
jQuery | Gauger | Moose | Qt4 Designer | GNU Awk | jEdit

Since 1994: The Original Magazine of the Linux Community

™

PROGRAMMING
DEVELOP GUIs
with Qt4 Designer
and Eclipse

MULTIPLATFORM
DEVELOPMENT
Using GNU
Libraries
and Tools

USE GAUGER
for Performance
Regression Testing

WaveMaker
for Rapid

Application
Development

Modern
Development

with Perl
and Moose

Make Utility
Primer

What’s New in
GNU Awk 4.0

SEPTEMBER 2011 | ISSUE 209 | www.linuxjournal.com

0 09281 03102 4

0 9

$5.99US $5.99CAN

PLUS:

GETTING STARTED WITH jEDIT

http://www.linuxjournal.com

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

Pro 2U Appliance:
You Are the Cloud
Storage. Speed. Stability.

With a rock-solid FreeBSD® base, Zettabyte File System (ZFS)
support, and a powerful Web GUI, TrueNAS™ Pro pairs easy-to-
manage FreeNAS™ software with world-class hardware and
support for an unbeatable storage solution. In order to achieve
maximum performance, the TrueNAS™ Pro 2U System, equipped
with the Intel® Xeon® Processor 5600 Series, supports Fusion-io’s
Flash Memory cards and 10 GbE Network Cards. Titan TrueNAS™
Pro 2U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro System offers
excellent capacity at an affordable price.

For more information on the TrueNAS™ Pro 2U System, or to
request a quote, visit: http://www.iXsystems.com/TrueNAS.

KEY FEATURES:
 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You to
 Restore Data from a Previously Generated
 Snapshot
 . Remote Replication Allows You to Copy a
 Snapshot to an Offsite Server, for
 Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash Memory
 . 2 x 1GbE Network interface (Onboard) +
 Up to 4 Additional 1GbE Ports or Single/
 Dual Port 10 GbE Network Cards

JBOD expansion is available on the
2U Pro System

* 2.5” drive options available; please
consult with your Account Manager

Expansion
Shelves

Available

Create Periodic Snapshot

Clone
Snapshot

All Volumes

http://www.iXsystems.com/TrueNAS
http://www.iXsystems.com

& Environmentally
Responsible:
100% Renewable Energy

Solid Technical
Foundation:
1,000 In-house Developers

Double Security:
Your website is simultaneously
hosted in 2 locations in our
high tech data center!

High-speed
Global Network:
210 GBit/s Connectivity

No other web host offers
more expertise, know-
how and quality service
than 1&1.

®

1-855-CA-1AND1 www.1and1.ca

1-877-GO-1AND1 www.1and1.com

WEB HOSTING
THE NEW STANDARD IN

1&1 DUAL HOSTING

* Offers valid through August 31, 2011. 24 month minimum contract term required for Dual Advanced offer. Set-up fee and other terms and conditions may apply. .com price valid fi rst year only.
After fi rst year, standard pricing applies. Visit www.1and1.com for full promotional offer details. Program and pricing specifi cations and availability subject to change without notice. 1&1 and
the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are the property of their respective owners. © 2011 1&1 Internet, Inc. All rights reserved.

SUMMER SPECIAL: 1&1 DUAL ADVANCED PACKAGE

1 YEAR FREE!*

2 FREE Domains
FREE Private Domain Registration
DNS Management
500 E-mail Accounts
150 GB Web Space
DNS Management

50 FTP Accounts
1&1 SiteAnalytics
ASP, .NET, AJAX, LINQ, PHP5, Perl, SSI
5 Microsoft® SQL Databases
Mobile Website Optimization Software
24/7 Toll-free Customer Support

Need more domains?
.com with FREE Private Registration just $4.99/fi rst year.*

OFFER ENDS
08/31/11

http://www.1and1.com
http://www.1and1.ca
http://www.1and1.com

CONTENTS SEPTEMBER 2011
Issue 209

2 | september 2011 www.l inux journa l .com

34 MULTIPLATFORM
GNU DEVELOPMENT
Making a guitar synth work
with Rock Band using GNU
libraries and tools.
Nathanael Anderson

40 PERFORMANCE
REGRESSION
MONITORING
WITH GAUGER
How to use Gauger and
guidelines for what a suitable
development environment for
Gauger’s deployment should
look like.
Bart Polot and Christian Grothoff

44 man make: A PRIMER
ON THE MAKE UTILITY
Ever wonder what that Makefile
in your project folder does?
Here’s a look at the basics
of Makefiles and how to
manipulate them.
Adrian Hannah

50 QT4 DESIGNER
AND ECLIPSE
Develop GUIs quickly and easily.
PJ Radcliffe

FEATURES

ON THE COVER
• Make Utility Primer, p. 44
• What's New in GNU Awk 4, p. 56
• WaveMaker for Rapid Application Development, p. 60
• Modern Development with Perl and Moose, p. 70
• Develop GUIs with Qt4 Designer and Eclipse, p. 50
• Multiplatform Development Using GNU Libraries

and Tools, p. 34
• Use Gauger for Performance Regression Testing, p. 40
• Getting Started with jEdit, p. 64

http://www.linuxjournal.com

They say work smarter, not harder. They
 must be using our processor.

The next generation of intelligent server processors
The Intel® Xeon® processor 5600 series automatically
regulates power consumption to combine industry-leading

to your workload. Check out the new intelligent features
of the Xeon® 5600 at intel.com/itcenter.

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Sponsors of Tomorrow, Intel Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Intel is not responsible for and
has not verifi ed any statements
or computer system product-
specifi c claims contained herein.

Enterprise Servers
for Open Source
www.iXsystems.com
1-855-GREP-4-IX

iX2216-10G
® Xeon® 5600 Series Processors

®

iX1204-10G
® Xeon® 5600 Series Processors

®

iX2216-10G
®

®

iX1204-10G ®

Servers from iXsystems feature the Intel® Xeon® processor 5600 series.

http://www.iXsystems.com

CONTENTS SEPTEMBER 2011
Issue 209

4 | september 2011 www.l inux journa l .com

USPS LINUX JOURNAL (ISSN 1075-3583) (USPS 12854) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 310, Houston, TX 77056 USA. Periodicals postage paid at Houston,
Texas and at additional mailing offices. Cover price is $5.99 US. Sub scrip tion rate is $29.50/year in the United States, $39.50 in Canada and Mexico, $69.50 elsewhere. POSTMASTER: Please
send address changes to Linux Journal, PO Box 16476, North Hollywood, CA 91615. Subscriptions start with the next issue. Canada Post: Publications Mail Agreement #41549519. Canada
Returns to be sent to Pitney Bowes, P.O. Box 25542, London, ON N6C 6B2

COLUMNS
20 Reuven M. Lerner’s At the Forge

CoffeeScript and jQuery

24 Dave Taylor’s Work the Shell
Calculating Day of the Week, Finally

26 Kyle Rankin’s Hack and /
Remotely Wipe a Server

76 Kyle Rankin and Bill Childers’
Tales from the Server Room
Unboxing Day

80 Doc Searls’ EOF
GandhiCon 4.x

INDEPTH
56 GNU Awk 4.0: Teaching an Old Bird Some

New Tricks
What’s new with version 4.
Arnold Robbins

60 WaveMaker: It’s Like...RAD!
WaveMaker—it’s a tsunami of change for rapid
application development.
Don Emmack

64 jEdit: a Text Editor and More
An intro to this cross-platform text editor.
Adrian Klaver

70 Moose
Moose is essentially a language extension for Perl 5
that provides a modern, elegant, fully featured
object system.
Henry Van Styn

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
12 UPFRONT
28 New Products
30 New Projects
65 Advertisers Index
79 Marketplace

30 GIADA

60 WAVEMAKER

64 jEDIT

http://www.linuxjournal.com

More TFLOPS,
Fewer WATTS

GSA Schedule
Contract Number:
GS-35F-0431N

Configure your next Cluster today!
www.microway.com/quickquote
508-746-7341

FasTree™ QDR InfiniBand Switches and HCAs

 36 Port, 40 Gb/s, Low Cost Fabrics

 Compact, Scalable, Modular Architecture

 Ideal for Building Expandable Clusters and Fabrics

 MPI Link-Checker™ and InfiniScope™ Network Diagnostics

Enhanced GPU Computing with Tesla Fermi

 480 Core NVIDIA® Tesla™ Fermi GPUs deliver 1.2 TFLOP
single precision & 600 GFLOP double precision performance!

 New Tesla C2050 adds 3GB ECC protected memory

 New Tesla C2070 adds 6GB ECC protected memory

 Tesla Pre-Configured Clusters with S2070 4 GPU servers

 WhisperStation - PSC with up to 4 Fermi GPUs

 OctoPuter™ with up to 8 Fermi GPUs and 144GB memory

New Processors

12 Core AMD Opterons with quad channel DDR3 memory

 8 Core Intel Xeons with quad channel DDR3 memory

 Superior bandwidth with faster, wider CPU memory busses

 Increased efficiency for memory-bound floating point algorithms

Microway delivers the fastest and greenest floating
point throughput in history

Achieve the Optimal Fabric Design for your Specific
MPI Application with ProSim™ Fabric Simulator
Now you can observe the real time communication coherency
of your algorithms. Use this information to evaluate whether
your codes have the potential to suffer from congestion.
Feeding observed data into our IB fabric queuing-theory
simulator lets you examine latency and bi-sectional bandwidth
tradeoffs in fabric topologies.

2.5 TFLOPS

5 TFLOPS 10 TFLOPS

45 TFLOPS

FasTree 864 GB/sec
Bi-sectional Bandwidth

pC2_Microway.indd 1pC2_Microway.indd 1 7/15/10 9:20:43 AM7/15/10 9:20:43 AM

http://www.microway.com/quickquote

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Proofreader

Publisher

General Manager

Senior Sales Manager

Associate Publisher

Webmistress

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Joseph Krack
joseph@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti • Ludovic Marcotte

Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf • Justin Ryan

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Steve Case

Kalyana Krishna Chadalavada • Brian Conner • Caleb S. Cullen • Keir Davis
Michael Eager • Nick Faltys • Dennis Franklin Frey • Alicia Gibb
Victor Gregorio • Philip Jacob • Jay Kruizenga • David A. Lane

Steve Marquez • Dave McAllister • Carson McDonald • Craig Oda
Jeffrey D. Parent • Charnell Pugsley • Thomas Quinlan • Mike Roberts

Kristin Shoemaker • Chris D. Stark • Patrick Swartz • James Walker

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 818-487-2089

FAX: +1 818-487-4550
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 16476, North Hollywood, CA 91615-9911 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe

http://www.routerboard.com

SHAWN POWERS

I f I’ve learned nothing else from American
politics, it’s that it doesn’t take knowledge
or insight on a topic to have lots to say on

the matter. Thankfully, although this issue’s
Programming focus isn’t even close to my area of
expertise, our authors don’t have that shortcoming.
The worst you should have to put up with is me
trying to explain what this issue contains. Feel
free to point and laugh.

Kyle Rankin, a fellow sysadmin, works through
an interesting conundrum this month. You’re all
familiar with programs like DBAN for wiping sensitive
data, but what if you need to delete information
securely on a server thousands of miles away? (Or,
in the next room if you’re lazy like me.) Kyle shows
how to go about taking care of a seemingly difficult
chicken/egg scenario. Kyle also shares a “Tale from
the Server Room” with Bill Childers and talks about
the joy of UPS delivery—more specifically, when
servers are unboxed, sometimes things don’t go
quite as planned.

If you’re beginning to worry our Programming
issue doesn’t contain articles about programming,
fear not. Yes, we try to include a little something
for everyone, but this issue focuses on programming,
and we’ve got tons of useful stuff for you. Nathanael
Anderson starts out with an appealing way to learn
multiplatform GNU development: getting a guitar
synth to work with Rock Band 3. Unfortunately,
there’s no programming that can make me any
better at Rock Band, but using a real guitar is a
step in the right direction!

My friend Adrian Hannah is back this month
with a primer on the Make utility. For most users,
prepackaged applications are how programs are
installed. For programmers, or people on the
bleeding edge, it’s necessary to compile programs
themselves. Adrian shows how to “make” programs
from their source code. Sometimes when you are
on the bleeding edge, you’ll notice that a newer
version of an application isn’t always better than
the previous version. Programmers need to be
aware of such things, and Bart Polot and Christian
Grothoff show us Gauger, a tool that monitors
performance regression. Sometimes an application
is slower because it has more features, but sometimes
it’s just slower because of an erroneous source
code change. Gauger helps determine when new
versions go bad.

When I took programming in college, I started

out learning to program command-line utilities that
did little more than solve the problem presented in
the curriculum. If programming was a little more
interesting back then, I might have stuck with it for
longer than the single semester it was required. My
problem was that I wanted to make GUI programs.
PJ Radcliffe shows how to develop GUI interfaces
with Qt4 Designer and Eclipse. Granted, a fancy GUI
controlling a cruddy underlying program isn’t very
useful, but at least for me, a cool-looking program
is something I’d like to spend time perfecting. PJ
shows how easy it can be to include GUI controls.

If GUI programs aren’t for you, that’s fine too.
Adrian Klaver explores jEdit, which is a very powerful
and cross-platform text editor. jEdit has features
that make programming much easier, and its
cross-platform nature means you can use a consistent
interface regardless of the computer you’re stuck
using. Arnold Robbins is a fan of text as well, and
he presents GNU Awk version 4. Awk has been
around forever, and although it’s still as useful as it’s
ever been, version 4 offers a few new tricks as well.

Of course, we have our regular columnists
teaching about programming this month as well.
Reuven M. Lerner discusses CoffeeScript, a different
way to program JavaScript. Dave Taylor finishes
his series on determining the day of the week in
a script. Plus, we have many other programming-
related articles as well! Henry Van Styn describes
how to write object-oriented code in Perl, Donald
Emmack teaches how to use WaveMaker, and we’ve
even included the results of a LinuxJournal.com
programming survey so you can see what your
fellow Linux programmers are up to.

If you’re a programmer, this issue likely will
be one of your favorites of the year. If you’re not
a programmer, there still are exciting things to
read, and you might find that programming is more
interesting than you originally thought. I know I
learned a lot this month, and I might have to dust
off my old C++ course book and figure out how to
make a GUI version of “Hello World”. Either way,
we hope you enjoy reading this issue as much as we
enjoyed putting it together.�

Shawn Powers is the Associate Editor for Linux Journal. He’s also the Gadget
Guy for LinuxJournal.com, and he has an interesting collection of vintage
Garfield coffee mugs. Don’t let his silly hairdo fool you, he’s a pretty
ordinary guy and can be reached via e-mail at shawn@linuxjournal.com.
Or, swing by the #linuxjournal IRC channel on Freenode.net.

My Language: Dork++

Current_Issue.tar.gz

8 | september 2011 www.l inux journa l .com

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com
http://webchat.freenode.net/?channels=linuxjournal

http://www.linuxcareer.com
http://www.linuxcareer.com

Aussie Admirer
I had a couple hours to kill at the shops
while I was waiting for new tyres on my car
and found an April edition of your mag for
$13.95 AUD (today’s date is June 6). The
people at the news agency stated it cost
that much because they had to get it from
America, and it was two months old
because it would cost even more to send via
air freight! A quick check of exchange rates
shows the Aussie dollar paying $1.07 USD,
making the price in USD close enough to
$14.95. Would you sell many copies for this
price, I wonder? It’s a crying shame that
Australian retailers charge this absolutely
stupid markup. The reasoning I was given
is utter garbage—a hundred issues and I
could fly them on a seat first-class with free
champagne and still show a profit!

Enough with the whining. I purchased the
mag anyway and had a very interesting
read while I waited. Compliments to your
team. This won’t be my last purchase;
however, I likely won’t be purchasing retail
again any time soon.

Word of mouth spread of Linux in this
country can get only so far, and the lack
of reasonably priced journals on the
shelves of our shops sparking the interests
of new users is quite an impediment to
our plans of world domination.

--
Scott K.

First off, thanks for picking up a copy,
even with the harsh price. The cost of
international shipping and printing is
one of the reasons we also make the
magazine available in a digital-only
format. You save some money with a
digital subscription, and you receive the
issue much faster. I’m glad you enjoyed
the issue. We try hard to make it worth
the cover price, even in Australia! Don’t
forget to visit our Web site as well; it
features many of the same writers, and
all the content is free.—Ed.

Magazine Locations
I’m sitting in a hospital room watching
my father recover from liver cancer
surgery and a fall on the way home. I
recently discovered that my subscription
expired, and I’m going to renew it next
week. In the meantime, I thought I’d pick
up a copy locally, and this is why I’m
contacting you. I’d like you to consider an
application for your Web site that would
display nearby magazine/bookstore
locations that carry your fine magazine.
Perhaps an Android app would be nice
too. Yes, I can read the on-line version,
but I’d really prefer a hard copy. Perhaps
Shawn Powers could assign this little
Google smashup to someone? Thank
you for your consideration.

--
Michael Soibelman

As someone who lives in an area with no
local retailers stocking Linux Journal, I feel
your pain. I’m not sure how to create an
app like that myself, but hopefully, your
letter will spark someone’s interest in
doing such a thing. As far as assigning it
goes, I always could pick you if you like.
Hope your dad is doing well.—Ed.

Google Maps
I enjoyed the mapping article by Mike
Diehl in the April 2011 issue (“Find
Yourself with the Google Maps API”).
Like Mike, I would not be without
Google Maps. You may not be interested
in the content (unless you are a train
buff), but take a look at these sites.
I think they are truly awesome and
are done by an “amateur” at that. It
just goes to show what skills are out

there, and it makes me very envious:
traintimes.org.uk/map and
traintimes.org.uk/map/tube.

--
Roy Read

What Day Is It?
I’m sending a little feedback to Dave
Taylor’s “parsing the cal” output (see
Dave’s column in the June–September
2011 issues). There’s no need to use
regular expressions in the awk script at
all, because you can compare numbers
directly. Below, you’ll find the script you
can call by the following command line:

$ cal | awk -f day.awk 25

day.awk

BEGIN{

ARGC=1;

getline;getline;

for(i=1;i<=NF;i++) wd[i]=$i

}

{

for(i=1;i<=NF;i++)

if($i==ARGV[1])

print wd[i+($0~/^ /?(7-NF):0)]

}

In the BEGIN block, ARGC=1 prevents it
from taking the last argument (25 in this
case) as an input file. Then, the script
fetches the first two lines and stores the
weekday names in an array.

The rest of the script compares the
argument number with every field in
every line. On a match, the day name
is output, wd[i]. The month does not
always start on a Sunday, so the script
has to fix the index for lines starting
with a space (condition $0~/^ /). For
those lines, the first item starts with
index 7-NF. Note that this fix also
works fine for the second line of num-
bers (which also starts with a space),
since 7-7 equals 0.

You can make the script a one-liner if you
like. It was written in multiple lines for
readability reasons. And, last but not least:
great OS, great magazine, keep going.

--
Eric Miller

1 0 | september 2011 www.l inux journa l .com

letters

http://www.linuxjournal.com
http://traintime.org.uk/map
http://traintimes.org.uk/map/tube

www.l inux journa l .com september 2011 | 1 1

Dave Taylor replies: Thanks for your
note. I realized that there was a way to
break down the input and process it with
a multiline awk script (just as I could do
much of the task more easily in Perl or,
for that matter, a short C program), but
my goal with the Work the Shell
column is to force myself to stick with
standard Linux shell commands and capa-
bilities as much as possible and see what
I can accomplish. Sometimes the result is
a bit, um, Byzantine and unquestionably
inefficient, but the upside is that it’s always
interesting and, I hope, informative and
entertaining reading.

Installfest 2001
Installfest goal: adapt seven older desk-
top computers for use by fourth-grade
teacher Mike Steins at Shenandoah St.
Elementary School and learn how to
install/configure Linux. (We had two
Linux experts in the group.)

Outcome: we got four computers
working with Linux by scavenging

parts from various other machines.

Although the Linux installfest event ten
years ago may not have been hugely
productive (eight people @ six hours =
four working Linux computers), it got the
ball rolling to get computers at the school.
Since then, every teacher has received a
laptop, projector and document camera.
The school has multiple interactive white-
boards, a fully functioning computer lab
(actually two—one is made up of aging
computers), digital microscopes, cameras
and video cameras, a completely wireless
network with networked printing and
storage capabilities, an in-house server,
student e-mail accounts, and we’re slowly
looking to integrate tablet devices during
the next few years as the technology
becomes more inexpensive and funding
levels rise (if that ever happens). So, Linux
(I believe it was the Red Hat distribution)
laid the red carpet for technology at
our school. Thanks.

--
Mike Steins

WRITE LJ A LETTER We love hearing from our readers. Please send us your comments
and feedback via www.linuxjournal.com/contact.

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-818-487-2089. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 16476, North Hollywood, CA
91615-9911 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit
them at www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,
Houston, TX 77098 USA. Letters may be edited
for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

Linux installfest at 419 N Vista St., Los Angeles (circa 2001). Left to right, top row:
Danny Olster, Abhijeet Chavan, Christian Peralta Madera, Mike Steins, Charanjeet Singh,
Christian’s Dad. Bottom row: Chun Wong, Chris Steins.

http://www.linuxjournal.com
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters

Oct. 12, 13, & 14

for BUILDING SUCCESSFUL WEBSITES

Oct. 112, 13, & 14

for BUILDING SUCCESSFUL WEBBBBBBBBBBBBBBBBBBBBBSSSSSSSSSSSSSSSSSSSSSSSSSSSITES

doitwithdrupal.com

Attending Do It With Drupal was absolutely worth it. I

learned more about Drupal in a few days than I would

have in months on my own. Meeting so many talented

and passionate web professionals was exhilarating.

Scott Phillips, Web Developer, Drake University

http://doitwithdrupal.com

Jeffrey
ZELDMAN

Josh
CLARK

Karen
MCGRANE

Featuring Awesome Speakers!

Also Jeff Robbins, Angela Byron, Karen Stevenson, Jeff Eaton, Ryan Szrama & more!

Do it with Drupal sessions are designed for you, covering the latest

Drupal information and best practices. But you’ll learn about more

than just Drupal -- choose from sessions on UX, designing mobile

apps, web typography, and more. And the speakers who present are

not just knowledgeable, they’re fun and engaging. Do it with Drupal

provides practical information that you can start using right away!

Use coupon code LJ50 when you register & save $50!

* coupon code expires October 10th

powered

1 4 | september 2011 www.l inux journa l .com

UPFRONT
N E W S + F U N

Google’s Mike Waychison has posted some patches to organize Google-specific

firmware used in its servers. These patches were met with approval by Alan Cox
and Greg Kroah-Hartman, although Google’s servers remain unavailable for

purchase by the public. Perhaps that will change soon.

Chris Wright officially is no longer on the stable kernel team, and he has not

been involved in that project for some time. Greg Kroah-Hartman will continue his

effort to release several short-term stable versions of each kernel, during the intervals

between official releases from Linus Torvalds. Long-term stable trees in the 2.6

series are maintained by Andi Kleen, Willy Tarreau, Paul Gortmaker and others.

The ancient versioning system, CVS, still is being used by some kernel developers

in spite of the advent of git, and Sebastian Andrzej Siewior recently posted a

patch supporting those developers. His patch took out all the stale CVS Id tags

sprinkled throughout the kernel that were confusing CVS. Apparently, some developers

are syncing the kernel sources from git and then feeding the whole tree into a CVS

repository before working on it—bizarre. But, it’s a great testament to the hardiness

of CVS after so many years and so many attempts to find something better.

A recent bug in SysFS allowed regular users to overwrite NVRAM. Vasiliy
Kulikov’s patch to close the security hole had taken more than a month to be

incorporated into the kernel. In light of that, he’s posted a patch to give the system

administrator the power to mount the SysFS directory as read-only. This blanket

protection would not be in effect at all times, but it would give administrators the

ability to lock down that part of the system in the event that a similar bug were dis-

covered. The problem, as Greg Kroah-Hartman points out, is that locking down SysFS

may produce other unanticipated problems, and he feels the right approach simply

would be to fix SysFS bugs as they occur, rather than add a blanket layer of security

over it. The debate is unresolved at the moment and could play out either way.

Huang Ying recently posted some code to cause unknown non-masking
interrupts (NMIs) to crash the kernel and produce a panic report. But, part of the

problem is that a wide array of systems produce unknown NMIs for no reason at all.

Huang’s solution was to create a whitelist of systems that were known not to do

this, and his patch would work only on that whitelisted set of systems. But, Ingo
Molnar suggested using active event filters to allow unknown NMIs to go

through a localized policy decision-making process first, so the decision to

panic the system could be made on a per-system basis.

Active event filters, as Ingo pointed out, would allow a certain portion of the

decision-making process to occur while still in kernel space, without having to return

to userland. This is key, because when the system is crashing, it often is not feasible

to pass control over to a user-space program. But in the case where the active event

filters determined that a crash probably was not occurring, they could hand control

to a user-space dæmon that would make additional decisions about how to handle

the unknown NMI.

Active event filters apparently are tremendously powerful and soon may be seen

in use throughout the kernel as a way of standardizing a number of disparate

behaviors that currently are handled in an ad hoc manner.—ZACK BROWN

CBZ, the MP3
of Comics
Digital music and, more recently,

digital video and digital books,

have changed the way we

consume media. Comic books are

no different, and with the advent

of tablet computers, digital comics

are becoming more and more

popular. If you don’t have a tablet

computer, however, viewing CBR

(or their compressed version, CBZ)

files is as simple as installing a

CBR reader and downloading

your favorite comic.

Many comic book readers

are available for Linux. A quick

Google search will turn up pro-

grams like Comix, ComicMaster

and Comical, all of which display

digital comics quite well. Another

search likely will turn up some

free comic resources, like the one

shown here: Cory Doctorow’s

Futuristic Takes of the Here and

Now. If you miss the comic books

of your youth, or if you still enjoy

them on a regular basis, you

owe it to yourself to check out

CBR/CBZ files.—SHAWN POWERS

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 1 5

[UPFRONT]

Sometimes, you just want a simple word processor.

Yes, there are many options for word processing,

from the awesome OpenOffice.org to the awesome-

for-other-reasons vi. If you’re looking for a happy

medium, however, it’s hard to do better than

AbiWord. When you add the free on-line compo-

nent, AbiCollab.net, you even can collaborate with other AbiWord users

on documents.

AbiWord is available for Linux, Windows and even OS X. You need version

2.8 or higher to use AbiCollab.net, but most distributions include at least

version 2.8. Check out the Web site at www.abisource.com.—SHAWN POWERS

Roll Your Own
Cthulhu Flick
I may not be Steven Spielberg, but

every time I see a rerun of Gumby,

I’m convinced I could be a famous

producer. With Linux, I don’t even

have to get a fancy movie set. I

can make my own science-fiction

adventure film with nothing more

than a Webcam and a streak of

bizarre creativity.

Stopmotion is a Linux program

designed for creating stop-motion

films. It’s available for most distri-

butions and easily compilable for

the rest. Stopmotion is simple in

its design, and it allows you either

to import a series of pre-taken

photos or take live stop-action

with a Webcam. I find the latter to

be slightly easier, as you can see a

ghost image of the last shot you

took, making the slight changes

you need easy to spot.

Recording stop-motion films is

tedious work, but the end result

can be pretty cool. Check out the

homepage, short-linked here:

is.gd/stopmotion. If you create

an interesting video, send a link to

ljeditor@linuxjournal.com. If we

get enough, we’ll post them on

our Web site.—SHAWN POWERS

ROCK YOUR WORLD
WITH FIREFLY
No, I’m not talking browncoats and spaceships. Unfortunately, that ship has sailed.

If you’re the musical

type, however,

installing a Firefly

Media Server is

fairly simple. It

was renamed from

mt-daapd, so your

distribution still might

call it that. After a quick

install, visit the Web

configuration, usually

at http://localhost:3689

with the default

login mt-daapd and

password mt-daapd.

You can configure your music location, smart playlists and just about every other

aspect of the media server. Then comes the cool part.

On any software or hardware on your network that supports daap (often known

as the iTunes protocol), you should be able to play your music remotely. Firefly

does a decent job of scanning your music collection and updating the clients on

the network. You can add m3u playlists, and Firefly will serve up playlists as well.

