

Home Automation with Home Assistant
 March 1, 2018

Home Assistant is an open-source home automation platform built on Python 3 that
supports over 650 components

ODROID-N1 vs ODROID-XU4: A Real-World Benchmark Comparison
 March 1, 2018

In keeping with their timely innovations, Hardkernel has just announced their latest
SBC o�ering, the ODROID-N1, based on the Rockchip RK3399 SOC, here is our
comparison with the ODROID-XU4

Prime Number Discovery: Use an ODROID-C2 to make
mathematical history
 March 1, 2018

“The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the mostf important

and useful in arithmetic.” − Carl Friedrich Gauss In this article, I will give some background into some of the
algorithmic aspects of

ODROID Gaming: Saturn Games – Part 2
 March 1, 2018

Once again, we return to the topic of the ODROID-XU3/XU4 and Sega Saturn games

Web Kiosk: How To Build A Chromium-Based Touchscreen
Experience
 March 1, 2018

I was looking for a platform that would allow me to bring together various remote-
control functionalities under a single device/interface

clInfo: Compiling The Essential OpenCL GPU Tuning Utility For The
ODROID-XU4
 March 1, 2018

I’ve been digging into why clinfo does not work on the ODROID-XU4 so I took some
time to �gure out why.

Prospectors, Miners, and 49er’s: Dual GPU-CPU Mining on the
ODROID-XU4/MC1/HC1/HC2
 March 1, 2018

There are many people using the XU4/MC1/HC1/HC2 for CPU crypto-mining

Creating an NTP Server Using GPS/PPS
 March 1, 2018

You can build your own Network Time Protocol (NTP) server using GPS and PPS on
your ODROID. This system gives you very accurate time which can be very useful for
speci�c use cases. As a result, our local server can have a very accurate time with less

than 10 microseconds

Getting Started with Android on the ODROID-C2: A Beginner’s Guide
 March 11, 2018

There are two options for installing Android on an ODROID-C2. Hardkernel o�ers a
pre-installed eMMC or microSD card, which would only require installing Google Play.
Alternatively, the Android OS may be downloaded from the Hardkernel website and

installed manually onto the eMMC or microSD card.

How to Enable Hardware Decoding for the ODROID-C2
 March 1, 2018

A git repository that has �xes intended to help user enable Hardware Decoding for the
ODROID-C2. To everyone that is dealing with this issue please clone this repository and
do the following steps.

ODROID-XU4 Control Computer: Creating an All-In-One Control
System
 March 1, 2018

There was no embedded Linux system that had the computing power to run large
particle �lters for a reasonable cost, and also had the required sensors (GPS, IMU) of a

reasonable quality built-in, so williamg42 decided to make one.

Meet An ODROIDian: Go Sang “Luke” Chul (Luke.go)
 March 11, 2018

Meet “Luke”, Hardkernl software engineer and maintainer of the Android version for all
ODROID devices except for LineageOS for the ODROID-XU4. He mainly updates the
revisions, adds features, and �xes bugs in the o�cial Hardkernel Android build.

Home Automation with Home Assistant
 March 1, 2018  By Adrian Popa  ODROID-C1+, ODROID-C2, ODROID-XU4

There comes a time in everyone’s life when you want
to put some things in order and have simple access to
complex solutions. For example, maybe you have
several scripts taking care of various problems (like
turning a heater on/o�, taking pictures with your
security cameras, handling presence detection, etc),
but you’re the only one who can manage them
because they require maintenance through SSH, or
through some old-looking web page. I too have
reached the same place in my life, and have to look
for an “umbrella” solution to manage all my personal
automations and o�er easy access for my family.

I was thinking of building a web dashboard to �t my
needs, but I hate web development. I’m somewhat
lazy and my sites are not good looking at all.
Furthermore, it needed to be functional on all sorts of
devices and screen sizes, and also future-proof.
Fortunately, I spent enough time looking around until
I found the perfect solution – Home Assistant
(http://bit.ly/2hlOPOE) – HA for short.

Home Assistant is an open-source home automation
platform built on Python 3 that supports over 650
components, which are modules that facilitate
interaction with things like physical “smart” switches,
relays, lights, sensors, network devices (TVs, routers,
and cameras), software (like Kodi, MPD, and
Transmission), network services (like weather), but
also allows you to add your own custom components.
All of the major home automation brands and
technologies, like Hue, Nest, IKEA, Vera, ZigBee, and
MQTT are present, and a complete list of components
can be found at http://bit.ly/2sWJsPy.

Apart from the components, the platform has a
dashboard-like web interface and an automation
engine where you can combine data from di�erent
components and generate an event. For example, if
it’s Monday-Friday between 8:00 – 15:00 and the
outside weather is sunny, and the outside
temperature is above 30C, and there is no chance of
rain, and the outside sprinklers have been o� for at

http://bit.ly/2hlOPOE
http://bit.ly/2sWJsPy

least 4 hours, then turn on the sprinklers for 20
minutes. The only complicated thing in the
automation above is having a way to turn your
sprinklers on and o� – the rest is provided by existing
components and Home Assistant’s automation
engine. Other use cases might include locking and
unlocking the front door when a speci�c person
connects to the wi� (although I wouldn’t do this
personally), or starting the air conditioning
automatically when the system detects you’re coming
home from work. There are more use cases in the 1-
hour video at http://bit.ly/2t0GgCI. If you’re familiar
with Tasker for Android or IFTTT, then Home Assistant
is the equivalent for your home.

Installation
You can install Home Assistant on any ODROID
device. Depending on how many automations you
plan to have, you could use a C1 for a light setup, or
even an XU4 for large homes and complex rules
which might involve face recognition. I’m using it on a
C2 which doubles as a Kodi player without issues.

We’re going to do the “virtualenv” installation, which
means that all the required python modules will be
installed in a speci�c directory and will not interfere
with system modules. We will also use a distinct user
for Home Assistant. There are also Docker images
available. The complete instructions with comments
are available at http://bit.ly/2t0iaYC.

$ sudo apt­get update

$ sudo apt­get dist­upgrade

$ sudo apt­get install python­pip python3­dev

$ sudo pip install ­­upgrade virtualenv

$ sudo adduser ­­system homeassistant

$ sudo addgroup homeassistant

$ sudo usermod ­G dialout ­a homeassistant

$ sudo mkdir /srv/homeassistant

$ sudo chown homeassistant:homeassistant

/srv/homeassistant

$ sudo su ­s /bin/bash homeassistant

$ virtualenv ­p python3 /srv/homeassistant

$ source /srv/homeassistant/bin/activate

(homeassistant)$ pip3 install ­­upgrade

homeassistant

$ exit

In order to start and manage the process, it’s best to

create a systemd service to handle it:

$ sudo vi

/etc/systemd/system/homeassistant.service

[Unit]

Description=Home Assistant

After=network.target time­sync.target

Requires=time­sync.target

[Service]

Type=simple

User=%i

ExecStart=/srv/homeassistant/bin/hass ­c

"/home/homeassistant/.homeassistant"

[Install]

WantedBy=multi­user.target

In order to start Home Assistant, simply start its
service:

$ sudo service homeassistant start

$ sudo service homeassistant enable

Note that if you will be using components that need
HTTPS, you will need to have time correctly set up at
boot, so that the certi�cates are valid. The service
startup depends on systemd-timesyncd, which in turn
depends on ntp *not* being installed:

$ sudo apt­get remove ntp

$ sudo service systemd­timesyncd restart

$ sudo systemctl enable systemd­timesyncd

In case of problems, you will be able to review the
logs through journalctl:

$ sudo journalctl ­u homeassistant ­f

Once the process starts, you will be able to connect to
http://odroid-ip:8123/. Note that the �rst startup (or a
startup following an update) might be slower, so leave
it run for a few minutes until accessing the web
interface. Home assistant also provides a native app
for IOS (http://apple.co/2tYi2WI), while for Android
clients you can pin the page as a homescreen
launcher (Chrome -> navigate to http://odroid-
ip:8123 -> Menu -> Add to homescreen).

http://bit.ly/2t0GgCI
http://bit.ly/2t0iaYC
http://apple.co/2tYi2WI
http://odroid-ip:8123/

Figure 1 – Home Assistant startup page

The con�guration �le
In order to set up components and con�gure your
installation, you’ll have to work a lot with Home
Assistant’s con�guration �le(s). Hopefully, in a future
version you might be able to handle the con�guration
directly from the web interface, but for now, you’ll
need a text editor. The main �le is
/home/homeassistant/.homeassistant/con�guration.y
aml. Its format is YAML – which stands for “Yet
Another Markup Language”. Like Python, it uses white
space (not tabs!) to delimit sections of code. By
default it uses a two space indentation for nested
sections. In case you get into trouble, you will receive
error messages when starting the service. You can
validate the syntax with a service like
http://www.yamllint.com/ which will let you know
where you went wrong. There is also a
troubleshooting guide at http://bit.ly/2tDHMsa.

Once you’ve made changes to the con�guration �le,
you will need to restart the homeassistant service to
apply those changes. You can do this either from the
shell with sudo service homeassistant restart, or from
HA’s web interface, by clicking the top left icon,
selecting the “Con�guration” icon and calling the
“Restart” option from the “Server Management”
section. The video at http://bit.ly/2sAmD3F shows
some tips you should consider when editing the
con�guration.

Figure 2 – The default con�guration

If you plan on using HA from outside the LAN (e.g.
from the Internet), you have several options. One of
them is to enable HTTPS support and forward port
8123 on your router. This gives you encryption, but
exposes your installation to the internet (and there
might be vulnerabilities that could allow attackers
take control of your system/LAN). A second option
(which I prefer) is to set up a VPN on your router (or
even on your ODROID) that allows you to connect and
access HA (and other LAN resources) securely.

If you want to use HTTPS, in order for all features to
work you will need to supply valid SSL certi�cates (not
self-signed). In order to get valid certi�cates you will
need to have a public DNS name (e.g. by using a
dynamic DNS service like duckdns.org) and use
letsencrypt.org to set up a valid SSL certi�cate for
your installation. Step by step details can be found in
the video at http://bit.ly/2tY6LGb. If you must use
self-signed certi�cates, there is a guide available at
http://bit.ly/2t0ObzH.

Regardless of access mechanism (http or https), you
will want to set up a password. HA doesn’t support
multiple user accounts, but you can set an API
Password that you will need to log into the web
interface. The best way to do this is to create a �le
that will keep all your sensitive data (like passwords

http://www.yamllint.com/
http://bit.ly/2tDHMsa
http://bit.ly/2sAmD3F
http://bit.ly/2tY6LGb
http://bit.ly/2t0ObzH

and URLs), name it “secrets.yaml” and reference it in
the con�guration.yaml �le.

$ cat

/home/homeassistant/.homeassistant/secrets.yaml

api_password: odroid

$ cat

/home/homeassistant/.homeassistant/configuratio

n.yaml

 …

 http:

 api_password: !secret api_password

 …

Now, when you will restart HA, you will be asked for a
password. More details about secrets may be found
at http://bit.ly/2rLGEkV.

Figure 3 – Authentication

In order to get acquainted with how HA con�guration
works, we will set up some components. I want to set
up weather, some IP cameras, Kodi and MPD,
presence detection based on WiFi and also a 1-wire
temperature sensor connected to the ODROID.

Weather from Darksky
There are several weather providers already
integrated in HA (http://bit.ly/2t4l1Rh), so you can
pick your favourite. I’m going with DarkSky
(http://bit.ly/2t4gq0S), which provides quite accurate
forecasts for my area. You should consult the
component’s help page for details about
con�guration and which variables you can use. You
will need to register with Dark Sky and get an API Key
which will let you make 1000 calls per day for free. It’s

best to save this API Key inside your secrets.yaml �le
(replace with your own key):

darksky_api_key:

87f15cbb811204412cc75109777ea5cf

The con�guration has several variables, most of which
are optional, however, under con�guration.yaml,
under the sensor section you would have the
following (feel free to delete the “platform: yr” entry):

sensor:

 ­ platform: darksky

 api_key: !secret darksky_api_key

 name: Dark Sky

 monitored_conditions:

 ­ summary

 ­ precip_type

 ­ precip_probability

 ­ temperature

 ­ humidity

 ­ precip_intensity

 ­ wind_speed

 ­ pressure

 ­ wind_bearing

 ­ apparent_temperature

 ­ icon

 ­ minutely_summary

 ­ hourly_summary

 ­ temperature_max

 ­ temperature_min

 units: si

 update_interval: '00:15'

The code is mostly self-explanatory. It con�gures a
new platform of the type “darksky”, with a speci�c
name (optional) and api_key (required) and pulls a set
of parameters (monitored_conditions) from the
weather provider every 15 minutes. Your actual
location is taken from the latitude/longitude
parameters under homeassistant, so make sure that’s
correct. After you restart the homeassistant service,
you should be able to see the monitored variables as
badges on the top of your window. Clicking on a
badge will show you how that particular value has
changed over time.

http://bit.ly/2rLGEkV
http://bit.ly/2t4l1Rh
http://bit.ly/2t4gq0S

Figure 4 – Weather data

Viewing IP cameras
HA supports a lot of cameras (http://bit.ly/2t4DtsD),
including reading data from a �le, which could be
used to display a graph, or visual data generated by
other tools. We will be using the Generic MJPG
Camera (http://bit.ly/2t4tIKM) component and the
Local File (http://bit.ly/2s4Y5w4) component.

The camera we want to monitor is available at
http://bit.ly/2t4cHkc (it’s a public webcam), which we
should add to the secrets.yaml �le.

camera1_stream_url:

http://iris.not.iac.es/axis­cgi/mjpg/video.cgi?

resolution=320x240

camera1_still_url:

http://iris.not.iac.es/jpg/image.jpg

The con�guration part inside con�guration.yaml looks
like this for both cameras:

camera:

 ­ platform: mjpeg

 mjpeg_url: !secret camera1_stream_url

 still_image_url: !secret camera1_still_url

 name: Observatory in Spain

 ­ platform: local_file

 file_path: /tmp/tux.jpg

As usual, you will need to restart the HA service to
reread the con�guration (this might be a good time to
comment out the “introduction” component as well).
Note that when you click on a webcam you will see a
live feed, otherwise the still image is updated every 10
seconds.

Figure 5 – Webcams!

So, what can you do with these con�gured webcams
apart from looking at them? Well, you can use them
with other components such as OpenCV
(http://bit.ly/2s4UUEJ) to generate triggers when
certain faces are seen, or Seven Segments Display
(http://bit.ly/2sAbOP0), which can take readings of
various digital displays.

Kodi and MPD
To con�gure media players, you can look under the
Media Player component list at http://bit.ly/2s0IAtQ.
To con�gure Kodi (http://bit.ly/2sA5qr6), you will
need to enable the “Allow remote control via HTTP”
option (http://bit.ly/2t4cYne) and set an appropriate
username and password �rst. To do so, add the user
and password to the secrets.yaml �le:

kodi_user: kodi

kodi_pass: kodi

Then, edit con�guration.yaml:

media_player:

­ platform: kodi

host: 192.168.1.140

name: Kodi Livingroom

username: !secret kodi_user

password: !secret kodi_pass

To con�gure MPD, assuming that you already have a
MPD server in your network, add the MPD component
(http://bit.ly/2s5sbzE) and add the password to
secrets.yaml:

http://bit.ly/2t4DtsD
http://bit.ly/2t4tIKM
http://bit.ly/2s4Y5w4
http://bit.ly/2t4cHkc
http://bit.ly/2s4UUEJ
http://bit.ly/2sAbOP0
http://bit.ly/2s0IAtQ
http://bit.ly/2sA5qr6
http://bit.ly/2t4cYne
http://bit.ly/2s5sbzE

mpd_secret: mpd

And next, edit con�guration.yaml:

media_player:

...

­ platform: mpd

host: 192.168.1.140

name: MPD Living

password: !secret mpd_secret

After you restart Home Assistant, you will get the two
new media players and be able to see their state
(playing/stopped), control volume and even change
the current playlist or use the text-to-speech
component to have the media player “speak” what
you want.

Figure 6 – Media players

Presence detection
The presence detection components
(http://bit.ly/2t0Gt8H) try to track people’s locations
so that you can apply geofencing rules (e.g. do
something if a person enters or leaves a location).
Usually tracking is done by detecting devices
connected to a router (via wi�), or via bluetooth
proximity (http://bit.ly/2s0Sqfw), or by using location
services such as Owntracks (http://bit.ly/2rLQdR1).

We will use a router-based tracker that, depending on
your router, periodically connects to the management
interface of your router, lists the ARP table, and
discovers which devices are connected. A lot of router
types are supported, from high-end vendors like
Cisco, to consumer-grade routers like Asus, Netgear
and TP-Link. Even open-source �rmwares are
supported, like OpenWRT, DD-WRT and Tomato.

We will be using an Asus router with SSH enabled, so
we need the ASUSWRT component:
http://bit.ly/2s4T32Q. You can chose to login with
username/password or setup an SSH key and log in
with a key instead. Note that certain �rmware
versions enable security measures which limit the
number of SSH connections, and can blacklist your IP
if a lot of connections are initiated.

As usual, we will set private data (such as the path to
the key or the ssh password) in the secrets.yaml �le:

router_user: admin

router_password: my_secret_password

Inside con�guration.yaml add the following section:

device_tracker:

­ platform: asuswrt

host: 192.168.1.1

username: !secret router_user

password: !secret router_password

interval_seconds: 120

consider_home: 300

track_new_devices: yes

The device tracker con�guration page
(http://bit.ly/2s4WPcA) gives more details about what
options you can use. The interval_seconds option is
the time between scans (2 minutes) and the
consider_home option keeps you “at home” even if
your devices is not seen for 300 seconds.

Once you restart HA, after the initial discovery is done
a new �le will be created, called known_devices.yaml.
Here you will be able to assign a friendly name and
even a picture to a speci�c device, or have other
devices be ignored.

