

Thundroid: The Perfect Bitcoin Lightning Node
 June 1, 2018

Bitcoin is a native digital currency for the internet age. It could be considered just
another international currency, but one without a native country so it de�es borders,
trade policies, and arbitrary in�ation. In the 2008 whitepaper

(https://bitcoin.org/bitcoin.pdf) by the pseudonymous Satoshi Nakamoto it is described as “…a purely peer-to-
peer

Linux Gaming: Nintendo 64 Emulation – Part 1
 June 1, 2018

It took a while to get N64 emulation to work on all the ODROID boards under Linux.
However, now that it’s functioning, it’s quite fun and opens up lots of opportunities for
classic gaming. Hopefully in the future, we will see more improvement and have even

better support for N64

Digital Photo Frame: 55 inch 4K Digital Photo Frame Display for
Around $400
 June 1, 2018

There are lots of tutorials on how to make an awesome digital photo frame with a
Raspberry Pi.

OS Spotlight: ODROID GameStation Turbo
 June 1, 2018

One of the biggest projects that I am working on for the ODROID community is the
ODROID GameStation Turbo image, which works as a frontend for both games and
media playback. It’s intended as an entertainment system that allows you to control

your ODROID just by using a game controller

OGST Gaming Console Kit for the ODROID-XU4
 June 1, 2018

The OGST Gaming Console Kit for the ODROID-XU4 kit allows you to build your own
gaming console with a powerful ODROID-XU4 or ODROID-XU4Q. Its attractive design
includes a fancy 2.4” LCD to show programmable game logo animations, and is

speci�cally designed to work with the popular ODROID GameStation Turbo disk

ODROID GameSir G3w USB Controller Joystick
 June 1, 2018

The GameSir G3w is a high-quality gamepad that adopts a 32-bit MCU chip, with a
computing capability that is up to 48 million operations per second. And it is supported
on the o�cial Linux and Android operating systems o�ered by Hardkernel.

Solar Powered Microserver
 June 1, 2018

Blackouts are not just annoying, but cause a series of problems impacting almost all
aspects of modern life, so after months in the dark, I took the plunge an built a small
solar power system.The ODROID C2 has a 64-bit quad-core ARM CPU, 2 GB of RAM,

and support eMMC

Android Development: Using GitHub
 June 1, 2018

Welcome back, appdev initiates! If you’re like me, you’re more than ready to increase
your app development skills. As mentioned previously, the 800-pound gorilla of online
open source projects is GitHub. There are several Git-based choices in the

marketplace, but for our purposes, we will use GitHub for this column,

Linux Gaming on ODROID: Saturn Games – Part 4
 June 1, 2018

We are back again with the ODROID-XU4/XU4 and Sega Saturn games. This time I want
to look into games starting with the letter “S” like in Saturn, or as in “shmup”. There are
so many great games for the Sega Saturn that start with the letter “S” that I enjoy

ODROID-XU4 Home Server
 June 1, 2018

Back in December 2017, I rebuilt my Odroid XU4 home media server
(https://goo.gl/6tT6rt) because I was having some issues with the previous setup.
Unfortunately, that rebuild was not focusing on aesthetics or cable management, just

functionality, because I needed the server up and running and did not care how it

Carputer – 7″ Touch Screen Android
 June 1, 2018

This is a 7″ Touch Screen Android Carputer with super accurate USB GPS, Bluetooth 4,
3.5MM Audio in/out, WiFi, and an adjustable magnetic screen. A sketchup �le is
available for additional customization and resizing as needed at

https://www.thingiverse.com/thing:2720349. As an IT Field service tech of 28 years, I built this

Introduction to BASH Basics – Part 2: Useful BASH commands for
Single Board Computers
 June 1, 2018

Last time, we learned about the ‘ls’ and ‘tree’ commands. While looking at things is
nice, it’s more fun to actually do something with our data. This article contains a list of

the common commands for manipulating data. The command and its explanation are kept very brief to avoid
writing

Linux Gaming: Nintendo 64 Emulation – Part 2
 June 1, 2018

Part 1 of this article introduced the latest version of the Nintendo 64 emulator for
Linux and compared its performance on all of the current ODROID boards. This second
part presents an overview of some of the more popular Nintendo 64 games, including

Mario Kart, Mario Party, Paper Mario, Star

Thundroid: The Perfect Bitcoin Lightning Node
 June 1, 2018  By @stadicus  ODROID-XU4, Tutorial

Bitcoin is a native digital currency for the internet age.
It could be considered just another international
currency, but one without a native country so it de�es
borders, trade policies, and arbitrary in�ation. In the
2008 whitepaper (https://bitcoin.org/bitcoin.pdf) by
the pseudonymous Satoshi Nakamoto it is described
as “…a purely peer-to-peer version of electronic cash
[which] would allow online payments to be sent
directly from one party to another without going
through a �nancial institution.”

Being peer-to-peer means that Bitcoin does not rely
on a middleman such as a bank, and can be
transferred as a bearer asset, like physical cash,
without asking anyone for permission. It does not
need to be stored physically as it is secured by a
cryptographic key, so it can be transferred within
minutes to anyone anywhere in the world. One key
component of this free open-source �nancial system
is the blockchain, a ledger that keeps track of who
owns how many bitcoin and that is stored as an

identical copy by all users that decide to run a full
Bitcoin node. You can learn more at bitcoin.org.

Bitcoin is an economic experiment of epic scope, and
its success is by no means certain. In any case, Bitcoin
as a new technology is an incredibly interesting
endeavor, especially due to its interdisciplinary nature
and low barrier to entry. Bitcoin as sound money–
being scarce and non-in�ationary, challenging money
as one of the last true monopolies of nation states–
could have a major impact on economic principles
and society as a whole.

At the moment, Bitcoin is more a store of value and
not really suited for small everyday transactions. Truly
decentralized blockchains are a scarce resource and
cannot scale to accommodate all global transactions.
If you think about it, it cannot be good practice to
store every co�ee purchase redundantly all over the
world for all eternity. That would be like forcing
everyone to download everyone else’s email as well.

https://bitcoin.org/bitcoin.pdf
http://bitcoin.org/

These limitations are a great motivator to build better
technology on top of the Bitcoin blockchain to scale
exponentially, as opposed to simply making
everything bigger for the sake of linear scaling.

This is where the “Lightning Network” comes in. As
one of several new blockchain extensions, it promises
to accommodate nearly unlimited transactions, with
instant con�rmation, minimal fees, and increased
privacy. It sounds almost too good to be true, but this
technology is well researched, committed to the
cypherpunk open-source ethos, and leverages the
solid underpinnings of Bitcoin. Learn more.

To preserve the decentralized nature of this monetary
system, it is important that everybody has at least the
possibility to run their own trustless Bitcoin node,
preferably on cheap hardware like ODROID.

NOTE: Please be aware that while Bitcoin has been
battle-tested for almost a decade, the Lightning
Network is still in beta and under heavy development.
This guide also allows you to set up your Bitcoin node
while ignoring the Lightning part. Read the “Financial
Best Practices” section before committing real Bitcoin
to your node.

Purpose

This guide allows you to be your own bank. The aim is
to set up a Bitcoin and Lightning node that:

is as fully validating Bitcoin Full Node and does not
require any trust in a 3rd party

is reliably running 24/7

is part of and supports the decentralization of the
Lightning network by routing payments

can be used to send and receive personal payments
using the command line interface.

This server is set up without graphical user interface
and is operated remotely using the Secure Shell (SSH)
command line. It can also function as a personal
Bitcoin backend for the desktop Electrum wallet.

Target audience

While this guide strives to give simple and foolproof
instructions, the goal is also to do everything
ourselves–no shortcuts that involve trust in a 3rd
party allowed. This makes this guide quite technical,

but I have tried to make it as straightforward as
possible for you to gain a basic understanding of the
how and why.

A word of caution

All components of the Lightning network are still
under development and we are dealing with real
money here. This guide follows a conservative
approach: �rst setup and test everything on Bitcoin
testnet, then once you are comfortable enough to put
real money on the line, switch to Bitcoin mainnet with
a few simple changes.

Preparations

After publishing the “Beginner’s Guide to Lightning on
a Raspberry Pi,” I started to explore other hardware
since the Raspberry Pi has drawbacks, mainly in the
area of performance and the the hassle of attaching
external storage, which is important when storing the
big Bitcoin blockchain.

Hardkernel’s ODROID-HC2
(http://www.hardkernel.com/main/products/prdt_in
fo.php)–or the HC1 for a smaller form factor–as a
Linux-based mini PC is a perfect �t. Compared to a
Raspberry Pi, it has the following advantages:

Price comparable to Raspberry Pi

More powerful (8 core CPU, 2 GB RAM, Gigabit
Ethernet)

Internal hard disk housing, direct connection using
SATA3

Only one power adapter for everything

Not available are features like an HDMI output, built-
in Wi�, or GPIO pins, but these are not relevant to this
project. The performance is way better, so it seems
more future-proof as Bitcoin and Lightning are certain
to evolve.

https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
http://www.hardkernel.com/main/products/prdt_info.php

Figure 1 – Performance of ODROID-HC2 is identical to
XU4 (which is more of a media pc)

Once I decided on this setup, I ordered the ODROID-
HC2 and, after setting it up and running it for two
months now, I think this is as good as it gets for a low-
cost Bitcoin/Lightning node. As this project needs a
cheesy name as well, I’ll call my node Thundroid.

I ordered the following items directly from Hardkernel
in Singapore. There are resellers available worldwide
but unfortunately not for Switzerland.

ODROID-HC2 – $54
(http://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G151505170472)

Power adapter and cord – $7
(http://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G151578376044)

ODROID-HC2 case (optional) – $5
(http://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G151)

You also need the following:

Micro SD card: 16 GB, including an adapter to your
regular computer

Internal hard disk: 500 GB or more, SATA, 3.5″ HDD, or
2.5″ HDD/SSD

Network RJ45 cable

Assembly is easy: just insert the hard disk and a�x it
with the the screws included with your ODROID. If you
ordered the plastic case, slide it over the metal body.

Installing the operating system

We use Ubuntu 16.04.03 LTE (Minimal, Bare OS) that
is provided by Hardkernel. Download the image from
the ODROID-XU4 section on wiki.odroid.com

Exact �le used:
https://odroid.in/ubuntu_16.04lts/ubuntu-16.04.3-

4.14-minimal-odroid-xu4-20171213.img.xz

Download the image, �ash it on your MicroSD card,
put it into your Thundroid, connect it to your network
via cable, and connect the power adapter. The initial
boot can take several minutes.

Con�gure your network router to assign a static IP
address to your Thundroid.

Working on your Thundroid

Write down your passwords

You will need several passwords and I �nd it easiest
to write them all down in the beginning, instead of
bumping into them throughout the guide. They
should be unique and very secure, at least 12
characters in length. Do not use uncommon special
characters, blanks, or quotes (‘ or “).

User password

Bitcoin RPC password

Lightning API password

Lightning seed passphrase

Store a copy of your passwords somewhere safe
(preferably in a password manager like KeePass or
LastPass) and keep your original notes out of sight
once your system is up and running.

The command line

Everything is con�gured on the Linux command
prompt. Throughout this guide I use the following
notation:

#: this is a comment, just for information $: This is a
single-line command to enter (without the $) and
con�rm with the enter key No pre�x: This is either an
output of the command above or something you can
copy/paste into a �le

Auto-complete commands: When you enter
commands, you can use the ‘Tab’ key for auto-
completion, eg. for commands, directories or
�lenames.

Command history: By pressing up and down on your
keyboard, you can recall your previously entered
commands.

Use admin privileges: Our users has no admin
privileges. If a command needs to edit the system

http://www.hardkernel.com/main/distributor.php
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G151505170472
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G151578376044
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G151
https://odroid.in/ubuntu_16.04lts/ubuntu-16.04.3-4.14-minimal-odroid-xu4-20171213.img.xz
https://odroid.in/ubuntu_16.04lts/ubuntu-16.04.3-4.14-minimal-odroid-xu4-20171213.img.xz

con�guration, we need to use the ‘sudo’ (“superuser
do”) command as pre�x. Instead of editing a system
�le with ‘nano /etc/fstab’, we use ‘sudo nano /etc/fstab’.

Using the Nano text editor: We use the Nano editor to
create new text �les or edit existing ones. It’s not
complicated, but to save and exit is not intuitSave: hit
‘Ctrl-O’ (for Output), con�rm the �lename, and hit the
‘Enter’ Exit: hit ‘Ctrl-X’

* **Copy / Paste**: If you are using Windows and the
PuTTY SSH client, you can copy text from the shell by
selecting it with your mouse (no need to click
anything), and paste stu� at the cursor position with a
right-click anywhere in the SSH window.

Connecting to Thundroid

It’s time to connect via SSH and get to work. For that,
a Secure Shell (SSH) client is needed. Install, start and
connect:

Windows: I recommend to use the SSH client [KiTTY]
(http://kitty.9bis.com). You can copy text from the shell
by selecting it with your mouse (no need to click
anything), and paste stu� with a right-click.

Mac OS: Built-in SSH client
(http://osxdaily.com/2017/04/28/howto-ssh-client-
mac/)

Linux: Just use the native command, eg. ssh
root@192.168.0.20

Use the following SSH connection settings:

Host name: the static address you set in the router, eg.
192.168.0.20

Port: 22

Username: root

Password: odroid

Basic con�guration

You are now on the command line of your own
Bitcoin node. First, we take care of the basic
con�guration. Enter the following commands:

change root password to [password A]

$ passwd

update the operating system

$ apt update

$ apt upgrade

$ apt dist­upgrade

$ apt install linux­image­xu3

answer [y], then [no] (do not abort)

install some additional software

$ apt install htop git curl bash­completion jq

set time zone & localization

$ dpkg­reconfigure tzdata

$ dpkg­reconfigure locales

When using the Nano text editor, you can use the
same keyboard shortcuts to save (Ctrl-O, con�rm or
change �lename, and press Enter) and exit (Ctrl-X).

change hostname (replace "odroid" with

"thundroid" :) in both files

$ nano /etc/hostname

$ nano /etc/hosts

create user "admin", set [password A] and

make it a superuser

$ adduser admin

$ adduser admin sudo

create user "bitcoin" and set password

[password A]

$ sudo adduser bitcoin

Mounting the hard disk

The external hard disk is attached to the �le system
and can be accessed as a regular folder. This is called
“mounting.” As a server installation, the Linux native
�le system Ext4 is the best choice for the external
hard disk.

NOTE: All data on this hard disk will be erased with
the following steps!

get NAME for hard disk

$ lsblk ­o UUID,NAME,FSTYPE,SIZE,LABEL,MODEL

format hard disk (use [NAME] from above, e.g

/dev/sda1)

$ mkfs.ext4 /dev/[NAME]

get UUID for hard disk, copy into notepad

$ lsblk ­o UUID,NAME,FSTYPE,SIZE,LABEL,MODEL

edit fstab and enter new line (replace UUID)

at the end, save & exit

$ nano /etc/fstab

http://osxdaily.com/2017/04/28/howto-ssh-client-mac/

UUID=123456 /mnt/hdd ext4 noexec,defaults 0 0

create mount point, mount, check and set

owner

$ mkdir /mnt/hdd

$ mount ­a

$ df /mnt/hdd

Filesystem 1K­blocks Used Available Use%

Mounted on

/dev/sda1 961300808 600388836 312057600 66%

/mnt/hdd

$ chown ­R bitcoin:bitcoin /mnt/hdd/

Moving the Swap File

The use of a swap �le can degrade the SD card very
quickly. Therefore, we will move it to the external
hard disk.

install necessary software package

$ apt install dphys­swapfile

change configuration file to use swapfile on

external hard disk

$ nano /etc/dphys­swapfile

CONF_SWAPFILE=/mnt/hdd/swapfile

enable new swap configuration

$ sudo dphys­swapfile setup

$ sudo dphys­swapfile swapon

reboot, login as "admin" and delete old

swapfile

$ restart shutdown ­r now

$ sudo rm /var/swap

Hardening your Thundroid

Your Thundroid will be visible from the internet and
therefore needs to be secured against attacks. A
�rewall controls what tra�c is permitted and closes
possible security holes. Login as “admin” (we will not
use “root” again).

UFW: Uncomplicated Firewall

The �rewall denies all connection attempts from
other peers by default and allows only speci�c ports
to be used.

WARNING: The line ‘ufw allow from 192.168.0.0/24 …’
below assumes that the IP address of your Thundroid

is something like ‘192.168.0.???’’, the variable being
any number from 0 to 255. If your IP address is
‘12.34.56.78’, you must adapt this line to ‘ufw allow
from 12.34.56.0/24 …’. Otherwise you will lock
yourself out for good.

change session to "root"

$ sudo su

$ apt install ufw

$ ufw default deny incoming

$ ufw default allow outgoing

make sure to use the correct subnet mask

(see warning above)

$ ufw allow from 192.168.0.0/24 to any port 22

comment 'allow SSH from local LAN'

$ ufw allow 9735 comment 'allow Lightning'

$ ufw deny 8333 comment 'deny Bitcoin mainnet'

$ ufw allow 18333 comment 'allow Bitcoin

testnet'

$ ufw enable

$ systemctl enable ufw

$ ufw status

exit "root" session back to "admin"

$ exit

Fail2ban

Fail2ban monitors SSH login attempts and bans a
remote peer for 10 minutes after �ve unsuccessful
tries. This makes a brute-force attack unfeasible, as it
would simply take too long.

$ sudo apt install fail2ban

SSH Keys

One of the best options to secure the SSH login is to
completely disable the password login and require a
SSH key certi�cate. Only someone with physical
possession of the private key can login.

Set up SSH keys for the “admin” user by following this
article: Con�gure “No Password SSH Keys
Authentication” with PuTTY on Linux Servers

You should now three generated �les. Keep them
safe, as we will now disable the password login.

https://www.tecmint.com/ssh-passwordless-login-with-putty

Figure 2 – SSH Keys �lelist

(Figure 2 – SSH Keys �lelist)

Logout (‘exit’) and make sure that you can login as
“admin” with your SSH key

Edit SSH con�g �le

$ sudo nano /etc/ssh/sshd_config

Change settings “ChallengeResponseAuthentication”
and “PasswordAuthentication” to “no” (uncomment the
line by removing # if necessary), save, and exit.

Figure 3 – SSH con�g

copy the ssh key to user "root", just in

case

$ sudo mkdir /root/.ssh

$ sudo cp /home/admin/.ssh/authorized_keys

/root/.ssh/

$ sudo chown ­R root:root /root/.ssh/

$ sudo chmod ­R 700 /root/.ssh/

$ sudo systemctl restart ssh

exit and login again with your private key

$ exit

You can now only login with “admin” or “root” and
your SSH key. As you cannot connect a screen to the
ODROID, SSH is your only option.

REMINDER: Backup your SSH key! There is no fallback
login! In a worst-case scenario, you will need to �ash

the MicroSD card and set up the system again; all the
important stu� is still on the hard drive.

Increase your open �les limit

In case your Thundroid is swamped with internet
requests–honest or malicious due to a DDoS attack–
you will quickly encounter the ‘can’t accept
connection: too many open �les’ error. This is due to a
limit on open �les (representing individual TCP
connections) that is set too low.

Edit the following three �les, add the additional line(s)
right before the end comment, save and exit.

$ sudo nano /etc/security/limits.conf

* soft nofile 128000

* hard nofile 128000

root soft nofile 128000

root hard nofile 128000

Figure 4 – Edit pam.d/limits.conf.png

$ sudo nano /etc/pam.d/common­session

session required pam_limits.so

Figure 5

$ sudo nano /etc/pam.d/common­session­

noninteractive

session required pam_limits.so

Figure 6 – Edit pam.d/common-session-noninteractive

Bitcoin

The foundation of the Lightning node is a fully
trustless Bitcoin node (https://bitcoin.org/en/bitcoin-
core/). It keeps a complete copy of the blockchain and
validates all transactions and blocks. By doing all this
work ourselves, nobody else needs to be trusted.

