
L
IN

U
X

JO
U

R
N

A
L

E
M

B
E

D
D

E
D

•
Q

to
p

ia
•

d
b

4
o

•
R

u
b

y
o

n
R

a
ils

•
N

o
k
ia

7
7

0
•

M
S
P

4
3

0
D

e
v

e
lo

p
m

e
n

t
F

E
B

R
U

A
R

Y
2

0
0

6
IS

S
U

E
1

4
2

Since 1994: The Original Magazine of the Linux Community
FEBRUARY 2006

™

WE RUN THE GAMUT OF EMBEDDED LINUX FROM TABLETS TO HOME SECURITY
AN

PUBLICATION

USA $5.00  CAN $6.50
w w w . l i n u x j o u r n a l . c o m

SINGLE SIGN-ON 
AND THE CORPORATE

DIRECTORY, PART III

Embed the db4o 
Object-Oriented
Database

The TI
MSP430
Processor
and Linux

This palm-sized
Internet tablet
is so flexible 
and powerful 
it may make
your notebook
obsolete

Embedded Linux

Get Started
Programming

for Qtopia

Python, home 
automation,

security and you

THE NOKIA 770

U xaHBEIGy03102ozXv+:#

 

http://www..linuxjournal.com


    

http://www.cyclades.com/ljb


http://www.coyotepoint.com


FEATURES

40 MSP430 DEVELOPMENT 

WITH L INUX
Blinking LEDs can be fun and
instructive for using a nifty 
TI processor.
B R I A N  C .  L A N E

48 SHELL  SCRIPT ING A 

CAMERA SERVER
A few contortions are needed 
but you can still shell script a
surveillance system.
E R I K  I N G E  B O L S Ø

52 GETTING STARTED 

WITH QTOPIA
Want to write an application for the
increasingly popular PDA platform?
L O R N  P O T T E R

56 BUILDING A HOME

AUTOMATION AND SECURITY

SYSTEM WITH PYTHON
Want to use Python and cheap
hardware to feel more secure
about your home?
F R E D  S T E LT E R

62 EMBEDDING THE DB4O

OBJECT-ORIENTED DATABASE
How to get this single-library
powerful database into your
embedded system.
R I C K  G R E H A N

INDEPTH

76 THIN CL IENTS PAY MORE
Thin is always in and cost 
effective too.
S T E P H E N  S E F T O N

80 HETEROGENEOUS

PROCESSING:  A STRATEGY

FOR AUGMENTING 

MOORE’S  LAW
What do you do when you can no
longer enforce Moore’s law?
A M A R  S H A N

86 EMBEDDING PYTHON IN

YOUR C PROGRAMS
Ever wonder how to put Python
on a C food diet?
W I L L I A M  N A G E L

92 THREE CASE STUDIES  IN

COMMUNITY-ORIENTED,

OPEN-SOURCE SOFTWARE

DEVELOPMENT
What do a PDA, video capture
card and multimedia appliance
have in common?
R A N D A L L  P.  E M B R Y

TOOLBOX

16 AT THE FORGE
Assessing Ruby on Rails
R E U V E N  M .  L E R N E R

20 COOKING WITH L INUX
Little Bitty Applications
M A R C E L  G A G N É

26 WORK THE SHELL
Conditional Statements and 
Flow Control
D AV E  TAY L O R

28 PARANOID PENGUIN
Single Sign-On and the Corporate
Directory, Part III
T I  L E G G E T T

COLUMNS

36 L INUX FOR SUITS
A First Look at the Nokia 770
D O C  S E A R L S

96 /ETC/RANT
Skim Cream not Scum
N I C H O L A S  P E T R E L E Y

REVIEW

72 FAT MAN AND L ITTLE  BOY

J A M E S  T U R N E R

C O V E R  S T O R Y
36 A F I R S T  L O O K  AT  T H E  N O K I A  7 7 0

The Nokia 770 seems to be on perpetual back order, and we can see why. This

little Linux-powered hand-held does everything from Opera Web browsing to

multimedia streaming. Better still, new features are just an upgrade away.

Doc Searls has all the details and more, but be careful not to drool all over

the article and smear the ink before you’re finished reading it.
F E B R U A R Y  2 0 0 6  I S S U E  1 4 2

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 3

COVER IMAGE COURTESY OF NOKIA

D E PA R T M E N T S

4 F R O M  T H E  E D I TO R

6 L E T T E R S

12 U P F R O N T

70 N E W  P R O D U C T S

81 A D V E R T I S E R S  I N D E X

95 M A R K E T P L A C E

Linux is by nature one of the most
secure operating systems available.
This doesn’t mean a vulnerability isn’t
waiting around the corner, however.
Find out several ways to configure
your Linux system to keep out intrud-
ers, including Perl scripts to manage
firewall rules, why the friendly
Guarddog firewall tool has a bite bet-
ter than its bark and how to lock
down your Web server with the
Apache mod_security module. But
wait, there’s more, including a stealth
e-mail system for those of you who
have always wanted to play James
Bond at work.

We wrap up our single sign-on corpo-
rate directory series in the next issue
with some impressive feats. Want to
know how to set up printers for all,
manage users and SSH keys, and
even automate firewall rules via
LDAP? We’ve got the scoop.

And that’s not all. What do shell
scripts and blackjack have in com-
mon? Why are Web services just a
URL away? Sorry, you’ll have to read
the next issue to find out.

SECURITY

N E X T M O N T H

Build your own home security system—see
page 56 for details.

http://www..linuxjournal.com


4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

Introducing Nicholas Petreley as the new Editor in Chief

of Linux Journal. B Y  N I C H O L A S  P E T R E L E Y

I
often bump into writer’s block,
but it’s easy to start my first
and probably only From the
Editor column for Linux

Journal. All I have to do is start by
talking about how I often bump into
writer’s block, which allows me to
segue into just about any topic at all.

When I first started the Webzine
LinuxWorld, I remember Linux
Journal publisher Phil Hughes gave
me a dirty look at a convention in
Atlanta, Georgia. Apparently, he
thought we were out to crush Linux
Journal with a well-funded maga-
zine. Wrong on all accounts.
LinuxWorld was not well funded,
and it could never crush Linux
Journal. When Phil showed some
discomfort about LinuxWorld, I told
him how much I preferred Linux
Journal. He gave me a puzzled look
and moved on.

Here it is, many years later,
and I finally got my wish to join
the marvelous Linux Journal team.
Executive Editor Jill Franklin is a
dream, and by far the best editor I’ve
ever had the pleasure to work with.
Garrick Antikajian is Linux Journal’s
extraordinary artist. Subscribe and
download a PDF copy of TUX mag-
azine (www.tuxmagazine.com) if
you want to see how Garrick can
turn anything into a work of art. VP
of Sales and Marketing Carlie
Fairchild is unspeakably kind and
helpful. And I can’t wait to work
more closely with one of my heroes,
Doc Searls. I could go on, but I’d
run out of space.

I can’t sum up where I want to
take Linux Journal in 25 words or
less. So suffice it to say I want to

keep all the good stuff, make
some things more fun, add more
articles of practical value and tune
others to have more practical
value. Stay tuned.

Oh, why is this probably the
only From the Editor column you’ll
see from me? I prefer to do some-
thing I enjoy a lot more. Rant. Look
for my monthly rant at the end of
each magazine, including this one.
Okay, I’m perfectly aware that some
of you don’t like reading rants. For
$20, I’ll let you folks skip that page.
(I can’t do that? Sorry.) But I know
some of you not only need to rant,
yourselves, you also have some of
the same pet peeves I have. Some of
you have pet peeves totally opposite
of mine. But I have a feeling I’ll hit
a nerve one way or another, and
that’s a good thing.

Last but definitely not least, send
us e-mail at ljeditor@ssc.com. I’ll
fess up right now: I’m overwhelmed
with the task of coming up to speed
on Linux Journal. That, and I’m a
full-time single dad of two young
kids. The combo ain’t easy, so I
won’t always get to your e-mail in a
timely manner. But I want your
input. Always. That’s how to keep
Linux Journal the magazine you
want it to be. So give me some time
to adjust, but drop us a line and let
us know what you’re thinking. We
love it.

Nicholas Petreley is Editor in Chief
of Linux Journal and a former 
programmer, teacher, analyst and
consultant who has been working
with and writing about Linux for
more than ten years.

EDITOR IN CHIEF Nicholas Petreley, ljeditor@ssc.com

EXECUTIVE EDITOR Jill Franklin, jill@ssc.com

SENIOR EDITOR Doc Searls, doc@ssc.com

WEB EDITOR Heather Mead, heather@ssc.com

ART DIRECTOR Garrick Antikajian, garrick@ssc.com

EDITOR EMERITUS Don Marti, dmarti@ssc.com

TECHNICAL EDITOR Michael Baxter, mab@cruzio.com

SENIOR COLUMNIST Reuven Lerner, reuven@lerner.co.il

CHEF FRANÇAIS Marcel Gagné, mggagne@salmar.com

SECURITY EDITOR Mick Bauer, mick@visi.com

PRODUCTS EDITOR James Turner, newproducts@ssc.com

CONTRIBUTING EDITORS

David A. Bandel • Greg Kroah-Hartman • Ibrahim Haddad •

Robert Love • Zack Brown • Dave Phillips • Marco Fioretti •

Ludovic Marcotte • Paul Barry • Paul McKenney

PROOFREADER Geri Gale

VP OF SALES AND MARKETING Carlie Fairchild, carlie@ssc.com

MARKETING MANAGER Rebecca Cassity, rebecca@ssc.com

INTERNATIONAL MARKET ANALYST James Gray, jgray@ssc.com

REGIONAL ADVERTISING SALES

NORTHERN USA: Joseph Krack, +1 866-423-7722 (toll-free)

EASTERN USA: Martin Seto, +1 416-907-6562

SOUTHERN USA: Laura Whiteman, +1 206-782-7733 x119

INTERNATIONAL: Annie Tiemann, +1 866-965-6646 (toll-free)

ADVERTISING INQUIRIES ads@ssc.com

PUBLISHER Phil Hughes, phil@ssc.com

ACCOUNTANT Candy Beauchamp, acct@ssc.com

LINUX JOURNAL IS PUBLISHED BY, AND IS A REGISTERED

TRADE NAME OF, SSC MEDIA CORPORATION 

PO Box 55549, Seattle, WA  98155-0549 USA • linux@ssc.com

EDITORIAL ADVISORY BOARD

Daniel Frye, Director, IBM Linux Technology Center

Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University

Ransom Love, Director of Strategic Relationships, Family and Church

History Department, Church of Jesus Christ of Latter-day Saints

Sam Ockman, CEO, Penguin Computing

Bruce Perens

Bdale Garbee, Linux CTO, HP

Danese Cooper, Open Source Diva, Intel Corporation

SUBSCRIPTIONS

E-MAIL: subs@ssc.com • URL: www.linuxjournal.com

PHONE: +1 206-297-7514 • FAX: +1 206-297-7515

TOLL-FREE: 1-888-66-LINUX • MAIL: PO Box 55549, Seattle, WA

98155-0549 USA • Please allow 4–6 weeks for processing

address changes and orders • PRINTED IN USA

USPS LINUX JOURNAL (ISSN 1075-3583) is published monthly by

SSC Media Corporation, 2825 NW Market Street #208, Seattle,

WA  98107. Periodicals postage paid at Seattle, Washington and

at additional mailing offices. Cover price is $5 US. Subscription

rate is $25/year in the United States, $32 in Canada and Mexico,

$62 elsewhere. POSTMASTER: Please send address changes to

Linux Journal, PO Box 55549, Seattle, WA 98155-0549.

Subscriptions start with the next issue. Back issues, if available, may

be ordered from the Linux Journal Store: store.linuxjournal.com.

LINUX is a registered trademark of Linus Torvalds.

n F R O M  T H E  E D I T O R

Nick Gets 
His Wish

FEBRUARY 2006

ISSUE 142

http://www..linuxjournal.com


http://www.tyan.com


Infocom Games

In the January 2006 Get Your Game On col-
umn, Dee-Ann LeBlanc wrote: “The closest I
got this time was pulling out my Classic Text
Adventure Masterpieces CD with old
Infocom games.”

You and many of your readers probably didn’t
know that you can already play most of these
under Linux very smoothly. It turns out that the
Infocom games were written for a virtual
machine (sort of like Java); they come in two
pieces, the actual game and the virtual machine
interpreter. Several replacement virtual machine
interpreters have been written that run on Linux
and are under the GPL. One is called Frotz, and
the current version is 2.43. It’s available from
www.cs.csubak.edu/~dgriffi/proj/frotz;
it’s also packaged for Debian and probably
other distributions. There are many others.

You have to experiment a bit to find out where
the actual game file is on the CD, since they’ve
been put in different places for each game. For
zork 1, it’s in pc/zork1/data/zork1.dat, so run
frotz pc/zork1/data/zork1.dat in a con-
sole and you’re off. Some of the game files
have a .zip extension rather than a .dat extension
(that’s what Infocom called its virtual machine
format, back in the days before PKZIP).

Frotz doesn’t behave properly on the
games with graphics, like Zork Zero; sup-
port for those is in a derivative GPL pro-
gram that runs only on Windows, called
WindowsFrotz2002, and will hopefully 
be ported back to the original someday. 
In the meantime, WindowsFrotz2002 
runs under Wine, and can be downloaded
from www.ifarchive.org/indexes/
if-archiveXinfocomXinterpretersXfrotz.html,
but it requires pictures translated into the
Blorb format, which you’ll have to poke
around the Net for.

--

Nathanael Nerode

Dee-Ann LeBlanc replies: Thank you very
much! I think I might have known this at
some point along the way many moons ago
and then forgot. When I get home from being
on the road, I just might pull out that
Infocom CD again and cover this.

Another Name for Linux

Regarding the frivolous little bit, “Might Be
Just Right” [LJ, December 2005, page 94],
does the word Lagom apply to Linux? I think

it might, but maybe another word that applies
to Linux is Gaia, in that Linux consists of
many organisms working together as a single
organism. Linus Torvalds did not create an
operating system; he created a kernel that was
made into a successful operating system by
obtaining the cooperation of an array of GNU
utilities, which in turn spawned many comput-
er geeks around the world to use the fledgling
and somewhat useful UNIX system to fix and
enhance the system and its utilities, adapt other
stuff to work with Linux and write new stuff
from scratch and so on. You get the picture.
There is no real master organism, but there are
many organisms spontaneously working
together toward the one common good.

Another definition: Linux is an example of a
near-perfect anarchy for all the same reasons
that make it a Gaia—all work together for the
advancement of their common good without a
government or owner directing their activi-
ties. Alexander Berkman would be proud.

Is that black helicopters I hear coming this way?

--

Richard

Clarification

I’d encourage Maestro Mr Taylor to make a
point of reminding the readers of his Work the
Shell column that his work environment is spe-
cific to the Bourne shell, and some users, for
any number of legitimate reasons, may be con-
fronted with a C-Shell environment. As a nicety
to these readers, maybe a quick side-track into
how to get their own Bourne shell environment?
[See Dave Taylor’s Work the Shell column,
beginning in the December 2005 issue of LJ.]

Thank you all for your hard work!

--

Michael C. Tiernan

Dave Taylor replies: I knew we couldn’t go
too long without someone bringing up the
great religious war of the shell scripting
world, which shell to use. I tried to highlight
in my first column that I would be writing for
the Bourne Again Shell (though almost
everything will work with any modern
Bourne Shell too, especially if it’s a Posix-
compliant distro), but just to clarify, I don’t
think it really matters what shell you opt to
use; with just a few relatively minor syntactic
changes, the basic concept of scripting and
how you utilize Linux commands to accom-
plish extraordinarily difficult programming
tasks in just 5–10 lines remains the same.

Also, you can certainly have the C Shell or
one of its variants as your command-line
interpreter/login shell and still use Bash as
your scripting environment of choice.

To find out what shell you’re currently run-
ning, simply type in the following command:
ps -p $$. It’ll either say sh, csh, bash,
tcsh or similar. The syntax used throughout
the shell scripting column is for sh or bash.

Thanks for the Old School Article

Matthew Hoskins’ article “UNIX: Old
School” in the December 2005 issue was a
gem. I found it intriguing that a vintage 1974
release of UNIX could be booted under a
PDP-11 simulator and experienced firsthand.
A terrific retrospective.

--

Troy Hanson

On Patents

Subject: Re: On Patents

Roger Wolff’s response to Don Marti [see
Letters in the December 2005 issue of LJ] dis-
plays a weak understanding of patents. He uses
the descriptions of the patents to decide what
they cover. That doesn’t work. To understand
what the patent covers you must read the
claims section. Everything else is little more
than window dressing. Unfortunately, the
claims section is written in lawyer-ese. Reading
the rest of the patent can be helpful for setting
context for the claims. But that is all that it is.

For his example “method for coding an audio
signal”, the claims could be very narrow or
could be broad. Much depends on how care-
ful the patent examiner was. But you simply
cannot tell from the description.

Disclaimer: I am not a lawyer. But I do have
some patents.

--

Allen Brown

6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n L E T T E R S

http://www..linuxjournal.com


http://www.mikrotik.com
http://www.routerboard.com


http://www.monarchcomputer.com
http://www.monarchcomputer.com




And More on Patents

I found it interesting to read the “Archives,
Patents” letter by Kari Laine, and the answer
from LJ [November 2005 issue, page 10]. The
answer totally avoids the issues involved, when
you form a symbiosis with something that
you’re trying to fight. Kari’s letter gives the
impression that patents are evil, and yet Kari
suggests a model where a part of the Open
Source community relies on patents to fill the
bank account. How can you wholeheartedly
fight something that puts food on your table?

Now, I’m not saying that the Patent Commons
Project is bad because it forms a symbiosis
with the patent system—open-source purists
will take on that discussion if needed.

Maybe LJ can clarify the implications of form-
ing symbiosis with what you’re trying to fight,
by having Doc Searls write about it, all the way
from putting hooks to binary-only modules into
the kernel (pwc/pwcx), over the emulation of
“the deselected OS” (Wine), to making money
on patents when you actually don’t like them?

--

Martin A. Bogelund

A Few Words on Usability

I have a few comments to share about the
article “Bringing Usability to Open Source”
in the January 2006 issue of LJ.

First off, I must thank Nate and the Linux
Journal for printing the article. I have to stress
that usability should be one of the number one
goals of all software creators, open source or
otherwise. There is no substitute for observing
users, because as Nat has pointed out, they often
have a different mindset from that of the devel-
oper. Furthermore, developers often consider a
feature finished when it “works”, without realiz-
ing how normal users flow through the process-
es they use on a daily basis. More times than I
can count, I have sat down at my software with
users and realized immediately that I missed the
usability boat entirely as I watched them go
through several painstaking and frustrating steps
I had never envisioned to accomplish their task.
In most of these cases, it wasn’t a case of “bad
user”, it was a case of “bad software”—which is
hard for a guy like me to admit.

However, I think one has to be careful when
making software more “usable” not to be
equally blinded by the actions of a few users.

As an exercise, imagine you took a young child

out to your vehicle, set up a camera, and asked
the child to “take me to the store”. While this is
a very simple task, you might imagine your
young friend might grasp the wheel, step on a
couple of pedals, turn the key (with the clutch
out) smash into the garage door (oops that was-
n’t right), and then give up and admit that he or
she doesn’t know how to do it.

In my mind, this does in no way imply that the
car is “broken” from a usability perspective. A
well-meaning engineer may take this feedback
to indicate that the vehicle should be altered in
some way to ensure that this novice would
succeed next time. The problem is that any
individual with driving experience would get
in this “fixed” vehicle and become instantly
annoyed at having to step through some new
sequence of steps, most likely taking more
time, and ultimately being much less usable.

In Nat’s specific example of the New button
being wrong, I would have to disagree respect-
fully. First of all, the New button is quite con-
sistently used in many software packages to
begin a new action. New may be too terse, but
conceptually it’s correct. In my opinion Send
would be incorrect, because the option doesn’t
send anything, it only creates a new message.
If you want to send the message, you need to
press Send. This would be my interpretation,
of course, which doesn’t imply it is correct.

In this case, I might recommend that the but-
ton should say New Email (for English
speakers). This is both more clear and yet
remains true to the action it represents.
Perhaps this user would not have stumbled
with this minor change in place.

The point is not to disagree with the article or
Nat’s intentions. The point is to ensure that soft-
ware engineers and developers understand the
need to take usability very seriously and look at
a problem from several angles before making a
decision. Because writing bad software is much
easier than writing good software, and there are
more wrong ways than right ways, selecting the
best way is a huge challenge.

There are a lot of factors that go into usable
software. I have always believed that some key
elements are 1) consistency, both internally and
among other applications. 2) Clarity—language
should fit the action precisely and be backed up
by verbose tooltips that users can rely on to
clarify (tooltips should always be present as a
matter of consistency). 3) Efficiency—displays
should present all relevant information orga-
nized comprehensibly. Help should be available

and abundant. Help should never restate the
question (that is, help like “The Sort button will
sort your results” is not really very helpful). The
number of keystrokes and mouse clicks needed
to accomplish tasks should be minimized.
Repetitive tasks should have shortcuts. Process
flow should always be taken in to consideration.
Things like allowing multi-select rather than
single select can mean the difference of an hour
of work versus five seconds of work. Always
automate where appropriate, but give options.
Never lock the user in to a process but ensure
that the most basic processes are well designed
and flow well and have a minimum of “speed
bumps”. Allow the user to turn off or skip fea-
tures designed to assist a novice. You can try to
anticipate what a user wants, but don’t insist.

I can easily give examples of “bad” usability
that has been coded into software. Just for fun,
consider some features that I have experienced
while running Windows. Every time I put in a
new CD the OS tries to “guess” what I want to
do with it, wasting my time when I could have
already been doing it. And I really love it when
Windows tries to “help” me clean up the icons
on my desktop. Yeah, I really want to delete
those links, thanks for asking me (every day).
This does not improve my experience, and it’s
frustrating how difficult it is to disable these
behaviours, even for a relative expert without a
lot of time to go hunting down the method.

And yes, I could give examples in Linux
as well.

I’m sure I could write on the subject for
days. Though I don’t consider myself an
expert at interface design, I am fairly passionate
about the need for usability in software, and
I’ve made my share of mistakes. I’ve also
been subjected to my share of bad software
as I go about my own daily tasks, as I’m sure
most readers have.

It is my hope that the article and the work of
the Novell Usability Labs will help spur
more work on the subject. Success of the
Linux desktop has more to do with mind-
share than anything else at this point. The
platform is ready. We are close folks! Let’s
keep going!

--

JC Simonsen

1 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n L E T T E R S

We welcome your letters. Please submit “Letters to the

Editor” to ljeditor@ssc.com or SSC/Editorial, POBox 55549,

Seattle, WA 98155-0549 USA.

http://www..linuxjournal.com


http://www.coraid.com


1 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n U P F R O N T  N E W S  +  F U N

Are you thinking that it might be time
to move your music writing and pro-
duction projects to Linux? Or, have you
heard some talk about the much-
improved ALSA Project, but aren’t
exactly sure what tools are available
and what they can do? Whether you
are starting fresh on creating your
musical oeuvre or want to move your
work to open source, Dave Phillips’
long-running LJ.com series, At the
Sounding Edge, offers all sorts of
overviews, tips and how-tos on ALSA,
Ardour, Planet CCRMA, Hydrogen,
MIDIs, soundfile editors and more.

Dave’s current topic is music nota-
tion software for Linux—programs that
do both music scoring and music type-
setting. So far, he’s covered the Lisp-
based Common Music Notation
(www.linuxjournal.com/article/8670)
and the abc music notation specification
language (www.linuxjournal.com/article/
8629). In addition, Dave also wrote a
two-part article on LilyPond for us.
LilyPond is the current favorite among
many Linux musicians when it comes to
music notation, because, as Dave writes,
“LilyPond automatically formats most
music for excellent printed output, at
the same time permitting highly
detailed customizations to accommo-
date virtually any music scoring require-
ment, including unusual and idiosyncrat-
ic notations.” For details on how to get
LilyPond, what it can do and what its
GUIs offer, check out Dave’s articles at
www.linuxjournal.com/article/7657 and
www.linuxjournal.com/article/7719.

For a complete list of all Dave’s 
At the Sounding Edge articles, plus
other Linux audio coverage, take a
look under the Audio/Video Category
(www.linuxjournal.com/taxonomy/term/
14/9) on LJ.com. And if you recently
completed a musical masterpiece with
the help of Linux audio software or
wrote your own piece of audio software,
drop us a note at webeditor@ssc.com.

ON THE

WEB
The ksymoops tool is no longer needed for
decoding OOPSes under the 2.6 kernel. The
kernel does it all for you if you build your
kernel with CONFIG_KALLSYMS
enabled. After this, the OOPS output may
be transcribed directly from the screen to a
bug report and sent to the linux-kernel
mailing list. Although it’s hard to find any-
thing “convenient” about a kernel OOPS,
this at least represents one big step saved
for anyone reporting crashes to the kernel
developers. The 2.4 tree will continue to
rely on ksymoops for all OOPS decoding,
and this is unlikely to change due to the late
hour of 2.4 development. Marcelo Tosatti
has finally begun to stave off additional fea-
tures successfully, and we can expect him
to grow ever more strict over time.

Pantelis Antoniou has written code to
allow AMD’s Au1x00 embedded processor
to support communication over the serial
port, via the standard 8250 serial driver. The
code was not actually so complex—the main
oddities being that the Au1x00 has registers
at different offsets than the 8250 serial driver
expects, and this requires a mapping function
to do the conversion. Modem status-change
interrupts must be disabled for this hardware,
because not all members of the Au1x00 fam-
ily support it. These oddities have been
#ifdefed out of the more standard parts of
the 8250 driver, but the ultimate form of the
code probably will be determined by the
main kernel folks. Although #ifdefs are gen-
erally frowned upon, they also are still quite
common in the kernel.

Jaya Kumar has coded up support for
the AMD Geode CS5535 audio device, and
he has listed himself as the official CS5535
audio ALSA driver maintainer. This looks
like an easy sell, with no one opposed, and
only minor technical objections to over-
come. Andrew Morton examined the driver
himself and found no serious flaws. SPDIF
support is planned, but Jaya as yet says he
has no way to test the feature once it’s
implemented. The CS5535 was designed as
a client device for the GX 533@1.1W pro-
cessor, and other Northbridge components,
to produce embedded appliances. Linux
may use it this way or may find some twist-
ed yet brilliant alternative.

The primary kernel.org server has
moved to the Oregon State University
Open Source Lab, where it has better

bandwidth, better backups and a staff to
tend it. Javier Henderson flew the machine
there himself, on a private plane, for mini-
mal downtime. See osuosl.org/photos/
kernel/view for photos of the touching
event and to find out more about OSL.
Several glitches had to be worked out after
the move, including problems mirroring to
the other kernel.org nodes, and one situa-
tion where different nodes ended up with
different versions of git repositories, caus-
ing developers to see errors when they
tried to sync with Linus Torvalds’ tree.
But these were ironed out quickly, and the
new kernel.org setup seems to be working
out very well.

The Linux boot code, like the boot
code of most if not all operating systems, is
complex and messy. And judging by a
recent failed attempt to clean it up, this
may be the state of affairs for a long time
to come. Etienne Lorrain, who’s been
hacking the boot code since 1998, finally
decided to rewrite it from twisted
Assembly to sparkling clean C.
Unfortunately, the only way he could see to
do this was to abandon support for the
LILO and GRUB bootloaders. True,
Etienne added a number of nice features,
such as eliminating any restriction on ker-
nel size and providing boot-time access to
the BIOS in a fully functioning state. But
as Pavel Machek pointed out to him, “We
have bad assembly bootup code. Adding
good C bootup code, that is incompatible
with LILO/GRUB, does nothing to clean
the mess up.”

Stephen Hemminger has set up a new
wiki for Linux networking documenta-
tion, at linux-net.osdl.org. Originally
started as a repository for his own work,
Stephen opened the wiki up to all network-
ing-related contributions. This has drawn
some criticism from folks like Greg
Kroah-Hartman, who point out that the
wiki at wiki.kernelnewbies.org has exist-
ed for quite a while and would have wel-
comed contributions by Stephen. Stephen’s
reply to this is that there were Linux wikis
before, and there would be more later. In
fact, both wikis seem quite good, and there
is always the possibility that they will
merge later on.

— Z A C K  B R O W N

diff -u
What’s New in Kernel Development

http://www..linuxjournal.com


http://www.sbei.com


1 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n U P F R O N T  N E W S  +  F U N

They Said It
The best way to generate startup ideas is to do what
hackers do for fun: cook up amusing hacks with your
friends.

—PAUL GRAHAM, www.paulgraham.com/ideas.html

Whether or not you wish to argue about Freedom to
code versus the cost of the software, what a lot of us
are worried about is something even more intrinsic to
the problem. We’re worried about keeping the time
that was spent at the front of the creation equation.
We should be able to donate that time and not have
it used against us later. We should be able to be a
part of a community, and that simply means giving
some things away. The GPL guarantees that our gifts
will have the longevity they deserve.
—PAUL FERRIS, lxer.com/module/newswire/view/47217/index.html

My goal is to do all of the work it takes to be
explaining to the Supreme Court in 2025 why
broadcasting is unconstitutional.

—EBEN MOGLEN, www.forbes.com/business/2005/10/18/

open-source-software-FCC_cz_df_1018opensource.html

Imagine what’s going to happen if a law gets 
passed saying, in effect, “You put something on 
my computer without my knowledge, and that’s
breaking and entering”?
—PAUL FERRIS, lxer.com/module/newswire/view/47021/index.html

Some expect the Microsoft Windows market share,
today well in excess of 90% worldwide, to erode in
the coming years. Market share for Mac OS X is
expected to remain flat, and demand for every
other non-Microsoft desktop operating system is
expected to dwindle. So Linux, already the fastest
growing desktop operating system, is poised to
continue making desktop inroads.

—MARK STONE, INTEL, 

www.intel.com/cd/ids/developer/asmo-na/eng/240846.htm

(via Tom Adelstein)

1. Number of Linux videos found 
by Google Video’s public beta on
November 8, 2005: 13

2. Number of Linux videos found by 
Yahoo on November 8, 2005: 2,441

3. Percent annual Linux growth 
rate: 25.9

4. Billions of US dollars in Linux 
business revenues in 2005: 20

5. Projected billions of US dollars 
in Linux business revenues in 
2008: 40

6. Number of members in OSDL: 80

7. Number of members in the new 
Open Invention Network: 5

8. Number of members in the new 
LiPS (Linux Phone Standard): 10

9. Number of memers of CELF 
(Consumer Electronics Linux 
Forum): 53

10. The actual dollar price that 
children will be charged for the 
$100 laptop from the One Laptop
Per Child Program (OLPC): 0

11. Millions of $100 laptops planned
for production late this year or 
early next: 10

12. Millions of US dollars donated to
the OLPC program by Red Hat, 
AMD, Google, News Corp. and 
Brightstar Corp., apiece: 2

13. Low estimate millions of kids 
expected to receive a $100 
laptop: 100

14. High estimate millions of kids 
expected to receive a $100 
laptop: 150

15. Price in US dollars reportedly 
offered by Steve Jobs for OS X, 
for the laptops: 0

16. Percentage of the world to which
AMD plans to bring Internet and 
computing access by 2015: 50

17. Total millions of PCs expected to
ship in 2005: 200

18. Minimum laptop percentage of 
total 2005 PC shipments: 50

19. Number of results in a 
WalMart.com search for 
“Linux”: 314

20. Lowest-priced Linux in US 
dollars (Linspire) PC sold at 
WalMart.com: 219.84

Sources:

1: video.google.com

2: Yahoo.com

3–5: International Data Corp., via 
Open Invention Network

6: OSDL

7: Open Invention Network

8: LinuxDevices

9: CELF

10–16: Wall Street Journal

17, 18: theInquirer.net

19, 20: WalMart.com

— D O C  S E A R L S

LJ INDEX FEBRUARY 2006

http://www..linuxjournal.com


http://www.emperorlinux.com


1 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

S
everal years ago, at the height of the dot-com boom,
the phone was ringing off the hook with consulting
work. My employees and I scrambled to fulfill all of
the projects people were throwing at us. In the midst

of this boom, it became obvious that nearly every project had
similar characteristics, and that we were spending time (and
clients’ money) re-inventing the wheel with each new project.
We began to look for ways in which we could reuse code, or at
least techniques, across different projects. This, we assumed,
would make us not only a more competitive business, but it
also would make our day-to-day work more interesting. It is,
after all, more interesting to work on the new and different ele-
ments of each project, rather than creating yet another user-
group permission system.