I find the best way to listen to music on XBMC is via daap. It makes configuring

playlists and adding media simple. It’s also cross-platform, so those folks using actual

iTunes can listen to their tunes as well.—SHAWN POWERS

NON-LINUX FOSS

http://www.linuxjournal.com
http://www.abisource.com.%E2%80%94SHAWN
mailto:ljeditor@linuxjournal.com
http://is.gd/stopmotion

1 6 | september 2011 www.l inux journa l .com

[UPFRONT]

Engineers are some of the heaviest
number-crunchers around. If you are a
grad student, post doc or undergrad, you
usually get whatever is lying around as
your work machine. Also, depending on
how inflexible your local IT department
is, you may be forced to use one of the
commercial operating systems around
these days. What are lowly students to
do when they need to do heavy compu-
tational work? You may be interested in
looking at CAELinux (Computer Assisted
Engineering, www.caelinux.com). This
project provides a live CD that gives you
all the open-source tools you might need
for your engineering work. And, because
it is a live CD, you can use it without
touching the local drive of the machine
you are using.

Like all live CDs, it has all the standard
Linux desktop tools you should be familiar
with, including Firefox for Web browsing,
Evolution for e-mail, and OpenOffice.org
for word processing, spreadsheets and
presentations. Along with these applica-
tions, there are dozens of others to help
with all your number-crunching work.
The most recent versions are based on
Ubuntu, so it should be a fairly comfort-
able environment for most people. Be
aware, however, that you can’t use the
usual software update mechanism in
Ubuntu. Many of the packages in
CAELinux are compiled from source and
optimized, so you don’t want them
being overwritten accidentally by any
packages provided by Ubuntu.

Welcome to CAELinux

A really well written introduction to
CAELinux is available right on the desktop,
called “Getting Started”. You should start
here if this is your first step into the world
of CAELinux.

Getting Started

Last month, I looked at OpenFOAM in
this space. CAELinux includes a full install
of OpenFOAM. It also includes another
fluid dynamics program called SALOME.
This program provides a full graphical
interface that takes you from forming
your problem, to modeling, to calculation
and through to analyzing your results.
This might be a good choice for those
who are more comfortable with a GUI.
A series of examples on the desktop are
available that provide a walk-through of
the program, showing each of the steps
as you go through.

CAELinux Tutorials

As you can see, the tutorials walk
through several common simulations,
like modeling flow through a pipe.
These can provide great starting points
for many people.

If your work leans more toward data
analysis, several popular packages are
available. For all of you Matlab addicts,
there is Scilab. Scilab provides the same
types of functions in an environment
familiar to Matlab users. There also is
Maxima, which provides tools more from
a mathematical background (for example,
analyzing functions and doing calculus), as

compared to Scilab’s approach of working
from a matrix background (such as look-
ing at data analysis). Maxima has several
front ends available. The default one in
CAELinux is wxMaxima. If you are doing
really heavy statistical analysis, there is R.
The real power of R is the CRAN repository,
and a fair amount is available out of the
box. R also has several graphical front ends.
CAELinux provides two: R Commander
and RKWard. If you are doing work more
along the lines of pure mathematical
analysis, there also is Octave. The
default GUI available within CAELinux
is QtOctave. In all of these cases, text-
based interfaces also are available, if
you are an old-style computer user who
prefers that kind of thing.

Several software packages exist for
applications other than CFD or statistics.
If you need to do finite element analysis,
there’s elmer. It provides both a text-based
and GUI interface. There also is JavaFoil,
available for doing analysis on airfoils and
wings. If you are designing electrical circuits,
two packages are available. Electric is
a CAD program that helps you lay out a
circuit. And, once it is all laid out, you can
use PCB Designer to get it set up so you
can etch a board to make it real.

This is all fine and good if you can use
a standard toolset in your work. But, what
if you need computing power for really
cutting-edge research? CAELinux provides
the entire GNU toolset. This means you
have everything you need to go ahead
and start developing your own code.
All of the most common scientific and
engineering libraries, like gsl and LAPACK,
are available. If you are working on really
large problems, MPI and openMP also
are available. This way, you can develop
a parallel programming solution if that
is what your problem needs.

Once you have finished all your calcu-
lations, an important part of data analysis
is graphical analysis. There is something
visceral and instinctive about actually
seeing your data represented. To this end,
CAELinux provides several packages. If
you simply want to plot your data, you
can use programs like grace and LabPlot.
If you want to do more complicated data
analysis, you have programs like G3Data
and OpenDX Data Explorer. These programs
have lots of functionality that can be
used to look at your data graphically. If

Computer-Aided Engineering in Linux

http://www.caelinux.com
http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 1 7

[UPFRONT]

you are doing CFD work, several programs
for visualizing your meshes are available.
So, you have your choice based on what
features you need.

The last option to look at this month is
using CAELinux in “the cloud”. Cloud
computing is one of those sexy terms that
gets used a lot in marketing, but it some-
times doesn’t really give you anything
useful. In this case, there really is some-
thing substantial being offered. CAELinux
now can be run as an application under
Amazon Elastic Cloud Computing. You
can now run, on demand, as many nodes
as you like, each having eight cores and
64GB of RAM. For people who don’t have
the resources to run their own clusters,
but need more than what a desktop can

handle, this can be a very attractive
choice. It definitely is worth looking
into as a possible option. You can
find more information about EC2 at
aws.amazon.com/ec2, and the CAELinux
Web site has a very good set of instructions
to get you up and running.

As you can see, CAELinux provides a
lot of power and functionality for doing
computational science. Because it is a live
CD, you can run it on essentially any
64-bit machine without touching the hard
drive. But, you also have the option of
installing it on the machine if you are
allowed. Download an ISO and start play-
ing with it to see just how much work you
can do with it.

—JOEY BERNARD

Playterm, Platform of the Gurus
Did you learn all your Linux console skills from books or from
forums? Or, did you peek over someone’s shoulder to see the real
action? Once in a while, we stumble upon new projects that
deserve some attention, like Playterm (www.playterm.org).
What’s the reason for this command-line “peep show”? To spread
GNU Linux command-line knowledge.

You will see a fair amount of on-line terminal recordings when
you enter this site. The recordings cover several topics performed
in the shell: tricks, one-liners, guided tutorials and handy utilities.

Personally, I found them quite entertaining to watch, and it
brought me back to the BBS days. It can be educational, and also quite hilarious to
see people making typos and mistakes.

Another interesting Playterm feature is the embed facility. You can upload terminal
recordings on this site, which you then can embed and play on your blog or Web site.
Optionally, you can allow commenting on your recordings, which, of course, will provide
interesting hints and tips and other improvements.

The Coder of Salvation (Leon van Kammen) created Playterm because he was just too
curious about what people were doing in their terminals. He used to work for a company
where he did extreme programming sessions with his colleagues through the GNU
screen -x utility. In his experience, it is extremely educational when you work together
in one terminal (and also entertaining). In his opinion, console-related books and articles
are great, but sometimes it can be more helpful to see gurus at work. If it were up to
him, more command-line projects should feature a terminal player on their sites: “Why
not? Why have only a tar archive on a site? Developers should make more demos to show
the world how cool their utilities are! It hurts me to see so many great utilities being
overseen by the masses.” Obviously, these are the words of a true terminal evangelist.

Before the big Internet boom, people used BBSes a lot (en.wikipedia.org/wiki/
Bulletin_board_system). People called to other people’s BBSes via their phone line. The
cool thing about running your own BBS was that you could create a console “intervention”.
By doing this, you could “take over” the terminal session of a given user. In those days,
a lot of teaching and cooperation was done this way.

Of course, the Playterm Web site would not be possible without the GNU and
Open Source movement. Thanks also to the developers of ttyrec (0xcc.net/ttyrec)
and jsttyplay (encryptio.com).

Playterm is still beta, but it’s already fully functional. Currently, we are curious about
how many users we can serve, but in terms of global Linux knowledge, we are very excited.
At this point, Playterm.org is a nonprofit project to serve the community and spread GNU
Linux knowledge. Hopefully, it will inspire youngsters to use the shell more often.

—LEON VAN KAMMEN

The question of whether a

computer can think is no

more interesting than the

question of whether a

submarine can swim.

—E. W. Dijkstra

One thing a computer can

do that most humans can’t is

be sealed up in a cardboard

box and sit in a warehouse.

—Jack Handey (from

“Deep Thoughts”,

Saturday Night Live)

If you have any trouble

sounding condescending,

find a UNIX user to show

you how it’s done.

—Scott Adams

Isn’t it interesting that the

same people who laugh

at science fiction listen

to weather forecasts

and economists?

—Kelvin Throop III

Computer Science is no more

about computers than astron-

omy is about telescopes.

—E. W. Dijkstra

Even he, to whom most

things that most people

would think were pretty

smart were pretty dumb,

thought it was pretty smart.

—Douglas Adams

It is bad luck to be

superstitious.

—Andrew W. Mathis

The problem with quotes on the

Internet is that it is often difficult

to verify their authenticity.

—Abraham Lincoln

They Said It

http://www.linuxjournal.com
http://www.playterm.org
http://aws.amazon.com/ec2
http://en.wikipedia.org/wiki/Bulletin_board_system
http://en.wikipedia.org/wiki/Bulletin_board_system
http://0xcc.net/ttyrec
http://encryptio.com
http://www.linuxjournal.com/content/whats-your-favorite-programming-language

[UPFRONT]

One of our favorite things to do over at
LinuxJournal.com is to check the pulse of the
Linux community and our readership. We do
this fairly regularly with simple polls on our
site. These give us valuable insight into your
interests, and they give us a fun way to get
feedback on a specific question. Sometimes
a simple question generates a tremendous
amount of discussion, and even a little con-
troversy. We recently asked readers to choose
their favorite programming language, and
we received a lot of great answers. Check
it out at www.linuxjournal.com/content/
whats-your-favorite-programming-language.

We know that for some of you, your
favorite programming language is such an
important part of your existence that you are
understandably quite opinionated on the
subject. So, as you might expect, there were
clear leaders and underdogs, as well as
passionate supporters of each.

Python tends to be the favorite among our
readers, and it has won more than one Readers’
Choice Award for favorite programming
language. Indeed, Python has staying power,

as it once again was the leading choice among
LinuxJournal.com readers with 24% of the
votes. Not surprisingly, there were many skeptics
among the commenters, but Python fans did
their best to set everyone straight about Python’s
virtues, and one reader offered this sage advice:

In my opinion, a large Python
system is well organized (like any
language), sticks to standards, has
docs (particularly module docs) and
has tests. Consistent, well-written
Python code makes it fairly obvious
what objects/types functions accept
and return, and having useful
standard types (lists, dics, sets, etc.)
encourages people not to make
exotic variations often. Having
module docs that document what
your function does and its inputs
and outputs clarify any questions.

In a close second and third place were C
and C++, respectively. Both had enthusiastic
support in the comments section, and we can

infer from some comments that “all of the
above” (in the case of C, C++ and Python)
might have been a popular answer as well.
Many indicated a preference for different
languages for different tasks, and we applaud
their versatility and open-mindedness!

Java trailed C++ in fourth place, and it was
cited more than once as a preferred learning
and teaching language. It probably also is safe
to bet that some of Java’s popularity is due to
the increasing demand for Android applications
written in Java. One anonymous commenter
gave us a detailed breakdown of how Java fits
the bill versus other languages:

� For fun: Forth.

� For teaching (elementary): Logo.

� For teaching (secondary+): Java.

� For desktop applications: C++ (with Qt).

� For Web services: Java (SE or SE +
Servlet only).

LinuxJournal.com Programming Survey

http://www.linuxjournal.com/content/whats-your-favorite-programming-language
http://www.linuxjournal.com/content/whats-your-favorite-programming-language
http://www.siliconmechanics.com
http://www.siliconmechanics.com/xeon
http://www.siliconmechanics.com/ors
http://www.oceanrowsolo.com

[UPFRONT]

� For enterprise internal: Java (EE with or
without Spring).

� For enterprise external: Java (SE or SE +
Servlet and JSP, no Spring).

� For cloud: C++, Java, Scala and
Python together.

� For mobile: Java (Android) C++ and
Qt (native).

� For embedded systems: C++ or Java
(real time).

� For device drivers: C++ or C.

� For deep embedded (no MMU): C, Forth
or Assembly, as needed.

Although these may not suit everyone, I
have to give credit for such a detailed response.

Getting a little less love were Perl, C# and
Ruby. Although these all have devoted follow-
ings, their fans were largely outnumbered in this
poll. I was a little surprised to see Ruby score
only 4% of the votes, as I personally know so
many enthusiastic Ruby coders.

Haskell and OCaml each got 1% of the
vote, while the catchall “other” made up the
remaining 8%. Most interesting were the
comments describing the variety of languages
our readers use regularly as well as dabble in.

PHP always has a few fans, and although
we can argue that PHP belongs in a separate
“scripting languages” poll, its fans still showed
support. The same can be said for JavaScript and
Bash, both of which got a little love from our
readers. Perhaps we’ll do a favorite scripting
language poll soon, but in the meantime, since
PHP, JavaScript and Bash tend to be part of my
daily life, it is nice to see I am not alone.

There were quite a few mentions of Scala,
LISP and Erlang, as well as oldies but goodies,
FORTRAN and Cobol. The latter occasionally
were mentioned in the context of “getting old”,
but frankly, do the classics ever go out of style?

It is always fun to read the nostalgia posts
that inevitably appear on these sorts of com-
ment threads. When programmers share their
stories, there is usually a mention of the lan-
guage they started with, and when our readers
share stories of the language they were using
in 1976 or even 1968, it gives us all a glimpse
at where we’ve been, and how we all got to
where we are today. Whether you started as a

mainframe pioneer or a geeky kid typing out
rudimentary BASIC on your TI-99/4A (What?
Bill Cosby said it was cool!), you’ve likely had
a somewhat meandering journey made up of
more than a few languages to get to the code
you write today. In my humble opinion, sharing
these stories is one of the best parts of
LinuxJournal.com. I hope you’ll all join in the
fun and check out the current poll next time
you visit LinuxJournal.com. Don’t be shy! Tell us
your stories and opinions in the comments. You
never know who you may inspire. I suspect it
might be me!—KATHERINE DRUCKMAN

Programming Language Survey Results

C 19% (1,661 votes)
C++ 17% (1,488 votes)
C# 5% (399 votes)
Haskell 1% (126 votes)
Java 13% (1,118 votes)
OCaml 1% (47 votes)
Perl 8% (674 votes)
Python 24% (2,025 votes)
Ruby 4% (361 votes)
Other 8% (670 votes)
Total votes 8,569

2 0 | september 2011 www.l inux journa l .com

Last month, I wrote about CoffeeScript, a new, small
language that compiles into JavaScript. CoffeeScript
has generated a great deal of buzz and excitement
among Web developers, including no less than
Brendan Eich, Mozilla’s CTO and the inventor of
JavaScript. Ruby on Rails 3.1, which presumably will
be released by the time this column sees print,
includes CoffeeScript, and other frameworks might
follow suit in the future.

Even if you’re not interested in the future of
JavaScript or in Ruby on Rails, you owe it to yourself
to look at CoffeeScript. First, it’s a new and interesting
language, and I’m definitely a believer in learning new
languages as part of my professional development.
Second, CoffeeScript’s syntax makes it easier to do
many things that previously were difficult, long-winded
or just plain ugly in JavaScript. Just as a number of
languages have emerged that compile to the JVM,
but that are easier to use in various ways, so too is
CoffeeScript functionality equivalent at the end of the
day to JavaScript, but with an easier syntax that’s more
appropriate for many modern applications.

But, perhaps the most interesting part of
CoffeeScript is the fact that, ultimately, it’s just another
way of writing JavaScript, which means anything you
can do in JavaScript, you also can do in CoffeeScript.
CoffeeScript programs can run on the server, in such
environments as node.js, but they also can run in
the browser, working in conjunction with Web
applications. Things become even more interesting
if you use a JavaScript framework, such as jQuery,
for developing Web applications—you can benefit
from the best of both worlds, enjoying the power
and expressiveness of jQuery, along with the terse
and readable syntax of CoffeeScript.

This month, I describe some ways that CoffeeScript
and jQuery can interact in a browser-based program.
Even if you don’t decide to adopt CoffeeScript in your
own programs, it’s worth playing with the language to
get the hang of things.

Starting Off
I’m going to assume you already have installed
CoffeeScript, as well as any support files, such as a
mode for your editor. Create a bare-bones HTML file,
as shown in Listing 1, and a stylesheet (coffeescript.css),

in the same directory, similar to what’s shown in
Listing 2. Notice how in the HTML file, I include
two JavaScript files:

<script

src="http://ajax.googleapis.com/ajax/libs/jquery/

�1.4.2/jquery.min.js"></script>

<script src="app.js"></script>

The first probably is recognizable as the Google-
hosted version of a minified version of jQuery. But the
second file, app.js, is the target of the CoffeeScript
compilation—that is, you’re not going to write app.js
directly. Rather, you’re going to write CoffeeScript that
compiles into JavaScript.

You do this by creating (in the same directory as
the HTML file, unless you want to change the paths
in the <script> tag) a CoffeeScript program, named
app.coffee. Just to test things, I created a very simple
CoffeeScript program that uses the standard (and

CoffeeScript
and jQuery
CoffeeScript is a better way to write JavaScript, but it integrates
just fine with libraries like jQuery.

AT THE FORGE
COLUMNS

Listing 1. coffeescript.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta http-equiv="content-type"

�content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css"

�href="coffeescript.css" />

<title>CoffeeScript</title>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/

�1.4.2/jquery.min.js"></script>

<script src="app.js"></script>

</head>

<body>

<h1>Headline</h1>

<p>Paragraph 1</p>

<p>Paragraph 2</p>

<p>Paragraph 3</p>

</body>

</html>

REUVEN M. LERNER

http://www.linuxjournal.com
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever

annoying!) alert dialog to say “hello”:

alert "hello"

Save this file as app.coffee. On the command
line, you then want to tell CoffeeScript to compile
app.coffee into app.js. (Otherwise, it’ll try to execute
your program, which not only will mean that the
resulting JavaScript isn’t available for your Web page,
but it also will result in an error if you try to access the
DOM, which isn’t available outside a browser context.)
You can do this with:

coffee --compile app.coffee

The problem with this approach is that you need
to recompile your CoffeeScript program every time
you change it. A better solution probably is to tell
CoffeeScript to watch the file and compile it every time
a change is detected:

coffee --compile --watch app.coffee

Just after running this, the compiler will run over
app.coffee, producing app.js. When you load your
Web page, app.js will run, and you should have an
alert saying “hello”.

Functions and Objects
It’s important to remember that although CoffeeScript
certainly is a different syntax from JavaScript, it is
fundamentally the same language. This means any
function or object that you can access from JavaScript
can be accessed from CoffeeScript, with the same
name. True, CoffeeScript does offer some shortcuts
and syntactic sugar; those basic JavaScript objects are
still around and kicking. That’s why you could invoke
the “alert” function in app.coffee—it’s not that
CoffeeScript has defined a new function, but rather
that you’re using the same built-in JavaScript function.

This means if you load jQuery in the same document

as a program written in CoffeeScript, you can use
jQuery from within CoffeeScript. What does that
mean? Well, it means you can access the jQuery object
directly, often abbreviated as $. For example, let’s
change app.coffee so that it tells you what version
of jQuery you’re using, normally available via
$().jquery. You also can do this in CoffeeScript:

alert $().jquery

Let’s do something a bit more exciting now, using
jQuery’s capabilities for easily changing elements in the
DOM based on events that take place. For example,
you can add the “large” class to all of the paragraph
elements in your document. In JavaScript, you would
do this with:

$("p").addClass("large");

In CoffeeScript, you can use the same code as
above. But, because CoffeeScript allows you (like in
Ruby) to remove most of the parentheses, you end
up with this:

$("p").addClass "large"

Notice how the original jQuery selector has
remained the same, as has the method you’re calling
on each of the selected DOM elements. What has
changed is the way you invoke the method; you no
longer need to put parentheses around it.

There is a problem with this though. It will execute
immediately upon being loaded. The problem is that
just because the JavaScript is executing, it doesn’t
mean the HTML all has been loaded or rendered onto
the screen. Now, you can get around this in traditional
jQuery by putting all of your code inside a call to
$(document).ready(), as in:

$(document).ready(

function () {

// Event handlers go here

}

);

You can do the same thing, but in less space (of
course) using CoffeeScript:

$(document).ready ->

($ "p").addClass "large"

As you can see, CoffeeScript’s syntax is cleaner
and trimmer, without nearly as many curly braces and
parentheses. You start off with the same invocation of
$ with the “document” parameter, and then invoke

www. l inux journa l .com september 2011 | 2 1

Listing 2. coffeescript.css

p.large {

font-size: 30px;

}

p.medium {

font-size: 20px;

}

p.small {

font-size: 10px;

}

http://www.linuxjournal.com

the “ready” method on that object. You then need to
pass a function to “ready”, which you do by defining
a new, anonymous method with CoffeeScript’s ->
symbol, cleverly dubbed “dashrocket” in the PeepCode
screencast about CoffeeScript.

In other words, you’ve wrapped your original
invocation of “addClass” and friends inside a function
that’s invoked when the document is ready. But, you’ve
cut the number of lines of code in half, without sacri-
ficing readability. Now, let’s do something a bit more
exciting, namely change the size each time you click on
a paragraph. In order to do that, you’ll need to use
one of jQuery’s event handlers—specifically, you’ll use
the “click” handler, which you set by invoking a selec-
tor, the “click” method, and then passing the name of
a function. For example, if all you want to do is display
an alert dialog when a paragraph is clicked, you can do
it with the following CoffeeScript:

$(document).ready ->

changeSize = ->

alert("changing size!")

$("p").addClass "large"

$("p").click changeSize

Note how I’ve defined two functions here: an
anonymous function for $(document).ready and
another function to which I give the name changeSize.
But, of course, you want to do something a bit more
complex than display an alert dialog; you want to
change the size. When changeSize is fired, you want to
know which paragraph to change. An event handler
always is passed “this”, an all-too-common word in
JavaScript that confuses many people.

One way to get the sizes to rotate is shown in Listing
3, app.coffee. Basically, your callback function starts
off by assigning a local variable, “text”. If this were
JavaScript, “text” would not be a local variable, but
rather a global one, because you used neither the “var”
keyword nor another object (for example, myObject.text).
In CoffeeScript, variables are local, which means you
cannot pollute the global namespace accidentally.

Listing 3 shows a basic use of if/then/else blocks.
Notice there isn’t any need for braces, begin/end state-
ments or other markers. Python programmers will see
this (rightly) as a vindication of semantically significant
whitespace. I just like the fact that well-indented code is
easy to read, and that CoffeeScript enforces this on me.

You also can see that with rare exception, you’ve
managed to get rid of the parentheses that JavaScript
would require, in favor of terse, clean syntax. You’re
still using the same jQuery methods, but you’re doing
so in a way that I find easier to read.

You then take the changeSize function and attach

it to an event:

($ "p").click changeSize

It might look a bit strange to have the parentheses
around the call to $ "p", which in standard jQuery
would look like:

$("p")

CoffeeScript tries to get rid of as many parentheses
as possible, but there are times when the ambiguity
would makes things too difficult for its parser. In such
circumstances, you can use parentheses to make
things easier.

As you can see from the above example,
CoffeeScript makes all of jQuery’s functions available.
No matter what you might want to do to the text or
HTML of your document, you can use CoffeeScript to
do it—adding and removing (and querying) nodes,
adding and removing (and querying) attributes, chang-
ing text, invoking menus or anything else you can do
in JavaScript. Having jQuery around means you can
make use of its syntax and abstractions, a potentially
killer combination. Indeed, a number of blog postings
(including several mentioned in the Resources section
for this article) indicate that the combination of
CoffeeScript and jQuery is a popular and effective one.

2 2 | september 2011 www.l inux journa l .com

AT THE FORGE
COLUMNS

Listing 3. app.coffee

$(document).ready ->

changeSize = ->

text = $(this)

if text.hasClass "small"

text.removeClass "small"

text.addClass "medium"

else if text.hasClass "medium"

text.removeClass "medium"

text.addClass "large"

else if text.hasClass "large"

text.removeClass "large"

text.addClass "small"

else

text.addClass "large"

true

($ "p").addClass "large"

($ "p").live 'click', changeSize

http://www.linuxjournal.com

Conclusion
jQuery is a popular framework for client-side Web
development, providing a large number of abstrac-
tions and convenience functions for querying and
modifying the DOM. CoffeeScript is a language
that makes it easier to write in JavaScript, by
simplifying the syntax, removing some of the most
common problems that people have with the
language, and providing easier ways to work with
strings, arrays and hashes. But at the end of the
day, both jQuery and CoffeeScript are tools for
working with JavaScript, which means there’s full
interoperability between them. Although the examples
in this column are simple, they demonstrate that
it’s easy to get started with CoffeeScript and even
to integrate it into an existing application. My
guess is that CoffeeScript has a very bright future
and, I should add, deservedly so.�

Reuven M. Lerner is a longtime Web developer, architect and trainer.
He is a PhD candidate in learning sciences at Northwestern University,
researching the design and analysis of collaborative on-line communities.
Reuven lives with his wife and three children in Modi’in, Israel.

Resources

The home page for CoffeeScript, including documentation, quick references, FAQs and annotated

source code, is at jashkenas.github.com/coffee-script. There is an active and growing community

of CoffeeScript users, with an IRC channel (#coffeescript) and Wiki at GitHub.

A good introduction to CoffeeScript is this presentation written by Jacques Crocker:

coffeescript-seattlejs.heroku.com.

PeepCode (peepcode.com), which makes excellent screencasts on a variety of subjects,

has one about CoffeeScript that I learned from and enjoyed.

There are many blog postings about CoffeeScript and jQuery. Stefan Buhrmester wrote a

nice description of using jQuery with CoffeeScript: buhrmi.tumblr.com/post/5371876452/
how-coffeescript-makes-jquery-more-fun-than-ever. And, Aaron Russell describes his experience

combining CoffeeScript with jQuery: aaronrussell.co.uk/articles/using-coffeescript-with-jquery.

Finally, the Pragmatic Programmers have released (at the time of this writing) an excellent

pre-release “beta book”, written by active CoffeeScript user Trevor Burnham. If you’re

interested in learning more about this interesting little language, I highly recommend this

book. It’s aimed mostly at beginners, but given the limited number of advanced CoffeeScript

programmers out there, that shouldn’t bother you.

http://jashkenas.github.com/coffee-script
http://coffeescript-seattlejs.heroku.com
http://peepcode.com
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
http://aaronrussell.co.uk/articles/using-coffeescript-with-jquery
http://rackmountpro.com
http://rackmountpro.com
mailto:sales@rackmountpro.com
http://www.linode
http://www.linode

2 4 | september 2011 www.l inux journa l .com

As with many of the challenges we tackle in this column,
the latest project has sprawled across more issues than
I ever expected when I first received the query from a
reader. The question seems reasonably simple: given a
month, day number and day of the week, calculate the
most recent year that matches those criteria.

There are some obscure and complex formulas for
doing just this, but instead, I decided it’d be interesting
basically to loop backward from the current year for
the month in question, parsing and analyzing the
output of the handy cal program.

The real challenge has been that the cal program
never really was designed to produce easily parsed
output, so figuring out the day of the week (DOW, as
we’ve been abbreviating it) involves basically counting
the number of leading spaces or otherwise compensating
for an average month where the first day starts mid-week,
not neatly on Sunday.

An algorithmic-friendly version of cal would have out-
put where days prior to the first day of the month would
be output optionally as zeros or underscores, making this
oodles easier. But it isn’t, so we have to compensate.

Figuring the Day of the Week
Last month, we wrapped up with a shell function that
expected the day, month and year as arguments and
returned the day of the week of that particular date
in that month on that year. In other words, 16 May,
2011, occurs on a Monday:

May 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

The actual return value of the function in this
instance is 2, so 1 = Sunday, 2 = Monday, and so on.

Given the desired day of the week that the user
specifies and a simple way to decrement the year until
we hit a match coupled with the function already
shown, it should be relatively easy to assemble all the
pieces and create—finally—the script that details when
a specific date was on a specific day of the week.

I won’t republish all the code from previous months

(the completed script is 83 lines long), but here’s the
most salient portion at the end, the section that steps
back year by year to figure out which one has a
matching calendar entry:

echo Looking for $weekday, $day, $month \($monthnum\) \

starting in $mostrecent

now we need to loop backwards through years until a match

year=$mostrecent

DOW=-1 # start with a dead value

while [$DOW -ne $desiredDOW]

do

figureDOW $day $monthnum $year

echo "> $day $month occurred on a $DOW in $year"

year=$(($year - 1))

done

echo "Got it! $day $month occurred on a $weekday

�most recently in ${year}:"

cal $month $year

Notice that when we find a match, we not only
print out what year had that date on the specified day
of the week, but we also print out the calendar for
that month as a visual confirmation.