In the beginning, we will use the Bitcoin testnet to
familiarize ourselves with its operations. This sync is
handled directly by the Thundroid and should not
take longer than a few hours. Just let it sync overnight.

Installation

We will download the software directly from
bitcoin.org, verify its signature to make sure that we
use an o�cial release, and install it.

Login as “admin” and create a download folder:

$ mkdir /home/admin/download

$ cd /home/admin/download

We download the latest Bitcoin Core binaries and
compare the �le with the signed checksum. This is a
precaution to make sure that this is an o�cial release
and not a malicious version trying to steal our money.

Get the latest download links at
bitcoin.org/en/download. They change with each
update. Run the following commands with adjusted
�lenames and check the output where indicated.

download Bitcoin Core binary

$ wget https://bitcoin.org/bin/bitcoin­core­

0.16.0/bitcoin­0.16.0­arm­linux­

gnueabihf.tar.gz

$ wget https://bitcoin.org/bin/bitcoin­core­

0.16.0/SHA256SUMS.asc

$ wget https://bitcoin.org/laanwj­releases.asc

check that the reference checksum matches

the real checksum

(ignore the "lines are improperly formatted"

warning)

$ sha256sum ­­check SHA256SUMS.asc ­­ignore­

missing

> bitcoin­0.16.0­arm­linux­gnueabihf.tar.gz:

OK

manually check the fingerprint of the public

key

$ gpg ­­with­fingerprint ./laanwj­releases.asc

> 01EA 5486 DE18 A882 D4C2 6845 90C8 019E 36C2

E964

import the public key of Wladimir van der

Laan, verify the signed checksum file

and check the fingerprint again in case of

malicious keys

$ gpg ­­import ./laanwj­releases.asc

$ gpg ­­verify SHA256SUMS.asc

> gpg: Good signature from Wladimir ...

> Primary key fingerprint: 01EA 5486 DE18 A882

D4C2 6845 90C8 019E 36C2 E964

Figure 7 – Commands to check bitcoind signature

Extract the Bitcoin Core binaries, install them, and
check the version.

$ tar ­xvf bitcoin­0.16.0­arm­linux­

gnueabihf.tar.gz

$ sudo install ­m 0755 ­o root ­g root ­t

/usr/local/bin bitcoin­0.16.0/bin/*

$ bitcoind ­­version

> Bitcoin Core Daemon version v0.16.0

Prepare Bitcoin Core directory

We use the Bitcoin daemon, called “bitcoind”, that
runs in the background without user interface and
stores all data in a the directory
‘/home/bitcoin/.bitcoin’. Instead of creating a real
directory, we create a link that points to a directory on
the external hard disk.

change to user "bitcoin"

$ sudo su bitcoin

add symbolic link that points to the

external hard drive

$ mkdir /mnt/hdd/bitcoin

$ ln ­s /mnt/hdd/bitcoin

/home/bitcoin/.bitcoin

Navigate to home directory and check the

symbolic link (the target must not be red).

$ cd

$ ls ­la

https://bitcoin.org/en/bitcoin-core/

The content of this directory will actually be on the
external hard disk.

Figure 8 – Verify .bitcoin symlink

Con�guration

The con�guration �le for bitcoind needs to be
created. Open it with Nano and paste the
con�guration below. Save and exit.

$ nano /home/bitcoin/.bitcoin/bitcoin.conf

Thundroid: bitcoind configuration

/home/bitcoin/.bitcoin/bitcoin.conf

remove the following line to enable Bitcoin

mainnet

testnet=1

Bitcoind options

server=1

daemon=1

txindex=1

disablewallet=1

Connection settings

rpcuser=bitcoin

rpcpassword=PASSWORD_[B]

zmqpubrawblock=tcp://127.0.0.1:29000

zmqpubrawtx=tcp://127.0.0.1:29000

Optimizations for limited hardware

dbcache=100

maxorphantx=10

maxmempool=50

maxconnections=40

maxuploadtarget=5000

NOTE: Change rpcpassword to your secure ‘password
[B]’, otherwise your funds might get stolen.

Autostart bitcoind

The system needs to run the bitcoin daemon
automatically in the background, even when nobody
is logged in. We use “systemd“, a daemon that
controls the startup process using con�guration �les.

Exit the “bitcoin” user session back to user “admin”

$ exit

Create the con�guration �le in the Nano text editor
and copy the following paragraph. Save and exit.

$ sudo nano

/etc/systemd/system/bitcoind.service

Thundroid: systemd unit for bitcoind

/etc/systemd/system/bitcoind.service

[Unit]

Description=Bitcoin daemon

After=network.target

[Service]

ExecStart=/usr/local/bin/bitcoind ­daemon ­

conf=/home/bitcoin/.bitcoin/bitcoin.conf ­

pid=/run/bitcoind/bitcoind.pid

Creates /run/bitcoind owned by bitcoin

RuntimeDirectory=bitcoind

User=bitcoin

Group=bitcoin

Type=forking

PIDFile=/run/bitcoind/bitcoind.pid

Restart=on­failure

Hardening measures

####################

Provide a private /tmp and /var/tmp.

PrivateTmp=true

Mount /usr, /boot/ and /etc read­only for

the process.

ProtectSystem=full

Disallow the process and all of its children

to gain

new privileges through execve().

NoNewPrivileges=true

Use a new /dev namespace only populated with

API pseudo devices

such as /dev/null, /dev/zero and

/dev/random.

PrivateDevices=true

Deny the creation of writable and executable

memory mappings.

MemoryDenyWriteExecute=true

[Install]

WantedBy=multi­user.target

Enable the con�guration �le:

$ sudo systemctl enable bitcoind.service

Copy ‘bitcoin.conf’ to user “admin” home directory for
RPC credentials:

$ mkdir /home/admin/.bitcoin

$ sudo cp /home/bitcoin/.bitcoin/bitcoin.conf

/home/admin/.bitcoin/

Restart the Thundroid

$ sudo shutdown ­r now

Veri�cation of bitcoind operations

After rebooting, the bitcoind should begin to sync and
validate the Bitcoin blockchain. Wait a bit, reconnect
via SSH and login with the user “admin”. Check the
status of the Bitcoin daemon that was started by
systemd (exit with ‘Ctrl-C’).

$ systemctl status bitcoind

Figure 9 – Bitcoind status

See bitcoind in action by monitoring its log �le (exit
with ‘Ctrl-C’):

$ sudo tail ­f

/home/bitcoin/.bitcoin/testnet3/debug.log

Use the Bitcoin Core client ‘bitcoin-cli’ to get
information about the current blockchain:

$ bitcoin­cli getblockchaininfo

NOTE: When “bitcoind” is still starting, you may get an
error message like “verifying blocks.” That’s normal,
just give it a few minutes.

Among other information, the “veri�cationprogress” is
shown. Once this value reaches almost 1 (0.999…), the
blockchain is up-to-date and fully validated.

Lightning Network

We will download and install the LND (Lightning
Network Daemon) by Lightning Labs
http://lightning.engineering/. Check out their Github
repository
(https://github.com/lightningnetwork/lnd/blob/mas
ter/README.md) for a wealth of information about
their open-source project and Lightning in general.

Install LND

Now to the good stu�: Download, verify, and install
the LND binaries.

$ cd /home/admin/download

$ wget

https://github.com/lightningnetwork/lnd/releas

es/download/v0.4.1­beta/lnd­linux­arm­v0.4.1­

beta.tar.gz

$ wget

https://github.com/lightningnetwork/lnd/releas

es/download/v0.4.1­beta/manifest­v0.4.1­

beta.txt

$ wget

https://github.com/lightningnetwork/lnd/releas

es/download/v0.4.1­beta/manifest­v0.4.1­

beta.txt.sig

$ wget

https://keybase.io/roasbeef/pgp_keys.asc

$ sha256sum ­­check manifest­v0.4.1­beta.txt ­

­ignore­missing

> lnd­linux­arm­v0.4­beta.tar.gz: OK

$ gpg ./pgp_keys.asc

> pub 4096R/DD637C21 2017­09­12 Olaoluwa

Osuntokun <laolu32@gmail.com>

> sub 4096R/5FA079A1 2017­09­12 [expires:

2021­09­12]

> 65317176B6857F98834EDBE8964EA263DD637C21

$ gpg ­­import ./pgp_keys.asc

$ gpg ­­verify manifest­v0.4.1­beta.txt.sig

> gpg: Good signature from "Olaoluwa Osuntokun

<laolu32@gmail.com>" [unknown]

> Primary key fingerprint: 6531 7176 B685 7F98

834E DBE8 964E A263 DD63 7C21

http://lightning.engineering/
https://github.com/lightningnetwork/lnd/blob/master/README.md

Figure 10 – Checksum LND

$ tar ­xzf lnd­linux­arm­v0.4.1­beta.tar.gz

$ ls ­la

$ sudo install ­m 0755 ­o root ­g root ­t

/usr/local/bin lnd­linux­arm­v0.4.1­beta/*

$ lnd ­­version

> lnd version 0.4.1­beta commit=

LND con�guration Now that LND is installed, we need
to con�gure it to work with Bitcoin Core and run
automatically on startup.

Open a “bitcoin” user session:

$ sudo su bitcoin

Create the LND working directory and the
corresponding symbolic link:

$ mkdir /mnt/hdd/lnd

$ ln ­s /mnt/hdd/lnd /home/bitcoin/.lnd

$ cd

$ ls ­la

Figure 11 – Check symlink LND

Create the LND con�guration �le and paste the
following content (adjust to your alias). Save and exit.

'$ nano /home/bitcoin/.lnd/lnd.conf'

Thundroid: lnd configuration

/home/bitcoin/.lnd/lnd.conf

[Application Options]

debuglevel=info

debughtlc=true

maxpendingchannels=5

alias=YOUR_NAME [LND]

color=#68F442

[Bitcoin]

bitcoin.active=1

enable either testnet or mainnet

bitcoin.testnet=1

#bitcoin.mainnet=1

bitcoin.node=bitcoind

[autopilot]

autopilot.active=1

autopilot.maxchannels=5

autopilot.allocation=0.6

Additional information

Figure 12 – sample-lnd.conf

In the LND project repository:

Exit the “bitcoin” user session back to “admin”

$ exit

Create LND systemd unit and with the following
content. Save and exit.

$ sudo nano /etc/systemd/system/lnd.service

Thundroid: systemd unit for lnd

/etc/systemd/system/lnd.service

[Unit]

Description=LND Lightning Daemon

Wants=bitcoind.service

After=bitcoind.service

[Service]

ExecStart=/usr/local/bin/lnd

PIDFile=/home/bitcoin/.lnd/lnd.pid

User=bitcoin

Group=bitcoin

LimitNOFILE=128000

Type=simple

KillMode=process

TimeoutSec=180

Restart=always

RestartSec=60

[Install]

WantedBy=multi­user.target

Enable and start LND

$ sudo systemctl enable lnd

$ sudo systemctl start lnd

$ systemctl status lnd

Monitor the LND log�le in realtime (exit with ‘Ctrl-C’)

$ sudo journalctl ­f ­u lnd

LND wallet setup

Once LND is started, the process waits for us to create
the integrated Bitcoin wallet. It does not use the
bitcoind wallet.

Start a “bitcoin” user session

$ sudo su bitcoin

Create the LND wallet

$ lncli create

If you want to create a new wallet, enter your
‘password [C]’ as wallet password, select ‘n’ regarding
an existing seed and enter the optional ‘password [D]’
as seed passphrase. A new cipher seed consisting of
24 words is created.

Figure 13 – LND new cipher seed

These 24 words, combined with your passphrase
(optional ‘password [D]’) is all that you need to restore
your Bitcoin wallet and all Lighting channels. The
current state of your channels, however, cannot be
recreated from this seed, as this is still under
development for LND.

NOTE: This information must be kept secret at all
times. Write these 24 words down manually on a
piece of paper and store it in a safe place. This piece
of paper is all an attacker needs to completely empty

your wallet! Do not store it on a computer. Do not
take a picture with your mobile phone. This
information should never be stored anywhere in
digital form.

Exit “bitcoin” user session

$ exit

Assign LND permissions to “admin”

Check if permission �les ‘admin.macaroon’ and
‘readonly.macaroon’ have been created. If not, see
open LND issue #890
(https://github.com/lightningnetwork/lnd/issues/89
0).

$ ls ­la /home/bitcoin/.lnd/

Figure 14 – Check macaroon

Copy permission �les and TLS cert to user “admin” to
use ‘lncli’.

$ mkdir /home/admin/.lnd

$ sudo cp /home/bitcoin/.lnd/tls.cert

/home/admin/.lnd

$ sudo cp /home/bitcoin/.lnd/admin.macaroon

/home/admin/.lnd

$ sudo chown ­R admin:admin /home/admin/.lnd/

Make sure that ‘lncli’ works by unlocking your wallet
(enter ‘password [C]’) and getting some node
information.

$ sudo systemctl restart lnd

$ lncli unlock

Monitor the LND startup progress until it has caught
up with the testnet blockchain (about 1.3m blocks at
the moment). This can take up to 2 hours. After that,
you’ll see a lot of very fast chatter. Exit with ‘Ctrl-C’.

$ sudo journalctl ­f ­u lnd

Get some testnet Bitcoin

https://github.com/lightningnetwork/lnd/issues/890

Now your Lightning node is ready. To use it in testnet,
you can get some free testnet bitcoin from a faucet.

Generate a new Bitcoin address to receive funds on-
chain

$ lncli newaddress np2wkh

'> "address":

"2NCoq9q7............dkuca5LzPXnJ9NQ"

Get testnet bitcoin:

<https://testnet.manu.backend.hamburg/faucet>

Check your LND wallet balance.

$ lncli walletbalance

Monitor your transaction (the faucet shows the TX ID)
on a Blockchain explorer:

<https://testnet.smartbit.com.au>

LND in action

As soon as your funding transaction is mined and
con�rmed, LND will start to open and maintain
channels. This feature is called “Autopilot” and is
con�gured in the “lnd.conf” �le. If you would like to
maintain your channels manually, you can disable the
autopilot.

Get yourself a payment request on StarBlocks
(https://starblocks.acinq.co/#/) or Y’alls
(https://yalls.org/) and move some coins!

Some commands to try:

List all arguments for the command line interface (cli)

$ lncli

Get help for a speci�c argument

$ lncli help [ARGUMENT]

Find out some general stats about your node:

$ lncli getinfo

Connect to a peer (you can �nd some nodes to
connect to here: https://1ml.com/)

$ lncli connect [NODE_URI]

Check the peers you are currently connected to:

$ lncli listpeers

Open a channel with a peer:

$ lncli openchannel [NODE_PUBKEY]

[AMOUNT_IN_SATOSHIS] 0

Keep in mind that [NODE_URI] includes @IP:PORT at
the end, while [NODE_PUBKEY] doesn’t.

Check the status of your pending channels:

$ lncli pendingchannels

Check the status of your active channels:

$ lncli listchannels

Before paying an invoice, you should decode it to
check if the amount and other information are
correct:

$ lncli decodepayreq [INVOICE]

Pay an invoice:

$ lncli payinvoice [INVOICE]

Check the payments that you sent:

$ lncli listpayments

Create an invoice:

$ lncli addinvoice [AMOUNT_IN_SATOSHIS]

List all invoices:

$ lncli listinvoices

To close a channel, you need the following two
arguments that can be determined with ‘listchannels’
and are listed as “channelpoint”: ‘FUNDING_TXID’ :
‘OUTPUT_INDEX’ .

$ lncli listchannels

$ lncli closechannel [FUNDING_TXID]

[OUTPUT_INDEX]

To force close a channel (if your peer is o�ine or not
cooperative), use

$ lncli closechannel ­­force [FUNDING_TXID]

[OUTPUT_INDEX]

https://starblocks.acinq.co/#/
https://yalls.org/
https://1ml.com/

See Lightning API reference
(http://api.lightning.community/) for additional
information

Outlook: Prepare for Bitcoin mainnet

In part 2 of this guide we will move the Thundroid
Bitcoin & Lightning node to the Bitcoin mainnet, that
uses a di�erent blockchain. Like the small testnet
blockchain, the mainnet blockchain records all Bitcoin
transactions and basically de�nes who owns how
many bitcoin. This is the most crucial of all
information and we should not rely on someone else
to provide this data. To set up our Bitcoin Full Node
on mainnet, we need to:

Download the whole blockchain (~ 200 GB)

Verify every Bitcoin transaction that ever occurred and
every block ever mined

Create an index database for all transactions, so that
we can query it later on

Calculate all bitcoin address balances (called the UTXO
set)

See “Running a Full Node” (https://bitcoin.org/en/full-
node) for additional information.

You can imagine that the Thundroid is not quite up to
this huge task. The download is not the problem, but
to initially process the whole blockchain would take
weeks due to its resource restrictions. We need to
download and verify the blockchain with Bitcoin Core
on a regular computer and then transfer the data to
the Thundroid. This needs to be done only once. After
that, the Thundroid can easily keep up with new
blocks.

For the switch to mainnet, the mainnet blockchain
should be ready, so we’ll start this task now.

Using a regular computer

This guide assumes that you will use a Windows
machine for this task, but it works with most
operating systems. You need to have about 250 GB
free disk space available, internally or on an external
hard disk. As indexing creates heavy read/write tra�c,
the faster your hard disk, the better. An internal drive
or an external USB3 hard disk will be signi�cantly
faster than one with a USB2 connection.

Download and verify Bitcoin Core

Download the Bitcoin Core installer from
bitcoin.org/download and store it in the directory you
want to use to download the blockchain. To check the
authenticity of the program, calculate its checksum
and compare it with the checksums provided.

In Windows, I’ll preface all commands you need to
enter with ‘>’ , so with the command ‘> cd bitcoin’ , just
enter ‘cd bitcoin’ and hit enter.

Open the Windows command prompt (‘Win+R’, enter
‘cmd’, hit ‘Enter’), navigate to the bitcoin directory (for
me, it’s on drive ‘D:’, check in Windows Explorer) and
create the new directory ‘bitcoin_mainnet’. Then
calculate the checksum of the already downloaded
program.

> G:

> cd itcoin

> mkdir bitcoin_mainnet

> dir

> certutil ­hashfile bitcoin­0.16.0­win64­

setup.exe sha256

6d93ba3b9c3e34f74ccfaeacc79f968755ba0da1e2d75c

e654cf276feb2aa16d

Figure 15 – Windows Command Prompt: verify checksum

You can check this checksums with the the reference
checksums on your Thundroid from the �le we
downloaded previously and have already checked for
authenticity. Compare the following output with the
checksum of your Windows Bitcoin Core download.

on Thundroid, with user "admin"

$ cat /home/admin/download/SHA256SUMS.asc |

grep win

http://api.lightning.community/
https://bitcoin.org/en/full-node

7558249b04527d7d0bf2663f9cfe76d6c5f83ae90e5132

41f94fda6151396a29 bitcoin­0.16.0­win32­

setup.exe

60d65d6e57f42164e1c04bb5bb65156d87f0433825a1c1

f1f5f6aebf5c8df424 bitcoin­0.16.0­win32.zip

6d93ba3b9c3e34f74ccfaeacc79f968755ba0da1e2d75c

e654cf276feb2aa16d bitcoin­0.16.0­win64­

setup.exe

42706da1a95b2db8c5808529f73c2063a0dd770f71e0c8

506bfa86dc0f3403ef bitcoin­0.16.0­win64.zip

Installing Bitcoin Core

Execute the Bitcoin Core installation �le. You might
need to right-click and choose “Run as administrator.”
Install it using the default settings. Start the program
‘bitcoin-qt.exe’ in the directory “C:Program
FilesBitcoin”. Choose your new “bitcoin_mainnet”
folder as the custom data directory.

