
Player Project | Mesh Potato | LTSP | Beagle Board | Boot Times

Intro to
Embedded Linux

Multiple OS
Desktops

Mesh Potato—
Custom Wi-Fi

Hardware

Playing with the
CoroWare
CoroBot

L
IN

U
X

 J
O

U
R

N
A

L
E

M
B

E
D

D
E

D
Player Project | M

esh Potato | LTSP | B
eagle B

oard | B
oot Tim

es | O
pen Phone?

D
E

C
E

M
B

E
R

 2009
IS

S
U

E
 188 0 09281 03102 4

1 2

$5.99US $5.99CAN

VUZIX VR920
VIDEO GOGGLES

REVIEWED:

Build a
Humidity
Controller
Reduce
Boot Time
on Embedded
Systems

NEW COLUMN:

Economy Size Geek

™

DECEMBER 2009 | ISSUE 188 | www.linuxjournal.com

Since 1994: The Original Magazine of the Linux Community

http://www.linuxjournal.com

http://www.ubnt.com

Call 1-877-GO-1AND1
Visit us now www.1and1.com

®* Offers begin November 1, 2009. “3 Months Free” offer valid with a 12 month minimum contract term only. Setup fee and other terms and conditions may apply. Visit www.1and1.com for full
promotional offer details. Program and pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are
the property of their respective owners. © 2009 1&1 Internet, Inc. All rights reserved.

More special offers are available online. For details, visit www.1and1.com

THANKS
9 MILLION CUSTOMERS HAVE VOTED.

FOR MAKING US THE WORLD’S #1 WEB HOST!
Your loyalty has helped make us the leading web hosting provider worldwide. 1&1 was built on a foundation of

innovative products and outstanding reliability, and we continue to strive to bring you high-quality products at

affordable prices. To show our appreciation, we‘re offering discounts on our most popular products.

DOMAINS

Yahoo!
Go

Daddy

.com $8.99 $9.95 $10.69

Private Domain
Registraion

FREE $9.00 $8.99

ICANN Fee Included Included $0.18

E-mail
Account

FREE
2 GB

Mailbox

NO
Mailbox
Included

FREE
1 GB

Mailbox

Total
Annual Cost $8.99 $18.95 $19.86

$6.99
first year*

BUSINESS WEBSITES

Powerful website solutions for your

small business.

1&1® Business Package

3 FREE Domain Names

250 GB Web Space

UNLIMITED Traffi c

$ 9.99
per month

3 months
FREE!*

1AND1_p01.indd 11AND1_p01.indd 1 10/16/09 6:23:51 PM10/16/09 6:23:51 PM

http://www.1and1.com
http://www.1and1.com
http://www.1and1.com

CONTENTS DECEMBER 2009
Issue 188

FEATURES

Cover image courtesy of CoroWare.

44
PLAYING WITH
THE PLAYER
PROJECT
Programming
mobile robots
to interface with
sensors, actuators
and robots.

Kevin Sikorski

50
INTRODUCTION:
A TYPICAL
EMBEDDED
SYSTEM
The common
parts that go
into an embedded
Linux system.

Johan Thelin

54
CONTROLLING
THE HUMIDITY
WITH AN
EMBEDDED
LINUX SYSTEM
It’s not the heat;
it’s the humidity.

Jeffrey Ramsey

62
REDUCING
BOOT TIME IN
EMBEDDED
LINUX
SYSTEMS
The years fly, but
the seconds can
drag on forever.

Christopher Hallinan

EMBEDDED
ON THE COVER

• Intro to Embedded Linux, p. 50

• Multiple OS Desktops, p. 73

• Mech Potato—Custom Wi-Fi Hardware,
p. 68

• Playing with the CoroWare CoroBot, p. 44

• Build a Humidity Controller, p. 54

• Reduce Boot Time on Embedded Systems,
p. 62

• New Column: Economy Size Geek, p. 30

• Reviewed: Vuzix VR920 Video Goggles,
p. 40

2 | december 2009 www.l inux journa l .com

lj188_dec2009bu:lj_template_current060704.qxt 10/16/09 8:01 PM Page 2

http://www.linuxjournal.com

Your Applications Will Run Faster
With Next Generation Microway Solutions!

FasTree™X

Call the HPC Experts at Microway to Design Your Next
High-Reliability Linux Cluster or Infi niBand Fabric.

508-746-7341
Sign up for Microway’s

Newsletter at
www.microway.com

TriCom™X

NumberSmasher®

Terafl op GPU Computing

http://www.microway.com

COLUMNS
18 REUVEN M. LERNER’S

AT THE FORGE
2009 Book Roundup

22 DAVE TAYLOR’S
WORK THE SHELL
Calculating the Distance between
Two Latitude/Longitude Points

26 KYLE RANKIN’S
HACK AND /
Message for You Sir

30 DIRK ELMENDORF’S
ECONOMY SIZE GEEK
A Pico-Sized Platform
with Potential

80 DOC SEARLS’ EOF
Is “Open Phone” an Oxymoron?

REVIEW
40 THE GOGGLES, THEY

DO SOMETHING
Kyle Rankin

INDEPTH
68 THE MESH POTATO

Everybody loves a good Spud!

David Rowe

73 ISOLATED MULTISESSION
WORKSTATIONS
Access Ubuntu, Windows, Mac OS
and Citrix from the same workstation.

Jorge Salgado

IN EVERY ISSUE
8 CURRENT_ISSUE.TAR.GZ
10 LETTERS
14 UPFRONT
34 NEW PRODUCTS
36 NEW PROJECTS
65 ADVERTISERS INDEX
78 MARKETPLACE

CONTENTS DECEMBER 2009
Issue 188

4 | december 2009 www.l inux journa l .com

What do New Orleans, Galveston, Grenada and southern Sichuan have in
common? Each was the site of a devastating natural disaster that knocked out
communications into and out of the area except for Amateur (Ham) Radio.

What do Guglielmo Marconi and Linus Torvalds have in common? Each
had an itch that needed scratching. Marconi’s ushered in the era of radio
communications and Linus’ launched the Open Source revolution.

What happens when Amateur Radio and open source combine? Magical
things. From software modems to knowing exactly where you are, and
telling the world about it, next month, we are going to look at some of
the ways these two areas of innovation have intersected and the results
of these interactions.

Next Month: AMATEUR RADIO

USPS LINUX JOURNAL (ISSN 1075-3583) (USPS 12854) is published monthly by Belltown Media, Inc., 2211 Norfolk,
Ste 514, Houston, TX 77098 USA. Periodicals postage paid at Houston, Texas and at additional mailing offices.
Cover price is $5.99 US. Sub scrip tion rate is $29.50/year in the United States, $39.50 in Canada and Mexico, $69.50
elsewhere. POSTMASTER: Please send address changes to Linux Journal, PO Box 16476, North Hollywood, CA 91615.
Subscriptions start with the next issue. Canada Post: Publications Mail Agreement #41549519. Canada Returns to be
sent to Bleuchip International, P.O. Box 25542, London, ON N6C 6B2

40 VUZIX VR920

68 MESH POTATO36 DISCRETE GEOMETRY VIEWER

http://www.linuxjournal.com

http://www.polywell.com/us/Lx

Executive Editor

Senior Editor

Associate Editor

Associate Editor

Art Director

Products Editor

News Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Proofreader

Publisher

General Manager

Sales Manager

Associate Publisher

Webmistress

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Mitch Frazier
mitch@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Justin Ryan
news@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Joseph Krack
joseph@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
David A. Bandel • Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti

Ludovic Marcotte • Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Reader Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Caleb S. Cullen • Steve Case

Kalyana Krishna Chadalavada • Keir Davis • Adam M. Dutko • Michael Eager • Nick Faltys • Ken Firestone
Dennis Franklin Frey • Victor Gregorio • Kristian Erik • Hermansen • Philip Jacob • Jay Kruizenga
David A. Lane • Steve Marquez • Dave McAllister • Craig Oda • Rob Orsini • Jeffrey D. Parent

Wayne D. Powel • Shawn Powers • Mike Roberts • Draciron Smith • Chris D. Stark • Patrick Swartz

Editorial Advisory Board
Daniel Frye, Director, IBM Linux Technology Center
Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University
Ransom Love, Director of Strategic Relationships, Family and Church History Department,

Church of Jesus Christ of Latter-day Saints
Sam Ockman
Bruce Perens

Bdale Garbee, Linux CTO, HP
Danese Cooper, Open Source Diva, Intel Corporation

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 818-487-2089

FAX: +1 818-487-4550
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 16476, North Hollywood, CA 91615-9911 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:mitch@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:news@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/DLISSUE

IXsystems is proud to introduce the latest offering in our iX-Gemini
line, the Gemini 2. Cleverly disguised as any other 2U server, the Gemini 2

secretly houses 4 highly efficient, extremely powerful RAID 5 capable servers.
Each node supports the latest Intel® 5500 series processors, up to
48GB of DDR3 memory, and three 3.5” hot-swappable hard drives.

This system architecture achieves breakthrough x86 server
performance-per-watt (375 GFLOPS/kW) to further satisfy the
ever-increasing demands for efficiency, density and low-TCO
of today’s high performance computing (HPC) clusters and
data centers. For more information and pricing, please visit
our website at http://www.iXsystems.com/gemini2.

Features

Four hot-pluggable systems (nodes) in a
2U form factor

Each node supports the following:

 Processor 5500 Series

 dedicated LAN

Gemini2 : The Fantastic Four

TM

Intel, the Intel logo, and Xeon Inside are trademarks or registered

trademarks of Intel Corporation in the U.S. and other countries.

800-820-BSDI
http://www.iXsystems.com
Enterprise Servers for Open Source

in our iX-Gemini
Gemini 2

pable servers.
to
es.

1209p007.indd 11209p007.indd 1 10/18/09 8:25:31 PM10/18/09 8:25:31 PM

http://www.iXsystems.com/gemini2
http://www.iXsystems.com

SHAWN POWERS

Here at Linux Journal, we take Linux very
seriously. In fact, even my kids are
embedded. No really, I tucked them in

about 20 minutes ago. They’re almost asleep. (See,
every month you think Shawn can’t possibly have
another cheesy issue-focus-related joke.) Seriously
though, when it comes to Linux, the biggest area
of growth is in the tiniest of spaces—the embed-
ded market. It sort of reminds me of a B spy movie:

Linux quietly takes over more and more
devices; then one day Bill Gates wakes
up in a hospital room.

Mr Gates: What happened, did the surgery
go wrong? Did my pacemaker quit working?

Nurse: No Mr Gates, it’s working just fine.
Your pacemaker is running Linux...

Mr Gates: Nooooooooo!!!!!!

Okay, perhaps I should stick to editorials and
not try my hand at writing movie scripts. With or
without my movie, however, Linux really does
dominate the embedded market. This month,
we’ve got a wide variety of articles to help you
learn more about developing for such markets or to
introduce you to embedded Linux for the first time.

What better way to attract everyone’s interest
than with a remote-controlled rover? Kevin Sikorski
tells us all about the Player Project. It’s a software
framework for interfacing with PC-based robots.
For most of us, sending up missions like the Mars
Rovers might be a bit much. However, after reading
Kevin’s article, a “Backyard Rover” might be possi-
ble—or at the very least, a robot that could find and
fetch missing left socks from the laundry room. If
you’re not quite up to such a daunting task and
would like to learn a little more about how embed-
ded Linux systems actually work, you might want to
read Johan Thelin’s article first. It introduces the con-
cepts and functions of embedded systems—possibly
a primer course for your robot-building adventure.

If robots were the only type of embedded
projects that ran Linux, it would be rough to

devote an entire issue to it. The beauty of
embedded Linux is that it can be so diverse. For
instance, David Rowe shows us the Mesh Potato.
It may seem like a simple wireless access point,
but thanks to the operating system underneath,
it’s a lot more. This month, even Kyle Rankin is
trying to embed Linux—onto his face, in fact.
Check out his review of the Vuzix video goggles
and see if they make him more awesome or
more likely to be kidnapped by Romulans.

Don’t worry if embedded Linux doesn’t really
tickle your fancy. Dirk Elmendorf shows us the
Beagle Board this month. It’s a full-blown computer
system that you probably could fit in your wallet.
Granted, it would make interacting with it difficult,
and it likely wouldn’t survive too many sit-downs,
but because the Beagle Board is so tiny, hiding it
in places a little more useful should be simple.

We have lots of non-embedded material for
you this month too. Whether you want to run
multiple operating systems from the convenience
of a thin client (Jorge Salgado shows you how) or
check your e-mail every minute of every day (Kyle
Rankin explains a method you’ve probably never
seen before), this month should satisfy. Plus,
we’ve got book reviews from Reuven M. Lerner,
shell scripting longitude and latitude from Dave
Taylor and lots of new products from James Gray.

So make some chamomile tea, turn down
the thermostat (possibly with the help of Jeffery
Ramsey’s article on controlling room humidity with
an embedded system), and grab this month’s issue
of Linux Journal. Carefully crawl into bed and
embed yourself under the covers. Enjoy an
exciting month of projects and read well into the
morning. If you have a hard time booting up in
the morning, Christopher Hallinan’s article on
reducing boot time in embedded systems might
help. Or, call in sick with your cell phone. It
might just be running embedded Linux too.�

Shawn Powers is the Associate Editor for Linux Journal. He’s also the Gadget
Guy for LinuxJournal.com, and he has an interesting collection of vintage
Garfield coffee mugs. Don’t let his silly hairdo fool you, he’s a pretty
ordinary guy and can be reached via e-mail at shawn@linuxjournal.com.
Or, swing by the #linuxjournal IRC channel on Freenode.net.

Snug as a Bug in
a Beagle Board

Current_Issue.tar.gz

8 | december 2009 www.l inux journa l .com

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com

http://www.serversdirect.com

Simple iptables Rules for
Potentially Hostile Networks
Regarding the October 2009 issue’s
article on hostile network protection
[see Mick Bauer’s “Brutally Practical
Linux Desktop Security”], I’ve also
found the following iptables rules
render my laptop effectively invisible
without adversely affecting Web
browsing, e-mail, SSH and nearly
everything else I do from hotel rooms
or while drinking my morning coffee:

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -m state --state

�RELATED,ESTABLISHED -j ACCEPT

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT ACCEPT

While most canned kernels will come
with everything needed, those who
prefer to roll their own will need to
ensure that Netfilter and its connec-
tion state matching component
(NETFILTER_XT_MATCH_STATE) are
required. Many of the other Netfilter
modules can make life easier as well,
so they’re worth looking through if
you’ll need to recompile anyway.

Some of the messier protocols may not
work through these rules, so it’s best to
stay within your distro’s init.d firewall

script to make them easy to turn on and
off. Thanks for the great work guys!

--
E. Stuart Hicks

Normally I just don my invisibility cloak
when I’m using public Wi-Fi, but your
method is certainly more reproducible.
And, it works outside of fantasy novels.
All joking aside, I usually set up a VPN
the moment I connect to public access
points. Unfortunately, that can adversely
affect bandwidth. Thanks for the tip on
how to be a bit more stealthy.—Ed.

Linux Already Wins the Desktop
I am finishing a a Master’s degree in
Education and have generated many
pages of various types of documenta-
tion in completing my work. I cannot
imagine doing this with anything but
Linux. The multiple desktops available
in Linux made it easy to generate a
research report while having multiple
on-line journals open, simultaneously
generating and inserting graphics into
the report, without the multiple layers
of overlapping windows the popular
operating systems force you to use.
It seems to me that the true utility
of Linux gets lost when we compare
ourselves to Windows and Mac, rather
than setting the unique and useful
aspects of Linux as metrics for Windows
and Mac to meet. For me, the multiple
desktop function is one of the single-
most useful utilities of Linux in getting
real work done. I cannot operate with
a single window open. I wonder how
many other Linux users recognize this as
one of many important strengths of our
favorite operating system?

--
Orlando Ide

Whenever I’m speaking about Linux to a
group of enthusiasts, I stress that Linux
is awesome enough to stand on its
own. When it comes to the desktop
experience, you’re absolutely right,
Linux has nothing to prove. If we can
eliminate the dependence on propri-
etary software, I think Linux will be
the obvious choice for most people
on the desktop.—Ed.

Using RCS for Configure Files
David Penman, in the September 2009
Letters section, talked about something
very important in system administration.
I don’t see it enough. When you modify
system configuration files as root, always
make a backup. RCS is a fantastic tool
to see how a file changed—it takes
discipline. Just make an RCS/ directory;
you don’t even see the backup files. But
often changing configuration files has
negative effects weeks after changing
them. Rolling back to the original
package is a last-ditch effort.

--
Marty Leisner

Ubuntu 9.04 and Modems
I’ve been reading your magazine and
learning/using Linux on two desktops and
purchased a Dell notebook with Ubuntu.
Then, when my old desktop PC died, I
bought a Dell 530/Vista because it was on
sale (Dell’s computers with Ubuntu don’t
seem to go on sale). I installed a second
hard drive and proceeded to install
Ubuntu 9.04. Imagine my surprise to
find no modem support! I downloaded,
but could not get gnome-network-
admin to work. I wasted hours of time
downloading/installing GNOME ppp and
dependencies and configuring the
modem. I had to download files with
Vista and xfer to Ubuntu with a thumb-
drive. Vista worked out of the box with its
included Dell modem. Vista also worked
out of the box with my US Robotics PCI
modem (I didn’t need to install any soft-
ware). Ubuntu’s decision to break or not
offer the modem software seems to be
a foolish thing to do—especially if they
intend to reach out to the nongeek PC
users. And we wonder why we can’t get
more people to use Linux on the desktop.
I know I’m just one small voice in the
Linux community. Thanks for reading!

--
Duane G.

I must admit it’s been quite a few years
since I’ve used dial-up networking, but it
is sad you had such a hard time setting
up your modem! I know in years past
“winmodems” were very difficult to
configure due to Windows-only drivers.

1 0 | december 2009 www.l inux journa l .com

letters

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 1 1

Now it seems the frustration is with
Windows-only Wi-Fi drivers. It seems
like a conspiracy to keep Linux users
from communicating! It sounds like you
did get things going, but hopefully the
Ubuntu team won’t forget about the
many folks still using dial-up.—Ed.

Linux on the Desktop, Continued
I read with interest the continued discus-
sion regarding Linux on the desktop [see
the September 2009 Letters]. I am old
enough to remember the OS/2 vs.
Windows war. In those days, lots and
lots of Microsofties were unleashed onto
an unsuspecting Usenet; their job was to
portray ordinary users trashing OS/2 and
defending Windows. The two letters you
published look like MS is doing again
what it is known to have done before,
only this time it is trashing Linux instead
of OS/2. The incredulity of the original
assertion (Linux lacks stability) is what
makes me strongly suspect MS opera-
tives are at work here. Back then, IBM
didn’t know what hit them. This old
adage rings true: “Fool me once shame
on you, fool me twice shame on me.”

--
Robert Solomon

Desktop Hardening
Re: Mick Bauer’s “Brutally Practical Linux
Desktop Security” [October 2009 issue]:
why not make the target for an aggressor
as small as possible—a kernel with only
the drivers and modules your laptop
needs? A filesystem like debootstrap or
your distro’s base system? It’s much less
exposure, as you have installed only what
you use from the hardware up.

Thanks for all the fine Paranoid Penguin
articles Mick. Editor, I would like to see
more meat in the diet.

--
Charles Hewson

Mick Bauer replies: One cool thing about
loadable kernel modules is that when
you don’t have a given piece of hardware
attached, the corresponding modules
generally won’t load. But I get your
broader point that just as unnecessary
userspace software should be uninstalled
or disabled, so should unnecessary kernel
code—you’re quite correct that hardening
is about minimizing your attack surface.

I’ve long advocated running custom-

compiled kernels on bastion servers for
that very reason. But in my article’s specific
scenario of preparing a laptop for a trip,
that might be more trouble than it’s worth
(especially given my earlier point). It’s the
difference between spending 45 minutes
or less hardening your system and
spending hours. For most users (certainly
for nonexperts), compiling kernels
remains one of the uglier and more time-
consuming parts of the Linux experience.

Thanks so much for your kind words!
We’re all doing what we can to maintain
and even improve LJ’s protein-to-carb ratio.

OtherInbox.com
Having used a similar method to what
Kyle Rankin describes in “Spam: the
Ham Hack” [October 2009], I’m happy
to have found OtherInbox.com, which
automates most of the process. You can
use it with your own domain or with
their own and a personalized subdomain.
You can create an e-mail address on
the fly, and it automatically will create
a corresponding mailbox. I encourage
people who are having trouble managing
their e-mail to check it out.

--
Josh Bernstein

Make My Headphones Work
I have used Linux since Slackware 0.91,
but I still have trouble getting headphones
to work. I have the latest Ubuntu and
just expected that when I plugged in my
new Logitech headphones, they would
work automatically and all sound would
go to/through them. How do I make
that happen?

--
Eric

At LinuxCon in September 2009, I heard
the kernel developers speak of this very
issue. Apparently, audio hardware is one
of those things that is so inconsistently
built, getting all the different revisions
to work proves to be very difficult. With
Windows, you can download a specific
driver from the vendor, but as Linux
users, we must depend on drivers based
on “standards” that should be built in
to hardware. Sadly, those standards
rarely are in place. Sometimes it’s possible
to Google for a specific hardware
configuration and find settings to tweak
in order to make things like headphones
work. Either way, it’s frustrating as an

end user to have something as simple
as headphones not work.—Ed.

Dark Days?
I am not a computer specialist, nor do I
have any interest in computer code. But,
I use a computer most of the day, every
day. Having been stuck with Windows
(which I don’t like because of the way
everything I do is controlled by Microsoft),
I recently bought a small laptop with Linux
as the operating system. It is an absolute
disaster area. To start, it is incompatible
with 3 mobile broadband (I have read a
number of blogs, and even the experts
agree on that). I have had no success in
loading Java, which is essential for the
work I do. And, I can’t even load a 56k
modem for emergency use. In short, it is
totally useless to me, and I am going to
have to load up Windows XP instead,
much against my wishes. I had hoped
that Linux was a serious competitor to
Microsoft, but in reality, it is light-years
away, strictly for computer specialists.
Of course, I could spend days and days
reading about how to make it work, but
why should I? I only want to use the
computer, not re-invent it. Kernels, shells,
command prompts—these things are of
no interest to me whatsoever. It’s back to
the dark days of MS-DOS all over again.

--
Richard

I’m sorry to hear you’re having such a
bad Linux experience. You should be able
to install Java on your laptop without a
problem. The Sun distribution works fine
on my Linux system. I also see indications
on the Internet that people have been
able to get 3 mobile broadband to work
with Linux. Modems shouldn’t be a
problem either. Without knowing more
about what distribution you have and
what hardware you have, it’s hard to be
much more specific.

Concerning your remarks about the
command line and the dark days of
MS-DOS, I always find these types of
comments interesting, because in my
opinion, Microsoft took a giant step
backward when it decided to poo-poo
the command line. A decent shell (which
command.com and/or cmd.exe never
were) and a good complement of shell
commands, at least for certain types of
work, give you power that doesn’t exist
anywhere in the GUI world.

[LETTERS]

http://www.linuxjournal.com

Having said all that and implied much
more, in no way should it be taken
that I think Linux is perfect. It’s not.
But by the same token, Windows
has its own set of problems. I often
find it as frustrating to work with as
you’re finding Linux to be.

If you’d like to post some of the
details of your Linux troubles on the
LinuxJournal.com forums, we’ll try our
best to help you through them.—Ed.

“The Usual” sudo?
I was just reading John Knight’s “Fresh
from the Labs”, specifically the article
on htop, in the October 2009 issue.
htop is great, and I have been using
it for quite some time. To quote from
the article: “...enter the usual:”

$./configure

$ make

$ sudo make install

“the usual”? I do not use sudo, and
I do not use Ubuntu. A minor thing,
I agree. Today it just annoyed me.
Thanks for a great magazine.

PS. Yes, I work for Mandriva, but it’s
not the only distro I use. I also use
Slackware, Fedora and Absolute Linux.

--
Stephen Germany

John Knight replies: An angry
letter, at last! This is my first one
for LJ. I thought it’d come from a
Debian developer though (I’ve been
stirring them up for several years)....

htop’s brilliant, isn’t it? Yes, I know
what you mean about Ubuntu-isation
of Linux, and it annoys me too, but
isn’t sudo on most modern distros,
and its use encouraged? Note that
sudo isn’t a Ubuntu invention (quote
from Wikipedia): “The program was
originally written by Bob Coggeshall
and Cliff Spencer around 1980 at the
Department of Computer Science at
SUNY/Buffalo. The current version
is under active development and is
maintained by OpenBSD developer
Todd C. Miller and distributed under
a BSD-style license.”

I can’t speak for Oklahoma, but
here in Australia in the LUGs,
the use of sudo is more or less
assumed, and the use of root
logins discouraged (and strangely
enough, the local LUGgers seem
to gravitate toward Debian).
Nevertheless, I used to write “(as
root or sudo)” before the make
install command, but figured it
was about time just to use sudo
for cleanliness’ sake. Do you think
I should switch back?

1 2 | december 2009 www.l inux journa l .com

[LETTERS]

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-818-487-2089. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 16476, North Hollywood, CA
91615-9911 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit them
at www.linuxjournal.com/contact or mail
them to Linux Journal, 1752 NW Market
Street, #200, Seattle, WA 98107 USA. Letters
may be edited for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

PHOTO OF THE MONTH

For the summertime, I went on holiday to the Dutch coast with my family. For a
day on the beach, we took along typical beach stuff, like a windscreen, kites, food
and sand toys and, of course, several Linux Journal issues to do some interesting
Linux reading. Submitted by Geert Jan Klinkhamer.

Have a photo you’d like to share with LJ readers? Send your submission to
publisher@linuxjournal.com. If we run yours in the magazine, we’ll send you a free T-shirt.

mailto:publisher@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters

888-297-7409
www.aberdeeninc.com/lj032

Prices for the above specific configurations obtained from the respective websites on Oct. 12, 2009. Intel, Intel Logo, Intel Inside, Intel Inside Logo, Pentium, Xeon, and
Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. VMware is a registered trademark or

trademark of VMware, Inc. in the United States and/or other jurisdictions. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj032

WHAT’S THE DEAL
WITH THESE GUYS?

Who gives you the best bang for the buck?

Look at these features and benefits:

Sometimes you have to ask, “What are they thinking?”
Companies need to increase ROI without being taken
to the cleaners by manufacturers selling servers featuring
entry-level benefits with enterprise-level pricing.

Aberdeen gets it. Businesses are in desperate need of
Network Attached Storage servers that simply deliver the
best bang for the buck.

Dell
PowerVault

NX300

HP
StorageWorks

X1400

Aberdeen
AberNAS

163
Intel® Xeon® Processor E5504 2GHz E5504 2GHz E5504 2GHz

Memory 3GB 2GB 3GB
Drive Interface SATA SATA SATA

Installed Capacity 2TB 2TB 2TB
Rails Included Included Included

Windows Storage Server 2008 $3,419 $4,635 $2,995
Linux Storage System Not Available Not Available $2,995

Dell
PowerVault

HP
StorageWorks

Aberdeen
AberNAS

Hot-Swap Disk Drives
Hardware RAID

Dual Port Gigabit Ethernet
Built-in Replication

Microsoft® WSS 2008 Models
iSCSI Target

Linux Storage System Models
System Recovery Disk

DAS Storage Expansion
VMware® Ready Certified

Independent OS Drive
Out of Band RAID Management

Available w/ 2TB Drives
Warranty 3 Years 3 Years 5 Years

lj032:lj018.qxd 10/12/2009 5:45 PM Page 1

http://www.aberdeeninc.com/lj032
http://www.aberdeeninc.com/abpoly/abterms.htm

1 4 | december 2009 www.l inux journa l .com

UPFRONT
N E W S + F U N

The big kernel lock (BKL) is being
removed from ReiserFS. In fact,
so much work is going into that
removal, the Reiser people had to
create a new git tree just to handle
it. Frederic Weisbecker has been
submitting patches from that tree
to the main kernel repository. As
it turns out, it’s not necessary to
do overly much testing of patches
going into the kernel. It’s expected
that on their way through the
linux-next tree and into the distri-
butions, they’ll receive a far wider
range of testing than people could
do on their own.