One entry in known_devices.yaml may look like this:

aldebaran:

hide_if_away: false

mac: 00:1E:06:31:8C:5B

name: aldebaran

picture: /local/aldebaran.png

track: true

vendor: WIBRAIN

Notice that I added a path to local picture which is
stored in

http://bit.ly/2t0Gt8H
http://bit.ly/2s0Sqfw
http://bit.ly/2rLQdR1
http://bit.ly/2s4T32Q
http://bit.ly/2s4WPcA

/home/homeassistant/.homeassistant/www/aldebara
n.png. You can create the “www” folder with the
following command:

$ sudo mkdir

/home/homeassistant/.homeassistant/www

If there are devices which you don’t want to monitor,
you can set “track: false” in the known_devices.yaml
�le.

Figure 7 – Initial discovery/Customized entries

Measuring temperature
A very powerful feature of Home Assistant is the
ability to track all sorts of sensors
(http://bit.ly/2cNb4gJ). We want to monitor a
temperature sensor based on the 1 wire protocol,
connected locally to the ODROID
(http://bit.ly/2s12ZPx). Before adding the sensor in
HA, make sure it’s readable from the command line.
You can follow the setup guide on the wiki at
http://bit.ly/2s0zbTp.

You will need to know the sensor’s ID in order to add
it to HA:

$ ls /sys/bus/w1/devices/

28­0516866e14ff w1_bus_master1

$ cat /sys/bus/w1/devices/28­

0516866e14ff/w1_slave

92 01 4b 46 7f ff 0c 10 b5 : crc=b5 YES

92 01 4b 46 7f ff 0c 10 b5 t=25125

Next, you can make the following changes in
con�guration.yaml and poll the sensor every 5
minutes:

sensor:

...

­ platform: onewire

names:

28­0516866e14ff: Living room

scan_interval: '00:05'

After restarting HA, the new reading will be visible in

the web interface as a badge in the top part of the
page.

Sorting the views
You will notice that once you start adding a few
components, the web interface starts to get messy
with a lot of items scattered everywhere. You can use
groups and views to clean up the interface and put
related items in their own tab. To understand what
needs to be done, let’s clear the vocabulary.

Entities are variables which provide data, such as a
sensor or switch. Platforms (like dark_sky) usually
provide access to multiple entities (min/max
temperatures or forecast). You can view a list of
entities, their names and their value if you navigate in
the web interface under Developer tools -> States (<>)
-> Entities.

A group is simply an object that holds a list of entities.
Visually, a group is rendered as a panel, or a card. By
default the group “group.all_devices” exists and holds
the items discovered by a device tracker platform.
Groups usually contain a list of entities.

A view is rendered as a separate tab inside Home
Assistant. Views are actually groups of groups and
di�er from regular groups by having the property of
“view: yes”. You can also add individual entities, as
well as groups to a view.

We will group our existing sensors into the following
categories:

The �rst tab is called Home and contains the following
groups (it will be internally called default_view, so that
it is displayed when you log in):

Weather data

Presence information

System information (to show you if there are updates
available)

The second tab is called Media and contains the
following groups:

Media players

The �nal tab is called Images and contains:

http://bit.ly/2cNb4gJ
http://bit.ly/2s12ZPx
http://bit.ly/2s0zbTp

Webcams

The con�guration looks similar to the list above:

group:

default_view:

view: yes

entities:

­ group.weather

­ group.presence

­ group.systeminfo

media:

view: yes

entities:

­ group.mediaplayers

images:

view: yes

entities:

­ camera.observatory_in_spain

­ camera.local_file

weather:

name: Weather

entities:

­ sensor.dark_sky_apparent_temperature

­ sensor.dark_sky_daily_high_temperature

­ sensor.dark_sky_daily_low_temperature

­ sensor.dark_sky_hourly_summary

­ sensor.living_room

presence:

name: Presence

entities:

­ device_tracker.aldebaran

­ device_tracker.nutty

systeminfo:

name: System Info

entities:

­ updater.updater

mediaplayers:

name: Media Players

entities:

­ media_player.mpd_livingroom

­ media_player.kodi_livingroom

Figure 8 – A cleaner interface with views and groups

More details about groups and layout are available in
the video at http://bit.ly/2s5d6xT.

Updates
Since Home Assistant was not installed via apt-get,
you will need to handle updates manually. Before
updating, it’s best to read the release notes and verify
that the update is not breaking any previous
con�gurations, since the con�guration for new
components sometimes gets redesigned, which
means you’ll need to redo it. You can get a noti�cation
for a new version by using the updater.updater entity
which periodically checks for newer versions and can
display them inside Home Assistant. Updates are
pretty frequent, and you can expect a major version
every 2-3 weeks. The update procedure is simple, and
details can be found at http://bit.ly/2s0Kn24.

$ sudo service homeassistant stop

$ sudo su ­s /bin/bash homeassistant

$ source /srv/homeassistant/bin/activate

(homeassistant)$ pip3 install ­­upgrade

homeassistant (homeassistant)$ exit

$ sudo service homeassistant start

In subsequent articles, we will look at setting up more
complex components like a remote relay or an air
conditioning unit, setting up automations, and setting
up a dashboard. For comments, questions and
suggestions, please visit the support thread at
http://bit.ly/2s13GbB.

http://bit.ly/2s5d6xT
http://bit.ly/2s0Kn24
http://bit.ly/2s13GbB

ODROID-N1 vs ODROID-XU4: A Real-World Benchmark
Comparison
 March 1, 2018  By @hominoid  ODROID-XU4, ODROID-N1

In keeping with their timely innovations, Hardkernel
has just announced their latest SBC o�ering, the
ODROID-N1, based on the Rockchip RK3399 SOC
(http://goo.gl/2BpMuQ). Here is a very early and quick
real world comparison of the ODROID-N1 with their
current �agship o�ering, the ODROID-XU4. Note that
the ODROID-N1 tested here is an engineering sample
and not a released product. It is running Debian on
the interim kernel 4.4 and there has not been
adequate time to fully tune its OS or crypto
algorithms, and other relevant components. However,
some very interesting results have been observed.

The head to head comparison comprised of a single
ODROID-N1 and a ODROID-XU4 pool mining (stratum
server) Verium (VRM) at sustainable frequency
settings. At an ambient temperature of 71 0F (21.66
0C), the ODROID-XU4 running at 1.7Ghz maintained
an average temperature in the 70’s 0C and while the

ODROID-N1 at 1.99Ghz never saw its temperature
exceed 51 0C. The ODROID-N1 feels like a refrigerator
in disguise.

The tools used include:

odroid-cpu-control

cpuminer-�reworm

The results listed below have been formatted for
better readability.

ODROID-N1 results

odroid@odroid­n1:~$ uname ­a

Linux odroid­n1 4.4.112 #2 SMP Thu Feb 8

21:25:35 ­02 2018 aarch64 GNU/Linux

odroid@odroid­n1:~$ odroid­cpu­control ­l

CPU0: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.51GHz

[1.51GHz]

CPU1: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.51GHz

[1.51GHz]

CPU2: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.51GHz

[1.51GHz]

CPU3: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.51GHz

[1.51GHz]

CPU4: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.99GHz

[1.99GHz]

CPU5: governor ondemand current 408.00MHz

 min 408.00MHz [408.00MHz] max 1.99GHz

[1.99GHz]

odroid@odroid­n1:~$ ~/cpuminer­fireworm ­o

stratum+tcp://stratum.poolsloth.com:3333 ­u

xxxx ­p xxxx ­­randomize ­­no­redirect ­t 9

 Verium Miner forked from cpuminer 1.4

{fireworm} by fireworm@github **

 credits to tpruvot et al. &

effectsToCause et al. **

[2018­02­18 18:31:05] Starting Stratum on

stratum+tcp://stratum.poolsloth.com:3333

[2018­02­18 18:31:05] HugePages unavailable

(22)

[2018­02­18 18:31:05] 9 miner threads started,

using scrypt algorithm.

[2018­02­18 18:31:09] Stratum difficulty set to

0.025

[2018­02­18 18:31:09]

stratum.poolsloth.com:3333 scrypt² block 181936

[2018­02­18 18:32:39] Total: 538.110 H/m

[2018­02­18 18:32:59] accepted: 1/1 (100.00%),

0.00837 kH/s yes!

[2018­02­18 18:33:10] Total: 479.410 H/m

[2018­02­18 18:33:43] Total: 530.087 H/m

[2018­02­18 18:35:03] Total: 512.673 H/m

[2018­02­18 18:35:10] accepted: 2/2 (100.00%),

0.00822 kH/s yes!

[2018­02­18 18:36:04] Stratum difficulty set to

0.0171756

[2018­02­18 18:36:39] Total: 534.344 H/m

[2018­02­18 18:37:08] accepted: 3/3 (100.00%),

0.00829 kH/s yes!

[2018­02­18 18:37:31] accepted: 4/4 (100.00%),

0.00932 kH/s yes!

[2018­02­18 18:38:09] Total: 558.247 H/m

[2018­02­18 18:39:40] Total: 536.414 H/m

[2018­02­18 18:41:00] accepted: 5/5 (100.00%),

0.00915 kH/s yes!

[2018­02­18 18:41:02] Total: 537.398 H/m

[2018­02­18 18:41:21] accepted: 6/6 (100.00%),

0.00825 kH/s yes!

[2018­02­18 18:42:40] Total: 555.318 H/m

[2018­02­18 18:44:06] Total: 533.703 H/m

[2018­02­18 18:44:48] accepted: 7/7 (100.00%),

0.00930 kH/s yes!

^C

[2018­02­18 18:45:08] SIGINT received, exiting

Odroid XU4 results

root@c3n0:~# uname ­a

Linux c3n0 4.14.5­92 #1 SMP PREEMPT Mon Dec 11

15:48:15 UTC 2017 armv7l armv7l armv7l

GNU/Linux

root@c3n0:~# odroid­cpu­control ­l

CPU0: governor performance

 current 1.40GHz min 200.00MHz [200.00MHz]

max 1.40GHz [1.40GHz]

CPU1: governor performance

 current 1.40GHz min 200.00MHz [200.00MHz]

max 1.40GHz [1.40GHz]

CPU2: governor performance

 current 1.40GHz min 200.00MHz [200.00MHz]

max 1.40GHz [1.40GHz]

CPU3: governor performance

 current 1.40GHz min 200.00MHz [200.00MHz]

max 1.40GHz [1.40GHz]

CPU4: governor performance

 current 1.70GHz min 200.00MHz [200.00MHz]

max 1.70GHz [2.00GHz]

CPU5: governor performance

 current 1.70GHz min 200.00MHz [200.00MHz]

max 1.70GHz [2.00GHz]

CPU6: governor performance

 current 1.70GHz min 200.00MHz [200.00MHz]

max 1.70GHz [2.00GHz]

CPU7: governor performance

 current 1.70GHz min 200.00MHz [200.00MHz]

max 1.70GHz [2.00GHz]

root@c3n0:~# ~/cpuminer­fireworm ­o

stratum+tcp://stratum.poolsloth.com:3333 ­u

xxxx ­p xxxx ­­randomize ­­no­redirect ­t 4 ­1

2 ­­cpu­affinity­stride 1 ­­cpu­affinity­

default­index 4 ­­cpu­affinity­oneway­index 0

 Verium Miner forked from cpuminer 1.4

{fireworm} by fireworm@github **

 credits to tpruvot et al. &

effectsToCause et al. **

[2018­02­18 18:31:05] Starting Stratum on

stratum+tcp://stratum.poolsloth.com:3333

[2018­02­18 18:31:05] Binding thread 0 to cpu

index 0

[2018­02­18 18:31:05] Binding thread 1 to cpu

index 0

[2018­02­18 18:31:05] HugePages unavailable

(22)

[2018­02­18 18:31:05] Binding thread 2 to cpu

index 0

[2018­02­18 18:31:05] Binding thread 3 to cpu

index 0

[2018­02­18 18:31:05] 6 miner threads started,

using 'scrypt²' algorithm.

[2018­02­18 18:31:05] Binding thread 4 to cpu

index 0

[2018­02­18 18:31:05] Binding thread 5 to cpu

index 0

[2018­02­18 18:31:09] Stratum difficulty set to

0.025

[2018­02­18 18:31:09]

stratum.poolsloth.com:3333 scrypt² block 181936

[2018­02­18 18:31:43] Total: 388.377 H/m

[2018­02­18 18:32:14] Total: 387.199 H/m

[2018­02­18 18:32:45] Total: 387.127 H/m

[2018­02­18 18:33:16] Total: 384.155 H/m

[2018­02­18 18:33:47] Total: 385.000 H/m

[2018­02­18 18:34:18] Total: 385.126 H/m

[2018­02­18 18:34:49] Total: 384.142 H/m

[2018­02­18 18:35:20] Total: 383.299 H/m

[2018­02­18 18:35:51] Total: 383.115 H/m

[2018­02­18 18:36:22] Total: 384.423 H/m

[2018­02­18 18:36:54] Total: 385.171 H/m

[2018­02­18 18:37:25] Total: 385.309 H/m

[2018­02­18 18:37:35] accepted: 1/1 (100.00%),

0.00640 kH/s yes!

[2018­02­18 18:37:39] accepted: 2/2 (100.00%),

0.00639 kH/s yes!

[2018­02­18 18:37:44] accepted: 3/3 (100.00%),

0.00639 kH/s yes!

[2018­02­18 18:37:56] Total: 383.180 H/m

[2018­02­18 18:38:27] Total: 382.897 H/m

[2018­02­18 18:38:58] Total: 382.540 H/m

[2018­02­18 18:39:29] Total: 383.798 H/m

[2018­02­18 18:40:00] Total: 383.192 H/m

[2018­02­18 18:40:31] Total: 383.481 H/m

[2018­02­18 18:41:02] Total: 383.795 H/m

[2018­02­18 18:41:33] Total: 384.514 H/m

[2018­02­18 18:42:04] Total: 383.588 H/m

[2018­02­18 18:42:35] Total: 383.282 H/m

[2018­02­18 18:43:07] Total: 382.776 H/m

[2018­02­18 18:43:38] Total: 383.951 H/m

[2018­02­18 18:44:09] Total: 384.540 H/m

[2018­02­18 18:44:13] accepted: 4/4 (100.00%),

0.00642 kH/s yes!

[2018­02­18 18:44:17] Stratum difficulty set to

0.0169173

[2018­02­18 18:44:29] accepted: 5/5 (100.00%),

0.00642 kH/s yes!

[2018­02­18 18:44:40] Total: 385.162 H/m

^C

[2018­02­18 18:45:04] SIGINT received, exiting

The average hash rate for the ODROID-N1 was 531.57
H/m and 384.35 H/m for the ODROID-XU4. It indicates
that there is a 38.3% increase in hash rate for the
ODROID-N1 in real world operations. I only spent a
relatively short amount of time quickly going through
a bunch of thread and core combinations on the
ODROID-N1, so there is bound to be some room for
improvement. Even though the ODROID-N1 was
running 9, 3-way threads for the test, I was successful
in running 24 1-way threads. I did not try any higher
number of 1-way threads because the performance
was deteriorating. It just demonstrates the �exibility
and advantage of having 4GB of RAM (memory). In
the future, a 6-way thread test can be performed to
study the issue further. For the record, even though
the ODROID-XU4 was running at 2Ghz, the hash rate
was lower and unsustainable.

root@c3n0:~# odroid­cpu­control ­s ­M 2.0G

CPU0: max 1.40GHz [1.40GHz] ­> 1.40GHz

[1.40GHz]

CPU1: max 1.40GHz [1.40GHz] ­> 1.40GHz

[1.40GHz]

CPU2: max 1.40GHz [1.40GHz] ­> 1.40GHz

[1.40GHz]

CPU3: max 1.40GHz [1.40GHz] ­> 1.40GHz

[1.40GHz]

CPU4: max 1.70GHz [2.00GHz] ­> 2.00GHz

[2.00GHz]

CPU5: max 1.70GHz [2.00GHz] ­> 2.00GHz

[2.00GHz]

CPU6: max 1.70GHz [2.00GHz] ­> 2.00GHz

[2.00GHz]

CPU7: max 1.70GHz [2.00GHz] ­> 2.00GHz

[2.00GHz]

root@c3n0:~# ~/cpuminer­fireworm ­o

stratum+tcp://stratum.poolsloth.com:3333 ­u

xxxx ­p xxxx ­­randomize ­­no­redirect ­t 4 ­1

2

 Verium Miner forked from cpuminer 1.4

{fireworm} by fireworm@github **

 credits to tpruvot et al. &

effectsToCause et al. **

[2018­02­18 20:37:32] Starting Stratum on

stratum+tcp://stratum.poolsloth.com:3333

[2018­02­18 20:37:32] HugePages unavailable

(22)

[2018­02­18 20:37:32] 6 miner threads started,

using 'scrypt²' algorithm.

[2018­02­18 20:37:36] Stratum difficulty set to

0.025

[2018­02­18 20:37:36]

stratum.poolsloth.com:3333 scrypt² block 181963

[2018­02­18 20:37:42] accepted: 1/1 (100.00%),

0.00429 kH/s yes!

[2018­02­18 20:38:31] accepted: 2/2 (100.00%),

0.00642 kH/s yes!

[2018­02­18 20:38:48] Total: 356.060 H/m

[2018­02­18 20:39:58] Total: 357.322 H/m

[2018­02­18 20:41:01] Total: 353.908 H/m

[2018­02­18 20:41:02] accepted: 3/3 (100.00%),

0.00590 kH/s yes!

[2018­02­18 20:41:32] accepted: 4/4 (100.00%),

0.00611 kH/s yes!

