower, making it harder to
hit the enemy; relying on energy based weapons that
required no ammunition and therefore never ran out, but
produced a lot more heat, and taking a ton of heavy guns
and a sack full of ammunition, not bothering about heat
and just delivering punches as long as you had ammo.
Other strategies included using long range missiles that
could take the enemy down before he even reached you,
or short range missiles for shooting the enemy at closed
range. The possibilities were nearly limitless and adaptable
for whatever play style you preferred, which also made
these and later games interesting in multiplayer and online
matches, as each player could have the same Mech with
totally di�erent in handling, weaponry, and speed.

Figure 8 – Customize your own Mech

Figure 9 – Make sure you can �t everything inside your Mech

The missions varied; sometimes you had to head out and
destroy some facilities, or you had to clear way points from
enemy Mechs; at other times, you were suppose to defend
a base, structure, or facilities, or help a fellow Mech
Warrior in trouble.

The controls of this game can be tricky, as your character
has the ability to walk in one direction and shoot and turn
your torso in another direction, which means you would
have to be able to control where your character walks and
looks at the same time. You also have to manage your
weapons, switching between them or shooting them, all at
once or in groups, control your walking/running speed
and, if you have your jump jets, control those as well. You
also need to manage di�erent views, status information
and that kind of stu�.

Mech Warrior is one of the old simulation games, similar to
Wing Commander, Comanche, Mig 29, or Silent Service,
where you mastered the game when you mastered the
controls. Owning a good joystick with lots of
programmable buttons helped a lot in these days.

Along with the gameplay, the graphics, and the complex
simulation, all which helped to make an impressive game,
Mech Warrior 2 also featured a memorable CD soundtrack,
packed with all goodies the era had to o�er. The game had
two o�cial add-ons which each came on their own CDs
with new videos, new music, new Mechs, new maps, and
so on. The add-ons were full games of their own, not just a
few extras installed on top, as is common with DLCs
nowadays.

Figure 10 – Ghost Bear’s Legacy is an o�cial add-on for Mech
Warrior 2, also available for DOS

Figure 11 – Mercenaries is an o�cial add-on for Mech Warrior 2,
also available for DOS

Mech Warrior 2 on ODROID
As there are many di�erent versions of Mech Warrior 2, so
there are di�erent ways to get this game to work on
ODROID. I chose to use the DOS version running in
DOSBox, as we have an optimized version of DOSBox that
also o�ers 3D support.

For this I used the following settings in ~/.dosbox/dosbox-
SVN.conf:

[sdl]

 fullscreen=true

 fullresolution=desktop

 output=opengl

 [cpu]

 core=dynamic

 [autoexec]

 imgmount d

/home/odroid/DOS/CDs/MechWarrior2/MechWarrio

r_2.cue ­t cdrom ­fs iso

 mount c /home/odroid/DOS/

As you can see, I have my DOS games folder under
/home/odroid/DOS and my CD images of Mech Warrior
under /home/odroid/DOS/CDs/.

Since my DOSBox version is compiled against @ptitSeb’s
gl4es, which is a wrapper for OpenGL to OpenGL ES, we
can use OpenGL to scale the picture to our current screen

resolution without losing any performance. That allows the
video, which is originally 320×200 in size, to scale quite
nicely to 1080p. Even if you play the game in 320×240 or
640×480 it still scales nicely to the full desktop size and
looks quite good. The game can easily be installed with the
installer on the CD and should work right out of the box.
It’s a little bit more complicated with the add-ons.

Mech Warrior 2 – Ghost Bear’s Legacy wants to check your
Mech Warrior 2 CD before it installs. In order to do this,
you have to mount both CDs at once (all in one line), and
in-game switch in between with CTRL+F4:

$ imgmount d

/home/odroid/DOS/CDs/MechWarrior2/GBL_DOSWIN

.cue

/home/odroid/DOS/CDs/MechWarrior2/MechWarrio

r_2.cue ­t cdrom ­fs iso

This worked for me, and I could install and play the Ghost
Bear’s Legacy add-on just �ne. Although Mech Warrior 2
and GBL did run �ne in either 640×480 or 1024×768, the
Mercenaries add-on was a little bit slow for me. It also has
more options when it comes to graphics so I guess the
engine got a little upgrade here.