John Hawley has revised the
code that produces all the content
on the kernel.org Web site. He’d
been hearing a lot of complaints
that the -mm tree and the linux-
next tree were not linked from the
home page, while old 2.2 kernels
still were being shown. John’s
changes have eliminated the links
to 2.2 kernels and added a link to
the linux-next tree. At Andrew
Morton’s urging, the -mm tree was
left out, because his ultimate goal
with that tree is to move all of its
patches into linux-next and discon-
tinue maintenance of -mm entirely.
This change actually was more
difficult than you might expect,
because the code had all previously
been written with a certain devel-
opment cycle in mind, and that
development cycle no longer exist-
ed. To fix the page, John essentially
had to toss all the old code and
rewrite it from scratch.

The ARM mailing lists no
longer will be maintained by
Russell King. He got fed up with
people complaining about the
requirement that no one could
post who was not a member of a
given list. One day, he just turned

off all the lists, prompting harsh
criticism from folks like David S.
Miller, Alan Cox and Theodore
Y. Tso. Pavel Machek created
equivalent mailing lists on the vger
server, and David Woodhouse
set up his own set of mailing lists
on infradead.org. The result was
a lot of confusion, as users didn’t
know to which mailing lists to
post. Ultimately, it’ll all get sorted
out, but Russell probably should
have announced a search for a
new mailing-list maintainer and
had an orderly transfer of power.
He possibly was just too stressed
out by the conflict to do that.

Zachary Amsden made an
attempt to write code supporting
a userspace block device. He called
it aBUSE, intending it to take its
place next to FUSE (Filesystem in
USErspace) and CUSE (Character
device in USErspace). But, as Alan
Cox pointed out, Zachary’s code
was a little too similar to NBD
(Network Block Device). So even
though aBUSE was a bit simpler
than NBD, Zachary ultimately decided
that the benefit wasn’t worth
creating something that was just
so similar. But, he left the aBUSE
patches in the e-mail archive for
people to pick up if they are inter-
ested in it in the future.

Jonathan Cameron is pushing
to get IIO (industrial input/output)
included in the official sources.
IIO is a subsystem for controlling
hardware sensors like gyroscopes
and light sensors. It looks like
Greg Kroah-Hartman is letting
the code go into -staging in the
main tree, but he wants to see a
detailed to-do list, explaining all
the steps to get from -staging to
the main kernel.

— Z AC K B R O W N

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT

LJ Index
December 2009

1. Percent of users using Firefox (2.0, 3.0 and 3.5): 32

2. Percent of users using Internet Explorer (6.0, 7.0
and 8.0): 52

3. Percent of users using Chrome 2.0: 3

4. Percent of users using Windows: 86

5. Percent of users using Mac OS X: 7

6. Percent of users using Linux: 2

7. Percent of users using 1024x768 screen
resolution: 31

8. Percent of users using 1280x800 screen
resolution: 20

9. Percent of users using 1280x1024 screen
resolution: 12

10. Percent of users using 1440x900 screen
resolution: 9

11. Percent of users using 1680x1050 screen
resolution: 6

12. Percent of users using 800x600 screen
resolution: 5

13. Percent of users in the United States: 29

14. Percent of users in the United Kingdom: 5

15. Percent of users in Brazil: 4

16. Percent of users in India: 2

17. 1999 projection of 2001 Itanium sales
($billions/year): 35

18. 2009 Itanium sales ($billions/year): 2

19. US National Debt as of 09/08/09, 08:12:03am
MST: $11,805,700,226,557.40

20. Change in the debt since last month’s column:
$209,747,044,879.10

Sources: 1–16: W3Counter Global Web Stats | 17, 18:
Sun, IDC | 19: www.brillig.com/debt_clock | 20: Math

http://www.linuxjournal.com
http://www.brillig.com/debt_clock

www.l inux journa l .com december 2009 | 1 5

[UPFRONT]

DRM-Free MP3s on Linux, Sweet!
iTunes is touting its DRM-free music as revolutionary and bold. Although I applaud Apple
for offering music that isn’t crippled, there still is the problem of actually purchasing the
songs. Sure Windows and Macintosh users are able to enjoy the “luxury” of buying music
from the iTunes Store, but those of us running Linux can only watch from the sidelines.

Thankfully, Amazon has been selling DRM-free MP3 files for quite some time in its
digital store. The songs are available for download using a standard Web browser, and
because they’re MP3 files, they’re playable anywhere. Fortunately, we’re even able to buy
full albums, thanks to Amazon offering its download software for Windows, Macintosh
and Linux! Whether you prefer to buy one song at a time or collect the whole set and buy
full albums, Amazon’s native Linux downloader can help you spend money. Now, if only
Amazon would remove the DRM from Kindle books. — S H AW N P O W E R S

Explore2fs is a filesystem tool for
Windows systems. It allows you
to read and explore ext2/ext3
filesystems on your Windows
computers. Explore2fs can come
in quite handy when you need a
file off an external USB drive that
was created on a Linux system or
if your Linux system has died and
you need to move the drive to a
Windows system to access it.

Explore2fs is written in
Delphi Pascal, and it works on
all modern versions of Windows
and a few not-so-modern ones
like Windows 95 and Windows

98. Explore2fs is a read-only tool. It does not allow you to modify your ext2/ext3
partitions; it allows only viewing and extracting data from them. For write capabili-
ties, you probably should look at one of the available Installable File System (IFS)
drivers that has ext2/ext3 support or possibly the “new” version of Explore2fs.

The new version of Explore2fs is still in beta, and it has a new name, Virtual
Volumes. It really is only loosely a new version of Explore2fs and more of a rewrite
and a rethink of Explore2fs. As mentioned, it’s still in beta, so be careful using it.

Virtual Volumes aims to support read and write access to ext2/ext3 volumes as
well as some LVM2 volumes. It also provides reading and writing of RAID volumes
and VMware disks. In addition, it supports read and write access via SFTP and read
access to ReiserFS partitions.

The Explore2fs .exe and source can be downloaded from www.chrysocome.net/
explore2fs. The project, like many open-source projects, can be helped along by
donations and by providing feedback to the author.

— M I T C H F R A Z I E R

NON-LINUX FOSS

Explore2fs Interface (from www.chrysocome.net/explore2fs)

Way to go
Amazon! A
native Linux
client for
downloading
albums.

When Cacti Are
Too Prickly
I’m a clock watcher. I’m a
tachometer hound. I’m a
speedometer freak. And, as cool
as that might seem, more than
anything, I love graphs. One of
the problems with setting up
good SNMP graphs is that not
only do they require a server
on which to run, but also those
servers often are difficult to
configure. Programs like Cacti
offer incredible features, but for
home use, they’re usually not
worth the effort to configure.

That’s where odmon.com
comes in. Odmon offers a free
service that queries your SNMP
devices and hosts Cacti graphs
for your local devices. Setup
couldn’t be easier, and odmon
even offers “wizards” to help
configure your home router.
Part of the process is opening
your firewall to its servers, but
because you need to provide
only read access, and you can
limit access to its specific IP
address, the security is tolera-
ble—at least for me on my
home system.

To set up your free odmon
account, go to www.odmon.com.
You can be a bandwidth watcher
like me in no time!

— S H AW N P O W E R S

Odmon offers a wide variety of graphs
and the ability to publish them publicly
or privately.

http://www.linuxjournal.com
http://www.chrysocome.net
http://www.chrysocome.net/explore2fs
http://www.odmon.com

1 6 | december 2009 www.l inux journa l .com

[UPFRONT]

Screen is very good at multiplexing a
terminal and running several login sessions
over a single terminal connection. If
you are SSHing into a server, screen is
your best choice, allowing you to run
multiple applications easily over that
one connection. But, what if you are
sitting down at your desktop or laptop?
By using the tools mentioned here, you
don’t need to limit yourself to using a
single virtual terminal anymore.

By default, most distributions are
set up to activate six virtual terminals.
This is done through the /etc/default/
console-setup file. The number of virtual
terminals initially activated can be set
by editing the following line:

ACTIVE_CONSOLES="/dev/tty[1-6]"

Change the value to the number
of virtual terminals you’d like to have
on bootup. Your system may have the
/etc/inittab file instead, which contains
a series of commands to initialize those
six terminals.

You can switch between the differ-
ent virtual terminals with the Alt-F1 to
Alt-F6 keys. Or, you simply can type
chvt N on the command line to change
to the virtual console number N.

You aren’t limited to using only the
virtual terminals created on bootup. You
can use commands to create, destroy
and interact with virtual terminals on the
fly. First, you may need to know which
terminal you are on. The fgconsole
command gives you that information by
printing out the number of the current
console, and typing fgconsole
--next-available will tell you the
next available console number.

To open a new console, simply type
the command open bash.

You can replace bash with any other
command you want to execute on the
newly opened virtual terminal. If you
don’t give a command to open, a bash
shell is started. By default, your program
will run, and the output will be written
on the newly created terminal without
actually switching there. If you want to
switch to the new terminal automatically,
simply add the command-line option -s
to the open command.

You also may experience the error
“Unable to open /dev/ttyN: Permission
denied”, depending on your machine’s
level of security. If you get that error,
you simply need to run the command
with sudo appended to the front, so you
have root privileges. But, then the newly
created bash shell will be run as root. If
you want to run the given command as
yourself, use the command-line option
-u. This tells open to figure out who the
current user is and to run the command
given to open as that user.

You can find out which users are
logged in to various virtual terminals by
using the command who. This tells the
user names, their virtual terminal and
when they logged in.

You can send a message to other
users with the command write. If they
are logged in to more than one virtual
terminal, write defaults to sending the
message to the virtual terminal with the
lowest idle time. Or, you can send the
message to a particular virtual terminal
by executing write username ttyN.

Everything you write will be mirrored
on the remote virtual terminal. When
you are done, press Ctrl-d. If you don’t

want to receive messages from other
users, you can turn off reception with
mesg n. Doing so blocks all users
(except the superuser) from being able
to send you messages. When you are
ready to receive messages again, simply
type mesg y.

If you want to send a message to
everyone at once, use the command wall.

Now, how do you work with your
consoles? You can clear output two
ways. The first, with the command
clear, simply clears away the currently
displayed output. But, you still can
scroll backward and see the previously
displayed output. If you also want to
clear that history, use the command
clear_console.

If you want to record what you are
doing at the terminal, use the command
script. All of the output printed on
your terminal is copied into a file. The
default filename is typescript, but you
can change it by adding a filename to
the end of the command. Once you
execute the script command, everything
else that is displayed on your terminal
also will be copied out to this file.
When you’re done, simply press Ctrl-d.
You now have a full transcript of what
just appeared on your terminal.

When you are done with your virtual
terminals, shut them down by using the
command deallocvt. If you simply
execute deallocvt, it will deallocate all
of the unused virtual terminals. If you
want to deallocate a particular virtual
terminal, execute deallocate N,
where N is the virtual terminal to deal-
locate. Now you are ready to play with
the virtual terminals on your desktop.

— J O E Y B E R N A R D

People don’t change their minds.
They die, and are replaced by
people with different opinions.
—Arturo Albergati

No man who ever held the office
of President would congratulate a
friend on obtaining it.
—John Adams

It is as ridiculous for a nation to say
to its citizens, “You must consume
less because we are short of
money”, as it would be for an
airline to say, “Our planes are
flying, but we cannot take you
because we are short of tickets.”
—Sheldon Emry

Real Work on Virtual Terminals

They Said It

Success is getting what you want, happiness is wanting what you get.
—Charles Kettering

http://www.linuxjournal.com

[UPFRONT]

Awesome Product,
Painful Name

ASUS recently
announced what
looks to be the
nicest, most afford-
able eBook reader
on the market
today. With dual
color screens,
wireless network
access and even a
Webcam, the ASUS
eBook reader looks
particularly sexy
with its sub-$200
price tag. I just

hope it’s not another product in a line of technology with
a few too many Es in the name. The name eee-Book makes
me throw up a little. If the price remains that low and the
features that high, however, I might be willing to forgive a
name that has become cliché.

— S H AW N P O W E R S

The eee-Book concept photo looks a bit more
like a sideways laptop than a book, but we
love the dual touchscreens in full color.

The Linux Journal staff had a pretty great summer this
year. Shawn Powers and I enjoyed both OSCON and
the San Jose weather tremendously. Shawn and Jill
Franklin had a great time at the inaugural LinuxCon
in Portland, and you may have been lucky enough to
catch Shawn’s keynote at Ohio LinuxFest. Meanwhile,
I cavorted around Paris with the coolest Web people
in the world at DrupalCon Paris. We love going to
events and meeting people, learning something new
and maybe having a beer or five. Although we don’t
make it to all of them, we have a list of the best con-
ferences and events in the open-source world listed
at www.linuxjournal.com/events. If you want the
heads-up on what’s going on and where you should
be, make sure you check that page! We hope to
see you there, so be sure to say hi. If you’d like to
know where we’ll be in the future, follow us on
Twitter or Identica at twitter.com/linuxjournal or
identi.ca/linuxjournal, and get the inside scoop.

— K AT H E R I N E D R U C K M A N

Community Events at
LinuxJournal.com

http://www.linuxjournal.com/events
http://www.platform.com/gord

1 8 | december 2009 www.l inux journa l .com

As I write these words, the global economy has
been in a recession for more than a year, bringing
with it untold financial ruin for a large number of
businesses, organizations and individuals. Book and
magazine publishers have not emerged unscathed,
with many downsizing or otherwise trying to figure
out how to profit (or survive) in the Internet era.

But despite the current situation, publishers
continue to produce a large number of books, many
of which have to do with Web- and Internet-related
technologies. If you are a Web developer, you
are fortunate to live in an era when high-quality,
open-source software is available, Web develop-
ment frameworks have become popular and easy to
use, and there are dozens of blogs on any given
open-source technology. Quaint as it might
seem, printed books are tremendously useful
resources that you can and should try to use to
your advantage. Blogs can be excellent, but I still

enjoy reading a well-written book that walks me
through numerous examples of a new technology
or concept.

This month, I’m taking a break from my normal
coding examples in order to share some of the
books I have looked through and enjoyed during
the past year. Most of these books are actually new,
but some of them might be just new to me or of
new importance to me. There is definitely some bias
in favor of the technologies I typically use—Linux,
Ruby, PostgreSQL and Git—but I try to remain up to
date on a variety of technologies and subjects, and
the list of books reflects those interests as well.

Ruby and Rails
Anyone who reads this column knows I am one of
the many Web developers who loves to work with
Ruby on Rails. Rails has been my preferred develop-
ment framework for several years, and I continue to
be impressed by the number of conveniences that
it includes. Rails took off because it was easy to
get started with it, as David Heinemeier Hansson
demonstrated in his initial “blog” screencasts several

years ago. But as Rails has grown in popularity,
the needs of the sites that use it also have grown,
either in functionality or scalability. Dealing with
those issues—preferably before they cause trouble
for your site—has become an important topic for
Rails developers.

The best book I’ve seen on the subject is
Enterprise Rails by Dan Chak (O’Reilly, ISBN
978-0-596-51520-1). One of the reasons I like this
book so much is that it focuses on aspects of Web
development that most Rails books either ignore
or relegate to the sidelines. For example, the first
chapter walks you through the creation of a Rails
plugin, which Chak argues is a good way to organize
your code for easier maintenance. Whether this
actually is a good idea can be the subject of
discussion and debate, but it is a rare Rails book
that discusses the creation of plugins at all, to say
nothing of addressing them as organizational tools.
Chapter after chapter in this book is similarly
interesting and includes informative discussions of
database normal forms, SOA, caching, inheritance
and the use of constraints and triggers within the
database to enforce data integrity.

A book that covers more conventional ground,
but one that is certainly quite useful, is Advanced
Rails by Brad Ediger (O’Reilly, ISBN 978-0-596-51032-9).
Advanced Rails covers many of the topics a
developer needs to consider when deploying an
application and when considering security and
scalability issues. The book covers a great many
topics, and my only complaint is that it tries to cover
so much, it loses some of the depth I might have
wanted. At the same time, the book is full of
references to gems, plugins and Web sites that
cover the information in greater depth (and
with more working code) than any book could
reasonably be expected to include.

If you’re looking for information about the Ruby
language, rather than the Rails framework, two
new books have come out in the past year, both of
which address not only the current 1.8.x series of
Ruby, but also the 1.9.x series. These books have
different purposes and styles, and they complement
each other in many ways. The Ruby Programming
Language co-authored by Java/JavaScript book-
veteran David Flanagan and Ruby creator Yukihiro
“Matz” Matsumoto (O’Reilly, ISBN 978-0-596-

2009 Book Roundup
A look at the publications Reuven recommends on
Ruby, Rails, JavaScript, Git, Web development and more.

AT THE FORGE
COLUMNS

REUVEN M. LERNER

But as Rails has grown in popularity, the
needs of the sites that use it also have

grown, either in functionality or scalability.

http://www.linuxjournal.com

51617-8) is an attempt to document, specifically and carefully,
the language’s behavior. If you are an experienced Ruby
programmer, you probably will want this book on hand in
order to explain how the language works.

The Well-Grounded Rubyist by David Black (Manning,
ISBN 978-1-933988-65-8) is a much friendlier book, and it is a
tutorial of sorts—not just on the Ruby language, but also in
the Ruby way of thinking. A number of Ruby’s constructs can
be confusing for many programmers, and Black’s book steps
through them with numerous, well-documented examples.
Black also provides a number of tips and explanations about
things that aren’t always obvious, such as the difference
between singleton method definitions styles, built-in callbacks
and the various forms of eval.

I also thoroughly enjoyed Metaprogramming Ruby by Paolo
Perrotta (Pragmatic Programmers, ISBN 978-1-934356-47-0).
It is easy to get started programming with Ruby, but the real
power (as with Lisp) is not just with existing Ruby constructs,
but the fact that you can modify the language to suit your
needs. Metaprogramming, as this technique is called, lets you
modify objects and classes in a variety of ways to turn your
application into a language for solving your specific problems.
Metaprogramming is a bit hard to grasp by its very nature,
and it isn’t necessarily obvious how to go about using it, or
why it might be necessary. Perrotta’s book offers a great deal
of well-written detail on both fronts, showing you how to
use metaprogramming techniques and suggesting when
they might be appropriate or useful.

Finally, I should mention Mike Gunderloy’s self-published
on-line PDF book Rails Rescue Handbook, which you can get
from www.railsrescuebook.com. Gunderloy is an active Rails
developer, author and community member, and he wrote a
book that describes what you should do when you are asked
to work on a Rails project that is not working. This book is full
of practical advice on how to attack a problematic Web site—
from examining the existing codes, to looking for database
indexing issues, to the use of metric_fu, to external monitoring
with tools from New Relic or FiveRuns. A list of what functionality
was deprecated in each version of Rails (going back to 1.0)
is handy for those of us who often work on multiple projects
simultaneously and might not remember what changed
between Rails 2.1 and 2.2, for example. I didn’t find any
hidden tricks or clever hacks in this book, but that’s just
fine. The back-to-basics approach is thorough, well
written and describes how every Rails project can and
should look over time, even if it didn’t start off following
best practices.

Git Books
Software developers have been using version-control systems
for some time. But Git, a distributed version-control system
developed by Linus Torvalds, has taken much of the open-
source world by storm. For me, the killer feature in Git is its
ridiculously simple (and fast) branching and merging. I fall into
the category of CVS and Subversion users who have worked
with those tools for years, dreading any branching or merging
operation that I would have to perform, because it was so

painful and time consuming. Git has totally changed that for
me, altering the way I develop software.

Numerous Web sites exist for Git users, such as “Git
ready” (www.gitready.com) and the Git community book
(book.git-scm.com), which offer useful information. But for
a complete introduction to Git, you might want to consider
one of three books on the subject. The first book that came
out, Pragmatic Version Control Using Git by Travis Swicegood
(Pragmatic Programmers, ISBN 978-1-93435-615-9), is a good
introduction to Git and covers the basics nicely.

However, I felt that this book was lacking some depth
and was happy to read Version Control with Git by Jon
Loeliger (O’Reilly, ISBN 978-0-596-52012-0) and Pro Git by
Scott Chacon (Apress, ISBN 978-1-4302-1833-3). Chacon
is well known in the Git community as one of the founders
of GitHub and as a screencaster, author and speaker about
Git. Chacon convinced Apress to put the book on-line
for free (progit.org/book), so you can take a look for
yourself. I have found that the Loeliger and Chacon books
complement each other, and I’ve been reading them in
parallel, learning from both. You can’t go wrong with
either one of them.

www. l inux journa l .com december 2009 | 1 9

Leading NTFS and exFAT drivers

Every device with mass storage, at home and at

work, needs an interoperable file system. Your set-

top-box runs Linux but needs to write the media in a

Windows and Mac compatible format.

Tuxera NTFS for Embedded Systems
Performance increase 10-100x compared to our

open source NTFS-3G. Proven reliability and data

integrity. Low CPU usage, small memory footprint.

Available for any system.

Tuxera exFAT for Embedded Systems
exFAT is part of SDXC and Memory Stick standards.

New product available now for Linux.

+358 50 5980498

sales@tuxera.com

www.tuxera.com

http://www.railsrescuebook.com
http://www.gitready.com
mailto:sales@tuxera.com
http://www.tuxera.com
http://www.linuxjournal.com

Web Development and Administration
No matter what technologies your Web site uses,
certain issues will crop up. For example, you will
have to map out a database and server architecture,
ensure that your server’s performance is being
monitored, and set your URLs and content to reflect
best SEO (search engine optimization) practices. It is
unlikely that one person on a Web site will need to
tackle such a wide variety of problems alone, but
if you are a freelance developer, knowing about
different tools can be quite helpful and makes
you even more valuable to your clients.

Website Optimization by Andrew B. King
(O’Reilly, ISBN 978-0-596-51508-9) is a good intro-
duction to the subject of optimizing your site in a
number of ways, both for SEO and for speed.
Generally, I’ve been quite skeptical of SEO in the
past, thinking (somewhat naïvely) that with well-
written content, Google and other search engines
will find you and mark you as relevant. It turns
out that well-written content is necessary but

insufficient. This book shows what you can do to
improve in that arena. To be honest, I have read the
SEO portions of this book much more thoroughly
than the performance-related optimization portions,
some of which I have seen elsewhere.

A well-known business mantra says, “If you
can’t measure it, you can’t improve it.” For this
reason, getting a handle on how your Web site
performs is a crucial task if you are to understand
where and how you can improve it. The book
Complete Web Monitoring by Alistair Croll and
Sean Power (O’Reilly, ISBN 978-0-596-15513-1)
is the most comprehensive list of Web monitoring
tools and techniques I have seen to date, looking
at every type of monitoring I can think of and
then some. It describes how to monitor your site’s
network connectivity, performance, conversion
rates and usability, recommending a mixture of
built-in, open-source and commercial tools. It
even describes ways in which you can use on-line
communities and social networks to monitor
reactions to your site, so that the analysis you
get is not just a bunch of statistics.

JavaScript continues to occupy center stage in
the Web development world. If you aren’t yet using
a JavaScript framework, by all means, you should
start! Frameworks (such as Prototype/Scriptaculous,
jQuery, YUI and Dojo) allow you to ignore most of

the differences between browsers and provide a
huge amount of support for the type of development
that you likely want to do. I typically prefer to use
jQuery and enjoyed the introductory Learning
jQuery by Jonathan Chaffer and Karl Swedberg
(Packt Publishing, ISBN 978-1-847192-50-9) as a
good introduction to that framework.

Many serious developers now are working on
JavaScript in various ways, and JSMag is a new for-pay,
PDF publication that aims to give such developers
serious articles (www.jsmag.com). JSMag reminds
me of other language-specific magazines I have seen
over the years, with very high-quality content that
addresses topics developers need to deal with. It
tries to be framework-neutral, meaning you are as
likely to read an article about YUI or jQuery as Ext
or Dojo, so if you are interested only in jQuery, you
might be slightly disappointed. That said, a majority
of the articles are about using the JavaScript language,
rather than any one particular framework, which
means that no matter what you’re using, you will
probably get something out of JSMag.

Finally, two well-known figures in the Ruby
community, Amy Hoy and Thomas Fuchs (the latter
of whom is the author of the Scriptaculous visual-
ization framework that works with Prototype) have
published an on-line PDF book called JavaScript
Rocks!, available for purchase and download from
jsrocks.com. If you are familiar with Hoy’s writing,
you won’t be surprised that this book is an easy
read, with a terrific sense of humor and high-quality
technical content, addressing everything from
reducing JavaScript code size to improving the
perceived (not actual!) performance of your applica-
tion’s user interface. The book comes with a copy of
the terrific “DOM Monster” tool for optimizing the
number and type of DOM elements on a page and
for an instant analysis of your page.

Conclusion
This article presents just a small sample of the books
I’ve enjoyed this past year. Authors and publishers
continue to release new, good books that are not
only useful, but also interesting to read. It’s rare for
me to read a technical book and not be able to
use at least something from it within a few days
of reading it. The books I’ve mentioned here stand
out from the crowd because they have provided
me with a particularly large helping of food for
thought. I look forward to this-coming year’s
helping of books and to the interesting things
that I will learn from them as well.�

Reuven M. Lerner, a longtime Web/database developer and consultant, is a PhD
candidate in learning sciences at Northwestern University, studying on-line
learning communities. He recently returned (with his wife and three children)
to their home in Modi’in, Israel, after four years in the Chicago area.

2 0 | december 2009 www.l inux journa l .com

AT THE FORGE
COLUMNS

JavaScript continues to occupy center stage
in the Web development world. If you

aren’t yet using a JavaScript framework,
by all means, you should start!

http://www.jsmag.com
http://www.linuxjournal.com

“Your favourite community personalities, the developers of the most power-
packed modules and experienced Drupal solution providers join together to
teach you the tools to build amazing Drupal powered websites. I loved it! I
can’t wait to put what I learned at DIWD into action.”
 Matthew Nuzum
 Ubuntu.com Webmaster

“Broad enough for beginners, focused enough for experts. A required event
for the Drupal community.”
 Daniel Chvatik
 CTO, Adulmec

STILL GETTING YOUR HEAD AROUND DRUPAL?
Learn to harness the power of this flexible open-source social content
management system and web application framework.

Do It With Drupal is in its second year and the 2009 event promises
to be even better than last year.

DRUPAL

DECEMBER 9 - 11, 2009

A 3 DAY SEMINAR

DoItWithDrupal.com
Registration price includes:

Early registration and hotel room discounts available.

REGISTER NOW

Lullabot™

powered

Lane Becker of Get Satisfaction
speaks at Do It With Drupal 2008.

DRU

manag
Learn
STIL

ALPPA

gement system and web a
to harness the power of t
L GETTING YOUR

application framework
cethis flexible open-sour

HEAD AROUND D

social content

DRUPAL?

DRU
A 3 DAY SE

DECEMBER 9

to be
Do It

managALPPA
EMINAR

9 - 11, 2009

even better than last yea
is in its secoWith Drupal

gement system and web a

.r
ond year and the 2009 eve

application framework.

omisesent pr

Ubun
Matt

t wcan’
teach y
packed

our f“YYo

ebmasterntu.com WWe
thew Nuzum
wait to put what I learned at
you the tools to build amazi
d modules and experienced
favourite community person

DIWD into action.”
ed websiteng Drupal power

oviders jo Drupal solution pr
nalities, the developers of th

es. I loved it! I
oin together to

-he most power

REGISTER N

CTO
Dani

for the
oad“Br

OW Registr

O, Adulmec
iel Chvatik

.”e Drupal community
d enough for beginners, foc

ration price includes:

used enough for experts. A

ed eventequirr

DoItWithDru

edpowerre

eEarly rre

upal.com

oom degistration and hotel rro

discounts available.

http://www.doitwithdrupal.com

2 2 | december 2009 www.l inux journa l .com

Last month, I closed this column with a script that can
return latitude/longitude values for two addresses, with
the intent ultimately being to have the script calculate
the distance between those two points. As an example:

$ farapart.sh "union station, denver co" \

"union station, chicago il"

Calculating lat/long for union station, denver co

= 39.75288, -105.000473

And calculating lat/long for union station, chicago il

= 41.878658, -87.640404

The formula to calculate distance actually is pretty
complicated. Here’s a JavaScript implementation of
the math I showed last month:

var R = 6371; // kilometers

var dLat = (lat2-lat1);

var dLon = (lon2-lon1);

var a = Math.sin(dLat/2) * Math.sin(dLat/2) +

Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) *

Math.sin(dLon/2) * Math.sin(dLon/2);

var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

var d = R * c;

This is going to be a wee bit tricky to convert
into a shell script, needless to say, but because we
have to use a more sophisticated math tool than
the built-in capabilities of Bash anyway, this also
means we have a number of options to work with,
including Perl, awk and bc. For that matter, we also
can just write a quick C program that solves this
equation given four variables, but really, why make
it easy when I can make it complex? If I wanted
easy, I would whip out some Perl, right? Last
month, I promised some bc, so let’s see if we can
make that rusty old app do the heavy lifting.