[2018­02­18 20:42:12] Total: 347.295 H/m

^C

[2018­02­18 20:42:18] SIGINT received, exiting

Another good point of reference for comparison is
KaptainBlaZzed’s hardware hash rate comparison
sheet for VRM at http://goo.gl/hrYs2Q. On the second
sheet, accessed by the tab at the bottom, there is a
comparison of other SBC’s. Again, some context is in
order. My ODROID-XU4 posted hash rate is for solo
mining (get-work not a stratum server) and is a
sustainable hash rate at 1.7Ghz. If someone has
improved their cooling, has better OS or crypto-
algorithm tuning, they could possibly see better hash
rates. At the far right of the spreadsheet you can see
the Hashes/Watt results which also shed some light
on the e�ciency of the SBC’s. One other important
number missing is the Hashes/Dollar (capital cost). It
is another area that the ODROID SBC’s in general are
at or near the top.

Observations
It appears the PoP memory could be a�ecting system
thermal pro�les. For the moment at least, based on
the thermal pro�les of the ODROID-XU4 and the likes
of the ODROID-MC1, they seem to be more cost-
e�ective than ODROID-N1 for mining rigs.

For comments, questions, and suggestion, please visit
the original ODROID Forum thread at
https://forum.odroid.com/viewtopic.php?
f=149&t=30174. Additional information about the
upcoming ODROID-N1, along with updates on the
production release date, is available at
https://forum.odroid.com/viewtopic.php?
f=149&t=29932.

http://goo.gl/hrYs2Q
https://forum.odroid.com/viewtopic.php?f=149&t=30174
https://forum.odroid.com/viewtopic.php?f=149&t=29932

Prime Number Discovery: Use an ODROID-C2 to make
mathematical history
 March 1, 2018  By Ernst Mayer  ODROID-C2, Mathematics

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their
prime factors is known to be one of the mostf important
and useful in arithmetic.” − Carl Friedrich Gauss

In this article, I will give some background into some
of the algorithmic aspects of primality testing,
illustrate them using the Linux bc utility, and describe
some of the advanced algorithms used in the famous
Lucas-Lehmer (LL) primality test for Mersenne
numbers and the author’s own implementation
thereof in his Mlucas program. This software program
is now available in a version optimized for the vector-
arithmetic hardware functionality available in the
ARMv8 processor family, speci�cally the ODROID-C2
SBC. Note however, that the software is also buildable
on non-v8 ODROID SBC’s, but just not using the vector
instructions. Since the Mlucas readme page (linked
further down) provides detailed build instructions for

a variety of hardware platforms including ODROID
SBC’s, I shall focus here on the mathematics and
algorithmics, at a level which should be
understandable by anyone with a basic
understanding in algebra and computer
programming.

Primitive roots and primality
LL is example of what is referred to as a nonfactorial
primality test, which refers to the fact that it requires
no knowledge whatever about the factorization-into-
primes of the input number N, or modulus, though we
typically perform a pre-sieving “trial factorization” step
to check such numbers for small prime factors before
resorting to the LL test. Such tests rely on deep
algebraic properties of number �elds which are
beyond the scope of this article, but in essence they
amount to testing whether there exists a primitive root
of the mathematical group de�ned by multiplication

modulo N, which means a root of the maximal
possible order N−1. (This sounds like very highbrow
mathematics, but in fact reduces to very simple
terms, as we shall illustrate.) Such a root exists if and
only if (i.e. the converse holds) N is prime. For
example, if we compute successive powers of 2
modulo N = 7, we get the sequence 2,4,1,… which
repeats with length 3, meaning that either 7 is
composite or 2 is not a primitive root (mod 7). If we
instead try powers of 3 we get the sequence
3,2,6,4,5,1 which is of the maximal possible length
N−1 = 6 for the multiplicative group (mod 7), thus we
conclude that 7 is prime by way of having found 3 to
be a primitive root. If we instead try the powering
sequences resulting from the same two bases modulo
the composite 15 we get 2k (mod 15) = 2,4,8,1,… and 3k

(mod 15) = 3,9,-3,-9,…, for index k = 1,2,3,… . We note
that both sequences repeat with periodicity 4, which
is �rstly less than N−1 and secondly does not divide
N−1 (i.e. there is no chance of one of the recurring
ones in the 2k sequence landing in the N−1 slot), and
that the 3k sequence does not even contain a 1,
whereas both of the (mod 7) sequences contain one
or more ones, in particular both having 1 in the (N−1)
slot. That is, for N = 7 we have aN-1 ≡ 1 (mod N) for all
bases not a multiple of 7, where the triple-bar-equals
is the symbol for modular equivalence, i.e. the 2 sides
of the relation are equal when reduced modulo N. For
the (mod 15) sequences, on the other hand, the non-
occurrence of 1 as the N−1 power in either one
su�ces to prove 15 composite.

Computing such power-mod sequences for large
moduli is of course not practical for very large N, so
the idea of instead computing just the (N−1)th power
of the base is crucial, because that requires the
computation of a mere O(lg N) intermediates, where
lg is the binary logarithm. The resulting test turns out
to be rigorous only in the sense of correctly
identifying composite numbers, being merely
probabilistic for primes because it yields a false-
positive ‘1’ result for a small percentage of composite
moduli in addition to the prime ones, but can be
modi�ed to yield a deterministic (rigorous) test in for
a usefully large fraction of these problematic false
primes.

Fermat’s ‘little’ theorem and probable-primality
testing
Both rigorous primality tests and the so-called
probable-primality tests are based in one way or
another on the property of existence of a primitive
root, and it is useful to use the probable-prime variety
to illustrate the kind of arithmetic required to
implement such a test, especially for large moduli.
The “father of number theory”, Pierre de Fermat, early
in the 17th century had already observed and
formalized into an actual theorem what we noted
above, that for any prime p, if a is coprime to (has no
factors in common with) p — since p prime this
means a must not be a multiple of p — then

a^(p−1) ≡ 1 (mod p). [*]

This is now referred to as Fermat’s “little theorem” to
di�erentiate it from its more-famous (but of less
practical importance) “last theorem”, about the
solutions over the integers of the equation an+bn = cn;
the resulting test applied to numbers of unknown
character is referred to, interchangeably, as a Fermat
probable-prime or Fermat compositeness test. The
�rst appellation refers to the fact that an integer N
satisfying aN−1 ≡ 1 (mod N) for some base a coprime to
N is very likely to be prime, large-sample-statistically
speaking, the second to the fact that numbers failing
this criterion are certainly composite, even if an
explicit factor of N has not been found.

Pierre de Fermat, the “Father of Number Theory”

Note that the converse of [*] does not hold, that is,
there are coprime integer pairs a,N for which aN−1 ≡ 1
(mod N) but where N is not a prime; for example,
using the linux ‘bc’ utility one can see that the
composite N = 341 = 11 × 31 satis�es the theorem for
base a = 2, by invoking bc in a command shell and
simply typing ‘2^340%341’. This underscores the

importance of trying multiple bases if the �rst one
yields aN−1 ≡ 1 (mod N): for prime N, every integer in 2,
…,N-2† is coprime to N, and thus all these bases yield
1 for the powering result, whereas for composite N,
trying a small number of bases nearly always su�ces
to reveal N as composite. We say “nearly always”
because there exists a special class of integers known
as Carmichael numbers, which pass the Fermat test to
all bases which are coprime to N; the smallest such is
561 = 3×11×17. Carmichael numbers only reveal their
composite character if we happen to choose a base a
for the Fermat test which is not coprime to N, i.e. if we
�nd a factor of N. In practice one should always �rst
check N for small prime factors up to some bound (set
by the cost of such trial factorization) before
subjecting N to a Fermat-style probable-primality test.

† We skip both 1 and N−1 as potential bases because,
being ≡±1 (mod N), these two “bookend” values of a
both trivially yield aN−1 ≡ 1 for all odd N.

For base a = 2 there are precisely 10403 such Fermat
pseudoprimes, a miniscule number compared to the
nearly 200 million primes below that bound, so even
using just this single base yields a remarkably
e�ective way of determining if a number is likely to be
prime. For example, one can combine such a Fermat
base-2 pseudoprime test with a prestored table of the
known composites less than 232 which pass the test to
produce a very e�cient deterministic primality
algorithm for numbers below that bound. In the more
general context of testing numbers of arbitrary size,
however, it is important to realize that there are
certain classes of numbers, all of which are Fermat
base-2 pseudoprimes, irrespective of whether they
are prime or composite. The two best-known such
classes are, �rstly, the Mersenne numbers M(p) = 2p−1
(for which we restrict the de�nition to prime
exponents since that is required for a number of this
form to have a chance of being prime); for example,
211−1 passes the test even though it factors as 23 × 89.

The second class of such numbers is the Fermat
numbers Fm = 22m+1. It appears that the fact that the
�rst �ve such numbers, F0 – F4 = 3,5,17,257,65537 are
small enough to be amenable to pencil-and-paper
trial division and are easily shown to be primes that

way coupled with the fact that they all pass the test
named in his honor may have led Fermat to make his
famously incorrect conjecture that all such numbers
are prime. This conjecture was refuted by Euler a few
decades later, via his showing that 641 is a prime
factor of F5, and subsequent work has led to a
general belief that in all likelihood the smallest �ve
such numbers are in fact the only primes in the
sequence. Simply changing the base of the Fermat
test to, say, 3, su�ces to distinguish the primes from
the composites in this number sequence, but it
appears this idea never occurred to Fermat.

Carl Friedrich Gauss, one of the greatest
mathematicians of all time

E�cient modular exponentiation
To perform the modular exponentiation, we use a
general technique – or better, related set of
techniques – known as a binary powering ladder. The
name refers to the fact that the various approaches
here all rely on parsing the bits of the exponent
represented in binary form. By way of encouraging
the reader to compute alongside reading, we make
use of the POSIX built-in arbitrary precision calculator,
bc, which is relatively slow compared to higher-end
number-theoretic freeware programs such as Pari/GP
and the Gnu multiprecision library, GMP, but can be
exceedingly handy for this kind of basic algorithmic
‘rapid prototyping’. We invoke the calculator in default
whole-number mode simply via ‘bc’ in a terminal; ‘bc -
l’ invokes the calculator in �oating-point mode, in
which the precision can be adjusted to suit using the
value of the ‘scale’ parameter (whose default is 20
decimal digits), and the ‘-l’ de�nes the standard math
library, which contains a handful of useful functions

http://www.numericana.com/answer/pseudo.htm#pseudoprime

including natural logarithm and exponent,
trigonometric sine, cosine and arctangent (from which
other things can be built, e.g. ‘4*a(1)’ computes π to
the precision set by the current value of scale by using
that arctan(1) = π/4), and the Bessel function of the
�rst kind. The arithmetic base of bc’s inputs and
outputs can be controlled by modifying the values of
ibase and obase from their defaults of 10, for
example to view 23 in binary, type ‘obase = 2; 23’
which dutifully outputs 10111; reset the output base
back to its decimal default via ‘obase = 10’.

Note that for general – and in particular very large –
moduli we cannot simply compute the power on the
left-hand-side of [*] and reduce the result modulo N,
since the numbers get large enough to overwhelm
even our largest computing storage. Roughly
speaking, the powers double in length for each bit in
the exponent, so raising base 2 to a 64-bit exponent
gives a result on the order of 264, or
18,446,744,073,709,551,616 bits, or over 2000
petabytes, nicely illustrating the famous wheat and
chessboard problem in the mathematics of
geometric series. To test a number of the size of the
most-recently-discovered Mersenne prime, we need
to do tens of millions of these kinds of size-doubling
iterations, so how is that possible on available
compute hardware? We again turn to the properties
of modular arithmetic, one of the crucial ones of
which is that in computing a large ‘powermod’ of this
kind, we can do modular reduction at every step of
the way, whenever it is convenient to do so. Thus in
practice one uses a binary powering ladder to break
the exponentiation into a series of squarings and
multiplications, each step of which is followed by a
modular reduction of the resulting intermediate.

We will compare and contrast two basic approaches
to the binary-powering computation of ab (mod n),
which run through the bits of the exponent b in
opposite directions. Both do one squaring per bit of b
as well as some more general multiplications whose
precise count depends on the bit pattern of b, but can
never exceed that of the squarings. The right-to-left
method initializes an accumulator y = 1 and a current-
square z = a, then for each bit in n beginning with the
rightmost (ones) bit, if the current bit = 1, we up-

multiply the accumulator by the current square z,
then again square z to prepare for the next bit to the
left. Here is a simple user-de�ned bc function which
illustrates this – for simplicity’s sake we have omitted
some basic preprocessing which one would include
for sanity-checking the inputs such as zero-modulus
and nonnegative-exponent checks:

/*

 * right­to­left­to­right binary modpow, a^b

(mod n):

 */ 

define modpow_rl(a,b,n) {  

 auto y,z;

 y = 1;

 z = a%n; 

 while (b) {

  if(b%2) y = (y*z)%n;  

 z = (z*z)%n;

  b /= 2;

  } 

 return (y); 

}

We leave it as an exercise for the reader to implement
a simple optimization which adds a lookahead inside
the loop such that the current-square update is only
performed if there is a next leftward bit to be
processed, which is useful if the base a is large but
the exponent is small. After pasting the above code
into your bc shell, try a base-2 Fermat pseudoprime
test of the known Mersenne prime M(2203):
‘n=2^2203-1; modpow_rl(2,n-1,n)’ (this will take a few
seconds). Now retry with a composite exponent of
similar size, say 2205, and note the non-unity result
indicating that n = 22205−1 is also composite. Since
2205 has small prime factors 3,5 and 7, we can further
use the bc modulo function ‘%’ to verify that this
number is exactly divisible by 7,31 and 127.

Of course, we already noted that a base-2 Fermat
pseudoprime test returns ‘likely prime’ for all
Mersenne numbers, that is, for all 2p−1 with p prime,
we can use the above modpow function to check this,
now further modifying the return value to a binary 0
(composite) or 1 (pseudoprime to the given base):
‘n=2^2207-1; modpow_rl(2,n-1,n) == 1’ returns 1 even
though the Mersenne number in question has a small
factor, 123593 = 56×2207+1. Repeating the same

https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://www.smithsonianmag.com/smart-news/largest-prime-number-we-know-180967739/

Fermat pseudoprime test but now to base 3 correctly
reveals this number to be composite. Note the
associated jump in bc runtime – this appears to re�ect
some special-case optimizations in bc’s internal logic
related to recognizing arguments which are powers of
2 – we see a similar speed disparity when repeating
the pseudoprime test using bases 4 and 5, for
example.

Our next powering algorithm processes the bits in the
opposite direction, left-to-right. This method initializes
the accumulator y = a, corresponding to the leftmost
set bit, then for each rightward bit we square y, and if
the current bit = 1, we up-multiply the accumulator by
the powering base a. In a coding language like C we
could – either via compiler intrinsics or via a small
assembly-code macro – implement the bits() functions
via a binary divide-and-conquer approach or by
e�ciently accessing whatever hardware instruction
might be available for leading-zeros-counting, and our
bit-reversal function reverse() could be e�ciently
implemented using a small table of 256 precomputed
bit-reversed bytes, a loop to do bytewise swaps at the
left and right ends of our exponent, and a �nal step to
right-shift the result from 0-7 bits, depending on
where in the leftmost set byte the leftmost set bit
occurs. In bc we have no such bitwise functionality
and so must roll out own ine�cient emulation
routines, but as our focus is on large-operand
modpow, the time cost of such bitwise operations is
negligible compared to that of the modular
multiplications:

define bits(n) {

 auto ssave, r;

 ssave = scale; scale = 0; /* In case we're

in floating­point mode */

 r = length(n)*3321928095/1000000000;

 while (2^r > n) { r ­= 1; }

 scale = ssave;

 return(r+1);

}

define reverse(n,nbits) {

 auto tmp;

 tmp = 0;

 while(nbits) {

 tmp = 2*tmp + (n % 2);

 n /= 2;

 nbits ­= 1;

 }

 return(tmp);

}

/* left­to­right binary modpow, a^b (mod n): */

define modpow_lr(a,b,n) {

 auto y,len;

 len = bits(b); b = reverse(b,len);

 y = a%n; b /= 2;

 while(­­len) {

 y = (y*y)%n;

 if(b%2) y = (a*y)%n;

 b /= 2;

 }

 return(y);

}

The need for bit-reversal may also be avoided by
implementing the algorithm recursively, but as bc is,
shall we say, less than spi�y when it comes to e�cient
support for recursion, we prefer a nonrecursive
algorithm in the left-to-right case. We urge readers to
paste the above into their bc shell, use it to again try
the base-2 and base-3 Fermat-pseudoprime tests on
22207−1, and compare those runtimes to the ones for
the right-to-left algorithm. In my bc shell the left-to-
right method runs in roughly half the time on the
aforementioned composite Mersenne number,
despite the fact that the guts of the loops in our RL
and LR powering functions look quite similar, each
having one mod-square and one mod-multiply.

The reason for the speedup in the LR method
becomes clear when we examine precisely what
operands are involved in the two respective mod-
multiply operations. In the RL powering, we multiply
together the current power accumulator y and the
current mod-square z, both of which are the size of
the modulus n. In the LR powering, we multiply
together the current power accumulator y and the
base a, with the latter typically being order of unity, or
O(1) in standard asymptotic-order notation.

In fact, for small bases, we can replace the the a×y
product by a suitably chosen series of leftward
bitshift-and-accumulates of y if that proves
advantageous, but the bottom line – with a view to
the underlying hardware implementation of such

https://en.wikipedia.org/wiki/Exponentiation_by_squaring

arbitrary-precision operations via multiword
arithmetic – is that in the LR algorithm we multiply the
vector y by the scalar base a, which is linear in the
vector length in terms of cost. For general exponents
whose bits are split roughly equally between 0 and 1
we only realize this cost savings for the 1-bits, but our
particular numerical example involves a Mersenne
number all of whose bits are 1, thus the exponent of
the binary powering n−1 has just a single 0 bit in the
lowest position, and if vector-times-vector mod-
square and mod-multiply cost roughly the same (as is
the case for bc), replacing the latter by a vector-times-
scalar cuts the runtime roughly in half, as observed.