Figure 16 – Bitcoin Core directory selection

Bitcoin Core opens and starts immediately syncing
the blockchain. Now, we need to set one very
important additional setting in the “bitcoin.conf” �le. If
not set, the the whole blockchain will be useless and
needs to be re-validated. Using the menu, open
‘Settings’ / ‘Options’ and click the button ‘Open
Con�guration File’. Enter the following line:

$ txindex=1

If your computer has a lot of memory, you can
increase the database in-memory cache by adding the
following line (with megabytes of memory to use,
adjusted to your computer) as well:

$ dbcache=6000

Save and close the text �le, quit Bitcoin Core using
‘File’ / ‘Exit’, and restart the program. The program will
start syncing again.

Let the blockchain sync for now, this will take a day or
two.

Before proceeding to mainnet

In part 2 of this guide, we will transition to the Bitcoin
mainnet. This will be the point of no return. Up until
now, you can just start over. Experiment with testnet
bitcoin. Open and close channels on the testnet. It’s
important that you feel comfortable with Thundroid
operations, before putting real money on the line.

Once you switch to mainnet and send real bitcoin to
your Thundroid, you have “skin in the game.”

Make sure your RaspiBolt is working as expected. Get a
some practice with ‘bitcoin-cli’ and its options. See
Bitcoin Core RPC documentation (https://bitcoin-
rpc.github.io/)

Do a dry run with ‘lncli’ and its many options. See
Lightning API reference
(http://api.lightning.community/)

Try a few restarts (‘sudo shutdown -r now’). Is
everything starting �ne?

See you soon in part 2, “The Perfect Bitcoin Lightning
Node.”

https://bitcoin-rpc.github.io/
http://api.lightning.community/

Linux Gaming: Nintendo 64 Emulation – Part 1
 June 1, 2018  By Tobias Schaaf  Gaming, Linux

Nintendo 64 emulation has recently evolved to run on
all ODROID devices, using either the Mupen64plus
standalone emulator or the Libretro core for
Retroarch. Now that it’s widely available, I decided to
do a comparison not only between the standalone
version and the Libretro core, but also between the
di�erent ODROID platforms, in order to evaluate their
capabilities in terms of emulating a Nintendo 64 (N64)
console. Please note that this article covers only Linux
emulation, and does not extend to Android, although
there are several Nintendo 64 emulators available for
Android, such as Mupen64plus and N64oid.

General information

It took a while to get N64 emulation to work on all the
ODROID boards under Linux. However, now that it’s
functioning, it’s quite fun and opens up lots of
opportunities for classic gaming. Hopefully in the
future, we will see more improvement and have even
better support for N64 emulators on ODROID devices

under Linux. For now, there are a few restrictions.
Only the XU3 is able to use the Libretro core under
Linux, which has better graphics, and is easier to
control than the standalone Mupen64plus emulator.
Mupen64plus runs on all other ODROID devices, such
as the Exynos 4 series (X, X2, U2, and U3) as well as
the newer but less powerful ODROID-C1. Both
versions o�er di�erent plugins and methods of
playing the games.

Graphics plugins

Whether you use Mupen64plus or the Libretro core,
di�erent plugins are used to display the game
graphics. Mupen64plus is able to use a video plugin
called rice, and another one called glide64mk2. The
Libretro core o�ers rice, glide64 and one called gln64.
While testing, I found that the best videocore depends
on the game. However, it seems that glide o�ers
better graphics features than the rice plugin, but has
some minor glitches that are not present in the rice

video plugin. Using the standalone Mupen64plus, rice
is unable to perform aspect ratio scaling, and always
scales the game to the full size of your video
resolution. This distorts the picture, causing the
characters and objects to appear wider than normal.
The ODROID-C1 performs best when using the rice
video plugin, since glide64mk2 doesn’t work unless
the color depth is reduced to 16 bit, which causes the
transparency e�ects to become disabled. This will
also cause issues if you try watching movies or want
to start other applications that require more than 16
bit color depth. Since the initial tests on the C1 went
poorly, I decided to retest every game in 16 bit using
the glide64mk2 video core. There seems to be a
workaround using framebu�er drivers instead of X11
drivers by adding some scripts in order to switch
resolution and color depth, but since my ODROID
GameStation Turbo image uses X11 drivers by default,
I don’t take the time to perform framebu�er tests.
The glide plugin on the Exynos 4 series devices (X, X2,
U2 and U3) is working well, and respects aspect ratio
with an overall good quality, but it can be a bit slower
than rice on some games. Glide also seems to render
a darker picture than rice does, which is most likely
due to some missing shader options with regards to
shadows. The glide64mk2 plugin on the Exynos 4
devices is the preferred graphics plugin for
Mupen64plus standalone. The XU3 can use rice,
glide64 and gln64, but glide64 seems to be the best
plugin for now on the ODROID.

Controllers

Joysticks are fortunately working �ne on all ODROID
devices, which means that all emulators
(mupen64plus and libretro core) are fully supported
with any game controller. The Mupen64plus emulator
con�gures the controllers automatically, but not all
controllers work perfectly with the default settings.
Thanks to Retroarch on the XU3, you can setup any
controller you want by manually con�guring the
buttons, so every controller is 100% supported.
Normally you should be able to activate rumbling
support of the controller, but I had trouble getting it
enabled on all emulators and controllers. I was able to
use it with some PS3-style controllers on the

Mupen64plus standalone emulator, but I wasn’t able
to use rumbling with the Libretro core.

Sound

Sound is working well on all emulators, and I haven’t
found any major issues with it. Although one game
had a delay in sound, which caused e�ects not to be
synced with the action on the screen, that was an
exception, and I haven’t seen this issue with any other
game.

Game selection

Are you ready to play your favorite Nintendo 64
games on the ODROID? Well, that’s exactly what we
want to try and �nd out: do your favorite games
work? To answer that question, I did some research
on what are generally considered the best games on
the N64, then picked some of them to test, as shown
in Figures 1 and 2. Hopefully you will �nd some of
your favorite games in this list as well.

Figures 1 – List of some favorite N64 games from many
di�erent genres

Banjo-Kazooie

Banjo-Kazooie is a mix of jump-and-run platformer
and action adventure. You play as Banjo the bear
trying to save his sister who was abducted by a witch.
He has a friend Kazooie the Bird, with whom you need
to solve a couple of puzzles. Like most of the
Rareware games, this one is fun and has a cute comic
style.

Figure 2 – Banjo Kazooie)

U3

Generally, the game is running acceptably on the U3.
It’s sometimes a little laggy, especially during the
intro. The introductions of Rare games are normally
rather long and can’t be skipped. On the XU3 and the
Libretro core, you have the ability to increase the
emulator speed, so that the introduction is over
faster. I haven’t seen that option on the standalone
Mupen64plus emulator yet, which means a long wait
time. Also, the fonts are not correct on the standalone
emulator, which is slightly annoying. The game felt a
little laggy after playing it for a while. I used the
con�guration options of the emulator to activate
frameskipping with a maximum of three frames,
which increased gameplay to full speed. With that
setting, it was a really nice game to play, with only the
font issue remaining. I left the frameskipping option
set to three frames for all of the other games.

C1 – rice plugin

For the C1, I used the standalone emulator
Mupen64plus, using the rice plugin, since I did not
want to change the colors to 16 bit. Also, rice is a little
bit faster than glide64mk2, and is better suited for the
C1. I also had to activate frameskip for the rice plugin
in order to get the game to run smoothly. Without
frameskipping, the sound was lagging and was not a
good experience. Although rice does not respect
aspect ratio, it doesn’t look bad. The issues with the
fonts that happened with glide64mk2 do not exist on
rice, so the fonts look normal. With frameskip
activated, the game ran surprisingly fast on the C1,
which was unexpected. If the game were to support a

proper aspect ratio, it would run perfectly �ne on the
C1.

C1 – glide64mk2

Banjo-Kazooie runs on the ODROID-C1 using
glide64mk2, but is extremely slow and no fun to play.
The Rice plugin in 32 bit color is working much better
than glide64mk2 in 16 bit.

XU3

XU3 uses the Mupen64plus Libretro core and
Retroarch to emulate the game, and the experience
on the XU3 is the best of all three platforms. The
emulator runs glide2gl as a video plugin, which seems
to be much better than the older glide64mk2, and
does not render the colors as darkly. The Libretro
core is missing the frameskip feature that the
Mupen64plus emulator o�ers, which means that it
can only perform as fast as the board that it runs on,
which can lead to slowdowns, depending on the
scenes. In Banjo-Kazooie, this happens in the
introduction, but it’s not bad. The graphics look much
better using Libretro, and the game is fully playable.

Conker’s Bad Fur Day

Conker’s Bad Fur Day is another game from Rareware,
and is similar to Banjo-Kazooie. However, it’s not
suitable for small children due to its reference to
drugs and alcohol along with harsh language, despite
its comic style. You will also �nd a few characters that
are the same in both games. This game is a mixture of
many genres, mostly jump-and-run and action
adventure, but it feels more like a �rst-person shooter
with a mix of other genres as well. The game is
actually one of my favorites for the Nintendo 64, and
some other people already gave it nice reviews:
http://bit.ly/1bo6odW. I highly recommend the game
for adults and teens.

http://bit.ly/1bo6odW

Figure 3 – Conker’s Bad Fur Day

U3

The U3 with the Mupen64plus standalone emulator is
a little bit too slow for Conker’s Bad Fur Day, and
there are scenes where it feels somewhat laggy, which
a�ects the controls. Sometimes they react too slowly,
which is annoying during the jumping puzzles. The
glide64mk2 plugin also makes the graphics very dark,
especially during the cutscenes in the castle. When
inside dark rooms, it’s nearly all black in some spots.

U3 – rice plugin

While the U3 is having speed issues, the C1 fails
completely because the C1 is simply not powerful
enough to run a demanding game like Conker’s Bad
Fur Day. The rice graphics plugin also has many issues
with this game, such as black borders and distorted
graphics, which is not fun to look at. Although the
game is generally working, it’s rather slow. Some
scenes are actually fast enough to be considered
playable, but are far from full speed. Therefore, I
would consider this game unplayable on the ODROID-
C1.

U3 – glide64mk2

Conker runs better using the glide64mk2 plugin than
with the rice plugin. It’s still not full speed, but if you
can tolerate a little lag, it’s playable.

XU3

The XU3 o�ers the best gaming experience when
running Conker’s Bad Fur Day. The game, although
not running at full speed, is mostly smooth on the

XU3. The glide2gl plugin looks really good and only
has a few issues with the game. I am not very far in
the game right now, so I can’t compare how the later
levels perform, especially with driving tanks and using
sniper modes.

Earthworm Jim 3D

Earthworm Jim is a nice platform action shooter about
an earthworm named Jim, who got hit by an advanced
space suit, transforming him into a hero. While the
game was �rst a success on the SNES, SEGA Genesis,
and even the Playstation 1, with the N64, it went a
step further and transformed the game from a 2D
platformer into a 3D action game.

Figure 4 – Earthworm Jim 3D

U3

The gaming experience of Earthworm Jim 3D on all
ODROIDs is very nice. The U3 runs the emulator very
fast and �uently, with some occasional minor
graphical glitches. Since the game is rather colorful
and bright, with light rooms and no shadows or dark
corners, the glide64mk2 graphical darkness that
a�ects other games is not a factor while playing
Earthworm Jim 3D, which really improves the gaming
experience.

C1 – rice plugin

Although the introduction and demo gameplay are
fast, I couldn’t start the game. The �rst scene where
you talk to one of your friends is not only laggy, but
also the window that is supposed to show the text
remains empty and does not render anything. Clicking

a button is also unresponsive, so you’re stuck before
the game even starts. It’s likely that this is only a rice
bug, but since I haven’t tested glide64mk2 on the C1, I
can’t tell how well it’s performing under that plugin.
Therefore, I can only say that Earthworm Jim is not
working on the C1.

C1 – glide64mk2

This game runs really well using the glide64mk2
plugin, with no graphical issues or slowdowns.
Everything works as expected.

XU3

Since the C1 and U3 are powerful enough to play the
game �uently, it’s really no surprise that the gaming
experience on the XU3 is perfect as well. If you like a
good action platformer, this game is de�nitely a must
have, but it does have some minor glitches. Some of
the objects that you can collect are not displayed
correctly. They seem to be too high, and you often
only see a shadow where the object is supposed to
be. You can still collect them, they are just invisible,
although the game still works �ne otherwise.

GoldenEye 007

GoldenEye 007 is found on everyone’s top 10 list for
the N64, since the game was revolutionary for it’s
time. Not only did it o�er nice graphics, but it was
known for its awesome multiplayer mode. The single
player story and missions are very exciting as well and
are fun to play as well. GoldenEye is a rather serious
�rst person shooter with just the right touch of secret
agent work. Although not as spectacular as Cate
Archer, James Bond �ghts or sneaks through di�erent
levels and has to defend himself against enemy
guards and spies. However, Cate Archer will always be
my favorite spy in harms way. Although this game has
very good reviews for the N64, I really don’t like �rst-
person shooters on consoles. Therefore it’s not one of
my favorite games, although it’s nice to play.

Figure 5 – GoldenEye 007

U3

The game runs very well on the U3. Except for a short
scene in the introduction, there was no slowdown
either inside or outside of buildings. I had some
issues when using a wireless XBox 360 controller with
the right analog stick, which made game movement
di�cult. However, using only the left analog stick
seemed to be a good workaround for playing the
game.

C1 – rice plugin

The C1 has graphical issues with the rice plugin with
this game as well. Neither the logo, nor the
introduction are visible, and both are hidden behind a
black border. The scene that caused a massive
slowdown to 8 fps on the U3 is too much for the C1,
and the emulator stops completely and eventually
crashes. Observing the ODROID while running the
game, I can tell that when the slowdown happens, the
RAM usage skyrockets to the point where no RAM is
available. After that, it uses the swap partition that I
created, and after that, the out of memory killer
terminates the emulator, which doesn’t happen on
the U3. I then switched to the rice plugin on the U3,
and although the emulator was much slower than
with glide64mk2, it was working properly with no
black screen or memory issue, and did not crash. I
therefore concluded that it was only an issue with the
C1.

C1 – glide64mk2

The game is working with glide64mk2, but the speed
varies from nearly full speed to laggy. It’s playable, but
not as good as on the U3 or XU3.

XU3

The game runs at a decent speed on the XU3 using
the Libretro core. The graphics look really good, but it
has occasional slow downs, although not in a way that
prevents playing the game. I was also able to use the
XBox 360 controller without any issues.

Kirby 64: The Crystal Shards

Who does not recognize little Kirby? This game is very
kid friendly and has cute graphics. The pink
marshmallow-like buddy can suck in its enemies and
swallow them in order to absorb their powers. The
N64 version has beautiful 3D graphics and is rather
easy to play, which makes it perfect for children.
Although the game is rendered in 3D, the levels are
very linear. You can go left, right, up and down, but
are not able to walk freely on the map, which
probably greatly reduced the map size and allowed
extra performance for e�ects. The game looks similar
to Mario 64, but without the free movement in all
directions.

Figure 6 – Kirby 64: The Crystal Shards

U3

The general experience is very good, and the game
runs perfectly �ne in full speed. However, it has some
graphical glitches with the ground and shadows which

makes it �ickery in some situations. I also had major
issues with the controls. I had to change to a di�erent
controller, since my XBox 360 controller would not
work with this game. It seems that movement only
works with the D-Pad, which is not available on the
Xbox 360 joystick. After I switched to a “Thrustmaster
Dual Trigger 3 in 1” controller, which is similar to a
PS3 controller, the movement controls were working,
and I could play the game without issues besides the
previously mentioned glitches. The game experience
is really smooth and fun to play. The cute graphics
and cutscenes really �t the game.

C1 – rice plugin

The C1 experience was di�erent from the U3, and was
unexpectedly slow. Cutscenes were so slow that I
skipped them, rather than waiting for them to play
through. However, the graphical glitches were gone.
The gameplay was slower than expected and was
laggy in some scenes, while during other scenes, it’s
nearly full speed. I expected it to run better on the C1.

C1 – glide64mk2

Kirby works well using glide64mk2, with only minor
issues on the ground textures and shadows.

XU3

The XU3 runs Kirby very smoothly. The graphics,
although not as bad as on the U3, have some glitches
such as e�ects that do not display on the ground, but
they are shown normally while jumping or on higher
platforms. Since the XU3 can use the Libretro core,
there was no issue with the controller at all, and I was
able to use an XBox 360 controller normally.

Next issue – more Nintendo 64 game reviews,
including Mario Kart, Mario Party and Paper Mario!

Digital Photo Frame: 55 inch 4K Digital Photo Frame Display for
Around $400
 June 1, 2018  By @tung256  ODROID-C2, Tinkering

There are lots of tutorials on how to make an
awesome digital photo frame with a Raspberry Pi.
Unfortunately, the Raspberry Pi does not support 4K
resolution. The ODROID-C2 can easily handle 4K
resolution, but none of those Raspberry Pi tutorials
work for the C2 unit. It took me 30+ hours to get
where I am today. You can buy one from Memento
(mementosmartframe.com) for $900 USD for a 35
inch, 4K frame, or a Samsung frame TV for around
$1300 USD.

Figure 1 – This wall has been empty for three years

I wanted to have a nice poster or backlit display, but
those are costly and can only display one photo at a
time. After a bit of a wait, a 55 inch 4K TV was
available at Walmart for $260 USD. Add $26 USD for a
three year warranty and taxes, and the out-the-door
cost was $306 USD.

Figure 2 – Add an outlet near the TV for a clean look

I was able to �sh a Romex 12 gauge wire from a
nearby outlet. Be sure to turn o� the electricity before
doing this work! There are detailed tutorials available
on YouTube for installing an outlet. I actually forgot to
take photos and videos while I installed my own.
Sorry!

Gather All the Materials You Will Need

4K TV 55 inch Sceptre from Walmart, $260 USD as of
April 30th, 2018.

ODROID-C2 with barrel plug power adapter, $65 USD
with 4 day shipping in USA. Do not use the micro USB
cable to power, it is not good enough. I bought my unit
and power cable from Ameridroid.com

High speed HDMI cable from Monoprice.com, $5 USD.
Certi�ed to work with 4K 60hz 4:4:4 chroma

32GB �ash drive to hold photos, $15 USD.

8GB microSD card, $4 USD.

Wireless USB and keyboard combo, $30 USD.

Optional USB WiFi adapter, $10 USD.

All prices subject to change. My costs were actually
lower because i got some items used or already had
on hand for other projects.

Figure 3 – The ODROID-C2 photo frame mounted on the
wall

Install Ubuntu mate from
https://wiki.odroid.com/odroid-
c2/os_images/ubuntu/v2.4. Burn your downloaded
ISO image onto the microSD card using Win32disk
imager. Insert your microSD card into the ODROID-C2.
Connect the HDMI cord from the C2 to the TV. Turn
everything on and make sure all the materials are
connected to the ODROID-C2. You can skip
connecting the USB drive and USB WiFi for now. Let
Ubuntu initialize and �nish everything. Once all done,
it will ask you to log in.