Degrees to Radians
The first step mathematically is to convert the lat/lon
values we get from the mapping system from degrees
to radians. This turns out to be straightforward:

Radians = degrees * (pi / 180)
Pi, of course, is 3.1415926535897932384.
Given values like:

41.878658, -87.640404

The radians equivalent of those is then:

0.7309204767, -1.529613605

To warm up with bc, here’s a simple command-
line way to calculate one of these values:

echo "scale=8; -87.640404 * (3.14159265 / 180)" | bc

That’s all well and good, but it turns out that
the different equations I explored for calculating
the distance between two points requires the
atan2() function, which isn’t part of bc.

Rather than beat my head against the old-school
wall until the bits are bloodied, I’m going to
throw in the towel and admit that this might just
be a bit too complex a mathematical problem for
a shell script and bc.

Dave Cries Uncle!
Having spent way more hours than I want to
admit trying to get this to work properly in bc,
I’m going to “cry uncle” and switch temporarily
into a different programming language. I’m
going to jump into C for a few lines and whip
out a simple program that, given two lat/lon
pairs in degrees, calculates the distance between
them in miles (Listing 1).

Does it work? Let’s find out:

$ distance 39.75288 -105.000473 41.878658 -87.640404

917.984

That seems reasonable. The great circle distance
between those two points is 917 miles. Google Maps,
of course, shows about 10% greater distance, but
perhaps that’s because there is no direct-as-the-crow-
flies route via roads?

Of course, there also are errors with this formula
too, because Earth isn’t a perfect sphere but rather an
oblate spheroid that has a different diameter depend-
ing on where you’re measuring. But for our purposes,
let’s just gloss over that problem. You can Google it to

Calculating the
Distance between Two
Latitude/Longitude Points
Finding your way at the command line.

WORK THE SHELL
COLUMNS

DAVE TAYLOR

http://www.linuxjournal.com

The most super powered sites in
the world are created in Drupal, by
you and Lullabot.

Lullabot-
Powered

Suzi Arnold
Director of New Media
Sony Music

New Lullabot Learning Series training DVDs at Lullabot.com

2 4 | december 2009 www.l inux journa l .com

WORK THE SHELL
COLUMNS

learn about things like the Vincenty formula, but
that’s beyond the scope of this ridiculous sidetrack.

Now we have all the pieces we need: location
to lat/lon and distance between two lat/lon points.
Let’s put it all together.

Grafting It All Together
To get everything to work well, I actually hacked and
slashed at the original script to make it a bit more suc-
cinct and, of course, invoke the C “distance” program
as shown in Listing 1. [Listing 1 also is available on our
FTP site at ftp.linuxjournal.com/pub/lj/listings/
issue188/10606.tgz.] Ready? It’s surprisingly short:

#!/bin/sh

converter="http://api.maps.yahoo.com/ajax/

�geocode?appid=onestep&qt=1&id=m&qs="

tmpfile="/tmp/bc.script.$$"

Get lat/long for point 1

addr="$(echo $1 | sed 's/ /+/g')"

values="$(curl -s $converter$addr | \

cut -d\" -f13,15 | \

sed 's/[^0-9\.\,\-]//g;s/,$//')"

lat1=$(echo $values | cut -d, -f1)

long1=$(echo $values | cut -d, -f2)

Get lat/long for point 2

addr="$(echo $2 | sed 's/ /+/g')"

values="$(curl -s $converter$addr | \

cut -d\" -f13,15 | \

sed 's/[^0-9\.\,\-]//g;s/,$//')"

lat2=$(echo $values | cut -d, -f1)

long2=$(echo $values | cut -d, -f2)

Now we have the lat/long for both points, let's

figure out the distance between them...

dist=$(./distance $lat1 $long1 $lat2 $long2)

echo "$1 to $2 is $dist miles"

exit 0

The script would be even shorter if we tweaked
the C program to accept x,y location pairs, but I’ll
leave that one to you. Instead, let’s do a few tests:

$ farapart.sh \

"union station, denver, co" \

"union station, chicago, il"

union station, denver, co to

union station, chicago, il is 917.984 miles

Now, how about something a bit more ambiguous:

$ farapart.sh "long beach, ca" "boston, ma"

long beach, ca to boston, ma is 2597.53 miles

Well, darn it, that seems way too short. Let’s see
what Yahoo Maps reports as the distance between
those two cities. Sure enough, it reports that the
trip should be 3,015 miles, not 2,597 miles.

Debugging the Math Formula
Somewhere there’s an error that’s giving us poor
results. My guess is there’s some sort of significant
rounding error going on in the C program (because
we can verify experimentally that the lat/lon infor-
mation we’re getting is valid, simply by plugging it
in to a mapping app and seeing where it places us).

I’m all tapped out on this example, however. It
turned out to be far more tricky than I anticipated,
and I leave it as an exercise to you, dear reader, to see
if you can figure out what’s broken in the C program
and report your fix to us. We’ll publish the best of
them next month! Meanwhile, next column, I’ll get
back to something that’s more about the shell and
less about mathematics. I mean, heck, I didn’t like
math when I was working on my computer science
degree, so why am I playing with it now?�

Dave Taylor has been involved with UNIX since he first logged in to the
on-line network in 1980. That means that, yes, he’s coming up to the 30-year
mark now. You can find him just about everywhere on-line, but start here:
www.DaveTaylorOnline.com. In addition to all his other projects, Dave is now
a film critic. You can read his reviews at www.DaveOnFilm.com.

Listing 1. C Distance Program

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define EARTH_RADIUS (6371.0072 * 0.6214)

#define TORADS(degrees) (degrees * (M_PI / 180))

main(int argc, char **argv)

{

double lat1, long1, lat2, long2;

double dLat, dLong, a, c, d;

lat1 = TORADS(atof(argv[1]));

long1 = TORADS(atof(argv[2]));

lat2 = TORADS(atof(argv[3]));

long2 = TORADS(atof(argv[4]));

dLat = lat2 - lat1;

dLong = long2 - long1;

a = sin(dLat/2) * sin(dLat/2) +

cos(lat1) * cos(lat2) * sin(dLong/2) * sin(dLong/2);

c = 2 * atan2(sqrt(a), sqrt(1-a));

printf("%g\n", EARTH_RADIUS * c);

}

http://api.maps.yahoo.com/ajax/�geocode?appid=onestep&qt=1&id=m&qs=
http://api.maps.yahoo.com/ajax/�geocode?appid=onestep&qt=1&id=m&qs=
http://www.linuxjournal.com
http://www.DaveTaylorOnline.com
http://www.DaveOnFilm.com

http://www.LinuxJournal.com/Giftsub

2 6 | december 2009 www.l inux journa l .com

It’s easy to forget dæmons are there unless they
demand your attention. A few years ago, I was
walking through the expo floor at OSCON, when
I noticed someone in a full BSD dæmon costume
getting his picture taken with a few fans. When
I saw them trying to figure out how to arrange
everyone for the picture I couldn’t help but yell,
“No! The dæmon is always in the background!”

In case you didn’t get the joke, dæmon is
a name UNIX people give to processes that run
behind the scenes (in the background). Dæmons
perform all sorts of useful functions from executing
scripts at a certain time (atd and crond) to listening
for network connections and spawning the
appropriate process to serve the request (inetd).
In fact, the d at the end of those scripts stands
for dæmon, and you might notice that a number
of processes on your system right now end in d.

The whole point of a dæmon is to perform
tasks without your intervention or knowledge, but
sometimes, it’s handy for a dæmon to alert you
when a certain condition occurs. On a server, this
usually means the dæmon will send an e-mail alert
to the administrator, but what about on a desktop?
What if you want a dæmon to alert you when
you have new e-mail? In that case, it makes
more sense for some sort of notice to pop up
on your desktop. In this column, I discuss three
different methods I use so that dæmons can get
my attention on my desktop.

A Case of OSD
I think the first time I noticed OSD (On-Screen
Display) notifications on Linux was with a volume
control program. I increased the volume on my
computer, and right in the middle of the screen
was a volume meter floating above all my other
windows, just like on a TV. I instantly was intrigued
and had to figure out how they did it. These days,
there are a number of different OSD libraries and
programs, but my favorite is still osd_cat.

The osd_cat program is a command-line
program that displays text sent to it in a pipe. The
fact that it accepts piped input makes it ideal for
dæmon notification, because it’s easy to add to any
shell script. This command is part of the xosd-bin
package on Debian-based systems, or xosd on Red
Hat, and has been around for a number of years.

The simplest way to test osd_cat is to pipe some

text to it:

$ echo "Hello World" | osd_cat

If you look at the top left-hand side of your
screen, you should see your message appear in a
small red font for a few seconds and then disappear.
Of course, if you didn’t know to look there, you
might assume the program is broken because the
message is so small. Plus, everyone knows green is
the ideal foreground color, so let’s spruce up that
notification a bit and put it front and center:

$ echo "Hello World" | osd_cat --align=center --pos=bottom

�--color=green --font=lucidasanstypewriter-bold-24

Ahh, that’s more like it, a notification right in the
middle of the screen. As you can see, osd_cat accepts
a number of options that can control how and where
it displays your message. The man page covers all
the options in detail, but I highlight the options I
used here. The --align argument controls the text
alignment much like a word processor and can be
set to left (default), center or right. The --pos option
controls the Y orientation on the screen and can be
set to top (default), middle or bottom. The --color
option is self-explanatory, as is --font. If you do want
a different font but aren’t sure what value to use,
just run xlsfonts to see a full list.

In addition to the options I listed, osd_cat has many
other options, such as --indent and --offset, that allow
you to fine-tune where it displays your text, so you can
position it virtually anywhere on the screen. You also
can tweak the time the message appears on the screen
with the --delay option, and if you plan to pipe multiple
lines of text to the screen, be sure to look into the
--lines, --age and --wait options, so you can control
how osd_cat will scroll multiple lines. There are even
--barmode and --percentage options that let you draw
a slider bar, much like the OSD volume control I saw.

All of those options are nice, but honestly,
I find myself sticking to basic text notifications
with osd_cat, and although I have migrated
many of my scripts to libnotify, I still like to use
osd_cat for audio/video notification, such as
when I use a script I wrote to turn on the VGA
output on my laptop for presentations. I mentioned
this script in my original Lightning Hacks column,
but in case you didn’t see it, here it is again:

Message for You Sir
Why check for new e-mail every minute when a script can do it for you?
Learn how to trigger desktop notifications in your own scripts.

HACK AND /
COLUMNS

KYLE RANKIN

http://www.linuxjournal.com

#!/bin/sh

if xrandr | grep -q 'VGA connected'; then

echo "LVDS + VGA" | osd_cat --shadow=2 --align=center

�--pos=bottom --color=green --delay=2

�--font=lucidasanstypewriter-bold-24 --offset 40 &

choose my laptop screen's resolution by default;

if that fails, try the auto-detected mode

xrandr --output VGA --mode 1280x768@60 || xrandr

�--output VGA --auto

else

echo "LVDS only" | osd_cat --shadow=2 --align=center

�--pos=bottom --color=green --delay=2

�--font=lucidasanstypewriter-bold-24 --offset 40 &

xrandr --output VGA --off &

fi

I find it’s nice to add visual notifications like
this whenever I trigger a script in the background
with a keybinding and it’s not immediately
obvious the script ran, such as in this case,
when I’d like to know whether I’m in presentation
or regular mode, and it might take the projector
a few seconds to respond.

Consider Yourself Notified
I used to use OSD notifications for all sorts of scripts
on my system, including one that notified me when
I got new e-mail. It worked fine, but sometimes I’d
rather get a notification that’s a little easier to ignore.
Although I suppose I could move my OSD alert to a
corner of the screen, then it would be almost too
easy to miss. I wanted something that would get
my attention but also would not get in the way.
Currently, I use GNOME as my desktop environment,
and I realized that its desktop notifications were
ideal. They caught the corner of my eye, but they
didn’t jump in front of everything else I’m doing.

The library GNOME uses for notifications is the
appropriately named libnotify, and it turns out, it
was trivial to migrate my notifications from osd_cat
to libnotify using the notify-send command. Because
I already was using GNOME, the program already
was installed. If it’s not in your case, look for a
package named libnotify-bin or search your package
manager for notify-send.

The syntax for notify-send is substantially simpler
than osd_cat, as the message’s location and font
already are handled for you. Here’s a simple example:

http://www.siliconmechanics.com/8840

$ notify-send "Message for you Sir" "Hello World"

This will pop up a basic message in a notification
window on my desktop. The first set of quotes
specifies the title of the message, and the next
set of quotes defines the body of the message.

Of course, when I use notify-send to alert me
of new e-mail, I use something a bit fancier. If
you’d like to set up e-mail notification for your-
self, here’s a more simplified version of my
personal script to get you started. First, set up
fetchmail so that it can connect to your IMAP
server. Just as a warning, don’t ever run fetch-
mail without the -c option, unless you do want
to download all your mail to your local machine.
Once fetchmail is configured, you can test that it
works with fetchmail -c:

$ fetchmail -c

991 messages (990 seen) for kyle at mail.example.net

(folder INBOX).

530 messages (530 seen) for kyle at mail.example.net

(folder INBOX.nblug).

284 messages (284 seen) for kyle at mail.example.net

(folder INBOX.linuxjournal).

As you can see, there’s a new message that I
haven’t seen in my INBOX folder. All you need to do
now is write a script that will execute fetchmail
-c, parse the output, and tally the total and seen
messages. If the totals differ, you have new mail
and can execute notify-send with the appropriate
message. Here’s a quick Perl script that goes a step
further and keeps track of each folder with new
messages as well, so it can list them and their tally:

#!/usr/bin/perl

open FETCHMAIL, "/usr/bin/fetchmail -t 10 -c 2>/dev/null

�|" or die "Can't run fetchmail: $!\n";

while(<FETCHMAIL>){

if(/^(\d+) messages \((\d+) seen.*?folder (.*?)\)/){

keep a running total of all messages and seen messages

$messages+=$1; $seen+=$2;

$folder=$3;

$folder =~ s/INBOX\.//; # strip the INBOX.

from the folder names

}

If there are more messages than seen messages,

store the difference

if($1 > $2){

$folders{$folder} = $1 - $2;

}

}

close FETCHMAIL;

$total = $messages - $seen;

if($total > 0){

foreach $folder (sort { $folders{$a}<=>$folders{$b}

�} keys %folders){

push @list, "$folder:$folders{$folder}";

}

$output = join " ", @list;

system ("notify-send -u low -i /usr/share/pixmaps/mutt.xpm

�-t 5000 'New Mail' '$output'");

}

Notice I added a few extra options to my notify-
send in this example. First, I used the -u option so I
could set the urgency of the message to either low,
normal or critical. The -i option lets me specify an
icon to add to the image, so I picked my system’s
mutt icon, because that’s the program I’ll use to
read the mail. Next, I used the -t option so I could
set the timeout for the message in milliseconds.
Finally, I added the title and body of my message.

If you set this up yourself, all you have to do
now is save the script and add it to your user’s
crontab so it will run however often you want to
check for new mail. I also recommend adding some
sort of throttling to the script, so it will notify you of
a current batch of new mail only a few times. That
way if you can’t get to your e-mail immediately, the
notifications won’t become annoying.

Don’t Forget to Blink
Desktop notifications are great, but what happens
if I’m not looking at the screen when a notification
appears? Sure, if the script runs every minute, I
eventually will see it, but I set up throttling for those
sorts of notifications. I came up with a notification
that’s even less intrusive than libnotify, yet it will
alert me of new mail even if my screen idles out
and goes blank: my keyboard LEDs.

Now there certainly is nothing new about using
keyboard LEDs for notifications—after all, their
intended purpose is to notify you about the state of
your caps lock, num lock and scroll lock keys. But,
how often do you use your scroll lock or even your
caps lock these days? I mean, a number of my friends
even went full-UNIX nerd on me and remapped caps
lock back to the Ctrl key. Your keyboard LEDs are
three notification areas begging to be used, and
Linux has plenty of utilities that can use them.

I’ve tried a few different tools that let me control
the keyboard LEDs from a script, but I’ve settled on
blinkd as my favorite. This program runs as a
dæmon (see the d at the end?) when the system
starts up, and what I like about it is that it not only
lets you control all three keyboard LEDs, but you also
can set a number of times for it to blink the LED—
perfect for keeping track of new e-mail messages.

To install blinkd, look for the package of the
same name with your package manager. Once it’s

2 8 | december 2009 www.l inux journa l .com

HACK AND /
COLUMNS

http://www.linuxjournal.com

installed, if your package manager didn’t automatically start
it, run /etc/init.d/blinkd start. After the dæmon is
running, you can control the LEDs via the blink command.
The syntax is pretty simple. For instance, if I want to blink the
scroll lock key a single time, I would type:

$ blink -s -r 1

The -s argument tells it to activate the scroll lock LED,
and -r tells it how many times to blink before it pauses. I also
could have used -c or -n instead of -s to blink the caps lock
or num lock LEDs, respectively. You also can set the number
of blinks to 0 to turn off blinking for a specific LED, or type
blink -r 0 to turn off blinking for all of the LEDs.

Because the script I wrote above already has the total
number of new messages, it’s trivial to have my scroll lock
key blink that number of times. Here’s the modified section
of my script:

if($total > 0){

foreach $folder (sort { $folders{$a}<=>$folders{$b}

�} keys %folders){

push @list, "$folder:$folders{$folder}";

}

$output = join " ", @list;

system ("notify-send -u low -i /usr/share/pixmaps/mutt.xpm

�-t 5000 'New Mail' '$output'");

system ("blink -s -r $total");

}

else {

system ("blink -r 0");

}

The great thing about using a keyboard LED for notifica-
tions is that you end up noticing it out of the corner of your
eye, especially if you left your computer for a minute, yet it
won’t steal your focus completely if you are working. I also like
that I can tell how many new messages I have at a glance. If
you want to extend the script further, I’d recommend separat-
ing your folders into regular and high priorities, and make the
script blink different LEDs depending on which folders have
new mail. If you have multiple e-mail accounts, you might even
want multiple versions of the script with an LED assigned to
each account. I’d say the possibilities are endless, but they
aren’t. You have only three LEDs to play with.

In this column, I’ve mostly mentioned checking for e-mail
as a candidate for desktop notifications, but there are any
number of other things for which you might want notifications,
such as system temperature, LEDs triggered by the local mail
or printer queues, notices triggered by RSS feed (or dare I say
it, Twitter) updates, or even desktop notifications tripped by
your server monitoring system. Why keep all those dæmons
running silently in the background when you can make them
speak up when there’s something to report?�

Kyle Rankin is a Systems Architect in the San Francisco Bay Area and the author of a number
of books, including The Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks. He is
currently the president of the North Bay Linux Users’ Group.

http://www.genstor.com

3 0 | december 2009 www.l inux journa l .com

I saw a short video on YouTube about something
called a Beagle Board, and it looked really interest-
ing. It was this incredibly tiny board with plenty of
ports. It even had an HDMI, which meant it would
be easy to hook up to the LCD television in my
living room. I put in my order to Digi-Key, and a
few weeks later, it showed up. (I ordered it while
Digi-Key was working on a new version, so your
order should arrive faster.)

When the package arrived, and I pulled out the
box, my first reaction was wow! This thing is tiny!
When I opened the box, I realized that Digi-Key
wasn’t kidding by calling it the Beagle Board. The only
thing in the box was a shiny red PCB (Printed Circuit
Board). I had seen the board in the video, but until I
got it, I didn’t realize it came as a bare board. This led
to my second order from Digi-Key. I didn’t own the
proper 5V power supply to make it work. I also added
on a Beagle Board serial cable, which was lucky
because it is an essential part of the setup process.
I already had a serial-USB dongle, so if your computer
does not have a serial port, you will need that as well.

Features
The Beagle Board has a ton of features built in,
with options to add on more. The main feature of
the Beagle Board, besides its 3"x3" form factor, is
the OMAP 3530 processor. This tiny ARM processor
handles all the heavy lifting on the board. The rev
C. board that I have even has an extra USB port
that is not shown in the picture, making it even
easier to hook up USB peripherals to the board.
In my case, that would be a USB hub, keyboard,
mouse, Wi-Fi dongle and a thumbdrive.

History
The Beagle Board was developed by a very small
team of engineers inside Texas Instruments. TI has
a “small dreams” program where employees are
given some funding to pursue a good idea. The
first prototypes were released in June 2008. The
engineers’ goal was to provide a platform that gave
users access to desktop-like performance without
the bulk or expense. The team also was trying to
find a way to make it easy for a hobbyist to pick
up the board and experiment without requiring a
lot of embedded experience.

I can say that in my time working with the Beagle
Board, they were able to achieve both goals. It isn’t
the fastest computer I have ever used, but it is very
usable. It is so tiny, I occasionally would misplace it on
my work bench. On the embedded side, I had some
bumps choosing the right components, but once I
got a working system, it was very straightforward.

Tools
A great place to get started is at elinux.org/
BeagleBoardBeginners. The two big things to
make sure of when you get into playing with the
Beagle Board are compatibility and connectivity.

I used the Beagle Board serial cable to monitor
what was going on. In several cases, I had incom-
patibilities (it took some tweaking to get the Beagle
to show up properly on my living-room TV). I also
grabbed a Wi-Fi dongle from Linksys, figuring that it
would just work. In this case, it was too new. I went
back and got the Belkin G F5D7050 that everyone
else seems to be using, and I was able to get on the
wireless network.

The Beagle Board beginners page actually links

A Pico-Sized Platform
with Potential
Desktop computing in the palm of your hand.

ECONOMY SIZE GEEK
COLUMNS

DIRK ELMENDORF

Figure 1. Up close with the Beagle Board—the gray thing
underneath it is a floppy disk for scale.

http://www.linuxjournal.com

to a shopping list, showing you what you need
and which versions to buy. I did not find that
information until much later, so I am trying to
help you avoid one of my mistakes.

Common Install
The Beagle Board bootloader needs to be configured
in order to run Linux. The good news is that
once you do this setup, you don’t have to do it
again. You actually can do this step before you
do anything else, and it’s a good way to make
sure you have everything ready for communication
with your Beagle Board.

First, install minicom on your Linux host. You will
need to change some settings:

sudo minicom -s

Inside minicom, you need to enter the “Serial
port setup”. Make sure you set the correct device
to which to talk. In my case, I have the serial cable
connected to a serial-to-USB dongle. That means
my serial device is /dev/ttyUSB0. Make sure the
Bps/Par/Bits is set to 115200 8N1. Turn off all

hardware and software control. Once that is done,
save it as the default.

Now, connect the serial cable to your Beagle
Board, start minicom, and power on the Beagle
Board. You should see a message about the
OMAP3530 being ready. It also will show you
a countdown until autoboot. You need to press
a key to stop the boot process, so you can change

Figure 2.
Detailed View
of the Beagle
Board

http://www.siliconmechanics.com/R515

some settings.
Once you are at the OMAP3 beagleboard.org

prompt, type the following:

setenv bootcmd 'mmcinit; fatload mmc 0:1 0x80300000

�uImage; bootm 0x80300000'

setenv bootargs 'console=ttyS2,115200n8 console=tty0

�root=/dev/mmcblk0p2

rootwait rootfstype=ext3 ro omapfb.mode=dvi:1024x768MR-24@60'

saveenv

printenv

This configures your Beagle Board to look for
the kernel image you are going to create. Now you
need to get an SD card and prepare it to work for
the Beagle Board.

SD Card Preparation
The important thing to understand about the SD
card you’re using is that it needs to be partitioned
and formatted in a very specific way. Using fdisk or
gparted, remove all existing partitions on the card.
Then, create two partitions. The first one needs to
be 50MB and formatted to fat32. The second
partition can use the rest of the space on the
card and should be formatted to ext3.

For the OS installs, you will be putting a uImage
file on the fat32 partition. The rest of your files will
go on the Linux ext3 partition. As you go through
the process of building your install image, make sure
you keep your uImage and Linux root filesystem in
sync with the same kernel versions.

Ångström
The fine people at Ångström have worked hard on

a distribution that is easy and stable to run on
embedded devices. This is a good place to start
if you just want to boot your Beagle Board into
a Linux environment quickly.

I even found a handy tool to build your
own custom Ångström image at
amethyst.openembedded.net/~koen/narcissus.
This is still experimental, but it was nice to be able
to choose what I wanted in my image quickly.

If you want something even easier, Ångström
also offers a tarball containing a working system
that demonstrates the capabilities of the Beagle
Board. Simply download the latest tarball from
www.angstrom-distribution.org/demo/
beagleboard, and get the uImage that has the
same timestamp. Untar the tarball directly onto
the ext3 partition of your SD card, and put the
uImage (make sure you rename it to uImage) on
the fat32 partition.

Ubuntu
The nice thing about Ångström is how easy it is
to get up and running. The downside is I am not
very familiar with that distribution as an environ-
ment. I ran into some problems configuring the
Wi-Fi for the board, so I decided to switch to
Ubuntu. Installing Ubuntu is more complicated
upfront, but once installed, it was a lot easier for
me to work with.

The other nice thing about Ubuntu is that
Canonical announced late last year that it
would officially support the ARM architecture
(www.ubuntu.com/news/arm-linux). This means
Canonical would be working on making sure that
the packages I know and love on my x86 are all
available on the ARM. Because the OMAP processor
in the Beagle Board is an ARM chip, it will benefit
from all this support.

A step-by-step guide for installing Ubuntu can
be found at elinux.org/BeagleBoardUbuntu.
By the time this article is published, Karmic Koala
should be officially released, so instead of giving
you out-of-date instructions, I recommend you
follow the link to get the latest information.

I actually installed Jaunty, as that was the stable
version of Ubuntu at the time of this writing. Once
it was up and running, any software I needed was
simply an apt-get away (in most cases). In this case,
that meant adding wicd (light network manager),
Firefox and VLC.

Pitfalls
It would be easy enough to use the Beagle Board
as a simple workstation. You can browse, look
at documents, listen to music and even watch
video. Those tasks demonstrate the board’s flexi-
bility combined with the wealth of open-source

3 2 | december 2009 www.l inux journa l .com

ECONOMY SIZE GEEK
COLUMNS

Figure 3.
Ångström Running
GIMP, Gnumeric
and Firefox

http://www.angstrom-distribution.org/demo
http://www.ubuntu.com/news/arm-linux
http://www.linuxjournal.com

software. On one hand, it is really amazing to have so
much processing power packed into such a tiny form
factor. On the other hand, turning the Beagle Board into
a desktop seems like a waste of that form factor (unless
you mount it inside a keyboard).

My initial goal was to use it as a set-top box. I was going
to use it to stream Hulu to my living-room television. I did
some research and found that you can build your own IR
USB receiver (USB-IR-Boy). That would make it easy for me
to interface a standard remote to the Beagle Board. Before
I started ordering parts, I decided it would be better to see
how good the streaming capabilities were. This walked me
straight into a problem with no clear workaround. In order
to stream Hulu, your browser must support Flash. At this
time, the only Flash available for the ARM processor family
is Flash Lite. Flash Lite seems to be licensed in a way that
makes it impossible to distribute to a single end user. It is
targeted more at handset vendors who will be shipping
millions of units. I installed Gnash just to see if it was
compatible, and it didn’t work either. But, Adobe has announced
that it is working on Flash 10 for ARM-powered devices
(www.adobe.com/aboutadobe/pressroom/pressreleases/
200811/111708ARMAdobeFlash.html).