A few sample runs illustrate:

$ whatyear Friday February 9

Got it! 9 feb occurred on a fri most recently in 2006:

February 2006

Su Mo Tu We Th Fr Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28

$ whatyear wed aug 3

Got it! 3 aug occurred on a wed most recently in 2004:

August 2004

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Calculating Day of the
Week, Finally
Dave wraps up the script and leaves us with the problem of Leap Year.

WORK THE SHELL
COLUMNS

DAVE TAYLOR

http://www.linuxjournal.com

Since we convert the day of the week name and the
month name to all lowercase and then truncate anything after
the first three letters, you can see that “Friday” and “wed”
both work, which is a nice side benefit. Applications with
more flexible input options obviously are greatly preferred and
make everyone’s life easier.

Something’s Still Broken
One date breaks the script because it doesn’t occur every year:
February 29. Here’s the problem in a nutshell:

$ cal feb 2010

February 2010

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28

When we try to find a match for “29” on this calendar, there’s
no matching output, and the conditional tests we have in the script
can’t handle the empty string.

It’s not pretty:

$ whatyear mon feb 29

./whatyear.sh: line 21: [: -eq: unary operator expected

./whatyear.sh: line 72: [: -ne: unary operator expected

Got it! 29 feb occurred on a mon most recently in 2010:

February 2010

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28

You know, if we had these ugly “[” test error messages but
the end result was correct, I probably could live with it, but you
can see that it’s matched on a February that doesn’t even have
a 29th day—lame.

However, fixing it might be more trouble than it’s worth,
and it certainly will cause us to sprawl into a subsequent column.
Instead, I encourage you to grab the entire source code library
from ftp.linuxjournal.com/pub/lj/listings/issue209/11090.tgz,
and explore how to fix it yourself. Yes, I am punting!

Next month, I’ll start on a new shell scripting challenge,
and as usual, I encourage you to send me a quick e-mail note
with some ideas you have on what would be compelling for
us to develop or any particularly interesting scripting problems
you’re facing.�

Dave Taylor has been hacking shell scripts for a really long time, 30 years. He’s the author
of the popular Wicked Cool Shell Scripts and can be found on Twitter as @DaveTaylor and
more generally at www.DaveTaylorOnline.com.

http://www.DaveTaylorOnline.com
ftp.linuxjournal.com/pub/lj/listings/issue209/11090.tgz
http://www.genstor.com
mailto:sales@genstor.com

2 6 | september 2011 www.l inux journa l .com

In many ways, I feel sorry for people stuck with
proprietary operating systems. When something goes
wrong or if they have a problem to solve, the solution
either is obvious, requires buying special software or is
impossible. With Linux, I’ve always felt that I was limited
only by my own programming and problem-solving
abilities, no matter what problem presented itself.
Throughout the years that Linux has been my primary
OS, I’ve run into quite a few challenging and strange
problems, such as how to hot-migrate from a two-disk
RAID 1 to a three-disk RAID 5, or more often, how to
somehow repair a system I had horribly broken.

The Problem
Recently, I ran into an interesting challenge when I had
to decommission an old server. The server had quite a
bit of sensitive data on it, so I also had to erase every-
thing on the machine securely. Finally, when I was done
completely wiping away all traces of data, I had to
power off the machine. This is a relatively simple request
when the server is under your desk: boot a rescue disk,
use a tool like shred to wipe the data on all the hard
drives, then press the power button. When the server
is in a remote data center, it’s a little more challenging:
use a remote console to reboot into a rescue disk, wipe
the server, then remotely pull the power using some
networked PDU. When, like me, you have to wipe a
server thousands of miles away with no remote console,
no remote power, no remote help and only an SSH
connection, you start scratching your head.

Why Would You Ever Do This?
At this point, some of you might be asking: “Why
would you ever need to do this?” It turns out there are
a few different reasons both legitimate and shady:

1. You have broken hardware. This could be a server
with a broken video card, a malfunctioning KVM or
remote serial console, or some other problem where
physical hardware access just doesn’t work.

2. You are locked out from your server. This could
happen, for instance, if you colocate your server in a
data center but stop paying your bills or somehow
have a falling out with the provider. They revoke
your physical access to your server, but you need to
remove all the sensitive files while the machine is

still available over the network.

3. You have a bad consulting client. Perhaps you are
a responsible and talented sysadmin who sets up a
server for a client in good faith only to have that
client refuse to pay you once the server is on-line.
You want to remove your work securely, the client
won’t return your calls, yet you still have SSH access
to the machine.

4. You bought a cloud server with inadequate tools.
It is very popular these days to host your server
environment in the cloud; however, one downside
is that many cloud providers cut costs by giving
you limited access to management of your cloud
instance. Do you really trust that when you terminate
a server instance it is securely erased? Do you get
access to tools that would let you boot a rescue disk
on your cloud instance? In some cases, about the
only remote management you have for a cloud
server might be your SSH connection.

5. You are an evil, malicious hacker who wants to cover
his tracks. Yes, this is the least legitimate and most
shady reason to wipe a server remotely, but I figured
I should mention it in the interest of completeness.

6. It’s a challenge. Some people climb mountains,
others run marathons, still others try to wipe servers
remotely over SSH. You could just be a person who
likes to push things to the limit, and this sounds like
an interesting challenge.

How Would You Ever Do This?
Now that you have worked through the reasons you
might need to know how to wipe a server remotely,
let’s talk about how you actually would do it. First, and
most important, there are no redos! When you write
random bits to a raw disk device, especially over SSH,
you have only one shot to get it right. When I was
preparing this process, I tested my procedure multiple
times on virtual machines to make sure my steps were
sound. I’m glad I did, as it took a few times to get all
the steps right, confirm my assumptions and get the
commands in the correct order.

What makes this challenge tricky is the fact that
you will write randomly over the very filesystem you

Remotely Wipe
a Server
What would you do if you had to erase all the files securely on a
server thousands of miles away?

HACK AND /
COLUMNS

KYLE RANKIN

http://www.linuxjournal.com

are logged in to. What happens if you overwrite the
sshd and shred files while you are running shred and
logged in over SSH? More important, what happens
when you overwrite the kernel? The main principle
that will make this procedure work is the fact that
Linux likes to cache files to RAM whenever it can.
As long as you can make sure everything you need is
stored in RAM, you can overwrite the filesystem as
much as you want. The trick is just identifying every-
thing you need to store in RAM.

Always Have a Plan B
So, I mentioned there was no redo to this procedure,
but that doesn’t mean you can’t set up some sort of
safety net for yourself. Although I knew that once I
launched the shred command it would run completely
from RAM, what I had to figure out was what commands
I would need to run after shred. Even commands like
ls won’t work if there’s no filesystem to read. So
that I would have some sort of backup plan, I took
advantage of the /dev/shm ramdisk that all modern
Linux systems make available. This is a directory that
any user on the system can write to, and all files will
be stored completely in RAM.

Because I wasn’t sure whether commands like
echo (which I would need later) would work after I had
shredded the hard drive, I copied it to /dev/shm along
with any other files I thought I would need. If you have
the space, why not copy all of /bin, /sbin and /lib if you
can. Finally, I knew I would need access to the /proc
filesystem to power off the server. I assumed I still
would have access to /proc even if I had overwritten
the root filesystem, but I wasn’t 100% certain, so just
to be safe, I became root (you can’t assume sudo will
work later) and mounted an extra copy of /proc under
/dev/shm as the root user:

$ sudo -s

mkdir /dev/shm/proc

mount -t proc proc /dev/shm/proc

It turns out I ultimately didn’t need any of these
precautions, but it doesn’t hurt to be prepared.

It’s Clobbering Time
Now is the point of no return. Just to be safe, I changed
to the /dev/shm directory so my current working directory
would be on a ramdisk. Then, I unmounted any unnec-
essary mountpoints (like /home) and ran the shred
command below on every nonroot drive on the system.
In my case, I used software RAID, so I also took the extra
step of hot-removing all but one drive from any RAID
array and shredded them separately. Finally, I was left
with just my root filesystem stored on /dev/sda, so I took
a deep breath and typed the following command:

shred -n2 -z -v /dev/sda

This command writes random bits to /dev/sda for
two complete passes (-n2) then does a final pass
with zeros so the drive looks perfectly clean (-z) with
verbose output so I can see what’s going on (-v). Of
course, adjust the -n argument to your particular level
of paranoia—two passes was fine for me. I have to
admit, there’s something satisfying and strange about
overwriting the root filesystem while you are still
logged in.

Once the shred process completed, I had a com-
pletely empty filesystem. It was weird—commands
like ls gave odd errors, and I knew I was isolated
in my /dev/shm jail. All that was left was to shut
down the server, but how do you do that when
/sbin/shutdown is erased? No problem, you might
say, just kill PID 1, since if you kill init, it will halt the
system. That would work if, say, the kill program
still were around. In this case, the only way I had
left to shut down the system was via the /proc
interface. The /proc directory is a special filesystem
that allows you access to processes and kernel
information, and it resides entirely in RAM, so my
little shred stunt didn’t wipe it out. To halt the
machine, just enable the sysrq interface in the
kernel, and then send the right command to sysrq:

echo 1 > /proc/sys/kernel/sysrq

echo o > /proc/sysrq-trigger

If the halt command doesn’t work, or if you just
want to reboot the machine instead, you would type:

echo b > /proc/sysrq-trigger

Now you might be asking yourself, didn’t I overwrite
the echo command? After all, /bin/echo is on the root
filesystem. It turns out I didn’t even have to rely on my
copy of the command under /dev/shm—echo is one of
the programs that are built in to the bash shell. When
you execute echo, bash executes the version that is
built in to itself, and because I already was inside a
bash shell, the executable ran from RAM. Once you
run the last echo command, the kernel instantly will
halt. Any remote pings or other commands will stop,
and the system will be powered off.

As a final note, I want to say that even if you don’t
think you’ll ever need to go to such lengths to wipe a
server, I think this procedure is such fun that you should
at least try it in a disposable virtual machine. Shred the
system and see which commands still work and which
ones don’t. As an extra challenge, see if you can get
commands to run within /dev/shm.�

Kyle Rankin is a Sr. Systems Administrator in the San Francisco Bay Area
and the author of a number of books, including The Official Ubuntu Server
Book, Knoppix Hacks and Ubuntu Hacks. He is currently the president of the
North Bay Linux Users’ Group.

www.l inux journa l .com september 2011 | 2 7

http://www.linuxjournal.com

2 8 | september 2011 www.l inux journa l .com

NEW PRODUCTS

DeLorme’s inReach
We’ll be expecting letters to the editor from Antarctica once the more intrepid among you get DeLorme’s
new inReach, a personal communicator that delivers two-way communication beyond the reach of cell-
phone signals and one-way satellite systems. The Iridium Communications-based inReach offers “pole to
pole” two-way satellite text messaging, delivery confirmations, SOS capabilities, remote tracking and an
Android smartphone interface. The device’s core communications component is the Iridium 9602 short-
burst data transceiver, which utilizes the company’s far-reaching satellite network. The GPS-enabled inReach
can be used by itself or paired with either an Android smartphone or a DeLorme Earthmate PN-60w. With
the standalone inReach, users can send pre-loaded text messages to designated recipients and activate
remote tracking, allowing others to follow one’s travels on-line via a “bread crumb” trail. When paired with
an Android or the DeLorme Earthmate PN-60w, users enjoy full-featured, two-way text messaging to and
from e-mail addresses and cell phones, as well as the ability to post to Facebook and Twitter.

www.delorme.com

Mellanox’s FDR 56Gb/s InfiniBand Solutions
Mellanox recently unveiled a complete end-to-end solution for FDR 56Gb/s InfiniBand consisting of
adapter cards, switch systems, software and cables, a feat that the firm calls an industry first. The
solution consists of Mellanox’s ConnectX-3 FDR 56Gb/s InfiniBand adapters, SX-6000 series switch
systems, Unified Fabric Manager (UFM), Mellanox OS, software accelerators and FDR copper and fiber
cables. As a package, it delivers “the highest level of networking performance while reducing system
power”, according to the company. The combination enables cost-effective networking topologies
for HPC, financial services, database, Web 2.0, virtualized data centers and cloud computing.

www.mellanox.com

Emphase’s S3 Series Compact SATA modules
Emphase’s new S3 Series line of compact SATA modules—that is, the CFast, SATA Flash Module,
and mSATA—offers big performance in a small package, combining performance, dependability
and longevity with extremely low power consumption and the most compact footprint. When
space is an issue, this team of SLC NAND solid-state devices is an ideal solution. Transfer speeds
have been increased to 120R/100W; capacities range from 1GB–32GB, with a 64GB capacity in
the pipeline. The quick-and-rugged CFast S3 is the solution for data mobility or where hot-swap
functionality is a must. The SATA Flash Module S3 weighs in at less than 10 grams and plugs
directly, vertically or horizontally, in to a board’s SATA port. The mSATA S3 is ideal for a low-
profile embedded system, integrating high performance and capacity at less than 4mm thick. All modules now integrate TransferSAFE
technology to weather-inconsistent power scenarios and operate off as little as 0.5 Watts, well below the average of 3 Watts.

www.emphase.com

Acquia’s Commons
Here’s a recipe for a kick-booty social software solution: download Drupal, stir in Acquia’s updated open-source
Commons 2.0, mold carefully with your creative vision and skill and voilà—you’ve got yourself an engaging community
Web site. Commons melds rapidly evolving social Web features, including activity streams, social networking, blogs,
wikis, badges and events together with enterprise-class analytics, support and management services. The result is a
“prepackaged open-source alternative to proprietary social business solutions” that gives companies extensive freedom
to extend and adapt their community sites to meet unique business needs. Version 2.0 adds features such as increased
style flexibility, access to Acquia Cloud, increased configuration options, more support resources and complete design
and theming control, including prebuilt Commons themes. A number of service packages are available from Acquia.

www.acquia.com

http://www.delorme.com
http://www.mellanox.com
http://www.emphase.com
http://www.acquia.com
http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 2 9

NEW PRODUCTS

David Kennedy, Jim O’Gorman, Devon Kearns and Mati
Aharoni’s Metasploit: A Penetration Tester’s Guide (No Starch)

You may be familiar with the the Metasploit Framework, a toolset that makes discovering, exploiting and
sharing vulnerabilities quick and relatively painless. The challenge for security professionals is that the
documentation is lacking, and it can be hard to grasp for first-time users. Metasploit: A Penetration Tester’s
Guide from No Starch Press intends to fill this gap by teaching how to harness the Framework, use its many
features and interact with the vibrant community of Metasploit contributors. Readers will learn to find and
exploit unmaintained, misconfigured and unpatched systems; perform reconnaissance and find valuable
information about targets; bypass antivirus technologies and circumvent security controls; integrate Nmap,
NeXpose and Nessus with Metasploit to automate discovery; use the Meterpreter shell to launch further
attacks from inside the network; harness standalone Metasploit utilities, third-party tools and plugins;
and learn how to write Meterpreter post-exploitation modules and scripts.

www.nostarch.com

Jason Andress and Steve Winterfeld’s Cyber Warfare:
Techniques, Tactics and Tools for Security Practitioners (Syngress)
Jason Andress and Steve Winterfeld’s new book Cyber Warfare: Techniques, Tactics and Tools for Security
Practitioners explores the battlefields, participants and the tools and techniques used during today’s digital conflicts.
The concepts discussed in this book will give those involved in information security at all levels a better idea of
how cyber conflicts are carried out now, how they will change in the future and how to detect and defend
against espionage, hacktivism, insider threats and non-state actors like organized criminals and terrorists. The
authors provide concrete examples and real-world guidance on how to identify and defend a network against
malicious attacks, dive deeply into relevant technical and factual information from an insider’s point of view, and
outline the ethics, laws and consequences of cyber war and how computer criminal law may change as a result.

www.syngress.com

Likewise Open
With Likewise Open, recently upgraded to version 6.1, admins can standardize on Microsoft Active Directory in their enterprise
networks without losing the flexibility to choose non-Microsoft operating systems. The open-source Likewise Open allows single sign-on
for critical enterprise applications, such as Apache Tomcat, IBM WebSphere, Oracle WebLogic and JBoss Application Server. Newly open-
sourced integrations include the Kerberos/NTLM JAAS login module and SPNEGO Kerberos/NTLM servlet filter, which can be integrated
with any servlet spec2.3-compliant application server. Customers wishing to extend event management, auditing and reporting for
compliance with SOX, PCI-DSS, HIPPA and other industry standards to these integrations can do so by upgrading to Likewise Enterprise.

www.likewise.com

QLogic’s InfiniBand Fabric Suite
The new 7.0 release of QLogic’s InfiniBand Fabric Suite (IFS)—a fabric management software package
that enables users to optimize fabric performance and communications efficiency for HPC clusters—is
now available. IFS 7.0’s leading new feature is the integration of vFabric QoS (Quality of Service) with
work-flow schedulers from Adaptive Computing and Platform Computing, making it possible for HPC
users to set a priority and QoS level as the message-passing interface application is being scheduled. This
reduces management overhead, simplifies cluster scheduling and optimizes use of the fabric. Other noteworthy features include an
enhanced Fabric Viewer with Fabric Dashboard, improved static routing performance, an improved Congestion Control Algorithm and
support for both NVIDIA GPUs and Red Hat Enterprise Linux 5.6/6.1. The result of this feature set, says QLogic, is an ability for HPC
customers to obtain maximum performance and efficiency from their cluster investments while simplifying management.

www.qlogic.com

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or New Products
c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

http://www.nostarch.com
http://www.syngress.com
http://www.likewise.com
http://www.qlogic.com
mailto:newproducts@linuxjournal.com

Giada—Hard-Core Live
Looping
www.monocasual.com/giada
Live DJs chasing a simplistic but attractive
application are going to love Giada. At the
same time, Giada also covers something
I’ve been wanting for a year now, which
is a way to trigger individual samples from
a computer keyboard simply in real time.
According to the documentation:

Giada is a free, minimal, hard-core
audio tool for DJs and live per-
formers. Load up to 32 samples,
choose to play them in single
mode (drum machine) or loop
mode (sequencer), and start the
show with your computer key-
board as a controller. Giada aims
to be a compact and portable virtual
device for Linux and Windows for
production use and live sets.

Installation Using Giada is pretty
easy, but its ease of use comes at a price.
It’s a freeware binary. This is the first
freeware program I’ve covered, but don’t
worry, I won’t make a habit of it.

The project’s Web site consists of a
(well-designed) single page, with down-
load links for both the Windows and Linux
versions of Giada.

As far as library requirements go, the
documentation states:

Giada is based upon RtAudio and
FLTK (GUI). They are both statically
linked, but the former needs
libjack.so to provide JACK’s features.
In a modern Linux-based OS, you
should be able to run Giada with-
out any further installation or hack.

Regarding binaries, the manual also
noted: “This software is compiled for
x86 processors; we still don’t know what
happens if you run it under a 64-bit
OS/environment; try it and tell us your
experience.” Yes, I’m on 64-bit Linux, and

it runs just fine.
Once you have the

dependencies out of the way,
download the latest tarball
and extract it. Personally, I
found I could just open the
new folder, click on the binary,
and it worked. For those
wanting more control, open
a terminal in the new folder,
and enter the command:

$./giada_lin

Usage Once you’re
inside, using Giada is actually
pretty easy. Although I was
rather confused at first
glance, a quick bit of “RTFM”
shows that its methodology is
very basic, but you need to
understand a few things from
the outset.

First, this isn’t for
programming songs over
some sort of grid, such as the
way that programs like Fruity
Loops operate. Giada is for
playing live. All of your
actions take place in real
time, as you perform what is
essentially a live DJ set (even
if it’s only in your bedroom to
an audience of one). So trust
me, you’ll want to practice before using it
in public.

Second, Giada is designed to be run
by your keyboard, and by that I mean
the thing on which you type, and not
something that resembles a piano.

Before I explain the three modes of
operation, let’s first load some samples so

we have something to play with. In terms
of format, Giada likes only 44KHz .wav
files. A good starting point is Hydrogen’s
drumkits. If you have Hydrogen installed
(and if you don’t, at least install the
drumkits), look for .wavs under

/usr/share/hydrogen/data/drumkits. Kicks,
snares and a cymbal or two—hi-hats in
particular—are the best starting point.
With these, you can lay down a basic beat
and then layer other samples over the top
to make a song.

To load these samples, click on the
long and wide buttons that say, “-- no
sample --”, and choose your .wav file
from the file browser. Now, if you look
to the left of each sample, a keyboard
character is shown; with this, you switch
samples on and off. Try pressing it now,
and nothing will play, but fear not. I
discuss Giada’s three running modes
below, and it all will make sense.

Oneshot mode: this is the most basic
way of operating Giada. Press a keyboard
button, and that button’s sample will play.
However, first you must turn on this
mode, as well as turn up this sample’s vol-
ume. Starting with the volume, the empty

3 0 | september 2011 www.l inux journa l .com

NEW PROJECTS

Fresh from the Labs

First, this isn’t for programming songs over some
sort of grid, such as the way that programs like
Fruity Loops operate. Giada is for playing live.

The Giada hard-core looping program for real-time DJ per-
formances with a GUI that’s sleekly minimal.

Giada in its full-flight recording mode lets you layer a live
performance piece by piece.

http://www.monocasual.com/giada
http://www.linuxjournal.com

circle to the immediate right is actually a
volume knob. Clicking and dragging inside
the circle turns up the volume. However,
unless you’ve pressed the Play button,
there still will be no sound; you have to
enable Oneshot mode.

The next control to the right, with the
small circle inside the square, is the key to
operating Giada. Click the button, and
you’ll have a choice of looping modes,
or Oneshot “basic”, “press” and “retrig”.
Choose basic, press the key, and at last,
a sound plays!

With this basic mode, you press a key
and a sample plays until it’s finished—
pretty basic. But, you also can interrupt
the sample by pressing the key again.
With the “press” option, you have to hold
down the key to play the sample, and as
soon as you release it, the sample stops.
The “retrig” option (and this is the func-
tionality I’ve been chasing) plays a sample
upon pressing a key, but pressing again
restarts the sample whether or not the
sample has finished. You even can keep
thrashing away at the key for instant
response, which is handy for playing

hi-hat notes or ripping up a waveform.
Loop mode: this is the second mode,

and perhaps the most conventional. When
Giada is actually playing, choosing either
“Loop . basic” or “Loop . once” plays a
sample on the next bar along. In order to
use this, press the Play button near the
top-left corner, then press each sample’s
button to activate/deactivate it on the next
bar. The “basic” option simply keeps the
sample looping until you turn it off manu-
ally; the “once” option plays a sample
until it’s finished, and then starts it again
at the beginning of the next bar.

Recording mode: this is the pièce de
résistance. Basic loops can be turned on
and off willy-nilly; however, the Oneshot
samples start turning this into a real live
performance. As the bar moves along
each of its counts, every time you play a
note, that note is repeated every bar that
follows. Using this method, you genuinely
can layer an entire song, creating new
beats on the fly. Be wary, however. Every
note you play is a commitment, and you’ll
be stuck with that note repeating for the
rest of the song. Get it right, and you’ll

have people dancing. Get it wrong, and
you’ll look totally lame and ruin the party.

Nevertheless, some tools are available
to help out the mere mortals among us.
The beat bar will be immediately obvious,
because it’s the only moving thing on
screen. Use this and its (default) four
boxes to guide your counting. Over to the
right, the box that’s marked “off” is for
quantizing your music. For the uninitiated,
this aligns your notes to even places on a
musical grid, removing the element of
human error: “1b” is the most severe,
making each note land on a whole count;
“8b” is the least severe, allowing you to
make much more intricate music.

If you look farther right, you’ll see a
tempo and beat number, set to a default
BPM of 120 and a time signature of 4/4.
You can turn these up or down, allowing
for strange feels, such as 7/4 @ 72 BPM
(less dance-friendly, but much more trippy).

Still, this early software does have
its limitations. First, it’s freeware. In this
day and age? Why? Ech! Second, there
weren’t any panning controls as far as I
could tell. Any stereo imaging you’ll have

http://www.logicsupply.com/linux

to do beforehand, manually.
Nevertheless, this program is incredibly

cool. It allows you to output to JACK,
which makes it more powerful, and just
look at it. It’s a techno-minimalist’s wet
dream! Giada has an amazing economy
of space and features in its design that’s
quite deceptive. I actually thought this
was going to be a very short review
when I started. Giada is a must-have for
any electronic musician.

LinkChecker—Web Site
Testing
linkchecker.sourceforge.net
Broken links are a serious pain in the
backside for Webmasters, and keeping
track of every individual link becomes so
laborious, most Webmasters simply give
up on the idea. Thankfully, there’s a way
to automate the process with LinkChecker.
According to its Freshmeat entry:

With LinkChecker, you can check
HTML documents and Web sites
for broken links. It features recursion,
robots.txt exclusion protocol
support, HTTP proxy support, i18n
support, multithreading, regular-
expression filtering rules for links
and user/password checking for
authorized pages. Output can
be colored or normal text, HTML,
SQL, CSV or a sitemap graph
in DOT, GML or XML format.
Supported link types are
HTTP/1.1 and 1.0, HTTPS, FTP,
mailto:, news:, nntp:, Telnet
and local files.

Installation The Web site has pack-
ages for Windows, OS X and Debian
(yes, it actually specifies Debian), and the
obligatory source. The Debian packages
are available for just about every architec-
ture on the planet, and they worked
immediately with my Kubuntu installation.
Installing the .deb package is much easier,
so you may want to run with that; however,
unless I missed something, you get only
the command-line version.

For those who don’t have a Debian-
based system or want to use the GUI
version, here’s a very compressed version
of the instructions.

In terms of dependencies, you’ll
obviously need gcc, as well as Python >=
2.6, including its -dev package, as well
as the Qt development tools, which are
named qt4-dev-tools on my system.

There also are a bunch of optional library
dependencies for extended functionality,
such as bash completion, syntax checks
and so on; see the manual for more
information on these.

Once you have the dependencies
out of the way, grab the latest tarball
from the Web site, extract it, and open
a terminal in the new folder. Enter the
following commands:

3 2 | september 2011 www.l inux journa l .com

NEW PROJECTS

LinkChecker makes Web site maintenance that much easier by scanning your Web site for
broken links.

The effect of ten years’ neglect on a Web site: here I’m running the console version against my old
Tomb Raider page.

http://www.linuxjournal.com
http://linkchecker.sourceforge.net

$ make -C doc/html

(The above generates the Qt help files.)
Then:

$ python setup.py sdist --manifest-only

$ python setup.py build

If your distro uses sudo:

$ sudo python setup.py install

If your distro uses root:

$ su

python setup.py install

To run the command-line version:

$ linkchecker

To run the GUI version:

$ linkchecker-gui

Usage Actually using LinkChecker
is a simple affair. If you’re running the

command-line version, enter:

$ linkchecker http://{website url}

Of course, LinkChecker also can scan
local files, but unless the page starts with
www, remember to put the preceding
http:// before on-line pages, or it automat-
ically scans local files instead.

Once inside, enter the URL in the bar
at the top and press Enter.

Whether in the GUI or console version,
LinkChecker gradually makes its way through
all the pages of a given Web site, outputting
any broken links or warnings in the process.
Depending on the Web page, the output can
be pretty verbose, so console users might
consider piping the output for larger pages.

Once the scan has finished, a readout
is provided with the number of valid and
invalid URLs, as well as various statistics
having to do with URLs and content.

In the end, LinkChecker is a very
simple project that serves its purpose
beautifully. Its ease of use and multiplatform
nature also make everyday usage much
more likely. Any serious Webmaster
should check out this project.�

John Knight is a 27-year-old, drumming- and bass-obsessed
maniac, studying Psychology at Edith Cowan University in
Western Australia. He usually can be found playing a kick-drum
far too much.

Develop. Scale.Deploy.
Full root access on your own virtual server for as little as $19.95/mo

www.linode.com or 609-593-7103

evD
l root Ful

.polev
your access on

.yloepD
own virtual serv

cS
er for as little as

e.la
$19.95/mo

 .edolin.www 935-906r omoc 0317-3

Brewing something fresh, innovative or mind-bending?
Send e-mail to newprojects@linuxjournal.com.

