
EMBEDDED LINUX

Backbone.js | Gumstix | DNSSEC | Buildroot | Tiny Core

Since 1994: The Original Magazine of the Linux Community

TIME-SAVING
COMMAND-LINE TRICKS

INSTALL THE
CYANOGENMOD ANDROID
DISTRO ON YOUR PHONE

TRY SUPER-LIGHTWEIGHT
TINY CORE LINUX

™

+INTERVIEW WITH HEXAPOD
DEVELOPER MATT BUNTING

DEBUG
EMBEDDED

LINUX
PLATFORMS

WITH
PYTHON

AND GDB

APPLYING
SPEECH

I/O IN
EMBEDDED

APPLICATIONS

0 09281 03102 4

0 6

$5.99US $5.99CAN

JUNE 2011 | ISSUE 206
www.linuxjournal.com

Getting Started
with Buildroot

Authenticate
Users with OAuth

http://www.linuxjournal.com

More TFLOPS,
Fewer WATTS

GSA Schedule
Contract Number:
GS-35F-0431N

Configure your next Cluster today!
www.microway.com/quickquote
508-746-7341

FasTree™ QDR InfiniBand Switches and HCAs

 36 Port, 40 Gb/s, Low Cost Fabrics

 Compact, Scalable, Modular Architecture

 Ideal for Building Expandable Clusters and Fabrics

 MPI Link-Checker™ and InfiniScope™ Network Diagnostics

Enhanced GPU Computing with Tesla Fermi

 480 Core NVIDIA® Tesla™ Fermi GPUs deliver 1.2 TFLOP
single precision & 600 GFLOP double precision performance!

 New Tesla C2050 adds 3GB ECC protected memory

 New Tesla C2070 adds 6GB ECC protected memory

 Tesla Pre-Configured Clusters with S2070 4 GPU servers

 WhisperStation - PSC with up to 4 Fermi GPUs

 OctoPuter™ with up to 8 Fermi GPUs and 144GB memory

New Processors

12 Core AMD Opterons with quad channel DDR3 memory

 8 Core Intel Xeons with quad channel DDR3 memory

 Superior bandwidth with faster, wider CPU memory busses

 Increased efficiency for memory-bound floating point algorithms

Microway delivers the fastest and greenest floating
point throughput in history

Achieve the Optimal Fabric Design for your Specific
MPI Application with ProSim™ Fabric Simulator
Now you can observe the real time communication coherency
of your algorithms. Use this information to evaluate whether
your codes have the potential to suffer from congestion.
Feeding observed data into our IB fabric queuing-theory
simulator lets you examine latency and bi-sectional bandwidth
tradeoffs in fabric topologies.

2.5 TFLOPS

5 TFLOPS 10 TFLOPS

45 TFLOPS

FasTree 864 GB/sec
Bi-sectional Bandwidth

pC2_Microway.indd 1pC2_Microway.indd 1 7/15/10 9:20:43 AM7/15/10 9:20:43 AM

http://www.microway.com/quickquote

The Lullabot Learning Series includes everything you need to become a
Drupal & jQuery expert from the comfort of your living room! The videos

are available in both DVD format and high-defi nition video download.

Purchase the videos at http://store.lullabot.com

Learn Drupal & jQuery
FROM THE COMFORT OF

YOUR LIVING ROOM

http://store.lullabot.com

2 | june 2011 www.l inux journa l .com

ON THE COVER
• Time-Saving Command-Line Tricks, p. 32
• Install the CyanogenMod Android Distro

on Your Cell Phone, p. 64
• Try Super-Lightweight Tiny Core

Linux, p. 67
• Interview with Hexapod Developer

Matt Bunting, p. 40
• Debug Embedded Linux Platforms with

Python and GDB, p. 46
• Applying Speech I/O in Embedded

Applications, p. 58
• Getting Started with Buildroot, p. 72
• Authenticate Users with OAuth, p. 76

40
Hexapod—a
Linux-Powered
Spider Robot
Interview with
Matt Bunting,
the hexapod
robot developer.

Anton Borisov

46
Debugging
Embedded
Linux Platforms
with GDB
and Python
GDB provides
support for
scripting debug-
ging actions
using a Python
interpreter.

Tom Parkin

52
Breaking
Free the
Gumstix DSP
Setting the
Gumstix Overo
Fire ablaze with
the DSP.

James McColl

58
Speech I/O
for Embedded
Applications
Speech I/O
works! See how
to apply it in
your next
embedded
application
project.

Rick Rogers

FEATURES

CONTENTS JUNE 2011
Issue 206

http://www.linuxjournal.com

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

10 Gig On Board

30% cost savings/port over equivalent Dual-
Port 10 GB PCI Express add-on card solution

Blazing Fast, Embedded 10Gb Ethernet

10G Rackmount Servers in the iX-Neutron server line feature
the Intel® Xeon® Processor 5600/5500 Series, and come with
10GbE networking integrated onto the motherboard. This
eliminates the need to purchase an additional expansion
card, and leaves the existing PCI-E slots available for other
expansion devices, such as RAID controllers, video cards,
and SAS controllers.

For more information on the iX-1204-10G, or to request a quote,
visit: http://www.iXsystems.com/neutron

KEY FEATURES:
 . Supports Dual 64-Bit Six-Core, Quad-
 Core or Dual-Core, Intel® Xeon® Processor
 5600/5500 Series
 . 1U Form Factor with 4 Hot-Swap SAS/
 SATA 3.5” Drive Bays
 . Intel® 5520 chipset with QuickPath
 Interconnect (QPI)
 . Up to 192GB DDR3 1333/1066/800
 SDRAM ECC Registered Memory (18
 DIMM Slots)
 . 2 (x8) PCI-E 2.0 slots + 1 (x4) PCI-E 2.0 (in
 x8 slot -Low-Profile - 5.5” depth)
 . Dual Port Intel® 82599EB 10 Gigabit SFP+
 - Dual Port Intel® 82576 Gigabit Ethernet
 Controller
 . Matrox G200eW Graphics
 . Remote Management - IPMI 2.0 + IP-KVM
 with Dedicated LAN
 . Slim DVD
 . 700W/750W Redundant AC-DC 93%+
 High-Efficiency Power Supply

10Gb Ethernet
Adapters

IPMI NIC

GigE NICS
10GbE NICS

http://www.iXsystems.com/neutron
http://www.iXsystems.com

CONTENTS JUNE 2011
Issue 206

4 | june 2011 www.l inux journa l .com

USPS LINUX JOURNAL (ISSN 1075-3583) (USPS 12854) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 310, Houston, TX 77056 USA. Periodicals postage paid at Houston,
Texas and at additional mailing offices. Cover price is $5.99 US. Sub scrip tion rate is $29.50/year in the United States, $39.50 in Canada and Mexico, $69.50 elsewhere. POSTMASTER: Please
send address changes to Linux Journal, PO Box 16476, North Hollywood, CA 91615. Subscriptions start with the next issue. Canada Post: Publications Mail Agreement #41549519. Canada
Returns to be sent to Pitney Bowes, P.O. Box 25542, London, ON N6C 6B2

COLUMNS
18 Reuven M. Lerner’s At the Forge

Backbone.js

24 Dave Taylor’s Work the Shell
More Fun with Days and Dates

26 Mick Bauer’s Paranoid Penguin
DNS Cache Poisoning, Part II: DNSSEC Validation

32 Kyle Rankin’s Hack and /
Lightning Hacks—the Command Next Door

80 Doc Searls’ EOF
Whatever Sinks Your Boat

INDEPTH
64 CyanogenMod 7.0—Gingerbread in

the House
What happens when you mix powerful,
Linux-powered cell phones with an active Open
Source community?

Shawn Powers

67 Tiny Core Linux
An intro to this very small, run-in-memory distro.

Joey Bernard

72 Roll Your Own Embedded Linux System
with Buildroot
Embedded Linux, the easy way.

Alexander Sirotkin

76 A Primer to the OAuth Protocol
OAuth is a simple way to authenticate users.

Adrian Hannah

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
14 UPFRONT
34 New Products
36 New Projects
65 Advertisers Index
79 Marketplace

37 NUT—NUTRITION SOFTWARE

64 CYANOGENMOD 7.0 67 TINY CORE LINUX

72 BUILDROOT

http://www.linuxjournal.com

mailto:info@opalevents.org
http://www.opalevents.org/print/LJ
mailto:marketing@opalevents.org

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Proofreader

Publisher

General Manager

Senior Sales Manager

Associate Publisher

Webmistress

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Joseph Krack
joseph@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti • Ludovic Marcotte

Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf • Justin Ryan

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Steve Case

Kalyana Krishna Chadalavada • Brian Conner • Caleb S. Cullen • Keir Davis
Michael Eager • Nick Faltys • Dennis Franklin Frey • Alicia Gibb
Victor Gregorio • Philip Jacob • Jay Kruizenga • David A. Lane

Steve Marquez • Dave McAllister • Carson McDonald • Craig Oda
Jeffrey D. Parent • Charnell Pugsley • Thomas Quinlan • Mike Roberts

Kristin Shoemaker • Chris D. Stark • Patrick Swartz • James Walker

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 818-487-2089

FAX: +1 818-487-4550
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 16476, North Hollywood, CA 91615-9911 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/dlissue

The archive includes all 200 issues of Linux Journal, from the premiere
issue in March 1994 through December 2010. In easy-to-use HTML format,
the fully searchable, space-saving archive offers immediate access to an

essential resource for the Linux enthusiast: Linux Journal.

www.LinuxJournalStore.com

ALL 200
ISSUES!

The newly updated
LINUX JOURNAL ARCHIVE

is here!

http://www.LinuxJournalStore.com

SHAWN POWERS

L et’s face it, the Linux install base is shrinking.
No, of course I don’t mean numbers, I mean
the actual size of the devices onto which

Linux is installed. Just like with Alice’s trip down the
rabbit hole, we’re seeing our favorite OS embedded
on smaller and smaller hardware. This month, we
talk about some of those places and teach you how
to make a “Drink Me” bottle for your own projects.

Reuven M. Lerner starts us out with Backbone.js.
Making Web applications, whether big or small, is
an invaluable skill. Every Web device supports
JavaScript (for the most part), and Backbone.js helps
make those Web apps seem like traditional desktop
applications. Mick Bauer provides Part II of his series
on DNS cache poisoning, which can affect all users.
Whether you are using a Droid in your pocket,
Linux on your lap or a server in your workroom,
DNS is how you get things done on-line. Everyone
is vulnerable, so be sure to read up!

If installing Linux on something as mundane
as a phone isn’t your cup of tea, you’ll likely be
interested in Anton Borisov’s article on the Linux-
powered spider robot, hexapod. A device right
out of a science-fiction movie, and also my
nightmares, the spider bot is powered by Linux.
Anton interviews its creator, Matt Bunting, and
explains how it works. Tom Parkin talks about
bugs this month too, although his article is a
little less creepy. Tom shows how to de-bug
embedded Linux platforms with GDB and
Python. If you’re a Linux developer, chances
are you’re familiar with GDB. Tom demonstrates
version 7, which now has Python support.

When it comes to embedded Linux projects,
they don’t get much smaller than with the Gumstix.
James McColl walks us through compiling a custom
kernel for the Gumstix Overo Fire. If you want to
install Linux on a device you could disguise as a
stick of chewing gum, or if you’re just interested
in learning to compile custom embedded kernels,
be sure to check it out.

What could be scarier than the robotic spider,
hexapod? Well, perhaps if that same spider bot
were able to speak to us. Rick Rogers explores
speech recognition and synthesis for embedded
systems. Although the technology certainly isn’t

limited to autonomous spider robots, I fear our
readers might try to do just that. If you do, please
don’t send me one for review.

We’ve got other Linux distributions designed
for embedded systems this month, one of which
is CyanogenMod 7.0. I had the opportunity to
interview Steve Kondik from the CyanogenMod
team, and I show off some of the new features
of this cutting-edge Android ROM. Tiny installs
of Linux certainly aren’t a new idea, and Joey
Bernard shows us a tiny distribution designed for
computers. Even cell-phone developers would
have a hard time beating the space saved by
Tiny Core Linux. At 10MB, it has a full graphical
environment and can run completely in RAM.

Perhaps the idea of a premade distribution
leaves a sour taste in your mouth. That’s fine too.
Alexander Sirotkin shows how to roll your own
embedded Linux system with Buildroot. This is useful
for times when an existing distribution doesn’t suit your
needs—for example, if you were building a sentient
robotic spider that could talk and understand the
spoken word. You’d most likely want to build a
custom embedded Linux environment, so you could
include the WORLD_DOMINATION.c module and,
my favorite, the STAY_AWAY_FROM_SHAWN.c
module. The latter is available to any robotic spider
programmers free of charge.

This month isn’t all about embedded Linux,
however. Whether you learn about using the
OAuth protocol from my friend Adrian Hannah or
want to figure out days of the week in a script
with Dave Taylor, this issue has you covered.
We’ve also got our regular lineup of new product
announcements, UpFront tidbits and enough
geeky tips and tricks to keep any Linux lover
happy. And remember, if this embedded issue is
making you feel a bit too small, we’ll try to save
you some of that cake with the “Eat Me” sign
next to it. It worked for Alice!�

Shawn Powers is the Associate Editor for Linux Journal. He’s also the Gadget
Guy for LinuxJournal.com, and he has an interesting collection of vintage
Garfield coffee mugs. Don’t let his silly hairdo fool you, he’s a pretty
ordinary guy and can be reached via e-mail at shawn@linuxjournal.com.
Or, swing by the #linuxjournal IRC channel on Freenode.net.

The Bottle Labeled
“Drink Me”

Current_Issue.tar.gz

8 | june 2011 www.l inux journa l .com

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com
http://webchat.freenode.net/?channels=linuxjournal

Note: this code is valid off the individual SIIA
non-member/OpSource non-customer rate only

and does not apply to current attendees.

Register Now Online

• Microsoft

• IBM
• SafeNet
• SAP

• Grant Thornton

• Dell Boomi

• Progress Software

• Accenture
• Agilis Solutions
• Host Analytics
• Ping Identity
• Rackspace
• Savvis
• SoftLayer Technologies

• NTT America

• AppFirst

• Corent Technology, Inc.
• FiancialForce.com
• Informatica
• Keynote
• Pervasive
• SaaShr.com
• XBOSoft, Ltd.

• Backbone Magazine
• CIOZone
• Cloudbook
• CloudTweaks
• Integration

Developer News
• Mashable
• Saugatuck

Technology Inc.
• Software Pricing

Partners
• THINKstrategies

• DreamSimplicity

Plan your participation now in the software
industry’s most comprehensive annual ISV
conference for Cloud Computing!

If you are passionate about:

• securing the cloud
• business in the cloud
• platforms & infrastructure
• social cloud

• integrating in the cloud
• mobile cloud
• government cloud
• monetizing cloud

then you MUST attend All About the Cloud!

http://allaboutthecloud.net

Acer Aspire One and Linux
I noticed that someone said the back-
ground of the Acer Aspire One cannot be
changed, so far as he or she knows—
presumably when running a Linux-based OS.
Well, the background can be changed easily.
Just right-click anywhere on the desktop
and select the tabbed option for back-
ground. Also, you can add more pictures
from your own pictures folder if you want.

But, that won’t work if you are using the
Netbook version of, for example, Ubuntu.
In that case, you need to go to your
own pictures folder and click on a pic-
ture. Then, there is an option to access
background preferences.

I purchased an Acer Aspire One, AOD260,
which had Windows XP as its OS. I
“upgraded” it myself to the full version of
Windows 7 Premium as the primary OS and
Linux Ubuntu (full) as the secondary. Both
worked fine except for an irritating failure
on Internet time updating. Since then, I
have changed permanently to Linux Ubuntu
(full version) and it is running beautifully.

--
Derek

Netflix and Linux
I have heard you mention the inability to

stream Netflix content and share your
angst with that fact. However, recently,
we have been given that ability! Some
people will shun me for admitting this,
but I use Google Chrome as my browser
(yes, despite its inherent memory leaks),
but the latest stable update I received
added Chrome WebApp functionality,
and guess what? There is a Netflix app!
I don’t have a login anymore, because I
canceled my subscription because I can’t
stand booting Windows every time I
want to watch a movie. Let me know if
it works. I am very curious. It started for
me, but I wasn’t able to test it.

--
Philip

Sadly, no. The problem with Netflix under
Linux is that Netflix uses Silverlight for its
streaming/playback/rendering solution.
Although we do have Moonlight, a Linux
native version of Silverlight, it doesn’t
support DRM, so the video will not start
streaming.—Ed.

Boot Challenge
First, thank you for a wonderful magazine.
I’m on my third annual subscription, and I
really look forward to reading it every month.

I have a challenge that I would like to
put forward, after reading the article on
UNetbootin that I hope you may consider
taking. [See Joey Bernard’s “Linux on a
Fingernail” in the Upfront section of the
March 2011 issue.]

Recently, I bought a Zotac Zbox that I wish
to run Linux on. I have one SD card and
a USB stick. Both are recognized by the
system. In the BIOS, I can set either as
the first boot device, which will become
/dev/hda for Linux. I want to make the
SD card my “hard drive”.

I used UNetbootin to create the USB
stick bootable with an installer ISO. The
aim is to install Linux on the SD card and
later boot from it. Booting goes okay,
and I can install Linux (CentOS in my
case) on the SD card. Later, I wanted to
boot from the SD card, but as you might
have guessed, CentOS installed on

/dev/hdb, and hence, will not boot.

I have thought of different options, like
attaching an external SATA DVD-ROM
drive and booting from that, but that
would be too simple, plus, I don’t have
such a drive. The other option (not
tested) is to install Syslinux on the SD
card, boot from it, and use GRUB to
boot the USB stick with an installer
ISO image that has been made with
UNetbootin, and then install to
/dev/hda. A third option (not tested
either) would be PXE boot, but I don’t
have a PXE server at this time. The
fourth option is to go back to my
installed CentOS on the SD card and
modify the mount options and the
bootloader (not tested either). So,
I hope you will take my challenge!

--
Simon Stavdal

I would recommend the fourth option, and
possibly mounting with the UUID instead
of the device name. (Ubuntu does this by
default.) You’ll likely still have to fiddle
with GRUB as well, but it should work. I’ll
admit though, sorting out these sorts of
problems can be very frustrating.—Ed.

Spaces in Filenames, Revisited
Regarding Dave Taylor’s article “Dealing
with Spaces in Filenames” in the February
2011 issue, I never put spaces in my file-
names when I create file/folders. But I do
get files from others that have spaces in
them. I used to leave those files with the
spaces in them, even though they are not
good. Your article got me to change that,
so I wrote a simple script that seems to
work real well. Here it is:

for s is *\ *

do

rename 's/ /_/g' "$s"

sleep 1

printf "Removing spaces from

$s\n"

done

Thanks for your great article.

--
caseesac

1 0 | june 2011 www.l inux journa l .com

letters

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 1 1

Author Update on “Zotonic: the
Erlang Content Management
System”, LJ, April 2011
As it stands, the default Zotonic branch
is under heavy development, and instal-
lation instructions have changed slightly.
You can clone the 0.6 version instead
using hg clone -r release-0.6.x
https://zotonic.googlecode.com/hg/
zotonic. If you want to live on the edge, see
the new instructions for the default branch:
code.google.com/p/zotonic/source/
browse/doc/INSTALL. You also can
check out the very active Zotonic Google
group if you need further help.

--
Michael Connors

Fedora Packagers Refuse to Fix
Security Hazard in glibc Packages
A security hazard was introduced in glibc
as of version glibc-2.12.90-4 and has been
left uncorrected for nearly four months.
Namely, glibc allows other programs to
overwrite adjacent memory blocks.

The bug was narrowed down to an inappro-
priate use of memcpy instead of memmove
in glibc on 08.11.2010—see comments 37
and 38 of https://bugzilla.redhat.com/
show_bug.cgi?id=638477.

Unfortunately, this bug thread has
disintegrated into a debate over the
pros and cons of support for proprietary
software, completely ignoring the main
issue—a security hazard in glibc that
needs to be fixed immediately. Despite
critical comments from Linus Torvalds
(see comments 199 and 222), nothing
has changed.

The only other possible course of action is
to advise Fedora 14 users to downgrade
or roll back glibc until such time as this
bug is fixed.

--
Simon Lewis

Thank you for the heads up. Instances like
this are the reason I try not to be smug as
a Linux user. Yes, our systems are designed
well and are usually rock solid, but a
coding error is a coding error. We are
not impervious to bugs.—Ed.

Paul Barry’s “Python for
Android”, LJ, March 2011
I’ve been a loyal reader for some time,
mostly because of articles like “Python

for Android” by Paul Barry. Not only
did things work exactly as described,
but the descriptions themselves were
perfect for a technical but not über-geek
like myself.

Sadly, I did run into trouble when trying
to follow the article using a physical
Android phone. My phone has “security
features” that prevent loading of applica-
tions that do not pass through the mobile
carrier’s “App Market” toll booth. I suspect
that I’m not alone with this restriction.
My troubles are complicated further by
the fact that most postings about “side
loading”—getting apps onto phones
using various unofficial techniques—
require and presume root access. Neither
of these will frighten a thoroughbred
developer (aka, “geek”), but fear of
bricking one’s smartphone remains
daunting to most bank accounts.

--
Dan St. Andre

Paul Barry replies: Thanks for the kind
words, Dan. Unfortunately, some ven-
dors are intent on sealing tight what
should be an open platform. This might
make business sense to them, but it
certainly makes life difficult for some
of their users (especially us hacker types
who want to control everything their
smartphones can do). I’ve very little
experience rooting Android devices,
although there’s plenty of help on
the Net. You may wish to search
answers.oreilly.com for articles by
Brian Sawyer. Brian was the editor on
my two Head First books and (as well as
an editor) is a published Android author.
He has tried most things on his smart-
phone and offers some good advice on
getting root access. Search for “How to
root your Android phone with one
click”, and take things from there. But,
be careful, as the possibility of bricking
is an issue, so tread carefully.

Cool Application Package
I don’t recall which monthly Linux
magazine recently asked readers to
submit their favorite applications that
they can’t live without.

I’ve been a longtime user of the XFCE,
and one thing it has that I haven’t
found anywhere else is the ability to run
the mouse off the edge of the screen
onto the next screen and wrap around

from the last screen to the first again.

Brightside does this for GNOME, and it
works on Ubuntu Netbook Remix Unity
as well. It also does vertical screen
switching for screen layouts that are
not side by side.

--
honkytonkwillie

I often set up my desk like this at work. I
have three monitors and three operating
systems. Using Synergy, I can move my
mouse between them all and have them
wrap from the last to the first as well.
Doing the same on virtual desktops in a
single screen might be interesting.
Thanks for the tip.—Ed.

Thank You, Kyle
I read most issues of Linux Journal cover
to cover; it’s the only mag that grabs so
much of my attention. For all the excellent
contributors, one stands out perhaps even
just a little more: Kyle Rankin.

Coming from a Mac background, learning
Bash was a weakness for me initially, but
Kyle’s column has taught me enough to feel
confident doing things I’d never considered
before. I feel like I truly own my machine
now, and a big part of that is Kyle’s experi-
ence coupled with his excellent writing style.

In fact, I recently decided to install an
experimental server in my office, so of
course, my first choice was Kyle’s Official
Ubuntu Server book—every bit as good as
his column here.

Many thanks to Kyle and the others there
at Linux Journal who’ve helped turn me
from a total noob into someone who’s
feeling confident and competent. You
folks are the best!

PS: Thanks for your SCaLE 9x sponsor-
ship. I loved the conference, and I really
appreciate the role Linux Journal played
in supporting it.

--
Richard Gaskin

Yeah, we like Kyle around these parts as
well. As far as his book goes, I’ve been a
Linux admin for more than 15 years, and
I still refer to his Official Ubuntu Server
Book rather often. Which reminds me,
I still need to get my second edition
signed.—Ed.

[LETTERS]

http://www.linuxjournal.com
https://bugzilla.redhat.com/show_bug.cgi?id=638477
http://code.google.com/p/zotonic/source/
http://code.google.com/p/zotonic/source/
https://bugzilla.redhat.com/show_bug.cgi?id=638477
http://answers.oreilly.com

1 2 | june 2011 www.l inux journa l .com

[LETTERS]

More on Paul Barry’s “Python for Android”
I really enjoyed Paul Barry’s “Python for Android” article. Working through it
though, I thought about how Paul had the readers develop the program twice—
once to run on a common computer for the proof of concept, then again to add
the Android UI and remove the debugging print statement.

Once a programmer is more familiar with Python than with Android, I think it
can help to have some test tools to deal with the whole program while it’s
being developed outside the simulator. I put this module, named android.py,
in my development directory:

class Android (object):

'''Emulate android API without android.'''

def _ _getattr_ _ (self, name):

'''Presume that unknown attribute requests are for methods.'''

def log_method (*args, **kwargs):

print 'Android.%s ::' % (name,), args, kwargs

return log_method

def dialogGetResponse (self, *args, **kwargs):

class DGR (object):

def _ _init_ _ (self, result='???'):

self.result = result

print 'Android.dialogGetResponse ::', args, kwargs

return DGR ('OK')

This traces most API calls along with the given parameters. dialogGetResponse
was cobbled together specially to keep LJapp.py from failing. Running LJapp.py
with android.py in an ordinary non-Android shell session gives:

mwilson@tecumseth:~/sandbox/android-app$ python LJapp.py

Android.makeToast :: ('Hello from LJapp.',) {}

Android.dialogCreateSpinner :: ('LJapp',

�'Checking the price of coffee...')

{}

Android.dialogShow :: () {}

Android.dialogDismiss :: () {}

Android.vibrate :: () {}

Android.dialogCreateAlert :: ('The current

�price of coffee beans:',) {}

Android.dialogSetItems :: ([5.1900000000000004],) {}

Android.dialogSetPositiveButtonText :: ('OK',) {}

Android.dialogShow :: () {}

Android.dialogGetResponse :: () {}

Android.makeToast :: ('bye',) {}

Of course in Python, test frameworks and test-driven development are huge things;
this is mere baby talk compared to what developers will be doing very soon. I think
it’s interesting anyway.

--
Mel Wilson

Paul Barry replies: Thanks for sending this. It’s a pretty cool piece of code. Could
I suggest that you sign up to the SL4A mailing list and share this script with the
developers frequenting the list?

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-818-487-2089. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 16476, North Hollywood, CA
91615-9911 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit
them at www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,
Houston, TX 77098 USA. Letters may be edited
for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

http://www.linuxjournal.com
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters

co-presented by

©
20

11
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 lo
go

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
12

23

MAY 16–19
BALTIMORE, MARYLAND2011

REGISTER NOW & SAVE 15%
Use discount code rc11ljr

Presented by

©
20

11
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 lo
go

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
13

74

June 14–16
Santa Clara, California2011

REGISTER NOW & SAVE 15%
Use discount code vel11ljr

http://en.oreilly.com/rails2011
http://velocityconf.com/velocity2011

1 4 | june 2011 www.l inux journa l .com

UPFRONT
N E W S + F U N

Dropbox Tips
and Tricks
Dropbox, or one of the alternatives like
Ubuntu One or SparkleShare, are great
tools for keeping computers in sync.
They offer some unique abilities as
well. Here are a few of our favorites:

� Keep config folders, like Pidgin’s
.purple directory in your Dropbox, and
symlink to it in your home directory. It
saves entering the same information
on your computers.

� Have your home computer monitor
a specific folder inside Dropbox for
torrent files. Then, whenever you
want to download a torrent at
home, just put the torrent file into
your folder on any computer, and it
will start downloading at home.

� Keep your favorite desktop wallpaper
photos in Dropbox, so you have
access to all your NASA astronomy
pictures on your various desktop
and laptop computers. (This works
for non-NASA photos too, but
why would you want non-space-
based wallpaper?)

� Use Dropbox in combination with
Calibre and Calibre2opds to keep your
e-book library on-line and always
accessible. It makes downloading a
book from your collection simple when
you’re on vacation and forget to pack
enough books.

Do you have more Dropbox tips? Send
them to me at shawn@linuxjournal.com,
and I’ll publish the good ones on
LinuxJournal.com.

—SHAWN POWERS

Ahmed S. Darwish recently initiated an abortive effort to improve the way system
crashes were logged. When a system, particularly a laptop, crashes very early in the

boot process, typically no record is kept. Ahmed’s idea was to rely on BIOS routines

to write logging information to disk even if a crash occurs almost immediately.

There was a lot of interest in Ahmed’s work, since it could be a significant aid

to debugging. But, Linus Torvalds torpedoed the idea, saying, “No way in hell

do I want the situation of ’the system is screwed, so let’s overwrite the disk’ to

be something the kernel I release might do. It’s crazy. That disk is a lot more

important than the kernel.” So clearly, this type of feature almost certainly will

remain a third-party patch for a long time to come.

The ARM architecture has quite a few implementations of the clk struct,
which annoyed Jeremy Kerr and inspired him to rewrite them all into a single

generic implementation. A lot of folks pitched in with suggestions. Some of the

trickier points involved identifying the proper way to tell when multiple devices

were using a single clock. It also was important to make sure that the generic

code have appropriate boundaries, so it would be easier to write special case

code for the systems that needed it.

