
Since 1994: The Original Magazine of the Linux Community

™

Interview
with the
Creators
of the
“Hello
World
Program”

Advanced
Vim Macro
Techniques

+
EMBEDDED

OCTOBER 2014 | ISSUE 246 | www.linuxjournal.com

HOW-TO:
Sump Pump
Monitor with
Raspberry Pi
and Python

AN
INDEPTH
LOOK
at the U-Boot
Environment
Anatomy

Use the BeagleBone Black
TO COMMAND YOUR ELECTRONIC GEAR

NETWORK
SECURITY
and SSH
What You

Need to Know

LJ246-Oct2014.indd 1 9/19/14 4:06 PM

http://www.linuxjournal.com

A CONFERENCE
EXPLORING OPEN SOURCE,
OPEN TECH AND THE OPEN
WEB IN THE ENTERPRISE.

LJ246-Oct2014.indd 2 9/17/14 4:48 PM

http://allthingsopen.org

®zStax StorCore

zStax StorCore 64

zStax StorCore 104

zStax StorCore

Achieving
Enterprise Class
Storage in the
Cloud with
Software

LJ246-Oct2014.indd 3 9/17/14 4:48 PM

http://www.siliconmechanics.com/zstax

CONTENTS OCTOBER 2014
ISSUE 246

4 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

EMBEDDED
FEATURES
56 Raspi-Sump
 Put a Raspberry Pi
 with Raspbian Linux
 to work and protect
 your basement
 against flooding.

 Al Audet

68 U-Boot
 Environment
 Variables
 Everything you need
 to know about the
 U-Boot environment.

 Sachin Verma

82 Accessing
 the IO Ports
 of the
 BeagleBone
 Black with
 Python
 With the BeagleBone
 Black, you can
 command all your
 electronic gear with
 a few lines of Python.

 Samuel Bucquet

Cover Image: © Can Stock Photo Inc. / kgtoh

LJ246-Oct2014.indd 4 9/17/14 4:48 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 5

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 395, Houston, TX 77056 USA. Subscription rate is $29.50/year. Subscriptions start with the next issue.

COLUMNS
32 Reuven M. Lerner’s
 At the Forge
 2014 Book Roundup

38 Dave Taylor’s
 Work the Shell
 Picking Out the Nouns

42 Kyle Rankin’s
 Hack and /
 Return of the Mac

46 Shawn Powers’
 The Open-Source Classroom
 This Is Why We Can’t Have Nice
 Things: SSH

110 Doc Searls’ EOF
 Learn GNU/Linux the Fun Way

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
16 UPFRONT
30 Editors’ Choice
52 New Products
113 Advertisers Index

82

56

22

ON THE COVER

LJ246-Oct2014.indd 5 9/17/14 4:48 PM

http://www.linuxjournal.com

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

President

Publisher

Associate Publisher

Director of Digital Experience

Accountant

Carlie Fairchild
publisher@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

John Grogan
john@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors

Linux Journal is published by, and is a registered trade name of,
Belltown Media, Inc.

PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
MAIL: PO Box 980985, Houston, TX 77098 USA

LINUX is a registered trademark of Linus Torvalds.

LJ246-Oct2014.indd 6 9/17/14 4:48 PM

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:john@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/subscribe

Instant Access to Premium
Online Drupal Training

Instant access to hundreds of hours of Drupal

training with new videos added every week!

Learn from industry experts with real world

Learn on the go wherever you are with apps

for iOS, Android & Roku

We also offer group accounts. Give your

whole team access at a discounted rate!

Learn about our latest video releases and

Go to http://drupalize.me and
get Drupalized today!

LJ246-Oct2014.indd 7 9/17/14 4:48 PM

http://drupalize.me

Current_Issue.tar.gz

SHAWN POWERS

8 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Linux Inside!
Linux Inside!
L inux inside, Linux inside, every

single one of us has Linux
inside! (Sung to the tune

of “Devil Inside” by INXS—you’re
welcome for the ear worm, I can’t get
it out of my head either.)

In the world of embedded systems,
systems-on-chip and single-purpose
hardware solutions, it’s easier to list
the products that don’t have Linux as
their operating system! This month, we
focus on putting Linux into tiny places,
and that means everything from the
tiniest “Android Wear” watch to the
ubiquitous Raspberry Pi. As Linux users,
we’ve been sneaking open source into
server rooms for decades. Now we get
to sneak it in everywhere!

This issue starts with Reuven M.
Lerner discussing the books he’s
embedded into his bookshelf this year.
Month after month, Reuven gives us
incredible tips, techniques and training

for programmers and neophytes like
myself. Now we get a glimpse at some
of the books he uses for learning
himself. Whether you want advice on
language books, database books or
even some information on freelancing,
Reuven shares his stash. If you’re
looking for your next book to read
(after this issue of Linux Journal, of
course), check out his column.

Dave Taylor begins a new adventure,
this time attempting to parse the
written word and grammar with
scripts. It’s always fascinating to see
tasks that are simple for humans
attempted by programs and logic.
Dave’s column is more than just
instructive, it will force you to think as
well! Speaking of thinking, the title of
Kyle Rankin’s column this month will
make you think hard. “Return of the
Mac” seems like the exact opposite
of what Kyle would write about. And,
of course, he doesn’t talk about an
Apple product. I won’t give it away,
but don’t worry, Kyle hasn’t given up
the command line for the GUI world

VIDEO:
Shawn Powers runs
through the latest issue.

LJ246-Oct2014.indd 8 9/17/14 4:48 PM

http://www.linuxjournal.com
http://linuxjournal.com/246-video

CURRENT_ISSUE.TAR.GZ

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 9

of Apple—in fact, quite the opposite.
I put on my grey hat this month and

talk a little bit about SSH. “Hacking” is
a word that is used to describe far too
many things, most of which I think are
more accurately described as, “Using
Things Like They Were Made To Be
Used”, but that’s not as catchy for a
movie title. Firewalls are important
security tools for any network, but
it’s important to realize that firewalls
can’t be your only defense against
access. This month I show you why. Do
I “hack” the firewall? I don’t think so,
but for someone unfamiliar with SSH
tunneling, it sure looks like it.

Al Audet shows how to embed Linux
into a hole in the ground this month.
More specifically, he explains how he
uses a Raspberry Pi device to monitor
the sump hole in his basement to
avoid flooding. Sump pumps are
amazing devices—until they’re not.
Al shares not only his method, but
also his scripts for controlling a sensor
that warns him if the water level rises
too much. It’s the perfect example of
solving difficult problems with Linux.
Sachin Verma goes even deeper (pun
intended) and shows how to deal
with the bootloader on embedded
Linux systems. U-Boot is commonly
used in such environments, and along
with booting the kernel, you can
pass environment variables as well.
Sachin walks through the boot process

and teaches how to customize the
information passed on at boot.

Finally, Samuel Bucquet gives a crash
course in accessing the BeagleBone
Black’s I/O ports via Python. Although
the Raspberry Pi and BeagleBone
Black are both excellent platforms for
embedded projects, the BBB’s sheer
number of I/O options make it incredible
for projects with a large number of
sensor needs. With Samuel’s help, you
can access those ports with the friendly
and familiar Python language.

The Embedded issue of Linux
Journal always makes me want to
build something. Now that BirdCam
is off-line (the battery in my old
Android phone blew up—it was ugly),
maybe it’s time to start over from
scratch. I’m sure there are some great
weatherproof IP cameras out there I
could use to get better shots of the
winter birds. Either way, this is a great
issue, and we had a great time putting
together for you. Whether you want
tech tips, programming ideas or just
my silly insight on the best new apps
for your phone, the October issue of
Linux Journal aims to please!

Shawn Powers is the Associate Editor for Linux Journal.
He’s also the Gadget Guy for LinuxJournal.com, and he has

an interesting collection of vintage Garfield coffee mugs.

Don’t let his silly hairdo fool you, he’s a pretty ordinary guy

and can be reached via e-mail at shawn@linuxjournal.com.

Or, swing by the #linuxjournal IRC channel on Freenode.net.

LJ246-Oct2014.indd 9 9/17/14 4:48 PM

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com
http://Freenode.net
http://LinuxJournal.com

letters

10 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Two-Column Format
I love being able to read Linux Journal
on my laptop, but I can’t stand the
two-column format that is used in the
PDF version. I need to magnify the text
due to poor eyesight, and the two-
column format forces me to scroll down
and then up constantly in order to read
all the text on a page. A one-column
format for the PDF would make for
much smoother reading and navigation.