Marin Mersenne is best known for Mersenne prime
numbers, a special type of prime number

Deterministic primality proving
While the Fermat-pseudoprime test is an e�cient way
to identify if a given number is likely prime, our real
interest is in rigorously establishing the character,
prime or composite, of same. Thus it is important to
supplement such probable-primality tests with
deterministic alternatives whenever feasible. If said
alternative can be performed for similar
computational cost that is ideal, because computing
aN−1 (mod N) using the modular left-to-right binary
powering approach requires the computation of O(lg
N) modular squarings of N-sized intermediates and a
similar-sized number of modular multiplications of
such intermediates by the base a, which is generally
much smaller than N, meaning these supplementary
scalar multiplies do not signify in terms of the overall
large-N asymptotic algorithmic cost. There is reason
to believe – though this has not been proven – that a
cost of one modular squaring per bit of N is in fact the
optimum achievable for a non-factorial primality test.

Alas, it seems that there is only a limited class of
numbers of very special forms for which a
deterministic primality test of similarly low
computational cost exists – the most famous such are
again the aforementioned two classes. For the Fermat
numbers we use a generalization of the Fermat
pseudoprime test due to Euler, in which one instead
computes a(N−1)/2(mod N) and compares the result to ±
1, with the proper sign depending on a particular
algebraic property of N. For the Fermat numbers, it

su�ces to take a = 3 and check whether 3(Fm−1)/2 = 322m−1

≡ −1 (mod Fm), which requires precisely 2m−1 mod-
squarings of the initial seed 3. The su�ciency of this
in determining the primality of the Fermat numbers is
known as Pépin’s theorem. The reader can use either
of the above bc modpow functions to perform the
Pépin primality test on a Fermat number up to as
many as several kilobits in size; for example to test
the 2-kilobit F11, ‘n = 2^(2^11)+1; modpow_lr(3,(n-
1)/2,n) == n-1’. Note that the LR and RL algorithms run
in roughly the same time on the Fermat numbers,
since the power computed in the modular
exponentiation of Pépin test is a power of 2, thus has
just a single 1-bit in the leftmost position.

For the Mersenne numbers M(p) = 2p−1, the primality
test is based on the algebraic properties of so-called
Lucas sequences after the French mathematician
Édouard Lucas, but was re�ned later by number
theorist Derrick Lehmer into a simple algorithmic
form known as the Lucas-Lehmer primality test:
beginning with any one of an algebraically permitted
initial seed values x (the most commonly used of
which is 4), we perform precisely p−2 iterative
updates of the form x = x2−2 (mod M(p)); the
Mersenne number in question is prime if and only if
the result is 0. For example, for p = 5, we have
unmodded iterates 4,14,194,37634; in modded form
these are 4,14,8,0, indicating that the �nal iterate
37634 is divisible by the modulus 31 and thus that
this modulus is prime. As with our probable-primality
tests and the Pépin test, we have one such iteration
per bit of the modulus, give or take one or two.

To give a sense of the relative e�ciencies of such
specialized-modulus tests compared to deterministic
primality tests for general moduli, the fastest-known

of the latter are based on the arithmetic of elliptic
curves and have been used to prove primality of
numbers having around 20,000 decimal digits,
whereas the Lucas-Lehmer and Pépin tests have, as of
this writing, been performed on numbers
approaching 200 million digits. Since, as we shall show
below, the overall cost of the specialized tests is
slightly greater than quadratic in the length of the
input, this factor-of-10,000 size disparity translates
into a proportionally larger e�ective di�erence in test
e�ciency. In terms of the specialized-modulus tests,
the speed di�erence is roughly equivalent to a
hundred-millionfold disparity in testing e�ciency
based on the sizes of the current record-holders for
both kinds of tests.

Fast modular multiplication
Despite the super�cially di�erent forms of the above
two primality tests, we note that for both the crucial
performance-gating operation, just as is the case in
the Fermat pseudoprime test, is modular
multiplication, which is taking the product of a pair of
input numbers and reducing the result modulo a
third. (The additional subtract-2 operation of the LL
test is negligible with regard to these large-operand
asymptotic work scalings). For modest-sized inputs we
can use a standard digit-by-digit “grammar school”
multiply algorithm, followed by a division-with-
remainder by the modulus, but again, for large
numbers we must be quite a bit more clever than this.

Leonhard Euler, author of over 1000 papers, many
seminal, in �elds ranging from number theory to �uid
mechanics to astronomy, and who on losing his eyesight
in his late 40s famously (and truthfully, based on his
subsequent research output) remarked, “Now I will have
fewer distractions”

The key insight behind modern state-of-the-art large-
integer multiplication algorithms is due to Schönhage
and Strassen (see also
http://numbers.computation.free.fr/Constants/Algo
rithms/�t.html for a more mathematical exposition
of the technique), who recognized that multiplication
of two integers amounts to digitwise convolution of the
inputs. This insight allows any of the well-known high-
e�ciency convolution algorithms from the realm of
digital signal processing to be brought to bear on the
problem. Re�ecting the evolution of the modern
microprocessor, the fastest-known implementations
of such algorithms use the Fast Fourier Transform
(FFT) and thus make use of the �oating-point
hardware of the processor, despite the attendant
roundo� errors which cause the convolution outputs
to deviate from the pure-integer values they would
have using exact arithmetic.

In spite of this inexactitude, high-quality FFT software
allows one to be remarkably aggressive in how much
roundo� error one can sustain without fatally
corrupting the long multiplication chains involved in
large-integer primality testing: for example, the Lucas-
Lehmer test which discovered the most-recent
record-sized Mersenne prime, 277232917−1, used a
double-precision FFT which divided each of the
77232917-bit iterates into 222 input words of either 18
or 19 bits in length (precisely speaking 1735445 =
77232917 (mod 222) of the larger and the remaining
2458859 words of the smaller size), thus used slightly
greater than 18 bits per input ‘digit’ of the discrete
convolution. This gave �oating-point convolution
outputs having fractional parts (i.e. accumulated
roundo� errors) as large as nearly 0.4, which is
remarkably close to the fatal “I don’t know whether to
round this inexact �oating-point convolution output
up or down” 0.5 error level.

Nonetheless, multiple verify runs using independently
developed FFT implementations at several di�erent
(and larger, hence having much smaller roundo�
errors) transform lengths, on several di�erent kinds
of hardware, con�rmed the correctness of the initial
primality test. For an n-bit modulus, the large-n-
asymptotic compute cost of such an FFT-multiply is
O(n lg n), though realizing this in practice, especially

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
http://numbers.computation.free.fr/Constants/Algorithms/fft.html

when the operands get large enough to exceed the
sizes of the various-level data caches used in modern
microprocessors, is a far-from-insigni�cant
algorithmic and data-movement challenge. Since our
various primality tests require O(n) such multiply
steps, the work estimate for an FFT-based primality
test is O(n2 lg n), which is only a factor lg n larger than
the quadratic cost of a single grammar-school
multiply. The upshot is that to write a world-class
primality-testing program, one must write (or make
use of) a world-class transform-based convolution.

Roughly 20 years ago, I was on the faculty of
engineering at Case Western Reserve University in
Cleveland, Ohio, and was looking for an interesting
way to motivate the teaching of the Fast Fourier
Transform algorithm from signal processing to the
students in my undergraduate computational
methods class. Some online searching turned up the
use of FFT in large-integer multiplication and the rest
was history, as the saying goes.

The beginning of the largest prime number, discovered
on December 26, 2017 by a volunteer distributed
computing e�ort, has 23,249,425 digits

The second major algorithmic speedup in modern
primality testing came roughly a generation following
the Schönhage-Strassen algorithm, and involved the
required FFT length needed to multiply two integers
of a given size. In order to perform a modular multiply
of a pair of n-bit inputs, in general we must �rst
exactly compute the product, which is twice as many
bits in length, then reduce the product (i.e. compute
the remainder) with respect to the modulus in
question. For specialized ‘binary-friendly’ moduli such

as the Mersenne and Fermat numbers the reduction
can be done e�ciently using bitwise arithmetic, but to
compute the double-width product still imposes an
overhead cost, since it requires us to zero-pad our
FFT-convolution inputs with n 0 bits in the upper half
and use an FFT length twice as large as our eventual
reduced outputs otherwise would dictate.

This all changed in 1994, when the late Richard
Crandall and Barry Fagin published a paper showing
how for the special cases of Mersenne and Fermat-
number moduli such zero-padding could be avoided
by way of cleverly weighting the transform inputs in
order to e�ect an “implicit mod” operation. This
breakthrough yielded a more-than-factor-of-2
speedup in primality testing of these two classes of
moduli, and the associated kinds of discrete weighted
transforms have subsequently been extended to
several other interesting classes of moduli. For a
simple worked example of how an FFT can be used
for such an implicit mod, we refer the reader to the
author’s post at mersenneforum.org. Alas, the
various other important algorithmic aspects involved
in high-e�ciency mod mul on modern processor
hardware: non-power-of-2 transform length support,
nonrecursive in-place FFTs requiring no cache-
unfriendly bit-reversal reordering of the input vectors,
optimized data movement to permit e�cient
multithreading, etc, are beyond the scope of the
current article, but we assure the interested
reader/programmer that there is more, much more,
of interest involved. We now turn to the various
considerations which led to the special e�ort of
implementing assembly-code support for the ODROID
platform and its 128-bit vector-arithmetic instruction
set, and �nally to the nuts and bolts of compiling and
running the resulting LL-test code on the Odroid
platform.

Why the ARM platform?
I spent most of my development time over the past 5
years �rst parallelizing my existing Mlucas FFT code
schema using the POSIX pthreads framework plus
some added core-a�nity code based on the various
a�nity-supporting extensions provided in various
major Linuxes and MacOS. Once I had a working
parallel framework which supported both the scalar-

https://pdfs.semanticscholar.org/bb81/6028b29fb963fad51d74d363ae6c41194351.pdf
http://www.mersenneforum.org/showthread.php?t=120

double (generic C) and x86 SSE2 128-bit vector-SIMD
builds, I upgraded my SIMD inline-assembly-macro
libraries through successive updates to Intel’s vector
instruction set: �rst 256-bit AVX, then AVX2 which
�rstly promoted the vector-integer math to the same
footing as the �oating-point by extending the former
to the full 256-bit vector width and secondly added
support for 3-operand fused multiply-add (FMA3)
�oating-point arithmetic instructions. While working
on the most-recent such e�ort – that needed to
support Intel’s 512-bit AVX512 instruction set (which
�rst appeared in the market in a somewhat-
barebones but still very usable ‘foundation
instructions subset’ form in early 2017 in the Knights
Landing workstation family) last year I was also
considering a �rst foray into adding SIMD support to a
non-x86 processor family. The major considerations
for undertaking such an e�ort, which are typically 4-5
months’ worth of focused coding, debug and
performance-tuning, were as follows:

Large install base and active developer community;

Support for standard Linux+GCC compiler/debugger
tool�ow and POSIX pthreads parallelization;

Well-designed instruction set, preferably RISC-style,
with at least as many vector and general-purpose
registers as Intel AVX’s 16-vector/16-GPR, and
preferably as many registers (32 of each kind) as Intel’s
AVX512;

Support for FMA instructions;

Competitiveness with leading high-end processor
families (e.g. Intel CPUs and nVidia GPUs) in
performance-per-watt and per-hardware-dollar terms;

Likelihood of continued improvements in processor
implementations.

ARM (speci�cally the ARMv8 128-bit vector-SIMD
instructions and the various CPUs implementing it)
quickly emerged as the leading candidate. High power
e�ciency, a generous 32+32 register set, and an
excellent instruction set design, much better than
Intel SSE2 with its Frankensteinian bolted-together
aspects (consider the almost-comically-constricted
support of 64-bit vector integer instructions and the
lack of a ROUND instruction in the �rst SSE2 iteration
as just two of many examples here). Once I’d
purchased my little ODROID C2 and worked through

the expected growing pains of the new-to-me
instruction mnemonics and inline-assembly syntax
di�erences versus x86 SIMD, the development e�ort
went very smoothly. One early worry, in the form of
the somewhat-more-restricted FMA3 syntax versus
Intel’s, proved unfounded, the impact of said
restrictiveness being easily mitigated via some simple
rearrangement of operand order, in which regard the
generous set of 32 vector registers came in very
handy. One hopes ARM has a 256-bit upgrade of the
v8 vector instructions on their roadmap for the not-
too-distant future!

Setting up the software
The software is designed to be as easy to build as
possible under as wide variety of Linux distributions
as possible. Having had too many bad and time-
wasting experiences with the standard con�gure-and-
make build paradigm for Linux freeware I deliberately
chose to depart from it in somewhat-radical fashion,
instead putting a lot of e�ort into crafting my header
�les to as-far-as-possible automate the process of
identifying the key aspects of the build platform
during preprocessing, taking any of the software’s
supported hardware-speci�c identi�ers (e.g. user
wants to build for x86 CPUs which support the
AVX2/FMA3 vector-instruction subset, or more
pertinently for ODROID’ers, the ARMv8 128-bit SIMD
vector-arithmetic instructions) from the user at
compile time, in addition to choosing whether to build
a single-threaded or a multithreaded binary.

Building thus reduces to the following 3-step
sequence, which is laid out in the Mlucas homepage:
Inserting any applicable architecture-speci�c �ags,
compile all �les. On my ODROID-C2, I want to activate
the inline assembler targeting ARMv8 and I want to be
able to run in parallel on all 4 processor cores, so the
compile command is:

$ gcc ­c ­O3 ­DUSE_ARM_V8_SIMD ­DUSE_THREADS

../src/*.c >& build.log

Use grep on the build.log �le resulting from the
compile step for errors:

$ grep ­i error build.log

If no build-log errors, link a binary:

http://www.mersenneforum.org/mayer/README.html

$ gcc ­o Mlucas *.o ­lm ­lpthread ­lrt

Run the standard series of self-tests for the ‘medium’
range of FFT lengths covering all current and not-too-
distant-future GIMPS user assignments: ‘./Mlucas -s
m’. On an ODROID that will spend several hours
testing the various ways to combine the individual
complex-arithmetic radices which make up each of
the various FFT lengths covered by the self-test, and
capturing the ones which give the best performance
on the user’s particular hardware to a master
con�guration �le called mlucas.cfg, which is plaintext
despite the nonstandard su�x.

The most common kinds of build errors encountered
in the above typically can be traced to users targeting
an instruction set not supported by their particular
CPU or occasionally some particularity of the build
platform which needs some tweaks to the
preprocessor logic in the crucial platform.h header
�le. Since ODROID SBC’s come preloaded with
uniform Linux OS distributions, the only issues likely
to arise relate to the precise instruction set (v8 SIMD
or not) supported by the particular ODROID model
being used.

MLucas’ inline assembly code for ARMv8

On my ODROID-C2, running the 128-bit SIMD build of
the software on all 4 cores gives total throughput
roughly equivalent to that of a build using the x86
SSE2 128-bit vector instructions on a single core of a
2GHz Intel Core2 based laptop. This translates to
roughly 1/20th the total throughput achievable on the
author’s Intel Haswell quad using the 256-bit AVX2
instruction set, so the 2 kinds of platforms are not
really comparable on the basis of per-core
throughput. ARM-based platforms like ODROID rather
shine in terms of per-watt-hour and per-hardware-
cost throughput. In terms of an ODROID user of the
software having a realistic chance at discovering the
next Mersenne prime, well, we need to make up with
numbers what the higher-end hardware platforms
(Intel CPUs, nVidia GPUs) do with huge transistor
counts and power-hungry cores – i.e., we need to be
the army ants to their lions. And of course, speed
upgrades such as that promised by the recently-
announced ODROID-N1 can only help. It is an exciting
time to be micro-computing!

The end of the largest prime number discovered so far,
which took over 6 days to verify

ODROID Gaming: Saturn Games – Part 2
 March 1, 2018  By Tobias Schaaf  Gaming, Linux, ODROID-XU4

Once again, we return to the topic of the ODROID-
XU3/XU4 and Sega Saturn games. I have compiled a
list of fun games I enjoy playing on the ODROID. As
many of the games for the Sega Saturn were arcade
ports, this article will be full of shoot-’em-ups
(“shmups”) once again.

Galactic Attack
Galactic Attack, also known as Layer Section, is an
arcade shooter where you �ght on di�erent planes
(layers) at the same time. While you have regular guns
to shoot targets in front of you, you also have missiles
that can be aimed at ground targets. To do this, mark
them with your crosshairs and hit the second �re
button. You can choose up to six target at once,
launching six missiles at one or several individual
targets.

Figure 1 – Galactic Attack for the Sega Saturn running on
ODROID-XU3/XU4

Although it can make your life a lot easier, most of the
time you don’t need to attack ground targets.
However, when you �ght each stage boss, you are
often required to use both regular attacks and
missiles in order to defeat the boss. The boss �ghts

are rather nice and and not too extreme of a bullet-
fest. You’ll �nd out quickly what hard-points you’ll
need to aim for when shooting or launching missiles.

If you play with frame skipping turned on, the
graphics and animations may seem really jumpy. I
didn’t like that much, so I turned o� the frame
skipping completely. The game runs a lot slower that
way, but the animation is smooth and the slower
speed gives you some extra time to plan your moves.
I personally did not have an issue with the slow game
speed, though others might not like it. This game is
also available for MAME (or FBA) under the name
Gunlock, which runs a lot easier on the ODROID, but
misses the CD-quality soundtrack.

There is a sequel called Layer Section II for the Saturn
that is fully 3D and uses lots of mashing for
transparency which, in my opinion, doesn’t look very
good. It does work better with frame skipping and is
probably the faster of the two games when played on
the ODROID. Layer Section II was ported to the
PlayStation under the name RayStorm which, if you
ask me, is the better version for running on ODROID,
compared to the Saturn version.