Oren Weil of Intel has submitted a patch to support Intel’s new management
engine. Unfortunately, there was a variety of problems with the patch submission

process itself, including leaving off the crucial Signed-Off-By headers, among other

things. So, much of the discussion centered around that instead of the code. One

key problem was that patches are never supposed to break the kernel build. This is

essential even if subsequent patches would fix the build. The reason is that developers

need to be able to rely on “git bisect” to track down bugs, and this is possible only if

every version of the kernel builds properly. This also makes for a cleaner development

process in general, in which no single project is stuck waiting for another project to

fix the build before it can continue doing its own tests and development.

Thomas Gleixner has revamped the generic interrupt handling code in the

kernel. This was partly done to clean up naming conventions so as to be easier for

developers to understand, but it also was done to encapsulate the various features

of the system, so developers couldn’t abuse them anymore—or at least so developers

who abused them would be easy to identify and stop. One of the goals is to extend

the IRQ handling code gradually to accommodate the special needs of all the various

projects out there, and that’s more difficult to do when folks are reaching their

misshapen prongs into the guts of the code.

Eric Paris wanted to re-introduce a global capabilities bounding set to make

it possible to remove a capability from the system in such a way that it could not be

gotten back. The idea would be to remove some key capabilities and then hand root

access over to untrusted entities. Eric’s idea was that this would keep the system

secure. Unfortunately, Linux security is implemented primarily in terms of ways to

prevent root access, rather than ways to mitigate the effect of granting root access.

The assumption made by virtually all kernel developers is that once a user has

gained root access, that’s the ball game. So something like Eric’s subtle manipulation

of root privileges does not ring true to most kernel folks.

—ZACK BROWN

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com

www.l inux journa l .com june 2011 | 1 5

[UPFRONT]

If you’re a fan of Quicksilver on OS X or GNOME Do on Linux, Launchy might be just the
thing your Windows install needs. An open-source application launcher, Launchy stays out
of the way until you need it. A simple keystroke brings it to the foreground and helps you
launch whatever application you desire. Check it out at www.launchy.net.

—SHAWN POWERS

NON-LINUX FOSS

We Want to Hear from YOU at LinuxJournal.com
The Internet is a marvelous thing. I know, “Welcome to 1995, Katherine”, but hear me out. You hold in your hands a marvelous
source of information about Linux and open-source software. I think it’s a pretty fantastic use of paper and ink, but it’s a one-way
street. LinuxJournal.com on the other hand, allows for numerous opportunities to communicate both ways. I’d love to see each of
you take advantage of the on-line community to exchange ideas in the comments sections of your favorite articles or communi-
cate with our authors and staff directly via our LinuxJournal.com profiles (I’m www.linuxjournal.com/users/webmistress). Visit
often to check out the latest poll and vote. Wondering which office software Linux Journal readers prefer? Now you know:
www.linuxjournal.com/content/whats-your-favorite-office-program.

We want to hear from you so we can continue to provide you with the content you enjoy most and to get to know you a little
better. Don’t be shy! Visit LinuxJournal.com and say hi.

—KATHERINE DRUCKMAN

Adding More Awesome to Your Office
Whether you prefer OpenOffice.org or LibreOffice, which currently still are pretty similar, out
of the box, they are missing some of the conveniences installed by their commercial coun-
terparts. Granted, they are fully functional, but if you want a robust clip-art library and a
decent selection of document templates, you’ll want to add some extensions and templates.

Browse on over to extensions.services.openoffice.org and
templates.services.openoffice.org to pick up some add-ons that will make your office

suite shine. Whether you want
to add a few graphics to your
document or spice up your
next presentation, the options
are extensive.

Also, if your user has write
access to the system files, you’ll
get the option to install exten-
sions for all users or just the
current user—an awesome
boon for sysadmins like myself!

—SHAWN POWERS

All sorts of computer

errors are now turning up.

You’d be surprised to

know the number of

doctors who claim they

are treating pregnant men.

—Isaac Asimov

Humanity has the stars

in its future, and that

future is too important to

be lost under the burden

of juvenile folly and

ignorant superstition.

—Isaac Asimov

I am not a speed reader.

I am a speed understander.

—Isaac Asimov

I do not fear computers.

I fear the lack of them.

—Isaac Asimov

If my doctor told me I had

only six minutes to live, I

wouldn’t brood. I’d type a

little faster.

—Isaac Asimov

They Said It

http://www.linuxjournal.com
http://www.launchy.net
http://www.linuxjournal.com/users/webmistress
http://www.linuxjournal.com/content/whats-your-favorite-office-program
http://www.linuxjournal.com/users/webmistress
http://extensions.services.openoffice.org
http://templates.services.openoffice.org

1 6 | june 2011 www.l inux journa l .com

[UPFRONT]

I’ve been covering various scientific programs the past few
months, but sometimes it’s hard to find a package that does
what you need. In those cases, you need to go ahead and write
your own code. When you are involved with heavy-duty scientific
computing, you usually need to go to parallel computing in order
to get the runtimes down to something reasonable. This month,
I give a crash course in parallel programming so you can get a
feel for what is involved.

There are two broad categories of parallel programs: shared
memory and message passing. You likely will see both types being
used in various scientific arenas. Shared-memory programming is
when all of the processors you are using are on a single box. This
limits you as to how big your problem can be. When you use
message passing, you can link together as many machines as you
have access to over some interconnection network.

Let’s start by looking at message-passing parallel programming.
The most common version in use today is MPI (Message Passing
Interface). MPI is actually a specification, so many different implemen-
tations are available, including Open MPI, MPICH and LAM, among
others. These implementations are available for C, C++ and FORTRAN.
Implementations also are available for Python, OCaml and .NET.

An MPI program consists of multiple processes (called slots),
running on one or more machines. Each of these processes can
communicate with all other processes. Essentially, they are in a
fully connected network. Each process runs a full copy of your
program as its executable content and runs independently of the
others. The parallelism comes into play when these processes start
sending messages to each other.

Assuming you already have some MPI code, the first step in using
it is to compile it. MPI implementations include a set of wrapper
scripts that handle all of the compiler and linker options for you. They
are called mpicc, mpiCC, mpif77 and mpif90, for C, C++, FORTRAN
77 and FORTRAN 90, respectively. You can add extra options for your
compiler as options to the wrapper scripts. One very useful option
is -showme. This option simply prints out the full command line
that would be used to invoke your compiler. This is useful if you
have multiple compilers and/or libraries on your system, and you
need to verify that the wrapper is doing the right thing.

Once your code is compiled, you need to run it. You don’t
actually run your program directly. A support program called
mpirun takes care of setting up the system and running your
code. You need to tell mpirun how many processors you want
to run and where they are located. If you are running on one
machine, you can hand in the number of processors with the
option -np X. If you are running over several machines, you can
hand in a list of hostnames either on the command line or in a
text file. If this list of hostnames has repeats, mpirun assumes you
want to start one process for each repeat.

Now that you know how to compile and run your code, how do
you actually write an MPI program? The first step needs to initialize
the MPI subsystem. There is a function to do this, which in C is this:

int MPI_Init(&argc, &argv);

Until you call this function, your program is running a single
thread of execution. Also, you can’t call any other MPI functions
before this, except for MPI_Initialized. Once you run MPI_Init,

MPI starts up all of the parallel processes and sets up the communi-
cation network. After this initialization work is finished, you are
running in parallel, with each process running a copy of your code.

When you’ve finished all of your work, you need to shut down
all of this infrastructure cleanly. The function that does this is:

int MPI_Finalize();

Once this finishes, you are back to running a single thread of exe-
cution. After calling this function, the only MPI functions that you can
call are MPI_Get_version, MPI_Initialized and MPI_Finalized.

Remember that once your code goes parallel, each processor
is running a copy of your code. If so, how does each copy know
what it should be doing? In order to have each process do some-
thing unique, you need some way to identify different processes.
This can be done with the function:

int MPI_Comm_rank(MPI_Comm comm, int *rank);

This function will give a unique identifier, called the rank, of
the process calling it. Ranks are simply integers, starting from 0
to N–1, where N is the number of parallel processes.

You also may need to know how many processes are running.
To get this, you would need to call the function:

int MPI_Comm_size(MPI_Comm comm, int *size);

Now, you’ve initialized the MPI subsystem and found out who
you are and how many processes are running. The next thing you
likely will need to do is to send and receive messages. The most
basic method for sending a message is:

int MPI_Send(void *buf, int count, MPI_Datatype type,

�int dest, int tag, MPI_Comm comm);

In this case, you need a buffer (buf) containing count elements
of type type. The parameter dest is the rank of the process that
you are sending the message to. You also can label a message
with the parameter tag. Your code can decide to do something
different based on the tag value you set. The last parameter is the
communicator, which I’ll look at a little later. On the receiving
end, you would need to call:

int MPI_Recv(void *buf, int count, MPI_Datatype type,

�int source, int tag, MPI_Comm comm, MPI_Status *status);

When you are receiving a message, you may not necessarily
care who sent it or what the tag value is. In those cases, you can
set these parameters to the special values MPI_ANY_SOURCE and
MPI_ANY_TAG. You then can check what the actual values were after
the fact by looking at the status struct. The status contains the values:

status->MPI_source

status->MPI_tag

status->MPI_ERROR

Both of these functions are blocking. This means that when

Parallel Programming Crash Course

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 1 7

[UPFRONT]

you send a message, you end up being blocked until the message
has finished being sent. Alternatively, if you try to receive a message,
you will block until the message has been received completely.
Because these calls block until they complete, it is very easy to
cause deadlocks where, for example, two processes are both
waiting for a message to arrive before any messages get sent.
They end up waiting forever. So if you have problems with your
code, these calls usually are the first places to look.

These functions are point-to-point calls. But, what if you want
to talk to a group of other processes? MPI has a broadcast function:

int MPI_Bcast(void *buf, int count, MPI_Datatype type,

�int root, MPI_Comm comm);

This function takes a buffer containing count elements of
type type and broadcasts to all of the processors, including the
root process. The root process (from the parameter root) is the
process that actually has the data. All the others receive the data.
They all call MPI_Bcast, and the MPI subsystem is responsible for
sorting out who has the data and who is receiving. This call also
sends the entire contents of the buffer to all the processes, but
sometimes you want each process to work on a chunk of the
data. In these cases, it doesn’t make sense to send the entire data
buffer to all of them. There is an MPI function to handle this:

int MPI_Scatter(void *send, int sendcnt, MPI_Datatype type,

void *recv, int recvcnt, MPI_Datatype type, int root,

MPI_Comm comm);

In this case, they all call the same function, and the MPI
subsystem is responsible for sorting out which is root (the process
with the data) and which are receiving data. MPI then divides the
send buffer into even-size chunks and sends it out to all of the
processes, including the root process. Then, each process can
work away on its chunk. When they’re done, you can gather
up all the results with:

int MPI_Gather(void *send, int sendcnt, MPI_Datatype type,

void *recv, int recvcnt, MPI_Datatype type, int root,

MPI_Comm comm);

This is a complete reversal of MPI_Scatter. In this case, all the
processes send their little chunks, and the root process gathers
them all up and puts them in its receive buffer.

Taking all of the information from above and combining it
together, you can put together a basic boilerplate example:

#include <mpi.h>

// Any other include files

int main(int argc, char **argv){

int id,size;

// all of your serial code would

// go here

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Comm_size(MPI_COMM_WORLD, &size);

// all of your parallel code would

// go here

MPI_Finalize();

// any single-threaded cleanup code

// goes here

exit(0);

}

Hopefully, you now feel more comfortable with MPI programs.
I looked at the most basic elements here, but if you feel inspired,
you should grab a good textbook and see what other functions
are available to you. If not, you at least should be able to read
existing MPI code and have a good idea of what it’s trying to do.
As always, if you’d like to see a certain area covered in this space,
feel free to let me know.

—JOEY BERNARD

Scrivener, Now for Linux!
The folks over at www.literatureandlatte.com
have a rather nifty writer’s tool called Scrivener.
For years, it’s been an OS X-only program for
novelists and screenwriters that acts like a pro-
ject management tool for big writing projects.
Linux users may be familiar with Writer’s Café
from www.writerscafe.co.uk, which is a similar
program. Although Scrivener is a little more
expensive ($45 vs. $40 for Writer’s Café), its
features make it something any novelist should
check out. And, if you try it during the beta
period, Scrivener is free.

Unfortunately, users with existing licenses for
the OS X version of Scrivener cannot transfer
that license to the Linux version. Perhaps once
the final version is released, the Literature and
Latte folks will change their minds. Either way, if
you’re a writer, you’ll want to check out Scrivener or Writer’s Café. Both are neat packages, and now both are Linux-compatible!

—SHAWN POWERS

http://www.linuxjournal.com
http://www.literatureandlatte.com
http://www.writerscafe.co.uk

1 8 | june 2011 www.l inux journa l .com

JavaScript is changing. Actually, I’m not sure how
much of that is true; the underlying language hasn’t
changed too much over the years. But, even if the
language itself isn’t changing, everything else about it
is. There’s a growing interest in server-side JavaScript,
with high-speed applications based on Node.JS (as
described in last month’s column). Browser-based
JavaScript is not only pretty standard, but also executes
very efficiently. And, of course, a number of high-quality,
open-source JavaScript libraries exist, such as jQuery,
MooTools and Prototype, that make it easy to work
with JavaScript within the browser.

So, have our JavaScript demons been exorcised
forever? Not at all. As applications migrate to the
browser, there is a growing interest in making them
even more desktop-like. Sure, JavaScript UI libraries
make it relatively easy to implement desktop-like
functionality, such as drag and drop. But if you want
to create a truly sophisticated, desktop-like application,
you’re going to find yourself lost in a forest of event
callbacks, not to mention widgets that might or might
not be appropriate for such an application.

Thus, it shouldn’t come as a surprise to find that in
the last year or two, a new type of Web application
has emerged—one written almost purely in JavaScript,
which executes inside the browser, and which only
occasionally contacts a server. This turns the usual
model of Web development—in which the majority
of the processing takes place on the server, emitting
HTML and JavaScript that handles things until the next
call to the server—on its head, making the server little
more than a storage facility that stores and retrieves
information determined by the browser application.

You could argue that Google Maps, Gmail and
Google Docs—to choose three famous examples, but
by no means the only ones—have been demonstrating
such capabilities for several years. But until recently, it
was relatively difficult for average developers to create
applications that were heavily based on JavaScript.

Fortunately, things have changed, and in a big way.
If you want to create a rich JavaScript application, you
have a variety of toolkits from which to choose. The
question no longer is whether you can create such an
application, but rather, which tools you will use to cre-
ate it and how it’ll talk to the server. Just off the top of

my head, I can recall Backbone.js, Knockout, JavaScript
MVC, SproutCore, Closure and Cappuccino, and you
can be sure that I’m mentioning only a small fraction
of the toolkits that exist. It might go without saying
nowadays, but I should add that the leading toolkits
are all released under open-source licenses, making it
possible to download, try and explore each of these
libraries without having to worry about licensing
restrictions when downloading or deploying them.

This month, I’m starting a series of columns about
several of these in-browser application development
frameworks, and how you can use them to create
richer, more interesting Web applications. In each case,
I’ll explore how easy it is to get started with the
framework, its relative advantages and disadvantages,
and discuss how you might have it interact with data
on a server.

During the past decade, we have seen a clear
trend toward MVC frameworks on the server side
that provide RESTful APIs. Ruby on Rails isn’t the
only framework that has promoted such a develop-
ment style, but it certainly has pushed developers
hard in those directions, making non-REST and
non-MVC development frustratingly difficult. It
turns out that many of the new, modern JavaScript
frameworks also have adopted the MVC model,
each in its own way and always with differences
between the server-side model that Rails developers
might expect.

Using MVC on the browser and on the server
(which I like to call MVC-squared, but maybe that’s just
me) turns a Web application into two separate software
systems: one on the server that’s basically exposing a
RESTful, JSON API to the world, and another in the
browser that’s consuming a RESTful, JSON API from a
server. Decomposing the program into these two parts
makes it easier to split the development work across
two individuals or groups, as well as to organize the
code in a smarter way. I’ll have more to say about this
in the coming months, as I connect JavaScript applications
to back-end storage systems.

This month, I take an initial look at Backbone.js, a
very small JavaScript library that has been getting a fair
amount of press recently. And, I explain how to build a
simple application using Backbone.js, creating functionality
that exists completely within the browser.

The Basics
Backbone.js, as I indicated above, follows the model-
view-controller (MVC) paradigm that has been used by
software developers for several decades, and that has

Backbone.js
Write simple MVC applications in JavaScript with Backbone.js.

AT THE FORGE
COLUMNS

REUVEN M. LERNER

So, have our JavaScript demons
been exorcised forever?

http://www.linuxjournal.com

become ubiquitous in server-side Web development
during the past few years. An MVC application has
three distinct parts: the model (which provides an
interface to the data itself), the view (which presents
information to the user) and the controller (which
directs the user’s requests to the right models, and
then renders the results in the view). By dividing the
program logic along these lines, it becomes fairly
obvious where each function should go, making the
code more maintainable.

In the MVC world of Backbone.js, the split works
in a similar way. You retrieve and store data in a model
object, individual methods (and URL routes) are defined
in a controller object, and the view shows things in
the user’s browser.

But, if you’re coming from the server-side world,
there are some subtle (and not-so-subtle) differences
between server-side and client-side MVC. For starters,
it’s pretty clear in a server-side program that the model
retrieves data from a database, either relational or
non-relational. By contrast, the model in a JavaScript
application can come from...well, it can come from a
variety of sources, one of which would be a server-side
Web application. I’ll look into this more next month;

for my examples this month, let’s assume that the data
is already in JavaScript and doesn’t need to be loaded
from anywhere.

In a server-side application, the view is actually a
combination of HTML, CSS and JavaScript, rather than
being a single file or format. Actually, the view doesn’t
have to be HTML; it also can be XML, JSON or a variety
of other formats, from CSV to PDF to images. By
contrast, the view in a Backbone.js application typically
is going to rewrite a single part of the current page,
rather than load an entirely new one.

So with this in mind, let’s create a basic
Backbone.js application. I’ve decided to jump onto
the social bandwagon and develop a tiny applica-
tion that lets people look at a list of recipe titles,
click on a title that sounds interesting, and then
read the contents of the recipe in question. The
same principle could apply to an address book, a
diary or even an unusually formatted blog.

So, let’s start with the data model. Creating a data
model in Ruby on Rails (using ActiveRecord) is easy.
You define a subclass of ActiveRecord, thus inheriting
all of its capabilities. Of course, JavaScript doesn’t have
a traditional object model with classes and inheritance,

http://rackmountpro.com
mailto:sales@rackmountpro.com

so Backbone.js needs to use a different paradigm.
Instead, what you do in Backbone.js is invoke the
“extend” function on Backbone.Model. Attributes
passed to Backbone.Model.extend either are treated
as data fields or as methods, depending on whether
they’re data or functions. For example, if you
want to model a single appointment, you could
do it as follows:

Appointment = Backbone.Model.extend({

person: null,

meeting_at: null,

note: null

});

Note that you also could define an “initialize”
attribute, which would take the place of the default
constructor method. In this particular case, I’m not
planning to do anything fancy, which means I can
use the default. To create a new appointment, you
can say:

var new_appointment =

new Appointment({person: 'Barak Obama',

meeting_at: '2011-jul-14',

note: 'Meet with the president'});

You also can replace individual attributes within
an appointment:

new_appointment.set({person: 'Joe Biden'});

Or, you can retrieve an attribute from an appointment:

new_appointment.get('person');

Collections and Controllers
Of course, most people have to schedule more than
one appointment, which means that this example
program needs to keep track of more than one at
a time. Now, you normally might assume that you
simply could store more than one appointment in
a JavaScript array. But, in the world of Backbone.js,
you actually use a special kind of object, known as
a collection, to store appointments.

Why a collection and not simply an array? Mostly
because it works together with other items in Backbone.js.
For example, you can set things such that whenever
you add or remove an element to your collection, it
automatically will invoke another method. For another,
collection objects incorporate the Underscore library
for JavaScript, which defines a number of methods
from functional programming, such as map and
pluck, so retrieving information from your collection
is quite straightforward.

Just as you defined a model by extending
Backbone.Model, you define a collection by extending

Backbone.Collection:

Appointments = Backbone.Collection.extend({

});

Any attributes that you define on the collection
are then available, as data or functions, on collection
objects of this type. In this particular case, I defined
two different attributes, the initialize constructor
and the update_appointment_counter method:

Appointments = Backbone.Collection.extend({

update_appointment_counter: function() {

$("#number-of-appointments").html(this.length);

},

initialize: function(models, options) {

$("#number-of-appointments").html(this.length);

this.bind("add", options.view.add_appointment_row);

this.bind("add", this.update_appointment_counter);

}

});

In this case, the constructor uses jQuery to initialize
the appointment length counter (to zero, given
that the collection is only now being initialized)
and then adds two handlers to the “add” event.
Each time you add a new appointment to this
collection, two different functions will fire. One of them
(options.view.add_appointment_row) will add a new
row to the HTML table containing a list of appointments,
and the other (this.update_appointment_counter)
updates the counter. As you can see, the functions
can be defined in a variety of places; it probably
would have made more sense to put both of these
methods on the view.

Experienced JavaScript programmers know what
“this” is; thus, this.update_appointment_counter
makes sense. But, what is options.view? Well, it
might help to see how you create your collection,
inside the view constructor:

initialize: function() {

this.appointments = new Appointments(null, {view:this});

},

Basically, you’re saying that the appointments
attribute for the view is an Appointments collection,
starting with no data. Passing a second parameter
allows you to set one or more options in a JavaScript
object, which is then available as “options”. Because
the view passes itself (!) as the “view” option when
creating the collection, you then can access the view
from within the collection as options.view.

2 0 | june 2011 www.l inux journa l .com

AT THE FORGE
COLUMNS

http://www.linuxjournal.com

The upshot is that your view, thus, has access
to your collection (as this.appointments), and your
collection has access to our view (as options.view).
This sort of simple, two-way communication is typical
for Backbone.js, which tries to make things as simple
and short as possible.

The code doesn’t include a controller. That’s
because controllers are necessary only if you want to
provide a number of different URLs—well, fragments at
the end of a URL—that invoke different methods. For
now, you can do without it, but a larger application
certainly will require it.

Views
As always in the MVC paradigm, the view is where
things are displayed to (and interact with) the end user.
In the Rails world, a view is almost always rendered by
the controller; your application doesn’t need to create
it explicitly. In the Backbone.js world, a view is just
another object that can be created, often by a model,
and which has many controller-like functions. You
create it, as you might expect, with:

AppView = Backbone.View.extend({

});

So, you can think of Backbone.js views as fragments
of HTML that are added to the current page, plus some
of the functionality that you might associate with a
controller. Each view is associated with a DOM element.
By default, it’s a regular “div” element, but you either
can set it in one place (using the “el” attribute), or
you can set it using a combination of the “tagName”,
“className” and “id” attributes as well.

As with models and collections, you can use the
“initialize” constructor to set up one or more objects.
In the case of this example application, you’ll initialize
your Appointments collection without any element
members, as you saw above when I discussed
that collection.

You also will define an event handler, such that
clicking on the “add-appointment” button will do so:

events: {

"click #add-appointment": "add_appointment"

},

When you click on the button, the following

RACKMOUNT SERVERS

http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/A350

2 2 | june 2011 www.l inux journa l .com

AT THE FORGE
COLUMNS

Listing 1. appointments.html

<!DOCTYPE html>

<html>

<head>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/

�1.4.4/jquery.min.js"></script>

<script src="http://ajax.cdnjs.com/ajax/libs/underscore.js/

�1.1.4/underscore-min.js"></script>

<script src="http://ajax.cdnjs.com/ajax/libs/backbone.js/

�0.3.3/backbone-min.js"></script>

<title>Appointments</title>

</head>

<body>

<h1>Appointments</h1>

<table>

<tr>

<th>Person</th>

<th>Date/time</th>

<th>Note</th>

</tr>

<tr id="new-appointment">

<td><input type="text" name="person" /></td>

<td><input type="text" name="meeting_at" /></td>

<td><input type="text" name="note" /></td>

</tr>

<tr align="center">

<td colspan="3"><input type="button" id="add-appointment"

�value="Add Appointment"/ ></td>

</tr>

</table>

<hr />

<p>Number of appointments:

�</p>

<table id="appointments">

<tr>

<th>Person</th>

<th>Date/time</th>

<th>Note</th>

</tr>

</table>

<script type="text/javascript">

(function ($) {

Appointment = Backbone.Model.extend({

person: null,

meeting_at: null,

note: null

});

Appointments = Backbone.Collection.extend({

update_appointment_counter: function() {

$("#number-of-appointments").html(this.length);

},

initialize: function(models, options) {

$("#number-of-appointments").html(this.length);

this.bind("add", options.view.add_appointment_row);

this.bind("add", this.update_appointment_counter);

}

});

AppView = Backbone.View.extend({

el: $("body"),

initialize: function() {

this.appointments = new Appointments(null, {view:this});

},

events: {

"click #add-appointment": "add_appointment"

},

add_appointment: function() {

var person = $("#new-appointment

�td input[name=person]").val();

var meeting_at = $("#new-appointment

�td input[name=meeting_at]").val();

var note = $("#new-appointment

�td input[name=note]").val();

this.appointments.add({person: person,

�meeting_at: meeting_at, note: note});

},

add_appointment_row: function(model) {

$("#appointments").append("<tr><td>" +

�model.get('person') + "</td>" +

"<td>" + model.get('meeting_at') + "</td>" +

"<td>" + model.get('note') + "</td></tr>");

}

});

var appview = new AppView;

})(jQuery);

</script>

</body>

</html>

http://www.linuxjournal.com

code is executed:

add_appointment: function() {

var person = $("#new-appointment td input[name=person]").val();

var meeting_at = $("#new-appointment td

�input[name=meeting_at]").val();

var note = $("#new-appointment td input[name=note]").val();

this.appointments.add({person: person, meeting_at: meeting_at,

�note: note});

},

In other words, when you click on the
“add-appointment” button, the “click” event
handler executes the add_appointment function.
This function grabs the values from the little form
and uses those values to instantiate a new appointment,
adding it to the collection of appointments.

But, you also have event handlers running on
the collection! The first handler updates the
appointment counter, and the second adds a new
row to the table of appointments. It adds the row
by cheating a little bit. Although it would have
been more elegant to have a second view with an
element of “tr” that would add a new row, I decided
to mimic some of the on-line tutorials I’ve seen,
adding a new row in a slightly simpler way—namely,
an ugly text string.

If I weren’t interested in creating an entirely new
view, I could have used the “template” function that
Backbone.js inherits from underscore.js, giving me
ERb-like templates that can be filled in more nicely.
Something else that I could have done is break this
application into smaller pieces. Although it’s nice to
have everything in a single file when working on
something small, a larger Backbone.js application

could well be put into multiple files, with each file
defining a different object. Developers experienced
with any modern server-side MVC framework, such
as Rails or Django, will understand the advantages
of putting things into separate files.

Conclusion
Backbone.js is one of the smallest and easiest-to-
understand MVC frameworks for JavaScript applica-
tions. It has become quite popular, as evidenced by
the number of blog posts about it in the past few
months. The support that its authors, Jeremy
Ashkenas and others at DocumentCloud, have
offered to many Backbone.js users has been quite
impressive to see as well.

Although this column obviously didn’t go into
great depth about Backbone.js, one shortcoming in
this application should have been obvious. What
happens when the user wants to store data? Right
now, the appointment calendar is not only simple-
minded in its interface and execution (for example,
there’s no way to look at just today’s appointments,
let alone remove or edit existing ones), but it also
fails to provide persistent storage.

Next month, I’ll discuss how you can connect a
Backbone.js application to a persistent back-end
database or server-side MVC application (thus provid-
ing an MVC-squared solution), giving users and devel-
opers the best of both worlds—flexible development
with dynamic JavaScript, but with a robust back end
that can persist data easily.�

Reuven M. Lerner is a longtime Web developer, architect and trainer. He is a
PhD candidate in learning sciences at Northwestern University, researching
the design and analysis of collaborative on-line communities. Reuven lives
with his wife and three children in Modi’in, Israel.

www.l inux journa l .com june 2011 | 2 3

Resources

The home page for Backbone.js is on GitHub, at documentcloud.github.com/backbone. This page points not only to the code, but
also to some tutorials and documentation. In a step that I hope many other authors will follow, the authors of Backbone.js put up a copy
of the source code, thoroughly commented in a beautiful format, at documentcloud.github.com/backbone/docs/backbone.html.

I encourage anyone interested in Backbone.js to read through the code and comments. I certainly learned some things about
Backbone.js in particular and JavaScript in general from reading through this code.

A number of tutorials and blog postings describe how to do interesting things with Backbone.js. A short and to-the-point
tutorial is at www.plexical.com/blog/2010/11/18/backbone-js-tutorial.

A more involved example by Alex Rothenberg, who packaged up this work as a Ruby gem, is at
www.alexrothenberg.com/2011/02/11/backbone.js-makes-building-javascript-applications-fun.html.