So all is not lost. On the open standards front, I can
hope that the progress being made on HTML 5 and video
will remove the need for a proprietary solution to see video
on the Web.

My first plan dashed, I realized there was another pro-
ject that I’ve been meaning to play with—namely building
a MAME cabinet. In honor of the Beagle Board’s tiny size,
I started looking at building a Mini-MAME cabinet. This
basically is a smaller version of an arcade cabinet, and it
has some advantages—namely that it will not take up too
much space, and it will be usable by my one-year-old son
sooner. Once again, before I ordered any parts, I installed
all the MAME packages just to test things out. Bam!
(That’s the sound of me hitting another wall.) In this case,
the MAME packages have been compiled and packaged,
but they are not set correctly to run on an ARM processor.
I made some attempts at hacking the Makefile to fix the
problem, but I was unsuccessful. There are videos of the
Beagle Board running MAME, but I was not able to dupli-
cate their success.

The Future
Neither of these examples should dampen your enthusiasm for
the Beagle Board. I included them to highlight the challenges
involved in working in an embedded/non-x86 environment.
The good news is that the software issues I ran into will
likely be fixed as more energy is put into supporting the
ARM platform.

All in all, it is a neat platform. It allows me to attack problems
that are too small for a full-blown PC without requiring me to
be an embedded expert (which I’m not).�

Dirk Elmendorf is cofounder of Rackspace, some-time home-brewer, longtime Linux advocate
and even longer-time programmer.

http://www.adobe.com/aboutadobe/pressroom/pressreleases/200811/111708ARMAdobeFlash.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/200811/111708ARMAdobeFlash.html
http://www.asacomputers.com

3 4 | december 2009 www.l inux journa l .com

NEW PRODUCTS

Cyberoam iView
In an effort to answer the question “Who is doing what on my network?”,
the company Cyberoam has released Cyberoam iView, a new, open-source
logging and reporting solution. Cyberoam iView, says its creator, delivers
centralized identity-based logging and reporting of multiple devices across
geographical locations, thus enabling organizations to meet their security
management and regulatory compliance requirements. The application
further solves many drawbacks, such as the expense of existing logging-
reporting solutions or the need to correlate individual logs from multiple
devices like firewalls, antivirus and antispam solutions, intrusion-prevention
solutions, proxy servers, routers, operating systems and more. One already
can derive logs and reports via Linux iptables/Netfilter firewall, the popular
open-source HTTP proxy Squid and other commercial UTM firewall solutions.

www.Cyberoam-iView.org

InMage Scout
The disaster recovery application InMage Scout—InMage’s flagship product—recently was upgraded to version 5.1.
InMage Scout is a single platform that supports transparent backup, quick disaster recovery from catastrophic failures
and automated application failover/failback for improved restoration of application services. Enhancements in
this new v5.1 include enhanced support for larger environments and multi-tenancy features for MSP customers,
as well as improved scalability, platform coverage and ease of use. Support for Sun Solaris also has been added
to the existing support for Linux and Windows.

www.inmage.com

AXIGEN Mail Server
If you’re in the market for a mail server with a slick Web-based e-mail application,
AXIGEN hopes you’ll try its new Mail Server Version 7.2. AXIGEN says that service
providers will appreciate the new AJAX-based Webmail, a “cool Web experience”
for its users that “will help them create new services and generate new streams of
income” due to its strong focus on monetization. The application provides multiple,
customizable advertising capabilities and seamless integration with third-party appli-
cations, such as portals and community-related tools, thus helping SPs keep their
customers on-line for a longer period. The application introduces features such as
keyboard navigation and shortcuts, drag and drop, live e-mail list view, frequent
folders and also allows users to employ shortcuts and time-saving tricks they already
have been using with classic desktop e-mail clients, such as Outlook or Thunderbird.
Supported platforms include Linux, various BSDs, Solaris and Windows.

www.axigen.com

WinSystems EBC-Z8510-G
Single-Board Computer
The latest single-board computer to come from the house of WinSystems is the
EBC-Z8510-G, this one powered by the Intel Atom processor (1.1GHz or 1.6GHz)
and integrating the new COMIT (Computer On Module Interconnect Technology) and
SUMIT-ISMT I/O expansion standards. The little guy measures in at 203mm x 147mm
(8.5" x 5.75"). The I/O interface features two Gigabit Ethernet ports, CRT and LVDS
flat-panel video, a MiniPCIe card interface for a wireless networking module, four USB
2.0 ports, four serial COM ports, HD audio, PATA controller for both a CompactFlash
and hard disk, 48 lines of digital I/O, LPT and a PS/2 port for keyboard and mouse.
The EBC-Z8510-G supports Linux and Windows OSes and development kits.

www.winsystems.com

http://www.Cyberoam-iView.org
http://www.inmage.com
http://www.axigen.com
http://www.winsystems.com
http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 3 5

NEW PRODUCTS

Napatech’s Time Synchronization Technology
Napatech has added extremely accurate packet timestamping—important for
measuring quality-of-service factors in packet networks, such as latency—to its line
of intelligent network adapters for real-time network analysis. The new time
synchronization solution enables Napatech network adapters to be synchronized
with a variety of time sources, such as GPS, IEEE 1588v2, CDMA and Pulse Per
Second sources. This feature allows packets to be timestamped with an accuracy of
50 nanoseconds. It also lets Napatech adapters be daisy-chained, allowing a single
time synchronization source for multiple adapters. Napatech calls its adapters “ideal
for OEM network appliance vendors in the network performance monitoring, test
and measurement, security and optimization markets.” An extensive software suite
is provided for integration supporting Linux, FreeBSD and Windows.

www.napatech.com

VariCAD
No stranger to CAD on the Linux platform, VariCAD, now in version 2009 2.0, is a 3-D/2-D CAD
system intended for use in mechanical engineering design. Core features include tools for 3-D
modeling and 2-D drafting and dimensioning, libraries of standard mechanical parts (ANSI, DIN),
calculations of standard mechanical components, and tools for working with bill of materials
(BOM) and blocks. This version adds new features like improvements in the geometric constraint
module, parameters and geometric constraints within solid creation profiles, parameters for angles
within a Boolean tree and improvements in areas such as solid insertion and transformation,
selection of parts and printing capabilities. A free 30-day trial version is available for download.

www.varicad.com

Arkeia Network Backup
The latest iteration of Arkeia Network Backup, version 8.1, which is designed for hosting providers that seek to generate
revenue by offering backup services to their customers, offers a range of new features. These include Custom Restore
Objects (CROs) that allow system administrators to assign restoration rights to end users and extensible reporting (for exam-
ple, preconfigured reports, new tools for custom report generation and more ways to receive reports). In addition, support
has been added for AIX 6, Fedora 11, NetBSD 5.0, OpenBSD 4.5, Mac OS X Snow Leopard and Microsoft Windows 7.

www.arkeia.com

Jeff Duntemann’s Assembly Language
Step by Step: Programming with Linux
(Wiley)
New on bookstore shelves is the third edition of Jeff Duntemann’s Assembly Language Step
by Step: Programming with Linux, an introduction to the x86 assembly language. Although
this new revision has been rewritten to focus on 32-bit protected-mode Linux and the free
NASM assembler, the book retains Duntemann’s distinctive lighthearted style as he presents
a step-by-step approach to this difficult technical discipline. Duntemann starts by explaining
the basic ideas of programmable computing, the binary and hexadecimal number systems,
the Intel x86 computer architecture and the process of software development under Linux.
From that foundation, he systematically treats the x86 instruction set, memory addressing,
procedures, macros and interface to the C-language code libraries upon which Linux itself
is built. The book assumes no prior experience in programming.

www.wiley.com

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or New Products
c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

http://www.napatech.com
http://www.varicad.com
http://www.arkeia.com
http://www.wiley.com
mailto:newproducts@linuxjournal.com
http://www.linuxjournal.com

Discrete Geometry Viewer—
Image Analysis and
Manipulation
qcplusplus.sourceforge.net
Developed by Australian PhD student
Shekhar Chandra at Monash University,
Discrete Geometry Viewer (DGV) is an
intriguing piece of software. As a general
package, DGV, along with its various
extensions, is a quantum mechanical
toolkit and 3-D viewer for C++. It
allows data visualisation via images,
surface and volume plots using OpenGL,
as well as rapidly developed Quantum
Mechanical Simulations. It uses the
Blitz++, VTK visualisation and open-
source Qt libraries.

Breaking all that down, DGV
allows you to do some really cool
things with images, whether your
interest is scientific or purely artistic.
The program started out as a theoret-
ical physics project under the moniker
Quantum Mechanical Simulator, and
Shekhar’s main issue was in viewing
the actual data, so he wrote DGV to
fill the gap. As time goes on, Shekhar
will be adding more of his PhD research
work into DGV.

Quoting Shekhar, future advance-
ments will include:

� Pixel values within viewer.

� Saving animations.

� Python shell rather than simple
console output. See my project
called QPythonShell, which allows

one to embed a Python shell into
Qt applications.

� More file formats.

� More transforms, like the Number
Theoretic Transforms (via my
new Number Theoretic Transform
C library).

Installation Click on the Download
link at the main Web site, and you’ll be
taken to a SourceForge page of hosted
files. Under the Discrete Geometry
Viewer heading, grab the latest package
according to your system. Provided
are x86 binary tarballs for Linux and
Windows, as well as a source tarball.
I went with the binary, which didn’t
have any dependency issues on my
system and ran straight off the bat.

You can compile from source if you
really want to—especially if you don’t
have an Intel-based machine—but the
list of requirements is fairly stringent
and may be a little obscure for many
systems (see the project’s Web site for
more details).

Download and extract the tarball,
and open a terminal in the new folder.
To run the program, enter:

$./dgv

Usage First, you need to import a
picture. Any picture will do, but in terms
of number crunching, something with
a smaller resolution (say 800x600) and
common aspect ratio (such as 4x3 or

16x9) will make things easier, as both
you and the computer will end up
doing a fair bit of mathematical work.
Open whichever image you like with
File→Open, and the image will come
up on-screen. The image that appears
probably will be in grayscale depending
on the release version, but don’t fret, it
isn’t necessarily going to stay that way.

Now, let’s go straight to the pro-
gram’s coolest ability. Right-click on
the image and choose Surface Plot
with Image from the drop-down box.
Then, wait a while. There’s a lot of
math to be crunched, but it will be a
quick process if you’re lucky. A new
3-D landscape now will be on-screen
(and back in color), which can be
moved and rotated in real time and
viewed at any angle.

Left-click and move the mouse
forward and backward, and the world
tilts accordingly. Move the mouse right
or left, and the world spins in that
direction. Hold Ctrl while moving the
mouse, and the image rotates in front
of you as if it were on a 2-D plane,
clockwise or anti-clockwise. Hold Shift
or your middle mouse button, then
move the mouse, and you can physically
drag the object horizontally or vertically
within your screen.

If you find the default values and
the landscape they spawn a little crude
(or even a little subtle), right-click on
the image and choose Scale Factor.
Decrease the given value, and the
resulting terrain becomes smaller and
closer to the original image. This can be

3 6 | december 2009 www.l inux journa l .com

NEW PROJECTS

Fresh from the Labs

DGV Creating a 3-D Texture from a Photo of My Old Drumkit My Old Drumkit

http://www.linuxjournal.com

used to apply some very subtle image
enhancements to great effect. Increase
the given value, and the bumpiness
of the terrain becomes larger and
more exaggerated.

This by itself, however, is more of
a gimmick to show off to your mates.
At the heart of this project is its
mathematics and plotting abilities,
combined with techniques to manipu-
late images, that can result in some
stunning outcomes.

Let’s see this in action with some-
thing a little more traditional. Close
any working project windows and start
again from scratch with a basic 2-D
image. With the file open, right-click on
the image itself and choose Data from
the drop-down box. A table of data
will be made, and it’s this table that is
especially important.

Each cell of numbers contains
information that affects any geometry
or effects you generate from this
table. To put it in English, if you
know what you’re doing, you can
control the way the final image ends
up manually. Let’s use Fast Fourier
Transformation as a working example.
(For the purposes of space, we’ll run
with my working filename, which is
whole-kit.jpg. Substitute your own
file in place of it.)

Right-click on the table and choose
Transform→Fourier→FFT. After a
moment, a dotted grayscale picture will
come on-screen in a separate window
above the original image. Now, com-
bine these two into a final image. Click
Data→Operate from the above menu.
In the new dialog window, choose

Multiply under Operation, whole-kit.jpg
under Data Source 1 and Image:
FFT-whole-kit.jpg under Data Source 2.
And, there’s a spiffing new image! The
original image will be combined with
the grainy FFT image to make a look
that is unique to each picture.

We’ve barely scratched the surface
here, so it’s well worth checking out
Shekhar’s tutorial (code.google.com/p/
discrete-geometry-viewer/wiki/Home)
and blog (l3mmings.blogspot.com)
to understand what this program really
is capable of doing (and apologies to
Shekhar for any inaccuracies there
may be in this article). For anyone
looking to explore this very different
area of image processing, DGV defi-
nitely is worth a look.

DGV made this amazing 3-D landscape from a picture inside my car!

Example FFT Image

http://www.embeddedarm.com

peekabot—3-D Robotic
Visualization
www.peekabot.org
According to the project’s Web site:

peekabot is a distributed real-time
3-D visualization tool for robotics
researchers and developers,
written in C++. Its purpose is to
simplify the visualization needs
faced by a roboticist daily—using
visualization as a debugging aid
or making fancy slides for a
presentation, for example.

Our goal is to provide a flexible
tool that will cater to the vast
majority of a roboticist’s visualiza-
tion needs, yet is easy to use.
Typical scenarios include visualiza-
tion of simulations, data display
from real robots and monitoring
of remotely deployed robots.

...to enable remote data visualiza-
tion, peekabot uses a distributed
client-server architecture. All
the gory details of networking
is handled by the client library,
used by your programs.

Installation Head to the Web site,
and grab the latest tarball. In terms of
library requirements, the documentation
helpfully states the following (note,
in the list below: *not required when
building only the client API; **needed
only if building the unit tests, which are
disabled by default):

� A decently recent version of GCC.

� Boost 1.34.0+ (Boost.Thread,
Boost.DateTime, Boost.Filesystem*,
Boost.ProgramOptions* and
Boost.Test**).

� Xerces-C++ 2.7.0+*.

� FLTK 1.1.6+*.

� OpenGL*.

� GLU*.

� libpng*.

I also had to grab these develop-
ment files: libxerces-c2-dev and
libfltk1.1-dev. Once you download the

tarball, open a terminal wherever it’s
saved and enter the following:

$ tar xvzpf peekabot-x.y.z.tar.gz

$ cd peekabot-x.y.z

$./configure --prefix=/usr

$ make

$ sudo make install

Assuming all went well, when the
compilation has finished, you can run
the program with the command:

$ peekabot

Before we jump in, I have to warn
you that we’ve covered only half the
equation. peekabot is made of two key
parts: the server and its clients. After
the initial building process, you will have

the server by itself. The server is the
main GUI screen where you’ll be testing
and interacting with your client pro-
grams. The clients generally will be
standalone programs that communicate
with the peekabot server while following
their own coding structure. Although
this may be daunting for new users (me
included), it does make the system very
open, powerful and flexible.

Okay, I’ll assume you have the server
window open and are ready to take
peekabot for a spin. Let’s take a look
at a working example program and
explore the GUI while it’s running.

Open another terminal in the peekabot
source directory, and look under the exam-
ples folder. Here you will see the folders
bo-slam, results and skeleton. Enter any of
these folders, and run the command make.

3 8 | december 2009 www.l inux journa l .com

NEW PROJECTS

peekabot’s low-level control of actions allows for some very advanced scripting, such as the
object pathing shown here.

A number of Blender-created models allow for some snazzy active objects, available freely
on the Web.

http://www.peekabot.org
http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 3 9

After make has compiled each example’s
code, a new program will be available in
the same directory. To use bo-slam as an
example, here’s the terminal commands to
enter (we’ll assume you have a folder open
in the peekabot main folder):

$ cd examples

$ cd bo-slam

$ make

$./bo-slam

Run by itself, nothing will happen,
and you will get a bunch of error mes-
sages in the console. However, when
started with the peekabot server running
alongside, a robot and a bunch of pylons
will appear, with the pylons moving
themselves around the world into posi-
tion and the robot making its way around
each pylon on a preprogrammed path.
Okay, now that we have something
running, let’s explore the GUI.

The main window contains the scene
you’ll be working with, along with a
camera whose point of view is adjustable.
The left mouse button will pan the

camera, and the right button will rotate
it. To zoom in and out, use either the mid-
dle mouse button or the mouse wheel. If
you need the camera controls to be more
or less sensitive, the Shift and Ctrl keys
will modulate the sensitivity accordingly
(useful in extreme close-ups or when
looking from very far away, for example).

On the right is the Tree Browser, which
contains all the active objects, scenery
elements and so on. You can select
objects in view by left-clicking, and multi-
ple objects can be combined selectively
like any file manager, using Ctrl to toggle
select and Shift to add to the selection.

I’ve covered only the basic opera-
tions of this program here, because
you’ll need to do some actual coding to
get into the nitty-gritty of this program.
And quite frankly, I’m rubbish at
coding! If you’re interested in learning
more, check out the basic documenta-
tion (manual: www.peekabot.org/
doc/latest/manual_the_basics.html;
models: sourceforge.net/apps/
mediawiki/peekabot/

index.php?title=Model_repository).
There you will find the coding to get you
started, along with its structure and so on.

Ultimately this looks to be a powerful
project for robotic visualization, albeit
a rather intimidating one. Despite the
relatively difficult learning streak from its
mostly coding-based interface, it’s prob-
ably this same kind of interaction that
will bring it longevity. Not having the
restrictions of GUI design to hold back
the mechanics surely will be a godsend
to those who want to approach their
mechanical design at a low level without
the restrictions that accommodating to
beginners so often imposes.�

John Knight is a 25-year-old, drumming- and climbing-
obsessed maniac from the world’s most isolated city—Perth,
Western Australia. He can usually be found either buried in an
Audacity screen or thrashing a kick-drum beyond recognition.

Project at
a Glance

Danger from the Deep
dangerdeep.sourceforge.net
Danger from the Deep is a free,
open-source, WW2 German submarine
simulator. The Web site says, “This
game is planned as tactical simulation
and will be as realistic as our time and
knowledge of physics allows”. I’ve had
a brief chance to play it, and so far, I’ve
seen a game full of polish and passion.
I’m looking forward to covering this
more next month.

Brewing something fresh, innovative
or mind-bending? Send e-mail to
newprojects@linuxjournal.com.

Danger from the Deep

http://www.linuxjournal.com
http://www.peekabot.org
mailto:newprojects@linuxjournal.com
http://www.cari.net/lj

4 0 | december 2009 www.l inux journa l .com

I’m a sucker for cyberpunk. It probably has to do with all
those Shadowrun sessions when I was a kid, but even the
worst cyberpunk movies and books can grab my interest.
Although my friends shake their heads at the cheesy acting
and special effects in movies like Johnny Mnemonic, I still love
the concept of total immersion into your computer and virtual
reality that you see in classic cyberpunk. With all of this in
mind, it shouldn’t surprise you that I’ve been keeping close
watch on the current state of the art with consumer video
goggles. Even though I’m not quite ready to become a Snow
Crash-esque gargoyle just yet, I still jumped at the chance to
review the Vuzix VR920 video goggles (vuzix.com, $399.95).

I’ve been following the Vuzix company’s product line for a
number of years—before they even were called Vuzix—and it’s
been interesting to watch the product line progress. At the
moment, Vuzix has a few different consumer-grade video
goggles: lower-res glasses aimed at portable video devices
like the iPod, and the VR920 that it aims at the computer gaming
market. All of the goggles include built-in headphones, and
each model has different audio and video inputs. The AV920
and VR920 feature the higher-res 640x480 screens, but the
AV920 still is designed to connect to video devices, such as
portable DVD players, and includes a rechargeable battery
and standard DVD player video inputs. If you want to connect
goggles to a computer, you’ll definitely want to go with the
VR920, as it not only comes with a VGA connector, but it also
can be powered from USB.

VR920 specifications (from the product page):

� Twin high-resolution 640x480 (920,000 pixels) LCD displays.

� Equivalent to a 62" screen viewed at nine feet.

� 24-bit true color (16 million colors).

� Visor weighs 3.2 ounces.

� 60Hz progressive scan display update rates.

� Fully iWear 3-D-compliant and supports NVIDIA stereo
drivers.

� Built-in noise-canceling microphone for Internet VoIP
communications.

� Built-in three-degree-of-freedom head-tracker.

� USB connectivity for power, tracking and full duplex audio.

� Analog VGA monitor input.

� Support for up to 1024x768 VGA video formats.

The VR920 definitely is aimed at the gaming market and
has some pretty interesting features, such as an accelerometer
that under Windows can be used (along with compatible
games) to track your head movement, so when you turn your
head left, for instance, your character’s head turns left. The
VR920 is powered by your USB port, and the USB connection
also is used, so sound can be sent to the included earbuds.
You also can take advantage of the NVIDIA stereo drivers
under Windows to display different images for each eye and
get a 3-D-like experience. Unfortunately, even though you can
find a few homegrown projects to get basic accelerometer
support and stereo video working under Linux, as of yet, I
wouldn’t call it fully functional, so in this review, I focus on
what it would be like for average users to use the VR920 with
their Linux desktops.

Look and Feel
Before I go into how to set up the hardware in Linux, I first
should get something out of the way. You see, the primary
thing that has made the video goggle market grow so slowly
in my mind isn’t so much the lower resolutions on the screens
or the price, as much as the fact that you still look a little bit
dorky wearing any of the major vendors’ goggles. I mean, we
are all geeks here, so we are used to looking a little bit dorky
anyway. Plus, many people would think it’s a bonus to look
like a character from Star Trek: The Next Generation, but
still, the look is not exactly for everyone. The next revision of

The Goggles, They Do Something
How do video goggles designed for gaming on Windows stack up to a Linux geek’s
desktop? Find out below. KYLE RANKIN

REVIEW
hardware

Figure 1. Space Odyssey Indeed

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 4 1

goggles apparently is going to address this issue somewhat, as
they appear to look more like large sunglasses. Figure 1 shows
a picture of me wearing the goggles, so you can see what
they look like. It’s definitely a fashion statement. I know some
people will have no qualms walking around their daily lives
with these on, but others will use them only in the privacy
of their own homes.

Also, if you can’t tell from the picture, these goggles
don’t completely obstruct your vision. You can arrange them
so that they sit a bit higher on your nose, and if you lean
back a bit, you can look up and see through the goggles
and look down to see your computer screen. This means
you still can use your regular display if you want and extend
the desktop to the goggles.

So, I wasn’t surprised that I looked a little dorky with the
goggles on, and to be honest, I didn’t care that much. What
surprised me though was how uncomfortable the nose bridge
was out of the box. I think one of the most important things
you can do up front is adjust the nose of the goggles so it’s
comfortable. The goggles don’t feel very heavy, but after a
full movie, you will start to feel fatigue on your nose, especially
if the bridge is pinching too much. Once I had everything
adjusted, it was pretty comfortable, but I still wouldn’t expect
to wear them all day.

I also had a rather pleasant surprise with respect to eye
fatigue, or the relative lack of it. After all, you have these
screens very close to your eyes, so I figured my eyes would be
focused very closely when I used them. It turns out that the
way they have engineered the optics, they are telling the truth
when they say it appears like a 62" screen viewed at nine feet.
If you connected your computer output to a large LCD TV
mounted on your wall and looked at it from your couch, it
would look a lot like a desktop through the VR920. To be
honest, the effect is so complete, I found myself squinting not
because the image was too close, but because it appeared too
far away! You see, I’m nearsighted, but it’s mild enough that
it doesn’t affect my daily life in front of a computer. I wear
my glasses only when I’m driving at night, at a presentation
or when I’m watching a movie with subtitles. The downside
for me is that it’s a bit tricky to wear glasses and the goggles
at the same time, but of course, if you use contact lenses, it
wouldn’t be a problem.

Hardware Setup
There is really very little hardware setup to do. Just plug in the
VGA and USB plugs to your machine. As I mentioned before,
the USB port is used to power the display as well as to send
audio to the goggles (it’s also how you would access the
accelerometer). Here is the relevant syslog output I got when
I connected the VR920 to my Ubuntu machine:

Sep 14 19:51:01 moses kernel: [13069.884651] usb 6-1:

new full speed USB device using uhci_hcd and address 2

Sep 14 19:51:01 moses kernel: [13070.101323] usb 6-1:

configuration #1 chosen from 1 choice

Sep 14 19:51:02 moses kernel: [13070.291377] usbcore:

registered new interface driver hiddev

Sep 14 19:51:02 moses kernel: [13070.361931] usbcore:

registered new interface driver snd-usb-audio

Sep 14 19:51:02 moses kernel: [13070.397112]

generic-usb 0003:1BAE:0002.0001: hiddev96,hidraw0:

USB HID v1.00 Device [Icuiti Corp. VR920 Video Eyewear]

on usb-0000:00:1d.0-1/input3

Sep 14 19:51:02 moses kernel: [13070.397155] usbcore:

registered new interface driver usbhid

Sep 14 19:51:02 moses kernel: [13070.397162] usbhid:

v2.6:USB HID core driver

Sep 14 19:51:02 moses pulseaudio[11722]: alsa-util.c:

Cannot find fallback mixer control "PCM" or mixer

control is no combination of switch/volume.

Sep 14 19:51:03 moses pulseaudio[11722]: alsa-util.c:

Device hw:1 doesn't support 2 channels, changed to 1.

Sep 14 19:51:03 moses pulseaudio[11722]: module-alsa-source.c:

Your kernel driver is broken: it reports a volume range

from 0 to 0 which makes no sense.

Sep 14 19:51:03 moses pulseaudio[11722]: module-alsa-source.c:

Your kernel driver is broken: it reports a volume range

from 0.00 dB to 0.00 dB which makes no sense.

So pulseaudio does appear to see the audio mixer, and
even though it throws some strange errors in syslog output,
the sound worked fine. From the output, I can tell that it sees
it as the hw:1 ALSA device. I also saw a new /dev/dsp1 device,
and the device even showed up in my GNOME sound properties
window, so I could select the device from there.

The screen itself is detected without any extra effort on my
part and shows up in xrandr:

greenfly@moses:~$ xrandr

Screen 0: minimum 320 x 200, current 1280 x 800, maximum 1280 x 1280

VGA connected (normal left inverted right x axis y axis)

1024x768 60.0

800x600 60.3

640x480 59.9

720x400 70.1

You certainly can use xrandr to toggle whether the display
is on, but you also can configure it in the default GNOME
Display Preferences window (Figure 2). Personally, I set up a
quick xrandr script to toggle the goggles on when I wanted
to use them:

#!/bin/sh

if [-f /tmp/.goggles_on] ; then

xrandr --output VGA --off &

echo "Goggles Off" | osd_cat --shadow=2 --align=center

�--pos=bottom --color=green --delay=2

�--font=lucidasanstypewriter-bold-24 --offset 40 &

rm /tmp/.goggles_on

else

REVIEW

It turns out that the way they have
engineered the optics, they are telling
the truth when they say it appears
like a 62" screen viewed at nine feet.

http://www.linuxjournal.com

4 2 | december 2009 www.l inux journa l .com

xrandr --output VGA --mode 640x480 --below LVDS

echo "Goggles On" | osd_cat --shadow=2 --align=center

�--pos=bottom --color=green --delay=2

�--font=lucidasanstypewriter-bold-24 --offset 40 &

touch /tmp/.goggles_on

fi

In this configuration, the goggles act as a 640x480 screen
below my regular desktop, and I can drag windows there just
like with any other monitor.