Figure 2 – Boss �ghts in Galactic Attack are challenging,
but fun

Figure 3 – Boss �ghts in Galactic Attack are challenging,
but fun

The Sega Saturn version is quite nice due to the CD
soundtrack and the slower game speed when you
disable frame skipping makes gameplay a bit easier
compared to the MAME version. If you want the full
arcade experience, playing Gunlock under MAME or
FBA is probably the best option.

Game Tengoku–The Game Paradise
This unique game has you play an arcade shooter
inside an arcade. You actually �y inside an arcade,
and inside other arcade games: racing games, space
shooters, and the like. This game seems to only exist
in Japanese or directly for arcade machines (MAME),
although the Sega Saturn game o�ers a lot more than
the arcade version.

Figure 4 – Game Tengoku title screen on the Sega Saturn
running on ODROID

While the arcade version goes directly from the title
screen to the game, the Saturn version o�ers
additional features, as you’re greeted by a cute, nicely
animated anime girl.

Figure 5 – Game Mode selection and options in the Sega
Saturn version

The �rst option takes straight to the game, which is
mostly the same as the arcade version, although you
still get to select play style, including the choice of
vertical or horizontal scrolling. Be careful though, as
selecting horizontal play �ips the game controls
accordingly. If you select the second option in the
menu, each level will feature an anime cutscene that
tells some of the backstory. Since I don’t speak
Japanese, I don’t understand much but the
animations are cute and fully voice acted, which are
things that are not available in the arcade version. The
third menu option lets you select di�erent settings
such as button layout, sound, and music.

Figure 6 – Anime cutscenes between levels are very cute
and fully voiced

Figure 7 – Anime cutscenes between levels are very cute
and fully voiced

Aside from that, it’s your regular Japanese bullet-fest,
which means you probably going to die often. Luckily,
the game o�ers unlimited continues, which is quite
handy. The arcade version of this game must have
been very expensive to play. This game has both mid-
level bosses and end bosses. If you take too long to
defeat the mid-level bosses, they may actually escape.
The end-boss will always be there until you �nish it
o�.

The game is fun to play and frame skipping works �ne
without any jumpy screen, though I prefer to play it
without frame skipping for the slower reaction time.

Figure 8 – The �rst boss is an actual arcade machine

Figure 9 – These are just two enemies; imagine an
average of 5 to 10 on the screen

You can select between �ve di�erent �ghters, all of
whom have di�erent weapons. You have your
primary attack which is a forward-facing attack using
di�erent types of projectiles; a charged attack if you
hold down the �re button for a couple of seconds,
and your special attacks (bombs) that you can trigger
with another button. Your special attacks are strong
and defeat the bosses rather quickly.

Game Tengoku got a fully 3D sequel for the the
PlayStation with the ability to play with up to �ve
people, but the sequel lacks the anime cutscenes
between levels, although there are a few video
cutscenes, also anime styled. I don’t particularly like
the PlayStation sequel, although it is easier than the
Saturn or arcade version. If you die and use a

continue, you start at the beginning of the level, and
you still die quite often.

The sequel introduces a second layer of attack where
you tag an enemy with a crosshair and then launch a
third attack on them, similar to Galactic Attack, but it’s
neither required nor very helpful.
Additionally, you can no longer see if your “charged
attack” is actually charged, and instead have to guess
if it’s ready, which is quite annoying. I prefer the
Saturn/Arcade version over the PlayStation sequel,
even though the Playstation sequel has updated
graphics that look quite nice.

Hyper Duel
Hyper Duel is pretty straightforward shmup with
everything you expect from a representative of this
genre. It has both an Arcade mode and a Saturn
mode. You can adjust the di�culty level, number of
lives, and number of continues (1-5). You can select
one of three �ghters, each of which have di�erent
primary, secondary and special attacks. The
secondary attack, which transforms your �ghter into a
mecha, is more powerful attack but also makes you
bigger, slower, and easier to hit.

Pressing the �rst and second attack button at the
same time launches your special attack which can be
performed either as an aircraft or a mecha, with
slightly di�erent results depending on what form
you’ve chosen. In aircraft mode, your special attack is
more widespread which allows your to hit multiple
targets at the same time. In mecha mode, your
attacks are more focused, allowing you to deal more
damage.

Figure 10 – Hyper Duel for the Sega Saturn came out a
couple years after the arcade version

Unlike other shmups, special attacks don’t do vast
amounts of damage. Rather, they are a supportive
attack that does extra damage, allowing you to double
or triple your �repower. Instead of allowing you a set
amount of special attacks, your ability to use the
special attack is based on your energy levels. This
allows you to decide how long and how often you
want to use the special attack, providing you have a
su�cient store of energy.

Aside from powering up your main weapon, you can
also collect support units. You’re able to collect up to
four aircraft or mecha (depending on what you item
you collect), which accompany you in the background
until they are destroyed.

The game has incredibly animated backgrounds that
feel more alive than other games. Some levels work
�ne with or without frame skipping, while in other
levels frame skipping cause jumpiness. Again, I
preferred to play the slower mode without frame
skipping. Hyper Duel is also available for MAME, but
as it came out several years prior to the Saturn
version, it does not o�er features such as the CD
soundtrack or “Saturn Mode”. Aside from that, it’s a
near-perfect arcade port. I’ve actually beaten this
game on the ODROID, and I really enjoy playing the
Sega Saturn version.

Figure 11 – In this game, it’s not just the enemies who
can shoot hundreds of bullets

Figure 12 – In this game, it’s not just the enemies who
can shoot hundreds of bullets

Figure 13 – In this game, it’s not just the enemies who
can shoot hundreds of bullets

Keio Flying Squadron 2
Keio Flying Squadron 2 is a little bit di�cult for me to
describe. It combines jump and run platform puzzles
with other elements, such as side scrolling shooter
action. This game is amazing, and I especially love the
bright colors and cute anime style.

Figure 14 – Keio Flying Squadron 2 for Sega Saturn title
screen running on ODROID-XU3

Figure 15 – The �rst level is your standard jump and run
style

Figure 16 – In the third level you �y your trusty dragon
in a shmup-like manner

Occasionally you �ght your bosses in their own stage.
There are a lot of bonus stages where you can collect
points, if you’re good enough. I normally lose points,
instead. One reason I like this game is that it o�ers
many di�erent environments to play in. There’s no
playing in the same location for hours and hours on
end. Instead, play switches from one location, and
often one play style, to another.

There are scenes where you simply walk and jump
your way through each level, while in other levels you
ride on a train or in a roller-coaster wagon. You collect
di�erent weapons and other items to help along the
way. For example, there is an umbrella which protects
you from falling objects as well as letting you glide for

a short distance when you jump. You can use a bow
to hit enemies from a distance, or a hammer if you
prefer to get close and personal. Collecting 100
golden bunnies you get an extra life, and look out for
hidden paths and chests that hold an extra life or
other useful items.

The game is quite demanding, performance-wise,
especially with transparencies like the waterfalls in
the �rst level. Frame skipping is a must have. You may
notice some scrolling issues. Turning left to right, or
right to left, the screen scrolls to the side and this can
be a little bit jittery, but the game itself plays rather
well, although better performance would be nice. If
you like run-and-jump games and can deal with the
frustration of puzzle-solving, I highly recommend this
game!

Figure 17 – Riding a rollercoaster

Figure 18 – Diving underwater. Note the bright colors

King of Fighters 96/97
The Sega Saturn had many arcade ports, which means
we can play the famous King of Fighters series on the
Sega Saturn and let me tell you, it plays really well.

Figure 19 – King of Fighters ‘96 and ‘97 for Sega Saturn
running on ODROID-XU3/XU4

Figure 20 – King of Fighters ‘96 and ‘97 for Sega Saturn
running on ODROID-XU3/XU4

King of Fighters is actually one of the few games that
require or bene�t from memory expansion for the
Sega Saturn. There are two Memory expansion
cartridges (8Mb and 32Mb) available for the Sega
Saturn, which increases the Sega Saturn memory
from either 1MB or 4MB depending on the extension.

While King of Fighters ‘96 only works with the 1MB
expansion (4MB causes graphic issues), King of
Fighters ‘97 actually supports both expansions,
although only 1MB is required. Both games work

really well on the ODROID. Both games are also
available for Neo Geo and play pretty much the same,
although the Neo Geo versions are more �uid. Still,
it’s a very good arcade port and worth playing.

Figure 21 – Beautiful animation for both the �ghters and
for the background

Figure 22 – Beautiful animation for both the �ghters and
for the background

Figure 23 – King of Fighters ‘97: More of the same
�ghting goodness – a very solid arcade port

Figure 24 – King of Fighters ‘97: More of the same
�ghting goodness – a very solid arcade port

It’s hard to decide which is the better version, ‘96 or
‘97. I like them both. In my opinion, it’s one of the
better �ghting series. As the Saturn has many arcade
ports there are bound to be more of these in the
future.

Honorable Mentions

Guardian Heroes
Guardian Heroes is a nice beat-’em-up, similar to
Streets of Rage or Golden Axe, but in a fantasy setting
with knights, wizards, skeletons, and so on. I really like
this game and planned on going more into detail.
Sadly, it freezes on the second stage, rendering the
game unplayable. I hope a newer version of Yabause
will �x this, as this is a fun game to play and I would

love putting it on my list of favorite games for the
Saturn.

Linkle Liver Story
Sadly, this game is only available in Japanese and
since I don’t speak Japanese, I don’t understand what I
have to do. The game itself looks gorgeous, with
colorful anime-style graphics and bright warm colors.
It’s also very demanding, so there’s a lot of frame
skipping, which you see in your character animation,
but the game itself works rather well. I have a feeling
that if I understood Japanese, this would be a very fun
Action Role Playing Game (ARPG) to play. If you
understand Japanese and like RPG games, I
recommend trying this game.

Lode Runner Returns
This one is a nice remake of Lode Runner. Although
only available in Japanese, it is a lot fun to play. I
enjoyed it quite a bit, but as it is just a little puzzle

game I don’t consider it a “must have” for the Saturn.
Still, it’s a nice game and plays perfectly �ne on the
ODROID. If you like these kind of puzzle games I
would highly recommend it.

Loaded
Loaded is a nice third-person top-down shooter
similar to the old Alien shooters for the Amiga, where
you run through level open doors, kill enemies, and
collect key cards to open more doors until you have
enough key cards to exit the level. You can select one
of six characters with di�erent weapons and special
attacks. There are also items you can pick up such as
health packs, ammunition, or weapon upgrades. The
graphics feature 3D environments combined with 2D
characters sprites, making it look a bit dated, but it’s
still quite fun to play. If you like some top down
shooter action grab it and try it, it’s works very well on
the ODROID-XU3/XU4.

Web Kiosk: How To Build A Chromium-Based Touchscreen
Experience
 March 1, 2018  By @ZacWolf  ODROID-C2, Tinkering

I was looking for a platform that would allow me to
bring together various remote-control functionalities
under a single device/interface. I had tried various
“universal remotes” but none of them really o�ered
me the full combination of capabilities I was looking
for. I am a Java developer by trade, so I decided to
create a Java based web application that I could use to
bring together control of all my various home
entertainment systems under a single interface. I will
write up another article for that later on, but for now
this one should get your running with a basic
touchscreen based browser that auto-starts on
power-up.

Figure 1 – Web Kiosk

Hardware
After some research, I decided to go with an ODROID-

C2 device. This article will only work on one of these
devices, and is not compatible with a Raspberry Pi
device due to various di�erences. However,
information from this article may be useful a guide in
creating a Raspberry Pi-based kiosk. The software and
con�gurations detailed here are going to be very
speci�c to Hardkernel’s ODROID devices.

The hardware parts list is listed below. They can be
obtained from Hardkernel directly
(http://goo.gl/rsyevF) or from one of the many
distributors (http://goo.gl/7MJduR).

Required hardware
The items shown in Figures 2-4 are the base hardware
for the ODROID-C2.

Figure 2 – ODROID-C2

Figure 3 – eMMC module with reader

Figure 4 – Power supply

For display, you could use one of the supported
touchscreen displays shown in Figures 5-8.

ODROID VU5 5″ 800×480 Multitouch Touchscreen

Figure 5 – 5” VU5 display

ODROID VU7 7″ 800×480 Multitouch Touchscreen

http://goo.gl/rsyevF
http://goo.gl/7MJduR

Figure 6 – 7” VU7 display

ODROID VU7+ 7″ 1024×600 Multitouch Touchscreen

Figure 7 – 7” VU7 Plus display

ODROID VU8C 8″ 1024×768 Multitouch Touchscreen

Figure 8 – 8” VU8C display

Note that the ODROID VU8C requires the higher
capacity 5V/4A power supply

Optional hardware
2 x DC Plug Cable Assembly 2.5mm

Figure 9 – DC plug

2 x Bluetooth Module 2

Figure 10 – Bluetooth module

HiFi Shield Plus

Figure 11 – HiFi shield plus

While I marked the “DC Plug Cable Assembly” as
optional, at $1.25 I highly recommend that you
purchase two, as they are nearly impossible to source
from anyone else. This way, depending on the
demands of your �nal project, you can use a larger
power-supply (one of the 5V 4A for example), and

with a little soldering change out the larger barrel on
those plugs for use with this tiny plug.

The Bluetooth Modules are also optional. By default,
the VU7+ monitor does not have speakers, so if you
want sound you will need to use one of the ODROID
DACs (such as the HiFi Shield Plus listed above) or use
Bluetooth for your sound. Since these are cheap, I
recommend also purchasing two in case you want to
use one for audio and another to act as a remote
control interface, etc.

Once you decide on your parts, review the speci�c
Wiki page (http://goo.gl/6Kx2pf) for usage details of
the monitor of your choice. If you need help, visit the
Hardkernel forums at
https://forum.odroid.com/index.php.

Software
The software image loaded on the eMMC card from
Hardkernel is quite bloated for use in a kiosk, so for
this build we will be using @meveric’s Debian Stretch
image – details about the image can be found at
http://goo.gl/YW21Aa. Download the 93MB C2.img.xz
image �le from http://goo.gl/W9qDmg or the mirror
at http://goo.gl/B1bTDW.

Next, download a tool called Etcher
(https://etcher.io/) which will allow you to write the
image �le you downloaded above to the eMMC card.
To do this, use the eMMC to SD card adapter, and
insert into a microSD card reader on the computer
you will be running Etcher on.

When you run Etcher, you �rst select the image you
downloaded and then select the microSD card reader,
then hit Flash. Note that when selecting a drive in this
step, ensure it is your microSD card reader, if not,
Etcher will overwrite that drive and the data cannot
be recovered. Read the instructions on the Etcher
download page before attempting to burn images to
boot media.

Also, on Microsoft Windows, when you insert the
eMMC to SD card adapter, you may get pop ups about
the need to format the drive. Ignore these dialogs.
Just hit cancel and close any FileManager windows.
The same will happen when Etcher starts and when it
�nishes. Just close any Windows dialogs that popup.

Once Etcher is complete, you can remove the
eMMC2SD card adapter, detach the eMMC card, and
insert the card at the receptacle in the bottom of your
ODROID.

For this next step, you will need to use a regular HDMI
monitor, not the touchscreen monitor selected
earlier. You will also need to plug in a keyboard into
the ODROID-C2 for this step. The default OS is
con�gured for a 1920 x 1080p x 60hz screen, so using
the touchscreen will make any text unreadable. Also,
enable wired network connectivity to your ODROID-
C2.

Power up the machine. You will see a series of boot
time output. The screen will blank, which is normal as
it expands the software image onto the full space of
the eMMC drive. The screen will then resume with the
startup output and then transition to the login screen.

When you get to the login prompt enter the
authentication data:

Username: root

 Password: odroid

Issue the following commands, approving any
prompts along the way:

$ sudo apt­get update && sudo apt­get dist­

upgrade ­y

About halfway through, you will see a warning about
rebuilding the kernel. Just select (highlight) the “OK”
option and hit Enter.

When the process is complete, enter the following
commands:

$ sudo apt­get install net­tools ­y && clear

$ ifconfig eth0

This last command will give you the IP address and
MAC address for your ODROID-C2. Save the output
information (to a �le or write on paper) for future use,
as the IP address will be needed for the next steps,
and the MAC address (preceded with the word
“ether”) may be needed if your DHCP server changes
the IP down the road.

Now, with the ODROID-C2 still connected to the full
monitor, issue the following command:

http://goo.gl/6Kx2pf
https://forum.odroid.com/index.php
http://goo.gl/YW21Aa
http://goo.gl/W9qDmg
http://goo.gl/B1bTDW
https://etcher.io/

$ sudo reboot

This will reboot the ODROID-C2, display the startup
messages and then �nally give you the login prompt.
You can remove the keyboard from the ODROID, as it
is not needed from this point forward, but keep the
full monitor plugged into the device until instructed to
attach the touchscreen.

Preparing the touchscreen display
At this point, we are going to switch to connecting to
the ODROID-C2 from your main computer. You will
need to be familiar with an application called SSH. If
you are not, google “SSH” along with your OS Name.
For Microsoft Windows, the easiest application is
called PuTTY, and for OSX, there is an SSH client built
into the system, which is accessible from the terminal.
Once you have SSH running, connect to the IP address
that you wrote down in the previous step.

Figure 12 – Touchscreen display

Once connected, you will be prompted to login with
the same credentials you used earlier:

Username: root

Password: odroid

Enter the following commands:

$ cd ~ && mkdir software && cd software

$ wget ­O setup.sh

https://raw.githubusercontent.com/ZacWolf/WebKi

osk/master/setup.sh

$ chmod 700 ./setup.sh

$./setup.sh

This will prompt you for a new password. Then,
con�gure your monitor settings. Once the blue light

has stopped �ashing on the ODROID-C2, remove the
power cable. Unplug the HDMI monitor cable.