Whether in the GUI or console version,
LinkChecker gradually makes its way through
all the pages of a given Web site, outputting
any broken links or warnings in the process.

http://www.linode
mailto:newprojects@linuxjournal.com
http://www.linode
http://www.rockband.com/forums/showthread.php?t=207792&page=1

3 4 | september 2011 www.l inux journa l .com

MULTIPLATFORM
GNU DEVELOPMENT
Get a guitar synth working

with Rock Band 3.
NATHANAEL ANDERSON

I
n my ideal world, mixing games and music would result in music

games that use real instruments. Harmonix’s Rock Band series is

the closest mainstream realization of this lofty ideal, except for

one major issue. I couldn’t plug in my guitar and play pro guitar

mode songs out of the box.

Now, before you think this is an impossible task, one important fact

should be noted. I play a guitar synthesizer. What this means is my

guitar has a hexaphonic pickup that reads and processes every string’s

signal individually and connects with a 13-pin cable to a guitar processor

with midi out. This means my signal is already digital and, therefore,

does not require any additional A/D algorithms in my software.

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 3 5

Custom-built guitar synth,
built by the author.

http://www.linuxjournal.com

3 6 | september 2011 www.l inux journa l .com

The Hardware
I have a few guitars with different 13-pin interfaces that can
connect to an Axon AX-100 that has its midi out running to
the midi in port on an M-Audio UNO, which gets connected
to my Linux box running g2ghpro. The midi out port on the
UNO then runs into a PS3 Rock Band adapter and into my
PS3. A hexaphonic guitar pickup with 13-pin midi out is
required to run g2ghpro. The following lists are of tested
hardware that will work:

Pickups:

� Roland GK-3a.

� Roland GK-2a.

� Roland GK-3b.

� Graph Tech LB-63 (any Graph Tech piezo bridge will work if
using the hexpander module).

� Godin Synth Access guitars.

Guitars with built-in 13-pin capability:

� Godin LGX-SA.

� Godin Freeway-SA.

� Godin LGXT.

� Roland Ready Fender stratocaster.

� Brian Moore i8.13.

Guitar-to-midi converters:

� Axon Ax-100.

� Roland VG-99.

� Roland GR-55.

� Roland GR-20.

Of the listed hardware, I use a Roland VG-99, Axon Ax-100,
Godin LGX-SA, Godin LGX with Roland GK-3a and custom-built
Ibanez S540 with Graph Tech LB-63 and hexpander.

I’ve also tested g2ghpro with a Roland GK-3a pickup running
into a Roland VG-99. Others have reported using a Roland GK-3a
with GR-20 and GK-3b with GR-55 on a bass guitar as well.
G2ghpro currently is the only solution for using a real bass guitar
in the game, as no official bass guitar controllers have been
released at this point.

The Original Controller
Harmonix created two guitar controllers for Rock Band 3 pro
guitar mode. The first controller released was the Mustang, which
is a “button” controller, with 102 buttons on the frets and six
strings over the body of the guitar. When I wrote the initial version
of g2ghpro, the Fender Squier Pro Strat wasn’t on the market yet,

which is the other pro guitar controller that works with the game.
So I had midi dumps only from the Mustang to work with.

Midi
In order to understand how the Mustang worked, I first had to
understand what the Mustang dumps meant and relate controller
actions to messages sent. This required a refresher on the midi
standard. Midi has 16 separate channels, and changing the send-
ing channel is done by adding the value of the channel minus one
to the message type value. My first example is a midi “note on”
message, which has a decimal value of 144 in the first byte for
channel 0. To send the same message on channel 6, add 5 to 144.

Example Data
Action: held fret one of low E and picked low E:

TIMESTAMP IN PORT STATUS DATA1 DATA2 CHAN NOTE EVENT

0023E843 1 -- 95 29 00 6 F 2 Note Off

0023E843 1 -- 95 29 7D 6 F 2 Note On

0023E847 1 -- F0 Buffer: 8 Bytes System Exclusive

SYSX: F0 08 40 0A 05 06 7D F7

The dumps I had found came from a Windows program
called Midi Ox, which showed the data in hex. The midi speci-
fication shows data in binary, and I was used to seeing this
data with aseqdump in decimal. I converted all the examples
I had been provided with into decimal so I could understand
their behavior. The midi spec states that note on-and-off
events contain 3 bytes of data. The first byte is event type plus
channel; the second is note number, and the third is velocity.
From experience, I’ve seen that many devices send a velocity
event of 0 instead of an actual note off event, which is what
the above shows. So, the result after it has been converted to
decimal is (note: velocity zero below is really note off):

Type Channel Note Velocity

(Note On 149) 5 41 00

(Note On 149) 5 41 125

SysEx is short for System Exclusive messages, and they are
free-form messages to send data that doesn’t fit into the pre-
defined midi message types. Initially, I tried to treat the data
from the dumps as a normal midi controller, and I ignored the
SysEx data in the dump, which I later realized is why I didn’t
have any code that made the game react. All game functions
react to SysEx messages, not note events. This is why a guitar
synthesizer cannot be plugged in to Rock Band and just work.
At this point, I requested more dumps, where different frets
were pressed down with the same string pressed.

I converted all the dumps I had to decimal and compared
SysEx messages to note messages and found a correlation. Here’s
the resulting structure of the messages (displayed in decimal):

Part 1 2 3 4 5 6 7 8

Sample 240 8 64 10 1 1 43 247

� Part 1: starting byte of a SysEx message.

� Part 2, 3, 4: identifiers that this is a SysEx message used by
the Mustang.

FEATURE Multiplatform GNU Development

http://www.linuxjournal.com

� Part 5: message type (1 = set fret
position, 5 = play string).

� Part 6: midi channel (string on
the instrument).

� Part 7: midi note number.

� Part 8: end SysEx message.

The Software
To explore the message format, I put together a quick
program for sending a combination of note events and SysEx
messages to the game. I know that the guitar synthesizer
hardware required to use the software I was writing isn’t very
common, so I want to be proactive in removing any limitations
to people using it. I’ve done midi and C++ programming with
ALSA under Linux before, but never midi on Windows or OS
X, and I wanted to be able to support all three to make the
software more accessible.

From past experience with RtMidi, I knew it was written in
portable C++, while supporting Windows, Linux and OS X.

The home page for RtMidi provides detailed, easy-to-read
documentation, with examples for many basic midi tasks. Copy-
and-paste examples are provided that give a base from which to

start working, along with ready-to-compile demos provided in
the tests directory in the RtMidi source code.

A good place to start with RtMidi is the bundled code in
the tests directory. I started by modifying midiout.cpp and
tried sending different SysEx messages based on my data
dumps until finally I ended up with the following:

std::vector<unsigned char> sysExMessage;

sysExMessage.push_back(240);

sysExMessage.push_back(8);

sysExMessage.push_back(64);

sysExMessage.push_back(10);

sysExMessage.push_back(1); // 1 sets fret position,

// 5 to play the current string

sysExMessage.push_back(channel + 1); // channel

sysExMessage.push_back(note);

sysExMessage.push_back(247);

midiout->sendMessage(&sysExMessage);

www.l inux journa l .com september 2011 | 3 7

I KNOW THAT
THE GUITAR
SYNTHESIZER
HARDWARE
REQUIRED TO
USE THE
SOFTWARE I
WAS WRITING
ISN’T VERY
COMMON, SO
I WANT TO BE
PROACTIVE IN
REMOVING ANY
LIMITATIONS
TO PEOPLE
USING IT.

From left to right: custom-built
guitar synth, custom-built

rack for VG-99, Axon AX-100
and Fantom-XR.

http://www.linuxjournal.com

With that SysEx message, I was able to toggle fret position
and strings played in the game. The actual logic to make this
work was less than 100 lines. The full code is available in the
Subversion repository for game2midi in g2ghpro.cpp.

RtMidi currently has issues processing active sensing
messages that came from my Roland gear, which the author
is aware of. A flag is provided to filter out active sensing
messages. Setting ignoreTypes to true on your midi input
object’s third parameter will work around the issue until it
is resolved—for example:

midiin->ignoreTypes(false, false, true);

The main missing feature of RtMidi, as far as the Linux pro
audio world is concerned, is no jack-midi support.

The RtMidi documentation listed compiler flags for all
three operating systems to link the required libraries, so all
that was left for me to do was figure out how to compile
under Windows.

Supporting Other Operating Systems
I hadn’t touched a Windows development IDE in more than ten
years, and I wanted to keep the same code base for all three
operating systems. Somewhere during the past few years, I
heard mention of MinGW (Minimalist GNU for Windows). As
I am familiar developing in a GNU/Linux environment, this
sounded like what I needed. To bring your Linux dev environ-
ment to Windows, use mingw-get-inst, and do a full instal-
lation. This will provide you with the MinGW Shell, bundled
with many standard GNU tools, including SSH. Next, install
TortoiseSVN, which is a Subversion client that integrates with
the Windows shell. Checkout and commit actions are accessed
by right-clicking on folders in Explorer to keep files in sync.
The MinGW shell allows for changing drives’ letters like a
standard DOS shell with cd C:.

The next problem is how to build the code based on
operating system. Let’s look at two options: Makefiles and
autotools. First, let’s look at basic Makefile-based builds and
compare the differences by platform:

3 8 | september 2011 www.l inux journa l .com

FEATURE Multiplatform GNU Development

Listing 1. configure.ac

#configure.ac

dnl - dnl represents a comment in automake config files

dnl here we specify the

AC_INIT(midiio,0.1)

AM_INIT_AUTOMAKE(midiio, 0.1)

AC_PROG_CXX

AC_LANG_C

dnl Checks for programs.

AC_PROG_AWK

AC_PROG_CC

dnl Check for headers

AC_CHECK_HEADERS(unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.

AC_TYPE_SIZE_T

dnl Detect OS we're building on

dnl this next line is required to be able to read the host value

AC_CANONICAL_HOST

dnl Use the value here to add support for other operating systems

echo "Host Value: '${host}'"

case "${host}" in

-mingw32)

dnl specify Windows specific compiler flags

�and linker options

compile_target=win

CPPFLAGS="$CPPFLAGS -D_ _WINDOWS_MM_ _"

LIBS="$LIBS -lwinmm"

;;

*linux-gnu)

dnl specify Linux specific compiler flags

�and linker options

compile_target=linux

dnl Check for ALSA

AC_CHECK_LIB(asound, snd_seq_event_output_direct,

�alsalib=yes,alsalib=no)

AC_CHECK_HEADERS(alsa/asoundlib.h,alsaheader=yes,

�alsaheader=no)

if test "$alsalib" = "yes"; then

if test "$alsaheader" = "yes"; then

LIBS="$LIBS -lasound"

else

AC_MSG_ERROR([** Coulnd't find ALSA

�header file sys/asoundlib.h **])

fi

else

AC_MSG_ERROR([** Couldn't find ALSA library

�libasound. **])

fi

CPPFLAGS="$CPPFLAGS -D_ _LINUX_ALSASEQ_ _"

;;

esac

AC_HEADER_STDC

AM_CONFIG_HEADER(config.h)

AC_OUTPUT(Makefile src/Makefile)

Makefile.am

Here we specify we have files in the source directory to process

AUTOMAKE_OPTIONS = foreign

SUBDIRS = src

src/Makefile.am

Here we define there are 2 programs we're compiling

bin_PROGRAMS = midiio midiout

and here we define what we put together to make the final programs

midiout_SOURCES = midiout.cpp RtMidi.cpp

midiio_SOURCES = midiio.cpp RtMidi.cpp

http://www.linuxjournal.com

Makefile.linux

all:

mkdir -p deps

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D_ _LINUX_ALSASEQ_ _

�-g -O2 -MT midiio.o -MD -MP -MF deps/RtMidi.Tpo

�-c -o RtMidi.o RtMidi.cpp

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D_ _LINUX_ALSASEQ_ _

�-g -O2 -MT -midiio.o -MD -MP -MF deps/midiio.TPO

�-c -o midiio.o midiio.cpp

g++ -g -O2 -o midiio RtMidi.o midiio.o -lasound

Makefile.mingw

all:

mkdir -p deps

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D_ _WINDOWS_MM_ _

�-g -O2 -MT RtMidi.o -MD -MP -MF deps/RtMidi.Tpo

�-c -o RtMidi.o RtMidi.cpp

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D_ _WINDOWS_MM_ _

�-g -O2 -MT -midiio.o -MD -MP -MF deps/midiio.TPO

�-c -o midiio.o midiio.cpp

g++ -g -Wl,--enable-auto-import -O2 -o midiio RtMidi.o

�midiio.o -lwinmm

The library I used, rtmidi, requires that the platform be defined,
so for Linux, define -D_ _LINUX_ALSASEQ_ _, and for Windows,
define -D_ _WINDOWS_ _MM_ _. The last step in each is the linking
phase, where you specify system libraries to link to the binary.
To enable a clean build under Windows, I had to add -Wl,
--enable-auto-import, so functions would be auto-imported.

Now, let’s look at autotools-based builds. Usually when an
autotools-based build is committed to version control, only
non-generated files are committed, which includes configure.ac,
Makefile.am and src/Makefile.am. The standard practice is to
create an autogen.sh script that will call the files to generate

configure, Makefile and other required files from *.ac and
*.am files:

Autogen.sh

#!/bin/sh

aclocal

autoreconf

automake --add-missing --copy

autoreconf

libtoolize -f --automake

configure.ac (Listing 1) contains host-based auto-detection
and is where to specify which host-based libraries to check for
and link against.

Full code for these examples can be downloaded from
the game2midi project’s Subversion repository in the basic-
midi-io-example folder.

Conclusion
Using GNU libraries and tools can help reduce the time and
effort required in supporting multiple platforms. I hope this
article encourages you to consider adding multiplatform support
to a current or future open-source project.�

Nathanael Anderson has been a UNIX systems administrator for five years. Family, coding and all
things guitar keep him active. Feel free to contact him on his blog at wirelessdreamer.com.

www.l inux journa l .com september 2011 | 3 9

Resources

Official Midi Specification:
www.midi.org/techspecs/midimessages.php

Posts of Mustang Controller Dumps: www.rockband.com/
forums/showthread.php?t=207792&page=1

Official RtMidi Home Page:
www.music.mcgill.ca/~gary/rtmidi

MinGW: www.mingw.org

Mingw Download: sourceforge.net/projects/
mingw/files/Automated%20MinGW%20Installer/
mingw-get-inst/mingw-get-inst-20110316/
mingw-get-inst-20110316.exe/download

TortiseSVN: tortoisesvn.tigris.org

game2midi Home Page: game2midi.sourceforge.net

http://www.linuxjournal.com
http://www.midi.org/techspecs/midimessages.php
http://www.rockband.com/forums/showthread.php?t=207792&page=1
http://www.music.mcgill.ca/~gary/rtmidi
http://www.mingw.org
http://www.rockband.com/forums/showthread.php?t=207792&page=1
http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20110316/mingw-get-inst-20110316.exe/download
http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20110316/mingw-get-inst-20110316.exe/download
http://tortoisesvn.tigris.org
http://game2midi.sourceforge.net
http://www.emacinc.com/panel_pc/ppc_e4.htm
http://www.emacinc.com
http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/R350

4 0 | september 2011 www.l inux journa l .com

R egression testing is a well-established technique to detect
both the introduction of new bugs and the re-introduction
of old bugs. However, most regression tests focus exclusively

on correctness while ignoring performance. For applications with
performance requirements, developers run benchmarks to profile
their code in order to determine and resolve bottlenecks. However,
unlike regression tests, benchmarks typically are not executed and
re-validated for every revision. As a result, performance regressions
sometimes are not detected quickly enough.

Compared to correctness issues, performance regressions can
be harder to spot. An individual absolute performance score rarely
is meaningful; detecting a performance regression requires relating
measurements to previous results on the same platform. Furthermore,
small changes in external circumstances (for example, other processes
running at the same time) can cause fluctuations in measurements
that then should not be flagged as problematic; this makes it
difficult to set hard thresholds for performance scores. Also, good
measurements often take significantly longer than correctness
tests. Performance improvements in one area may cause regressions
in others, causing system architects sometimes to consider multiple
metrics at the same time. Finally, performance can be platform-
specific. This can make it necessary to perform performance
evaluations on a range of systems.

The Gauger package described in this article provides developers
with a simple, free software tool to track system performance over
time. Gauger is lightweight, language-independent and portable.
Gauger collects any number of performance values from multiple
hosts and visualizes their development over time (Figure 1). In
order to use Gauger, developers need to add the necessary
instrumentation to their code to obtain a performance measurement
and then submit it to Gauger with the gauger function call.
The gauger function arguments are the description of the value,
a category, the value itself and a unit of measurement. Gauger’s

Web interface then allows visitors to group metrics by category
or by execution host and adjust the visualized revision range
or the size of the plot. Gauger is ready to be used with many
programming languages and revision control systems, and it is
easily expandable to accommodate new ones.

Figure 1. Gauger in action: this screenshot shows performance
measurements obtained and visualized by Gauger for the GNUnet
Project over the course of a few revisions.

Gauger’s Web interface can be used to analyze the collected
performance data in various ways. It can combine different metrics
in a single plot and offers a color-coded guide to help visitors
select only unit-wise compatible metrics. Gauger also allows users
to normalize the data in order to mask differences in absolute
performance between different execution hosts. If multiple mea-
surements were taken for the same revision, Gauger will show the
average and standard deviation as long as only a single metric is
plotted. For larger projects with many metrics or execution hosts,
Gauger offers a search feature to locate the desired plots. An
additional instant search keeps the menus free of irrelevant items.

Finally, should further fine-tuning be needed (for example, for use
in presentations), Gauger can be used to retrieve the gnuplot source
of any plot. The generated gnuplot source includes the plotted data.

Performance
Regression

Monitoring
with Gauger

Introducing Gauger, a lightweight tool for visualizing
performance changes that occur as software evolves.

BART POLOT and CHRISTIAN GROTHOFF

http://www.linuxjournal.com

Gauger’s Architecture
Gauger uses a traditional client-server architecture, where the
clients report performance measurements to a central server.
This architecture allows machines behind NAT or with otherwise
restricted Internet access to provide performance measurements
to Gauger.

All of the performance-monitoring machines to be used with
Gauger should install the Gauger client, and the software to be
tested should be integrated with the appropriate language bindings.
Language bindings are designed to be transparent and (except
for a few extra system calls) have no negative effects in case the
Gauger client is not installed on the machine. Thus, it is safe to
commit the language bindings to a project repository. As long
as the (tiny) language bindings are included, integrating Gauger
will not disrupt operations on systems where the Gauger client
is not installed.

The Gauger server runs the data collection and visualization
part. Data is logged through a RESTful API and saved in human-
readable plain-text files. The primary job of the server is to provide
a dynamic Web interface to visualize and analyze the collected
data. All the communication between Gauger clients and the
Gauger server is done in standard HTTP(S) requests so that only
port 80 (or 443) needs to be open (Figure 2).

Figure 2. Gauger architecture: the Gauger server is responsible for
authentication and receives performance data from the clients. The
results are stored in a simple text format in a local directory. PHP is
used to generate the Web site.

Installation
Each Gauger client installation requires a local Python (> or = than
2.6) interpreter. For the Gauger server, a Web server installation
with PHP and gnuplot is required.

The provided install.sh script can be used to install the client,
install the server code into an appropriate
location and generate an updated Apache
configuration. The script prompts for key
configuration options, such as the installa-
tion path and the desired URL at which
the Gauger server should run. Installations
that do not use Apache currently require
manually configuring the Web server.

Configuration
Each part of Gauger uses a simple configuration file. The Gauger
client configuration file contains the remote server URL, followed
by the user name and password. Here’s a sample configuration:

https://gnunet.org/gauger/ username password

The Gauger server configuration file contains the directory
where data and authentication information are stored. Listing 1

shows a sample server configuration. When the auto-add feature
is enabled, new hosts can be added by logging in to the Web site
using a fresh hostname and password.

Integrating Gauger
Adding a single simple call at the places where performance mea-
surements are obtained typically is all that’s required to integrate
Gauger with existing projects. This call then starts the Gauger
client process, which, if installed and configured correctly, submits
the performance measurement to the server. On systems where
the Gauger client is not installed, the call fails silently so as not to
disrupt normal operations in any way. The syntax of the Gauger
client command-line tool is as follows:

$ gauger [-i ID] -c CATEGORY -n NAME \

-u UNIT -d DATA

Here, NAME is the name of the metric, and DATA is any floating-
point value that represents the performance measurement. UNIT
is a string that describes the unit of the value, for example,
ms/request. CATEGORY is a string used to group multiple perfor-
mance metrics by subsystem. We recommend using the name of
the subsystem or module here, especially for larger projects.

Revision Numbers
Gauger can autodetect the current revision of the project if
the benchmark is executed in a directory that was checked out
from a supported Version Control System (VCS). The supported

VCSes are Subversion, Git, hg, bazaar, monotone and GNU
arch. For distributed VCSes that do not provide an ascending
revision numbering system (like Git), Gauger uses the number
of commits to the repository. In this case, all execution hosts
used for benchmarking should use the same origin to keep
the data consistent. If the project uses an unsupported VCS
or if the benchmark is executed outside the tree, Gauger
needs to know which (revision) number to use for the x-axis.

www. l inux journa l .com september 2011 | 4 1

Listing 1. A few basic configuration options and a list of clients
with their passwords’ hashes are needed for the Gauger server
configuration file.

[config]

data = "/var/lib/gauger"

salt = "makemyhashesunique"

auto_add = 1

[hosts]

debian-amd64-grothoff="da39a..."

Adding a single simple call at the places
where performance measurements are
obtained typically is all that’s required to
integrate Gauger with existing projects.

http://www.linuxjournal.com

The --id ID option is used to supply the revision number in
this case. Some projects may want to use an internal version
number or a timestamp instead of a revision number generated
by their VCS. The only restriction imposed on the numbers
used is that Gauger’s regression monitoring assumes a linear
progression of development. For projects with multiple
branches under active development, different Gauger servers
should be set up for each branch.

Language Bindings
Gauger ships with bindings for various languages (see, for
example, Listings 2, 3, 4 and 5) to make integration easy. The
resulting binaries do not depend on a Gauger client installation
on the target system. The bindings should be integrated
with the main project and, as mentioned before, simply do
nothing when invoked if the Gauger client is not installed or
not configured properly.

The JavaScript binding is unusual. Because JavaScript
cannot access the local filesystem to read the configuration
file, the login data must be stored in a cookie in advance. The
login page on the Gauger Web site, which usually is used to
set up new accounts for execution hosts, can be used to set
the respective login cookie in the browser. Access to the
source code’s repository also is not possible from JavaScript,
so the revision number must be supplied explicitly to the
GAUGER call. Typically, the current revision number is obtained
on the server side. For example, PHP code can be used to
obtain the number from the VCS, or on-commit trigger
functions provided by the VCS could be used to insert the
number into the source code.

Selecting Proper Units
Gauger provides developers complete freedom with respect to
the names, values and units of the performance metrics to be
monitored. So, how do you choose a good unit? Naturally,
part of the unit always is dictated by the kind of performance
characteristic you are interested in—for example, execution time
(seconds) or space consumption (bytes). However, generally it’s
a good idea always to relate this basic unit to the amount of
work performed as part of the unit given to Gauger.

For example, suppose a benchmark measures the execution
time for 100 GET requests. In this case, it is better to choose a
name “GET request performance” with unit “requests/second”
(and log the execution time divided by 100) instead of the
name “Time for 100 GET requests” with unit “seconds”. The
reason for this is it’s quite possible the benchmark will be
adjusted in the future—for example, to run 1,000 GET
requests. If performance is logged as “requests/second”,
such a change would then not require any changes to the
name of the tracked metric. As a result, the performance
regression analysis can continue to track the metric in the
same curve.

Additionally, Gauger allows different results to be com-
pared by adding new metrics to existing plots. If the new
metric uses the same unit as the old one, they will use the
same y-axis; otherwise, the new one will be plotted against
a second y-axis on the right side of the plot. This limits the
number of units per plot to two. We recommend using the
same units where applicable (for example, no mixing of “seconds”
and “milliseconds”) to make comparative analysis easier.

4 2 | september 2011 www.l inux journa l .com

FEATURE Performance Regression Monitoring with Gauger

Listing 2. The GAUGER macro makes it easy to integrate Gauger
with C code. Note that the code does not need to be linked against
any additional libraries (other than libc).

#include <gauger.h>

#include <time.h>

int main() {

time_t start = time (NULL);

do_test ();

time_t delay = time (NULL) - start;

GAUGER ("subsystem", "execution time for f",

delay, "s");

return 0;

}

Listing 3. A simple static method call, leading to a single line of
Java code, can be used to invoke Gauger from Java.

import static org.gnunet.gauger.Gauger.gauger;

class HelloGauger {

public static void main(String[] args) {

gauger ("subsystem", "Speed",

42 /* value */, "kb/s");

}

}

Listing 4. Example Code for Invoking Gauger from Python

from gauger import GAUGER

GAUGER("CAT", "NAME", 42, "kb/s")

Listing 5. The browser must be registered with the Gauger Web site
before Gauger can be invoked from JavaScript. Once the login
cookie is set, the main difference from other languages is that
the JavaScript code must supply its revision number explicitly.

[...]

<script type="text/javascript"

src="http://www.example.com/gauger.js">

</script>

[...]

var rev = $Revision$;

/* or */

var rev = <?php echo get_revision() ?>;

var performance = do_test();

GAUGER ('CAT', 'NAME',

performance, 'kb/s', rev)" />

[...]

http://www.linuxjournal.com

Related Projects
Gauger does not include for support for actually automatically
running the benchmarks on various systems. However, this is
not a drawback, because an excellent tool for that purpose
exists in the form of Buildbot. Buildbot typically is used for
regression testing and, hence, is by itself not suitable for
identifying performance regressions. Nevertheless, Buildbot
requires a similar network setup—that is, clients that run the
tests connect to a public server. This makes it trivial to com-
bine a Buildbot setup with Gauger. Buildbot is used to execute
regression and performance tests, and Gauger visualizes the
development of performance metrics over time.

Another tool for monitoring performance is Munin. Like
Gauger, Munin allows users to specify which performance
measurements should be created. In contrast to Gauger where
execution hosts push data to the server, the Munin server
periodically pulls all participating systems for a performance
score. As a result, NATed systems are not easily supported.
Also, because Munin stores the data indexed by time and not
revision number, and given that software performance may
differ widely between different platforms, not all systems may
have performance scores ready at fixed time intervals.
Although Munin is not a good fit for performance regression
analysis for developers, it likely is a better fit for system
administrators who need to monitor system performance.

Conclusion
Gauger offers a lightweight and language-independent approach
for integrating performance regression testing with existing
development processes for projects using a wide range of version
control systems. With Gauger, performance regressions are
detected early, providing users with software that finally is
improving consistently in both correctness and performance.�

Bart Polot is working on his PhD as a researcher at the Technische Universität München.
His research interests include security, networking, routing and botnets.

Christian Grothoff is an Emmy-Noether research group leader at the Technische Universität
München. His research interests include compilers, programming languages, software
engineering, networking and security.

Resources

Gauger: freshmeat.net/projects/gauger

Buildbot: buildbot.org

Munin: munin-monitoring.org

RACKMOUNT SERVERS

http://freshmeat.net/projects/gauger
http://buildbot.org
http://munin-monitoring.org
http://www.siliconmechanics.com/R350
http://www.siliconmechanics.com/A350
ftp.gnu.org/gnu/make
ftp.gnu.org/gnu/make
ftp.gnu.org/gnu/make
ftp.gnu.org/gnu/make
ftp.gnu.org/gnu/make

4 4 | september 2011 www.l inux journa l .com

I
n a compiled language, the makefile is arguably the most
important part of any programming project. To compile your
project, you first have to compile each source file into an
object file, which in turn needs to be linked with system

libraries into the final executable file. Each command can have
a considerable number of arguments added in. That’s a lot of
typing and a lot of potential for mistakes. The more source
files you have, the more complex the compilation process
becomes, unless you use makefiles. Most Linux users have at

least a cursory knowledge of make and makefiles (because
that’s how we build software packages for our systems), but
not much more than that. Most developers probably don’t
have too much in-depth experience with makefiles, because
most Integrated Development Environments (IDEs) have the
capability of managing makefiles for them. Although this is
convenient most of the time, knowing more about how make
works and what goes into makefiles can help you troubleshoot
compilation errors down the road.

man make
A PRIMER ON THE MAKE UTILITY

In the modern world of Integrated Development Environments, we
forget what really goes into compiling a large code project. This
article should be a refresher on (or teach for the first time) the

basics of makefiles, the most underrated part of any code project.
Adrian Hannah

http://www.linuxjournal.com

According to make’s man page, “The purpose of the make
utility is to determine automatically which pieces of a large
program need to be recompiled, and issue the commands
to recompile them.” Essentially, make is used to determine
efficiently (and without user error) which portions of the
source code have been updated since the last compilation and
recompile them. It can be used for more than just compiling
programs. Because it isn’t limited to any particular language,
you can use it for anything you can come up with that relates
to the modified date of a group of files.