General Desktop Use
The main thing to realize when you use the VR920 like a regular
monitor is that even though the display supports 1024x768
input, the actual screens go up to only 640x480, and anything
higher resolution gets scaled to fit. For my uses, I stayed with
640x480. Honestly, at that resolution, the screen worked
pretty well as an extra screen on my desktop, and I moved
IRC windows and other small terminals over to it.

The main limiting factor for how useful the screen is on a
regular desktop is the resolution, but nearsightedness aside,
I thought it actually was a pretty slick way to have IM, IRC or
a terminal window always in your field of view. As a sysadmin,
I also can see how it might be useful to tail logfiles in that
screen or possibly put all of your monitoring applets there. Just
realize that if you arrange the goggles so you can look up to
view them and look down to view your regular screen, you
won’t necessarily be able to use your peripheral vision to see
changes in the goggles—you’ll have to look up every now
and then. Also, I don’t think it would work quite as well for
programs like The GIMP or for word processing or anything
else that might need more screen real estate.

Video Games
Video games are the main function the VR920 is geared

toward, and I wasn’t surprised that it worked really well for
that purpose. Again, the display is 640x480 at maximum, so
don’t expect complete realism. Now, I’m an old-school Quake
gamer, so I just had to see what Quake 3 was like through the
goggles. Once the desktop was set up to span to that screen,
I didn’t have to do any extra tweaking. I launched Quake 3,
and it output to both of my displays. Even though I didn’t
have the head-tracking feature enabled, I have to admit it
was really cool to play games with the goggles on. You do feel
even more immersed in the environment than normal, so
any FPS (First-Person Shooter) games should work well here.
Any other games that could benefit from more virtual-reality-
like immersion, such as flight simulators, would get an
extra dimension of fun here as well. I should let my fellow
Point/Counterpoint columnist Bill try these out in Second Life.
I bet it’ll knock his socks off.

Movies
I think that apart from gaming, movie viewing is one of the
best uses for the VR920 under Linux. The resolution isn’t a real
issue for anything up to DVD quality, and once I had adjusted
the goggles so they were comfortable, they worked great for
movies. Just be sure to tell your video player to use the correct
audio device. For my machine, this just meant adding the
-ao alsa:device=hw=1,1 to MPlayer, but of course, it will
vary from program to program. I have to say it was really nice
to be able to watch an entire movie on my computer and
still have my full desktop to use. In my mind, the killer app for
this is airplane travel, as they are essentially headphones for
your eyes—you can watch movies with complete privacy.

Conclusion
I had been anticipating all kinds of scenarios where I would
use the VR920 before I had them. I could see myself at my
desk at work displaying a terminal and maybe wearing them
combined with some sort of video camera for augmented
reality and become a true Snow Crash gargoyle. The reality of
having the goggles around for daily use isn’t quite as exciting
though. To be perfectly honest, I didn’t find myself using them
nearly as often as I thought I would. Part of the reason is that
I haven’t been gaming much recently, but I think the main
reason is due to the low resolution. There are only so many
programs that work well in 640x480. Having said that, I’m
definitely going to bring the goggles with me the next time
I travel. If you do play a lot of FPSs or other games with a
first-person perspective, or if you watch a lot of videos in
public and are tired of people looking over your shoulder,
I definitely think you should give the VR920 a try.�

Kyle Rankin is a Systems Architect in the San Francisco Bay Area and the author of a number
of books, including The Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks. He is
currently the president of the North Bay Linux Users’ Group.

REVIEW

Figure 2. GNOME Display Preferences

I think that apart from gaming,
movie viewing is one of the best
uses for the VR920 under Linux.

http://www.linuxjournal.com

http://www.linuxjournal.com/archivecd

4 4 | december 2009 www.l inux journa l .com

Playing with

THE
PLAYER
PROJECT
THE PLAYER PROJECT IS A ROBOT-CONTROL SOFTWARE FRAMEWORK FOR
INTERFACING WITH PC-BASED ROBOTS. LEARN HOW TO USE IT TO INTERFACE
WITH SENSORS, ACTUATORS AND EVEN FULL RESEARCH ROBOTS. KEVIN SIKORSKI

W
e’ve all heard that PC-based computers

have increased in power and decreased in

size, power consumption and cost. These

improvements mean more people have

access to them, but also that PCs are

becoming more suited to being the brains of a mobile robot.

It brings to robots a number of advantages, such as USB

connectivity, greater memory capacity, more powerful processors

and even allows for plugging in a mouse, keyboard and

monitor to debug your robot on your robot. The largest cost

associated with the choice of a PC-based robot, besides the

dollar cost, is power consumption.

Programming your PC-based robot can be a little different

from programming a robot that uses a smaller, embedded

processor. As you would expect, PC-based robots can take

advantage of programming features, such as threads, using

multiple languages and leveraging third-party libraries to

perform complex tasks.

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 4 5

http://www.linuxjournal.com

What Is Player?
One such third-party library is the Player Project. The Player
Project is a framework for building robot-control software.
It provides a wide-reaching infrastructure that gives you a
network protocol, data serialization support, a message
loop and supports a large number of common off-the-shelf
components, such as Webcams, laser range finders, RFID, GPS
devices and interface boards. It even supports a large number
of commercially available robots, and some robot manufacturers,
such as CoroWare, provide Player drivers for their robots. And,
of course, it’s open source.

Requirements to Run Player
The newest version of Player runs on the majority of Linux
distributions with little effort. It is also cross-platform, with
version 3.0 supporting Microsoft Windows and even Cygwin
under Microsoft Windows. It has low memory requirements
and is pretty easy on your CPU. Although it’s not completely
cross-language, it does offer native support for C and C++,
and has nice Python and Ruby interfaces.

You don’t really need a real robot to work with Player. If
you have a few sensors and actuators that you can connect to
your laptop or desktop computer, you still can run the Player
server and control those disembodied devices—think of it as a
way to accomplish home automation. Player also can be used
with some of its close cousins: Stage (a 2-D simulation system
that integrates with Player) and Gazebo (a 3-D simulation
system that also integrates with Player). In this way, you
can simulate a full robot, or even a fleet of robots, without
any special hardware.

What Does Player Look Like?
Several layers of the infrastructure are diagrammed in Figure 1,
which should be familiar if you have written code that interacts
with hardware devices.

At the lowest level, we have the hardware layer. This corre-
sponds to the hardware that embodies the sensor, actuator or
any other physical component of the robot. The driver level
sits on top of the hardware level. This is one layer where a
programmer writes code. For example, a driver that interacts
with a USB Webcam will provide whatever code is necessary to
make a connection with the camera, read the sensor’s output,
package it up neatly and make it available to the rest of the
system. A lot of drivers of this type are provided with Player
as static drivers. This means you won’t have to provide any
special shared object libraries to use them, just the usual
Player libraries. You also can write your own drivers, called
plugins. The code for these drivers lives in a shared object
library (.so file).

You can create multiple instantiations of a single driver.
When you do this, you need a way to refer to a specific
instance. For example, if your robot has two cameras, one
facing forward and one facing backward, you will need to
tell them apart to know in which direction you are driving. In
order to do this, Player gives you the concept of a device. Each
time you instantiate a driver, you assign it a device name and
number. For example, in your robot, camera:0 might refer to
the forward-facing camera, and camera:1 might refer to the
backward-facing camera.

Finally, we arrive at the concept of an interface. The interface

is just like the API for a software package; it defines the
software interfaces for getting data out of and putting data
into the device. In our example, the camera interface defines a
set of messages to get images out of the camera, and a set of
messages to set up the camera and capture images.

Drivers don’t have to exist solely for communicating with
a piece of hardware. Player supports a number of algorithmic
drivers, such as blob-finders or wavefront planners, or even
camera image compressors. These operate just like normal
drivers, consuming and producing data and exposing interfaces.

Player Configuration
Now that we have dealt with the vocabulary, we can get
down to business. Let’s say you’ve just acquired a CoroWare
CoroBot robot (Figure 2). You’ve installed Player, and you want
to make the robot do something interesting. You can type
player corobot.cfg to run the Player drivers on the robot.
This loads a configuration file that describes all the drivers
Player must load to make your robot work. Here’s an excerpt
of a configuration file for the CoroBot:

driver

(

name "corobot"

plugin "libcorobotdriver"

provides ["position2d:0" "power:0" "ir:0"

"limb:0" "gripper:0" "ptz:0"]

requires ["aio:0"]

ssc32port "/dev/ttyS1"

ptzport "/dev/video0"

)

4 6 | december 2009 www.l inux journa l .com

FEATURE The Player Project

Figure 1. The relationship between Webcam hardware, the driver that
interfaces with it, the device created by the driver and the interface
that it exposes.

http://www.linuxjournal.com

We start off by telling Player that we are constructing a
driver. The first two lines in the driver description tell Player
where it can find the relevant code: the name line indicates the
name of the driver in the code (a single library can supply mul-
tiple drivers), and the plugin line indicates the name of the
shared object library that contains the code for this driver. In
this case, it is stored in libcorobotdriver.so, in the same directo-
ry as the configuration file. The provides line specifies the
devices that this driver makes available—in this case, the
CoroBot driver exposes six devices. The requires line specifies
the devices that this driver will consume. If any devices here
are not present on the system when Player tries to instantiate
the driver, Player will abort.

The last two lines in the driver description are not standard.
Any driver is free to parse its driver description and make use
of special identifiers. The CoroBot driver uses two of these:
ssc32port specifies the Linux device (a serial port) through
which it will communicate with its servo controller and a video
device that controls its pan-tilt camera.

Player Tools
Player provides a number of tools to make working with Player
easier. For example, you can use the playercam program to
view the image provided by a Webcam. Let’s say you have
Player installed on your computer and a simple configuration
file that brings up a camera driver:

driver

(

name "camerauvc"

provides ["camera:0"]

port "/dev/video0"

size [640 480]

)

You can run Player with this configuration file with player
camera.cfg, and then run playercam to see the camera
image in real time (Figure 3). If your Webcam is on another

computer—for example, on a PC-based robot—and connected
by a network, you can just as easily see the Webcam output
by running:

playercam -h hostname -p port

playerprint is a tool that works much like playercam,
displaying the output of a device to the user. But, playerprint
does this textually and can support a large number of
interfaces, while playercam can support only the camera
and blob-finder interfaces. For example, if we have a
CoroBot running its Player drivers, we can display its
infrared sensor readings with:

playerprint ir -h hostname -p port

www.l inux journa l .com december 2009 | 4 7

Listing 1. Player’s playerprint Tool Inspecting a GPS Device

#GPS (13:0)

#lat|long|alt|utm_e|

utm_n|err_horz|err_vert|num_sats|quality

47.6470103 -122.1414822 112.3 564477

5277425.1 0 0 6 1

#GPS (13:0)

#lat|long|alt|utm_e|

utm_n|err_horz|err_vert|num_sats|quality

47.6470107 -122.1414812 112.28 564477.07

5277425.14 0 0 6 1

#GPS (13:0)

#lat|long|alt|utm_e|

utm_n|err_horz|err_vert|num_sats|quality

47.6470113 -122.1414807 112.28 564477.11

5277425.21 0 0 6 1

Figure 2. CoroWare Robot Figure 3. Player’s playercam Tool, with the Webcam Pointed at the
Computer Monitor

http://www.linuxjournal.com

Player also lets you control your robot, not just inspect it.
playerv is a utility that also knows how to interact with many
interfaces. Once you have started the Player server on your
robot, you can run it with playerv (if you are on the same
machine) or playerv -h hostname -p port (if you are on
another computer). playerv will show a graphical display of the
world around your robot, but it does not automatically connect
with any devices. You will have to go to the Devices menu, and
subscribe to the devices that you are interested in playerv plot-
ting. In order to drive your robot around, you’ll want to subscribe
to the position2d device and select the option to “command”
the interface. Then, you will be able to drag a small targeting
reticle around the window to drive the robot (Figure 4).

Figure 4. Player’s playerv tool running on a CoroBot after subscribing to
the IR and position2d devices. The large triangles are the cones shown
to be obstacle-free by the infrared sensors.

Playing with Player
So far, our robot is awake, alert and ready to be told to do
something interesting. Let’s give it something to do. The
CoroBot robot comes with a number of sensors and actuators—
probably the easiest of which to interface with are the front-
and rear-facing infrared ranging sensors and the mobility base’s
drive motors. Thus, we can write a small C program to talk to
the Player server, read the IR sensors and drive the robot until
it is 10cm away from an obstacle in front of the robot.

The first thing we have to do to interface with the Player
server is open up a connection to it. For the sake of brevity, we
will skip a lot of error checking, but you can download the full
version of the code from the LJ FTP server (see Resources).

This code defines the variables we will use to talk to the Player
server and the device interfaces in which we are interested:

#include "libplayerc/playerc.h"

static playerc_client_t* clientHandle;

static playerc_position2d_t* positionProxy;

static playerc_ir_t* irProxy;

The clientHandle is used for talking to the Player server
itself. The second position2d interface talks to the position2d
interface, providing us with encoder information about how the
wheels are moving and allowing us to send motor commands
to the robot. We’ll ignore the encoder information for this
example. Lastly, the IR interface gives us information about the
distances that the robot’s IR sensors are reporting.

The next code snippet uses these proxies to interface with
the server and these devices:

playerc_client_connect(clientHandle);

// convert our interface to a PULL interface,

// only updates when we read

playerc_client_datamode(clientHandle, PLAYER_DATAMODE_PULL);

// tell the robot to drop older messages

playerc_client_set_replace_rule(

clientHandle, -1, -1, PLAYER_MSGTYPE_DATA, -1, 1);

// create the position proxy (controls the motors)

positionProxy = playerc_position2d_create(clientHandle, 0);

playerc_position2d_subscribe(positionProxy, PLAYER_OPEN_MODE);

// create the IR proxy (controls the IRs)

irProxy = playerc_ir_create(clientHandle, 0);

playerc_ir_subscribe(irProxy, PLAYER_OPEN_MODE);

We start off by connecting to the Player server and
configuring our connection. We want to get new messages
from the server only when we are ready for them, so we
configure the connection for a pull-type arrangement. And,
because we want only the most recent information (we don’t
care what the IR sensors were indicating a second ago, we
care about what they are saying right now), we tell the server
to report only the most recent data. If we really wanted, we
could let Player ensure that every IR message was delivered,
but that might result in getting less-than-fresh data and
possibly driving into a wall.

After our connection is configured, we open up the
position2d interface on the Player server and subscribe to
it. Then, we do the same with the IR interface. So far, so
good. Now we need to get the state of the IRs from the
robot and tell it how to move the motors:

4 8 | december 2009 www.l inux journa l .com

FEATURE The Player Project

THE COROBOT ROBOT COMES WITH A NUMBER OF SENSORS AND ACTUATORS—
PROBABLY THE EASIEST OF WHICH TO INTERFACE WITH ARE THE FRONT- AND REAR-
FACING INFRARED RANGING SENSORS AND THE MOBILITY BASE’S DRIVE MOTORS.

http://www.linuxjournal.com

while (!timeToQuit) {

// attempt to read from the client

if (playerc_client_read(clientHandle) == 0)

continue; // nothing to read, try again.

// read the IR distances and verify we have good data

if (irProxy->data.ranges_count == 2) {

frontIr = irProxy->data.ranges[0];

rearIr = irProxy->data.ranges[1];

}

// figure out how to drive

runController(frontIr, rearIr,

&desiredTranslation,&desiredRotation);

playerc_position2d_set_cmd_vel(

positionProxy, desiredTranslation,

0, desiredRotation, 1);

}

Each time through the loop, we try to read the newest
data from the robot. After a little sanity checking, we take the
ranges reported by the IR sensors and feed them into a controller
function. This controller does some magic processing (we’ll
talk about that later) and returns information on how we should
drive the robot. Finally, we pass these driving commands back
to the Player server and start it all over again.

All that’s left now is to provide a runController function
that maps from IR sensor readings to drive commands. The
CoroBot driver accepts numbers in the range of –1.0 to +1.0
to tell how to drive the robot forward and backward: +1.0
means 100% power forward, –1.0 means 100% power in
reverse, and 0.0 means stop. It accepts the same range for
telling the robot how to turn: –1.0 means turn full power left,
+1.0 means turn full power right, and 0.0 means drive straight
ahead. Noting that the IR readings are provided in meters, we
can use the following P-controller to drive our robot forward
until we are 10cm away from a front obstacle. We even get a
bonus for free—if we are closer than 10cm away, the robot
will back up a bit until it is at the proper distance:

void runController(double frontIr, double rearIr,

double *translation,double *rotation)

{

// convert our IR readings into drive commands

*translation = (frontIr-0.1) * 3.0;

*translation = *translation > 0.9? 0.9: *translation;

*rotation = 0.0;

}

And finally, good programmers always shut down their
server connections when they are done:

void shutDownProxies()

{

// close down proxies we have opened

playerc_ir_unsubscribe(irProxy);

playerc_ir_destroy(irProxy);

playerc_position2d_unsubscribe(positionProxy);

playerc_position2d_destroy(positionProxy);

playerc_client_disconnect(clientHandle);

playerc_client_destroy(clientHandle);

}

Building on the design we showed earlier, we can see how
our drive-by-IR program interacts with the Player infrastructure.
The CoroBot configuration file loads the phidgetIFK driver,
which exposes an aio:0 device. This device allows the CoroBot
driver to read the robot’s onboard infrared sensors. The
CoroBot driver also exposes the position2d and IR interfaces,
which the drive-by-IR program reads with the help of the
libplayerc library (Figure 5).

The Player Project offers a lot of functionality that there
just isn’t room to get into in one article. This includes robot
simulation, support for numerous commercial robots of many
different prices and qualities, and support for a whole slew of
readily available devices. Its plugin system even allows you to
build your own drivers for new devices, either to support new
hardware or to implement new experimental algorithms. Give
it a try, and give your computer a chance to stretch its legs.�

Kevin Sikorski is a Robotics Architect at CoroWare Technologies where he designs, builds and
programs mobile robots, and develops simulation software. In his spare time, he enjoys hiking
in the Cascades and stargazing with his telescope.

www.l inux journa l .com december 2009 | 4 9

Resources

The Player Project’s Main Web Site: playerstage.sourceforge.net

Full Source Code for the Drive-by-IR Program:
ftp.linuxjournal.com/pub/lj/listings/issue188/10566.tgz

CoroWare’s CoroBot (a robot that provides drivers for
working under the Player system): www.corobot.net

A List of Institutions That Use Player:
playerstage.sourceforge.net/wiki/PlayerUsers

Figure 5. The Relationship between Several Devices and Interfaces
When Using the Drive-by-IR Program

http://www.corobot.net
http://www.linuxjournal.com

5 0 | december 2009 www.l inux journa l .com

A TYPICAL
EMBEDDED
SYSTEM

INTRODUCTION:

It’s not always clear what separates ordinary Linux from embedded Linux. This
article takes a look at the parts that make up a typical embedded system, starting
with the bootloader and ending with end-user applications. JOHAN THELIN

Figure 1. An Embedded Linux System Booting

The very first step in starting an embedded Linux system
does not involve Linux at all. Instead, the processor is reset
and starts executing code from a given location. This location
contains a bootloader that initializes the device and sets up
the basic necessities. When everything has been prepared, the
Linux kernel is loaded and started. The kernel then initializes
all the devices before mounting the filesystems and starting
the userspace applications.

The Linux kernel and userspace are not merely a simple
blob that is loaded and run. The kernel consists of a system-
specific configuration and usually some tweaked initialization
code. The userspace holds software libraries, data and several
applications, all interacting to form a system. Each of these
components is handpicked for the task and device in question
in order to get a compact and well-performing system.
Figure 1 shows the basic sequence of events.

http://www.linuxjournal.com

THE BOOTLOADER
The bootloader is among the first pieces
of software to run on the system. It basi-
cally has two tasks: initialize the system
and load the kernel. The initialization can
be to set up a UART to be used as a
serial debug console and to configure the
system’s memory controller. For instance,
if your system is using an SDRAM, you
probably will have to set up the controller
with regard to the memory’s physical
features. This includes page sizes, the
number of columns, supported read and
write widths, latencies and so on. In
these days of portable devices, there is
usually a plethora of settings for saving
power when it comes to memory.

In addition to the basic tasks required
by the bootloader, it is typical to provide
some sort of command prompt where
common low-level tasks can be carried
out. These tasks usually include peeking
and poking at random memory addresses,
downloading and storing a Linux kernel
image in Flash and setting bootargs for
the kernel to interpret.

Examples of common bootloaders
for embedded systems are Das U-Boot
and RedBoot. Both support the basic
tasks—meaning they can manage Flash,
networking and serial communication.
They also are available for several
processor platforms, such as x86, ARM,
PowerPC and more. You can add your
own commands to both of them as
well. This makes it possible to debug
custom hardware without involving
Linux, reducing the complexity of the
system during the testing phase.

THE LINUX KERNEL
The kernel itself is not very different from
an ordinary desktop kernel. However,
there are two major differences. First is
the initialization, which often is system-
specific. Second is that you probably
know exactly what hardware will be
used, so you can include all the drivers
as part of the kernel and avoid the
need for modules (unless you have
proprietary drivers, of course).

When starting a desktop or a server
system, the common scenario is that the
kernel probes for hardware and loads
the corresponding drivers as modules.
This makes it possible to add hardware
and still have a working system. You
also can add drivers for new hardware
without having to recompile the entire
kernel. On an embedded system, you

can optimize boot time by including all
drivers in the kernel, but also by hard-
coding parts of the available hardware,
avoiding the need to probe for all
devices and settings.

Returning to the standard PC, each
machine starts and looks about the
same during initialization. In the embed-
ded case, each piece of hardware is
unique, and you generally have to ini-
tialize the custom hardware. This means
you actually will have to write code to
set up your kernel for your board,
which is usually easier than you think.
For starters, lots of boards already are
supported in the Linux kernel, and you
usually can choose one of those as a
starting point. Second, there are drivers
for the most common peripherals, and
again, you typically can find a good
starting point, even when you have to
create something of your own. So, the
process is more or less to study the data

sheets for your board and express what
you learn to the kernel (something that
can be both intimidating and daunting).

Embedded systems often are more
limited than your average computer
when it comes to system resources,
so it is important to keep your kernel’s
footprint small. That, in turn, makes
the kernel configuration stage impor-
tant. By limiting configuration to a
minimum, you can save those extra
bytes needed to fit everything in.

THE C LIBRARY
The standard C library is one of the key
components of any Linux system. It
provides the userspace applications with
a predefined interface, making them
portable across different versions of
the Linux kernel, as well as between
different UNIX dialects. It basically acts
as a bridge between the userspace
applications and the kernel.

www. l inux journa l .com december 2009 | 5 1

FILESYSTEMS
Choosing a filesystem for your embedded system depends on many factors. Do
you need to be able to write to it? Do you value size or speed? Do you want to
be able to replace the filesystem without replacing the kernel?

You also need to be aware of your storage medium’s limitations. For instance,
Flash has a limitation when it comes to how many times each cell can be written.
To prolong the life of a Flash-based device, it’s a good idea to use a filesystem
that has been adapted for this purpose.

There are numerous filesystems from which to choose, but the following three are
interesting as they show some important factors you should take into consideration:

� initramfs: a filesystem that is embedded into the kernel image. If your
kernel is compressed, the initramfs filesystem is decompressed alongside
the kernel. This gives the system a performance advantage. The filesystem
is kept in RAM as the device operates and can be modified. However, all
modifications are lost upon reboot.

� cramfs/squashfs: two compressed read-only filesystems. Both of these
systems let you create a compressed image that you can mount at runtime.
The filesystem can be replaced without touching the kernel.

� jffs2/ubifs: compressed filesystems tuned for Flash devices. These filesystems
can be written to permanently, and they try to minimize the “wear and
tear” of the Flash blocks by spreading write operations across the device.

Luckily, you do not have to pick one of these filesystems; instead, you can
mix them—for instance, starting from an initramfs image with the most basic
tools and then mounting a jffs2 Flash partition for storing user data. As Linux
allows you to mount filesystems into any location in your directory tree, you
can make this transparent to the applications using the filesystem.

http://www.linuxjournal.com

5 2 | december 2009 www.l inux journa l .com

The version of the C library you
usually find on your desktop machine is
the GNU C library, glibc. It is a full-fledged
C library, and, thus, a very large piece
of software. For embedded systems,
a few smaller alternatives are available:
uClibc, newlib, dietlibc and others.
These libraries try to implement the most
commonly used interfaces in a minimalist
way. This means they are mostly
compatible with glibc, but not fully.

So, what does the C library contain
that can be removed? uClibc, for exam-
ple, skips the database library, limits the
number of authentication methods that
are supported, does not fully implement
locale support, limits the math library
mostly to doubles and leaves out some
encryption functions. In addition, the ker-
nel’s structures are used directly whenever
possible. Those and other things
significantly reduce the size of the library.

What does this mean to you as an
embedded developer? Most important,
it means you can save quite a bit of
memory, although you do so at the cost
of compatibility. For instance, the decision
to use the kernel’s structures when appli-
cable means the stat structure is different
from the one used by glibc. You also have
to limit yourself to flat password files and
shared password files, unless you want
to add a third-party library to handle
authentication. More limitations exist,
but generally speaking, most software
compiles happily without patching.

BUSYBOX
When you have a bootloader, a kernel and
a standard library, the next thing on the
wish list usually is a command prompt.
One of the big stars in the embedded
Linux world is BusyBox. The idea behind
the project is that most standard applica-
tions, such as ls, cd, mkdir, ping and so
on, share a lot of code. Compiling each
program separately means that code
handling things such as command-line
arguments is repeated in each application.
BusyBox solves this problem by providing a
single program, busybox, that can handle
all the tasks provided by all the standard
applications. By creating symbolic links for
all the individual commands and pointing
them to BusyBox, the user can still
enter the expected commands and
get the expected results.

As with everything else in the
embedded world, tuning and tweaking
is important. When it comes to BusyBox,

FEATURE Introduction: a Typical Embedded System

CROSS COMPILATION
One of the interesting aspects of embedded development is that you are likely
to encounter new processor families. Most of you have x86 hardware at home;
some might have a SPARC, 68k or a MIPS system lying around. With embedded
systems, you are likely to run into ARM, SH, PowerPC or MIPS, among others.

The implication of this is that you must cross compile everything from your desktop
build machine (your host machine) for your target device. The resulting binaries
cannot be run directly on your desktop machine. You can do it using emulators
such as QEMU that allow you to emulate common CPUs, but you will have to do
some testing and probably some debugging on your target device.

Sometimes you can get a cross compiler from a vendor or distribution. You also
can build your own. Building your own cross compiler used to be a real pain, but
these days, you can use crosstool from Dan Kegel. Crosstool is a set of scripts
and patches that allows you to build gcc and standard libraries for your platform
of choice.

Crosstool’s greatest feature is that you can (attempt to) build any combination
of compiler and standard library. This makes it easy to try to build a toolchain
for an existing device.

DISTRIBUTIONS
and FRAMEWORKS
As fun as it is to roll your own, sometimes time does not permit it. A number of
commercial players exist in the embedded Linux field, and many freely developed
tools for building a complete embeddable environment also are available. The
following list contains a few tools you might consider using:

� Buildroot: a set of Makefiles and patches for building a complete
embeddable system. It generates everything from the cross compiler,
the kernel and software libraries, and the userspace applications. The
resulting system uses uClibc.

� Ångström distribution: another build framework for building embedded
Linux systems. It also sports a package manager. This makes it possible to
add and remove applications from the device directly, instead of having to
build and download an entire system image or copy the application’s files
to the right locations manually.

� ScratchBox: a build framework for making embedded Linux application
development easier. It has gained adoption through the Maemo develop-
ment platform (the Nokia N7/8/9xx Internet tablets). It supports cross
compiling entire distributions, can switch between glibc and uClibc
and uses QEMU emulation of targets.