Please don’t suggest I read the EPUB
version. EPUB is a terrible format.
—Scott Randby

It’s tough to come up with a perfect
format. The PDF version is designed
to look like the traditional magazine

version, and it looks best (I think) on
a large format color tablet. If you
look back, the older PDF versions
were even more difficult to read on
a computer screen, as the layout
mirrored the paper version exactly.

I know you said you don’t like the
EPUB version, but I’m not sure
whether you’ve tried reading the
EPUB on a computer screen or only
on eReaders. Using something like
Readium (http://www.readium.org),
you can change the font size and read
the text in a single column. Apart
from that, I’m not sure what else to
suggest. I’m not sure what you dislike
about the EPUB version, so I don’t
know how to help there if Readium
doesn’t work for you.—Shawn Powers

Subscription Question
I carry two tablets, one iOS and the
other Android. If I subscribe on my
iPad to Linux Journal, can I also read
it on my Nexus 7?
—Greg

If you subscribe directly through Linux
Journal, we will send you monthly
notices with download links for .epub,
.pdf, .mobi and browser versions of
the magazine. You also will get access

LJ246-Oct2014.indd 10 9/17/14 4:48 PM

http://www.linuxjournal.com
http://www.readium.org

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 11

[LETTERS]

through our Android or iOS apps.

We want our subscribers to be able
to access the issues in any format
that is available.

If you order through Google Play or
iTunes, you will receive only those
versions. Both have subscription
options, but they are pretty much a
closed environment.

We want you to be able to access
the magazine any way you choose.
If you subscribed through Google
Play or iTunes, please send me your
transaction ID, e-mail address and
full mailing address (we use that to
encrypt the files) to gm@linuxjournal.com.
Once I have that, I can add you to our
subscription database as well.

The best deal I have for Linux Journal
directly is https://www.pubservice.com/
Subnew2page.aspx?PC=LJ&PK=M48RENN.

I hope that helps. Sorry that
it’s more complicated than we
would like, but once iTunes and
Android closed their subscription
environments, it became impossible
to extract those orders and
automatically add them to our database
so readers can receive every format we
have.—Mark Irgang, Publisher

Leap Years in Bash—or Anywhere
Regarding the detection of leap years
in Dave Taylor’s recent articles, there
is a very simple way to determine
whether a year is a leap year: if it’s
divisible by 4 and not 100. So a simple
modulus function will suffice:

YEAR=$(date "+%Y")

if [$((${YEAR} % 4)) -eq 0] && [$((${YEAR} % 100)) -ne 0]

then

echo 'Leap'

else

echo 'No Leap';

fi

For the real geek, during a century, an
integer binary number can be ANDed
with 0x03, and the result is represented
by the modulus of 4. If 0, the leap year.
—Jacques Amar

Dave Taylor replies: There are
lots of ways to calculate it, for
sure. I l ike my latest: just type
date -d 12/31/YEAR +%j, and
see if it’s 365 or 366.

Counting Days
Dave Taylor’s Work the Shell column is
one of my favorites in Linux Journal.
However, while reading the August
2014 issue, I thought “don’t re-invent
the wheel.” In astronomy, getting the
time interval (in days and fractions

LJ246-Oct2014.indd 11 9/17/14 4:48 PM

mailto:gm@linuxjournal.com
http://www.linuxjournal.com
https://www.pubservice.com/Subnew2page.aspx?PC=LJ&PK=M48RENN

12 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

thereof) between any dates is a daily
bread and butter issue. The solution
is the Julian Date, a consecutive
count of days from centuries ago into
the future. It is a relatively simple
algorithm, although not intuitive. See,
for example, http://aa.usno.navy.mil/
faq/docs/JD_Formula.php.

Yes, the algorithm is originally
coded up in FORTRAN (what else
was there in the science world
some decades ago), and we still
use it. A conversion to a shell
script or any other programming
language should be easy.
—Norbert Zacharias

Dave Taylor responds: Holy cow,
that’s awesome stuff, Norbert! I
haven’t dabbled in FORTRAN since the
job I had while I was an undergrad
at UCSD back in the early 1980s. As
it happens, I really enjoyed FORTRAN
and enjoyed reading the code too.

How that formula works, however, is a
bit puzzling to me, as there are some
rather mysterious constants that don’t
seem like they should work. Still, it’d
be easy enough to recode as a shell
script—in fact, the FORTRAN code
is almost workable as is with just a
few tweaks. My only comment: the
lack of error checking makes me get

a bit anxious with such complicated
formulae in the mix.

Thanks for pointing that out. Good stuff!

Norbert responds: Thanks for
responding to my earlier e-mail. Those
constants are determined to “make
it work”, accounting for the fact that
different months have a different num-
ber of days (even going over centuries)
and so on. It is hard to understand the
algorithm; however, the result is a fast,
accurate algorithm. Testing was done
on sample data, and after verification,
no further tests are needed as part of
the algorithm. Of course, one needs to
be very careful when cutting/pasting
lines in order not to screw it up.

PS. We still code in FORTRAN partly
because we inherited a large body of
code in our area of research and partly
because the code is really easy to write
and efficient—it pays off when dealing
with billions of star positions. It even
still can be done on a modern laptop!

Suggestion
I am working for a telecom vendor
on OSS products. Lately, I’ve been
working on NFV-related meetings
and workgroups. There is a lot
going with NFV all around telco
operators, and almost all will run

[LETTERS]

LJ246-Oct2014.indd 12 9/17/14 4:48 PM

http://www.linuxjournal.com
http://aa.usno.navy.mil/faq/docs/JD_Formula.php
http://aa.usno.navy.mil/faq/docs/JD_Formula.php

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 13

[LETTERS]

PHOTO OF THE MONTH
I’m writing to share this magnificent Linux laptop, which I believe is one

Johannes from Wejp.k.vu, I’m able to host my Web site on this beauty.
—Matias

LJ246-Oct2014.indd 13 9/17/14 4:49 PM

http://www.linuxjournal.com

[LETTERS]

14 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

PHOTO OF THE MONTH
Remember, send your Linux-related photos to
ljeditor@linuxjournal.com!

WRITE LJ A LETTER
We love hearing from our readers. Please
send us your comments and feedback via
http://www.linuxjournal.com/contact.

At Your Service
SUBSCRIPTIONS: Linux Journal is available
in a variety of digital formats, including PDF,
.epub, .mobi and an on-line digital edition,
as well as apps for iOS and Android devices.
Renewing your subscription, changing your
e-mail address for issue delivery, paying your
invoice, viewing your account details or other
subscription inquiries can be done instantly
on-line: http://www.linuxjournal.com/subs.
E-mail us at subs@linuxjournal.com or reach
us via postal mail at Linux Journal, PO Box
980985, Houston, TX 77098 USA. Please
remember to include your complete name
and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE:
Your monthly download notifications
will have links to the various formats
and to the digital archive. To access the
digital archive at any time, log in at
http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your
letters and encourage you to submit them
at http://www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,
Houston, TX 77098 USA. Letters may be
edited for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and
real-world stories for the magazine.
An author’s guide, a list of topics and
due dates can be found on-line:
http://www.linuxjournal.com/author.

FREE e-NEWSLETTERS: Linux Journal
editors publish newsletters on both
a weekly and monthly basis. Receive
late-breaking news, technical tips and
tricks, an inside look at upcoming issues
and links to in-depth stories featured on
http://www.linuxjournal.com. Subscribe
for free today: http://www.linuxjournal.com/
enewsletters.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due dates,
or learn more about other advertising
and marketing opportunities by visiting
us on-line: http://ww.linuxjournal.com/
advertising. Contact us directly for further
information: ads@linuxjournal.com or
+1 713-344-1956 ext. 2.

on Linux/KVM/OpenStack. There is and will be a
lot of work done and money spent on this issue.
Operators are pushing vendors for open source.
There is OpenDaylight as well for SDN. The
vendors are big ones, such as Ericsson, Huawei,
ALU, Oracle, Cisco, Nokia, Microsoft and HP.
Some other vendors are AT&T, Orange and TIM.
Those are the biggest players around.