Running make is a straightforward process. The more convo-
luted portion of using make is constructing the makefile. The
makefile is a file that consists of a series of rules that define the
dependencies of your project. These rules govern the behavior of
make during execution.

Rules and Targets
Each rule in the makefile is an independent series of commands
that are executed in order to build a target. Make does not
necessarily run each rule in order. Make will run through the rules
recursively, building each target in turn, based on modification.
Rules are formatted like this:

target: dependency list ...

commands

...

The target is typically the name of a file, but it can be a
phony target (discussed later in this article). The dependency
list is a space-separated list of files that designate whether the
target needs to be rebuilt. The commands can be any shell
command, so long as the target is up to date at the end of
them. It is imperative that you indent the commands with a tab
character and not spaces. This is a design flaw in make that has
yet to be fixed, and it will cause some strange and obscure
errors should you use spaces instead of tabs in your makefile.

When make encounters a rule, it first checks the files listed
in the dependency list to ensure that they haven’t changed.
If one of them has, make looks through the makefile for the
rule containing that file as the target. This recursion continues
until a rule is found where all the dependencies are unchanged
or rebuilt (or have no further dependencies), and then make
executes the listed commands for that rule before returning
to the previous rule, and so on, until the root rule has been
satisfied and its commands run.

You may use pattern-matching characters to describe
dependencies in the dependency list or in commands, but they
may not be used in the target.

Phony Targets
Phony targets (also called dummy or pseudo-targets) are not real
files; they simply are aliases within the makefile. As I mentioned
before, you can specify targets from the command line, and this is
precisely what phony targets are used for. If you’re familiar with
the process of using make to build applications on your system,
you’re familiar with make install (which installs the application
after compiling the source) or make clean (which cleans up the
temporary files created while compiling the source). These are two
examples of phony targets. Obviously, there are no “install” or
“clean” files in the project; they’re just aliases to a set of com-
mands set aside to complete some task not dependent on the
modification time of any particular file in the project. Here is an
example of using a “clean” phony target:

clean:

-rm *.o my_bin_file

Special Targets
Some special targets are built in to make. These special targets
hold special meaning, and they modify the way make behaves

www. l inux journa l .com september 2011 | 4 5

IMPORTANT:
Command lines must be indented with tab characters;
spaces cause funky errors. This has been a design flaw
in make for decades. Empty lines must still have a tab
character or else make will throw a fit.

THE BASICS:
� Comments start with a pound sign (#).

� Continuation of a line is denoted by a back slash (\).

� Lines containing equal signs (=) are variable definitions.

� Each command line typically is executed in a separate
Bourne shell—that is, sh1.

� To execute more than one command line in the same
shell, type them on the same line, separated by
semicolons. Use a \ to continue the line if necessary.

Listing 1. Example Makefile

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp

OBJECTS=$(SOURCES:.cpp=.o)

EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:

$(CC) $(CFLAGS) $< -o $@

http://www.linuxjournal.com

during execution:
.PHONY — this target signifies which other targets are phony

targets. If a target is listed as a dependency of .PHONY, the check
to ensure that the target file was updated is not performed. This is
useful if at any time your project actually produces a file named
the same as a phony target; this check always will fail when
executing your phony target.

.SUFFIXES — the dependency list of this target is a list of the
established file suffixes for this project. This is helpful when you
are using suffix rules (discussed later in this article).

.DEFAULT — if you have a bunch of targets that use the same
set of commands, you may consider using the .DEFAULT target. It
is used to specify the commands to be executed when no rule is
found for a target.

.PRECIOUS — all dependencies of the .PRECIOUS target are
preserved should make be killed or interrupted.

.INTERMEDIATE — specifies which targets are intermediate,
or temporary, files. Upon completion, make will delete all interme-
diate files before terminating.

.SECONDARY — this target is similar to .INTERMEDIATE, except
that these files will not be deleted automatically upon completion. If
no dependencies are specified, all files are considered secondary.

.SECONDEXPANSION — after the initial read-in phase,
anything listed after this target will be expanded for a second
time. So, for example:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: $(ONEVAR) $$(TWOVAR)

will expand to:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile $(TWOVAR)

after the initial read-in phase, but because I specified
.SECONDEXPANSION, it will expand everything following a second time:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile twofile

I’m not going to elaborate on this here, because this is a
rather complex subject and outside the scope of this article, but
you can find all sorts of .SECONDEXPANSION goodness out there
on the Internet and in the GNU manual.

.DELETE_ON_ERROR — this target will cause make to delete
a target if it has changed and any of the associated commands
exit with a nonzero status.

.IGNORE — if an error is encountered while building a target
list as a dependency of .IGNORE, it is ignored. If there are no
dependencies to .IGNORE, make will ignore errors for all targets.

.LOW_RESOLUTION_TIME — for some reason or another, if
you have files that will have a low-resolution timestamp (missing
the subsecond portion), this target allows you to designate those
files. If a file is listed as a dependency of .LOW_RESOLUTION_TIME,
make will compare times only to the nearest second between the
target and its dependencies.

.SILENT — this is a legacy target that causes the command’s
output to be suppressed. It is suggested that you use Command
Echoing (discussed in the Command Special Characters section) or
by using the -s flag on the command line.

.EXPORT_ALL_VARIABLES — tells make to export all variables
to any child processes created.

.NOTPARALLEL — although make can run simultaneous jobs
in order to complete a task faster, specifying this target in the
makefile will force make to run serially.

.ONESHELL — by default, make will invoke a new shell for each
command it runs. This target causes make to use one shell per rule.

.POSIX — with this target, make is forced to conform to POSIX
standards while running.

Variables
In other versions of make, variables are called macros, but in the
GNU version (which is the version you likely are using), they are
referred to as variables, which I personally feel is a more appropri-
ate title. Nomenclature aside, variables are a convenient way to
store information that may be used multiple times throughout the
makefile. It becomes abundantly clear the first time you write a
makefile and then realize that you forgot a command flag for your

4 6 | september 2011 www.l inux journa l .com

FEATURE man make: a Primer on the Make Utility

Nomenclature aside, variables are a convenient
way to store information that may be used
multiple times throughout the makefile.

PREDEFINED VARIABLES
� $? — evaluates to the list of components that are

younger than the current target. Can be used only in
description file command lines.

� $@ — evaluates to the current target name. Can be used
only in description file command lines.

� $$@ — also evaluates to the current target name.
However, it can be used only on dependency lines.

� $< — the name of the related file that caused the action
(the precursor to the target). This is only for suffix rules.

� $* — the shared prefix of the target and dependent—
only for suffix rules.

http://www.linuxjournal.com

compiler in all 58 rules you wrote. If I had used variables to
designate my compiler flags, I’d have had to change it only once

instead of 58 times. Lesson learned. Set these at the beginning of
your makefile before any rules. Simply use:

VARNAME = information stored in the variable

to set the variable, and do use $(VARNAME) to invoke it through-
out the makefile. Any shell variables that existed prior to calling
make will exist within make as variables and, thus, are invoked
the same way as variables. You can specify a variable from the
command line as well. Simply add it to the end of your make
command, and it will be used within the make execution.

If, at some point, you need to alter the data stored in a
variable temporarily, there is a very simple way to substitute in
this new data without overwriting the variable. It’s done using
the following format:

$(VARNAME:find=replace)

where find is the substring you are trying to find, and replace
is the string to replace it with. So, for instance:

LETTERS = abcxyz xyzabc xyz

print:

echo $(LETTERS:xyz=def)

will produce the output abcdef xyzabc def.

COMMON VARIABLES
FOR C++ PROGRAMMING
� CC — the name of the compiler.

� DEBUG — the debugging flag. This is -g in both g++ and
cxx. The purpose of the flag is to include debugging
information into the executable, so that you can use
utilities like gdb to debug the code.

� LFLAGS — the flags used in linking. As it turns out, you
don’t need any special flags for linking. The option listed
is -Wall, which tells the compiler to print all warnings.
But, that’s fine. We can use that.

� CFLAGS — the flags used in compiling and creating
object files. This includes both -Wall and -c. The -c
option is needed to create object files—that is, .o files.

http://www.emperorlinux.com

Suffix Rules
In certain situations, you will find that the rules for a certain file
type are identical except for the filename. For instance, a lot of
times in a C project, you will see rules like this:

file.o: file.c

cc -O -Wall file.c

because for every .c file, you need to make the intermediate .o
file, so that the end binary then can be built. Suffix rules are a way
of minimizing the amount of time you spend writing out rules and
the number of rules in your makefile. In order to use suffix rules,
you need to tell make which file suffixes are considered significant
(suffix rules won’t work unless the suffix is defined this way), then
write the generic rule for the suffixes. In the case described above,
you would do this:

.SUFFIXES: .o .c

.c.o:

cc -O -Wall $<

You may note that in the case of suffix rules, the dependency
suffix goes before the target suffix, which is a reversal from the

normal order in a makefile. You also will see that you use $< in
the command, which evaluates to the .c filename associated with
the .o file that triggered the rule. There are a couple predefined
variables like this that are used exclusively for suffix rules:

� $< — evaluates to the component that is being used to make
the target—that is, file.c.

� $* — evaluates to the filename part (without any suffix) of the
component that is being used to make the target—that is, file.

Note that the $? variable cannot occur in suffix rules, but the
$@ variable still will work.

Command Special Characters
Certain characters can be used in conjunction with commands to
alter the behavior of make or the command. If you’re familiar with
shell scripting, you’ll recognize that \ signifies a line continuation.
That is to say, using \ means that the command isn’t finished and
continues on the next line. Nobody likes looking at a messy file,
and using this character at the end of a line helps keep your
makefile clean and pretty. If a rule has more than one command,
use a semicolon to separate commands. You can start a command
with a hyphen, and make will ignore any errors that occur from
the command. If you want to suppress the output of a command
during execution, start the command with an at sign (@).

Using these symbols will allow you to make a more usable and
readable makefile.

Directives
Sometimes, you need more control over how the makefile is read
and executed. Directives are designed exactly for that purpose.

From defining, overriding or exporting variables to importing
other makefiles, these directives are what make a more robust
makefile possible. The most useful of the directives are the
conditional directives though.

Conditional directives allow you to define multiple versions of
a command based on preexisting conditions. For example, say you
have a set of libraries you want included in your binary only if the
compiler used is gcc:

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

In this example, you use ifeq to check if CC equals gcc and if
it does, use the gcc libraries; otherwise, use the generic libraries.

This is just a small, basic sampling of the things you can do
with make and makefiles. There are so many more complex
and interesting things you can do, you just have to dig around
to find them!�

Adrian Hannah has spent the past 15 years bashing keyboards to make computers do what he
tells them. He currently is working as a system administrator for the federal government. He is a
jack of all trades and a master of none. He spends all his waking hours on the Linux Journal IRC
channel, on Twitter (@codemoney2841) and talking to random chat bots on the Internet.

4 8 | september 2011 www.l inux journa l .com

FEATURE man make: a Primer on the Make Utility

Resources

GNU make comes with most Linux distributions by default,
but it can be found on the main GNU FTP server:
ftp.gnu.org/gnu/make (via HTTP) and
ftp.gnu.org/gnu/make (via FTP). It also can be found on
the GNU mirrors at www.gnu.org/prep/ftp.html.

Documentation for make is available on-line at
www.gnu.org/software/make/manual, as is
documentation for most GNU software. You also can
find more information about make by running info make
or man make, or by looking at /usr/doc/make/,
/usr/local/doc/make/ or similar directories on your system.
A brief summary is available by running make --help.

Suffix rules are a way of minimizing the
amount of time you spend writing out rules

and the number of rules in your makefile.

http://www.linuxjournal.com
http://www.gnu.org/prep/ftp.html
http://www.gnu.org/software/make/manual
ftp.gnu.org/gnu/make
ftp.gnu.org/gnu/make

http://www.hackerhalted.com
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

5 0 | september 2011 www.l inux journa l .com

Designer

You don’t have to be a code guru to develop GUIs.
PJ RADCLIFFE

Q t4 Designer is one of the most powerful GUI builders on the market.
If you look at the many Qt4 Designer tutorials, they are all very code-
heavy, which really puts off new programmers. After some searching,

I put together a few simple methods that make GUI development easy, even
for novice C++ programmers, and for experts, it will speed up development.

This article shows how to use a GUI builder based on Qt4 Designer and
Eclipse. Unlike other tutorials, this one is not code-heavy; instead, it describes
several simple methods that will enable you to develop a GUI in a visual
manner with a minimum of C++ code. If you are new to C++ and GUI building,
this tutorial will make it possible for you to build a GUI. If you are an expert,
these methods at least will help speed your development. The development
tools must run under the KDE desktop, although the final program can be
run on a GNOME desktop as well.

GUI interfaces are a key part of most operating systems, and with
Linux, we are spoiled for choice. So many good tools are available; see the
Wikipedia IDE comparison in the Resources section of this article for an
excellent summary. I teach some 300 first- and second-year engineers about
Linux programming including GUI programming. They need to use C++, and
the options tend to be narrow. The two IDEs that look most applicable are
Code Blocks and the combination of Eclipse CDT and Qt4 Designer. Qt4 Designer
clearly is the most powerful GUI builder with the best documentation, and
it’s free if you are creating GPL or LGPL code.

and

Eclipse
Qt4

http://www.linuxjournal.com

Installing the Software
The simplest option is to obtain a live DVD with all the necessary
tools installed. See interestingbytes.wordpress.com for
a Mint-based live DVD with these tools plus many other
development tools.

To install the software yourself, work through the following steps:
First, ensure you have the gcc compiler toolchain installed.

From a command line, type g++ --version. If this fails, use your
package manager to install gcc, g++ and libstdc.

Next, you need the GUI builder Qt4 Designer and the doc-
umentation system Qt4 Assistant. You can find them in your
Linux repository and install them with your package manager.
In the unlikely event that Qt4 is not available, try the Nokia Qt
download site (see Resources).

You also need Eclipse with CDT (C/C++ Development Tools)
installed. There are several options here:

� Install Eclipse CDT from your package manager (easiest option).

� If you already have Eclipse installed but not the C/C++
development tools, start Eclipse and select the menu option
Help→Install New software. Select your main repository site
and filter on “CDT”. Select the CDT package and install.

� The latest version of Eclipse at the time of this writing is
Helios, which may not be in your distribution’s repository.
It has a nice all-in-one package of Linux Tools that includes
code coverage and profiling. The Eclipse Helios site has
a download and installation instructions
(see Resources). Note the wiki link
from that page, which has some
very useful tutorials.

Finally, you need the Qt4 integration plugins
for Eclipse. The Nokia Web site has instruc-
tions and the download (see Resources).

Creating a GUI Project
Most Qt4 tutorials show how to write code to build a form. The
combination of Qt4 Designer and Eclipse means you can do this
in a purely visual manner, which is faster and easier. To build your
own GUI, work through the following steps:

� Start Eclipse using the Linux Menu option Development→
Eclipse. If any projects are open, select the Project Explorer
in the left-hand panel, right-click on the project folder, then
select Close Project.

� From the Eclipse menu, select File→New→Project.

� Find the Qt option, select the sub-option Qt GUI project,
and then click Next.

� On the next panel, provide a project name (let’s use demo_1
for this example), and click Next (not Finish).

� The next panel will set up the class and filenames. You can
change the name of the class where you place your code.
The bottom list box labeled UI Type is the most important
field. It determines the type of GUI you will create. A Widget

is a basic panel with no special functions; a Qdialog provides
simple interaction with a user, and a QmainWindow is a
panel with menus and other features. For this example,
select QmainWindow, then click Next.

� This panel allows you to include extra Qt modules—for example,
a network interface or SQL interface. For this example, the
extra modules aren’t needed, so just click Finish.

� You will be asked to accept Qt perspectives; click yes.

You now should have a GUI project ready to add visual
components. To see the appropriate files, as shown in Figure 1,
expand the project in the Project Explorer panel to the left and
double-click on demo_1.ui.

The compile and execution of the GUI you have just created
may have a hiccup, especially the first time you run it. You
should be able to select from the Eclipse menu File→Save All,
Project→Build All, and then Run→Run. If Run→Run is grayed-out,
try the following:

� If demo_1.cpp is not already in the editor window, then in the
Project Explorer panel on the left, double-click demo_1.cpp to
get the code in the editor window.

� Add a space anywhere, and then from the Eclipse menu,
select File→Save All.

� Select Project→Build All, then Run→Run. If you are asked for a
debugger configuration, choose gdb/mi.

� Your GUI now should appear. Close it by clicking the close icon
on the top right.

www. l inux journa l .com september 2011 | 5 1

Figure 1. Empty Main Page

Qt4 Designer clearly is the most
powerful GUI builder with the best
documentation, and it’s free if you
are creating GPL or LGPL code.

http://www.linuxjournal.com
http://interestingbytes.wordpress.com

Now, it’s time to add visual components to your bare form.
On the left-hand panel, select the Qt tab to see the visual compo-
nents. Click and drag across two Push Buttons, an LCD Number, a
Text Edit box, a Horizontal Slider and a Progress Bar to get a form
similar to Figure 2.

You can see the properties of any visual component by clicking
on a component and then examining the property editor in the
right-hand panel. The properties are shown as a hierarchy with the
parent class first and then the child classes. You may need to scroll
down to find the property you want to change. In Figure 2, a
button has been selected and the property editor shows its prop-
erties. The property called “text” has been changed to MyButton,
which is not the name of the button, just the message displayed.
It’s worth spending some time looking at all the properties you
can alter. Try also right-clicking on visual components to see what
you can change. For example, right-click on the text edit box and
select Change HTML. Type in some text, click OK, and that text is
now displayed in the text edit box.

To create a menu for your form, click at the top left where
it says “Type Here”, and type “File”. Your form now has a
menu option “File”.

Click on this again, and add a sub-option “Save”. After finish-
ing this tutorial, it’s worth starting a new project and playing with
a range of visual components, right-clicking on each and changing
the properties.

Qt Designer has the concept of signals and slots. A class can
emit a signal when it has done something—for example, when a
button is clicked. A class can accept a signal in a slot—for exam-
ple, the LCD display has a slot to accept a new value. You can
connect visual components directly together using signals. From
the Eclipse menu, select Qt Designer→Editor Mode→Signals and
Slots. Click on the slider, drag the resulting red line to the progress

bar, and release the mouse. In the panel that pops up, select
sliderMoved in the left box and setValue in the right box, then
click OK. It’s important to know this edit mode, because it’s a
quick way to discover all the signals and slots a visual component
can support. To see what signals a button can generate, drag the
mouse from the button to the form and release the mouse. A
window now pops up that names all the signals a push button
can emit. Close this window by pressing cancel to delete the link.
Now, try dragging from the form to the button to see all the slots
the button can support. Try doing the same to the LCD display
(see Resources for more details on slots and signals).

To run your GUI, first change the editor mode back to
the normal widget view with Qt Designer→Editor Mode→
Widgets. Then, compile and run using the Eclipse menu

options File→Save All, Project→Build Project and
Run→Run. If all goes well, you should get a result
like what’s shown in Figure 4. Try moving the slider,
clicking on the buttons (which do nothing), and
then close the window.

I don’t have space to cover layout tools and
spacers, which ensure that your layout expands

and contracts as a user resizes the GUI window. See the large
e-book from Blanchette and Summerfield, the short Layout
Tutorial and the Qt Overview listed in the Resources section
for more information. Qt Assistant, discussed later in this
article, also has an excellent tutorial.

Adding Your Own Code
Other Qt4 tutorials become code-heavy at this point and lose
people who are not experienced C++ programmers. Here, I
explain how to link your code to the GUI interface in a simple
and pain-free manner with minimal C++.

5 2 | september 2011 www.l inux journa l .com

FEATURE Qt4 Designer and Eclipse

Figure 2. Visual Components

Figure 3. Wired Signal

Figure 4. First Run

Adding code to a GUI project
is not like writing code for
a command-line program.

http://www.linuxjournal.com

Adding code to a GUI project is not like writing code for a
command-line program. Your code must be placed in the class
created for you, in the example demo_1.cpp, not a main() routine.
You should alter only demo_1.cpp, demo_1.h or demo_1.ui. The
other files are generated automatically and will be overwritten on
the next build.

Your code can be started only when a GUI event happens and
it is linked to your code, or when a timer you have created times
out. Furthermore, your code must do its job quickly and return. If
your code delays, the entire application freezes and stops respond-
ing to user stimuli. These factors require you to design your code
differently from how you would design a command-line program.
When you write a GUI program, plan for all of your code to
respond to GUI events and timers. The GUI package handles the
rest for you.

Most GUI systems have a library of useful classes, and it’s very
much worth learning how to use those classes, as they can save
you a lot of time and provide features you could not implement
otherwise. The library with Qt Designer is particularly powerful
and worth mastering (more on that later).

Now, let’s add the links between your own code and the
visual components. Click the demo_1.h tab, and add the single
#include line at the top of Listing 1. Next, add the declaration
for timer, the public slots section and functions that are called
when signals are generated. These slots are all of the form
on_objectName_action(). The available “action” can be discov-
ered from what you did to create Figure 3. The first two slots are
called when the buttons are clicked, the next when the form’s
menu item Save is selected, and the final one when your own
timer based on Qtimer ticks. In total, you must add seven lines of
code to the existing file.

Now, you can link the timer to the LCD display. In the
demo_1.cpp file, modify the constructor to add the three lines of
timer setup, as shown in Listing 2. First, the timer is created, and
then the timer tick signal is connected to your own routine
timer_tick(). Finally, the timer is set up to tick at 1,000
milliseconds (one second).

Listing 3 shows the code to react to the first push button. You

need to add all the lines, as this member function is new. The first
two lines of code change the text in the button and the font type.
The next few lines change the color. This is well beyond what a
simple application will need to do, but it shows a little more of
what is possible.

Note that the properties of any visual component can be
changed using the format ui.ComponentName->member_function().
As you begin to write more complex applications, you will
need to find these member functions. The simplest way is to
start a separate application called Qt Assistant, by going to
Development→Qt4 Assistant from the Linux menu. As shown in
Figure 5, click the Index tab and enter the name of the visual
element. A detailed description of the element will be displayed,
including all useful member functions. If you are serious about
mastering Qt Designer, it’s worth spending some time working
through the Qt Assistant documents. In particular, click the
Contents tab, and open the Qt Designer Manual, which includes
a wealth of useful tutorials and examples.

The second push button also must have its member function
created (Listing 4). Again, the code shown here is more complex
than a simple application needs to be, but it shows a very useful
feature: calling a command-line program.

Let’s work through the code. Note how the text box
on-screen is cleared. The ui.textEdit gives you access to
the visual component, and the member function clear() is
called. QbyteArray is an advanced C++ string type object. The
QProcess object enables you to run a command-line program.
First, the working directory is set, and then the command
started. If it returns within 300 milliseconds, the result is written
into the textEdit box; otherwise, the command is terminated,
and the default error message is printed. Note that the
returned text from the command line may have nonprinting
characters, such as line feeds. To solve this problem, look up

www. l inux journa l .com september 2011 | 5 3

Listing 1. Adding Slots to demo_1.h

#include <QtGui>

public:

demo_1(QWidget *parent = 0);

~demo_1();

private:

Ui::demo_1Class ui;

//--- add the following lines.

QTimer timer ;

public slots:

void on_pushButton_clicked();

void on_pushButton_2_clicked();

void on_actionSave_triggered() ;

void timer_tick() ;

};

Listing 2. Constructor with Timer Start

demo_1::demo_1(QWidget *parent)

: QMainWindow(parent)

{ ui.setupUi(this);

//--- add the following lines.

timer = new QTimer(this);

connect(timer, SIGNAL(timeout()), this, SLOT(timer_tick()));

timer->start(1000);

}

Listing 3. First Push Button Code

void demo_1::on_pushButton_clicked()

{ //--- comment out or remove whatever is not needed.

ui.pushButton->setText("New Name") ;

ui.pushButton->setFont(QFont("Courier",10,QFont::Bold));

QPalette palette;

palette.setColor(ui.pushButton->backgroundRole(), Qt::red);

palette.setColor(ui.pushButton->foregroundRole(),Qt::blue);

ui.pushButton->setPalette(palette);

}

http://www.linuxjournal.com

the QbyteArray member function simplified() in Qt Assistant.
To respond to the menu on the window, add:

void demo_1::on_actionSave_triggered()

{ ui.textEdit->clear() ;

ui.textEdit->append("Menu item Save just triggered.") ;

}

To increment the LCD display every second, add:

void demo_1::timer_tick()

{ ui.lcdNumber->display(ui.lcdNumber->intValue() + 1) ;

}

Now, let’s run your program. From the Eclipse menu, go to
File→Save All, Project→Build Project and, finally, Run→Run.
The LCD timer should be incrementing every second. Try
clicking on the buttons and the form menu to make sure they
perform as expected.

What Next?
What happens next is up to you. If you have trouble
creating the example described here, you can down-
load all of it from www.pjradcliffe.wordpress.com,
then click on the “Other Useful Resources”
page. Place the new directory inside the
workspace directory (/home/user/workspace),
then start Eclipse.

Browsing through Qt Assistant is a good
way to discover the useful member functions
of visual components and the other powerful
classes, such as QbyteArray. Qt Assistant has
many tutorials and examples, and the Web is
a great source of information, as Qt has a
vibrant user community. It won’t take you
long to make those visual components perform
just as you wish.

Conclusion
After reading this article, you should be able
to create a GUI using Eclipse and Qt4 Designer,
mostly by visual manipulation of visual compo-

nents plus a little C++ code. The example given here shows
how to call your own code when visual components are
activated (as with a button click), how to start your own
code with a timer tick, and how to call command-line
programs and read back their responses. You can do a lot
with just those functions.�

Dr PJ Radcliffe is a senior lecturer at RMIT University in Australia. He once was an ardent Windows
programmer, but then he discovered Linux, which he now teaches along with the control of
hardware using Linux. If you are interested in these topics, see www.pjradcliffe.wordpress.com.

5 4 | september 2011 www.l inux journa l .com

FEATURE Qt4 Designer and Eclipse

Listing 4. Second Push Button

void demo_1::on_pushButton_2_clicked()

{ ui.textEdit->clear() ;

QByteArray command_line, work_dir("/tmp"), result ;

command_line = "ls /home" ;

result="Nothing happened." ;

QProcess shell(this) ;

shell.setWorkingDirectory(work_dir) ;

shell.start(command_line) ;

if (shell.waitForFinished(300)) //ms timeout

result = shell.readAllStandardOutput() ;

ui.textEdit->append(result) ;

}

Resources

Wikipedia Article on IDE Comparison: en.wikipedia.org/
wiki/Comparison_of_integrated_development_environments.

Qt4 download site from Nokia: qt.nokia.com/downloads.

Helios Eclipse Linux tools download and install instructions:
www.eclipse.org/linuxtools.

Qt4 integration for Eclipse:
qt.nokia.com/developer/eclipse-integration.

Good designer information (see the “signals and slots” link in
particular): doc.qt.nokia.com/4.6/designer-manual.html.

A 700-page reference for Qt Designer from Blanchette and
Summerfield (definitely worth obtaining although many examples
take a code-heavy approach): search for “c-gui-programming-
with-qt-4-2ndedition.pdf” to find a convenient upload source.

Layout basics: thelins.se/learnqt/2009/05/qt-layouts-the-basics.

Good overview of key Qt4 visual design features:
web.mit.edu/qt-dynamic/www/qt4-designer.html.

Figure 5. Qt Assistant

http://www.pjradcliffe.wordpress.com
http://www.pjradcliffe.wordpress.com
http://www.linuxjournal.com
http://www.eclipse.org/linuxtools
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://qt.nokia.com/downloads
http://qt.nokia.com/developer/eclipse-integration
http://doc.qt.nokia.com/4.6/designer-manual.html
http://thelins.se/learnqt/2009/05/qt-layouts-the-basics
http://web.mit.edu/qt-dynamic/www/qt4-designer.html
http://savannah.gnu.org/projects/gawk

http://www.softwarefreedomeday.org

5 6 | september 2011 www.l inux journa l .com

GNU Awk (gawk) is one of those programs that has been available
“since forever”, which many people never think about. But,
it’s a standard and important part of just about every GNU/Linux
distribution. In fact, it has been available since even before GCC!

