

Converting a Monitor to a Giant Android Tablet
 September 1, 2018

This articles describes how to use an ODROID to change any monitor or TV into a giant
Android tablet

Linux Gaming: Not a Commodore Fanboy?
 September 1, 2018

I know now that, at the time, Amstard CPC, ZX Spectrum, and Atari ST were big players
on the market, but for me it was and will always be Commodore

Coding Camp – Part 3: Control an LED
 September 1, 2018

Let us learn how to control the blue LED on ODROID-GO front side by tinkering the LED
with simple GPIO on/o� as well as 256-steps brightness control with PWM

Coding Camp – Part 4: Read the 12 buttons status on the ODROID-
GO
 September 1, 2018

For this article, we will learn how to read the status of the buttons with Arduino

High Performance Computing in the Home: Getting started with
ODROID and MPI
 September 1, 2018

In this article, we outline the setup and con�guration of a basic “headless” cluster with
the end goal of running parallel programs based on message passing, using the

Message Passing Interface (MPI) parallel programming model in particular.

Home Assistant: Tracking People With Wi-Fi Using Kismet
 September 1, 2018

The simplest way to start listening to the wi� spectrum is to install kismet

Getting Started With Ubuntu 18.04 On The ODROID-XU4: A
Beginner’s Guide
 September 1, 2018

The ODROID-XU4 is basically a heterogeneous multi-processing Octa-core Linux
Computer. O�ering open source support, the board can run various �avors of Linux,

including the latest Ubuntu 18.04

Kali Linux 2018.2 On The ODROID-XU4
 September 1, 2018

Kali Linux is one of the best systems for penetration testing. It is available for various
ARM-based devices and for a short time the ODROID-XU4 was available on the o�cial
Kali website.

Using ODROIDs in High Performance Computing (HPC) – ARM: Head
and Shoulders Above The Competition
 September 1, 2018

ARM cores are rapidly being adopted by the scienti�c Datacenter community because
ARM devices compute faster in �oating-point math intensive operations, for a fraction

of the energy costs, and have an architectural roadmap of even more performance per watt to come. There is
also a corresponding growth in interest in

Meet An ODROIDian: Andrew Armstrong
 September 1, 2018

I am the CTO and co-founder of Cadonix, the world’s �rst fully browser based cloud
electrical CAD solution. I have a broad range of expertise ranging from scienti�c
research, embedded systems, electronic design, software engineering and

manufacture. I am very fortunate as this allows me to work with some of

Converting a Monitor to a Giant Android Tablet
 September 1, 2018  By Justin Lee and Charles Park  ODROID-XU4, Tinkering

Touch screens are common in devices such as
smartphones, game consoles, all-in-one computers
and tablets. They also play a prominent role in the
design of digital appliances such as digital signage,
Point of Sale (POS) systems, satellite navigation
devices, mobile phones, video games and some e-
books. The Android OS, one of the main operating
systems for the ODROID, has an intuitive user
interface designed for use with a touch screen. This
articles describes how to use an ODROID to change
any monitor or TV into a giant Android tablet.

Figure 1 – 42-inch Big Giant Tablet with ODROID-XU

Infrared vs Capacitive touch screen

Touch screens primarily use either infrared or
capacitive technology. Capacitive touch screens are
more popular for smartphones and tablets, but are
also more expensive, especially when the screen size
is larger than 20 inches. A capacitive screen can only
be activated with an exposed �nger (no gloves or

pointers), and can experience operational di�culties
if the monitor is not correctly mounted into a metal
housing due to the electrical �eld. Considering its
ease of use and lower cost, the infrared-type touch
screen is better suited for this project.

Figure 2 – Principle of IR (Infrared) touch screen

Infrared(IR) Grid touch screens

An infrared touch screen uses an array of X-Y infrared
LED and photodetector pairs around the edges of the
screen to detect a disruption in the pattern of LED
beams. These LED beams cross each other in vertical
and horizontal patterns, which helps the sensors pick
up the exact location of the touch. A major bene�t of
the infrared system is that it can detect essentially any
input, including a �nger, gloved �nger, stylus or pen. It
is generally used in outdoor applications and point of
sale systems which cannot rely on a conductor (such
as a bare �nger) to activate the touch screen.

Unlike capacitive touch screens, infrared touch
screens do not require any patterning on the glass,
which increases durability and optical clarity of the
overall system. However, infrared touch screens are
sensitive to dirt and dust that can interfere with the IR
beams, and su�er from parallax in curved surfaces
and accidental touch noti�cations if the user hovers
his/her �nger over the screen while searching for the
item to be selected.

Figure 3 – Principle of IR (Infrared) Multi-touch screen

How to Choose an Infrared touch screen

You can make your own touch screen by following
guides found on the Internet, but it is not easy to
implement the complex multi-touch algorithm and
well aligned IR emitter/receiver pairs, as seen in
Figure 4.

Before purchasing an infrared touch screen, it’s
important to evaluate its compatibility with Android. It
must meet at least one of the following requirements:

1) Is your touch screen listed in the Linux multi-touch
compatibility table?

http://lii-enac.fr/en/architecture/linux-
input/multitouch-devices.html

If yes, it will be very easy to activate your touch
screen.

2) Is your touch screen Windows 8 compatible?

If yes, you need to add a few lines in the Kernel driver
and an input con�guration �le.

3) Does your touch screen manufacturer supply
speci�c Android driver source code?

If yes, you need to follow their porting instruction.

A touch screen which meets the �rst requirement was
not available in our local Korean or Chinese markets.
Some touch screen manufacturers in China o�ered to
supply the driver source code for their products, but
the sample code was not useful in the real world. The
best alternative was a touch screen that supported
Windows 8 HID-compliant Plug & Play.

It’s important to check whether the touch screen is
really Windows 8 compatible or not. True Plug & Play
devices do not require a separate driver to be
installed on a Windows PC. If the touch screen needs

http://lii-enac.fr/en/architecture/linux-input/multitouch-devices.html

a speci�c device driver, it is not natively compatible
with Windows 8 and will be less likely to work with
Android.

Figure 4 – 42” touch screen connected to an ODROID-XU

Connect the touch screen to Android

There are 4 steps to using the touch screen with the
Android OS:

Get the Vendor ID and Product ID from the touch
screen USB interface

Modify the �les hid-ids.h and hid-multitouch.c, both
located in kernel/drivers/hid/

Build the kernel with the HID-MULTITOUCH option
enabled, and transfer the kernel image to the
ODROID

Create an IDC (Input Device Con�guration) �le.

Step 1: Check the VID and PID

Plug the touch screen into any Linux PC, then �nd the
VID and PID by typing “lsusb” in the terminal as shown
in Figure 5.

Figure 5 – Reading the VID and PID of the USB touch
screen using a Linux PC

To determine which device entry is associated with
the touch screen, list the devices before connecting
the touch screen, then list them again after
connecting it. The new entry will correspond to the
touch screen device.

During our project, when the 23-inch touch screen
was connected, an entry of VID:03FC, PID:05D8
appeared in the device list, which represents a touch
screen made by Elitegroup Computer Systems. With
the 42-inch touch screen connected, an entry of
VID:1870, PID:0119 appeared to represent a touch
screen from Nexio Co., Ltd. Other touch screens will
report di�erent VID, PID and vendor information.

Step 2: Modify hid-ids.h and hid-multitouch.c

After downloading the appropriate Android kernel
source from dn.odroid.com, navigate to the
kernels/drivers/hid/ directory, then add the VID and
PID to the end of the hid-ids.h header �le.

Figure 6 – Example PID and VID values added to
kernels/drivers/hid/hid-ids.h.

Also, add the new ID in the hid-multitouch.c source
�le. It must be placed in the hid_device_id mt_devices
structure de�ne.

Figure 7 – Example of adding the touch screen ID to
kernels/drivers/hid/hid-multitouch.c

Step 3: Build the kernel with the HID-MULTITOUCH
option enabled

Type “make menucon�g” to con�gure the kernel, then
go to Device Drivers -> HID Devices -> Special HID
drivers -> HID Multitouch panels and select it as an
embedded driver (*), as seen in Figure 8.

Figure 8 – Con�guring the touch screen with an
embedded driver in the kernel con�guration.

Set below two options as an embedded driver,
indicated with an asterisk (*)

Device Drivers -> Input device support -> touch
screens -> USB touch screen Driver

Device Drivers -> Input device support -> touch
screens -> GeneralTouch touch screen device support

Figure 9 – Con�guring the touch screen with an
embedded driver in the kernel con�guration.

Save the Kernel con�guration and compile it to make
a zImage.

Transfer the zImage to your ODROID via fastboot
protocol in the u-boot.

Step 4: Create an IDC (Input Device Con�guration)
�le

If you don’t make a proper IDC �le, the resolution of
the touch screen will not match the HDMI resolution.

The IDC �le is a unix-formatted plain text �le.

Here is an example. You can use this �le as is.

touch.deviceType = touchscreen

touch.orientationAware = 1

device.internal = 1

keyboard.layout = qwerty

keyboard.characterMap = qwerty2

keyboard.orientationAware = 1

keyboard.builtIn = 1cursor.mode = navigation

cursor.orientationAware = 1

The �le name must be Vendor_xxxx_Product_yyyy.idc
(xxxx: Vendor ID, yyyy: Device ID). I made two �les for
Elitegroup and Nexio. Note that the �lename is case
sensitive.

Vendor_03fc_Product_05d8.idc and
Vendor_1870_Product_0119.idc

Copy the IDC �les to your ODROID with the below
commands.

adb remount

adb push Vendor_03fc_Product_05d8.idc

/system/usr/idx/.

adb push Vendor_1870_Product_0119.idc

/system/usr/idc/.

adb reboot

How to Attach the 42-inch Touch Panel to the TV
Screen.

Prepare the touch screen

Figure 10 – Preparing the touch screen

Attach very strong double-sided tape to the frame of
the touch screen panel.

Figure 11 – Attaching the double-sided tape to the
monitor

Carefully attach the touch screen to align the viewing
window.

Figure 12 – Aligning the touch screen with the monitor

Test the touch screen. Our touch screen could detect
up to 6 points.

Figure 13 – Testing the touch screen

How to Attach the 23-inch Touch Panel to the
Monitor Screen.

This smaller 23-inch touch screen panel came with 4
velcro belts and it was relatively easy to assemble.

Figure 14 – 23-inch touch screen panel with velcro belts

Figure 15 – Playing Fruit Ninja on the 23-inch touch
screen with my �nger.

Conclusion

Besides gaming and personal use, the ODROID is
ideal as the core computing device for kiosks, digital
signage, human interface research, and more,
because of its high performance computing power,
relatively low cost, and open platform which allows
modi�cations such as this touch screen.

To see a video of the results of this project, visit
http://youtu.be/b8_cV_NeWQ8, and for more giant
Android tablet Minecraft action, visit
http://www.youtube.com/watch?v=HDsnuxchxtU.

http://youtu.be/b8_cV_NeWQ8
http://www.youtube.com/watch?v=HDsnuxchxtU

Linux Gaming: Not a Commodore Fanboy?
 September 1, 2018  By Tobias Schaaf  Gaming, ODROID-C2, ODROID-XU4

In recent articles, I’ve discussed my feelings toward
Nintendo and Sega. I consider myself more of a Sega
fanboy than Nintendo, although I do enjoy the
GameBoy Advance and DS from Nintendo.