User ID: odroid Password: odroid

Enable auto login so you don’t have to manually log in
each time. Go to menu Applications/System
Tools/Mate Terminal and type in:

$ sudo nano

/usr/share/lightdm/lightdm.conf.d/60­lightdm­

gtk­greeter.conf

If it asks for a password, type “odroid”. Type in the
autologin line. so the �nal �le should look like this:

[Seat:*] greeter­session=lightdm­gtk­greeter

autologin­user=odroid

Press CTRL+X to exit, or Y to save �le. Install FEH to
view photos. In the same terminal window, type the
following commands, typing Y to con�rm, if it asks:

$ sudo apt­get install feh

My photos are edited to be 4K resolution at 3840 x
2160 pixels. Copy your photos to a USB drive and

https://wiki.odroid.com/odroid-c2/os_images/ubuntu/v2.4

insert into the ODROID-C2. Use your mouse to
navigate to the directory /home/odroid and right-click
to create a Create Document/empty �le. I named it
pixx.sh, but you can name it whatever you want.
Open pixx.sh, add these codes in:

$ sleep 15

$ feh ­­quiet ­­fullscreen ­­borderless ­­

hide­pointer ­­randomize ­­slideshow­delay 30

/media/odroid/38C1­602E/*

Your USB drive name will be di�erent from mine. In
my case, the drive is named “38C1-602E.” To �nd your
USB name, just navigate to media/odroid and you will
see. Change the slideshow delay value of 30 seconds
to whatever you want. Save the �le and close. Right
click on pixx.sh to view its properties. Make it
“executable” in one of the options.

Add pixx.sh to autostart menu. Go to the menu
System/Preferences/Personal/Startup Applications
and click on Add:

Name=slideshow

Command=(choose the pixx.sh �le wherever you saved
it)

Comment= slideshow autostart, click on Add and close

Disable the screensaver by going to System/Control
Center and choosing Look and Feel, and then
ScreenSaver. Disable “Activate Screensaver” and
anything else that would trigger idle mode. I’ve
forgotten all the settings, but they are all here. Go
back to the terminal window and type:

$ sudo reboot

This will reboot the C2. Once rebooted, it should
automatically login, wait for 15 seconds, and then
start playing photos from your USB drive. Hit ESC on
your keyboard to exit FEH if you need. I leave mine
running nonstop. I only turn o� the TV as needed.

Optional Steps

Figure 4 – The photo frame fully assembled and
displaying family photos

Add more photos to the USB �ash drive by copying
and pasting into the USB drive manually or via FTP. To
upload via FTP–so you don’t have to physically
disconnect the USB drive–make sure the USB WiFi
adapter is plugged in. Go to the upper right hand
corner of Ubuntu menu and connect to your WiFi
network. Download FileZilla and connect to the
ODROID via SFTP protocol, not FTP protocol. Enter
your C2 IP address in host �eld:

user: odroid password: odroid login type: normal

Upload to your media/odroid/usb drive name and
reboot the C2 for FEH to load the new photos into
memory. To rotate the display screen into portrait
mode, go to the terminal and type in:

$ sudo nano /etc/X11/xorg.conf

Add in this line:

Option "Rotate" "CCW"

So the end result looks like this:

Section "Device"

Identifier "Mali FBDEV"

Driver "fbturbo"

Option "fbdev" "/dev/fb0"

Option "Rotate" "CCW"

Option "SwapbuffersWait" "true"

EndSection

Exit and save, then reboot the computer:

$ sudo reboot

Once your TV has loaded up again, the display should
be rotated into portrait mode.

Troubleshooting

Ubuntu rebooting itself There is not enough power.
Don’t power up the C2 unit via the micro USB port.
Power the C2 unit via the barrel plug that
Ameridroid.com sells for around $7 USD. I spent at
least 20 hours on troubleshooting this.

TV shows blank screen or no signal Try another HDMI
cable or Try another power cable for the C2.

TV shows no signal Did you turn o� Ubuntu sleep or
screensaver mode?

For comments, questions, and suggestions, please
visit the original post at
http://www.instructables.com/id/55inches-4K-
Digital-Photo-Frame-Display/.

OS Spotlight: ODROID GameStation Turbo
 June 1, 2018  By Tobias Schaaf  Gaming, ODROID-C2, ODROID-XU4

One of the biggest projects that I am working on for
the ODROID community is the ODROID GameStation
Turbo image, which works as a frontend for both
games and media playback. It’s intended as an
entertainment system that allows you to control your
ODROID just by using a game controller in your hand
without ever having to touch the keyboard in order to
watch movies, listen to music, or play your favorite
games. For a better understanding of the usefulness
of the image, I want to give you an inside view on how
the image was created, what motivation I had, and
how you can adapt it to meet your own needs.

Motivation

The �rst ARM based devices I considered was actually
the Open Pandora, but by the time I was ready to to
buy one, it was not available. However, even when it
came available again, it was so expensive that I
couldn’t a�ord it. Finally, when I had enough money, I
was already skeptical and was looking into other

options. The Pandora board is an ARM-based single
core device with just 1GHz and only 512MB RAM for
$700, so was it really worth it? Well, although the
community was and continues to be awesome, and
it’s a fully portable device (like a Nintendo DS), it was
way too expensive, in my opinion, for what it could
do. By that time there were better devices available,
including the ODROID. After seeing the ODROID-X2 in
an article on a German IT News page, I got really
hooked up to it. By the time Ubuntu was announced
for the ODROID, I bought myself an X2. However,
what I wanted the Pandora for was to play games,
and the ODROID didn’t have too many games at that
time (2012). As my nephews got older, I �gured that I
could make something really nice for them that would
grow with them as they grew. First, the ODROID could
be a console for playing games, and later, it would
function as a PC in order to do homework and learn
Linux. That was my goal and motivation for creating
the image.

Steps to success

The �rst step towards achieving that goal was to
generate content, so lots of games and emulators had
to be ported to the ODROID. If you read the ODROID
Forum’s Ubuntu (All Linuxes) section, you will �nd
many games and programs there that I ported myself.
It was hard work, since I went from knowing basically
nothing about porting games or compiling software
on Linux to what I know now. ODROID was a great
help in learning new skills and getting better at
knowing that kind of Linux stu�. Now, I know how to
optimize certain programs, how to set di�erent
optimization �ags, and when those �ags are needed. I
learned more about how ARM CPUs work and,
especially the hardware di�erences between the
Hardkernel boards. My �rst project was then to port
lots of games, and compile some emulators as well. If
you’ve read my columns from the previous issues of
ODROID Magazine, you will �nd lots of informations
on what games are actually running on the ODROID,
and it keeps getting bigger. The next big step was to
make it easy, even for children, to use and work with
Linux and play games. I started building Gamestation
Turbo from the Linaro Ubuntu 12.04 Image. I
preferred that over all other operating systems
because of its Unity Desktop. Unity is easy to use and
understand even for people that never used Linux
before. It might not be the best desktop environment
for all applications, but it’s colorful, and easy to
handle. For someone who has never used Linux
before, it’s a very nice way to get started with it. My
�rst approach was to get the programs easy enough
to run on all system. I gave all applications and games
that I created a .desktop icon �le, so you can �nd it in
Unity or just place a shortcut on the desktop. This
worked �ne for games, but not for emulators, since
emulators normally use their own �le browser
interface to load the ROMs. Although adults might be
able to handle starting all of the games manually, kids
will have no clue what certain words mean, and it’s
hard to see which games are available, or what to
search for on Unity. It was immediately clear that I
needed some kind of front end in which to start the
games. I had already used XBMC on an old PC that
functioned as a Home Theater PC (HTPC), and

subsequently discovered a nice XBMC addon called
Rom Collection Browser (RCB). RCB allows you to
organize the emulator ROMs in the same way that
you can organize your video collection. It’s even able
to download preview images and covers and gave a
short description to the games, just like video services
do for movies.

Figure 1 – Rom Collection Browser in ODROID
GameStation Turbo

Knowing this, the idea came up to use XBMC as a
frontend and set it up in a way for children to play
and have fun with, or better to say to set it up in a
way that even a child could play with it. During that
time, hardware accelerated XBMC and video playback
was out of question since it development hadn’t yet
been completed. The XBMC version that came with
Ubuntu 12.04 was XBMC 11 (Eden), which was
working, but not very fast due to software decoding.
Although the Menu was working smoothly, video
playback was not smooth. Still, it was working well
enough that I could test out the Rom Collection
Browser, and experimented with how to set
everything up. When the �rst image of XBMC 12
(Frodo) for ODROID came out, it still did not support
hardware-accelerated movie playback, but did come
with OpenGL ES 2 support. Things got a little di�cult
to manage around that time, since compiling
Hardkernel’s XBMC source code didn’t work for me,
and the version provided has no joystick support,
which I considered very crucial to my plans I decided
that, since it was planned as a gaming platform, video
playback was not the most important feature, and
you still could play everything that was not HD
smoothly as long as it was 720p or lower. For children,
it generally doesn’t matter if their favorite anime or
cartoon is in HD or just SD. Well, it was about that

time that a working hardware accelerated XBMC
image was released, and I was able to rebuild the
image with the necessary joystick support. Shortly
before I released the �rst version of GameStation
Turbo, I moved over to a fully working XBMC version.

Parts that were included

After i decided how the image should work, it was
important to put all the tiny pieces together into a
nicely packaged image, and for this, some work and
di�erent kinds of programs were necessary to achieve
what I wanted to have. The �rst priority was the
Operating System, which had to be very stable, easy
to maintain, and with an interface that many people
are already familiar with. The only choice here was
between Ubuntu 12.04 and Debian Wheezy. Every
other image was either unstable (Debian Jessie/Sid) or
wouldn’t be supported for very long (Ubuntu 13.04 or
newly released 13.10). Ubuntu 12.04 is an LTS version
that is supported until 2017, which is always good,
however, Debian Wheezy outperformed Ubuntu
12.04. I also found that while developing for Debian
Wheezy, the programs were most likely to run on
Ubuntu 12.04 and higher without any issue, but not
the other way around. So, I decided to use Debian
Wheezy and LXDE, which uses less than 150 MB RAM
even with XBMC and a couple of other programs
running. After that, it was a question of putting
together the right kind of software to turn the
ODROID into a gaming machine.

Rom Collection Browser

I used Rom Collection Browser as a base to install
di�erent kind of emulators such as Retoarch,
Mednafen, PPSSPP and ScummVM. Once the basic
setup was done, it turned out that not everything was
working with a gamepad out of the box, so I added
antimicro which is able to map certain keys to a
joystick button to �ll the gaps where the joystick
drivers did not work. I also maintain my own kernel
builds and include the header �les as well, since some
parts of the kernel provided by Hardkernel did not
meet my needs, and header �les were not included.
Besides that, there was a huge space di�erence
between hardkernel’s kernel modules and the one
that I produced. The size was Hardkernel’s build was

over 300MB, but mine was only 16MB of my own
build, which was achieve just by stripping the
modules. My scripts also allows users to install or
uninstall kernel packages, instead of just copying the
kernel directly over the existing �les.

Complications

The biggest problem for me was how to get all the
parts to work with each other, and make it easy for
people to use the image, even if they do not have
knowledge on how to set it all up. The Rom Collection
Browser was somewhat di�cult to use for a beginner,
since you had to choose the emulator, starting
parameters and give the ROM �les standard
extension to set it up and get it to run. So I had to
come up with a system that made it rather easy for a
user to deal with that. There was another issue. I
wanted to have full Joystick (GamePad) control, but
some emulators required keys as well, such as
Retroarch and Mednafen which required the ESC-key
to end the current game and go back to XBMC, and
also MAME games which required to enter an “OK” to
continue.

Con�guration

One problem with precon�guring the Rom Collection
Browser was that it requires the full path of where the
emulator and ROMs are located, and what �le
extension is used to search for ROMs. This can be
rather confusing for someone that has never worked
with the Rom Collection Browser. That’s why I pre-
selected the emulator and games, and created a
folder structure where the ROMs should be placed, in
order for the Rom Collection Browser to �nd the
games. Additional emulators can be added by
pressing the C key in the Rom Collection Browser and
selecting “Add a new ROM collection”. There you have
to give the path to the emulator, the path to the
ROMs, the path where it should store information and
pictures and the extension of the ROMs it should look
for. The con�guration �le for ROM Collection Browser
is stored in

/home/odroid/.xbmc/userdata/addon_data/script.

game.rom.collection.browser/config.xml

By editing this �le, you can alter other options as well,
such as if a .zip �le should be extracted into a
temporary folder, and whether to look for a ROM
inside of a .zip �le (which, for example, has to be
deactivated for MAME games). If you’re experienced
enough, you can even add new collections directly in
this �le.

Starting an emulator

Although starting a ROM directly through the
emulator will de�nitely work, it has a couple of
disadvantages. First of all, XBMC will still be running in
the background and will use some of the resources
needed for a better gaming experience. Second, as
mentioned before, some emulators need extra keys
that are not mapped to a button. If using a joystick
that is not supported, you need need antimicro to
map the buttons for you. If so, you need to make sure
that antimicro is started when you need it, which
might not always be the case. Directly starting
antimicro along with the emulator didn’t work either.
To solve these and other issues, I let XBMC run a
small scriptiInstead of directly starting the emulator.
In that script, the emulator is started, which then runs
the ROM �le which is given to the script as a
command-line parameter from XBMC. That way, I can
de�ne di�erent steps to make sure the emulator
works the best.

Example: running an SNES game with Retroarch:

#!/bin/sh

/usr/bin/killall ­STOP xbmc.bin

if [`ps aux | grep antimicro | grep ­v grep |

wc ­l` ­lt 1]; then

antimicro ­­tray ­­profile

/home/odroid/joydev.xml &

else

/usr/bin/killall ­CONT antimicro

fi

/usr/local/bin/retroarch ­L

/usr/local/share/retroarch/cores/working/snes9

x_next_libretro.so "$1"

/usr/bin/killall ­CONT xbmc.bin

/usr/bin/killall ­STOP antimicro

Reading through the above code, you can see that
XBMC is set to suspend mode, which means it won’t
use any processing power while we run our emulator.

After that, I make a check to see whether antimicro is
running, and either load it with the required pro�le
�le, or resume it in case it’s still running. Then, I call
the actual emulator. Here I can pass command
parameters which allows me to con�gure the
emulator. After the emulator is terminated by exiting
the emulator, XBMC is resumed and antimicro is
suspended. Just after the script is completely done, it
switches control back to XBMC. This allows for some
cleanup work that may be necessary. I wrote quite
some scripts to adapt to di�erent circumstances. For
example, the ScummVM and Amiga script is a little bit
more complicated; but all in all it’s pretty much always
the same.

Suspend the processes you don’t need (for example
XBMC)

Setup your environment by preparing the system with
the stu� you need (for example, loading antimicro with
the right pro�le)

Call the emulator and give it the parameters that you
think you’ll need. The “$1” represents the ROM �le that
is getting passed by XBMC as a parameter.

Do some clean up work and resume the processes that
you suspended earlier

All the scripts that I used for launching emulators are
located in /usr/local/bin/, where you can review,
improve or add your own scripts.

FAQ

Every now and then, I receive some questions about
my image which I would like to address here as a FAQ.

Where do I have to put the ROM �les for my games?
Navigate to /home/odroid/ROMS, where you will �nd
a structure of folders already created for each type of
ROM you want to play, such as GBA and SNES. Please
check the forum post at http://bit.ly/1nVvQqz for
details on which �le extensions are supported.

Is there a way to load ROMs from an external storage?
Copy the contents of /home/odroid/ROMS to your
external storage device and then auto-mount the
external device to /home/odroid/ROMS by adding it to
/etc/fstab, or using /etc/rc.local to make it permanent.

What joystick/gamepad are supported? I built the image
for use with an Xbox 360 wireless controller and Xbox

http://bit.ly/1nVvQqz

360 wireless USB receiver. So if you have that
hardware, the image should work out of the box with
no modi�cation necessary, unless I forgot something
again. Besides that, every joystick/gamepad that is
supported by Linux should work as well, but you will
have to adapt settings for your device. Therefore you
have to change the joystick settings on the individual
emulators. Running Mednafen, you can simply press
ALT+SHIFT+1 to setup controlls for your device. The
setup program is easy to understand. The second
player, if supported by emulator can be setup with
ALT+SHIFT+2, and so on. For Retroarch, it’s a bit more
complicated. Quit XBMC, open a terminal, and type
retroarch-joycon�g, then follow the instructions on
the screen. At the end, you will get a long list of
con�guration parameters in the Terminal window.
Copy this list, then open the �le
/home/odroid/.con�g/retroarch/retroarch.cfg, where
you will �nd the same parameters listed. Replace the
already existing parameters with the ones you got
from retroach-joycon�g, and your device should work
in retroarch.

XBMC unfortunately does not support a lot of devices
for joystick support. Although Xbox 360 controllers
are working �ne, others do nothing at all. With
PPSSPP, you can change the controller con�guration
within the emulator by just going into the menu.
However, on PPSSPP, the way controllers are
implemented is rather sluggish so only a few really
work well. In worst case, you can’t even use the
keyboard anymore. since the controller settings won’t
allow you to hit certain direction keys. If that happens,
delete the �le
/home/odroid/.con�g/ppsspp/PSP/SYSTEM/controls.in
i and start over. If all else fails, remove any mappings
for the controller and keep the settings for Keyboard
only, which should always work. Then, use your best
buddy, antimicro! If you use a di�erent joystick device
and really have trouble getting PPSSPP or XBMC to

work with it, antimicro will work. Using antimicro, you
can map keyboard commands to a button on your
gamepad/joystick in the same way that you could
simply map the keyboard arrow keys to your
gamepads.

Does the image support CEC? Not initially. The image
has libcec installed which is working on HDMI 1, but I
removed CEC from the XBMC image since it was
causing issues. However, you can install XBMC with
CEC support if you want from my repository at
http://oph.mdrjr.net/meveric/.

When I exit an emulator, the XBMC window is really
small, how can I �x that? If you exit XBMC and restart it
again, it will go back to fullscreen. I would advise you
to “maximize” the XBMC window anyway to make it
easier for you to select options.

Is there an environment besides XBMC on the image?
Yes, running behind XBMC is a full �edged Debian
distribution with LXDE. This means that you can install
everything you want on the image that is available
from he Debian repository, and more. You can do
everything that you can do on the Ubuntu images as
well, such as web browsing, document editing, and
graphics design.

How’s the XBMC and 3D performance? ODROID
GameStation Turbo uses the latest Mali drivers (r4p0)
that are provided by Hardkernel, together with the
new armsoc framebu�er drivers and Xorg patches
which give very good performance. The benchmark
program es2gears runs with over 250fps, and
glmark2-es2 runs with over 90fps. XBMC runs full
speed with 60fps and supports 1080p playback of
h.264 movies. It even allows vsync on movie playback
and will change the frequency of your TV to match the
movies frame rate. While doing so it uses very little
CPU and RAM and outperforms the original Lubuntu
13.10 image that I previously published.

OGST Gaming Console Kit for the ODROID-XU4
 June 1, 2018  By Justin Lee  Gaming, ODROID-XU4, Tutorial

The OGST Gaming Console Kit for the ODROID-XU4 kit
allows you to build your own gaming console with a
powerful ODROID-XU4 or ODROID-XU4Q. Its
attractive design includes a fancy 2.4” LCD to show
programmable game logo animations, and is
speci�cally designed to work with the popular
ODROID GameStation Turbo disk image. The
Gaming Console Kit is available at the Hardkernel
store for USD$24, and pairs well with the new
GameSir G3w USB Controller Joystick. The ODROID-
XU4 or XU4Q, microSD card or eMMC module, 5V/4A
PSU and USB game controller/joystick are not
included.

Kit contents

A. Top case

B. Bottom case

C. OGST-XU4 LCD Board

D. USB2.0 extension cable

E. 30-pin �at cable

F. USB-port cover

G. rubber feet set

H. screws

I. USB3.0 extension cable (For optional 2.5″ USB HDD
storage)

Figure 1 – Annotated GameStation kit

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
https://forum.odroid.com/viewtopic.php?f=98&t=7322
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G152604887635
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G152605577891

For more information, please visit our GameStation
WiKi page.