During the past year and a half or so, gawk has undergone
a quiet revolution, culminating in the release of gawk 4.0.
Although not yet released at the time of this writing, work is
in progress and moving forward. By the time you read this
article, gawk 4.0 will be a fact and not just a promising code
base in the Git repository.

A Little History
The awk language was developed by Al Aho, Peter J. Weinberger
and Brian Kernighan, then at Bell Labs (hence the name A.W.K.).
It first was released in 1978 with V7 UNIX. It offered the pattern-
action programming paradigm, powerful regular expression
matching, associative arrays, conventional operators and control
structures, and a modest array of built-in numeric and string
functions. It was only minimally documented. (So minimally, in
fact, that I remember being terribly confused after reading the
short paper on awk, and deciding to avoid it!) Nonetheless, the
UNIX world accepted it and used it; true UNIX wizards were
comfortable writing even large scripts in it.

Circa 1985, the authors started beefing up the language,
adding user-defined functions, C-compatible operator precedence,
more built-in functions, dynamic regular expressions and a few
other minor features. More important though, they then proceeded
to write a book about the new version of awk (The AWK
Programming Language), which was published in late 1987.
This version became available to the world with the UNIX
System V Release 3.2.

I bought the book, figuring that now was my chance to learn
awk. It was (and remains) a great book. Having an interest in
programming languages and an interest in contributing to the
world at large, I decided to see whether the GNU project had a
version of awk. Indeed, it did, but it implemented only old awk
(and poorly, at that). Being single at the time, I decided to get
involved and see if I could work to make gawk compatible with
new awk. (And, thus, the course of history changed, forever.)

As early as 1988, the GNU developers were corresponding
with Brian Kernighan and other awk implementers to make sure
that the awk semantics were consistent across implementations.
System V Release 4, in 1989, brought a few new features for
new awk (the -v option, the ENVIRON array, the tolower() and
toupper() built-in functions) and the first POSIX standard (circa
1992) introduced the CONVFMT variable.

Starting in December 1993, Brian Kernighan was able to
release the code to new awk; it continues to be available
(see Resources) and sees minor bug fixes from time to time.

GNU Awk
GNU Awk was first written around 1986 by Jay Rubin and
Paul Finlason, with some help from Richard Stallman. It barely
implemented the original awk language, was buggy and not
particularly fast. It worked by building a parse tree representa-
tion of the program and then recursively evaluating the parse
tree for each input record.

When I got involved in late 1987, David Trueman already had
volunteered to upgrade it to new awk, and I joined the effort,
contributing code fixes and doing serious work on the documen-
tation. We worked together until around 1994, when I became
the sole maintainer.

Along the way, gawk acquired full compliance with new awk,
including POSIX, and it improved in code quality, speed and new
features. Throughout the course of more than 20 years though,
the basic design remained the same: build the parse tree and
recursively evaluate it for each input record.

In 2003, out of the blue, a gentleman named John Haque
contacted me. He had rewritten the gawk internals to use a
byte-code interpreter and provided an awk-level debugger for awk
programs. This was a startling innovation. I worked with him to
get his version to the point where it was stable and passed the
test suite, but I did not integrate his changes, because they were
major, and I wanted to understand them better.

Bad move: John disappeared in early 2004, and the code
languished, unused. Finally, in fall 2009, I got a volunteer (Stephen
Davies) to start bringing the last version of the byte-code gawk
that I had into the present. He and I had things working, pretty
much, and I even announced a test release to the world.

Again, out of the blue, John resurfaced in early 2010 and
joined the effort to make the byte-code gawk viable. This moved
things into high gear, and we made a lot of progress. As I write
this, the byte-code version has been merged with my “new
features” branch of the code. This is the basis for gawk 4.0.

If you don’t yet have gawk 4.0, see Resources for information
on where to download the source and how to build it; building
from source is very easy.

New Stuff in gawk 4.0
With all the background out of the way, let’s look at the cool
stuff. Due to space considerations, this is just a quick tour; see the
documentation (listed in Resources) for details.

GNU Awk 4.0: Teaching an
Old Bird Some New Tricks
What’s new and nifty in gawk 4.0, with a little history and background along the way.
ARNOLD ROBBINS

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 5 7

New Internals
The most significant new feature is that the gawk internals
have been completely redone. The parser now builds a linked
list of “instructions”. Each instruction contains a code indicat-
ing what it is and a few members with needed information,
such as the next instruction and which instruction to jump
to if a jump is needed. This list then is interpreted for each
record by a big switch statement running inside a for loop
that traverses the list. Data for operations are pushed and
popped off a runtime stack.

This implementation performs no worse than the original
recursive evaluator, and in many cases, it performs better. But
what’s really cool is that John added an awk-level debugger!

Since 1978 when awk was first introduced into the world, the
only debugging tool was the print statement. Now, gawk has a
full debugger, with breakpoints, watchpoints, stepping by state-
ment or instruction, the ability to step into and out of functions,
and many other features.

The debugger is a separately compiled program named
dgawk. It is a line-oriented debugger modeled after GDB (the
GNU Debugger). If you’re familiar with GDB, it will be very easy
to learn the gawk debugger. In addition, the debugger is fully
documented in the gawk.texi file in the gawk distribution.

New Language-Level Features
At the language level, there are several new features.

1. gawk now provides a built-in file inclusion mechanism.
Lines that begin with @include and have a filename in double
quotes cause gawk to include that file, using the same path
searching mechanism as the -f option. Nested includes are
supported, and gawk will not include the same file twice. This
effectively obsoletes the igawk script that has come with
gawk for many years.

2. New patterns named BEGINFILE and ENDFILE provide
“hooks” into gawk’s automatic “read a record and process it”
loop. The action for BEGINFILE is called before the first record
is read from each input file. Normally, when a file cannot be
opened, gawk exits with a fatal error (such as if you provide
a directory on the command line). When a program has a
BEGINFILE pattern, instead, gawk sets the ERRNO variable to a
string indicating the problem, so that you can tell if the file is
problematic. If it is, use the nextfile keyword to just skip it.
ENDFILE actions let you do easy per-file cleanup actions.

3. You now can call a function indirectly. By setting a variable
to the name of the function you wish to call and using special
syntax, gawk will “indirect” through the variable and call the
desired function:

function f1(a, b) { }

function f2(c, d) { }

{ fun = "f1"; @fun(2, 3) # calls f1()

fun = "f2"; @fun(4, 5) } # calls f2()

4. gawk now sports true multidimensional arrays! Regular
awk simulates multidimensional arrays (a[x, y]) using string
concatenation of the index values. gawk now provides

multidimensional arrays (a[x][y]) but does not require that
arrays be rectangular (as in C or other compiled languages).
Code like this is valid:

a[1] = 1

a[2][1] = 21

It is up to the programmer to track the type stored at any
given index: scalar or array. Subarrays can be passed to functions,
as long as the function knows what to expect.

5. The switch/case statement is enabled by default. gawk
has had switch/case for a long time, but it had to be enabled
at build time, and the default was not to do so; now it’s
enabled automatically.

6. gawk now supports defining fields based on field content,
instead of based on the separators between fields. A new variable,
FPAT, is used. When you assign a string containing a regular
expression to FPAT, gawk begins splitting fields such that each
field is the text that matched FPAT. (Normal field splitting is based
on the text in between fields matching the regular expression in
FS.) This is useful for many kinds of data where FS-based matching
just doesn’t work.

The new patsplit() built-in function provides access to

INDEPTH

http://www.linuxjournal.com
http://www.logicsupply.com/linux

5 8 | september 2011 www.l inux journa l .com

this functionality for strings besides the input record. It is the
analogue of awk’s regular split() function. Additionally,
patsplit() lets you capture the text of the separators
between fields.

7. Standard awk provides only one-way pipelines, either to
or from another process. gawk provides a notation for opening
a two-way pipeline to a co-process. gawk uses the same nota-
tion with special, internally recognized filenames, to provide
TCP/IP communication over sockets. This feature has been
available for a long time.

gawk 4.0 enhances the networking by providing explicit
filenames to indicate IPv4 or IPv6 connections. Filenames are
of the form /inet4/protocol/local-portt/remote-host/remote-port
or /inet6/protocol/local-port/remote-host/remote-port. Plain
/inet/protocol/local-port/remote-host/remote-port is what gawk
supplied up to now and continues to be supported: it now
means “use the system default”. Most likely, this will continue
to be IPv4 for many years.

8. gawk now provides a short (single-letter) option for
every long option that it has. This finally makes it possible to
use almost every feature from a !# script. It does somewhat
bloat the manual page. (gawk has too many options, but
that’s a different problem; nonetheless, I did remove a few
redundant long options.)

9. Interval expressions now are available by default. An interval
expression is an enhanced regular expression syntax, such as
(foo|bar){2,4}, which matches anywhere from two to four
occurrences of either foo or bar. The part between the curly
braces is the interval expression. POSIX added them to awk
many years ago for compatibility with egrep’s regular expres-
sions. But most awks didn’t implement them. For historical
compatibility, gawk’s default was to disable them, unless
running in POSIX mode. Today, compatibility with POSIX has
gained enough importance for enough users that interval
expressions now are available by default.

10. Finally, for this release, the code has been reviewed and
cleaned up. gawk now requires a full C 89 environment to com-
pile and run. It will not work with K&R compilers or if _ _STDC_ _
is defined but less than 1. The code for many obsolete and
unsupported systems has been removed completely. This slightly
decreases the size of the distribution, but mainly it reduces
useless clutter in the source. The documentation also has been
reviewed and cleaned up.

Source Code Management
For many years, I was the only one with access to gawk source
while it was being worked on. Circa 2006, I made both the stable
and development versions available via CVS from savannah.gnu.org.
This was a good move; it gave the user community access to all my
bug fixes and to my development code base.

In late 2010, I moved to git. I am expecting greater productivity
from using git and better ease of use for the user community.
And, it’s nice to be using 21st-century tools.

Future Work
Some further interesting development remains to be done.

1. The XMLGawk Project (see Resources) is a fork of gawk

based on 3.1.6 that provides better facilities for loading dynamic
extensions and several very interesting extensions to go with those
features. These should be merged into the main gawk code base
and distribution, respectively.

2. Although gawk has had the ability to load extensions
dynamically for many years, the API has not been stable or easy
to use. I have designed an API for C functions that can be called
from an awk program that is considerably better, but I have not
implemented it yet. This should be done.

3. Currently, the gawk distribution builds three separate
executables: regular gawk, pgawk (for profiling awk programs)
and dgawk for debugging them. The new internals enable the
possibility of making just one executable that could perform
all three functions (based on command-line options). This
should simplify the build process and definitely will reduce
the total installation “footprint”.

4. The documentation could use further cleanup. Some of the
examples cause the documentation to show its age. (Who uses
dial-up BBS systems anymore?)

Acknowledgements
Thanks to Brian Kernighan, Stephen Davies and John Haque for
reviewing this article.�

Arnold Robbins is a programmer, technical author, husband and father. A native of Atlanta,
Georgia, he and his family have been living in Israel since 1997, where he now works writing
software for a very large semiconductor manufacturing company. He has been involved with GNU
Awk since 1987(!). In his non-copious spare time, he maintains gawk and its documentation,
among other activities. Arnold is also the author or co-author of a number of UNIX- and Linux-
related books from O’Reilly and Prentice Hall, which he hopes that all readers of this article will
now run out and buy. For more information, see www.skeeve.com.

INDEPTH

Resources

Gawk Home Page at the FSF:
www.gnu.org/software/gawk

Gawk Project Home Page at Savannah, with Links
and Instructions for Using Git: savannah.gnu.org/
projects/gawk

Gawk Download Directory: ftp.gnu.org/gnu/gawk

Gawk Documentation:
www.gnu.org/software/gawk/manual

Installation Instructions:
www.gnu.org/software/gawk/manual/html_node/
Installation.html#Installation

Brian Kernighan’s “one true awk”:
www.cs.princeton.edu/~bwk/btl.mirror

The XMLGawk Download Page:
sourceforge.net/projects/xmlgawk

http://www.linuxjournal.com
http://www.skeeve.com
http://www.gnu.org/software/gawk
http://www.gnu.org/software/gawk/manual
http://www.gnu.org/software/gawk/manual/html_node/Installation.html#Installation
http://www.cs.princeton.edu/~bwk/btl.mirror
http://savannah.gnu.org/projects/gawk
http://savannah.gnu.org/projects/gawk
ftp.gnu.org/gnu/gawk
http://www.gnu.org/software/gawk/manual/html_node/Installation.html#Installation
http://sourceforge.net/projects/xmlgawk

BBBBBBBBBBBBBBBBBBBBROROROROROROROOROROROROROOOOOROOUGUGUGUGUGUGUGUGUGUGGHTHTHTHTHTHTHTTHTHTTHTHTHHHTHTHTHTHTT T T T TT TTTTT TT T TTT TTTOOOO OO OO O OOOOOO OOOOOO YOYOYOYOYOYOYOYOYOYOYOYOOYOYOYOYOYY U U UU U U U U UUUUUUUUU BYBYBYBYBYBYBYBYBYBYYBYYBYBYBBY

GGGGGGGGGGGGGGGGGGUEUEUEUEUEUEUEEEUEUEEUEUEUUESTSTSTSTSTSTSTSTSTSTSTTSTTSSSSSSSSSSS EEEEEEEEEEEEEEEEEEEEEEEEEEXHXHXHXHXHXHXHXHXHXHXHHXHXHHXXHHHHIBIBIBBIBIBIBBBBBBBIBBBBBBBIBIBBBBBBIBBITITTITITITITITITITTTTITTTITITTITITTTTI ORORORORORORORORORORORORORORORROROOROOROROOOOOOROO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS LLLLLLLLLLLLLLLLLLLEAEAEAEAEAEAEAEAEAEAEAEAAEAEAEAEAEAEAAAEAEAE RNRNRNRNRNRNRNRNRRNRNRNRNRNRRNRNNRNRNRRRRNRRNNINININNININNININININNNNINININNNINNNNNNNNI GGGGGGGGGGGGGGGGGGGGGGG
SESESESESESESESESESESESESESSEESEESEESESESESESS SSIOOIOIOIOIOIOIOIOIOIIOOIOIOIOIIIIOOOOONSNSNSNSNSNSNSNSNSSSNSNSNSNSNSNSNSNSNSNNSSSNN

LLLLLLLLLLLLLLLLLLLLLLLLLIIGIGIGIGIGGIGIGGIGGIGIGIGIGIGGGGGIGGGIGGGGIGGGHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTTHTHTHTHTHTHTHTHTNININININININININNININNINININININNIINNININNN NGNGNGNGNGNGNGNGNGNGNNGNGNGNGNGNGGNGGNGNGNGGNGNNGGGNGG
TATATATATATATATATATATATAATATAATAATATATTAATATT LKLKLKLKLKLKLKLKLKLKKLKLKLLKLKLKLKLKLKLLLKLKLKKLKKSSSSSSSSSSSSSSSSSSSSSSSS

MMMMMMMMMMMMMMMMININININININININININNNNINND-D-D-D-D-D-D-D-D-D-DDD-DD-D-
BLBLBLBLBLBLBLBLBLBLBLBLBLLBBLLBLBBB OWOWOWOWOWOWOWOWOWOWOWWOOOWOWOWOOWOWWOWWINININININININININNIINNNININI GGGGGGGGGGGGGGGG

SSSSKEKEKEKEKEKEKEKEKEKEKEKKEKKKKEKEKKEKEKEKEKKKKKEK YNYNYNYNYNYNYNYYNYNYNYYYNYNYNYYYNOTOTOTOTOTOTOTOTOTOTOTOOTOTOTOTOTOTOTOTOTOOTOTOTOTTESESESESESESESESEEESESESESESESESESSSSSESESEE

TTTTTTTTTTTTTTTTTTTTTTEXEEXEXEXEXXEXXEXEXEXXXXEEEEEEXEXEXEXEEEEXEXEEXEXASASASASASASASASASASASASASASAASASAS--------
STSTSTSTSTSTSTSTSTSTSTSTSTSSTTSTSTSSSSTSTTSTTYLYLYYLYLYLYLYLYLLYLYLYLYLYYLYLLLY EEEEEEEEEEEEEEEE

BABABBABABABABABABBABABABABABABABABABBBBAB SHSHSHSHSHSHSHSHSHSHSHSHSHSHSHHHHSHSS ESESESESESESESESESESESESESEESESESSEEEEES

Learn strategies and tactics to automate your operations,
free up resources, and conquer the opposition!

http://www.bootcamp.cpanel.net
http://dev.wavemaker.com/wiki/bin/wmdoc_6.3/Install

Rapid application development (RAD) is
a trendy data-processing idea to shorten
application software development time. In
the truest sense, RAD should include user-
friendly development tools and seamless
access between end users and actual
development software. Small-business
users lust for software applications that fit
this description. Commercial tools, like
Microsoft Access and AlphaSoftware, share
great success in the business community.

Both of these applications give small-
business users and IT departments a
simple way to develop applications for
internal use quickly, with little effort. Usually,
a small Web-based application can be creat-
ed in only a day or two. Rapid application
development combined with a treasure
trove of professionally presented training
videos and other learning resources keep
these products in the forefront of technology
and embedded in the business world.

Thus, a product like AlphaSoftware
frequently is the cornerstone tool for small-
business users to deploy Web tools for
on-the-fly needs. Although some of these
homespun software applications are down-
right ugly (from an aesthetic and design
standpoint), nonetheless, they are critical
business tools. In fact, their importance is
so profound that some small businesses
will not even consider a Linux environment
because few tools exist that closely match
the feature set of AlphaSoftware or similar
commercial products.

Certainly, good arguments exist for the
robust programming tools Linux offers.
Ruby gains much attention as a power-
house tool, although Ruby is a “foreign
language” to most small-business owners.
So, traditional open-source tools seem to
lack the absolute simplicity necessary for
acceptance by many business users.
Further, Linux coding tools are largely
unfamiliar, which reduces the pool of
people who are able to assist businesses
develop new applications. Alternatively,
consider how easy it is to find a local IT
guy who can create an Access database

with full form control in only a few days!
Now, WaveMaker provides a strong

Linux contender, properly positioned to
battle for the interest of the business user.
WaveMaker clearly targets a user audience
with quick Web application development
with a minimal learning curve. The
product is available in both a community
edition and an enhanced beta version
poised for more commercial situations
(wavemaker.com/downloads).

Meet WaveMaker
From a marketing perspective, WaveMaker
is a robust tool for rapid application
development of Web-based applications.
You can peruse the WaveMaker site
(www.wavemaker.com) for complete
details of its promotional position. From a
small-business viewpoint, WaveMaker meets
the needs and requirements for rapid
application development, ease of use
and the ability to work across multiple
platforms—including Linux.

The two editions of WaveMaker appear
separated by the need to integrate with
mainline applications. WaveMaker’s com-
munity edition is limited to single-instance
use, while the full edition enables unlimited
users and interaction with commercial
databases like Oracle, IBM DB2 or Microsoft
SQL Server. Conversely, the community
version supports the use of MySQL,
PostgreSQL or HSQLDB. These two alterna-
tives give small business users enough
options for unique operating environments.

The Challenge
WaveMaker seems well suited to compete
for Linux business-user interest. A tough
sell, most business owners need a real-life
example before they consider open-source
systems. Thus, this article intends to
demonstrate how WaveMaker could
migrate a legacy database from the propri-
etary software world into the community
edition of WaveMaker. This simple test is
only a baseline, but it depicts WaveMaker’s
potential. In short, I show how WaveMaker

can measure up to the tall demands of the
business world and also re-affirm Linux as
a viable choice for daily operations.

The example test here includes a sam-
ple business database originally developed
with AlphaSoftware. The parameters of
this test limit the environment to a small
local Web application with only one table.
It also demonstrates data export in a com-
mon format (comma-separated or Excel)
file and MySQL data import. Plus, MySQL
becomes the platform for the new appli-
cation development. This process looks for
potential issues that may arise when users
cull data from a commercial application.

In summary, the test steps are as follows:

1. Prepare the data in a common format.

2. Install WaveMaker community edition.

3. Use WaveMaker to auto-create a Web
form for data entry and update.

Server and WaveMaker
Preparation
For novice users, WaveMaker’s Web site
fully describes how to prepare your oper-
ating environment to support the tool.
The one key decision point is whether to
use the default HSQLDB database. As part
of installation, WaveMaker includes the
components necessary to use HSQLDB. In
this test, let’s use the popular MySQL as
the database engine for the application.

First, let’s use a Debian distribution to
install MySQL. Let’s also use phpMyAdmin
to assist with database creation and data
manipulation. If you want to follow along,
check your distribution’s instructions to
install MySQL and phpMyAdmin, and make
sure they are running before you continue.
Next, download WaveMaker community
edition and follow the installation
instructions here: dev.wavemaker.com/
wiki/bin/wmdoc_6.3/Install.

Preparation for the Test
After installation, let’s plan a simple data

6 0 | september 2011 www.l inux journa l .com

INDEPTH

WaveMaker: It’s Like...RAD!
Database stuck in Windows? Take RADical action and try WaveMaker Community edition.
DONALD EMMACK

http://www.wavemaker.com
http://www.linuxjournal.com
http://wavemaker.com/downloads
http://dev.wavemaker.com/wiki/bin/wmdoc_6.3/Install
http://dev.wavemaker.com/wiki/bin/wmdoc_6.3/Install

export process to move into the new
environment. My research discovered that
AlphaSoftware includes a nifty export
routine to send the data from its own
database to other formats. I tested the
export process with both text and
Microsoft Excel formats successfully. To
assist WaveMaker with field generation,
I included field names during export.
With the sample data in Excel format,
use phpMyAdmin through the browser
at http://localhost/phpmyadmin (or similar)
to manage the MySQL experience.

To minimize errors with data import,
a database and table were created in
advance. In Figure 1, a new database
called “linuxjournal” with a table named
“sheet” already is in place. Next, let’s use
the import tool to populate the new
“linuxjournal” database. Afterward, examine
the database’s structure to make sure the
primary key value and index are appropriate
for the test environment (Figure 2). In this
example, I avoided foreign keys to minimize
opportunities for errors. WaveMaker
includes functions for database creation;
however, the interface is not as familiar as
phpMyAdmin. Further, using WaveMaker

to build your data
structure is an
advanced topic.
Therefore, the
simpler approach
is to stay with
phpMyAdmin.

WaveMaker
Live
I used Linux Mint (a
Debian distribution)
for this test. After
installing
WaveMaker, the
icon for startup
did not appear on
the desktop or in
the application
menu. To work
around this prob-
lem, navigate to
/opt/{wavemaker
sub-directory}/bin/.
Then, execute
./wavemaker.sh,
and observe the
new WaveMaker
application present-

ed on your desktop as shown in Figure 3.
From here, press Start to begin the pro-
cess, and the default browser opens to the
application’s home screen (Figure 4).

From this point, click Create a New

Figure 1. Once logged in to phpMyAdmin, create a test database called
“linuxjournal”, and import test data with field names.

Figure 2. Verify that the indexes and keys are correct for the imported data.

Figure 3. To the point, WaveMaker responds
with a minimal window allowing you to start
or stop the application.

Figure 4. At first, WaveMaker gives you the
opportunity to create projects, open existing
ones or just work through a tutorial.

http://www.embeddedarm.com

6 2 | september 2011 www.l inux journa l .com

Project, give it a name, and then
WaveMaker drafts the workspace for the
application within the browser (Figure 5).
This is the primary control center for devel-
opment. While the look and feel may seem
unfamiliar, WaveMaker reduces training
time through intuitive command labels and
software component tree organization.

Establishing Database
Connection
Once WaveMaker is up and running, it
must establish database connectivity to

continue. Next, select
Services and then Database
Services to define the con-
nection to “linuxjournal”.
Now, WaveMaker needs
the right information to
connect to the database
(Figure 6). With MySQL,
the first step is to change
the initial drop-down list
from the default HSQLDB
to MySQL. Next, input the
database userid, password
and exact database name
in the fields provided. Click
Test Connection at the
bottom of the window to
ensure connection. Once
successful, select Import
to continue the data
import process, and
WaveMaker responds
with the elements of the
MySQL database in a new
window (Figure 7). Stop
here and evaluate your
structure. It’s important to
validate keys and indexes.
Also note the field names
of your data to ensure
they are listed properly.

Application Design
With a predominantly GUI
interface, WaveMaker now
is ready to create a Web-
based application. A pivotal
benefit for the small-
business user, this interface
relies on simple drag and
drop for many operations.
Automatic processes assist
with form creation, data
placement

and manipulation. Plus, error
correction is quite simple and
capitalizes on the familiar
Edit and Undo routine when-
ever you change your mind!

First, click on Canvas and
Palette as shown in Figure 8.
The link to the “linuxjournal”
database previously created
now is available in
WaveMaker’s tree view.
Now, let’s create a
simple entry and update

application—in one step. With the
mouse, drag the database onto the blank
area of the working screen. WaveMaker
automagically populates the working area
of the Canvas with the sample data from
“linuxjournal”. It’s remarkable to watch
WaveMaker create editable (bold) fields
for the data on the bottom of the Canvas.
Figure 9 shows the results.

In essence, data from the MySQL table
is displayed on top, and a detail section
(with editable fields) is created below. At

INDEPTH

Figure 5. A clean slate or “Palette” is the home screen
of WaveMaker.

Figure 6. WaveMaker’s Template to Establish Database Connectivity

Figure 7. After import, your database structure is displayed.
Figure 8. Navigating to the Location of Your
Imported Table (Called “Sheet”)

Figure 9. After drag and drop, WaveMaker creates the list of
data on the top of the screen, and the editable fields are listed
below. Red text was added by the author.

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 6 3

the same instant, WaveMaker creates three
buttons for data manipulation: New, Update
and Delete (Figure 10). The current view
displays the skeleton of the application,
complete and test-ready. Select Test from
the top window, and a new browser win-
dow with the application displays in test
mode. Choose Run, and WaveMaker saves
and then runs the application in a new
browser window, as shown in Figure 11.

Now, work with this mini-program to
verify the success of the transition, exit the
application and then re-visit phpMyAdmin
to see the elements properly added,
changed and deleted.

Pinch Yourself
WaveMaker just completed this test
migration in approximately 15–20
minutes! Certainly more complex data
migrations will require a concerted
effort to ensure proper foreign keys
and precise index setup. Yet, the viability
of this principle is proven for a small
application migration.

In this test, WaveMaker performs quite
well. Building the application and running
it on the same machine is a bit sluggish,
but this will change substantially with
respect to hardware specifications and
overall configuration.

No Parking!
This test purposely excluded necessary
elements to make many applications
really suitable for business. Nevertheless,

adding buttons, screens and tabs is very
straightforward. For example, user login
logos and multiple tabbed displays
often are staples of even the most
rudimentary business applications.
WaveMaker includes many nicely packaged
tools that enable users to drag and drop
additional features immediately into the
live Palette.

WaveMaker builds these other
essential elements with a host of
“widgets” along the application’s left
panel (Figure 12). Users take advantage
of this noncode environment and simply
drag and drop new features into the
Palette. For example, a handy calendar
(Figure 13) or simple page navigation
(Figure 14) require no direct code. Plus,
login security and roles are handled
efficiently in the Services and Security
tabs of the application—once again, a
simple user interface.

The Takeaway
For business users, WaveMaker excites
the potential of open-source possibili-
ties. In recent years, the strongholds of
proprietary operating systems usually
included finance and point of sale.
Because few comparable business-class
applications exist, the impetus to move
into the open-source world is sometimes
difficult. It’s also clear that mainstream
business users may consider Linux when
the core applications of their business
can be migrated with ease.

Often overlooked, small database
development served as a type of
commercial software lynchpin. Thus,
business operators are often locked
in the proprietary realm. As a former
AlphaSoftware user, I too see the
impediments to change. Plus, applica-
tions like AlphaSoftware give developers

a standardized
tool to develop
and deploy exe-
cutable software
in addition to
Web applications.
This is a market
segment not
directly
marketed by
WaveMaker. As
with most soft-
ware, familiarity

of interface and technical support are
all weighty factors in the decision.