We soon abandoned our plans for a common code system,
in part because other developers had not only solved many of
these problems, but also had released their solutions under an
open-source license. And so over the years, we did a variety of
different projects using Web development frameworks, many
of which I have described in earlier editions of At the Forge.

But as anyone who has worked with such frameworks has
learned, there is no free lunch. Nearly every framework tries to
shoehorn you into doing things in a particular way, making its
own set of trade-offs that might (or might not) fit the way you
want to develop solutions. I have used a number of these
frameworks over the years, and although I enjoyed various
parts of them, I didn’t feel like any of them allowed me to
express myself the way I wanted.

I’m, thus, one of many developers who has become
increasingly excited about a relative newcomer to the arena,
known as Ruby on Rails. As we have seen during the last few
months, Rails is a framework that provides a number of differ-
ent functions, including an object-relational mapper, an MVC
(model-view-controller) approach to design, an integrated tem-
plating system and built-in support for testing.

Rails has become extremely popular in the year or so since
it was first released, and though it is still rough around some
edges, the momentum is undeniable. Moreover, Rails has now
become so popular that other frameworks are springing up,
claiming to be Rails-like or with many features that are “just
like Rails” or “better than Rails”.

Why are so many people excited about Rails? More impor-
tant, should you consider using it for your next Web/database

project? Finally, what trade-offs does it force developers to
make, and how might these trade-offs affect your decisions?

Before Rails
I have been developing Web applications since the days when
the phrase Web application described CGI programs that sent
e-mail, rather than a billion-dollar industry. Every framework I
have used has brought something to the table, and has made it
easier for me to develop applications in one or more ways. At
the same time, each frustrated me with the trade-offs I was
expected to make in order to work with the system.

For example, Mason was one of the first Web development
frameworks that I worked with, and it spoiled me with its flexi-
bility and ease of use. Mason is written in Perl, and it is
designed to work most easily with mod_perl and Apache.
Installation and configuration have become trivially simple
over the years, assuming you already have a working copy of
Apache and mod_perl on your server. Also, Mason integrates
beautifully with the many Perl modules available on CPAN,
and with the mature and robust development tools the Perl
community has created over the years. When I have to create
an on-line system with Perl, Mason is definitely the first tool
I turn to.

But what has always frustrated me with Mason is the small
number of components that comes with the system. Sure, I
could create a system for handling user accounts, and even for
permissions and groups. But did I really want to write such
code from scratch for every project I worked on? Moreover,
although Mason’s templates are highly expressive for develop-
ers, they include a great deal of Perl code and unusual con-
structs that can scare or surprise nontechnical developers.

I was thus drawn to OpenACS, an Open Source community
system that has a significantly smaller following than Mason.
However, the OpenACS templating system separated each
viewed page into two components, one written in Tcl and the
other in a modified form of HTML, with a specified “contract”
between the two. In addition, OpenACS came with a standard
data model designed to be used by all of the different applica-
tions in the system. You didn’t need to worry about creating a
registration module, because one came standard with the sys-
tem. You also didn’t need to create forums, Weblogs or calen-
dars, because those also came in the standard system.

The centralized, standard data model and set of administra-
tive applications were certainly appealing; however, OpenACS
also had its problems. Perhaps the biggest one was the weird
way in which OpenACS implemented its data model, using a
relational database to keep track of hierarchies and objects.
This system had a great deal of intellectual appeal; relational
databases are fast, stable and cheap, and object-oriented pro-
gramming has made it easier to model many types of data. But
the marriage of the two meant that creating even a simple
OpenACS application could be quite complicated. Moreover,
as the OpenACS community grew, the data models became
increasingly difficult to keep small, because everyone’s needs
were slightly different.

I also looked into Zope, a Web development framework
written largely in Python. Zope has a large, strong community,
and it continues to be developed and enhanced by Zope
Corporation. Zope has many attractive features, including an
extremely robust development environment, compartmental-

n T O O L B O X  A T  T H E  F O R G E

Assessing
Ruby on
Rails
All the dope on Zope versus Ruby on Rails 

B Y  R E U V E N  M .  L E R N E R

http://www..linuxjournal.com


ized “products” that can be added and upgraded individually,
and a sophisticated system of users, roles and permissions.
Zope also pioneered the idea of object publishing, in which a
URL describes the method that should be called on a particular
object. Thus the URL /Foo/bar means that we’re invoking
Foo.bar, passing inputs via the HTTP request and receiving any
output via the HTTP response.

The most commonly heard complaint about Zope is that it
is complicated to learn. This is somewhat true; it took some
time before I found myself understanding the “Zope zen”, as it
is known. In addition, many things I would expect to be
straightforward require some coding acrobatics in order to
work correctly—which might be a reflection on my coding
style, but it also seems to be an artifact of how some Zope
design decisions were made and the pervasive way in which
objects are used within Zope.

Early on, Zope’s designers decided to avoid the problems
associated with relational databases by building their own
object-oriented database. On the one hand, this gave Zope a
number of big advantages over its rivals, including the ability
to undo changes to the system, built-in permissions and a stor-
age system that mapped perfectly onto data types in Zope. But
given the speed and pervasive nature of relational databases,
SQL was also necessary. Zope thus provides the ability to con-
nect to and work with relational databases, using a version of
its DTML-templating language.

But this means that many Zope products—and certainly
all of the products I have worked on—must coordinate the
relational and object databases. This is generally a not-too-
terrible way to handle things, but I always have ended up
wondering why my life needs to be so complicated. And for
all of its sophistication, I have often found myself creating
the same types of create-update-delete methods and templates
time after time.

Where Rails Fits In
So, it should come as no surprise that Ruby on Rails fills many
of the gaps I have long perceived for Web developers. That
said, my above descriptions also should make it clear where I
think Rails should go if it is to continue to be successful.

One of the biggest draws for Rails is the speed and ease
with which developers can create code that talks to a relational
database. And although I am far from convinced by demos of
what you can do in 15 minutes, my experience confirms that
the demos are quite realistic. This is because Rails assumes
you will create your database tables following its conventions,
such as plural table names, ID fields named id and time/date
fields ending with _at.

If you follow these conventions, you will discover you have
to write a ridiculously small amount of code to handle many
standard situations. Indeed, you probably will find yourself
writing a handful of lines of code for many of the model
objects you create, because the Active Record mapper within
Rails will have done almost all of the work for you.

This means that much of the work needed for a Rails appli-
cation is on the controllers (that is, objects whose methods are
exposed via URLs) and views (that is, Ruby-HTML hybrid
templates). Each controller method can produce its own output
in plain text, HTML or via a template of the same name in the
views directory. There is even a built-in Rails function for

sending a file to the user, allowing you to set up downloads of
binary files without having to worry about the syntax for speci-
fying MIME types and filenames.

Zope advocates undoubtedly will say that these latter fea-
tures are available in Zope, and have been around for several
years. This is true—but figuring out how to use them, and
where they go, can be maddeningly difficult for newcomers.
By providing reasonable defaults for a great number of activi-
ties, and then allowing developers to change those defaults,
Rails manages to make the simple cases trivially easy, and the
difficult cases only moderately hard. Moreover, the scaffold-
ing generators included with Rails provide just enough of a
basic, initial set of controllers and templates to get people
going without having to spend hours creating and modifying
various code files.

Because of these intelligent defaults, there are a limited
number of objects and methods that a new Rails developer
must master before starting to create an application. This
stands in stark contrast with all of the other frameworks I
described, which require understanding a fairly large number
of objects and methods, as well as how they fit together, in
order to work productively. True, Rails is growing in size and
sophistication, and it runs the risk of gaining some of the bloat
we see with more-established frameworks. So far, Rails has
managed to avoid many of those problems and complications,

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 1 7

http://www..linuxjournal.com
http://www.layer42.net


and the developers seem committed to keeping things as
simple as possible.

Considering Rails
As I wrote above, each Web development framework has made
its own set of design trade-offs. What is missing from Rails
that would make it even better? What should you keep in mind
when considering whether to use Rails for an application you
are developing?

First, working with Rails requires an acceptance of the
Ruby language. I had been looking at Ruby for some time
before working with Rails, and I am increasingly enjoying it.
However, undoubtedly many programmers will resent elements
of Ruby, from the syntax to the object model. Ruby is also less
mature than Perl and PHP when it comes to third-party add-on
libraries, which means that you might need to write some spe-
cialized routines yourself, rather than rely on the community
for support. And finally, Ruby lacks true Unicode support,
which means that many multilingual Web sites will be unable
to use it for the time being.

But if you are willing to consider Ruby as a language for
Web development, should you use Rails? I would argue that
the smaller the development team and the more ambitious the
project, the more likely you are to benefit from Rails. Very
small projects don’t need the overhead that Rails requires, and
they are probably best served with CGI programs and PHP. But
the moment you need a relational database with more than one
table, you’re likely to benefit from working with Rails.

However, both Ruby and Rails are designed for small
teams of programmers, and even programmers who are work-
ing alone. If more than one person is going to work on a Rails
project successfully, it will require great discipline on the part
of the programmers to ensure that no one modifies files that
are in someone else’s purview. The fact that each Rails applica-
tion resides in a single directory might increase the likelihood
for such confusion.

Large projects, thus, might benefit from some of the larger
frameworks, such as Zope—or even one of the many Java-
based projects that has been released in recent years. My
biggest hangup with Java is that it is relatively cumbersome
and slow, especially when compared with languages such as
Perl, Python and Ruby. But when you are working on a large
project with many other programmers, it might be an advan-
tage to have more compile-time checking, explicit declarations
and safeguards that are missing from languages such as Ruby.

You also might want to consider the sophistication of your
Web designers when thinking about Rails as a platform. Some
relish the idea of working with code within templates, and oth-
ers are scared of it and might even erase or change code. I still
think that ZPT and OpenACS templates are a better system of
templates, so I was encouraged by the recent announcement of
Liquid, a templating system for Rails in the style of PHP’s
Smarty. I have been impressed by Smarty in the past, and I
think this might help speed the introduction of Rails into large,
established Web shops.

The fact that each Rails application uses a single directory
of plain-text files has both advantages and disadvantages. One
major advantage is that everything can be stored easily in CVS
or a similar version-control system; installing the application in
a new location can be as simple as checking out the code.

However, this approach means that it’s a bit harder to have
multiple instances of the same application running on the same
server, as with OpenACS packages and Zope products. We
always can create multiple copies of the Rails application’s
directory tree, but it doesn’t seem possible to have multiple
instances of the same package.

As I mentioned above, I was originally quite attracted to
OpenACS because of its single, standardized data model. I
now understand that such a heavy, centralized data model is
almost always going to be inadequate, but I still have to won-
der why Rails doesn’t come with any generic set of built-in
permissions or registration. The answer, I suppose, is the grow-
ing number of Rails plugins, among which are several registra-
tion systems that can be integrated into existing Rails applica-
tions. I still would prefer to see more standardization on this
front, but that is probably a lost cause at this point.

Finally, one problem Rails shares with every other environ-
ment is that of legacy code. Rails is so new, and so different,
does it mean that its adoption will force us to abandon what we
have already done? Possibly, but not necessarily. Rather than
rewrite a mature Perl library in Ruby, I simply wrote a wrapper
using XML-RPC. Ruby has an easy-to-use XML-RPC client,
which I used within my Rails application to contact the Perl
code. This has worked smoothly and easily, and it means I can
benefit from Rails and CPAN at the same time. The fact that
Rails lets developers override its database naming conventions
also means it can be used with existing databases, rather than
force users to create new database schemas that conform with
Rails conventions.

Conclusion
Some people are hailing the arrival of Rails as the beginning of
a new era in Web development. And indeed, I think Rails has
set a new standard for what we can expect in a Web develop-
ment framework. No longer will developers believe that it
should take more than a few lines of code to create a “hello,
world” program, or even to handle basic database actions.

Also, Rails is starting to convince developers that com-
mon conventions can be conducive to rapid, bug-free devel-
opment. It took many years for developers to agree that
garbage-collected languages were an improvement over
malloc(), and it is taking a similarly long time for us to
agree that conventions are better than configuration files.
But the popularity of Rails probably means that we are
increasingly ready for such a change.

Although no Web development framework is perfect, I
believe that Rails has hit the sweet spot for many of the
applications I have found myself writing for more than a
decade. Both Ruby (the language) and Rails (the framework)
are still maturing—but if this is how they are as relatively
immature tools, I can’t wait to see what they’re like when
they are finally ready.

Resources for this article: www.linuxjournal.com/article/
8693.

Reuven M. Lerner, a longtime Web/database con-
sultant, is currently a PhD student in Learning
Sciences at Northwestern University in Evanston,
Illinois. He and his wife recently celebrated the birth
of their third child, a boy.

1 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n T O O L B O X  A T  T H E  F O R G E

http://www..linuxjournal.com
http://www.linuxjournal.com/article/8693


http://www.thinkmate.com


2 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

Y
ou certainly have a lot of tools at your fingertips,
François, but don’t you think you might be overdoing
things just a little bit? Of course, I’m proud that you
have taken to this subject so quickly, but having only

a portion of your screen left on which to run applications, such
as a Web browser or word processor, kind of limits its useful-
ness, don’t you think? The whole point of applets is that they
are small, but you have so many running, there is little room
left for anything else.

No matter, François, we’ll discuss this later. In fact, embed-
ded applications such as these fit in very nicely with tonight’s
menu. But now we need to get ready as our guests will arrive
at any moment. Too late, François. They are already here.
Welcome, everyone, to Chez Marcel, home of exquisite wines
and the finest in Linux fare. Please, sit and make yourselves
comfortable. François, hurry down to the wine cellar and bring
back the 1999 Brunello di Montalcino from Tuscany. Check
the southeast wing of the cellar, right past the Chianti.

While my faithful waiter fetches the wine, let me tell you
about about today’s selection. Earlier on, I was demonstrating
the power of those small applications you find embedded in the
panel at the bottom of your graphical desktop. These little pro-
grams are called applets, and many of them are engineered to
fit nicely into your taskbar while still providing useful func-
tionality. Many people tend to think of this as the taskbar, but
in reality, the taskbar is just one of many applications embedded
in that panel. Other embedded applications include the task
switcher, the menu, the clock and that system tray itself.

Before we continue, I should mention that KDE users gen-
erally have one, all-encompassing panel at the bottom of their
screens, while GNOME users often have two panels running:
one at the top and one at the bottom of their screens. I cover
both desktops today, starting with KDE. These helpful and
common applets (the taskbar, panel and so on) aren’t the only
ones that came with your system. In fact, there are several just
waiting for you to try.

Adding an applet to your KDE panel is easy. Right-click on
the taskbar, and move your mouse over the Add to Panel menu,
then to the Applet submenu (Figure 1).

A rather large collection of applets appears from which you
can make your selection. Click on the applet of choice, and it
appears in your KDE panel. I will now confess my love for
these little applets in general, but none more so than the dictio-

nary applet (Figure 2). When I configure a new system for
myself (or anyone else for that matter), I invariably add the dic-
tionary applet. I can’t imagine the panel without this incredibly
useful little tool. Simply type in a word, press Enter and the
program searches various on-line dictionaries for a definition.

Although this may be my favorite applet, I find many others
are very useful to have. Like most people around here, I tend to
obsess about the weather, and so I run the KDE weather applet
(cloudy and 5ºC, if you’re curious). Right-click the applet, select
Configure KWeather and select your location from the city list.
The color picker is particularly useful if you are doing a lot of
graphics work and you want to capture any color on the screen,
even from Web pages. Then there’s the moon phase applet—
nothing like knowing that it’s only six days till the next full
moon. If you are feeling particularly geeky, add a binary clock.
You’ll find a system monitor as well. Take time to try each of
them out. There are certainly plenty to choose from (Figure 3).

n T O O L B O X  C O O K I N G  W I T H  L I N U X

Little Bitty
Applications

Even a panel of experts would agree these panel

tips are priceless. B Y  M A R C E L  G A G N É

Figure 1. Additional applets can be added from the KDE panel by right-clicking on

the panel.

Figure 2. I consider the dictionary and weather applets to be absolutely essential.

Figure 3. This is just a fraction of the many applets included with KDE.

http://www..linuxjournal.com


http://www.OSShpc.com


http://www.pgroup.com


Eventually, you may find that your panel is getting a bit
crowded with little room for tasks or even smaller system tray
applets. What are you to do when you fill up your panel? One
option is to remove applets you aren’t using. To do so, right-
click on the panel, go to the Remove From Panel menu and
select Applet from the submenu.

If, however, you believe that too much of a good thing is
just about right, you may not want to remove your applets.
Happily, you don’t have to. Simply add a child panel.
Incidentally, this is what François and I were discussing when
you arrived—he had one too many panels and a very cluttered
desktop. Because I know you will all show restraint, I’ll tell
you how it’s done. Right-click on the panel and move your
mouse to the Add to Panel menu and then to the Panel sub-
menu where you’ll find several options, including another
Panel. Click here and a plain, gray Panel appears on your
screen directly above your current panel. You now have several
options, one of which is to start populating this child panel
with even more applets. There are other things you can do
though, and I would like to tell you about a few.

First and foremost, you may not like the position of the
new panel. To move it, simply click and drag the panel to
another place on the screen. Your options are along the sides,
at the top of the screen or below the current panel. Another
possibility is to right-click and select Configure panel. This
approach also lets you decide on the size of the panel.

GNOME users certainly aren’t left out of the applet mad-
ness. As I mentioned earlier, the concept of a panel with
embedded applications exists here as well. Although we could
work with either (or both) of the GNOME panels, I concentrate
on the bottom one for now.

The default look and size of the panel varies somewhat
depending on the distribution or release. My GNOME 2.12
panel had a default size of 24 pixels. Depending on the nature
of the program, applets embedded in a panel of this size tend
to be a little hard to look at. Should you find yourself in the
same situation, right-click in a blank area of the panel and
select Properties from the pop-up menu. Once you do this, the
Panel Properties dialog appears (Figure 4).

In my experience, and on my monitor, 48 pixels is pretty
much ideal. However, how large you choose to make the panel
is entirely up to you and may vary with the amount of wine
you drink. Just a little joke, mes amis, but an excellent idea,
non? François, kindly refill our guests’ glasses.

Now that you’ve prepped your panel, it’s time to find and
add some of those applets. Right-click on the panel and a small
menu appears. Click Add to Panel and a list of all the available
applets appears (Figure 5). This list may be one single list with
a short description of the applet in question, or it may be orga-
nized into categories. Scroll down and find something you like,
then click the Add button. For my first applet, I chose the one
labeled Fish, an animated swimming fish that pops up random
bits of cleverness using the fortune command. And, yes, the
fish’s name is Wanda. Non, mes amis, I did not make this up.

In a few seconds, your applet will appear in the panel. When
an applet starts, it rarely starts in exactly the position I want.
Luckily, moving it is an easy process. Simply right-click on the
applet and a small menu appears (Figure 6). One of the options
is Move. Click here and a small hand icon appears that allows
you to drag the applet to wherever you want it to live. You even



2 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n T O O L B O X  C O O K I N G  W I T H  L I N U X

can move it to another panel (more on that in a moment).
Have another look at that menu, and you’ll see that there are

some other useful options here. For instance, each application
may have its own set of configurations. The fish applet I had
you install comes with a small handful of additional graphics—
you may not like fish. Simply click on the Preferences menu to
make your changes. Finally, should you decide that the program
you chose is just taking up space, there’s a Remove option.

When applet mania has taken hold, you will find yourself
out of space. Yes, it is time to add another panel. Right-click
somewhere in your panel’s empty space. From the pop-up
menu, select New Panel. A blank, gray panel appears that you
can drag to any location you see fit. As with the original panel,
selecting the Properties dialog lets you change the size to fit
the applets you have in mind.

On the GNOME applet side, I have some of the same favorites,
although they are not entirely the same in terms of functionality.
The dictionary applet is a must, as is the weather reporting pro-
gram. The fortune fish (above) is fun, as are the eyes that follow
your mouse pointer around the screen. The Take Screenshot applet
is particularly useful when you are doing documentation. Because I
work on a variety of systems, I’m also rather fond of the Terminal
Server Client and the Connect to Server applets.

Once again, mes amis, the clock on the wall would seem to
imply that we have once again filled up our allotment of time.
Surely, there must be some way to add another few hours to
our day as easily as adding another panel. Until then, we have
my faithful waiter, François, ready to refill your glasses one
final time before before we say, “Au revoir”. Please raise your
glasses, mes amis, and let us all drink to one another’s health.
A votre santé! Bon appétit!

Marcel Gagné is an award-winning writer living in
Mississauga, Ontario. He is the author of the all new
Moving to Linux: Kiss The Blue Screen of Death
Goodbye! 2nd edition (ISBN 0-321-35640-3), his fourth
book from Addison-Wesley. He also makes regular
television appearances as Call for Help’s Linux guy. Marcel is also a
pilot, a past Top-40 disc jockey, writes science fiction and fantasy,
and folds a mean Origami T-Rex. He can be reached via e-mail at
mggagne@salmar.com. You can discover lots of other things (includ-
ing great Wine links) from his Web site at www.marcelgagne.com.

Figure 6. Each applet can be configured, moved or removed.

Figure 4. To make some of these applets useful, you may want to increase the

default panel size.

Figure 5. Adding an Applet to the GNOME Panel

http://www..linuxjournal.com


MBX is the Industry Leader for Server Appliances

www.mbx.com
1-800-681-0016

Intel, Intel Inside, Pentium and Xeon are trademarks and registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. Lease calculated for 36 months, to approved business customers. Prices and 
specifications subject to change without notice. Setup fee may apply to certain branding options. Motherboard Express Company.  1101 Brown Street Wauconda, IL. 60084.

From design to delivery we are dedicated to building a partnership with you.

• Intel® Celeron 336 Processor at 2.8 GHz
• 1U Rackmount Chassis 16.5” Deep
• 512MB PC4200 DDR2 Memory
• Maxtor 80GB Serial ATA Hard Drive
• Eight Gigabit NIC’s, 4 ports with by-pass
• Optional 16x2 LCD with Keypad
• On-board Compact Flash Socket $1,499 

• Brandable With Your Color and Logo
• Custom OS and Software Install
• No Minimum Quantity Required
• 3 Year Warranty

$899 

• Intel® Celeron 336 Processor at 2.8 GHz
• 1U Rackmount Chassis
• 512MB PC3200 DDR Memory
• Maxtor 80GB Serial ATA Hard Drive
• Dual On-board Gigabit NIC’s
• Custom OS and Software Install
• No Minimum Quantity Required
• 3 Year Warranty

MBX RP-1110 Platform

MBX is the leader in custom appliances. Many premier application developers have chosen MBX as 
their manufacturing partner because of our experience, flexibility and accessibility. Visit our website or 
better yet, give us a call. Our phones are personally answered by experts ready to serve you.

other configurations available
please call for pricing

other configurations available
please call for pricing

SMB-OEM NSA and 512.indd   1 12/9/2005   3:19:41 PM

http://www.mbx.com


2 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

T
he last of the basic building blocks of shell scripting
are conditional statements, allowing you to decide
programmatically whether to execute a block of
statements based on a logical test, and flow control

statements, the great innovation from the earliest days of
programming when you could have a block of code execute
more than once. We explore both of these in this column
and, finally, are done with the proverbial Lego blocks of
scripting, allowing us to start exploring how to solve com-
plex scripting problems with novel and unique combinations
of simple statements.

The most obvious conditional statement is if-then-else,
which in shell scripting looks like:

if condition ; then ; statements ; else ; statements2 ; fi

Of course, you’d usually see this on multiple lines, so it’s
more likely to look like this:

if condition; then

statements

else

statements2

fi

There are some variations on this, including safely 
omitting any sort of else clause, but more interestingly, 
you can “chain” conditionals together with an else 
if structure:

if condition; then

statements

elif condition2 ; then

statements2

fi

That’s perfectly valid and, worth noting, functionally
different from the structure:

if condition

then

statements

if condition2; then

statements2

fi

fi

The difference will be obvious to anyone who has pro-
grammed before. In the first example, statements2 would
execute if condition were false and condition2 were true. In
the latter example, however, statements2 would be executed
only if condition were true and condition2 were true. Subtle,
but very important!

Specific logical conditions can take on a wide variety of
appearances, because the only requirement for a conditional
expression is that it returns zero if the evaluated condition is
false and nonzero if it should be considered true. Indeed,
there are commands in Linux called false and true, so you
can use statements like “if true; then....” Most conditions,
however, are built around the invaluable test command, with
its many different flags and options.

Want to compare two string (text) values? You could use:

if  test $myvar = "exit" ; then

or its shortcut alternative of:

if [ $myvar = "exit" ] ; then

Compare two numeric values with:

if test $numval -lt 10 ; then

There’s also a world of file and variable tests available in
the test command too, including -r to test if a file is readable,
-e to see if it exists at all, -s to see if the file exists and has a
nonzero size, -d to test for a directory and -f to test for a
regular file.

So if you want to differentiate whether $filename is a
file, directory or other file type, you could use a statement
sequence like:

if test -f $filename ; then

echo "$filename is a regular file"

elif test -d $filename ; then

echo "$filename is a directory"

else

echo "$filename is neither a file nor a directory."

fi

Check out the test man page (use man test) to read about
all the many different conditionals you can use in a shell script.

Flow Control
There are a number of different looping and flow control struc-
tures above and beyond simply the if-then-else conditional,

n T O O L B O X  W O R K  T H E  S H E L L

Conditional
Statements
and Flow
Control

IF you need conditions in your scripts, THEN this is

the column for you. B Y  D AV E  TAY L O R

http://www..linuxjournal.com


luckily, and here are the big three:

n for x in y; do; statements; done

n while x; do; statements; done

n case x in ; condition1) statements ;; condition2) statements ;; esac

There are more conditional statements, but you’ll 
find that in the vast majority of cases, having for loops,
while loops, case statements and if-then-else statements
will serve as the building blocks of even the most 
complex script.

The for loop is particularly useful in its variations. Want 
to step through the parameters given to the shell script itself?
Use something like this:

for value ; do ; statements ; done

Want to step through a set of matching filenames for a
given pattern? Here’s how to do that in a script:

for filename in *.c ; do 

statements

done

Let’s look at how a couple of these can be combined 
in useful ways, rather than just duplicate the man page,
however. Here’s a simple script that examines each entry 
in the current directory, indicating whether it’s a file 
or directory:

for name in *

do

if [ -f "$name" ] ; then

echo "$name is a file"

elif [ -d "$name" ] ; then 

echo "$name is a directory"

else

echo "$name is neither a file nor directory"

fi

done

For illustrative purposes, let’s try another version of this
script, one that recognizes *.c as C source files, *.h as included
header files and *.o as intermediate object files, but this time
we’ll use the case statement:

for name in *

do

case "$name" in

*.c ) echo "$name is a C source file"       ;;

*.h ) echo "$name is a header file"         ;;

*.o ) echo "$name is an object file"        ;;

esac

done

From a readability perspective, the case statement is
hard to beat!

Wrapping Up
There are, of course, many different ways to create more-
advanced and sophisticated scripts, notably including shell
script functions, but we’ll delve into those as we proceed.
I’m a big fan of just doing rather than talking around the
topic forever.

I hope that’s enough on the basics of flow control 
and conditional expression evaluation in this column. If
you’ve some questions, don’t forget that man sh produces
more information on the power and capabilities of the
Bourne Shell.

I don’t know about you, but I’m eager to get moving 
on to some more complex and interesting scripting tasks,
and I invite you to let me know via e-mail if there are 
specific types of scripts that you’re interested in seeing 
featured here.

Dave Taylor is a 25-year veteran of UNIX, creator
of The Elm Mail System and most recently
author of both the best-selling Wicked Cool Shell
Scripts and Teach Yourself Unix in 24 Hours,
among his 16 technical books. His main Web site
is at www.intuitive.com.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 2 7

http://www..linuxjournal.com
http://www.MagniComp.com/lj1


2 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

W
elcome to the third installment of how to
implement a single sign-on and corporate
directory system. In this article, we tackle
integrating Microsoft Windows clients. There’s

a lot involved to make it all happen, so put on your work
gloves and let’s get to it.

When you want to integrate Windows clients into a hetero-
geneous environment, you have some choices to make.
Although you can run an Active Directory (AD) server and
have your Linux and Apple clients bind to it for authentication
and identity management, the costs involved are not minimal.
It also wouldn’t make for an interesting article on an open-
source single sign-on and directory implementation.

When you’re binding Windows clients to an open-source
solution, you have two more choices to make. Do you bind
them to the Kerberos realm for authentication or do you bind
them to LDAP for identity management? This is an either/or
choice because although Windows clients know how to speak
both Kerberos and LDAP, they know how to speak them at the
same time only when talking to an AD server. In other words,
Windows clients can talk to a non-AD Kerberos server only
when the user’s identities are kept locally. Likewise, a
Windows client can get identities from LDAP via Samba, but
only when the passwords are also served via Samba, and
Samba can’t, at the moment, authenticate via Kerberos.

Having Windows authenticate against our Kerberos KDC is
easier to set up, but it could be harder to maintain because
every user who uses the Windows client needs to have a local
account. This is fine if all you have is one Windows client to
maintain, but if you have any more than that, you’ll need to
add every user to every client. I won’t explore this option;
however, if you’re interested you should pick up Jason
Garman’s Kerberos: The Definitive Guide.

Configuring Samba
Because we’re dealing with a corporate directory, I’m assum-

ing you probably have more than one Windows machine on
your network. In order to make using them and incorporating
them as painless as possible, we use Samba tied to our LDAP
directory as a back end. Even though we’ll be configuring
Samba a little differently, you should first read Craig Swanson
and Matt Lung’s “OpenLDAP Everywhere Revisited” (see the
on-line Resources), as it will give you a good foundation on
which to build. I created an organizational unit branch in the
directory named samba for Samba-specific entries such as
machines and ID maps. Listing 1 shows the hierarchy of these
special branches, and Listing 2 shows the LDIF for them.

I don’t use the smbldap scripts from IDEALX for creating nec-
essary entries, because I’m using LDAP for more than just
Samba authentication. One main reason for not using the
smbldap tool is because it assumes that it and Samba will be
the only point for actions such as adding users and groups. In
my environment, all users don’t have the ability to log in to
Windows machines. Some users may start off as Linux-only
users, but then need to be given access to Windows machines
later. The smbldap tools don’t handle this case very well.
However, the smbldap tools do handle other things nicely, so
like all things, investigate all the tools available and choose the
best one(s) suited to your needs.