Assembly

Figure 2 – Use a 30-pin �at cable (E) to connect the XU4
and the LCD board (C). Then remove the LCD surface
protect �lm. The ODROID-XU4 is sold separately

Figure 3 – Assemble the XU4 + LCD board in the top case
(A) and fasten the screws (H)

Figure 4 – Connect the XU4 board and the LCD board
with the USB2.0 cable (D)

Figure 5 – Connect the XU4 board and the LCD board
with the USB2.0 cable (D)

Figure 6 – Connect the XU4 board and the LCD board
with the USB2.0 cable (D)

Figure 7 – You can connect a 2.5″ HDD box using USB3.0
cable(I) included in the package and secure the HDD
enclosure to the bottom case with velcro tape. The
package does not include an HDD. If your USB HDD
storage consumes more than 500mA, you might need to
use a 5V/6A PSU instead of 5V/4A PSU

https://wiki.odroid.com/odroid-xu4/software/ogst_console_kit

Figure 8 – Assemble the bottom case (B) and �t the USB
covers (F). Then attach the rubber feet (G) to the bottom
case

Software

ODROID GameStation Turbo is an entertainment
based ODROID OS image aimed for watching movies
on Kodi, listening to music, playing games from your
Desktop as well as playing retro games over di�erent
emulators from within Kodi, EmulationStation or
Attract-Mode as a frontend.

The image can be downloaded from the ODROID
Forum in the ODROID GameStation Turbo for
XU3/XU4 thread. Scroll down until you �nd the text
shown in Figure 9.

Figure 9 – ODROID GameStation Turbo download
locations

Click to select one of the links. The two links here
should be identical but if one is slow for you, you can
try the other link. The md5, sha512 and sig �les are
for people that want to make sure the downloaded
�le is not corrupted and wasn’t tampered with, but
you can ignore them if you don’t know what to do
with them.

Once you’ve downloaded the image, follow the guide
at the easiest way to install new OS to �ash the
image on your SD card or eMMC card. You’ll need at
least an 8GB SD/eMMC card to use this image, but
due to the nature of the image (games and videos) I
suggest using larger SD/eMMC cards such as 32 GB or
64 GB (or using an additional external storage unit).

If you use an SD card, I suggest using a SanDisk Ultra
(not Ultra Plus, or Extreme), since it seems the most
compatible brand/model available (it’s also rather

cheap), and other models may have issues (limitation
of the XU4 hardware). Once you’ve �ashed the image
on your SD or eMMC card, plug it into the ODROID
and boot the system.

When you �rst boot the image, it will boot into the
desktop and start Kodi, and will then reboot after a
short while to �nish some �rst boot maintenance. You
don’t have to do anything, it will happen automatically
and you should simply wait for the system to reboot.
This may take up to 5 minutes, but generally should
happen much faster.

After the system is rebooted, it will boot back into the
desktop and into Kodi. Exit Kodi by pressing “S” on the
keyboard and select Exit/Quit Kodi. You’re now on the
desktop of your OS and can access all programs that
you want, like the web browser, music player, install
new programs, or can go back to Kodi to watch
movies. But let’s start with some basics and then put
some games on the system so we can play them.

At this point, you will want to be connected to the
Internet. Either plug in your WiFi Module or Ethernet
cable onto your ODROID. On the desktop of your OS,
make sure you are connected to the internet. To do
so, click on the top right menu to check/connect to
internet. Select the desired WiFi network and enter
your password.

Next, open a new terminal window, either by pressing
the MATE Terminal symbol in the Quickstart list on
the top of the screen, or on the Desktop, or by
pressing the key-combination CTRL + ALT + T. In the
newly opened terminal Window type the following
commands to upgrade the system.

$ su

$ apt­get update && apt­get upgrade && apt­get

dist­upgrade

This will log you in as root and ask for your root
password which is “odroid” (without quotes) by
default. After you’re logged in as root, the system will
update to make sure you have all the latest drivers
and programs installed. After all the updates are
installed, reboot the system.

Installing ROMs

https://forum.odroid.com/viewtopic.php?f=98&t=7322
https://odroidinc.com/blogs/news/the-easiest-way-to-install-new-os

To play some retro games, you �rst have to copy so
called ROM �les onto the system into the correct
folders. A list of supported ROMS can be found on the
ODROID GameStation Turbo for XU3/XU4 site where
you �nd a table with the supported systems, as
shown in Figure 10.

Figure 9 – List of supported ODROID GameStation Turbo
ROMs

Let’s focus on one of my favorite consoles, Gameboy
Advance (GBA), and use this as an example. As you
can see in the list above, ROMS for GBA need to be
placed in the folder /home/odroid/ROMS/GBA and
have to have a �le extension of .gba. Other extensions
such as .zip, .rar or .7z are not allowed at this point.

There are several di�erent ways to get ROMs on your
system. You can download them from a web browser,
which is the easiest way. Download the ROM you
want to use, then place the extracted �le in the folder
mentioned above.

If you already have a collection of ROMS on a PC and
don’t want to download them again, you can copy
from your PC to your ODROID. In Windows, download
and install a tool called WinSCP. It will allow you to
connect from your Windows PC to your ODROID and
copy �les over to it. For this, start WinSCP on your
Windows PC and create a new connection, as shown
in Figure 10.

Figure 10 – Using WinSCP to connect to ODROID
GameStation Turbo

For the Host name, use the IP address of your
ODROID. To �nd the IP, go to your ODROID, open a
terminal and type the following command, which will
output information similar to Figure 11:

$ ip addr show

Figure 11 – Output of the “ip addr show” command

If you’re connected via LAN, the IP of your ODROID
can be found under eth0:, or if you’re connected via
wireless network, the IP will be under wlan0:, below
the label inet. In the above example the IP would be:
192.168.1.151. The user name and password should
both be “odroid” (without quotes), if you haven’t
changed it yet. You can now navigate on your ODROID
to /home/odroid/ROMS/GBA/ and copy your games
from your collection on your PC over to the ODROID.

For Linux users, I assume you already know how to
copy �les from one PC to another. Tools like “scp” or
“mc” should be common to you and you should know
how to copy �les. You can alternative use Filezilla, a
�le manager available for Windows, Linux and Mac
which can be used like above WinSCP on all systems.

Once you’ve copied the ROMS over to the ODROID
you’re ready to go! On the OS screen, open up
EmulationStation. Go to Applications -> Games ->
EmulationStation and your games should already be
listed.

Figure 12 – Starting EmulationStation from the ODROID
GameStation Turbo desktop

When you start EmulationStation for the �rst time,
you will be asked to setup your controller. Please note

https://forum.odroid.com/viewtopic.php?f=98&t=7322
https://winscp.net/eng/download.php#download2

that this does not a�ect the emulator and games you
want to run, but is only used to navigate inside
EmulationStation. You will need the directions (up,
down, left, right), the select and start button (for
menus), and A and B (select and go back). Every other
key that EmulationStation asks you to con�gure is not
used, and should be skipped by pressing and holding
one button/key until everything that is not needed is
skipped (not de�ned).

At this point, you should be ready to play games with
your new OGST Gaming Console Kit for the ODROID-
XU4! For more information on settings up ODROID
GameStation Turbo, please visit
https://www.electromaker.io/blog/article/getting-
started-with-gamestation-turbo-on-odroid-xu4-
gamestation-turbo-xu4-installation. There is also an
in-depth review of the OGST Gaming Console Kit at
https://www.youtube.com/watch?
v=AbzSgE2KCYo&feature=youtu.be.

ODROID GameSir G3w USB Controller Joystick
 June 1, 2018  By Justin Lee  Android, Gaming, Tutorial

The GameSir G3w is a high-quality gamepad that
adopts a 32-bit MCU chip, with a computing capability
that is up to 48 million operations per second. It
allows the device to be highly sensitive and accurate
with respect to overall performance. The �oating D-
pad makes it easier to discern between the eight
compass points. The analog joysticks have 360-degree
positioning of ultra-accuracy.

Figure 1 – The GameSir gamepad is Hardkernel’s latest
high-quality gaming accessory

It also boasts well designed ergonomic function
buttons, is solid and responsive, with a �rm action,
and can be pressed with no e�ort. The pressure
sensitivity of R2/L2 allows players to perceive the
press depth accurately, making it much easier to play
car racing and drifting games. The USB cable length is
2 meters (6.6 ft) for comfortable usage.

Figure 2

Figure 3

Figure 4

This gamepad works with Hardkernel’s very own
OGST console kit o�ering (https://goo.gl/5fSR48). It is
supported on the o�cial Linux and Android operating
systems o�ered by Hardkernel.

Con�guration

Show below is a reference udev con�guration �le for
Libretro
(/usr/share/libretro/autocon�g/udev/xiaoji_GameSir_
G3w.cfg)

input_driver = "udev"

input_device = "Gamesir­G3w"

input_device_display_name = "xiaoji GameSir

G3w"

Hex vid:pid is found using "dmesg ­w" or

"tail ­f /var/log/syslog"

and converted to Decimal using

http://www.binaryhexconverter.com/hex­to­

decimal­converter

Hex vid:pid = 20BC:5500 ­> Decimal vid:pid =

8380:21760

input_vendor_id = "8380"

input_product_id = "21760"

input_b_btn = "0"

input_y_btn = "3"

input_select_btn = "10"

input_start_btn = "11"

input_up_btn = "h0up"

input_down_btn = "h0down"

input_left_btn = "h0left"

input_right_btn = "h0right"

input_a_btn = "1"

input_x_btn = "4"

input_l_btn = "6"

input_r_btn = "7"

https://goo.gl/5fSR48
https://magazine.odroid.com/category/linux/

input_l2_btn = "8"

input_r2_btn = "9"

input_l3_btn = "13"

input_r3_btn = "14"

input_l_x_plus_axis = "+0"

input_l_x_minus_axis = "­0"

input_l_y_plus_axis = "+1"

input_l_y_minus_axis = "­1"

input_r_x_plus_axis = "+2"

input_r_x_minus_axis = "­2"

input_r_y_plus_axis = "+3"

input_r_y_minus_axis = "­3"

input_b_btn_label = "A"

input_y_btn_label = "X"

input_select_btn_label = "Select"

input_start_btn_label = "Start"

input_up_btn_label = "D­Pad Up"

input_down_btn_label = "D­Pad Down"

input_left_btn_label = "D­Pad Left"

input_right_btn_label = "D­Pad Right"

input_a_btn_label = "B"

input_x_btn_label = "Y"

input_l_btn_label = "L1"

input_r_btn_label = "R1"

input_l2_btn_label = "L2"

input_r2_btn_label = "R2"

input_l3_btn_label = "Left Stick"

input_r3_btn_label = "Right Stick"

input_l_x_plus_axis_label = "Left Stick Right"

input_l_x_minus_axis_label = "Left Stick Left"

input_l_y_plus_axis_label = "Left Stick Down"

input_l_y_minus_axis_label = "Left Stick Up"

input_r_x_plus_axis_label = "Right Stick

Right"

input_r_x_minus_axis_label = "Right Stick

Left"

input_r_y_plus_axis_label = "Right Stick Down"

input_r_y_minus_axis_label = "Right Stick Up"

For more details, and to purchase the Gamepad
GameSir G3w, please visit
http://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G152605577891.

Solar Powered Microserver
 June 1, 2018  By Roberto Rosario  Tinkering, Tutorial

As you have probably read already, less than a year
ago Puerto Rico experienced one of the worst natural
disasters in recorded history (https://www.mayan-
edms.com/post/hurricane-maria). The situation after
hurricane Maria has been compounded by an already
de�cient energy infrastructure. Frequent blackouts
are now a common occurrence of daily life.

Blackouts are not just annoying, but cause a series of
problems impacting almost all aspects of modern life.
Being a technology worker, blackouts directly impact
my bottom line and my primary source of income.

After months in the dark, I took the plunge an built a
small solar power system. To make use of solar
energy it is very common to use a voltage inverter to
boost the 12 volts DC produced by the solar panels
and stored by the batteries to 120 volts AC which is
what most electronic devices use. Using an inverter
introduces some conversion losses in the system. In
order to minimize these losses, I started converting as

many devices as I could to work with 12 volts DC. This
way they could be operated directly from the solar
system batteries. It was time to start converting my
tools of work too.

One of the systems I need for my daily work are
computers and servers. I have some hosted on the
cloud and others locally. Constant power outages
mean a lot of the charge in my solar system batteries
is being wasted keeping the servers and computers
working. There had to be a better way to keep the
equipment I needed running and optimize their
electricity use.

Instead of a few larger computers, I decided to start
scaling down the devices I used. More devices meant I
could spread the services among them.

https://www.mayan-edms.com/post/hurricane-maria

Solar Powered server assembled

Single board computers or SBCs are all very common
now with a big variety to choose from. These SBCs are
usually powered by USB so they already work with DC
current. One my favorite single board computers is
the ODROID C2. The ODROID C2 is produced by a
responsible company, it’s well documented and is
very well supported. The ODROID C2 has a 64-bit
quad-core ARM CPU, 2 GB of RAM, and support eMMC
for storage. It is one of the most powerful SBCs in the
market in its price range. With this in mind, I set out to
convert some of my existing ODROID and SBCs to
replace the common servers and computers I
normally use.

Figure 2 – The common plastic and 3D printed
enclosures for these SBCs are not enough to protect
them and do not leave any space for additional
components. Aluminum enclosures are a much better
choice

Figure 3 – This is the ODROID C2 with power indicator
and button installed. The switch is not connected to
anything and left for future use (maybe via GPIO). The
power indicator is soldered to heartbeat LED on the
board

Figure 4 – The power cable

Figure 5 – The JST plug goes to the voltage converter
inside the aluminum box. All cable bonds are protected
with heat-shrink tubing

Figure 6 – The Anderson connector goes on the outside
of the cable

Figure 7 – I crimped then and added a bit of solder for
best conductivity

Figure 8 – Here I am testing for continuity

Figure 9 – I added some heat-shrink tubing to work as
cable strain support

Figure 10 – The ODROID mounted using brass stando�s.
The residue is from double-sided tape from a previous
attempt

Figure 11 – The serial console and power plugs were
replaced as shown

Figure 12 – The serial console and power plugs were
replaced as shown

Figure 13 – Here is the Voltage converter mounted with
double-sided tape. The converter takes the 12 volts from
the solar system and reduces it to 5 volts

Figure 14 – This particular converter can supply 3 amps
continuously

Figure 15 – Everything mounted and all cables tied
properly

Figure 16 – The ESP8266 (ESP-01) programmed to work as
a WiFi to serial console bridge. This will allow access to
the console of the ODROID even if communications fail.
This is perfect for debugging and management

Figure 17 – Here is the box fully assembled. The holes for
the USB, network connector and the power button were
cut by hand and there was some scu�ng. This can be
avoided using painters tape or with better tools like a
CNC or a bench drill

Figure 18 – The ODROID-C2 supports eMMC storage and
this one has a 16 GB card which is used for system �les.
For storage, an external SSD SATA hard drive is used
with a SATA to USB adapter

Figure 19 – The ODROID’s USB ports are USB 2. This
means that the access to the storage will not the ultra
fast but it is adequate for the work this box will perform

Figure 20 – Here is the microserver placed next to the
solar system charge controller and connected to the
Anderson power distribution box

For comments, questions, and suggestions, please
visit the original article at
https://medium.com/@siloraptor/solar-powered-
microservers-for-a-post-hurricane-maria-puerto-
rico-ca83027d20ac.

https://medium.com/@siloraptor/solar-powered-microservers-for-a-post-hurricane-maria-puerto-rico-ca83027d20ac

Android Development: Using GitHub
 June 1, 2018  By Randy Hall  Android, Tutorial

Welcome back, appdev initiates! If you’re like me,
you’re more than ready to increase your app
development skills. As mentioned previously, the 800-
pound gorilla of online open source projects is
GitHub. There are several Git-based choices in the
marketplace, but for our purposes, we will use GitHub
for this column, with the upside being that all of the
projects, and mistakes, will be available to the
community to view, give comments, and improve.

The good news for Android Studio is that it treats
GitHub as a �rst-class source code repository host,
that is to say, you can make other hosted Git
providers work, but it’s just not quite as slick. This only
means that if you choose to go your own way with
something other than GitHub as your source control
tool of choice, then we’ll leave it as an exercise for
you, dear reader, to complete and let us know how it
goes in the ODROID forums. With that, let’s connect
the IDE with our hosted source control provider.

Get on GitHub

If you look back at the code in our last installment, it
was very basic. It took Android Studio only a few
moments to construct it, and then we had a project
folder complete with build scripts, app code, and
layout �les. The downside of all this automation in
integrated development environment tools is that it
creates a lot of �les, and keeping track of them (and
the changes that get made to them) can be a big
headache. This is where hosted sites like GitHub really
help, because they allow you to keep a backup of all
of your precious code �les, ready to be recalled in
case of disk crashes, equipment loss, or any number
of other pitfalls. So, starting with the project we made
last time loaded into Android Studio, we can head up
to the “VCS” menu, select “Import into Version
Control” and select “Share Project on GitHub.” If you
haven’t already gone through the process of creating
a GitHub account, which was mentioned last time,
now’s your chance.

�gure 01 – Set version control to GitHub

Once you have the account con�rmed and set up, you
can come back to Android Studio and inside the
“Login to GitHub” dialog, select “Password” for Auth
Type and enter your username and password. You
will then be shown the “Share Project on GitHub”
dialog, which lets you change the repository, or
“repo”, name, remote name and description. For now,
leave the repo name and remote name alone, and
you can put in a simple description for the project. I
chose something simple, like “My �rst Android
project”. You can then con�rm which �les will be
initially sent to GitHub, it’s �ne to accept the default
set, and click “OK”. In a few short moments, you’ll be
greeted with the noti�cation that your project is now
on GitHub. You can click the link in the noti�cation
and check out your online source code.

�gure 02 – Login to GitHub

�gure 04 – GitHub project page

The Most Basic App Ever Made™

With all the fuss about getting our code into version
control, we really haven’t spent much time looking at
what Android Studio generated for us. Let’s do that
now. In creating this app, Android Studio generates a
lot of �les, but only a few of them are really vital to
�gure out what’s going on. These are the �les we care
about right now:

app/manifests/AndroidManifest.xml

java/com/fakedomain/myhelloworld/MainActivity.java

res/layout/activity_main.xml

res/values/strings.xml

AndroidManifest.xml

This is useful from the point of view that it actually
tells the Android device what code will be run when
the app is �rst launched. If you double-click on the �le
and view it in the IDE, it’s not much to look at, but
everything in there is important to properly run your

app. We will devote time in another installment to
really delve what the manifest does for your app, but
for today it is enough to know that Android Studio will
take care of putting new activities and other app
features into the �le for you, at least until you’re more
comfortable doing it yourself.

MainActivity.java

The �le is only a few lines of code, but it directs the
reader to one important resource that you will
de�nitely spend time with: the activity_main.xml
layout �le. This is where the “look” of the app is
de�ned, and where it can be changed using Android
Studio’s visual layout tools. If you double-click on the
activity_main.xml �le, the IDE should present you with
its visual layout editor. If you see a layout with an XML
�le pane next to it, you may have chosen the “Text”
view of the layout. If you click the “Design” tab near
the bottom of the layout pane, you will be switched
back. While the layout is sparse, there’s still a lot going
on here. In fact, if you look closely, our “Hello World”
text is already in place in the middle of the view.
That’s the thing about the Empty Activity: it’s not
entirely empty, but has a simple TextView element in
the layout to get you started. And what better sample
text to put into a text widget than our favorite two
word starter phrase?

