

BASH Basics: Introduction to BASH
 July 1, 2018

Customize the BASH prompt and BASH behavior

Linux Gaming: PC-Engine / TurboGrafx
 July 1, 2018

The PC-Engine, or TurboGrafx-16 as it is called in the United States, was the �rst 16 bit
console

Object Tracking Using oCam and ODROID-XU4: An Easy Step-By-Step
Guide To Object Tracking
 July 1, 2018

I thought many people would be interested in an easy to follow guide on how to use
the oCam and ODROID-XU4 for object tracking using OpenCV

ODROID-GO Game Kit: A Handheld Gaming Console To Celebrate
Hardkernel’s 10th Anniversary
 July 1, 2018

To celebrate ODROID’s 10th anniversary, we present the ODROID-GO Game Kit. It
includes a special anniversary board and all the additional parts to put together your

own game kit and see the workings behind such a device. It is not only a fun assembly project but also an
educational tool

Mali GPU accelerated Qt5: Running on Ubuntu 18.04
 July 1, 2018

Ubuntu 18.04 Bionic comes with Qt 5.9.5 by default. However, Canonical has built it
without considering the ARM Mali GPU detection, and Qt5 doesn’t work on Ubuntu
18.04 at all. So, we have to build Qt5 from source code manually. This is a quick and

dirty build guide, that I

Player Unknown’s Battlegrounds (PUBG) On The ODROID-XU4: How
To Install and Play With A Keyboard And Mouse
 July 1, 2018

PlayerUnknown’s Battlegrounds is a multiplayer online battle royale game developed
and published by PUBG Corporation

Turning your ODROID Into a Tor Relay
 July 1, 2018

Tor is free software that enables access to an open network useful in anonymous
communications

Recalbox on the ODROID-XU4: Getting Started
 July 1, 2018

the ODROID-XU4 runs a bevy of operating systems including RetroPie, Ubuntu MATE,
and RecalBox

Liquid Cooling Part 1 – Cluster
 July 1, 2018

After �nding some small 15x15x5mm heatsinks, I decided to create an ODROID cluster
using water cooling in order to reduce its temperature and noise. I started with a single
ODROID-XU4 to see if the small heatsinks were powerful enough to distribute heat

away from the board.

200TB GlusterFS Server: Using The ODROID-HC2 For Massively
Distributed Applications
 July 1, 2018

Over the years, I have upgraded my home storage several times. Like many, I started
with a consumer-grade NAS.Enter the ODROID-HC2. With 8 cores, 2 GB of RAM, Gbit

ethernet, and a SATA port it o�ers a great base for massively distributed applications.

Home Assistant: A DIY Smart Light Project
 July 1, 2018

Ever since I started working with Home Assistant and automating various things
around the house I wanted to have a way to control the lights. I looked at smart light
bulbs, like Philips Hue, but they are expensive. Also, most solutions use proprietary

protocols or cloud services which may leak

Getting Started With OpenCL: Using The ODROID-XU4
 July 1, 2018

While I tested OpenGL ES with tools like glmark2-es2 and es2gears, as well as WebGL
demos in Chromium, I did not test OpenCL, since I’m not that familiar with it, except it’s
used for GPGPU (General Purpose GPU) to accelerate tasks like image/audio

processing. That was a good excuse to

Liquid Cooling Part 2 – Server
 July 1, 2018

The most stylish cooling project to date for our community, a liquid-cooled ODROID
took about 5 weeks to complete, with an average of 12-18 hours a day spent working
on the project. It weighs a whopping 6.5lbs, with a total cost of around $950, including

the board, accessories, cooling hardware,

BASH Basics: Introduction to BASH
 July 1, 2018  By Erik Koennecke  Tutorial

What happens at startup and login with variables and
BASH, and how can I customize the BASH prompt and
BASH behavior? After looking at a lot of essential
commands, it’s time to do something fun. When we
want to live on the command line, it’s a good idea to
shape it to our needs. For this, we �rst need to look at
what is done by BASH when a user logs in or BASH
starts by invoking a script.

BASH invoked as an interactive login shell

This is the usual case when you log into the system
via ssh, or have a terminal open without a graphical
UI. When BASH is invoked as an interactive login shell,
it �rst reads and executes commands from the
following �les:

• /etc/pro�le, if that �le exists. After reading that �le, it
looks for • ~/.bash_pro�le, • ~/.bash_login, and •
~/.pro�le, in that order, and reads and executes
commands from the �rst one that exists and is
readable.

/etc/pro�le calls /etc/bash.bashrc, so there is one
more to add to the list. But ~/.pro�le starts also
~/.bashrc, so this is the place we need to look at for all
the interactive shells. When an interactive login shell
exits, or a non-interactive login shell executes the exit
builtin command, Bash reads and executes
commands from the �le ~/.bash_logout, if it exists.

Invoked as an interactive non-login shell

When you have a graphical UI and open a terminal
application like mate-terminal or xterm, a non-login
shell gets executed. When an interactive shell that is
not a login shell is started, BASH reads and executes
commands from ~/.bashrc, if that �le exists. The –
rc�le �le option will force BASH to read and execute
commands from �le instead of ~/.bashrc.

Invoked non-interactively

For the sake of completeness, this is what happens
when you run a script with BASH. When BASH is
started non-interactively, to run a shell script, for

example, it looks for the variable BASH_ENV in the
environment, expands its value if it appears there,
and uses the expanded value as the name of a �le to
read and execute.

For our use cases, it is ~/.bashrc which is the most
important, since it deals with all the interactive BASH
shells. If you want something to run only once after
login, put it in /.pro�le instead. ~/bash_pro�le could
also be used, but doesn’t exist on Ubuntu.

Examples for both would be adding a function to
~/.bashrc, since you want to have it available
everytime:

shows last installed packages from history

function apt­history(){

zcat ­qf /var/log/apt/history.log* | grep ­Po

'^Commandline: apt install (?!.*­­

reinstall)K.*'

}

For the other option, adding something like the
following to the path via ~/.pro�le, which you want
only once for a login:

$ export PATH="$PATH:/some/addition"

This avoids a path which has :/some/addition tacked
on every time BASH is called. If you want to see
everything that happens with BASH and these �les
put together, you can try:

$ PS4='+ $BASH_SOURCE:$LINENO:'

BASH_XTRACEFD=7 bash ­xlic "" 7>&2

However, don’t be surprised by the volume of it, and
don’t forget to exit again.

Changing the BASH prompt

Now it’s time to put this into practice. While the
colored standard prompt is nice, it might be better to
have it tailored to your liking. Go to
bashrcgenerator.com and play with the di�erent
options.

Figure 1 – bashrc generator

(Figure 1 – bashrc generator)

After you dragged the interesting elements into box
#2, you’ll notice that there’s a lot of escape code in
box #4. This is how BASH can interpret di�erent
variables and colors. The principle is similar to
Unicode or HTML coded as plain ASCII, just with colors
and screen properties.

Modern terminals like mate-terminal or xterm are
capable of 256 colors. To see them, save the following
script as 256colors.sh, make it executable with chmod
a+x and run it:

#!/bin/bash

for fgbg in 38 48 ; do # Foreground /

Background

for color in {0..255} ; do # Colors

Display the color

printf "e[${fgbg};5;%sm %3s e[0m" $color

$color

Display 6 colors per lines

if [$((($color + 1) % 6)) == 4] ; then

echo # New line

fi

done

echo # New line

done

exit 0

This is what your terminal is capable of. Now on the
bashrcgenerator.com site, you can double-click the
elements in box #2 for di�erent colors and boldness.
The escape codes are generated in box #4. After you
�nd a version you like, copy the code from box #4 and
test it in your BASH window by pasting it and pressing
return. If you are satis�ed, open ~/.bashrc with a text

editor, search for the line starting with PS1= and
replace it with the line from box #4, but without the
export part!

Personally, I like to keep a balance between keeping it
short, simple and unobtrusive, and having dashboard-
like information in the prompt:

Figure 2 – command prompt with PS1 example

As you can see, the root prompt di�ers from the user
prompt to remind me that I have root power and can
potentially destroy my system when I am careless. If
you also want to have a prompt like this, looks for the
following line:

if ["$color_prompt" = yes]; then

Add the following code immediately after the above
line:

if [$(id ­u) ­eq 0];

then # you are root, make the prompt red

PS1='${debian_chroot:+($debian_chroot)}\

[e[00;33m\]u\[e[00m\]@\[e[00;34m\]h\[e[00m\]:\

[e[00;36m\]w\[e[00m\]e[01;31m#e[00m '

else

PS1='${debian_chroot:+($debian_chroot)}\

[e[00;32m\]u\[e[00m\]@\[e[00;34m\]h\[e[00m\]:\

[e[00;36m\]w\[e[00m\]$ '

fi

Replace everything before the non-indented else
statement a few lines down. Now with the shiny new
prompt, we want to do more. What else can you do to
customize your BASH experience?

BASH Functions

As brie�y mentioned above, you can put functions
into the ~/.bashrc �le. The example apt-history is a
function which shows the last installed or removed

packages. After you have changed the ~/.bashrc, don’t
forget to log out and log in again to have your
changes recognized! Just give the function a name,
start with function functionname() and put your code
between curly brackets.

Another fun example would be to get the current
weather in the console. You can get a current weather
report in the terminal by doing curl wttr.in/YourCity,
with the two-letter language pre�x like fr.wttr.in/Paris
you can get a weather report for Paris in French.

To see all the options, type the following command:

$ curl wttr.in/:help.

It is annoying to always type all the desired options;
with a function, you can skip all that and just type
“wttr” to get the current weather for your location, in
the right language and all the options you want:

function wttr()

{

Seoul is the default location

curl ­H "Accept­Language: ${LANG%_*}"

wttr.in/"${1:­Seoul}"

}

For ODROID usage, it might be convenient to have a
function cputemp, where you can run cputemp and
get the cpu temperature with the following function:

function cputemp()

{

#for XU4 usage, others may differ

cat

/sys/devices/virtual/thermal/thermal_zone0/tem

p

}

This gives the temperature in °C with three trailing
zeros at the end. For a prettier output, a script would
be better suited to not overload the ~/.bashrc. You
can add all your functions at the end of the ~/.bashrc
�le, one after the other.

BASH aliases

You may have noticed in an earlier part of the series
that you can call “ll” to get “ls -l” in Ubuntu. For similar
aliases which tailor the commands to your need,
make a new �le ~/.bash_aliases and enter lines with

the commands and their standard options you want
to use:

$ alias ping='ping ­c 5'

for example stops the ping somehost.com command
after a count of 5 pings, similar to the operation of
ping in Windows. Another example would be to
always get the human-readable form if you want to
see how much space is free on the disks:

$ alias df='df ­h'

In the next part, we look at an introduction to
scripting: variables, tests, loops. The one-liner for
making archives out of di�erent folders from the last
chapter was a glimpse of things to come. With more
complex requirements, our BASH executables won’t
�t in one line anymore; now it’s time for writing real
scripts.

References

https://www.gnu.org/software/bash/manual/html_n
ode/Bash-Startup-Files.html

https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Linux Gaming: PC-Engine / TurboGrafx
 July 1, 2018  By Tobias Schaaf  Gaming, Linux

Although I haven’t �nished my Sega Saturn series, I
recently busied myself with another great system that
I’d like to talk about a bit, which will probably become
a series of its own some time in the future. In my
opinion, it’s a rather underrated system, shown by the
lack of third-party developers and well known IPs for
the system. I don’t think this system gets enough
respect, which is why I want to put my own thoughts
regarding the system out there.

Figure 1 – PC-Engine–the smallest of the major home
consoles

The PC-Engine, or TurboGrafx-16 as it is called in the
United States, was the �rst 16 bit console, and with

that, kicked o� the 16 bit era of video game consoles.
That alone should have been reason enough for a
great deal of recognition, but apparently it was not
enough–at least not for the US and EU market.

It also eventually became the �rst 16 bit console with
a CD add-on, even before Sega CD for the Sega
Genesis/Mega Drive. Later, rather than o�er the CD
add-on, the CD drive and the console were combined
in one system known as the PC-Engine
Duo/TurboDuo. Once again, my opinion is that the CD
add-on and later built-in CD presents another good
reason why the system should have been better
known. More content and CD-quality music for 16 bit
console games, so what’s not to like about this?

Still, it is, in my opinion, one of the most underrated
consoles in the US and EU, although its performance
in the EU market is understandable, considering it
was never o�cially released in the EU. The war
continued between Nintendo and Sega while NEC’s
PC-Engine/TurboGrafx got lost on the battle�eld,

which is a shame, because the console is quite
capable and has a lot of good titles.

Hardware

The system’s CPU is an 8 bit Hudson Soft HuC6280
processor with the ability to switch between 1.79 MHz
and 7.16 MHz. Compared to the 16 bit processor used
in the SNES with 3.58 MHz, this is probably the weak-
point of the PC-Engine console, but it was still quite
capable. Since it used a 16 bit graphics chip, it was
known as the �rst 16 bit console.