We need several users in LDAP that will do various tasks.
First we need a user who has write access to certain pieces of
the directory. If you notice in /etc/samba/smb.conf, there is an
option, ldap admin dn, that defines the DN of this user. This
user, named samba_server, should be stored in the LDAP
directory itself, and it will be the only user in the directory
with a password associated with it. Because this user isn’t of
the posixAccount objectClass, the account is not recognized
under Linux. To create this user, first run slappasswd to gener-

n T O O L B O X  P A R A N O I D  P E N G U I N

Single Sign-
On and the
Corporate
Directory,
Part III
Combine Samba with OpenLDAP for a mail and SSH

single sign-on system. B Y  T I  L E G G E T T

Listing 1. Additional Organizational Units

+ o=ci,dc=example,dc=com

|- ou=samba

|- ou=hosts

|- ou=idmap

Listing 2. LDIF for Additional Organizational Units

dn: ou=samba,o=ci,dc=example,dc=com

objectClass: organizationalUnit

ou: samba

dn: ou=hosts,ou=samba,o=ci,dc=example,dc=com

objectClass: organizationalUnit

ou: hosts

dn: ou=idmap,ou=samba,o=ci,dc=example,dc=com

objectClass: organizationalUnit

objectClass: sambaUnixIdPool

uidNumber: 15000

gidNumber: 15000

http://www..linuxjournal.com


http://www..linuxjournal.com


3 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n T O O L B O X  P A R A N O I D  P E N G U I N

ate the hashed password. Then, take the hash and create an ldif
file that’s similar to Listing 3.

Next, we need to tell Samba how to access the LDAP direc-
tory as samba_server user by using the smbpasswd command:

# /usr/bin/smbpasswd -w <password>

Setting stored password for 

å"uid=samba_server,ou=people,o=ci,dc=example,dc=com" 

åin secrets.tdb

For added security, you should turn off your shell’s history
logging as the password is given on the command line. The
smbpasswd command takes the password given and stores it in
/var/lib/samba/private/secrets.tdb keyed to the Samba domain
and the admin dn, so if either of those values change, you need
to rerun smbpasswd.

Because Samba uses this user to query and modify values
in the directory, we need to allow the Samba admin write
access to certain attributes in the directory, so make sure to add
the appropriate ACLs to /etc/openldap/slapd.conf.

At this point, we can get the SID for our domain. To obtain
the domain’s SID, you need to be root on the primary domain
controller (PDC) for the domain, and run:

# net getlocalsid

SID for domain CI-PDC is: 

åS-1-5-21-2162541494-3670296480-3949091320

If you won’t be using the smbldap tools to create all of the
Samba LDAP entries, you need to use this SID when creating
those. I’ve included a sample LDIF containing all the entries
you need to create in the on-line Resources.

Samba also needs a user with uid 0 in the LDAP directory
temporarily to perform certain actions. The entry need not be a
full posixAccount user, but it should look like Listing 4.

Notice that this user entry does have an NT password, but
this password need not be the same as the actual root pass-
word, and it’s only temporary to get rights assigned to normal
users. I’ve included a simple Perl script in the on-line
Resources that you can use to generate the NT password hash-
es that are needed. You need the Crypt::SmbHash and
Term::ReadKey Perl modules to use it.

The last user to modify is your own, so that it’s recognized as
a Samba user and is a Domain Admin. Listing 5 shows the LDIF.

Listing 3. LDIF for the Samba User

dn: uid=samba_server,ou=people,o=ci,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: uidObject

sn: samba_server

cn: samba_server

userPassword: {SSHA}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

uid: samba_server

Listing 4. LDIF for the root Account

dn: uid=root,ou=people,o=ci,dc=example,dc=com

objectClass: account

objectClass: sambaSamAccount

cn: root

uid: root

displayName: root

sambaSID: 

åS-1-5-21-2162541494-3670296480-3949091320-1000

sambaPrimaryGroupSID: 

åS-1-5-21-2162541494-3670296480-3949091320-512

sambaNTPassword: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

sambaAcctFlags: [U          ]

sambaLogonTime: 0

sambaLogoffTime: 2147483647

sambaKickoffTime: 2147483647

Listing 5. LDIF for the Regular Samba User

dn: uid=leggett,ou=People,o=ci,dc=uchicago,dc=edu

objectClass: top

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: sambaSamAccount

cn: Ti Leggett

givenName: Ti

sn: Leggett

mail: leggett@mcs.anl.gov

uid: leggett

uidNumber: 1001

homeDirectory: /home/leggett

loginShell: /bin/bash

gidNumber: 1000

sambaSID: 

åS-1-5-21-2162541494-3670296480-3949091320-3002

sambaPrimaryGroupSID: 

åS-1-5-21-2162541494-3670296480-3949091320-512

sambaNTPassword: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

sambaAcctFlags: [U         ]

sambaLogonTime: 0

sambaLogoffTime: 2147483647

sambaKickoffTime: 2147483647

A Note about SIDs and RIDs

The SID for your domain is a unique key and is prepended to
domain entities. The RID is a unique identifier for identities in
the domain and is appended to the SID to make the
sambaSID. The algorithm I follow to make sure RIDs are
unique is to take the uid for a user, multiply it times 2 and
add 1000. For groups, take the gid, multiply it times 2 and
add 1001. This ensures that users all have even RIDs and
groups have odd RIDs. The only exception to this rule are the
Domain Admins, Domain Users and Domain Guests. The RIDs
for these groups are the same as their gid for consistency
with how Windows assigns them.

http://www..linuxjournal.com


http://www.levanta.com


You’ll notice that this account also has an NT password
in the LDAP directory. Unfortunately, as of this writing,
Samba has no stable support for using Kerberos authentica-
tion unless Samba is authenticating against an AD server.
There are ways, however, to store Kerberos principal data in
an LDAP directory if you’re using the Heimdal Kerberos
implementation. This potentially could make Samba authen-
tication a little bit cleaner, though it won’t make your
Samba domain an AD server. Because we’re not using
Heimdal and this isn’t officially supported, we must store
Samba passwords in the directory. I’ve provided some links
in the on-line Resources on the Kerberos/LDAP solution if
you’re interested.

We’re now ready to start Samba, but make sure you also
start the winbind service as well. Under Gentoo, modify
/etc/conf.d/samba.

Samba Privileges
With Samba v3.0.11, the notion of privileges was intro-
duced. Prior to this version, a network-accessible uid 0 user
was required for all user, group, machine and printer man-
agement. As of v3.0.11, a user with the proper privileges
can initiate these types of requests. A uid 0 user is still nec-
essary eventually for some of these, but it no longer need
be network-accessible. So, you might be wondering why
we added a uid 0 account to the directory. Well, there’s a
bit of a chicken-and-egg problem when initially setting up
Samba. In order to perform these special operations, you
need the proper privileges, but you can’t grant yourself
those privileges without having those privileges. So, to
grant a normal user those privileges, you need the uid 0
user briefly, and then you can remove it from the directory.
To find out which privileges your version supports, you can
use the net command:

# net rpc rights list -U root

Password:

SeMachineAccountPrivilege Add machines to domain

SePrintOperatorPrivilege Manage printers

SeAddUsersPrivilege Add users and groups to the domain

SeRemoteShutdownPrivilege  Force shutdown from a remote system

SeDiskOperatorPrivilege Manage disk shares

Newer versions have added more privileges so make sure
you know all that your version supports before proceeding.
Now we need to assign privileges to groups and/or users. The
obvious first step is to grant all privileges to the Domain
Admins group:

# net rpc rights grant "CI\Domain Admins" \

SeMachineAccountPrivilege SePrintOperatorPrivilege \

SeAddUsersPrivilege SeRemoteShutdownPrivilege \

SeDiskOperatorPrivilege -U root

Password:

Successfully granted rights.

At this stage, we should be able to remove the root user
from the directory, because any member of the Domain
Admins group should be able to issue administrative 
Samba commands.

Joining a Machine to the Domain
So we have a Samba user but really nowhere for this user to
log in to. In the Windows world, machines must join the
domain for user domain accounts to be valid. When a machine
joins the domain, it needs to create a domain account for itself.
This account looks exactly like a regular user account except
that it ends with a dollar sign. Because I don’t use the smbldap
tools, I wrote a small Perl script that reads the admin dn’s pass-
word from the secrets.tdb and adds the machine account to the
LDAP directory. The script is available from the on-line
Resources and depends on the Crypt::SmbHash, Net::LDAP,
File::Temp and TDB_File Perl modules. Once you have this
script in place, you can add the machine to the domain by
right-clicking on My Computer, choosing Properties, choosing
the Computer Name tab and then clicking on the Change... but-
ton. Enter an appropriate computer name if one isn’t already
provided, then choose the Domain: option in the Member of
field and enter your Samba domain name (Figure 1). Once you
click OK, it will ask you for a user name and password. Enter
the user name and password for the user that is a member of
the Domain Admins group—leggett, in my case. After a few
moments, you should receive a message that welcomes you to
the domain. Once you reboot, you’ll have the chance to log in
as a domain user.

Figure 1. Joining the Domain

Single Sign-On and Windows
Although it’s fine that you now have Windows machines
plugged in to your infrastructure, this article is also about sin-
gle sign-on. You might ask ask yourself “But authentication
isn’t being served by Kerberos, so how will single sign-on
work?” MIT has a Kerberos for Windows package that allows

3 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n T O O L B O X  P A R A N O I D  P E N G U I N

http://www..linuxjournal.com


http://www.ztgroup.com/go/linuxjournal


3 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n T O O L B O X  P A R A N O I D  P E N G U I N

you to obtain and manage tickets similar to Apple’s
Kerberos.app (Figure 2).

Figure 2. MIT Kerberos for Windows Leash

The two main needs for single sign-on are SSH access and
mail access. Certified Security Solutions has patched the
PuTTY SSH client for Windows to allow GSSAPI authentica-
tion. In order to use the MIT Kerberos for Windows under
Windows 2000 and XP systems, copy the file plugin_mitgss.dll
to plugingss.dll in the PuTTY install directory. Once you fire
up PuTTY, go to the Auth menu in the Connection/SSH cate-
gory and check Attempt GSSAPI/Kerberos 5 authentication
(Figure 3). Make sure you have valid Kerberos credentials, and
away you go.

Figure 3. PuTTY GSSAPI Configuration

The last major piece to get working is mail access. Microsoft
does not use GSSAPI as its authentication scheme. Instead it
uses what is called SPNEGO. Because of this, Outlook and
Outlook Express will not work with our single sign-on environ-
ment. But there’s good news. Qualcomm’s Eudora e-mail pack-
age supports GSSAPI, and it has a free version to boot.

Configuring Eudora v6.2
Start the account creation process, and choose Skip directly to
advanced account setup. Enter the required information for the
SMTP and IMAP settings. Make sure to choose If Available,
STARTTLS for the Secure Sockets settings, and under the
Incoming Mail tab, make sure to select Kerberos as the authen-

Figure 5. Eudora Personality Properties

Figure 4. Eudora Account Creation

http://www..linuxjournal.com


W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 3 5

tication style (Figure 4).
Once you’ve gotten your account

configured, you may get an error the
first time you try to connect saying that
either the connection has broken or
GSSAPI failed. These errors aren’t very
descriptive of the actual problem, which
is that Eudora doesn’t trust your self-
signed SSL certificates. To fix this, edit
the properties for your newly created
personality (Figure 5). Click on the
Incoming Mail tab, then the Last SSL
Info button, and then the Certificate
Information Manager button (Figure 6).
If you click the Add To Trusted button,
your self-signed certificate will be trust-
ed by Eudora as valid. You need to do
this for your SMTP server as well the
first time you try to send mail.

Wrapping Up
You now have integrated one more
major architecture into your single sign-
on and corporate directory infrastruc-
ture. There are still some pieces that
could be added or enhanced, such as a
way to keep passwords in sync between
Kerberos and Samba, LDAP searches in
Eudora and more-robust Samba user
management scripts. However, you can

see how Kerberos and LDAP can make
administration and use of your system
much easier and more unified. In my
last article in this series, I’ll explore
some ways to think about using your
new infrastructure for administrative
functions. Until then, keep expanding
and using your corporate directory!

Acknowledgements
This work was supported by the
Mathematical, Information, and
Computational Sciences Division sub-
program of the Office of Advanced
Scientific Computing Research, Office
of Science, U.S. Department of Energy,
under Contract W-31-109-ENG-38.4:08.

Resources for this article:
www.linuxjournal.com/article/8701.

Ti Leggett
(leggett@mcs.anl.gov) is a
systems administrator for
the Futures Laboratory of
the Mathematics and
Computer Science Division at Argonne
National Laboratory. He also has a joint
appointment with the Computation
Institute at the University of Chicago.

Figure 6. Eudora Certificate Information Manager

http://www..linuxjournal.com
http://www.linuxjournal.com/article/8701
http://www.zervex.com


3 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

I
n November 2005, the long-await-
ed Nokia 770 Internet Tablet hit
the stores, first in Europe and then
in the US, where it promptly sold

out at a retail price of $350 US. When
we posted a mini-review of a pre-release
unit on the Linux Journal Web site (see
the on-line Resources), we quickly got
dozens of comments, some of which
were very helpful in writing this first-
look review.

The 770 is a radical departure for
Nokia, mostly because it isn’t a phone.
Nor is it based on Symbian, the mobile
device OS co-created by Nokia and run-
ning in zillions of Nokia devices.
Instead, the 770 is a palm-sized tablet
PC running on Linux.

It’s small (5.5" x 3.1" x 0.7"), light
and features a crisp 4.3" (800 x 480) 16-
bit color screen. That means it crams a
lot of detail in an area that requires easy
zooming. For that the 770 provides both
soft and hard buttons. Another hard but-
ton zooms the browser window to full
screen. You can enter text (typically,
URLs) with a stylus on the virtual key-
board or in handwritten letters that the
770 recognizes easily. You also can con-
nect self-powered devices via Bluetooth
or USB. It has no hard drive, though
you can attach one by USB.

Although I haven’t tested it in a for-
mal way, I am impressed with the 770’s
battery life as well. It sleeps quickly,
which helps. But it also wakes just as
quickly, which is a must for a portable
device like this.

The easiest way to connect to the
Net is through Wi-Fi. The 770 tells you

the names, signal strengths and
open/locked (WEP’d) statuses of each
signal and makes it easy to override
whatever choices the 770 makes on its
own. It also supports WPA encryption
(thanks, we are told, to Samuel Ortiz, a
Linux kernel engineer who works for
Nokia). Getting it up and going on the
Net is so easy that my nine-year-old son
(who is not a computer whiz—at least
not yet) figured it out in a matter of sec-
onds. He also figured out many of the
unit’s other fun features.

My own favorite is the 770’s Internet
radio. Many Web-based radio stations
(such as, RadioParadise.com,
KCRW.com, SmoothJazz.com,
WEMU.org, WNYC.org and
WUNC.org) publish their streams’ IP
addresses as page links. Clicking on the
.mp3 stream links brings up a
radio/audio player that pumps out excel-
lent audio through a speaker or a stan-
dard 3.5mm stereo plug port. I’ve used
it to drive headphones and home audio
systems for several weeks now. It has
essentially become our first-choice
Internet radio.

Memorizing streams is less than
obvious. I’ve figured most of it out,
though I still don’t know if I can 
get any of my own favorites to join 
or replace the three Virgin Radio
streams defaulted as the only choices
in the application.

The video performance (using a Real
viewer) is also remarkably good. I’ve
taken to watching the BBC’s “News in
Three Minutes” at news.bbc.co.uk.

The radio and video app are just

two of the first few apps that come
with the unit. Other base apps include a
browser (Opera 8—yes, with pop-up
blocking), v6 Flash player, an e-mail
client, a news reader, audio and video
players, an image viewer, PDF viewer
and file manager. The OS is called
Internet Tablet 2005. It’s upgradable.
At the time of this writing, the 2006
edition is expected (and may be out by
the time you read this) and will support
additional services, including VoIP and
instant messaging.

The 770’s CPU is a ~220MHz
OMAP 1710 powered by an ARM9
core. Memory is 64Mb DDR RAM,
expandable through an RS-MMC
(Reduced Size MultiMediCard), or
through full-size SD cards.

There’s a development site (see
Resources) with an active and highly
useful wiki that should fill your need for
deep data about the product, while
equipping you to develop for it too.

I had many questions that were
answered by e-mail exchanges with
Nokia folks. I’ll condense them into
this Q&A:

Doc: What kernel version do 
you use?

Nokia: We take the kernel directly
from kernel.org, but we use Debian
package management to create our
own “internal distro”.

Doc: And what desktop (GNOME,
presumably)?

n L I N U X  F O R  S U I T S

Our Senior Editor gives a high five to

Nokia’s hot new palm-sized Linux-based

Internet Tablet. B Y  D O C  S E A R L S

Nokia 770 Internet Tablet

A First 
Look at the
Nokia 770

http://www..linuxjournal.com


Nokia: GNOME, yes. We’ve created
our own widget set to provide the
770 look and feel. We call that the
Hildon widget set. It is based on the
GTK+ toolkit, which is an integral
part of GNOME, and it is all open
source [see Resources].

Doc: What were the design consid-
erations for those?

Nokia: For the kernel/distro, we
want to stay current with the Linux
community. We want to benefit
fully from the open-source devel-
opment happening there. For that
reason, we want to follow the latest
kernel releases directly, and we
actively submit our contributions
back to open source. We are very
active in the kernel’s OMAP tree,
for example. That gives us the
most efficient way of working: use
the latest, work with the communi-
ty directly and submit your
changes back ASAP, which results
in speed, quality and cost benefits.

A commercial distro vendor
between us and the Linux commu-
nity would slow us down, would
be more expensive and would pre-
vent us from benefitting immedi-
ately from the work we do with
the communities. Also, such a
vendor possibly would control the
tools, versions and partners we
want to use. In addition, we have
many issues that an external distro
vendor could not solve, such as
adaptation of Nokia-specific hard-
ware and Linux.

Working with the communities
directly is the way to go for us!

For the UI, we wanted to create a
consumer device utilizing genuine
open source (GNOME) and
Nokia’s expertise on UI design.
GNOME is genuinely open source,
it doesn’t include any one single
company’s control, and it allows
developers and companies to work
with free, open-source components
and tools. GNOME is the leading
desktop environment—thus an
obvious choice for us. Also, the
GNOME community has been
extremely supportive and has

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 3 7

Citibank demands

for banking applications
   at over 4,000 branches.

FairCom database
technology makes
it possible.

w w w. f a i rc o m . c o m / g o / ? s e c u re l i n u x

O
th

er
 c

om
pa

ny
 a

nd
 p

ro
du

ct
 n

am
es

 a
re

 re
gi

st
er

ed
 tr

ad
em

ar
ks

 o
r t

ra
de

m
ar

ks
 o

f t
he

ir 
re

sp
ec

tiv
e 

ow
ne

rs
. ©

 2
00

5 
Fa

irC
om

 C
or

po
ra

tio
n

DDJnLJ2_3MTnCUJfull.qxd  12/1/05  2:36 PM  Page 1

http://www..linuxjournal.com
http://www.faircom.com/go/?securelinux


helped us significantly to get things done. They’ve been
really a part of our 770 team.

As for the UI, we wanted to create a consumer device that is
easy and intuitive to use. We follow a so-called task-oriented
design principle. Thus, instead of harassing users with a
huge number of options and possibilities, we wanted to pre-
sent the most-used features (browsing, e-mail) in a very
accessible way. Instead of a Swiss-Army knife, we created a
focused product. Our UI reflects that. The 770 is not your
general-purpose PC or PDA. It is a consumer device—a
tablet—that lets users get on-line (surf and do e-mail),
regardless of the time and space. The UI supports that fully
and makes that extremely easy for the user.

Doc: How closely did Nokia work with Linux developers on
the product?

Nokia: As close as you can. We’ve been an integral part of
the GNOME community, we’ve got many Debian developers
on our payroll, we submit our code back a lot and so forth.
So this is truly an open-source effort. Examples of the collab-
oration include, GNOME component work (gconf, D-BUS,
gnome-vfs, GTK+, Gazpacho and so on) with Mikael
Hallendal, Anders Carlson, Richard Hult, Michael Natterer
Matchbox and X.org; GTK+ with Matthew Allum, Ross
Burton and Richard Purdie; GStreamer with Christian
Schaller, Wim Taymans and others; and GPE palmtop with
Nils Faerber and Florian Boor and others, and so on.

Doc: As an “embedded” use of Linux, what parts (modules) of
the kernel, if any, were left out?

Nokia: We have not left anything significant out. This is a “desk-
top product” much more than an “embedded product”, really.

Doc: Is there an easy way to get to terminal mode? How?
This is very important for my readership, which is mostly
Linux experts who will want to work in the command line.

Nokia: We decided not to put a terminal into the device because
it is really a consumer device—we do not expect soccer moms
will want to deal with the command-line interface. However,
anybody can go to the Application Catalog and download and
easily install an xterm into the 770. By the way, our develop-
ment site (see Resources) offers tools for a developer to work
on the 770. We provide tools, documentation, example apps, a
wiki, discussion mailing lists, support, source code and even a
developer root filesystem so that you can really hack your way
through the 770 if you want.

Doc: What is the story for external keyboards?

Nokia: Once again, for most of the target audience, an
external keyboard is a bit—awkward. So we do not have a
support for it built in—but as with the xterm, if you need
one, you can have one through the maemo.org developer
site. The kb plugin was developed independently and is not

a Nokia feature as such. However, if people really like it,
we may integrate it with the device software in the future—
and that goes for other apps and plugins too.

Doc: What is the audio player? Real? Helix?

Nokia: As a multimedia framework, we use GStreamer. As far
as formats, we support audio (MP3, MPEG4-AAC, WAV,
AMR and MP2) and video (MPEG-1, MPEG-4, RealVideo,
H.263, AVI and 3GP). So we have a Real player too. And
Flash, of course.

Doc: In Date/Time, is there a way to get the device to set
through an Internet time server or site?

Nokia: Not in this software release. By the way, this leads to an
important topic—unlike phones, the 770 is software upgradable.
So, there will be new software versions coming, and customers
can upgrade their software. The new versions may have some of
the features you proposed, but it will include VoIP and instant
messaging for sure.

If that dialog doesn’t encourage you, perhaps Greg
Kroah-Hartman will. Greg is the driver subsystems maintain-
er for the Linux kernel and one of the most prolific contribu-
tors to the kernel itself. In November 2005, he wrote this in
his blog (see Resources):

My first reaction was like everyone else’s, “Damn, that’s a nice
screen.” After playing around with it this week more, I’m really
hooked. It handles streaming Internet music just fine, replacing
my laptop for this task. And putting a ripped DVD on the mem-
ory card makes the kids happy to watch the Jack-Jack-Attack
short film over and over.

But it goes deeper than that. It’s actually a useful Web browser.
I can successfully read different news sites just fine, all from a
tiny little device with a very good battery life (at least com-
pared to my laptop).

Combine that with a very active development community
already (Nokia was smart in seeding it with devices, very
wise move), and I think this will be one platform that will be
worth watching for some time. The number of applications
will only grow and get better. It’s already fun to use an
xterm on the thing.

Now to wait for the kernel source tree for it to be released, so
I can get to tweaking on it, and figure out why they are using
my pl2303 driver [see Resources] when I don’t see a serial
output anywhere....

I expect the 770 to be not only a hot product, but to open a
hot new device category as well.

Resources for this article: www.linuxjournal.com/article/
8700.

Doc Searls is Senior Editor of Linux Journal.

3 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n L I N U X  F O R  S U I T S

http://www..linuxjournal.com
http://www.linuxjournal.com/article/8700


WARNING:
TO THOSE CONSIDERING PERFORMANCE ENHANCEMENT

Natural ability and ordinary debuggers can take you just so far. That’s why you need NightStar LX™.
An integrated suite of tools that gives you full visibility into your Linux® application. You can debug,
monitor, analyze and tune at application speed, so you see real execution behavior. Plus, you’ll
reduce test time and lower costs. NightStar LX. Experience real power for a change.

© 2005 Concurrent Computer Corporation

BEFORE AFTER

See if NightStar LX is right for you.
Download a Free Trial at
www.ccur.com/nightstar/LX
800-666-4544  •  954-974-1700
Email us at nightstar@ccur.com

NightStar LX is a product of Concurrent.

NightProbe NightTrace NightView NightTune

The NightStar LX suite is extremely habit-forming,
and may cause feelings of euphoria.

http://www.ccur.com/nightstar/LX


4 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

L
inux embedded development doesn’t only mean
embedding Linux in a product, it also means using
Linux as a development platform for embedded micro-
processors. The majority of computer processors is

not on the desktop or in Beowulf clusters, they are embedded
in the millions of devices that you use every day: your alarm
clock, microwave, thermostat, car, cell phone and so on. Linux
can be used to develop software for embedded projects using
microprocessors like the Microchip PIC, Atmel AVR, Philips
LPC ARM and TI MSP430 devices.

You don’t need to be a professional developer to have fun
with these tiny computer devices. The development tools are
inexpensive, and the hardware required is minimal. Soldering
skills and some experience writing in C are really all you need
to get started creating a controller for your next Sumo Bot,
remote controlled helicopter or digital lock.

The Texas Instruments (TI) MSP430 family of micropro-
cessors have a wide range of features:

n Power consumption as low as 0.1uA in off mode.

n Multiple 16-bit timers with capture/compare.

n PWM outputs, which are very useful for robotics.

n A/D converters for monitoring sensors.

n SPI and Asynchronous UARTs for communications.

n Integrated LCD display controllers.

n Onboard oscillators.

n Multiple clock sources for low-power sleep modes.

The ’430 family includes more than 80 devices in four
major groups. Flash, where the program is stored, ranges from
a paltry 1KB to an extravagant 60KB. The available RAM is as
large as 5KB or as small as 128 bytes.

Of course, 128 bytes isn’t much RAM, but it is enough to
get the job done for small projects. Many of my embedded pro-
jects are written in assembly code to conserve space, but with
the MSP430, I have found myself using C as the primary lan-
guage. Instead of using a commercial compiler or IDE, I have

chosen to use the GNU GCC toolchain, which has had
MSP430 support added to it. The GCC compiler does a pretty
good job of generating code, and C is certainly the better
choice if the code is going to be maintained over a number of
years. There’s nothing worse than returning to a heavily opti-
mized assembly project five years later and trying to make
adjustments without the whole system crumbling to its knees.

With the Microchip PIC processors that I wrote about in 1998,
the development process was a bit tedious. I would write some
code, compile it, flash the PIC, wonder why it didn’t work and
then repeat. I used a couple of I/O lines and LEDs as debugging
tools, but there’s only so much information that you can grok from
two flashing LEDs. I really had no way to know exactly what was
going on inside the processor when things went wrong. One solu-
tion could have been to buy an In Circuit Emulator (ICE). An In
Circuit Emulator is a device you plug in to the socket where the
processor normally goes. It emulates the CPU and lets you exam-
ine every instruction, memory locations and much more. But the
$1,200+ US price for an ICE was out of my reach.

Today, things are much easier for both the the hobbyist and
professional. Many of the newer processors include built in
real-time debugging support using the IEEE Std 1149.1 JTAG
specification. This six-wire interface allows real-time debug-
ging of the software running on the target device. You can step
through your code, watch registers and memory locations
change, insert breakpoints and modify RAM on the fly. This is
a dramatic improvement over the old 1- or 2-bit diagnostic line.

Instead of dropping a dozen c-notes on expensive debug-
ging tools, you can get a parallel port JTAG adapter from
Olimex for the amazing price of $15 US. This allows people to
debug their code with interactive debuggers like gdb instead of
relying on blinking LEDs and serial ports.

Setting Up MSP430 Software Development
MSP430 support was added to GCC by a group headed by
Dimitry Diky and Chris Lichti. Their project includes the gcc
compiler, linker, libraries, gdb debugger and a closed-source
interface to the parallel JTAG adapter. The main emphasis
of the mspgcc project has been on Windows. Getting it
working on Linux is a bit of a struggle, involving compiling
the alternate toolchain, libraries and so on. Maybe I’m getting
old, lazy or just used to .deb and .rpm packages, but these
days, I prefer not to fight with the software I’m installing.
Running rpm -Uhv <package> saves my energy for debugging

n F E A T U R E  E M B E D D E D

MSP430 Development
with Linux
Using Linux and the TI MSP430 processor to create

blinking LEDs is a learning exercise, not just a way

to make cheap sci-fi movie panels. 

B Y  B R I A N  C .  L A N E

http://www..linuxjournal.com




4 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

my MSP430 code.
Thanks to Stephan Linz and his Cross Development Kit for

MSP430, I don’t need to spend more than five minutes installing
development tools. He has done all the hard work of getting
mspgcc compiled and packaged as RPMs. Stephan also has created
Cross Development Kits for the AVR processor and the Altera
soft core NIOS, if you are interested in those target processors. If
I ever need to write code for the AVR, I know where to go.

The cdk4msp project is available from SourceForge, and
here is a minimal list of the packages that need to be installed
from the cdk4msp SourceForge download page:

n cdk-msp-base-0.2-20031111.i386.rpm

n cdk-msp-binutils-2.14-20031106.i386.rpm

n cdk-msp-examples-libc-20031101cvs-20031102.noarch.rpm

n cdk-msp-examples-mspgcc-20031101cvs-20031102.noarch.rpm

n cdk-msp-gcc-3.3.2-20031106.i386.rpm

n cdk-msp-gdb-5.1.1-20031106.i386.rpm

n cdk-msp-gdb-proxy-5.1.1-20031106.i386.rpm

n cdk-msp-jtag-lib-20031101cvs-20031102.i386.rpm

n cdk-msp-libc-20031101cvs-20031102.noarch.rpm

Additional document packages can be downloaded, depend-
ing on your preference for man pages, info files, PDF or
HTML pages. I have successfully used these packages on
Fedora Core releases 1 through 4, and although I haven’t tried
any other RPM-based distributions, I expect them to work just
fine. These RPM packages function as a self-contained unit,
and don’t depend on any outside packages.

Install the packages in this order with the following commands:

rpm -Uhv cdk-msp-base-0.2-20031111.i386.rpm

rpm -Uhv cdk-msp-binutils-2.14-20031106.i386.rpm

rpm -Uhv cdk-msp-libc-20031101cvs-20031102.noarch.rpm

rpm -Uhv cdk-msp-gcc-3.3.2-20031106.i386.rpm

rpm -Uhv cdk-msp-gdb-5.1.1-20031106.i386.rpm

rpm -Uhv cdk-msp-jtag-lib-20031101cvs-20031102.i386.rpm

rpm -Uhv cdk-msp-gdb-proxy-5.1.1-20031106.i386.rpm

rpm -Uhv cdk-msp-examples-libc-20031101cvs-20031102.noarch.rpm

rpm -Uhv cdk-msp-examples-mspgcc-20031101cvs-20031102.noarch.rpm

The install places everything in the directory tree 
below /opt/cdk4msp. Take a look at the examples in
/opt/cdk4msp/examples/mspgcc and the documents in the
/opt/cdk4msp/doc, info and man directories, depending on
which style of documentation you installed.

A Simple Blinking LED
Blinking an LED is the embedded equivalent of “Hello
World”. We will modify one of the examples to make it a little
easier to understand. Copy the leds example from
/opt/cdk4msp/examples/mspgcc/leds/ to a working directory,

and replace main.c with the simplified version below. Edit the
Makefile and set the CPU variable to msp430x149 so that it
compiles for the correct target. If you are using a different ver-
sion of the MSP430, you can get a list of the supported types
by running msp430-gcc --target-help | less and then set
CPU to the appropriate type.