Finally, an excellent two-part tutorial on Backbone.js is available at liquidmedia.ca/blog/2011/01/backbone-js-part-1 and
liquidmedia.ca/blog/2011/01/an-intro-to-backbone-js-part-2-controllers-and-views.

http://www.linuxjournal.com
http://www.plexical.com/blog/2010/11/18/backbone-js-tutorial
http://www.alexrothenberg.com/2011/02/11/backbone.js-makes-building-javascript-applications-fun.html
http://documentcloud.github.com/backbone
http://documentcloud.github.com/backbone/docs/backbone.html
http://liquidmedia.ca/blog/2011/01/backbone-js-part-1
http://liquidmedia.ca/blog/2011/01/an-intro-to-backbone-js-part-2-controllers-and-views

2 4 | june 2011 www.l inux journa l .com

I received a very interesting note from a reader—a
note that referred to a very interesting problem:

Many UNIX commands (for example, last) and
log files show brain-dead date strings, such as
“Thu Feb 24”. Does anybody out there have a
script that will convert that to a year, given a
five-year interval and defaulting to the present?

Given a day of the week, a month and a day, is it
possible to calculate quickly the most recent year in the
past when that particular date occurred on that day of
the week? Of course it is!

Various formulas exist for calculating this sort of
thing, but I realized pretty quickly that the handy cal
utility can do the work for us. If you haven’t experi-
mented with it, you’ll be surprised at what it can do.
Here are two quick, relevant examples:

$ cal

March 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

$ cal mar 2007

March 2007

Su Mo Tu We Th Fr Sa

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Any light bulb starting to glow for you? If you
know the month and day, you simply can go backward
looking at that month’s day-of-week layout until finally
you find a match.

In a rudimentary fashion, the basic idea can be
illustrated with a loop, like this:

repeat

cal $month $year | grep $day

if day-of-week matches

echo date $month $day most recently occurred in $year

else

year=$(($year - 1))

end repeat

Of course, the problem is a bit more complicated
(as they always are), partially because of the complexity
of calculating what day a specific date occurs in the
cal output. There’s another complication too, however;
the requested date actually might have occurred in the
current year, so it’s not as simple as starting with the
year 2010 and going backward.

Normalizing Data
The first task is to figure out how to get the infor-
mation from the user. We’ll have only three input
parameters and do relatively little testing for misspelled
day names and so on:

if [$# -ne 3] ; then

echo "Usage: $(basename $0) weekday month day"

echo " (example: $(basename $0) wed aug 3)"

exit 1

fi

That’s straightforward and pretty typical, offering
a nice usage tip if you forget how to use the script.
As is typical of scripts, we return a nonzero result
upon error too.

We can’t work with completely arbitrary data, how-
ever, so when we grab the first few parameters, we’ll
transliterate them into lowercase and chop off all but
the first three letters:

weekday=$(echo $1 | tr '[[:upper:]]' '[[:lower:]]'; | cut -c1-3)

month=$(echo $2 | tr '[[:upper:]]' '[[:lower:]]'; | cut -c1-3)

day=$3

Given “Monday, February 8”, it’d be converted auto-
matically to “mon” and “feb” for subsequent testing.

The Current Date
We also need the current date fields for testing, and to
do this, I’ll demonstrate a very neat trick of date that
makes this incredibly efficient:

More Fun with Days
and Dates
Figuring out how to calculate the year for a given date and day of week
is a task that’s not as easy as it sounds.

COLUMNS

WORK THE SHELL

DAVE TAYLOR

http://www.linuxjournal.com

eval $(date "+thismonth=%m; thisday=%d; thisyear=%Y")

The eval function interprets its argument as if it were a
direct script command. More interesting, date can output
arbitrary formats (as documented in strftime if you want to
read the man page) by using the + prefix, with %m the month
number, %d the day of the month and %Y the year. The
result is that date creates the string:

thismonth=03; thisday=01; thisyear=2011

which then is interpreted by the shell to create and instantiate the
three named variables. Neat, eh?

It turns out that users can specify a month by name or
number on the command line. If it’s already a number, it’ll
survive the transforms intact. If it’s a name though, we also
need the number, so we can figure out whether the date
specified could be earlier this year. There are several ways to
do this, including a case statement, but that’s a lot of work.
Instead, I’ll lean on sed as I quite frequently do:

monthnum=$(echo $month | sed

's/jan/1/;s/feb/2/;s/mar/3/;s/apr/4/;s/may/5/;s/jun/

�6/;s/jul/7/;s/aug/8/;s/sep/9/;s/oct/10/;s/

�nov/11/;s/dec/12/')

Here’s where a misspelled month name is a problem, but that’s
a challenge beyond the scope of this script. For now, however,
we’ll just roll with it.

Could the Date Occur in the Current Year?
The next set of tests is one I rewrote a couple times to ensure that
I wasn’t tripping myself up, because my first thought simply was
to use a test like this:

if [$month -le $thismonth -a $day -le $thisday]

But, then I realized that in edge cases it wouldn’t actually
work properly. For example, let’s say it’s April 4 and you’re
checking for March 11. The month test succeeds, but the day
test fails—not what we want. Instead, let’s use a cascading set
of conditional tests:

if [$monthnum -gt $thismonth] ; then

month is in the future, can't be this year

mostrecent=$(($thisyear - 1))

elif [$monthnum -eq $thismonth -a $day -gt $thisday] ; then

right month, but seeking a date in the future

mostrecent=$(($thisyear - 1))

else

mostrecent=$thisyear

fi

With just this much code, we can at least test the normaliza-
tion of data input and comparison tool. I ran this set of tests on
March 1, by the way:

$ whatyear.sh Monday Aug 3

Decided that for 8/3 we're looking at year 2010

$ sh whatyear.sh mon jan 9

Decided that for 1/9 we're looking at year 2011

$ whatyear.sh mon mar 1

Decided that for 3/1 we're looking at year 2011

$ whatyear.sh mon mar 2

Decided that for 3/2 we're looking at year 2010

It correctly identified that the current date could be a match,
but that the subsequent day (mar 2) had to be in the previous
year for it to be a possibility.

Good. Next month, we’ll put the rest of the LEGO pieces
in the model and have a working script. The big task left?
Parsing the output of cal to figure out the day of the week
for a given date.�

Dave Taylor has been hacking shell scripts for a really long time, 30 years. He’s the author
of the popular Wicked Cool Shell Scripts and can be found on Twitter as @DaveTaylor and
more generally at www.DaveTaylorOnline.com.

www.l inux journa l .com june 2011 | 2 5

http://www.DaveTaylorOnline.com
http://www.linuxjournal.com
http://www.emacinc.com/panel_pc/pdx089.htm
http://www.emacinc.com

2 6 | june 2011 www.l inux journa l .com

Last month, I described, in detail, the problem of DNS
cache poisoning and why it’s fundamentally changed
our understanding of DNS security. Whereas previously
it seemed good enough to keep one’s DNS server
patched and limit the hosts for which it performed
recursive queries and zone transfers, we now have no
choice but to pay attention to the authenticity of DNS
data that our local resolvers and recursing DNS servers
receive from other servers.

This is because the way DNS recursion works makes
it too easy for an attacker to trigger events that lead
directly to that attacker’s injecting forged DNS data into
a recursing server’s cache, resulting in all users who rely
on that server being redirected to impostor “evil twin”
sites for specific e-commerce and on-line banking sites,
or malicious, malware-spreading Web sites and so forth.

I concluded last month by explaining that although
the short-term fix to Kaminsky’s cache-poisoning attack
is to patch DNS software so that recursing servers
randomize their source UDP ports for DNS queries,
this only makes the attack take longer (albeit, much
longer); it doesn’t eliminate it as a threat. The best
protection, rather, is for administrators of authoritative
DNS servers to sign all their zone data cryptographically,
and for administrators of recursing or caching DNS
servers to configure their servers to check the signatures
of all signed zones they come across.

All of this signing/validating functionality is
achieved by way of DNSSEC, a set of extensions to
the DNS protocol. Most modern DNS server software
packages now support DNSSEC (with djbdns as the
most notable exception).

This month, I explain how to configure your
recursing/caching DNS server to check DNS zone
data signatures. Because the Internet Software
Consortium’s BIND package is by far the most popular
DNS server application for UNIX and UNIX-like systems,
my examples all involve BIND.

If you administer your own DNS zones, you also
should sign your own zones and publish your certificates
and signatures, but that’s out of scope for this article.
(See Resources for links to other DNSSEC information
and tutorials. I may cover zone signing and DNSSEC
key management in a future column as well.)

Note that my preferred Linux server distribution

nowadays is Ubuntu Server 10.10, so my examples all
apply directly to Ubuntu and other Debian derivatives.
If you run some other distribution, my examples still
should be useful, because the only peculiar thing
Ubuntu and Debian do in how they package BIND is
to break up its configuration file (named.conf) into
several parts (named.conf.options, named.conf.local
and named.conf.default-zones) that are read into
named.conf via “include” statements.

DNSSEC Overview
Mainly what I want you to get out of this article is how
to enable DNSSEC validation on your BIND-based
nameserver. I probably could fill most of this space
with an overview of what DNSSEC is, how it works
and so forth, but in the interest of conciseness, I give
the low-attention-span version instead.

DNSSEC is a Public Key Infrastructure (PKI) for DNS
zone data. When a zone administrator digitally signs all
of the different types of Resource Records (RRs) in a given
zone, and publishes those signatures and the zone’s
signing key’s public certificate, it then becomes possible
for any recursing nameserver that makes queries against
that zone to validate those signatures and, therefore, to
have cryptographic proof that the answer to a given DNS
query hasn’t been forged or tampered with.

This probably doesn’t sound simple to begin with,
but in practice, it’s much more complicated even than
that. This is because DNS is both hierarchical and dis-
tributed, with a “root” zone at the top and individual
hostnames and other Resource Records at the bottom.
In between are layers of zones and subzones.

Consider the top-level domain (TLD) .us as an
example. It consists of more than 50 subzones, each
representing a different state or protectorate in the
United States of America—for example, mn.us for
Minnesota, wi.us for Wisconsin and so forth. Within
each “state” subzone there can be hundreds of
sub-subzones representing cities, counties, state or
municipal government agencies and so forth. lib.mn.us,
for example, is used by public libraries in the state of
Minnesota, and stpaul.lib.mn.us is used by the Saint
Paul Public Library system.

Suppose I’m the DNS administrator for
mycowtown.lib.mn.us, and I sign all of the records in

DNS Cache Poisoning,
Part II: DNSSEC
Validation
Configure your DNS server to check zone signatures using DNSSEC.

PARANOID PENGUIN
COLUMNS

MICK BAUER

http://www.linuxjournal.com

that zone and publish the corresponding RRSIG, DNSKEY and
other related records. How praiseworthy of me!

However, if someone tries to resolve names in my domain, for
example, interwebs.mycowtown.lib.mn.us, they’ll speak to as
many as four other nameservers before they make it all the way
down the hierarchy to my beautiful, signed zone—that is, the
respective authoritative nameservers for “.” (the root zone), .us,
.mn.us and .lib.mn.us. What’s to stop someone from tampering
with the answer to one of those prior, recursive queries? (Who’s
authoritative for .us? Who’s authoritative for .mn.us? Who’s
authoritative for .lib.mn.us?)

Obviously, there has to be a “chain of validation” all the way
from the zone I really want to validate (mycowtown.lib.mn.us), all
the way up to the root domain. As it happens, “.” root is signed,
and I’ll show you how to download and verify the initial root key
shortly. So are .us and .mn.us. However, .lib.mn.us isn’t yet signed
(at the time of this writing). Does that mean it’s pointless to sign
zones below that?

Not at all. The Internet Software Consortium, creators and
maintainers of BIND, maintain a DNS Look-aside Validation (DLV)
database of keys for zones having precisely this sort of gap in their
chains of validation. If I sign mycowtown.lib.mn.us and register my
key-signing key with dlv.isc.org, resolving nameservers that are
configured to use DLV still will be able to construct a complete
enough chain of validation by seeing that isc.org vouches for the
validity of my key-signing key, which actually is used to sign the
keys (zone-signing keys) with which I actually sign zone data.

In recent versions of BIND, DNS Look-aside Validation is not
only enabled by default, but preconfigured as well.

There’s just one more DNSSEC mechanism I should describe
before diving in to nameserver configuration, and that’s automated
key management. I alluded to there being two kinds of DNS keys:
key-signing keys (KSKs) and zone-signing keys (ZSKs). Both types
of keys must be regenerated periodically—every few months in
the case of ZSKs, with which you actually sign zone data (although
in my opinion, the need to do so does not speak well of how
securely PKI is implemented in DNSSEC). Naturally, every time
you change a KSK or ZSK, you must re-sign your entire zone.

Saying that this makes zone-signature management a bit of a
headache is a gross understatement; however, there are various
ways to automate this process. Luckily, right now you and I are
concerned only with validating keys, not maintaining them, and
recent versions of BIND 9 have a mechanism for automatically
checking and updating a caching nameserver’s cache of DNS keys.

This is the managed-keys{} statement in named.conf, which can
be used in lieu of the static trusted-keys{} definition. When you
set up BIND with the root zone’s signing key, you’ll do so using a
managed-keys{} statement that specifies an “initial” key that is itself
not a KSK or ZSK, but is used in a transparent, cryptographic
transaction in which your nameserver queries a root zone authority
for a copy of its current public ZSK and caches the answer it receives.

But I’m getting a little ahead of myself. Let’s set up a caching
nameserver and then enable DNSSEC validation on it.

Setting Up a Caching Server
If you already have a caching-only nameserver (or a general-purpose
nameserver that also caches), and you need to know only how to set

http://www.genstor.com
mailto:sales@genstor.com

up DNSSEC validation, you can skip ahead to the Setting
Up DNSSEC Validation section below. In the interest of
completeness, however, and for the purpose of pointing
out a few default settings it’s good to change, here’s a
quick procedure on setting one up.

First, install whatever (sub-)version of BIND9 your distri-
bution supports. At the time of this writing, Ubuntu 10.10
includes BIND version 9.7.1; to install it, use this command:

sudo apt-get install bind9 bind9utils

The bind9 package provides BIND 9.7.1 itself in
the form of the dæmon named, plus its configuration
files, man pages and libraries. The bind9utils package
provides handy commands, such as rndc and
named-checkconf, and the DNSSEC commands
dnssec-keygen and dnssec-signzone. Those last two
are used only for creating and maintaining actual
DNSSEC zone keys and signatures, respectively. You
won’t actually need those if all you’re doing with
DNSSEC is validating signatures from other zones.

On Debian and Ubuntu systems, the bind9 package
places its configuration files in /etc/bind. The files
we’re concerned with here are /etc/bind/named.conf,
/etc/bind/named.conf.options and /etc/bind/bind.keys.

Actually, of those three files, we’ll edit only one,
named.conf.options. I mention the other two in order
to point out that named.conf uses “include” statements
to pull content from /etc/bind/named.conf.options,
/etc/bind/named.conf.local (which contains your local
zone files) and /etc/bind/named.conf.default-zones
(which contains default zone information for local
loopback interfaces).

At this point, I have good news for you: your Debian
or Ubuntu system’s named.conf.options file is, technically,

already set up to run named as a caching-only nameserver.
The bad news is, it needs to be tightened up a bit before
you can consider it to be a secure caching nameserver.

Listing 1 shows the default Debian/Ubuntu
named.conf.options file (with comment lines omitted).

Listing 2, in contrast, is much more secure.
Let’s discuss why Listing 2 is better. First, I’ve

defined an Access Control List (ACL) that specifies
two IP networks in “CIDR notation”. Technically,
this is not an option, but it needs to be loaded
before any option statements, so it needs to go
either here or in named.conf prior to this line:

include "/etc/bind/named.conf.options";

In and of itself, this acl doesn’t do anything. But
once it’s defined, I can create an “allow-query” option
that refers to it, and as you can see in Listing 2, that’s
exactly what I’ve done. Obviously, in adapting this file
for your own use, you should replace the list in my acl
statement (“192.168.100.0/24; 10.10.0.0/16;”) with
a list of your organization’s local IP subnets.

The other security tweak I’ve made is to change
the value for the “listen-on-v6” option from “any” to
“none”. Because none of my local subnets use IPv6,
there’s no reason to listen on any local IPv6 interfaces.
Technically, this shouldn’t matter if I don’t even have
any IPv6 interface attached to my server and if I’ve set
an acl and specified it in an allow-query statement.
So, maybe I’m just being paranoid by turning off
IPv6 altogether here, but turning off unused features
is nearly always a good thing to do.

Once you’ve edited and saved your
/etc/bind/named.conf.options file, you can check
your work by running the named-checkconf
command with no arguments, like so:

bash-$ sudo named-checkconf

Assuming that doesn’t return any configuration
errors (I have a tendency to misplace or omit
semicolons, myself), you then can make your running
named process reload its configuration and zone files
using the rndc command, like this:

bash-$ sudo rndc reload

Now, you can test your server by logging on to some
other host on your network and running a dig query or
two against it. For example, if my caching nameserver’s
IP address is 192.168.100.253, I can have it look up DNS
information for www.linuxjournal.com like so:

mick@someotherhost:/home/mick$ dig @192.168.100.253

�www.linuxjournal.com

You can, of course, simply configure your client

2 8 | june 2011 www.l inux journa l .com

PARANOID PENGUIN
COLUMNS

Listing 1. Default Ubuntu/Debian named.conf.options File

options {

directory "/var/cache/bind";

auth-nxdomain no; # conform to RFC1035

listen-on-v6 { any; };

};

Listing 2. named.conf.local

acl mynetworks { 192.168.100.0/24; 10.10.0.0/16; };

options {

directory "/var/cache/bind";

allow-query { mynetworks; };

auth-nxdomain no; # conform to RFC1035

listen-on-v6 { none; };

};

http://www.linuxjournal.com

system to use your caching nameserver as its
default nameserver, in which case you can omit the
@192.168.100.253 in the above command. But, you
probably don’t want to do that until you’re sure it works.

If it doesn’t work, make sure your client system’s IP
address falls into one of the IP networks you specified
in any acls you’ve set in /etc/bind/named.conf.options,
as I described earlier.

At this point, your caching-only nameserver is
up and working properly. Now you can configure
DNSSEC validation.

Setting Up DNSSEC Validation
Back on your caching nameserver, all you need to do to
add DNSSEC validation is add three lines in the options{}
section of your /etc/bind/named.conf.options file, plus a
new managed-keys{} section, as shown in Listing 3.

The first two new lines in Listing 3, dnssec-enable
yes; and dnssec-validation yes;, enable DNSSEC
on your caching nameserver. This is actually a redundant
setting, because “yes” is the default value for both
these settings in BIND versions 9.5 and later, but it
doesn’t hurt to specify them.

The third new line, dnssec-lookaside auto;,

Listing 3. DNSSEC-Enabled named.conf.local

acl mynetworks { 192.168.100.0/24; 10.10.0.0/16; };

options {

directory "/var/cache/bind";

allow-query { mynetworks; };

auth-nxdomain no; # conform to RFC1035

listen-on-v6 { none; };

dnssec-enable yes;

dnssec-validation yes;

dnssec-lookaside auto;

};

managed-keys {

"." initial-key 257 3 8 "

AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQ

bSEW0O8gcCjFFVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh

/RStIoO8g0NfnfL2MTJRkxoXbfDaUeVPQuYEhg37NZWA

JQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaDX6RS6CXp

oY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3

LQpzW5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGO

Yl7OyQdXfZ57relSQageu+ipAdTTJ25AsRTAoub8ONGc

LmqrAmRLKBP1dfwhYB4N7knNnulqQxA+Uk1ihz0= ";

};

http://logicsupply.com/linux

tells BIND/named to use DLV automatically any time it
can’t validate a complete chain of trust from a given
Resource Record all the way from root (.) downward.
See the DNSSEC Overview section earlier in this article
if you’ve forgotten how DLV works.

As I mentioned in that section, recent versions
of BIND are preconfigured to find isc.org’s DLV
repositories. All you have to do to take advantage
of this is set “dnssec-lookaside” to “auto”, and
BIND will do the rest. As more and more TLDs are
signed, this feature will become less important.

And, that brings me to the last new element in
the named.conf.options file: the managed-keys{} section.
This specifies a key for the DNS “root” domain,
which is the top of any chain of DNSSEC trust.

You don’t necessarily need to specify any keys
“lower” in the DNS hierarchy than root; if you start
out knowing the root key, you can trust signed
replies from root nameservers. That trust flows
downward to signed data from TLDs (.gov, .us, .net
and so on) and so forth. “Gaps” in the downward

chain of validation hopefully will be handled by DLV.
For heaven’s sake, do not simply copy Listing 3’s key

entry for “.” verbatim! Tony Finch has written a quick-
and-easy procedure on checking and validating the
(initial) root certificate (see Resources). Summarized, this
procedure consists of the following steps.

1) Use the following dig command to obtain the
current root certificate and save it to the file root-dnskey:

bash-$ dig +multi +noall +answer DNSKEY . >root-dnskey

2) Create a hash of this certificate and save it to
the file root-ds with this command:

bash-$ $ dnssec-dsfromkey -f root-dnskey . >root-ds

3) Pull the official root certificate’s hash from
https://data.iana.org/root-anchors/root-anchors.xml,
and compare it to the root-ds file you just created. For
extra paranoia, you can use PGP to check the signature
of root-anchors.xml (see Tony Finch’s article).

4) If the hashes match, copy the key (the long one,
number 257) from root-dnskey into your managed-keys
statement, as shown in Listing 3. The first line of this
block (after the managed-keys { line) should be the
same as in Listing 3.

As with your previous changes, after you save
named.conf.options, you should check it with
named-checkconf, and then load it with rndc reload.

Finally, to test DNSSEC validation, test some
known-signed record, such as www.isc.org, using dig.
Be sure to use the +dnssec flag, like this:

mick@someotherhost:/home/mick$ dig @192.168.100.253

�www.isc.org +dnssec

If everything is working, dig’s output should
indicate that the “ad” (authenticated data) flag is set.
Listing 4 shows the first part of what a successful reply
to our example dig command would look like. Note
the line that begins ;; flags: qr rd ra ad;.

Conclusion
And with that, your nameserver is successfully validating
signed zone data! For now, I wish you thanks and
goodbye. As I seem to do every couple years, I’m going
to take a hiatus for a few months. I do plan on resuming
the Paranoid Penguin after that, however, refreshed
and renewed for your reading pleasure.

Until then, take care of yourself and especially
your Linux systems!�

Mick Bauer (darth.elmo@wiremonkeys.org) is Network Security Architect for
one of the US’s largest banks. He is the author of the O’Reilly book Linux
Server Security, 2nd edition (formerly called Building Secure Servers With
Linux), an occasional presenter at information security conferences and
composer of the “Network Engineering Polka”.

3 0 | june 2011 www.l inux journa l .com

PARANOID PENGUIN
COLUMNS

Listing 4. dig Output for Successful DNSSEC Validation

; <<>> DiG 9.6.0-APPLE-P2 <<>> @192.168.100.253 www.isc.org +dnssec

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62704

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 5, ADDITIONAL: 13

Resources

DNSSEC—the DNS Security Extensions—Protocol Home Page:
www.dnssec.net

Alan Clegg’s “DNSSEC—Living and Loving Life after Kaminsky; Or:
How I overcame my fear and signed my zones.” Presentation to
REN-ISAC on 10-30-2008: www.ren-isac.net/techburst/hardcopy/
ren-isac_techburst_20081030_clegg_dnssec.pdf

Geoff Huston’s “A Fundamental Look at DNSSEC, Deployment,
and DNS Security Extensions”: www.circleid.com/posts/
dnssec_deployment_and_dns_security_extensions

Ubuntu 10.10 Server Guide: “Chapter 7. Domain Name System (DNS)”:
https://help.ubuntu.com/10.10/serverguide/C/dns.html

BIND 9.7 Administrator’s Reference Manual (ARM):
ftp.isc.org/isc/bind9/cur/9.7/doc/arm/Bv9ARM.pdf

Tony Finch’s “How to set up DNSSEC validation with BIND-9.7”:
fanf.livejournal.com/107310.html

https://data.iana.org/root-anchors/root-anchors.xml
mailto:darth.elmo@wiremonkeys.org
http://www.dnssec.net
http://www.ren-isac.net/techburst/hardcopy/ren-isac_techburst_20081030_clegg_dnssec.pdf
http://www.circleid.com/posts/dnssec_deployment_and_dns_security_extensions
https://help.ubuntu.com/10.10/serverguide/C/dns.html
http://www.linuxjournal.com
http://www.ren-isac.net/techburst/hardcopy/ren-isac_techburst_20081030_clegg_dnssec.pdf
http://www.circleid.com/posts/dnssec_deployment_and_dns_security_extensions
ftp.isc.org/isc/bind9/cur/9.7/doc/arm/Bv9ARM.pdf
http://fanf.livejournal.com/107310.html

USENIX ATC ’11
2011 USENIX Annual

Technical Conference
Wednesday–Friday, June 15–17

www.usenix.org/atc11

WIOV ’11
3rd Workshop on I/O

Virtualization
Tuesday, June 14

www.usenix.org/wiov11

HotStorage ’11
3rd USENIX Workshop on
Hot Topics in Storage and

File Systems
Tuesday, June 14

www.usenix.org/hotstorage11

HotCloud ’11
3rd USENIX Workshop on

Hot Topics in Cloud Computing
Tuesday, June 14

www.usenix.org/hotcloud11

WebApps ’11
2nd USENIX Conference on Web

Application Development
Wednesday–Thursday, June 15–16

www.usenix.org/webapps11

2011 USENIX Federated Conferences Week
June 14–17, 2011, Portland, OR

Save the Date!

www.usenix.org/fedweek11

REGISTRATION
DISCOUNTS
AVAILABLE!

And more!
Registration will be open in early April. Register by the Early Bird Registration Deadline,
Monday, May 23, and receive the greatest savings. Visit www.usenix.org/fedweek11 for new
workshop announcements and registration information.

http://www.usenix.org/facebook http://www.usenix.org/linkedin

http://twitter.com/usenix http://blogs.usenix.org

www.usenix.org

Stay Connected...

http://www.usenix.org/atc11
http://www.usenix.org/wiov11
http://www.usenix.org/webapps11
http://www.usenix.org/hotstorage11
http://www.usenix.org/hotcloud11
http://www.usenix.org/fedweek11
http://www.usenix.org/fedweek11
http://www.usenix.org/facebook
http://www.usenix.org/linkedin
http://twitter.com/usenix
http://blogs.usenix.org
http://www.usenix.org

3 2 | june 2011 www.l inux journa l .com

Every year or so, I like to write a column I title
“Lightning Hacks”. This column is inspired by the
lightning talks you encounter at most conferences. In
a lightning talk, instead of having one speaker give a
60-minute presentation, multiple speakers give short
5–10-minute presentations. By the end of a lightning
talk, you end up hearing about all sorts of cool topics
that wouldn’t have gotten their own time slot. In
this column, I get a chance to talk about a few cool
“hacks” I’ve run across that by themselves wouldn’t
fill an entire column.

In past Lightning Hacks columns, I’ve covered a
wide variety of different topics, and in the previous edition,
I focused strictly on hacks with the ssh command. In
this column, however, I showcase a few interesting
tricks with commands you might use every day. It’s easy
to take your favorite programs for granted, but I’ve
found that no matter how long I use Linux, it seems
I’m always picking up new time-saving tips, and a
Lightning Hacks column is as good as place as any
to list a few of my favorites.

New Ways to Escape
It isn’t news to frequent readers of this column that
I edit all of my text files with vim. I’ve been using vim
for so long, my muscle memory for the Esc key is
second nature. When you press the Esc key in vim, you
return back to the default navigation mode from what-
ever mode you were in. When I’m at all unsure where
I am or what mode I’m in, my brain automatically has
my hand bang on that Esc key like I’m a champion
Hungry Hungry Hippos player. Of course, on a modern
keyboard, the Esc key is quite a way from home
row, and what’s worse, on some keyboards (like on
ThinkPads), the Esc key is in a different place, so some-
one like me hits F1 half the time. It turns out, however,
that Ctrl-[functions just like Esc in vim (and other
programs that accept vi-style syntax, like vimperator).
Both of those keys are just a pinkie-reach away and
keep most of your fingers on home row. I have to say
though, old habits die hard. I had to put a post-it note
on my monitor that read “Ctrl-[” for a few weeks
before my fingers started to catch the hint. It takes
only a few weeks for the habit to form though,
and before you know it, you’ll be shaving that extra
millisecond off your typing time.

Now that I’ve removed yet another function from the
poor Esc key, let’s give it something else to do. When I

first set up my N900 with terminal sessions, I ran into a
problem a lot of portable computer users face: half the
special keys aren’t on the tiny keyboard. In my case, this
presented quite a problem, because I am a heavy Irssi
user and my keyboard had no way to press Alt even in
the special symbols menu. Without the Alt key, it was a
pain to switch between different Irssi windows. I wasn’t
sure what to do until I discovered that in most terminal
sessions, the Esc key can substitute for Alt. It turned
out my terminal emulator had an Esc touchscreen
key-mapped, so from that point on, I just pressed Esc
whenever I needed Alt. It also turns out this works the
same way on all of my laptop terminal sessions.