You are the Linux magazine, yet I see almost
nothing on these issues. This disappoints me.
Personally, I would like to see not only NASA’s
open-source tools, but also such big enterprise
issues on open source and Linux. Linux is a serious
thing that runs the Internet and many serious
applications on the enterprise level. I would like to
see these improvements in your magazine.
—Umit Kaan Sonal

We look for content that interests our users,
along with new technology we think deserves to
be noted. Getting feedback like yours is the best
way for us to know what readers want, so we’ll
keep our eyes open. Thanks!—Shawn Powers

LJ246-Oct2014.indd 14 9/17/14 4:49 PM

http://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com/advertising

DOWNLOAD NOW AT: http://linuxjournal.com/geekguides

Slow Down to Speed Up:
Continuous Quality Assurance in a DevOps Environment

By Bill Childers
DevOps is one of the newest and largest movements in Information
Technology in the past few years. The name DevOps is a portmanteau
of “Development” and “Operations” and is meant to denote a fusion of
these two functions in a company. Whether or not your business actually
does combine the two functions, the lessons and tools learned from the
DevOps movement and attitude can be applied throughout the entire
Information Technology space. This eBook focuses on one of the key
attributes of the DevOps movement: Quality Assurance. At any point,
you should be able to release your product, code or configuration—so

long as you continue keeping your deliverables in a deployable state. This is done by “slowing
down” to include a Quality Assurance step at each point in your workflow. The sooner you catch
an error or trouble condition and fix it, the faster you can get back on track. This will lower the
amount of rework required and keep your team’s momentum going in a forward direction,
enabling your group to move on to new projects and challenges.

Build a Private Cloud for Less Than $10,000!
By Mike Diehl
This eBook presents a compelling argument as to why you should
consider re-architecting your enterprise toward a private cloud. It
outlines some of the design considerations that you need to be
aware of before implementing your own private cloud, and it
describes using the DevCloud installer in order to install OpenStack
on an Ubuntu 14 server. Finally, this eBook will familiarize you with
the features and day-to-day operations of an OpenStack-based
private cloud architecture, all for less than $10K!

NEW!

Linux Journal
eBook Series

FREE
Download NOW!

GEEK GUIDES

LJ246-Oct2014.indd 15 9/17/14 4:49 PM

http://linuxjournal.com/geekguides

UPFRONT
NEWS + FUN

16 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT
Kernel configuration has become
more and more complex through the
years with the proliferation of new
drivers, new hardware and specific
behaviors that might be needed for
particular uses. It has reached about
3,000 config options, and that
number will only increase.

Jean Delvare recently pointed out
that a lot of those config options were
relevant only to particular hardware,
and yet the config system presented
them to users who didn’t have that
hardware. This seemed like a bug to
him, and he suggested that maintainers
begin requiring proper hardware
dependencies for all config options.

He acknowledged this would be
a big task—especially for existing
drivers. But creating the requirement
for new drivers would at least get the
ball rolling, and older drivers could
follow along more gradually.

Josh Boyer agreed with all this.
From his work on the Fedora project,
he had to deal with the config system
intensively, and he found it difficult. He
said, “I’ve gotten to the point where
I can somewhat guess based on the

driver name which arch it’s for (lately
the majority are for ARM), but that isn’t
really a great way to handle things.”

There was some resistance to the
idea. Greg Kroah-Hartman, in
particular, suggested that there were
existing alternatives. For example,
he said users simply could compile
everything as modules. Then, they’d be
loaded into the system only as needed.

But, neither Jean nor Josh liked that
suggestion. Jean said that in the old
days it was fine to build everything
as a module, but nowadays there
were just too many modules, and that
“Saying ’m’ to everything increases
build times beyond reason. You also
hit build failures you shouldn’t have
to care about, depmod takes forever,
updates are slow as hell. This is the
problem I am trying to solve.”

Greg didn’t see how build times
could be a problem. Building the kernel
on his laptop, he said, took about
20 minutes—with all 3,000 modules
compiled in. If that wasn’t good
enough, he suggested upgrading the
hardware to get a faster build time.

But, Jean said this wasn’t a practical

LJ246-Oct2014.indd 16 9/17/14 4:49 PM

http://www.linuxjournal.com

[UPFRONT]

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 17

solution for some cases. He said, “We
have 34 kernel flavors for openSUSE
13.1, for example. And, every commit
potentially triggers a rebuild of the
whole set, to catch regressions as fast
as possible. So every module we build,
for no good reason, gets built a hundred
times each day.” He added that it would
cost a lot of money to upgrade the
hardware underneath that build system.

Greg said he understood the issue,
but that fixing the config system was
just a hard problem to solve. It boiled
down to enforcing better habits on
everyone producing patches. He said,
“If you see new drivers show up that you
don’t know where they work on, ask the
developers and make up patches.” He
added, “Perhaps a few developers could
be auditing the new Kconfig items of
every kernel around -rc3 time frame to
ensure that they don’t do stuff like this.”

Jean said that -rc3 would be too
late, because “all kernel developers
and distributions have already moved
to the new kernel so they have already
answered the n/m/y question for all
new entries.” He added, “It’s the
reviewer’s job to refuse new drivers
with bad Kconfig descriptions in the
first place. This must happen as early
as possible in the chain.”

No clear decision came out of

the discussion, but it does seem
as though there’s a vast mountain
of configuration options that are
becoming more and more difficult to
deal with. Eventually, I think some
form of clean hardware dependencies
will end up being implemented, along
the lines of Jean’s suggestion.

With all the new devices coming
out on the market, there’s a big
desire to get Linux running properly
on all of them. Things like Intel’s
Quark system use only a few MB of
RAM and have other tight hardware
requirements. Shrinking Linux down to
the right size poses a challenge.

Andi Kleen recently pointed out,
“One problem on these small systems is
the size of the network stack. Currently
enabling IPv4 costs about 400k.” He
wanted to give users the option to
prune down the Linux networking
stack to only the bare essentials and
get it down to 100K per application—
competitive with Adam Dunkel’s LwIP
(Lightweight IP) project.

Andi posted some patches to
create three available options for the
networking stack: a full system with
all current features, a partial system
that supported regular users but
not servers or a minimal networking
system for the special userland on

LJ246-Oct2014.indd 17 9/17/14 4:49 PM

http://www.linuxjournal.com

18 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

deeply embedded systems. The minimal system, he
said, would “remove rtnetlink (ioctl only), remove
ethtool, raw sockets”.

This seemed extreme to Richard Weinberger,
who said that on such a minimal system, even the ps
command wouldn’t work. Tom Zanussi on the other
hand, said that the microYocto Linux distribution ran
okay with Andi’s patches and had decent workarounds
to keep ps working properly. But, he added that
microYocto was “very much a work-in-progress with a
lot of rough edges, but it is a fully functional system
on real hardware”.

Alexei Starovoitov felt that trying to support such
a minimal system would only create config options
that led to a hacky, work-in-progress, rough-edged
system. He said that if the goal was to create a half-
functional system that was just very very small, the
same thing could be accomplished with linker hacks.
Simply “compile kernel as-is. Most functions have a
stub for mcount() already. Use it to track whether the
kernel function was called or not. Collect this data
in userspace (as perf already does), add a few more
functions that had a ’notrace’ attribute on them, and
feed this into a special linker that unpacks existing
vmlinux, throws away cold functions, relocates the rest
and here you have tiny vmlinux without recompilation.”

But, Andi pointed out that for networking code, this
wouldn’t really work. He objected, “How would you
know you exercised all the corner cases in the TCP stack?
And you wouldn’t want a remotely exploitable system
because some important error handler is missing.”

The discussion ended inconclusively. But, it does
seem as though real patches, and not linker hacks, will
be used to support all new hardware—even the tiny
hardware that’s been coming out lately.—ZACK BROWN

[UPFRONT]

Do not hire a
man who does
your work for
money, but him
who does it for
love of it.
—Henry David
Thoreau

When in doubt,
tell the truth.
—Mark Twain

Experience is a
good teacher,
but she sends
in terrific bills.
—Minna Thomas
Antrim

Just the
knowledge that
a good book
is awaiting one
at the end of
a long day
makes that
day happier.
—Kathleen
Norris

Always be a
little kinder than
necessary.
—James M.
Barrie

They Said It

LJ246-Oct2014.indd 18 9/17/14 4:49 PM

http://www.linuxjournal.com

[UPFRONT]

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 19

EdgeRouter Lite
In the
September
2014 issue, I
mentioned my
new router,
and I got a
lot of e-mail
messages
asking about
how well it
works. I can say without hesitation
it’s the nicest router I’ve ever owned.
And, it was less than $100!

The EdgeRouter Lite is a business-
class router based on the open-source
Vyatta system. It has been forked,
and as it matures, it will become less
and less like the original Vyatta code,
but for the present, it works much
the same. I purchased the EdgeRouter
because my old ATOM-based ClearOS
router/firewall couldn’t keep up with
the traffic from my home network. My
favorite features include:

 Three GigE ports, each
routable separately.

 A claimed one million packets
per second throughput.

 Wire-speed routing.

 Advanced configuration possible.

 Price!