Figure 1. Picture of My LED Blinker Development Board and JTAG Adapter

Figure 2. Simple Schematic of the LED Blinker Setup

Replacement for main.c:

/* Simple LED Blinker program for MSP430 */

#include <msp430x14x.h>

/* Brute Force delay loop */

void delay(unsigned int d)

{

for (; d>0; d--) {

nop();

nop();

}

}

int main( void )

{

/* Init watchdog timer to off */

WDTCTL = WDTPW|WDTHOLD;

http://www..linuxjournal.com


W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 4 3

/* Init Output ports to GND */

P1OUT  = 0x00;

P2OUT  = 0x00;

/* I/O not module control */

P1SEL  = 0x00;

P2SEL  = 0x00;

/* Set up the data direction registers

P1.0 output, input on the rest

*/

P1DIR  = 0x01;

P2DIR  = 0x00;

/* No Interrupts on Port Pins */

P1IES  = 0x00;

P2IES  = 0x00;

P1IE   = 0x00;

P2IE   = 0x00;

/* Loop until the universe breaks down */

while (1) {

/* Toggle P1.0 ouput pin */

P1OUT ^= 0x01;

/* Delay for a while before blinking */

delay(0x4fff);

}  /* while */

}

Run make to compile it. You should see no warnings or errors:

msp430-gcc -mmcu=msp430x149 -O2 -Wall -g   -c -o main.o main.c

msp430-gcc -mmcu=msp430x149 -o leds.elf main.o

msp430-objcopy -O ihex leds.elf leds.a43

msp430-objdump -dSt leds.elf >leds.lst

At this point, we have the software development set up, but
no hardware to run it on or LEDS to blink.

MSP430 Simple Hardware Setup
Very little hardware or money is required to get started with
the MSP430. You need a PC board with the processor on it and
a JTAG adapter to connect the board to the parallel port.
Olimex makes a number of inexpensive evaluation boards and
JTAG adapters for the MSP430, ARM, AVR and PIC. In the
US, their products are carried by a neat place called Spark Fun
Electronics, which carries the Olimex boards as well as its own
unique collection of adapter boards and projects. Table 1 shows
what’s needed to build the circuit on the schematic in Figure 1.

One problem with low-powered devices like the MSP430 is
that when you try to turn them off, they don’t discharge the supply
capacitors all the way to ground. This can result in a brownout con-
dition when the processor won’t reboot until reset properly. For the
sake of simplicity, we are going to run the processor directly off of
a pair of AA batteries. It will also run off the power from the JTAG
adapter itself if you don’t have any batteries handy.

In a production design, I would add a power supply with
reset manager to prevent any brownout problems, but for our

ASA
COMPUTERS

Want your business to be more productive?
The ASA Servers powered by the Intel® Xeon™ Processor provides the quality

and dependability to keep up with your growing business.

Hardware Systems For The 
Open Source Community–Since 1989

(Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MS, etc.)

2354 Calle Del Mundo,
Santa Clara, CA 95054
www.asacomputers.com
Email: sales@asacomputers.com
P: 1-800-REAL-PCS | FAX: 408-654-2910

Intel®, Intel® Xeon™, Intel Inside®, Intel® Itanium® and the Intel Inside® logo
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Prices and availability subject to change without notice. Not responsible for 
typographical errors.

“Your Logo Here”“Your Logo Here”

6TB + in 5U—$7,699
Intel 7501, Dual Intel® Xeon™ 2.4GHz
512 MB DDR ECC RAM Max: 8GB

6TB + IDE Storage
Dual Gigabit LAN, CD+FD, VGA
Options: SATA Drives, Firewire,

DVD+RW, CD+RW, 64 Bit 
OS Configurations, etc.

14" Deep Appliance Server—$865
Intel® Xeon™ 2.4 Ghz Processor
40 GB Hard Drive, One GigE
Options: CD, FD, 2nd HD, Your Logo

on Bezel
Call for Low Cost Options.

1U Dual Xeon™ EM64T Superserver—
$1,675
SuperMicro 6014H-82 Barebones
1 of 2 Intel® Xeon™ 2.8 GHz 800 FSB
1 GB DDR II-400 RAM Max: 16GB

36 GB 10K RPM SCSI Max: 4 HS HDD

CD+FD, Dual GigE, VGA, RAILS
Options: RAID, etc.

ASA Collocation
$75 per month for 1U Rack - 325 GB/month

ASA Collocation Special
First month of collocation free.*

Your Custom Appliance Solution
Let us know your needs, we will get you a solution

All systems installed and tested with user’s choice of Linux 
distribution (free). ASA  Colocation—$50 per month

Storage Solutions
IDE, SCSI, Fiber RAID solutions
TB storage options
3Ware, Promise, Adaptec,
JMR, Kingston/Storcase solutions

Clusters
Rackmount and Desktop nodes
HP, Intel, 3Com, Cisco switches
KVM or Cyclades Terminal Server
APC or Generic racks

1U Dual Itanium IDE—$3,701
Dual Intel® Itanium® 2 1.4 Ghz
2 GB ECC DDR
1 of 4 x 40 GB HDD
Dual Gigabit LAN
Based on Supermicro 6113M-i

http://www..linuxjournal.com
http://www.asacomputers.com


4 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

simple circuit, pulling the batteries loose for a few seconds is
sufficient to reset it.

The next thing we need to do is set up the gdb proxy and
JTAG software. This requires using the PC’s parallel port, and
if your Linux installation is set up to use a local printer, you
need to remove the printer and disable the printer dæmon
before you can use the port for JTAG. You also may need to
add your development user to the group that has access to the
port. On Fedora Core, this is the lp group, and you can add
users to it by editing the /etc/group file as root.

Now that we have the required hardware set up, it’s time to
compile and flash our LED blinker program. In the directory
where we ran make earlier, now run make download-jtag, and
the program will be flashed into the target processor:

msp430-jtag -e leds.elf

MSP430 parallel JTAG programmer Version: 1.3

SHF_MASKPROC    = 0xf0000000

Mass Erase...

Program ...

188 bytes programmed.

Next, we need to start the gdb proxy that creates a local
port for gdb to connect to and handles the communication with
the target hardware. Run this in a second window, because it
outputs debugging info to stdout while it is running:

msp430-gdbproxy --debug --port=2000 msp430

Remote proxy for GDB, v0.7.1, Copyright (C) 1999 Quality Quorum Inc.

MSP430 adaption Copyright (C) 2002 Chris Liechti and Steve Underwood

GDBproxy comes with ABSOLUTELY NO WARRANTY; for details

use --warranty' option. This is Open Source software. You are

welcome to redistribute it under certain conditions. Use the

'--copying' option for details.

debug:     msp430: msp430_open()

info:      msp430: Target device is a 'MSP430F149' (type 7)

notice:    msp430-gdbproxy: waiting on TCP port 2000

GDB needs to know how to connect to the MSP430 JTAG

proxy port. Create a file named .gdbinit in your working direc-
tory and put the following three lines into it:

set remoteaddresssize 64

set remotetimeout 999999

target remote localhost:2000

Now we are ready to debug our LED blinker program. When
you ran make download-jtag, the LED should have begun to
blink, and when the gdbproxy was started, it should have stopped,
because the processor is being held in reset by the JTAG.

Start debugging by using the msp430-gdb program:

msp430-gdb leds.elf

Run until main() by entering:

break main

c

Debug as you normally would. Here is an example session:

(gdb) break main

Breakpoint 1 at 0x1152: file main.c, line 16.

(gdb) c

Continuing.

Breakpoint 1, main () at main.c:16

16          WDTCTL = WDTPW|WDTHOLD;

(gdb) n

19          P1OUT  = 0x00;

(gdb) n

20          P2OUT  = 0x00;

(gdb) break delay

Breakpoint 2 at 0x1140: file main.c, line 7.

(gdb) c

Continuing.

Figure 3. Simple Diagram of GDB to Target Board Connections

TTaabbllee 11.. MMaatteerriiaallss aanndd CCoosstt ffoorr CCiirrccuuiitt

Description Part # Price (US)

Olimex MSP430F149 header board MSP-H149 $22

Olimex MSP430 JTAG Adapter MSP-JTAG $15

AA battery pack from DigiKey 2463K-ND $0.78

Red LED from DigiKey 160-1499-ND $3.60/10

330-ohm resistor 220QBK-ND $0.56/10

Total: $41.96

http://www..linuxjournal.com


W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 4 5

Breakpoint 2, delay (d=20479) at main.c:7

7           for (; d>0; d--) {

(gdb) n

8               nop();

(gdb) n

9               nop();

(gdb) n

7           for (; d>0; d--) {

(gdb) print d

$1 = 20479

(gdb)

What’s happening here is that the proxy is communicating
with the JTAG adapter and opening up port 2000 to accept
connections from the gdb debugger. The debugger needs to
know where to connect to, hence the creation of the .gdbinit
file with the port number and timeout in it. When you run
msp430-gdb, it is making a TCP/IP connection to the JTAG
proxy program, which is in turn communicating with the target
hardware if all is going well.

Schematics and Custom PC Boards
Flashing LEDs get boring pretty quickly. Once you get the
bugs worked out of your blinking LED, you probably are going
to want to design a custom PC board with interfaces to the out-
side world. One of my projects is a one-wire lock controller
with an RS-232 interface that uses Dallas Semiconductor

iButtons for access control.
For this project, I chose one of the smallest of the family,

the MSP430F1101 with 1KB of Flash and 128 bytes of RAM.
It uses a pair of transistors to switch a DC motor on and off
and a MAX3221 for serial communications with a PC. The C
code to control the lock just barely fits into the 1K Flash space
of the ’1101. A low dropout voltage regulator is used to power
the board and provide a clean reset to the processor. I drew the
schematic and designed the board using Eagle CAD Lite under
Linux. Eagle has several versions of its schematic and PCB
auto-router, including a free version for noncommercial use:

n Free for noncommercial use.

n Board size limited to 3.2" x 4" and two layers.

n One schematic sheet.

n Lite version for $49 US with same limitations as the free
version.

n Standard version for $600 US.

n Pro versions for $1,200 US.

n Linux, Windows and Mac versions are available.

http://www..linuxjournal.com


Eagle CAD is easy to get started with, low in cost and very
powerful. A user scripting language allows you to add features
and customize the program to fit your needs. User support for
Eagle is very strong, and the Web site has an extensive collec-
tion of user-created libraries.

The Eagle auto-router supports advanced features like
back-annotation, keep-out areas, design rules checks and one
of my favorites—flood fill with thermal relief. If you have
ever tried to solder a pin surrounded by a large ground plane,
you will appreciate the advantage of thermal relief on power
pins. Without it the ground plane acts like a large heat-sink
and solder won’t stick. All levels of the PCB and Schematic
editor support the concept of back (and forward) annotation.
You can make changes on the PCB, and they will be reflected
on the schematic and updates made to the schematic are
reflected on the PCB.

After designing a PC board, you actually need to make
one. You can etch your own, but it is difficult to match the
quality of even the least-expensive board manufacturers.
Some manufacturers will accept Eagle PCB files directly,
which saves you the step of converting the design to the
Gerber format. The Gerber format is a lot like an old pen
plotter; it tells PCB etching equipment where to draw the
trace and how large a line to draw. Most PCB manufacturers
still require Gerber files, so Eagle includes a script to output
the necessary Gerber files.

One difficulty in dealing with Gerber files is that although
Eagle can export the PCB in the correct format, it has no way
to view the output to verify it was converted correctly. Linux
has needed a good Gerber viewer for years, but it has been
available only with recent releases of the gerbv program. It

isn’t as intuitive as I would like, but it does function well
enough to display the Gerber files so that you can check the
final output before sending it off to have 1,000 of your latest
widget design created.

I have used four different PCB manufacturers myself. Their
prices and features vary, but customer service and quality from
all four have been excellent. Olimex and PCB Pool both accept
Eagle CAD files directly, with no need for conversion to
Gerber. Olimex is in Bulgaria, and turn-around time can be up
to three weeks, but prices are excellent. PCB Pool is in Ireland
and has quick turn-around or longer turn-around times, depend-
ing on price (as do most). I used PCB Pool for the one-wire
Wi-Fi boards (Figure 6).

AP Circuits is in Canada and has very good prices and very
fast turn-around. The bare one-wire lock boards were ordered
on a Saturday, and I received them on Wednesday. I ordered
them with no silkscreen or solder mask in order to keep the
price low. For production, I used E-Teknet for my DT-1A tem-
perature sensor boards with excellent results.

The MSP430 is a fun and easy-to-use processor; its wide
range of features and access to free development tools and
low-cost JTAG hardware make this processor a good choice for
both the hobbyist and the professional developer. Using the
GNU gcc toolchain reduces the learning curve and allows you
to use the same tools for developing code on the MSP430 that
you would use for Linux projects. My set of development tools
includes make, gcc, gdb and joe.

Resources for this article: www.linuxjournal.com/article/
8697.

Brian C. Lane lives in Port Orchard, Washington, with his wife and
son, who is a huge Tux Racer fan. He serves as Webmaster For
Life for the Kitsap Peninsula Linux User Group and writes Linux
apps in his spare time.

4 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

Figure 4. Lock Project PC Board Layout from Eagle

Figure 5. Picture of the Prototype PC Board

Figure 6. Picture of LinkWiFi PC Board

http://www..linuxjournal.com
http://www.linuxjournal.com/article/8697


http://www.Polywell.com/us/LJ


4 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

T
he Swedish company Axis Communications AB
introduced a new concept several years ago, when
it launched its line of camera servers. Perhaps rec-
ognizing that its line of network cameras (one of

which is reviewed in LJ, September 2000) could not fill all
the niches of old-style analog surveillance cameras, it also
offered its control and digitizing electronics in a separate,
rugged, fanless enclosure. Available in versions with one 
or four analog video inputs and one pass-through output,
camera servers now have offered companies a way to 
modernize their surveillance systems incrementally for
most of a decade.

The Camera
Naturally, the appliances run Linux these days, on rather
specialized hardware. We came into contact with this server
because a client had needs that could not be met by Axis’
own cameras, but its Web-browser-based interface was well
liked by both us and the client. So we were quoted some
pro-level third-party hardware from a traditional surveil-
lance camera supplier that was tested to work well with the
camera server.

Like computer hardware, cameras and their optics are
money sinks. Depending on desired sophistication, it is possi-
ble to spend any given sum you might have available.

For our purposes, we needed a remote-controllable pan-tilt-
zoom (PTZ) camera for outdoor use, with a respectable amount
of magnification. You can find PTZ cameras for a few hundred
dollars for basic indoor versions, and a few thousand dollars
for variants tolerant of outdoor climate, direct sunlight and
minor vandalism.

We went with a pendant-mount enclosed clear dome system
at the time—the type you might see at modern airports. For
outdoor winter use in Norway, we needed a heated enclosure to
avoid ice buildup. Here are the specifications:

n Pan movement: 360 degrees continuous.

n Vertical tilt: +2 to –92 degrees.

n Image sensor: 1/4 inch CCD (3.2 x 2.4mm).

n Zoom: 22X optical, focal length 4 to 88mm.

n Sensitivity: 0.07 lux at 1/1.5 s shutter speed.

n Shutter speed: 1/1.5 to 1/30,000 s.

n Minimum F-stop: f/1.6.

n Operating environment: –40 to +50 degrees Celsius, 
sustained.

The Problem
Now, part of the idea in using a PTZ camera for this project
was periodically imaging several fixed points and upload-
ing these images to a Webserver. Here we encountered a
problem. The stock software could do periodic imaging and
FTP just fine. However, we had no way to tell it to go to a
PTZ position before snapping the image. The functionality
was not essential for our first customer, so delivery went
ahead while we researched the issue.

The software in this appliance is open to modification in a
few ways. Source code is available for all open-source compo-
nents of the firmware image—so the administration interface
CGI is missing, but the rest is mostly available for inspection
and modification. The source code for a specific firmware
release is not downloadable, though; you must request it in
writing, from the Axis IPR Department. They will send you the
source code on a CD for a nominal fee.

We had more customers in the pipeline, so research went
ahead. That work eventually yielded several APIs that could be
mined for functionality.

Here are the available APIs:

n The normal admin interface (Web browser).

n HTTP API.

n Scripting.

n Shell scripting.

n F E A T U R E  E M B E D D E D

Shell Scripting 
a Camera Server

Adding functionality to an embedded device doesn’t

have to be complex. How about some shell scripting?

B Y  E R I K  I N G E  B O L S Ø

http://www..linuxjournal.com


n PHP3 Lite.

n GCC SDK for Linux/cris.

As with most embedded devices,
there are some restrictions and incon-
veniences. First and foremost, the
severely limited space. Less than
100kb-writable filesystem space is
available for third-party modifications,
out of the 4MB Flash storage. All
standard software is on a read-only
filesystem, not replaceable without
creating a custom firmware image.

No SSH server or client was avail-
able at the time, so custom shell scripts
had to be triggered by timer or run from
a PHP script. There was a telnet server
available for development use, however.
And nowadays, Dropbear SSH has been
ported to the architecture.

We wanted to make do without an
additional server just for automation, if
we could, so our effort went toward
some internal shell scripting, triggered
at a set interval by the task scheduler
utask. Incidentally, this task scheduler
has some extra capabilities compared to
a vanilla cron—it can react to external
events, like a digital input low-high
transition, or loss of video signal on
camera #2.

Ways of Exposing Functionality
Exposing functionality always is an
issue in embedded development—how
much effort should be put into easy cus-
tomization? In this case, much effort has
gone into it—no two surveillance instal-
lations are alike.

The browser-based interface is easy
to use, featureful and meant for human
consumption. It is often not especially
well suited for machine automation.

The HTTP API is a simple request-
response API, made for automation,
offering most options available in the
browser-based interface. It generally
returns just a status code or the bare
requested object, like a snapshot or

video stream. This lends itself well 
to remote control, and several third-
party vendors sell software that uses
this API for controlling tens to hun-
dreds of cameras from one or a few
central nodes.

The PHP3 Lite dialect is the easiest
option for adding custom dynamic pages
to the browser-based interface, and it
can also be used for general-purpose
internal scripting.

Shell scripting, via the provided sh-
compatible shell and attendant utilities,
is flexible and quick when some local
intelligence is needed—for example,

reacting to the push of a doorbell by
snapping a picture, then opening a gate
via a relay.

And if some advanced local smarts
are needed, the GCC SDK for the
platform is available.

What Do We Have?
As previously mentioned, we chose
shell scripting for the issue at hand. In
the relevant firmware revision, we had
quite a few programs worth using:

n BusyBox: including sash shell as
/bin/sh.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 4 9

The PHP3 Lite dialect is the easiest option for adding
custom dynamic pages to the browser-based interface,
and it can also be used for general-purpose internal scripting.

http://www..linuxjournal.com
http://www.Cari.net/Lj


n mish: minix sh-compatible shell.

n utask: task scheduler, not cron-compatible.

n bufferd: image capture/buffering.

n sftpclient: simple FTP client.

n shttpclient: simple HTTP client.

n smtpclient: simple mailer.

Of special note is the unobtrusive shttpclient. This allows
us to use the HTTP API from internal shell scripts, which we
needed for PTZ control. It also could be used in many other
ways, of course—signaling events to another Webserver or
video server, uploading pictures via HTTP, and other things not
needing more than basic authentication. It is a simple HTTP
client, after all, not wget or cURL.

Problems we encountered when pushing this into 
production use mostly turned out to have nothing to do
with the scripting. We had some intermittent failures 
to upload images—these turned out to be caused by a
climbing vine colonizing one of the antennas for the 
wireless bridge.

All good things end. I’ll leave you now, but first, the
final script we cobbled together is shown in Listing 1. 
Not particularly elegant, granted, but small and not that
hard to write, thanks to the consideration of the original
embedded developers. That’s a fair lesson to take away
from this, isn’t it?

Resources for this article: www.linuxjournal.com/article/
8695.

Erik Inge Bolsø is a UNIX consultant and epee fencer who lives in
Molde, Norway, and has been running Linux since 1996. Another
of his hobbies can be found via a Google search for “balrog
genealogy”, and he can be reached at ljcomment@tvilsom.org.

5 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

Listing 1. Final Script

#!/bin/mish

PATH=/bin:/sbin:/usr/bin:/usr/sbin

# stop button pressed? skip the rest.

stopp=`ls /tmp/stopp` ;

if [ "x$stopp" = "x" ]; then

# clear working directory

bufferd -reset -buffername BILDE ;

# read configured positions, '~' signifies a unset

# position

grep -v '~' /etc/sysconfig/presetpos.conf \

>/tmp/presets ;

# pos 1-10 reserved for non-public views

num=11;

while [ $num -lt 21 ]; do

# another stop button check - break the loop

stopp=`ls /tmp/stopp` ;

if [ "x$stopp" = "x" ]; then

grep Pos$num /tmp/presets >/tmp/canptz ;

canptz=`cat /tmp/canptz` ;

if [ "x$canptz" != "x" ]; then

# go to position

shttpclient "http://127.0.0.1/axis-cgi/\

com/ptz.cgi?camera=1&gotoserverpresetno=$num";

# wait for picture to settle

sleep 6 ;

# save picture to /tmp/BILDE/

bufferd -start -buffername BILDE -snapshot\

-pre 1 -format snapshot_pos$num.jpg -uri\

'ftp://127.0.0.1/jpg/1/704x576.jpg' ;

bufferd -stop -buffername BILDE ;

tmpwait=20 ;

while [ $tmpwait -gt 0 ]; do

sleep 2;

expr $tmpwait - 2 >/tmp/tmpwait ;

tmpwait=`cat /tmp/tmpwait` ;

if [ $tmpwait -eq 0 ]; then

# timeout creating jpeg, kill process and

# settle for potentially incomplete picture

logger "timeout waiting for bufferd -stop,\

killing image_buffer and continuing."

# ps is only available as a builtin

# command in /bin/sh

/bin/sh -c ps >/tmp/kverk ;

grep image_buffer /tmp/kverk >/tmp/kverk2 ;

imbuf_pid=`cut -b 0-5 /tmp/kverk2` ;

rm /tmp/kverk; rm /tmp/kverk2;

kill $imbuf_pid ;

fi;

if [ -f /tmp/BILDE/status ]; then

# status file appeared - picture complete

rm /tmp/BILDE/status ;

tmpwait=0;

fi;

done;

rm /tmp/tmpwait ;

fi;

fi;

expr $num + 1 >/tmp/A ;

num=`cat /tmp/A` ; rm /tmp/A;

done;

rm /tmp/presets ;

rm /tmp/canptz ;

# batch ftp all the pictures from this round

sftpclient -L -m 10.0.0.1 -k /tmp/BILDE -c \

/var/www/pictures/c2 -u web -w P2SsW1Rd -t \

/var/www/pictures/c2/temp_c2.jpg ;

fi;

http://www..linuxjournal.com


    

http://www.FOSE.com


5 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

T
rolltech’s Qtopia is an embedded application frame-
work designed to give vendors maximum customiza-
tion and third-party developers the choice of develop-
ing commercial applications or free GPL applications.

Qtopia is available under dual licenses. Developing for Qtopia
is as easy as any Qt/KDE desktop development, except for a
few extra steps and tools needed.

I started developing my program Gutenbrowser, which is a
reader/downloader for the thousands of free etexts available
from Project Gutenberg. It started out as a Linux-only applica-
tion and soon made its way to Windows, Qtopia and then to the
Open Palmtop Integrated Environment (Opie). Opie is based
on Qtopia GPL and is community developed.

Qtopia is built on Qt Embedded, so an application that is
created with Qt easily can be made to run in the Qtopia envi-
ronment. It took about two weeks part-time/open-source-devel-
oper time to get Gutenbrowser running on the Sharp Zaurus,
and that includes learning Qtopia API and cross-platform com-
pilation as well!

If you want to port a Qt 4 application to Qtopia, it would be
best to wait for Qtopia 4 to be released, as there are significant
changes between Qt Embedded 2.3 and Qt Embedded 4. Qt 3,
KDE and even Gtk+ applications have been ported to Qtopia
versions 1 and 2 but require back-porting, class substitution
and the use of microkde sources for the KDE programs.

Tools You Need
To get started developing for Qtopia, you need a few tools.
Qtopia is Linux-only currently, so you need a Linux desktop on
which to develop. You also obviously need an editor, such as
emacs or vi. For this project, I chose KDevelop as it comes
with a simple Qtopia application template.

If you are developing for a device, you need a cross-com-
piler. Our target device, the Archos PMA430 uses arm-linux-
gcc version 2.95 for Qtopia. Although gcc 3 produces better
optimized code, we want to run on and be compatible with
software currently existing on hardware, so 2.95, as old as it is,
will do. You can get ARM cross-toolchains from various sites
on the Internet. In this case, Archos has a toolchain available at
www.archos.com/products/overview/pma_400_sdk.html and
links are also available from qtopia.net.

Source Code or SDK?
Of course, you also need Qtopia, but you have the choice
of downloading the source code or using a ready-made
Qtopia SDK. The SDK for the PMA430 is available in
commercial and GPL versions, just like Qtopia itself. The
commercial SDK can be purchased for a reasonable sum
from www.trolltech.com/products/qtopia/pricing.html,
and the free, GPL version can be downloaded from 
ftp.trolltech.com/qtopia/sdk. These install to /opt/Qtopia.
Then from a command prompt do:

# ln -s /opt/Qtopia/sharp /opt/Qtopia/arm

if there is no /opt/Qtopia/arm directory.

KDevelop Project
Start KDevelop, and from the Project menu choose New
Project. Open the C++ directory icon, under the directory

n F E A T U R E  E M B E D D E D

Getting Started with
Qtopia

From the horse’s mouth (Trolltech) come instruc-

tions on how to get started writing applications for

Qtopia. B Y  L O R N  P O T T E R

Figure 1. Creating the skizzy Project

http://www..linuxjournal.com


Embedded. Click the file called Qtopia Application to start a
new Qtopia project. I could name this anything, like hippopota-
mus, but instead I will name my project skizzy. See Figure 1
for an example dialog for creating this project.

Once you have a project, you can start editing it to suit
your needs. You need to be sure to use Designer from Qt 2
when you edit .ui (user interface) files for Qtopia, as .ui files
generated from later versions of Qt are not compatible. I do
this by setting up a custom external tool and then opening my
.ui file from within Designer 2.

Note: do not open by clicking on the .ui file, because
Designer 3 will open up within KDevelop, and you can mangle
your .ui file. Because of this, you have to run KDevelop from a
command line, after exporting a few variables:

export PATH=/opt/Qtopia/bin:$PATH

export LD_LIBRARY_PATH=/opt/Qtopia/lib:$LD_LIBRARY_PATH

You also want to set up the Qt Virtual framebuffer tool,
called QVFb, by pointing to /opt/Qtopia/bin/qvfb, in which the
application will run on the desktop. Qtopia displays directly to
the framebuffer, and therefore it does not need the overhead of
the X-11 display server.

Setting Up the Development Environment
We need to set some environmental variables for our KDevelop
project. Run KDevelop, and then click on Project→Project
Options→Run Options. Add these variables:

Name: QTDIR Value: /opt/Qtopia

Name: QPEDIR Value: /opt/Qtopia

Name PATH Value: /opt/Qtopia/bin:$PATH

Name LD_LIBRARY_PATH Value:

/opt/Qtopia/lib:$LD_LIBRARY_PATH

Similarly, add to the Make Options, for desktop development:

Name: QTDIR Value: /opt/Qtopia

Name: QPEDIR Value: /opt/Qtopia

Name PATH Value: /opt/Qtopia/bin:/opt/Qtopia/tmake/bin:$PATH

Name LD_LIBRARY_PATH Value: /opt/Qtopia/lib:$LD_LIBRARY_PATH

Name TMAKEPATH Value:/opt/Qtopia/tmake/lib/qws/linux-generic-g++

Add -lqtopia to the LIBS line in skizzy.pro, as Qtopia 1.7
adds a new library.

At this point, you need to generate a Makefile manually, as
KDevelop does not use tmake correctly:

# export TMAKEPATH=/opt/Qtopia/tmake/lib/qws/linux-generic-g++

# tmake -o Makefile skizzy.pro

Then you can build the project (F8) from within KDevelop.
This little glitch will be resolved in newer versions of Qtopia
that use qmake to generate Makefiles.

Getting Gritty
Let’s add some functionality to skizzy.

Start the Designer 2 application and open skizzybase.ui,
and delete the QLabel. Add a QTabWidget with a QComboBox
on the first tab, a QListBox on the second tab and a

QMultiLineEdit on the third tab, for example (Figure 2).
Save the .ui file.
Open the file skizzy.cpp with KDevelop. You will see our

application is derived from skizzyBase:

skizzy::skizzy( QWidget* parent,  const char* name, WFlags fl )

: skizzyBase( parent, name, fl )

I want to change main.cpp to a better method of con-
structing the application that was added since the time that
the Qtopia templates for KDevelop were created.

We change the usual main() function:

int main( int argc, char ** argv )

{

QPEApplication a( argc, argv );

skizzy mw;

a.showMainWidget( &mw );

return a.exec();

}

to Qtopia’s application macro:

QTOPIA_ADD_APPLICATION("skizzy",skizzy);

QTOPIA_MAIN

This allows us to create a quicklaunch application, which
helps speed up startup time, by using the common application
constructor that is already in memory.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 5 3

Figure 2. If you use QLayouts, it allows your application to resize depending on

the display resolution or screen rotation.

http://www..linuxjournal.com


My application skizzy doesn’t do anything yet, so include:

#include <qpe/fontdatabase.h>

Add a private member:

FontDatabase fdb;

and some functions as private slots:

private slots:

void fillCombo(); 

void comboSelected(const QString &);

void showFont( QListBoxItem *);

We need to add a few lines in skizzy.cpp here for things we
will use:

#include <qstringlist.h>

#include <qcombobox.h>

#include <qtabwidget.h>

#include <qlistbox.h>

#include <qmultilineedit.h>

#include <qfont.h>

#include <qfontinfo.h>

#include <qpe/fontdatabase.h>

and then add the implementations, to which we will connect
our widgets’ signals:

/*

This function uses Qtopia's FontDatabase to 

fill the combobox with a list of font names.*/

void skizzy::fillCombo()

{

QStringList families = fontdb.families();

for ( QStringList::Iterator f = families.begin(); f != families.end();++f ) {

QString family = *f;

ComboBox1->insertItem( family);

}

}

/*

This gets called when the combobox is selected, and 

fills the listbox on the second tab with the name, 

style and point size for the family of fonts 

selected, and raises it. */

void skizzy::comboSelected(const QString &selectedFont)

{

ListBox1->clear();

QStringList styles = fdb.styles( selectedFont );

for ( QStringList::Iterator s = styles.begin(); s != styles.end();++s ) { 

QString style = *s;    QValueList<int> smoothies = fdb.smoothSizes( selectedFont, style );

for ( QValueList<int>::Iterator points = smoothies.begin(); points != smoothies.end(); ++points ) {

QString pointSize = selectedFont + " "+ style +" "+QString::number( *points ) + " ";

ListBox1 ->insertItem( pointSize);

}

}

TabWidget2->showPage(tab2);

}

/*

This shows example text of the selected font in 

the QMultiLineWidget on the 3rd tab, and raises it.*/

void skizzy::showFont( QListBoxItem *item)

{

QStringList fontItemString = QStringList::split(' ',item->text());

QString family, style, point;

family = fontItemString[0]; 

style = fontItemString[1];

point = fontItemString[2];

bool ok;

int i_size = point.toInt(&ok,10);

if (!ok) {

style += " "+fontItemString[2];

point = fontItemString[3];

i_size = point.toInt(&ok,10);

}    

QFont selectedFont( family);

selectedFont.setPointSize(i_size);

if(style.find("Italic",0,TRUE) != -1) {

selectedFont.setItalic(TRUE); 

}

if(style.find("Bold",0,TRUE) != -1) {

selectedFont.setWeight(QFont::Bold);

}

if(style.find("Light",0,TRUE) != -1) {

selectedFont.setWeight(QFont::Light);

}

MultiLineEdit1->setFont( selectedFont);

MultiLineEdit1->setText( tr( "The Quick Brown Fox Jumps Over The Lazy Dog" ) );

MultiLineEdit1->setWordWrap( QMultiLineEdit::WidgetWidth);

TabWidget2->showPage(tab3);

}

Qt and Qtopia use signals for sending messages between
widgets. Every widget has some kind of signal it emits, and
we can use the connect macros to link up functionality.