Growing up in East Germany during the the 80’s and
90’s, consoles were not that big of a deal for me. In
fact, over here in Europe, “micro-computers” were far
more common. This also explains why I, personally,
prefer modifying rather than turning on a system and
working within its limited capabilities. This also means
that I am more comfortable playing games on a PC
with a mouse and a keyboard than a controller. I
know now that, at the time, Amstard CPC, ZX
Spectrum, and Atari ST were big players on the
market, but for me it was and will always be
Commodore, which I grew up with–First with my C64
“Brotkasten” (or “Breadbox”), and later di�erent
Amiga models. For this article, I’d like to talk about my
experiences during that time, and how I feel about
the Commodore today.

The C64 “Brotkasten”

The C64 was the �rst micro-computer I had as a child.
More accurately, my dad had it and I played on it.
Although it was many years ago, I have quite a few
good memories with it.

Figure 1 – The Commodore 64 “Brotkasten”

If you’re unfamiliar with Commodore 64, it likely got
its name from the 64KB of RAM it had to work with.
After loading the BASIC operating system, you would
be left with 38911 Bytes of free RAM, which is what

would run all your programs and games. It had about
1MHz computing speed and o�ered 16 awesome
colors. Capability-wise, it is probably comparable to
the NES.

The Commodore 64 was probably most famous for its
impressive sound capabilities for the time. Here is an
example of the music for Last Ninja 2:
https://www.youtube.com/watch?v=CoGFV_xxR64.
There was, and still is, a huge “demo” scene around
the C64, with users creating music and graphically
impressive videos.

I remember playing a game called Ma�a that is
probably my fondest memory of the C64. This game
had simplistic graphics but the gameplay was lots of
fun. It was played using a keyboard rather than
joystick, as you were often required to enter numbers
and other things.

Figure 2 – Ma�a on the C64

Ma�a had a lot of things you could do: buy or steal
cars–even steal purses from people. You could visit
the casino or rent a place to live in. You could try
pressure shops into paying you protection money or
ask them if they had a job for you (as a hitman). You
could work as a bouncer; try to rob a bank; build up
your own gang; smuggle booze; buy weapons; train
yourself or your gang members; and so on.

You started out as an unknown character working
your way up through the ranks of the underground.
By doing “bad deeds,” you could get a higher ranked
job such as robbing banks or smuggling alcohol. It
also allowed you to hire more gang members for even
bigger jobs.

The game had a useful bug that allowed you to go to
the casino and play for negative money. If you

entered a bet of -$1,000,000 and lost, you’d become
instantly rich, which made the game so much easier,
especially for a child as young as I was then. I enjoyed
a text-based game called Hotel due to a similar bug. I
built negative numbers of pools in my �rst hotel and
was instantly rich, although that did mean I could
never reach 5-Star level, as my hotels had a negative
number of pools.

The C64 o�ered more than just the bad graphics and
poorly programming of these two games. No, in fact,
many games were quite impressive. Games like R-
Type, Maniac Mansion, Turrican, The Last Ninja, IK+
(International Karate Plus), Creatures, Boulder Dash,
the infamous Great Giana Sisters, or sports series like
Summer Games, Winter Games, and California
Games.

I have fond memories of many of these games. My
mom, who never played games at all, still played
Boulder Dash, which was amazing. Once, playing
Maniac Mansion, I did not know the game had a save
feature and we tried to �nish this game in one day,
starting over and over again from the beginning.
Turrican was an amazing platformer/shooter with
some Metroid-style elements. IK+ is considered one of
the best games of all times, and due to Nintendo not
wanting to have Super Mario on other platforms, we
got The Great Giana Sisters instead. The Great Giana
Sisters was a blatant rip-o�, but an awesome one,
which later became available for the NDS and other
platforms.

Figure 3 – R-Type for the C64

https://www.youtube.com/watch?v=CoGFV_xxR64

Figure 4 – Zak McKracken on the C64. These early
adventures were quite di�cult

Figure 5 – IK+: one of the best �ghting sims out there

Figure 6 – Last Ninja 2: Awesome graphics, music, and
gameplay, but damn hard!

Figure 7 – Collecting diamonds was never as much fun as
in Boulder Dash

All in all, the C64 was an impressive home computer.
No wonder it was, at one point, the highest-selling
home computer of all time. Although I was a small
child, I still remember the good times I had playing
games on this system. Although newer versions might
have better graphics, sometimes the feeling of the
original sticks in your memory. That’s de�nitely the
case for me with the C64 and some of its games, such
as Boulder Dash. There are other versions of this
game with improved graphics, but in my opinion
they’re all terrible. The one true version of this game
is the one for the old C64 (and maybe some of the
clones on other systems).

My Amiga period

While the C64 was an impressive piece of work and
�exibility, the Amiga made a mind-blowing jump
forward in technology. It was a step forward in the
way the jump from NES to the SNES was a step
forward.

The story behind Amiga is a long and exciting one.
Some would even call it heartbreaking, with its many
ups and downs, especially toward the end. If you’re
interested in the story behind Amiga I suggest the
movie From Bedrooms to Billions–The Amiga Years.
It’s a good documentary on how the Amiga came to
life and fascinated people. If you never had an Amiga,
it might be hard to understand the fascination.

The Amiga was kind of ‘the’ PC of the late 80’s and
early 90’s. IBM compatible PCs were expensive. Apple
was also very expensive and had not made many
changes for quite some time. Atari home computers
were still rather limited. Suddenly, a home computer

came along that was both a�ordable and capable.
The Amiga was capable of multi-tasking and could
choose from 4096 colors–the same as the SNES in
mode 7. Later models o�ered over 16 million colors
(24bit), 4-channel stereo audio, standard disks as a
storage medium, and much more.

One of the biggest features was its Workbench.
Today, most would call it a “Desktop”.

The �rst commonly used Workbench was version 1.3
which was widely available around 1987 on the early
Amigas. Although visually it was not much di�erent
from version 1.0 (already released in 1985), it was
more commonly used. Around the same time,
Windows 2.0, which was still running under DOS,
existed on IBM compatible PCs.

Figure 8 – Workbench 1.3 on an Amiga running from HDD

Figure 9 – Windows 2.0 under DOS for IBM PC

Around 1990 or 1991 Workbench 2.0 was released
with a major change in look and feel which made the

Amiga look like a decent desktop computer. It
required a newer version of the Kickstart (similar to
the BIOS of the system) to run, but was still able to
run on most older Amigas, as long as they had the
newer Kickstart. Kickstart was a ROM that could
actually be exchanged on the system’s motherboard.

Figure 10 – A more streamlined Workbench 2.0 for the
Amiga

Figure 11 – Windows 3.0 for DOS PCs

A year later in 1992, with newer Amigas and Kickstart
3.0/3.1 available, a new version of the Workbench was
introduced. Workbench 3.0 once again showed
slightly improved graphics, but the biggest
improvement was in its functionality.

Figure 12 – Workbench 3.0 with background pictures for
each folder and desktop

Figure 13 – Windows 3.1 for DOS

Workbench was able to run directly from disks or it
could be installed on a hard drive, if available. It had
interesting features, such as a right-click menu for �le
operations. Each folder could be con�gured
individually and the changes stored for each folder.

If you’re a PC guru, you have probably heard of
something called a “Ram Disk.” It’s a technique that
uses part of your RAM as a virtual disk to put data on,
improving security or, more likely, speed.

For example, some use a Ram Disk to put their
temporary browser �les in a temporary folder, �rst to
automatically remove the Ram Disk �les when you
restart the PC so as not to pollute your hard drive;
and second, to speed up loading times of such �les,
as RAM is much faster than any HDD (and even SSDs).

The Amiga already had this as a build-in function of
the Workbench. If you had enough RAM you could
copy a game from a �oppy directly onto the RAM Disk
and start it from there, which meant you never had to
load the game from the disk, but rather you could
load all data from memory, if you had enough of it.

Although the original Workbench started improving in
look and feel in version 2.0, there were still more
projects to come.

MagicWB greatly improved the look and feel of any
Workbench version 2.0 or higher, allowing your 1992
Amiga to look something like this:

Figure 14 – MagicWB improved the look and feel of the
Workbench by adding new icons, backgrounds, and color
schemes

The Amiga was an impressive piece of hardware at
the time, rivaling modern PC hardware from IBM,
Apple, and Atari. The Amiga was used by many
di�erent artists, as the mod tracker (also known as
the “Protracker” or “Fast Tracker”) was used to create
impressive music on the Amiga.

Examples: https://www.youtube.com/watch?
v=eclMFa0mD1c https://www.youtube.com/watch?
v=p9zmLQGBTIw

Deluxe Paint for the Amiga was way ahead of its time
and used by many artists to create images or
manipulate photos
(https://www.youtube.com/watch?v=RO7JURHm_jk)
long before Adobe Photoshop. In fact, the Amiga had
such powerful graphic performance for its time that it
was actually used in movie and TV production.

https://www.youtube.com/watch?v=eclMFa0mD1c
https://www.youtube.com/watch?v=p9zmLQGBTIw
https://www.youtube.com/watch?v=RO7JURHm_jk

If you have ever heard of Babylon 5, this TV show
highly bene�ted from the Amiga:
https://www.youtube.com/watch?v=iXmSA18cfgA

In fact, the Video Toaster, which could be used in
many di�erent ways, revolutionized the industry:
https://www.youtube.com/watch?v=6eNYj-Chkxw

After reading about all the creative stu� you could use
an Amiga for, one may wonder.. What is he talking
about? I thought we were talking about about games?

Well, in spite all the creative tasks you could do with
the Amiga, it was still mainly used for games. There
are nearly 1800 games for the Amiga, putting it on par
with worldwide releases for the SNES (only 720 of the
SNES releases were released in the USA).

With this impressive library the Amiga had games for
everyone: RPG, adventures, racing, �ghting. Every
genre of game existed for the Amiga. Most of my
childhood memories up until the time I was about 14
centered around the Amiga and its games. There
were so many impressive titles for the system, I
wouldn’t even know where to begin.

I played tons of adventure games on the Amiga, such
as Monkey Island 1 and 2, Indiana Jones 3 and 4,
Beneath a Steel Sky (which came on �fteen disks),
Simon the Sorcerer, Operation Stealth, Dune, Loom,
and many more.

Figure 15 – The Monkey Island Series is an extremely
funny adventure series. If you never played them, you
really missed out on gaming history

Figure 16 – Operation Stealth was a detailed, complex
secret agent adventure on the Amiga

Many games on the Amiga were superior to their PC
counterparts. Especially in the early years, the Amiga
trumped other systems with better graphics and
better music. Many games I later replayed on the PC
felt strange for that reason as I was known to “better”
on the Amiga than when I replayed them on the PC.
The Amiga also had a lot of ports from older C64
games with improved graphics.