The console o�ered a maximum resolution of
565×242 pixels and a vertical resolution of 484 pixels
with an interlaced mode, while most games were still
using 256×239 as a resolution. In comparison, the
SNES had a resolution between 256×224 and
512×448, with most games running at 256×224 pixels,
so the PC-Engine had a slightly higher resolution in
most cases than the SNES. Still, the colors were
limited to 512 (9 bit) compared to the SNES with 15 bit
(32,768 colors). When it comes to graphics
capabilities, the PC-Engine is probably closer to the
Sega Genesis/Mega Drive than to the SNES, and
actually exceeds the Genesis in some areas, but in
most instances the SNES is most likely better. The PC-
Engine system was originally designed to compete
with the NES and Famicom but in the end competed
with SNES and Genesis.

The audio hardware was built into the CPU rather
than having a separate chip like on the Genesis and
SNES. It had 6 channels each, with a depth of 5 bits,
but you could combine two channels to play back 8
bit, 9 bit, or 10 bit samples. With the addition of the
CD-ROM add-on, it also added CD-DA sound and a
single ADPCM channel to the existing sound
capabilities of the PC-Engine. The memory of the PC-
Engine was limited, with 8K of working RAM and 64K
of video RAM. The latter is fairly normal throughout
most consoles in the 16 bit era, but the amount of
working RAM is rather small.

The CD add-on brought its own 64K DRAM. With the
System Card v3.00 the system got another 192 K of
SRAM to work with. Later, the PC-Engine Duo
(TurboDuo in the US) had a single 256K SRAM chip,

which meant the a great increase in system
performance.

HuCards

The PC-Engine didn’t use cartridges like the SNES or
Genesis, but rather something called HuCards as their
storage medium for games. HuCards were small
cards, similar in size but a little thicker than a credit
card, which are placed in a slot on the front of the
machine and locked in place when you manipulate
the power switch.

Figure 2 – HuCards for the TurboGrafx-16 (PC-Engine in
Japan)

These HuCards (also called Turbo Chips) are similar to
the “My Cards” (also called Sega Card) used in the
Sega SG-1000/3000 and Sega Mark III/Master
Systems. The largest HuCard was only 20 Mbit in size
compared to 48 Mbit used in the largest SNES
cartridges or 32Mbit for the Genesis. This means the
data stored on these cards were smaller than on
other systems.

The HuCards had the advantage of being cheaper to
produce than cartridges, making games for the PC-
Engine/TurboGrafx a little cheaper than the SNES or
Genesis. The downside was no room for extra extra
processors like with some SNES cartridges. Although
the hardware of the PC-Engine and TurboGrafx-16 is
virtually identical, Japanese HuCards for the PC-Engine
do not work in the TurboGrafx-16 and vise versa,
potentially leading to a misconception that these are
di�erent systems in some way. In fact, it is just that
two pins of the HuCards for the PC-Engine and
TurboGrafx-16 were switched to implement a region
protection.

To counter this, you could hardware modify your
TurboGrafx-16 or PC-Engine and with a switch, select

between JP and US mode, or you could use a
converter card that switched the pin layout.
Emulators, of course, do not have such limitations,
therefore PC-Engine emulators run �ne with any type
of ROMs either for PC-Engine or TurboGrafx-16.

Figure 3 – Converter Card for the PC-Engine/TurboGrafx-
16, which allowed you to play Japanese games on US
consoles

CD-ROM add-on

Similar to the Sega Genesis/Mega Drive, the PC-Engine
got a CD-ROM add-on later in its lifetime. In fact, it
was the �rst console to have this. The PC-Engine CD-
ROM² System was released in December of 1988–
three whole years prior to the Sega CD/Mega CD
release in December of 1991. The add-on greatly
increased the capabilities of the PC-Engine, adding
more RAM and better sound quality to the system.
The CD-ROM add-on required a system card that
would allow the PC-Engine to access the CD drive. This
card got updated over time and in 1991 the Super
System Card (System Card v3.00) was released,
expanding the RAM of the system to 256 K.

Later, the PC-Engine Duo and the TurboDuo were
released, combining the CD-ROM add-on and the
console into one device that included extra memory
without having to use the Super System Card. CD
games for the system were actually region-free,
allowing you to play your Japanese games on the US
console and vise versa.

Figure 4 – TurboDuo One console that already includes
the CD-ROM add-on for the TurboGrafx-16

Other console versions

The PC-Engine had quite a view variants. For example,
there was the PC-Engine Shuttle, a cheaper version
fashioned like a spaceship, which was targeted
toward younger children, but was unable to use the
CD-ROM add-on.

Another version was the PC-Engine LT, a PC-Engine in
a laptop format that included a monitor and speakers.
The console itself acted as a controller, but it still
required a power adapter to work. This made console
good enough to take to a friend’s house, even if that
particular friend did not have a TV in his room.

Figure 5 – PC-Engine Shuttle aimed toward children

Figure 6 – PC-Engine LT with built-in monitor and
speaker

Out of the many versions, the PC-Engine GT, or
TurboExpress in US, is probably the most interesting
to talk about. It’s a mobile version of the PC-
Engine/TurboGrafx-16 allowing you to play your
HuCard games on the go, similar to the Sega Game
Gear, but with the full power of the PC-Engine. It was
quite advanced for its time, with backlit LCD, an add-
on to watch TV, and even linking capability so you
could to play with others (e.g. Bomberman ‘93), but it
came at a heavy cost in batteries, with a lifetime of
only about 3 hours for 6 AA batteries.

Figure 7 – The PC-Engine GT / TurboExpress handheld
version of the PC-Engine

There is one more piece of hardware that should be
mentioned when talking about the PC-
Engine/TurboGrafx-16–the PC-Engine SuperGrafx.
This was a failed product intended to improve the
capabilities of the PC-Engine while at the same time
support all the features of the PC-Engine. It was
meant to increase graphics performance, sound
capabilities, and RAM but was rushed to market and
in the end proved to be only a mild improvement over
the original PC-Engine. The system had four times the
amount of working RAM (32K instead of 8K) and a
separate GPU to improve graphics which allowed for
two separate scrolling background layers.

Sadly, it was a complete failure as the HuCards for
this console were very expensive (up to $110). In total
only six games for the system were produced, with
only one of them actually compatible with the PC-
Engine as well.

Figure 8 – PC-Engine SuperGrafx–a commercial failure

Games

When it comes to the success of a gaming platform,
it’s all about the games. The PC-Engine library is
reasonably large with about 650 available titles, but if
you check the US releases, it’s not that impressive. A
total of only 138 games were released for the US
market, which is nothing compared to the number of
releases for the SNES or even Sega Genesis.

It also lacks a number of large, well-known IPs for the
system. Still, there are some rather unique games for
the system both on CD and on HuCards. A few of the
well-known series that came out included Castlevania
Rondo Of Blood (Akumajou Dracula X-Chi no Rinne),
R-Type, Splatterhouse, Street Fighter II, Bonks, Ys I-IV,
Bomberman, Gradius, Galaga, Raiden, Outrun,
Parodius, Cotton, Wonder Boy, and others.

There are also tons of good, but less well-known
games that were released exclusively for the PC-
Engine/TurboGrafx-16 such as Soldier Blade, Super
Star Soldier, Blazing Lazers, Cadash, Alien Crush and
others, which are worth having for the system. Being
a mostly Japanese console, you’ll �nd a lot of games
common for the Japanese market, including a huge
library of well over a hundred shoot-‘em-up games for
the system. If you’re a fan of these kind of games this
is de�nitely a console for you.

Still, it has games from every genre to o�er. At some
point I may follow up on this article with a series
about the PC-Engine games I like most, similar to the
Sega Saturn series I started some time back.

PC-Engine on the ODROID

Similar to the SNES or Sega Genesis, the PC-Engine is
not a problem for ARM boards, running perfectly �ne
on any ODROID. Even the few SuperGrafx games run

without issue. If you like, you can even apply shaders
to the system to give it a retro feel.

Thanks to the RetroArch project, with their libretro
cores, these emulators support the .chd format,
which is a compressed format for images. With that,
you can compress CD images for the PC-Engine CD
and save space without losing any performance or
data. I highly recommend this option, as it helps to
keep your collection organized and small.

Because the PC-Engine only used a two button
controller, every controller should be compatible with
the emulator for the system. The two extra buttons
normally on controllers nowadays function as “turbo”
buttons for the PC-Engine games. This is helpful for
the many shooters that exist for the system.

Final thoughts

The PC-Engine is a great but underrated system, in my
opinion. Seeing that it entered the market several
years before the SNES and Genesis while o�ering
similar capabilities, it’s even harder to understand its
lack of popularity in the US (it was quite popular in
Japan). The addition of the CD drive, years before any
competitor did the same, was an impressive move
and should have been even more of a reason to rely
on this console for great titles and impressive
hardware.

Still, I think they made some mistakes here and there.
The original console only had one controller port,
which needed an accessory to be expanded to �ve
ports, which was a bad move in my opinion. The base
console was not great if you were looking to play with
friends, because you needed an add-on and more
controllers. Try to explain that to your mom. This
could have been one reason why it was not popular in
the US.

Thanks to Nintendo’s policy back in the day scaring
third party developers away from to developing for
other platforms, there are only a few well known IPs
for this system which was a barrier in the US market,
as could be seen with the Genesis and other systems
as well. Still, I came to like the PC-Engine a lot and I’ll
probably play quite a few games for the system when
I have the chance. I encourage everyone that likes

SNES, Genesis, and other fourth generation consoles
to try out the PC-Engine for yourself.

Object Tracking Using oCam and ODROID-XU4: An Easy Step-By-
Step Guide To Object Tracking
 July 1, 2018  By DongHyun Yoo  ODROID-XU4, Tutorial

I thought many people would be interested in an easy
to follow guide on how to use the oCam and ODROID-
XU4 for object tracking using OpenCV. This guide will
walk you through the steps on how to create and run
an object tracking application. The ability to track a
speci�c object over multiple frames is a key
technology in applications such as automatic
surveillance or robotics. The following example code
will track an object using color properties from the
image frame. Figure 1 – Example screen of object tracking

Setup

To get started, you will need the following items, all of
which are available from the Hardkernel store:

ODROID-XU4

Memory module, either eMMC or micro SD card,
installed with Ubuntu.

oCam

In addition, you will need to install the following
software packages, which can be installed using the
Synaptic Package Manager application:

gcc

wget

OpenCV

Figure 2 – Typical con�guration of object tracking test
set

To prepare your system, open a terminal window and
enter the following commands.

$ sudo apt­get update && apt­get dist­upgrade

$ sudo reboot

Figure 3 – Command input screen on ODROID

The �rst command will update the package list and
install a newer distribution update if it is available.
The second command will reboot the ODROID. After
updating the package list and distribution, install
OpenCV by entering the following command:

$ sudo apt­get install libopencv­dev

As of March 2nd 2016, the latest version of OpenCV is
2.4.9.

Build

Our example is based on the Camshift (Continuously
Adaptive Mean Shift) algorithm, which is a type of
Meanshift algorithm, and is used to track an object.
More information about these algorithms can be
found at http://bit.ly/1pPduzS. In our code, we will
use the cvCamShift() function from the OpenCV
library in order to provide the camshift algorithm. The
following text gives more information about the
cvCamShift() function:

RotatedRect CamShift(InputArray probImage,

Rect& window, TermCriteria criteria)

Parameters:

probImage – Back projection of the object

histogram. See calcBackProject().

window – Initial search window.

criteria – Stop criteria for the underlying

meanShift().

Returns:

Result rectangle

To download the camshiftdemo source �le, use the
following command, or download the �le from your
web browser by visiting http://bit.ly/21ykrRF:

$ wget

https://raw.githubusercontent.com/

Itseez/opencv/2.4/samples/

cpp/camshiftdemo.cpp

Now we are ready to build camshiftdemo.cpp using
the following command:

$ g++ camshiftdemo.cpp ­o demo

­O2 ­lopencv_core ­lopencv_imgproc

­lopencv_highgui ­lopencv_video

Here are the meanings of the compiler options:

– o demo makes an executable binary �le called
“demo” – O2 speci�es an optimization Level of 2. For
more infomation about g++’s optimization settings,
please refer to http://bit.ly/1OOnopO. – l links an
external library, we used this to link for four libraries:
openvc_core, open_cv_imgproc, opencv_highgui, and
opencv_video.

http://bit.ly/1pPduzS
http://bit.ly/21ykrRF
http://bit.ly/1OOnopO

Running the application

Once the oCam is connected to the ODROID-XU4, we
are ready to start the object tracking demo using the
following command:

$./demo

The CamShift Demo window has three sections: a
control bar panel, a camera image panel, and a
histogram panel. Using the top 2 sliders, Vmax and
Vmin, you can control the color value range. The
bottom slider, Smin, controls the saturation range.
These sliders help limit the image area within which
you track a speci�c object. Please refer to the detailed
explanation about the hue, saturation, and value
model of the color space at http://bit.ly/1L6R7zM.
You can start the object tracking by clicking and
dragging on the part of the camera image you wish to
be tracked with the mouse. Figure 4 shows the
application running while viewing a selected area on a
juice bottle.