WaveMaker seems like a bold step
and immediately gathers the attention of
business users. It is a true competitor to
the commercial Web application develop-
ment world and deserves attention by the
business community. VMware’s recently
announced acquisition of WaveMaker
(dev.wavemaker.com/blog/2011/03/08/
wavemaker-springs-to-vmware) gives
this application a boost in recognition and
in business users’ confidence in its future
stability. Go give WaveMaker a try!�

Don Emmack, a Change Management consultant, assists
government and business users with infrastructure and
operational issues. A former Sr. Vice President for an
international consulting firm, his work includes domestic
and international clientele. Don is an early adopter of
new technology, yet remains hopelessly addicted to his
1980s-era fax machine!

Figure 10. In the bottom right, WaveMaker
automatically provides New, Update and
Delete buttons for the application.

Figure 12. A Sample of Widgets Included
with WaveMaker

Figure 13. The Included Calendar Widget

Figure 14. Simple Creation of Data Navigation
Buttons

Figure 11. Live Operation of the Sample Data Migration in Less
Than 20 Minutes

http://www.linuxjournal.com
http://dev.wavemaker.com/blog/2011/03/08/wavemaker-springs-to-vmware
http://dev.wavemaker.com/blog/2011/03/08/wavemaker-springs-to-vmware

jEdit is a cross-platform text editor written in Java. The current stable
version at time of this writing is 4.3.2, and it’s available at jedit.org.
Besides the cross-platform capabilities, jEdit offers other features,
such as a sophisticated plugin system, syntax highlighting for 130
languages, a built-in macro language and extensive encoding sup-
port. I wrote this article using jEdit, and I demonstrate some of its
features here, especially some of the plugins I have found useful.

Before I start, jEdit is a GUI text editor of some heft. It is not a
replacement for using vi on the command line to edit a configuration
file on a remote server. It does serve well in handling many files simul-
taneously with visual feedback and with the benefits of a GUI inter-
face. To put it another way, I use vi or jEdit depending on the need.

Installation is fairly easy; just go to the download page and grab
the installer jar. Be sure to check out the compatibility link if you
have a non-Sun (Oracle) or Apple version of Java. From personal
experience, I have not had success running jEdit on gcj. Assuming
you have a compatible version of Java, use the following to install:

java -jar jedit4.3.2install.jar

This launches an installer program that guides you through the
process. For the sake of reference, jEdit keeps its configuration files,
on Linux anyway, in ~/.jedit/. I mention this because I keep that
directory synced between my laptop and my desktop machines. As
a result, I have a consistent working environment between the two.

At its heart, jEdit is a just a text editor, although it’s a text edi-
tor with a lot of options. You can make these options global or
apply them on a per-buffer basis. You can reach the options via
the Utilities menu item. The global options stick between editing
sessions, but the buffer options do not, unless you use the buffer-
local method. This consists of embedding colon-separated hints to
jEdit in the file. jEdit checks the first or last ten lines for these
hints. As an example, to specify an indentation of 2, use spaces
for tabs and “hard” wrap, the embedded hints would be:

:identSize=2:noTabs=True:wrap=hard:

jEdit checks anywhere in those lines, so you can place the
hints behind comment symbols.

Also note that jEdit supports mode-specific settings, where a
mode is a file type, such as Python (*.py), C (*.c), HTML (*.html) and
so on. The various modes come with default settings, but they can
be overridden. One of the key benefits is that the mode system pulls
in file-type-specific syntax highlighting. Other options are available
for the editor’s layout. As you can see in the screenshots for this article,
I tend to run jEdit with two buffers open, split vertically and with
line-numbering enabled. The ability to look at the beginning and end
of file at the same time, especially source code, is invaluable.

You can use jEdit in a great number of ways. Watching me
enter text, although it has its moments, is not terribly inspiring.
So to keep things interesting, here I demonstrate some of the

plugins I have found useful. Plugins are code that scratches an
itch. The base jEdit program does a lot, but it does not cover the
universe that is text editing, or other chores for that matter.

jEdit has a macro system (not covered in this article), so you
can whip up your own solutions to problems or scope out the
plugins available and not re-invent the wheel. So, before getting
into the plugins themselves, here’s an overlook at the plugin system
itself. They can be found at plugins.jedit.org or via the Plugins
item on the menu bar. Click on the Plugin Manager item and then
the Install tab for a list of available plugins. Clicking on an item
shows a description at the bottom of the page. Check the box of
any plugin(s) you want to install, and then click Install. If the plugin
has dependencies, they also will be installed.

So, where to start with the plugins? Let’s go from less-involved
to more-involved, beginning with one suggested to me by a
member of the Bellingham Linux User Group: WhiteSpace. It does
what it says—tracks whitespace. I have it set up to show trailing
whitespace and, additionally, to eliminate any such whitespace
when I save. I also have it show tabs and modify them according
to my jEdit soft tab setting. This setting, when enabled, converts
tabs into a defined number of spaces. WhiteSpace uses the setting
to convert preexisting tabs into spaces or vice versa. All of the
above helps when I work in Python code, keeping that pesky
whitespace in order. This also is valuable when writing for Linux
Journal, which requires that writers use spaces not tabs. See
Figure 1 for WhiteSpace in action on a Python file. From the
screenshot, you can see one way to set it up. The other way is
to go to Plugins→Plugin Options→WhiteSpace. This is how
most of the plugins work, although you will find there often
are differences in options available between the two locations.

Another plugin I use quite often is JDiff. As the name implies,

6 4 | september 2011 www.l inux journa l .com

INDEPTH

jEdit: a Text Editor and More
Getting started with this extensible GUI text editor. ADRIAN KLAVER

Figure 1. WhiteSpace Plugin Settings and at Work

http://www.linuxjournal.com
http://jedit.org
http://plugins.jedit.org

it shows the diff between files. Of course, you could use the
command line to do the same thing. The benefit of the plugin
is the graphical presentation it provides. Figure 2 shows the
dual-diff mode using this article as the files. From here, you
can create a diff output. You also can walk through the diffs
and apply them from one side to another.

The JDiff plugin has a dockable component that allows you to
drill down into the lines of the files for differences (Figure 3). In the
dual-diff screenshot (Figure 2), you can see another plugin at work,
VoxSpell. The underlining is the spell-checker at work. If you look at
the file, you can see that plugin/plugins go from being underlined
to not underlined. I right-clicked on the words and added them to
the dictionary as acceptable, at least for the purposes of this article.
Note that VoxSpell has a dependency on the Spell Check plugin. It
also uses quite a bit of memory, so that may be an issue.

Next is a chicken-and-egg problem. I ran across a reference to
the SQL plugin for jEdit. In the course of installing it, I found it

Figure 3. JDiff Dockable Showing Line Differences

Figure 2. JDiff Plugin in Dual-Diff Mode

Advertiser Index

ATTENTION ADVERTISERS

December 2011 Issue #212 Deadlines
Space Close: September 26; Material Close: October 4

Theme: Readers’ Choice

BONUS DISTRIBUTIONS:
ApacheCon, USENIX LISA, SuperComputing

Contact Joseph Krack, +1-713-344-1956 ext. 118,
joseph@linuxjournal.com

Advertiser URL Page #

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

1&1 INTERNET, INC. www.oneandone.com 1

ABERDEEN, LLC www.aberdeeninc.com C3

ARCHIE MCPHEE www.mcphee.com 79

BZ MEDIA www.hackerhalted.com/2011 49

CPANEL www.bootcamp.cpanel.net 59

DEBIAN CONFERENCE debconf11.debconf.org 69

DIGI-KEY CORPORATION www.digi-key.com 79

EMAC, INC. www.emacinc.com 39

EMPERORLINUX www.emperorlinux.com 47

FUDUNTU www.fuduntu.org 79

GENSTOR SYSTEMS, INC. www.genstor.com 25

IXSYSTEMS, INC. www.ixsystems.com C2, 3

LINODE, LLC www.linode.com 33

LINUX JOURNAL STORE www.linuxjournalstore.com 75

LOGIC SUPPLY, INC. www.logicsupply.com 31, 57

LULLABOT doitwithdrupal.com 12, 13

MICROWAY, INC. www.microway.com C4, 5

MIKRO TIK www.routerboard.com 7

RACKMOUNTPRO www.rackmountpro.com 23

RENDEK ONLINE MEDIA linuxcareer.com 9

SAINT ARNOLD BREWING COMPANY www.saintarnold.com 79

SILICON MECHANICS www.siliconmechanics.com 18, 19, 43

SOFTWARE FREEDOM INTERNATIONAL www.softwarefreedomday.org 55

TECHNOLOGIC SYSTEMS www.embeddedx86.com 61

USENIX ASSOCIATION www.usenix.org/lisa11/lj 67

www. l inux journa l .com september 2011 | 6 5

http://www.linuxjournal.com/buyersguide
http://www.oneandone.com
http://www.aberdeeninc.com
http://www.mcphee.com
http://www.hackerhalted.com/2011
http://www.bootcamp.cpanel.net
http://www.digi-key.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.fuduntu.org
http://www.genstor.com
http://www.ixsystems.com
http://www.linode.com
http://www.linuxjournalstore.com
http://www.logicsupply.com
http://www.microway.com
http://www.routerboard.com
http://www.rackmountpro.com
http://www.saintarnold.com
http://www.siliconmechanics.com
http://www.softwarefreedomday.org
http://www.embeddedx86.com
http://www.usenix.org/lisa11/lj
mailto:joseph@linuxjournal.com
http://www.linuxjournal.com
http://debconf11.debconf.org
http://doitwithdrupal.com
http://linuxcareer.com
http://debconf11.debconf.org

6 6 | september 2011 www.l inux journa l .com

had a dependency on the Project Viewer plugin, which meant I
had to learn how to use Project Viewer in order to use the SQL
plugin. It turns out that was a good thing. In fact, this article
was written using Project Viewer. First, I will cover the SQL plugin
and later expand on the Project Viewer plugin.

SQL allows you to work with SQL databases from within the
editor. Setting things up to use the plugin is a two-step process.
First, you need to do the general setup in the SQL options dialog.
Go to the menu, then Plugins→Plugins Options→SQL. Go to
the JDBC page and use the Add Element button to indicate the
path(s) to the JDBC drivers you want to make known to the
program. At the time of this writing, SQL can work with Oracle,
MySQL, PostgreSQL, Firebird, DB2, Progress, MS SQL Server 2000,
Sybase and Teradata, assuming you have the requisite JDBC
drivers. This previous step “registers” the database so it can be
used in the next step.

The next step is to configure a specific database (or maybe
more than one) with a project. This is where Project Viewer
comes in. You use it to create the project (more detail on that
later). For now, I will use the project that is this article. From the
project pane, right-click on the project name and select proper-
ties. This will lead to a series of dialogs that allow you to fill in
the needed information (Figure 4). In this case, I am using the

Pagila demo database for Postgres. From a jEdit buffer, you now
have access to the database (Figure 5). There is quite a bit going
on there, so let’s take it a step at a time.

Just above the buffers is the SQL toolbar. First, above the
left buffer is a Database: drop-down list with the previously
configured database selected. To the right of that are four
buttons: the first is Execute selection, the second is Execute
buffer, the third is Load object, and the last is Repeat last
query. To the right of the last button is the Preprocessors drop-
down. For this example, I am using the Variable substitution
preprocessor. This can be seen in the “actor_id > ?” expres-
sion in the SQL statement in the right buffer. (As a side note,
notice the SQL syntax highlighting prompted by the use of the
*.sql extension.) To continue, I have selected the statement I
want to run and then clicked the Execute selection button.
Because I have variable substitution in force, an input box was
presented (not shown) for me to enter the value for actor_id,
in this case 35. The result is presented in a separate window.
From the result set, it is possible to save the data as CSV or
tab format or as INSERT statements. You also can show/hide
columns. Additionally, it’s possible to run multiple statements
at once (Figure 6). This is a somewhat contrived example, but
it does show what’s possible. The previous feature allows me

INDEPTH

Figure 4. Adding SQL Server to a Project

Figure 7. SqlVFS, Database as a Filesystem

Figure 6. SQL Plugin Running Multiple Statements

Figure 5. SQL Plugin Returning a Result Set

http://www.linuxjournal.com

25TH LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE
SPONSORED BY

IN COOPERATION
WITH LOPSA and SNIA

Save the Date!

December 4—9, 2011, Boston, MA

6 days of training on topics
including:

• Virtualization

• Security

• Configuration Management

• And more!

Come to LISA ’11 for training and face time with experts in the
sysadmin community.

The theme for LISA ’11 is ’’DevOps: New Challenges, Proven Values.”

• Invited Talks

• Paper Presentations

• Guru Is In Sessions
• Practice and
 Experience Reports

• Vendor Exhibition
• Workshops
• Posters and WiPs

Plus a 3-day Technical Program:

LISA ’11 will feature:

Find out more at www.usenix.org/lisa11/lj

http://www.usenix.org/lisa11/lj
http://www.usenix.org/lisa11/lj

6 8 | september 2011 www.l inux journa l .com

INDEPTH

to create database DDL files and run them from within
the editor.

The last feature is SqlVFS (Sql Virtual File System). This
allows you to browse the selected database as a filesystem.
To get there, go to File→Open→Commands→Plugins→Show
databases. Figure 7 shows what you get. Note that although
Data says 0 bytes, double-clicking on it gives a result set from
the table.

Project Viewer is a plugin to make handling a group of
related files (a project) easier. For demonstration purposes,
I’m using the files that make up this article. Project Viewer
creates a docked button below the menu bar. Click it, and
a drop-down appears with All Projects listed. Click this,
and a window opens. Right-click on All Projects, and select
Add project, and you get another window (Figure 8) to enter
the required information. Click OK to create the project.
Project Viewer then takes you to that project and puts up
a prompt about importing files into the project. By default,
it imports everything below the root directory.

At this point, the group of files is bound together as a
project. The benefit is that Project Viewer keeps track of their
state and allows you to return to that state at a later time.
Note that it’s possible to add other directories/files to the
project later. Simply right-click on the project name, select
Add files and navigate to the desired location(s). You can
add new files from the existing directory in two ways: one
is manual and the other automatic. The manual option is to
right-click the project name and select Re-import files. The
automatic option is to open the project name context menu,
select Properties→Auto Reimport and enable it with a time
parameter. Figure 9 shows the visual indicators as to the status
of files, where underlining represents open files and color
indicates type of files.

One really handy feature is the Compact View of a project.
This is enabled in the General Options of the Project Viewer
plugin options. It presents a flattened view of a directory

structure. This article does not really have the directory depth
to illustrate the benefit, so take a look at a screenshot from
another project (Figure 10). Each line takes you directly to a
directory. Also of note is the Working Files tab in the project
window. This groups all your current open files together,
which is handy in a large project.

Some other features include archiving the project files in
a JAR file and searching in the project or project subdirectory
files for a string. The ability to consolidate all of the files related
to a project in a single interface is something I’ve come to
appreciate even more as time passes. Walking through a
Project Viewer directory tree renaming/moving/deleting files
while looking at the actual files is priceless.

What I have presented above barely scratches the surface
of what is possible with jEdit. It has a macro facility that I have
not even started to explore. The most important part of jEdit,
to me, is that it lets me get work done without getting in my
way. Furthermore, it makes that work easier, and I hope you
find it useful also.�

Adrian Klaver works with computers, and when that proves frustrating, he pushes wheelbarrows
of heavy stuff around to remind himself that maybe computers are not so bad after all.

Figure 8. Setting Up a Project Using Project Viewer Figure 9. Files in Project Viewer

Figure 10. Project Viewer Compact View

http://www.linuxjournal.com

http://debconf11.debconf.org
http://debconf11.debconf.org

Perl has been around for more than 20 years. During that time,
it has received its share of both praise and criticism, and lots of
misconceptions surround it. Much of this stems from long-outdated
notions of what Perl used to be, but have nothing to do with
what Perl actually is today.

Perl hasn’t been standing still. It’s been growing continuously
and evolving, and that growth has accelerated dramatically in the
past few years. Moose is one of the technologies at the heart of
this “Perl Renaissance”, which also includes other exciting projects
that have emerged, such as Catalyst and DBIx::Class.

Moose is essentially a language extension for Perl 5 that
provides a modern, elegant, fully featured object system. I say
“language extension”, but Moose is written in pure Perl, and as
you’ll see, its syntax is still normal Perl. You don’t need to patch
Perl itself to use Moose; under the hood, it’s just Perl 5.

Because Moose is still just Perl 5, it’s fully compatible with all
of those wonderful modules on CPAN, regardless of whether they
are written in Moose (and most aren’t, as CPAN has been around
for so long, and Moose is relatively new).

For me, this is still the single biggest reason to choose Perl.
Whatever you are trying to accomplish, chances are, there already
is a refined module for it on CPAN. This usually means dramatic
cuts in total development time, because someone else already has
written a lot of your program for you.

And now, with all the modern object-oriented features Moose
brings to Perl, you get to have your cake and eat it too.

In this article, I provide an introduction to object-oriented
programming in Moose and cover some of Moose’s core features
with useful examples. To get the most out of this article, you
already should be familiar with object-oriented programming
concepts, such as classes, objects, methods, attributes, con-
struction and inheritance.

You also need to know Perl—at least the fundamentals. If you
don’t know Perl, learning it is not very hard to do. At the end of
the day, it’s just syntax. The good news is you don’t need to
master Perl by any stretch to start using Moose.

Perl does have its quirks, and Moose doesn’t make them all
totally go away (and you wouldn’t want them all to go away,
because a lot of them are really useful). The most important
concepts to understand are how Perl references work (the

“perlreftut” tutorial is a great place to start—see Resources), and
also the basics of working with Scalars, Arrays and Hashes. Also,
learn what the fat comma is (=>) if you aren’t already familiar
with it. Moose makes heavy use of it as an idiom. It’s actually not
that scary; it’s interchangeable with the normal comma (,).

Most of the rest of it you can learn as you go. Normal language
stuff like loops, conditionals and operators aren’t all that different
in Perl than any other language. So give it a shot. I think you’ll
find it’s well worth the investment.

Getting Moose
Chances are you already have a distribution of Perl installed on
your system. You at least should have Perl 5.8, but preferably 5.10
or 5.12. Installing Moose from CPAN is an easy task; simply run
the following command:

cpan Moose

This should download and install Moose for you, as well as all
of Moose’s dependencies.

Object-Oriented Perl (the Old Way)
Even though Perl has had object-oriented features for a long time,
it was not originally designed—syntactically—as an object-oriented
language. This is more about the API provided to the programmer
than it is about the underlying technical design of Perl itself.

Perl 5 provides a lean environment with the fundamental
features and hooks needed for object-oriented programming,
but then leaves most of the details (such as setting up object
constructors, implementing attributes and handling validation)
to you. As a result, the “right way” to go about implementing
these concepts is open to interpretation.

The fundamental feature utilized by Perl to support objects is
the “blessed” reference. This is like the flux capacitor of objects in
Perl. Blessing simply associates a normal reference (usually a Hash
reference) with a class. The blessed reference then becomes the
“object instance”, and its referent is used as the container to store
the object’s data.

The class name is the same thing as the package name, which
is nothing more than the namespace in which subroutines and

7 0 | september 2011 www.l inux journa l .com

INDEPTH

Moose
Write powerful object-oriented code in a modern and consistent style—in Perl.
HENRY VAN STYN

What about Perl 6?
A lot of the features in Moose were inspired by Perl 6. Perl 6 still is being developed actively, and I believe that when it’s
finally released for production use, it won’t disappoint. The fact is Perl 5 is solid, proven and fast, so there is no reason to
rush Perl 6. It is better that the developers take the time to do it really right, which is exactly what they’re doing.

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 7 1

variables are defined. The subroutines defined in the given
package namespace become the methods of the class and
can be called on the object reference.

All object-oriented languages have to do something along
these lines to implement objects under the hood. Other languages
just don’t impose so many of the low-level details on the programmer
as in pure Perl.

Here is an example of a simple class in old-school Perl 5 OO:

package MyApp::Rifle;

use strict;

sub new {

my ($class, %opts) = @_;

$opts{rounds} = 0 unless ($opts{rounds});

my $self = bless({}, $class);

$self->rounds($opts{rounds});

return $self;

}

sub rounds {

my ($self, $rounds) = @_;

$self->{_rounds} = $rounds if (defined $rounds);

return $self->{_rounds};

}

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

print "bang!\n";

$self->rounds($self->rounds - 1);

}

1;

Save the above class definition into a file named MyApp/Rifle.pm
within one of your Perl’s include directories, and then you can use
it in a Perl program like this:

use MyApp::Rifle;

use strict;

my $rifle = MyApp::Rifle->new(rounds => 5);

print "There are " . $rifle->rounds . " rounds in the rifle\n";

$rifle->fire;

print "Now there are " . $rifle->rounds . " rounds in the rifle\n";

Moose Sugar
Moose is really nothing more than syntactic “sugar” that auto-
matically takes care of the boiler-plate tedium and low-level details
of implementing objects automatically. This is possible because of
Perl’s powerful introspection capabilities—Moose dynamically
manipulates the class definition at compile time just as if it had
been written that way.

The previous class could be implemented like this with Moose:

package MyApp::Rifle;

use Moose;

has 'rounds' => (is => 'rw', isa => 'Int', default => 0);

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

print "bang!\n";

$self->rounds($self->rounds - 1);

}

1;

Not only is this code much shorter, cleaner and easier to read,
but it is doing all the things the non-Moose class was doing and
more. First, Moose is automatically creating the “new” constructor
method behind the scenes. It is also automatically setting up
“rounds” as an attribute (aka object variable), which Moose
understands as a distinct concept.

Pure Perl has no such understanding; if you want “attributes”,
you have to implement them yourself by writing accessor methods
by hand and deciding how they should work (the non-Moose
version above illustrates only one of many possible approaches).

Moose, on the other hand, provides a refined, fully integrated
object attribute paradigm. It sets up the accessor methods, handles
the data storage and retrieval, and automatically configures
the constructor to initialize attributes optionally with supplied
parameters—and that is just scratching the surface!

One of the problems with the non-Moose version of our class
is that there is no validation for “rounds”. For example, nothing
stops us from doing this:

my $rifle = MyApp::Rifle->new(rounds => 'foo');

This is one of the areas where Moose really shines; it provides
a complete Type system that is very straightforward to use. In the
Moose version, the option isa => 'Int' sets up the rounds
attribute with a type constraint that automatically will throw an
exception (with a meaningful message) if you try to set the value
to anything that is not a valid integer. This would stop you from
setting rounds to 'foo' because it’s not an integer, it’s a string.

This illustrates an important point about Moose’s design and
approach. Its syntax is declarative rather than imperative. This
means you just need to specify what you want it to do instead of
how it needs to do it. This is in sharp contrast to the traditional
Perl 5 OO style, where that is exactly what you would have to

Moose is really nothing more than
syntactic “sugar” that automatically
takes care of the boiler-plate tedium
and low-level details of implementing
objects automatically.

7 2 | september 2011 www.l inux journa l .com

do—add additional lines of code in the accessor method to test
the value for validity and handle the result.

The syntax isa => 'Int' doesn’t provide any insight on
how Moose will go about checking and enforcing the type
constraint. And that’s the whole point—you don’t care. But,
you can rest assured it will do it in a far more thorough and
robust manner than anything you’d want to waste time on
doing yourself.

More about Attributes
You declare attributes in Moose with the “has” function. This
consists of a unique attribute name, followed by a list of named
options (key/values). Although it looks and behaves like a built-in
language keyword, it is really just a function call. Its documented
syntax is just idiomatic for the purpose of code readability (it’s a
fancy way to pass an argument list).

Moose provides all sorts of options that define the behavior of
a given attribute, including setup of accessors, data types, initial-
ization and event hooks. The simplest attribute is just an object
variable that is set up as either read-write (rw) or read-only (ro)
with the “is” option:

has 'first_name' => (is => 'rw');

The is option tells Moose to set up the accessor method,
which is what you use to get and set the attribute’s value. You
set the value of an attribute by passing a single argument to
the accessor (such as $obj->first_name('Fred')), and you
get the current value by calling the accessor with no arguments
($obj->first_name). Setting the value is only allowed if the
attribute “is” => “rw”. If it’s “ro”, and you try to set its value
through the accessor an exception will be thrown.

This is the core of the attribute paradigm, but lots of other options
provide useful features. Here are a few of the noteworthy ones:

� is: ro or rw, creates either a read-only or read-write
accessor method.

� isa: string representing an optional type constraint.

� default: the default value of the attribute.

� builder: alternative to default—name of a method that will
generate the default.

� lazy: if true, the attribute is not initialized until it’s used.

� required: if true, attribute value must be provided to
constructor or have default/builder.

The builder option lets you specify a method to use to popu-
late the attribute’s default value. A builder is a normal method
defined within the class, and its return value is used to set the
attribute’s initial value. If the builder needs to access other
attributes within the object, the attribute must be lazy (to
prevent it from potentially being populated before the other
attributes it depends on).

Because this is such a common scenario, for convenience,
Moose provides the “lazy_build” attribute option that automatically
sets the lazy option and sets the builder to _build_name (such
as _build_first_name for an attribute named first_name).
For example:

has 'first_name' => (is => 'ro', lazy_build => 1);

sub _build_first_name {

my $self = shift;

return $self->some_lookup('some data');

}

Attributes Containing Objects
So far, I’ve talked only about attributes containing simple scalars.
Attributes can contain other types of values as well, including
references and other objects. For example, you could add a
DateTime attribute to your MyApp::Rifle class to keep track of
the last time “fire” was called:

package MyApp::Rifle;

use Moose;

use DateTime;

has 'rounds' => (is => 'rw', isa => 'Int', default => 0);

has 'fired_dt' => (is => 'rw', isa => 'DateTime');

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

my $dt = DateTime->now(time_zone => 'local');

$self->fired_dt($dt);

print "bang!\n";

print "fired at " . $self->fired_dt->datetime . "\n";

$self->rounds($self->rounds - 1);

}

1;

This is fairly straightforward. I’m creating a new DateTime
object and storing it in my fired_dt attribute. Then, I can call
methods on this object, such as the datetime method, which
returns a friendly string representing the date and time.

Delegations
Alternatively, you could utilize Moose’s delegation feature when
you set up the fired_dt attribute, like this:

has 'fired_dt' => (

is => 'rw',

isa => 'DateTime',

handles => {

last_fired => 'datetime'

}

);

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 7 3

This will set up another accessor method named last_fired and
map it to the datetime method of the attribute. This makes the
invocations of $self->last_fired and $self->fired_dt->datetime
equivalent. This is worthwhile because it allows you to keep your
API simpler.

Types
Moose provides its own type system for enforcing constraints on
the value to which an attribute can be set. As I mentioned earlier,
type constraints are set with the isa attribute option.

Moose provides a built-in hierarchy of named types for general-
purpose use. For example, Int is a subtype of Num, and Num is a
subtype of Str. The value 'foo' would pass Str but not Num or Int;
3.4 would pass Str and Num but not Int, and 7 would pass all of
Str, Num and Int.

There also are certain built-in types that can be “parameterized”,
such as ArrayRef (a reference to an array). This lets you not only
require an attribute to contain an ArrayRef, but also set type
constraints on the values that ArrayRef can contain. For example,
setting isa => 'ArrayRef[Int]' requires an ArrayRef of
Ints. These can be nested multiple levels deep, such as
'ArrayRef[HashRef[Str]]' and so on.

Another special parameterized type is Maybe, which allows a
value to be undef. For example, 'Maybe[Num]' means the value is
either undef or a Num.

You also can use type “unions”. For example, 'Bool | Ref'
means either Bool or Ref.

If the built-in types aren’t sufficient for your needs, you can
define your own subtypes to do any kind of custom validation you
want. The Moose::Util::TypeConstraints documentation provides
details on creating subtypes, as well as a complete listing of the
built-in types that are available (see Resources).

Finally, instead of specifying the name of a defined type, you
can specify a class name, which will require an object of that class
type (such as in our DateTime attribute example). All of these
concepts can be intermixed for maximum flexibility. So, for example,
if you set isa => 'ArrayRef[MyApp::Rifle]', it would require
an ArrayRef of MyApp::Rifle objects.

Inheritance
Subclassing is relatively painless in Moose. Use the extends
function to make a class a subclass of another. The subclass
inherits all the parent’s methods and attributes, and then
you can define new ones or override existing ones simply by
defining them again.

Moose also provides helpful attribute inheritance sugar that
allows you to inherit an attribute from the parent, but override
specific options in the subclass. To tell Moose to do this, prepend
the attribute name with a plus sign (+) in a “has” declaration in
the subclass. (Note: attribute options related to accessor method
names cannot be changed using this technique.)