Connect ComboBox1’s activated signal, and ListBox1’s
clicked signal to our slots, like this:

skizzy::skizzy( QWidget* parent,  const char* name,

WFlags fl )

: skizzyBase( parent, name, fl )

{

connect(bye, SIGNAL(clicked()), this,

SLOT(goodBye()));

connect(ComboBox1, SIGNAL(activated(const QString

&)), this, SLOT(comboSelected(const QString &)));

connect(ListBox1, SIGNAL( clicked ( QListBoxItem *

5 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

http://www..linuxjournal.com


)), this, SLOT(showFont( QListBoxItem*)));

fillCombo();

}

Notice how the slot function takes an argument of the exact
same type as the signal.

In KDevelop, either press F8, or in the menu, select
Build→Build Project.

It should now compile, using the native compiler. To
run it, start up QVFb, and simply select Build→Execute
Main Program. The skizzy application should show up 
in QVFb.

Figure 3. Skizzy with real, if not useful features.

Cross-Compiling
So, now that we have a reasonably working program, we need
to cross-compile this for the Archos device. We have to change
the project settings to find the proper libraries.

We are now ready to cross-compile, so clean the project by
selecting Build→Clean Project from the menu.

You need to change the Make Options, using the Project
Options→Make Options dialog:

Name: QTDIR Value: /opt/Qtopia/arm

Name: QPEDIR Value: /opt/Qtopia/arm

Name PATH Value:

/usr/local/arm/bin:/opt/Qtopia/tmake/bin:$PATH

Name TMAKEPATH Value:/opt/Qtopia/tmake/lib/qws/linux-arm-g++

Delete the Makefile, and run the following command from
the command line to create the Makefile for compiling using
the arm-linux compiler:

# export TMAKEPATH=/opt/Qtopia/tmake/lib/qws/linux-arm-

g++

# tmake -o Makefile skizzy.pro

Press F8 to build the project. You can now take the result-
ing binary, transfer it to the Archos device using USB, and run
it from there!

If you want to create an installable package, Qtopia 
uses Itsy Package Management (ipkg), available from 
handhelds.org, to install things using the Software Packages
application. More information about ipkg and Qtopia develop-
ment are available from Trolltech’s Qtopia.net Web site.

Lorn Potter works for Trolltech as the Qtopia
Community Manager. He is an American who lives
in sunny Brisbane, Australia, with his Australian wife
and son. He is a self-taught open-source program-
mer who is a core developer for the Opie (Open
Palmtop Integrated Environment) Project. He also has worked as
a musician, sound engineer and snow ski bum.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 5 5

Low Power (LP-SIB)
Server-In-a-Box
Starting at $350.00
Quantity 1.

EMBEDDED WEB-SERVER

Since 1985
OVER

YEARS OF
SINGLE BOARD

SOLUTIONS

20

EQUIPMENT MONITOR AND CONTROL

Phone: (618) 529-4525 Fax: (618) 457-0110 www.emacinc.com� �

�

�

�

�

�

�

�

�

�

�

�

Coldfire RISC 63 MIPS CPU

Ultra Low Power (less than 2 watts)

MMC/SD Flash disk up to 1 Gig

10/100 Base-T Ethernet

uClinux 2.6 with Minix Shell

Das Uboot Bootloader with TFTP

Eclipse Development Environment

HTTP and FTP Servers

PPP Dial In/Out Server & Client

Telnet Server

Reliable (No Moving Parts)

Two RS-232 & One RS232/422/485 Serial Ports

General Purpose I/O Lines, A/D, & Optional D/A

Optional Dial-Up Modem & CAN 2.0b Port

�

�

�

http://www..linuxjournal.com


5 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

I
n this article, I describe the process I used to create a
home automation system using off-the-shelf products,
Python and Linux. I start by describing the Serial I/O Kit,
drive alert, water alarm, smoke detector and cameras that

make up the hardware portion of the system. Next, I give a
short description of the command-line programs and packages
that are used by the Python program. I finish up by giving a
brief rundown of the major parts of the Python program that tie
all of the hardware and packages together.

The idea for this system was born when some of my neigh-
bor’s party guests parked in my drive for several minutes while
they were trying to figure out if they were at the correct house.
I was caught off-guard, because I didn’t immediately notice
that someone had pulled up. It became very clear to me that
they could have entered my residence or shop unnoticed. I
decided to create a system on my own, because I knew that a
commercial security system that would monitor driveway traf-
fic and capture images from the various cameras positioned
around my property would be expensive.

Because I have coded several programs at work in Python,
I have had firsthand experience with the rapid development
provided by Python. It allowed me to concentrate on the
problem at hand rather than complicated language syntax and
semantics. I would recommend Python for any program that
crunches text-based data, because it is easy enough for begin-
ning programmers, but powerful and flexible enough to
handle larger tasks.

The Python home automation system is centered around an
Isolated Serial I/O Kit (Figure 1) from Quality Kits, which is
available assembled for an extra $10 US. The kit contains four
inputs and eight relays. The inputs detect DC voltage from a
source within the 6–24-volt range. The relays can be used to
turn voltage to a source on or off, so they can be used to con-
trol the power to multiple 12V light bulbs or any other gadget
that requires DC voltage within the relay’s specified voltage
range. The Serial I/O Kit uses simple read and write commands
to a serial port connection for setting the relays and monitoring
the inputs. The inputs and relay circuits are isolated, which
means there is no direct connection between these circuits and
the computer’s serial connection. This prevents damage to the
computer if something goes wrong with the Serial I/O box.
Figure 2 shows how to connect the Mier Drive Alert and
alarms to the Serial I/O box inputs.

n F E A T U R E  E M B E D D E D

Building a Home
Automation and Security
System with Python
Grab some relatively inexpensive hardware and use 

Python to string it all together into a home security system.

B Y  F R E D  S T E LT E R

Figure 1. Isolated Serial I/O Kit

Figure 2. Connecting the Mier Drive Alert and Alarms to the Serial I/O Box Inputs

http://www..linuxjournal.com


The second major part of the system is the Mier Drive Alert
(Figure 3). This system is reliable, and it also provides an
adjustable timed 24-volt output when activity is detected. If
you decide to use the Mier Drive Alert, connect one of the
Serial I/O inputs to the terminals marked Neg and NO on the
Mier Drive Alert controller. Otherwise, any drive alert system
that provides a voltage output in the 6–24-volt range when
activity is detected should work. If you are not sure that the
unit you chose provides this type of output, you probably need
to contact the company.

The Mier controller box detects very small changes in volt-
age, which are produced by the sensor probe due to changes in
the earth’s magnetic field when a metal object passes by the
sensor probe. This is why the sensor probe cannot be connect-
ed directly to the Serial I/O Kit’s input, because the voltage
produced by the probe is much smaller than the input’s mini-
mum voltage detection value of 5 volts.

Other drive alert systems are available that use a beam or a
pressure-activated switch and a rubber hose. This type was
once pretty common at drive-thrus and full-service gas stations.
I didn’t choose the beam type, because it would detect any-
thing that moves, and I doubt that a rubber hose would have
held up very well on my gravel drive. The Mier unit produces
an occasional false alarm due to inclement weather and light-
ning strikes, but these are minimal and can be reduced if the
controller sensitivity is adjusted.

Figure 3. Mier Drive Alert

As we all know, water and house interiors don’t mix,
which is why I added this cheap and simple water-detection
circuit to the mix. The circuit performed well in a test envi-
ronment using a pan of water, but lacks any real-life testing.
The circuit shown in Figure 4 was created from a schematic
that is listed in the on-line Resources. I removed the timer,
buzzer and other unnecessary components, leaving a single
switching transistor and a resistor. The circuit can be pow-
ered by a DC adapter in the 6–9-volt range. The probes in
my system are simply a short piece of scrap copper tubing,

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 5 7

ASA
COMPUTERS

www.asacomputers.com
1-800-REAL-PCS

Hardware Systems For The 
Open Source Community–Since 1989

(Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MS, etc.)

The AMD Opteron™ processors deliver high-performance, 
scalable server solutions for the most advanced applications.

Run both 32- and 64-bit applications simultaneously

2354 Calle Del Mundo, Santa Clara, CA 95054
www.asacomputers.com

Email: sales@asacomputers.com
P: 1-800-REAL-PCS | FAX: 408-654-2910

Prices and availability subject to change without notice.
Not responsible for typographical errors. All brand names and logos

are trademark of their respective companies.

AMD Opteron™ Value Server—
$795
• 1U 14.3” Deep
• AMD Opteron™ 140
• 512MB RAM Max 8GB

• 40GB IDE HDD
• 2x 10/100/1000 NIC
• Options: CD, FD or 2nd HD, RAID

8 Hot Swap Bays in 2U AMD
Opteron™—$1,900
• 1 of 2 AMD Opteron™ 240
• 512MB RAM Max 16GB

• 3x80GB IDE RAID # 5
• 2xGigE, CD+FD
• Options: SATA/SCSI, 

Redundant PS

Front I/O Dual AMD Opteron™

Cluster Node—$1,375
• 1U Dual AMD Opteron™ Capable

Font I/O
• Single 240 AMD Opteron™

• 1GB RAM Max RAM 16GB

• 80GB HDD
• Dual PCI Expansion Slot

No Frills AMD Opteron™

Storage Server—$7,749
• 6TB+ IDE/SATA Storage in 5U     
• Dual AMD Opteron™ 240
• 512MB RAM
• 6TB IDE Storage
• Dual GigE, CD
• Options:

SATA HDD,
DVD+RW
etc.

Your Custom Appliance Solution
Let us know your needs, we will get you a solution

Custom Server, Storage, Cluster, etc. Solutions
Please contact us for all type of SCSI to SCSI, Fibre to SATA, 

SAN Storage Solutions and other hardware needs.

“Your Logo Here”“Your Logo Here”

http://www..linuxjournal.com
http://www.asacomputers.com
http://www.asacomputers.com


and they just sit on the floor of my shop bathroom several
inches apart. I have multiple probes connected to the same
water alarm circuit, which provides multiple monitoring
points per circuit at the loss of being able to identify the
exact location of the leak. I leave it up to you to determine
the correct probe separation for your application, because I
don’t have any exact distances. The water alarm (Figure 5)
that I created contains two transistors and thus two alarm
circuits on the same board.

Figure 4. Circuit

Figure 5. Water Alarm

The smoke alarm has never been tested in a real emergen-
cy and was added as an afterthought. Do not replace any exist-
ing smoke alarms with this modified version, because it must
be tampered with. The following reasons are very good rea-
sons not to rely on it in case a fire occurs, because if your
computer, the Serial I/O Kit connection, and/or your Internet
connection is the first to go, the alarm is useless. If you decide
to duplicate this portion of the project, do so at your own risk.
The smoke detector used in this portion of the project is just a

model with an exit light that should be available from your
local home hardware center. It employs two 9-volt batteries;
one to power the alarm, and the other to power the light. Now,
you need to void the warranty by modifying the detector as
follows. Begin by removing the cover and locating the exit
light. Use a volt meter to determine the positive and negative
connections to the light. Then just solder a couple of wires to
the proper connection points and connect them to one of the
Serial I/O Kit’s inputs.

The system uses several relatively inexpensive Logitech
Webcams along with a couple of network cameras. Any cam
that’s supported by video for Linux should work along with
most network camera models. The best advice I can offer is to
verify that the camera is supported by Linux and that a driver
is available. Logitech Quickcam Pro models perform quite
well, but not all of the Logitech models are supported by the
same driver. The Quickcam Pro models use the pwc module
available from saillard.org.

The system uses several command-line programs avail-
able for Linux that handle WAV-file playback, zip file cre-
ation and image file captures. The SOX package is a sound
conversion and utility package for Linux. It provides the
play command, which is used for playing the various alarm
warning sounds. Several sound wrapper modules are avail-
able for Python, but I found that it was fairly easy to make
a system call to the play command. The zip command is
used to create zip files from the camera image captures.
Python includes a zipfile module, but it was easier to use
the command-line version, which easily can be replaced
with another command, such as tar.

Image file captures are handled using Motion and Curl.
The later is a fairly powerful program that will transfer data
from a server. According to the man page, it handles http,
https, ftp, telnet and some other formats. I make a system call
to it to retrieve images from the D-Link network camera’s
HTTP server by using a command similar to this one, curl
http://192.168.0.98/IMAGE.JPG -uusername:password -m2
>outputfile.jpg, where -m2 tells it to stop trying after two sec-
onds. Motion creates MPEG motion capture and time-lapse
movie files along with single JPEG image files at a preset rate.
The simple HTTP server built into Motion provides an image
stream, but it does not allow for single image retrieval using Curl.
For more information on Motion, see the Linux Journal March
2005 article, “GNU Motion: Your Eye in the Sky for Computer
Room Surveillance” by Phil Hollenback, because it does a good
job explaining the details required to get it up and running.

Once you have a working Motion setup, you should
change the snapshot_interval in Motion’s config file to a one
or a value acceptable to your application. Lower values are
better, because they prevent duplicate image captures. Now
set the snapshot_filename value to a temporary filename,
such as, tempmotionimagefile, so that Motion creates only
a single capture file. Leaving the default motion.conf 
snapshot_filename will work, but Motion will create a new
file using the snapshot interval value, which can result in a
very large number of stored image files. These settings cause
Motion to create a symbolic link named lastsnap.jpg that
always points to the latest snapshot file, which in the case of
the settings above, always is overwritten with the most
recent image.

5 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

http://www..linuxjournal.com


Now that all of the hardware and required programs
above are configured, installed and functioning on their
own, it is time to discuss the Python program that glues all
of it together. I briefly touch on the most important parts of
the program, along with any second-party modules that are
required. The pyserial module contains a posix serial I/O
implementation for Linux and is used to handle reads and
writes to the Serial I/O Kit. A thread-enabled Python instal-
lation is required by the program, because it must perform
several simultaneous operations in order to monitor input
activity and so forth.

The MonitorInputs class is one of the most important,
because it handles input monitoring by employing the
GetInputStatus method (Listing 1). This method checks for
input activity by writing the input name (I1 to I4) to the seri-
al port. The write method is provided by the Serial class in
the pyserial module. Notice that there is a Python list defined
as Expect in the example code. This is a list of the expected
output from the serial class read command executions that
are required to clear and validate information that is returned
from the write request. If an unexpected read result is
obtained, the serial port connection is reset. This allows the
program to recover from serial communication failures and
short power losses to the Serial I/O Kit.

When activity is detected, MonitorInputs checks to
make sure that input activity has not occurred within the
input activity timeout. The timeout is used to keep the
alarm threads, which simply send a plain-text e-mail, from
executing too many times during a single input activity
voltage-on condition. The timeout is not the best solution,
because the smoke and/or water alarm would still send a
new e-mail every 60 seconds. This is acceptable to me,
because if I receive a water alarm e-mail while at work,

I’m going to rush home. The unused Serial I/O Kit relays
could be used to correct this shortcoming, because each
input positive connection could be routed through a relay,
which could be turned off to disable the alarm voltage.

Another solution is to signal the GetInputStatus method
to ignore input activity on a specific input. Either method
will work, but a remote trigger mechanism will be required
in either case, because the serial port connection is main-
tained by the home automation program. A possible solu-
tion adds a server thread to the home automation program
that would accept simple string commands from a client
connection. This would allow a simple Python CGI script
to send commands that could control input monitoring
and/or the relay states. Pyro is a Python distributed object
system that provides another more complex solution using
an event server. This is very similar to the client/server
approach, but Pyro is more robust and provides opportuni-
ties beyond the scope of this article. One of these solutions
will probably find its way into a future upgrade to the home
automation program.

Now that the program is monitoring for input activity, it
needs to produce notifications, such as a warning sound or e-
mail when activity is detected. Smoke and water alarm activ-
ities are handled by the generic threaded Alarm class, and
drive alert activity is handled separately. The Alarm class

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 5 9

Listing 1. Employing the GetInputStatus Method

def GetInputStatus(self, Input = None):

self.ser.write(Input + '\r\n')

Expect = [Input[0], Input[1], '\r', '\n']

cnt = 0

while cnt <= 3:

a = self.ser.read()

if a == '' or a != Expect[cnt]:

return -1

cnt += 1

val= self.ser.read()

Expect = ['\r', '\n', '#']

cnt = 0

while cnt <= 2:

a = self.ser.read()

if a == '' or a != Expect[cnt]:

return -1

cnt += 1

if val == '1':

return 1

else:

return 0

http://www..linuxjournal.com
http://www.shoprcubed.com


plays a WAV file using the PlayWav
class, and it also sends a notification e-
mail using the MailAttachment class.
The PlayWav class uses a popen call to
the wavcmd value (sox play command)
set in the configuration file. The
PlayWav class is threaded to prevent a
busy sound device from holding up the
e-mail notifications. The end result of
all of the threaded classes is that the
input activity is monitored almost con-
tinuously with only slight delays.

The DriveAlert class handles
detected input activity for the drive
alert signal. This class employs the
GetImage (Listing 2), PlayWav and

SSHRemote threaded classes. A new
GetImage instance is created for each
camera command (camcmd) set in the
configuration file, so that images can
be collected from each camera at
about the same time. The GetImage
class makes a popen call to the cam-
era command and waits until it has
completed. This is repeated until the
number of images set in the configu-
ration file have been collected and
saved in the directories defined in the
camdir section of the configuration
file. Once all of the images have been
collected, the GetImage class uses the
ZipIt class to create a zip file via a

popen call to the zip command. When
all of the image files are zipped up,
the MailAttachment routine is used to
e-mail the zip files. If you would like
to stagger the images collected from
the cameras, you can add a camera
image delay section to the configura-
tion file and modify the GetImage
class by adding a call to the sleep
function using the preset camera delay
as input.

I briefly mention the SSHRemote
class because the name is ambiguous.
This class could be used to execute
any command by replacing the ssh
remote command in the configuration
file with another one. I currently use
it to play some tunes on my shop
machine to make it appear that some-
one is home. The ssh call executes
another simple Python script on the
remote machine, which uses the play
command to play all WAV files in a
specified directory.

This article shows how Linux,
Python and some cheap off-the-shelf
hardware can be used to create a
home automation system in a reason-
able amount of time. The article
focuses on the main parts of the sys-
tem and cannot possibly describe the
setup of all of the required compo-
nents in detail. I must also stress that
this system has not been tested in a
production environment and therefore
comes with no guarantees, express or
implied, as to its suitability for any of
the purposes listed above, so use it at
your own risk. I am looking forward
to making future enhancements, such
as a voice modem that will dial a pre-
set number and play a message. This
will supplement the unreliable e-mail
notifications, which are often delayed.
I hope this article sparks your interest
in simple monitoring systems and the
flexibility of the Serial I/O Kit used in
this project.

Resources for this article:
www.linuxjournal.com/article/8696.

Fred Stelter has a BS in Computer
Science from Baylor University in Waco.
When he’s not writing code for a local
company, he likes to pop some tires at
the local mountain bike trails, work on
his hot rod or occasionally hit the water
for some kneeboarding.

6 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

Listing 2. DriveAlert Class

class GetImage(threading.Thread):

def _ _init__(self, cam = None, numImages = 1):

self.cam       = cam

self.JobBegin  = -1

self.camCmd    = CamCOMMANDS[cam]

self.numImages = NumCamImages[cam]

self.Zip = None

threading.Thread.__init__(self)

def run(self):

for i in range(self.numImages):

self.JobBegin =

int(time.strftime("%H%M%S",time.localtime(time.time())))

if QUIET == 0:

print 'Getting %s image' %self.cam

filename = time.strftime("%H%M%S",

time.localtime(time.time())) + '.jpg'

execcmd = self.camCmd %filename

self.p = popen2.Popen3("exec " + execcmd, 1024)

self.errReader = PipeReader(self.p.childerr);

self.errReader.start()

self.outReader = PipeReader(self.p.fromchild);

self.outReader.start()

try:

self.p.wait()

except OSError, (errno, errnostr):

if QUIET == 0:

print 'ERROR: GetImage self.p.wait Errno %s: %s'

%(`errno`, `errnostr`)

except:

if QUIET == 0:

print 'ERROR: self.p.wait Unknown error'

time.sleep(IMAGE_DELAY)

#Popen complete - create zipfiles

self.Zip = ZipIt(self.cam)

self.Zip.start()

self.Zip.join() #Wait on zip file creation

http://www..linuxjournal.com
http://www.linuxjournal.com/article/8696


http://www.microway.com


6 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

d
b4o is an open-source, object-oriented database
from db4objects. It is embeddable, in the sense that
the entire db4o engine is supplied as a single library
that links into your application. Versions of db4o

exist for Java and .NET/Mono. Consequently, it’s an ideal
OODBM engine for Linux applications written in either the
Java or .NET frameworks. In this article, the examples pro-
vided have been written in C# and tested in Mono running on
an Ubuntu Linux system. (We also ran the applications on a
Monoppix system.)

Besides being an open-source library—so you can down-
load it instantly and begin experimenting with its capabili-
ties—db4o’s other outstanding characteristic is its terse, easi-
ly grasped API. In most cases, you’ll use methods drawn
from a set of nine fundamental calls. In addition, the
library’s memory footprint is modest, making it ideal for
resource-constrained applications (though by no means is
db4o incapable of enterprise-level work).

Despite its small footprint and uncomplicated programming
interface, db4o provides all the features you’d expect from a
commercial database engine: it allows multiuser access, any
access on the database is invisibly wrapped in a transaction and
all operations adhere to ACID principles (atomicity, consisten-
cy, isolation and durability).

Unlike some object-oriented and object-relational
database systems, db4o does not require you to pass your
code through an instrumentation pre- or post-compilation
step. Nor must classes whose objects are to be made persis-
tent be derived from a special persistence-aware superclass.
db4o is happy to work with ordinary objects, and you need
not inform it of an object’s structure before you store that
object into a db4o database.

As we hope to show, this provides us with some unexpect-
ed capabilities.

A Dictionary Database
Suppose our application is a dictionary—a dictionary in the
classic sense. That is, the application manipulates a
database that stores words and their definitions. In such an
application, we might define a class to model dictionary
entries as follows:

/*

* DictEntry

*/

using System;

using System.Collections;

namespace PersistentTrees

{

/// <summary>

/// DictEntry class

/// A dictionary entry

/// </summary>

public class DictEntry

{

private string theWord;

private string pronunciation;

private ArrayList definitions;

public DictEntry()

{

}

// Create a new Dictionary Entry

public DictEntry(string _theWord,

string _pronunciation)

{ theWord = _theWord;

pronunciation = _pronunciation;

definitions = new ArrayList();

}

// Add a definition to this entry

// Note that we do not check for duplicates

public void add(Defn _definition)

{

definitions.Add(_definition);

}

// Retrieve the number of definitions

public int numberOfDefs()

{

n F E A T U R E  E M B E D D E D

Embedding the db4o
Object-Oriented Database

How to get started using this small-footprint

object-oriented database in your embedded 

system programs. B Y  R I C K  G R E H A N

http://www..linuxjournal.com


return definitions.Count;

}

// Clear the definitions array

public void clearDefs()

{

definitions.Clear();

definitions.TrimToSize();

}

// Properties

public string TheWord

{

get { return theWord; }

set { theWord = value; }

}

public string Pronunciation

{

get { return pronunciation; }

set { pronunciation = value; }

}

// Get reference to the definitions

public ArrayList getDefinitions()

{

return definitions;

}

}

}

A DictEntry object consists of three elements: the 
word itself, its pronunciation and a list of definitions.
Meanwhile, a class for describing definition objects might
look like this:

/*

* Defn

* 

*/

using System;

namespace PersistentTrees

{

/// <summary>

/// Description of Class1.

/// </summary>

public class Defn

{

public static int NOUN = 1;

public static int PRONOUN = 2;

public static int VERB = 3;

public static int ADJECTIVE = 4;

public static int ADVERB = 5;

public static int CONJUNCTION = 6;

public static int PARTICIPLE = 7;

public static int GERUND = 8;

private int pos;

private string definition;

public Defn(int _pos,

string _definition)

{

pos = _pos;

definition = _definition;

}

// Properties

public int POS

{

get { return pos; }

set { pos = value; }

}

public string Definition

{

get { return definition; }

set { definition = value; }

}

}

}

So, a Defn object includes an integer member indicating
the part of speech and a string member that holds the text
for the definition. This structure allows us to associate 
multiple definitions with a single entry in the dictionary.

Storing such items into a db4o database is marvelously 

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 6 3

http://www..linuxjournal.com
http://conf.phpquebec.com


simple. Assume that we want to add the word float to our 
dictionary and provide it with three definitions:

Defn _float1 = new Defn(VERB, "To stay on top of a liquid.");

Defn _float2 = new Defn(VERB, "To cause to float.");

Defn _float3 = new Defn(NOUN, "Anything that stays on top of water.");

DictEntry _float = new DictEntry("float", "flote");

_float.add(_float1);

_float.add(_float2);

_float.add(_float3);

At this point, we have a DictEntry object, _float, whose list
of definitions includes three items.

First, we open the database itself. A db4o database is mod-
eled by an ObjectContainer object, and we can open (or create,
if it doesn’t exist) an ObjectContainer with:

ObjectCointainer db = Db4o.openFile("<filename>");

where <filename> is the path to the file that holds the persis-
tent content of the ObjectContainer. You put an object into the
ObjectContainer using the set() method. So, we can store our
new definition with:

db.set(_float);

which, believe it or not, is just about all you need to know
about the set() method. That one call stores not only the _float
DictEntry object, but all of its contained Defn objects as well.
When you call db4o’s set() method, the db4o engine invisibly
spiders through the object’s references, persisting all the child
objects automatically. Just pass set() the root object of a com-
plicated object tree, and the whole shebang is stored in one
shot. You don’t have to tell db4o about your object’s structure;
it discovers it automatically.

To retrieve an object from an ObjectContainer, we
locate it with the help of db4o’s QBE (query by example)
mechanism. A QBE-style query is guided by an example, or
template, object. More specifically, you perform a query by
creating a template object, populating its fields with the
values you want matched, showing the template object to
the query system and saying, “See this? Go get all the
objects that look like this one.”

So, assuming you want to retrieve our definitions for float,
the process looks something like this:

// Create template

DictEntry DTemplate = new DictEntry("float", "");

// Execute QBE

ObjectSet results = db.get(DTemplate);

// Iterate through results set

while(results.hasNext())

{

DictEntry _entry = (DictEntry)results.next();

... process the DictEntry object ...

}

First, we create the template object, filling the fields we’re
interested in with the values we want matched. Fields that
shouldn’t participate in the query are filled with zero, the
empty string, or null—depending on the data type. (In the
above example, we’re simply looking for the word float in the
dictionary. We put an empty string in the pronunciation field
for the templater object constructor, because the pronunciation
is irrelevant to the query.)

Then, we execute the query by calling the
ObjectContainer’s get() method, with the template object
passed in as the single argument. The query returns an
ObjectSet, through which we can iterate to retrieve the results
of the match.

Adding Indexes
At this point, we can easily create a database, fill it with
words and definitions, and retrieve them using db4o’s QBE
mechanism. But, what if we want to experiment with differ-
ent indexing-driven retrieval mechanisms? Because the
database preserves relationships among the persistent objects,
we can create custom indexing and navigation structures,
place them in the database as well and “wire” our data

6 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

Figure 1. A trie. In a trie index, individual characters within a word are stored at

different node levels. This particular trie holds three words: as, ask and bet. The

data pointers are actually references to the DictEntry objects associated with the

corresponding words.

http://www..linuxjournal.com


objects into those structures.
We illustrate how simple this is by creating two dissimilar

indexing schemes.
First, we create a binary tree. Each node of the tree carries

as its payload a key/data pair. The key will be a text word from
the dictionary, and the associated data item will be a reference
to the DictEntry object in the database. So, we can fetch the
binary tree from the database, execute a search for a specific
word in the dictionary and fetch the matching DictEntry object
(if found).

The architecture and behavior of binary trees are well
known, so we won’t go into much detail about them here. (In
fact, many frameworks now provide them as standard data
structures. We’ve created an explicit one to show how easily it
can be stored in the database.) Our implementation appears in
Listing 1. It is rudimentary, supporting only insertion and
searching. It doesn’t guarantee a balanced tree, but it serves for
the purposes of illustration. The TreeNode class, which defines
the structure of nodes within the binary tree, appears in Listing
2. (Note, we’ll explain the purpose of the calls to db.activate()

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 6 5

Listing 1. Binary Tree

/*

* Binary Tree

*/

using System;

using com.db4o;

namespace PersistentTrees

{

/// <summary>

/// Description of BinaryTree.

/// </summary>

public class BinaryTree

{

// The tree's root

private TreeNode root;

public BinaryTree()

{

root = null;

}

public static BinaryTree nullfactory()

{

return(new BinaryTree());

}

// insert

// Add key to tree with associated object reference

public void insert(string _key, Object _data)

{

// Use recursion for this

root = insert(root, _key, _data);

}

// insert

// This is worker method for inserting key and data

// Insert _key into subtree t with _data associated

private TreeNode insert(TreeNode t, string _key, Object _data)

{

// If this subtree is empty, build a new node

if(t == null)

t = new TreeNode(_key, _data);

else

if(_key.CompareTo(t.Key)<=0)

t.Left = insert(t.Left,_key, _data);

else

t.Right = insert(t.Right,_key, _data);

return(t);

}

// search

// Search for a key in the tree.

// Return the array from the TreeNode if found, null if

// not

// db is the ObjectContainer holding the tree.

public Object[] search(string _key,

ObjectContainer db)

{

TreeNode t = search(root, _key, db);

if(t==null) return(null);       // Not found

db.activate(t,4);              // Activate to get data

return(t.getData());

}

// search

// This is the worker method for searching.

private TreeNode search(TreeNode t,

string _key,

ObjectContainer db)

{

// Empty tree?

if(t==null) return(null);

if(_key.CompareTo(t.Key)==0) return(t);

if(_key.CompareTo(t.Key)<0)

{

db.activate(t.Left,2);

return(t = search(t.Left,_key,db));

}

db.activate(t.Right,2);

return(t = search(t.Right,_key,db));

}

}

}

http://www..linuxjournal.com


in Listing 1 shortly.)
Next, I create a trie, an indexing data structure special-

ized for searching text words. It is built as a series of nodes
arranged in levels—each level holds a set of characters and
associated pointers such that the characters on the topmost
(or, root) level correspond to letters in a word’s first char-
acter position; characters in the second level correspond 
to letters in the second character position, and so on.
References associated with each character serve to “string”
characters like beads on a thread, so that following a thread
from the root down into the tree spells out the word being
searched for.