Figure 4 – Drag a part in the image window to start the
tracking

The histogram window shows the color components
within the selected image area over the object being
tracked. You can turn on and o� the histogram
window by pressing the “h” key. You can also change
the normal view mode to back to the projection view
by pressing the “b” key. Figures 6 and 7 show the
di�erent view modes. Further details about back
projection can be found on the OpenCV page at
http://bit.ly/1Rqc1MH.

http://bit.ly/1L6R7zM
http://bit.ly/1Rqc1MH

Figure 5 – The target area being tracked and the
histogram of color components

Figure 6 – Back projection view mode

Figure 7 – Control of interested region in which the
target object to be tracked

To clear the selection, press the “c” key. You can start
tracking a new object by selecting another area the
same way as before. Take a look at the video available
at http://bit.ly/21zZllS. It shows a live view of the
object tracking demo covered in this guide using an
oCam and ODROID-XU4.

http://bit.ly/21zZllS

ODROID-GO Game Kit: A Handheld Gaming Console To Celebrate
Hardkernel’s 10th Anniversary
 July 1, 2018  By Justin Lee  Gaming, Development, ODROID-GO

Hardkernel was founded in 2008 and ODROID(Open-
Droid) is 10 years old. When we designed the device,
we thought three basic slogans:

Of the developers, By the developers, For the
developers

Fun and interesting devices for developers

Development board in pocket (to go!)

Figure 1 – The original ODROID development device from
2008

To celebrate ODROID’s 10th anniversary, we present
the ODROID-GO Game Kit. It includes a special
anniversary board and all the additional parts to put
together your own game kit and see the workings
behind such a device. It is not only a fun assembly
project but also an educational tool to learn about all
the hardware and software that goes into building
such a device.

Figure 2 – The shape was very similar to our SHOW2
board, but it had a separate joypad board

The small and cheap Arduino MCU ESP32
performance was very good to run NES, GBC and SMS
emulators amazingly, but the sandwich style was not
good to play games over a couple of hours. The
stacked PCB was inconvenient and cannot hold for a
long time. We couldn’t put it into our back pocket
either. So, we had to abandon the �rst design and
constructed a plastic mould design with more sleek
and comfortable shape from the scratch again.

Figure 3 – A Li-Ion 18650 battery could be installed to the
rear side

Figure 4 – It looked like a sandwich, so the thickness was
too tough

Finally, we arrived at the current design. We call it
ODROID-GO. Now we can put this nice development
board in our back pocket and play with it everywhere.

Figure 5 – The ODROID-GO celebrates Hardkernel’s 10th
Anniversary

Assembly and learning

Have fun building your own handheld game kit while
learning about the internal functions of each part and
its purpose. Learn how each button is attached to a
PCB switch pad, what materials are used, and how to
put it all together to create a button control pad to
play games. Learn how to connect power, speakers
and how to download and install an OS. Learn why
certain pieces are made of particular materials and
why you need certain connectors. Since the device is
clear, all the internal components and all the lights
are visible. Once you have assembled the ODROID-
GO, you can download and install games. Enjoy your
gaming device that you built!

Included parts

A. 1x ODROID-GO board

B. 1x Front enclosure

C. 1x Back enclosure

D. 1x 2.4 inch LCD module

E. 1x 4 button rubber

F. 1x 2 button rubber

G. 2x 2 button rubber

H. 1x 8Ohm 0.5W speaker

I. 1x 10pin male header

J. 10x screws

K. 1x LCD window

L. 1x button set

M. 1x Micro USB cable

N. 1x 1200mAh Li-ion battery

Figure 6 – Parts included in the ODROID-GO kit

Information on assembly and learning can be found
at
https://wiki.odroid.com/odroid_go/go_assembling.

Ready to play

Make a microSD card with your own game collections.
Details can be found at:
https://wiki.odroid.com/odroid_go/emulator/make_
sd_for_importing_roms. The emulator supports
games such as:

Game Boy

Game Boy Color

Game Gear

Nintendo Entertainment System

Sega Master System

https://wiki.odroid.com/odroid_go/go_assembling
https://wiki.odroid.com/odroid_go/emulator/make_sd_for_importing_roms

Figure 7 – ODROID-GO front view

Figure 8 – ODROID-GO back view

Speci�cations

MCU Custom ESP32-WROVER(16MiB Flash Memory)

CPU & RAM 80MHz – 240MHz(Adjustable), 4MB PSRAM

Display 2.4inch 320×240 TFT LCD (SPI interface)

Battery Li-Polymer 3.7V/1200mAh, Up to 10 hours of
continuous game playing time

Speaker 0.5W/ 8Ω Mono

mSD card slot 20Mhz SPI interface

Expansion Port 10Pin port : I2C, GPIO, IRQ at 3.3Volt

Input Buttons Menu, Volume, Select, Start, A, B and
Direction Pad

Micro USB port Battery charging(500mA) and USB-
UART data communication

Size 76mm x 121mm x 16mm(assembled)

Figure 9 – ODROID-GO block diagram

Figure 10 – ODROID-GO PCB showing board details

For a video of the ODROID-GO in action, please visit
https://youtu.be/1kQ79ytZKJA.

Arduino Coding Camp with ODROID-GO

The following Coding Camp articles will be individually
presented over the next few months in ODROID
Magazine, so that beginning programmers can get

https://youtu.be/1kQ79ytZKJA

easily started with development by using the
ODROID-GO as a learning tool.

Day 1: Getting Started with Arduino

Download and install Arduino IDE and ODROID-GO
speci�c libraries and examples.

Day 2: Display “Hello, ODROID-GO” on the LCD

Let us learn how to display a string, change colors
and change font size.

Day 3: Control LED

Let us learn how to control the blue LED on
ODROID-GO front side: tinkering the LED with
simple GPIO on/o� as well as 256-steps brightness
control with PWM.

Day 4: Read the 12 buttons status on the ODROID-
GO

Let us learn how to read the GPIO pin status.

Day 5: Read the ODROID-GO built-in battery
voltage

Let us learn how to access the ADC input to
measure the voltage.

Day 6: Generate sound from ODROID-GO speaker

Let us learn how to use the DAC output as a sound
tone generator.

Day 7: Play your own Tetris game

Let us learn how to make a game with a Tetris game
example code.

Day 8: Add another LCD display

Let us learn how to use I2C interface on the
ODROID-GO IO expansion port.

Day 9: Make a portable handheld weather station

Let us learn how to access various weather data and
share it with your mobile devices via WiFi
connectivity. Note that the Weather Board 2 is
additionally required.

Day 10: Measure the distance with Ultrasonic

Let us learn how to use GPIO output, IRQ input and
system timer with a Ultrasonic distance measuring
module. Note that the distance sensor is
additionally required.

Day 11: Control the LED from your smartphone via
WiFi

Let us build a WiFi AP mode web server to blink a
LED from your web browser remotely.

Day 12: Serial communication over Bluetooth

Let us make a connection bridge to your
smartphone over Bluetooth RFCOMM protocol
stack.

https://wiki.odroid.com/odroid_go/arduino/30_weather_station
https://wiki.odroid.com/odroid_go/arduino/31_ultrasonic_distance_meter
https://wiki.odroid.com/odroid_go/arduino/08_wifi_ap
https://wiki.odroid.com/odroid_go/arduino/07_bluetooth_serial

Mali GPU accelerated Qt5: Running on Ubuntu 18.04
 July 1, 2018  By Justin Lee  ODROID-XU4, Tutorial

Ubuntu 18.04 Bionic comes with Qt 5.9.5 by default.
However, Canonical has built it without considering
the ARM Mali GPU detection, and Qt5 doesn’t work on
Ubuntu 18.04 at all. So, we have to build Qt5 from
source code manually. This is a quick and dirty build
guide, that I tested on the latest ODROID-XU4 Ubuntu
18.04 Bionic OS image.

Installation

$ sudo apt update && sudo apt upgrade && sudo

apt dist­upgrade

$ sudo apt build­dep qt5­default

$ apt source qtbase5­dev

$ cd qtbase­opensource­src­5.9.5+dfsg

Next, change line 86 of the �le
src/platformsupport/eglconvenience/qxlibeglintegrati
on.cpp from:

if (vendor && strstr(vendor, "Vivante")) {

to:

if (vendor && (strstr(vendor, "Vivante") ||

strstr(vendor, "ARM"))) {

There is a second �le should be edited to avoid a
compile error. I wasted several hours �nding this
simple solution at
http://code.qt.io/cgit/qt/qtbase.git/commit/?
h=dev&id=9a640e7bc67b0a1�5c61c63703b669e6f24
521e. Edit the �le
src/plugins/platforms/eglfs/deviceintegration/eglfs_k
ms_egldevice/qeglfskmsegldevice.cpp and update line
77 from:

­EGLNativeDisplayType

QEglFSKmsEglDevice::nativeDisplay() const

to:

void *QEglFSKmsEglDevice::nativeDisplay()

const

Additionally, edit the function body from:

return reinterpret_cast(m_devInt­

>eglDevice());

To:

return m_devInt­>eglDevice();

Create two symlinks for proper OpenGL-ES detection.
This �x will probably be included in the next update:

$ sudo rm /usr/lib/arm­linux­

gnueabihf/libGLESv2.so.2.0.0

$ sudo rm /usr/lib/arm­linux­

gnueabihf/libEGL.so.1.0.0

$ sudo ln ­s /usr/lib/arm­linux­

gnueabihf/mali­egl/libmali.so /usr/lib/arm­

linux­gnueabihf/libGLESv2.so.2.0.0

$ sudo ln ­s /usr/lib/arm­linux­

gnueabihf/mali­egl/libmali.so /usr/lib/arm­

linux­gnueabihf/libEGL.so.1.0.0

Next, build Qt5:

$ sudo dpkg­buildpackage ­b

I met this error when I ran it on a SSH session:

Project ERROR: QtDBus is enabled but session

bus is not available. Please check the

installation.

When I build Qt from the Mate desktop terminal
instead of with remote ssh access, the build had no
issue.

After 2~3 hours of build time, the “debian packaging”
failed due to a missing PGP key. But all the Qt5
libraries with examples were compiled correctly and I
could install them with:

$ sudo make install

Qt-OpenGL example works beautifully now.

Figure 1 – Qt-OpenGl example

We will test the stability and functionality for a couple
of weeks. If there are no critical issues, Hardkernel will
release it o�cially. In the meantime, feel free to post
your idea on the forum thread at
https://forum.odroid.com/viewtopic.php?
f=95&t=31070.

Sample Qt4 applications Open Source Computer
Vision Library (OpenCV) is an open source computer
vision and machine learning software library. Qt5
framework is used with OpenCV for image processing
visualization as well as an interactive user interface.

Figure 2 – Face detection with OpenCV

Calligra is a comprehensive set of 8 applications for
o�ce, graphics, and management needs, including
Word, Presentation, Spreadsheet and much more:

$ sudo apt install calligra­libs

Figure 3 – word program

Figure 4 – spreadsheet program

Calibre is a powerful and easy to use e-book manager:

$ sudo apt install calibre

Figure 5 – Calibre start screen

Stellarium is a free open source planetarium for your
computer. It shows a realistic sky in 3D, just like what
you see with the naked eye, binoculars or a telescope:

$ sudo apt install stellarium

Figure 6 – Stellarium

Krita is a professional and open source painting
program. It is made by artists that want to see
a�ordable art tools for everyone. Unfortunately, Krita
for the ARM platform in Ubuntu 18.04 PPA was
broken, and should be �xed by Canonical soon. It is
available in Ubuntu 16.04 PPA only.

Figure 7 – Krita

For comments, questions, and suggestions, please
visit the original article at
http://com.odroid.com/sigong/blog/blog_list.php?
bid=199.

Player Unknown’s Battlegrounds (PUBG) On The ODROID-XU4:
How To Install and Play With A Keyboard And Mouse
 July 1, 2018  By Justin Lee  Gaming, ODROID-XU4

PlayerUnknown’s Battlegrounds is a multiplayer
online battle royale game developed and published
by PUBG Corporation, a subsidiary of publisher
Bluehole. The last person or team left alive wins the
match. Thanks to the Unreal Engine 4, a mobile
version was released for Android devices on February
9, 2018. This guide shows the con�guration for
Android OS on ODROID-XU4 in detail, including how
to play the game using a keyboard and mouse.
Everything to be the kings of the stage and eat the
chicken.

First, let’s check the hardware compatibility with
PUBG on Android. The company responsible for
PUBG MOBILE has made a smart move using Unreal
Engine 4 (UE4) for all versions of their games, they can
apply the same content to all platforms and ensure
the same play experience on any devices.