Figure 13 – Clear display

Plug in the touch screen’s HDMI cable into the
ODROID-C2 as well as the power cord. The
touchscreen should now �ll with the startup text. If
the text is wavy, or corrupted, review your previous
steps.

Figure 14 – Working display

Once the ODROID is completely booted, you should
see the login prompt on the screen.

Back in your SSH application, the connection will have
ended when you issued the shutdown command. You
will need to restart the connection. Each client does
this di�erently, but in worst case just close the
window and open a new session to the same IP
address that you entered earlier.

This time at the login prompt, use the following
credentials:

Username: root

Password: {the password you set in the previous

step}

You should see a screen that looks like the image
above. Back in SSH, issue the following command:

$ setupkiosk.sh

This will walk you through the con�guration process.
It will walk you through setting up your default-
language, keyboard, timezone, hostname, NODM
(answer Yes) and kiosk con�guration. Finally, it will
automatically reboot the ODROID-C2.

After the ODROID-C2 reboots, the screen will remain
blank for about a minute and then the default
homepage should be displayed on the display.

Troubleshooting
I had mixed results with getting the ODROID WiFi 3
module to work, so I just went with wired ethernet
connectivity. If you are unable to get SSH to work, the
ODROID-C2 is con�gured to use DHCP, so more than
likely what has happened is that during a reboot the
ODROID-C2 picked up a new IP address.

You can address this in three ways:

1) Try to connect with the hostname that you
assigned the ODROID during the setup. If you are
lucky, your router will resolve this address for you, but
it is far from guaranteed.

2) Modify the /etc/network/interfaces �le to con�gure
a static IP address (not recommended).

3) It is best to con�gure a static lease in your DCHP
server. More than likely, this is done in your WiFi
Router and is referred to as a “static lease” or
“reserved address”. You will have to look up the
directions for your speci�c router on how to con�gure
this but it is the best way as you will not have to worry
about populating DNS/subnet information in the
interfaces �le as that may change if you upgrade your
router, etc.

If this happens after you are already running the
kiosk, you may be stuck with going with the 3rd
option, which is why it is best to do it this way from
the very beginning.

If you decide to change monitors, simply login via SSH
as root and issue the command:

$ touchscreen.sh

For comments, questions and suggestions, please
visit the original article at
http://www.instructables.com/id/Web-Kiosk/.

http://www.instructables.com/id/Web-Kiosk/

clInfo: Compiling The Essential OpenCL GPU Tuning Utility For
The ODROID-XU4
 March 1, 2018  By @hominoid  ODROID-XU4, Tutorial

I’ve been digging into why clinfo does not work on the
ODROID-XU4 so I took some time to �gure out why. I
had also noticed lots of posts asking about clinfo not
working on other SBC’s but found no solutions for any
SBC. So I thought it might be important to �rst
investigate this to make sure OpenCL was indeed
setup correctly before going further with trying to �x
OpenCL kernels for the sgminer project. The only
time, on other platforms such as x86_64, I had seen it
not working is when there had been an issue with the
GPU driver. Here’s what happens when you run clinfo
on anODROID-XU4:

$ sudo apt­get install clinfo

$ sudo clinfo

Number of platforms 0

The good news is I did recently get clinfo to work
correctly, and it reports a bunch of information on the

Mali GPU, which looks great. The additional info will
help understand and tune the GPU better. It appears
that setting up the a vendor ICD �le for ARM GPU was
needed, in a speci�c location.

$ sudo clinfo

Number of platforms 1

Platform Name ARM Platform

Platform Vendor ARM

Platform Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Platform Profile FULL_PROFILE

Platform Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

Platform Extensions function suffix ARM

Platform Name ARM Platform

Number of devices 2

Device Name Mali­T628

Device Vendor ARM

Device Vendor ID 0x6200010

Device Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Driver Version 1.2

Device OpenCL C Version OpenCL C 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Device Type GPU

Device Profile FULL_PROFILE

Max compute units 4

Max clock frequency 600MHz

Device Partition (core)

Max number of sub­devices 0

Supported partition types None

Max work item dimensions 3

Max work item sizes 256x256x256

Max work group size 256

Preferred work group size multiple 4

Preferred / native vector sizes

char 16 / 16

short 8 / 8

int 4 / 4

long 2 / 2

half 8 / 8 (cl_khr_fp16)

float 4 / 4

double 2 / 2 (cl_khr_fp64)

Half­precision Floating­point support

(cl_khr_fp16)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Single­precision Floating­point support (core)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Double­precision Floating­point support

(cl_khr_fp64)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Address bits 64, Little­Endian

Global memory size 2090344448 (1.947GiB)

Error Correction support No

Max memory allocation 522586112 (498.4MiB)

Unified memory for Host and Device Yes

Minimum alignment for any data type 128 bytes

Alignment of base address 1024 bits (128 bytes)

Global Memory cache type Read/Write

Global Memory cache size Global Memory cache

line 64 bytes

Image support Yes

Max number of samplers per kernel 16

Max size for 1D images from buffer 65536 pixels

Max 1D or 2D image array size 2048 images

Max 2D image size 65536x65536 pixels

Max 3D image size 65536x65536x65536 pixels

Max number of read image args 128

Max number of write image args 8

Local memory type Global

Local memory size 32768 (32KiB)

Max constant buffer size 65536 (64KiB)

Max number of constant args 8

Max size of kernel argument 1024

Queue properties

Out­of­order execution Yes

Profiling Yes

Prefer user sync for interop No

Profiling timer resolution 1000ns

Execution capabilities

Run OpenCL kernels Yes

Run native kernels No

printf() buffer size 1048576 (1024KiB)

Built­in kernels

Device Available Yes

Compiler Available Yes

Linker Available Yes

Device Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

Device Name Mali­T628

Device Vendor ARM

Device Vendor ID 0x6200010

Device Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Driver Version 1.2

Device OpenCL C Version OpenCL C 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Device Type GPU

Device Profile FULL_PROFILE

Max compute units 2

Max clock frequency 600MHz

Device Partition (core)

Max number of sub­devices 0

Supported partition types None

Max work item dimensions 3

Max work item sizes 256x256x256

Max work group size 256

Preferred work group size multiple 4

Preferred / native vector sizes

char 16 / 16

short 8 / 8

int 4 / 4

long 2 / 2

half 8 / 8 (cl_khr_fp16)

float 4 / 4

double 2 / 2 (cl_khr_fp64)

Half­precision Floating­point support

(cl_khr_fp16)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity I Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Single­precision Floating­point support (core)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Double­precision Floating­point support

(cl_khr_fp64)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations No

Address bits 64, Little­Endian

Global memory size 2090344448 (1.947GiB)

Error Correction support No

Max memory allocation 522586112 (498.4MiB)

Unified memory for Host and Device Yes

Minimum alignment for any data type 128 bytes

Alignment of base address 1024 bits (128 bytes)

Global Memory cache type Read/Write

Global Memory cache size Global Memory cache

line 64 bytes

Image support Yes

Max number of samplers per kernel 16

Max size for 1D images from buffer 65536 pixels

Max 1D or 2D image array size 2048 images

Max 2D image size 65536x65536 pixels

Max 3D image size 65536x65536x65536 pixels

Max number of read image args 128

Max number of write image args 8

Local memory type Global

Local memory size 32768 (32KiB)

Max constant buffer size 65536 (64KiB)

Max number of constant args 8

Max size of kernel argument 1024

Queue properties

Out­of­order execution Yes

Profiling Yes

Prefer user sync for interop No

Profiling timer resolution 1000ns

Execution capabilities

Run OpenCL kernels Yes

Run native kernels No

printf() buffer size 1048576 (1024KiB)

Built­in kernels

Device Available Yes

Compiler Available Yes

Linker Available Yes

Device Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

NULL platform behavior

clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...)

ARM Platform

clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...)

Success [ARM]

clCreateContext(NULL, ...) [default] Success

[ARM]

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_CPU) No devices found in

platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_GPU) Success (2)

Platform Name ARM Platform

Device Name Mali­T628

Device Name Mali­T628

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_ACCELERATOR) No devices found in

platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_CUSTOM) No devices found in

platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_ALL) Success (2)

Platform Name ARM Platform

Device Name Mali­T628

Device Name Mali­T628

ICD loader properties

ICD loader Name OpenCL ICD Loader

ICD loader Vendor OCL Icd free software

ICD loader Version 2.2.8

ICD loader Profile OpenCL 1.2

NOTE: your OpenCL library declares to support

OpenCL 1.2,

but it seems to support up to OpenCL 2.1 too.

On the x86 platforms, it appears that setup of the ICD
vendor �les and OpenCL libraries is done during
driver installation. This might be why I’ve not seen
clinfo working anywhere on ARM. Should the ICD �le
be part of the setup done by Hardkernel as the
vendor? Install the frame bu�er and clinfo if not
already:

$ sudo apt­get install mali­fbdev clinfo

Next, setup the vendor ICD �le, after which running
clinfo should now report the Mali GPU information
correctly:

$ sudo mkdir /etc/OpenCL

$ sudo mkdir /etc/OpenCL/vendors

$ echo "/usr/lib/arm­linux­gnueabihf/mali­

egl/libOpenCL.so" >

/etc/OpenCL/vendors/armocl.icd

Although the OpenCL libraries and include �les are
not needed for clinfo, there is no standard location
for their installation. I have read many things, but this
post seemed to have the best handle on things, but it
is dated. The following steps demonstrate speci�cally
how to use the consensus locations that AMD, NVIDIA
and INTEL follow(ed) for libraries and include �les. No
explicit references are then needed to link to the
OpenCL libraries.

First, download the ComputeLibrary source code, or
use the existing ARM Computer Vision and Machine
Learning library:

https://github.com/ARM-software/ComputeLibrary

$ cd /opt

$ sudo tar ­xvzf ~/arm_compute­v18.01­

bin.tar.gz

$ cd ~/

$ rm arm_compute­v18.01­bin.tar.gz

$ sudo cp /opt/arm_compute­v18.01­

bin/include/CL/* /usr/include/CL/

$ sudo mkdir /usr/lib/OpenCL

$ sudo mkdir /usr/lib/OpenCL/vendors

$ sudo mkdir /usr/lib/OpenCL/vendors/arm

$ sudo cp /opt/arm_compute­v18.01­

bin/lib/linux­armv7a­cl/*

/usr/lib/OpenCL/vendors/arm/

$ sudo echo "/usr/lib/OpenCL/vendors/arm" >

/etc/ld.so.conf.d/opencl­vendor­arm.conf

$ sudo ldconfig

All help and comments are welcomed and
appreciated, and the forum support thread may be

found at https://forum.odroid.com/viewtopic.php?
f=95&t=30141.

Prospectors, Miners, and 49er’s: Dual GPU-CPU Mining on the
ODROID-XU4/MC1/HC1/HC2
 March 1, 2018  By @hominoid  ODROID-HC1, ODROID-MC1, ODROID-XU4, Tutorial

There are many people using the XU4/MC1/HC1/HC2
for CPU crypto-mining, so what could be better than
using your GPU for mining as well? The algorithm
performance isn’t viable for many popular coins but in
the right situation it might make sense, such as for
new coins or coins with a low di�culty. If nothing else,
it’s another fun tool for your toolbag.

After looking around at the available options, work
began on getting the genesis mining fork of SGMiner
compiled. SGMiner-GM 5.5.5 is an OpenCL GPU crypto
miner and is the most recently maintained version of
SGMiner. It has been around a while, supports more
crypto algorithms than earlier versions, and has no
usage fee. It includes mining for Credits, Scrypt,
NScrypt, X11, X13, X14, X15, Keccak, Quarkcoin,
Twecoin, Fugue256, NIST, Fresh, Whirlcoin, Neoscrypt,
WhirlpoolX, Lyra2RE, Lyra2REV2, Pluck, Yescrypt,

Yescrypt-multi, Blakecoin, Blake, Vanilla, Ethash,
Cryptonight, and Equihash.

The program source is available for download from
https://goo.gl/Gp25ep, and the forum support thread
can be viewed at https://goo.gl/hDVmbF.

Figure 1 – XU4 Dual pool mining Monacoin with
CPUMiner-Multi and SGMiner-GM 5.5.5 using Lyra2REv2

It is possible, in conjunction with CPUMiner-Multi or a
coin speci�c miner like VeriumMiner, to concurrently

https://goo.gl/Gp25ep
https://goo.gl/hDVmbF

CPU and GPU mine. Extensive testing has not been
done, but a number of dual-mining con�gurations,
including scrypt2, Lyra2REv2, and cryptonight (CPU
only) solo and pool-mining, have been completed
successfully. It is possible to solo-mine on one and
pool mine on the other while running other crypto
algorithms. CPU temperatures while dual-mining
require the large CPU cores to be slowed down so
please pay attention to the temperatures if you try
this!

CPUMiner-Multi supports more than 45 crypto
algorithms, making it quite useful for dual-mining
multiple algorithms. If you’re not yet familiar with it,
check it out at https://goo.gl/hUQG3F. Another
helpful dual-mining program for those mining Verium
(VRM) is a fork of VeriumMiner by �reworm71 at
https://goo.gl/6ET7bj.

The minder can run 1-way and 3-ways at the same
time which allows for better memory utilization. It
appears that if the GPU (SGMiner) is started �rst, you
end up with more memory to use for the CPU crypto
algorithm while dual-mining. Below is the command
line used mining Verium (4 large cores 3-way and 1
small core 1-way) while also GPU mining Monacoin
with Lyra2REv2:

$ ~/cpuminer ­o stratum+tcp://yourpool.na:port

­u username ­p password ­­randomize ­­no­

redirect ­t 4 ­1 1 ­­cpu­affinity­stride 1 ­­

cpu­affinity­default­index 4 ­­cpu­affinity­

oneway­index 0

Compile SGMiner-GM 5.5.5
The following instructions are typical for SGMiner,
with the exclusion of the source �le edits. For general
reference and con�guration information there is a
good install Wiki for x86 Ubuntu 16.04 at
https://goo.gl/qnFmb2. First, download the latest
ARM Computer Vision and Machine Learning library
from https://goo.gl/LdFvy5.

Please note that the uncompressed package will not
�t on a 8GB SD card. You can delete the unnecessary
libraries from ./arm_compute-v17.12-bin/lib to get it
down to size. Keep the linux-armv7a libraries and
delete the android-* and linux-arm8*.

Default installation is /usr/lib/arm_compute-v17.12-
bin

$ cd /usr/lib

$ tar ­xvzf ~/arm_compute­v17.12­bin.tar.gz

$ cd ~/

$ rm arm_compute­v17.12­bin.tar.gz

Download the AMD APP SDK from
https://goo.gl/cZeDJc. This is for a root installation
from ~/. See the installation notes for a non-root
installation at https://goo.gl/Hw7vkP. The default
installation is /opt/AMDAPPSDK-3.0.

$ tar ­xvjf AMD­APP­SDKInstaller­v3.0.130.136­

GA­linux32.tar.bz2

$./AMD­APP­SDK­v3.0.130.136­GA­linux32.sh

$ rm AMD­APP­SDK­v3.0.130.136­GA­linux32.sh

$ rm AMD­APP­SDKInstaller­v3.0.130.136­GA­

linux32.tar.bz2

Download AMD Display Library (ADL) SDK from
https://goo.gl/CqhZq1:

$ apt­get install unzip

$ unzip ADL_SDK_V10.2.zip ­d /opt/ADL_SDK_V10.2

$ rm ADL_SDK_V10.2.zip

Install the dependencies with the following command:

$ apt­get install automake autoconf pkg­config

$ libcurl4­openssl­dev libjansson­dev libssl­

dev libgmp­dev make $ g++ git libgmp­dev

libncurses5­dev libtool mali­fbdev

Note that mali-fbdev is needed if using Ubuntu
minimalist image, otherwise use Mali-T628-ODROID
for the Debian minimalist image.

Download Git and move headers with the following
commands:

$ git clone

https://github.com/genesismining/sgminer­gm

$ cd sgminer­gm

$ cp /opt/ADL_SDK_V10.2/include/*.h ./ADL_SDK

Some of the versions of SGMiner I’ve looked at have
similar compile issues; others have additional
problems. Here is what to change in the SGMiner-
5.5.5 source code to get it to compile correctly. Make
the following edits in 4 �les:

Change line 32 of kernel/lyra2rev2.cl from:

https://goo.gl/hUQG3F
https://goo.gl/6ET7bj
https://goo.gl/qnFmb2
https://goo.gl/LdFvy5
https://goo.gl/cZeDJc
https://goo.gl/Hw7vkP
https://goo.gl/CqhZq1

#pragma OPENCL EXTENSION cl_amd_printf : enable

to:

#pragma OPENCL EXTENSION cl_amd_printf :

disable

Change kernel/skein256.cl starting on line 49-59 from:

__constant static const int ROT256[8][4] =

 {

 46, 36, 19, 37,

 33, 27, 14, 42,

 17, 49, 36, 39,

 44, 9, 54, 56,

 39, 30, 34, 24,

 13, 50, 10, 17,

 25, 29, 39, 43,

 8, 35, 56, 22,

 };

to:

__constant static const int ROT256[8][4] =

 {

 {46, 36, 19, 37},

 {33, 27, 14, 42},

 {17, 49, 36, 39},

 {44, 9, 54, 56},

 {39, 30, 34, 24},

 {13, 50, 10, 17},

 {25, 29, 39, 43},

 {8, 35, 56, 22}

 };

Change line 58 of ocl/build_kernel.c from:

sprintf(data­>compiler_options, "­I "%s" ­I

"%s/kernel" ­I "." ­D WORKSIZE=%d",

to:

sprintf(data­>compiler_options, "­I %s ­I

%s/kernel ­I . ­D WORKSIZE=%d",

Change line 66 from:

strcat(data­>compiler_options, " ­I "");

to:

strcat(data­>compiler_options, " ­I ");

Change line 68 from:

strcat(data­>compiler_options, """);

to:

strcat(data­>compiler_options, "/");

Change algorithm/cryptonight.c starting on line 139
from:

__asm__("mul %%rdx":

"=a" (lo), "=d" (hi):

"a" (a), "d" (b));

to:

//__asm__("mul %%rdx":

//"=a" (lo), "=d" (hi):

//"a" (a), "d" (b));

Cryptonight becomes dysfunctional by commenting
out the assembly optimization. Do not use
Cryptonight, WhirlpoolX, Ethash, or Equihash, since
after �xing the extended assembly above, it compiles,
but there is another problem which lacks an easy �x.
It appears that these OpenCL kernels are using AMD
OpenCL extensions that aren’t supported on the ARM
platform and therefore cannot compile and initialize
the GPU. The kernels may need to be rewritten in
order to get them to function. This needs further
exploration, as Cryptonight is used by more coins and
may be economically viable for GPU and CPU mining
on this device. I will continue working on this.