In all of those cases, it takes a bit of work to get the distributions running on a
new system. As always with embedded systems, nothing is standardized, and size
usually matters, so a bit of tweaking is more or less inevitable. However, having a
framework for building a working system can be a real time-saver.

http://www.linuxjournal.com

you can handpick which commands to
include, and for some commands, you
even can handpick which command-line
arguments are supported. If you don’t
need a particular command, simply don’t
include it in BusyBox. For instance, why
keep ifconfig if you don’t have a network?

When building a dynamically linked,
default configured BusyBox on a desk-
top PC, it results in a binary that is just
less than 700KB. This binary represents
more than 200 commands and occupies
more than 6MB of disk space on my
Kubuntu-based system.

ADDING MORE
Once you have all the key components
in place, you can start building and pop-
ulating a root filesystem. This involves
adding BusyBox, device files and expect-
ed directories. You also might want to
add /etc/password and /etc/shadow, init
scripts and so on. All this is necessary,
but to get your device to do something,
you need to add your own applications.

When developing for embedded
devices, you might find yourself in a sys-
tem completely without a graphical inter-
face. This usually means implementing
your functionality as some sort of server.

As more and more devices are networked,
a Web server often takes the place of a
user interface. Because Apache is a large
piece of software, a common solution is
to use a lightweight server, such as Boa,
for configuration and information.

If you happen to have a display, you
likely will want to put graphics on it.
An X sever might sound like a solution,
but the two most common toolkits for
building graphical interfaces, Qt and
GTK+, also support using the frame-
buffer directly—again, saving both
memory and computing resources.

And, that is what engineering
embedded devices is all about: making
the most with as little as possible. Being
able to fit the coolest features into a
small system means bringing an attractive
device, at a good price, to consumers.
Using embedded Linux to do that
means you can get done more quickly,
cheaply and be more hackable than
with a closed-source system.�

Johan Thelin has worked with software development since
1995 and Qt since 2000. Having seen server-side enterprise
software, desktop applications and Web solutions, he now
works as a consultant focusing on embedded systems. He
can be contacted at johan@thelins.se.

SMALL, EFFICIENT COMPUTERS WITH PRE INSTALLED UBUNTU.

DISCOVER THE ADVANTAGE OF MINI ITX.
Selecting a complete, dedicated platform from us is simple: Pre-
confi gured systems perfect for both business & desktop use, Linux
development services, and a wealth of online resources. www.logicsupply.com

GS-L08 Fanless Pico-ITX System
Ultra-Compact, Full-Featured Computer
Excellent for Industrial Applications

3677 Intel Core 2 Duo Mobile System
Range of Intel-Based Mainboards Available
Excellent for Mobile & Desktop Computing

LogicSupply1-2horizLJ_6-08.indd 1 4/1/2008 2:45:44 PM

Resources

Crosstool: www.kegel.com/crosstool

Das U-Boot: www.denx.de/wiki/U-Boot

RedBoot: www.sourceware.org/redboot

uClibc: www.uclibc.org

newlib: www.sourceware.org/newlib

dietlibc: www.fefe.de/dietlibc

Buildroot: buildroot.uclibc.org

Ångström Distribution:
www.angstrom-distribution.org

ScratchBox: www.scratchbox.org

BusyBox: www.busybox.net

Boa: www.boa.org

Qt: qt.nokia.com

GTK+: www.gtk.org

mailto:johan@thelins.se
http://www.kegel.com/crosstool
http://www.denx.de/wiki/U-Boot
http://www.sourceware.org/redboot
http://www.uclibc.org
http://www.sourceware.org/newlib
http://www.fefe.de/dietlibc
http://www.angstrom-distribution.org
http://www.scratchbox.org
http://www.busybox.net
http://www.boa.org
http://www.gtk.org
http://www.logicsupply.com

5 4 | december 2009 www.l inux journa l .com

Controlling
the Humidity

with an
Embedded

Linux System
Using an inexpensive embedded Linux board and a few
extra devices, you can control things like room humidity.

Jeffrey Ramsey

C
harles Darwin, in his Beagle Diary that led to
the book Voyage of the Beagle, wrote while
in Peru, “On the hills near Lima, at a height
but little greater, the ground is carpeted with

moss, and beds of beautiful yellow lilies, called
Amancaes. This indicates a very much greater degree
of humidity, than at a corresponding height at

Iquique.” Like Darwin, I always have been conscious
of humidity. For years, I’ve struggled with the humidity
in my music room, as my Carlos Pina concert-grade
classical guitar went out of tune frequently with wild
swings in humidity. Pennsylvania winters are cold and
dry, summers hot and humid, and this plays havoc on
my classical guitar.

http://www.linuxjournal.com

Commercially available humidifiers and dehumidifiers have
humidity sensors that are far too coarse for certain applica-
tions. One such application is the humidity control for my
music room. Being an embedded developer for my entire
career, with a particular interest in embedded applications for
Linux, I decided to build my own humidity controller for my
music room. After a bit of research, I settled on a hardware
architecture that includes a Cirrus EP9301 ARM9-based
controller, several solid-state relays and a capacitive humidity/
temperature sensor. Linux was my selection as the embedded
OS, and with several Linux device drivers to control the relays
and monitor the humidity and temperature, the basis of a
humidity controller was born.

I decided to use the humidifying and dehumidifying
capability of my retail humidifier and dehumidifier units. The
humidity controller that I built switches power on and off to
the humidifier and dehumidifier, essentially assuming the role
of the humidity sensor. To finish off the humidity controller, I
added a Web interface that allows me to monitor and control
the system through any network-attached browser, such
as Firefox.

Before I began developing the embedded humidity controller,
I had to decide on the system-level requirements. Even though
this was for personal use only, it’s always good practice to do
a bit of systems engineering on the front end of the design
process. I decided on the following requirements:

� The humidity control system should control humidity with a
minimum range of plus or minus 3.5% rH.

� Humidifier and dehumidifier control will be through switching
of 120V AC and neutral power lines.

� Current humidity and temperature will be displayed through
a browser interface.

� Configuration of the desired humidity setting will be done
through a browser interface.

� All humidity and temperature settings will be stored
persistently in an SNMP MIB.

� All software will operate in an embedded Linux
environment.

Figure 1 shows the overall embedded hardware architec-
ture of the humidity controller. The ARM9-based controller I
selected is the TS-7200 from Technologic Systems. In addition
to the controller board, I used a TS-RELAY8 peripheral board
connected to the TS-7200’s PC/104 bus. The daughter board
contains eight SPDT relays. To house the system, I used a
TS-ENC720 enclosure. Figure 2 shows the main board and
peripheral board mounted on the back plate of the enclosure.

The capacitive humidity/temperature sensor is a Sensirion
SHT11, which is controlled through a two-wire data/clock
interface. The SHT11 control interface connects to two of the
TS-7200’s discrete I/O pins. Switching power on and off is
accomplished with the single pole double throw (SPDT) relays
on the peripheral board. I used a pair of relays for the humidi-
fier and another pair for the dehumidifier. I used a pair as it

www. l inux journa l .com december 2009 | 5 5

Figure 1. Hardware Architecture

Figure 2. Hardware

Figure 3. Software Architecture

http://www.linuxjournal.com

seemed much safer to switch both the 120V and neutral lines,
rather than just the 120V.

The TS-7200 single-board computer (SBC) runs Linux on an
ARM9-based processor. The system’s software architecture is
shown in Figure 3. Two Linux drivers are required: one to sense
the humidity (and temperature, which came almost free) and
the second to control the position of the relays. A user-mode
application on top of the drivers periodically polls the humidity
and temperature data, and controls the relay position depending
on SNMP MIB configuration settings. The SNMP MIB is
managed by the Linux snmpd dæmon. The SNMP MIB also
serves as the basic bridge to an Apache custom module that
exposes the MIB data to a Web browser for control and
monitoring of the entire humidity control system. Each
component of the humidity control system is described in
more detail later in this article.

Linux Device Drivers
The two required Linux drivers, which I designed as loadable
modules, are rather basic as far as Linux drivers go. They both
are character devices with ioctl interfaces that provide access
to the SHT11 sensor and control of the power relays. The
SHT11 driver requires only two ioctl functions:

� SHT1X_IOC_READ_HUMIDITY: read the current SHT11
humidity.

� SHT1X_IOC_READ_TEMPERATURE: read the current SHT11
temperature.

With both the temperature and humidity, I have the
option of calculating the dew point (even though the system
is indoors, and the last thing I expect is dew to form on the
components). The SHT11 driver reads humidity and temper-
ature using a two-wire interface that is well defined in

the Sensirion SHT11 data sheet. The clock has no real mini-
mum frequency, but has a maximum frequency of 10MHz. I
had no reason to run the clock at the maximum rate. In fact,
the messages required to transfer the temperature and/or

5 6 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Listing 1. Generate SHT11 Start Transmission Sequence

void writeSHT1xTransmissionStartSequence(void)

{

writeSHT1xOne(DATA_SHT);

writeSHT1xZero(SCK_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

udelay(2);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xOne(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

}

Listing 2. Transmit Command Sequence

void writeSHT1xCommand(int iMode)

{

unsigned char ucBitToCheck;

unsigned char ucAckBit;

driveDataLine(DATA_SHT);

/* All 3 address bits always zero

* so start with those */

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

/* Now transmit the 5 command bits,

* in the order of MSb to LSb */

for (ucBitToCheck=0x10; ucBitToCheck != 0;)

{

if (iMode & ucBitToCheck)

writeSHT1xOne(DATA_SHT);

else

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

ucBitToCheck >>= 1;

}

/* Now tri-state the data DIO so the

* device can ACK the transfer */

tristateDataLine(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

ucAckBit = readSHT1x(DATA_SHT);

writeSHT1xZero(SCK_SHT);

mdelay(250);

}

http://www.linuxjournal.com

humidity data are so short, the clock rate could be anything
within reason, so I decided to run the clock at 250KHz.

Accessing the SHT11 is relatively straightforward. A start
and end sequence for each transfer is achieved using a pre-
scribed combination of data and clock discrete I/O transitions.
For example, in order to request the current humidity or
temperature, a start of transmission sequence is issued
that consists of the sequence of data and clock transitions
as shown in Listing 1.

In Listing 1, note the use of udelay kernel calls. The timing
requirements of the SHT11 two-wire access is satisfied using
delays in the microseconds and, in some cases, milliseconds.
This is most easily achieved using the
kernel udelay call, and when millisecond
delays are required, the mdelay call. I
suppose there are some developers who
shudder at the use of busy loops, but
remember, this is a dedicated, embed-
ded system. It does nothing but read
humidity and check whether relays need
to be switched on or off, and it repeats
this forever.

After the start transmission
sequence, the driver is free to write an
8-bit command sequence that identifies
the operation to the humidity sensor,
such as measure the humidity or tem-
perature. A second procedure actually
transmits the 8-bit command sequence
and is shown in Listing 2.

Listing 2 not only demonstrates the
bit-twiddling necessary to drive a two-
wire interface solely with software, but
it also reveals how the sensor acknowl-
edges receipt of a valid command. The
data DIO must be tri-stated (that is, not
driven to either a 0 or a 1 by the ARM)
in order for this two-wire interface to
permit slave devices, such as the SHT11,
to transmit back to the two-wire inter-
face master—in this case, the SHT11
device driver in the ARM. In addition,
note that the last line of code in the
procedure will cause a 250-millisecond
delay. This is because the SHT11 takes a
good deal of time, relatively speaking,
to measure either the temperature or
humidity. The specification requires 210
milliseconds for the most accurate form
of measurement, with a +–15% toler-
ance. This puts the worst-case delay at
241.5 milliseconds, which I increased to
250 milliseconds, just to be safe.

The third and final required piece of
code necessary to read data from the
SHT11 humidity sensor is shown in
Listing 3. The Read Sensor Data proce-
dure will read 16 bits of data from the
sensor after it has measured either the
humidity or the temperature. The SHT11

has the option of sending an 8-bit CRC at the end of the 16
bits of data, but I opted not to check the CRC, as it is unlikely
the data ever will be corrupted due to environmental effects in
my music room.

The procedures shown in Listings 1, 2 and 3 form the core
of the SHT11 two-wire interface device driver code. When
the driver receives an ioctl requesting the humidity, the three
instructions shown in Listing 4 are all that is needed to read
the current humidity from the sensor.

The second device driver controls the relays and switches
the 120V AC and neutral lines to the humidifier and
dehumidifier. The ioctl interface for the relay driver required

www. l inux journa l .com december 2009 | 5 7

http://www.linuxjournal.com
http://www.serverbeach.com

the following ioctl functions:

� RELAY8_IOC_READ_RELAYS: read the current relay settings.

� RELAY8_IOC_WRITE_RELAYS: set the relays to the
supplied state.

Reading the relay settings is used to ensure that the
relays are in the desired position. The relay hardware
actually includes eight relays, and all eight relay values are
written in one shot. The data register used to control and
report the relay positions consists of one 8-bit register. This
register either is read to report the current relay settings
or written to change the relay settings. Unlike the SHT11
driver, the relay driver can affect a change in a relay state
with one writeb Linux driver C instruction. Listing 5 shows
the relay read and write procedures, along with an excerpt
from the ioctl processing that differentiates between read
and write. It doesn’t get much simpler than this!

5 8 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Listing 3. Read Sensor Data

unsigned int readSHT1xData(void)

{

int iLoop;

unsigned int uiBitRead;

unsigned int uiMSB=0;

unsigned int uiLSB=0;

unsigned int uiRetValue;

/* Read MSB from SHT1x */

for (iLoop = 0; iLoop < 8; iLoop++)

{

uiMSB <<= 1;

writeSHT1xOne(SCK_SHT);

uiBitRead = readSHT1x(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

if (uiBitRead)

uiMSB |= 1;

}

/* Acknowledge sequence; must drive data

* line as it is tri-stated at this point */

driveDataLine(DATA_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

tristateDataLine(DATA_SHT);

udelay(2);

/* Read LSB from SHT1x */

for (iLoop = 0; iLoop < 8; iLoop++)

{

uiLSB <<= 1;

writeSHT1xOne(SCK_SHT);

uiBitRead = readSHT1x(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

if (uiBitRead)

uiLSB |= 1;

}

/* Don't acknowledge last byte so the device

* doesn't transmit the 8-bit CRC as it isn't

* really necessary for this application */

uiRetValue = u8tou16(uiMSB, uiLSB);

return(uiRetValue);

}

Listing 4. Read Humidity Sequence

writeSHT1xTransmissionStartSequence();

writeSHT1xCommand(SHT1x_MEASURE_HUMIDITY);

uiHumidity = readSHT1xData();

Listing 5. Read/Write Relays

unsigned char readRelay8(int iRelay8Address)

{

/* Read Relay8 register and return the value */

return(readb(iRelay8Address));

}

void writeRelay8(int iRelay8Address, unsigned char ucValues)

{

/* Write Relay8 register with the values */

writeb(ucValues, iRelay8Address);

}

// Excerpt from ioctl function:

switch(cmd) {

case RELAY8_IOC_READ_RELAYS:

/* Read Relay8 relay values */

ucRelayValues = readRelay8(relay8_base + RELAY8_CONTROL);

if (copy_to_user((typeof(relay8_relayValues)) arg,

&ucRelayValues,

sizeof(relay8_relayValues))) {

ret = -EFAULT;

}

break;

case RELAY8_IOC_WRITE_RELAYS:

/* Write Relay8 relay values */

writeRelay8(relay8_base + RELAY8_CONTROL,

*(typeof(relay8_relayValues)) arg);

break;

default:

ret = -ENOTTY;

}

http://www.linuxjournal.com

User-Mode Application
I wrote a user-mode application that periodically polls the
SHT11 device driver for the current humidity and tempera-
ture using the ioctl SHT1X_IOC_READ_HUMIDITY and
SHT1X_IOC_READ_TEMPERATURE, respectively. Depending
on the desired humidity setting, the application determines
whether the current humidity is either too high or too low,
taking into account the tolerance of plus or minus 3.5%
rH. If an actionable event is determined, the specific relays
are turned either on or off using the relay device driver
RELAY8_IOC_WRITE_RELAYS ioctl function. For example,
when the user-mode application reads the humidity and
determines that the humidifier must be turned on, it issues
an ioctl RELAY8_IOC_WRITE_RELAYS function to switch on
both relays that are dedicated to the 120V A/C and neutral
lines of the humidifier. At the same time, the application
also ensures that the two relays associated with the 120V
A/C and neutral lines of the dehumidifier are switched off.
Relay control can be one of three options: 1) the humidifier
is turned on, and the dehumidifier is turned off; 2) the
dehumidifier is turned on, and the humidifier is turned
off; or 3) both the humidifier and dehumidifier are turned
off. The application never turns both the humidifier and
dehumidifier on at the same time. The application is loaded
at Linux boot time and, like most embedded applications,
runs perpetually.

Along with controlling the humidifier and dehumidifier
relays, the application accumulates and saves statistics. In
this control system, the actual data that is acted upon is
required to be persistent—that is, the humidity data must
be saved somewhere for later use. The user-mode applica-
tion is responsible for saving the data for later use by a
browser, and it does so with the use of the SNMP (Simple
Network Management Protocol) support provided by the
net-snmp Linux package.

SNMP is a standard set of protocols and policies for man-
aging networks and devices. The net-snmp implementation
of SNMP consists of an agent, which runs as a Linux dæmon
snmpd, and a database called a Management Information
Base, or MIB. A MIB is structured as a tree, with branches
grouping together similar items. I extended the standard Linux
MIB that is shipped with the net-snmp package and added a
new branch off of the “enterprises” node, which includes all
the humidity controller items that I need (Figure 4). The snmpd
agent acts on the MIB at the request of SNMP clients—that is,
the agent reads/writes data from/to the MIB on behalf of client
get and set requests. In this architecture, there are two clients:
the user-mode application and the Web browser.

In order to adapt SNMP to any application, a MIB must be
defined in a standard MIB ASN.1 format. I defined a MIB for
my humidity controller and called it HUMIDITYCONTROLLER-MIB,
which gets loaded when the snmpd dæmon runs during the
Linux boot process. The MIB contains data items that are
represented by object identifiers, or OIDs. An example of
an OID definition from my MIB for the humidity controller
targetHumidity variable is shown below:

targetHumidity OBJECT-TYPE

SYNTAX Integer32(0..2147483647)

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"Target humidity."

::= { humidityEntry 3 }

The previous ANS.1 MIB definition phrase generates an OID
with the value .1.3.6.1.4.1.2200.2.3. This rather cryptic-looking
sequence of numbers is a scheme used to identify a leaf in
the MIB tree. The branch that I added to the enterprises
node is identified by the integer 2200. Under the 2200 node
is the node identified by a 2, which contains all of the overall
humidity controller items that the system needs. The leaf
node identified by a 3 is the targetHumidity.

The Linux SNMP package contains a very useful tool
called mib2c. mib2c takes a MIB definition, such as
HUMIDITYCONTROLLER-MIB, and generates C code that can
be used to extend the standard Linux snmpd agent. Several
options exist when generating code with mib2c. I used the
more general option for generating C code from a MIB with
the mib2c.scalar.conf configuration, which causes code to
be generated for general-purpose scalar OIDs, as opposed
to table-based OIDs. The generated C code is used by the
snmpd dæmon. Listing 6 is a distilled example of the gener-
ated C code from mib2c for the targetHumidity OID that
shows the code framework needed to support the SNMP get

www. l inux journa l .com december 2009 | 5 9

Listing 6. mib2c-Generated C Code

netsnmp_register_scalar(

netsnmp_create_handler_registration(

"targetHumidity",

handle_targetHumidity,

targetHumidity_oid,

OID_LENGTH(targetHumidity_oid),

HANDLER_CAN_RWRITE));

int

handle_targetHumidity(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

switch (reqinfo->mode) {

case MODE_GET:

break;

case MODE_SET_RESERVE1:

break;

case MODE_SET_COMMIT:

break;

}

return SNMP_ERR_NOERROR;

}

http://www.linuxjournal.com

(MODE_GET) and SNMP put (MODE_SET_RESERVE1 and
MODE_SET_COMMIT) operations.

The code shown in Listing 6 makes reference to the
generated callback procedure, handle_targetHumidity, which
is supplied in skeletal form only by mib2c. Not much code is
needed in order to support scalar OIDs, which the humidity
controller uses exclusively. Anytime a specific OID, in this case
the targetHumidity OID .1.3.6.1.4.1.2200.2.3, has an operation
performed, the snmpd dæmon will invoke this callback
procedure with an indication of the requested operation
being performed on the OID.

I rebuilt the snmpd dæmon so that the newly created
humidity controller MIB structure and generated frame-
work code could be supported. Before rebuilding the
snmpd dæmon, the new MIB must be configured into
the build environment. This is accomplished easily with
the following command:

$./configure --with-mib-modules="humidityController"

Once configured, the entire net-snmp package was rebuilt
with the make command. Once the snmpd dæmon was
rebuilt, I tested the new MIB structure by using the net-snmp
command-line interface utilities snmpset and snmpget. For
example, in order to set the targetHumidity OID to 50% rH,
the following command can be issued:

$ snmpset -Ovqe -v 1 -c private localhost targetHumidity.0 i 50

Note the use of relative, symbolic OIDs in the snmpset
command. The actual OID .1.3.6.1.4.1.2200.2.3 could be

used as well, because it’s statically defined and should
never change. But, I prefer symbolic references where pos-
sible, as it helps in readability. The -Ovqe switch controls
the output format that results from the snmpset. Although
I built the net-snmp package to support all three major
versions of SNMP (1, 2 and 3), I really needed only basic
version 1 support, which is why the -v 1 switch appears.
The SNMP community string is indicated by the -c private
switch and appears in set operations because only private
communities are permitted to set OID values (this is a
one-time option when the snmpd dæmon is configured).

The humidity controller MIB can be viewed with a tool
included in net-snmp called mbrowse. mbrowse is a GUI that
bolts onto the system MIB structure and permits manipulation
of specific OIDs. Figure 4 shows a screenshot of mbrowse and
the humidity controller MIB tree branch.

Once the snmpd dæmon was complete with support
for the newly added humidity controller OIDs, I was able to
complete the user-mode application code. Listing 7 con-
tains the complete user-mode application, and it is too
long to print here, but it is available on the LJ FTP site (see
Resources). It is very typical of an embedded application,
as it perpetually reads data and then takes actions on the
data. Note the use of snmpget and snmpset. The net-snmp
package does include APIs for both C and Perl, but I
decided it was simpler to leverage the existing snmpget
and snmpset utilities.

To finish off the humidity controller, I added a Web
page interface that includes a recipe that uses a tad of
HTML, a smattering of JavaScript and a pinch of AJAX

6 0 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Figure 4. mbrowse Screenshot

To finish off the humidity controller, I added a Web page
interface that includes a recipe that uses a tad of HTML,
a smattering of JavaScript and a pinch of AJAX with
server-side scripting to create an end-user browser interface.

Listing 8. Perl Script setTargetHumidity

use CGI;

$query = new CGI;

$targetH = $query->param('targetH');

$SNMP_SET_CMD = "snmpset -v 1 -c private";

$SNMP_TARGET = "localhost";

$SNMP_TARGETHUM_OID = "targetHumidity .0";

$SNMP_TYPE = "i";

chomp($retVal = `${SNMP_SET_CMD} ${SNMP_TARGET}

�$SNMP_TARGETHUM_OID $SNMP_TYPE $targetH`);

Figure 5. Humidity Controller and Firefox

http://www.linuxjournal.com

with server-side scripting to create an end-user browser
interface. The humidity controller in a Firefox browser
looks like what is shown in Figure 5. The targetHumidity
(targetH) cell in the table has a JavaScript function associ-
ated such that editing is possible, and when a new value is
entered, it is POSTed to Apache. Apache will invoke a Perl
script to set the target humidity in the SNMP MIB. Listing 8
is an excerpt from the Perl code that shows the SNMP
actions. The other cells are read-only and are refreshed
periodically with values from the SNMP MIB with the help
of a second Perl script, humidityController.cgi. This second
Perl script pushes out only the data necessary to generate
the table of values shown in Figure 5.

The humidity controller (Figure 6) has been keeping my
music room within a humidity range that makes my Carlos
Pina classical guitar quite happy (Figure 7). The work
involved to build the system was a real pleasure. But the
best part is sitting down to play the opening arpeggios in
Bach’s Prelude and hearing the notes ring true without

retuning my guitar. It not only makes me smile, but I think
it would make Bach smile as well.�

Jeffrey Ramsey has been an embedded developer his entire career, and when not pouring
through Linux kernel and driver source code, he can be found plucking a guitar. Jeffrey can be
contacted at jeffreyramsey@e2atechnology.com.

www.l inux journa l .com december 2009 | 6 1

Resources

Listing 7 (the Complete User-Mode Application):
ftp.linuxjournal.com/pub/lj/listings/issue188/10534.tgz

TS-7200 Main Board (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-7200

TS-RELAY8 Daughter Card (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-RELAY8

TS-ENC720 Enclosure (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-ENC720

Figure 6. Completed Humidity Controller with Humidifier and
Dehumidifier Connected

Figure 7. Carlos Pina Classical Guitar

mailto:jeffreyramsey@e2atechnology.com
http://www.embeddedarm.com/products
http://www.embeddedarm.com/products
http://www.embeddedarm.com/products
http://www.linuxjournal.com
http://www.emacinc.com

6 2 | december 2009 www.l inux journa l .com

Reducing
Boot Time
in Embedded
Linux Systems
Using some reasonably
simple techniques, you
may be able to reduce
dramatically the boot
time of your embedded
Linux system.

Christopher Hallinan

I
t is no secret that Linux has won the race
in the embedded device marketplace.
Tremendous advantages in Linux have broken
almost every barrier to entry for using Linux

on embedded systems across a wide variety of
processor architectures. Today’s developers are
not asking, “Should I use Linux for my embedded
system?”, but instead are asking questions like,
“How can I get more performance out of my
embedded Linux design?” Reducing boot time has

become one of the more interesting discussions
taking place in the embedded Linux community.

As it turns out, it is relatively easy to save substantial
time on system boot. Without a significant expenditure
of engineering resources, savings of more than 80%
are possible with certain system configurations. Of
course, there is a point of diminishing returns. The
graph of engineering effort against boot time would
rapidly approach infinite effort as time reduced into
the milliseconds and lower.

http://www.linuxjournal.com

Fast Boot Requires Definition
Before you can measure boot time, you must define what it
means. (I introduce measurement techniques later in this arti-
cle.) Most often, your customers or end users provide, or at
least influence, the definition. The type of product you design
certainly impacts your definition. Most systems that appear
to boot very quickly actually are just providing early feedback
to users in the form of graphical banners, audible feedback,
animation or some combination thereof. You as the system
designer must specify what it means for your embedded
device to be booted and exactly what the user experience
will be during power-on.

Do you define boot time as the time from power-on to
playing your favorite music? Or, maybe you design big iron,
and boot time eats into your annual “five-nines” reliability
budget. A cellular radio node controller that takes two
minutes to boot eats up almost half your annual downtime
budget! Yet, many systems we perceive as fast boot systems
are not actually booting from power-on. Consider a popular
cell-phone design, such as the BlackBerry Curve. The only time
these systems perform a full boot is when the battery is
removed and replaced. Power “on” is actually a resume from
a low-power system state that largely preserves its current
operational status.

It Starts with the Hardware
Although it may seem trivial to mention, sound hardware
design is a fundamental component of a fast boot system.
Many aspects of hardware design can have a marked influence
on 1) how quickly your first bits of code get to execute and 2)
how quickly that code can be read out of a nonvolatile storage
device during initial boot. Pay particular attention to power-on
reset circuitry and initial hardware strapping, which provides
default timings for external buses and chip selects on certain
processors. It is not uncommon to find “conservative” values
being employed here that often can be improved upon.

Your overall hardware architecture will set the stage for
what performance you will be able to achieve. Choice of
processor, clock speed, choice of nonvolatile storage used for
boot images and many other factors will influence how fast
your design can fetch and execute its startup image (usually a
bootloader) and then go on to load and execute an operating
system. Your hardware choices at design time must be
carefully considered if single-digit boot times are part of
your product requirements.

Typical Boot Sequence
To understand where time is being spent, it helps to visualize
the boot sequence of a typical embedded Linux system. Figure
1 shows the basic sequence.