Open Vim to a Specific Line Number
This is a quick-and-simple tip that I can’t believe took
me so long to discover. Quite often, you will be in a
situation where you want to open a file to a specific
line number. A few good examples include when you
re-kickstart a server, go to ssh in to it and realize the
host keys have changed. The error message lists the
line number with the conflicting key, so it is easy to go
in and erase it. Another common example occurs when
you are working on a script or configuration file and
see a reference to a syntax error on a specific line.

Back in the day, when I wanted to go to a specific line
in vim, I would open the file and press :<number><Enter>
to go to the line, but if you want to save a step, just
add +<number> to the command line as an argument
when you execute vim. For instance, if I want to
jump ahead to line 27 in my ~/.ssh/known_hosts
file, I would type:

vim ~/.ssh/known_hosts +27

Filter Grep with Grep
Grep is one of the crucial tools you should master if
you want to spend any time on the command line.
One of the most common ways I use grep is to
check whether a certain process is running and see
its process ID. For instance, if I want to check for
the process ID of my cron dæmon, I might type:

$ ps -ef | grep cron

root 1215 1 0 Feb23 ? 00:00:00 cron

greenfly 1252 1976 0 20:57 pts/0 00:00:00 grep cron

In this example, cron has a process ID of 1215. The

Lightning Hacks—the
Command Next Door
Even old commands (and old sysadmins) can learn new tricks.

HACK AND /
COLUMNS

KYLE RANKIN

http://www.linuxjournal.com

annoying thing though is that because I had cron in my
grep command, it also showed up in the output. This
means every time I run this command, I have to be
sure to ignore that line in the output. Of course, I also
could use grep to filter itself:

$ ps -ef | grep cron | grep -v grep

root 1215 1 0 Feb23 ? 00:00:00 cron

That works; however, it’s unnecessary. If I enclose
one of the characters in my first grep filter in brackets,
it does the filtering for me:

$ ps -ef | grep [c]ron

root 1215 1 0 Feb23 ? 00:00:00 cron

This works because when I enclose c in brackets,
it turns it into a character class that contains only one
character, c. However, the grep command itself shows
up in the process list with those brackets, so it doesn’t
match my [c]ron pattern anymore.

Hear Your Pings
The problem with powerful server hardware is that it

always takes a little time to reboot. Often when I have
to reboot a server, I want to know the moment it
comes back up, because I want to log back in and
finish some work. Usually when I reboot a machine,
I start a ping process, so I can watch to see when it
is available. The problem is that servers seem to
take just long enough to come back up that I end
up getting distracted in another window on my
desktop and don’t see the ping replies. My solution
to this is to make ping audible:

$ ping -a 10.0.1.7

When you pass the -a command to ping, it
generates an audible bell for every ping reply. I get
to hear a few system beeps as the server goes down,
and then I hear only silence. If I do become distracted
and the server comes back, I immediately start hearing
this annoying system beep in my ear and know the
server is ready.�

Kyle Rankin is a Systems Architect in the San Francisco Bay Area and the author of
a number of books, including The Official Ubuntu Server Book, Knoppix Hacks and
Ubuntu Hacks. He is currently the president of the North Bay Linux Users’ Group.

Develop. Scale.Deploy.
Full root access on your own virtual server for as little as $19.95/mo

www.linode.com or 609-593-7103

evD
l root Ful

.polev
your access on

.yloepD
own virtual serv

cS
er for as little as

e.la
$19.95/mo

 .edolin.www 935-906r omoc 0317-3

http://www.linode
http://www.linode

3 4 | june 2011 www.l inux journa l .com

NEW PRODUCTS

Regina Obe and Leo Hsu’s PostGIS in Action
(Manning)
The hardworking community of developers and users of open-source geographic information systems
(GISes) is sorely underserved, so it’s fortunate to see the new Manning publication PostGIS in Action by
Regina Obe and Leo Hsu. PostGIS in Action is the first book devoted entirely to PostGIS, a freely available
open-source spatial database extender, which can answer questions beyond those possible with a mere
relational database. PostGIS’ feature set equals or surpasses proprietary alternatives, allowing for the creation
of location-aware queries and features with just a few lines of SQL code. Readers with experience in
relational databases will find a background in vector-based GIS that enables quick ramp-up to analyzing,
viewing and mapping data. The advanced will learn how to optimize queries for maximum speed, simplify
geometries for greater efficiency and create custom functions suited specifically to their applications.

www.manning.com/obe

Opera Dragonfly
Opera Software’s Opera Dragonfly is a new suite of open-source debugging tools for Web
developers and designers that got its name because “it eats bugs”. The suite covers the full
debugging work flow, from inspecting network access and downloaded resources to correcting
JavaScript issues and seeing how CSS rules apply to the DOM. Opera Dragonfly supports all
the newest Web technologies, including SVG and HTML5 APIs, such as Web Storage. Product
benefits, sayeth Opera, include a superior JavaScript debugger, a network inspector to discover
why a site “turns to molasses” and a storage inspector to uncover how a site handles the data
it collects. Opera Dragonfly loads automatically when one downloads the Opera browser.

www.opera.com

Glenn Rand, Chris Broughton and Amanda
Quintenz-Fiedler’s Capture (Rocky Nook)
The advent of the digital camera has truly transformed photography and made it more accessible
to all, especially us geeks. Although we geeks might be good at manipulating images with The
GIMP and organizing them with digiKam, we may not be proficient at the mechanics of good
exposure, a requirement that has not changed with digital photography. Enter the new book
Capture: Digital Photography Essentials, written by Glenn Rand, Chris Broughton and
Amanda Quintenz-Fiedler. The text addresses both the opportunities and limitations of digital
photography, and how to work with those opportunities and around the limitations. Readers will
learn to maximize the potential of their images through an understanding of the core principles
and more advanced aspects of the digital photographic process.

www.rockynook.com

Cloud.com’s CloudStack
One of your more direct routes to the cloud is by hopping a ride onto Cloud.com’s CloudStack open-source cloud
computing platform, now in version 2.2. CloudStack, says Cloud.com, is a comprehensive, open-source software
solution that accelerates the deployment, management and configuration of highly scalable, public or private
infrastructure as a service clouds. Data-center operators can build cloud services within their existing infrastructure
to offer on-demand, elastic cloud services. Version 2.2 of CloudStack offers features such as improved hypervisor
support (VMware vSphere 4, Citrix XenServer 5.6 and KVM), advanced networking configuration, an AJAX Web
interface and borderless scalability. The federation of managed and hosted availability zones can be managed
within a single CloudStack deployment. The new CloudBridge feature enables applications to interoperate with
other cloud solutions including Amazon EC2 and S3 APIs, as well as the upcoming OpenStack API. CloudStack
is available for immediate download.

www.cloud.com

http://www.manning.com/obe
http://www.linuxjournal.com
http://www.opera.com
http://www.rockynook.com
http://www.cloud.com

www.l inux journa l .com june 2011 | 3 5

NEW PRODUCTS

Logicalis Enterprise Power Cloud
Keeping our heads in the clouds, let’s take note of another cloud-based platform, the Logicalis Enterprise Power Cloud
for IBM Power 770 Systems. The solution is for IBM users who require more than Windows and Linux support. It
provides a “data center in the sky” with all the capabilities found in on-premises data centers and more. Key benefits
include support for AIX and i5/OS, enterprise-class management skills for legacy systems, flexible computing capacity,
lower infrastructure and maintenance costs, elasticity to respond to changing business needs, 24x7 monitoring and
management, and reduced carbon footprint and energy consumption.

www.us.logicalis.com/cloud

Libelium Meshlium Xtreme
Libelium is moving the transparently networked world forward with its
newly released Meshlium Xtreme multiprotocol wireless router—a global
first according to the company. Meshlium Xtreme uniquely supports five
wireless standards, namely Wi-Fi, ZigBee, GPRS, Bluetooth, GPS and
wireline Ethernet, giving a wide choice of methods for connecting wireless
sensor networks to the Internet. The product also supports the storage
of the sensor data in its internal database system as well as with external
Internet servers. Novel features include dynamic Wi-Fi frequency switching,
a “discover and store” application for Bluetooth, an aluminum IP67
waterproof enclosure for harsh environments, special holders for attaching
to oddly shaped locations and an optional solar panel kit for locations
without a power source. The management interface is open source,
and the product runs on Debian Linux.

www.libelium.com/products/meshlium

Red Hat’s JBoss Enterprise SOA Platform
The motto for Red Hat’s JBoss Enterprise SOA Platform, newly updated to version 5.1, is “turn the data you
have into information customers can use”. New in version 5.1 is JBoss Enterprise Data Services Platform 5.1, an
open-source data virtualization and integration platform that includes tools to create data services out of multiple
data stores with different formats, presenting information to applications and business processes in an easy-to-
use service. JBoss’ net benefit, notes Red Hat, is that “data services become reusable assets across the enterprise
and value chain, increasing return on data assets, enabling faster time-to-solution, and driving better business
execution”. JBoss Enterprise SOA Platform 5.1 includes Apache CXF Web services stack, JBoss Developer Studio
4.0, a technology preview of WS-BPEL, a technology preview of Apache Camel Gateway and updated certifications
(Red Hat Enterprise Linux 6, Windows 2008, IBM, JDK and more).

www.jboss.com

Dassault Systèmes DraftSight
France’s Dassault Systèmes says that the demand for its 2-D CAD software DraftSight to move to the Linux platform
“has been overwhelming”, which made the latest release on Linux inevitable. This new version of the no-cost
DraftSight, which now runs on Linux, Mac OS and Windows, allows users to create, edit and view DWG files.
DraftSight features a light footprint, a dynamic community-support site, professional support and education-oriented
packages. The program is available for download from Dassault Systèmes’ Web site.

www.3ds.com

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or New Products
c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

http://www.us.logicalis.com/cloud
http://www.linuxjournal.com
http://www.libelium.com/products/meshlium
http://www.jboss.com
http://www.3ds.com
mailto:newproducts@linuxjournal.com

Tor Browser Bundle—Tor
Goes Portable
https://www.torproject.org/projects/
torbrowser.html.en
I’ve never covered a subproject of something
I’ve reviewed before, but I noticed this a
few weeks ago when trawling the Tor site
(I’ve no idea how I missed it until now). It
seemed so important that I instantly gave it
top billing for this month’s column.

Tor has become increasingly
famous/infamous in the past few months
due to its use by Web sites like WikiLeaks,
as well as its crucial role in getting infor-
mation out to the world during the recent
Egyptian revolution.

For those unfamiliar with Tor, LJ has
covered it before—see Kyle Rankin’s article
“Browse the Web without a Trace” in the
January 2008 issue and my New Projects
column in the April 2010 issue. But to
recap, the Tor Web site sums it up nicely:

The Tor software protects you by
bouncing your communications
around a distributed network of
relays run by volunteers all around
the world: it prevents somebody
watching your Internet connection
from learning what sites you visit,
it prevents the sites you visit from
learning your physical location, and it
lets you access sites that are blocked.

However, in standard form, Tor is a
rather cumbersome beast, with all sorts of

background process dæmons, complex
configuration files, startup services and so
on. Even if you’re a pretty advanced user,
there’s still a good chance of something
going wrong somewhere, delaying your
chance to jump on-line securely. This is
where the Tor Browser Bundle comes to
the rescue:

The Tor Browser Bundle lets you
use Tor on Windows, Mac OS X or
Linux without needing to install
any software. It can run off a USB
Flash drive, comes with a pre-
configured Web browser and is
self-contained. The Tor IM Browser
Bundle additionally allows instant
messaging and chat over Tor.

Before I continue, the Web site offers
a caveat that LJ readers probably will find
more important than most: “Note that the
Firefox in our bundles is modified from the
default Firefox; we’re currently working
with Mozilla to see if they want us to
change the name to make this clearer”.

Installation Although the bundle
was designed to run on a Flash drive, that
needn’t be the case. Like many others, I
simply saved this to hard drive and ran it
from there. Feel free to do the same if
you’re so inclined.

As for installing the bundle (well, sort
of), the Tor people were good enough to
offer the following instructions, saving me
a lot of trouble:

Download the architecture-appro-
priate file above, save it somewhere,
then run: tar -xvzf tor-browser-
gnu-linux--dev-LANG.tar.gz
(where LANG is the language
listed in the filename), and
either double-click on the
directory or cd into it, then
execute the start-tor-browser
script. This launches Vidalia,
and once that connects to Tor,
it launches Firefox.

Usage Before continuing, this bundle
is designed to run on machines that don’t
have Tor installed. If you do have Tor
installed and running, stop the process
and then you can carry on.

Now, with the Browser Bundle running,

first the Vidalia control panel will start,
which is designed to establish a Tor
connection as well as manage various
Tor options using a GUI front end. I
recommend exploring the Vidalia control
panel, as it has neat features, such as
bandwidth monitoring, network viewer,
settings dialog and more.

Provided all has gone well, Firefox
should start and will try to load a Web
page. This Web page takes a while to
load—don’t worry; the Tor network is
pretty slow at the best of times, and if
everything worked, you’ll soon have a
message that says in big green letters:
“Congratulations. Your browser is
configured to use Tor.”

From here, you can browse like you
would any other day, but the uninitiated
may be in for a shock. Most modern Web
sites have fancy scripts and Flash objects,
and these very features are what causes
the greatest security holes. Hence, Tor’s
browser disables these scripts by default.

3 6 | june 2011 www.l inux journa l .com

NEW PROJECTS

Fresh from the Labs

Extending your options greatly, the Vidalia
Control Panel is a great tool when using Tor.

If you get this message in big green letters,
Tor’s running fine!

The default no-script settings can send some
Web sites haywire!

https://www.torproject.org/projects/torbrowser.html.en
http://www.linuxjournal.com

Chances are that the only Web sites that
will work without hassle are deliberately
minimalist in their design.

However, don’t worry. If you look at
the screen’s bottom right, you’ll see an
icon with a blue S. Click on that icon, and
you can choose either to enable scripts for
this particular Web site or enable scripts
globally (not recommended for the security
reasons just mentioned).

Those willing to take the risk can
choose new default settings for security
in the preferences, available under
Edit→Preferences. Given the nature of
this project, the default settings are
understandably set for paranoia. If you’re
undertaking work that involves a serious
security risk, be very careful with what
you enable or disable. If you’re unsure of
the risk you’re taking, perhaps a more
secure, minimalist and less-script-reliant
Web service would be a better choice for
your activities (assuming an alternative is
available, of course).

Something I couldn’t get working under
the Linux version was Flash in general. My
older brother said he used Tor to watch

some overseas TV shows not available in
Australia and inaccessible to those with IP
addresses external to a certain country. He
was using the Windows version of Tor,
and I’m guessing that he would’ve used
the Browser Bundle, instead of setting up
a machine with Tor permanently installed.
The content he was viewing was Flash-based,
so he must have been able to enable it for
such a session.

I realize that Flash presents a security
risk, but many people will want to use the
Tor Browser Bundle for something as trivial
as watching international TV shows—not
really the sort of thing that will have the
authorities kicking down your front door.
If any readers out there know how to get
Flash running with the Linux bundle, feel
free to drop me an e-mail. I’d love to hear
from you!

Moving back onto more serious topics,
in journalism in particular, projects such as
Tor will become increasingly indispensable
in moving information beyond borders
and protecting user privacy against prying
eyes. When I last tried Tor, it gave me a
headache and was far from intuitive in its

use. However, a clever little bundle such as
this gives Tor’s power of anonymity to those
with average PC skills, and regardless of
its use, that’s an important thing.

NUT—Nutrition Software
nut.sourceforge.net
If you’re watching your weight, monitoring
your health and dietary habits, or simply
unconvinced by flashy food labels that
don’t tell the whole story, this is the project
for you. According to the Web site:

I have written open-source free
nutrition software, NUT, which
records what you eat and analyzes
your meals for nutrient levels in
terms of the “Daily Value”, or DV,
which is the standard for food
labeling in the US. The program
uses the free food composition
database from the USDA. This free
nutritional analysis software was
written for UNIX systems (I use
Linux), but it can be compiled on
just about any system with a C
compiler. (To get a free C compiler,

http://nut.sourceforge.net
http://www.siliconmechanics.com/R413
http://www.siliconmechanics.com/

Windows people might look at
Cygwin or MinGW, and Mac
people might look at xcode.) By
experimenting with NUT, you can
find the optimal level of the various
nutrients and how to implement
this with foods available to you.
NUT can help reconstruct the lost
instruction manual to your care
and feeding, because, when the
authorities and crackpots disagree
on the proper human diet, you
can design an experiment using
the food composition tables to
discover the truth!

Installation I’m unsure of other
distributions, but binaries are available
for Debian and Ubuntu. I run with the
usual source option here. Grab the latest
source tarball, extract it, and open a
terminal in the new folder. At the time
of this writing, NUT didn’t have an
install script, so you’ll need to do a
number of steps manually. Assuming the
/usr/local folders are fine for installation,
issue the following commands as root:

mkdir /usr/local/lib/nut/

mv raw.data/* /usr/local/lib/nut/

If your distro uses sudo (such as
Ubuntu), simply prefix those commands
with the sudo command.

Once this step is out of the way, compile
the program with:

$ make

If the compiling goes well, you should
be able to use the console program imme-
diately. Simply enter the command:

$./nut

This runs the console program,
which I look at in the next session. As
for the GUI program, that needs to be
compiled separately.

Change into the flkt directory
by entering:

$ cd fltk

And again, enter the command:

$ make

I ran into compilation problems when
I first tried to compile the fltk component

(hence, yesterday I was going to cover
only the console program). I’m not sure
what I did to get it working, but I think it
was downloading fltk 1.3 manually from
the fltk Web site, then compiling and
installing it separately. If you manage to
get it compiled, you can run the GUI

program now by entering:

$./Nut

Note the capital letter above—it’s the
differentiator between the GUI and
command-line programs.

3 8 | june 2011 www.l inux journa l .com

NEW PROJECTS

NUT has an extensive database of food statistics, worth the price of admission alone (console
version pictured).

The NUT GUI makes using this program much less tiresome and displays other forms of information
simultaneously. Here’s the stats for bearded seal oil.

http://www.linuxjournal.com

If you’d like quick access to NUT, copy
the executables into bin folders. If you’re
still in the fltk directory, change back into
the main directory of the nut folder:

$ cd ..

Next, enter these commands as either
root or sudo:

mv nut /usr/local/bin/

mv nut.1 /usr/local/man/man1/

mv fltk/Nut /usr/local/bin

Now you either can run the command-
line version with nut or the GUI with Nut.

Usage Unfortunately, the long
installation instructions haven’t left me
much room to cover the actual usage of
NUT, but thankfully, things are pretty
simple to use.

The console version uses a series
of number-driven menus to navigate
between functions and foods. For
instance, option 1 is for recording meals,
followed immediately by a prompt for
the date, the meal number and, finally,
the name of the food.

Entering the name of the food needn’t
be precise, as NUT’s main strength is its
database. Long lists of premade choices
exist, and each choice has detailed infor-
mation regarding a food’s nutritional
value, such as protein, carbohydrates,
specific vitamins and so on.

Head back into the main menu, and
more options exist, such as an analysis of
your meals and food suggestions, trend
plotting and so on, but most people will
want to look at options 4 and 6. Here
you can browse the extensive database,
comparing nutritional values of all sorts
of food and drink to your heart’s content.
The entries are extensive—everything from
Red Bull to bearded seal meat.

As for the GUI, I’m not 100% sure,
but it appears to have more options
than the console version, such as reset
controls and the ability to control various
ratios. Perhaps I missed them in the
console version, but either way, there’s
definitely more on the screen, more of
the time. Plus, everything is broken down
into tabs, making the whole process
more intuitive, saving the user from
navigating endless submenus.

All in all, this is a very clever program
despite the currently long-winded
installation process. Once those issues
are ironed out, NUT will be a seriously
nifty nutrition program.�

John Knight is a 26-year-old, drumming- and bass-obsessed
maniac, studying Psychology at Edith Cowan University
in Western Australia. He usually can be found playing a
kick-drum far too much.

Brewing something fresh, innovative or mind-bending?
Send e-mail to newprojects@linuxjournal.com.

One of the main reasons for using NUT is recording your daily meals and then running detailed
analysis against them.

mailto:newprojects@linuxjournal.com
http://www.embeddedARM.com

4 0 | june 2011 www.l inux journa l .com

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 4 1

Linux is ubiquitous these days. It powers large-scale HPC systems and small embedded devices—from

space to underground. And although it’s quite easy (to some degree) to build an unmanned device like a

rover or to run a helicopter with Linux, it still is a tough job to create a robot that behaves like a biological

object. Fortunately, there’s a will and there’s a way—and there’s Linux. The latter became the core of the

hexapod—the robotics device that resembles a spider, developed by Matt Bunting.

A LINUX-
POWERED
SPIDER
ROBOT

HEXAPOD
A CHAT WITH
MATT BUNTING,
DEVELOPER
OF THE
HEXAPOD
ROBOT.

ANTON BORISOV

http://www.linuxjournal.com

AB: Matt, you’re the creator of the
hexapod robot that runs on Linux. But
before talking about the robot, tell us
about your Linux experience and the role
Linux plays in your life.

MB: The field of robotics is what
introduced me to the world of Linux. I
had previously done basic development
in UNIX, so the transition of switching
my OS to Linux was seamless. Currently,
I use Linux for most things involving
development, such as robotics projects
and tinkering around with OpenCV. I
have a couple Atom-based Linux com-
puters at my house running a custom
Webcam-based security system.

AB: What is the hexapod in general,
and what ideas were behind its design?

MB: A basic hexapod is a six-legged
platform. Each leg can be configured in
any number of ways. One such way is a
Stewart platform. The version I made is a
portable platform (body) with non-rigid
feet. Each foot in a portable platform
may have any number of degrees of
freedom (DOF). Some of the simplest
hexapods have three total degrees of
freedom, but these are constrained to
very simple motions like moving only forward or backward. For
incredible flexibility of the platform, three DOF (18 total) are
needed per leg to position each “foot” at nearly any given
(x,y,z) coordinate. This allows the hexapod to have complete
flexibility of the body, so the body may translate or tilt in any
direction, in any combination. Recently, there has been an inter-
est in four degrees of freedom per leg. This does not increase

the amount of body control, but it
can extend the range. I wanted to
design the 18 DOF for the best flexi-
bility of the body to use the hexapod
for various applications, from imple-
mentation of neural networks (NNs)
to terrain adaptation methods.

AB: And you have succeeded in this
design—a spider with 18 DOF, right?

MB: I would certainly say so.
Currently, it is a very solid design
that can take a quite a bit of abuse.
Though it is fully functional, I’m
always looking for ways to upgrade
it. I have some ideas floating around,
but haven’t seriously integrated
anything yet.

AB: Can someone achieve these
goals with another kind of a robot, say
with a rover?

MB: Since my goal was to research
legged locomotion techniques, a
wheeled rover doesn’t make sense
for what I want to do in robotics.
Sometimes I am asked what the
practical applications of a hexapod
are, but for many cases, a hexapod
is impractical. Mine is terribly power-

inefficient, and the learning techniques I have used take too long
to be effective for anything practical, like sending a hexapod on a
space mission or to fix an underwater bursted pipe.

The legged aspect and complexity of a hexapod is interesting
in the area of machine learning because the complexity makes it
difficult to learn efficiently. Wheeled robots may learn locomotion
very quickly, which does not generalize the effectiveness of the

algorithms involved. One
aspect of machine learning
I was interested in included
the ability of the machine to
re-learn after damage to the
robot. For example, if the
robot learned to walk, began
walking in a dangerous
environment and a rock were
to crush two legs, then the
algorithms implemented
could sense that the previ-
ously used motions are not
very effective, and it could
begin to learn an optimal
walking policy based on the
new configuration.

AB: Describe how you
“teach” a hexapod to walk.
Previously, you mentioned NNs
and adaptation methods.

4 2 | june 2011 www.l inux journa l .com

FEATURE Hexapod—a Linux-Powered Spider Robot

Matt Bunting

The Hexapod looks like a real biological spider.

http://www.linuxjournal.com

Do you load some basic behavior functions into software, and
later the spider tries to find the optimal walk for every kind of
a terrain, or is there another approach?

MB: I have, so far, explored two different learning mecha-
nisms, both of which learn in very different ways. The first
was a reinforcement learning technique called Q-Learning with
Softmax action selection. Basically, the hexapod would experi-
ment between different motor states. Starting from one state,
the algorithm applies Softmax to the current Q-matrix for
action selection probability and chooses one based on a random
number generator. The values in the Q-matrix with higher
values (good transitions to move forward) are more likely to
be selected, while others (poor transitions, like moving backward)
are not as likely to be selected. Once an action is selected, the
hexapod first takes an image using a Webcam pointing in the
forward direction, then performs the action. The action moves
the hexapod into a new state. In the new state, another image
is taken. The state transition reward is measured by the difference
between the two images.

I used a function in OpenCV to measure optic flow. The
resulting vector field from the optic flow function is run
through some simple math to determine how the hexapod
moved based on the overall directionality of the vectors. For
example, if the resulting image had a sense of “zooming in”
from moving the hexapod forward, all the vectors would point
outward from the center of the image. This translates to a
high reward. If the vectors are pointing toward the center, the
hexapod moved backward, resulting in a cost or negative
reward. I also included twisting of the body and translational
movements of the camera as negative rewards because the
goal was to get it to walk forward very smoothly.

The reward value is used to update the Q-Matrix. Based
on the transition reward
and possible future rewards
from the new state, the
Q-value is updated. Softmax
action selection gives a nice
balance between explorative
and exploitative behavior.
Once a gait is well learned,
there is a small probability
that the hexapod will
explore other state transi-
tions. If, however, the
hexapod were to break a
leg and apply a previously
learned method, the reward
values would decrease
tremendously. The newly
updated Q-matrix would
result in a low probability
of exploring the previously
learned transitions and begin
to experiment with others.

The NN is very much
different. I based a good

portion of the
network on
Randall Beer’s
work on a neural-
network-based
hexapod. The
neurons I used
were different,
more biologically
influenced. I
believe that Beer
used continuous
neurons, which
were differen-
tiable, but the
ones I used were
integrated and
fired with adapta-
tion. They don’t
truly mimic biology, but they are much closer than continuous-
based neurons. I constructed something similar to Beer’s net-
work, but I have to add additional neurons to move the legs
around. The network is based around an oscillator called a
Central Pattern Generator (CPG), also called a Pacemaker
Neuron. These are created by mutually inhibiting two neurons.
One begins to fire, preventing the other from firing, but slows
down due to adaptation, and eventually the other neuron will
begin to fire, inhibiting the first one, and so on. These CPGs are
used to drive other neurons that operate the legs.

To learn the weights for each connection correctly, a genetic
algorithm was used to train the weights. I used a population size
of 16, and the fitness function was based on running the hexapod

www. l inux journa l .com june 2011 | 4 3

Q-Learning Technique Algorithm

The initial version of
a hexapod was made

of metal brackets,
breadboards
and servos.

for 10 seconds and measuring the traveled distance and resulting
direction angle. The closest the resulting angle to the starting
orientation and the farthest distance traveled resulted in the
best fitness value. The hexapod learned to walk very effectively
after 100 generations.

AB: You mean 100 iterations of the learning, or 100 steps here?
MB: In genetic algorithms, this is the number of generations,

which can be thought of as iterations in a way. In each generation,
a new population size of 16 is created.

AB: Several sources say that the robot was assembled from
trash parts. Is that true?

MB: This is a bit misinterpreted by many people, because
they think that the videos I posted on YouTube are where I am
at now, not where I was when I started. The hexapod began
as a project for a class, and I had limited money, time and
resources. I (like any hobbyist, maker or hacker) have a drawer
full of parts I’ve been collecting for years. I started this drawer
when I was nine years old, and my mentor at the time called it
the “things-I-don’t-know-what-they-are-but-they-may-be-useful
someday drawer”. So when the time came for the class project,
I searched through all the servo motors, breadboards and metal
brackets I had and threw together a hexapod of mismatched
legs to implement the reinforcement technique called Q-learning.
This was not the hexapod I put on YouTube.

The professor of the class, Dr Tony Lewis, really liked the
project and was looking to hire an undergrad into his lab. I
also needed a job so he hired me into his lab, the Robotics
and Neural Systems Laboratory (RNSL). At RNSL, there is a
Dimension 3-D printer, so I took advantage of it and saved up
my money to buy matching motors. I gave the hexapod a com-
plete makeover (including a new Atom-based fit-PC2) with no
junk parts, and then I posted a video on YouTube. This is the
video that Stewart Christie of Intel saw. Also, the video shows
no learning at all. It was just a demonstration to forum members
at hexapodrobot.com/forum of my platform in action.

AB: Linux is the key to success for the hexapod. Why did
you decide to use Linux, and what particular distribution was
the final choice?

MB: I wanted ultimate onboard computational power for
vision processing, which led to fit-PC2 from CompuLab. At RNSL,
Ubuntu is the distribution of choice and is used for everything
from simulations to direct robot operation. We use Linux because
of the flexibility and the available resources.