The minimum requirements of the games are
imposed by the UE4. This type of game can only be

compiled with a pro�le that supports these features:

Have a GPU with OpenGL support ES 3.1 or higher

System with at least 2 GB of RAM

Android 5.1.1

Minimum free storage 2 GB

Requires mouse or pointer emulator to select menus

The ODROID-XU4 Android 7.1 (LineageOS port) meets
the requirements. The GPU on ODROID-XU4 supports
OpenGL-ES 3.1, 2GB of RAM is stacked on the CPU,
storage is expandable, and the USB ports are good
enough for a mouse.

Once you have successfully installed the Android 7.1
Nougat LineageOS-14.1 (https://goo.gl/fUKur6) onto
your ODROID-XU4, you can easily install the PUBG
MOBILE from Google Play store.

https://goo.gl/fUKur6

Before playing PUBG, you have to tweak the Android
performance mode for smoother game rendering
speed with the ODROID Utility App. Set CPU and
DRAM governor to “Performance” mode, and
overclock the DRAM speed slightly (866Mhz to
933Mhz), then reboot.

If we want to be the kings of the game, certainly the
use of keyboard and mouse in PUBG MOBILE will give
substantial movement control and responsiveness.
The ability to perform strafe (lateral movement), point
with the mouse, and manage all the functions of the
game with the keyboard is a critical advantage,
something that is obvious when opponents with
touch controls are very limited in movements. None
of these methods is o�cially supported by the game,
but we have a very simple alternative.

Install Octopus from Google Play to play with
keyboard and mouse in PUBG MOBILE. The app
already comes with pro�les for PUBG by default. Run
Octopus, then select PUBG MOBILE from the list of
installed games.

Inside the game, Octopus is simple to use. The
Octopus icon appears on the left side which displayed
the advanced options, which can be selected with a
mouse. Within the Octopus settings menu, we can

switch between Keyboard and Gamepad, both of
which already have a template con�gured.

An important point in this app are the settings. The
level of transparency of the keys on the screen can be
lowered when we already have them memorized to
have the cleanest screen, and the POV sensitivity level
is critical to control the character’s rotation speed
which by default is somewhat slow. Do not forget to
allow a root access to the Octopus app in order to
activate the functionality.

Once you launch PUBG game via Octopus app, you
need to check the Graphics settings, which should
match those in Figure 7. The game was quite playable
with the $59 ODROID-XU4 board, even though we
randomly encountered a few short periods of choppy
scenes.

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825

Turning your ODROID Into a Tor Relay
 July 1, 2018  By David Gabriel  ODROID-XU4, Tutorial

Tor is free software that enables access to an open
network useful in anonymous communications. The
name is derived from the acronym of the original
project name, The Onion Router. It protects your
privacy by redirecting internet tra�c through a
network of thousands of relays, and prevents network
surveillance and tra�c analysis utilities from
collecting your data while you navigate. In other
words, this makes you “invisible” so that websites do
not know your location by your IP address or your
Internet Service Provider (ISP). People monitoring
your network will not be able to see the websites or
resources you access.

All communications inside Tor are encrypted. When
data is sent, it is encrypted in the application layer
multiple times, and nested like the layers of an onion.
Data paths include randomly selected relays. Each
relay decrypts a layer of encryption revealing only the
next relay and passes the remaining information to it.
The process continues until the �nal relay decrypts

the original data and sends it to the destination
without revealing the source IP address.

The disadvantage of using Tor is that your e�ective
Internet connectivity will become slower than normal,
due to all the encryption and decryption steps and
passage through multiple relays. The information
transfer speed would be perceivably lower.

Installation

First, ensure the system is updated using the
following commands:

$ sudo apt­get update

$ sudo apt­get upgrade

Then, install the Tor application and its dependencies
using:

$ sudo apt­get install tor

Optionally, you can also install Arm (short-form for:
anonymizing relay monitor), which is an application

for monitoring and con�guring Tor. It works much like
the linux utility called top, and can be installed with
the following command:

$ sudo apt­get install tor­arm

Con�guration

Tor can be customized by modifying the Tor
con�guration �le. You can use your favourite text-
editor to edit the /etc/tor/torrc �le and add the
commented (using #) options listed below:

Log notice file /var/log/tor/notices.log # Log

file destination

RunAsDaemon 1 # Start process in background as

a daemon

ORPort 9001 # Port to be used by incoming

connections

DirPort 9030 # Port to be used by directory

connections

ExitPolicy reject *:* # Implies that your

relay will be used for

relaying traffic inside the Tor network, but

not for connections to external websites or

other services

Nickname odroid­tor­relay # Can be anything

you like, so people

don't have to refer to your relay by key

RelayBandwidthRate 100 KB # Throttle traffic

to 100KB/s (800Kbps)

RelayBandwidthBurst 200 KB # But allow bursts

up to 200KB/s (1600Kbps)

If you installed the optional Arm application, you need
to include the following con�guration lines in the
above mentioned �le:

ControlPort 9051 # Port to be used by

controller applications.

CookieAuthentication 1 # Authentication method

to be used by the

controller application

DisableDebuggerAttachment 0 # Required by Arm

application to be able to use

commands like netstat to monitor the network

traffic

Then restart Tor for the updated con�guration to take
e�ect, using the command:

$ sudo service tor restart

If all goes �ne, you should see an entry in the
/varlog/tor/log like so:

Jan 15 11:38:53.000 [notice] Tor has

successfully opened a circuit. Looks like

client functionality is working.

Note that if your network is behind a �rewall, you will
have to con�gure it to allow incoming requests on
ports, 9030 (for directory service) and 9001 (for relay
operation). You may have to refer to the User Guide
for your particular �rewall, to con�gure this option. If
you have installed Arm, you can start it by using the
command:

$ sudo arm

While there are many options you can con�gure, the
most interesting one is related to the graphics
generated for you to monitor all tra�c going through
you relay. Check the Arm application help option, for
more information on how leverage the Arm
application.

By default, Tor also supports the Socket Secure
protocol (SOCKS), over the default port 9050. You can
setup your browser to be a Tor client and redirect all
connections through Tor relays protecting your
privacy and maintain anonymity. In Firefox, for
example, you can go to the Preferences > Advanced >
Network > Settings > Change option to manual setup
the proxy con�guration and add 127.0.0.1 on port
9050 to the SOCKS line and enter OK to con�rm.

To check your con�guration, visit the Tor project
website http://bit.ly/1oh1f82 using a browser. You will
notice that the public IP appearing on this page will be
di�erent from your real IP. This is the exit node of
your request, ensuring that you cannot be traced
back for location or personal information. Note that
data is encrypted only while it goes through the Tor
network. Data will be sent as-is, so anything that was
not encrypted from the beginning will continue to
remain so, after leaving the exit node.

If you want to disable this SOCKS feature and keep
your ODROID only as a relay, add the following line to
/etc/tor/torrc �le and restart the Tor service:

SocksPort 0 # Disable torsocks

The Tor client can also be used on other operating
systems. Con�guration may di�er slightly depending
on the OS and browser, but the above listed options is
a good starting point.

References http://bit.ly/1cqlVa3 http://bit.ly/1PvVIqy
http://bit.ly/1U9oXqa http://bit.ly/1U9pgkM
http://bit.ly/19QYR47 http://bit.ly/1MOsQPE
http://bit.ly/1nBUETC

Recalbox on the ODROID-XU4: Getting Started
 July 1, 2018  By Moe Long  Gaming, ODROID-XU4

The ODROID-XU4 is a single-board computer (SBC)
that rivals the Raspberry Pi. Its speci�cations boast
bee�er performance capabilities than the Pi with an
octa-core CPU, twice the RAM, and an eMMC module.
Like the Raspberry Pi, the ODROID-XU4 runs a bevy of
operating systems including RetroPie, Ubuntu MATE,
and RecalBox. Let’s learn how to get started with
Recalbox on the ODROID-XU4 for retro gaming!

What is Recalbox?

Recalbox is a Linux-based retro gaming operating
system (OS), similar to RetroPie. It’s based on
RetroArch and uses the EmulationStation front-end.
However, Recalbox is more targeted to beginners
than RetroPie, because Recalbox o�ers simpli�ed
settings, such as fewer shaders and less
customization options. On the ODROID-XU4, Recalbox
delivers optimal performance and more demanding
titles, although you’ll �nd there’s no Advance MAME,
Amiga 1200, or Amiga 600 support. However, when
running Recalbox on ODROID-XU4 boards, you’ll see

3DO compatibility, a system notably absent on the
Raspberry Pi.

When comparing RetroPie versus Recalbox versus
Lakka, Recalbox is easier to set up than RetroPie and
Lakka, yet not as comprehensive in its con�guration
options.

Pros:

Easy to set up

Great system compatibility on ODROID-XU4

Stable

Includes Kodi media center for home theatre PC
(HTPC) use

Cons:

Fewer customization options

May leave power users wanting

Materials

Installing Recalbox on the ODROID-XU4 is fairly
simple. You only need the ODROID-XU4 board, a
compatible 5V/4A power supply (PSU), eMMC module
or microSD card running the ODROID-XU4 Recalbox
image, and an optional but recommended case.

ODROID-XU4 board

5V/4A Power supply unit

Case

Memory card

Extraction program (i.e. 7Zip)

Image mounting program (i.e. Etcher)

The ODROID-XU4 is available standalone for $60USD
from Hardkernel
(https://www.hardkernel.com/main/products/prdt_i
nfo.php?g_code=G143452239825) Add on a few
accessories such as a power supply, microSD card,
and an ODROID-XU4 case, and the price ends up
around $90USD.

But for that price, you’ll gain a single-board computer
with an octa-core processor and 2GB of RAM. In real-
world tests, the ODROID-XU4 bested the Raspberry Pi
3 B+ when playing system intensive ROMs such as
PlayStation Portable (PSP), Nintendo 64 (N64), and
Sega Dreamcast games.

Total cost: $62 (board only), $90 (board with
accessories)

Installation

First, head over to the Recalbox website and
download the latest release for the ODROID-XU4.
From the list of downloads, snag the ODROID-XU4
image.

Since it’s an img.xz �le, you’ll need to use a program
like 7Zip to extract the image �le. When you’ve
uncompressed the img.xz, you’ll be left with an image
�le.

Next, you’ll need to mount the image �le to bootable
media such as an eMMC module or microSD card. For
my Recalbox on ODROID-XU4 install, I used a microSD
card. Use a program such as Etcher to mount the
image on your installation medium.

After you’ve burned the ODROID-XU4 Recalbox image
to a microSD card or eMMC module, pop it into the
correct slot on your ODROID-XU4 single-board
computer and start it up. It should boot straight into
the Recalbox EmulationStation front end.

Post-installation setup

When you’ve successfully booted into Recalbox on the
ODROID-XU4, you’re ready to begin playing retro
games. However, it’s best to perform a bit of post-
installation con�guration. While you can store your
game ROMs on your microSD card or eMMC module,
you may wish to store them on an external drive such
as a USB stick. I store my ROMs on a 256GB �ash
drive. To accomplish this, open the main menu. From
there, navigate to System Settings > Storage Device.
Then, you can pick from Internal, a speci�c drive, or
Any External.

With an external drive plugged in, select that drive,
which will appear under the storage device menu as
its size, such as 64GB or 128GB. Then, shut down your
system, remove the USB stick, and plug it into a PC.
You’ll �nd a Recalbox folder with folders for your BIOs
and ROMs. This way, if your Recalbox �le system gets
corrupted, you lose your microSD card, or simply
want to perform a fresh installation, your ROMs and
BIO are preserved.

Performance gains

Just like the ODROID-XU4 RetroPie release, you’ll
notice far better performance from system intensive
titles like PSP, N64, and Dreamcast ROMs. Out of the
box, PSP games run fairly well on the ODROID-XU4
running Recalbox. While the likes of God of War:
Chains of Olympus are tough to emulate, it is
somewhat playable albeit with a lower framerate.
Games such as Burnout Legends play well, though the

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825

Mali GPU on the ODROID-XU4 does occasionally
cause a few video glitches which don’t hamper
gameplay.

Dreamcast games run at full speed. Like with the
PPSSPP emulator, you’ll occasionally notice a few very
minor video glitches such as strange lines under the
Dreamcast Reicast emulator. N64 titles on the
ODROID-XU4 Recalbox release run far better than on
the Raspberry Pi 3. Despite some games refusing to
run at full speed, including Conker’s Bad Fur Day,
performance trounces the Pi, and games such as one
of my personal favorites, Goldeneye 64, are very
playable. Ultimately, the ODROID-XU4 does sport
much-improved performance over a Raspberry Pi 3
single-board computer.

Final thoughts

Overall, Recalbox on the ODROID-XU4 is a fantastic
option for retro gaming on the ODROID-XU4. Because
of its octa-core processor and 2GB of RAM, twice that
of the Raspberry Pi 3, the ODROID-XU4 features

enhanced support for more demanding titles like PSP,
N64, and Dreamcast games. Additionally, the
Recalbox for ODROID-XU4 release provides 3D
support, which is not included on the Raspberry Pi 3
Recalbox image.