Upon power-on, the hardware needs time for voltages (and
often clocks) to stabilize and for reset to be released. The first
code executed upon release of reset depends on the hardware
architecture and processor, but often it is your bootloader
running from nonvolatile memory, such as NOR Flash. A small
section of code performs some low-level initialization that
includes the memory controller and typically copies itself into
DRAM for further execution. This copy operation can consume
a significant portion of boot time. It is easy to see that keeping
the bootloader small and simple (the KISS principle) will help

keep boot time to a minimum. The bootloader’s primary
responsibility after hardware initialization is to locate, load
and pass control to your Linux kernel. Once the kernel has
completed its own initialization, it must locate and mount
a root filesystem. Your root filesystem will contain a set of
initialization scripts as well as your own applications. There
are numerous opportunities for optimization in all of these
steps, as I explain below.

Bootloader Considerations
Virtually every embedded system has some type of bootloader,
and there are many bootloaders from which to choose. Some
of the more popular include U-Boot for PowerPC, MIPS and
ARM processors, and RedBoot, which is frequently found on
ARM processors. Most popular bootloaders today contain
far more functionality than actually is required for the task
of initializing a system. Indeed, they have become valuable
tools used by developers during initial board bring-up and
system development.

Modern bootloaders are packed with features, such as
Flash erase and program utilities, memory management
utilities, network capabilities for loading images and for self-
configuring (DHCP and BOOTP for example), drivers for PCI,
IDE, USB and support for various partition types and filesys-
tems. Some even have scripting language support useful for

www. l inux journa l .com december 2009 | 6 3

Figure 1. Typical Boot Sequence of Events

http://www.linuxjournal.com

development, manufacturing (production test, image load and
so on) and system upgrade.

These features make bootloaders an indispensable tool
during product development. However, the size of bootloader
images has significant impact on boot time. Bootloaders are
stored in nonvolatile storage media, most commonly NOR
Flash. However, embedded systems rarely execute code
directly from Flash, mostly because it is far too slow. Read
times of DRAM are orders of magnitude faster than read
times from Flash.

The first job of the bootloader is to load itself into DRAM
and continue execution from there. Consider the operating
environment of early boot code. There is no stack, no C
context (meaning all this code is written in the processor’s
native assembly language), and quite often, the processor’s
instruction and data caches are not yet enabled. This means
the size of the bootloader image, which needs to be copied
into RAM, will have a major impact on startup time.

The quickest path to performance improvement in your
bootloader is to keep it small. Remove features that are unnec-
essary in a production environment. Some bootloaders, such
as U-Boot, make it easy to do this. Its features are driven by a
board-specific configuration file that contains directives to
enable or disable features. Your requirements will ultimately
rule, but prudent trimming of all but the most essential
features will yield significant savings in boot time.

Uncompressed Kernel
When you build a Linux kernel image, it is virtually always
compressed as one of the final build steps. It is the responsibility
of your bootloader (or a small bootstrap decompression loader
that is appended to your kernel image) to decompress the
kernel image and place it into system memory. One of the
single largest easy gains you can achieve is to remove the
decompression stage. Some architecture/bootloader combi-
nations don’t bother to enable caches, making decompression
take much longer. It is not uncommon to find systems
that take several seconds to perform the decompression
and relocation stage. Using an uncompressed kernel can
significantly reduce your system boot time.

Eliminate initrd/initramfs
Linux distributions use initrd/initramfs (hereinafter referred
to as simply initramfs) primarily as a tool to enable a generic
kernel to be used across a huge variety of system configurations.
It is the job of the initramfs to provide the necessary device
drivers to enable the devices that are required to complete
system boot. Because embedded systems often are restricted
to limited well-known configurations, they usually can eliminate
initramfs with a corresponding reduction in boot time.
Furthermore, removing support for initramfs in the kernel
results in a smaller kernel (and, thus, faster boot.)

Smaller Kernels Boot Faster
If you compile a kernel with a “default” configuration, it often
contains a vast number of features your system may not need.
You may be surprised to discover how many features are
enabled by default that your embedded system does not need.
Spend some quality time with your favorite kernel configura-
tion editor (menuconfig, gconfig and so on), and go through

each and every kernel configuration parameter. Evaluate
whether your system requirements can do without it. Yes, it
may take you the better part of a day (or even more if you
add in some research time), but your savings in boot time
reduction can be substantial. Some examples of features found
in many default kernel configs include IPv6, RAID, support
for many filesystems you may not need, extended partition
support and many more. There also may be numerous device
drivers compiled into the kernel for devices that are not
present in your system. They are harmless, but each driver
runs initialization code, including registration functions, and
some spend lengthy milliseconds (or more) in device probe
routines for devices that are not present—precious boot time
can be spent probing for non-existent devices.

Calibration Routine
You may have seen the interesting “BogoMIPS” message
plastered on your screen or terminal during boot. Linux
calibrates its internal software timing loops to your processor
system clock on each boot, arriving at a constant value used
by the loops_per_jiffy variable (lpj). Although the technique
varies across different architectures, this can be a time-
consuming routine. It is easy to bypass this dynamic calibration
routine by “hard-coding” the time constant calculated by this
routine. This is quite easily passed to the kernel through the
kernel command line. Simply add lpj=xxxxx to your kernel
command line, where xxxxx is the lpj value printed to your
boot log during boot. This is what the boot message looks
like on the Intel Atom-based Netbook on which this article
is being drafted:

Calibrating delay using timer specific routine..

3194.85 BogoMIPS (lpj=6389712)

From this information, simply add the string lpj=6389712
to your kernel command line. This will bypass the often
lengthy calibration routine and instead use the fixed value
for loops_per_jiffy.

Filesystem Selection
One of the keys to achieving single-digit boot times is your
choice of root filesystems. Some filesystems designed for Flash
use, for example the ubiquitous JFFS2, can get into a state
that requires a significant and noticeable time delay while the
kernel reads the sequential journal entries and reconstructs the
files and directories on the filesystem. Consider using a small,
compact and fast root filesystem for your initial system boot,
and then mount a more general-purpose filesystem later in the
initialization sequence.

CRAMFS is a read-only, compressed filesystem that is
perfectly suited for this purpose. Configure a preliminary root
filesystem using CRAMFS, which contains all the executables
and libraries you need to get your system into a preliminary
operational state. Later, while other less critical tasks are
being executed, you can mount a writable JFFS2 partition
when time is not so critical. Also consider the liberal use of
tmpfs for volatile data such as /tmp, /var and others. Tmpfs
is fast and efficient, and dynamically resizes itself to meet
storage requirements. Remember, the contents of all tmpfs
filesystems are lost on power-down, so if there are any files

6 4 | december 2009 www.l inux journa l .com

FEATURE Reducing Boot Time in Embedded Linux Systems

http://www.linuxjournal.com

(log files, configuration data and so on) that must be saved,
it will be up to your application to save this data periodically
to nonvolatile storage.

Udev Considerations
Udev has become an efficient and powerful system configuration
tool. Its primary role is to create device nodes for devices that
the kernel discovers. Virtually every modern Linux distribution
uses udev coupled with a set of rules for device naming. Udev
also has the capability to run external programs in response to
device detection. The most common example of this is to run
modprobe to install a device driver upon device detection. For
example, if you plug an SD card into an appropriate socket, a
properly configured udev-based Linux system will perform all
the actions required to enable the device. This includes loading
device drivers and creating the device nodes associated with
the device and driver.

This powerful and flexible scheme has one drawback.
Although udev itself is fast and efficient, some of the external
programs it runs may require significant time to complete.

When a Linux system is booted and reaches userland, udev
basically “plays back” all the device notification events gener-
ated by the kernel and performs the required actions (primarily
device node creation and module loading). This can take a
significant amount of time. One solution to this problem is to
configure your Linux system with statically generated device
nodes for critical system devices (those that you need to be
operational immediately) and defer the running of udev until
your fast-path boot chores are complete. For each device you
need to have immediately available at boot time, create a static
device node in /dev as part of your root filesystem. Later, when
udev takes over, your udev startup script can merge these static
devices with those devices that udev creates dynamically.

Measuring Boot Time
Several tools are available to help you identify the long paths
in your system boot. They vary in complexity and ease of use,
but most can be mastered quickly. The simplest tool (and per-
haps a good starting point) is to configure your kernel to add
timestamps to the kernel messages that are displayed on boot.
Select CONFIG_PRINTK_TIME in the Kernel Hacking section of
your kernel configuration to enable this feature. This lets you
see at a glance where significant time is being spent during
the actual kernel boot sequence.

Another easy tool to use is to enable printout of each
kernel initcall. An initcall is a special type of kernel function
call specifically related to subsystem initialization. This is
accomplished by adding the single parameter initcall_debug to
your kernel command line. When enabled, the kernel will dis-
play a line that lists the kernel virtual address of each initcall
together with return data and call duration. While you must
“decode” the kernel virtual address into its symbolic function
name, this data is readily available in the System.map file in
your Linux kernel source tree. If you have CONFIG_KALLSYMS
enabled (found under General setup→Configure standard kernel
features for small systems), the initcall line will be decoded for
you. A sample of the output from the system boot log with
initcall_debug enabled is displayed in Listing 1.

Using initcall_debug in this scenario reveals that almost
nine seconds could be saved by eliminating or deferring ide

Advertiser Index

ATTENTION ADVERTISERS

March 2010 Issue #191 Deadlines
Space Close: December 28; Material Close: January 5

Theme: System Administration

BONUS DISTRIBUTIONS:
Annual Linux Users Group Promotion

Call Joseph Krack to reserve your space
+1-713-344-1956 ext. 118, e-mail joseph@linuxjournal.com

Advertiser Page # Advertiser Page #

1&1 INTERNET, INC. 1

www.oneandone.com

ABERDEEN, LLC 13

www.aberdeeninc.com

ARCHIE MCPHEE 79

www.mcphee.com

ASA COMPUTERS, INC. 33

www.asacomputers.com

CARI.NET 39

www.cari.net

DIGI-KEY CORPORATION 78

www.digi-key.com

EMAC, INC. 61

www.emacinc.com

EMPERORLINUX 71

www.emperorlinux.com

GECAD TECHNOLOGIES/AXIGEN 79

www.axigen.com

GENSTOR SYSTEMS, INC. 29

www.genstor.com

GUTSY GEEKS 78

www.gutsygeeks.com

IXSYSTEMS, INC. 7

www.ixsystems.com

LOGIC SUPPLY, INC. 53

www.logicsupply.com

LULLABOT 21, 23

www.lullabot.com

MICROWAY, INC. C4, 3

www.microway.com

NATUBA 79

Natuba.com

PLATFORM COMPUTING 17, 78

www.platform.com

POLYWELL COMPUTERS, INC. 5, 79

www.polywell.com

RACKSPACE MANAGED HOSTING C3

www.rackspace.com

SAINT ARNOLD BREWING COMPANY 78

www.saintarnold.com

SERVERBEACH 57

www.serverbeach.com

SERVERS DIRECT 9

www.serversdirect.com

SILICON MECHANICS 27, 31

www.siliconmechanics.com

STRAYTATS 78

www.straytats.com

TECHNOLOGIC SYSTEMS 37

www.embeddedx86.com

TUXERA LTD. 19

tuxera.com

UBIQUITI NETWORKS, INC. C2

www.ubnt.com

UTILIKILTS 78

www.utilikilts.com

ZAREASON 77

www.zareason.com

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

www.l inux journa l .com december 2009 | 6 5

http://www.linuxjournal.com/buyersguide
http://www.oneandone.com
http://www.aberdeeninc.com
http://www.mcphee.com
http://www.asacomputers.com
http://www.cari.net
http://www.digi-key.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.axigen.com
http://www.genstor.com
http://www.gutsygeeks.com
http://www.ixsystems.com
http://www.logicsupply.com
http://www.lullabot.com
http://www.microway.com
http://www.platform.com
http://www.polywell.com
http://www.rackspace.com
http://www.saintarnold.com
http://www.serverbeach.com
http://www.serversdirect.com
http://www.siliconmechanics.com
http://www.straytats.com
http://www.embeddedx86.com
http://www.ubnt.com
http://www.utilikilts.com
http://www.zareason.com
mailto:joseph@linuxjournal.com
http://www.linuxjournal.com

and IP auto configuration!

Using KFT for Boot Time Measurements
One of the more powerful tools for boot time measurement is
Kernel Function Trace. KFT instructs the compiler to generate
instrumentation for virtually all kernel function calls. When
enabled and triggered, data is logged for each function call
entry and exit, which allows you to identify functions that
consume large amounts of time. To use this tool, you will
need to apply the KFT patch to your kernel. Detailed
instructions and links to KFT kernel patches can be found
at elinux.org/Kernel_Function_Trace.

For each function call not specifically filtered out by
your trace configuration, a line is generated that contains a
timestamp at function entry, the function address, the address
of the caller, process ID and a delta. The raw data is accessed
by reading /proc/kft_data after the run has completed.

Several tools are available to post-process the raw data.
The addr2sym converts the kernel virtual address in the raw
data to symbolic addresses. It is simple to use:

addr2sym <kft_data.raw -m System.map >kft_data.sym

Above, kft_data.raw is the raw data copied from /proc.
System.map is produced by the kernel build and can be found
in the top-level kernel directory, and of course, kft_data.sym is
the output file.

The KFT dump (kd) utility can be found in
the Linux kernel scripts directory after the KFT
patch has been applied. Running kd on the
raw data produces a statistical summary of the
functions called. You can use kd to display the
most time-consuming functions or functions
with time greater than that specified in your
configuration and several other useful filters.
Listing 2 contains a partial listing (top ten) of
the most time-consuming functions on a typical
high-performance Power Architecture proces-
sor. The negative number associated with the
schedule call is due to the fact that schedule
changes context to another process—that is, it
never exits in the traditional manner that a
function call usually does.

Conclusion
Improving Linux boot time is moving from the
obscure corners of R&D labs to mainstream
product development. Driven by competitive
pressures in a wide variety of markets, system
developers are devoting an increasing amount
of effort to making sure their systems are ready
to use when users want them. Always a hot
topic, we are sure to see many more develop-
ments in the near future aimed at further
reducing Linux system boot time.�

Christopher Hallinan is the author of Embedded Linux Primer and a Field
Applications Engineer for MontaVista Software, Inc. He has been engaged
in Linux-related work and play since 2000. He currently resides in
sunny southwest Florida.

6 6 | december 2009 www.l inux journa l .com

FEATURE Reducing Boot Time in Embedded Linux Systems

Listing 1. initcalls Taking More than Nine Milliseconds to Complete

root@8548cds:~# dmesg | grep initcall | egrep '[0-9][0-9] msecs'

initcall pty_init+0x0/0x43c returned 0 after 57 msecs

initcall serial8250_init+0x0/0x138 returned 0 after 20 msecs

initcall gfar_init+0x0/0x58 returned 0 after 60 msecs

initcall cp_init+0x0/0x34 returned 0 after 16 msecs

initcall ide_scan_pcibus+0x0/0x14c returned 0 after 4246 msecs

initcall of_flash_init+0x0/0x34 returned 0 after 43 msecs

initcall uhci_hcd_init+0x0/0x104 returned 0 after 445 msecs

initcall ip_auto_config+0x0/0xefc returned 0 after 4597 msecs

Listing 2. Using kd

$./linux/scripts/kd -n 10 kft_data.sym

Function Count Time Average Local

----------------------------- ----- -------- -------- --------

_ _schedule 5208 22050824 4234 22046510

schedule 1921 10828704 5637 -10478620

setup_arch 1 6021110 6021110 29

tsc_init 1 6021081 6021081 79

set_cyc2ns_scale 1 6021002 6021002 6021002

kobject_uevent 389 1659254 4265 813013

mem_init 2 1223745 611872 111906

wait_for_completion 395 1192559 3019 14685

free_all_bootmem 1 1109561 1109561 53

free_all_bootmem_core 1 1109508 1109508 74651

Resources

Other tools are available to help reduce your system’s boot
time. Bootchart is a powerful tool useful for visualizing the
post-kernel initialization processes. Details can be found at
www.bootchart.org.

Readahead is designed to pre-fetch required boot files from
disk so that when they are needed, they can be read from the
buffer cache for faster boot. Readahead can be customized to
read specific files in a given order. You can find more about
readahead at https://fedorahosted.org/readahead.

For the ambitious, the Moblin distribution contains a
host of optimizations, which taken together, aim to
produce a five-second boot on a typical Netbook:
moblin.org/projects/fast-boot.

Elinux.org (elinux.org/Boot_Time) maintains a very useful
collection of data related to fast boot optimizations, including
more analysis and profiling tools, links to other articles and
much more.

http://www.linuxjournal.com
http://www.bootchart.org
https://fedorahosted.org/readahead

http://www.linuxjournal.com/rss_feeds

6 8 | december 2009 www.l inux journa l .com

The Mesh Potato is an 802.11bg mesh router with a single
FXS port (Figure 1). Adjacent Mesh Potatoes automatically
form a peer-to-peer network, relaying telephone calls without
landlines or cell-phone towers. The Mesh Potato hardware
and software is open. The power, Ethernet and FXS ports are
robust to developing-world conditions like static, lightning,
bad power and accidental abuse. The Mesh Potato comes in
a weatherproof box for outdoor mounting and costs about
the same as any other Wi-Fi router (less than $100).

An analog phone connects to the Mesh Potato via the FXS
port. FXS (Foreign eXchange Station) is a telephone interface
that supplies power, dialtone and generates ringing voltage.
When you make a phone call, your Mesh Potato talks to
the potato down the street, which talks to the next potato,
and eventually to the destination. The mesh network can
be augmented via backbone links and connected to the rest
of the world using VoIP trunks.

This article describes the history of the Mesh Potato
Project, including how it was conceived and its development
so far. I also discuss the Mesh Potato’s design and the technical
challenges we have faced.

History
In June 2008, I attended the Village Telco workshop in Cape
Town, South Africa. The Village Telco (and I quote) is an easy-
to-use, scalable, standards-based, wireless, local, do-it-yourself
telephone company toolkit. Put simply, the idea is that “some
guy in a village” can build a local telephone network and
make a sustainable business by charging a nominal fee for
calls to the PSTN (Public Switched Telephone Network) via VoIP
trunks. We were in Cape Town to work out how to build the
Village Telco software and hardware.

Steve Song of the Shuttleworth Foundation pulled together
a fascinating team of people from the development, VoIP,
mesh networking and business communities. The team was
small (about ten people) and very hands-on in its outlook and
skill sets (Figure 2). The breakfast and dinner conversations
were fascinating—funny stories about broken-down hotels in
some developing countries and sad stories about the poverty
of others.

Figure 2. Village Telco Workshop 2008. Top from left to right: Jason Hudson,
Jeff Fletcher, Johann Hugo, Alberto Escudero-Pascual, Steve Song, Jeff
Wishnie and Alan Levin. Bottom: David Rowe, Elektra, Rael Lissoos.

One of the outcomes was the decision to build a little
box called the Mesh Potato. We started out thinking we
would use off-the-shelf hardware, like wireless routers and
ATAs. Suddenly, it dawned on us that we didn’t have to
accept non-optimal, off-the-shelf hardware. We had the
skills to design and build exactly the hardware we needed
for the project. We also chose to make the hardware design

The Mesh Potato
What do you call an 802.11bg mesh router with a single FXS port that automatically
forms a peer-to-peer network and relays telephone calls without landlines or cell-
phone towers? A Mesh Potato, of course. DAVID ROWE

INDEPTH

Figure 1. The Mesh Potato

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 6 9

open, just like the software.
Since then, we have come a long way. Through a series of

development projects funded by the Shuttleworth Foundation,
we have designed, debugged and built about 20 Alpha Mesh
Potatoes (Figure 3). The first phone calls over Mesh Wi-Fi were
made in June 2009, almost exactly one year after the project
kicked off. We currently are preparing for a Beta run of Mesh
Potatoes, with full production scheduled for early 2010.

Figure 3. Prototype Mesh Potato (on the Right)

Why Not Mobile Phones?
We keep hearing how popular mobile (cell) phones are in the
developing world. I have seen how well a humble cell-phone
works, penetrating to the corners of some really remote areas
of the world. So why do we need a Wi-Fi-based system like
the Village Telco?

The answer is simple. The call costs for mobile phones are
very expensive for many people in the world. In many cases,

it’s roughly the same cost as a mobile call in a developed
country. If you are earning $1/day, a 50-cent mobile call is
very expensive (Figure 4).

Although mobile phones have delivered remarkable
benefits to developing countries, the mobile oligopolies that
have emerged in the process have kept call charges artificially
high. Worse, mobile operators tend to function as “walled
gardens” in order to entrench their market share. Just
compare the price of an e-mail message on the Internet
(zero) and via a cell phone (20 cents for a text message),
and you get some idea of the problem.

Communities in the developing world need an alternative.
Hence the need for the Village Telco—a system that uses
commodity Wi-Fi technology and unlicensed spectrum to
provide low-cost phone calls.

Key Features
The Mesh Potato runs B.A.T.M.A.N. (see Resources) mesh
routing software, Asterisk, the Speex voice codec and Oslec
echo cancellation. No cell-phone towers, no landlines, no big
Telcos are required. Local entrepreneurs can roll out their own
Village Telco system using a modest server and a bunch of
Mesh Potatoes—community-owned telephony.

The mesh network is self-organising and self-healing. If
a node goes down, B.A.T.M.A.N. automatically re-routes
the calls. We are building custom hardware specifically for
developing communities using open hardware and software
principles. I am intrigued by the idea of developing custom
open hardware devices—no need to accept whatever is
available off the shelf. Most of the value in any router-type
product is delivered by the software, which these days is
usually Linux. The idea of relying on closed, proprietary,
not-quite-right hardware is obsolete.

The Mesh Potato is as open as we can make it. We have
minimised binary blobs and deliberately chosen open over
proprietary software. The Mesh Potato is Atheros-based, as
this allowed the use of the MadWifi open-source WLAN
driver. We use the Speex and GSM codecs instead of g729
and Oslec instead of a proprietary echo canceler. The hardware
schematics are available on-line.

The Mesh Potato will be mass-produced in large numbers.
Open projects like this will start to exert influence over future
telephony systems. For example, if 1,000 Village Telco opera-
tors are trunking calls encoded in Speex, VoIP trunk operators
will need to support Speex. This represents an important
paradigm shift. The Open community now has a chance
to set standards, rather than have to play along with
“standards” based on closed hardware and software.

I have developed open hardware telephony products
in the past, including the IP04, which is manufactured
by Atcom (see Resources). So it was natural that we team
with Atcom for the board-level PCB layout and volume
manufacture of the Mesh Potato. Atcom is a VoIP hardware
company from Shenzhen, China, that understands and
embraces open hardware and open software. Atcom is
handling the board-level PCB layout and volume manufacture
of the Mesh Potato.

INDEPTH

Figure 4. If cell phones could talk!

http://www.linuxjournal.com

7 0 | december 2009 www.l inux journa l .com

Technical Overview
Figure 5 is a mud map of the Mesh Potato hardware. The
Mesh Potato uses an Atheros AR2317 System-on-a-Chip (SoC),
which is a very low-cost router chip that combines an MIPS
processor running at about 200MHz with 802.11bg Wi-Fi. It
has built-in interfaces for LEDs, SDRAM and serial Flash. Best
of all, it is well supported by OpenWRT and MadWifi. The FXS
hardware, drivers and other firmware we have developed are
generic. It is possible to port them to other router architectures.
In very high volumes, it would make sense to integrate the FXS
chipset functionality onto the SoC.

Figure 5. Mesh Potato Hardware Architecture

Development Story
Development of the Mesh Potato kicked off in September
2008. Along the way, we had a few design issues and many
challenging bugs to fix. As part of the open design philosophy,
we have documented the design and even some of the “bug
hunts” on the Village Telco blog (see Resources).

CPU Load
A key question was CPU load. Could a humble router CPU
support Asterisk, a speech codec, an echo canceller and route
several other phone calls over the mesh at the same time?
To answer this question, we designed a test with all of these
software modules running at the same time. As this was in the
early days, and we didn’t have any FXS hardware, we simulated
the speech samples coming from the FXS port.

To model the maximum load of the system, we thought
about a worst-case scenario of one mesh node routing 15
phone calls for its peers. This means the node would have to
receive, then re-transmit, voice packets for 15 simultaneous
phone calls. At the same time, the node had a phone call of

its own, which meant the speech codec, echo canceller and
Asterisk were all running. To test this scenario, we set up some
Asterisk boxes to generate calls and used commodity Atheros
Wi-Fi hardware to run the prototype Mesh Potato firmware.

The test passed. Call quality was maintained, provided we
used 80ms voice packets to reduce the overhead of many
small VoIP packets.

Stuck Beacons and Ad Hoc Wi-Fi
The MadWifi driver had a nasty “stuck beacon” problem
that was specific to ad hoc mode, which is required for mesh
networking. Nodes attempt to adjust their internal clocks
based on reception of beacons from other nodes. Under
certain situations, this caused a race condition, which locked
up the driver’s transmit queue. This means the driver would
stop working for about 30 seconds.

Elektra worked hard with the MadWifi developers to
establish and test a workaround. The driver is started in
access-point (rather than ad hoc) mode, and then we create a
virtual ad hoc access point that does not transmit beacons:

$ wlanconfig ath0 create wlandev wifi0 wlanmode adhoc nosbeacon

INDEPTH

Listing 1. Small, Fast Serial ISR to Minimise Instruction-Cache
Thrashing

static irqreturn_t serial8250_interrupt(int irq, void *dev_id)

{

struct irq_info *i = dev_id;

struct list_head *l;

struct uart_8250_port *up;

unsigned int lsr;

unsigned char ch;

unsigned int iir;

int count = 0;

spin_lock(&i->lock);

l = i->head;

up = list_entry(l, struct uart_8250_port, list);

lsr = serial_inp(up, UART_LSR);

while (lsr & UART_LSR_DR) {

ch = serial_inp(up, UART_RX);

ch = mp_buffertxrx(ch);

serial_outp(up, UART_TX, ch);

lsr = serial_inp(up, UART_LSR);

count++;

}

spin_unlock(&i->lock);

return IRQ_RETVAL(1);

}

http://www.linuxjournal.com

Beacons are unnecessary for our mesh network, and
B.A.T.M.A.N. broadcasts its own packets at regular intervals.
In access-point mode, there is no attempt to adjust the MAC
clock, so the race condition is avoided.

FXS Interface
Low-cost Wi-Fi SoC devices are highly integrated. They have mini-
mum hardware interfaces—just enough for their core purpose.

To support an FXS interface, we normally use a CPU that
has some sort of Time Division Multiplex (TDM) bus to support
one or more 64kb/s bit streams of speech samples. The TDM
bus hardware then handles DMA of the speech samples,
presenting them as buffers to the device driver.

Every chip I have worked on in 20 years of telephony
hardware design had a TDM bus. The AR2317 has many
other features we need (low cost, Wi-Fi, OpenWRT support),
however, there’s no TDM bus!

So, I worked out a scheme to send and receive speech
samples via the RS-232 console port, using some external glue
logic and a small microcontroller to buffer the speech samples.
It’s not elegant, but it’s reasonably low cost and it works,
allowing us to use a low-cost AR2317 SoC for a very different
application (VoIP) than it was designed for.

As the speech samples arrive in the RS-232 port, they are

buffered by the SoC serial FIFO. When the FIFO fills, it inter-
rupts the CPU every 1ms. Now, 1ms is a very high interrupt
rate. What this means is every 1ms, the CPU must stop what
it’s doing and run the Interrupt Service Routine (ISR). This can
cause a big performance hit, as the instruction cache contents
must be flushed and replaced every 1ms.

To minimise this performance hit, I rewrote the Linux
drivers/serial/8250.c interrupt handler to be as small as
possible (Listing 1). This is small enough to consume only a
tiny amount of valuable instruction cache and is likely to stay
resident in the cache between interrupts. The functions it
“calls” are either macros or very short inline functions.