It’s really hard for me to pick favorite games for the
Amiga, as I liked many games of that time and era.
Rodland, a fun little platformer. Lost Patrol–in this
game you have to lead a group of American soldiers
stranded in Vietnam back to an Army base. This game
is very hard, but beautifully rendered and quite
complex. The music alone deserves an award; it’s one
of the best soundtracks I’ve ever heard in a video
game. Persian Gulf Inferno, a platformer/shooter
where you had to free an oil platform from middle
eastern terrorists. Rainbow Island, which is said to be
the best port of all on the Amiga. Arabian Nights, a
platformer where, although not related to the Disney
movie, you would play as an Aladdin-type character,
also had very good music and graphics for it’s time.

https://www.youtube.com/watch?v=iXmSA18cfgA
https://www.youtube.com/watch?v=6eNYj-Chkxw

Figure 17 – First Samurai on the Amiga. I loved swinging
that sword!

First Samurai was a platformer with �ghting elements,
great graphics, sounds, and even clear voice samples.
Fire and Ice was an even more awesome platformer,
and The Chaos Engine (aka Soldiers of Fortune) was
an amazing cooperative run and gun. Flashback was
an interesting platformer/action adventure, which not
many people liked all that much, but I enjoyed it on
the Amiga.

Figure 18 – Flashback was ported to nearly all systems at
the time, but the Amiga version is the one I played and
�nished

I played over a hundred games for the Amiga, as it
had some amazing titles. Until I got my �rst PC I
played my Amiga hardcore, moving through di�erent
models over time (my dad owned them, I just played
on them.)

I started with the most common model, the Amiga
500, which we got a hard drive for later on. We also

got a Kick-Switch, which allowed us to switch between
Kickstart 1.3 and 2.04, and RAM expansion.

One of my uncles had an Amiga 600 but it was
unimpressive. He had a tiny, original Amiga HDD built
into the system, and even with compression his HDD
was constantly full.

Figure 19 – Moonstone was a fun, but very bloody game

Figure 20 – Wing Commander for the Amiga started my
passion for space simulations

Later on, we got an Amiga 1200. This was a new and
improved system, using Kickstart 3.1 and an AGA chip,
which was an improved graphics chip that allowed for
16.7 million colors instead of the 4,096 colors of the
Amiga 500. We also brie�y had an Amiga CD32, the
�rst 32-bit CD-based gaming console, but although
the CD format was promising, most games were just
straight ports of Amiga 1200 titles.

The Amiga was fascinating. Although I played many
games on it, I still barely scratched the surface of the
library of games available.

Final Thoughts

So, I return to the same question I’ve asked
throughout this series in regards to other systems:
Am I a Commodore fanboy?

If you grew up in Europe during the late 80’s and 90’s
and did not know what a C64 or an Amiga was, you
were likely living under a rock. I will always speak
proudly of my Amiga and the games I had. Both C64
and Amiga games can be emulated for the ODROID,
and you can relive your memories that way.

But lately I realized that if I wanted to suggest games
to someone that never had a C64 or an Amiga, and
did not grew up with these systems, it’s hard to make
them feel the same as I felt back when I was a child.
Many of the games existing on the C64 and Amiga
were ported to other systems, and although the
Amiga is probably still the best platform for some of
these games, not everyone likes the type of strategy
games, simulators, or adventure games that made
these systems great.

In fact, if I wanted to relive my adventure games I
most likely go to ScummVM directly, where I can play
these games without emulation. If I want to play Dune
2, the XCOM Series, I’d rather choose Dune Legacy or

OpenXCom–improved Linux versions of these games
for ODROID. If you look into the game library you will
�nd very little IPs that survived the passage of time.
You won’t �nd any well known titles like Super Mario
Bros., The Legend of Zelda, or Sonic the Hedgehog on
Commodore systems.

There are still some games I’d say “Hey! Go play that
on the Amiga!” These are great games and do not
exist on any other system, but the list is very short.
The Amiga and C64 are great systems with a lot of
retro charm, but I notice myself more drawn to
SegaCD, Sega Saturn, or even Master System games
than I am to games for the Amiga or C64. I plan on
going back to the Amiga to replay some games, or
even try out new games, but as much as it’s a great
memory of my past, I can’t say I’m that into
Commodore anymore. Therefore, as hard as this is to
admit, I must say that, no, I’m no longer a
Commodore fanboy.

Coding Camp – Part 3: Control an LED
 September 1, 2018  By Justin Lee  Tinkering, Tutorial, ODROID-GO

Let us learn how to control the blue LED on ODROID-
GO front side by tinkering the LED with simple GPIO
on/o� as well as 256-steps brightness control with
PWM. Before we begin, please make sure you have
read the �rst two guides at
https://wiki.odroid.com/odroid_go/arduino/01_ardui
no_setup and
https://wiki.odroid.com/odroid_go/arduino/02_hello
_world. Additionally, the original guide can be found
on the ODROID-GO wiki page at
https://wiki.odroid.com/odroid_go/arduino/03_blue_
led_and_pwm.

Blink the blue LED

https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup
https://wiki.odroid.com/odroid_go/arduino/02_hello_world
https://wiki.odroid.com/odroid_go/arduino/03_blue_led_and_pwm

Figure 01 – Blinking the blue LED

Let’s make the LED blink continuously. First, open a
new sketch by pressing the shortcut CTRL-N.
Controlling the LED very easy, the pin number for the
LED is 2, so let’s de�ne that with a Preprocessor. Next,
we have to set the pin to output mode. Use the
pinMode() function to do that.

#define PIN_BLUE_LED 2

void setup() {

// put your setup code here, to run once:

pinMode(PIN_BLUE_LED, OUTPUT);

}

void loop() {

// put your main code here, to run repeatedly:

}

Now the pin is ready to use. You can set the pin signal
level by using the digitalWrite() function. This function
has to be in loop() to run repeatedly. The delay()
function is used to slow down the rate of blinking.

#define PIN_BLUE_LED 2

void setup() {

// put your setup code here, to run once:

pinMode(PIN_BLUE_LED, OUTPUT);

}

void loop() {

// put your main code here, to run repeatedly:

digitalWrite(PIN_BLUE_LED, HIGH);

delay(500);

digitalWrite(PIN_BLUE_LED, LOW);

delay(500);

}

Press CTRL-U to compile and upload the sketch. Then,
you can see the blue LED blinking.

Give the LED a breathing e�ect

Figure 02 – the LED ‘breathing’

By adjusting the analog output value, we can make
the LED show a breathing e�ect. This technique is
known as PWM. Arduino gives us wrappers that help

control the GPIO pins as well as the PWM features.
Generally, these PWM functions are analogRead() and
analogWrite(), but they are not yet available in ESP32
so we must use the ledcRead() and ledcWrite()
functions to control the LEDs.

The way to control the PWM values in a ESP32 is
di�erent from other Arduino boards. These functions
use the LED PWM hardware feature of ESP32 which is
located in ledc.h, LED Control function header. In
ESP32, the LED PWM is composed of 16 independent
channels, and we can con�gure them with a duty
cycles with a resolution and wave period.

First, we should choose a channel to attach the LED
to. Channels 0 to 7 are available, we will use channel 1
in this example. De�ne the channel and the blue LED
through a Preprocessor macro.

#define PIN_BLUE_LED 2

#define PWM_CHANNEL 1

void setup() {

// put your setup code here, to run once:

}

void loop() {

// put your main code here, to run repeatedly:

}

Set the pin mode of the LED to output:

#define PIN_BLUE_LED 2

#define PWM_CHANNEL 1

void setup() {

// put your setup code here, to run once:

pinMode(PIN_BLUE_LED, OUTPUT);

}

void loop() {

// put your main code here, to run repeatedly:

}

Attach the LED pin to the channel we de�ned. Next,
set up the channel to operate at 12kHz with 8 bit
resolution.

#define PIN_BLUE_LED 2

#define PWM_CHANNEL 1

void setup() {

// put your setup code here, to run once:

pinMode(PIN_BLUE_LED, OUTPUT);

ledcSetup(PWM_CHANNEL, 12000, 8);

}

void loop() {

// put your main code here, to run repeatedly:

}

Lastly, add the breathing code into the loop() function.
We de�ned a variable called pinVal as a global
variable to prevent allocating new memory repeatedly
in the loop() function. The type of pinVal is an
unsigned char since the PWM value ranges only 0-
255.

#define PIN_BLUE_LED 2

#define PWM_CHANNEL 1

unsigned char pinVal = 0;

void setup() {

// put your setup code here, to run once:

pinMode(PIN_BLUE_LED, OUTPUT);

digitalWrite(PIN_BLUE_LED, HIGH);

ledcAttachPin(PIN_BLUE_LED, PWM_CHANNEL);

ledcSetup(PWM_CHANNEL, 12000, 8);

}

void loop() {

// put your main code here, to run repeatedly:

for (; pinVal > 0; pinVal­­) {

ledcWrite(PWM_CHANNEL, pinVal);

delay(3);

}

for (; pinVal < 255; pinVal++) {

ledcWrite(PWM_CHANNEL, pinVal);

delay(3);

}

}

Press CTRL-U to compile and upload the sketch, then
you can see the blue LED breathing.

A completed example

The complete example is available can be loaded in
the Arduino IDE by clicking the Files → Examples →

ODROID-GO → LED or LED_PWM menu to import and
press CTRL-U to compile and upload.

Figure 03 – loaded completed example in arduino IDE

Additional information

For extra information and help, please use the
following links, or ask on the ODROID forums:

Refer to the Arduino o�cial documents. This provides
useful common functions with great instructions.

Refer to the ESP32 o�cial programming guide. Most of
the ESP32 speci�c functions are introduced here.

Coding Camp – Part 4: Read the 12 buttons status on the
ODROID-GO
 September 1, 2018  By Justin Lee  Tinkering, Tutorial, ODROID-GO

For this article, we will learn how to read the status of
the buttons with Arduino. A simple output will be
shown on the LCD. Before getting started, make sure
you’ve followed these guides:

Getting started with Arduino

Arduino for ODROID-GO – Hello World

Refer to the Arduino o�cial documents. These
provide useful common functions and great, detailed
instructions. You can also refer to the ESP32 o�cial
programming guide. Most ESP32-speci�c functions
are introduced here.

Get the status of the buttons

The ODROID-GO has 10 buttons available:

4 for direction pad

2 for an action

4 functional buttons

Thanks to the GO library, we can get the status of
each buttons easily. Firstl, initialize the LCD with the
“GO.begin()” function. Set text size to 2 since the
default text size will too small to read.

#include

$ void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

}

$ void loop() {

// put your main code here, to run repeatedly:

}

Add an independent function to display the status,
and name it “displayButtons()”. This function has two
steps:

https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup
https://wiki.odroid.com/odroid_go/arduino/02_hello_world
https://esp-idf.readthedocs.io/en/v3.0/

“GO.lcd.clear()” to clear any LCD content previously
shown.

“GO.lcd.setCursor()” to set the start point to print a
string. The two parameters (0, 0) means top, left.