�gure 05 – Design view

strings.xml

Strings.xml is the last �le to keep an eye on. The
reason I mention this is that, as an application
developer, good practices are essential, and the
earlier you adopt them, the better. For throwaway

one-o� projects, it’s �ne to go around typing in �xed
text values for di�erent buttons, text views, and
navigation controls, but in the real world, there are
many languages, and we’d be truly short-sighted, if
not arrogant, to assume that English is the only
language your app should use. So, let’s tweak a
setting to make use of this �le. If you double-click on
the “Hello World” text in the layout, you will see the
Attributes pane appear. As it turns out the TextView
text attribute will most likely be highlighted, since you
double-clicked it in the layout editor. To the right of
that attribute box, you should see what looks like an
ellipsis (…), which you can click now to display the
resource window for this project. Inside are the
resources that you can make use of for the attribute
you’re editing.

Figure 06 – String Value Resource Editor

Since we want to make a change, click on the “Add
new resource” menu item in the top right of the
window and then select “New string Value…”, which
presents you with the “New String Value Resource”
dialog. For “Resource name”, choose something
sensible like “hello_world_text”, and then set the

Resource Value to “Hello World!” You can then click
OK and the value in the text attribute will have
changed to “@strings/hello_world_text” but the layout
will still display the value, which is “Hello World!” If you
now look at strings.xml in the code editor, you’ll see
that there is a new line in the �le, which Android
Studio put there for you. Brilliant!

Let’s run it!

Now we need to build this and see if it will run. At the
top of the IDE window, the center of the toolbar has a
green hammer icon. Click it, and the project will be
built. It might take a few moments depending on the
speed of your development machine, but it will
ultimately get done. As an aside, as much as I love
ODROID devices for running Android apps and Linux
in general, and even the powerful ODROID-XU4 is not
particularly well-suited for app development of this
nature. It’s just that there’s a lot of memory involved
in building software, and building a nontrivial app
would ultimately lead to thrashing your eMMC or SD
card media when Android Studio runs low on
memory, shortening the life of your �ash media at the
very least. But hey, it’s your money, and if ODROID is
what you have to build with, it can do the job, you
might just have to wait longer for certain tasks. Now
that the app is built, if you press the green “Play”
triangle, the app will “run” and try to connect to an
Android device. What’s that, you say? Don’t have an
Android device handy? You haven’t gone to the
ODROID Wiki to connect your ODROID-C2 using it’s
USB OTG
(https://wiki.odroid.com/getting_start/adb_fastboot)
port? You haven’t started Network ADB on your
ODROID-XU4 (https://wiki.odroid.com/odroid-
xu4/troubleshooting/adb_over_tcpip)? While it’s
always more valuable to test an app on actual
hardware, if all else fails, you can always emulate an
Android device.

Figure 07 – Select Deployment Target

Get Virtual (Devices)

So, if you’re seeing the “Select Deployment Target”
and it is empty, you can click on “Create New Virtual
Device” and be treated to a catalog of various Android
benchmark devices that you can emulate on your
computer, from TV to tablet, to phone to Android
Wear devices. This time around, let’s create a middle-
of-the-road phone device, like a Nexus 5X. Once you
select it, click “Next” and go ahead and choose one of
the “recommended” system images, which as of this
writing would be Nougat, Oreo or the “P” Preview.
You’ll probably have to click the “download” link next
to the version to download the image prior to
proceeding, and yes, it might take a while.

�gure 08 – Virtual Device Con�guration Editor

Once you have the image downloaded, click “Next”,
give the virtual device a name (or keep the default
that Android Studio generates), change the screen
orientation to landscape if you’re into horizontal

screens, and click “Finish”. At last, you have a device to
launch your app!

�gure 09 – Virtual Device Running Our App

If all goes according to plan, the virtual device will
boot up the Android version you downloaded, and
will place you at the launch screen. A few moments
after that, Android Studio will connect to the virtual
device using ADB and launch the app. It might not be
as satisfying as having your app running on an actual
Android device, but then again, you’ll never have the
excuse that you don’t have an Android device when
you need one.

Commit those changes

All that coding is hard work, and at the end of every
coding session, you should always make it part of
your practice to commit your work in progress. I’m the
�rst to say that when it’s you working on a code
repository by yourself, nobody is going to notice that
your code doesn’t build correctly, or has a ton of bugs
and errors in it. I invite you to get over it. The
important thing is that you keep a backup in the event
that something terrible happens and you’re suddenly
without your workstation and its �le storage. To do
this, you can go to the VCS menu again, and select
“Commit”, there is a keyboard shortcut for this, and
also an entire pane of the IDE window that is for
version control. Make sure to take a look at it and get
familiar. You will then see that two �les at least have
been changed: the activity_main.xml and strings.xml
�les. You can take a look at the changes to make sure
they are what you’re expecting to check in. Now you
should enter a commit message, which will log a
narrative of what changes are in the code that you’re
committing to the repo. I will enter something terse,
like “changed text to use strings.xml”. Hover your

mouse pointer over the “Commit” button in the
bottom right corner, and you’ll notice that there are
some additional options. For our GitHub demo, let’s
go ahead and select “Commit and Push…” which will
present you with a dialog that lets you add tags to the
push to GitHub. Click “Push” and you’re done! I can’t
emphasize this enough: make sure you check in your
code changes at the end of your work day, and you’ll
never regret going to sleep (and you might even sleep
better, but don’t hold me to that!)

What’s next?

Since this is a new column, I thought making a Hello
World app would be a fun start. But honestly, it really
is the Most Basic App Ever Made™. I’m now actively
looking at options for working on an app that makes
sense to deploy to an ODROID-XU4 or ODROID-
C1+/C2 for fun and possibly good learning. Some
ideas that come easily to mind include:

An Android TV-based game, running on an ODROID-
XU4 with LineageOS Android TV loaded, that uses
multiple players’ own Android mobile or tablet devices
to control and play a turn-based card or tile game.

A custom Android home automation touchscreen,
running on an ODROID-XU4 or ODROID-C2 with
LineageOS, that uses background services to
communicate with other home automation servers
and devices to control and monitor your home without
using cloud-based services.

An Android Auto, running on an ODROID-C2 with a
touchscreen, that collects information from your car
and allows your Android mobile or tablet to connect
and play media, navigate, communicate and inform the
time you spend behind the wheel.

If the list seems daunting or you feel yourself recoiling
in horror that this is all too complicated, just relax. I’m
here to help, and I will do my best to explain
everything as plainly as possible. I recognize that
every one of those projects above is very much a
combination of hardware elements and software
elements working together to provide a solution. So
you can expect that there will be editions of this
column that will be hardware-focused in order to set
up or at least mock up a hardware platform that we
can then use to write apps for. There will also be

editions of this column where we will break down
bigger problems into chunks to which we can then
apply Android-based app architecture practices in
order to make them work the way Android device
users expect them to. I think it will be a much more
rewarding experience for everyone, and it will all be
made open source and available online for future
Android developers to build on. If you think these
ideas are terrible and you are convinced you have a
better one, I want to hear about it! You can always

comment on the interactive version of ODROID
Magazine for this article, or visit the ODROID
Magazine forum at https://forum.odroid.com. The
best part about this column is that the code I work on
is online for you to check out as well. Feel free to visit
my GitHub account at
https://GitHub.com/randybuildsthings and laugh at
many of the goofy things I do on there. I use GitHub
mostly for playing around, but I look forward to
seeing you there.

Linux Gaming on ODROID: Saturn Games – Part 4
 June 1, 2018  By Tobias Schaaf  Gaming, Linux, ODROID-XU4

We are back again with the ODROID-XU4/XU4 and
Sega Saturn games. This time I want to look into
games starting with the letter “S” like in Saturn, or as
in “shmup”. There are so many great games for the
Sega Saturn that start with the letter “S” that I enjoy
playing, that I had to make this into its own section of
this series.

Samurai Spirits IV – Amakusa Kourin

Samurai Spirits IV is a very nice “beat em up” game
similar to King of Fighter, or Street Fighter, but o�ers
the addition of weapons similar to Last Blade.

Figure 01 – Title screen of Samurai Spirits IV for the Sega
Saturn

This game requires a 1MB memory expansion to work
properly, so make sure you have the correct cartridge
selected. I really enjoy this game. It’s one of the best
2D �ghting games I have played. The blinking health

bars and shadows are the only elements I don’t like
about this game, but the rest is just perfect.

Figure 02 – There’s a good amount of �ghters to choose
from in this game

The game is very interesting, since the di�erent
characters are not just di�erent in graphics but also in
�ghting styles. Moves are easy to pull o�, and even
button smashing can work �ne for you if you �gure
out what moves you need to combine.

Figure 03 – The �ghting animations are really good and
the graphics and background really �t the setting

You can even disarm your enemy and weaken them
until they pick up their weapons again. The music is
nice, there is a lot of animation going on both for the
characters as well as the background. I’m not a too big
fan of �ghting games, but I spends quite a few hours
playing this one and will continue playing it too.

Saturn Bomberman

I don’t think Bomberman needs to be introduced, but
some say the Sega Saturn version of Bomberman is
the best version in existence, and that each version
after this version was compared with the Sega Saturn
version.

Figure 04 – Saturn Bomberman

Figure 05 – Cute Animations, bright color, very good
gameplay it won’t get any better than that when it
comes to Bomberman

Saturn Bomberman is really a gem, with nice anime
cut-scenes, wonderful bright colors, all kinds of
power-ups and an all so familiar gameplay. If you like
Bomberman, you should de�nitely play the Sega
Saturn version! Oh and did I mention it supports up to
10 players on one screen?

Sexy Parodius

This shooter is similar to Parodius which I showcased
last time, and is a Gradius-Parody-Series kinda “Cute
‘em up”.

Figure 06 – Sexy Parodius title screen on the Sega Saturn

It has a slight twist at the end of a section where you
kill a couple of bosses in a row, and if you beat them,
a “sexy picture” is slowly revealed, but if you run out
of lives it’s over. You have an unlimited amount of
continues, so you can still be playing the next level,
but the picture level will be over.

Figure 07 – Sexy Parodius character select screen

Aside from that, the game is a nice “cute ‘em up” but
actually rather hard and you might die quite often,
but as I said, luckily there are unlimited continues.

Figure 08 – Boss Fight in Sexy Parodius

Shienryu

Shienryu is another shoot ‘em up. It’s a little bit
simpler in its game mechanics, as you can’t choose
di�erent crafts, and there are only three di�erent
types of weapons.

Figure 09 – Shienryu

Figure 10 – Very good looking graphics for up to two
players lots of explosions on and enemies on the screen

You either can use a spread shot, a lightning attack
that auto aims at all targets and jumps from one
enemy to the next, or a rocket attack which is a
combination of self aiming missiles and straight
forward rockets. Each of the weapons can be
increased in �re-power multiple times by collecting
power-ups. Aside from that, you have “bombs” which
are special attacks designed to deal a lot of damage
on a large section of the screen, as found in many
other games as well. The game plays very well on the
ODROID-XU3/XU4. The graphics are probably the
most impressive part of the game, with plenty of
details and animations, transparent clouds, as well as
a good amount of parallax scrolling. It’s one of the
best looking “shmups” for the system.

Figure 11 – Rockets can deal a lot of damage and some
are self aiming

Figure 12 – No “shmup” is complete without bosses to
defeat

If you like “shmups” this is de�nitely one you should
try out. The game is also available for MAME and PS1,
but the Saturn version is probably the best.

Shinrei Jusaishi Taroumaru

This game is kinda unique, it looks and feels a little
like the Shinobi series. However, instead if throwing
knifes or hitting the enemy with your �sts, you’re
using your inner energy to shoot them with lightning
bolts.

Figure 13 – Start Screen of Shinrei Jusaishi Taroumaru

Figure 14 – Charging your attack before the strike to do
extra damage

In this game, you walk from left to right �ghting o�
hordes of enemies ranging from moving �ames, then
to ninjas and demon creatures, and every so often
you �ght o� di�erent boss monster which vary much
in strength and ways to kill them. The game is a little
bit hard to control in my opinion. You have an auto
aiming feature that only locks on if an enemy is in
front of you. If an enemy is behind you, you have to
turn around, but also if an enemy is right above you,
you won’t lock on him either.

Figure 15 – Fighting a boss together with a captured
enemy

Figure 16 – The game even has rotating rooms

The variety of enemies, especially the bosses, is quite
impressive, and the di�erent levels and scenes you
are �ghting in are very good. You won’t get bored with
seeing the same background over and over again. The
game can be quite hard though, but is still very fun to
play. You can even “capture” some of the enemies
and let them �ght for you. You can also re�ect some
attacks or make projectiles aimed at you disappear
that way. The game is quite fun to play, but has no
save feature or anything, it’s probably meant to be
played in one session and can be �nished in about an
hour or so.

Sonic Wings Special

It seems that “S” does not only stand for Saturn but
also for “shmup”, as this is yet again another “shoot
‘em up” game for the Sega Saturn. Once again, the
gameplay is rather simplistic in this game. There are
no di�erent weapons to collect, and there is no
charged attack or anything similar; just your standard
attack and a “bomb” special attack.

Figure 17 – Sonic Wings Special

Figure 18 – Nice graphics and explosions but no parallax
scrolling or transparency in this game

The lack of di�erent weapons is handled by a vast
amount of aircrafts you can command: you can select
between 10 di�erent aircrafts, each with their own
weapons and special attacks. Another nice addition is
that your C button acts as turbo �re button. This
means you don’t have to press �re over and over
again yourself.

Figure 19 – Lots of di�erent backgrounds and enemies

Figure 20 – Many unique Bosses to kill best keep your
specials for these

Even if you don’t die, your weapons will lose their
power level if you do not pick up more power-ups
over time, and once you get hit, you lose your power-
ups and are normally just left stranding with one
power-up from your destroyed aircraft. Sometimes
it’s good to just let the power-ups �y around on the
screen for a while before you collect them.

Steam Hearts

Here is yet another shoot ‘em up for the Sega Saturn.
Steam Hearts is once again a rather good looking
Shmup on the Saturn, with some level of parallax
scrolling and very nice animations.

Figure 21 – Steam Hearts title screen on the Sega Saturn

What I like about this game is, that a single hit does
not necessarily mean you’re out of the game. Your
craft can take a couple of hits until you go down,
which is quite nice for a change.

Figure 22

Figure 23 – One of your weapons is a giant sword You
can swing to de�ect bullets

You have a couple of di�erent primary and secondary
weapons you can collect and up to three secondary
weapons which all have di�erent styles. This gives you
a very wide range of options to combine your powers.
These secondary weapons are also used for your
special attack and will be “used” for this, which means
you’ll lose that secondary weapon after you use your
special attack. Special attacks are normally stronger
forms of your primary attack and not like in many
other games a huge screen �lling extremely powerful
attack. For example, if you have self-aiming laser as a
secondary attack and activate the special attack, your
rate and strength of these self-aiming laser will
increase for a short while, and the Sword will increase
its size to �ll the entire screen. Things like this can be
extremely helpful, but not overpowering, like in other
games where you can kill an boss with just one or two
special attacks.

Figure 24 – The laser is probably the strongest primary
weapon

Figure 25 – Killing a boss with the laser is a lot faster
than with other weapons

All in all, it’s a pretty solid shooter. You can select
between a male and female main character and
either a blue or red craft.

Strikers 1945

Strikers 1945 is the last shoot ‘em up for this series. It
came out for many di�erent systems, and there’s
even a PSP port of the game.

Figure 26 – Strikers 1945 for the Sega Saturn running on
an ODROID-XU3

Figure 27 – Select your favorite Aircraft each has
di�erent weapons

The game as such is not so special, since it has no
parallax scrolling, although graphics and animations
are quite good, but nothing that has not be seen in
other games. Still, the gameplay is quite fun, the level
are short, and you face a new boss on each stage
which are randomly thrown at you. No run is the
same, as the order of the level changes each time
which gives it a very good replay value. The levels are
interesting and the planes are di�erent enough that
you want to try them all. Strikers 1945 might not be
the best shmup, but it does everything right. The
gameplay is fast and challenging, but not unfair. The
graphics are nice even if it doesn’t use parallax
scrolling. You have great music, an intro video,

unlimited continues, auto-�re on the right shoulder
button, and more. Overall, Strikers 1945 is a very solid
shooter and it runs very good on the ODROID-
XU4/XU3. If you like shoot ‘em ups, you should
de�nitely try this one.

Figure 28 – Boss Battle in Striker 1945

Honorable Mentions

Saturn Bomberman Fight!!

This game is kinda interesting when it comes to
Bomberman style games. You do not die on the �rst
bomb that explodes next to you, but you have a
health-bar. You can throw bombs, jump over boxes,
you ride animals, and more. The game is quite
di�erent from the original Bomberman, but is rather
fun to play. It also brings Bomberman and his friends

into the 3D world which also gives the game a nice
little twist.

Shichisei Toushin Guyferd – Crown Kaimetsu
Sakusen

The �rst time you see the intro, you’re instantly
reminded of an old TV show called Power Rangers,
but no, this is Guyferd, which is similar but still
di�erent. Unfortunately, I don’t understand a word of
what is spoken, which is a shame, as the game o�ers
many, many video cutscenes probably from the TV
show itself (and I mean A LOT of em!). It plays like a
dungeon crawler, where you walk around from the
�rst-person perspective and turn left or right and walk
back and forth, until you �nd items or an enemy,
which is when you start to �ght. The game is very
interesting, so it’s a shame that I understand so little
about it.

Shining Force III

If you want to play this game for the Sega Saturn,
you’d better insert a Memory Backup Card to save
your game progress, since the internal memory of the
Saturn will probably not be su�cient. I don’t really
enjoy pre-rendered graphics like in Donkey Kong for
SNES or like here in Shining Force III. Still, the game is
a very interesting RPG game using a lot of 3D
elements and e�ects, and is one of the better 3D
games for the Saturn. It’s huge, and from what I
heard, the game is suppose to be very “epic” and the
best in the series. It plays a little slowly, with lots of
text and only little action at the start, and I haven’t
had time to really play it seriously to give a good
review. It’s been praised a lot, so I guess it’s safe to
recommend it.

Silhouette Mirage

Silhouette Mirage is a very interesting game which I
do not fully understand yet. You can run, jump, and
shoot energy balls from your �ngers, and have to
defeat Mirages and Silhouettes. There is a lot of
shooting, bashing and such that you can do. It
includes a tutorial that I never �nished, as it takes a
long time, and just shows you the di�erent attack
combos you can do. The graphics are nice, and the

music is catchy. It’s a nice game, although I don’t
understand what I’m really doing.

Street Fighter Alpha – Warrior’s Dream

This game might also require you to use a backup
memory card as well if you want to keep your high
scores, or you have to make sure the system memory
has at least 32 free blocks. The game is what you
expect from a Street Fighter game. It has nice
graphics, good animations, and is good overall, but
not extraordinary.

Street Fighter Zero

I couldn’t get Street Fighter Zero 3 to work, but it’s a
better version than the Zero version, and with the
4MB memory expansion, it o�ers a lot more
animations. Still, Street Fighter Zero is an excellent
�ghting game in the Street Fighter series with nice
graphics and animations. There are lots of special
moves, and it runs very well on the ODROID XU3/XU4.

If you are a fan of the Street Fighter series, you should
de�nitely check this one out.

Street Racer

Street Racer is a nice and interesting little racing game
with funny cartoon graphics similar to Mario Kart. It
has some graphical issues as it seems that the sky is
actually on the ground, and it looks like you drive on
it. This makes it hard to see the actual track, but not
impossible, and you can still enjoy the game a lot.
Another bonus is that you can manage your system
memory and backup memory save states with this
game.