Small Team, Big Company and Calibration
Being a small team on a modest budget, we have experienced
difficulty obtaining all the data we require from the SoC vendor,
Atheros. This is a problem with some chip vendors. Unless you
can pay big up-front fees or have a one-million chip order
pending, it is hard to get support or even basic data. This is
a pity, as I feel many chip vendors rely increasingly on the
Open Source community for their firmware and build tools
and hence their chip sales. Also, we are trying to design a
mass-market product that will sell more of their chips.

This is not true of all chip vendors. Analog Devices has

http://www.emperorlinux.com

7 2 | december 2009 www.l inux journa l .com

been very helpful with the IP04-based open hardware embedded
IP-PBX (see Resources) that uses the Analog Devices Blackfin
CPU. The company provided comprehensive data, time
from many support engineers and even funded some of
the IP04’s development.

One particular problem area with the AR2317 has been
RF calibration. Each AR2317 chip is slightly different and
must be calibrated on the production line using automated
test equipment. The software to perform this calibration and
even the calibration registers’ documentation is very closed.
This has made it hard to calibrate our prototypes to obtain
optimum RF performance.

However, where there is a will, there is a way. With Atcom’s
help, we have teamed with other Wi-Fi router vendors who have
the required calibration equipment on their production lines.

Testing the Alphas
In early 2009, we started design of the actual custom Mesh
Potato hardware. By the middle of 2009, we had built approxi-
mately 20 prototype Mesh Potatoes, and in July, we held the
second Village Telco Workshop to test the alphas and plan the
next phase of the project.

Server-less Asterisk
One nice demo was a simple Asterisk dialplan, placed on each
Mesh Potato:

exten => _XX,1,Dial(SIP/4000@10.130.1.${EXTEN})

This allowed us to construct a serverless, peer-to-peer voice
network. This dialplan takes a two-digit number XX and lets
you dial another Mesh Potato with the IP of 10.130.1.XX. It’s
an instant local phone network on just a few watts/node, no
server required (let alone a cell-phone tower or central office
exchange). Simply switch on your potato, and you can
make calls. Imagine the applications for Katrina-style disaster
situations where you need instant communications.

Testing and Lessons Learned
We spent some time setting up mesh networks and testing
the limits of the system by listening to voice quality. Using the
B.A.T.M.A.N. debug modes, we could see the mesh hops go
around corners and through windows to relay calls from one
node to another.

We still have a lot to learn about everything that affects
call quality. There are many factors, such as Wi-Fi propagation,
antennas, speech coding, jitter buffers, interference and
system load. We are planning a small R&D project to study
and optimise call quality in marginal conditions.

We need effective ways to instruct people on how to set
up a reliable mesh network (like a picture book or videos or
real-time metrics of quality such as a GUI or dialtone).

Wandering around in the South African winter sunshine
with a Mesh Potato and a battery, I had an “ah-ha” moment
that frankly sent shivers down my spine. This thing really
works! You sometimes lose track of the big picture when
you are engineering all the details.

Our big goal now is to simplify the installation and
configuration as much as possible. At the workshop, we
spent some time trying to get a Mesh Potato connected to an
Asterisk server, and it was the usual time-consuming Asterisk
conf file and command-line frustration. It’s hard the first
time, but gets easier as you gain experience. However, we
want to make Village Telco setup easy for thousands of
first-time users. This experience drove the point home: we
need to make configuration as straightforward as possible.

Production Potatoes
It has been a pleasure to work with the Shuttleworth
Foundation, Elektra and Atcom on this project. We also have
had amazing input from the participants in the two Village
Telco Workshops and members of the Village Telco Google
Group. And, we still have a lot to do. By early 2010, we plan
to resolve the remaining calibration issues, perform Beta trials
and obtain type approval for the Mesh Potato. At the higher
levels of the Village Telco Project, we need to integrate a
billing system and the Afrimesh GUI, and integrate into a
simple one-click installation.

I am confident we will achieve this and more. We have shown
that a small, talented team can develop custom Wi-Fi hardware
specifically for their needs. Community-based product develop-
ment for community-based telephony—how cool is that!�

David Rowe has 20 years’ experience in the development of DSP-based telephony and sat-com
hardware/software. In 2005, David founded the Free Telephony Project (www.rowetel.com/ucasterisk),
which has pioneered the field of open hardware embedded VoIP products. His open-source
contributions include the first open telephony hardware drivers in 1999 and the Oslec echo
canceller (www.rowetel.com/ucasterisk/oslec.html). David’s other interests include building
and advocating electric vehicles and VoIP technology for the developing world.

INDEPTH

Resources

Village Telco: villagetelco.org

Mobile Phones and Walled Gardens:
manypossibilities.net/2009/01/why-wifi-in-africa

B.A.T.M.A.N.: open-mesh.org

Oslec Echo Canceller:
rowetel.com/ucasterisk/oslec.html

Atcom: atcom.cn

IP04 Open Hardware IP-PBX:
rowetel.com/ucasterisk

Afrimesh Mesh Network GUI:
code.google.com/p/afrimesh

Village Telco Google Group:
groups.google.com/group/village-telco-dev

mailto:4000@10.130.1
http://www.linuxjournal.com
http://www.rowetel.com/ucasterisk
http://www.rowetel.com/ucasterisk/oslec.html

www.l inux journa l .com december 2009 | 7 3

INDEPTH

The Linux Terminal Server Project (LTSP) has been around
for years now, and it gets better with each new release. In the
beginning, it was targeted at providing schools with a means
to use low-cost computers as Linux terminal clients. It was a
huge success; so much so, that LTSP now is included in several
Linux distros, such as Edubuntu, as a regular package.

LTSP lets you tailor it to deliver multiple OS desktops to
every workstation on the LAN, using just PXE-bootable desktops
or thin clients. With this type of setup, users simply have to
press Ctrl-Alt-Fn to access different desktops. The following
shows an example menu you could present to LTSP users:

� Ctrl-Alt-F1: Linux shell.

� Ctrl-Alt-F2: Windows desktop for Internet browsing
and e-mail.

� Ctrl-Alt-F3: Ubuntu with development tools.

� Ctrl-Alt-F4: Mac OS for graphics work.

� Ctrl-Alt-F5: Remote Citrix access for corporate ERP
and CRM.

To set up an environment that supports the above options,
the following steps are required:

� Set up an LTSP environment.

� Install the required client connection tools.

� Create scripts to use the client connections.

� Configure LTSP files to enable one or several screens to use
the new client connection.

Setting Up an LTSP Environment
The first step is installing the LTSP packages on the Linux distro
of your choice. Many recent distro releases have ready-to-
install LTSP packages available in their repositories, so you
probably can use your favorite package manager out of the
box. This way, you should have your LTSP server up and
running in a matter of minutes. On Ubuntu use:

$ sudo apt-get install ltsp-server-standalone

$ sudo ltsp-build-client

For detailed install instructions for other distros, check the

LTSP Web site (see Resources).
For an easy out-of-the-box experience, download and boot

from an Ubuntu Alternate CD, press F4, and choose Install an
LTSP server (Figure 1).

From there, you install Ubuntu as usual. The only difference
is that near the end of the install, you will see a warning about
a second Ethernet card (Figure 2).

The error occurs because the installer defaults to using a

Multisession Workstations
Press F1 for bash, F2 for Windows, F3 for Ubuntu, F4 for Mac OS and F5 for Citrix.
Linux makes it all possible, and you don’t even need a hard drive! JORGE SALGADO

Figure 1. Ubuntu Alternate Install (Install an LTSP Server)

Figure 2. Ubuntu PXE Boot Client LTSP Session

http://www.linuxjournal.com

7 4 | december 2009 www.l inux journa l .com

INDEPTH

second Ethernet card dedicated to boot terminals. You may
use this setting if you like, but if you already have a DHCP
server in your environment, you can use it.

Once you finish the LTSP install, log on to your server and
build the LTSP image with the following command:

$ sudo ltsp-build-client

This takes a couple minutes. While it builds, you will see
a text progress bar—get used to it, because you will need to
rebuild this image several times.

If you are lucky and your DHCP server is a nice Linux box,
edit your /etc/dhcpd.conf file to point your network boot
options to the LTSP box. Add the following lines, and restart
the DHCP service afterward:

option tftp-server-name "mynew.ltsp.server";

option bootfile-name "/ltsp/i386/pxelinux.0";

If you’re unlucky and you have to set this up with a Windows
server, as an administrator, open the DHCP configuration
screen and add the configuration options below:

017 Root Path: /opt/ltsp/i386

066 Boot Server Host Name: <LTSP Server ip address>

067 Bootfile Name: ltsp/i386/pxelinux.0

In addition, most Linux/BSD-based firewall software
appliances, such as pfsense and endianFW, have options
for this on their DHCP configuration screens.

If everything goes well, your LTSP environment is ready to
boot network clients. Reboot one of your desktops and select
network boot. You should see your desktop receive an IP
address from your DHCP server, a large stream of dots when
the boot image downloads from the TFTP server and then a
regular boot splash screen from your distro. Then finally, your
LTSP session will start (Figure 3).

You’re now about a third of the way there. Next, let’s go to
the core of multisession setup and start installing the connection
tools you’ll need to connect to other types of sessions.

Installing Connection Tools
You need to set up your workstations to allow multiple remote
sessions, connected to different servers and different OSes,
each using the required specific connection protocol. LTSP
includes only three types of connect scripts: shell, graphical
Linux and Windows remote desktop. This is great, because out
of the box, you are able to set up a shell session, a full diskless
Linux client and a Windows remote desktop session.

LTSP lacks other interesting protocols, like VNC, NX
and Citrix. For those, you’ll need to install some tools and
client applications.

Installing Additional Client Connection Tools
One of the features I like most about LTSP is that each time
you update your ltsp-image, you actually “build” a small
footprint distro. This means you can install packages, startup
scripts or anything you want, into the LTSP image “distro”,
and then simply update the image as needed. Don’t confuse
your “server” distro, with the LTSP image distro; they are com-
pletely different. Your server is mainly a building environment
for the LTSP image, which is why images built from Ubuntu,
look like Ubuntu. Images built on OpenSUSE, look and taste
like OpenSUSE, and so on.

This hasn’t always been the case though. In earlier releases,
LTSP produced images that weren’t related to the server distro.
Earlier LTSP images were more like a distro of their own. Now,
you can choose your server flavor and produce images of the
same flavor. This allows you to keep using the distro you are
familiar with on the server and on your thin clients.

Remember: things you install on your server are not
installed onto your LTSP images. Within your server lives a
mini-distro that is used to build the LTSP images. To access
your building distro, you must chroot into it from your server.
Simply type the following:

$ sudo chroot /opt/ltsp/i386

You are now working on your LTSP image distro root
directory. This environment is what images will be built from.
From here on, all you need to do to install software is type
your standard distro shell commands. Let’s try a small shell
picture viewer as an example (this will be useful later):

$ apt-get install zgv

To exit from the chroot session and build the new image
that now will contain the zgv command, do the following:

$ exit # to exit the chroot session

$ sudo ltsp-update-image # to build the update image

After the image is built, reset your PXE boot client,
press Ctrl-Alt-F1 to go to the shell session and check that

Figure 3. Ubuntu PXE Boot Client LTSP Session (note the lower right-
hand corner of the screen)

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 7 5

zgv is available. In my setups, Ctrl-Alt-F1 always
is a shell session, regardless of the settings in
the lts.conf file.

Building the image is a time-consuming task,
so you probably will want to wait until all needed
packages are installed and built, and test once
rather than multiple times.

For the objectives in this article, you will need
to install a VNC client so you can connect to a
Mac OS X session and the Citrix XenApp client.

Connecting to Mac OS X
First, set your MAC to allow incoming connec-
tions. Go to your Mac OS X server and open
System Preferences. Under Internet and Network,
click Sharing, then select the Screen Sharing check
box. Next, click the Computer Settings button,
check Anyone may request permission to control
screen, and click VNC viewers may control screen
with password, and set a password. If you don’t
set this option, you will receive a “No matching
security types” error each time you try to connect
to your Mac OS X system (Figure 4).

Now, back to the LTSP server. Install the VNC
client and VNC server (I used xvnc4viewer, because it was
available in the Ubuntu 9 repositories, but you may use any
VNC client that is available for your distro):

$ sudo chroot /opt/ltsp/i386

$ apt-get install xvnc4viewer vnc4server

I know it doesn’t make much sense to install a VNC server
on your “client” image; however, you will need the vncpasswd
command from it later.

Because your LTSP image and your main LTSP server are
siblings, you are free to test software behavior on your
server first. Bear in mind that they are closely related, but
not identical twins. Just because the server is able to do
something, doesn’t ensure that the LTSP image also will be
able to do it. However, if something doesn’t work on your
server, don’t waste your time trying to make it work on the
LTSP image either.

To test from your server, install xvnc4viewer directly on
your server, and start a connection to your Mac. You must
use the -FullColor option; if you don’t, your MAC will not
allow the connection:

$ xvnc4viewer -FullColor -FullScreen your.mac.ip.address

You will get a VNC authentication window asking
for the password you set earlier on your Mac. Next, you
should see a beautiful Aqua Mac OS desktop on top
of your Linux screen!

This is great, but the password window doesn’t work
correctly on the LTSP image. Because you didn’t load a
window manager before the VNC viewer, the authentica-
tion window pops up with no mouse pointer visible, and

you need to click on the box to start writing. So, let’s
avoid that problem. Go back to the chroot session for
your LTSP image, and type vncpasswd. This will create
the .vnc/passwd file, which you will use as a parameter to
your xvnc4viewer command. Move the newly created file
to /usr/share/ltsp/vnc-passwd.

Now, you need to create a screen script for this VNC session.
Those scripts are in the /usr/share/ltsp/screen.d folder. Change
directories to that folder, copy the rdesktop screen script and
modify it to be a VNC script. Call this new script vnc1, and
make it look like this:

#!/bin/sh

PATH=/bin:$PATH; export PATH

. /usr/share/ltsp/screen-x-common

VNC_OPTIONS=${VNC_OPTIONS:-"-FullScreen"}

VNCVIEWER_OPTIONS="${VNC_OPTIONS} -FullScreen $* ${VNC_SERVER}"

if [-x /usr/share/ltsp/xinitrc]; then

xinitrc=/usr/share/ltsp/xinitrc

fi

xinit $xinitrc /usr/bin/xvnc4viewer ${VNCVIEWER_OPTIONS} \

-- ${DISPLAY} vt${TTY} ${X_ARGS} -br >/dev/null

Now, exit your chroot session, and edit the /var/lib/
tftpboot/ltsp/i386/lts.conf file. You should add two new
parameters, and set your screen_04 to use your new script. It
now should look something like this:

[default]

Figure 4. Mac OS X Enable Remote Access

http://www.linuxjournal.com

7 6 | december 2009 www.l inux journa l .com

INDEPTH

VNC_OPTIONS = "-FullColor -passwd /usr/share/ltsp/vnc-passwd"

VNC_SERVER = your.mac.ip.address

...

SCREEN_04 = vnc1

Next, rebuild your LTSP image with the ltsp-update-image
command, wait for the process to end and test it on your
PXE boot client. Press Ctrl-Alt-F4, and you should see a Mac
remote session.

Because the objective is thin-client corporate infrastructure,
you most likely will want to have multiple connections to your
Mac OS “server”. For this, there is Aqua Connect Terminal
Server. Using it, you can connect several remote users to a
single Mac OS X server (remember to double-check Apple’s
licensing terms).

Connecting to Citrix
Go to the Citrix Web site, look for the XenApp Linux client
and download it. Copy the downloaded file into your chroot
system. In your chrooted session, untar the Citrix client file.
After decompression, you should have a new folder named
linuxx86 and a few extra files, including the install script called
setupwfc. To install, as root, execute ./setupwfc, and answer
the text wizard questions. You may have to fill in some depen-
dencies for your distro, but after a few moments, your LTSP
image will be Citrix-enabled.

The Citrix server configuration is beyond the scope of
this article. You should start with a working Citrix XenApp
Server. The good news is that you don’t even need to be
one of the Citrix server administrators at your company,
you just need to have the user name and password for an
account with published applications on the server. In other
words, if you already have access to a desktop or an appli-
cation via Citrix, you can set up that connection as one of
the screens on your multisession terminal server. Simply log
in to your Citrix session as a regular user and download

the session definition ICA file (Figure 5). ICA files are actu-
ally text files that contain the information and settings to
establish a connection to a XenApp server. The easiest way
to download this file is to right-click on one of the icons
displayed on your Citrix server Web interface and select
Save link as.

Once you have your ICA file, copy it to the Citrix client
install directory on your chroot session:

$ cp my-ica-file.ica /usr/lib/ICAClient/desktop.ica

Now, let’s create the screen script for the Citrix session in
/usr/share/ltsp/screen.d. We’ll call this script citrix1:

#!/bin/sh

Copy the ica file to a temp file because

wfica deletes the file on execution.

cp /usr/lib/ICAClient/desktop.ica \

/usr/lib/ICAClient/temp-file-desktop.ica

sudo xinit /usr/lib/ICAClient/wfica \

/usr/lib/ICAClient/temp-file-desktop.ica

Notice that XenApp is the new name for the Citrix
presentation server, so any Citrix server XenApp or presentation
server will work.

Finally, exit your chroot session and add the new screen
parameter for the citrix1 script in your lts.conf file. It should
look like this:

[default]

...

SCREEN_05 = citrix1

Now you can rebuild your LTSP image with the
ltsp-update-image command, and test the Citrix session
on your PXE boot client when you press Ctrl-Alt-F5.

Connecting to a Windows Terminal Server
The rdesktop client and script are included in the LTSP
install package, so you won’t have to create scripts or
install new packages. All you need to do is include their
screen parameters in the lts.conf file. Your final file should
look like this:

[default]

VNC_OPTIONS = "-FullColor -passwd /usr/share/ltsp/vnc-passwd"

VNC_SERVER = your.mac.ip.address

RDP_OPTIONS = "-a 16"

RDP_SERVER = your.windowsTS.ip.address

SCREEN_01 = shell

SCREEN_02 = rdesktop

SCREEN_03 = ldm

SCREEN_04 = vnc1

SCREEN_05 = citrix

Figure 5. Citrix ICA File Download from Web Interface Icon

http://www.linuxjournal.com

www.l inux journa l .com december 2009 | 7 7

This time, you don’t need to run ltsp-update-image.
When you use the /var/lib/tftpboot/ltsp/i386/lts.conf file, it’s
read directly from the server and not from the ltsp-image.
Be aware that there is another lts.conf file inside the chroot
directory; avoid using that one.

Stopping the Screen Takeover Problem
If you’ve tested each step of your progress, you surely know
by now that sometimes different “screens” suddenly take over
the monitor output. They seem to be fighting each other to be
top dog. This is not a bug. It happens when a remote session
login screen timeouts. Windows and Citrix wait patiently for your
login credentials, but after some inactivity time, they drop your
connection. When this happens, X dies. Then your LTSP terminal
restarts X and restarts the connection. This pulls the visible screen
to the newly started X screen, taking over the monitor output.

To avoid this effect, you need to log in to all of your
available sessions. Logged-in sessions also have timeouts,
but they are much longer.

The simplest solution is based on an idea I found in an older
version (from LTSP 3.0) of the rdesktop script. The script included a
“read” statement just before the xinit call. That way, users
had to press a key to start their rdesktop session. You can
use that same approach. It’s not fancy, but it works.

A more stylish solution is to use zgv to show a pic-
ture just before the session start line. zgv closes when
users press the Enter or Esc key. Remember to add a
“Press Enter to start” banner to your image.

Controlling Session Access
LTSP also lets you provide settings for groups or
workstations or for individual workstations, identified
by IP address, MAC address or hostname. This allows
you to set which sessions are seen on which work-
stations and even to configure specific hardware
for that workstation. The following lts.conf file
shows an example of how this can be done:

[default]

SCREEN_01 = shell

[LINUXER]

SCREEN_03 = ldm

[12:34:56:78:9a:bc]

XSERVER = ati

X_MOUSE_DEVICE = /dev/ttyS0

SCREEN_03 = ldm

SCREEN_05 = citrix

[192.168.0.4]

SCREEN_04 = vnc1

Conclusion
You could fill a book with examples of uses and
configurations for LTSP. I’ve been working with it
since version 1.0, going on ten years now, and with

each new version, there are useful new features. For further
technical information on the project, go to the LTSP Wiki,
and if you get a chance, please support the project with a
small donation.�

Jorge Salgado is a Senior Infrastructure Consultant. He holds MCTS, NCLP9 and LPIC1 certifications
and spends most of his time pushing companies to get the best from Citrix, VMware and Linux
technologies. He lives in the Queretaro area and can be contacted at jsalgado@smart4lan.com.

Resources

LTSP: www.ltsp.org

LTSP Downloads and Install Guides:
wiki.ltsp.org/twiki/bin/view/Ltsp/DownLoads

Citrix Client Download: www.citrix.com

Mac OS Terminal Server: www.aquaconnect.net

http://www.linuxjournal.com
mailto:jsalgado@smart4lan.com
http://www.ltsp.org
http://www.citrix.com
http://www.aquaconnect.net

LI
N

U
X

JO
U

R
N

A
L

M
A

R
K

ET
P

LA
CE

The industry’s broadest product selection
available for immediate delivery

gutsygeeks.com

The first and only radio show broadcast in the
USA dedicated exclusively to spreading the word
about the LINUX OPERATING SYSTEM and FOSS.

7 8 | december 2009 www.l inux journa l .com

http://www.linuxjournal.com
http://www.mcphee.com
http://www.gutsygeeks.com
http://www.axigen.com
http://www.digikey.com
http://www.straytats.com
http://www.platform.com/gord

LIN
U

X JO
U

R
N

A
L M

A
R

K
ETP

LA
CE

www.l inux journa l .com december 2009 | 7 9

http://www.linuxjournal.com
http://www.polywell.com/us/Lx

Will we ever get a truly open phone? DOC SEARLS

Linux and embedded converge at the
technical level, but they clash at the
cultural one. At the technical level, Linux
is like an element in the periodic table, or
a pile of 2x4s. You can use it to build all
kinds of stuff. Sure enough, all kinds of
stuff does get built, including embedded
stuff that most hard-core Linux hackers
would never develop, or that they would
develop in a very different way. We’re
talking here about stuff that is typically
closed as a vault. Examples include elec-
tronic picture frames, security cameras,
airplane avionics, vacuum cleaners,
assembly-line robots and medical equipment.
And, of course, mobile phones.

Linux has been at the heart of millions
of phones made and sold during the last
few years. Few of these, however, are
what you would call “open” to the
degree that you can do what you please
with them—that is, as you would with
a PC. At the low end, phones are dumb
devices that do little more than telephony.
At the high end, they’re smart devices
that do lots of different things. But alas,
not in the same ways—meaning, there
is no “write once, run everywhere”.

Right now, the Linux smartphone
market is split between Android, LiMo
and Palm. You write apps for Android in
Google’s own version of Java5 (described
by one developer as “not J2ME, but not
quite Java5 either”). You write apps for
LiMo in C or C++. You write apps for
Palm Pre in JavaScript. Of those three,
Palm is the only standalone vertically inte-
grated platform, kind of like the iPhone.
The LiMo vs. Android situation is a lot
more complicated. The LiMo Foundation
has a pile of big names behind it, not
including Google. Google’s Open Handset
Alliance (all developing for Android)
includes its own pile of corporate heavy-
weights, some of which also are involved
with LiMo. The differences are easy to
play down. For example, LiMo focuses
exclusively on middleware, while Android
focuses on applications (but covers the

whole stack). But, Linux for phones is
beyond forked. Which brings me to
another F-word.

Freedom.
Phone makers and phone companies

don’t come from freedom. They come
from control—specifically, of whole
markets. Take one example from page
12 of the LiMo Foundation’s Introductory
.pdf (dated July 2009). There, it explains
where LiMo’s middleware platform fits
in the scheme of things. Its middleware
sits below three other layers: 1)
UI/Applications, “As selected by the hand-
set maker/operator”; 2) General Content,
“As selected by the mobile consumer”;
and 3) Applications, “As selected by the
mobile consumer”. In other words, LiMo
primarily serves markets that are run by
handset makers and phone system opera-
tors. Of course, so do Android and Palm.
(Not meaning to pick on LiMo here; they
just provide a handy illustration.)

Why, as we enter the second decade of
the 21st century, should we be forced to
choose only from applications provided by
handset makers and mobile phone network
operators? Can’t we finally have an open
phone marketplace—one where users and
developers are free from control by both
makers and operators, where you don’t
need to get your apps from a “store”,
where you can make any app you want,
for any purpose you want, without confin-
ing your innovations to what phone makers
and systems operators allow? Hey, that’s
what we’ve had in the PC marketplace for
going on 30 years. It’s what we’ve had
with the Internet for 15 years. Can’t we
have it in the phone marketplace too?

In a word, no.
Or, in two words, not yet.
The problem is that the phone business

has never been open or free. It’s one of
the most tightly closed and highly regulated
businesses on the planet. True, the
Internet started cracking open landline
phone systems nearly two decades ago,
but it’s still just getting started with

mobile phone systems and the devices
that run on them.

Mobile phones today are a bridge
across a chasm between protocols, tech-
nologies and business categories. To see the
big problem writ small, consider the natural
conflicts between SIP (Session Initiation
Protocol) and SS7 (Signaling System 7). SIP
is a peer-to-peer protocol defined by the
IETF (Internet Engineering Task Force). It
arose from the obvious need for IP-based
calling that looks and feels like what we’re
used to with phones, but without all the
other hassles, such as centralized switching
and billing for everything. SS7 is defined
by the ITU-T, or the Telecommunication
Standardization Sector of the ITU
(International Telecommunications Union),
which began as the International Telegraph
Union in 1865. SS7 is the heart and soul of
every phone system, including all the mobile
ones. While the IETF values “rough consen-
sus and running code”, the ITU values top-
to-bottom definitional completeness. Yet
to various working degrees, SIP and SS7
coexist in our lives, devices and applications.

Trends favor the IETF and the Net,
but I wouldn’t bet that way in the short
run, which may be a decade or more. We
see positive signs with smartphones and
handhelds for which telephony is one
application among many. But the telephony
space is a billing space, and it still rakes
in the cash. The Net may be a “world of
ends” (worldofends.com), but its means
include a vastness of phone company
cabling, routing and switching. And,
most of all, billing.

It is essential to recognize that billing
is the core competency of telephony. The
Net threatens that. I’m betting the Net
will win. But it will be a long, hard fight.
And Linux will be right in the middle of
it, serving both sides.�

Doc Searls is Senior Editor of Linux Journal. He is also a
fellow with the Berkman Center for Internet and Society at
Harvard University and the Center for Information Technology
and Society at UC Santa Barbara.

Is “Open Phone”
an Oxymoron?

EOF

8 0 | december 2009 www.l inux journa l .com

http://www.linuxjournal.com

http://www.rackspace.com/linuxjournal

More GFLOPS,
Less WATTS
Intel® Nehalem is here!

508-746-7341
microway.com

GSA Schedule
Contract Number:
GS-35F-0431N

Higher Memory Bandwidth with DDR3 and QPI
Clusters and Servers Consume Less Power

Four Servers in a 2U Chassis with all Hot-Swap:

1200 Watt 1+1 supply, 12 Drives, and Server Modules!

FasTree™ ConnectX® QDR and DDR InfiniBand
Switches and HCAs

Intel Professional Compiler Suite and Cluster Toolkit

Version 11 with Nehalem Enhancements

Academic Pricing Available

Configure your next Cluster today!
www.microway.com/quickquote

GPU Computing
WhisperStation™

With 1 to 4 Tesla GPUs

Tesla C1060 GPU Performance:
1 TFLOPS per GPU

4 GB DDR3 per GPU

102 GB/Sec Bandwidth

CUDA SDK

Run MATLAB® on Tesla with “Jacket”

Clusters With Tesla™

S1070 - 4 GPU Servers

 36 GPUs + 36 CPUs + 24 TB in 24U

40 Gbps FasTree™ InfiniBand

InfiniScope™ Network Monitoring

FREE 15-day trial available
at microway.com

http://www.microway.com/quickquote
http://www.mircoway.com