#include

$ void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

}

$ void displayButtons() {

GO.lcd.clear();

GO.lcd.setCursor(0, 0);

}

$ void loop() {

// put your main code here, to run repeatedly:

}

Fill “displayButtons()” out with the code below. This
will display whether any buttons are pressed or not.
When a button is pressed, then a “Pressed” string will
appear beside the element that corresponds to the
button.

All of the available buttons for the ODROID-GO are
available as instances of the Button class. The Button
class has some helpful functions to let us know the
button’s status. Thus, we use “isAxisPressed()” and
“isPressed()” functions to know if a button is currently
pressed or not.

If the button is pressed, that functions returns not 0.

The “isAxisPressed()” function is only for the direction
pad. If the button is pressed, it returns 1 or 2 to
distinguish the direction.

“isPressed()” function is for the other buttons. If the
button is pressed, it returns 1.

Lastly, we have to �ll the “loop()” function out to show
the status on the LCD. There are three functions to
add:

“GO.update()” to update the buttons’ states so that the
“isPressed()” functions works well.

“displayButtons()” to add result strings to the LCD.

“delay(1000)” to prevent the LCD from blinking too fast
when “GO.lcd.clean()” function acts.

#include

$ void setup() {

// put your setup code here, to run once:

GO.begin();

GO.lcd.setTextSize(2);

}

$ void displayButtons() {

GO.lcd.clear();

GO.lcd.setCursor(0, 0);

GO.lcd.println("/* Direction pad */");

GO.lcd.printf("Joy­Y­Up: %s

", (GO.JOY_Y.isAxisPressed() == 2) ? "Pressed"

: " ");

GO.lcd.printf("Joy­Y­Down: %s

", (GO.JOY_Y.isAxisPressed() == 1) ? "Pressed"

: " ");

GO.lcd.printf("Joy­X­Left: %s

", (GO.JOY_X.isAxisPressed() == 2) ? "Pressed"

: " ");

GO.lcd.printf("Joy­X­Right: %s

", (GO.JOY_X.isAxisPressed() == 1) ? "Pressed"

: " ");

GO.lcd.println("");

GO.lcd.println("/* Function key */");

GO.lcd.printf("Menu: %s

", (GO.BtnMenu.isPressed() == 1) ? "Pressed" :

" ");

GO.lcd.printf("Volume: %s

", (GO.BtnVolume.isPressed() == 1) ? "Pressed"

: " ");

GO.lcd.printf("Select: %s

", (GO.BtnSelect.isPressed() == 1) ? "Pressed"

: " ");

GO.lcd.printf("Start: %s

", (GO.BtnStart.isPressed() == 1) ? "Pressed"

: " ");

GO.lcd.println("");

GO.lcd.println("/* Actions */");

GO.lcd.printf("B: %s

", (GO.BtnB.isPressed() == 1) ? "Pressed" : "

");

GO.lcd.printf("A: %s

", (GO.BtnA.isPressed() == 1) ? "Pressed" : "

");

}

$ void loop() {

// put your main code here, to run repeatedly:

GO.update();

displayButtons();

delay(1000);

}

Press CTRL-U to compile and upload the sketch. Then,
press any button to show the “Pressed” string besides
that button. As you may have noticed, you will need to
keep pressing it until the LCD is updated due to the
“delay(1000)” function.

A completed example

The complete example is available by clicking the Files
→ Examples → ODROID-GO → Buttons menu to
import and press CTRL-U to compile/upload.

Figure 1 – A completed example

High Performance Computing in the Home: Getting started with
ODROID and MPI
 September 1, 2018  By Cooper Filby and Anthony Skjellum  Linux, Tinkering, Tutorial

In this article, Cooper Filby and Anthony Skjellum of
Runtime Computing Solutions LLC
http://www.runtimecomputing.com, outline the setup
and con�guration of a basic “headless” cluster with
the end goal of running parallel programs based on
message passing, using the Message Passing Interface
(MPI) parallel programming model in particular. There
are a number of prebuilt Linux operating systems
available for ODROID boards from the Hardkernel
website. To get started, download the Ubuntu Server
image for your ODROID model and extract the
.IMG.XZ archived image using an archiving tool such
as 7zip on windows, or by typing “xz” from the Linux
command line. Finally, you can copy to the medium of
your choice, such as an SD card or an eMMC module,
using the “dd” command on Linux/OS X systems or
the Win32DiskImager.exe for ODROID on Windows.
For more detailed instructions on copying over the
OS, please refer to Bohdan Lechnowsky’s article titled

“Installing an OS on an ODROID” from the January
2014 issue of ODROID Magazine. We recommend
using the eMMC modules available from Hardkernel
for better performance, but SD cards work well too.

Connecting to your ODROID

Since we opted to use the Ubuntu Server image for
our ODROIDs, we can connect to our XU-E systems
(we’ll call them nodes for simplicity from now on) via
the ssh protocol using Terminal (or Putty if running
Windows) in order to continue setting up our cluster.
Because of potential initial hostname and MAC
address con�icts that we will resolve in the next
section, we will need to boot the �rst ODROID and set
a few settings before starting the second.

[Editor’s Note: If one is available, a development machine
running Linux or Windows is recommended to more
easily setup and reboot the cluster, troubleshoot
hardware problems, and other necessary debugging. An

alternative to using a separate computer is to plug a USB
keyboard and HDMI cable into the �rst ODROID and use
it directly to bootstrap the cluster instead of via SSH as
described in the next few paragraphs. Press Ctrl-Alt-F1 to
use the framebu�er console if X11 is not running.]

In order to connect to your ODROID, you’ll need to
discover the hostname or IP address of the board. For
the Ubuntu server image we used on our XU+E
cluster, the default hostname is “odroid-server”, while
for other images we’ve used, it’s been “odroid”. Most
home networks should support DNS by default, which
will allow you to connect simply by the hostname. If
this fails, you can alternatively connect using the IP
address assigned to the ODROID by your router
instead. If neither of the hostnames resolves for you,
check your router’s lease table to search for the IP
address, often labeled as the DHCP client table in the
router’s admin panel.

Since we used identical copies of the same image on
both nodes, by default they had a hostname con�ict,
which we resolved by bringing them online one at a
time, then changing the individual network settings. If
you don’t have access to the router’s admin panel,
you can also make use of the nmap command to scan
your network for hosts to �nd the ODROIDs, if you
know your network information. For example: “nmap
192.168.1.0/24”. Look for a host that has port 22
open.

Power on one of the ODROIDs, then enter “ssh
odroid@ubuntu- server” (or “ssh
odroid@xxx.xx.xx.xxx”, if using the IP address) in the
Terminal or Putty window of the host computer,
which will establish a secure connection to the
ODROID. To login, type “odroid” as the password.

Once the command prompt appears, you may want
to run “sudo apt-get update && sudo apt-get
upgrade” to ensure that your OS is up to date.
Furthermore, we recommend you run the “passwd”
command and change the password for the odroid
user to something a little more secure, or creating
new user accounts with the “adduser” command, such
as by running “sudo adduser kilroy”. (Generally
speaking, do three things key with your node

passwords: make them long, make them hard to
guess, and store it in a secure location.)

Con�guring Networking

Before getting both ODROIDs online, we need to
change a few settings as to eliminate hostname and
MAC address con�icts that may occur on your home
network with an ODROID cluster. To change the
hostname, we will need to edit two �les,
/etc/hostname and /etc/hosts, changing “odroid-
server’ to the hostname of your choice and rebooting
the machine so the changes take e�ect. For the
purposes of this article we will use odroid-server0 and
odroid- server1 to refer to the �rst and second
ODROID respectively. Alternatively, if your operating
system supports it, you can also type “sudo odroid-
con�g” to change the hostname. You can use other
names of your choice; they have to be unique to each
node.

The MAC address con�ict was a subtle issue that we
encountered when we �rst set up multiple ODROID
XU+E’s. We found that, by default, the onboard
ethernet devices all shared the same MAC address,
which made it impossible to work on a single ODROID
if multiple were powered online and on the same
network. If the two ODROIDs you’re working have
identical MAC addresses, there are two
straightforward ways to resolve this: 1) con�gure one
(or both) of the ODROIDs to use a di�erent
MACaddress, or 2) setup USB ethernet dongles, which
should all have unique MAC addresses. The speci�c
values you choose really don’t matter, as long as you
keep them unique on your Local Area Network (LAN).

To change the MAC address of the onboard device,
edit /etc/network/interfaces with your text editor of
choice, and add the line “hwaddress ether newmac”,
where newmac is an address in the format
“b6:8d:67:7b:cb:e0” underneath the following labels:

auto eth0

iface eth0 inet dhcp

Then, reboot the ODROID so the changes take e�ect.
Make sure to verify the new address using the ifcon�g
command. Alternatively, you can opt to plug your USB
Ethernet adapters into the USB 3.0 slot, and then run

“ifcon�g -a | grep eth”, which should yield a list similar
to this:

eth0 Link encap:Ethernet HWaddr

b6:8d:67:7b:cb:e0

eth2 Link encap:Ethernet HWaddr

00:13:3b:99:92:b1

By default, eth0 will be the onboard 10/100 ethernet
connection, while the second ethernet device (in this
case, eth2) will be the USB Ethernet Adapter. If only
eth0 shows up, try reseating your USB Ethernet
adapter and/or verifying that it works on another
machine. To set up the adapter for using DHCP on
boot to get an IP address, we will need to modify
/etc/network/ interfaces and add the following two
lines between the entries for auto lo and auto eth0:

auto eth2

iface eth2 inet dhcp

Use the appropriate ethernet device id previously
found with ifcon�g (in this case, eth2). Then, power
down the ODROID, put the ethernet cable that was
attached to the the onboard device into the USB
ethernet adapter, and power the ODROID back on. If,
for some reason, you aren’t able to connect, try
plugging the cable back into the onboard slot and
verifying that the USB ethernet adapter is still
showing up using the “ifcon�g -a” command. It’s also
possible that the ethernet device ID itself has changed
if the adapter is unseated, in which case you can
update the /etc/network/interfaces �le accordingly.

At this point, the ODROID should be con�gured and
accessible on the network. Before heading on to the
MPI section, con�gure the second ODROID using the
same steps described above.

Message Passing Interface (MPI)

Now that we have two nodes con�gured
appropriately, we can now start looking towards how
we can execute HPC jobs on our two-node cluster. A
parallel programming environment such as MPI helps
you do this. MPI takes care of starting up the
processes that make up the parallel programming
model, and provides a standardized application
programming interface (API) for those cooperating,
communicating sequential processes to use to make

the parallel program work. To accomplish this, we will
make use of MPI, or Message Passing Interface, which
provides an API that allows nodes to send and receive
messages while processing jobs. A command called
either mpirun or mpiexec will start all the processes
needed across your ODROIDS under your control.
There are two common open source MPI
implementations available for download – MPICH and
OpenMPI. For ODROID clustering purposes over
Ethernet, both work equally well. Both of these MPI
implementations are available through ap.

To install MPICH, run “sudo apt-get install mpich2”, or
run “sudo apt-get install openmpi-bin” to install
OpenMPI as an alternative.

What you can do once you’ve loaded MPI:

1) Run example programs that use multiple cores on a
single ODROID

2) Run example programs that use both ODROIDS and
a total of 8 cores.