If this is difficult to visualize, the illustration in Figure 1
should help.

Inserting a new word into a trie is relatively simple.
Starting with the first matching character, you examine the
root node to see whether that character exists. If not, add it,
and from that point on, the algorithm inserts new nodes

(each initialized with a subsequent letter) as it works
through the target word. If the character does exist, the
algorithm follows the associated pointer to the next 
level, and the examination process repeats. Ultimately,
you’ve accounted for each character in the word, and 
the node you’re on is the node on which you attach the 
data reference.

Searching a trie is equally simple. Start at the root, and
look for the first character. If the character is found, follow
the associated reference to the next node; else, return a 
“not found” error. Otherwise, move to the next character,
repeat, and if you get through the whole word, the data
node associated with the terminal character points to the
DictEntry object.

The code for the trie is shown in Listing 3.
As the code for inserting and searching both binary 

trees and tries illustrates, we can work with database
objects almost as though they were purely in memory

6 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

Listing 2. TreeNode Class

/*

* TreeNode

*/

using System;

namespace PersistentTrees

{

/// <summary>

/// Description of TreeNode.

/// </summary>

public class TreeNode

{

public TreeNode()

{

}

private TreeNode left;  // Left child

private TreeNode right; // Right child

private string key;             // Key for this node

private Object[] data;  // Data associated with key

// Create a new TreeNode, loaded with

//  key and data.

public TreeNode(string _key, Object _data)

{

left = null;

right = null;

key = _key;

data = new Object[1];

data[0] = _data;

}

// addData

// Adds new data item to an existing node.

// The array is extended.

public void addData(Object _data)

{

Object[] newdata = new Object[data.Length+1];

Array.Copy(data,0,newdata,0,data.Length);

newdata[data.Length]=_data;

data = newdata;

}

// Property access

public TreeNode Left

{

get { return left; }

set { left = value; }

}

public TreeNode Right

{

get { return right; }

set { right = value; }

}

public string Key

{

get { return key; }

set { key = value; }

}

public Object[] getData()

{

return data;

}

}

}

http://www..linuxjournal.com


objects. Specifically, we can attach an object to an 
index simply by storing its object reference in the data
reference element.

In addition, because the database makes no distinction
between index objects and data objects, we need not create a
separate index and data files. This keeps everything in one

place, which is actually more of an advantage than one might
first suppose.

Code for reading a text file with words and definitions,
creating DictEntry objects and storing them in the database,
and also building binary tree and trie indexes and attaching
the DictEntry objects to them looks like this:

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 6 7

Listing 3. Trie

/*

* Trie

*/

using System;

using com.db4o;

namespace PersistentTrees

{

/// <summary>

/// Description of Trie.

/// </summary>

/// trie class

public class Trie

{

private TriePnode root;         // Root of Trie

// Constructor

public Trie()

{

root = null;

}

// insert

// Insert a key/data pair into the tree.

//  Allows duplicates

public void insert(string key,  // Key to insert

Object data)   // Data assoc. with key

{

TriePnode t = root;

TriePnode parent = null;

int index=0;

int slen = key.Length;

for(int i=0; i< slen; i++)

{

char c = key[i];

// If a node doesn't exist -- create it

if(t == null) t = new TriePnode();

// If this is the first node of the tree,

// it is the

//  root. Otherwise, it is stored in the

//  pnodes array

//  of the parent

if(i==0)

root = t;

else

parent.setPnodePointer(index, t);

// If the character is not on the node,

// add it

if((index=t.isCharOnNode(c))==-1)

index = t.addKeyChar(c);

if(i == slen-1) break;

parent = t;

t = t.getPnodePointer(index);

}

// Finally, add the data item

t.addData(index, data);

}

// search

// Searches for a string in the trie.

// If found, returns the Object[] data array associated.

// Else, returns null

// db is the ObjectContainer holding the trie

public Object[] search(string _key,

ObjectContainer db)

{

TriePnode t;

char c;

int index=0;

// Empty trie?

if((t=root)==null) return(null);

int slen = _key.Length;

for(int i=0; i<slen; i++)

{

c = _key[i];

if((index=t.isCharOnNode(c))==-1) return(null);

if(i==slen-1) break;

db.activate(t,2);

t = t.getPnodePointer(index);

}

// Get the data

db.activate(t,3);

return(t.getDnodePointers(index).getData());

}

}

}

http://www..linuxjournal.com


string theword;

string pronunciation;

int numdefs;

int partofspeech;

string definition;

DictEntry _dictEntry;

// Open a streamreader for the text file

FileInfo sourceFile = new FileInfo(textFilePath);

reader = sourceFile.OpenText();

// Open/create the database file

ObjectContainer db = Db4o.openFile(databaseFilePath);

// Create an empty Binary tree, and an empty trie

BinaryTree mybintree = new BinaryTree();

Trie mytrie = new Trie();

// Sit in an endless loop, reading text,

//  building objects, and putting those objects

//  in the database

while(true)

{

// Read a word.

// If we read a "#", then we're done.

theword = ReadWord();

if(theword.Equals("#")) break;

// Read the pronunciation and put

//  it in the object

pronunciation = ReadPronunciation();

_dictEntry = new DictEntry(theword, pronunciation);

// Read the number of definitions

numdefs = ReadNumOfDefs();

// Loop through definitions. For each,

//  read the part of speech and the

//  definition, add it to the definition

//  array.

for(int i=0; i<numdefs; i++)

{

partofspeech = ReadPartOfSpeech();

definition = ReadDef();

Defn def = new Defn(partofspeech, definition);

_dictEntry.add(def);

}

// We've read all of the definitions.

// Put the DictEntry object into the

//  database

db.set(_dictEntry);

// Now insert _dictEntry into the binary tree

//  and the trie

mybintree.insert(_dictEntry.TheWord, _dictEntry);

mytrie.insert(_dictEntry.TheWord, _dictEntry);

}

// All done.

// Store the binary tree and the trie

db.set(mybintree);

db.set(mytrie);

// Commit everything

db.commit();

This, of course, presumes a number of helper methods for
reading the source file, but the flow of logic is nonetheless
apparent. Notice again that we were able to store each
index—in entirety—simply by storing the root with a single
call to db.set().

Fetching something from the database is only somewhat
trickier. As much as we’d like to treat persistent objects
identically to transient objects, we cannot. Objects on disk
must be read into memory, and this requires an explicit
fetch. The initial fetch, of course, is a call to db.get() to
locate the root of the index. So, code that allows us to
search for a word using either the binary tree or the trie
index would look like this:

public static void Main(string[] args)

{

Object[] found;

DictEntry _entry;

// Verify proper number of arguments

if(args.Length !=3)

{

Console.WriteLine("usage: SearchDictDatabase <database> B|T <word>");

Console.WriteLine("<database> = path to db4o database");

Console.WriteLine("B = use binary tree; T = use trie");

Console.WriteLine("<word> = word to search for");

return;

}

// Verify 2nd argument

if("BT".IndexOf(args[1])==-1)

{

Console.WriteLine("2nd argument must be B or T");

return;

}

// Open the database file

ObjectContainer db = Db4o.openFile(args[0]);

if(db!=null) Console.WriteLine("Open OK");

// Switch on the 2nd argument (B or T)

if("BT".IndexOf(args[1])==0)

{ // Search binary tree

// Create an empty binary tree object for the

//  search template

BinaryTree btt = new BinaryTree();

ObjectSet result = db.get(btt);

BinaryTree bt = (BinaryTree) result.next();

// Now search for the results

found = bt.search(args[2],db);

}

else

{ // Search trie

6 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n F E A T U R E  E M B E D D E D

http://www..linuxjournal.com


// Create an empty trie object for the search

//  template

Trie triet = new Trie();

ObjectSet result = db.get(triet);

Trie mytrie = (Trie) result.next();

// Now search for the results

found = mytrie.search(args[2],db);

}

// Close the database

db.close();

// Was it in the database?

if(found == null)

{ 

Console.WriteLine("Not found");

return;

}

// Fetch the DictEntry

_entry = (DictEntry)found[0];

... <Do stuff with _entry here> ...

And now we can explain the purpose
of the calls to db.activate() in the search
methods of both Listings 1 and 3.

When you call the db.set() method,
as we explained, the db4o engine spi-
ders through the object tree, persisting
all reachable objects. (This is known
as persistence by reachability.) In the
reverse direction—that is, calling
db.get() to fetch an object—db4o does
not pull the entire object tree out of
the database. If it did that, then fetch-
ing the root of, for example, the binary
index, would cause db4o to pull the
entire index, plus all the dictionary
entries, plus all the definitions into
memory at once—not very efficient if
we want only one word.

Instead, db4o uses a concept
called activation depth. Suppose I’ve
fetched object A into memory from a
db4o database using a db.get() call.
If I then call db.activate(A,6), that
tells db4o also to fetch into memory
all objects referenced by A, up to a
depth of 6. So, the db.activate() calls
that are sprinkled throughout the
search routines of the binary tree 
and the trie classes ensure that the
search operation always pulls in
enough of the index so that the
search can proceed. (And, at the end
of a successful search, the dictionary
objects are fetched.)

Custom-Made Indexes
OO databases provide the developer with flexibility not so
easily gotten with an RDBMS. In particular, you can design
complex, deep object structures, persist them to a database
and not have to concern yourself with the translation
between the object model and the relational model.

The OO database db4o’s simple-to-grasp API did not hinder
our building indexing structures in the database side by side
with the actual data. Though the binary tree and trie indexes
we chose were uncomplicated, they demonstrate that the
developer is free to augment a database with custom indexing
and navigation structures of arbitrary complexity. So, we can
tailor-make an organization scheme that fits the application’s
requirements of its data, and we can design it using plain-old
objects—Java or Mono/.NET. Best of all, db4o is open source,
so there’s nothing stopping you from grabbing it for your next
database application. For more information concerning db4o,
see www.db4objects.com.

Rick Grehan's articles have appeared in Byte, Embedded Systems
Journal, JavaPro, InfoWorld, Microprocessor Report and several
other journals. He is coauthor of three books: one on remote pro-
cedure calls, another on embedded systems and a third on
object-oriented Java databases. Currently, he is QA Lead at
Compuware's NuMega Labs.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 6 9

http://www..linuxjournal.com
http://www.opensourceworldconference.com


7 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n N E W  P R O D U C T S

Please send information about releases of Linux-related products to James Turner at newproducts@ssc.com or 

New Products c/o Linux Journal, PO Box 55549, Seattle, WA 98155-0549. Submissions are edited for length and content.

ActiveState’s Komodo 3.5

Ruby developers of the world, rejoice! ActiveState’s latest release (3.5) of its
Komodo integrated development environment has added support for the up-
and-coming language. With the addition of Ruby, Komodo now supports five
different languages, including Python, Perl, Tcl and PHP. Release 3.5 also
includes support for Mac OS X and Ruby on Rails. Personal licenses are only
$29.95 US, and the professional version (which adds features such as CVS and
Subversion integration) is $295 US.

VIA’s VT310-DP Mini-ITX

It just wouldn’t be New Products
without something for the hard-
ware geeks. VIA has released a ref-
erence design for 1U server clusters
based on its VT310-DP Mini-ITX
mainboard using dual Eden-N pro-
cessors. Running at 1GHz and
requiring no fan, you can pack 64
processors into a 16U chassis. With
room for two 3.5 SATA drives on
each board, you’ll still be able to
run the whole thing on less than a
kilowatt. The intent is to move
high-density server clusters out of
the server farm and into the work-

place and classroom.

Centeris’ Open Agent

Centeris is releasing an open-source
technology that will allow Linux servers
to be administered via the Microsoft
Management Console. Likewise, Open
Agent allows administrators who are
more comfortable looking at system
administration tasks through Microsoft-
colored glasses to perform tasks such as
setting up Samba shares and configur-
ing Apache through the MMC. Centeris
expects that as time progresses, more
modules will be added by the communi-
ty, allowing for more-specialized Linux
tasks to be performed.

CrossOver Office 5.0

If you’re still unable to cut the umbilical
cord to some of your Windows applica-
tions, you may be in luck. CrossOver
Office 5.0 is out, and it has added sup-
port for Office 2003. A personal version
is available for $39.95 US, and a profes-
sional edition is only $30 more, with a
free-trial option for the undecided.

WMware’s VMware
Player
Or, possibly you’re looking for a more
virtualized solution. In that case,
VMware has just released the beta of a
free VMware player, which will allow
anyone to run a VMware virtual
machine built using its products.
Available for Linux and Windows, the
player allows anyone to run a previous-
ly saved VMware environment without
having to purchase a full VMware

OpenOffice.org 2.0

Of course, you could just do without
those pesky Microsoft products altogeth-
er. OpenOffice.org 2.0 has finally hit the
streets, with a new database module
called Base (think Access). Version 2.0
also includes support for the
OpenDocument format, improved PDF
export support and better compatibility
with proprietary formats. And, as
always, it’s free—something you defi-
nitely can’t say about Microsoft Office.

download.openoffice.org/2.0.0/index.html

http://www..linuxjournal.com


http://www.conferences.oreilly.com/etech


7 2 n F E B R U A R Y  2 0 0 6 W W W . L I N U X J O U R N A L . C O M

n R E V I E W  H A R D W A R E

T
his month, we’re pitting David
vs. Goliath. In one corner, we
have a massive 70 lb worksta-
tion with a pair of dual-core

Opteron processors. In the other corner,
sits a lithe little notebook with a single
Pentium M. It may seem like apples ver-
sus oranges, but as the test results show,
sometimes looks can be deceiving.

Monarch Computer’s Empro Custom
Workstation is certainly an impressive
piece of hardware, if size is all that
counts. Housed in a full-size tower with
lots of bay space for drives, it has high-
end workstation written all over it.
Monarch’s product rep insisted that I
open it up once I got it, and one look
inside is all you’ll need to see why. The
cable management inside the chassis is
truly impressive, making the interior look
nearly empty in spite of a huge PNY
graphics board and four SATA drives.

The pre-installed copy of Fedora came
up without a hitch, and easily configured
itself for my network. Performance on the
Linux Journal benchmark suite was fair for
the single-CPU tests (postgres and ffmpeg
x 1), but really shone on the multiproces-
sor ffmpeg x 2 and ffmpeg x 4 tests. In
spite of the heavy I/O loading and memory
requirements that the benchmarks place on
the system, the performance was nearly
flat, whether I was running one or four
jobs. Having two dual-core CPUs available
didn’t hurt, but clearly the motherboard is
doing a good job of keeping competing
processes out of each other’s hair as well.

This isn’t to say that there aren’t some
negatives to deal with, however. First, this
is not a miserly machine when it comes to
the power socket. With all four processors
churning at full steam, the power meter
measured a fuse-blowing 390 Watts. And,
of course, where there’s power coming in,
there’s going to be heat coming out.

In addition, this isn’t what you’d call
a quiet system, certainly not one to stick
downstairs as a Media PC. The noise
readings at one foot ranged from 51dB
at the front and sides to 60dB at the rear,
and it was quite loud in an office set-
ting. Things got worse when the front

door was open, bumping
the level up to 56dB. There
is a fan-speed control in the
front, but it didn’t seem to
make a huge impact on
overall noise levels.

Finally, there’s the matter
of the quirky case design.
The USB and audio jacks,
which are normally mounted
on the upper front section of
a workstation, have instead
been placed on the bottom
front of the right-side panel.
Not only is this an inconve-
nient location to reach, but
it’s also begging to be kicked
out by the first passerby.

Fat Man and Little Boy
A tale of two pretties, a powerhouse dual-Opteron system and a powerful notebook too. 

B Y  J A M E S  T U R N E R

Monarch Empro Custom Workstation
Processors: 2 x Opteron 280 Dual Core

Memory: 4GB PC-3200

Storage: 4 x Western Digital 10K 74GB SATA Raptor (RAID 10)

Graphics: PNY Quadro 4500 PCI-E 512MB Dual DVI

Motherboard: Tyan S2895A2NRF K8WE Dual Opteron, Dual PCI Express

Includes: Plextor Dual-Layer DVD Burner, ASUS CDRW Burner

List Price: $8,964 US

Test Results:

n postgres: 636 secs

n ffmpeg x 1: 209 secs

n ffmpeg x 2: 214 secs

n ffmpeg x 4: 221 secs

n Power draw: 390 Watts

n Noise: 51dB front (56dB with door open) / 51dB sides / 60dB back

Summary:

Not a speed demon running a single process, but impressive under multiprocess
load. The case is built like a tank, but it’s noisy, power-thirsty and has odd placement
for some external connectors.

Figure 1. The obsessively neat interior of the Empro leaves enough

empty space to park a Volkswagen.

http://www..linuxjournal.com


I didn’t get a chance to play with the
impressive-looking PNY graphics board,
complete with 512MB of RAM and PCI
Express interface. I’m sure it would have
chewed up Quake and spit it out the other
end. However, you have to wonder about

the wisdom of putting a $1,200
graphics board in a system whose
real forte is multiprocess perfor-
mance. If I were purchasing this sys-
tem, it would probably be in a 4U
rackmount configuration for use as a
server, and I’d stick in the cheapest
graphics card that would do the job.

On the other extreme, the
Polywell PolyNote MXM915AS is
positioning itself as a turnkey
Linux notebook solution, offering a
dual-boot Pentium M with SUSE
on the Linux side.

Unfortunately, my out-of-the-
box experience was not a happy
one. My first criterion in looking at
Linux notebooks is how well the
hardware functions as shipped, and

the PolyNote failed that test. From all
appearances, someone had just stuck a
stock copy of SUSE 9.3 on the laptop,
and shipped it out. The wireless net-
working didn’t function at all, and the
CD drive was misconfigured so that

PolyNote MXM915AS
Processor: Centrino Pentium M 2.0GHz

Memory: 512MB DDR2 533MHz

Storage: 60G 5,400RPM SATA

Graphics: NVIDIA GeForce Go 6600 128M

Display: 1400x1050, 15.1"

Networking: Intel PRO/Wireless 2200BG, Intel Gigabit Ethernet

Includes: DVD/RW burner

List Price: $1,350 US

Test Results:

n postgres: 357 secs

n ffmpeg x 1: 245 secs

n ffmpeg x 2: 483 secs

n ffmpeg x 4: 968 secs

n Battery life: 1:42

n Noise: 40dB (front and sides) / 45dB (rear)

Summary:

Surprisingly fast for such an inexpensive system, nice case design and good feel,
but the pre-installed Linux needs work.

Figure 2. This isn’t exactly where I’d put the Monarch’s

USB ports if I were running the company.

Ad
Measures 

2 3/4 + 3/16 
X

10 7/8 + 6/16

http://www.embeddedARM.com


7 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n R E V I E W  H A R D W A R E

doing a mount /media/cdrom failed.
The system itself was well designed,

with a nice solid feeling and no suggestion
of flimsy plastic. It performed very well in
benchmarks, actually outscoring the
Monarch workstation in the postgres

database test, and scoring close to it in the
single-process ffmpeg transcode. Because
the Pentium M is a single-core processor,
no one should expect the kind of straight-
line multiprocess performance that multi-
processor systems offer. However, the

PolyNote didn’t bog
down either, running two
and four simultaneous
processes in essentially
two and four times the
runtime, respectively.
The PolyNote just barely
edged out the LJ test lap-
top (A Toshiba A75-
S206 with a 2.8GHz P4)
in overall performance, a
system currently selling
for around $1,200 US on
the street.

Power-wise, the
PolyNote manages to
make it through one
hour and three-quarters
on its battery alone

when running the benchmark suite in a
constant loop. This compares with one
hour on the LJ test laptop. To their credit,
the PolyNote did handle suspend and
restarting flawlessly—something that’s
frequently problematic on Linux laptops.
It’s not the quietest laptop you’ll ever
encounter, with dB measurements of
around 40 from the front and sides, and a
noisy 45 near the rear fan port.

The PolyNote weights in at about 5.5
pounds, but still manages to sport a 15.1"
screen. The contrast and side visibility
was generally good. The NVIDIA graph-
ics processor ran Tux Racer speedily
enough, with no tweaking of the X con-
figuration required. The ALSA sound
support also worked right from the start.

The Monarch workstation doesn’t
have the kind of “blow your sox off” sin-
gle-process performance that would justi-
fy the price tag for most users, although
in engineering development settings, the
multiprocessor capabilities might be use-
ful. It’s also a bit too loud to want to use
in most offices. The PolyNote is a nice
enough laptop, but it’s nothing special
compared to other notebooks in the same
price range. If Polywell wants to compete
against vendors, such as EmperorLinux,
who specialize in Linux laptops, they
need to work on improving their installs
so that everything works the first time.

James Turner is Product
Review Editor for Linux
Journal. He has written two
books on Open Source Java
development and is a
Senior Software Engineer with Axis
Technology, LLC.

Figure 3. The PolyNote: a generic notebook in

Penguin clothing?

Figure 4. The Monarch Empro cruised through the multiprocessor tests,

while the PolyNote did surprisingly well on the database test.

http://www..linuxjournal.com


http://www.sdexpo.com


7 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

A
t the Superemos community education programme
in Esteli, northern Nicaragua, we use secondhand
computers as thin (diskless) clients in networks con-
trolled by a Linux server. Many organizations

already benefit from the Linux tools available for setting up
such networks. They save money, simplify system administra-
tion, enhance security and increase autonomy. They are ideal
for our low-budget education programmes in Nicaragua. Plenty
of information and know-how on setting up these networks is
published on the Web. Although that knowledge can be intimi-
dating to try and make work, the effort certainly pays off.

This article explains how we have been using old hard
drives and Flash drives to boot diskless clients over a network.
It should be helpful to anybody on a tight budget who wants to
offer a large group of people low-cost access to computing
facilities. At our project, we are especially anxious that educa-
tors realise they can recycle older machines to deliver the latest
software. But the principles apply equally to better-resourced
outfits of all kinds including commercial businesses and gov-
ernment offices.

Before moving on to explain some of the basics for people
with no experience of diskless client networks, I should detail
and acknowledge our project’s sources of tools and informa-
tion. We have been using Novell’s SUSE Linux 10.0 and
Ubuntu’s Breezy Badger distribution with a variety of new and
old machines and parts supplied to us by the Rotary Club of
Toronto-Leaside and by SSC Media Corporation, the publish-
ers of Linux Journal. It’s worth pointing out that our machines
are all PCs. Optimally, it’s worth trying to standardise as much
as possible. That’s always awkward to do when one depends
on donated or inherited equipment.

Among the indispensable tools that make our project work
smoothly are the superb diskless client software developed by
the Linux Terminal Server Project and the comprehensive
library of boot-ROM images (see the on-line Resources). The
original tool we used for getting old hard disks to substitute for
boot-ROM came from Andy Rabagliati (see Resources).

Diskless Client Network Basics
As in any network, diskless client systems consist of a server
connected to clients, in our case by Ethernet cable. Once the
server is powered up, the diskless clients receive their operat-
ing system from it. As each client is switched on, it learns from
its BIOS that no system is available on hard disk. It then tries
to boot from the local area network (LAN) by sending a

request via its network card for a server to give it an operating
system. The server receives the request and looks to see
whether it has the appropriate operating system to send out.
If it does, the client boots up as normal using that operating
system. For its users, the client machine works just as if it had
its own operating system. In fact, it is receiving its operating
system from the remote server.

It took us a while to understand the fundamental compo-
nents of this concept and how they interact. The first thing to
find out is whether a potential client has options in its BIOS
allowing the machine to “Boot from LAN” (LAN stands for
local area network) via boot-ROM. On some machines this is
obvious, and on others, the settings are squirreled away in
suboptions of the main BIOS. On still others it just does not
exist. If it is available, it enables the machine to boot through a
boot-ROM chip, usually with Pre-boot Execution Environment
(PXE) capability located in the machine’s network card.

If you find the Boot from LAN option and configure the
BIOS to boot from LAN, you may well be lucky and every-
thing will just work. But don’t be dismayed if it does not. One
of our machines with a VIA chipset swore solemnly that it
would boot from LAN using PXE and persistently refused to
do so before finally deciding one day that it would. Such frus-
trations are a trivial part of setting up a diskless client network
and well worth overcoming in order to get a first-class network
facility using whatever machines may be available.

Some machines have the network card integrated into their
motherboard. If the network card is not integrated into the
motherboard, it usually will be plugged in to the PCI slot. (It is
possible to work with machines using older ISA cards, but they
require special configuration so we have avoided using them.)
If the network card is not integrated into the motherboard, it is
unlikely to have pre-installed boot-ROM.

We found two main obstacles to using machines as diskless
clients. One was that the potential client machine did not offer
a Boot from LAN option. The second was that even if the
machine offered to boot from LAN, the network card generally
had no boot-ROM. We found we could readily overcome those
obstacles by putting the necessary files to imitate a boot-ROM
on an old hard drive or on a USB Flash drive. The core of this
article is devoted to explaining how simple it is to do so. Doing
this completely avoids using floppy disks, which, in Nicaragua,
have simply become too unreliable.

The clients will work with just 32MB of RAM but seem
happier with 64MB. Older machines with processor speeds of
just 266MHz work okay, but processors with faster speeds
obviously work better. Older mice, monitors and non-English
keyboard layouts can be configured on the server if necessary.
We found no configuration necessary for the majority of our
hardware, thanks to the comprehensive LTSP software.

It is well worth investing resources in the server. We now
use 1GB of RAM with a 2.4GHz processor and that provides
really fast service for more than a dozen clients using
Internet, office and game applications. It should be possible
to run dozens of clients off one server if the server has ade-
quate specifications. In this article, there’s no space to say
much about setting up the server for a thin-client network. 
A couple of excellent articles explaining how Linux Journal
helped us do this have already been written by Kevin Brown
(see Resources).

n I N D E P T H  T H I N  C L I E N T S

Thin Clients
Pay More
Thin clients make cost-effective diskless clients for

education and the workplace. B Y  S T E P H E N  S E F T O N

http://www..linuxjournal.com


Assembling the Necessary Files
For our project, we use the LILO (Linux Loader) bootloader
because all we are interested in is booting Linux. The version of
LILO to use is important. We discovered that the latest version
of LILO by default insists on using lba32 to manage disk geom-
etry and that gave us problems configuring our Flash drive.
Fortunately, we found that older versions of LILO don’t impose
that option. We copied the LILO we used for our Flash drives
from Andy Rabagliati’s wizzy package. For convenience, we
also copied the boot.b file from Andy’s package. To configure
old hard drives, we relied on Ubuntu and SUSE’s prebundled
LILO packages. (See the Configuring Old Hard Drives section
for a brief mention on using the GRUB bootloader.)

We also need the relevant boot-ROM images for the differ-
ent network cards that our boot-ROM disk may end up work-
ing with. Our network cards are either 3Com 905, Realtek
8139 or Via-Rhine. We got these image files from ROM-o-
matic. It took a certain amount of trial and error to get the
images that worked. ROM-o-matic updates its releases regular-
ly. All the releases have similar options, and ROM-o-matic
helps keep the trial-and-error process to a minimum by offering
a button that gives a list of the cards that particular images will
work for.

Once you have selected the card image that is probably the
right one, you need to select the image type. Because we are
using LILO, we chose the current zlilo image type as well as
the older type called lzlilo. We used lzlilo on our Flash drive
because we found the newer zlilo images seemed to work only
on the hard drives. We have yet to figure out why. It’s worth
emphasizing that experimentation yields invaluable information.
Here I summarise only the results of our own experimentation.
Other people will certainly get different and very likely better
results as they try out their own equipment.

ROM-o-matic offers a Get Rom button to download the
image files it produces. That option leads to a prompt allowing
you to save the image files in your local directory system. We
downloaded the various .lzlilo and .zlilo images we thought we
would need for our three types of network card. With those
files and the LILO files, we had all we needed to make our
boot-ROM disks using either a Flash drive or an old hard disk.
So we copied them all to one place in a directory we decided
to call /flashlilo. Then we needed to put them onto our boot-
ROM disk.

Working with Flash Drives
For newer machines that don’t boot from LAN but that do have
a BIOS option allowing boot from USB hard drive, a Flash
drive that imitates boot-ROM is a handier alternative than an
old hard drive. Once one client is booted, the Flash drive can
be removed and used to boot another client. We found that we
could treat the USB Flash drive as if it were a SCSI hard drive.
Plugging the Flash drive in to a convenient USB socket we
powered up, although thanks to hotplug, we could have just
plugged the USB drive in while the machine was already run-
ning. This machine ran SUSE, so the YaST configuration tool
recognised the new device and asked whether to configure it.
We said no.

To ensure the drive we wanted to use for our boot-ROM
was clear of any formatting or partitioning problems, we delet-
ed the existing partitions, as the root superuser, using fdisk,

and installed a new bootable partition. (If there is anything on
those disks that you need, make copies. Partitioning afresh
destroys everything on the disk!) We then used fdisk to parti-
tion the Flash drive by typing:

# fdisk /dev/sda

Something very important to note for later use when con-
figuring the bootloader is the number of heads, sectors and
cylinders fdisk discovers on the drive. Make a note of these.
After using fdisk to set up a bootable partition free of any
potentially bothersome history, we were ready to put a filesys-
tem on it. We took the easy option and typed:

# mke2fs /dev/sda1

to put an ext2 filesystem on the Flash drive. In order to tell
Linux what device to mount and where, we used the traditional
directory /mnt as our mountpoint, checking first that it was
empty. For the Flash drive, we typed:

# mount /dev/sda1 /mnt

Then we copied all the files in /flashlilo to /mnt:

# cp /flashlilo/* /mnt

At this point, we needed to write a configuration file for
LILO. Being frightened of vi and emacs, we used pico:

boot = /dev/sda

disk = /dev/sda

bios = 0x80

sectors = 62

heads = 4

cylinders = 1015

install = /mnt/boot.b

map = /mnt/map

root = /dev/sda1

vga = normal

read-only

delay = 30

pROMpt

image = /mnt/viarhine6102.lzlilo

label=viarhine2

read-only

image = /mnt/3c905b.lzlilo

label=3Com905b

read-only

image = /mnt/rt8139.lzlilo

label=RTL8139

read-only

We saved that file to /mnt with the standard name lilo.conf.
The main part of that configuration file applies to the over-

all boot process before the user selects an option from the final
menu. In this part, the first line tells the client machine to boot
from the Flash drive. The second line and its sub-lines tell it
about the disk geometry so it knows where to put things. (This
is where you need that disk information you noted from fdisk!)

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 7 7

http://www..linuxjournal.com


The install line tells it to use boot.b to install the boot stages.
The map line tells the thin client where to find stuff in a file

created by the LILO program. The root line tells it where to
find the filesystem. The vga line explains how to output infor-
mation to the monitor. The read-only option keeps everything
from getting interfered with. The delay line tells the machine
how long to wait before displaying the prompt.

The image sections of the configuration file offer the client
user different boot options. So when the client starts up, LILO
offers these image options to the user via a menu with three
choices of network card from which to boot: Via-RhineII,
Realtek 8139 or 3Com 905.