Sadly, the overall performance of Mech Warrior 2 is not
what it used to be, or what I remember. It’s slightly laggy.
Not by much, but you notice it. You can still fully play and
enjoy the game (at least Mech Warrior 2 and GBL) but I
wished it was a little bit faster. The game is still fun to play
and I have already killed dozens, if not hundreds, of enemy
Mechs so far. The game also came out for Sega Saturn and
Playstation, and while I couldn’t get the Sega Saturn
version to fully work, the Playstation version worked �ne
for me.

Figure 12 – The Playstation version of Mech Warrior 2 is stripped
down but fully textured

The Playstation version of Mech Warrior 2 is fully textured,
but generally an inferior version compared to the DOS and
Windows versions, because a lot was stripped down. For
example, the entire Mech con�guration is gone, leaving
only a few presets. The controls were simpli�ed, but that
didn’t really improve the gameplay. Although the graphics
are fully textured, they are also a lot lower in resolution
making them look “uglier” than the DOS version.

Conclusion
Mech Warrior 2 is still fun to play today, and with ODROID
it’s quite possible even if it might not be the exact same
experience as back in the day. Unfortunately, I wasn’t able
to obtain a copy of the 3DFx DOS version of the game, as
that might have improved graphics and performance once
again, as our DOSBox has Glide (3DFx) support as well.

There are many di�erent versions out there and some
might work better than others on ODROIDs. I may write a
follow-up article to see if other versions can run on
ODROID. Until then, I will keep blowing up other Mechs
using keyboard and mouse to control my Mech and bring
honor to my clan!

Meet An ODROIDAN: Dongjin Kim
 January 1, 2018  By Rob Roy  Meet an ODROIDian

Figure 1 – Boat tour at Niagara Falls

Figure 2 – Building Apple Classic like case for ODROID with my son

Figure 3 – Design of Apple Classic like case for ODROID

Please tell us a little about yourself.
I am an embedded software engineer and have been
involved in many di�erent commercial projects since 1994.
Currently, I am developing the software for a mobile
device runs on the ARM processor and mainly working on
a device driver or a HAL/framework layer. I was born in
South Korea, am married and have a 10 year old son. Since
December 2015, I have lived far away from my family in
Kitchener, Ontario, Canada. My family is still living in South
Korea, and I visit them occasionally. I went to college in
Korea and have two bachelor degrees in computer science
and microelectronics. I studied microelectronics after
having a few years of experience as a software engineer in
an industry �eld.

How did you get started with computers?
I didn’t have good enough marks in my high school to go to
a university, so I decided to learn computer programming
via job training courses which were available in my high
school for pre-graduate students. Actually, I wanted to
learn drawing which I liked the most at that time, but it
was not available in the courses that I could choose. When
I was 14 years old, I memorized a whole Apple //e BASIC
programming learning book, even though I never entered
a single line of code. For 6 months, I learned di�erent
programming languages and played with an IBM XT-
compatible desktop and an IBM S360.

Since I could not a�ord to have my own computer before I
got a job, I struggled to �nd a computer that would allow
me to run my programs in MS-DOS. I also used computers
to help many friends complete their homework projects.
My favorite language was Pascal, which allowed me to
become more familiar with programming architecture, but
I turned to C/C++ for an embedded project at my �rst
company in 1994, which has remained my main
programming language until now.

Later, I became more interested in operating system and
hardware design, so I �nished a microelectronics course at
another university. I had a project to design 16-bit
computer hardware with NEC v25 and develop software to
run a mono-color LCD and keypad. I could not a�ordable
to build a custom PCB for this project, so I had to connect
all signals with wrapping wires for 3 days and night to get
“Hello world!” on serial output. This project encouraged me
to learn about computer architecture and an operating
system. I still have those original boards, but many
components are missing since I had to use them for
another project later.