AB: The main hardware unit, an Atom motherboard, was
donated by Intel. Could you shed some light on your cooperation
with Intel?

MB: Originally, I had purchased the computer before any

cooperation with Intel. At the time of searching for an embedded
solution, I was looking into Gumstix boards and Via processor-
based boards. These were great for kinematics integration, but
for heavy computation of vision, I needed something even more
powerful. Fortunately at the time, CompuLab had just released its

fit-PC2, which is the ideal computer for robotics. Once I posted
the video, a couple days later, Stewart from Intel wrote a comment
on my YouTube video regarding interest in the hexapod. I contacted
him, and after a month or so, he said that Intel would want me
to create two hexapods, one for tradeshows and the other for
me, but the Intel folks can borrow mine if they have multiple
demonstrations at the same time.

AB: Speaking practically, the hexapod is actually a high-tech
model, because the use of 3-D Stratasys printers won’t be avail-
able for casual amateurs. You’ve made a model—that is, a frame-
work and legs in CAD software—printed it and attached servos
and a camera to the body and that’s it. Am I missing something?

MB: 3-D printing has been becoming incredibly cheap,
where hobbyists can make their own home 3-D printer for
around $1,000. The quality is not anywhere near what the
Stratasys machine can do that I use, but functional parts still
may be created. My hexapod is not very different functionally
from other hexapods that can be put together with off-the-
shelf components, but since I had the Stratasys machine at
my disposal, I took full advantage of it and tried to make
complex, curved shapes. I actually used SolidWorks for the
mechanical design, because it is freely offered by my university,
but I will have to look into QCad.

4 4 | june 2011 www.l inux journa l .com

FEATURE Hexapod—a Linux-Powered Spider Robot

General Scheme of How the Robot Is Controlled

I wanted ultimate onboard computational power for
vision processing, which led to fit-PC2 from CompuLab.

http://www.linuxjournal.com
http://hexapodrobot.com/forum

AB: The robot without its middleware is just another embedded
Linux device. Did you use a specific software for your “spider”, or
did you write software for it?

MB: I developed all the software for the hexapod in C++, using
OpenCV libraries for simulations and vision processing.

AB: Can you estimate how much time (in hours) it took to
construct the hexapod (put together the mechanical and electrical
parts) and write the software itself?

MB: Ha ha. It is an enormous amount for sure. I worked on it
for hours a day, weeks at a time. The original Q-Learning robot
probably took 200 hours. Then I gave it a makeover, which took
maybe 100 hours, and then the other projects took maybe 80 each.

AB: You said previously that the operating system beneath
the cover is Ubuntu. What IDE did you use to write the robot’s
middleware—Qt, WxWidgets, ncurses or something else?

MB: I actually use only GEdit and purely in C++ using OpenCV
libraries. The simulations I built were done purely using OpenCV,
drawing individual lines at a time. I feel like I re-invent the wheel
when I do this, but I sure learn a lot!

First experiment is done in simulated environment.

AB: Do you release schematics and auxiliary software of a
robot under the GPL or under another license?

MB: I have been looking to release my kinematics code
under a license, but I know nothing in this area. Maybe LJ

readers could point me in the
right direction?

AB: You’re a senior student at
the University of Arizona, and this
project is to some degree your
graduation work. Do you plan to
continue its future development?

MB: I look forward to imple-
menting more functionality into
the hexapod as a graduate student
at the University of Arizona.
Currently, I am working on a
miniature version. I do want to
explore the link between vision
and legged locomotion through
the use of biologically inspired
neural networks further.

AB: Where, in your opinion, can
this “spider” be used and be useful
for people?

MB: The hexapod could make a great search-and-rescue-
style robot. In a natural disaster like an earthquake, it would
be desirable to have a large number of robots searching
autonomously for survivors in a building turned to rubble. The
environment is treacherous though and could cause damage
to the robot. Once damage is inflicted upon the hexapod, a
purely inverse kinematic-based hexapod would be rendered
useless. If, however, it could re-learn, the hexapod still could
operate given its new configuration. Like I mentioned previ-
ously though, it is more of a tool to explore machine learning
techniques and out of the research, hopefully discover faster
algorithms. Hopefully, better algorithms can be used for consumer-
based robotics to increase the standard.

AB: Do you plan to use the hexapod or your next prototype
CrustCrawler in autonomous walking research?

MB: Sure. The learning mechanisms I’ve implemented are
more scientific, and I certainly encourage everyone to explore
science with robotics platforms, but it is not necessarily the
goal for the CrustCrawler platform. I see that as a means
of making it easy for anyone to get started in the field of
hexapod robotics. If the different geometry is more conducive
to what I want the hexapod to do, then I will, of course, use
it. The hexapods are simply tools in my mind for research. I
certainly want my hexapods to be able to roam around on
their own and accomplish some task even if it is mundane.
The nice thing about the CrustCrawler hexapod and my personal
hexapod is that they can be easily interchanged, as they use
motors that communicate using identical protocols. All I have
to do is change a few geometric calibration settings and it
will run just fine.�

Anton Borisov has broad spheres of interests, ranging from clusters and embedded devices
to artificial intelligence and programmatic puzzles. One thing that unites them all is Linux,
his most favorite operating system.

www.l inux journa l .com june 2011 | 4 5

BUILDING A SPIDER
Here are the required resources to build a spider:

� Framework: six servo motors AX-12/RX-10/RX-28 from Robotis, 3D-printed casing.

� Computing unit: one fit-PC2 motherboard based on Intel Atom Z530 from CompuLab.

� Labor hours: 380.

� Distribution: Ubuntu Linux 9.08.

� Software used: GEdit, OpenCV and C++.

� Scientific field: neural networks and adaptation methods.

Photos courtesy Matt Bunting, Intel Corp.

http://www.linuxjournal.com

4 6 | june 2011 www.l inux journa l .com

Give your debugging sessions
go-faster stripes

with the power of Python.
TOM PARKIN

If you write code for Linux systems, chances are you will have used the venerable GNU Debugger (GDB). Acting as
a back end for many GUIs and the interface to various JTAG debugging tools in the embedded world, GDB is the

foremost debugger for Linux. As of release 7.0, GDB gained a compelling new capability: support for scripting
debugging actions using a Python interpreter. In this article, I take a look at how to drive GDB using Python and

apply this knowledge to the vexatious issue of debugging an embedded Linux platform.

Debugging
Embedded Linux Platforms

GDBPythonand
with

http://www.linuxjournal.com

The Challenge of Embedded Linux Debugging
Debugging Linux programs on an x86 PC platform, although not
necessarily easy, at least is well supported by a variety of tools.
Most Linux distributions package development and debugging
tools to assist with anything from profiling runtime performance
through tracing memory leaks and detecting deadlocks.

Embedded platforms are rarely so well served. Although
a number of projects seek to provide the kind of polish and
integration for embedded development that is taken for
granted on the desktop, these are not yet widely adopted in
all areas of embedded Linux development. Many embedded
devices are developed using what effectively is a handcrafted
Linux distribution, closely tied to the specific goals of that
device. The time required to integrate a wide range of handy
debugging tools into that environment, especially in the
fast-paced world of consumer electronics, is an overhead few
teams can meet.

Many embedded platforms seek to save on resource over-
head through the use of “low-fat” system libraries (such as
uClibc in the place of glibc), which may make the integration
of some debugging tools more difficult. Indeed, in some cases,
the architecture of the CPU used by the target platform will
prevent the use of certain tools altogether. The excellent
Valgrind instrumentation framework, for example, has limited
support for the ARM architecture and no support at all for
MIPS or SuperH.

The nature of embedded devices often means that CPU
cycles and memory are scarce. Any debugging tool that
weighs too heavily on either may make its use impractical on
an embedded device, especially when attempting to debug
race conditions and the like.

The net result of this inconsistent provision of debugging
tools across the embedded Linux world is that most developers
have to makeshift as best they can with the tools that are
available. Happily, GDB is widely available for embedded devices
because it is easy to cross-compile and supports a wide range of
target architectures. And with the recent integration of Python
scripting support, GDB can extended beyond the typical debugging
tasks of single stepping and variable examination.

Scripting GDB with Python
GDB has long supported extension via pre-canned sequences of
debugger commands. This ability makes it possible to automate
certain parts of a debugging work flow and even implement new
debugger functions.

Integrating Python into GDB adds an extra dimension to the
possibilities of GDB scripting and extension. In addition to the sim-
ple functions and flow control of GDB’s native scripting language,
the full power of the Python language is made available.

The Python GDB API is presented as a Python module called
gdb, which provides access to GDB’s internal representation of a
process under debugging. The module includes interfaces to process
information, threads, stack frames, values and types, functions,

symbols and break points. In addition, a mechanism is provided to
inject commands into the GDB command-line interface.

The result is that the internals of GDB are now available as a
rich set of libraries for programmatic driving of the debugger. This
creates a whole range of new opportunities for extension and
automation. For example, let’s imagine you want to debug calls to
malloc() in a large application, but you’re really interested only in
calls from a certain module. Ideally, you want to be able to break
execution only when one of the module’s functions is in the
backtrace at the point that malloc() is called. The Python API
gives you that flexibility.

Problem Code
To explore the use of Python within GDB, let’s debug a small C
program, the code for which is shown in Listing 1. It performs
the simple task of printing the phrase “Hello World!” in a
rather convoluted manner, and it has at least one obvious
bug. Besides being over-engineered for the task at hand,
hello_world.c makes use of two mutexes for serializing access
to different data structures, and not all users of these mutexes
agree on the order in which locks should be acquired. This
quickly yields a runtime deadlock.

Although hello_world.c is somewhat contrived, it does
demonstrate the kinds of runtime bugs that multithreaded
applications can come across when mutexes are required to
protect data structures from different contexts.

Before reading any further, it is worth considering how you
might debug such a deadlock. On an x86 platform, you could
consider using the Valgrind framework’s drd tool. Alternatively,
you may choose to recompile the code with different options to
change the behavior. But what would you do if Valgrind did not
work on your platform, or if the code you wanted to rebuild was
a third-party library for which you had only binaries?

Setting Up the Environment: the Embedded
Platform
The example platform for this article uses a little-endian
MIPS-based System On a Chip (SOC) device. MIPS is widely used
in home routers, such as the popular Linksys WRT54G series, as
well as in many set-top box platforms for accessing digital television
services. Our platform has a fairly powerful 400MHz CPU, as well
as 512MB of DDR RAM, making it a quite capable embedded
device. We can communicate with the platform over a serial
console and using an Ethernet port.

On the software side, our platform runs a 2.6 series Linux
kernel that has been extended by the SOC manufacturer to
support the specific CPU we are using. It has a fairly typical
userspace based around uClibc and BusyBox, along with a
range of GNU utilities, such as awk and sed.

Setting Up the Environment: Cross-Compiling
GDB
In order to run GDB on our embedded platform, we will make use

www. l inux journa l .com june 2011 | 4 7

Happily, GDB is widely available for embedded devices because it is easy
to cross-compile and supports a wide range of target architectures.

http://www.linuxjournal.com

of the gdbserver tool for remote debugging. This allows us to run
GDB on a Linux PC, connecting to the embedded target using
Ethernet. The protocol GDB uses to communicate with gdbserver
is compatible across releases, so we can update the GDB installation
on our host PC without needing to install a new version of
gdbserver on the target.

Because most distributions do not package GDB with MIPS
architecture support, we need to compile GDB from source. This
is accomplished easily using the instructions in the source tarball,

which can be downloaded from the GDB Web site. If you
get stuck with cross compilation or with the GDB/gdbserver
configuration, plenty of good references exist on-line that
will help; the Resources section for this article lists a few.

Initial Debugging
Now that we have GDB cross-compiled and installed, let’s take
a look at debugging the deadlock on the embedded target.

First, run gdbserver on the target and attach to the

4 8 | june 2011 www.l inux journa l .com

FEATURE Debugging Embedded Linux Platforms with GDB and Python

Listing 1. C Source Code for hello_world

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <string.h>

#define THREAD_COUNT 32

/* String output data */

static const char *string = "Hello World!\n";

static int cursor = 0;

pthread_mutex_t print_lock = PTHREAD_MUTEX_INITIALIZER;

/* Runtime statistics */

static int chars_printed = 0;

pthread_mutex_t statistics_lock = PTHREAD_MUTEX_INITIALIZER;

/* Print one character of the string "Hello World!" to stdout */

/* Returns a pointer to the character printed */

static char *say_hello(void)

{

char *printed_letter = NULL;

printf("%c", string[cursor]);

if (++cursor > strlen(string)) {

cursor = 0;

fflush(stdout);

}

printed_letter = (char *) malloc(1);

if (printed_letter) {

*printed_letter = string[cursor];

}

return printed_letter;

}

/* A "bug-free" printer function */

static void *good_printer(void *data)

{

char *c = NULL;

while(1) {

c = NULL;

pthread_mutex_lock(&print_lock);

pthread_mutex_lock(&statistics_lock);

c = say_hello();

if (c) free(c);

chars_printed++;

pthread_mutex_unlock(&statistics_lock);

pthread_mutex_unlock(&print_lock);

}

return NULL;

}

/* A buggy printer function */

static void *bad_printer(void *data)

{

while(1) {

pthread_mutex_lock(&statistics_lock);

pthread_mutex_lock(&print_lock);

say_hello();

chars_printed++;

pthread_mutex_unlock(&print_lock);

pthread_mutex_unlock(&statistics_lock);

}

return NULL;

}

int main (int argc, char **argv)

{

pthread_t threads[THREAD_COUNT];

int i;

/* Spawn many good children threads */

for (i = 1; i < THREAD_COUNT; i++) {

if (0 != pthread_create(&threads[i], NULL, good_printer, NULL)) {

perror("pthread_create");

exit(EXIT_FAILURE);

}

}

/* Spawn one bad child thread */

if (0 != pthread_create(&threads[0], NULL, bad_printer, NULL)) {

perror("pthread_create");

exit(EXIT_FAILURE);

}

pthread_join(threads[0], NULL);

return EXIT_SUCCESS;

}

http://www.linuxjournal.com

deadlocked process:

gdbserver :5555 --attach <pid of process>

Now, fire up GDB on the host PC:

mipsel-linux-uclibc-gdb

Once GDB is running, point it at the target’s root filesystem
and at the file to debug:

(gdb) set solib-absolute-prefix /export/shared/rootfs

(gdb) file hello_world

(gdb)

Finally, tell GDB to attach to the process running on the target
via gdbserver:

(gdb) target remote 10.0.0.6:5555

(gdb)

If all goes well, now you should be able to explore the running
process a little to see what is going on. Given that the process has
deadlocked, examining the state of the threads in the process is a
good first port of call:

(gdb) info threads

Id Target Id Frame

33 Thread 737 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

32 Thread 738 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

31 Thread 739 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

....

3 Thread 767 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

2 Thread 768 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

1 Thread 736 0x2aab953c in pthread_join from libpthread.so.0

(gdb)

The omitted threads in the GDB output are all similarly blocking in
_ _lll_lock_wait(), somewhere in the depths of libpthread.so. Clearly,
some of these threads must be waiting for a mutex that another
thread has not given up—but which threads, and which mutex?

Some examination of the libpthread source in the uClibc tree
shows us that _ _lll_lock_wait() is a low-level wrapper around the
Linux futex system call. The prototype for this function is:

void _ _lll_lock_wait (int *futex, int private);

On MIPS, the a0 register typically is used for the first argument
to a function. So if we examine a0 for each thread that is blocked
in _ _lll_lock_wait(), we should get a good idea of which threads
are waiting on which mutexes. That’s a good start, but ideally we
want to find out which thread currently owns each mutex. How
can we manage that?

Going back to the uClibc sources, we can see that
_ _lll_lock_wait() is called from pthread_mutex_lock(). The integer
pointer provided to _ _lll_lock_wait() is actually a pointer to
the pthread_mutex_t structure:

typedef union

{

struct _ _pthread_mutex_s

{

int _ _lock;

unsigned int _ _count;

int _ _owner;

int _ _kind;

unsigned int _ _nusers;

_ _extension_ _ union

{

int _ _spins;

_ _pthread_slist_t _ _list;

};

} _ _data;

char _ _size[_ _SIZEOF_PTHREAD_MUTEX_T];

long int _ _align;

} pthread_mutex_t;

The _ _owner field looks interesting, and on further investigation
it seems that _ _owner is set to the thread ID (TID) of the thread
that is currently holding the mutex.

By combining these two pieces of information (namely the
mutex pointer provided to _ _lll_lock_wait(); and the _ _owner
field two integers on in that structure), we should be able to
find out which threads are blocking on which mutexes.

The trouble is that this would be very tedious to iterate

www. l inux journa l .com june 2011 | 4 9

http://www.linuxjournal.com
http://www.logicsupply.com/linux

through by hand. Each thread that is blocking in _ _lll_lock_wait()
will need to be selected. Then the contents of register a0 must be
queried for the appropriate stack frame of each thread, and the
memory at the location pointed to by a0 examined to discover
which thread owns the mutex that the thread is waiting for. Even
for this trivial program, we have some 32 threads to look at,
which is a lot of manual work.

Putting Python into Practice
Rather than driving the debugger by hand, let’s instead look at how
we can automate the task described above using the GDB Python
API. First, we need to be able to iterate over each thread in the
process under debugging (the “inferior”, in GDB terminology). To
do this, we can use the threads() method of the gdb.Inferior class:

for process in gdb.inferiors():

for thread in process.threads():

print thread

That was easy. Now we need to look at the currently executing
stack frame for each thread and figure out whether it is waiting
on a mutex. We can do this using the gdb module function
selected_frame() and the name() method of the gdb.Frame class:

for process in gdb.inferiors():

for thread in process.threads():

thread.switch()

frame = gdb.selected_frame()

if frame.name() == "_ _lll_lock_wait":

print "Thread is blocking in _ _lll_lock_wait"

So far, so good. Now that we have a method for programmatically
finding each thread that is waiting on a mutex, we need to
examine the contents of the a0 register for each of those threads.
This should extract a pointer to the mutex structure that the
thread is waiting on. Happily, GDB provides a convenience
variable, $a0, which we can use to access the a0 register. The
gdb module function parse_and_eval() provides API access to
convenience variables, amongst other things:

for process in gdb.inferiors():

for thread in process.threads():

thread.switch()

frame = gdb.selected_frame()

if frame.name() == "_ _lll_lock_wait":

print "Thread is blocking in _ _lll_lock_wait"

a0 = gdb.parse_and_eval("$a0")

The last piece of information we need to extract from GDB is
the contents of memory at the pointer in the a0 register so that
we can determine the _ _owner field for each mutex in play.
Although it’s probably cheating to do so, we can fall back on the
gdb module function execute() to pass the x command to the
GDB command-line interface. This will print the contents of mem-
ory to a string that we can parse to find the required information:

for process in gdb.inferiors():

for thread in process.threads():

thread.switch()

frame = gdb.selected_frame()

if frame.name() == "_ _lll_lock_wait":

print "Thread is blocking in _ _lll_lock_wait"

a0 = gdb.parse_and_eval("$a0")

s = gdb.execute("x/4d $a0", to_string=True).split()

s.reverse()

owner = int(s[1])

It’s not particularly pretty to look at, but it works. This
code splits the string returned from the x command into a
whitespace-delimited list. Because GDB may alter the labels
used at the start of the output depending on what symbolic
information it can extract from the application binary, we then

5 0 | june 2011 www.l inux journa l .com

FEATURE Debugging Embedded Linux Platforms with GDB and Python

Listing 2. Python Code for GDB Mutex Debugging

from collections import defaultdict

A dictionary of mutex:owner

mutexOwners = {}

A dictionary of blocking mutex:(threads..)

threadBlockers = defaultdict(list)

Print the threads

print "Process threads : "

gdb.execute("info threads")

print "Analysing mutexes..."

Step through processes running under gdb

for process in gdb.inferiors():

Step through each thread in the process

for thread in process.threads():

Examine the thread -- is it blocking on a mutex?

thread.switch()

frame = gdb.selected_frame()

if frame.name() == "_ _lll_lock_wait":

a0 is the first argument passed to the function

a0 = gdb.parse_and_eval("$a0")

mutex = int(a0)

Make a note of which thread blocks on which mutex

threadBlockers[mutex].append(thread)

Make a note of which thread owns this mutex

if not mutex in mutexOwners:

s = gdb.execute("x/4d $a0", to_string=True).split()

s.reverse()

mutexOwners[mutex] = int(s[1])

Print the results of the analysis

for mutex in mutexOwners:

print " Mutex 0x%x :" % mutex

print " -> held by thread : %d" % mutexOwners[mutex]

s = ["%d" % t.ptid[2] for t in threadBlockers[mutex]]

print " -> blocks threads : %s" % ' '.join(s)

http://www.linuxjournal.com

reverse the list and pull out the second-to-last value. This
yields the third integer value in the structure, which in this
case is the _ _owner field of pthread_mutex_t.

All that remains to do now is to plug all of these pieces of
data together to provide some useful information. Listing 2 shows
the full Python code to do this. Putting it all together:

(gdb) source mutex_check.py

Process threads :

Id Target Id Frame

33 Thread 737 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

32 Thread 738 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

....

3 Thread 767 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

2 Thread 768 0x2aac1068 in _ _lll_lock_wait from libpthread.so.0

1 Thread 736 0x2aab953c in pthread_join from libpthread.so.0

Analysing mutexes...

Mutex 0x401cf0 :

-> held by thread : 740

-> blocks threads : 737 738 739 741 742 743 744 745 746 747

748 749 750 751 752 753 754 755 756 757

758 759 760 761 762 763 764 765 766 767

768

Mutex 0x401d08 :

-> held by thread : 768

-> blocks threads : 740

(gdb)

The deadlock now becomes very clear. Thread 740 is wait-
ing for a mutex currently owned by thread 768, and thread
768 in turn is waiting for the mutex that thread 740 currently
owns. Neither thread can run until the mutex owned by the
other becomes available. Returning to the GDB prompt, we
can generate backtraces for both threads to gain more insight:

(gdb) t 30

[Switching to thread 30 (Thread 740)]

#0 0x2aac1068 in _ _lll_lock_wait ()

(gdb) bt

#0 0x2aac1068 in _ _lll_lock_wait ()

#1 0x2aaba568 in pthread_mutex_lock ()

#2 0x00400970 in good_printer (data=0x0) at hello_world.c:45

#3 0x2aab7f9c in start_thread ()

#4 0x2aac2200 in _ _thread_start ()

Backtrace stopped: frame did not save the PC

(gdb) t 2

[Switching to thread 2 (Thread 768)]

#0 0x2aac1068 in _ _lll_lock_wait ()

(gdb) bt

#0 0x2aac1068 in _ _lll_lock_wait ()

#1 0x2aaba568 in pthread_mutex_lock ()

#2 0x00400a04 in bad_printer (data=0x0) at hello_world.c:60

#3 0x2aab7f9c in start_thread ()

#4 0x2aac2200 in _ _thread_start ()

Backtrace stopped: frame did not save the PC

(gdb)

As the backtraces show, the two threads have followed two
different code paths to end up in the deadlock situation.
Reviewing the code for hello_world in light of this information

should allow us to find the bug: bad_printer() is taking the print
and statistics locks in the wrong order.

Conclusion
Adding a Python API to GDB provides another capable weapon in
the Linux debugging arsenal. For embedded systems, where other
debugging tools may not be so widely available, a powerful
programmatic interface to GDB can make the difference between
hours of painstaking debugging and minutes of enjoyable scripting.

Astute readers will have noted that the bug we have
discovered in this article is not the only bug in hello_world.c.
The task of finding and fixing the remaining bugs is left as an
exercise for readers to tackle with their new-found GDB Python
knowledge. Have fun!�

Tom Parkin (tom.parkin@gmail.com) has been working with Linux and embedded systems for
ten years and is still finding new things to get excited about. When not in front of a computer,
he enjoys 10k runs and Real Ale, although not in combination.

www.l inux journa l .com june 2011 | 5 1

MIPS Registers
The MIPS architecture has 32 general-purpose
integer registers. Of these, the hardware architecture
specifies that registers 0 and 31 are used for
the value zero and the function return address,
respectively. The usage of the rest of the registers
is entirely defined by the software toolchain.

By convention, however, the use of the general-
purpose MIPS registers is quite firmly set to allow
software interoperability. For example, registers 4
to 7 are used to pass the first four non-floating-
point arguments to functions and are given the
names a0 to a3.

Resources

GDB: www.gnu.org/software/gdb

GDB/Python Wiki: sourceware.org/gdb/wiki/PythonGdb

Tom Tromey’s Excellent Blog Posts about GDB and
Python: tromey.com/blog/?cat=17

OpenWrt’s GDB Cross-Compilation Makefile:
https://dev.openwrt.org/browser/trunk/toolchain/
gdb/Makefile

A How-To for GDB/gdbserver Usage:
www.linux.com/archive/feature/121735

uClibc Project: uclibc.org

Linux Futex Information: kernel.org/doc/man-pages/
online/pages/man2/futex.2.html

mailto:tom.parkin@gmail.com
http://www.linuxjournal.com
http://www.gnu.org/software/gdb
https://dev.openwrt.org/browser/trunk/toolchain/
http://www.linux.com/archive/feature/121735
http://sourceware.org/gdb/wiki/PythonGdb
http://tromey.com/blog/?cat=17
http://uclibc.org
http://kernel.org/doc/man-pages/online/pages/man2/futex.2.html
http://kernel.org/doc/man-pages/online/pages/man2/futex.2.html

BREAKING
FREE THE
GUMSTIX

DSP
For a senior design project, I was part of a team that needed to process Fast Fourier Transforms on an embedded computer.

Specifically, I chose to use the Gumstix Overo Fire because of the integrated Digital Signal Processor (DSP), which has Fast
Fourier Transforms as part of the Texas Instruments API. While researching this project, I found the activation of the DSP on the
Gumstix to be a relatively unexplored area. So using a combination of methods from the DSPBridge on the BeagleBoard,
the Gumstix Developer and the PIXHAWK Project Web sites, I arrived at this method for compiling the Linux-2.6.33 kernel
for the Gumstix Overo Fire with DSP support.

The Overo Fire comes with three processors: an ARM Cortex-A8 CPU, POWERVR SGX and C64x+ Digital Signal Processor
core. While the ARM provides for the general-purpose processing, the Digital Signal Processor can be used to perform more
mathematically intensive calculations. For this reason, the purpose of this article is to describe how to compile a Linux 2.6.33
kernel for the Gumstix Overo Fire to leverage the extra processing power of the DSP for future projects.

Compiling a Linux 2.6.33 kernel for the
Gumstix Overo Fire with DSP support.

JAMES MCCOLL

5 2 | june 2011 www.l inux journa l .com

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 5 3

http://www.linuxjournal.com

Pre-Compilation Package Installation
Go to the DSPBridge Project Wiki (www.omappedia.org/wiki/
DSPBridge_Project), and follow the instructions for retrieving
both the kernel-dspbridge and the userspace-dspbridge packages
from the DSPbridge git repository, but do not issue any make
command as mentioned in the tutorial on the Web page.

Download and install the Code Sourcery tool suite
(specifically CodeSourcery G++ Lite 2008q3-72) and
both bios_setuplinux_5_33_04.bin and
ti_cgt_c6000_6.0.7_setup_linux_x86.bin packages from the
Texas Instruments Web site. The Texas Instruments tools
require a Texas Instruments user account in order to download.
Installing both of the Texas Instrument Tools in the same directory
will help with configuring the $DEPOT variable later.

An additional tool needed for compiling the DSP image for the
Gumstix is u-boot from Steve’s Beagles U-boot git repository. Use
the following commands:

git clone git://gitorious.org/u-boot-omap3/mainline.git u-boot-omap3

cd u-boot-omap3

git checkout --track -b omap3-dev origin/omap3-dev

Or, go to www.sakoman.com/cgi-bin/gitweb.cgi?p=
u-boot.git;a=summary and download the packages there.

Next, change into the newly installed u-boot directory and issue
the make tools command in order to compile mkimage, which later
will be used to create a uImage. Ensure that the OpenEmbedded
and bitbake programming suites are installed for the Overo
Gumstix profile. Use the default config for the Linux 2.6.33 kernel
as the starting config of the new DSP-enabled kernel. Installation
instructions for OpenEmbedded and bitbake can be found at
www.gumstix.org/software-development/open-embedded/
61-using-the-open-embedded-build-system.html.

Finally, create an SDRAM card with a bootable Gumstix image.
Instructions for creating a bootable SDRAM card can be found at
www.gumstix.org/create-a-bootable-microsd-card.html.