Issue the following commands in the base SGMiner-
GM directory to �nish the compilation:

$ git submodule init

$ git submodule update

$ autoreconf ­fi

$ CFLAGS="­Os ­Wall ­march=native ­std=gnu99 ­

mfpu=neon" LDFLAGS="­L/usr/lib/arm_compute­

v17.12­bin/lib/linux­armv7a­neon­cl"

./configure ­­disable­git­version ­­disable­adl

­­disable­adl­checks ­­prefix=/opt/sgminer

In the con�guration summary, you should see that
OpenCL was found and that GPU mining was enabled.
If it is not, then OpenCL is not setup correctly and
must be �xed before proceeding. The Hardkernel
Ubuntu images come with OpenCL setup. This build
was done on ubuntu-16.04.3-4.14-minimal-odroid-
xu4-20171213.img successfully. Check your
proceeding steps for accuracy.

­­­

­­­­­­­­­­­­­­­­­­­­­­­­­

sgminer 5.5.5­gm­a

­­­

­­­­­­­­­­­­­­­­­­­­­­­­­

Configuration Options Summary:

Use git version......: no

libcurl(GBT+getwork).: Enabled: ­lcurl

curses.TUI...........: FOUND: ­lncurses

OpenCL...............: FOUND. GPU mining

support enabled

ADL..................: Detection overrided. GPU

monitoring support DISABLED

Compilation............: make (or gmake)

CPPFLAGS.............:

CFLAGS...............: ­Os ­Wall ­march=native

­std=gnu99 ­I/opt/AMDAPPSDK­3.0/include

LDFLAGS..............: ­L/usr/lib/arm_compute­

v17.12­bin/lib/linux­armv7a­neon­cl ­lpthread

LDADD................: ­ldl ­lcurl

submodules/jansson/src/.libs/libjansson.a ­

lpthread ­L/opt/AMDAPPSDK­3.0/lib/x86 ­lOpenCL

­lm ­lrt

Installation...........: make install (as root

if needed, with 'su' or 'sudo')

prefix...............: /opt/sgminer

Make and install the package:

$ make ­j5

$ make install

Quick Tests

$./sgminer ­­version

$ sgminer 5.5.5­gm­a

$./sgminer ­n

[20:41:54] CL Platform vendor: ARM

[20:41:54] CL Platform name: ARM Platform

[20:41:54] CL Platform version: OpenCL 1.2

v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

[20:41:54] Platform devices: 2

[20:41:54] 0 Mali­T628

[20:41:54] 1 Mali­T628

[20:41:54] 2 GPU devices max detected

According to the install Wiki, “The �rst of these will fail
if any libraries are missing, so if we get a version

number then the compiled binary duly executes on
our system. The second checks for OpenCL GPU
devices on the default OpenCL platform. If both
commands work without error and the latter indicates
the correct OpenCL platform, you’re well on the way
to a working installation.”

Assuming you have accounts set up at pools or are
solo mining, a quick way to con�gure is by using the
command line instead of a con�guration �le. You can
learn more about all of this at the install wiki and
under ./sgminer/doc/con�guration.md. Using a
simple script for testing is quick and easy because
some variables need to be set.

#!/bin/bash

$ export GPU_FORCE_64BIT_PTR=0

$ export GPU_USE_SYNC_OBJECTS=1

$ export GPU_MAX_ALLOC_PERCENT=100

$ export GPU_SINGLE_ALLOC_PERCENT=100

$ export GPU_MAX_HEAP_SIZE=100

$./sgminer ­k algorithm ­o

stratum+tcp://pool.na:port ­u user.worker ­p

password ­I 14 ­w 64 ­d 0,1 ­­thread­

concurrency 8192

The intensity (-I 14) and work size (-w 64) can be tuned
for better (or worse) performance. Since the Mali-
T628 has two devices, both are selected (-d 0,1).
Device 0 has 4 cores and Device 1 has 2 cores. More
information on GPU settings is located in
./sgminer/doc/gpu.md.

When you start SGMiner, there is a long 30 to 40
second delay while the kernels for both GPU devices
are created and loaded. The screen only has a couple
of lines and it may look frozen. Be patient. It will then
turn black for about 10-15 seconds, after which time it
will show the curses interfaces. For testing, you can
use a -T in the command line to disable the curses
terminal interface and use simple text. It shows more
information during the initialization process. Some
hardware errors while running are normal. If you �nd
you’re getting a lot of hardware errors, try adjusting
the intensity, since each algorithm will be di�erent
and needs to be tuned. This is where using a
con�guration �le is useful. You can use di�erent
settings for di�erent algorithms and pools.

My XU4/MC1 cluster is divided into four thermal
groups and runs at speeds to maintain 24/7/365
operation in the 70-79℃ range. The MC1s run the
coolest of all the ODROIDs. Figure 2 shows one dual-
pool mining Verium with scrypt (CPUMiner) and
Monacoin with Lyra2REv2 (SGMiner)–two hours for
benchmark purposes. With this combination and
frequency rate, the CPU hash rate decreased
approximately 19% while GPU mining and the GPU
hash rate decreased approximately 4% during CPU
mining. This will, of course, vary depending on the
algorithm and other con�guration factors. There has
been one 24 hour test of thirty ODROIDs dual-mining
with no issues.

Figure 2 – Running SGMiner on the ODROID-XU4 cluster

Regardless of the fact that a few of the OpenCL
kernels are not working, this is still the best option
that I’m aware of for GPU mining on the
XU4/MC/HC1/HC2. The good news is that there are
many other crypto algorithms SGMiner supports, but
be aware that only a few were tested. Let everyone
know if you �nd more that have a problem. When
more headway is made on getting the other kernels
working it will be posted on the forum at
https://forum.odroid.com/viewtopic.php?
f=98&t=29571.

Dual GPU-CPU Mining Test
The Dual GPU-CPU Mining Test is intended to study
the e�ects of CPU frequency change on GPU
operational temperature for 1 hour 50 minutes with
an ambient air temperature of approximately 76F
(24.44C). For the �rst ten minutes of the test, only the
GPU was used to mine in order to establish the
baseline GPU operational temperature using
Monacoin with Lyra2REv2 (SGMiner) Pool with the
following options:

­I 14 ­w 64 ­d 0,1 ­­thread­concurrency 8192

For the remainder of the dual-mining test, CPU
Verium with Scrypt (CPUMiner 8 threads No a�nity)
Solo and GPU Monacoin with Lyra2REv2 (SGMiner 1
thread) Pool were used with the following options:

­I 14 ­w 64 ­d 0,1 ­­thread­concurrency 8192

The CPU frequency was decreased by 100 Mhz every
ten minutes to 1.2 Ghz then raised 100 Mhz every �ve
minutes to 1.9 Ghz. It was then changed to 1.6 Ghz for
the remainder of the test.

The GPU mined at 51℃ for the �rst ten minutes of
the test, and then rose with the temperature of the
CPU cores forming a plateau at each frequency
change. The GPU never exceeded 72℃ except for a
few brief spike to 74℃ The temperature drops in the
GPU during the test appear to be correlated to the
frequency change of the CPU cores. The GPU hash
rate (71 kh/s) was steady during the whole test, while
the CPU hash rate varied according to the frequency
setting, as expected.

Figure 3 – Dual Mining GPU/CPU Core Temperatures vs.
Frequency

A quick note about rejected shares for new miners.
There are numerous reasons why you might get
rejected or stale shares. While it could be an error,
most are caused by network latency. Two possible
scenarios exist, where the �rst is that your rig is
mining away on a block, �nds a valid share and
submits to the network. In the meantime, the block
was solved and a new block and work issued. When
your share is submitted, it is now stale and will be
rejected. The ST indicator in SGMiner indicates the

https://forum.odroid.com/viewtopic.php?f=98&t=29571

number of stale shares you have submitted. This is
not an error, and there is not much you can do about
it. You can reduce the chance of having a problem by
not mining to a pool on the other side of the world,
therein creating more latency for your miner. Find a
server in your own country or as close to it as
possible. Most pools o�er multiple geographically
dispersed servers for this reason.

The second scenario is that you get lucky and �nd a
block, but when the solution is presented someone
else already submitted a valid solution before you did.
You now have an orphaned block. These are two of
the most common causes, and unless you’re getting a
lot of rejects, it shouldn’t be a problem. If you’re
getting a lot of rejects and have a lot of GPU HW
errors, you’re probably pushing your GPU too hard
and need to adjust the intensity, work size, or number
of threads. As always, just because you can mine a
coin does not mean you �nd a coin if solo mining, or a

valid share if pool mining. A good example would be
to try and mine bitcoin with anything other than an
ASIC device (Application Speci�c Integrated Circuit).
The hash rate and di�culty is beyond other
hardware’s capability, unless you get extremely lucky.
If so, stop! You just won the lottery!

Most pools will not show a hash rate or that you’re
even mining until you submit a valid share. When the
block changes and no new shares have been
submitted, you’re back to not showing up at the pool.
If you’re mining an economically mismatched coin for
the device, don’t be surprised when your miner is not
seen by the pool. Find a coin you want to mine and
match the appropriate HW device for the di�culty
and hash rate. Alternately, using the HW devices
available to you, see what coins are possible to mine
with its capability. Have fun with it, and good luck
micro-mining!

Creating an NTP Server Using GPS/PPS
 March 1, 2018  By Joshua Yang  Linux, ODROID-XU4, Tutorial

You can build your own Network Time Protocol (NTP)
server using GPS and PPS on your ODROID. This
system gives you very accurate time which can be
very useful for speci�c use cases. The atomic clocks in
GPS satellites are monitored and compared to ‘master
clocks’ by the GPS Operational Control Segment; this
GPS time is steered to within one microsecond of
Universal Time. Our GPS receiver provides 1 Pulse Per
Second, or PPS, output signal but you need to do a bit
of wire soldering to expose this pin. This pulse has a
rising edge aligned with the GPS second, and is used
to discipline local clocks to maintain synchronisation
with Universal Time (UT). As a result, our local server
can have a very accurate time with less than 10
microseconds of tolerance. Before you start, you will
need to expose the PPS signal from the GPS receiver.

Exposing the PPS signal
First, disassemble the GPS module by removing the 4
screws on the back of the GPS module. They are
covered by a sticker on the bottom of the receiver.

You should �nd out where they are by rubbing along
the sticker feeling for divots. There should be 2 at the
top and bottom ends of the sticker. After �nd the
screw holes, cut the sticker and detach the cut part to
unscrew the 4 screws.

Uncover the module to reveal the PCB board, which is
what you have to solder in order to expose the PPS.

This is a very important part of this guide, since you
have to solder a jumper cable to a speci�c pin of the
chip. The location of the PPS pin that we need to
expose is shown in Figure 6. Be very careful not to
create a short circuit.

If you’ve done so, you may clean up the cable as
shown in Figure 7.

Next, we need to assemble and connect everything
back together. Place The PCB back into the housing
like before and screw the case back together again.

Connect the jump cable to the GPIO pin #18 of the

Figure 1 – Tools you will need

Figure 2 – Peel o� sticker to access screws

Figure 3 – Peel o� sticker to access screws

Figure 4 – All screws removed

XU4 shifter shield. Note that this needs to be the
shifter shield to ensure that the voltage levels from
the PPS pin match what is expected.

Connect the USB cable to the ODROID-XU4, and
connect LAN, power cable as well.

Our mainline kernel doesn’t fully support PPS from
GPIO. Some required software setup should be done
by building your own kernel on your ODROID-XU4. To
start, prepare the Linux kernel source from Github,
and install the needed tools to build a new kernel:

$ sudo apt update && sudo apt install git gcc

g++ build­essential libncurses5­dev bc

Get the Linux kernel source from our o�cial Github
repository at https://github.com/hardkernel/linux:

$ git clone ­­depth 1 https://github.

com/hardkernel/linux.git ­b odroidxu4­4.14.y

odroidxu4­4.14.y

$ cd odroidxu4­4.14.y

Add PPS support by editing the �le
arch/arm/boot/dts/exynos5422-odroidxu4.dts �le to

https://github.com/hardkernel/linux

Figure 5 – Cover removed

Figure 6 – PPS pin on main PCB

Figure 7 – Attached breakout cable

Figure 8 – Place PCB back into case

add a new device which gets PPS from GPIO #18:

$ vi arch/arm/boot/dts/exynos5422­odroidxu4.dts

Add the following contents to the �le:

dummy_codec : spdif­transmitter {};

/* add for pps­gpio */

pps {

 compatible = "pps­gpio";

 gpios = <&gpx1 2 GPIO_ACTIVE_HIGH>;

 status = "okay";

};

Next, make a custom menucon�g:

$ make odroidxu4_defconfig

$ make menuconfig

Find and enable with the space key, as shown in
Figure 12, then save and exit.

If your custom settings works well, that would make
new devices at /dev. Let’s check them:

$ ls ­al /dev/{ttyACM*,gps*,pps*}

crw­­­­­­­ 1 root root 248, 0 Jan 31 14:21

/dev/pps0

crw­rw­­­­ 1 root dialout 166, 0 Jan 31 14:53

/dev/ttyACM0

Figure 9 – Screw cover back on case

Figure 10 – PPS pin attached to XU4

Figure 11 – Pin and USB connected to XU4

Figure 12 – Enable PPS Support

lrwxrwxrwx 1 root root 7 Jan 31 14:21

/dev/ttyACM99 ­> ttySAC0

If any one of the items in the above example above
doesn’t exist, you’ve done something wrong, and you
should try to con�gure and build the kernel again. If
all of them exist, make soft link �les to use later:

$ sudo ln ­sF /dev/ttyACM0 /dev/gps0

$ sudo ln ­sF /dev/pps0 /dev/gpspps0

$ ls ­al /dev/{ttyACM*,gps*,pps*}

lrwxrwxrwx 1 root root 12 Jan 31 15:50

/dev/gps0 ­> ttyACM0

lrwxrwxrwx 1 root root 9 Jan 31 15:51

/dev/gpspps0 ­> /dev/pps0

crw­­­­­­­ 1 root root 248, 0 Jan 31 15:50

/dev/pps0

crw­rw­­­­ 1 root dialout 166, 0 Jan 31 15:50

/dev/ttyACM0

lrwxrwxrwx 1 root root 7 Jan 31 15:50

/dev/ttyACM99 ­> ttySAC0

Make sure your result looks like the above example,
theninstall the GPS related packages and con�gure
them:

$ sudo apt install gpsd gpsd­clients

$ sudo dpkg­reconfigure gpsd

Next, you will need to test them:

$ sudo gpsmon /dev/gps0

An example screenshot using “gpsmon /dev/gps0” is
shown in Figure 13. Wait more than 5 minutes to get
the GPS information properly.

Figure 13 – NMEA data

Next, install PPS tools, then test our ppstest on
/dev/gpspps0:

$ sudo apt install pps­tools

$ sudo ppstest /dev/gpspps0

trying PPS source "/dev/gpspps0"

found PPS source "/dev/gpspps0"

ok, found 1 source(s), now start fetching

data...

source 0 ­ assert 1517363638.431673232,

sequence: 130 ­ clear 0.000000000, sequence: 0

source 0 ­ assert 1517363639.431676649,

sequence: 131 ­ clear 0.000000000, sequence: 0

A new row starting with “source 0 – assert …” will be
added for every each second. Next, install the NTP
service:

$ sudo apt install ntp

Edit the /etc/ntp.conf �le to use GPS/PPS. Backup the
original �le, and create a new con�guration �le using
the options below:

$ sudo mv /etc/ntp.conf /etc/ntp.conf.bak

$ sudo vi /etc/ntp.conf

/etc/ntp.conf, configuration for ntpd; see

ntp.conf(5) for help

Drift file to remember clock rate across

restarts

driftfile /var/lib/ntp/ntp.drift

Server from generic NMEA GPS Receiver

server: NMEA serial port (/dev/gps0), mode 16

= 9600 baud + 2 = $GPGGA

fudge: flag 1 for use PPS (/dev/gpspps0),

time2 for calibration time offset

server 127.127.20.0 mode 18 minpoll 3 maxpoll 3

prefer

fudge 127.127.20.0 flag1 1 time2 0.000 refid

gPPS

Note that the time2 parameter (0.000) is for editing
time o�set for calibrating the result time. Finally,
restart the NTP service.

$ sudo service ntp restart

$ sudo service ntp status

● ntp.service ­ LSB: Start NTP daemon

 Loaded: loaded (/etc/init.d/ntp; bad; vendor

preset: enabled)

 Active: active (running) since Wed 2018­01­

31 17:44:58 KST; 3s ago

 Docs: man:systemd­sysv­generator(8)

 Process: 744 ExecStop=/etc/init.d/ntp stop

(code=exited, status=0/SUCCESS)

 Process: 754 ExecStart=/etc/init.d/ntp start

(code=exited, status=0/SUCCESS)

 CGroup: /system.slice/ntp.service

 └─765 /usr/sbin/ntpd ­p

/var/run/ntpd.pid ­g ­u 111:115

Jan 31 17:44:58 odroid ntp[754]: ...done.