I’ll admit, setting up the EdgeRouter
Lite was a pain in the rear end. The
basics can be done via the Web

your connection, it will be a learning
experience trying to figure out the
Vyatta command and code (and
concepts!) for doing so. It took me
three or four hours to get the setup
that I’m happy with, and since then, I
haven’t touched it—at all. It works so
fast, I never notice it, and it’s been rock-
solid since day one. If you’re looking
for an advanced router, but don’t want
to break the bank, the EdgeRouter Lite
might be exactly what you’re need. Be
warned, however, its setup is not for the
faint of heart.—SHAWN POWERS

LJ246-Oct2014.indd 19 9/17/14 4:49 PM

http://www.linuxjournal.com

20 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

[UPFRONT]

The Cow Says, Have Fun!

Sometimes, when the clock hits
3:00am, and you’ve been in the
server room since 9 o’clock the
previous day, you start to get a little
batty. That’s the only explanation
I have for programs like cowsay in
Linux. Still, I’m glad they’re there,
because life wouldn’t be nearly as
fun without them. Here’s a quick list
of silly Linux programs off the top of
my head. I’d love to hear about more,
so please, send me your crazy Linux
Easter eggs, and I’ll follow up on the

Web site showing off the best ones.

 cowsay: install this program, and
the cow will say whatever you ask
it to. (Bonus: there’s a GUI version
of cowsay too, called xcowsay!)

 sl: this is a program I like to install,
because it makes fun of you when
you accidentally type sl instead
of ls—a steam locomotive chugs
across the screen. (It also shows up
if you press caps lock, and type LS!)

LJ246-Oct2014.indd 20 9/17/14 4:49 PM

http://www.linuxjournal.com

[UPFRONT]

 cmatrix: blue pill or red pill,
this little program will suck you
in to the Matrix either way!
(Leaving this matrix just requires
a Ctrl-C, thankfully.)

 libaa-bin: install this package,
and then type aafire to stoke
up the ASCII flame. Grab your
digital marshmallows!

 Star Wars: open a terminal and type
telnet towel.blinkenlights.nl,
and grab some popcorn. Or
maybe roast some of those digital

marshmallows, because you can
watch the entire Star Wars movie
in a terminal window.

Most of these silly things have
been around for years and years, but
every so often, I learn of one I never
knew about before. Send me your
favorites, and I’ll be sure you get
credit for slacking off at work—er,
I mean for discovering awesomeness!
E-mail shawn@linuxjournal.com
(put something like “FUN” in the
subject line so I know what it’s
about).—SHAWN POWERS

LJ246-Oct2014.indd 21 9/17/14 4:49 PM

mailto:shawn@linuxjournal.com
http://www.EmperorLinux.com

22 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

[UPFRONT]

What’s Happening above
Your Head?
In the past, I’ve covered various
astronomy packages that help
you explore the universe of deep
space. But, space starts a lot closer
to home. It actually begins a few
hundred miles above your head.
There are lots of things in orbit right
above you. In this article, I look at
one of the tools available to help
you track the satellites that are
whizzing around the Earth: Gpredict
(http://gpredict.oz9aec.net/index.php).

A package should be available in most
Linux distributions. In Debian-based
ones, you can install Gpredict with:

sudo apt-get install gpredict

This is usually a version or two
behind the latest, so if you want to
have the newest options, you always
can download and build from source.

Once you have it installed, you
can start it with the gpredict

Figure 1. When Gpredict first starts, you get an initial module called Amateur.

LJ246-Oct2014.indd 22 9/17/14 4:49 PM

http://www.linuxjournal.com
http://gpredict.oz9aec.net/index.php

[UPFRONT]

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 23

command. When it opens, you should
see the main window, with a sample
layout given by the module named
“Amateur” (Figure 1).

In the rest of this article, I take a
look at all the various possible layouts
and show just how much information
is available to you.

The core concept in Gpredict is
that of the module. You can think
of modules as documents in a word
processor. They are containers you can
use to hold a number of other layout
objects that display satellite information
in a number of different ways.

When you first start Gpredict, you
get the default Amateur module,

which contains a map view, a polar
view and a single satellite view. For
some of these views, you may notice
a small down-arrow in one of the
top corners. Clicking this icon gives
you an appropriate drop-down list
of options. For example, clicking the
down-arrow in the map view gives you
a list of items, such as detaching the
module or configuring it (Figure 2).

The map view offers a map of the
Earth, with a series of satellites and
their footprints on the Earth. When
you hover over one of the satellites,
you will see an information box
with the satellite’s detailed location.
The single satellite view provides

Figure 2. Some views have drop-down lists of options.

LJ246-Oct2014.indd 23 9/17/14 4:49 PM

http://www.linuxjournal.com

24 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

[UPFRONT]

even more detail about one specific
satellite. You can select which satellite
is being displayed by clicking on the
down-arrow in the view. The polar
view provides an overhead look,
located at the ground station.

In the Amateur module, you get
one ground station called “sample”.
You can add more ground stations by

clicking the down-arrow and selecting
configuration (Figure 3).

You can add another ground
station by clicking the plus sign.
This will pop up a details window
where you can enter a name and the
location data for your ground station
(Figure 4). For the location, you can
enter the latitude and longitude

Figure 3. You can set the configuration details for the map view here.

LJ246-Oct2014.indd 24 9/17/14 4:49 PM

http://www.linuxjournal.com

[UPFRONT]

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 25

manually, or if you live in a major
city, you can select it from a global
list of locations.

One other item you will notice when
you have the configuration window
open is that you can select which
satellites are displayed. This list is rather
large, but there is nothing stopping
you from adding all of them to your

module. It might make the display a tad
crowded, but it still should work.

I should take a step back at this
point and describe some other
configuration options available.
The first option to look at is the
menu item Edit Update TLE. This
option lets you update the Keplerian
elements for the satellites. You can

Figure 4. You can add a ground station with details here.

LJ246-Oct2014.indd 25 9/17/14 4:49 PM

http://www.linuxjournal.com

26 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

[UPFRONT]

update them either from the network
or from a local file. The default
configuration is set up to remind
you when the TLE data is likely out
of date. You then can go ahead and
update this data. For an update over
the network, the default configuration
is to download NORAD data from
http://www.celestrak.com. For
a tutorial on the format for TLE

data, visit http://www.amsat.org/
amsat-new/tools/keps_tutorial.php.

All the other configuration options
are available under the menu
item Edit Preferences (Figure 5).
Here, you can change options like
the number formats used or the
geographical coordinates. There also
is a tab for ground stations, where
you can edit or add ground stations.

Figure 5. The preferences window lets you change all sorts of options.

LJ246-Oct2014.indd 26 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.celestrak.com
http://www.amsat.org/amsat-new/tools/keps_tutorial.php
http://www.amsat.org/amsat-new/tools/keps_tutorial.php

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 27

[UPFRONT]

The modules section lets you change
configuration options used in the display
of the Gpredict modules. You can change
things like the refresh rate for the displays
or what map to use as the background
for the map view. You also can select
what type of layout you want for a
particular module. When you select a
new layout, you will see a preview of
what it will look like in the preferences
window. There are nine different
pre-generated layouts available, or you
can create a custom layout. When you

select the custom layout, you define
what it will look like by entering the
layout code. See the user manual for
details on how to define a code to
create the layout you want.

Gpredict also has the ability to
control radios and rotators. The key to
this is the hamlib library. By using this
library, Gpredict can handle Doppler
tuning of radios and tracking of
antenna rotators. When you want to
connect hardware to your computer,
you should verify that hamlib can talk

Figure 6. You can control radios and antenna rotators that are defined in Gpredict.

LJ246-Oct2014.indd 27 9/17/14 4:49 PM

http://www.linuxjournal.com

[UPFRONT]

to it successfully. Once you have made
sure everything is working correctly,
you can set up Gpredict to talk to
your hardware. This is handled in the
interfaces section of the preferences
window. There are two tabs, one for
radios and one for rotators. Since
hamlib communicates over network
protocols, the radio or rotator doesn’t
even need to be connected to the same
machine. You can define one of these
pieces of hardware with a hostname,
a port and the communication
details. Once you have the hardware
configured, you can control it by

pulling up the radio control window,
which you access by clicking the down-
arrow in the map view and selecting
Radio Control (Figure 6). You can see
the details of the downlink and uplink,
as well as information about targets.

Now that you know how to get
satellite information for what is moving
above your head, you should be able
to go outside and do some actual
observations and see all of the man-
made objects travelling around. It
can be inspiring to see how much we
already do in space, and how much
more we could be doing.—JOEY BERNARD

LINUX JOURNAL
now available
for the iPad and
iPhone at the
App Store.

linuxjournal.com/ios
For more information about advertising opportunities within Linux Journal iPhone, iPad and
Android apps, contact John Grogan at +1-713-344-1956 x2 or ads@linuxjournal.com.