Setting Up the Compilation Environment
To set up the compilation environment, point the
CROSS_COMPILE variable at the Code Sourcery tool suite using
the command:

export CROSS_COMPILE= <path to tool suite>/CodeSourcery/

�Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-

and the DEPOT variable with the command:

export DEPOT=<path to TI tools>/

Additionally, set the architecture of the device to ARM using
the command export ARCH=arm, and add the u-boot directory
and cross compilers to the path using the commands:

PATH=<path to u-boot directory>/u-boot-omap3/

�tools:<path to tool suite>/CodeSourcery/

Sourcery_G++_Lite/bin:$PATH

and:

export PATH

Compiling the Kernel
Before compiling the kernel, reset the git repository from the
current branch to the Linux 2.6.33 kernel to make it compatible
with the Gumstix configuration file. (At the time of this writing,
the default DSPbridge is set to Linux 2.6.37.) First, issue the git
branch command and check out the current DSPbridge branch.
Now, issue:

git reset - -hard 85343cd5491260881b34ab7bb7cdc8fdeef078e4

After the branch is reset, check the Makefile for the proper
Linux information at the top. In order to keep the kernel size to a
minimum, build the kernel in an output directory, which will be
referred to as the production directory for the remainder of this

5 4 | june 2011 www.l inux journa l .com

FEATURE Breaking Free the Gumstix DSP

An additional tool needed
for compiling the DSP
image for the Gumstix
is u-boot from Steve’s
Beagles U-boot git repository.

Figure 1. Changes Made during make oldconfig

http://www.omappedia.org/wiki/DSPBridge_Project
http://www.omappedia.org/wiki/DSPBridge_Project
http://www.sakoman.com/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
http://www.gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html
http://www.gumstix.org/create-a-bootable-microsd-card.html
http://www.linuxjournal.com
http://www.omappedia.org/wiki/DSPBridge_Project
http://www.omappedia.org/wiki/DSPBridge_Project
http://www.sakoman.com/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
http://www.gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html

article. Now, copy the default config for the Gumstix from
OpenEmbedded into the production directory as the .config file.
The purpose of this is to configure the basic structure of the
Gumstix before adding the DSPBridge libraries. The command
should look something like this:

cp <path to openembedded>/org.openembedded.dev/recipes/

�linux/linux-omap3-2.6.33/Overo/defconfig

<path to "production" directory>/.config

Next, issue the make oldconfig command, which is used
to update the current .config file with new options. Generally,
the default responses to the questions are acceptable, except
in the highlighted cases shown in Figure 1.

Note that the ellipses in Figure 1 are used to indicate
breaks in the output for display purposes. Now, issue the make
menuconfig command, which will launch a configuration
interface in the terminal, such as the one shown in Figure 2.

Navigate to the device drivers option (also shown in Figure
2), press Enter, and navigate to the Graphics Support option
(Figure 3), and press Enter.

Now, deselect all the options in Graphics support by highlighting
the option and pressing the N key. (The Backlight and LCD Driver
support cannot be disabled, but all other options can be, as
shown in Figure 4.)

These drivers, if left selected, will cause a compilation error
while making the uImage in the core directory of the kernel.
By disabling them, the kernel should compile.

Next, issue the make uImage command and wait for the
end of the compilation. This compiles a specially wrapped
zImage that is used by u-boot during the booting processes
for the Gumstix.

Then, issue the make modules command to compile all
the kernel modules. This completes the compilation of all the
necessary libraries to activate the DSP on the kernel side.

Now, compress the production directory with the compiled
uImage and the kernel modules in order to deploy on the
Gumstix. A recursive copy will not work, because it will break
several links inside the newly compiled uImage and modules.
The preferred method is to tarball the directory using tar cvjf
<production directory>.tar.bz2 <production directory>.

Compiling the Userspace Files
Following the instructions on the DSPBridge Project (located at
www.omappedia.org/wiki/DSPBridge_Project) for compiling
the userspace files will work as long as the $DEPOT,
$CROSS_COMPILE and the modified $PATH variables are set
in the terminal as mentioned previously. Issue the make all
command to get the full DSPBridge project samples, MPU API
and DSPBridge library.

Deploying the New Kernel to the SDRAM Card
The Gumstix bootable SDRAM card should be split into two
partitions: one containing the MLO, U-BOOT.bin and uImage,
and the other containing the root filesystem (rootfs).

Using a bootable SDRAM card configured for the Gumstix
Overo Fire, reformat the section with the current rootfs. Next,
go to cumulus.gumstix.org/images/angstrom/factory/ and
download the rootfs-booted-Overo-201004270808.tar.bz2

www. l inux journa l .com june 2011 | 5 5

Figure 2. Navigating to Device Drivers

Figure 3. Navigating to Graphics Support

Figure 4. Deselecting the Graphics Support Options

http://www.omappedia.org/wiki/DSPBridge_Project
http://www.linuxjournal.com
http://cumulus.gumstix.org/images/angstrom/factory

package for the Gumstix from the factory images. Now,
uncompress rootfs-booted-Overo-201004270808.tar.bz2 into
the rootfs partition on the SDRAM card.

After the rootfs-booted-Overo-201004270808.tar.bz2 pack-
age has been fully uncompressed, uncompress the production
directory into the rootfs partition. If uncompressing the produc-
tion directory into the partition created a new directory, move
all the files out of the new directory into the same directory as
the files with rootfs-booted-Overo-201004270808.tar.bz2.
This should leave two directories inside the production
directory: the usr and lib directories. Recursively copy the
contents of these directories into the usr and lib directory of
the uncompressed rootfs-booted-Overo-201004270808.tar.bz2.
Now remove the uImage-2.6.33 in the boot/ directory of
rootfs-booted-Overo-201004270808.tar.bz2 and copy the
new uImage from the arch/arm/boot directory. Finally, change
directory into the SDRAM card’s bootable partition. Following
the Gumstix site tutorial, this directory should be named FAT.
Remove the uImage and copy the new uImage from the
arch/arm/boot directory. Now unmount the SDRAM card and
place it in the Gumstix and boot from the SDRAM card.

Deploying the DSPBridge Userspace Files
Once the new kernel has completed the boot sequence,
add a password to the root user and secure copy the con-
tents of the target/ directory of the userspace DSPBridge
directories to the Gumstix. (The directories should be
dspbridge/ and lib/.) Next, recursively copy the contents of
the lib/ directory to the root /lib/ directory of the Gumstix
and reboot the Gumstix. After the Gumstix reboots, enter
the dspbridge/ directory and issue the ./ping.out command
to receive the error shown in Figure 5.

This means the libraries have installed properly and the DSP device
is detected. Now, load the base image for the DSP by issuing the
./cexec.out ddspbase_tiomap3430.dof64P and the ./cexec.out
dynbase_tiomap3430.dof64P command. (To learn the difference,
read the description at the bottom of the DSPBridge Project Wiki.)

Next, register the base image with ./dynreg.out -r
<sample>dyn_3430.dll64P for the test you want to run. For
example, register the ping sample DSP program using the
./dynreg.out -r pingdyn_3430.dll64P command, and

execute it with ./ping.out. The output should look like Figure 6.
This output proves the kernel has been compiled successfully

with userspace files for the Gumstix Overo Fire and that the
libraries have been integrated into the rootfs. Finally, this proves
that the DSP is operational because of the response from the DSP
to the ping program. The Gumstix with the newly compiled kernel
now can be used as a test bed for projects involving the DSP. I
hope this tutorial has helped in understanding and implementing
the compilation of the Gumstix Overo Fire’s Linux 2.6.33 with
support for the DSP.�

James McColl is a Cadet majoring in Computer Science at the United States Military Academy at
West Point, which was the best decision he made in college, and he’s never looked back. Please
direct comments to jim.mccoll.11@gmail.com.

5 6 | june 2011 www.l inux journa l .com

FEATURE Breaking Free the Gumstix DSP

Resources

BeagleBoard/DSP Howto:
elinux.org/BeagleBoard/DSP_Howto

Gumstix Developer Center: gumstix.org

DSPBridge Project:
www.omappedia.org/wiki/DSPBridge_Project

ETH PIXHAWK: MAV Computer Vision Wiki Tutorials:
pixhawk.ethz.ch/wiki/tutorials/start

This output proves the
kernel has been compiled
successfully with
userspace files for the
Gumstix Overo Fire and
that the libraries have been
integrated into the rootfs.

Figure 5. DSP Error Message

Figure 6. Results of ping.out

mailto:jim.mccoll.11@gmail.com
http://www.linuxjournal.com
http://www.omappedia.org/wiki/DSPBridge_Project
http://elinux.org/BeagleBoard/DSP_Howto
http://gumstix.org
http://pixhawk.ethz.ch/wiki/tutorials/start

http://southeastlinuxfest.org

5 8 | june 2011 www.l inux journa l .com

Speech I/O
for

Embedded
Applications

S
peech user interfaces are like the holy grail for
computing. We talk to each other to communicate,
and sci-fi stories—from HAL in 2001: A Space
Odyssey to the ship’s computer in Star Trek—point

to talking computers as the inevitable future. But, creating
speech interfaces that are natural and that people will
use has proven to be difficult. Too often speech technology
is provided, or even preinstalled (as with Microsoft
Windows Speech Recognition), and never used, but there
are glimmers of hope. The technology to do “decent”
speech recognition and speech synthesis has existed for
a while now, and users are trying it out, at least in some
application categories.

It feels like the opportunity is ripe for someone to get
the speech interface right. Maybe you’re the one to invent a
speech interface that makes your embedded application as
cool and unique as the iPhone touch interface was when it
first came out.

In some ways, embedded applications are particularly well
suited for speech. An embedded device often is physically
small and may not have a rich user interface. Almost by

definition, embedded applications are not general-purpose,
so it’s okay if a speech interface has a limited vocabulary.
Speech may be the only user interface provided, or it may
augment a display and keyboard.

Mobile phones are one class of embedded applications
where speech works as a user interface. Voice dialing (“dial
home”) is almost a trivial interface that works very well on
phones. If you’re driving and want to send a text message,
it’s difficult (and in many places illegal) to use the phone’s soft
keyboard to enter the message and its destination. Speech
recognition is good enough, and mobile phones are powerful
enough computers, that sending text messages by voice is a
valid use case people are starting to employ.

In this article, I examine technologies for speech synthesis
and recognition and see how they fit with today’s embedded
devices. As an example application, and in step with the
re-discovery of checklists as productivity tools (thanks to
Atul Gawande’s best-seller The Checklist Manifesto),
we’ll build a simple vocal checklist that you can use the
next time you do surgery, like Dr Gawande (kids don’t try
this at home).

Is the world ready for speech-enabled embedded devices?
Now the technology is here for usable speech recognition and synthesis.

See how you can use it in your own embedded applications.
RICK ROGERS

http://www.linuxjournal.com

Speech Technologies
As with any other user interface, a speech interface has two com-
ponents: input and output (or recognition and synthesis). The two
technologies are closely related, sharing techniques, algorithms
and data models. As mentioned, speech has been a very popular
computing research topic, and I can’t cover all the work here, but
I take a quick look at some different approaches, investigate some
open-source implementations and settle on input and output
packages that seem well suited for embedded applications. You
don’t have to be a computerized speech expert (I certainly don’t
claim to be) to speech-enable your embedded application.

Speech Synthesis or Text-to-Speech (TTS)
Naïvely, you might think “What’s so hard about speech synthesis?”
You envision a hashmap with English words as the keys and
speech utterances as the values. But, it’s not that easy. Any
nontrivial TTS system needs to be able to understand things like
dates and numbers that are embedded in the text and utter them
properly. And, as any first-grader can tell you, English is full of
words whose pronunciation is context-dependent (should “lead”
be pronounced as rhyming with “reed” or “red”?). We also vary
the pitch of our voices as we come to the end of a sentence or
question, and we pause between clauses and sentences (called
the prosody of the speech).

A lot of smart people have thought this over and have come
up with a basic architecture for TTS:

1. A front end to analyze the text, replace dates, numbers and
abbreviations with words, and emit a stream of phonemes
and prosodic units that describes the utterance.

2. A back end, or synthesizer, that takes the utterance stream and
converts it to sounds.

The front end, sometimes called text normalization, is not an
easy problem. It’s one of those pattern things that humans do easily
and computers have a difficult time mimicking. The algorithms
used vary from simple (word substitution) to complex (statistical
hidden Markov models). For applications where the text to be spoken
is relatively fixed (like our checklist), most TTS systems provide a
way of marking up the text to give the normalizer hints about
how it should be spoken (and, there is a standard Speech
Synthesis Markup Language to do so; see Resources).

A variety of schemes have been developed to build speech
synthesizers. The two most popular seem to be formant synthesis
and concatenation.

Formant synthesizers can be quite small, because they don’t
actually store any digitized voice. Instead, they model speech with
a set of rules and store time-based parameters for models of each
phoneme. The prosodic aspects of speech are relatively easy to
introduce into the models, so formant synthesizers are noted for
their ability to mimic emotions. They also are noted for sounding
“robotic”, but very intelligible. For our chosen application,
intelligibility is more important than “naturalness”.

Concatenative synthesizers have a database of speech snippets
that are strung together to create the final sound stream. The
snippets can be anything from a single phoneme to a complete
sentence. They are known for natural-sounding speech, although
the technique can produce speech with distracting glitches, which
can interfere with intelligibility, particularly at higher speeds. They

also are typically larger than formant synthesizers, due to the large
database required for a large vocabulary. The database can be
minimized if the TTS is for a domain-specific application, but,
of course, that limits its usefulness.

Speech Recognition
In contrast to TTS, there is one dominant algorithm for speech
recognition, hidden Markov models (HMMs). If you haven’t run
into HMMs before, don’t expect me to explain the math in detail
here, because, frankly, I don’t completely understand it. I do
understand the idea behind HMMs, and that’s more than what
we need to know to use an HMM-based recognizer.

If you sample a speech waveform (say every 10ms) and do
some fancy math on the resulting waveform that extracts frequency
and amplitude components, you can end up with a vector of
cepstral coefficients. You then can model connected speech as a
series of these cepstral vectors. A Markov model is like a state
machine where the probability of a particular state transition is
dependent only on the current state. In our case, each state of
the Markov model corresponds to a particular vector, and as a
Markov model moves probabilistically through its states, a
series of cepstral vectors and sounds are generated. A hidden
Markov model is one where you can’t see the details of the
state transitions, you just see the output vectors.

The trick is to create a bunch of these HMMs, each trained to
mimic the sounds from a bunch of human-generated speech samples.
Again, the math is beyond me here, but the process is to expose
a training algorithm to a lot of speech samples for the language
desired. As the sea of HMMs is trained, they take on the ability
to reproduce the sounds they “hear” in the training samples.

To use the HMMs to recognize speech, we use one last bit of
mathematical wizardry. For appropriate sets of HMMs, there are
algorithms that, given a waveform (that is hopefully speech), can
tell you: 1) which sequences of HMMs might have generated that
waveform and 2) the probability for each of those sequences.

So, HMMs won’t give us a definitive answer of what words the
speech represents, but they’ll give us a list from which to choose
and tell us which is most likely and by how much. How cool is that?

Open-Source TTS
Many commercial TTS packages are available, but they don’t
concern us here. On the open-source side, there are still many
candidates, with a few that seem more popular:

� eSpeak is the TTS package that comes with Ubuntu and
several other Linux distros. It is of the formant flavor and,
therefore, small (~1.4MB), with the usual robotic formant
voice. The eSpeak normalizer also can be used with a
diphone synthesizer (MBROLA) if desired, but we won’t take
advantage of that for the checklist example here.

� Flite is the embedded version of Festival, which is an open-source
speech synthesis package originating at University of
Edinburgh, with Flite done at Carnegie Mellon University. It is
diphone-based concatenative, and as you would expect, it has
a more natural voice. CMU also offers a set of scripts and tools
for developing new voices, called FestVox.

Open-Source Speech Recognition
Most speech recognition packages are commercial software

www. l inux journa l .com june 2011 | 5 9

http://www.linuxjournal.com

for Windows and Mac OS X. I looked at two open-source
speech recognition packages, both from the Sphinx group at
Carnegie Mellon:

� Sphinx-4 is a speech recognizer and framework that can use
multiple recognition approaches, written in Java. It is intended
primarily for server applications and for research.

� PocketSphinx is a speech recognizer derived from Sphinx
and written in C. As such, it is much smaller than Sphinx
(but still around 20MB for a moderate vocabulary), and it
runs in real time on small processors, even those with no
floating-point hardware.

PocketSphinx is the obvious choice between the two
implementations, so that’s what we’ll use here.

Atul—a Speech Checklist Application
In the interest of flexibility and speed, I’ve chosen a rather
high-end embedded platform for the example program. The
Genesi LX is a nettop with a rather generous configuration for
an embedded device:

1. Freescale i.MX515 (ARM Cortex-A8 800MHz).

2. 3-D graphics processing unit.

3. WXGA display support (HDMI).

4. Multi-format HD video decoder and D1 video encoder.

5. 512MB of RAM.

6. 8GB internal SSD.

7. 10/100Mbit/s Ethernet.

8. 802.11 b/g/n Wi-Fi.

9. SDHC card reader.

10. 2x USB 2.0 ports.

11. Audio jacks for headset.

12. Built-in speaker.

On top of all that, there is a version of the Ubuntu 10.10
(Meerkat) distro available to load and run on the system, which
makes installation and testing a lot easier. The download for
Ubuntu and installation instructions are on the Genesi Web
site. Installation from an SD card is straightforward through
the U-boot bootloader.

Installing eSpeak
The eSpeak TTS system originally was developed for the Acorn
RISC Machine (can you say “full circle”?), comes with Ubuntu
and is included in the version for Genesi, so we get a pass
there. That may not be true for your embedded system, but
the installation procedure for eSpeak is straightforward and
is given in the README of the download on the eSpeak site
(see Resources). Of course, you’ll need to do the install in the
context of Scratchbox, or whatever native build environment
you’re using for your embedded Linux.

Installing PocketSphinx
To install PocketSphinx, you first need to install sphinxbase, which
also is available on the PocketSphinx site. Both are tarballs,
and the installation instructions are given in the READMEs. On
systems like the Genesi, you can download and use the target
to build the package. I did have to set LD_LIBRARY_PATH, so
ld could find the libraries:

export LD_LIBRARY_PATH=/usr/local/lib

On smaller embedded systems, you might have to use a
cross-compiler or Scratchbox.

The Atul Program
We want to create a general-purpose spoken
checklist program along the lines of the checklists
discussed in Dr Gawande’s book. As an example,
let’s use part of the World Health Organization’s
Surgical Safety Checklist.

Let’s create a speech checklist program that reads
a checklist and listens to a reply for each item. We’ll
just match the reply with some valid ones now and
record it in a file, but this could be a springboard for
your own innovative speech user-interface ideas.

PocketSphinx comes with an application called
pocketsphinx_continuous that will do basic contin-
uous speech recognition and print the results to
stdout, along with a lot of information about how
it performed the recognition. We’ll create a small
C program, atul.c, that uses the libespeak library
to speak the checklist items. We will have piped
pocketsphinx_continuous to atul, so atul can listen
to the replies on its stdin.

The compilation command for atul will vary

FEATURE Speech I/O for Embedded Applications

Figure 1. Genesi EFIKA MX Smarttop

6 0 | june 2011 www.l inux journa l .com

http://www.linuxjournal.com

Figure 2. Surgical Safety Checklist, Part I

Listing 1. SafeSurgery.ckl

This is the Surgical Safety Checklist.

#

Before induction of anesthesia.

#

Has the patient confirmed his or her identity, site,

procedure and consent?

yes | no

Is the site marked?

yes | notapplicable

Is the anesthesia machine and medication check complete?

yes

Is the pulse oximeter on the patient and functioning?

yes

Does the patient have a known allergy?

yes | no

Does the patient have a difficult airway or aspiration risk?

no | yes

Is there a risk of more than 500 milliliters of blood loss?

no | yes

Thank you, that completes this portion of the checklist.

If You Use Linux, You Should Be
Reading LINUX JOURNAL™

Get Linux Journal delivered
to your door monthly for
1 year for only $29.50!
Plus, you will receive a free
gift with your subscription.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

Offer valid in US only. Newsstand price per issue is $5.99 USD; Canada/Mexico
annual price is $39.50 USD; International annual price is $69.50. Free gift valued
at $5.99. Prepaid in US funds. First issue will arrive in 4-6 weeks. Sign up for,
renew, or manage your subscription on-line, www.linuxjournal.com/subscribe.

SAVE
62%

http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/subscribe

depending on your development environment. The invocation is:

pocketsphinx_continuous | ./atul SafeSurgery.ckl

Let’s keep the application simple by reading checklist items and
commands from a text file, whose name we’ll pass as an argument to
the program. Let’s mark commands with a # at the beginning of a line.
If the # is followed by a number, let’s pause that number of seconds
(up to 9). We will record each item and the replies as text to stdout.

The espeak library depends on two development packages you’ll
need to load into your target development environment. Both
are readily available as rpm or deb packages: portaudio-devel
and espeak-devel.

The Safe Surgery Checklist file is shown in Listing 1, and
Listing 2 shows the source code for atul.c.

The code isn’t very complex, although in retrospect, it might

have been clearer in Python or some other language that is better
than C at string manipulation. The main routine initializes the TTS
subsystem and makes sure that phoenix_continuous is ready to
catch replies and forward them to us. It then just cycles through
the checklist file, reading prompts and comparing the replies with
the acceptable ones it finds in the checklist file. If it doesn’t find a
match, it tells the user what it’s looking for and asks again. One
thing to note, the string trimming routine in recordreply()
throws out all spaces, so if your checklist is looking for a multiword
response, be sure to concatenate the words in the list (like
“notapplicable” in our checklist above). Everything of note is
recorded in stdout, which you might want to redirect to a log file.

From Here
We’ve barely scratched the surface of speech user interfaces, even
for a checklist application. Depending on your embedded system,

6 2 | june 2011 www.l inux journa l .com

FEATURE Speech I/O for Embedded Applications

Listing 2. atul.c

/*

atul - a simple speech checklist for embedded systems

*/

#include <string.h>

#include <malloc.h>

#include <stdio.h>

#include <speak_lib.h>

espeak_POSITION_TYPE position_type;

espeak_AUDIO_OUTPUT output;

char *path=NULL;

int BuffLen=500, Options=0;

void* user_data;

t_espeak_callback *SynthCallback;

espeak_PARAMETER Parm;

FILE *ckfp; /* Checklist file pointer */

char *ckBuf; /* Checklist item buffer */

char *mtchBuf; /* Checklist expected response buffer */

char *srBuf; /* Speech rec buffer */

char *reply; /* Trimmed reply */

int bsize=100; /* buffer length for all buffers */

int next; /* flag - true if should go to next prompt */

char Voice[] = {"default"};

unsigned int size, position=0, end_position=0,

flags=espeakCHARS_AUTO|espeakENDPAUSE, *unique_identifier;

void recordreply(){

/* read lines from stdin, which are piped in

* from pocketsphinx_continuous.

* Valid responses look like:

* <9 digits>: reply (7 or 8 digits)

* Returns a trimmed reply as char *reply

* no spaces in return

*/

int i, j;

while (!feof(stdin)) {

getline (&srBuf, &bsize, stdin);

if (srBuf[9]!= ':') continue;

j=0;

for (i=0; i<strlen(srBuf); i++) {

if (isdigit(srBuf[i])) continue;

if (srBuf[i]=='-') continue;

if (srBuf[i]==':') continue;

if (isspace(srBuf[i])) continue;

if (srBuf[i]=='(') continue;

if (srBuf[i]==')') continue;

reply[j++] = srBuf[i];

}

reply[j] = '\0';

break;

}

}

int checkreply(){

/* returns true if reply matches

* false if no match (try again)

*/

char *tryagain="Please answer ";

char *ans, *spBuf;

/* if template blank, just sleep 2 sec */

if (strlen(mtchBuf)==2) {

sleep(2);

return(1);

}

/* see if reply matches template */

recordreply();

printf("reply: '%s'\n", reply);

if (strstr(mtchBuf, reply)==NULL){

/* no match - tell user what we're looking for */

spBuf = (char *) malloc (bsize+1);

strcpy(spBuf, tryagain);

if (ans=strtok(mtchBuf+2, "|")){

http://www.linuxjournal.com

you’d have to give the user a way to start and end the checklist
app, and ideally you’d have a way of signaling to the user when
the app is listening. PocketSphinx prompts with “Listening...” and is
supposed to terminate on saying “goodbye” (that doesn’t work for
me—maybe it’s my Texas accent?). The source code for PocketSphinx
(labeled continuous.c) comes with the package, so you can experiment
with it. There are many, many optimizations you could make to
both speech recognition and synthesis, using restricted vocabularies,
different voice databases and just tuning the parameters.

And, what about a more general, practical speech user interface
for embedded devices? The tools are available—how creative
can you be?�

Rick Rogers has been a professional embedded developer for more than 30 years. Now specializing
in mobile application software, when Rick isn’t writing software for a living, he’s writing books and
magazine articles like this one. He welcomes feedback on this article at portmobileapps@gmail.com.

www.l inux journa l .com june 2011 | 6 3

strcat(spBuf, ans);

}

ans = strtok(NULL, "|");

while (ans!=NULL){

strcat(spBuf, " or ");

strcat(spBuf, ans);

ans = strtok(NULL, "|");

}

espeak_Synth(spBuf, size, position,

position_type, end_position, flags,

unique_identifier, user_data);

espeak_Synchronize();

free(spBuf);

return(0); /* repeat last prompt */

}else return(1); /* go to next prompt */

}

int main(int argc, char* argv[])

{

printf("atul started.\n");

/* allocate needed buffers */

ckBuf = (char *) malloc (bsize+1);

srBuf = (char *) malloc (bsize+1);

mtchBuf = (char *) malloc (bsize+1);

reply = (char *) malloc (bsize+1);

/* open the checklist file */

if (argc < 2) {

printf("Usage: atul <checklist filename>\n",

argc);

return 0;

}

ckfp = fopen(argv[1], "r");

if (ckfp == NULL) {

printf("Unable to open checklist file: %s\n",

argv[1]);

return 0;

}

/* Initialize the TTS subsystem */

output = AUDIO_OUTPUT_PLAYBACK;

espeak_Initialize(output, BuffLen, path, Options);

espeak_SetVoiceByName(Voice);

/* Initialize speech recognition

* piped in from pocketsphinx_continuous */

while (!feof(stdin)) {

getline (&srBuf, &bsize, stdin);

if (strncmp(srBuf, "READY...", 8)==0) break;

}

/* Go through the checklist */

next = 1; /* advance to next prompt */

while (!feof(ckfp)) {

if (next) {

getline (&ckBuf, &bsize, ckfp);

getline (&mtchBuf, &bsize, ckfp);

}

size = strlen(ckBuf)+1;

espeak_Synth(ckBuf, size, position,

position_type, end_position, flags,

unique_identifier, user_data);

espeak_Synchronize();

fputs(ckBuf, stdout);

next = checkreply();

}

fclose(ckfp);

free(ckBuf);

free(srBuf);

free(mtchBuf);

return 0;

}

Resources

eSpeak: espeak.sourceforge.net/index.html

Carnegie Mellon University’s Sphinx Group:
cmusphinx.sourceforge.net

Carnegie Mellon’s Flite Page: www.speech.cs.cmu.edu/flite

Genesi EFIKA MX: www.genesi-usa.com/products/efika

World Health Organization Safe Surgery Checklist:
www.who.int/patientsafety/safesurgery/ss_checklist/
en/index.html

mailto:portmobileapps@gmail.com
http://www.linuxjournal.com
http://www.speech.cs.cmu.edu/flite
http://www.genesi-usa.com/products/efika
http://www.who.int/patientsafety/safesurgery/ss_checklist/en/index.html
http://espeak.sourceforge.net/index.html
http://cmusphinx.sourceforge.net
http://www.who.int/patientsafety/safesurgery/ss_checklist/en/index.html

6 4 | june 2011 www.l inux journa l .com

In order to run the latest version of Android, users normally have
to be using the “flagship” Google handset. Unfortunately, that
often requires using a different cell-phone provider, and it limits
purchasing options significantly. In fact, it limits options to a specific
handful of devices like the Nexus One and Nexus S. Because
the Nexus devices don’t have a slider keyboard and come on
the T-Mobile network, they’re not a viable option for me.

Enter CyanogenMod.
For users comfortable with rooting their phones,

CyanogenMod offers many, many more features than the
stock ROMs available for supported handsets. I have an original
Motorola Droid from Verizon, and if I stick with the stock
ROM, I will be stuck with Android 2.2. The current version of
CyanogenMod, version 7, includes the Android 2.3 operating
system. Code-named “Gingerbread”, Android 2.3 includes all
the latest bells and whistles from Google that normally would be
available only on the Nexus S. Thanks to the CyanogenMod team,
we can have those features now—features like:

� New on-screen keyboard with better responsiveness and a
cleaner layout.

� Easier selection tools for copying and pasting.

� A new Marketplace application with a Web-based companion
for installing apps from your desktop browser.

� Integrated VoIP calling.

Although the new 2.3 features are great, the real beauty
behind CyanogenMod is the customization options. Some of the
same functionality can be added to the stock ROM for your phone
by adding a replacement launcher, but CyanogenMod includes
most of the bells and whistles by default. Some of the more
exciting features include:

� The ability to change the lock screen’s layout.

� Highly customizable ADWLauncher installed by default.

� Improved pull-down status bar with power options.

� Visual improvements like screen snapping shut when powering
off, customizable virtual desktops, resizable widgets and more.