3) Learn how to build your own MPI programs.

In this article, we’ve focused on showing you how to
do the �rst and the second approaches. You can read
the example programs that come with OpenMPI and
MPICH to learn more. There are also a number of
excellent online tutorials and a few good books on
programming MPI, such as “Using MPI” from MIT
Press (one of us co-authored that book).

Building it Better

The content of this article represents just a fraction of
what we will be able to do with our cluster down the
line. While this setup is more than adequate for
handling two nodes and only a few users, if we want
to grow our cluster, we will want to make use of a
dedicated head node to better handle a larger
number of users and nodes. In addition to allowing us
to hide cluster tra�c from the rest of the network,
this head node will also host services that will
streamline cluster management, such as LDAP for
user management, Puppet for content management,
NFS for �le sharing, and various networking services.

In part two of this series, we will begin to convert
odroid-server0 into a proper head node.

Home Assistant: Tracking People With Wi-Fi Using Kismet
 September 1, 2018  By Adrian Popa  Linux, Tinkering, Tutorial

It seems that tracking people has grown into a multi
billion dollar market (https://goo.gl/T1XZS8) and can
be used either to build pro�les on people (learn a
person’s habits and monetize based on them), or to
optimize stores and venues based on where the
people go to. For example, if a clothes store can track
your movements (and remember where you have
been on previous visits) they can build a pro�le with
the kinds of clothes you like to look at and can
bombard you with personalized advertisement later
on. People tracking can be done in lots of ways, from
face recognition to wi�/bluetooth tracking, with
varying amounts of accuracy. As with any technology,
tracking can be used to do good (e.g. �nd buried
people after an earthquake) or evil (stalk your cute
neighbor next door).

In my case I want to track when the nanny is home or
not so that I know I have to go to pick up my son from
the park instead. This can be done remarkably easy
with wi� tracking and Home Assistant. The problem is

my nanny’s phone does not connect to my wi�
network, so I need to use a passive way of monitoring.

We have discussed in the past how wi� operates
(https://goo.gl/yWD2j1) and also how it can be sni�ed
(https://goo.gl/uEsdMo). In short – clients and access
points regularly broadcast their SSID or send probe
requests to ask for any/speci�c SSIDs in the area. All
wireless tra�c (even encrypted tra�c) has layer 2
information (MAC addresses) unencrypted and this
can be sni�ed. In order to sni� wi� tra�c you have to
have a wireless card that supports monitor mode
(HardKernel wi� adapters support it). Typically MAC
addresses are unique per device and can be used to
track a speci�c device, so anyone with a monitor wi�
card can track you (as we are about to see).

Installing bleeding-edge Kismet

The simplest way to start listening to the wi�
spectrum is to install kismet. Kismet takes care of
putting your wi� adapter in monitor mode and can

https://goo.gl/T1XZS8
https://goo.gl/yWD2j1
https://goo.gl/uEsdMo

also log all the sni�ed tra�c. In order to have access
to the new UI and also to have a REST API you will
need to install kismet from sources instead from a
package manager (both Ubuntu 16.04 and 18.04 have
too old versions of kismet). You can get general
instructions from here: https://goo.gl/qjwLKb.

You will need to install some development tools �rst:

$ sudo apt­get install build­essential git

libmicrohttpd­dev

pkg­config zlib1g­dev libnl­3­dev libnl­genl­

3­dev libcap­dev

libpcap­dev libncurses5­dev libnm­dev libdw­

dev libsqlite3­dev

libprotobuf­dev libprotobuf­c­dev protobuf­

compiler

protobuf­c­compiler

$ sudo apt­get install python python­

setuptools python­protobuf

python­sqlite python­requests

Compiling kismet will require more RAM than you
probably have, so it is a good idea to enable disk-
based swap. I managed to get away with 1G swap for
my C2, but if you have more space available, you can
create a bigger swap �le:

$ dd if=/dev/zero of=/swap bs=1M count=1000

$ mkswap /swap

$ swapon /swap

Next, you can grab the latest development snapshot
of Kismet, compile and install it:

$ git clone

https://www.kismetwireless.net/git/kismet.git

$ cd kismet

$./configure

$ make ­j 4

$ sudo make suidinstall

Once done you can deactivate the swap you created
and reclaim your disk space:

$ sudo swapoff /swap

$ sudo rm ­f /swap

Kismet will be installed in /usr/local, with its
con�guration located at /usr/local/etc/kismet.

You can create a new systemd startup script for
kismet:

$ cat /etc/systemd/system/kismet.service

[Unit]

Description=Kismet wifi monitor

[Service]

Type=forking

ExecStart=/usr/local/bin/kismet ­c wlan0 ­­no­

curses­wrapper ­­daemonize ­n

WatchdogSec=3600

Restart=always

[Install]

WantedBy=multi­user.target

$ sudo systemctl enable kismet

$ sudo systemctl start kismet

The systemd startup script starts kismet as a daemon,
with no logging, bound to wlan0 (which will be put in
monitor mode). I have had some problems with the
USB ports on my C2 (mainly because I am running
several gadgets o� an unpowered hub) and
sometimes the wi� adapter would lock up requiring a
reboot. If I restart kismet every hour the problem
goes away – this is what WatchdogSec does.

Once started, you can connect to its web interface on
http://:2501/. You have read-only access without
being authenticated, but you will need to create a
user if you want to change settings. When you start
kismet for the �rst time a random password for the
user kismet will be generated and stored in
/root/.kismet/kismet_httpd.conf.

Figure 1 – Kismet UI

Finding out the MAC

In order to track somebody via wi�, you will need to
get their MAC address one way or another. You can
ask for it, or use social engineering to �nd it out (e.g.
ask to see their network settings in order to
troubleshoot some made-up issue), or you will have

https://goo.gl/qjwLKb

to work for it in case you do not have access at all to
the terminal you want to track.

If you are stuck in the latter case you will have to
make some assumptions:

The tracked person has wi� open and makes probe
requests

The tracked person has a static MAC

You know when the tracked person is within sni�ng
range

In this case, here is the plan. Start kismet in monitor
mode and have it log to �le (sqlite3 database)
ambient tra�c. Stop the capture before the person of
interest is within range and restart a new capture
when the person is around. Leave the capture going
for as long as possible (at least 10-15 minutes) and
stop it when the person is no longer around. Next,
extract the MAC addresses from both data sets and
do an di�erence. You are interested in MACs that
exist when the target was around but do not exist in
the �rst dataset (remove MACs found in the �rst data
set from the second one). You should be left with a
smaller list of MACs – one of which is the target’s
MAC. You can further re�ne this based on timestamps
– eliminate MACs seen after the target was no longer
around or before the target arrived. If you still get a
list of a few MACs and you cannot exclude some
based on manufacturer (e.g. they are all Samsung
phones), you will need to repeat the process a
di�erent time and see which MACs from a new
recording are the same as the potential target MACs.
By process of elimination, you should end up with
only one MAC that appears in all captures and is not
“a regular”. If you are doing this in a “quiet” area (e.g.
a house) you will �nd out the MAC pretty quickly. If
instead you are doing this in a crowded area, you will
have to do more iterations.

Let us see the plan in action.

First you need to do the capture. To enable this, edit
/usr/local/etc/kismet_logging.conf and change
log_pre�x=/tmp/.

Next, edit the systemd service and remove the “-n”
command-line switch, so that logging is done:

$ sudo sed ­i 's/­­daemonize ­n/­­daemonize/'

/etc/systemd/system/kismet.service

$ sudo systemctl daemon­reload

$ sudo service kismet restart

Now you will get hourly log �les in /tmp with the
devices that kismet has seen. Once you have enough
data, you can turn o� logging and restart kismet by
editing the systemd service and adding “-n”.

Next you will need to divide the �les you collected
into two groups. The directory “0” will hold �les where
the target is known not to have been present, while
the directory “1” will hold �les where the target might
have been present. You can do this division based on
time (you have one hour slots by default).

$ mkdir 0 1

$ sudo mv /tmp/Kismet­20180718­07­33­00­

1.kismet 0/

$ sudo mv /tmp/Kismet­20180718­10­33­03­

1.kismet 1/

Next comes the hard work. We need to extract all
MACs from all �les in both folders and compile two
lists – MACs from folder 0 and from folder 1. We can
get data from inside the kismet log by using sqlite3
with an SQL syntax. Since sqlite3 doesn’t support
wildcards for �le names, we need to do some bash
trickery and iterate over each �le.

$ sudo apt­get install sqlite3 bc

$ for file in 0/*.kismet; do sqlite3 ­csv

"$file" 'select

devmac,first_time,last_time from devices;' |

tee ­a 0/0.dump; done

$ for file in 1/*.kismet; do sqlite3 ­csv

"$file" 'select

devmac,first_time,last_time from devices;' |

tee ­a 1/1.dump; done

For both directories we have dumped out the MAC,
start time and end time from Kismet. Next step is to
aggregate the data (since having multiple �les leads to
duplicate entries). We will use sort + uniq and keep
only the MAC address. In my case I ended up with 701
MACs which were known not to be the target, and 229
MACs that might have been the target.

At this step, we need to reduce this potential list
further and we will eliminate MACs that have been

seen only brie�y (for less than 100 seconds) because
they are likely just people or cars passing by. This
further reduces the potential MAC set to 152 in my
case.

$ cat 0/0.dump | cut ­f 1 ­d ',' | sort ­u >

0/0.mac

$ while read line; do start=`echo $line | cut

­f 2 ­d ','`;

end=`echo $line | cut ­f 3 ­d ','`;

difference=`echo $end­$start|bc`; if [

"$difference" ­gt 100]; then echo "$line" |

tee ­a 1/1_filtered.dump; fi; done < 1/1.dump

$ cat 1/1_filtered.dump | cut ­f 1 ­d ',' |

sort ­u > 1/1.mac

Now the process of elimination begins – we delete the
matching lines between the two �les. For this we can
use grep -v to print non-matching lines and we search
for the contents of 0/0.mac inside 1/1.mac:

$ grep ­v ­f 0/0.mac 1/1.mac > potential.mac

This leaves me with only 27 MACs to further
investigate. I could �lter by device vendor (if I knew it).
One way to keep only Samsung devices is to look-up
their MAC in the OUI database. You can install a local
copy of the database with the ieee-data package and
you can look up all the MACs and keep only the ones
registered to Samsung.

$ sudo apt­get install ieee­data

$ while read line; do match=`echo $line | cut

­c 1­8 | sed 's/://g' | xargs ­n 1 ­I{} grep

{} /usr/share/ieee­data/oui.txt | grep ­i

Samsung`; if [­n "$match"]; then echo

"$line"| tee ­a samsung.mac; fi; done

<potential.mac

I get only 4 MACs after applying this �lter, so I’m
getting closer. In order to further re�ne this I need to
do more sni�ng when the target is around and �nd
which MACs from the new recording are found in the
old recording until I am left with only one. Or, I could
monitor all 4 and see inside Home Assistant which
one behaves correctly.