The ODROID-XU4 Recalbox image is easy so set up.
Simply mount the image to a microSD card or eMMC
module, pop it into the ODROID-XU4, and boot it up.
Though RetroPie is available on the ODROID-XU4,
you’ll have to slog through installing it in an operating
system such as Ubuntu. Alternately, there is a
standalone RetroPie for ODROID-XU4 image but it’s
created and maintained by ODROID Arena, not the
o�cial RetroPie project. Recalbox o�ers an o�cial
ODROID-XU4 image, which is a major plus. Power
users may prefer RetroPie for ODROID-XU4 since it
includes an array of custom shaders and more
con�guration options than Recalbox. Nevertheless,
I’m thrilled with the ease of use from installation to
setup and gameplay that Recalbox on the ODROID-
XU4 provides.

Liquid Cooling Part 1 – Cluster
 July 1, 2018  By Uli Abromeit  ODROID-XU4, Tinkering

After �nding some small 15x15x5mm heatsinks, I
decided to create an ODROID cluster using water
cooling in order to reduce its temperature and noise. I
started with a single ODROID-XU4 to see if the small
heatsinks were powerful enough to distribute heat
away from the board. After the initial tests, I
connected the cooling system to the rest of the
cluster, as shown in the images.

Cooling equipment

Alphacool DC-LT 3600 Ceramic – 12V DC, Alphacool DC-
LT Plexi top, and Alphacool reservoir
(http://bit.ly/1vDYvJJ)

Alphacool MCX ram copper edition
(http://bit.ly/1C3t8Ml)

Alphacool MCX 5x divider (http://bit.ly/1qYh1vr)

Alphacool NeXxus Monsta 140 Radiator with NB-
Blacksilent Pro PK2 (http://bit.ly/1Fi5yrA)

120mm radiator

8V pump with reservoir

Adjustable DC-DC step-up convertor to control the
speed of the fan and pump

Figure 1 – The setup is not overly complicated if you
want to go liquid cooling.

Cluster

10 x ODROID-U3

1 x ODROID-XU

http://bit.ly/1vDYvJJ
http://bit.ly/1C3t8Ml
http://bit.ly/1qYh1vr
http://bit.ly/1Fi5yrA

1 x ODROID-XU4

2 x 5V 20A PSU

24 Port NW-Switch

2 x 8 Port-HDMI-Switch

Figure 2 – Here we see the Liquid cooled ODROIDS on a
sweet setup as described above.

After �lling the system, I had some problems with a
leaky divider, but now it all runs �ne. Using thermal
paste instead of a thermal pad reduced the
temperature by 5°C, and required custom �ttings for
the heatsink.

200TB GlusterFS Server: Using The ODROID-HC2 For Massively
Distributed Applications
 July 1, 2018  By BaxterPad  Linux, Tinkering, ODROID-HC2

Over the years, I have upgraded my home storage
several times. Like many, I started with a consumer-
grade NAS. My �rst was a Netgear ReadyNAS, then
several QNAP devices. About a two years ago, I got
tired of the limited CPU and memory of QNAP and
devices like it, so I built my own using a Supermicro
XEON D, Proxmox, and FreeNAS. It was great, but
adding more drives was a pain. Migrating between
ZRAID levels was basically impossible without lots of
extra disks.

The �asco that was FreeNAS 10 was the �nal straw. I
wanted to be able to add disks in smaller quantities
and I wanted better partial failure modes, kind of like
unRAID, while remaining able to scale to as many
disks as I wanted. I also wanted to avoid any single
points of failure, such as a home bus adaptor,
motherboard, or power supply.

I had been experimenting with GlusterFS and Ceph
using roughly forty small virtual machines (VM) to

simulate various con�gurations and failure modes
such as power loss, failed disk, corrupt �les, and so
forth. In the end, GlusterFS was the best at protecting
my data because even if GlusterFS was a complete
loss, my data was mostly recoverable due to being
stored on a plain ext4 �lesystem on my nodes. Ceph
did a great job too, but it was rather brittle (though
recoverable) and di�cult to con�gure.

Enter the ODROID-HC2. With 8 cores, 2 GB of RAM,
Gbit ethernet, and a SATA port it o�ers a great base
for massively distributed applications. I grabbed four
ODROIDs and started retesting GlusterFS. After
proving out my idea, I ordered another 16 nodes and
got to work migrating my existing array.

Figure 1 – This is a prime example of a cluster of
ODROIDs handling real world data applications.

In a speed test, I can sustain writes at 8 GBPS and
reads at 15 GBPS over the network when operations
are su�ciently distributed over the �lesystem. Single
�le reads are capped at the performance of 1 node,
so ~910 Mbit read/write.

In terms of power consumption, with moderate CPU
load and a high disk load (rebalancing the array),
running a pfSense box, 3 switches, 2 Uni� Access
Points, a Verizon Fios modem, and several VMs on the
XEON-D host, the entire setup uses about 250 watts.
Where I live, in New Jersey, that works out to about
$350 a year in electricity. I’m writing this article
because I couldn’t �nd much information about using
the ODROID-HC2 at any meaningful scale.

Parts list

ODROID-HC2
https://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G151505170472

32GB MicroSD card. You can get by with just 8GB but
the savings are negligible.
https://www.amazon.com/gp/product/B06XWN9Q99/

Slim cat6 ethernet cables
https://www.amazon.com/gp/product/B00BIPI9XQ/

200CFM 12V 120mm (5”) fan
https://www.amazon.com/gp/product/B07C6HR3PP/

12V PWM speed controller, to throttle the fan.
https://www.amazon.com/gp/product/B00RXKNT5S/

5.5mm x 2.1mm (0.21” x 0.08”) barrel connectors for
powering the ODROIDs.
https://www.amazon.com/gp/product/B01N38H40P/

12V 30A power supply. Can power 12 ODROIDs with
3.5” HDD without staggered spin up.
https://www.amazon.com/gp/product/B00D7CWSCG/

24 power gigabit managed switch from Uni�
https://www.amazon.com/gp/product/B01LZBLO0U/

The crazy thing is that there isn’t much con�guration
for GlusterFS. That’s what I love about it. It takes
literally three commands to get GlusterFS up and
running after you get the OS installed and disks
formatted. I’ll probably post a write up on my github
at some point in the next few weeks. First, I want to
test out Presto (https://prestodb.io/), a distributed
SQL engine, on these puppies before doing the write
up.

$ sudo apt­get install glusterfs­server

glusterfs­client

$ sudo gluster peer probe gfs01.localdomain

... gfs20.localdomain

$ sudo gluster volume create gvol0 replicate 2

transport tcp

gfs01.localdomain:/mnt/gfs/brick/gvol1 ...

gfs20.localdomain:/mnt/gfs/brick/gvol1

$ sudo cluster volume start gvol0

For comments, questions, and suggestions, please
visit the original article at
https://www.reddit.com/r/DataHoarder/comments/
8ocjxz/200tb_glusterfs_odroid_hc2_build/.

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G151505170472
https://www.amazon.com/gp/product/B06XWN9Q99/
https://www.amazon.com/gp/product/B00BIPI9XQ/
https://www.amazon.com/gp/product/B07C6HR3PP/
https://www.amazon.com/gp/product/B00RXKNT5S/
https://www.amazon.com/gp/product/B01N38H40P/
https://www.amazon.com/gp/product/B00D7CWSCG/
https://www.amazon.com/gp/product/B01LZBLO0U/
https://prestodb.io/
https://www.reddit.com/r/DataHoarder/comments/8ocjxz/200tb_glusterfs_odroid_hc2_build/

Home Assistant: A DIY Smart Light Project
 July 1, 2018  By Adrian Popa  ODROID-C1+, ODROID-C2, ODROID-XU4, Tutorial, ODROID-N1

Ever since I started working with Home Assistant and
automating various things around the house I wanted
to have a way to control the lights. I looked at smart
light bulbs, like Philips Hue, but they are expensive
(about 12$/bulb – https://goo.gl/xiAqEe). Also, most
solutions use proprietary protocols or cloud services
which may leak personal data, or might stop working
in the future leaving you with expensive
paperweights. By accident, I heard about Sono� wi�
switches built by Itead
(http://sono�.itead.cc/en/products/sono�/sono�-
basic). They combine an ESP8266 wi�-enabled
microcontroller and a relay and let you turn things on
and o� from a distance. Apart from a low price (~5$ –
https://goo.gl/WP31Ny), the microcontroller also
exposes a few GPIOs and can be �ashed with open
source software to customize it.

So, the plan was to get several Sono� Basic switches,
remove the case, �ash Tasmota �rmware
(https://github.com/arendst/Sono�-Tasmota/wiki)

and �nd a way to interface it with my existing light
switches. Itead also makes a wi� light switch I could
have used
(http://sono�.itead.cc/en/products/residential/sono
�-touch), but is more expensive and I wanted to keep
my existing switches. Thankfully I found this youtube
guide with an idea on how to convert a basic switch in
a light switch: https://www.youtube.com/watch?
v=ab472a40-co. You basically need to power the
Sono�, connect its output to the light bulb/light circuit
and connect the light switch to GPIO14 and GND
pads, and you are in business.

Flashing Tasmota

First thing you need to do is to open the Sono� switch
case (it is held in place by a few plastic clips) and
identify the GPIO pads (see Figure 1). There you have
a 3.3V square pad, UART RX and TX, the ground and
the last one is GPIO14. In order to �ash a new
�rmware you need to power the Sono�, connect the
UART to a device running Arduino and hold the

https://goo.gl/xiAqEe
http://sonoff.itead.cc/en/products/sonoff/sonoff-basic
https://goo.gl/WP31Ny
https://github.com/arendst/Sonoff-Tasmota/wiki
http://sonoff.itead.cc/en/products/residential/sonoff-touch
https://www.youtube.com/watch?v=ab472a40-co

button (GPIO0) while it boots to put it into
programming mode. In order to do this, you can
either solder a 5 pin header to the board or simply
position the header so that it touches the pads while
you �ash (this is what I did). Note that during this
operation the Sono� will not be connected to the
mains and will draw power from the UART cable!
(details: https://goo.gl/5TUfz8). If you do not have a
suitable USB-UART adapter around, you can use the
UART pins from the 40 pin header on an ODROID-
C1/C2 directly with jumper cables (see �gure 1). Make
sure to connect RX and TX crossed over so that RX on
Odroid is connected to TX on Sono�. Also, power
must come from the 3.3V pin, not the 5V pin.

Figure 1 – GPIO wiring diagram

Software-wise you will need to download and install
Arduino IDE (I used Ver. 1.8.5) and some support
libraries, which come with the armhf Java program
(https://github.com/arendst/Sono�-
Tasmota/wiki/Arduino-IDE). You can download the
IDE for armhf from this link: https://goo.gl/ZFYj8Z.

If you are using the ODROID-C2/N1, the arduino
program will fail to run because it cannot �nd relevant
32bit libraries. You will need to install 32bit support in
your ubuntu and then run the same steps as for
ODROID-C1:

$ sudo dpkg ­­add­architecture armhf

$ sudo apt­get update

$ sudo apt­get install libc6:armhf libx11­

6:armhf libxext6:armhf

libxrender1:armhf libxtst6:armhf libxi6:armhf

If you are using ODROID-XU4/N1, the steps are the
same as above, but you will need to use a shifter
shield to address the voltage di�erence between the
ODROID and the ESP chip. For the C1 follow these
steps:

$ unxz arduino­1.8.5­linuxarm.tar.xz

$ tar xvf arduino­1.8.5­linuxarm.tar

$ cd arduino­1.8.5

$./arduino

Allow it to start, then open Arduino IDE and select File
-> Preferences and add the following text for �eld
Additional Boards Manager URLs:
https://goo.gl/EVq7nf and select OK. Next, open Tools
-> Boards … -> Boards Manager … and scroll down
and click on esp8266 by ESP8266 Community. Click
the Install button to download and install the latest
ESP8266 board software. Select Close. You can now
close Arduino. In the following step you will download
and install Tasmota �rmware. You can get the latest
version from here:
https://github.com/arendst/Sono�-
Tasmota/releases

$ cd ..