CyanogenMod is so customizable, it’s often frustrating to

show off, because it can look so drastically different from install to
install. To answer the question, “What does CyanogenMod 7 look
like?”, the best answer is truly, “However you want it to look!”

If you want to have the latest version of Android on your
phone, but you don’t want to wait for the cell-phone provider to
release an update, or if you have an older handset (like my
original Droid) that likely never will see an update beyond
Android 2.2, CyanogenMod is the tool for you. Most phones
are supported after rooting, and even older phones perform
well with Android 2.3, especially if you overclock them. For
more details or to download the latest version of CyanogenMod,
check out www.cyanogenmod.com. The easiest way to install
it on your rooted phone is with ROM Manager, however. It’s a
simple download from the Marketplace, and the free version
includes support for the stable version of CyanogenMod.

Steve Kondik: the Man behind the Mod
While I explored CyanogenMod version 7, I got really excited
about how quickly development in the Android world was
progressing. I decided to contact Steve Kondik, CyanogenMod’s
creator, and ask him a few questions. (Thanks to my programmer
friend Russ Ryba for helping me come up with some of the more

CyanogenMod 7.0—
Gingerbread in the House
CyanogenMod is a full-blown Android distro you can install on your phone,
whether your cell-phone provider wants you to or not. SHAWN POWERS

INDEPTH

Got Root?
The first step to installing a custom ROM like CyanogenMod is to
“root” your phone. Rooting doesn’t change the way your phone
behaves; instead it gives you superuser (sudo-like) access to the
system. Once your phone is rooted, you can do things like install
a custom ROM, overclock your CPU, set up wireless tethering
(which may violate your cell-phone contract) and even do simple
things that shouldn’t require root, like take screenshots.

Rooting an Android phone is usually extremely simple. Typically,
all it takes is a simple search on Google for the model of Android
phone you have along with the word “root”. For instructions
on how to root several different model phones, sites like
www.droid-life.com can be helpful as well.

Remember, “rooting” your phone doesn’t change very much
on its own. It just gives you the ability to change things. With
great power comes great responsibility, however, so be careful
with your rooted phone. Just like with a desktop version of
Linux, the power of root can get you into trouble!

http://www.linuxjournal.com
http://www.cyanogenmod.com
http://www.droid-life.com

programming-centric questions.)
SP: CyanogenMod is one of, if not the, most popular custom

ROMs for Android phones. What motivated you to start the project?
SK: I’ve always tried to customize desktop Linux, trying to

make things smoother and faster. When I learned about how the
G1 worked, and that I was able to change anything I wanted, I
started off with rebuilding the kernel with different tweaks. Then
I realized that I could rebuild the whole system from source and
flash it to the phone with everything working perfectly—that’s
when the doors opened up.

SP: Installing a custom ROM requires a rooted phone. Rooting
your phone is something that cell-phone companies generally
frown upon. Have you gotten any unfriendly correspondence
from either a cell-phone provider or Google?

SK: Yeah, and it’s still a gray area with regard to firmware and
proprietary drivers. When CM started to get big, Google made
me very aware of the line between the open-source code and the
closed portions (like the Google apps, such as Gmail), so I had to
stop including those. CM doesn’t ship with those parts now, so we
leave it in the users’ hands on how to get that functionality back.

It seems like carriers and manufacturers are starting to realize that
these are more than just phones, and some even are embracing the
community by releasing their own code as open source. T-Mobile
recently open-sourced its theme engine, which we are using in CM7.
Qualcomm and TI release code for their reference boards. Now we are
finally starting to see more devices that are unlockable out of the box.

SP: You support a huge number of devices; I’m curious to
know how much of CyanogenMod needs to be ported specifically
to an individual handset, and how much is generic across the
board. Does the wide variety of devices make releases difficult?

SK: A lot of devices are similar, but there always are subtle
differences. Usually it has to do with the secondary processors on
these devices and offloading media encoding/decoding, or special
hardware like cameras and GPS. In some cases, we’ve had to
reverse-engineer various parts, but the major manufacturers have

Figure 1. This is the default home
screen in CyanogenMod 7. The
background is my own, from
NASA’s Astronomy Pic of the
Day Web site.

Figure 2. The lock screen is
extremely customizable, and it
can be themed to look like SenseUI,
Honeycomb or completely custom
with added functionality.

Advertiser Index

ATTENTION ADVERTISERS

September 2011 Issue #209 Deadlines
Space Close: June 27; Material Close: July 5

Theme: Programming

BONUS DISTRIBUTIONS: USENIX Security, FOSE 2011

Contact Joseph Krack, +1-713-344-1956 ext. 118,
joseph@linuxjournal.com

Advertiser URL Page #

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

1&1 INTERNET INC. www.oneandone.com 70, 71, 73

ABERDEEN, LLC www.aberdeeninc.com C3

ALL ABOUT THE CLOUD siia.net/aatc/2011 9

ARCHIE MCPHEE www.mcphee.com 79

CLOUD COMPUTING CONFERENCE www.opalevents.org/print/LJ 5

DIGI-KEY CORPORATION www.digi-key.com 79

EMAC, INC. www.emacinc.com 25

GENSTOR SYSTEMS, INC. www.genstor.com 27

IXSYSTEMS, INC. www.ixsystems.com 3

LINODE, LLC www.linode.com 33

LINUX JOURNAL STORE www.linuxjournalstore.com 7

LOGIC SUPPLY, INC. www.logicsupply.com 29, 49

LULLABOT www.lullabot.com 1

MICROWAY, INC. www.microway.com C2, C4

O'REILLY VELOCITY velocityconf.com 13

RACKMOUNTPRO www.rackmountpro.com 19

SAINT ARNOLD BREWING COMPANY www.saintarnold.com 79

SILICON MECHANICS www.siliconmechanics.com 21, 37

SOUTHEAST LINUXFEST southeastlinuxfest.org 57

TECHNOLOGIC SYSTEMS www.embeddedx86.com 39

USENIX ANNUAL www.usenix.org/fedweek11 31
TECHNICAL CONFERENCE

UTILIKILTS www.utilikilts.com 79

www. l inux journa l .com june 2011 | 6 5

http://www.linuxjournal.com/buyersguide
http://www.oneandone.com
http://www.aberdeeninc.com
http://www.mcphee.com
http://www.opalevents.org/print/LJ
http://www.digi-key.com
http://www.emacinc.com
http://www.genstor.com
http://www.ixsystems.com
http://www.linode.com
http://www.linuxjournalstore.com
http://www.logicsupply.com
http://www.lullabot.com
http://www.microway.com
http://www.rackmountpro.com
http://www.saintarnold.com
http://www.siliconmechanics.com
http://www.embeddedx86.com
http://www.usenix.org/fedweek11
http://www.utilikilts.com
mailto:joseph@linuxjournal.com
http://www.linuxjournal.com
http://siia.net/aatc/2011
http://velocityconf.com
http://southeastlinuxfest.org

6 6 | june 2011 www.l inux journa l .com

been providing open-source code that we can learn from or use
outright, like Qualcomm’s CodeAurora Project.

With CM, each device has a “maintainer”, which is one or more
people who work with that specific device and handle the issues.

SP: Once a handset is rooted, is installing custom ROMs
simple, or do manufacturers try to prevent you from running
custom code in other ways?

SK: It depends on the device. Some are wide open, and some
are “rooted” but only in userspace—nothing can be changed in
the boot process so things like custom kernels can’t be used easily.

SP: How does the development process work with so many
different developers and different handsets? Are there any unique
frustrations with working on a project like yours?

SK: Keeping device-specific changes from breaking things on
other devices is the tricky part. Most of this is handled by device
“overlays” that customize the build for the hardware. Android has
done a good job with making most of this relatively easy with its
abstraction layers, but it also evolves rapidly. The extensible parts
are where vendors often add their proprietary code and Android
doesn’t do anything for backward compatibility. In CM, we’ve
actually had to re-add support for some of these older drivers in
order to move to newer versions of Android.

There’s also the issue of the way Google does development
internally. It releases the source code for new versions after doing
all the development behind the doors, so when it gets into our
hands, it takes a lot of time to figure out what’s changed and how
to re-integrate our custom features back into it.

SP: Would any of what you do be possible without the GPL
requiring Google to release its source code?

SK: Android isn’t GPL; it’s Apache-licensed. The only code
Google’s required to release is the Linux kernel. But no, without the
source code, the kind of things we are doing wouldn’t be possible.

SP: What are your most favorite and least favorite hardware
devices to work with? What makes them awesome or horrible?

SK: The Motorola devices
have been the most difficult
because of the huge amount of
proprietary code they include,
not to mention the signed boot-
loader. The Samsung phones also
have been a challenge because
they’ve done a lot of things
differently. HTC devices are what
we have the best support for,
partially because they are all simi-
lar to devices that Google has
worked on directly (G1, Nexus
One). The HTC Evo has been my
personal favorite to work on,
because the hardware is unique
and it was the first to include
things nothing else had like dual
cameras and HDMI video.

SP: How much and what
kind of experience do people
need to begin creating their
own custom ROM?

SK: If you want to build CM yourself for a device, we provide
detailed documentation. You just check out the source code and
with a few simple commands, you’ll have a flashable ROM. That
was the goal—to ease the barrier to entry. If you have an idea for
a feature, it’s very easy to dive in and start coding.

SP: I’m not a programmer at all, but I love CyanogenMod,
and I would like to help. How can someone like me contribute?

SK: Helping out on our forums, writing documentation and
tutorials on our wiki, and telling everyone you know about it.

SP: What makes CyanogenMod different from the other
custom ROMs?

SK: I can’t even call it a “custom ROM” anymore; it’s become
more like an Android distribution. We have a whole infrastructure for
submitting code and a great support network. I want it to be as easy
as possible for people to get involved and add their own ideas. CM
is really about the community. Although we do have a core team
of developers, many of the best parts in CM just came from out of
nowhere because somebody thought it would be a neat idea, and
we’ve made it easy to run the code on your own device.

SP: Do you plan to expand CyanogenMod to tablet computers
as they become more common?

SK: We’re already supporting a few tablets like the Nook and
Viewsonic G-Tablet. As more become available and Android 3.0 is
released, you can be sure that we will be trying to make them better.�

Shawn Powers is the Associate Editor for Linux Journal. He’s also the Gadget Guy for
LinuxJournal.com, and he has an interesting collection of vintage Garfield coffee mugs.
Don’t let his silly hairdo fool you, he’s a pretty ordinary guy and can be reached via e-mail
at shawn@linuxjournal.com. Or, swing by the #linuxjournal IRC channel on Freenode.net.

INDEPTH

For more details on CyanogenMod, and how you can
contribute, visit www.cyanogenmod.com.

Figure 3. CyanogenMod has so
many customizable options, it’s
easy to become overwhelmed.
Thankfully, the default is beautiful.

Figure 5. With a few simple tweaks,
the CyanogenMod home screen
has a new theme, tightly packed
icons, removed labels and more. If
the included themes aren’t to your
liking, more are available on-line.

Figure 4. The pull-down menu
has power modification tools
available. Wi-Fi, Bluetooth,
GPS and so on can be toggled
quickly to save battery life.

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com
http://www.cyanogenmod.com

Several projects exist that purport to be small, run-in-memory
distributions. The most popular probably is Puppy Linux. Puppy has
spawned several variations, and I have used it several times myself
on older machines. But, I have discovered one that bowled me over
completely—Tiny Core Linux. This distribution is a totally different
beast and fills what I think is as of yet an unfilled category.

To start, Tiny Core is tiny—really tiny. The full desktop version
weighs in at approximately 10MB—this is for a full graphical
desktop. Not many other options can deliver something like
this. People of a certain age may remember projects like Tom’s
root/boot, or muLinux. Tiny Core fits somewhere in between
those older floppy-based projects and “heavier” small distributions
like Puppy.

Along with this full version, there is an even more stripped-
down version called Micro Core, which weighs in at less than
7MB. This version provides a command-line interface for all of you
text aficionados. Tiny Core is designed to be run completely, or
partially, from RAM. This means the system can be very fast and
responsive. You also can set up the system so that it is loaded
fresh on every boot, which reduces the probability of cruft
working itself into your system dramatically.

To get Tiny Core, download it as an ISO image, which can be
burned to a CD or copied to a USB device. Basically, you can put
it on anything bootable. When you boot it up, you get the full
desktop in a matter of a few seconds—in a virtual machine on
my Mac, it takes less than five seconds (Figure 1).

The default gives you a window manager (flwm, the Fast Light
Window Manager), a set of custom tools and a terminal (aterm).
Everything else is available as an installable package, using its own
custom package system called the AppBrowser (Figure 2). At the

time of this writing, 3,170 packages are available. Packages are
being added constantly, and there are very clear instructions on
how to create and add your own packages.

When you boot Tiny Core, you initially are dumped at a boot
prompt (Figure 3). If you don’t do anything, it times out and
places you on the desktop. However, you can use boot codes,
which have the form of tinycore option1 option2 Some
of these boot codes include:

� tce={hda1|sda1} — specify restore TCE apps directory.

� waitusb=X — wait X seconds for slow USB devices.

� swapfile{=hda1} — scan for or specify a swap partition.

� base — skip TCE and load only the base system.

� xsetup — prompt user for Xvesa setup.

� text — start up in text mode.

� {cron|syslog} — start various dæmons at boot time.

� host=XXXX — set hostname to XXXX.

� noautologin — skip automatic login.

� desktop=xyz — use alternate window manager.

www. l inux journa l .com june 2011 | 6 7

INDEPTH

Tiny Core Linux
If you want to go back to those great old days of really lightweight Linux, give
Tiny Core Linux a try and relive the joy of a bare-bones system. JOEY BERNARD

Figure 1. You are greeted with a nice, clean desktop on bootup.
Figure 2. The packages available to you are listed after clicking
on Connect.

http://www.linuxjournal.com

6 8 | june 2011 www.l inux journa l .com

Figure 3. On bootup, you are greeted with a prompt where you can enter
options to control your system setup.

Many other options are available. You can find them on the
Tiny Core Wiki or list them during bootup. By default, you’re
logged in as user tc automatically and end up at the desktop with
flwm as the window manager.

One of Tiny Core’s features is that you get a fresh system on every
boot. But, what if you want to save settings over a reboot? What are
your options? In Tiny Core, you have the option to back up any nec-
essary files at shutdown and have them be recovered automatically
on boot. These files are saved to the file mydata.tgz. By default, the
system saves all the files and directories that exist under /home/tc.

You can control what’s actually backed up and what’s ignored
by using the files /opt/.filetool.lst and /opt/.xfiletool.lst. In .filetool.lst,
you can add any files you want included in the backup. The file
.xfiletool.lst contains a list of files to exclude from the backup.
This backed-up home directory resides in RAM, so if you have a
lot of files in your home directory, they will take up precious
RAM. Also, as your home directory gets bigger and bigger, the
startup and shutdown times grow as those files are being backed
up and restored.

Another option is to create a persistent home directory.
You can tell Tiny Core where to find this with the boot code
home=xxx, where xxx is the device partition storing your home
directory (for example, sda1 for the first partition on the first
drive). If you want to put the home directory inside a subdirectory,
you can hand this in with:

home=xxx/yyy

where yyy is the subdirectory name.
This gives you a really fast basic desktop, which is fine for everyday

use. But, what if you want to adjust the distribution for some special
case? To figure out how you can personalize it, let’s take a step back
and look at how Tiny Core is put together and how it works. Then
you’ll see how to change the system to suit your application.

The core part of the system is stored in a compressed filesystem
that gets copied to RAM. Any extra applications are mounted from
wherever they are stored as loopback devices, by default. They can be
selected to be actually copied to RAM along with the core system, if
you prefer. The advantage of this “run from RAM” system is that once
the system has finished booting, you can remove the storage media.

In the first case, let’s assume you have the system booting from a
USB device that you don’t need to remove. Then, you have two
options on how to set up the system. The first, mount mode, is to
create a directory called tce on the USB device. In this directory,
you can dump packages for all the applications you want to have

available. These then are mounted as loopback devices. You can use
a utility called appsaudit to maintain those packages. You have the
choice of having those packages mounted at boot time, or you can
have them mounted “on demand” (Figure 4). The other option is
called copy mode. In copy mode, Tiny Core actually takes the con-
tents of the package files and copies them all into RAM. This costs a
bit more in boot time, but then the entire system is, again, running
from RAM, so you get the expected speed-up once everything boots.
You actually can control which packages are copied into RAM on an
individual basis through the configuration file copy2fs.lst. The system
can use this file to decide what is copied and what is mounted.

Figure 4. Maintaining your installed packages is made simpler with
a GUI application.

These aren’t the only methods available if you want to make a
tailored distribution. Because Tiny Core is under the GPL, you can
grab the source code and mess around as much as you please.
You actually can just remaster the ISO to add in any extra packages
you need for your application. In the ISO, there is a gzipped cpio
archive named tinycore.gz. This file contains the core filesystem
that is mounted in RAM when Tiny Core boots. You can do this
work on any Linux box or even from within Tiny Core. If you want
to do it in Tiny Core, you need to install a few extra packages
before you start: advcomp.tcz and mkisofs-tools.tcz. Once you
have all the tools you’ll need, you can mount the ISO image:

sudo mount tinycore.iso /mnt -o loop,ro

where /mnt is the directory to which you want to mount. You
also need a directory into which you can extract the Tiny Core
filesystem, which for this piece, let’s call it /temp/extract. To get
the files, you need to execute the following:

cp -a /mnt/boot /temp

cd /temp/extract

zcat /temp/boot/tinycore.gz | sudo cpio -i -H newc -d

Once this command is done, you can go ahead and change
files, add new ones or delete others. This way, you can add extra

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 6 9

binaries (such as for a point-of-sale application) directly as part of
the system. If you want to be able to handle special hardware,
where you’ll need a new kernel module, you can add it to the
filesystem. But, then you’ll need to run this:

sudo depmod -b /temp/extract 2.6.29.1-tinycore

You also may need to add new shared libraries to provide
support for any new binaries you install. If you do, run this:

sudo ldconfig -r /temp/extract

Once you’ve finished creating a personalized filesystem for Tiny
Core, you need to get it ready to use. The first step is to pack the
filesystem back up into a gzipped cpio archive. Run the commands:

cd /temp/extract find | sudo cpio -o -H newc |

�gzip -2 > /temp/tinycore.gz

cd .. advdef -z4 tinycore.gz

This will give you a brand-spanking-new core file. If you are
using a system other than a CD from which to boot (like some
form of hard drive), you simply need to copy tinycore.gz and
the kernel to that device.

If you want to create a new ISO image that you can use over
and over again, execute the following commands:

cd /temp

mv tinycore.gz boot

mkdir newiso

mv boot newiso

mkisofs -l -J -R -V TC-custom -no-emul-boot \

-boot-load-size 4 -boot-info-table \

-b boot/isolinux/isolinux.bin \

-c boot/isolinux/boot.cat -o TC-remastered.iso newiso

rm -rf newiso

You now have a nice new ISO that you can put to work.
This kind of task happens often enough that the Tiny Core

team has put together a GUI application that helps simplify these
steps called ezremaster. Install it using the AppBrowser. This way,
all the required dependencies also will be installed. You also need
either to have the ISO available or a CD mounted. Once you’ve
done all of these steps, open up a terminal and run ezremaster
from the command line, and you should see what’s shown in
Figure 5. Here you can point it to the locations it needs, and you
should end up with what’s shown in Figure 6. From there, you can
set all kinds of options to customize your ISO image. The sections
available are:

� Boot codes.

� Display settings and mydata.tgz backup.

� Security settings and users.

� Which services would you like enabled?

� Network settings.

� Window manager, core elements and Xorg settings.

� ISOLINUX settings and 64-bit kernel.

� Startup and shutdown scripts.

� Extension installation.

Figure 5. The first step when using ezremaster is setting paths for the
source files and a working directory.

Figure 6. You can set default boot codes to save you extra typing on each boot.

Once you have finished all of these steps, move on to “Remaster
step #1”, where the filesystem for the new ISO is created. Once
that step is done, move on to the last step, “Remaster step
#2”, where the actual ISO image is created. It ends up in the
temporary directory you defined in the first screen. Now you’re
ready to deploy your awesome customized Linux on the world.

Be sure to check out the Tiny Core Web site and Wiki for more
information (www.tinycorelinux.com). There is also a very active
forum at the main site where people always are happy to answer
questions. Hopefully, this project can give you a quick start for
generating your own custom distributions for your smaller projects.�

When Joey Bernard isn’t debugging scientific code or sorting out problems on the clusters at
the university, he’s working on refinishing furniture or playing with his boys in the backyard.
He might call himself a renaissance man, but that sounds a little too presumptuous. Just call
him a well-rounded geek.

http://www.linuxjournal.com
http://www.tinycorelinux.com
http://www.tinycorelinux.com

No one can afford downtime of their website...
1&1 is now offering dual hosting for the ultimate security of your website.
Your website is hosted in two different locations in our data center.
If the fi rst location is unexpectedly interrupted, your site will automatically
continue running in the second location – without any data loss.

&
WEB HOSTING. TWICE AS SECURE.

Double Security, Double Reputability:

No other web host offers as much expertise, know-how and quality
as 1&1: 1&1 combines over 20 years of web hosting experience with the latest
technology in our high-speed and high-performance American data center.
More than 1,000 IT professionals will continue to develop our top performance
web solutions for years to come.
NEW: 1&1 is pleased to offer double security for your website with 1&1 Dual
Hosting! All at unbeatably low prices!

Environmentally Responsible:
100% Renewable Energy

Solid Technical Foundation:
Over 1,000 In-house Developers

Double Security:
1&1 Dual Hosting

Top Performance:
High-end Servers

Fast Global Network Connectivity:
210 GBit/s Connection

1&1 DUAL UNLIMITED
3 FREE Domains

FREE Private Domain Registration

UNLIMITED Web Space

UNLIMITED Traffi c

UNLIMITED FTP Accounts

UNLIMITED E-mail Accounts (2 GB)

UNLIMITED Mailing Lists

20 Microsoft® SQL Databases

ASP, .NET, AJAX, LINQ, PHP, Perl, SSI

GeoTrust® Dedicated SSL Certifi cate

NEW! 1&1 SiteAnalytics

99.99% Uptime

24/7 Toll-free Customer Support

* Redundancy applies to Windows hosting packages only. Monthly price based on 36 month upfront billing term for a total of $359.64. No refunds. Visit www.1and1.com for full promotional offer details. Program and
pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are the property of their respective owners.
© 2011 1&1 Internet, Inc. All rights reserved.

Please see following page for more
1&1 DUAL HOSTING packages.

®

1-855-CA-1AND1 www.1and1.ca

1-877-GO-1AND1 www.1and1.com

$9.99
per month*
(36 month term)

1&1 DUAL

UNLIMITED

$11.99/month (24 month term)
$12.99/month (12 month term)
$13.99/month (3 month term)

NEW!

http://www.1and1.com
http://www.1and1.ca
http://www.1and1.com

It all started when I ordered an ARM-based development board
for my FemtoLinux project, which is a Linux flavor specifically
designed for ultra-small systems. Initially, I played with the idea
of simply using a Linksys WRT router supported by an OpenWrt
open-source project for development. But eventually, I decided
that because it is a commercial project and development time is
important, I was going to spend an extra $100–$200 for a real
development board with official Linux support, which would come
with everything that an embedded Linux developer would need:
cross-compiler toolchain, Linux sources and embedded Linux distri-
bution (at least, that’s what I thought I would be getting). If you’re
on a budget and looking for a cheap embedded board for your
hobby project, using a Linksys WRT router is not such a bad idea.

Choosing the right embedded Linux development board
deserves an article of its own, but for now, suffice it to say
that when you decide to use WRT, you should be prepared to
build your software development environment yourself and
expect to get support from the community. With a commercial
board, I was expecting to receive it from the vendor, but I didn’t.
The vendor’s idea of Linux support turned out to be just a list
of kernel patches, forcing me to evaluate, choose and configure
an embedded Linux development environment for this board
by myself, which turned out to be quite an interesting and
educational experience.

Embedded Linux Distributions
First, let’s start with some basic terminology. An embedded Linux
distribution is quite different from the PC distributions you are
used to, such as Ubuntu or Fedora Core. It typically includes at
least the following components:

� Cross-compiler toolchain for your target architecture,
which is at least gcc, g++ and ld. It usually runs on one
architecture, but produces binaries for a different architec-
ture—x86 and ARM, respectively, in my case, hence the
term cross-compiler toolchain.

� Kernel sources with a BSP (Board Support Package) for
your board.

� Filesystem skeleton—that is, /bin, /etc with all the standard
configuration files, such as /etc/fstab, /etc/inittabe and so on.

� Applications—init and shell as a bare minimum, but most
people will need more in order to do something useful.

Currently, the two most widely used embedded Linux distributions
are OpenEmbedded and Buildroot. This article is about Buildroot,
as that’s the one I am most familiar with and naturally the one I
used in my project. Buildroot’s biggest advantage is its simplicity
and flexibility, which are important if you are going to do
some kernel hacking or other low-level development. If, on
the other hand, you are an embedded application developer,
OpenEmbedded certainly is a viable choice as well.

Buildroot
Even though you may not have heard of Buildroot before, it’s
actually not a new project. It has been around for many years,
most of the time under the name of uClinux. Initially, uClinux was
an effort to port the Linux kernel to processors without an MMU,
such as the Motorola MC68328. However, it eventually expanded
beyond that, adding support for more processors, a binary format
for MMU-less systems and more userland capabilities, including a
libc flavor specifically designed for low memory systems—uClibc.
Eventually, it evolved into one of the more-advanced and easy-to-
use embedded Linux distributions.

This is where the confusion started, as people used the name
uClinux to refer both to the MMU-less CPU kernel support and
the embedded distribution, which were two quite different things.
The fact that many MMU-less patches (the whole armnommu
architecture support, for instance) eventually were included in the
standard kernel tree added to the confusion as well. Finally, the
embedded Linux distribution part was split into a different project

7 2 | june 2011 www.l inux journa l .com

INDEPTH

Roll Your Own Embedded
Linux System with Buildroot
The time between getting a new piece of hardware and seeing a first shell prompt
can be one of the most frustrating experiences for embedded Linux developers.
Buildroot can help reduce your frustration. ALEXANDER SIROTKIN

Figure 1. Buildroot Main Menu

http://www.linuxjournal.com

called Buildroot. uClibc development continued separately, and the
parent uClinux Project somewhat lost its momentum.

From the Buildroot Web site: “Buildroot is a set of Makefiles
and patches that makes it easy to generate a cross-compilation
toolchain and root filesystem for your target Linux system using
the uClibc C library.” This is not entirely correct, as it also supports
(to some extent, as you will see later) other libc flavors, such as
glibc. It works with many embedded CPUs, including ARM, MIPS
and PowerPC.

If you want to get started with Buildroot, download the tarball,
extract it and run make help from its root directory. If this all
looks familiar to you, wait till you run make menuconfig.

As you already may have guessed, Buildroot uses the same
Makefile infrastructure as the Linux kernel to configure and build
everything, including applications and libraries. The usual sequence
of commands is:

make clean

make menuconfig

make

The first one is important if you are going to change some
configuration parameters—incremental building may or may not
work in this case. Initially, I was going to recommend that you
start working with some default configuration, by running, for
instance, make integrator926_defconfig, which should configure
Buildroot for the Integrator ARM reference board. However, it
turns out that as Buildroot development moved forward, most of
the default configurations somehow lagged behind and currently
do not work out of the box. I suggest you run make menuconfig,
and choose the following options manually:

� Target architecture: arm.

� Target Architecture Variant: arm926t.

� Kernel: same version as Linux headers.

And, go over the other parameters and check for others that
you may want or need to modify. Be careful when you do so, and
always save your latest working configuration (the .config file). It
is very easy to end up with a nonworking configuration.

Buildroot configuration options can be divided roughly
into hardware-, build-process- and software-related, while
software-related options can be divided further into kernel,
toolchain and packages.

Hardware options are the “Target Architecture” that defines
your CPU core (ARM, MIPS and so on). “Target Architecture
Variant” defines the exact CPU you are using, and “Target
Options” defines board-related parameters, such as UART baud
rate and so on. You hopefully should know your hardware
parameters, and there is not much to add here, except that
for the ARM architecture, I suggest using EABI and making
sure you use the same ABI convention everywhere.

If you are running Buildroot for the first time, you probably
should avoid changing the “Build options”. These options proba-
bly are okay the way they are; the only thing you may want to

®

www.1and1.ca

www.1and1.com

 * Monthly dual hosting prices based on 36 month upfront billing term, for a total of $107.64
for Basic and $179.64 for Advanced package. No refunds. Domain offers valid fi rst year only.
After fi rst year, standard pricing applies. Visit www.1and1.com for full promotional offer
details. Program and pricing specifi cations and availability subject to change without notice.

1&1 DUAL HOSTING

&

1&1 and the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are the property
of their respective owners. © 2011 1&1 Internet, Inc. All rights reserved.

More special offers
available online.