LJ246-Oct2014.indd 28 9/17/14 4:49 PM

http://linuxjournal.com/ios
mailto:ads@linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 29

Non-Linux FOSS:
Remember Burning ISOs?
I was chatting with a Windows-
using friend recently, and he
wanted to try Linux on one of
his older computers. I always like
those sorts of conversations, and
so I kept chatting, walking him
through setting up Unetbootin
to create a USB installer and so
on and so on. Unfortunately,
he wasn’t able to get the USB
drive to boot. Since we were
half a country apart, I couldn’t
troubleshoot locally, so we moved
on to burning a CD/DVD.

My first instinct was to have
him download the incredible
InfraRecorder. Unfortunately,
there seems to be a malware-
infected version of InfraRecorder
going around, and of course,
that’s the download link he found.
So, be sure to send folks directly
to http://infrarecorder.org
to download it.

Alternatively, I’m a big fan of the
free-but-not-free program ImgBurn
as well. It’s not open source, but it
is freeware, and it has a very simple
interface. Either way you go, be sure
to warn potential Linux converts

about the malware masquerading as
open-source software. Remember to
send people directly to the Web site
rather than having them “google”
for it. The open-source InfraRecorder
is at http://infrarecorder.org,
and the freeware ImgBurn is at
http://www.imgburn.com. Once
they switch to Linux, everything
they need will be an apt-get or
yum away!—SHAWN POWERS

[UPFRONT]

Image courtesy of http://www.visualpharm.com.

LJ246-Oct2014.indd 29 9/17/14 4:49 PM

http://infrarecorder.org
http://infrarecorder.org
http://www.imgburn.com
http://www.visualpharm.com
http://www.linuxjournal.com

30 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Android Candy:
Goodbye RDP,
Hello Chrome
Remote Desktop!
Controlling a remote computer is
something you’re all familiar with.
Whether that means RDP to your
corporate Windows Server (we
don’t judge), Apple Remote Desktop
(which is really VNC) to your OS X
machine or VNC/X11/etc. into your

GUI Linux machine, it’s always a pain
in the rear.

The folks at Google are trying to
make it a little easier with Chrome
Remote Desktop. It’s a combination
of Chrome browser app and
native binary that runs on your

[EDITORS' CHOICE]

EDITORS’
CHOICE
★

™

LJ246-Oct2014.indd 30 9/17/14 4:49 PM

http://www.linuxjournal.com

client machines. Once the dæmon
is installed, you can access the
computer remotely from anywhere,
including a really cool Android
app. The combination of available
platforms is pretty impressive too:

Server platform (what can
be controlled):

 Windows

 OS X

 Linux (Beta, Ubuntu/Debian for now)

Client platforms (what can be used
to control the systems above):

 Windows

 OS X

 Linux

 Android

 iOS (coming soon, supposedly)

Permissions on the dæmon can
be customized for controlling your
own computer remotely (no local
permission required) or for allowing
other people in to assist you. The
latter is preferred to avoid anyone

barging in on your work session.
The dæmon is available for Windows
and OS X, and recently they released
a beta version of the dæmon for
Ubuntu/Debian Linux! Thanks
to its wonderful cross-platform
approach and smooth functionality
in our testing, Chrome Remote
Desktop earns this month’s Editors’
Choice award! Check it out today
at https://chrome.google.com/
remotedesktop.
—SHAWN POWERS

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 31

LINUX JOURNAL
on your

Android device
Download the
app now in
the Android
Marketplace

www.linuxjournal.com/android

LJ246-Oct2014.indd 31 9/17/14 4:49 PM

http://www.linuxjournal.com
https://chrome.google.com/remotedesktop
https://chrome.google.com/remotedesktop
http://www.linuxjournal.com/android

COLUMNS

32 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

2014 Book
Roundup
Reuven gives his annual rundown of great books on
programming languages, databases and analytics,
freelancing and more.

As I write these words, the end
of summer is approaching, and with
it, so is the time for my annual book
roundup. As in past years, in this
article, I describe books that were new
to me during the past 12 months,
which means that I might well mention
some new ones or ignore others that
simply didn’t come to my attention.
My interests (professionally, and for
this column) generally are relevant to
people involved in Web development
using open-source technologies, but
I admit to veering into other subjects
occasionally. And as I have done for the
last few years of this annual roundup,
I have expanded my list of books also
to include blogs, podcasts and other
resources that may be of interest to
others in the Open Source community.

Programming Languages
Python continues to grow in
popularity and for good reason—it’s

an elegant language that is both
powerful and easy to learn. I have
been teaching a growing number of
Python courses during the past few
years to a variety of audiences—
aspiring Web developers, companies
interested in moving their automation
and testing systems into an open-
source high-level language, and also
people interested in learning basic
programming techniques and ideas.

The best-known book about Python,
Programming Python by veteran
instructor Mark Lutz, recently was
released in its 4th edition by O’Reilly
(ISBN 9780596158101). The book has
been expanded and improved in many
ways, most importantly with additional
information about Python 3.x. Truth
be told, I have yet to encounter a
company that is using Python 3; all of
my consulting and training clients still
use Python 2.7. However, there’s no
doubt that Python 3.x is the future,

REUVEN M.
LERNER

AT THE FORGE

LJ246-Oct2014.indd 32 9/17/14 4:49 PM

http://www.linuxjournal.com

COLUMNS

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 33

AT THE FORGE

and Lutz has done us all a good service
by providing such information.

This is not a book about learning
Python, but rather it’s meant to be a
reference and in-depth description of
how the language works. And at that,
it succeeds. At the same time, I feel like
the book is far too large (at more than
1,600 pages), 400 pages of which are
spent describing TkInter, a GUI toolkit
that is included with Python, is easy
to use and is cross-platform. But, it’s
also extremely ugly and not particularly
popular, in my experience. If you’re a
Python programmer though, you’ll likely
want to have this book on your shelf.

When I’m teaching Python
programming classes, my students
often ask me how they can boost
the performance of their code.
True, I think that Python, like many
other high-level languages, stresses
programmer efficiency over language
efficiency. And of course, we know
that worrying about performance too
early in a project is asking for trouble.
At the same time, once our program is
working, we definitely want to increase
its speed. Python High-Performance
Programming, written by Gabriele
Lanaro and published by Packt
Press (ISBN 978-1-78328-845-8),
aims to solve some of these issues.
The book concentrates on a small
number of areas that can be used to

increase performance: benchmarking
and profiling (to understand where the
problem is); NumPy’s arrays (which are
faster, if more limited, than Python’s
built-in lists); Cython (which translates
Python code into C); and finally,
multiprocessing. The book is relatively
short (at 108 pages), but it does provide
some of the most common techniques
for increasing program speed. At the
same time, I think that some more
basic techniques, such as not using +=
to iteratively build strings, would have
added something to the book.

The hottest language continues to
be JavaScript, if for no other reason
than the very large number of people
who have access to browsers, be it
on their computers or their mobile
devices. JavaScript’s huge community
has been pushing forward with a
variety of techniques and libraries that
make development easier. Moreover,
JavaScript is now popular beyond the
browser, in such places as node.js,
a server-side framework that uses
asynchronous JavaScript.

It is this first topic that Async
JavaScript, written by Trevor Burnham
and published by the Pragmatic
Programmers (ISBN 978-1-937785-27-7),
addresses. Part of the difficulty that
people have when working with
JavaScript is its asynchronous nature.
You often set up a function to be

LJ246-Oct2014.indd 33 9/17/14 4:49 PM

http://www.linuxjournal.com

COLUMNS

34 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

AT THE FORGE

executed later on, when a particular
even happens, and it’s frequently tough
to remember just how that worked. This
book introduces techniques that will
help you build asynchronous programs
that are easier to understand and debug.

Functional programming is a
technique that was pushed aside
for many years by object-oriented
programming, but it’s making a
comeback. Even if you’re not using
a purely functional programming
language, functional techniques are
increasingly important and useful.
Functional JavaScript, written by
Michael Fogus and published by O’Reilly
(ISBN 9781449360726), introduces a
wide variety of functional ideas and
techniques. I’d say that this book
is good for two types of audiences:
those who already know functional
programming and want to see how
these ideas can be applied in JavaScript,
as well as the opposite, people who
know JavaScript and are interested in
learning functional programming.

If you are new to JavaScript, or if
you have been using it only for Web
development and haven’t yet learned
how it works as a more general-
purpose programming language,
you may well want to read Eloquent
JavaScript. The book, written by Marijn
Haverbeke and available on-line at
http://eloquentjavascript.net (and

soon to be published in paper form
by No Starch Press), reviews the basics
of JavaScript as a language, ignoring
the Web-related aspects until halfway
through the book. So you learn
about JavaScript objects, higher-order
functions and even regular expressions,
with clear and interesting examples.