Striker 1945 2

Striker 1945 2 is the second installment in the 1945
series. It is a very nice shoot ‘em up, but is
unfortunately a little bit too laggy. The frame skipping
feels very jumpy, and deactivating frameskipping will
make you play in slow motion, which is tolerable but
not as fun.

ODROID-XU4 Home Server
 June 1, 2018  By Igor Kromin  ODROID-XU4, Tinkering

Back in December 2017, I rebuilt my Odroid XU4
home media server (https://goo.gl/6tT6rt) because I
was having some issues with the previous setup.
Unfortunately, that rebuild was not focusing on
aesthetics or cable management, just functionality,
because I needed the server up and running and did
not care how it looked. In March 2018, I received my
34″ curved screen monitor (https://goo.gl/WekKF9)
and then cable management and aesthetics became
important, so I decided to do something about the
server.

I am not using a fully enclosed case, since I like the
look of the separate components being mounted on a
single sheet of acrylic, which gives it an industrialized
look. I would like to have a top clear sheet, but I have
not been able to �nd stand-o�s that are tall enough
to support one.

The issue that I was trying to solve here was around
cable management. I had two separate power

supplies: one for the HDD dock and then another for
the XU4 itself. This was not ideal, especially since I had
to use an international power adapter on the XU4
power supply (US to Australian). It was messy, since I
wanted to use one power supply, but I needed two
voltages: 12V for HDD dock and 5V for the XU4.

My solution was to use the 12V HDD dock power
supply, and get a 12V to 5V DC-DC converter
(https://goo.gl/gKjnzG) to power the XU4. The power
supply could provide enough current for both. That
resolved the voltage issue. Next, I had to get the 12V
to the DC-DC converter. I already had a power splitter
cable on the HDD dock that was powering the cooling
fan and the dock itself, so I wanted to reuse it. That
meant rewiring the fan. This part was easy. I took
apart the dock, drilled a small hole to get fan wires
through and wired the fan directly into its DC jack. It
was a total hack but it did the trick.

Figure 1 – Rewiring the fan was easy

Figure 2 – Another view of the fan wiring

Figure 3 – The rest of the components for the project
before assembly

Now that I had the wiring more or less �gured out, I
needed to get started on mounting everything in
place. I had a sheet of 3mm black acrylic around, so
decided to use it as the base (after cutting it down to
size). I used a whole bunch of black nylon stando�s

(https://goo.gl/auDiwD) to keep the XU4 and the DC-
DC converter in place. I also used the same stando�s
under the base: one in each corner with a center-
mounted stando�.

Figure 4 – The stando�s for the XU4 and the DC-DC
converter

Figure 5 – Another view of the stando�s for the XU4 and
the DC-DC converter

To keep everything neat, I wanted to stack the display
over the top of the DC-DC converter. For that, I used
some nice 35mm red aluminium stando�s
(https://goo.gl/G6JTsv). The height worked out really
well.

Figure 6 – The acrylic sheet ready for drilling

Then it was a matter of marking out all the stando�
positions and drilling holes for them.

Figure 7 – Drilling the acrylic sheet

Figure 8 – The components mounted on the acrylic sheet

After securing the XU4 and the DC-DC converter in
place. I did the basic wiring from the power supply to
the DC-DC converter and made sure the voltages

were all correct. Once the voltages were veri�ed, I
�nalized the wiring between the DC-DC converter and
the XU4. The right angle DC jack
(https://goo.gl/GvN8KY) came in handy here.

Figure 9 – The components with the wiring tidied up

After connecting everything, the server was ready to
go. It sits behind my monitor and looks neat and tidy
with no cables showing.

Figure 10 – The �nal view of the server with cable
management and acrylic sheets

The heatsink on the XU4 is not the original one. I
replaced it a while back as described in another article
caleld ODROID-XU4 standard heatsink and fan
replacement. For comments, questions and
suggestions, please visit the original article at
https://goo.gl/6TL9BT. If you’d like to read more
articles by Igor, go to
https://www.igorkromin.net/index.php/category/odroi
dxu4/.

Carputer – 7″ Touch Screen Android
 June 1, 2018  By Steve Jackson (@zurkeyon@gmail.com)  Android

This is a 7″ Touch Screen Android Carputer with super
accurate USB GPS, Bluetooth 4, 3.5MM Audio in/out,
WiFi, and an adjustable magnetic screen. A sketchup
�le is available for additional customization and
resizing as needed at
https://www.thingiverse.com/thing:2720349. As an IT
Field service tech of 28 years, I built this unit out of
necessity to replace the smaller screen of the phone,
and to provide more utility while on the road. There
are pre-built units that you can certainly purchase to
accomplish the same task, but I already had the
ODROID-XU4 and Vu7 Screen from another project, so
I opted to re-purpose them in something that would
get more utilization.

Please be aware that some of the following
apps/features are illegal to use while driving. You
cannot use apps that allow you to type while you
operate a motor vehicle in most states. Check your
local laws and do not violate them in your use of this
device. I am not responsible for improper use or

application of this device in violation of the law. This
device release is for educational/tinkering only. Pull
over, stop safely, then use it. I am typically in a
parking lot before or after a service call when using
this device, or I stop and get safe, then do what I need
to do. Be smart in using this device, and don’t get
yourself killed over what is essentially a nerd toy with
some business applications.

https://www.thingiverse.com/thing:2720349

This carputer project is an inexpensive way to
modernize your vehicle

GPS

The USB GPS Units are way more responsive and
accurate than the ones in your phone. This is a huge
time saver, as it allows me to better anticipate my
turns and avoid waiting at extra lights and making U-
turns. It also instantly locates satellites with no
waiting.

RepairShopr dispatch portal

I use this calendar/portal to see my appointments in
real time, and to pull up the customer’s address for
quick-queue of GPS trips. Zero typing and zero talking
to Google. With a Bluetooth RII keyboard, I can also
sit and make site notes in the privacy of my truck,
while listening to my news or music.

Music streaming

I use Spotify, Pandora, and a multitude of other free
music services to provide my truck with sound. These
all integrate well into the setup and allow for controls
from other programs, as well as the the hard buttons
on the car stereo head-unit.

Command Center

The command center includes a digital speedometer
(GPS), app wheel, date, time, weather, audio controls,
and even an audio visualizer, which is all possible
through Car Launcher Pro.

WAZE

WAZE is a speed-trap, cop, and accident �nder with
real time tra�c information, alternative GPS to
Google Maps, and much more. This even shows you

the posted speed limits to a pretty good degree of
accuracy, although it’s not always right, so keep an
eye on the street signs.

Torque PRO

You can pair Torque PRO together with an ELM327 or
similar Bluetooth OBD-II scanner and you end up with
a real time engine information system. It features a
full spectrum of digital gauges that are customizable
into many di�erent con�gurations. For cars with or
without Turbo, there are boost and vacuum gauges,
acceleration gauges, and it even reads engine codes
for most OBD-II cars and trucks. There are other apps
out there that do this, but Torque Pro, which is a paid
app, works perfectly for my needs. It is nice and stable
on the ODROID-XU4 Android images.

WiFi boundary testing and ranging

WiFi testing a large property for wireless coverage,
like an apartment complex or hotel, can be tedious if
you have to walk it. WiFi Analyzer is a great utility that
provides an audible ping for WiFi strength. It allows
you to drive a property and map the WiFi boundaries
quickly onto the site plan, exposing coverage gaps
with ease, all from the comfort of your AC, which is
great when you are down here in sunny Florida. This
tool allows me to stay online 24 hours a day with
something a lot more useful than a tiny phone screen.
Whenever my phone is near, my hotspot connects up
and I’m all set.

Additional Uses

Digital LED signage, using Neopixels and a decent
battery setup to run them

Custom LED, neon, and other lighting controls for
e�ects and show lighting

Custom fuel system Interface and No2 controls

Private investigator/Detective vehicle and GPS tracking
interface for investigations

Backup camera or dash cam

Vehicle deployable FPV drone base station for
site/building inspections and security

Rear headrest movies/video gaming system for
entertainment of passengers and children

EV charge reporting and electric motor, AC,
regenerative, and other controls

Components

ODROID-XU4 SoC computer with eMMC of 32GB + RTC
Battery to keep time:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G143452239825,
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G145628097465,
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G137508214939, which is a fan-cooled
heatsink is strongly recommended for the XU4 in this
setting.

ODROID-VU7 or VU7+5v TouchScreen:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G144549683088

4-5 Port powered USB hub: My build includes a
modi�ed power in cable to get its 5v power from DC-
DC converter listed below (https://goo.gl/WZmPUA)

1-2 foot optional USB extension cord
(https://goo.gl/GDQzkv)

12v to 5v power supply to run both the ODROID-XU4,
and the powered USB Hub (8 AMP+) at
https://goo.gl/mwT1ng. You will also need a single
40mm x 40mm x 10mm 12V DC fan for cooling up to
10-12 amps

ODROID USB Nano WiFi adapter:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G145431421052

ODROID USB Bluetooth 4 adapter:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G141656580698

Short HDMI cable, as thin as possible, for screen video:
The ODROID-CU7 included HDMI cable is far too thick
to use (https://goo.gl/HuQdFy)

Short USB to USB micro cable, as thin as possible, for
screen power and touch: The ODROID-VU7 Screen
comes with this part.

K and J Magnetics round neodymium magnets (2), to
hold screen in place: https://goo.gl/SeuHpM

Ar oll of ABS material, in any color you like:
https://goo.gl/nYJPB4. This works okay, but you get
what you pay for. I’m sure I could have found better.

Decent size twisted pair wire. Nothing too small, as it’s
going to be moving 5+ amps.

ODROID USB 5.1 Sound Card with line-in, the for the
mic so you can talk to Google:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G141629380416

Gmouse USB GPS unit, compatible with ODROID.:
http://www.hardkernel.com/main/products/prdt_info.p

hp?g_code=G142502154078

DC plug for ODROID-XU4:
http://www.hardkernel.com/main/products/prdt_info.p
hp?g_code=G141440511056

PC microphone https://goo.gl/YQGT9p

Sally Hansen Insta-Dri nail polish in Back to Black: This
is nice for �nishing the screen face with a glossy �nish,
which is available at Walgreens and similar stores.

An on/o� power toggle switch

Uses a combination of M2 and M3 hardware. I also
had a few small coarse thread screws laying around
from another project, similar in size to coarse thread
M2. But you should be able to see what is needed
from the hole sizes.

Upcoming features

Auto On/O� with vehicle ignition: Unfortunately, I
have not had enough time nor the desire to work this
circuit out and implement it into the design. Anyone
who wants to can certainly customize one up and
show us how it’s done!

Hard buttons / Joystick control: I was considering
using a thumb stick with a push button for hard
controls, but couldn’t decide where to place such a
thing.

Double Din, fully independent version with built in 4-
channel amp,and line-in/out: Clamping system
added, for easier mounting into the DIN pocket. The
combination of a wedge �t and screws at the moment
makes taking in and out di�cult.

Sound reactive lighting controls or HAT: This would
really set this device o� from the other stu� out
there. No o�-the-shelf Android head unit can
currently do this without additional components. A
HAT would allow the Xu4 to be a true custom car
command center.

Printing

Use ABS or PETG for best results. Expect warping,
working at the extreme edges of your print surface,
and layer separation issues. A heated enclosure
works well. Use cardboard, corkboard, tin foil, and a
heat lamp or track lights; just watch for heat and don’t
leave it unattended.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145628097465
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137508214939
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G144549683088
https://goo.gl/WZmPUA
https://goo.gl/GDQzkv
https://goo.gl/mwT1ng
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145431421052
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141656580698
https://goo.gl/HuQdFy
https://goo.gl/SeuHpM
https://goo.gl/nYJPB4
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141629380416
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G142502154078
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G142502154078
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141440511056
https://goo.gl/YQGT9p

Carputer case for screen

Side view of computer enclosure

Back view of computer enclosure

Post-Printing Assembly

After printing the parts, install the eMMC into the
ODROID and install your Android OS. Do a dry run
without installing the unit into your vehicle and make
sure everything is working correctly. I strongly

recommend running the unit for several hours to
ensure there are no heat issues with your power
supply.

Screen �tted to computer enclosure

DROK supply for me was best when set to about 5.7v.
 The VU7 is known to slightly �icker when the XU4 is
working hard due to current drop across the 5v rail.
The power gub tries to �x this, but you gotta turn up
the juice a bit. 5.7 was my “sweet spot” for the least
amount of �ickering.

The setup works the CPUs very heavily! Warm them
all the way up and put the XU4 under as much load as
possible. Benchmarking programs work well for this.
You don’t want a �re in your dashboard. If any
components feel too hot to hold in your hand, they
are running far too hot to put into an enclosed
dashboard, which means you need to add ventilation
fans.

Dashboard opening

Find spots for the USB hub and power that do not
come into contact with a chassis ground, or you could
have issues with shorts. Make sure all items are
properly enclosed with enough venting to protect the
electronics. The Din body screws into the surround,
or can be used with threaded set tabs and tightened
into place that way.

Having a line out to an AUX or other source is still an
issue on this project. I am still looking for a clean AUX
out for the ODROID-XU4 while its connected to
automotive 12 volts. For the moment, the unit only
provides clean audio via Bluetooth to your existing
head unit in your vehicle.

Some have suggested to try the line-out 3.5mm jack
on the Boombonnet, and just leaving the little
speakers o� of it entirely. Being I2S, it may not su�er
from as much noise. The power supply I used here
injected 50% noise into the audio signal, making it
totally unusable.

Carputer �tted into dashboard

Noise and ground loop �lters cut out bass frequencies
and other frequencies, and distort the sound on any
system using an ampli�er and subwoofer. Trust me. I
tried them all. None of them sounded good after
being placed inline. The noise was gone, but so were
50% of my sound frequencies.

Additional considerations

Make sure to use care when using Neodymium
magnets in any project. They are known for coming
together and shattering, causing sharp metal to �y o�
at high speeds, possibly blinding the user, so be
careful! Make sure your magnets are faced the
correct way before gluing them into �nal position, or
you will be prying them out and likely shattering them
in the process.

Every single attempt to print this in PLA ended in
failure within a few days. It was becoming warped in
the car due to being inside the hot dashboard. Don’t
bother trying it; it won’t work.

To print the components, and for further details,
please visit the original article at
https://www.thingiverse.com/thing:2720349.

https://magazine.odroid.com/category/odroid-xu4/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G150067146391
https://www.thingiverse.com/thing:2720349

Introduction to BASH Basics – Part 2: Useful BASH commands for
Single Board Computers
 June 1, 2018  By Erik Koennecke  Linux, Tutorial

Last time, we learned about the ‘ls’ and ‘tree’
commands. While looking at things is nice, it’s more
fun to actually do something with our data. This
article contains a list of the common commands for
manipulating data. The command and its explanation
are kept very brief to avoid writing a Linux
encyclopedia and boring you all to death. They should
just bring the existence of a BASH command to your
attention.

As a reminder, whenever we want to learn more
about something, typing ‘man ’ into a Terminal
window will give the usage syntax as well as all the
options available for this program. Be careful, though,
because the man pages often have content
accumulated over decades and can be hard to digest,
especially for beginners. If you want to hit the ground
running, open www.explainshell.com in your
browser to get commands explained, like the

examples mentioned here. For useful starters to build
your own commands, use the TLDR pages at
tldr.ostera.io. Compare the manual for the tar
command with the TLDR version and you will see
what I mean.

Basic BASH commands

The most used and most basic commands are:

cd – change directory. ‘cd /’ changes to the root
directory, ‘cd ~’ back to the user’s home directory.

mkdir – make a directory. Try ‘mkdir ~/test’ to make a
subdirectory in your home folder named test.

cp – copy �les. ‘cp /path/to/�le /home/odroid/test/’
generates a copy at the freshly made directory from
before. With the -R option, you can recursively copy
�les and directories.

mv – move �les. The syntax is the same as cp, but the
�le gets removed after the copy was successfully
made.

http://www.explainshell.com/
https://tldr.ostera.io/

rm – remove �les

$ rm exampleFile.txt

cat – concatenate �les. cat reads from standard input
and writes to standard output if no other options are
given. If you use cat �le, it writes the contents of �le to
the console, the standard output. Try ‘cat /etc/fstab’ for
an example.

less – If you want to read longer �les on the console.
‘less �lename’ shows the content of �le and pauses
after each page. You can advance with space and go
back with b and q to quit.

$ less exampleFile.txt

head and tail – By default, head �le shows the �rst 10
lines of �le, while tail of a �le shows the last 10 lines of
�le.

$ tail exampleFile.txt

$ head exampleFile.txt

tar and zip – For archiving �les. tar cf archive.tar
/home/odroid/test/ archives the test directory and all
of its contents. If you add the switch z (tar czf), the
archive gets zipped afterwards.

sudo and su – For everything requiring elevated rights,
you prepend a sudo to run the command as root, the
super user. cat /etc/sudoers will fail. If you use sudo
cat /etc/sudoers, you can read the �le. su is ‘switch
user’ If you have assigned a password to the root user
or have other users on the system, you can switch to
them with this command. With sudo -i, you can also
switch to an elevated command prompt and work as
root until you exit with.

$ sudo ­i

exit – to exit the elevated prompt or the shell. Useful
also for remote connections.

$ exit

ssh – You can login to a remote console of your
ODROID with this. This is where the BASH console
really shines. Sit at your PC, log into the ODROID where
ever it is and work as if you are sitting in front of it. It is

very inconvenient to use a GUI in this case, this is why
the console and BASH on your SBC are more
important. On a desktop PC, you may be able to avoid
the command line most of the time. To connect with
ssh you need the computer’s or ODROID’s IP address
and the username you want to login as. For example
the user is ‘odroid’ and the IP is ‘192.168.0.1’.

$ ssh odroid@192.168.0.1

grep – Shows �les which contain a certain text pattern.
You want to know which �les in the /etc/ directory
contain the word ‘Ubuntu’? grep -rnw ‘/etc/’ -e ‘Ubuntu’
gives you the answer.

$ grep ­rnw ‘/etc/’ ­e Ubuntu

�nd – You can use �nd to �nd �les with almost all
imaginable criteria, and act on them. Simplest
example: �nd /home/ -name ‘*test*’ �nds all �les and
directories which contain ‘test’. �nd /home/odroid/ -
type f -size +1M -mtime -30 is a more elaborate
example. It �nds all �les (not directories) in
/home/odroid bigger than 1 MB modi�ed in the last 30
days. You can also use Explainshell.com to see what it
does.

Figure 01 – explainshell.com explaining our �nd
command

sort – sorts �les.

df and du – disk free and disk usage show how much
space you have left with df or how much your
individual �les and folders use with du -ch.

ps and kill, killall – ps lists running processes, if you
want to see everything running, use ps aux. The
process number used with kill, so kill , will kill the
process by sending a signal to terminate the process.
killall kills all processes with this name.

$ ps aux

$ kill

mount and umount – Mount external devices and
drives with mount /dev/ /path, unmount them with
umount /dev/.

dd – With dd, you can write from everywhere to
everywhere. It’s also called the disk destroyer for a
reason, so be careful! dd if=/dev/mmcblk0
of=/home/odroid/mbrbackup bs=512 count=1 makes a
copy of the master boot record. Very nice when you
want to �ash a new SD card.

$ dd if=/input/path of=/output/path

shutdown and reboot – they shutdown and reboot
your SBC. Several options available.

BASH expansion and wildcards

* and ? – ls *.txt lists all �les ending with .txt. With ls
Image??.jpg, you can list �les with names like
Image00.jpg or ImageAB.jpg.

[abc] – ls /dev/sd[abcd]1 lists the partitions /dev/sda1,
/dev/sdb1, /dev/sdc1 and /dev/sdd1.

| as selector – With mount | grep ‘mmc\|sd’, you can
list only mounted eMMC, SD cards or external drives or
sticks. It expands to ‘everything with mmc OR sd in the
name’.