1&1 DUAL BASIC
1 FREE Domain
10 GB Web Space
UNLIMITED Traffi c
NEW! 5 FTP Accounts
NEW! 1&1 SiteAnalytics

$2.99
per month*
(36 month term)

$3.99/month (24 month term)
$4.99/month (12 month term)
$6.99/month (3 month term)

1&1 DUAL ADVANCED
2 FREE Domains
150 GB Web Space
UNLIMITED Traffi c
NEW! 50 FTP Accounts
NEW! 1&1 SiteAnalytics

$4.99
per month*
(36 month term)

$5.99/month (24 month term)
$6.99/month (12 month term)
$8.99/month (3 month term)

Starting at

 $3.99
fi rst year*

1&1 DOMAINS

Now only $7.99/fi rst year*

.com

.biz
Now only $3.99/fi rst year* FREE Private Registration!

http://www.1and1.com
http://www.1and1.com
http://www.1and1.ca

7 4 | june 2011 www.l inux journa l .com

change is the “Number of jobs to run simultaneously” if your
build PC is a multicore system. Also, choose “build packages
with debugging symbols” if you want to debug some of the
pre-installed applications.

Remember, in order to build the kernel and software pack-
ages, Buildroot first needs to build the cross-compiler toolchain for
your hardware. The Toolchain menu allows you to choose the gcc

version and other toolchain-related parameters. The wrong
toolchain configuration can lead to some very weird errors, so be
careful. By default, Buildroot builds its own toolchain and works
with uClibc. There is an option to work with an external toolchain,
which can be glibc-based, but that’s beyond the scope of this
article, so you should set “Toolchain type” to “Buildroot toolchain”.
You can change the gcc, binutils, uClibc and kernel headers (but
not the kernel itself) versions from this menu. You also can decide
to compile the C++ (g++) compiler and gdb support (gdbserver
for the target and gdb client for the host or a standalone gdb for
the target), which is probably something you are going to need.
All the other options are better left alone at this stage.

“Package selection for the target” is where you get to choose
what software components you want as part of your embedded
filesystem image. This is where you can experiment relatively
freely—even if you select an application that’s not supported on
your hardware or with the particular Linux and gcc versions that you
chose, it’s easy to find the problematic application and disable it.

First, there is BusyBox. It deserves an article of its own, but
basically, it’s a collection of standard Linux utilities (such as shell
and init), optimized for low memory footprint systems. You can
start by creating a filesystem with just BusyBox. It contains every-
thing you need in order to boot and verify that your system is
working. Later, you can add more packages, ranging from the
MySQL or SQLite databases to the VLC and MPlayer media
players, as well as Perl, Python and many others.

The “Target filesystem options” allow you to choose the type
of filesystem image. Pretty much all the commonly used (in the

embedded world) filesystems are supported, including: cramfs,
squashfs, jffs2, romfs and ext2.

If you just want to experiment or prefer to create the filesystem
image manually (if you are using some rare unsupported filesystem,
such as yaffs2), you can choose the “tar the root filesystem”
option, which will create a tar archive with your filesystem. For
some unknown reason, bootloader configuration also is found
under this menu (only Das U-Boot is supported for now), but I’ll
skip this one, assuming you have a working bootloader already.

The last menu is “Kernel”, which is optional. In case you are
interested only in application development, choosing the right
kernel headers (see above) is enough. If you decide to modify
the kernel, remember to keep the kernel version and the kernel
headers version (in the Toolchain menu) in sync.

When you are finished, exit menuconfig, and run make.
Buildroot automatically will download everything it needs, compile
it and eventually create the filesystem image in the output/images/
directory. If you want to modify something in the filesystem
image, for example, to change the IP address of your system, you
can modify the filesystem skeleton directory tree, which is usually
located in target/generic/target_busybox_skeleton. Note that if
you are not using BusyBox, or if your hardware platform has its
own filesystem tree skeleton, this location can be different.

uClibc, BusyBox and Kernel Configuration
When you gain enough experience with Buildroot and decide you
are brave enough to modify some of the uClibc, BusyBox and/or
kernel parameters, the way to do it is to compile Buildroot with
default settings for all three, and after that, run the following com-
mands to modify the parameters and eventually recompile everything:

make uclibc-menuconfig

make busybox-menuconfig

make linux26-menuconfig

Note that the last one will work only after you enable the
Linux kernel option in the main Buildroot configuration menu.
Chances are that you already know how to configure the kernel,
and uClibc configuration rarely requires tweaking, unless you
want to compile out some functionality in order to save memory,
so I’m going to look at BusyBox configuration only.

The BusyBox menu can be divided into settings and applets. I
concentrate on the latter, as that’s probably what you would want
to modify first. Applets are applications in BusyBox parlance, with
one small difference. In order to save space, BusyBox usually is
installed as a single binary that includes all the utilities you decided
to compile: shell, ping, gzip and so on. You can launch an individ-
ual applet either by giving its name as an argument to BusyBox—
busybox ping, for instance—or you can create a symbolic link,
ln -s /bin/ping /bin/busybox, and BusyBox will choose the
correct applet automatically, depending on the link from which it
was executed. BusyBox installation automatically creates links for all

INDEPTH

You can start by creating a filesystem with just BusyBox. It contains everything
you need in order to boot and verify that your system is working.

BSP
BSP stands for Board Support Package. The term is some-
how associated with RTOSes, such as VxWorks. Therefore,
some people prefer the more “politically correct” LSP (Linux
Support Package). Anyhow, the BSP is a set of usually small
kernel and bootloader modifications specific to your hard-
ware. Intel x86 developers take for granted that all x86 sys-
tems have the same basic hardware and peripheral interface,
which is not the case on embedded systems. BSP develop-
ment usually includes fixing memory mappings, configuring
interrupt controllers and development of at least the following
basic drivers: serial (for console), network and Flash.

http://www.linuxjournal.com

www.l inux journa l .com june 2011 | 7 5

the compiled applets. If you are curious, you can run it without any
parameters to see what applets were compiled in. You should have
no difficulty in choosing the right set of applets for your project. The
only thing worth mentioning is the shell. BusyBox does not support
standard shells such as bash or tcsh; instead, you get to choose
between ash, hush and msh with ash being the closest to bash and
the one I always work with. Note that even though standard bash is
not part of BusyBox, it is supported by Buildroot if you need it.

When you are finished configuring your embedded system, run
make to compile everything. Now you are ready to program your
newly compiled kernel and filesystem images to your board and
boot. Actual Flash programming depends on your system, bootloader,
type of Flash and so on, and it is beyond the scope of this article.

If you want to compile your own applications, you can (and
should) use the toolchain created by Buildroot. You can get (or
build) a different toolchain, but if it is not based on uClibc or if it
was compiled with different kernel headers, it may not work. All
you have to do in order to use the Buildroot toolchain is add the
output/staging/usr/bin/ directory to your path and then simply
run arm-linux-uclibcgnueabi-gcc.

The important point to remember is that Buildroot is not fool-
proof in the sense that it is relatively easy to create a configuration
that won’t work or even compile. You should not expect every

parameter combination to work, and always keep your last working
configuration file. The upside is that there is a large and active
community behind this project, which will be happy to help.�

Alexander (Sasha) Sirotkin has been an active Linux user and developer for more then 15 years.
One of the projects he’s worked on is FemtoLinux, which improves performance on low-end
embedded systems and eases porting from legacy RTOSes. He lives in Tel-Aviv, Israel, and can
be reached at “sasha AT femtolinux.com”.

ARM ABI
An Application Binary Interface (ABI) describes the low-level
interface between an application and an operating system
and hardware. ARM Linux supports Old ABI (OABI) and
Embedded ABI (EABI). OABI is deprecated, and it is recom-
mended that you use EABI. As this parameter affects the
kernel, the compiler and the standard libraries, it is important
to use the same ABI everywhere, even though mixing ABIs
may be supported. Compared to OABI, EABI defines a more-
efficient system call convention, improves floating-point per-
formance, changes structure packing, removes the minimal
four-byte size limitation and some other minor improvements.

Figure 2. BusyBox Configuration Menu

Resources

FemtoLinux: femtolinux.com

uClinux: www.uclinux.org

uClibc: www.uclibc.org

Buildroot: buildroot.uclibc.org

OpenEmbedded: www.openembedded.org

http://www.linuxjournal.com
http://www.uclinux.org
http://www.uclibc.org
http://www.openembedded.org
http://buildroot.uclibc.org
http://www.linuxjournal.com/rss_feeds
http://femtolinux.com

During the past several decades, Web pages have changed
from being static, mostly informational tools to full-blown
applications. Coinciding with this development, Web developers
have created interfaces to their Web applications so that other
developers could develop applications to work with the Web
application. For instance, think of any application on your
phone for a Web service. This is possible only because of the
application programming interface (API) constructed by the
Web service’s developers.

An API allows developers to give others access to certain
functionality of their service without losing control of their
service or how it behaves. With the development of these APIs
arose the issue of user authentication and security. Every time
you want to do something with the service, you have to send
your user credentials (typically a user ID and password). This
exposes the user to interested parties and makes the authenti-
cation untrustworthy. The application used by the user also
could store the password and allow another application or
person access to the user’s account.

Enter OAuth.
OAuth is intended to be a simple, secure way to authenti-

cate users without exposing their secret credentials to
anyone who shouldn’t have access to them. It was started
in November 2006 by Blaine Cook, who was working on an
OpenID implementation for Twitter. While working on it,
Blaine realized that the Twitter API couldn’t deal with a user
who had authenticated with an OpenID. He got in touch with
Chris Messina in order to find a way to use OpenID with the
Twitter API. After several conversations with a few other
people later, OAuth was born. In December of that year,
OAuth Core 1.0 was finalized.

You can think of OAuth like an ATM card. Your bank
account (the Web service) has a load of services associated
with it, and you can use all of them, provided you put your
card in the ATM and enter your PIN. Ultimately, anyone who
has your card and PIN has full access to your account and can
use all those neat services to do whatever he or she wants to
your account. However, you can use your card as a credit card
as well, and in that case, replace your knowledge of the PIN
with a signature. In this capacity, the cardholder can do only
very limited transactions, namely make charges against the

balance of the account.
If someone were to try to use your signature to charge

something to your account without your card, it wouldn’t
work. If you had the card but not the signature, the same
result would occur (theoretically). OAuth works in a similar
manner. If an application has your signature, it can make API
calls on your behalf to the Web service, but that signature
works only with that application. Allowing one party to access
someone else’s resources on his or her behalf is the core of
the OAuth protocol.

An Example of OAuth
Consider user Jane, a member of a photo-sharing site,
photosharingexample.com (Service Provider), where she keeps
all her pictures. For Christmas, she decides to give her mother
some nice prints of her family, so she signs up for an account
with another site called photoprintingexample.com (Consumer).
The new site, photoprintingexample.com, has a feature that
allows Jane to select pictures stored in her photosharingexample.com
account and transfer them to her photoprintingexample.com
account to be printed.

Photoprintingexample.com already has registered for a Consumer
Key and Consumer Secret from photosharingexample.com:

Consumer Key: dpf43f3p2l4k3l03

Consumer Secret: kd94hf93k423kf44

Jane elects to use this service. When photoprintingexample.com
tries to retrieve Jane’s pictures from photosharingexample.com,
it receives an HTTP 401 Unauthorized error, indicating those photos
are private. This is expected, because Jane hasn’t authorized
photoprintingexample.com access to her photosharingexample.com
account yet. The Consumer sends the following request to
the Service Provider:

https://photosharingexample.com/request_token?

�oauth_consumer_key=dpf43f3p2l4k3l03&oauth_

�signature_method=PLAINTEXT&oauth_signature=

�kd94hf93k423kf44%26&oauth_timestamp=

�1191242090&oauth_nonce=hsu94j3884jdopsl&oauth_version=1.0

Using nonces can be very costly for Service Providers, as they
demand persistent storage of all nonce values ever received. To
make server implementations less costly, OAuth adds a timestamp
value to each request, which allows the Service Provider to keep
nonce values only for a limited time. When a request comes in

7 6 | june 2011 www.l inux journa l .com

INDEPTH

A Primer to the
OAuth Protocol
OAuth uses digital signatures rather than the “Basic” authentication method
used by the HTTP protocol. ADRIAN HANNAH

Since August 31, 2010, all third-party Twitter
applications are required to use OAuth.

http://www.linuxjournal.com

with a timestamp that is older than the retained time frame, it is
rejected, because the Service Provider no longer has nonces from
that time period.

The Service Provider checks the signature of the request and
replies with an unauthorized request token:

oauth_token=hh5s93j4hdidpola&oauth_token_secret=hdhd0244k9j7ao03

The Consumer redirects Jane’s browser to the Service Provider
User Authorization URL:

http://photosharingexample.com/authorize?oauth_token=

�hh5s93j4hdidpola&oauth_callback=

�http%3A%2F%2Fphotoprintingexample.com%2Frequest_token_ready

If Jane is logged in to photosharingexample.com, this page will
ask her whether she authorizes photoprintingexample.com to have
access to her account. If Jane authorizes the request, her browser
will be redirected back to http://photoprintingexample.com/
request_token_ready?oauth_token=hh5s93j4hdidpola, telling
the consumer that the request token has been authorized. The
Consumer then will exchange the Request Token for an Access
Token using the following address:

https://photosharingexample.com/access_token?

�oauth_consumer_key=dpf43f3p2l4k3l03&oauth_token=

�hh5s93j4hdidpola&oauth_signature_method=PLAINTEXT&

�oauth_signature=kd94hf93k423kf44%26hdhd0244k9j7ao03&

�oauth_timestamp=1191242092&oauth_nonce=

�dji430splmx33448&oauth_version=1.0

which will return the Access Token in the response:

oauth_token=nnch734d00sl2jdk&oauth_token_secret=pfkkdhi9sl3r4s00

This exchange will happen only the first time Jane tries
to access her photosharingexample.com photos from
photoprintingexample.com. Any time afterward, only the

Nonce
The term nonce means “number used once” and is
a unique and usually random string that is meant to
identify each signed request uniquely.

http://www.linuxjournal.com/subscribe

7 8 | june 2011 www.l inux journa l .com

following will happen.
Now, the Consumer is equipped properly to access Jane’s

photos. First, the Consumer needs to generate the request
signature. The initial step is to create the Signature Base
String. This is a combination of the following elements:

oauth_consumer_key: dpf43f3p2l4k3l03

oauth_token: nnch734d00sl2jdk

oauth_signature_method: HMAC-SHA1

oauth_timestamp: 1191242096

oauth_nonce: kllo9940pd9333jh

oauth_version: 1.0

file: family.jpg

size: original

Ultimately, you end up with the string:

GET&http%3A%2F%2Fphotosharingexample.com%2Fphotos&

�file%3Dfamily.jpg%26oauth_consumer_key%

�3Ddpf43f3p2l4k3l03%26oauth_nonce%3Dkllo9940pd9333jh%

�26oauth_signature_method%3DHMAC-SHA1%26oauth_timestamp%

�3D1191242096%26oauth_token%3Dnnch734d00sl2jdk%

�26oauth_version%3D1.0%26size%3Doriginal"

If your request is being transmitted through SSL, the request
can be in plain text. However, a vast majority of Web sites do
not use SSL, so the signature string must be encoded.

Traditionally, the HTTP protocol uses an authentication
method it calls “Basic” in which users provide their user
names and passwords in order to gain access to the protected
resource. The major flaw in that procedure is that those credentials
are passed in plain text, clear for any people listening to read
and store as they wish. In order to protect users’ credentials,
OAuth uses digital signatures instead of sending credentials
with each request.

This digital signature is used to verify
that the request being made is legitimate
and hasn’t been tampered with. A
hashing algorithm is used to make that
work. In order to allow the recipient to
verify that the request came from the
claimed sender, the hash algorithm is
combined with a shared secret. If both
sides agree on a secret known only to
both parties, they can add it to the
content being hashed. This can be done
by simply appending the secret to the
content, or by using a more sophisticated
algorithm with a built-in mechanism for
secrets, such as HMAC.

For this example, let’s say the Service Provider allows HMAC-SHA1
signatures. Thus, the encoded signature string becomes:

tR3+Ty81lMeYAr/Fid0kMTYa/WM=

All together, the Consumer request for the photo is:

http://photosharingexample.com/photos?file=vacation.jpg&size=

�original&oauth_consumer_key=dpf43f3p2l4k3l03&

�oauth_token=nnch734d00sl2jdk&oauth_signature_method=

�HMAC-SHA1&oauth_signature=tR3%2BTy81lMeYAr%2FFid0kMTYa%

�2FWM%3D&oauth_timestamp=1191242096&oauth_nonce=

�kllo9940pd9333jh&oauth_version=1.0

The Service Provider performs the same work flow to calculate
the signature of the request that the Consumer performs. It
then compares its calculated signature to the provided signature.
If the two match, the recipient can be confident that the
request has not been modified in transit. The Service Provider
then responds with the requested pictures.

This process can be daunting to deal with programmatically.
There are a number of libraries written for both the OAuth server
and client for quite a few programming languages.

Security Issues
The shared secret used to verify the request signature is called
the Consumer Secret. Because it is vital to the integrity of this
transaction, it is imperative that this piece of data be kept
secret. In the case of a Web-based Consumer, such as a Web
service, it is easy to keep the Consumer Secret safe. If the
Consumer is a client-side application, the Consumer Secret
must be hard-coded in each copy of the application. This
means the Consumer Secret potentially is discoverable, which
compromises the integrity of any desktop application.

There is a known session fixation attack vulnerability found
in the OAuth 1.0 protocol that allows an attacker to gain
access to a target’s account. The attacker logs in to the
Consumer site and initiates the OAuth authorization process.
The attacker saves the authorization request page instead of
clicking submit. This stores the request token and secret. The
attacker sends a link to a victim, which, if clicked, will continue
the authorization process as started by the attacker. Once
completed, the attacker will have access to the victim’s protected
resources via the Consumer used.�

Adrian Hannah is a lifelong system administrator, trying to find a nice place to finally settle
down. He is currently working for the federal government in Indiana.

INDEPTH

Hash Algorithm
The process of taking data (of any size) and
condensing it to a much smaller value (digest) in
a fully reproducible (one-way) manner. Using the
same hash algorithm on the same data always
will produce the same smaller value.

NOTE:
OAuth defines
three signature
methods used
to sign and
verify requests:
PLAINTEXT,
HMAC-SHA1
and RSA-SHA1.

http://www.linuxjournal.com

LIN
U

X JO
U

R
N

A
L M

A
R

K
ETP

LA
CE

www.l inux journa l .com june 2011 | 7 9

American made Utility Kilts for Everyday Wear

com

http://www.linuxjournal.com
http://utilikilts.com
www.digikey.com
http://mcphee.com
http://www.saintarnold.com

Why is our Internet slow today? DOC SEARLS AND DAVE TÄHT

Lately I’ve been urged by friends in the
Linux community to write here about a
topic dear to the infrastructure we share.
So, rather than give away that topic in this
intro, I’ll turn the floor over to one of
those worthy others: my old friend Dave
Täht, who now will treat us to a guest
EOF. Take it away, Dave.—Doc.

Do your movies stutter when you
stream them? Does your kid get fragged
when you fire off a Flickr upload? Can
you not make a VOIP call while surfing the
Web? These common problems may have
one common cause: bufferbloat.

Although bufferbloat masquerades as
inadequate network provisioning, it’s actually
a result of mis-design. To prevent packet
loss, manufacturers have been putting
vastly overlarge—bloated—buffers for data
everywhere in the Internet: routers, switches,
cable modems, wireless access points and
other devices. This has badly worsened
both average latency and latency under
load—what you should think of as “speed”
on the Internet. As a result, even after
large increases in bandwidth, we often
find we can’t share a connection anymore.
Movies stutter, calls drop, uploads interfere
with gaming and so on.

In a string of painstaking and now
well-publicized experiments, Jim Gettys
has outlined (en.wordpress.com/tag/
bufferbloat) the breathtaking, almost
Y2K scope (mirrors.bufferbloat.net/
Talks/BellLabs01192011), of the
problem. He also coined bufferbloat
(gettys.wordpress.com/
what-is-bufferbloat-anyway) as
the name for the pain. (Some of you
may recall that Jim also originated
the Unobtainium handheld.)

Jim’s experiments showed, clearly, that
even on high-speed 10–50Mbit lines,
operations that should take 1/100th of a
second might now take seconds. He also
showed how the core protocol of the
Web, TCP/IP, is now misbehaving, thanks
to bufferbloat. The consequences might
include widespread problems similar to
the NSFnet collapse in 1986. And there

are a lot more people on the Net now
than there were then.

The RMS Titanic hit an iceberg and
sank because it was unable to turn fast
enough to avoid disaster. The Tesla sports
car carries two, goes from 0 to 60 in less
than four seconds and turns on a dime.
Which would you rather drive?

The Titanic is actually a more fitting
analogy than you might think. The Titanic,
like the Internet, was built during a major
shift in technology. Steel was replacing iron.
Nobody knew for sure what worked and
what didn’t. Bolting a giant ship together
took advanced skills and advanced rivets.
But, in the rush to launch that ship, essential
risks were misunderstood and under-tested
technology was pushed too far.

The Internet we’ve built has the
carrying capacity and the turning speed
of the Titanic. The great big bloated
buffers we’ve built in to all the newest
(and supposedly fastest) kit have been
breaking the Net. Bufferbloat is the risk
we now understand, and it’s being tested
now under increasing stress.

Jim Gettys is also no longer alone on
the bufferbloat case. Since he sounded the
alarm in November 2010, Robert Cringely,
Slashdot and LWN have all covered the
problem. Vint Cerf—a father of TCP/IP—
put out a call for help at LCA as well.

Since then, many members of the Open
Source and Internet engineering communi-
ties have leaped forward to help beat the
bloat. As I write this (in early March 2011),
more than 180 people have joined the bloat
mailing list. In less than two months, we’ve
also produced a new (debloat-testing) Linux
kernel that puts many of the core ideas for
fixes in one place.

Bufferbloat is a subtle bug that has
been bugging everybody for a very long
time, only we didn’t know it. Now it has a
name, plus a bunch of highly motivated
people working on fixing it, from top to
bottom, across multiple operating systems.

Much work and testing remain. There
are already simple solutions for home routers
out there, and more fixes for wireless and

other devices are on their way. Unfortunately,
some problems still only have theoretical
solutions (gettys.wordpress.com/2010/
12/17/red-in-a-different-light).

While the network neutrality debate is
over regulatory fixes to the threat of carrier
favoritism toward certain kinds of traffic, a
technological solution to the bufferbloat
problem may turn down the heat a bit. It
may be possible for your son’s game, your
wife’s Facebook, your Flickr upload and
your business calls all to co-exist happily on
one network, and for content to travel
much more smoothly through ISPs once
good fixes for bufferbloat appear.

Best of all, fixing bufferbloat from
end to end will make new edge
applications feasible, from immersive
video-conferencing to VRM.

Meanwhile, the bufferbloat problem
remains huge, largely unrecognized, and it’s
all around us. Hundreds of millions of bloat-
ed products are in the field, and hundreds of
millions more are in the pipeline. Fortunately,
fixing new designs is fairly simple.
Unfortunately, fixing already-deployed hard-
ware is complicated and often expensive.

Can we turn our Titanic back into a
Tesla, with a little trunk space? I’m betting:
Yes! But we need all the help we can get.

There’s still a shortage of good rivets,
and good riveters.

If you design network software or
hardware, use VoIP, upload/download
video, play games, run a Web site,
administer a network, purchase hard-
ware, or merely care about the future
of new, innovative applications on the
Net, please don’t stop reading here. Go
to bufferbloat.net. Then read on, pass
on, and apply what you learn.

The network you save may be
your own.�

Doc Searls is Senior Editor of Linux Journal and a fellow
with the Center for Information Technology and Society
at UC Santa Barbara.

Dave Täht is an IPv6 and mesh networking researcher who
surfs (literally) on the side.

Whatever Sinks
Your Boat

EOF

8 0 | june 2011 www.l inux journa l .com

http://www.linuxjournal.com
http://gettys.wordpress.com/2010/12/17/red-in-a-different-light
http://gettys.wordpress.com/2010/12/17/red-in-a-different-light
http://en.wordpress.com/tag/bufferbloat
http://en.wordpress.com/tag/bufferbloat
http://mirrors.bufferbloat.net/Talks/BellLabs01192011
http://mirrors.bufferbloat.net/Talks/BellLabs01192011
http://gettys.wordpress.com/what-is-bufferbloat-anyway
http://bufferbloat.net

ANYONE INTERESTED
IN SAVING MONEY?

888-297-7409
www.aberdeeninc.com/lj038

Looks like these guys are comfortable overpaying
for enterprise storage. Are You?

“Hewlett-Packard Co. agreed to buy 3Par Inc. for $2.35 billion” — Bloomberg.com

Above specific configurations obtained from the respective websites on Feb. 1, 2011. Intel, Intel Logo, Intel Inside, Intel Inside Logo, Pentium, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All trademarks are the property of their respective

owners. All rights reserved. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj038

“EMC to Buy Isilon Systems Inc. for $2.25 Billion” — Wall Street Journal

“Dell to Buy Compellent for $960 Million” — CNBC

So what “benefit” will you see by this spending spree, other than higher costs?
The AberSAN Z-Series scalable unified storage platform, featuring the Intel® Xeon® processor 5600
series, brings the simplicity of network attached storage (NAS) to the SAN environment by utilizing
the innovative ZFS file system. The AberSAN Z20 is easily found starting under $20,000.

Who gives you the best bang for the buck?
3Par Compellent Isilon Aberdeen

InServ F200 Storage Center Series 30 NL-Series AberSAN Z20

Storage Scale-Out ✓ ✓ ✓ ✓

Thin Provisioning ✓ ✓ ✓ ✓

HA Clustering ✓ ✓ ✓ ✓

VMware® Ready Certified ✓ ✓ ✓ ✓

Async / Synchronous Replication ✓ ✓ ✓ ✓

iSCSI / Fibre Channel Target ✓ ✓ iSCSI Only ✓

Unlimited Snapshots x ✓ ✓ ✓

Native Unified Storage: NFS, CiFS x x ✓ ✓

Virtualized SAN x x x ✓

Deduplication x x x ✓

Native File System none none OneFS ZFS 128-bit
RAID Level Support 5 and 6 5 and 6 Up to N+4 5, 6 and Z

Raw Array Capacity (max) 128TB 1280TB 2304TB Unlimited
Warranty 3 Years 5 Years 3 Years 5 Years

Online Configurator with Pricing Not Available Not Available Not Available Available

http://www.aberdeeninc.com/lj038
http://www.aberdeeninc.com/abpoly/abterms.htm

Cut Execution Time by >50%
with WhisperStation-GPU
Delivered ready to run new GPU-enabled applications:

WhisperStation with 4 Tesla Fermi GPUs

2U Twin2 Node with 4 Hot-Swap Motherboards
Each with 2 CPUs and 256 GB

1U Node with
2 Tesla Fermi GPUs

OctoPuter™ 4U Server with up to
8 GPUs and 144 GB memory

Microway’s Latest Servers for Dense Clustering

 4P, 1U nodes with 48 CPU cores, 512 GB and QDR InfiniBand
 2P, 1U nodes with 24 CPU cores, 2 Tesla GPUs and QDR InfiniBand
 2U Twin2 with 4 Hot-Swap MBs, each with 2 Processors + 256 GB
 1U S2050 servers with 4 Tesla Fermi GPUs

Microway Puts YOU on the Cutting Edge

Design your next custom configuration with techs who speak HPC.
Rely on our integration expertise for complete and thorough testing
of your workstations, turnkey clusters and servers. Whether you need
Linux or Windows, CUDA or OpenCL, we’ve been resolving the
complicated issues – so you don’t have to – since 1982.

Integrating the latest CPUs with NVIDIA Tesla Fermi GPUs, Microway’s
WhisperStation-GPU delivers 2x-100x the performance of standard
workstations. Providing explosive performance, yet quiet, it’s custom
designed for the power hungry applications you use. Take advantage of
existing GPU applications or enable high performance with CUDA C/C++,
PGI CUDA FORTRAN, or OpenCL compute kernels.

Nvidia Quadro for state of the art professional graphics and visualization

 Ultra-quiet fans, strategically placed baffles, and internal sound-proofing

 Up to 24 cores with the newest Intel and AMD Processors, 128 GB
memory, 80 PLUS® certified power supply, and eight hard drives

 Up to Four Tesla Fermi GPUs, each with: 448 cores, 6 GB GDDR5,
1 TFLOP single and 515 GFLOP double precision performance

 New: Microway CL-IDE™ for OpenCL programming on CPUs and GPUs

GSA Schedule
Contract Number:
GS-35F-0431N

ANSYS Mechanical
Autodesk Moldflow
 Mathematica

Simulation

MATLAB
ACUSIM AcuSolve
Tech-X GPULib

3ds Max
Bunkspeed
 Shot
Adobe CS5

Design

AMBER
GROMACS
NAMD, VMD
TeraChem

BioTech

Configure your next WhisperStation or Cluster today!
microway.com/quickquote or call 508-746-7341
Sign up for technical newsletters and special GPU promotions at microway.com/newsletter

pC4_Microway.indd 1pC4_Microway.indd 1 10/17/10 5:07:51 PM10/17/10 5:07:51 PM

http://microway.com/quickquote
http://microway.com/newsletter