Whom do you admire in the world of technology?
I admire Steve Wozniak. Many people remembers Steve
Jobs who made a crucial technology history in IT industry. I
believe that Steve Jobs could only realize his ideas because
he met Steve Wozniak, who made a real thing and helped
to extend the ideas of Steve Jobs. I always wished to be like
him.

Figure 4 – Design of Cloud Shell

Figure 5 – Running SNES on Apple Classic like case with ODROID-C1 Figure 6 – The �rst mockup of CloudShell

What attracted you to the ODROID platform?
I am more interested in resolving a problem rather than
using a hardware for my own purpose. Many of
Hardkernel’s team members were my coworkers at the
another company before Hardkernel was founded. I tried
to help the Hardkernel team resolve some problems that I
experienced in other projects in order to realize my ideas
on the ODROID platform. ODROID have more computing
power than other SBC boards, and I like what the
Hardkernel team is doing on ODROID for its users. I hope
that ODROIDs will become more popular.

How do you use your ODROIDs?
Well, usually I don’t use my ODROIDs for more than code
development for ODROID itself. I’ve tried to use ODROIDs
for the other projects as a prototype or personal purpose
since, ironically, I am not a big fan of using an electronic
device for my own personal interesting. I believe that
ODROIDs have a big chance to become more popular and
help many people. Therefore, I usually run ODROIDs when
I �nd an interesting problem in ODROID forum or when
some people asks for my help in person or by email.

You have created a lot of useful software projects based on
ODROID technology. What motivated you to build them?
I have made many patches for Linux kernel and Android
HAL/framework for ODROIDs. Most of them are meant to
adapt the Linux kernel or Android BSP platform given by
an SoC vendor. The rest is to help ODROID users use their
boards more conveniently, so that ODROID boards can be
more popular and users are more likely to use their
ODROID boards than other SBC boards.

The CloudShell device for the ODROID-XU4 is a proof of

concept for ODROIDs to run like a regular computer
system. I have contributed many patches to the ODROID
GitHub repositories as well as my own repositories in
order to improve the features, but many of them are
un�nished or suspended. I am trying to make a patch and
contribute to Linux kernel mainline or Hardkernel’s
repository whenever I have time. I am also glad to help
ODROID users resolve their problems as well.

Which ODROID is your favorite and why?
The ODROID-X is my favorite, since it was the �rst device
that prompted me to submit a patch to Linux kernel
mainline. I’ve submitted some patches to introduce the
ODROID-X into Linux kernel 2.6, and spent a lot of time
working on it as well as helping the Ubuntu desktop run on
top of the Linux framebu�er in 2012. I created and
submitted the ODROID board �le, which is written in C, to
the Linux kernel but the merge was denied, since, at that
time, most ARM mainline developers were moving to a
device tree rather than a board �le in C. As a result, I had
to spend a lot of time learning new things, and eventually
my bare minimal device tree �le for the ODROID-X was
accepted in 2013.

What innovations would you like to see in future Hardkernel

products?
I want ODROIDs to become as popular as the Raspberry Pi,
and provide more hardware capabilities in a tiny hardware
form factor for small hardware devices, and little bit larger
version for desktop-like hardware. Maybe someday, very
soon, ODROID would be the standard for ARM-based
desktop platform for small computing, but still remain
inexpensive enough for regular use.

What hobbies and interests do you have apart from
computers?
I liked photography, but I do not have time anymore
because of my busy life.

What advice do you have for someone wanting to learn more
about programming?
I remind myself every day that I must write code to make
someone else understand my idea with minimal
explanation. I used to say to myself and my team
members, not to go far away from what is necessary.
Programming is just a skill to transfer an idea to a
computer, and the important and di�cult thing is to �nd
the reason why the code is necessary, and why we want to
do the task with a computer. If the reason and the goal are
obvious, the programming skills will directly follow.