HTML5 is not quite a language, but
it certainly represents a combination
of APIs and tools—most specifically,
HTML, JavaScript and CSS—that are
the standard way to create modern
Web applications. It’s quite amazing to
see the breadth and depth of HTML5,
as well as the applications that people
are creating with it. If you’re reading
this column, you’re probably not the
right audience for Head First HTML5
Programming, which aims to teach
the basics of HTML, JavaScript and
CSS to people who have little or no
familiarity with those technologies.
But if you know of someone who wants
to understand how these things work,
it’s worth recommending it.

Another non-language is Git, which
has become one of my favorite and
most indispensable tools. It’s hard to
believe that I used to be content with
CVS and SVN, given the advantages
that Git brings to the table. I must
admit that many years ago, a friend
of mine said that I eventually would
switch to a distributed version-control

LJ246-Oct2014.indd 34 9/17/14 4:49 PM

http://www.linuxjournal.com
http://eloquentjavascript.net

COLUMNS

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 35

AT THE FORGE

system, which would make life so much
easier. He was right, although he was
recommending a system that preceded
Git known as Arch, which I don’t
believe is used any longer.

I frequently teach courses in the use
of Git, and I’ve found that the problem
for most users is not the commands,
but rather the understanding of what
Git does (and doesn’t do) and how
the various objects work together. In
particular, an understanding of what
a commit is, and how branches, tags,
blobs and trees fit into this commit-
centric view of the world, is the biggest
obstacle to working with Git.

So, I was happy to see the Git
Pocket Guide, written by Richard E.
Silverman and published by O’Reilly
(ISBN 9781449325862). Yes, this book
will help you use Git better, and it will
remind you of many of the commands.
But more significant, the Git Pocket
Guide introduces you to the objects
Git uses and describes how they work
together to provide a robust and
efficient version-control system.

Databases and Analysis
The growth of the Web has led not
only to a growing need for people
who can create Web applications, but
also for those who can store, retrieve
and analyze the data generated by
those applications. The term “big

data” increasingly is applied to such
programs, and a number of books have
been written in the past few years that
attempt to help newcomers to the field.

In some cases, you don’t need to
collect or analyze the data yourself.
Rather, you can get by just using the
APIs that various systems have provided.
This is particularly the case with social
networks, which collect enormous
quantities of information about their
members and the connections between
them. Mining the Social Web, by
Matthew A. Russell, was released in its
second edition (ISBN 9781449367619),
and it describes many ways in which
you can access and analyze different
social networks. I’ve played with
such APIs in the past, so I wasn’t
new to their use in my applications,
but this book described a number
of uses I didn’t think of, with lots of
clear example code that illuminated
the points.

For those who want to analyze large
data sets more directly, Doing Data
Science, by Cathy O’Neil and Rachel
Schutt and published by O’Reilly
(ISBN 9781449358655), is a dense,
but interesting, introduction to the
techniques that are collectively known
as “Data Science”. The authors give
a whirlwind tour of the math and
algorithms used in such analysis and
also the types of conclusions you

LJ246-Oct2014.indd 35 9/17/14 4:49 PM

http://www.linuxjournal.com

COLUMNS

36 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

AT THE FORGE

can draw from its use. Some of this
book was a bit heavy for my needs
and interests, but it gave me a much
better sense of what the Data Science
people are doing, and how it is already
becoming useful. I should note that
Cathy O’Neil, one of the co-authors of
this book, is a participant in the new
“Slate Money” podcast. If you want
to hear financial analysis driven by big
data, you might want to tune in to that
weekly recording.

Freelancing and Business
I’ve been a freelance consultant since
1995, working with clients around the
world, and I really enjoy my work. I
even participate in a weekly podcast,
“The Freelancers Show”, in which
panelists discuss different aspects of
what it’s like to be self-employed.

Two of my co-panelists from the show
have come out with eBooks during the
past year. Curtis McHale wrote Don’t Be
an Idiot: Learn to Run a Viable Freelance
Business (http://curtismchale.ca/
products/run-viable-freelance-business),
which gives practical advice for starting
and running a successful freelance
business. Along the same lines, Eric
Davis has a practical, day-by-day
plan for you to start on the freelancing
track, in his 30 Days to Become a
Freelancer (http://theadmin.org/
30-days-become-freelancer).

Other Books
Of course, I don’t read only technical
books, although my friends and
family might not quite believe that
claim. I have read a number of
excellent books in the past year that
I think you all might enjoy.

Tim Harford is a well-known economics
writer and has published numerous
books on the subject. His most recent,
The Undercover Economist Strikes Back,
describes how macroeconomics and
government policies work, and the
various theories that economists have
used to try to understand these policies
and their effects. I have long had an
interest in economics, but still very much
enjoyed reading this book, which shed
new light on the differences between
various schools of economics.

Another favorite writer of mine,
Tom Standage, came out with a new
book this year: Writing on the Wall:
Social Media—The First 2,000 Years.
Standage’s argument is that just
about every type of social media
and technology that we use
nowadays has precedents in
previous cultures. His funny and
interesting book is sure to give you
some perspective on Facebook and
LinkedIn, among other things.

Another great book that came out
this year is How Not to Be Wrong:
The Power of Mathematical Thinking,

LJ246-Oct2014.indd 36 9/17/14 4:49 PM

http://www.linuxjournal.com
http://curtismchale.ca/products/run-viable-freelance-business
http://curtismchale.ca/products/run-viable-freelance-business
http://theadmin.org/30-days-become-freelancer
http://theadmin.org/30-days-become-freelancer

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 37

COLUMNS

AT THE FORGE

by Jordan Ellenberg. Ellenberg is a
mathematics professor, and he tries to
show in this book how mathematical
thinking can help you make useful
decisions. He starts the book by
pointing out that “mathematics”
isn’t what you learned in elementary
and high school, and it succeeds in
having very few equations in the
book. Rather, his point is to show
how it’s a perspective on life that
can help you make decisions or
persuade others. To his credit, the
author also includes a number of
examples of where mathematics
cannot really provide a clear-cut
answer, such as (most surprisingly)
in deciding election results.

As readers of this column know, I
have traveled to China several times
in the past few years to teach Ruby
and Python programming classes.
And, I’ve become something of an
aficionado of China-related books
written by reporters who were there.
Evan Osnos, who was the New Yorker’s
correspondent in China for several
years, published a book this year titled
Age of Ambition: Chasing Fortune,
Truth, and Faith in the New China that
tries to make sense of the political and
social changes happening in China.
Along the same lines, I’m enjoying
Howard French’s book, China’s Second
Continent: How a Million Migrants

Are Building a New Empire in Africa,
which describes the experiences and
interactions of Chinese expatriates in
various African countries.

Finally, as someone who recently
finished a PhD, I can recommend
a funny (if rather cynical) book:
Surviving Your Stupid, Stupid
Decision to Go to Grad School, by
Adam Ruben. Perhaps it’s easier
to laugh at his jokes now that I’ve
completed the degree, but I found
it not only funny but also
therapeutic to know that others
had experienced similar problems
and challenges to mine during their
grad-school careers.

I hope these recommendations
will provide you with many hours of
insightful and interesting reading! I’m
sure I have missed many good books
that came out in the past year; I’m
always open to hearing about them
and welcome your suggestions.

Reuven M. Lerner is a Web developer, consultant and trainer.

He recently completed his PhD in Learning Sciences from

Northwestern University. You can read his blog, Twitter feed

and newsletter at http://lerner.co.il. Reuven lives with his wife

and three children in Modi’in, Israel.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 37 9/17/14 4:49 PM

http://www.linuxjournal.com
http://lerner.co.il
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com

COLUMNS

38 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

DAVE TAYLOR
Picking Out
the Nouns
Dreamer—a dream interpretation program, as a shell script...
well, sort of.

A reader wrote a letter to me (oh
happy day!), and although I’m still
not entirely sure what she’s trying to
accomplish, it’s an interesting puzzle
to try to tackle anyway. Here’s what
she asked:

I do not know how to code, but
I have a project in mind that is
something like Mad Libs, but is
for dream interpretation. I would
like for people to be able to type
a dream, and then the computer
program would pick out the nouns
and ask the participants to freely
associate anything that comes to
mind if they were that object or
person. Then, the computer would
replace the typed responses back
into the typed text for the surreal
interpretation. Do you think this
would be difficult to create?