Adding a custom device_tracker in Home Assistant

The advantage of the new kismet you just installed is
you can query it via its REST API and get a JSON

response of new devices that match your search
criteria. The REST API documentation is available
here: https://goo.gl/JFpnZM.

The plan is to implement a custom device_tracker as a
module in Home Assistant that will take a list of MAC
addresses or a list of SSIDs and will ask a kismet
instance if it seen those MACs/SSIDs in the last 30
seconds. If Kismet has seen them, it will report their
names, which in turn gets relayed to Home Assistant.

Currently, the kismet device_tracker can be used as a
custom component. Hopefully, in the future when the
REST API stabilizes it can be merged directly into
Home Assistant. You can install it following these
steps:

$ sudo su ­ homeassistant

$ cd .homeassistant

$ mkdir ­p custom_components/device_tracker

$ cd custom_components/device_tracker

$ wget ­O kismet.py https://goo.gl/WPGZZA

You will need to edit con�guration.yaml and add the
component:

device_tracker:

­ platform: kismet

interval_seconds: 30

host: 192.168.1.15

port: 2501

consider_home: 420

clients:

­ 84:98:66:47:cf:b9

­ d0:31:69:38:f2:99

ssids:

­ DIGI

For extra debugging (though it will be noisy), you can
set the component to debug inside the logger as well:

logger:

default: error

logs:

custom_components.device_tracker.kismet: debug

Once you restart Home Assistant, the component will
connect periodically to the kismet instance and query
for the devices you listed. It will get results for the last
“interval_seconds” period (e.g. for the last 30
seconds), so even if the mobile device was active for a

https://goo.gl/JFpnZM

little while in that interval it will get picked up and
reported. The length of interval_seconds only a�ects
how quickly a device is seen, not whether it is seen or
not. The parameters have the following meaning:

interval_seconds – how often to ask for updates from
the kismet server

host – the kismet server IP/FQDN (127.0.0.1 by default)

port – the port where kismet is running (2501 by
default)

consider_home – how long should a client be still
considered at home if he has not been seen (7 minutes
is ok for clients with wi� open, but not associated to a
network. May depend from device to device)

clients – a list of MAC addresses to look for. Can be a
regular expression

ssids – a list of SSIDs to look for. Can be a regular
expression

Devices which are discovered are added to
known_devices.yaml and can be accessed as an entity
inside Home Assistant. Once the devices have been
discovered you can customize their entity name and
add an image as well by editing known_devices.yaml

Figure 2 – known_devices.yaml entry

You can further add the entities to be tracked inside a
group and display them in the main Home Assistant
UI.

group:

people:

name: People

view: yes

entities:

­ device_tracker.the_nanny

­ device_tracker.samsungj3

­ device_tracker.nexus5

Figure 3 – People tracking

If you are using Custom UI
(https://github.com/andrey-git/home-assistant-
custom-ui/) with Home Assistant you can also display
the last changed time (e.g. “2 minutes ago”) below the
entity name so you can get a quick indication how
long ago a person has arrived or left without
expanding the card. To do so, make sure you are on
the latest CustomUI version (run ./update-custom-
ui.sh from within ~homeassistant/.homeassistant)
and add the following in the con�guration:

homeassistant:

customize:

device_tracker.the_nanny:

custom_ui_state_card: state­card­custom­ui

show_last_changed: true

Conclusion

So, how well is this working? It depends on the device
being tracked. Older/cheaper devices make no
attempt to hide their MAC and are easily picked up
(like my Samsung J3). Newer/more expensive devices
use random MACs to do probe requests and are
harder to pin down. It is not impossible though. All
phones use their real MAC address when connecting
to a known access point. So, if you (separately)
broadcast a list of popular access point names from
the target’s area (e.g. Starbucks, McDonalds, etc) you
may convince its wi� to give itself away and try to
connect to your access point. This method will leave
traces, because all those wi� access points will be
visible in the network list for all clients, raising
suspicion, but this article will get you started:
https://goo.gl/rXg2so.

Depending on the phone behavior, it might get to
sleep from time to time and you might miss some
probe requests (especially if the phone is on battery),

https://github.com/andrey-git/home-assistant-custom-ui/
https://goo.gl/rXg2so

but it should be quite visible when the screen is
turned on or the user is making a call. To improve
accuracy you might need to add more kismet listeners
around your house to cover more channels or blind
spots.

Figure 4 – Presence data over time

What can you do to avoid detection and tracking?
Simple. Turn o� your wi� when not in use. If you are
not on the latest �agship phone (Android P seems to
have included randomized MACs) you can still use
third-party apps like Pri-Fi
(https://play.google.com/store/apps/details?
id=eu.chain�re.pry�) by chan�re (the creator of
SuperSU) to do the same thing. But depending on the
tech-savviness of the person you are tracking – most
people will not bother to conceal themselves.

https://play.google.com/store/apps/details?id=eu.chainfire.pryfi

Getting Started With Ubuntu 18.04 On The ODROID-XU4: A
Beginner’s Guide
 September 1, 2018  By Melissas Miltiadis  Linux, ODROID-XU4, Tutorial

The ODROID-XU4 is basically a heterogeneous multi-
processing Octa-core Linux Computer. O�ering open
source support, the board can run various �avors of
Linux, including the latest Ubuntu 18.04 and the latest
versions of Android. By implementing the eMMC 5.0,
USB 3.0 and Gigabit Ethernet interfaces, the ODROID-
XU4 boasts amazing data transfer speeds, a feature
that is increasingly required to support advanced
processing power on ARM devices. This allows users
to truly experience an upgrade in computing,
especially with faster booting, web browsing,
networking, and 3D games. For more technical details
about the board please visit Hardkernel’s product
speci�cations page at https://goo.gl/bQ5szX.

ODROID XU4 supports the Linux Kernel 4.14 LTS and
can run the latest Ubuntu 18.04 fairly well. In this
step-by-step guide we will see how to install and run
this OS on the board together with some must have

applications as well as the pros and cons of running
such an OS on this device.

The required materials for running Ubuntu 18.04 on
an ODROID-XU4 are:

ODROID-XU4 (https://goo.gl/19qHGB)

5V/4A Power supply US: (https://goo.gl/6z5XLC), EU:
(https://goo.gl/bgmxBQ), Asia/Korea
(https://goo.gl/TqLrr8)

Memory card pre-installed with Linux eMMC
(https://goo.gl/RxM5y9) or microSD card:
(https://goo.gl/y3TdEk)

HDMI cable:(https://goo.gl/8TX8Y6)

Monitor or TV with an HDMI port

It is time to start with the installation procedure.

Installation

https://goo.gl/bQ5szX
https://goo.gl/19qHGB
https://goo.gl/6z5XLC
https://goo.gl/TqLrr8
https://goo.gl/RxM5y9
https://goo.gl/y3TdEk
https://goo.gl/8TX8Y6

First, download the Ubuntu 18.04 (20180501)
operating system from the Hardkernel website at
https://goo.gl/ErjTVT. Make sure to wait for the
complete download. You can download the image
from Hardkernel’s wiki page at https://goo.gl/JYvNGY.

Ubuntu 18 is among us!

To install, or “�ash”, Ubuntu 18.04 to the memory
card, we recommend using Etcher, as described at
http://bit.ly/2f61k5x. You can download etcher from
https://etcher.io/.

Figure 01 – Etcher

Etcher works on Mac OS, Linux and Windows, and is
the easiest option for most users. Etcher also
supports writing OS images directly from the zip �le,
without any unzipping required. To install the OS on
an eMMC module, you will need an eMMC module
reader (https://goo.gl/A5LVTR) and a USB multi
reader (http://goo.gl/fMfjZr) to connect it to your PC.

First boot

At �rst boot, “mind the gap”. According to
Hardkernel’s Wiki, the RootFS Auto-resize feature has
changed. Once everything is done after auto-resize,
the power will turn o� automatically. Wait a couple of
minutes, and press the power button if the blue LED
is o�. The image boots within 30-40 seconds and
Figure 2 shows our freshly Ubuntu 18.04 with Mate
desktop.

Figure 02

The �rst thing to do is to adjust the time and date.
From the menu, click Administration–>Time and Date,
as shown in Figure 3.

Figure 03

Next, update system and kernel software. Do not
forget dist-upgrade (the password is “odroid”):

$ sudo apt update

$ sudo apt upgrade

$ sudo apt dist­upgrade

$ sudo reboot

Then, install your preferred language (mine is Greek),
and �nally add the Keyboard Accessibility Status to
the panel, as shown in Figures 4 – 7.

Figure 04

https://goo.gl/ErjTVT
https://goo.gl/JYvNGY
http://bit.ly/2f61k5x
https://etcher.io/
https://goo.gl/A5LVTR
http://goo.gl/fMfjZr

Figure 05

Figure 06

Figure 07

Installing applications and testing performance
Hardkernel’s Ubuntu 18.04 image comes preinstalled
with many applications, such as Chromium browser,
Thunderbird (email client), LibreO�ce, and MPV
media player, just to name a few and of course Kodi.
Nevertheless, some more are needed for a fully
desktop OS experience.

Install SMPlayer, one of the best players in Linux. So
from the console just type:

$ sudo apt install smplayer

and then select Menu→ Sound and Video–> SMPlayer
from the menu, as shown in Figure 8.

Figure 08

Install GIMP the top graphics editor for Linux, which
executes fast and runs well:

$ sudo add­apt­repository ppa:otto­

kesselgulasch/gimp

$ sudo apt­get update

$ sudo apt­get install gimp

Figure 09

You can also test 3D graphics using glmark2-es2 and
es2gears with spectacular results:

$ glmark2­es2

$ es2gears

Figure 10

Figure 11

Finally, we tested the WebGL function within the
Chromium browser going to the WebGL sample page
at http://webglsamples.org/. We got almost 30FPS
with 500 �sh in the tank at the aquarium test
available at
http://webglsamples.org/aquarium/aquarium.html,
which is a satisfactory experience for such a “small”
board.

Figure 12

Known issues

According to Hardkernel’’s wiki page
(https://goo.gl/wuV9Vx) the following issues should
be taken into account:

1. Mali GPU access could be blocked by a recent
Canonical’s EGL package. In that case, you need to
install Mali driver manually.

$ sudo apt­get install mali­x11 ­­reinstall

2. VLC does not start due to a video driver
compatibility issue. The reason is that VLC does not
support a generic ARM Linux platform well. Recent
updates made it even worse. I tried a H.264 �le on
Kodi and it worked without any problem. However,
MPEG4/MPEG2 �les do not play well with hardware
decoder. I had a lot of crashes. The OS itself has
nothing to do with it. It is part of the programs that

run on it. Some investigation revealed that Ubuntu
18.04 uses Kodi with hardware accelerated �mpeg
backend rather than the MFC hardware decoder
backend from Oversun. The �mpeg implementation
does not seem to run very stable, while the MFC
backend in Kodi up to version 17.6 did work pretty
well. Older versions of Ubuntu such as the 16.04
image might still use the version of Kodi that uses
MFC backend rather than �mpeg and with that run
more stable. We will have to wait until Hardkernel
�xes the issue. 3. The �rst time launching of
Chromium takes around one minute due to internal
initialization process. After that, it starts in 1-2
seconds. 4. Some UASP capable USB-to-SATA bridge
controllers are not compatible. If your external HDD is
not working properly, according to Hardkernel, add its
VID/PID in boot.ini. Boot arguments to disable the
UAS function something like this:

$ usb­storage.quirks=0x0bc2:0x2322:u

5. Change CPU governor to “ondemand”, run this
command, and reboot: $ echo
‘GOVERNOR=”ondemand”‘ | sudo tee
/etc/default/cpufrequtils; systemctl mask ondemand;
Then, install the “h264ify” extension from the Chrome
Web Store for Chrome browser, which can improved
the Youtube video quality on Chromium browser can
be improved a lot. 720p/30fps videos are �ne with the
extension.