Jan 31 17:44:58 odroid systemd[1]: Started LSB:

Start NTP daemon.

Jan 31 17:44:58 odroid ntpd[765]: proto:

precision = 1.375 usec (­19)

Jan 31 17:44:58 odroid ntpd[765]: Listen and

drop on 0 v6wildcard [::]:123

Jan 31 17:44:58 odroid ntpd[765]: Listen and

drop on 1 v4wildcard 0.0.0.0:123

Jan 31 17:44:58 odroid ntpd[765]: Listen

normally on 2 lo 127.0.0.1:123

Jan 31 17:44:58 odroid ntpd[765]: Listen

normally on 3 eth0 192.168.100.28:123

Jan 31 17:44:58 odroid ntpd[765]: Listen

normally on 4 lo [::1]:123

Jan 31 17:44:58 odroid ntpd[765]: Listen

normally on 5 eth0

[fe80::4db2:ce0b:48f3:26af%2]:123

Jan 31 17:44:58 odroid ntpd[765]: Listening on

routing socket on fd #22 for interface updates

Wait for about minutes for the GPS to stabilize, then
check that you are getting an accurate time from the
GPS/PPS. The PPS output is enabled only when it gets
several stable satellite signals. You can see the results

like below, Check that the “o” character exists before
IP numbering and reach value is increasing up to 377.

$ ntpq ­p

 remote refid st t when poll

reach delay offset jitter

===

===============================

oGPS_NMEA(0) .gPPS. 0 l 1 8 377

0.000 0.008 0.002

$ ntptime

Check that estimated error is just 1

us(Microsecond).

ntp_gettime() returns code 0 (OK)

 time de1bee1d.49adfb50 Wed, Jan 31 2018

16:26:21.287, (.287811636),

 maximum error 2000 us, estimated error 1 us,

TAI offset 0

ntp_adjtime() returns code 0 (OK)

 modes 0x0 (),

 offset ­3.606 us, frequency 1.000 ppm,

interval 1 s,

 maximum error 2000 us, estimated error 1 us,

 status 0x2001 (PLL,NANO),

 time constant 3, precision 0.001 us,

tolerance 500 ppm,

To view the original Wiki posting, please visit
https://wiki.odroid.com/odroid-
xu4/application_note/gpspps_ntp_server.

https://wiki.odroid.com/odroid-xu4/application_note/gpspps_ntp_server

Getting Started with Android on the ODROID-C2: A Beginner’s
Guide
 March 11, 2018  By Rob Roy  Android, ODROID-C2, Tutorial

There are two options for installing Android on an
ODROID-C2. Hardkernel o�ers a pre-installed eMMC
or microSD card, which would only require installing
Google Play. Alternatively, the Android OS may be
downloaded from the Hardkernel website and
installed manually onto the eMMC or microSD card.
The required materials for running Android on an
ODROID-C2 are listed below:

ODROID-C2 http://bit.ly/1oTJBya

5V/2A Power supply US: http://bit.ly/2ugY0Xe, EU:
http://bit.ly/1X0bgdt, Worldwide:
http://bit.ly/OhMyWx

Memory card pre-installed with an operating system
eMMC: http://bit.ly/2vq2TCq, microSD card:
http://bit.ly/2u1fM5I

HDMI cable: http://bit.ly/2uSu3Ay

Monitor or TV with an HDMI port

Watch the video https://youtu.be/fEyeMTS3idU at to
see how easy it is to get started! If you do not have a
memory card pre-installed with an operating system,
please follow instructions below to install it onto the
memory card.

In addition to all the items listed above, you will need
a PC in order to install Android OS to the memory
card. An instructional video is available at
https://youtu.be/9Zi2_OTSl_I and
https://youtu.be/NyQif1j2WkA. Note that the Smart
Power 2 power supply http://bit.ly/2j3hhcv is used in
the video.

http://bit.ly/1oTJBya
http://bit.ly/2ugY0Xe
http://bit.ly/1X0bgdt
http://bit.ly/OhMyWx
http://bit.ly/2u1fM5I
http://bit.ly/2uSu3Ay
https://youtu.be/fEyeMTS3idU
https://youtu.be/9Zi2_OTSl_I
https://youtu.be/NyQif1j2WkA
http://bit.ly/2j3hhcv

First, download the Android operating system from
the Hardkernel Wiki at http://bit.ly/2tMhk3R. Make
sure to wait for the complete download. To install, or
“�ash”, Android to the memory card, we recommend
using Etcher, as described at http://bit.ly/2HAk7iw.
You can download Etcher from https://etcher.io/.
Etcher works on Mac OS, Linux and Windows, and is
the easiest option for most users. Etcher also
supports writing OS images directly from the zip �le,
without any unzipping required. To install the OS on
an eMMC module, you will need an eMMC module
reader (http://bit.ly/2ugIKK8) and a USB multi reader
(http://bit.ly/2vpTv1y) to connect it to your PC.

http://bit.ly/2tMhk3R
http://bit.ly/2HAk7iw
https://etcher.io/
http://bit.ly/2ugIKK8
http://bit.ly/2vpTv1y

To install Android on an eMMC, follow the
instructional video at https://youtu.be/XfJY4KxLxps.
If using a microSD card, watch
https://youtu.be/SnrqyoUBry4.

When OS installation is complete on the memory
card, connect the HDMI cable to your ODROID-C2,
then plug the power supply. After a few seconds, you
will see the home screen of Android. For more
information, please visit the original Wiki article at
article at http://bit.ly/2uhhlrj.

https://youtu.be/XfJY4KxLxps
https://youtu.be/SnrqyoUBry4
http://bit.ly/2uhhlrj

Installing Google Play
To install Google Play onto an ODROID-C2, the
following items are required:

ODROID-C2 http://bit.ly/1oTJBya

Internet connected via Ethernet cable
http://bit.ly/2vg6v9I or WiFi module
http://bit.ly/22nyxra

If you want to download Google Play to a PC and
transfer it to the C2, you will need to connect the C2 to
PC via an OTG cable http://bit.ly/2vqf6H5.

An instructional video is available at
https://youtu.be/PKO8ZKJM_0c. The images below
highlight the main steps in the video. Open the
browser on ODROID-C2 and visit
http://opengapps.org. We recommend using the
“pico” version, but the ODROID-C2 also supports
micro and nano versions.

http://bit.ly/1oTJBya
http://bit.ly/2vg6v9I
http://bit.ly/22nyxra
http://bit.ly/2vqf6H5
https://youtu.be/PKO8ZKJM_0c
http://opengapps.org/

The video at https://youtu.be/wOhAgkkWnjI shows
how to login to your Google account and open Google
Play.

https://youtu.be/wOhAgkkWnjI

For more information, please visit the original Wiki
article at http://bit.ly/2vqgz0c.

http://bit.ly/2vqgz0c

How to Enable Hardware Decoding for the ODROID-C2
 March 1, 2018  By @pichljan  Linux, ODROID-C2, Tutorial

User @pichljan has created a git repository with a
script, patches, and instruction. This git repository has
�xes intended to help user enable Hardware
Decoding for the ODROID-C2. So, if someone is also
dealing with this issue please clone this repository
and do the following steps. Additionally, these steps
are also described in the README in the repository.
First, you need to clone the Hardkernel Linux
repository:

$ git clone ­­depth 1

https://github.com/hardkernel/linux.git ­b

odroidc2­3.14.y

$ cd linux

Apply a patch which allows you to compile aml video
driver as a module. I took this step from LibreELEC
media_build edition:

$ patch ­p1 < ../odroidC2­

kernel/allow_amlvideodri_as_module.patch

Apply default ODROID-C2 con�guration, then modify
the con�guration settings:

$ make odroidc2_defconfig

$ make menuconfig

Set the following values (press Y to select, N to
remove and M to select it as a module):

Device Drivers

 Amlogic Device Drivers

 ION Support

 ION memory management support = Yes

 Amlogic ion video support

 videobuf2­ion video device support = M

 Amlogic ion video device support = no

 V4L2 Video Support

 Amlogic v4l video device support = M

 Amlogic v4l video2 device support = no

 Amlogic Camera Support

 Amlogic Platform Capture Driver = no

 Multimedia support = M

Next, we need to compile the kernel:

$ make ­j5 LOCALVERSION=""

The LOCALVERSION parameter is only to avoid “+”
sign in the name of the kernel. After a successful
compilation, install the modules and kernel, then
reboot the system:

$ sudo make modules_install

$ sudo cp ­f arch/arm64/boot/Image

arch/arm64/boot/dts/meson64_odroidc2.dtb

/media/boot/

$ sudo sync

$ sudo reboot

Media Build
Clone the media_build repository and try to build it:

$ git clone

https://git.linuxtv.org/media_build.git

$ cd media_build

$./build

The build command will probably fail, but you can
ignore this error and continue with following steps.
The following script is also inspired by LibreELEC
media_build edition and it just includes the video
driver into media module.

$../odroidC2­kernel/add_video_driver_module.sh

To avoid potential issues with compilation, try to
disable remote controller support and all the USB
adapters you don’t need:

$ make menuconfig

This command will probably result in an error similar
to the following one:

./Kconfig:694: syntax error

./Kconfig:693: unknown option "Enable"

./Kconfig:694: unknown option "which"

You need to edit the �le v4l/Kcon�g and align with
spaces the lines printed in the error. The lines need to
be aligned with the previous ones. Then, run the
make menucon�g again, which may need to be done
several times. If you see a menu instead of the error,
you can modify the con�g the following way:

Remote Controller support = no

Multimedia support

 Media USB Adapters

 ## Disable all driver you don't need ##

Apply the following patch:

$ patch ­p1 < ../odroidC2­kernel/warning.patch

Make the following change to avoid errors and
compile kernel:

$ sed ­i 's/#define NEED_PM_RUNTIME_GET

1///#define NEED_PM_RUNTIME_GET 1/g'

v4l/config­compat.h

$ make ­j5

Possibly, you need to run the previous steps (both sed
and make) multiple times before it succeeds. After the
compilation, install the modules and reboot the
system:

$ sudo make install

$ sudo reboot

The �nal step is to add the amlvideodri module into
/etc/modules to make it load on boot:

$ sudo echo "amlvideodri" >> /etc/modules

You can now enjoy your DVB-T TV and HW accelerated
videos in Kodi. For more information or further
assistance on this topic please see the original thread
on the ODROID forums at
https://forum.odroid.com/viewtopic.php?
f=136&t=29619#p215565.

https://forum.odroid.com/viewtopic.php?f=136&t=29619#p215565

ODROID-XU4 Control Computer: Creating an All-In-One Control
System
 March 1, 2018  By @williamg42  Linux, ODROID-XU4, Tutorial

This project begin in the spring of 2017, and I �nally
feel I have made enough progress to publish what I
have been doing. It started while I was taking a
Bayesian Robotics course, and I thought it would be
interesting to apply what I have learned. The only
issue was there was no embedded Linux system that
had the computing power to run large particle �lters
for a reasonable cost, and also had the required
sensors (GPS, IMU) of a reasonable quality built-in, so
I decided to make one.

Design Speci�cations

The board will host multiple MEMS IMU on di�erent
buses for redundancy and to allow the implementation
of a multiple-sensor Bayesian �lter

The board will host a single GNSS receiver to allow
localization accuracy of +-2.5m when outdoors. GNSS
was picked for access to both US GPS and Russian
GLONASS systems, and a quicker cold start time

The board will support an analog front end capable of
measuring voltages up to 20V for battery voltage
monitor

The board will support an analog front end capable of
scaling a -5V to 5V signal to 0 to 1.8V

The board will host an XBee Pro module

The board will support direct PWM outputs for control
of external devices

The board shall not provide power for these external
devices

Part Selection
BNO055 was selected for two of the IMUs, mainly due
to its use in Pixhawk controllers. LSM9DS1 was
selected as the third sensor for redundancy, a
di�erent I2C address, and because it looked
interesting.

Version 1 is the currently completed PCB show in the
photo above. Version 4 is the next version of the

board that is currently under work.

BNO055 leaves some things to be desired. Electrical
noise from the rest of the system causes noise on the
magnetometer, so the BNO080 will be used instead. It
is approximately three times more accurate due to
the superior fusion algorithm used onboard. It also
provides an estimate of how accurate the provided
data is, which is important for the GPS/IMU �lter I am
working on. It also supports an external barometric
pressure sensor.

5.2mm x 3.8mm x 1.1mm

Up to 1KHz

2.0msec

3.0° – Dynamic 1.0° – Static

0.5°/min

± 2000°/sec

BHI160 will also be used as the second IMU. The
sensors are comparable in accuracy to the BNO080,
but the resulting sensor fusion is not as good.
However, this IMU does support an external I2C
magnetometer sensor, for which I will design a carrier
board and remote away from sources of electrical
noise. This will allow me to accurately determine
magnetic north.
BMM150 is the external magnetometer, which is
supported as a direct input into the fusion algorithm
in the BHI160. It is actually quite nice as sensors go,
although it is a BGA, which will be fun to re�ow.

The XU4 IO voltage is 1.8V, and thus logic level
conversion is needed. The TXB0108-PW was selected
due to OEM recommendation. An A5100-A was
selected from Maestro Wireless Solutions since it is a
GNSS capable receiver, with active antenna support. It
is an all-in-one module with minimal external
components.

Schematics

Figure 1 – Magnetometer carrier board

Figure 2 – Sensor board top level schematic, with
ODROID-XU4 connections, logic conversion, on-o�
button, and I2C to di�erential I2C conversion and RJ45
connector

Figure 3 – Sensors

Figure 4 – Power

Figure 5 – Analog front end, converts an 8V to 13.8V and
-5V to 5V signal to 0V to 1.8V to be fed into the ODROID-
XU4

Figure 6 – I2C-controlled LED driver which outputs
programmable PWM signals over 16 channels

Figure 7 – Xbee serial communication link

Meet An ODROIDian: Go Sang “Luke” Chul (Luke.go)
 March 11, 2018  By Rob Roy  Meet an ODROIDian

Figure 1 – Luke and his family in Jungfrau

Please tell us a little about yourself.
I’m 31 years old, and was born and live in Seoul, South
Korea. I have both a bachelor’s degree in Computer
Science and a master’s degree in Embedded Software
Engineering from Kookmin University in South Korea.
I studied Embedded virtualization and created a
hypervisor that works on ARMv8 system. I am
currently a software engineer at Hardkernel Co., Ltd. I
maintain the Android version for all ODROID devices
except for LineageOS for the ODROID-XU4. I mainly
update the revisions, add features, and �x bugs in the
o�cial Hardkernel Android build.

My younger sister and her husband are webtoon
(Korean webcomic) writers. They serialize the
webtoon every week. I am also very proud to have
participated in candlelight vigils every week from
2016-2017.

How did you get started with computers?

When I was 6 years old, I encountered my �rst
computer. When I visited my aunt’s house, my cousin
brother had some 386-based computers. Like many
others, the computer was a gaming console for me. I
played Sango Fighter, Prince Of Persia, Prehistorik,
Jazz Jackrabbit and much more. I started studying
advanced computer systems seriously after my
military service, because I wanted to make my own
computer operating system. I studied hard on many

Figure 3 – Bungee Jumping in New Zealand

Figure 4 – Visiting Uluru in Australia

aspects of computers, but embedded software was
my favorite subject. I wanted to make a masterpiece
of one product as a whole embedded system.

What kind of projects do you work on at Hardkernel?
One of my projects is to create the shortcut feature in
Utility Apps, which connects some applications to
function keys in order to launch the application. You
can even connect it to physical buttons via the GPIO
pins. I have also renovated the Wiki page design. I
wanted to make it easier for users to access the page,
so I applied page tree structures and host/target
board color background text views to distinguish
them. I know that was not enough, but I hope it made
it easier to use the ODROID Wiki.

How do you use your personal ODROIDs?
When I was studying in the laboratory, I tried to
hypervisor to work on the ODROID-XU, but I couldn’t
do it because of several problems. Recently, I used an
ODROID-C2 as a video player and emulator. I also
have a plan to use it as a home automotive controller
by referencing some magazine articles.

Which ODROID is your favorite and why?
The ODROID-C2 is my favorite one. Because of its size,
it can be placed anywhere, and I like that it plays
video at 4K resolution.

What innovations would you like to see in future
Hardkernel products?
I would like to add versatility and scalability to
Hardkernel’s new products so that ODROIDs can be
used in various �elds. If the product has good
performance, that’s even better, but I would like to

stick to the basics. I also want to see more add-on
boards like the Hi-Fi Shield.

What hobbies and interests do you have apart from
computers?
I like to travel to other countries and do adventurous
things. I had been skydiving and bungee jumping in
Queenstown, New Zealand, which was amazing. I
really recommend it, especially skydiving which was
awesome. I also visitied Uluru (Ayers Rock) in
Australia, which was spectacular. At the end of 2017, I
rode Mario Kart in Tokyo. I hope to do again this year,
and I loved that experience.

Recently, I started playing guitar. On that instrument, I
am just a newbie, like a software engineer just
starting to print “Hello World” in a new language. I
have been teaching myself by memorizing some
guitar chords, and hope to play well soon.

What advice do you have for someone wanting to learn
more about programming?
I recommend having clear goals. There is so much

Figure 5 – Playing Real Life Mario Kart in Tokyo

information about programming on the Internet, but
before learning about programming, you should set

your goals and determine what is necessary to
achieve them. This checklist may not be on the
Internet. This process will help you to achieve that
more easily. If you want to be more professional,
learn about the basics. Being �uent in languages is
important, but the foundations are more important.