Mad Libs for dreams? That’s
certainly a curious idea, particularly
given how seemingly random and

disconnected the elements of a dream
often seem. Dreams have been seen
as both visions from the gods and
the playground of our subconscious
and its need to resolve our daily
experiences. And then there’s Freud,
who is pretty sure that if you aren’t
literally dreaming of cigars, it’s
because you’re envious of people with
cigars or because you’re fixated on
cigars but suppressing your interests.

OOohhhhkay then. No cigars, okay?
And no Lewinsky jokes either.

What we need to accomplish this
task is a script that parses input,
identifies and creates a list of nouns,
prompts users for their free-association
synonyms for each of the nouns, then
pushes out the original text again,
replacing each original noun with a
substitute as suggested by the user.
To start, how do you identify nouns?

First, We’ll Kill All the Nouns
I was going to grab the comprehensive
dictionary from Princeton University’s

LJ246-Oct2014.indd 38 9/17/14 4:49 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 39

COLUMNS

WORK THE SHELL

Wordnet program, but closer examination
reveals that it has more than 85,000
words and has all sorts of obscure
alternative uses and so forth. The end
result is that although it’s comprehensive,
it generates too many false hits. So

only list you can grab for our purpose
here: http://www.desiquintans.com/
downloads/nounlist.txt.

It’s in exactly the format needed too:

$ head nounlist.txt

aardvark

abyssinian

accelerator

accordion

account

accountant

acknowledgment

acoustic

acrylic

act

It seems like that would be the
most difficult step, but in fact, it’s
surprisingly easy given the almost
infinite data store of the Internet.

Identifying Nouns in Prose
The next step is rather easy: given
some prose, break it down into
individual words, then test each word
to identify which are nouns. This is
really the bulk of the program, now

that we have a noun list:

for word in $(sed 's/[[:punct:]]//g' $dream |

 tr '[A-Z]' '[a-z]' | tr ' ' '\n')

do

 # is the word a noun? Let's look!

 if [! -z "$(grep -E "^${word}$" $nounlist)"] ; then

 nouns="$nouns $word"

 fi

done

The for loop is a bit complicated,
but it’s removing all punctuation from
the input, translating uppercase to
lowercase, and then converting each
space into a carriage return. The result
can be shown most easily by example.
Let’s say that we had this as input:

I've never seen a blue chipmunk!

Running it through the sed | tr | tr
filter produces this:

ive

never

seen

a

blue

chipmunk

That’s easy enough, and now that
we can separate out each word from
the input, it’s easy to search the noun
list to see if any match. Again, it’s

LJ246-Oct2014.indd 39 9/17/14 4:49 PM

http://www.linuxjournal.com
punct:%5D%5D//g
http://www.desiquintans.com/downloads/nounlist.txt

COLUMNS

40 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

a bit complex, because we need
to ensure that we aren’t getting
embedded matches (for example,
matching the noun “acoustic” for
the slang word “stic”).

That’s done by rooting the search as a
regular expression: ^ is at the beginning
of the line, and $ is the end of the line—
hence the regular expression ^${word}$
where the use of the optional {}
notation just delimits exactly what the
variable name is to the shell.

With some debugging code
included, here’s our first draft of this
entire script:

#!/bin/sh

dreamer - script to help interpret dreams. does this

by asking users to describe their most recent

dream, then prompts them to free associate

words for each of the nouns in their original description.

nounlist="nounlist.txt"

dream="/tmp/dreamer.$$"

input=""; nouns=""

trap "/bin/rm -f $dream" 0 # no tempfile left behind

echo "Welcome to Dreamer. To start, please describe in a

 few sentences the dream"

echo "you'd like to explore. End with "DONE" in all caps

 on its own line."

until ["$input" = "DONE" -o "$input" = "done"]

do

 echo "$input" >> $dream

 read input # let's read another line from the user...

done

echo ""

echo "Okay. To confirm, your dream was about:"

cat $dream

echo "=============="

for word in $(sed 's/[[:punct:]]//g' $dream | tr '[A-Z]'

 '[a-z]' | tr ' ' '\n')

do

 # is the word a noun? Let's look!

 if [! -z "$(grep -E "^${word}$" $nounlist)"] ; then

 nouns="$nouns $word"

 fi

done

echo "Hmm.... okay. I have identified the following

 words as nouns:"

echo "$nouns"

echo "Are you ready to do some free association? Let's begin..."

for word in $nouns

do

 echo "What comes to mind when I say $word?"

done

exit 0

LJ246-Oct2014.indd 40 9/17/14 4:49 PM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 41

WORK THE SHELL

It’s really broken into simple
functional blocks: first prompting
users to share their dream, then
breaking down the prose into
individual words and comparing
them to the noun list and finally
(albeit not yet in its final form),
prompting for the free association
of each identified noun.

Let’s run it to see what I mean:

$ sh dreamer.sh

Welcome to Dreamer. To start, please describe in a few

sentences the dream you'd like to explore. End with DONE

in all caps on its own line.

I was sitting in a tree house in the middle of an ancient

forest and an owl was staring at me. It asked "who?" and

I woke up in a cold sweat.

DONE

Okay. To confirm, your dream was about:

I was sitting in a tree house in the middle of an ancient

forest and an owl was staring at me. It asked "who?" and

I woke up in a cold sweat.

==============

Hmm.... okay. I have identified the following words as nouns:

 tree house middle forest owl cold

Are you ready to do some free association? Let's begin...

What comes to mind when I say tree?

What comes to mind when I say house?

What comes to mind when I say middle?

What comes to mind when I say forest?

What comes to mind when I say owl?

What comes to mind when I say cold?

As is immediately obvious, the free
association section at the end and the
subsequent reassembly of the prose
with the new free association words
or phrases is still to come.

But that’s a project for next month.
Meanwhile, keep a dream journal
and soon you’ll be ready to interpret
it thanks to the Linux shell—or
something like that!

Dave Taylor has been hacking shell scripts for more than 30 years.

Really. He’s the author of the popular Wicked Cool Shell Scripts

and can be found on Twitter as @DaveTaylor and more generally

at his tech site http://www.AskDaveTaylor.com.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

As is immediately obvious, the free association
section at the end and the subsequent reassembly
of the prose with the new free association words
or phrases is still to come.

LJ246-Oct2014.indd 41 9/17/14 4:49 PM

http://www.AskDaveTaylor.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

42 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

COLUMNS

HACK AND /

Return of
the Mac
Save yourself keystrokes by building a library of vim macros
to automate mundane text-editing tasks.

In my July 2014 column, I talked
about vim macro basics. In that
article, I described how to record a
custom macro, assign it to a key and
then use it to make automated edits
to a BIND zone. I also teased that
I would cover more advanced uses
of macros, like nested macros, in a
future issue. I took a brief detour
to cover a few different topics, but
now I’m back on topic, and in this
article, I discuss more complicated
uses for macros.

I like using BIND zone files for macro
examples, because it’s the file I most
often use macros in myself. Because
multiple people often edit zone
files, they may not all have the same
formatting. Plus, the top of a zone
file generally has a different multi-line
format compared to the rest of the
file. In my July 2014 article, I talked
about how to add 50 sequential A
records in a zone file using a single
macro, but when I have to perform

more complicated edits, or if I have to
perform edits selectively in some files
but not others, I’ve found it useful to
record a few different simple macros
under different keys, then record a new
macro that just calls those other macros
in a particular order. Among other
things, this lets me change some of the
shorter macros if I need to, without
having to re-record everything.

For the first example, let’s look at
a more complete version of the BIND
zone file I used last time:

;

; BIND data file for example.com

;

$TTL 15m

@ IN SOA example.com. root.example.com. (

 2014081500

 10800

 1200

 7200

 7200)

;

KYLE RANKIN

LJ246-Oct2014.indd 42 9/17/14 4:49 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 43

COLUMNS

HACK AND /

example.com. IN NS ns1.example.com.

example.com. IN NS ns2.example.com.

;

ns1 IN A 10.9.0.5

ns2 IN A 10.9.0.6

;

worker1 IN A 10.9.0.15

worker2 IN A 10.9.0.16

worker3 IN A 10.9.0.17

. . .

worker50 IN A 10.9.0.64

In this example, let’s say I have
15 zone files for different zones,
but I want to make the same set of
edits to all of them. I want to change
the TTL in the file to be 10 minutes,
and I need to change the contact info
for the domain from root@domain
to dnsadmin@domain. I also need
to increment the serial number
(2014081500) in the zone file, and I
need to change the name server IPs all
to point to a new set of name servers
at 10.1.0.250 and 10.1.0.251, and
finally, I want to add 50 more workers
to each zone file.