$ wget https://goo.gl/KQwDvr

$ tar zxvf v5.13.1.tar.gz

$ cp ­ar Sonoff­Tasmota­5.13.1/lib/* arduino­

1.8.5/libraries/

$ cp ­ar Sonoff­Tasmota­5.13.1/sonoff/

arduino­1.8.5/

$ cd arduino­1.8.5

$./arduino

You can now open the Tasmota project by selecting
File -> Open and locating and loading sono�.ino from
the sono� directory under arduino-1.8.5. In the list of
open tabs locate user_con�g.h, where you need to
change the following settings. Note that changing
settings here is not mandatory – most of them can be
con�gured later through the web interface or MQTT,
but once you reset to hardware defaults, these will be
those defaults:

Set static IP address if desired (WIFI_IP_ADDRESS,
WIFI_GATEWAY, WIFI_SUBNETMASK, WIFI_DNS)

Set SSID/Password for two access points (STA_SSID1,
STA_PASS1, etc)

Set con�guration tool to WIFI_RETRY
(WIFI_CONFIG_TOOL), so that if it cannot connect to
WiFi it will keep trying instead of becoming an access
point. Otherwise some attacker could knock it o� the
WiFi network with a deauth attack (see
https://goo.gl/76kYPs) and force it to become an
access point and re-con�gure it.

https://goo.gl/5TUfz8
https://github.com/arendst/Sonoff-Tasmota/wiki/Arduino-IDE
https://goo.gl/ZFYj8Z
https://goo.gl/EVq7nf
https://github.com/arendst/Sonoff-Tasmota/releases
https://goo.gl/76kYPs

Enable syslog if you have one (it helps debugging
issues, though local logs will be preserved on the
device, accessible through the web interface until
reboot)

Disable (comment with //) MQTT TLS (//#de�ne
USE_MQTT_TLS)

Set MQTT broker IP, user, password (MQTT_HOST,
MQTT_USER, MQTT_PASS)

Disable MQTT Retain (caused me some headaches)
(MQTT_BUTTON_RETAIN, MQTT_POWER_RETAIN,
MQTT_SWITCH_RETAIN)

De�ne a topic for MQTT messages (MQTT_TOPIC).
Something like kids_light, or bedroom_light for
example

Disable Domoticz if not needed (//#de�ne
USE_DOMOTICZ)

Set up a username and password for the web interface
for a bit of protection (WEB_USERNAME,
WEB_PASSWORD)

Disable mDNS discovery (//#de�ne USE_DISCOVERY)

Set up NTP servers (NTP_SERVER1, etc)

Set up timezone (APP_TIMEZONE)

Disable I2C if not used (//#de�ne USE_I2C)

Once your con�guration is complete, you need to
de�ne �ashing mode by making the changes de�ned
here: https://goo.gl/NmnZBE in Arduino IDE. You will
need to select /dev/ttyS2 as a port with 115200 baud-
rate.

Figure 2 – user_con�g.h excerpt and �ash settings

When done, insert the pin header in the Sono� while
holding the power button pressed and release the
button when it has a steady connection. Start compile
and �ash (the second button with an arrow symbol in
Arduino IDE) and wait for it to complete. If �ashing

fails, try again to put the Sono� in programming
mode and try again. After �ashing is done, power up
the Sono� and it should connect to your desired WiFi.
You can power it through the makeshift UART cable,
or from the mains – but make sure to reassemble it if
using the mains so that you do not risk getting
shocked. You can �nd out its IP address (either static,
or from DHCP) by consulting your router’s client list.
You can then connect via HTTP to its management
address to con�gure it further.

Figure 3 – Web management

Tasmota con�guration

Tasmota �rmware is mostly built with MQTT in mind.
MQTT is a machine to machine messaging protocol
that we have discussed in a previous article
(https://goo.gl/9ggqHJ). It allows integration of
multiple entities with a message broker (we are using
mosquitto), and also is well supported by Home
Assistant. Tasmota �rmware has many parameters
you can con�gure via MQTT or REST API, (complete list
here: https://github.com/arendst/Sono�-
Tasmota/wiki/Commands), but the most important
ones can be con�gured via the web interface.

We will be con�guring the following:

https://goo.gl/9ggqHJ
https://github.com/arendst/Sonoff-Tasmota/wiki/Commands

GPIO14 will have the same role as Switch1. To do this,
you can navigate to the web interface, inside
Con�guration -> Con�gure Module: Module Type: 01
Sono� basic GPIO14 sensor: 09 Switch1

If you have not con�gured MQTT in user_con�g.h yet,
you can do so now by going into Con�guration ->
Con�gure MQTT and add the broker address and
username/password.

If you are using passwords with MQTT, you will need
to add the new account in mosquitto:

$ sudo mosquitto_passwd /etc/mosquitto/passwd

sonoffuser

If you wait a second the Sono� should connect to the
MQTT broker and you should be able to control it
from the command line. Assuming you are using a
topic of bedroom_light you can turn on the switch
with:

$ mosquitto_pub ­p 1883 ­u sonoffuser ­P

sonoffpassword

cmnd/bedroom_light/POWER ­m "1"

You can query the device for its settings or
information through MQTT, but the replies will be
sent to the syslog server so you need to keep an eye
on it when issuing MQTT commands. To get the
switch state run:

$ mosquitto_pub ­p 1883 ­u sonoffuser ­P

sonoffpassword cmnd/bedroom_light/POWER ­m ""

The corresponding syslog server output would look
like so:

May 25 17:43:42 sonoff_bedroom ESP­MQT:

stat/bedroom_light/RESULT = {"POWER":"ON"}

May 25 17:43:42 sonoff_bedroom ESP­MQT:

stat/bedroom_light/POWER = ON

You can now play with setting parameters which are
not available through the web interface, such as
PowerOnState (https://goo.gl/hJqRTd):

$ mosquitto_pub ­p 1883 ­u sonoffuser ­P

sonoffpassword

cmnd/bedroom_light/PowerOnState ­m "3"

One extra thing you can con�gure is the ESP power
management. It is disabled by default, but you can

instruct it to go into 100ms sleeps to reduce power
(and heat) with this command:

$ mosquitto_pub ­p 1883 ­u sonoffuser ­P

sonoffpassword

cmnd/bedroom_light/Sleep ­m "100"

In order to integrate the Sono� as a light switch into
Home Assistant you can add the following to
con�guration.yaml and restart:

light:

­ platform: mqtt

name: "Bedroom Light"

state_topic: "stat/bedroom_light/RESULT"

value_template: '{{ value_json["POWER"] }}'

command_topic: "cmnd/bedroom_light/POWER"

availability_topic: "tele/bedroom_light/LWT"

qos: 1

payload_on: "ON"

payload_off: "OFF"

payload_available: "Online"

payload_not_available: "Offline"

retain: false

…

group:

lights:

name: Lights

view: yes

icon: mdi:lightbulb­on­outline

entities:

­ light.bedroom_light

Make sure the code above uses the correct topics that
you set for your device. You can restart Home
Assistant and test that everything works as expected
(you should be able to toggle the switch from Home
Assistant, Tasmota’s web interface and the button on
the Sono�).

The hardware build

In order to proceed and connect the light switch to
GPIO14 we need to do some soldering and add a low-
pass �lter along with connector cables to GPIO14 and
GND. The reason why we need a low-pass �lter is
because EM radiation will be picked up by the wires
used (they act like an antenna) and may cause the
switch to randomly toggle at times. To mitigate this
you can use a low-pass �lter so that only DC is
allowed to pass and also you can twist the wires so

https://goo.gl/hJqRTd

that the interference cancels out
(http://goo.gl/7zEPc9).

You can build a low-pass �lter by following this guide
(https://www.youtube.com/watch?v=aq8_os6g13s)
with a 10k resistor and a 33pF capacitor. Exact values
are not that important – you can use whatever you
have.

Figure 4 – Schematic

Make sure the soldering is solid and use heat shrink
tubing to isolate your components. When you are
done test the unit taking care not to touch the
exposed AC traces. You should also run some electric
tape over it because we will not be using the plastic
cover.

Figure 5 – Assembled unit

Attaching Sono� to the lights

This step may be the trickiest one, because light
wiring may di�er from place to place and you may not
have everything you need in one place. You may need
to consult your electrician, the electrical code and
local legislation before you proceed. Most
importantly, make sure to turn o� the breakers for
lights and sockets before dismantling the light switch
or you will risk death. You will also need a test light

(https://en.m.wikipedia.org/wiki/Test_light) to
identify the live wires.

Let us brie�y analyze what wires run through your
walls to power sockets and lights. You will have a “hot”
wire (also known as “live”) which has a voltage
potential of 110/220V depending on where you live, a
“neutral” wire which is used to complete the circuit
and o�er a path for the current to take (this is usually
not energised) and a “ground” wire used in some
electrical sockets as an emergency backup path for
the neutral wire. In order to power the Sono� we
need a live and a neutral inside the light switch
enclosure.

Unfortunately, not all wiring standards provide the
neutral wire, so we might need to make one. In my
case (and I suspect it is common for most Europe) the
light switch has a live input that goes to two
mechanical switches and that can continue with two
independent live output wires that go up through the
wall to my light �xture.

Figure 6 – Light diagram

There is no neutral near the light switch. The neutral
goes to the light �xture itself and closes the circuit
through the lightbulb. Well, that will not do. We need
to modify the circuit and suspend one live output and
transform it into a neutral with a bit of wiring, mostly
because I did not want to run another wire through
the wall (di�cult without skill/special tools).

The �rst thing you need to do is cut power to the
breakers and remove your light switch from the wall
to have a look at the wires. It might be a good idea to
test and see if the Sono� PCB �ts inside the light
switch electrical box (it will not �t in most Eastern
European round electrical boxes). If it does not �t you
need to be creative and �nd a place where to put it.

http://goo.gl/7zEPc9
https://www.youtube.com/watch?v=aq8_os6g13s
https://en.m.wikipedia.org/wiki/Test_light

[Figure 7 – Light box test and default wiring]

In my lightbox, as you can see in �gure 7, I had only
one live input going to both switches (red) and two
live outputs going to the lightbulbs (black). You should
take your time and identify each wire with a test light
(when the breaker is on) and label the wires (with the
breaker o�, naturally).

My plan is to convert a live output wire into a neutral
input by disconnecting the output wire from the bulb
and connecting it to neutral. By doing this I will not be
able to use a light �xture with two independent lights,
but I have a simple light �xture anyway, so it is no
problem. There are two places where you can do this
– in the intermediary electrical box (which should be
close by, near the ceiling), or at the light �xture. Both
wiring diagrams are presented in �gure 8 and I will
describe the steps needed for each variant.

Figure 8a – Wiring options – rewire at the junction box

Figure 8b – Wiring options – rewire at the light �xture

For the 8A option you need to have a look in the
connection electrical box. This box should contain all
electrical circuits that go to a room – lights and
sockets. When you have a look inside (with the
breaker o�) you will probably see a jumbled mess of
wires, like in �gure 9. You need to identify (based on
color and position) which wires go to your light switch
and which go to the light bulb. You also need to chose
which live output wire you want to convert to neutral
and identify the top end of that wire in the electrical
box. You can do this either by pulling on the wire and
observing which wire moves, or by measuring the
resistance of the wire ends (prolonged if needed) with
an ohmmeter (resistance should be close to zero).
Make sure to label all the wires you identify for future
reference, in case you need to undo this mess later
on.

Figure 9 – Electrical box – before

Next you need to identify a neutral wire in the
electrical box. You should �nd two bigger bundles of
wires with 3 or more wires connected together. One
bundle connects all live wires (the one coming from

the breaker with the one going to the light switch and
the ones going to the sockets) and the other bundle
will hold all the neutrals. You can �nd which is wich by
identifying which is the hot wire going to your light
switch, or by measuring them with a tester.

Now (with the breakers o�) you need to disconnect
the live output from the wire going to the bulb and
connect it with the other neutrals. The remaining wire
will be unconnected (but it is still a good idea to label
and isolate its end).

Figure 10 – Electrical box – after

At this point you can connect the sono� with live in
and neutral in its input and live out in the output (with
the breakers still o�) and then test your setup.

Figure 11 – Live test

For the 8B option you do not need to make changes
in the electrical box. I had to do this because the
electrical box in my bedroom is not easily accessible.
In this case we bring the neutral from the light �xture
back to the light switch by connecting the neutral wire
available in the light �xture directly to an old “live in”
wire which we will call neutral from now on. Take
great care with identifying which is the correct wire,
otherwise if you directly connect neutral to the real
live wire, you will create a short circuit and your fuse
will blow/melt.

Like in the previous example you will need to connect
live in and neutral in to the Sono�’s input and live out
to the output (with the breakers o�). Connect the
lightswitch to GPIO14 and GND as well. After the tests
are successful you will need to gently seat the sono�
inside the light switch electrical box and attach the
light switch back to the wall and you are done.

Fig 12 – Final assembly

Automations

You should now have working light switches in Home
Assistant that you can also toggle with the old
mechanical switch, but it is not very impressive for the
amount of work put in. Why did I want “smart” lights
in the �rst place? Let us see.