Why are boot.b, map and LILO images referred to as resid-
ing in the /mnt directory? The reason is now that we have writ-
ten the configuration file for LILO, we have to tell LILO to use
that configuration file. We can do that only in the directory
where we are working, which is where the drive we are work-
ing on is mounted. In our case, this is /mnt. The command to
tell the LILO version we want to work with to update the
lilo.conf file is therefore:

# /mnt/lilo -C lilo.conf

This is fine for the moment because we are in /mnt. But what
happens when we unmount the Flash drive, remove it and insert
in the machine we hope it will boot? Won’t we need to change
references in the lilo.conf file? And won’t we then get into a
manic circle of eternally having to run LILO to reconfigure
lilo.conf? No, as it turns out. When we tried booting this in our
client machines, it all ran smoothly. So, now that we have our
boot-ROM drive, we move out of the /mnt directory and type:

# umount /dev/sda1

before removing the drive from the machine.

Configuring Old Hard Drives
When we first started configuring old hard disks to imitate
boot-ROMs, we followed a procedure similar to the one we
used for the Flash drive. We had to learn this might mean
changing the jumper on the hard disk before connecting it to
the machine. (The term jumper refers to a tiny connector locat-
ed in a set of pins on the side of the hard drive.) It is very easy
to change the jumper. Most hard drives have little diagrams on
their casing explaining how to set the jumper for the different
options. Usually there are three: Master, Slave and Chain
Select. Chain Select allows the machine’s BIOS to decide what
status to assign the hard drive.

Most commonly used PC machines have just one IDE hard
drive, which is usually the master drive. Linux identifies that
drive as /dev/hda. If the old machine has enough memory and a
fast enough CPU, it makes sense to connect a CD-ROM drive
with its jumper set to Chain Select or Slave and configure the
machine’s hard drive directly. However, to save time on instal-
lation, we ended up deciding to use a much faster new machine
with a newish CD-ROM to configure our old hard drives. That
meant simply disconnecting the existing hard disk on the faster
machine and connecting our old hard drive with the jumpers
set to Master. So once we finish the configuration and we con-
nect it to the motherboard of the diskless client, it will be

recognised straightaway as the primary master drive.
Whatever method we use to prepare the old hard drive for

configuration, we install either Ubuntu’s Breezy Badger directly
from the CD or SUSE 10 over our local network. In either
case, we do a minimum text-based installation and choose
LILO as our bootloader. Once the installation is done, we
can edit the /etc/lilo.conf configuration file to add the images
exactly as they appear in the lilo.conf file described above for
the Flash drive. Finally, we run the line:

# lilo -C /etc/lilo.conf

to update LILO with our new image options.
In relation to the GRUB bootloader, we had an old slow

machine already running Linux that we wanted to turn into a
client. We found we could get it to boot off a boot-ROM image
simply by adding this entry to GRUB’s menu.lst file (substitut-
ing the name of the appropriate boot-ROM image file):

title Via-Rhine Boot-ROM

root (hd0,0)

kernel /boot/via-rhine.zlilo

Before we rebooted, we set the hard drive as the first boot
option. In this case, the machine on which we did the configu-
ration has the same kind of network card as a couple of the
older machines we want to use as diskless clients, so it was a
handy control to make sure the hard drive is doing its job imi-
tating boot-ROM. Once satisfied that everything works, we can
transfer the drive we just configured to the machine it will be
booting. Alternatively, if we configure an old machine by con-
necting a CD-ROM drive to it, when done we just disconnect
the CD-ROM drive and reboot. We have found this simple con-
figuration procedure also works well on old laptops, so long as
they have a built-in CD-ROM and network card.

Configuring the Server for Its Clients
Our system in Esteli now serves nine clients, some that have
boot-ROM PXE and the rest with various drives imitating
boot-ROM. In the case of the Flash drive we configured to imi-
tate boot-ROM, we just put it in a USB drive on the client
machine before starting up. The BIOS needs to be set correctly
for each client so that the first boot device corresponds to the
relevant disk on that client. To access the BIOS, search the
monitor screen when you start the computer.

There should be a line that says something like “Press DEL
to enter Set-up”. Whatever the key or combination of keys indi-
cated, this will enable access to the machine’s BIOS menus. The
configuration of the order of boot devices is usually in the sec-
ond menu, which should be called something like “Advanced
BIOS options”. In that menu, you should find the option to set
the first boot device. In the case of the Flash drive, we found that
setting the first boot device to USBHDD works fine.

The clients need to get a kernel image from the server. A
kernel image is another way of describing the files that make
up the operating system software that makes it possible to
work with different applications. To get their kernel image, the
clients have to provide the network server with their identities
and establish a network address. Each client identifies itself by
offering the unique code on its network card called the MAC

7 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  T H I N  C L I E N T S

http://www..linuxjournal.com


address. In response, the server provides each client with a net-
work address called the IP (Internet Protocol) address.

The clients get this information from the server via a net-
working standard called the Dynamic Host Configuration
Protocol (DHCP). Clients booting with PXE get assigned a
dynamic address automatically from a general section of the
DHCP configuration file dhcpd.conf. Clients without PXE get a
fixed IP address through a specific configuration in dhcpd.conf
to ensure they are recognised and can get an appropriate Linux
kernel image. We have found older machines like to work with
kernel images called vmlinuz rather than bzImage.

In our configuration for each non-PXE client, we told the
server’s /etc/dhcpd.conf file their Mac address, a fixed IP
address and the kernel image they would like. It may some-
times be necessary to configure the Linux Terminal Server
Project (LTSP) package that provides the filesystem architec-
ture for our network. The LTSP lts.conf configuration file can
be adjusted when a client is using a mouse or monitor or key-
board layout not recognised automatically by LTSP.

Here is some of our server’s dhcpd.conf file:

ddns-update-style ad-hoc;

allow booting;

allow bootp;

subnet 198.186.207.0 netmask 255.255.255.0 {

range dynamic-bootp 198.186.207.205 198.186.207.220;

default-lease-time 21600;

max-lease-time 43200;

}

next-server 198.186.207.124;

filename "pxelinux.0";

option root-path "198.186.207.124:/opt/ltsp/i386";

host ws001 {

hardware ethernet    00:11:5B:86:46:B5;          

fixed-address   198.186.207.201;                

filename       "/lts/vmlinuz-2.6.9-ltsp-3";

}

host ws002 {

hardware ethernet    00:60:08:C6:2B:43;

fixed-address  198.186.207.202;

filename      "/lts/vmlinuz-2.6.9-ltsp-3";

}

And here is the main part of our server’s LTSP lts.conf file:

[Default]

SERVER        = 198.186.207.124

XSERVER            = auto

X_MOUSE_PROTOCOL = "PS/2"

X_MOUSE_DEVICE = "/dev/psaux"

X_MOUSE_RESOLUTION  = 400

X_MOUSE_BUTTONS = 3

XkbLayout   = es

USE_XFS            = N

SCREEN_01     = startx

LTSP’s package permits a wide range of sophisticated con-
figuration options for multimedia and other applications run off

individual client workstations that can be configured in lts.conf
similarly to individual workstations in dhcpd.conf. We keep our
system simple because we are working mainly with Internet and
office applications. In our case, LTSP’s default configuration
recognised all our various clients’ hardware except the keyboard
layout, so we added a line configuring a Spanish keyboard.

This technology is incredibly accessible and flexible. For us
in Nicaragua, it enables us to offer computer skills training to a
large number of students on low incomes using old equipment
to deliver the latest software. The widely available tools and
information mean that even relative beginners in Linux can
readily implement such diskless client systems for a broad
range of educational, commercial and administrative purposes.
Rarely can a bottom line show such a large beneficial return
for so modest an investment of resources.

Resources for this article: www.linuxjournal.com/article/
8699.

Stephen Sefton is an Irish citizen who has worked for nearly 20
years as a community development worker in Central America on
a broad range of community concerns, including housing, human
rights, health care, education and sustainable agriculture. On visits
home to Wexford, he watches the progressive embayment of
Rosslare Strand with his uncle Christy and wonders how long
before the family home slides down the cliff into the sea. He
remembers happy walks around the southern shore of Lake
Nicaragua and the beach at Curraghcloe.

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 7 9

http://www..linuxjournal.com
http://www.linusjournal.com/advertising


8 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

B
etter application performance: everyone wants it, and
in the high-performance computing (HPC) commu-
nity, we’ve come to expect it. Maybe we’ve even
gotten a little spoiled. After all, we’ve enjoyed basi-

cally continuous performance improvement for four decades,
thanks to Moore’s Law.

Now in its 40th year, that principle (which predicts a dou-
bling of transistor density every 18 months) is still going
strong. But unfortunately, ever-increasing transistor density no
longer delivers comparable improvements in application per-
formance. The reasons for this are well known. Adding transis-
tors also adds wire delays and speed-to-memory issues. More
aggressive single-core designs also inevitably lead to greater
complexity and heat. Finally, scalar processors themselves
have a fundamental limitation: a design based on serial execu-
tion, which makes it extremely difficult to extract more instruc-
tion-level parallelism (ILP) from application codes.

These issues are no longer the sole concern of a small,
high-end user base, if they ever were. It is becoming more
apparent that major performance improvements could have a
profound effect on virtually every scientific field. The
President’s Information Technology Advisory Committee,
which challenged HPC researchers to achieve a sustained
petaflop on real applications by 2010, noted that trans-petaflop
systems will be crucial for better weather and climate forecast-
ing, manufacturing, pharmaceutical development and other
strategic applications. Industry experts at conferences such as
Petaflops II are demanding improvements for a laundry list of
applications, including crash testing, advanced aircraft and
spacecraft design, economic modeling, and combating pan-
demics and bio-terrorism.

The HPC community is responding by developing new
strategies to augment Moore’s Law and exploring innovative
HPC architectures that can work around the limitations of con-
ventional systems. These strategies include:

n Multicore systems that use two or more cores on a die to
continue providing steady performance gains.

n Specialized processors that deliver enhanced performance in
areas where conventional commodity processors fare poorly.

n Heterogeneous computing architectures, in which conven-
tional and specialized processors work cooperatively.

Each of these strategies can potentially deliver substantial
performance improvements. At Cray, we are exploring all
three. But in the long term, we believe heterogeneous com-
puting holds tremendous potential for accelerating applica-
tions beyond what one would expect from Moore’s Law,
while overcoming many of the barriers that can limit con-
ventional architectures. As a participant in the DARPA High
Productivity Computing Systems Program, we expect hetero-
geneous processing to become crucially important over the
next several years.

An Immediate Solution: Multicore Processing
Placing multiple cores on a die is the fastest way to deliver
continuous performance gains in line with Moore’s Law. A
well-known example of a multiple-core processor is the dual-
core AMD Opteron.

Cray and other HPC manufacturers have already embraced
this model. Today, Cray is delivering dual-core systems, with
expectations to leverage more cores in the future. This strategy
offers immediate doubling of computing density, while reduc-
ing per-processor power consumption and heat.

For many applications (especially those requiring heavy
floating-point operations), multicore processing will provide
performance gains for the foreseeable future, and the model
will likely serve as the primary vehicle through which Moore’s
Law is upheld. However, for some applications (notably, those
that depend on heavy bit manipulation, sorting and signal pro-
cessing, such as database searching, audio/video/image pro-
cessing and encryption/decryption), Moore’s Law may not be
enough. Major advances in these applications can be realized
only with processing speeds orders of magnitude beyond what
is available today (or likely to be available anytime soon)
through conventional processors. So HPC researchers are
exploring alternative models.

Innovative Processing Elements
In recent years, architectures based on clusters of commodity
processors have overtaken high-end, specialized systems in the
HPC community, due to their low cost and solid performance
for many applications. But, as some users begin to bump up
against the inherent limitations of scalar processing, we are
beginning to see a reversal in that trend. Examples of this
resurgence include:

n I N D E P T H  H E T E R O G E N E O U S  P R O C E S S I N G

Heterogeneous
Processing: a Strategy for
Augmenting Moore’s Law
One way to break the high-performance computing barrier imposed by the limitations of Moore’s Law. 

B Y  A M A R  S H A N

http://www..linuxjournal.com


n Vector processors: vector processors increase computational
performance by efficiently pipelining identical calculations
on large streams of data, eliminating the instruction issue
rate limitations of conventional processors.

n Multithreaded processors: HPC memory speeds have been
increasing at only a fraction of the rate of processor speeds,
leading to performance bottlenecks as serial processors wait
for memory. Systems incorporating multithreaded proces-
sors (such as IBM’s Simultaneous Multi-Threading proces-
sor and Intel’s Hyper-Threading technology) address this
issue by modifying the processor architecture to execute
multiple threads simultaneously, while sharing memory and
bandwidth resources. Cray’s multithreaded architecture
takes this a step further by allowing dozens of active threads
simultaneously, fully utilizing memory bandwidth.

n Digital Signal Processors (DSPs): DSPs are optimized for
processing a continuous signal, making them extremely use-
ful for audio, video and radar applications. Their low power
consumption also makes these processors ideal for use in
plasma TVs, cell phones and other embedded devices.

n Specialized coprocessors: coprocessors such as the floating-
point accelerator developed by Clearspeed Technology and
the n-body accelerator GRAPE, use unique array processor
architectures to provide a large number of floating-point
components (multiply/add units) per chip. They can deliver
noticeable improvements on mathematically intense func-
tions, such as multiplying or inverting matrices or solving n-
body problems.

Processors such as these can deliver substantially better
performance than general-purpose processors on some opera-
tions. Vector and multithreaded processors are also latency tol-
erant and can continue executing instructions even while
allowing large numbers of memory references to be underway
simultaneously. These enhancements can allow for significant
application performance improvement, while reducing inter-
cache communication burdens and real estate on the chip
required by conventional caching strategies.

However, as specialized processors have traditionally been
deployed, they have had serious limitations. First, although
they can provide excellent acceleration for some operations,
they often run scalar code much more slowly than commodity
processors—and most software used in the real world employs
at least some scalar code. To address this issue, these proces-
sors traditionally have been incorporated into more convention-
al systems via the PCI bus—essentially as a peripheral. This
inadequate communications bandwidth severely limits the
acceleration that can be achieved. (Communicating a result
back to the conventional system may actually take more time
than the calculation itself.) There are also hard economic reali-
ties of processor fabrication. Unless the processor has a well-
developed market niche that will support commodity produc-
tion (such as the applicability of DSPs to consumer electron-
ics), few manufacturers are willing to take on the huge costs of
bringing new designs to market.

These issues are leading Cray and others to explore an
alternative model.

Advertiser Page # Advertiser Page #

AAPPPPRROO HHPPCC SSOOLLUUTTIIOONNSS C2

appro.com

AASSAA CCOOMMPPUUTTEERRSS 43, 57

www.asacomputers.com

CCAARRII..NNEETT 49

www.complexdrive.com

CCOONNCCUURRRREENNTT CCOOMMPPUUTTEERR CCOORRPPOORRAATTIIOONN 39

www.ccur.com

CCOORRAAIIDD,, IINNCC.. 11

www.coraid.com

CCOOYYOOTTEE PPOOIINNTT 2

www.coyotepoint.com

CCYYCCLLAADDEESS CCOORRPPOORRAATTIIOONN 1

www.cyclades.com

EEMMAACC,, IINNCC.. 55

www.emacinc.com

EEMMPPEERROORRLLIINNUUXX 15

www.emperorlinux.com

FFAAIIRRCCOOMM CCOORRPPOORRAATTIIOONN 37

www.faircom.com

FFRREEEE SSOOFFTTWWAARREE FFOOUUNNDDAATTIIOONN 91

www.gnupress.org

FFOOSSEE 51

www.fose.com

HHUURRRRIICCAANNEE EELLEECCTTRRIICC 45

www.he.net

IINNTTEERRNNAATTIIOONNAALL OOPPEENN SSOOUURRCCEE CCOONNFFEERREENNCCEE 69

www.opensourceworldconference.com

IIRROONN SSYYSSTTEEMMSS 87

www.ironsystems.com

LLAAYYEERR 4422 NNEETTWWOORRKKSS 17

www.layer42.net

LLEEVVAANNTTAA 31

www.levanta.com

LLIINNUUXXCCEERRTTIIFFIIEEDD,, IINNCC.. 74

www.linuxcertified.com

LLIINNUUXX JJOOUURRNNAALL 29, 79, 94

www.linuxjournal.com

LLIINNUUXXWWOORRLLDD CCOONNFFEERREENNCCEE && EEXXPPOO 89

www.linuxworldexpo.com/boston

LLPPII 85

www.lpi.org

MMAAGGNNIICCOOMMPP 27

www.magnicomp.com

MMBBXX 25

www.mbx.com

MMIICCRROOWWAAYY,, IINNCC.. C4, 61

www.microway.com

MMIIKKRROO TTIIKK 7

www.routerboard.com

MMOONNAARRCCHH CCOOMMPPUUTTEERRSS 8, 9

www.monarchcomputer.com

OOPPEENN SSOOUURRCCEE SSTTOORRAAGGEE 21

www.opensourcestorage.com

OO''RREEIILLLLYY EEMMEERRGGIINNGG TTEECCHHNNOOLLOOGGYY CCOONNFFEERREENNCCEE 71

conferences.oreilly.com/etech

PPEENNGGUUIINN CCOOMMPPUUTTIINNGG 41

www.penguincomputing.com

PPHHPP QQUUEEBBEECC 63

conf.phpquebec.com

PPOOLLYYWWEELLLL CCOOMMPPUUTTEERRSS,, IINNCC.. 47

www.polywell.com

TTHHEE PPOORRTTLLAANNDD GGRROOUUPP 22, 23

www.pgroup.com

RRAACCKKSSPPAACCEE MMAANNAAGGEEDD HHOOSSTTIINNGG C3

www.rackspace.com

RR CCUUBBEEDD TTEECCHHNNOOLLOOGGIIEESS 59

www.rcubedtech.com

SSBBEE,, IINNCC.. 13

www.sbei.com

SSDD WWEESSTT 75

www.sdexpo.com

TTEECCHHNNOOLLOOGGIICC SSYYSSTTEEMMSS 73

www.embeddedx86.com

TTHHIINNKKMMAATTEE 19

www.thinkmate.com

TTYYAANN CCOOMMPPUUTTEERR UUSSAA 5

www.tyan.com

ZZEERRVVEEXX SSEERRVVEERR SSOOLLUUTTIIOONNSS IINNCC 35

www.zervex.com

ZZTT GGRROOUUPP IINNTTEERRNNAATTIIOONNAALL 33

www.ztgroup.com

ADVERTISING SERVICES
VP OF SALES AND MARKETING

Carlie Fairchild, carlie@ssc.com

+1 206-782-7733 x110,

+1 206-782-7191 FAX

FOR GENERAL AD INQUIRIES

e-mail ads@ssc.com

or see www.linuxjournal.com/advertising

Please direct international advertising
inquiries to VP of Sales and Marketing,
Carlie Fairchild.

REGIONAL ADVERTISING SALES
NORTHERN USA
Joseph Krack, joseph@ssc.com
866-423-7722 (toll-free),
866-423-7722 FAX

SOUTHERN USA
Laura Whiteman, laura@ssc.com
206-782-7733 x 119

EASTERN USA
Martin Seto, mseto@ssc.com
+1 416-907-6562,
+1 905-513-7650 FAX

INTERNATIONAL
Annie Tiemann, annie@ssc.com
866-965-6646 (toll-free)

PO Box 55549
Seattle, WA 98155-0549 USA
www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 8 1

http://www..linuxjournal.com


The Heterogeneous Model
Heterogeneous computing is the strategy of deploying multiple
types of processing elements within a single workflow, and
allowing each to perform the tasks to which it is best suited.
This model can employ the specialized processors described
above (and others) to accelerate some operations up to 100
times faster than what scalar processors can achieve, while
expanding the applicability of conventional microprocessor
architectures. Because many HPC applications include both
code that could benefit from acceleration and code that is bet-
ter suited for conventional processing, no one type of processor
is best for all computations. Heterogeneous processing
allows for the right processor type for each operation within
a given application.

Traditionally, there have been two primary barriers to
widespread adoption of heterogeneous architectures: the pro-
gramming complexity required to distribute workloads across
multiple processors and the additional effort required if those
processors are of different types. These issues can be substan-
tial, and any potential advantages of a heterogeneous approach
must be weighed against the cost and resources required to
overcome them. But today, the rise of multicore systems is
already creating a technology discontinuity that will affect the
way programmers view HPC software, and open the door to
new programming strategies and environments. As software
designers become more comfortable programming for multiple
processors, they are likely to be more willing to consider other
types of architectures, including heterogeneous systems. And
several new heterogeneous systems are now emerging.

The Cray X1E supercomputer, for example, incorporates
both vector processing and scalar processing, and a specialized
compiler that automatically distributes the workload between
processors. In the new Cell processor architecture (designed by
IBM, Sony and Toshiba to accelerate gaming applications on
the new PlayStation 3), a conventional processor off-loads
computationally intensive tasks to synergistic processing
elements with direct access to memory. But one of the most
exciting areas of heterogeneous computing emerging today
employs field programmable gate arrays, or FPGAs.

The FPGA Coprocessor Model
FPGAs are hardware-reconfigurable devices that can be
redesigned repeatedly by programmers to solve specific types
of problems more efficiently. FPGAs have been used as pro-
grammable logic devices for more than a decade, but are now
attracting stronger interest as reconfigurable coprocessors.
Several pioneering conferences on FPGAs have been held
recently in the United States and abroad, and the Ohio
Supercomputer Center recently formed the OpenFPGA
(www.openfpga.rog) initiative to accelerate adoption of
FPGAs in HPC and enterprise environments.

There’s a reason for this enthusiasm: FPGAs can deliver
orders of magnitude improvements over conventional proces-
sors on some types of applications. FPGAs allow designers to
create a custom instruction set for a given application, and
apply hundreds or even thousands of processing elements to an
operation simultaneously. For applications that require heavy bit
manipulation, adding, multiplication, comparison, convolution
or transformation, FPGAs can execute these instructions on
thousands of pieces of data at once, with low control overhead

and lower power consumption than conventional processors.
FPGAs have had their own historic barriers to widespread

adoption. First, they traditionally have been integrated into con-
ventional systems via the PCI bus, which limits their effective-
ness like the specialized processors described above. More criti-
cally, adapting software to interoperate with FPGAs has been
extremely difficult, because FPGAs must be programmed using
a Hardware Design Language (HDL). Although these languages
are commonplace for electronics designers, they are completely
foreign to most HPC system designers, software programmers
and users. Today, the tools that will allow software designers to
program in familiar ways for FPGAs are just beginning to
emerge. Users are also awaiting tools to port existing scalar
codes to heterogeneous FPGA coprocessor systems. However,
Cray and others are working to eliminate these issues.

The Cray XD1, for example (one of the first commercial
HPC systems to use FPGAs as user-programmable accelera-
tors), eliminates many performance limitations by incorporat-
ing the FPGA directly into the interconnect and tightly inte-
grating FPGAs into the system’s HPC Optimized Linux operat-
ing system. New tools also allow users to program for FPGA
coprocessor systems with higher-level C-type languages. These
include the Celoxica DK Design Suite (a C-to-FPGA compiler
that is being integrated with the Cray XD1), Impulse C,
Mitrion C and Simulink-to-FPGA from Matlab, which offers a
model-based design approach.

Ultimately, as heterogeneous systems incorporating FPGAs
become more widely used, we believe they will allow users to
solve certain types of problems much faster than anything that
will be provided in the near future through Moore’s Law, and
even support some applications that would not have been pos-
sible before. (For an example of the potential of FPGA copro-
cessor systems, see the sidebar on the Smith-Waterman bioin-
formatics application.)

Looking Ahead
Although many exciting avenues of exploration are underway
today in the field of heterogeneous computing, we are not yet at
the point where this model will take over as the dominant HPC
system architecture. The barriers that remain (primarily, difficul-
ties programming for and porting existing code to heterogeneous
systems) are significant. However, Cray and others in the HPC
community are already making strides in these areas.

As with any new technology, widespread adoption of het-
erogeneous systems will depend on an analysis of the gains
that can be achieved versus the effort required to realize them.
In the long term, we believe that the performance advantages
offered by heterogeneous architectures for some applications
will be too compelling to ignore.

Amar Shan is a senior product manager at global supercomputer
leader Cray Inc. Shan joined Cray in 2004 when Cray acquired
OctigaBay Systems Corporation, and he is responsible for setting
product direction for Cray next-generation products and the Cray
XD1 high-performance computing (HPC) system—the only
Linux/Opteron system designed specifically for HPC applications.
Shan holds a Master of Applied Science in Artificial Intelligence
from the University of Waterloo and Bachelor of Applied Science
in Electrical Engineering and Computer Science from the
University of British Columbia.

8 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  H E T E R O G E N E O U S  P R O C E S S I N G

http://www..linuxjournal.com


W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 8 3

Smith-Waterman: an Example of the FPGA 
Coprocessor Approach to Heterogeneous Computing
New techniques in genomics can provide millions of pieces of
DNA from a few tests, but transforming the mountains of raw
data into meaningful results can be a long, grueling process.
Genes are usually represented as ordered sequences of
nucleotides. (Similarly, protein sequences are strings of amino
acids.) Investigators can infer a great deal about genes and pro-
teins from their sequence alone, and answer questions such as
the similarity of genes in different species by comparing sample
sequences to ones already classified. However, to do this, accu-
rate methods to determine the similarity between two
sequences are critical.

Smith-Waterman is the most powerful algorithm available for
accomplishing this (Temple F. Smith and Michael S. Waterman,
“Identification of Common Molecular Subsequences”, J. Mol. Biol.,
147:195–197, 1981). But the mathematical operations involved
are difficult for commodity processors, and conventional systems
deliver extremely poor performance. By attacking the problem
with the Cray XD1—a heterogeneous system combining scalar
processing with FPGA coprocessors—investigators can accelerate
Smith-Waterman and get results up to 40 times faster than with
conventional systems.

Characteristics of Smith-Waterman

The Smith-Waterman algorithm compares sample DNA or pro-
teins against existing databases. Because both sample and
database may have errors in the form of missing or added char-
acters—and because a variation of a few characters can signify
major biological differences—a highly accurate matching process
is required.

Gene sequences contain four letters (G, C, A and T) for the four
nucleotides, and protein sequences contain 20 amino acid charac-
ters. Because sequences are ordered strings, accurate compar-
isons must determine whether two strings align, as well as the
letters they share. (For instance, in plain English, STOP and POTS
share the same letters but cannot satisfactorily be aligned, while
POTS and POINTS can, if a gap is created between the O and T
in POTS.) Smith-Waterman uses “dynamic programming” to
find the optimal alignment. This requires massive amounts of
simple parallel computation, as well as heavy bit manipulation,
and commodity scalar processors are extremely inefficient at
these operations.

A conventional processor running Smith-Waterman requires thou-
sands of unique steps to compare each piece of data. The num-
ber of instructions devoted to performing actual comparisons is a
fraction of those devoted to determining the next comparison
point and the surrounding logic. In fact, a scalar processor may
devote only one instruction in 100 to comparisons—an efficiency
rate of only 1%.

An HPC system using an FPGA coprocessor can provide several
advantages that accelerate this algorithm. First, unlike general-

purpose processors designed to support many different types of
codes, FPGAs allow for a custom instruction set that closely mir-
rors the application. FPGAs also offer huge amounts of inherent
parallelism, and they can be programmed to build thousands of
compare units side by side and perform thousands of compar-
isons every clock tick. In addition, hardware computation is inher-
ently more efficient than software at bit manipulation.

The Cray XD1 Approach

To understand fully how the Cray XD1 accelerates Smith-
Waterman, it is necessary to understand the system’s unique
FPGA coprocessor architecture (Figure 1), as well as how the
application itself functions.

Figure 2. Scoring Matrix

Figure 1. Cray XD1 System Architecture

Scoring Matrix

http://www..linuxjournal.com


8 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  H E T E R O G E N E O U S  P R O C E S S I N G

Smith-Waterman formulates matches by first creating a scoring
matrix and calculating each cell according to the value of cells
above and to the left. Once this matrix is created, the algorithm
calculates a maximum score, traces back along the path that led
to the score and delivers a final alignment (Figures 2 and 3).

To accelerate this operation, the Cray XD1 partitions the algo-
rithm between the system’s FPGA and Opteron processors. The
system uses the FPGA for filling the scoring matrix (which
involves parallel computation) and sends back traceback informa-
tion to the Opterons to regenerate the matrix (a serial opera-

tion). Effectively, the system’s HPC Optimized Linux operating sys-
tem calls the FPGA solely for the kernel of the Smith-Waterman
application. But the massive amount of parallelism available with
the FPGA coprocessor delivers results 25 to 40 times faster than
conventional HPC architectures.

With the application acceleration afforded by the Cray XD1,
users can achieve much more timely results using the best
algorithm available—instead of settling for tools that deliver
less-accurate solutions more quickly. And, because the system
uses the FPGA coprocessor solely for the kernel of Smith-
Waterman, it can be updated easily as the rest of the applica-
tion evolves. In addition, unlike dedicated hardware solutions
that have been available to investigators, the Cray XD1 is a

true, general-purpose HPC system. It is not limited to running
a single code, and it can be applied to other bioinformatics
applications just as easily as Smith-Waterman. In short, the
Cray XD1 provides an effective, affordable and investment-
protected solution for delivering unprecedented performance
on critical life science applications.

— A M A R  S H A N

Below is an example of the system interacting with the FPGAs:

/* Tilt the arrays by copying them to the FPGA. */

static void tilt (int fp_id, u_64 *trans_matrix, int row_len)

{

int i = 0;

u_64 status = 0;

/* Initialize the FPGA to accept a new stream of arrays. */

fpga_wrt_appif_val (fp_id, TILT_START, TILT_APP_CFG, TYPE_VAL, &e);

/* Copy the matrix to the FPGA. */

memcpy((char *) fpga_ptr, (char *) trans_matrix,

row_len*sizeof(u_64));

/* Poll to see if the FPGA has completed tilting the arrays. */

while (1) {

fpga_rd_appif_val (fp_id, &status, TILT_APP_STAT, &e);

if (status & TILT_DONE) break;

}

/* When the FPGA has finished, all the transposed data will have */

/* been written by the FPGA to the transfer region of DRAM.      */

/* Copy the data from the transfer region back to the array.     */

//  for(i=0;i<row_len;i++) {

//  trans_matrix[i] = dram_ptr[i];

//}

return;

}

Figure 3. Smith-Waterman Formulation

Advantages of the Cray XD1 Heterogeneous Architecture

Final Alignment

http://www..linuxjournal.com


http://www.lpi.org


8 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

T
he language of choice for large, high-performance
applications in Linux is almost always C, or somewhat
less often C++. Both are powerful languages that allow
you to create high-performance natively compiled pro-

grams. However, they are not languages that lend themselves to
runtime flexibility. Once a C/C++ application is compiled, its
code is pretty much static. At times, that can be a real hin-
drance. For example, if you want to allow users of a program to
create plugins easily that extend the application’s functionality,
you have to deal with complex dynamic linking issues that can
cause no end of headaches. Additionally, your users will have to
know C/C++ in order to extend the application, which severely
limits the number of people capable of writing extensions.

A much better solution is to provide your users with a scripting
language they can use to extend your application. With a scripting
language, you will tend to have much more runtime flexibility, as
well as shorter development times and a lower learning curve that
will extend the base of users capable of creating extensions.

Unfortunately, creating a scripting language is very much a
nontrivial task that easily could become a major portion of your
program. Fortunately, you don’t need to create a scripting lan-
guage. With Python, you can embed the interpreter directly into
your application and expose the full power and flexibility of
Python without adding very much code at all to your application.