Figure 13

Advantages Ubuntu 18.04 OS is quite stable on
ODROID XU4. Programs are executed very quickly,
and the board o�ers a pleasant internet browsing.
The performance of the board with accelerated 3D
graphics working well in demos and some webGL
demos. H.264 hardware decoding in Kodi and FFmpeg
working well up to 1080p, and Youtube up to 720p,

http://webglsamples.org/
http://webglsamples.org/aquarium/aquarium.html
https://goo.gl/wuV9Vx

fast program load times thanks to the eMMC �ash
module (https://goo.gl/r5Zi8M), and decent multi-
tasking ability. As an epilogue, we could say that
Ubuntu 18.04 on ODROID-XU4 board was a very
satisfying experience, and quite close to that of a
desktop computer. Despite some performance issues

with playing AVI �les, in most cases the system
performed well and reliably with fast program loading
times. The hardware video coding, 3D graphics
acceleration for OpenGL ES and most features
working as expected. Give it a try!

https://goo.gl/r5Zi8M

Kali Linux 2018.2 On The ODROID-XU4
 September 1, 2018  By Philipp Rutherford  Linux, Tutorial

Note to our readers: This article setup is running With A
Touchscreen And Alfa AWUS1900 WiFi Adapter Support

Kali Linux is one of the best systems for penetration
testing. It is available for various ARM-based devices
and for a short time the ODROID-XU4 was available
on the o�cial Kali website. Unfortunately, an image is
no longer available. This article covers the following
things:

How to install Kali Linux 2018.2 on ODROID-XU4

How to get touchscreen recognize multitouch gestures

How to make Alfa AWUS1900 work with ODROID-XU4

Disclaimers

You are taking full responsibility for your actions

This guide is easy to follow, nevertheless, don’t skip
any sections that seem easy and read each on till the
last one

Make sure to backup your data

Don’t worry about warning messages during the
execution of the make command

Some faults might still remain, although currently none
were detected. Make sure to post any problems to the
forum thread at
https://forum.odroid.com/viewtopic.php?
f=96&t=31737

The author allows anyone to share the material given
below, but you must include this article as the source

https://forum.odroid.com/viewtopic.php?f=96&t=31737

Figure 1 – Kali Linux 2018.2 on ODROID-XU4 with Alfa
WiFi adapter connected

Installation Download the ‘Kali Linux Odroidxu3’
image from the o�cial Kali Linux website:
https://www.o�ensive-security.com/kali-linux-arm-
images/ and �ash it to a eMMC or microSD. Make
sure your XU4 is connected to the Internet. Boot your
XU4 and login using using a user of ‘root’ and
password ‘toor’. Choose to use the default
con�guration for the Panel. If you are using a
multitouch display, e.g. ODROID-VU5, you will notice,
that graphics will appear glitchy and the touchscreen
won’t react to touches. Though, USB 3.0 ports should
work �ne. We are going to compile and update the
Linux kernel to v4.14, which will signi�cantly improve
the overall performance and �x known faults.

WARNING! If you are using a multitouch display,
make sure your XU4 does not go to sleep during
the kernel update, otherwise you may not be able
to turn it on without rebooting. If your screen
starts �ickering, it means that the XU4 is about to
sleep. You are recommended to temporary
increase all three values in [Applications >
Settings > Power Manager > Display] to their
maximum value.

Launch the terminal and now we are ready to begin
preparation. Do the basic process of a software
update and then install some packages that are
required for further steps:

$ apt update && apt dist­upgrade ­y

$ apt install gcc g++ build­essential libssl­

dev bc ­y

After this is done, we shall start compiling and
updating the kernel:

$ cd /usr/src

$ git clone ­­depth 1

https://github.com/hardkernel/linux ­b

odroidxu4­4.14.y kernel­4.14

$ cd kernel­4.14

$ make odroidxu4_defconfig

$ make ­j8

Note: execution of the command mentioned above
will take about 30 minutes.

$ make modules_install

$ mount ­o rw /dev/mmcblk0p1 /boot

$ cp ­f arch/arm/boot/zImage /boot

$ cp ­f arch/arm/boot/dts/exynos5422­

odroid*dtb /boot

$ sync

Now we need to choose proper drivers for the GPU.
There is a mali-t62x-x11-driver package available via
apt, but the XU4 will have some dependency faults
with it. Therefore, we will install the driver from
Hardkernel’s Ubuntu repository and adapt it to work
with Kali Linux:

$ wget ­O mali http://deb.odroid.in/5422­

s/pool/main/m/mali­x11/mali­x11_20180717­

r17p0­a52903b­11_armhf.deb

$ dpkg ­i mali && rm mali

$ cd /usr/lib/arm­linux­gnueabihf

$ sos='libEGL_mesa.so.0.0.0 libEGL.so.1.1.0

libGLESv2.so.2.1.0'

$ for so in $sos; do rm ­rf $so; ln ­s mali­

egl/libmali.so $so; done

Now the driver is ready. Remove unnecessary
packages and reboot:

$ apt autoremove ­y

$ reboot

After the XU4 rebooted, check that the kernel has
been updated successfully:

$ uname ­r

You should see 4.14.55+. Touchscreen and other
modules should be working now. Enjoy your updated
Kali Linux on XU4.

https://www.offensive-security.com/kali-linux-arm-images/

Multitouch gesture recognition

Although the touchscreen is now working, it’s only
capable of handling single touches. Let’s teach it to
recognize multitouch gestures. There is a tool called
‘touchegg’, that handles multitouch activities, but it
has bugs, when it comes to a single touch mode.
Therefore, we will install another tool called ‘tatchi’,
that will allow us to switch between single (default)
and multi (touchegg) -touch modes with just one click.
Installing touchegg is a bit tricky, due to its
dependencies. So let’s get them:

$ apt install netselect­apt libqt4­dev

libxtst­dev libxv­dev multiarch­support ­y

$mirror="$(echo $(netselect­apt jessie ­a

armhf ­o /dev/null) | awk '{print

$1;}')pool/main/g/geis/libgeis"

$ debs='1 ­dev'

$ for deb in $debs; do temp=$(mktemp); wget ­O

$temp $mirror$deb'_2.2.16­1+b1_armhf.deb';

dpkg ­i $temp; apt install ­f ­y; rm $temp;

done

Now we are ready to install touchegg:

$ git clone

https://github.com/JoseExposito/touchegg

$ cd touchegg

$ qmake

$ make

$ make install

Now we need to install tatchi:

$ git clone https://github.com/mopo3ob/tatchi

$ cd tatchi

$ make install add

$ cd ../.. && rm ­r touchegg

A hand icon should appear in the top-right corner, of
the panel. Tap it once to switch to multitouch mode.
The icon will now change from one pointing �nger to
two �ngers. This means, that touchegg is ready for
recognizing multitouch gestures. Try to scroll the
terminal with two �ngers. Tap the hand button once
again, to switch back to single touch mode. It’s as
simple as that.

You will probably want to customize the con�guration
for multitouch gestures. You can do so by editing
~/.con�g/touchegg/touchegg.conf. Explore touchegg’s

wiki for more information:
https://github.com/JoseExposito/touchegg/wiki.

Con�guring the Alfa AWUS1900 WiFi adapter

Now that we have a fully operational XU4 running the
latest release of Kali Linux, it’s time to get our hands
on the Alfa AWUS1900, which is considered to be the
best WiFi adapter available for penetration testing.
The AWUS1900 allows router connection speeds of up
to 1900 Mbps, which requires an USB 3.0 port. The
ODROID-XU4 is one of the few microcomputers that
can use such a powerful quad antenna. To get it
working we only need to install the driver for the
Realtek RTL8814U chipset, which is the chipset
AWUS1900 adapter uses.

$ git clone https://github.com/aircrack­

ng/rtl8812au ­b v5.2.20

$ cd rtl*

$ make ARCH=arm

$ make install

$ cd .. && rm ­r rtl8812au

Driver installation is completed. Plug in your
AWUS1900 and a blue led indicator will turn on.

Figure 2 – Blue led indicator on Alfa AWUS1900 WiFi
adapter

Now let’s uses ifcon�g with our AWUS1900:

$ apt install net­tools

$ ifconfig

You are now able to see wlan0, provided that you are
using an Ethernet cable for the Internet. To put
AWUS1900 in monitor mode manually, execute
following commands:

https://github.com/JoseExposito/touchegg/wiki

$ airmon­ng check kill

$ ip link set wlan0 down

$ iw dev wlan0 set type monitor

$ ip link set wlan0 up

$ service NetworkManager restart

Give it a test by scanning for hotspots:

airodump­ng wlan0

It shall be able to detect nearby hotspots. Send ^C
(Control+C) to stop scanning.

We now have one of the most powerful
microcomputers running Kali Linux 2018.2 and
working with an ODROID touchscreen and Alfa
AWUS1900. Thanks to @odroid, @robroy and
@mad_ady for helping me to �nd solutions to the
questions covered in this article.

For comments, questions, and suggestions, please
visit the ODROID Forum thread at
https://forum.odroid.com/viewtopic.php?
f=96&t=31737.

https://forum.odroid.com/viewtopic.php?f=96&t=31737

Using ODROIDs in High Performance Computing (HPC) – ARM:
Head and Shoulders Above The Competition
 September 1, 2018  By Kurt Keville, MIT  Uncategorized

A modern datacenter uses far too much electricity
and air conditioning to run e�ciently. An ARM-based
Internet Service Provider can deliver web pages for
substantially less power than conventional
architectures (http://tinyurl.com/ApacheOnARM). At
the same time, ARM cores are rapidly being adopted
by the scienti�c Datacenter community because ARM
devices compute faster in �oating-point math
intensive operations, for a fraction of the energy
costs, and have an architectural roadmap of even
more performance per watt to come. There is also a
corresponding growth in interest in HPC (High
Performance Computing) and its uses in broader
domains from the ARM developer community. In
academia, there is also High Performance Extreme
Computing (http://www.ieee-hpec.org/) and IEEE
Supercomputing, which were demonstrated at the
recent SC13 conference in Denver, Colorado.
Additionally, IEEE Cluster, which was held in Indiana in

2013, has seen a marked rise in ARM-centric
publications.