Turn o� the light after 30 minutes

Sometimes you might forget a light turned on when
you leave for work. With network-enabled lights you
can turn it o� yourself, but that is not automation. In
my case, the kids like to fall asleep with the lights on
(despite the night light) so we always had to turn it o�
once they were asleep. If they awoke in the middle of
the night they would still turn it on and go back to
sleep. So, an elegant way to �x this is to create an
automation that between a certain time interval
(23:00-17:00) turns o� the lights after they have been

on for 30 minutes. You need to edit automations.yaml
and add the following two automations:

­ action:

­ data:

entity_id: light.kids_light

service: homeassistant.turn_off

alias: Turn off Kids Light after 30 min

inactivity

condition:

­ after: '23:00'

before: '17:30'

condition: time

id: '1525335992266'

trigger:

­ entity_id: light.kids_light

for:

minutes: 30

platform: state

to: 'on'

­ action:

­ data:

entity_id: light.kids_light

service: homeassistant.turn_off

alias: Turn off Kids Light at 23:00

condition: []

id: '1525343566208'

trigger:

­ at: '23:00'

platform: time

The �rst automation listens for state changes that
happen when the light turns on and if it is in the
required time interval waits for 30 minutes to pass
before turning it o�. The second automation handles
the case where light is turned on at 22:00 let us say
and the previous automation will not have e�ect (the
state change needs to happen during 23:00-17:00) –
so it is lights out at 23:00. You can improve this
automation and have it check if somebody is home/in
the room, or operate only when the sun is up, etc.

Disable the hardware switch

If you had small children you would have noticed that
there is a period in their development when they
need to push all the buttons. If they get hold of the
light switch they will toggle it on and o� till it breaks.
To prevent that you can now lock the mechanical light
switch so that it will not toggle the light when pressed.
Simply set GPIO14 to none in the con�guration. You

can do this over MQTT and it will cause the sono� to
reboot (light �ickers for ~250 ms). You can create the
following scripts in Home Assistant, inside
scripts.yaml:

'enable_kids_light':

alias: Enable Sonoff Kids Light

sequence:

­ service: mqtt.publish

data:

topic: cmnd/kids_light/Gpio14

payload: 9

qos: 1

retain: false

'disable_kids_light':

alias: Disable Sonoff Kids Light

sequence:

­ service: mqtt.publish

data:

topic: cmnd/kids_light/Gpio14

payload: 0

qos: 1

When you call the script (either from the Services
menu or from a dashboard) the lights will lock or
unlock and you can control them only over wi�.

Wakeup call

The last application is more sinister. If you have heavy
sleepers in your family that need convincing to be
woken up, how about using the US Military Bugle
wake up call (https://www.youtube.com/watch?
v=xt4hSs4IWPg)? Apart from sound we will also make
the light �ash with the same pattern as the music.
That should be annoying.

You can start by downloading the audio and
converting it to mp3:

$ sudo apt­get install youtube­dl ffmpeg

$ youtube­dl ­f 140

"https://www.youtube.com/watch?v=xt4hSs4IWPg"

$ ffmpeg ­i "US_Military_Bugle_Wake_Up_Call­

xt4hSs4IWPg.m4a"

­acodec libmp3lame ­b:a 128k

"Wakeup_Trumpet.mp3"

I am using MPD as a media player controlled by Home
Assistant, so make sure to move the MP3 �le
somewhere in MPD’s media library path, so it can be
played (typically inside /var/lib/mpd/music/). You will

also need to add it to a saved playlist (I used
“wakeupalarm” as a name).

$ cp Wakeup_Trumpet.mp3

/var/lib/mpd/music/wake­up/

Next we need to produce some rhythm information. It
should correspond to on and o� signals to the light
bulb. My idea was to “type” the rhythm on the
keyboard as I am listening to sound so that a key
press/hold represents light on, a key release
represents light o�. We can use evtest to select the
keyboard and log the duration and sequence of key
presses:

$ sleep 10; ffplay Wakeup_Trumpet.mp3

$ sudo evtest 2>&1 | tee trumpet.txt

Once done, the �le should contain lines like the
following, recording key up/down events for the letter
“A”:

Event: time 1525422859.108421, ­­­­­­­­­­­­­­

SYN_REPORT ­­­­­­­­­­­­

Event: time 1525422859.204406, type 4

(EV_MSC), code 4 (MSC_SCAN), value 70004

Event: time 1525422859.204406, type 1

(EV_KEY), code 30 (KEY_A), value 1

Event: time 1525422859.204406, ­­­­­­­­­­­­­­

SYN_REPORT ­­­­­­­­­­­­

Event: time 1525422859.300420, type 4

(EV_MSC), code 4 (MSC_SCAN), value 70004

Event: time 1525422859.300420, type 1

(EV_KEY), code 30 (KEY_A), value 0

The �le trumpet.txt will be your rhythm �le and needs
to be copied to
/home/homeassistant/.homeassistant/. You can also
get my interpretation of it from here:
https://goo.gl/cFpLbs.

$ sudo cp trumpet.txt

/home/homeassistant/.homeassistant/

Now we can build an appdaemon app (described in
this previous article: https://goo.gl/npGqoX) that
when triggered by an input boolean, instructs MPD to
start playing the trumpet and parses the rhythm text
�le and issues the corresponding on/o� commands to
the light. You can get the app and its con�guration

https://www.youtube.com/watch?v=xt4hSs4IWPg
https://goo.gl/cFpLbs
https://goo.gl/npGqoX

from here (built for appdaemon 3.x):
https://goo.gl/Kn7PLK.

$ cd /home/homeassistant/.homeassistant/apps

$ wget ­O sound_and_light_alarm.py

https://goo.gl/aNuUB6

Adjust the following con�guration to match your
environment (changes done in
apps/sound_and_light_alarm.yaml):

sound_and_light_alarm:

module: sound_and_light_alarm

class: SoundAndLightAlarm

media_player: "media_player.mpd_kids"

light: "light.kids_light"

music: "wakeupalarm"

rhythm:

"/home/homeassistant/.homeassistant/trumpet.tx

t"

trigger: "input_boolean.wake_up"

You can add the following boolean to Home Assistant
(con�guration.yaml):

input_boolean:

wake_up:

name: Wake up

initial: off

And the following automation will trigger it when you
need to – for example during weekdays, at 7:00
(automations.yaml):

­ id: '1527938039163'

alias: Wake up alarm

trigger:

­ at: 07:00

platform: time

condition:

condition: time

weekday:

­ mon

­ tue

­ wed

­ thu

­ fri

action:

­ data:

entity_id: input_boolean.wakeup

service: input_boolean.turn_on

You can see it in action here:
https://www.youtube.com/watch?v=ac9xnA6Y918.
From the outside it looks like your house is trying to
communicate via morse code with an alien
mothership, but hopefully it will get the heavy
sleepers up and running.

Troubleshooting

If you �nd yourself that lights turn o� (or on)
apparently at random there may be several things
going on. In my case my lights would sometimes lose
TCP connectivity to the MQTT server and would
reestablish a new connection. Once the connection
was up it would read the state from the MQTT server
and would override the local state. If you are using
the “retain” option inconsistently, this leads to
problems such as an open light would turn o� after a
reconnection. In this cases it is best to disable MQTT
retention and rely on local state of the switch. This
means that if the light is on and there is a power
outage, the light will come on when the outage is
restored and you will not be able to force it o�
through MQTT while the light is unpowered. More
details can be found at: https://goo.gl/ECUqRY.

One more problem you might face is that when you
restart Home Assistant your light entities default to
“o�”, even if a light is on. In order to �x this you can
instruct Home Assistant to “ask” all the lights what
their state is with the following automation (add to
automations.yaml):

­ action:

­ data:

topic: cmnd/sonoffs/POWER

service: mqtt.publish

alias: Get Sonoff states on restart

condition: []

id: '1518951376931'

trigger:

­ event: start

platform: homeassistant

Hopefully this article helps you implement a smart
light system without too much cost or vendor lock-in.

https://goo.gl/Kn7PLK
https://www.youtube.com/watch?v=ac9xnA6Y918
https://goo.gl/ECUqRY

Getting Started With OpenCL: Using The ODROID-XU4
 July 1, 2018  By cnxsoft  Linux, ODROID-XU4

While I tested OpenGL ES with tools like glmark2-es2
and es2gears, as well as WebGL demos in Chromium,
I did not test OpenCL, since I’m not that familiar with
it, except it’s used for GPGPU (General Purpose GPU)
to accelerate tasks like image/audio processing. That
was a good excuse to learn a bit more, try it out on
the board, and write a short guide to get started with
OpenGL on hardware with Arm Mali GPU. The
purpose of this tutorial is to show how to run an
OpenCL sample, and OpenCL utility, and I won’t go
into the nitty gritty of OpenCL code. If you want to
learn more about OpenCL coding on Arm, one way
would be to check out the source code of the
provided samples. Arm Compute Library and OpenCL
Samples Since I did not know where to start,
Hardkernel redirected me to a forum thread where
we are shown how to use Arm Compute Library to
test OpenCL on the board. The relevant post is dated
January 2018, and relies on Compute Library 17.12,
but you can check out the latest version and
documentation here, https://arm-

software.github.io/ComputeLibrary/latest/. The
latest version is 18.03 at the time of writing this post,
so I retrieved it, and tried to build it as instructed:

$ wget https://github.com/ARM­

software/ComputeLibrary/archive/v18.03.tar.gz

$ tar xvf v18.03.tar.gz

$ cd ComputeLibrary­18.03/

$ sudo apt install scons

$ scons Werror=1 ­j8 debug=0 neon=1 opencl=1

embed_kernels=1 os=linux arch=armv7a

build=native

However, It failed with:

$ g++: internal compiler error: Killed

(program cc1plus)

Looking at the kernel log with dmesg, it was clear the
board ran out of memory: “Out of memory: Kill
process 4984 (cc1plus) Out of memory: Kill process
4984 (cc1plus)“. So I had to setup a swap �le (1GB):

https://arm-software.github.io/ComputeLibrary/latest/
https://arm-software.github.io/ComputeLibrary/latest/

$ sudo dd if=/dev/zero of=/swapfile bs=1024

count=1M

$ sudo chown root.root /swapfile

$ sudo chmod 0600 /swapfile

$ sudo mkswap /swapfile

$ sudo swapon /swapfile

The swap �le gave us more memory:

free ­m

total used free shared buff/cache available

Mem: 1994 336 520 34 1137 1568

Swap: 1023 0 1023

I restarted the build with NEON and OpenCL enabled:

$ scons Werror=1 ­j8 debug=0 neon=1 opencl=1

embed_kernels=1 os=linux arch=armv7a

build=native

This time it completed:

scons: done building targets.

Update

Setting up ZRAM instead of swap is usually better in
case you run out of memory, as described at
https://www.cnx-software.com/2018/05/14/running-
out-of-ram-in-ubuntu-enable-zram/. We can copy the
libraries to /usr/lib, which gives us a bunch of samples
to play with:

$ sudo cp build/*.so /usr/lib/

$ ls examples/

SConscript graph_mobilenet_qasymm8.cpp

cl_convolution.cpp graph_resnet50.cpp

cl_events.cpp graph_squeezenet.cpp

cl_sgemm.cpp graph_squeezenet_v1_1.cpp

gc_absdiff.cpp graph_vgg16.cpp

gc_dc.cpp graph_vgg19.cpp

graph_alexnet.cpp neon_cartoon_effect.cpp

graph_googlenet.cpp neon_cnn.cpp

graph_inception_v3.cpp neon_convolution.cpp

graph_inception_v4.cpp neon_copy_objects.cpp

graph_lenet.cpp neon_scale.cpp

graph_mobilenet.cpp

neoncl_scale_median_gaussian.cpp

Note that some are NEON only, not using OpenCL,
and the pre�x explains the type of sample:

cl_*.cpp –> OpenCL examples

gc_*.cpp –> GLES compute shaders examples

graph_*.cpp –> Graph examples

neoncl_*.cpp –> NEON / OpenCL interoperability
examples

neon_*.cpp –> NEON examples

All samples have also been built and can be found in
the build/examples directory. I ran cl_convolution
after generating a Raw ppm image using Gimp:

$ time ./cl_convolution ~/ODROID­XU4Q­

Large.ppm

$./cl_convolution

Test passed

real 0m5.814s

user 0m4.893s

sys 0m0.758s

It processed the photo (5184 x 3456) in less than 6
seconds. If we look at the resulting image, we can see
the grayscale output from the OpenCL convolution, as
shown in Figure 1.