Advanced BASH commands – redirection,
data �ow and loops

stdin, stdout and stderr – These three �les (remember
everything in UNIX is a �le) always exist. stdin is the
keyboard, stdout is the screen and stderr are the error
messages output to the screen.

| – You can pipe output from one program to the next.
The �nd example output from above is much easier to
read if you use �nd /home/odroid -type f -size +1M -
mtime -30 -exec du -h {} ; 2>/dev/null | sort -n. The
output from �nd gets used by du to show the sizes,
and all errors from stderr go to /dev/null, the sink for
unnecessary data. Once again, if paste that command
in explainshell.com you will see a broken down view of
what each part does.

$ find /home/odroid ­type f ­size +1M ­mtime

­30 ­exec du ­h {} ; 2>/dev/null | sort ­n

/dev/zero and /dev/null are the source for null bytes
and the sink for everything you don’t need.

> and <, >> and << - These redirect output or input to
�les. ls *.txt > texts.list generates a list of text �les in
the current directory. ls Documents/*.txt >> texts.list
would append the list of .txt �les in the Documents
directory to it. 2> is the stderr output. The 2>/dev/null
part in the example above redirects all error messages
away from the console into the Big Bit Bucket.

for, do, done – BASH loops can be constructed with
these commands.

if, then, else – Advanced loop construct, mainly for
scripts.

Practical application example

Let’s do an example to see the power of the shell and
of loops. Your Pictures folder contains several
subdirectories, each of which you want to compress
into an individual archive to mail to someone else.
This is easily done with the GUI if you have just your
folders from your travels labeled ‘USA’, ‘South Korea’
and ‘Spain’: right-click, select compress, and you’re
done.

Now think about the same problem, but with folders
generated by a program from a camera attached to
the ODROID. If you have 100 folders or more, this task
becomes mind-numbingly repetitive. Here is where
BASH comes to the rescue!

If we use the ‘ls -F’ command to list a directory,
symbols are added to the names according to their
type. Directories have a slash appended, which is also
how BASH sees them. Aid to memory: The slash could
be part of the path name to a �le in this directory, so
they get a trailing slash:

$ for i in */; do zip ­r "${i%/}.zip" "$i";

done

This command gets all directories in the directory we
are in: the for i in */; part. For each of them, we do the
following: zip -r “${i%/}.zip”, where $i is the i variable
we introduced before, i%/ is the name without the

slash, and “${i%/}.zip” is the directory name with .zip
attached; directory 2018 05 20 would give the archive
2018 05 20.zip. The quotes avoid that names with
spaces are treated as two di�erent names instead,
which could have disastrous consequences. After this
command has run for all i, we are done.

A short one-liner saves a lot of tedious work. This is
what makes BASH so attractive. In the next article, we
will look at startup and login and customizing the
BASH prompt.

Linux Gaming: Nintendo 64 Emulation – Part 2
 June 1, 2018  By Tobias Schaaf  Gaming, Linux

Part 1 of this article introduced the latest version of
the Nintendo 64 emulator for Linux and compared its
performance on all of the current ODROID boards.
This second part presents an overview of some of the
more popular Nintendo 64 games, including Mario
Kart, Mario Party, Paper Mario, Star Fox, Star Wars,
Starcraft, Super Mario, Super Smash Bros, and Legend
of Zelda.

Mario Kart 64

Mario Kart is very well-known franchise from
Nintendo as a racing game, starring the most famous
characters from Nintendo like Mario, Luigi, Peach,
Yoshi, Donkey Kong, Bowser and others. One of the
big bene�ts of this game is that you can play it with
up to 4 players at the same time. I’m not really a fan
of the series, especially the Nintendo 64 version,
which is graphically poor in my opinion. Although the
N64 is known for its 3D capabilities, Mario Kart 64
uses mostly 2D sprites, which don’t look good. The

only 3D elements of the game are the ground that
you are driving on, and some obstacles and bridges,
which makes the game very unattractive to play.

U3

When I �rst ran the game without frameskip, it was
rather laggy. Since the game mostly uses old 2D

sprites, it really made me wonder why this game
needs so much CPU power. However, once I activated
frame skipping, it worked �ne on the U3. There is
some small delay in the sound while using the menu,
but nothing that’s really troublesome. In-game racing
works �ne without lags or slowdowns, and
multiplayer with several controllers is working
perfectly as well.

C1

While the menu is slow, the in-game experience is
good and seems to work at full speed using the Rice
plugin. It’s de�nitely playable, although you get a
much better experience on the U3 or XU3 rather than
the C1. When I re-tested it using glide64mk2, the
game ran �ne, although it had some glitches with the
shadows and ground textures.

XU3

Mario Kart 64 had no issues on the XU3. It ran at full
speed and could easily be controlled with an the XBox
360 controller.

Mario Party

Mario Party is a type of board game in which you play
with or against up to 4 players in di�erent kinds of
mini-games. The game is quite fun, although
sometimes I have a hard time �guring out the
controls for certain mini-games. It’s probably suited
for all ages, from small children to adults as a party
game, or just to have some fun.

Figure 2 – Mario Party

U3

The U3 experience was �awless, and the game ran at
full speed without any issues. I saw a �ickering screen
on the split screen of one mini-game once, but the
moment the action started, it was gone and therefore
fully playable.

C1 – rice plugin

The menu was a little slow at �rst, and when I was
actually on the map to select a game, I was rewarded
with a very �uent movement, like in Mario Kart.
However, when I tried to start a game I only saw a
white screen. I heard everything running in the
background, and clicking buttons triggered certain
actions which I could hear, but I could not see
anything besides a blank screen. When I tried again
with a di�erent game mode, I was able to see a few
parts of the game, but major parts were missing, and
the moment that I started a mini-game, I only got a
black screen.

C1 – glide64mk2

While the game didn’t run using the rice plugin, it
worked �ne with glide64mk2, although it was a little
slow. Most scenes in game are full speed, so I
consider this game playable under glide64mk2 in 16-
bit.

XU3

The XU3 had no issues at all playing this game. It ran
smoothly, which was not surprising considering that it
also ran well on the U3. Overall, the gaming
experience was quite nice.

Paper Mario

Paper Mario is a mix between a jump and run game
like Super Mario and an RPG game like Final Fantasy.
It has nice graphics, and although the world is 3D,
Mario himself is only 2D. He’s actually a paper �gure.
The gameplay is very unique and is really fun to play.
It’s hard to describe, but you should de�nitely give
this one a try!

Figure 3 – Paper Mario

U3

The U3 experience for Paper Mario is really good. I
encountered a few graphical issues with shadow,
fonts and speech bubbles. I could not read what the
stars were saying, but that’s about as bad as it gets. I
could still read everything else, so it didn’t actually
interfere with game play. The overall speed was very
good, and I enjoyed the game a lot on the U3.

C1 – rice plugin

The experience on the C1 is hard to describe. At �rst,
the game was not working at all. After a laggy
introduction, the main menu did not show up. After
10 or 15 minutes, another type of introduction
seemed to show up, which was basically just a
scrolling background picture. Another 10 to 20
minutes later, the picture changed again and
suddenly I saw the start menu. I created a new save
state and started a new game. Again, I was presented
with a single background picture. It seems the game is
not working at all on the C1, or it might take hours for
it to start. The C1 should be able to play the game in
rather a decent speed, but unfortunately, the faulty
drivers and graphics support prevent the system from
working properly.

C1 – glide64mk2

This game works with glide64mk2 at full speed.
Similar to the U3, it has glitches with the shadows and
ground textures, but besides that, the game is
running very well.

XU3

The libretro core did a very good job with this game.
None of the U3 glitches with glide64mk2 could be
seen. The shadows were perfect, speech bubbles
were �ne, and I could read what the stars were
saying. The overall speed was perfect as well. I really
like playing this game on the XU3.

Star Fox 64

Star Fox 64 is a remake of the Super Famicom/SNES
game Star Fox, which was one of the �rst 3D space
shooters. The N64 version was famous for its very
good graphics and especially for its voice acting. The
often funny lines of your comrades through the radio,
the intense battles, and the good graphics make this
game really fun to play.

Figure 4 – Star Fox 64

U3

The game runs very well on the U3. It had some slow
downs on the galaxy map where you select the
mission, and the shadows are too dark. The lighting
does not work correctly which means the game is very
dark in some scenes. Besides that, the game works
perfectly well at full speed.

C1 – rice plugin

The C1 does well with this game. The rice video plugin
looks a lot better when rendering shadows than the
glide64mk2 on the U3, so the scenes are not as dark.
Besides that, the performance of the C1 is slower
than on the U3, and the mission brie�ng is slightly
laggy. While the U3 has a slowdown on the Galaxy

map where you can select your mission, the C1 hangs
very badly, but since it’s just for selecting your mission
it doesn’t a�ect game play that much. When you’re
�nally on the hunt and shooting through the game,
the game runs at full speed without issues, and is
actually nice to play on the C1.

C1 – glide64mk2

Similar to the U3, the gaming experience is rather
good. It’s about the same speed as on the U3 and has
the same issues with the shadow, but besides that,
the gaming experience is nice and only slows down
on the galaxy map.

XU3

As usual, the XU3 experience is the best. The game
runs smoothly, but slows down on the galaxy map.
The graphics look great on the XU3, and the game
runs very smoothly.

Star Wars Episode 1 – Racer

I played this game many years ago on the PC with my
3DFX Voodoo graphics card, which used the “glide”
that’s included in some of the graphic plugins for
mupen64plus. The game is about the Pod Racer in
Episode 1 of Star Wars. It’s a very fast racing game
with nice graphics and destroyable objects, and you
can upgrade your pod to make it faster or easier to
handle. This game actually uses the memory
expansion pak on the N64 which improved the
graphics, and the rumble pak is also supported.
However, the N64 version doesn’t compare to the PC
version in terms of graphics, and is also missing the
multiplayer mode, although it’s still a nice racing
game.

Figure 5 – Star Wars Episode 1 – Racer

U3

The experience on the U3 is very good. The game
runs �uently and quickly, and doesn’t seem to have
glitches. Some of the shadows are too dark, but that’s
something you only experience in the menu.

C1 – rice plugin

Once again, the C1 has issues with this game related
to the rice video plugin, since the same issues happen
on the U3 when the video plugin is switched to rice.
The picture was distorted and cut o� in some scenes.
The game works perfectly �ne using glide64mk2 at
full speed with no issues.

XU3

The game works very well on the XU3. I �nally �gured
out how to use the booster, and I also saw a two
player option. It seems that if the game �nds more
than one controller connected, it o�ers a multiplayer
option. The gaming experience was �awless and at
full speed.

Star Wars: Rogue Squadron

This is named as one of the best N64 games ever
made, where you �y an X-Wing to right against the evil
Empire. I played the game on the PC when it came
out, and it was quite fun. I was looking forward to
trying it on the ODROID. I’ve read that this game
requires the memory expansion pack in order to
launch. However, no matter what I tried, I wasn’t able
to get this game to work on any platform or with any

graphics plugin. Both the mupen64plus and libretro
core emulators either crashed or stopped responding.

Picture 6 – Star Wars: Rogue Squadron

StarCraft 64

StarCraft is a very famous RTS game. It’s one of the
best strategy games ever made, and is still played in
professional gaming tournaments. The Nintendo 64
game is a very good remake with reduced graphics,
stripped videos, and minimal music. It’s a nice
strategy game, and I found it interesting that I was
able to play it on a Nintendo 64 emulator.

Picture 7 – StarCraft 64

U3

The game runs surprisingly well on the U3. There are
some speed issues on the menu, but as soon as you
are in the game, it works well, although the sound is a
little bit delayed, especially in bigger battles. You can
hear units die after they have already disappeared
from the screen.

C1 – rice plugin

StarCraft 64 ran surprisingly well on the C1. It seems
to work best using the rice video plugin. However,
when using the glide64mk2 plugin, the menu is so
slow that you can’t select the mission that you want to
play. Therefore, the game is not playable under
glide64mk2. The in-game speed would probably be
�ne, but since I couldn’t get past the menu, there is no
way to tell.

XU3

I actually had a lot of issues getting StarCraft 64 to run
on the XU3. The game was very laggy at �rst, and
switching from glide64 to rice or gln64 exhibited
strange issues. Rice and gln64 were really fast on the
XU3 menu, and everything was full speed. But both
rice and gln64 had major graphical problems, which
made the game unplayable. After some investigation
on the slowdown of glide64, I found out that reducing
the rendering resolution increased the speed. The
game is displayed in 1080p no matter which
resolution you choose, but the resolution at which the
characters and objects are rendered can be changed
on the XU3. I found that using a resolution of 800×600
or below gave the best performance.

Super Mario 64

Super Mario 64 was the launch title for the N64, and
what a launch title it was! This game boosted the N64
to the top of its class by showing what the console
was capable of, and once again, made Mario the star
of the Nintendo franchise.

Figure 8 – Super Mario 64

U3

On the U3, Mario 64 has some glitches with shadows,
textures and lighting, but besides that, the game runs
at full speed.

C1 – rice plugin

Mario 64 seems to be running a little below full speed
on the C1, but it is still playable with the rice graphics
plugin. The speed is slightly better with glide64mk2
than with the rice plugin, but it occasionally drops
below full speed. It also has the same issues as the U3
glide64mk2 plugin with rendering ground textures
and shadows.

XU3

The game is running �ne on the XU3, with no issues
or glitches.

Super Smash Bros

This game introduced a new genre of brawler games.
It was a major success on the N64, and led to a lot of
sequels. You can choose between famous Nintendo
characters such as Mario, Yoshi, Princess Peach and
many more, and �ght against other characters.

Figure 9 – Super Smash Bros

U3

The gaming experience for Super Smash Bros on the
U3 with mupen64plus and glide64mk2 plugin is very
nice. Even the menu is working at a decent speed.
There are some glitches with shadow and text, but
nothing serious, and only the text issue is noticeable.

C1 – rice plugin

The game was too slow under rice to be playable. The
menu, introduction, and gameplay were laggy.
However, Super Smash Bros runs much better with
the glide64mk2 plugin, and you can actually play it full
speed, although it has the same glitches as the U3
version.

XU3

While in the menu, there is some lagging and slow
downs, but the game runs perfectly �ne otherwise. It
was really fun to play.

The Legend of Zelda: Majora’s Mask

I don’t know much about the Legend of Zelda games
on the N64, but I do know that this game involves
having 72 hours to save the world, and you have
di�erent masks to help you in your cause. You can
use the “Ocarina of Time” to travel back in time and
start the 72 hours over and over again until you
�nished the game.

Figure 10 – The Legend of Zelda: Majora’s Mask

U3

Although the game speed is very good, the
glide64mk2 plugin once again has issues with being
too dark. Since it can’t do the blurry e�ect, the game
stays at full speed the entire time. However, because
it’s too dark, it’s sometimes hard to �nd a way, but it’s
not as dark as it is when played on the XU3, where
nothing is visible. I consider this fully playable.

C1 – rice plugin

The game worked surprisingly well on the ODROID-C1
with the rice plugin. There were no graphical issues,
but the introduction and some scenes were slightly
laggy. Overall, the game is very playable on C1 with
the rice plugin.

C1 – glide64mk2

The game runs at nearly full speed, but su�ers from
the same darkness issue as the U3. Rice is probably
the best plugin for use with this game when played on
the ODROID-C1.

XU3

The overall experience of the game is quite good.
When there are cutscenes with the blurring e�ect, the
game slows down and becomes laggy. However, since
only occurs in cutscenes, the gameplay is �ne.
However, there’s another issue which is related to
glide plugin, which is that the graphics are too dark,
makes it hard to �gure out which way to go. It got so
dark that I switched to the gln64 plugin, which had
some minor glitches with the ground, but otherwise
worked perfectly at full speed. It was not so dark that
you couldn’t see where to go, so using gln64 as a
plugin for this game worked great.

The Legend of Zelda: Ocarina of Time

This is the predecessor of Majora’s Mask. I actually
had a hard time enjoying the game, but I know that it
is supposed to get better over time, and there must
be a reason why so many have it on their top 10 list,
so I gave it a try.

Figure 11 – The Legend of Zelda: Ocarina of Time

U3

Generally the game works �ne and is at full speed,
with some minor issues with shadows and ground
textures. In some places, it is too dark, but it is still
fully playable.

C1 – rice plugin

Similar to the other Legend of Zelda game, this one
works very nicely on the ODROID-C1 using the rice
plugin. With the glide64mk2 plugin, the game was not
entirely full speed, and exhibits the typical ground
texture and shadow issues.

XU3

The experience on the XU3 is superb. I didn’t see any
glitches or slow downs so far, although I didn’t get
very far in the game. It’s a really nice experience.

High Resolution Textures

After trying out di�erent games, I checked on what
else could be done with the emulators, and I found
out that there are some high resolution texture packs
that o�er much better graphics. I tried a few of them
to see what they look like in order determine if they
would work on the ODROIDs. Mupen64plus
standalone emulator o�ers the possibility to use high
resolution textures for N64 games which can improve
gaming experience by giving a new look to the games,
but this option is not available for other emulators.

Figure 12 – Super Mario 64 with standard textures

Figure 13 – Super Mario 64 with high resolution textures

To use the high resolution textures, download them
from http://bit.ly/1Jvpahr and copy them to the
directory ~/.local/share/mupen64plus/hires_texture/.
Some of the textures are complete rewrites of the
game graphics. Make sure to place the textures in a
folder with the “short name” of the game in capital
letters. For example, Mario 64 is “SUPER MARIO 64”,
and Mario Kart 64 is “MARIOKART64”.

Figure 14 – Complete remake of the Mario 64 textures

Conclusion

Nintendo 64 emulation is generally working very well
on ODROID devices, especially on the U3 and XU3.
The C1 has a lot of issues which prevent it from
o�ering the same gaming experience as on the other
ODROID devices. The rice plugin, which works without
having to change color depth settings on your image,

has major issues with many games, but does a rather
good job on other games. The glide64mk2 plugin only
works under 16-bit, and although most games are
running nicely, the ones that do run better with the
rice plugin require a reboot in order to be able to use
it, since rice isn’t working with 16-bit. This leaves me
rather unsatis�ed, since I always had to reboot the
entire ODROID in order to switch between di�erent
graphics plugins on the C1. The U3 and XU3 can do
this without rebooting the entire system, which makes
it much easier to switch between the plugins. Also,
using 16-bit color depth prevents di�erent
applications such as XBMC from running properly,
which causes you to choose a emulator frontend that
actually supports 16-bit mode, or else you are forced
to start N64 games through a Terminal window. This
all makes me believe that C1 is not really suitable for
N64, at least under Linux. I think that the best way to
play N64 games on the C1 is probably through the
Android app or a highly modi�ed version using fbdev
drivers and some scripts that are able to switch color
depths and applications to run. That setup would be
very inconvenient and certainly not suitable for
beginners. The U3 and XU3 both measure up very
well when it comes to N64 emulation. Being able to
switch between graphic cores easily is a big bene�t
over the C1. N64 games seem to need some
occasional tweaking, and if you look at the
con�guration options for either glide64mk2 or rice on
the mupen64plus standalone emulator, there are a
lot of options to choose from. The XU3 is the only
board that can use libretro core of mupen64plus with
Retroarch at the moment. It integrates the controllers
very nicely, and you can easily adapt your gamepad
layout to your own needs and have various
controllers supported. Also, the XU3 has extra CPU
power, which often make the di�erence between full
speed or “nearly” full speed. The U3 does a very good
job in emulating N64 games, and being able to use
high resolution textures in mupen64plus is really a
cool thing to have.