The majority of modern supercomputing centers have
thousands to tens of thousands of cores dedicated to
their particular processing needs. Any time a
programmer can run an application at an improved
performance ratio (per watt, dollar, or square meter)
is a win to the Datacenter stakeholders as well as the
computationally scienti�c domain customers they
support. This is increasingly the case for situations
where applications must be run multiple times, and
where multiple applications share resources in HPC, a
lot like the cloud and a throwback to old-style
timesharing.

Why ARM?

The ARMv7 architecture has proven to be up to the
challenge of HPC in a number of ways that previous
ARM architectures were not. One might use ARM

http://tinyurl.com/ApacheOnARM
http://www.ieee-hpec.org/

despite energy e�ciency as the technology
represents a growth path for fast embedded
computing. When a Datacenter is composed of over
10,000 cores, considerable advantages are realized
through incremental improvements. These small
changes can add up to signi�cant savings in space,
power, and cooling. When memory is shared between
the CPU and the GPU on ARM SoCs (System on a
Chip), double the SIMD (Single Instruction, Multiple
Data) extensions on Cortex-A15 NEON GPU, and
considerably larger memory access potential, bene�ts
are realized at the place we need them most; where
the application and data sets meet on-die. With
growing acceptance of GP-GPU (General Purpose
GPU) computing and expansion of HPC-type
applications based on big data apps, the fast
computing modes of ARM are relevant in more ways
than ever, with a technology path towards an ever-
expanding share of HPC.

Why ODROID?

Today, ODROID has an Exynos family processor and
at least 4 ARM cores. The upcoming Exynos5 series
has 8 cores, 4 of which are ARM Cortex-A15.
Hardkernel, as well as the RunTime Computing
Solutions research consortium, have demonstrated
substantial power and performance improvements of
the XU in comparison to other contemporary
architectures. With Hardkernel’s ambitious release
schedule of new technologies, adopters of this
platform follow Moore’s law and ARMs rollout

e�ciently, allowing them to join the wave of newer,
better, lower cost, higher performance systems as
they emerge with meaningful upward compatibility.

What’s more, Cortex-A15 wins on most ARM-HPC
benchmarks (for instance, the NAS Parallel
Benchmarks at http://tinyurl.com/ODROID-HPC). The
RunTime Computing Solutions team has recently
demonstrated pivotal advantages of the A15 over the
A9 on the HPCC Challenge, the preferred benchmark
for HPC (http://hpcchallenge.org/). This test uses just
the A15 cores on the Exynos 5410 and maintains
them at maximum capacity during the test
(http://tinyurl.com/ODROID-LINPACK) which is not a
completely equitable comparison. However,
meaningful information can still be gleaned from it;
XUJessie is twice as good as U2Whisper in G-
HPLINPACK, the �rst test. The authors demoed the
SOX BOX at SC13 featuring many hardware mods
which improved performance. See our sites for more
info.

Conclusion

Today we can run many HPC applications on ODROID,
and as the upward pressures of energy e�ciency
cause industry professionals to rethink Datacenter
design, progressively more centers will adopt these
architectures. The future is bright for designers as the
push towards exascale computing ushers in a new
and exciting theme in embedded SoC technologies.

http://tinyurl.com/ODROID-HPC
http://hpcchallenge.org/
http://tinyurl.com/ODROID-LINPACK

Meet An ODROIDian: Andrew Armstrong
 September 1, 2018  By Rob Roy  Meet an ODROIDian

Please tell us a little about yourself. I am the CTO and
co-founder of Cadonix, the world’s �rst fully browser
based cloud electrical CAD solution. I have a broad
range of expertise ranging from scienti�c research,
embedded systems, electronic design, software
engineering and manufacture. I am very fortunate as
this allows me to work with some of the most
interesting companies in the world on their exciting
new technologies. In equal measure I get a lot of
enjoyment from the budding community of
electronics, computer and gaming enthusiasts I meet
through my YouTube channel, where I work on a lot
of electronics projects. I live in rural Oxford in the UK.
It is a great location for a technology company as its
not only near to London, but also one of the key
scienti�c hubs in the UK, especially for our
burgeoning space and electric vehicle industries.
There are a lot of clever people around here if you go
looking!

(Figure 1 – Stuart Ashen (aka Ashens
http://www.youtube.com/ashens) is a famous Youtuber,
gamer and movie producer / star. This was at the PLAY
EXPO London 2018. We were chatting about the ODROID-
GO as Stuart loves reviewing gaming hardware and is
most known for his review and movie about the
“Gamechild”)

By most measures, I was a pretty average high school
student (probably below average) who did not get
high enough grades for my chosen university.
Fortunately enough, I plucked up the courage to visit
them in person and ended up on a Software

Engineering degree course that I completed with a 1st
Class Honors degree. It did not stop there though,
since the University kindly sponsored me their
Doctorate program, and a few years later I ended up
with a Ph.D., speci�cally in the �eld of Image
Compression. I went on to a Postdoctoral Research
Fellowship in Loughborough University after that to
work on H.264 video compression. Around 5 years
later, I was accredited as a Chartered Engineer. I
always encourage people to keep trying and �nd that
thing they are really passionate about. For me it was,
and still is, learning!

(Figure 2 – Heyford Air Base 10K 2018 – Dr A and Coach
Ali Gilbrath smashing their personal bests for the 10k)

Figure 3 – Kids Heyford Air Base 10K 2018 – My two
young sons Alex and Theo also partook and won medals
in their category, which was the proudest day of my life!

I live with my two young boys Alex and Theo, my wife
Sarah and our cat Ziggy. Sarah works at Oxford
Brooks University helping to steer young minds on
the right educational path. It can get hectic at times
because I have a lot of international travel as part of
my role, but we �nd ways of making it work with
supportive family reasonably close. How did you get
started with computers? I was �rst introduced to
computers at the age of 3. It was a TRS-80 that my
father, who worked for ICL at the time (the UK’s
version of IBM), had purchased from a friend. I
remember patiently watching the asterisk in the
corner of the screen �ashing while waiting for a
cassette tape player to load my favorite pastime,
Dancing Demon. After that it was a progression of 8
bit and 16 bit computers and consoles over the years
ranging from BBC Micro, Commodore 64, Atari ST, PC,
Apple Macs etc.

Figure 4 – Neil from the retromancave is another
Youtuber on handhelds and old computers, and we both
host a podcast called Retro Island Diskettes

Figure 5 – Jarad and Back to the future Sneaker – Jarad is
a maker friend, we are posing next to a remake of the
legendary Back to the Future Nike sneakers

Probably the most pervasive machines we had in our
households were the various PCs that always existed
in my background, be it the humble IBM AT or the
exotic Compaq Portable III they were probably the
bedrock of my computing. It is safe to say that I
learned to program every machine I owned. What
attracted you to the ODROID platform? I am a little
embarrassed to say that I have been relatively in the
dark about the ODROID hardware until recently,
favoring their ubiquitous cousins in projects.
However, I am really interested in getting into the
ODROID-XU4 as a base for future projects. I go
through a lot of single computer boards, so it’s
important to �nd the right balance of power and
support and my recent involvement in the ODROID

community has given me the con�dence in the
platform.

Figure 6 – Design Stream Rig – This is the rig I setup to
record the various ODROID-GO videos where we
designed and built the �rst prototype audio hats

How do you use your ODROIDs? I use my ODROIDs for
gaming! Who does not love to �re up some old
emulators and play some of the old titles of their
childhood? It’s easy to see this as a pretty trivial use of
sophisticated technology, but I think it’s an amazing
use case in that it has encouraged so many people to
take an interest in hardware and even build their own
arcade cabinets.

Figure 7 – Odroid Audio Hard – Some of the �rst batch of
units that I assembled myself

Figure 8 – Built Odroid Audio Hats – Closeup of the hand
assembled v1 boards

On the more serious side, I do a lot of embedded
electronics, especially in the area of monitoring, data
acquisition and control. Many of these are in the
automotive industry where performance is key,
especially in the development of the most ground-
breaking vehicles devised. I am really interested in
exploring how to leverage the hardware for this. I am
even building a data acquisition interface for the
ODROID-GO, as it’s such a great portable unit.

Figure 10 – My �rst Computer TRS-80 – My very �rst
computer, recently retrieved from an attic and in a poor
state, I have changed the memory chips but it needs a
little more TLC!

Which ODROID is your favorite and why? I really like the
ODROID-GO! From �rst seeing it, I just had to have
one, so I pre-ordered it immediately. I was very lucky
as I received my unit the very next day and eagerly
built it. There are two reasons why I really like the
platform: 1) you can play games on it, and the �rst
use case for me was to play games while hopping

from airport to airport, and 2) you can hack the
hardware. I have a popular video out on how to hack
in an analogue headphone socket for your ODROID-
GO, which is a bit of an omission for those of us who
want to use it in public places. I recently started
following the forums, and in a series of Live YouTube
streams the backo�ce community designed a solder-
free upgrade to add this capability to the GO. The
community working on the ODROID-GO �rmwares
are doing great things, especially people like
crashoverride who ceaselessly works on improving
the platform. Clearly hacking the hardware and
coming up with solutions with internet friends is an
amazing amount of fun and a big draw to the
platform.

Figure 11 – A rare glimpse of some of the machines that
are hiding in the Backo�ce: how many can you see?

What innovations would you like to see in future
Hardkernel products? This is a tricky one, since
Hardkernel seems to be innovating like crazy, and I’m
having trouble keeping up. However, I would really
love to see an automotive interface board and really
nice enclosure. I know a lot of people who are either
trying to build (or get me to build!) vehicle diagnostic
tools using CAN bus and LIN bus, or people who are
trying to build entertainment or control system for
vehicles. There is a huge market for people who want
to modify their vehicles, and a tried and tested
platform would really help.

Figure 12 – I like to hack old computers and see if I can
build interesting interfaces to them. I will be using my
ODROID-GO to transfer data to and from this Amstrad
CPC soon

What hobbies and interests do you have apart from
computers? Anyone who watches my YouTube channel
or is on my Discord group will know that get bored
easily, and hobbies seem to come and go monthly. My
most enduring ones are motorcycling, working on my
cars, and running. The latter engages with the
scientist in me as I absolutely love the data you get
from running gadgets, from how much weight you are
putting on your left leg to how hard your heart is
working.

Figure 13 – One of the summer projects was to learn
how to make t-shirts, which is a lot of fun and a pretty
technical process you need to expose the screen to UV
to transfer your design

What advice do you have for someone wanting to learn
more about programming? If someone came to me

fresh with zero programming knowledge I would tell
them to really learn the fundamentals. To really be a
great software engineer, you really need to
understand how the hardware works. You may decide
that you are going to be a web programmer, but
those fundamentals of getting your code running on
bare metal will help you through your career, so start
with a calculator! If they could grab an old micro-
computer like a BBC Micro, Commodore 64 or
Amstrad CPC, and work their way through the basic
and advanced programming guides, I think they
would be in good stead to move onto the �avor-of-
the-month PC languages. Barring that, I would say to
download Lua or one of the packaged environments.
It has to be my favorite language of all time in terms
of teachability and ease of use. It has the simplicity of
BASIC, but o�ers nearly limitless power in the right
hands; just check out what people are doing with
PICO-8.

Figure 14 – I never let the opportunity to make a silly
face for social media go to waste!