For example, you could create a new class named
MyApp::AutomaticRifle that inherits from the MyApp::Rifle class
from the previous example:

package MyApp::AutomaticRifle;

use Moose;

extends 'MyApp::Rifle';

has '+rounds' => (default => 50);

has 'last_burst_num' => (is => 'rw', isa => 'Int');

sub burst_fire {

my ($self, $num) = @_;

$self->last_burst_num($num);

for (my $i=0; $i<$num; $i++) {

$self->fire;

}

}

1;

Here, MyApp::AutomaticRifle can do everything MyApp::Rifle
can do, but it also can “burst_fire”. Also, the default of the
rounds attribute has been changed to 50 in AutomaticRifle, but
the rest of the options for the rounds attribute still are inherited
from the parent Rifle class.

You might use MyApp::AutomaticRifle like this:

use strict;

use MyApp::AutomaticRifle;

my $rifle = MyApp::AutomaticRifle->new;

print "There are " . $rifle->rounds . " rounds in the rifle\n";

$rifle->burst_fire(35);

print "Now there are " . $rifle->rounds . " rounds in the rifle\n";

The BUILD Method
Although Moose automatically sets up the “new” constructor for
you, there still are times when you need to execute custom code
at construction. If you need to do that, define a method named
BUILD, and it will be called immediately after the object has been
constructed. Don’t create a “new” method; that will interfere with
Moose’s operation.

BUILD is also special as it relates to inheritance. Unlike
normal methods that override the parents’ methods when
redefined in subclasses, BUILD can be defined in every class
in the inheritance tree and every one will be called, in order
from parent to child.

Roles
Roles define some set of behaviors (attributes and methods) without
being full-blown classes themselves (capable of instantiation
as objects directly). Instead, Roles are “composed” into other
classes, applying the defined behaviors to those classes. Roles
are conceptually similar to “mixins” in Ruby.

Roles also can require that consuming classes have certain
methods by calling the “requires” sugar function in the Role
definition (or throw an exception).

You call the “with” sugar function to consume a Role by
name, just like you call “extends” to inherit from a regular class.

Here is an example of a simple Role that could be composed

http://www.linuxjournal.com

7 4 | september 2011 www.l inux journa l .com

into either MyApp::Rifle or MyApp::AutomaticRifle:

package MyApp::FireAll;

use strict;

use Moose::Role;

requires 'fire', 'rounds';

sub fire_all {

my $self = shift;

$self->fire while($self->rounds > 0);

}

1;

You would then add this single line to MyApp::Rifle or
MyApp::AutomaticRifle to give either class the fire_all method:

with 'MyApp::FireAll';

In the case of MyApp::AutomaticRifle, the with statement
must be called after the extends statement, because the “fire”
and “rounds” methods don’t exist within MyApp::AutomaticRifle
before that, and the Role’s requires statements would fail.

If you add the Role to MyApp::Rifle, it will be inherited by
MyApp::AutomaticRifle automatically, so there would be no need
to add it there also (although it won’t break anything if you do).

Method Modifiers
Method modifiers are one of the more powerful and flexible
features of Moose. The most common types of modifiers are
before, after and around. Before and after are really just
“hooks” to execute some code whenever a given method is
called, either before or after, as the names imply. For example,
this would print a string every time fire_all is called:

before 'fire_all' => sub {

my $self = shift;

print "Say hello to my little friend!\n";

};

The “around” modifier is quite a bit more powerful than
before and after because it actually can change the arguments

passed to, and the data returned from, the original method.
It also can programmatically decide whether even to call the
original method at all.

Around modifiers actually replace the original method, but get
passed the original method and arguments to be able to call it
within the new modifier function, but unlike before and after, this
has to be done manually in around. The basic blueprint of this is
below, which is an example of an around modifier that exactly
reproduces the original method (having no observable effect):

around 'fire_all' => sub {

my ($orig, $self, @args) = @_;

return $self->$orig(@args);

};

In an around modifier, the first argument is the method ($orig)
instead of the object reference ($self) like in normal methods.
Then, it’s up to you to call the original method ($self->$orig)
and capture its return value (or not) and then return.

Method modifiers make a great fit with Roles to define
behaviors at a fine-grained level. Let’s take a look at another
example of a Role for our MyApp::Rifle class that makes use
of method modifiers:

package MyApp::MightJam;

use Moose::Role;

use Moose::Util::TypeConstraints;

requires 'fire';

subtype 'Probability' => (

as 'Num',

where { $_ >= 0 && $_ <= 1 },

message { "$_ is not a number between 0 and 1" }

);

has 'jam_probability' => (

is => 'ro',

isa => 'Probability',

default => .01

);

sub roll_dice {

my $self = shift;

return 1 if (rand(1) < $self->jam_probability);

return 0;

}

before 'fire' => sub {

my $self = shift;

die "Jammed!!!\n" if ($self->roll_dice);

};

1;

This Role adds the random chance of “Jamming” on any
given call to “fire” depending on the probability specified in the

INDEPTH

NOTE:
The semicolons at the end of the method modifier definitions in the

examples are required. Like all the keywords provided by Moose,

the modifier sugar keywords actually are function calls and are not

subroutine definitions. The modifier definitions are all just function

calls with exactly two arguments: a string representing the name of

the method to modify and a code reference to the actual modifier.

CodeRefs are just treated syntactically as values like any other. It’s

not important to understand this fully to use method modifiers, but it

is important to remember to use the semicolons.

http://www.linuxjournal.com

www.l inux journa l .com september 2011 | 7 5

jam_probability attribute (with the default probability set to 1%). I
also illustrate here how to create a custom subtype, by defining a
new type “Probability”, which must be a number between 0 and 1.

You then could compose simple subclasses like the following:

package MyApp::CrappyRifle;

use strict;

use Moose;

extends 'MyApp::AutomaticRifle';

with 'MyApp::MightJam';

has '+jam_probability' => (default => .5);

1;

And:

package MyApp::NiceRifle;

use strict;

use Moose;

extends 'MyApp::AutomaticRifle';

with 'MyApp::MightJam';

has '+jam_probability' => (default => .001);

1;

The difference between these two is that CrappyRifle will
jam on average 5 out 10 times, and NiceRifle will only jam 1
per 1,000 times.

Learning More
This article is just meant as an introduction to Moose, and because
of space constraints, I have been able to cover only a few of its
core features.

One of the other great things about Moose, and Perl in
general, is the community and availability of documentation and
resources. The Moose Manual, available on CPAN (see Resources),
is well-written and comprehensive. There are also plenty of other
docs and information available, and the number of them is grow-
ing every day as Moose continues to gain popularity.

If you get stuck on something and can’t find the answer, try
the #moose IRC channel on irc.perl.org. Many of the top experts
are in this channel and are more than willing to help and answer
questions. Although they will expect you to RTFM and have done
your homework first, they will get you unstuck and pointed in the
right direction.

If nothing else, I hope that this article has at least piqued your
interest in modern development with Perl and Moose, and that
you can see that Perl code can, in fact, be clean, easy to read and
modern, while still being “Perlish” and powerful.

As you learn Moose, and modern Perl in general, be sure
to check out some of the other projects and modules that are
available, including Catalyst, Template::Toolkit, DBIx::Class,
Try::Tiny, Test::More and Devel::NYTProf, just to name a few.
You might be surprised what’s out there, and what is really
possible with Perl today.�

Henry Van Styn is the founder of IntelliTree Solutions, an IT consulting and software development
firm located in Cincinnati, Ohio. Henry has been developing software and solutions for more than
ten years, ranging from sophisticated Web applications to low-level network and system utilities.
He is the author of Strong Branch Linux, an in-house server distribution based on Gentoo. Henry
can be contacted at www.intellitree.com.

Resources

Moose CPAN Page: search.cpan.org/perldoc?Moose

Moose Manual: search.cpan.org/perldoc?Moose::Manual

Moose::Util::TypeConstraints Documentation:
search.cpan.org/perldoc?Moose::Util::TypeConstraints

Moose IRC Channel: #moose on irc.perl.org

perlreftut—Perl Reference Tutorial:
perldoc.perl.org/perlreftut.html

http://www.linuxjournal.com
http://www.intellitree.com
http://www.linuxjournalstore.com/products/Linux-Journal-Archive%3A-1994%252d2010.html
http://search.cpan.org/perldoc?Moose
http://search.cpan.org/perldoc?Moose::Manual
http://search.cpan.org/perldoc?Moose::Util::TypeConstraints
http://irc.perl.org
http://perldoc.perl.org/perlreftut.html

7 6 | september 2011 www.l inux journa l .com

As much as I love working with Linux and config-
uring software, one major part of being a sysadmin
that always has appealed to me is working with
actual hardware. There’s something about working
with tangible, physical servers that gives my job an
extra dimension and grounds it from what might
otherwise be a completely abstract job even further
disconnected from reality. On top of all that, when
you get a large shipment of servers, and you view
the servers at your company as your servers, there is
a similar anticipation and excitement when you
open a server box as when you open Christmas
presents at home.

This story so happens to start during the
Christmas season. We had just received our first
shipment of a completely new blade infrastructure
that we were really excited to try out. As the

resident server monkey and general minion working
under Bill’s iron fist, I was to meet up with an engi-
neer from our vendor at the data center and assist
with the installation in any way I could. It was a
big job—two completely populated blade chassis
comprising 32 blade servers, integrated SAN switches
and all the assorted power supplies and network
pass-throughs that went along with it. We budgeted
a full day of the engineer’s time to rack the new
chassis, slot the blades and make sure all hardware
was functional and up to date.

[Bill: Iron fist? I like the sound of that. Reminds
me of a mid-1970s Marvel Superhero...but I digress.
I remember this occasion. We’d just finished piloting
a VMware/Blade infrastructure at our corporate office,
and we were about to roll it out to our production
data center, on next-generation hardware. It was
an exciting time!]

I arrived at the data center a few hours before
the engineer so I could get all the boxes from shipping

and receiving and move them into our cage. If you
ever have ordered a blade chassis, you know that
everything arrives in these gigantic cardboard boxes
that incidentally were about the size of our shared
cubicle space back at the office. These boxes open
up to smaller boxes for the blade servers, chassis,
power supplies and the rest. At first things moved
smoothly. I broke down the first set of boxes, and
after a number of trips, the empty blade chassis
and the blades themselves were stacked neatly near
our cage.

The Jack in the Box
It wasn’t until I opened the last box that I realized I
was in trouble. Instead of containing a dozen large
boxes and mostly empty space, this box looked like
a failed game of Tetris. It was filled to the brim with

hundreds of tiny boxes of all shapes and sizes. The
engineer was going to be there soon, so I tried to
organize the boxes into different piles and then
filled my pushcart with swaying stacks of tiny
boxes and made trip after trip to the colocation
cage until all of its walls looked like the inside of
a brown-brick house.

[Bill: I seem to remember you sent a couple e-mails
to me along the lines of “Wow, this new stuff sure has
a lot of boxes compared to the old stuff.”]

This is probably a good point in the story to tell
you that up to this time, we normally had taken
advantage of our vendor’s integration service. We
standardized on servers with a certain amount of
RAM, CPU revision, storage and network configura-
tion that deviated from the base model, so our
vendor would take the base order model and do
the work to add CPUs, RAM and the extra parts
we wanted so that when we got a server, we could
just rack it and turn it on.

Unboxing Day
It’s Christmas time, and Kyle is about to open his new present: a
large shipment of blade servers. Find out about the extra present
his vendor left him.KYLE RANKIN

BILL CHILDERS

TALES FROM
THE SERVER ROOM

There’s something about working with tangible, physical
servers that gives my job an extra dimension and grounds
it from what might otherwise be a completely abstract job

even further disconnected from reality.

http://www.linuxjournal.com

High Performance Computing, Low Latency, Networks, Data
Centers, Cost Savings – the largest meeting of High Performance

Computing in New York in 2011.

This HPC networking opportunity will assemble 800 Wall Street IT
professionals at one time and one place in New York in September 2011.

This show will cover High Performance Computing, High Frequency
Trading, Low Latency, Networks and Switch Solutions, Data Centers,
Virtualization, Grid, Blade, Cluster, overcoming Legacy systems.

Our Show is an efficient one-day showcase and networking
opportunity.
Register in advance for the full conference program which
includes general sessions, drill down sessions, an industry luncheon,
coffee breaks, exclusive viewing times in the exhibits, and more. Save
$100. $295 in advance. $395 on site.

Don’t have time for the full Conference? Attend the free Show.
Register in advance at: www.flaggmgmt.com/hpc

Show & Conference:
Flagg Management Inc
353 Lexington Ave, NY10016
(212) 286 0333 flaggmgmt@msn.com

SAVE
THE DATE

Wall Street IT speakers and Gold Sponsors will lead drill-down sessions
in the Grand Ballroom program.

Show Hours: Mon, Sept 19 8:00 - 4:00
Conference Hours: 8:30 - 4:50

This Show is a networking opportunity for the entire IT community.

www.flaggmgmt.com/hpc

8th Annual
HIGH PERFORMANCE COMPUTING
ON WALL STREET Show and Conference
September 19, 2011 (Monday) Roosevelt Hotel, NYC
 Madison Ave and 45th St, next to Grand Central Station

2011

Global Investment
Technology

Register today online. See HPC, Low Latency, Networks, Data Centers,
Speed, Cost Savings. Wall Street markets will assemble at the 2011
HPC Sept. 19 show to see these new systems live on the show floor.

Sponsors

Visit: www.flaggmgmt.com/hpc

http://www.flaggmgmt.com/hpc
mailto:flaggmgmt@msn.com
http://www.flaggmgmt.com/hpc
http://www.flaggmgmt.com/hpc

7 8 | september 2011 www.l inux journa l .com

In this case, for some reason, we failed to
request this integration service, so not only was
I looking at the boxes for blades, chassis and
power supplies, I had hard drives, CPUs, RAM,
fiber-channel HBAs, extra NICs and even battery-
backed write caches all individually wrapped in
their own boxes. Instead of unboxing a blade and
sliding it into its slot to install it, every single blade
would need to be opened, and then each and every
component would have to be opened, removed
from its static wrap, and installed into the blade
one by one.

[Bill: I have to say here that up until this point,
the vendor always had “thrown in” the integration
service for us, and it’s something we (and by we, I
mean me) had taken for granted...until the day my
boss called the vendor and deleted this “superfluous
service” from the quote, without telling me.]

Drowning in Cardboard
When the engineer arrived, I explained the situation,
and we both realized we had a long day ahead of

us. At the beginning, we made great progress. He
opened up and racked the chassis and power sup-
plies until the point that we were ready to install
the first blade server. At that point, we agreed on
an assembly-line system where he would open up a
blade, and I, like a surgical assistant, would unwrap
and hand him each component in a certain order so
he could install it. Then, while he finished up the
blade, I would fill up the cart with empty wrappers
and boxes and roll it to the trash area, so we didn’t
drown in anti-static wrap and cardboard. After a
full-day’s work, we were able to integrate 20 out of
our 32 blades successfully.

Unfortunately, we had booked the engineer only
for one day, but he was able to shuffle appoint-
ments around and return on Friday morning of that
week to finish up. Halfway through Friday morning,
we were able to finish with the blade servers so
that they all were racked. We were ready to be
done at that point, but we were only halfway there.
We still had to install all the hard drives, integrated
network pass-throughs, fiber-channel switches and
finally, upgrade the firmware.

[Bill: I had forgotten how long that job took.
Now that you mention it though, there was an
amazing amount of cardboard generated from
that. It didn’t help that the data center didn’t allow

cardboard on the data center floor, and you had to
shuttle all that stuff back and forth.]

Late for the Party
Once we powered on the blades, it looked like we
were close to the finish line. I started packing up
all my things so I could head home early and get
dressed up for our company’s big Christmas party
later that evening. Naturally, it was at this point
that a few of the blades wouldn’t power on. After
minimal troubleshooting, we were left with just one
misbehaving blade. The engineer started the hard-
ware troubleshooting process as I watched the min-
utes tick by. I realized I had to somehow power
through Bay Area traffic, get home, put on my suit
and drive back through the traffic to the party, and
rush hour was rapidly approaching. Ultimately, we
had to open up the server, remove all of the hardware
we had added only hours before, and insert the
hardware one piece at a time until we identified a
faulty DIMM slot. Finally, we were done and I was
able to get to the party fashionably late.

I think the moral to this story is pretty clear. If
we had only gotten all of our servers integrated
ahead of time, the entire install would have taken
a fraction of the time, and any hardware problems
in the system would have been identified before
anything was shipped to me. When you have the
option, especially when it comes to large orders of
servers, get all your components integrated ahead
of time.

[Bill: The moral for me as a manager, is always
to double-check the quote for services, and make
sure that all of those are understood so they don’t
get labeled as non-essential and cut by people higher
up the food chain. I’m usually not a fan of too
many vendor services, but getting the entire system
integrated by a vendor will accelerate deployment
time by at least a couple days.]�

Kyle Rankin is a Sr. Systems Administrator in the San Francisco Bay Area
and the author of a number of books, including The Official Ubuntu Server
Book, Knoppix Hacks and Ubuntu Hacks. He is currently the president of the
North Bay Linux Users’ Group.

Bill Childers is an IT Manager in Silicon Valley, where he lives with his wife
and two children. He enjoys Linux far too much, and he probably should get
more sun from time to time. In his spare time, he does work with the Gilroy
Garlic Festival, but he does not smell like garlic.

TALES FROM THE SERVER ROOM

Instead of containing a dozen large boxes and mostly empty
space, this box looked like a failed game of Tetris.

http://www.linuxjournal.com

LIN
U

X JO
U

R
N

A
L M

A
R

K
ETP

LA
CE

www.l inux journa l .com september 2011 | 7 9

http://www.linuxjournal.com
http://www.digikey.com
http://mcphee.com
http://www.fuduntu.org
http://www.saintarnold.com

While searches for linux go down, success for Linux goes up. DOC SEARLS

Searches for the word “linux” have been
trending downward since early 2004,
according to Google (at www.google.com/
trends). Searches in mid-2011 are about
a quarter of what they were in early
2004. On the other hand, searches for
“android” more than doubled those for
“linux” by mid-2011. So, what should
we make of that?

Android is Linux-based, created by
Google for use in smartphones and other
mobile devices. According to Nielsen
(blog.nielsen.com/nielsenwire/consumer/
android-leads-u-s-in-smartphone-market-
share-and-data-usage), Android by
March 2011 was the top smartphone OS,
with a 36% market share. That’s up from
zero just several years ago. Apple’s iOS is
#2 with 33%, and RIM’s BlackBerryOS is
third with 23%. But only Apple makes
iOS-based devices, and only RIM makes
BlackBerries. There’s no limit on how many
companies can make an Android device,
which will only make the market wider.

There are downsides with Android. A
number of developers have told me the
Apple development environment is much
easier to work with, as is having a single
target device. Yet even in “How Apple
Feeds Its Army of App Makers” (in the
June 8 issue of Bloomberg Businessweek,
www.businessweek.com/magazine/
content/11_25/b4233039336374.htm),
Peter Burrows writes, “Apple hasn’t
monopolized developers’ attention.
According to a survey by market research
firm Evans Data, the percentage of develop-
ers writing apps for Android (43.5%) just
passed the share working in iOS (39.7%).”
(And there’s the fact that Android’s devel-
opment community is essentially a Google
one. This may change, but for now
Android is a one-company Linux distro.)

But the larger point holds: uses of
Linux only go up, even as searches for
the word “linux” go down. Hey, success
can get boring.

We see a similar thing happening with
Apache. Netcraft.com has been keeping
statistics on Web servers since August
1995, and Apache has been the top dog
ever since early 1996. While Microsoft Web

servers have been competitive for much
of that time, and even made some runs
against Apache, the trend for Apache
has been upward since early last year
(news.netcraft.com/archives/2011/06/07/
june-2011-web-server-survey.html#more-
4621). As of June 2011, Apache had a
64.88% share of the market.

Netcraft’s list of Most Reliable Hosting
Company Sites for May of this year also
was nearly a clean sweep for open source
as well, and for Linux in particular
(uptime.netcraft.com/perf/reports/
performance/Hosters?orderby=
epercent&tn=may_2011). Four of the
top ten were FreeBSD, five were Linux
and one was F5 Big-IP. Of the top 50, five
were Windows, the top coming in at #18.
All but one (“unknown”) of the rest were
Linux and FreeBSD. For years, Windows at
least made a showing in the top 10, but
clearly a tide has turned.

“Welcome to GandhiCon 4” was the
title of my column in the March 2003 issue
of Linux Journal (www.linuxjournal.com/
article/6755). It played on the famous
quote often attributed to Mohandas
Gandhi: “First they ignore you, then they
laugh at you, then they fight you, then you
win.” The win then was in servers. Now
Linux has been succeeding for so long, in so
many different kinds of devices and form
factors, that it hardly seems like a fight
anymore. Even the desktop, which I often
predicted (incorrectly) that Linux would win,
finally looks like it might be within reach.

As I write this (in early June), Apple
has just announced iCloud—and in the
process, demoted its computers to remote
terminal status. Google has nothing to
lose and everything to gain by playing the
same cloud game. Its strategy for that
is Chromebooks, aimed straight at pain
points for both the educational and
enterprise business markets.

Chromebooks will run Chrome OS,
which is a dedicated version of the open-
source (and Linux-based) Chromium OS,
first released by Google in November
2009. Chromebooks have rental rates:
$20 and $28 per month, respectively, for
students and businesses. Laptops from

Acer and Samsung will price in the
$350–$500 range. They’ll run the Google
suite of applications and services, and will
be managed and updated by Google. This
is what Nicholas G. Carr (in The Big Switch)
calls “utility” computing, and it’s another
reason why searches for “linux” will con-
tinue going down while uses for Linux go
up. IT departments will have less to do.

Some other interesting facts worth
noting. For “linux” searches:

� The top ten regions don’t include the
US. The top seven are all in Asia.

� The top five cities are in China, Taiwan,
Japan and India.

� English falls ninth among the top ten
languages. Czech is first, followed
by Russian, Chinese, Japanese and
Indonesian. Even Finish and Hungarian
are ahead of English.

For “android” searches:

� The top four regions are all in Asia.
In order they are Hong Kong, Taiwan,
South Korea and Singapore. Sweden is
next. The US is seventh.

� Among the top cities, the US gets
three of the top ten. Atlanta is fifth,
Los Angeles is seventh, and New York
is ninth.

� The top languages are Korean,
Indonesian, Swedish and English, in
that order.

Go to Google Trends to see how
things are changing now (that is, whenever
you read this). What you’ll see isn’t a story
of Linux’s decline in the world. Success is
established. All that changes are versions
of that success. And that number is going
up too.�

Doc Searls is Senior Editor of Linux Journal. He is also a
fellow with the Berkman Center for Internet and Society at
Harvard University and the Center for Information Technology
and Society at UC Santa Barbara.

GandhiCon 4.x

EOF

8 0 | september 2011 www.l inux journa l .com

http://www.google.com/trends
http://www.businessweek.com/magazine/content/11_25/b4233039336374.htm
http://www.linuxjournal.com/article/6755
http://www.linuxjournal.com/article/6755
http://www.linuxjournal.com
http://www.google.com/trends
http://blog.nielsen.com/nielsenwire/consumer/android-leads-u-s-in-smartphone-market-share-and-data-usage
http://blog.nielsen.com/nielsenwire/consumer/android-leads-u-s-in-smartphone-market-share-and-data-usage
http://news.netcraft.com/archives/2011/06/07/june-2011-web-server-survey.html#more-4621
http://news.netcraft.com/archives/2011/06/07/june-2011-web-server-survey.html#more-4621
http://uptime.netcraft.com/perf/reports/performance/Hosters?orderby=epercent&tn=may_2011
http://uptime.netcraft.com/perf/reports/performance/Hosters?orderby=epercent&tn=may_2011

ANYONE INTERESTED
IN SAVING MONEY?

888-297-7409
www.aberdeeninc.com/lj038

Looks like these guys are comfortable overpaying
for enterprise storage. Are You?

“Hewlett-Packard Co. agreed to buy 3Par Inc. for $2.35 billion” — Bloomberg.com

Above specific configurations obtained from the respective websites on Feb. 1, 2011. Intel, Intel Logo, Intel Inside, Intel Inside Logo, Pentium, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All trademarks are the property of their respective

owners. All rights reserved. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj038

“EMC to Buy Isilon Systems Inc. for $2.25 Billion” — Wall Street Journal

“Dell to Buy Compellent for $960 Million” — CNBC

So what “benefit” will you see by this spending spree, other than higher costs?
The AberSAN Z-Series scalable unified storage platform, featuring the Intel® Xeon® processor 5600
series, brings the simplicity of network attached storage (NAS) to the SAN environment by utilizing
the innovative ZFS file system. The AberSAN Z20 is easily found starting under $20,000.

Who gives you the best bang for the buck?
3Par Compellent Isilon Aberdeen

InServ F200 Storage Center Series 30 NL-Series AberSAN Z20

Storage Scale-Out ✓ ✓ ✓ ✓

Thin Provisioning ✓ ✓ ✓ ✓

HA Clustering ✓ ✓ ✓ ✓

VMware® Ready Certified ✓ ✓ ✓ ✓

Async / Synchronous Replication ✓ ✓ ✓ ✓

iSCSI / Fibre Channel Target ✓ ✓ iSCSI Only ✓

Unlimited Snapshots x ✓ ✓ ✓

Native Unified Storage: NFS, CiFS x x ✓ ✓

Virtualized SAN x x x ✓

Deduplication x x x ✓

Native File System none none OneFS ZFS 128-bit
RAID Level Support 5 and 6 5 and 6 Up to N+4 5, 6 and Z

Raw Array Capacity (max) 128TB 1280TB 2304TB Unlimited
Warranty 3 Years 5 Years 3 Years 5 Years

Online Configurator with Pricing Not Available Not Available Not Available Available

http://www.aberdeeninc.com/lj038
http://www.aberdeeninc.com/abpoly/abterms.htm

Cut Execution Time by >50%
with WhisperStation-GPU
Delivered ready to run new GPU-enabled applications:

WhisperStation with 4 Tesla Fermi GPUs

2U Twin2 Node with 4 Hot-Swap Motherboards
Each with 2 CPUs and 256 GB

1U Node with
2 Tesla Fermi GPUs

OctoPuter™ 4U Server with up to
8 GPUs and 144 GB memory

Microway’s Latest Servers for Dense Clustering

 4P, 1U nodes with 48 CPU cores, 512 GB and QDR InfiniBand
 2P, 1U nodes with 24 CPU cores, 2 Tesla GPUs and QDR InfiniBand
 2U Twin2 with 4 Hot-Swap MBs, each with 2 Processors + 256 GB
 1U S2050 servers with 4 Tesla Fermi GPUs

Microway Puts YOU on the Cutting Edge

Design your next custom configuration with techs who speak HPC.
Rely on our integration expertise for complete and thorough testing
of your workstations, turnkey clusters and servers. Whether you need
Linux or Windows, CUDA or OpenCL, we’ve been resolving the
complicated issues – so you don’t have to – since 1982.

Integrating the latest CPUs with NVIDIA Tesla Fermi GPUs, Microway’s
WhisperStation-GPU delivers 2x-100x the performance of standard
workstations. Providing explosive performance, yet quiet, it’s custom
designed for the power hungry applications you use. Take advantage of
existing GPU applications or enable high performance with CUDA C/C++,
PGI CUDA FORTRAN, or OpenCL compute kernels.

Nvidia Quadro for state of the art professional graphics and visualization

 Ultra-quiet fans, strategically placed baffles, and internal sound-proofing

 Up to 24 cores with the newest Intel and AMD Processors, 128 GB
memory, 80 PLUS® certified power supply, and eight hard drives

 Up to Four Tesla Fermi GPUs, each with: 448 cores, 6 GB GDDR5,
1 TFLOP single and 515 GFLOP double precision performance

 New: Microway CL-IDE™ for OpenCL programming on CPUs and GPUs

GSA Schedule
Contract Number:
GS-35F-0431N

ANSYS Mechanical
Autodesk Moldflow
 Mathematica

Simulation

MATLAB
ACUSIM AcuSolve
Tech-X GPULib

3ds Max
Bunkspeed
 Shot
Adobe CS5

Design

AMBER
GROMACS
NAMD, VMD
TeraChem

BioTech

Configure your next WhisperStation or Cluster today!
microway.com/quickquote or call 508-746-7341
Sign up for technical newsletters and special GPU promotions at microway.com/newsletter

pC4_Microway.indd 1pC4_Microway.indd 1 10/17/10 5:07:51 PM10/17/10 5:07:51 PM

http://microway.com/newsletter
http://microway.com/quickquote