Including Python in an Application
Including the Python interpreter in your program is extremely
simple. Python provides a single header file for including all of
the definitions you need when embedding the interpreter into
your application, aptly named Python.h. This contains a lot of
stuff, including several of the standard headers. For compiling
efficiency, it might be nice if you could include only those parts
of the interface that you actually intend to use, but unfortunately
Python doesn’t really give you that option. If you take a look at
the Python.h file, you’ll see that it defines several important
macros and includes a number of common headers that are
required by the individual components included later in the file.

To link your application to the Python interpreter at com-
pile time, you should run the python-config program to get a
list of the linking options that should be passed to the compiler.
On my system, those are:

-lpython2.3 -lm -L/usr/lib/python2.3/config

A Very Simple Embedded App
So, how much code does it take to run the Python interpreter
from a C app? As it turns out, very little. In fact, if you look at
Listing 1, you’ll see that it can be done in as little as three lines

of code, which initialize the interpreter, send it a string of
Python code to execute and then shut the interpreter back down.

Or, you could embed an interactive Python terminal in your
program by calling Py_Main() instead, as in Listing 2. This
brings up the interpreter just as if you’d run Python directly
from the command line. Control is returned to your application
after the user exits from the interpreter shell.

The Python Environment
Embedding the interpreter in three lines of code is easy enough,
but let’s face it, just executing arbitrary strings of Python code
inside a program is neither interesting nor all that useful.
Fortunately, it’s also far from the extent of what Python allows.
Before I get too deep into what it can do though, let’s take a
look at initializing the environment that Python executes within.

When you run the Python interpreter, the main environment
context is stored in the _ _main_ _ module’s namespace dictio-
nary. All functions, classes and variables that are defined glob-
ally can be found in this dictionary. When running Python
interactively or on a script file, you rarely need to care about
this global namespace. However, when running the embedded
interpreter, you’ll often need to access this dictionary to get
references to functions or classes in order to call or construct
them. You also may find that you occasionally want to copy
the global dictionary so that different bits of code can be run in
distinct environments. For instance, you might want to create a
new environment for each plugin that you load.

n I N D E P T H  P Y T H O N

Embedding Python in
Your C Programs
C, meet Python. Python, this is C. With surprisingly little effort, the Python interpreter can be integrated into

your program to add features quickly that could take months if written entirely in C. B Y  W I L L I A M  N A G E L

Listing 1. Embedding Python in Three Lines

void exec_pycode(const char* code)

{

Py_Initialize();

PyRun_SimpleString(code);

Py_Finalize();

}

Listing 2. Embedding an Interactive Python

void exec_interactive_interpreter(int arg, char** argv)

{

Py_Initialize();

Py_Main(argc, argv);

Py_Finalize();

}

http://www..linuxjournal.com


To get at the _ _main_ _ module’s dictionary, you first need
to get a reference to the module. You can do this by calling the
PyImport_AddModule() function, which looks up the module
name you supply and returns a PyObject pointer to that object.
Why a PyObject? All Python data types derive from PyObject,
which makes it a handy lowest-common denominator. Therefore,
almost all of the functions that you’ll deal with when interacting
with the Python interpreter will take or return pointers to
PyObjects rather than another more specific Python data type.

Once you have the _ _main_ _ module referenced by a
PyObject, you can use the PyModule_GetDict() function to get a
reference to the main module’s dictionary, which again is returned
as a PyObject pointer. You can then pass the dictionary reference
when you execute other Python commands. For example, Listing
3 shows how you could duplicate the global environment and exe-
cute two different Python files in separate environments.

I’ll get into the details of how PyRun_File() works in a lit-
tle bit, but if you look carefully at Listing 3, you should notice
something interesting. When I call PyRun_File() to execute the
files, the dictionary gets passed in twice. The reason for this is
that Python code actually has two environmental contexts
when it is executed. The first is the global context, which I’ve
already talked about. The second context is the local context,
which contains any locally defined variables or functions. In
this case, those are the same, because the code being executed
is top-level code. On the other hand, if
you were to execute a function dynami-
cally using multiple C-level calls, you
might want to create a local context and
use that instead of the global dictionary.
For the most part though, it’s generally
safe to pass the global environment for
both the global and local parameters.

Manipulating Python Data
Structures in C/C++
At this point, I’m sure you’ve noticed the
Py_DECREF() calls that popped up in the
Listing 3 example. Those fun little guys
are there for memory management pur-
poses. Inside the interpreter, Python han-
dles memory management automatically
by keeping track of all references to mem-
ory transparent to the programmer. As
soon as it determines that all references to
a given chunk of memory have been
released, it deallocates the no-longer need-
ed chunk. This can be a problem when
you start working on the C side though.
Because C is not a memory-managed lan-
guage, as soon as a Python data structure
ends up referenced from C, all ability to
track the references automatically is lost to
Python. The C application can make as
many copies of the reference that it wants,
and hold on to it indefinitely without
Python knowing anything about it.

The solution is to have C code that
gets a reference to a Python object han-
dle all of the reference counting manu-

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 8 7

Listing 3. Making a Copy of the Environment

// Get a reference to the main module.

PyObject* main_module =

PyImport_AddModule("__main__");

// Get the main module's dictionary

// and make a copy of it.

PyObject* main_dict =

PyModule_GetDict(main_module);

PyObject* main_dict_copy =

PyDict_Copy(main_dict);

// Execute two different files of

// Python code in separate environments

FILE* file_1 = fopen("file1.py", "r");

PyRun_File(file_1, "file1.py",

Py_file_input,

main_dict, main_dict);

FILE* file_2 = fopen("file2.py", "r");

PyRun_File(file_2, "file2.py",

Py_file_input,

main_dict_copy, main_dict_copy);

540 Dado Street, San Jose, CA 95131

http://www..linuxjournal.com
http://www.ironsystems.com


ally. Generally, when a Python call hands an object out to a C
program, it increments the reference count by one. The C code
can then do what it likes with the object without worrying that
it will be deleted out from under it. Then when the C program
is done with the object, it is responsible for releasing its refer-
ence by making a call to Py_DECREF().

It’s important, though, to remember when you copy a point-
er within your C program that may outlast the pointer from
which you’re copying, you need to increment the reference
count manually, by calling Py_INCREF(). For example, if you
make a copy of a PyObject pointer to store inside an array,
you’ll probably want to call Py_INCREF() to ensure that the
pointed-to object won’t get garbage-collected after the original
PyObject reference is decremented.

Executing Code from a File
Now let’s take a look at a slightly more useful example to see
how Python can be embedded into a real program. If you take a
look at Listing 4, you’ll see a small program that allows the user
to specify short expressions on the command line. The program
then calculates the results of those expressions and displays them
in the output. To add a little spice to the mix, the program also
lets users specify a file of Python code that will be loaded before
the expressions are executed. This way, the user can define func-
tions that will be available to the command-line expressions.

Two basic Python API functions are used in this pro-
gram, PyRun_SimpleString() and PyRun_AnyFile(). You’ve
seen PyRun_SimpleString() before. All it does is execute
the given Python expression in the global environment.
PyRun_SimpleFile() is similar to the PyRun_File() function
that I discussed earlier, but it runs things in the global environ-
ment by default. Because everything is run in the global envi-
ronment, the results of each executed expression or group of
expressions will be available to those that are executed later.

Getting a Callable Function Object
Now, let’s say that instead of having our expression calculator
execute a list of expressions, you’d rather have it load a func-
tion f() from the Python file and execute it a variable number
of times to calculate an aggregate total, based on a number pro-
vided on the command line. You could execute the function
simply by running PyRun_SimpleString("f()"), but that’s
really not very efficient, as it requires the interpreter to parse
and evaluate the string every time it’s called. It would be much
better if we could reference the function directly to call it.

If you recall, Python stores all globally defined functions in the
global dictionary. Therefore, if you can get a reference to the glob-
al dictionary, you can extract a reference to any of the defined
functions. Fortunately, the Python API provides functions for
doing just that. You can see it in use by taking a look at Listing 5.

To obtain the function reference, the program first gets a
reference to the main module by “importing” it using the
PyImport_AddModule("_ _main_ _") function. Once it 
has this reference to the main module, the program 
uses the PyModule_GetDict() function to extract its 
dictionary. From there, it’s simply a matter of calling
PyDict_GetItemString(global_dict, "f") to extract the func-
tion from the dictionary.

Now that the program has a reference to the function, it can
call it using the PyObject_CallObect() function. As you can

see, this takes a pointer to the function object to call. Because
the function itself already exists in the Python environment, it
is already compiled. That means when you perform the call,
there is no parsing and little or no compilation overhead, which
means the function can be executed quite quickly.

Passing Data in Function Calls
At this point, I’m sure you’re starting to think, “Gee whiz, this
is great but it would be a whole lot better if I could actually
pass some data to these functions I’m calling.” Well, you need
wonder no longer. As it turns out, you can do exactly that. One
way is through the use of that mysterious NULL value that you
saw being passed to PyObject_CallObject in Listing 5. I’ll talk
about how that works in a bit, but first there is a much easier
way to call functions with arguments that are in the form of
C/C++ data types, PyObject_CallFunction(). Instead of requir-
ing you to perform C-to-Python conversions, this handy func-
tion takes a format string and a variable number of arguments,

8 8 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  P Y T H O N

Listing 4. A Simple Expression Calculator

#include <python2.3/Python.h>

void process_expression(char* filename,

int num,

char** exp)

{

FILE*       exp_file;

// Initialize a global variable for

// display of expression results

PyRun_SimpleString("x = 0");

// Open and execute the file of

// functions to be made available

// to user expressions

exp_file = fopen(filename, "r");

PyRun_SimpleFile(exp_file, exp);

// Iterate through the expressions

// and execute them

while(num--) {

PyRun_SimpleString(*exp++);

PyRun_SimpleString("print x");

}

}

int main(int argc, char** argv)

{

Py_Initialize();

if(argc != 3) {

printf("Usage: %s FILENAME EXPRESSION+\n");

return 1;

}

process_expression(argv[1], argc - 1, argv + 2);

return 0;

}

http://www..linuxjournal.com


http://www.linusworldexpo.com/boston


9 0 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  P Y T H O N

much like the printf() family of functions.
Looking back at our calculator program, let’s say you want

to evaluate an expression over a range of noncontiguous values.
If the expression to evaluate is defined in a function provided
by the loaded Python file, you can get a reference as normal
and then iterate over the range. For each value, simply call
PyObject_CallFunction(expression, "i", num). The "i" string
tells Python that you will be passing an integer as the only
argument. If the function you were calling took two integers
and a string instead, you could make the function call as
PyObject_CallFunction(expression, "iis", num1, num2, string).
If the function has a return value, it will be passed to you in the
return value of PyObject_CallFunction(), as a PyObject pointer.

That’s the easiest way to pass arguments to a Python func-
tion, but it’s not actually the most flexible. Think about it for a
second. What happens if you are dynamically choosing the func-
tion to call? The odds are that you’re going to want the flexibili-
ty to call a variety of functions that accept different numbers and
types of arguments. However, with PyObject_CallFunction(),
you have to choose the number and type of the arguments at
compile time, which hardly fits with the spirit of flexibility
inherent in embedding a scripting language.

The solution is to use PyObject_CallObject() instead. This
function allows you to pass a single tuple of Python objects
instead of the variable-length list of native C data items. The

downside here is that you will need to convert native C values
to Python objects first, but what you lose in execution speed is
made up for in flexibility. Of course, before you can pass val-
ues to your function as a Python tuple, you’ll need to know
how to create the tuple, which brings me to the next section.

Converting Between Python and C Data Types
Python data structures are returned from and passed to the Python
interpreter in the form of PyObjects. To get to a specific type, you
need to perform a cast to the correct type. For instance, you can
get to a PyIntObject pointer by casting a PyObject pointer. If you
don’t know for sure what the variable’s type is, though, blindly
performing a cast could have disastrous results. In such a case,
you can call one of the many Check() functions to see if an object
is indeed of an appropriate type, such as the PyFloat_Check()
function that returns true if the object could indeed be cast to a
float. In other words, it returns true if the object is a float or a sub-
type of a float. If you’d rather know whether the object is exactly
a float, not a subclass, you can use PyFloat_CheckExact().

The opaque PyObject structure isn’t actually useful to a C pro-
gram though. In order to access Python data in your program,
you’ll need to use a variety of conversion functions that will return
a native C type. For example, if you want to convert a PyObject to
a long int, you can run PyInt_AsLong(). PyInt_AsLong is a safe
function, and will perform a checked casting to PyIntObject
before extracting the long int value. If you know for sure that the
value you’re converting is indeed an int, it may be wasteful to per-
form the extra checking—especially if it’s inside of a tight loop.

Often, Python functions ask for or return Python sequence
objects, such as tuples or lists. These objects don’t have direct-
ly corresponding types in C, but Python provides functions that
allow you to build them from C data types. As an example,
let’s take a look at building a tuple since you’ll need to be able
to do that to call a function using PyObject_CallObject().

The first step to creating a new tuple is to construct an
empty tuple with PyTuple_New(), which takes the length of
the tuple and returns a PyObject pointer to a new tuple. You
can then use PyTuple_SetItem to set the values of the tuple
items, passing each value as a PyObject pointer.

Conclusion
You should now have enough to get started with embedding
Python scripts inside your own applications. For more informa-
tion, take a look at the Python documentation. “Extending and
Embedding the Python Interpreter” goes into more detail on
going the other direction and embedding C functions inside
Python. The “Python/C API Reference Manual” also has
detailed reference documentation on all of the functions avail-
able for embedding Python in your program. The Linux Journal
archives also contain an excellent article from Ivan Pulleyn that
discusses issues for multithreaded programs that embed Python.

Resources for this article: www.linuxjournal.com/article/
8714.

William Nagel is the Chief Software Engineer for
Stage Logic, LLC, a small software development
company, where he develops real-time systems
based on Linux. He is also the author of “Subversion
Version Control: Using the Subversion Version
Control System in Development Projects”.

Listing 5. Using Callable Function References

#include <python2.3/Python.h>

void process_expression(int num, char* func_name)

{

FILE*        exp_file;

PyObject*  main_module, * global_dict, * expression;

// Initialize a global variable for

// display of expression results

PyRun_SimpleString("x = 0");

// Open and execute the Python file

exp_file = fopen(exp, "r");

PyRun_SimpleFile(exp_file, exp);

// Get a reference to the main module

// and global dictionary

main_module = PyImport_AddModule("__main__");

global_dict = PyModule_GetDict(main_module);

// Extract a reference to the function "func_name"

// from the global dictionary

expression =

PyDict_GetItemString(global_dict, func_name);

while(num--) {

// Make a call to the function referenced

// by "expression"

PyObject_CallObject(expression, NULL);

}

PyRun_SimpleString("print x");

}

http://www..linuxjournal.com
http://www.linusjournal.com/article/8714


http://www.member.fsf.org


9 2 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

W
hat do a Japanese PDA, a video capture card
and a multimedia appliance that connects your
television to the network have in common?
They are all examples of specialized Linux-

based devices with thriving subcultures surrounding them—
communities of enthusiasts toiling nights and weekends
obsessively coercing their toys into working exactly the way
they want them to work. Of course, 15 years ago, Linux itself
had a similar beginning.

“Hello everybody out there using minix—I’m doing a
(free) operating system (just a hobby, won’t be big and pro-
fessional like gnu) for 386(486) AT clones.” Not satisfied
with the manufacturer’s choices, Linus Torvalds wanted to
use his Intel-based computer on his terms. He started hack-
ing, and then he used these simple words to reach out to the
world, announcing his achievement and attracting helpers.
Does this spirit live on today?

July 4, 2005. Eerily, once again, the IVTV developers have
made a release right as I picked up the project. Maybe I should
wait it out a bit until things settle down. Their progress fluctu-
ates—first the audio isn’t right, then the video looks bad. The
install script sure is easier this time—no more mysterious
sequence of modprobes to get things working. The main guy
working on this doesn’t even have the same model as I do—
how does he do it?

So continues one of my typical holiday or weekend ven-
tures into a randomly discovered Linux project. In this article,
in addition to profiling a few specific Linux-friendly products
and project accomplishments, I also provide a brief survey of
some Open Source communities encompassing them, with a
focus on one prominent person in each community.

Hauppauge WinTv PVR-150MCE
First, I start with a Microsoft Windows product—the prefix and
suffix in its model number both describe its target market. The
WinTv PVR-150MCE by Hauppauge is a TV tuner and a video
capture card. Directly storing broadcast-quality video is
impractical with current technology. Even if your hard drive’s

throughput is sufficient to receive the data, your available stor-
age space will be quickly consumed. MPEG-2 compression,
the same as used by the DVD standard, eases the requirements
considerably, using less storage space and decreasing the
streaming rate to a more manageable 6Mbps. Moderate com-
promises in quality reduces the storage requirements to 2G or
less per hour of video. Compressing video is computationally
intensive and taxes the fastest processors, but the PVR-
150MCE gets around this by using its MPEG-2 encoder hard-
ware, relieving your system from the time-consuming chore of
compressing data. So, you can record compressed video in real
time using modest hardware. It costs less than $100 US, and if
you don’t already know why I am describing a Windows
Media Center Edition (MCE) product in a magazine about
Linux, you will after reading the next paragraph.

IVTV is a project that allows Conexant-based video capture
devices to run under Linux. The PVR-150MCE is but one of
several in a family of cards based on the Conexant chipset.
Hauppauge makes many of these cards, but several other man-
ufacturers produce cards based on Conexant. Around 12 differ-
ent cards are expected to work now or in a future version of
the driver. By the way, the name IVTV is pronounced “Ivy
TV”. It is not an acronym, but was inspired by an early
Conexant model number, iTVC15. Other manufacturers who
make compatible cards include Yuan, Avermedia and Adaptec.
Please see the IVTV Web site (see the on-line Resources) for
details. Although they have the same core chipset, these cards
are by no means identical, and supporting all the subtle permu-
tations is easier said than done. In extreme cases, you might
even have to travel across the Atlantic to experience the 
differences.

In addition to several different models of these cards, both
the European PAL and the US NTSC video standards are sup-
ported. Testing both of these signals is especially tricky,
because a given developer has easy access only to one of these
sources of video. This group has coordinated internationally to
provide good support for both. Is this just the matter of flipping
a bit somewhere in the source? Or are they exploiting the fact
that light travels around the globe in microseconds and that a
developer in Europe is going to bed around the time his or her

n I N D E P T H  C O M M U N I T Y  S O F T W A R E  D E V E L O P M E N T

Three Case Studies in
Community-Oriented,
Open-Source Software
Development
Community passion behind video devices and even a PDA makes these products viable to the Linux user. 

B Y  R A N D A L L  P.  E M B R Y

http://www..linuxjournal.com


US counterpart is awakening? A Netherlands-based developer’s
request for an NTSC modulator leads me to believe the latter.

The lead developer for this project, Chris, welcomes donations:

I have been maintaining the IVTV driver since around
December 2003, keeping all patches merged and also have
reverse engineered the DMA, and redesigned the internal parts
of the driver to allow growth and stability. I have devoted many
hours to IVTV, often more than 40 hours a week in the past,
and hope to continue work like this into the future. I have
recently divorced, have a need for income since most is taken
now, and would appreciate any donations to help and hopefully
my work on the driver helps you too. I have a lot of fun work-
ing on the driver and am glad to be able to provide this service
to people in getting the MPEG-2 encoding chip working the
best it possibly can on these WinTV/etc. pci cards.

Hauppauge MediaMVP
Next, the MediaMVP is a solid-state device with an Ethernet
jack, S-Video/Composite outputs and stereo RCA audio. For
around $100 US, you can telnet in to a box running Linux that
plugs in to your TV. Well, almost. Before you can telnet in, you
probably will need to install mvpmc.

Setup for this project is well documented, but it isn’t trivial.
It involves setting up a DHCP server and a TFTP server for
delivering the alternative bootloader to the device. You proba-

bly also want to export one or more NFS shares to provide
content to the device. Building the source involves setting up a
cross-compiler, unless your gcc happens to target the powerpc-
405-linux-uclibc architecture. Nightly automated builds are
also available as an alternative to cross-compiling the source.

The reward for this hard work is that you can browse your
filesystem for multimedia files or stream video from MythTV
using a device that has no moving parts and no concerns about
overheating or fan noise.

For nearly two years, Jon, a professional firmware engineer
living in the United States, has tirelessly checked in improve-
ments and responded to questions on the project’s mailing lists.
In response to the question, “Jon, did you ever consider accept-
ing donations for this project via SourceForge?” he sums up a
common but noble attitude: “No. I’d prefer it if people would
send me code instead of money. Or hardware, if you want
something supported that I wouldn’t otherwise buy.”

Sharp Zaurus SL-C3100
Finally, if your definition of a personal information manager
includes the latest version of Emacs that you compiled your-
self, then the Sharp SL-C3100 could be a dream come true.
Sharp sells this versatile (think modest laptop that fits in your

shirt pocket) product only in Japan, but a lively community has
developed around it, many of whom import the $800 US
device directly from Japan. It is an awesome machine—a
640x480 VGA display, 4G microdrive storage, in a clamshell
case with a QWERTY keyboard, USB, CF and SD. A testa-
ment to its Japanese roots, it omits Bluetooth and Wi-Fi, as
those wireless protocols are less ubiquitous in that market. The
community offers advice ranging from tips on importing to
practical experience with particular hardware compatibility.

The Zaurus has tremendous potential, but is not necessarily
easy. There seems to be a trade-off between functionality and
stability. Seeking the latest software can be rewarding. So
whether you perceive it as half full or half empty, and whether
you buy one and where you buy it are personal decisions. For
warranty repairs, the unit would need to be returned to Japan.
Who pays the shipping and handling costs? It depends on
whether you purchase one from a value-added reseller or from
a no-frills exporter. The community can help you with this
choice. By the way, if you import it yourself, you might find
the Japanese version of “tap the screen to get started” a bit
intimidating, and you will probably need to take advantage of
an English translation. Again, the Zaurus community has
exploited the speed of light to overcome many international
barriers—step-by-step guides to navigating the foreign instruc-
tions are readily available.

Zaurus dominates discussions on the Open Embedded

Software Foundation (OESF) forums. There you will probably
meet “Meanie”, a prolific advocate for Sharp/Linux from
Australia. He has captured the essence of Zaurus ownership in
a series of Web pages that detail his customizations and
enhancements. Meanie’s hard work let me vicariously assess
the product before committing to its purchase. In a recent
posting, he alerts us that he fried his $800 Zaurus SL-C3000
when using a generic USB cable. The community recognizes
his valuable presence and offers to help, but he turns down
their repeated offers to chip in to buy him a replacement.
Instead, he chronicles his purchase of a newer model Zaurus
SL-C3100 plus suggests that well-wishers donate to his
favorite Zaurus developer.

But sometimes a little financial support goes a long way.
Consider this request from pdaXrom, a popular Zaurus subpro-
ject: “Did you know? That our main programmer needs only a
monthly total of $200 US to keep all his bills paid and thereby
keeping focus on developing....”

Conclusions
So, why these particular products? They happen to be three of
my own personal latest technology purchases. I did my
research before buying them, and I am certainly biased toward

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 9 3

Compressing video is computationally intensive and taxes the
fastest processors, but the PVR-150MCE gets around this by
using its MPEG-2 encoder hardware, relieving your system from
the time-consuming chore of compressing data.

http://www..linuxjournal.com


Linux products, but otherwise, these communities were chosen
fairly arbitrarily. In case you are wondering, yes, they work
together smoothly. I can use my Zaurus PDA’s Web browser to
access MythTV and select a program to record using my PVR-
150MCE, and I can also use it to telnet in to my MediaMVP
for debugging, exploration and upgrades. (The actual video
playback is initiated by the remote control.) More important,
after some grueling transcoding, I can bypass the MediaMVP
and watch SpongeBob SquarePants on the 3.7" screen.

Hauppauge has been commendably supportive by providing
solid documentation and allowing redistribution of its copy-
righted firmware, simplifying installation. This demonstrates the
company’s progressive values as well as the diligent communi-
cation from the IVTV developers. So don’t let the questionably
redundant product name dissuade you from considering this
device. Who knows, maybe someday Hauppauge will re-brand

this card with a name like “LinTv PVR-150 MythTV Edition”.
Sharp has complemented its hardware with GPL software

and has, of course, followed through by supplying source for
its derivative work. On top of that, it has encouraged develop-
ers with documentation and occasional promotions. Let’s hope
future versions of the Zaurus will again be directly promoted
outside of the Japanese market.

Two of these projects benefit directly from the GPL’s strin-
gent requirements. I am not being a zealot—I have personally
found occasions where other licenses were effective and conve-
nient—but it is hard to imagine these manufacturers releasing
source code if they were not obligated.

All of these projects are successful because they have pas-
sionate individuals banded together in a community. These
individuals are otherwise ordinary developers who have
become involved in these projects and are now key members
of thriving project communities.

The people running these projects are not just sitting at
home ranting on Slashdot—they are spending their time cre-
atively, showing the discipline to do the next right thing in
order to develop great products systematically for the world to
enjoy freely. They are skilled technicians who have become
community leaders, patiently and quickly answering questions
and offering advice.

These communities are focused and not burdened by for-
mality. It is a practical affair—typically, you come to the com-
munity with a specific problem and it supplies answers. I per-
sonally tend to lurk—scouring the forums until I find the
answer to my problem, then slinking away. Perhaps, instead of
slinking, it would be better for all if I posted a quick “thank
you” message—something to the effect of, “Thanks for this
valuable resource; I was able to find the answer to my question
of XYZ by reading through the past threads. By the way, the
answer is ABC, in case someone stumbles onto this message
while in search of it.”

How can you support these and similar projects? If the
answer is not already posted in a FAQ, start by asking! There is
no single answer—as noted here, some projects actively seek
financial support while others shun it. Be sure to pay attention
to any advertisements on the various sites and visit their spon-
sors (when appropriate). Study the community for a bit, and if
it seems right, try jumping in.

Resources for this article: www.linuxjournal.com/article/
8718.

Randall P. Embry (randall@embry.com) is an employee of Indiana
University paid to develop open-source software for higher
education. He has worked on the Sakai course management
system and the OSP electronic portfolio. He is now a development
manager for the Kuali financial information system.

9 4 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

n I N D E P T H  C O M M U N I T Y  S O F T W A R E  D E V E L O P M E N T

I can use my Zaurus PDA’s Web browser to access MythTV
and select a program to record using my PVR-150MCE, and 
I can also use it to telnet in to my MediaMVP for debugging,
exploration and upgrades.

http://www..linuxjournal.com
http://www.linusjournal.com/advertising
http://www.linusjournal.com/article/8718


n M A R K E T P L A C E  

W W W . L I N U X J O U R N A L . C O M  F E B R U A R Y  2 0 0 6 n 9 5

SUBSCRIBE
www.linuxjournal.com/subscribe

http://www..linuxjournal.com
http://www..linuxjournal.com
http://www.linusjournal.com/subscribe
http://www.crossteccorp.com
http://store.linuxjournal.com


9 6 n F E B R U A R Y  2 0 0 6  W W W . L I N U X J O U R N A L . C O M

W
hen did Microsoft lose its status among open-
source developers as the evil, or better still,
incompetent empire? When did open-source
developers stop trying to make software better

than Microsoft’s and start imitating everything Microsoft does?
Why do we have to have an open-source Outlook, or an open-
source dotNet? Sure, there are examples of how we do things
better in Linux than Windows. But I’m getting really tired of
the monkey see Microsoft, monkey do Microsoft mentality that
has infected open source. And the operative word here is
“monkey”—hint, hint.

Aside from being open and free, isn’t superiority what
got Linux where it is today? Once upon a time, Microsoft
was under intense pressure to catch up to Linux stability (in
my unhumble opinion, Microsoft still has a long way to
go). Now we have several projects that exist for no other
reason than to to catch up to and duplicate Microsoft soft-
ware. Worse, we’re duplicating architectural nightmares
like the registry, and with no other apparent purpose than to
be more like Windows.

I have nothing against cream-skimming the best features of
Windows for use in Linux. But creating a registry for Linux is
not cream-skimming. It’s pond-scum-skimming. What hap-
pened to the days when people were appalled at the idea that
you’d have to edit a registry in order to make this or that fea-
ture work the way you wanted? I don’t care if the registry is
binary or XML. It’s a maintenance nightmare.

Next time you visit Redmond, take a look at big hole with
teeth marks in the Microsoft butt. That’s a “came back and bit
it” bite mark left by the registry. While Microsoft is trying to
get around its mistakes, we’re busy duplicating them.

Here’s another example. Emulating what OLE 2.0 brought
to Microsoft Office is not cream-skimming. It’s biohazardous-
medical-waste-skimming.

I remember the original Microsoft demos of OLE 2.0. You
paste spreadsheet cells into a Word document. You click on the
cells and the word processor magically transforms into a
spreadsheet program. That makes good demo, but did anyone
ask what real value it offers? Aside from looking cool, that is?
This feature is bad not because of what it does, but because of
what it fails to do. It fails to make it easy to create a live link
between the original spreadsheet data and what you paste into
the document.

Fortunately, not everyone has imbibed from the punch bowl
of Microsoft cool-aid. EIOffice, although it looks and feels

more like Microsoft Office than OpenOffice.org or KOffice,
actually came up with a fresh idea. Imagine that. Innovation.
But it took a commercial company, not an Open Source com-
munity, to do it. The folks at Evermore Software (the makers
of EIOffice) must have at least one non-Microsoft drone on
board to enlighten the developers as to what really matters.
EIOffice gives you a menu selection to paste a bit of spread-
sheet into a document where the cells are live-linked to the
original spreadsheet data.

And this next bit of information should send open-
source fanatics into a tizzy. EIOffice is based on that evil,
despicable language called Java. How dare they? Mono C#,
Python, Ruby, maybe even Perl. But Java? Won’t that
encourage Sun to become dictator of the world if EIOffice
gets popular? It’s perfectly fine to copy Win32 DLLs in
order to make Linux do Windows tasks, but heaven forbid
Linux should be infected with a Java runtime. How Sun
replaced Microsoft as the evil empire is beyond me. But
don’t get me started on that.

Back to OLE 2.0 and its successors. Of course, the
OpenOffice.org and KOffice folks have faithfully duplicated
this monstrosity. Hey, it’s how Microsoft Office works. It must
be the way to go, right?

That’s what they want you to think. Who is they? I don’t
know, but I can’t help but wonder if one or more people within
some of these open-source projects are Microsoft moles.

“Here’s the plan. Infiltrate the Open Source community
and neutralize it. Convince them that the only way to com-
pete with Microsoft is to create open-source versions of
Microsoft’s great software and development tools. Without
our patents, you’ll always be several steps behind every-
thing we do. And the fact that you’re imitating us makes 
us look like the clear innovation leaders. End result? 
Free advertising and marginalization of the value of 
having Linux.”

It’s time to boot the Microsoft suck-ups out of the Open
Source community. Give them a free copy of Windows XP,
Visual Studio dotNet and two months to use these to create 
a navigation system for the rocket we’ll use to send them 
to Mars.

Yeah, but what do I really think?

Nicholas Petreley is Editor in Chief of Linux Journal and a former
programmer, teacher, analyst and consultant who has been work-
ing with and writing about Linux for more than ten years.

n / e t c / r a n t

Skim Cream not Scum

Pack up the Microsoft sycophants and shoot them off to Mars. 

B Y  N I C H O L A S  P E T R E L E Y

http://www..linuxjournal.com


http://www.rackspace.com


http://www.microway.com


http://www.appro.com

	cover142.pdf
	142.pdf
	142_2.pdf