Figure 01 – Original Image (Left) vs After OpenCL
Convolution (Right)

I’ve repeated a similar operation with convert which
has not been compiled with OpenCL support, using
software only:

$ time convert ODROID­XU4Q­Large.ppm ­

colorspace Gray ODROID­XU4Q­Large­

Grayscale.ppm

real 0m10.475s

user 0m0.724s

sys 0m2.957s

It took a little over 10 seconds, so almost twice the
time used by the OpenCL demo. The PPM image �les
are however over 50MB, so part of the time is used to

https://www.cnx-software.com/2018/05/14/running-out-of-ram-in-ubuntu-enable-zram/

read and save the �le from the eMMC �ash.
Repeating the tests provide similar performance (~6s
vs ~11s), so it may be negligible. The “convert version”
command’s output showing OpenCL is not part of the
enabled features in ImageMagick:

$ convert ­version

Version: ImageMagick 6.9.7­4 Q16 arm 20170114

http://www.imagemagick.org

Copyright: © 1999­2017 ImageMagick Studio LLC

License:

http://www.imagemagick.org/script/license.php

Features: Cipher DPC Modules OpenMP

Delegates (built­in): bzlib djvu fftw

fontconfig freetype jbig jng jpeg lcms lqr

ltdl lzma openexr pangocairo png tiff wmf x

xml zlib

It’s fun, so I tried another sample:

$ time ./cl_events ~/ODROID­XU4Q­Large.ppm

$./cl_events

Test passed

real 0m3.068s

user 0m2.527s

sys 0m0.369s

What did it do? When I open the �le it looks the same
of the �rst sample (Grayscale image), but it actually
scaled the image (50% width, 50% height):

$ file ~/ODROID­XU4Q­Large.ppm_out.ppm

/home/odroid/ODROID­XU4Q­Large.ppm_out.ppm:

Netpbm image data, size = 2592 x 1728,

rawbits, pixmap

The last sample cl_sgemm manipulates matrices. The
main goal of the three OpenCL (cl_xxx_ samples) is to
show how to use OpenCL Convolution, Events and
SGEMM (Single-precision GEneral Matrix Multiply)
using the Compute Library. You can also play with
other samples for NEON and OpenGL ES, and ARM
Community published a blog post explaining how to
run neon_cartoon_e�ect on Raspberry Pi , and
explaining the source code in details. You don’t
actually need an RPi board for that since any ARM
board with a processor supporting NEON should
work.

clinfo Utility

clinfo is a utility that print information about OpenCL
platforms and devices in the system,
https://github.com/Oblomov/clinfo, which is easily
installed:

$ sudo apt install clinfo

However, running the program does not return any
useful information:

$ clinfo

Number of platforms 0

This is not what I expected. Luckily, setting up clinfo is
explained in the ODROID Magazine article at
https://magazine.odroid.com/article/clinfo-
compiling-the-essential-opencl-gpu-tuning-utility-
for-the-odroid-xu4/, so let’s have a try. We need to
use Mali’s framebu�er driver, then setup the vendor
ICD �le:

$ sudo apt install mali­fbdev

$ sudo mkdir ­p /etc/OpenCL/vendors

$ sudo sh ­c 'echo "/usr/lib/arm­linux­

gnueabihf/mali­egl/libOpenCL.so" >

/etc/OpenCL/vendors/armocl.icd'

Now we can run clinfo:

$ clinfo

Number of platforms 1

Platform Name ARM Platform

Platform Vendor ARM

Platform Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Platform Profile FULL_PROFILE

Platform Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

Platform Extensions function suffix ARM

Platform Name ARM Platform

https://github.com/Oblomov/clinfo
https://magazine.odroid.com/article/clinfo-compiling-the-essential-opencl-gpu-tuning-utility-for-the-odroid-xu4/

Number of devices 2

Device Name Mali­T628

Device Vendor ARM

Device Vendor ID 0x6200010

Device Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Driver Version 1.2

Device OpenCL C Version OpenCL C 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Device Type GPU

Device Profile FULL_PROFILE

Device Available Yes

Compiler Available Yes

Linker Available Yes

Max compute units 4

Max clock frequency 600MHz

Device Partition (core)

Max number of sub­devices 0

Supported partition types None

Max work item dimensions 3

Max work item sizes 256x256x256

Max work group size 256

Preferred work group size multiple 4

Preferred / native vector sizes

char 16 / 16

short 8 / 8

int 4 / 4

long 2 / 2

half 8 / 8 (cl_khr_fp16)

float 4 / 4

double 2 / 2 (cl_khr_fp64)

Half­precision Floating­point support

(cl_khr_fp16)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Single­precision Floating­point support (core)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations

No

Double­precision Floating­point support

(cl_khr_fp64)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Address bits 64, Little­Endian

Global memory size 2090397696 (1.947GiB)

Error Correction support No

Max memory allocation 522599424 (498.4MiB)

Unified memory for Host and Device Yes

Minimum alignment for any data type 128 bytes

Alignment of base address 1024 bits (128

bytes)

Global Memory cache type Read/Write

Global Memory cache size 131072 (128KiB)

Global Memory cache line size 64 bytes

Image support Yes

Max number of samplers per kernel 16

Max size for 1D images from buffer 65536

pixels

Max 1D or 2D image array size 2048 images

Max 2D image size 65536x65536 pixels

Max 3D image size 65536x65536x65536 pixels

Max number of read image args 128

Max number of write image args 8

Local memory type Global

Local memory size 32768 (32KiB)

Max number of constant args 8

Max constant buffer size 65536 (64KiB)

Max size of kernel argument 1024

Queue properties

Out­of­order execution Yes

Profiling Yes

Prefer user sync for interop No

Profiling timer resolution 1000ns

Execution capabilities

Run OpenCL kernels Yes

Run native kernels No

printf() buffer size 1048576 (1024KiB)

Built­in kernels

Device Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

Device Name Mali­T628

Device Vendor ARM

Device Vendor ID 0x6200010

Device Version OpenCL 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Driver Version 1.2

Device OpenCL C Version OpenCL C 1.2 v1.r12p0­

04rel0.03af15950392f3702b248717f4938b82

Device Type GPU

Device Profile FULL_PROFILE

Device Available Yes

Compiler Available Yes

Linker Available Yes

Max compute units 2

Max clock frequency 600MHz

Device Partition (core)

Max number of sub­devices 0

Supported partition types None

Max work item dimensions 3

Max work item sizes 256x256x256

Max work group size 256

Preferred work group size multiple 4

Preferred / native vector sizes

char 16 / 16

short 8 / 8

int 4 / 4

long 2 / 2

half 8 / 8 (cl_khr_fp16)

float 4 / 4

double 2 / 2 (cl_khr_fp64)

Half­precision Floating­point support

(cl_khr_fp16)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Single­precision Floating­point support (core)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Correctly­rounded divide and sqrt operations

No

Double­precision Floating­point support

(cl_khr_fp64)

Denormals Yes

Infinity and NANs Yes

Round to nearest Yes

Round to zero Yes

Round to infinity Yes

IEEE754­2008 fused multiply­add Yes

Support is emulated in software No

Address bits 64, Little­Endian

Global memory size 2090397696 (1.947GiB)

Error Correction support No

Max memory allocation 522599424 (498.4MiB)

Unified memory for Host and Device Yes

Minimum alignment for any data type 128 bytes

Alignment of base address 1024 bits (128

bytes)

Global Memory cache type Read/Write

Global Memory cache size 131072 (128KiB)

Global Memory cache line size 64 bytes

Image support Yes

Max number of samplers per kernel 16

Max size for 1D images from buffer 65536

pixels

Max 1D or 2D image array size 2048 images

Max 2D image size 65536x65536 pixels

Max 3D image size 65536x65536x65536 pixels

Max number of read image args 128

Max number of write image args 8

Local memory type Global

Local memory size 32768 (32KiB)

Max number of constant args 8

Max constant buffer size 65536 (64KiB)

Max size of kernel argument 1024

Queue properties

Out­of­order execution Yes

Profiling Yes

Prefer user sync for interop No

Profiling timer resolution 1000ns

Execution capabilities

Run OpenCL kernels Yes

Run native kernels No

printf() buffer size 1048576 (1024KiB)

Built­in kernels

Device Extensions

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_khr_3d_image_writes cl_khr_fp64

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics cl_khr_fp16

cl_khr_gl_sharing cl_khr_icd cl_khr_egl_event

cl_khr_egl_image cl_arm_core_id cl_arm_printf

cl_arm_thread_limit_hint

cl_arm_non_uniform_work_group_size

cl_arm_import_memory

NULL platform behavior

clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...)

ARM Platform

clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...)

Success [ARM]

clCreateContext(NULL, ...) [default] Success

[ARM]

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_DEFAULT) Success (1)

Platform Name ARM Platform

Device Name Mali­T628

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_CPU) No devices found in

platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_GPU) Success (2)

Platform Name ARM Platform

Device Name Mali­T628

Device Name Mali­T628

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_ACCELERATOR) No devices found

in platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_CUSTOM) No devices found in

platform

clCreateContextFromType(NULL,

CL_DEVICE_TYPE_ALL) Success (2)

Platform Name ARM Platform

Device Name Mali­T628

Device Name Mali­T628

ICD loader properties

ICD loader Name OpenCL ICD Loader

ICD loader Vendor OCL Icd free software

ICD loader Version 2.2.11

ICD loader Profile OpenCL 2.1

That’s a lot of information, and it shows one platform
with two OpenCL devices (both Mali-T628) supporting
OpenCL 1.2.

That’s all for this little getting started guide. If you
actually want to make something with OpenCL, it’s
time to read Arm Compute Library documentation,
and other resources on the web.

References

This article comes from www.cnx-software.com. To
view the original article or read similar embedded
news, please visit https://www.cnx-
software.com/2018/05/13/how-to-get-started-with-
opencl-on-odroid-xu4-board-with-arm-mali-
t628mp6-gpu/.

https://www.cnx-software.com/2018/05/13/how-to-get-started-with-opencl-on-odroid-xu4-board-with-arm-mali-t628mp6-gpu/

Liquid Cooling Part 2 – Server
 July 1, 2018  By e=MMC2  Tinkering

Building a liquid-cooled ODROID took about 5 weeks
to complete, with an average of 12-18 hours a day
spent working on the project. It weighs a whopping
6.5lbs, with a total cost of around $950, including the
board, accessories, cooling hardware, and shipping,

Wiring

Wiring the 18 connections for the 6 fans took almost 2
days to determine how to get the brackets to be
perfect. Many hours were spent cutting wires and re-
soldering new connectors as well as making them
shorter. The power supply proved to be a project in
itself. I needed to provide 12v, 5v, 3.3v, and 1.2v to all
of the various di� connectors and had to �t 15
connections into the smallest space possible, while
still dishing out the various di�erent voltages, along
with placing capacitors and resistors.

Figure 1 – Wiring of the liquid cooled ODROID

Breadboard

I found that using a breadboard permanently, rather
than soldering up a new PCB, was actually better,
since it had a deep base already and can be changed

quickly if needed. The main input is a breadboard
Arduino power supply, which gave me 5v/3.3v without
having to use voltage regulators. I just soldered new
leads to the bottom of the input board at the main
12v jack in order to bypass the board and rails, which
gave the center of the board the 12v needed for the
fans, pump, and LED bars.

Figure 2 – All pumps and cooling are cooling this
machine perfectly

Fan and pump

I added a fan controller to tone down the fans and
lights when I want it to run it silent and dim. The main
UV led strip and fans are connected to the fan
controller that gears the voltage down to
approximately 6v, which keeps the fans just barely
spinning but dead silent. I used a polycarbonate
bullet-proof plexiglass as the base, then ran a
multicolor LED through a hole that I drilled and
installed a switch for selecting the color for the base.
The pump runs at a constant 12v and seems perfect
for the pressure required, so I didn’t bother
implementing the pump that into the fan controller
loop. The pump’s instructions state that it can run as
low as 6v, but I determined that the bottleneck at my
radiator could be overcome by pushing the pump at
full strength. The pump is quiet and worked out well.

Figure 3 – With this setup this ODROID works perfectly
even under extreme stress tests

Enhancements

I have ideas for a better setup, but can’t really a�ord
to do another one for some time. I think that I can
cool the XU-E signi�cantly more, but for now I’ve
shown that the concept works and runs solidly.
Although the project could have been built for much
less money, I wanted to use high end parts to give it a
more polished look.

Hardware

Alphacool DC-LT Ceramic 12V DC Pump + Plexi Top

Alphacool NexXxoS XT45 Full Copper Triple 40mm
Radiator with 6 fans in a push/pull con�guration.

12V fans are 40mmx10mm running at ~6000rpm
pushing ~9.5cfm

3/8ID 5/8OD tubing, aside from the 1/4ID to 3/8OD
tubing to convert down to the radiator. Only 2 types of
40mm radiator are made, and there are no options for
anything except 1/4ID on this breed, so I needed to use
a bunch of extra �ttings in order to convert it down

Bitspower, Enzotech, and Koolance connectors

Monsoon Free Center compression �ttings for the
tubing

XSPC LCD temp display with temp sensor for reservoir

FrozenQ Flex tank reservoir

Fesser One UV Blue Non-Conductive Coolant

Fujipoly Extreme Builder Thermal Pad 11.0W/mk

Darkside UV LED strips

The rest of the parts were o-rings and lighting, as well
as various other accessories needed for the power
supply setup. The base is an old Macintosh CPU

heatsink I found. The rest of the project is mostly held
together by an older Erector set that I disassembled.
The rubber feet are salvaged from a Playstation
controller.

Software

Ubuntu 12.04, 13.10, 14.04 and Server

Xubuntu

Lubuntu

Kali Linux

Debian

Arch

openSuse

Fedora

Suzie

Funtoo

Abacus OS

XBMC 13

Android Jelly Bean 4.2.2