Although I imagine I could build
all of this into a single big macro,
for me, it makes sense to split up
the steps into at least four macros
that I already have pre-assigned
letters to:

 Macro t will change the TTL.

 Macro s will change the contact
information and increment the
serial.

 Macro n will update the name
server records.

 Macro w will add one more worker.

Because I’m going to chain these
macros together, it’s even more
important than in the past that I make
sure my cursor is anchored in a known
location first. For the first macro, this
means starting with gg to move to the
very top of the file, while for the last
macro, I will want to type G to move
to the bottom of the file. At each
phase, it’s incredibly important that
you test each macro, then undo the
changes and confirm that your macros
work exactly how you expect. Let’s
break down each macro.

For macro t, I first type qt to enter
macro mode and assign the macro to
the t key. Then I type gg to make sure
I’m at the top of the file. Next I type
/TTL <Enter> to move the cursor to the
TTL line. Then I type w to move forward
a word to the actual TTL value I want
to change, and then I type cw10m to
change the following word from 15m
to 10m. Finally, I press Esc to exit insert
mode, and q to exit the macro. The
complete set of macro keystrokes then

LJ246-Oct2014.indd 43 9/17/14 4:49 PM

http://www.linuxjournal.com

44 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

would be qtgg/TTL <Enter> wcw10m
<Esc> q. Once I record the macro, I type
u to undo my changes, and then test
the macro by typing @t.

For macro s, I type qs to enter
macro mode and assign the macro
to the s key. Then I type gg again
to anchor to the top of the file.
Next I type /SOA <Enter> to move
to the SOA line. Then I type /root
<Enter> to move to the beginning
of root.example.com, and then
type cwdnsadmin <Esc> to change
that word to dnsadmin and exit
insert mode. Next I type ^j to move
the cursor to the beginning of
the following line. Finally, I type w
<Ctrl-a> to move forward to the serial
number and increment it, and then
q to exit macro mode. The complete
set of macro keystrokes becomes
qsgg/SOA <Enter> /root <Enter>
cwdnsadmin <Esc> ^jw <Ctrl-a> q.
And again, I save the macro and use u
to undo the change and replay it with
@s to make sure it does what I expect.

For macro n, I type qn to enter
macro mode and assign the macro to
the n key. Then I type gg to anchor

to the top of the file. Next I type
/^ns1 <Enter> to move to the line
that configures the name servers.
At this point, there are a few ways I
could edit these lines. My preference
is to type /IN A <Enter> 2w, which
will move my cursor to the beginning
of the IP. Then I type c$10.1.0.250
<Esc> to edit to the end of the line
and exit insert mode.

Since ns2 is so similar to ns1, I can
just type yyp <Ctrl-a> $ <Ctrl-a> to
copy and paste ns1, increment ns1 to
be ns2, then move to the end of the
line and increment the IP. Next I need
to find the existing ns2 line and delete
it with /^ns2 <Enter> dd. Finally, I
can type q to save the macro. The
complete macro is qngg/^ns1 <Enter>
/IN A <Enter> 2wc$10.1.0.250
<Esc> yyp <Ctrl-a> $ <Ctrl-a> /^ns2
<Enter> ddq. Although this seems like
a lot of text, it will save a ton of work
when you have to repeat the steps on
multiple files.

For the final macro w, I type qw
to enter macro mode assigned to
the w key, and then type G to move
to the bottom of the file this time.

COLUMNS

HACK AND /

Although this seems like a lot of text, it will save
a ton of work when you have to repeat the steps
on multiple files.

LJ246-Oct2014.indd 44 9/17/14 4:49 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 45

Then I type /^worker <Enter> N to
search for the next worker (which
will wrap around to the top, then N
will move back to the last worker in
the file). Finally, I type yyp to copy
and paste the line, then <Ctrl-a>
$ <Ctrl-a> to increment both the
worker hostname and the IP. Finally,
I type q to exit macro mode. The
complete macro is then qwG/^worker
<Enter> Nyyp <Ctrl-a> $ <Ctrl-a> q.
Like the others, I test it out with @w
a couple times, and use u to undo
all the changes in between until I am
satisfied that it works.

Now that I have all of these
macros recorded, I could just open
each file and type @t to update
the TTL, @s to edit the contact
information and serial, @n to update
the name servers, and type 50@w to
add 50 more workers.

Because I’m going to perform
these same steps on a number of
files, I might as well capture all those
commands in a new macro I’ll assign
to c. To do that, I just type qc to enter
macro mode assigned to the c key,
then type @t@s@n50@w to perform all
of the previously recorded macros.
Finally, I type q to exit macro mode.
The complete set of keystrokes is
qc@t@s@n50@wq to assign all of the
above sets of keystrokes to a single
macro. Now when I open the next

file, I can just type @c to perform the
complete list of steps.

Now besides saving a few
keystrokes, there are other good
reasons to nest macros in this way.
Because I saved each logical step
as its own macro, I can tweak or
modify any of the above macros
independently, save the new macro
to the same key, and all of the other
macros, including the final combo
macro can stay the same.

Let’s say that after I recorded all of
these macros, I realized I got the IP
address for the name servers wrong.
All I would have to do is record a
new macro assigned to the same n
key, and once I was done, I still could
use @c to make the complete set of
changes to a file.

I hope you find these examples
useful, and that the next time you
have to perform a series of mundane
edits to many text files, you’ll save
some keystrokes with vim macros.

Kyle Rankin is a Sr. Systems Administrator in the San Francisco

Bay Area and the author of a number of books, including The
Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks.

He is currently the president of the North Bay Linux Users’ Group.

COLUMNS

HACK AND /

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 45 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com

COLUMNS

46 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

This Is Why
We Can’t Have
Nice Things: SSH
Firewalls are great, but don’t rely on them as your only
network security!

I’ve written about SSH before—
often even. But for the Linux user,
SSH is one of those tools that is
so incredibly flexible, everyone
should know and understand it
inside and out. For this article, I
decided to put on my black hat
and demonstrate how convenient,
and terrifying, SSH can be.

Phone Home
Most articles on SSH start
with forwarding X11 traffic or
demonstrating the SOCKS proxy
feature. I want to start with
something a little more creepy and
a whole lot more awesome. The
premise is this: you have a computer
inside a firewalled, NAT’d network,
and you want to access it remotely.
If you’re the sysadmin, you can
just forward a port on the firewall

into the computer. If you’re not,
however, you can use SSH to open
a tunnel for you automatically. This
does require a few things:

 You need a server running SSH with a
public IP address. I use my co-located
Raspberry Pi in Austria, but you can
use your home connection as long
as you set up a Dynamic DNS entry
in case your IP changes.

 The firewalled network has to
allow outgoing SSH connections.
Most do, but if you can’t SSH out
from inside the firewall, you might
have to do something creative
like run SSH on port 443 on your
server. (That port is usually open
for HTTPS traffic, and since it’s
encrypted, it’s tougher to sniff out
your naughty deeds.)

SHAWN POWERS

LJ246-Oct2014.indd 46 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 47

 You need key pairs set up for
password-less logins from the
computer inside the firewall to
your server with the public IP.
(Here’s a demo I did back in 2009
on how to set up SSH key pairs:
https://www.youtube.com/
watch?v=R65HTJeObkI.)

Once you have the prerequisites
in place, the process is a simple
one-liner. First, the command, then
the explanation:

ssh -N -R 0.0.0.0:2222:127.0.0.1:22 user@remotehost

The -N flag tells SSH that you don’t
want an interactive shell; you just
want to establish the connection.
That means in order to take the
tunnel down, you simply press Ctrl-C.
It can become confusing if you
have an open terminal connected
interactively to a remote server. The
tunneling still will work, but if you
inadvertently type exit, it logs you
out and kills the tunnel.

The -R 0.0.0.0:2222:127.0.0.1:22
portion of the command is where
the magic happens. What you’re
doing is creating a reverse tunnel,
which allows anyone who can access
your public IP server to ssh in to the
server behind the firewall. In English,
the command is saying, “Hi remote

server, I’m stuck behind a firewall.
Will you listen on port 2222 for
anyone trying to connect, and if they
do, please forward the traffic to me
on my port 22.”

The command can get creepier
too. In my example, I just forwarded
traffic to the public port 2222 to the
internal port 22 behind the firewall.
But if you were to change the
command like this:

ssh -N -R 0.0.0.0:3389:192.168.1.5:3389 user@remotehost

You’ve now created a public-access
tunnel directly to the Windows RDP
server on 192.168.1.5 behind the
firewall. Anyone on the Internet
who connects their RDP client to the
remote host’s IP address will get the
RDP login screen from 192.168.1.5.
Freaked out yet?

One of the problems with this
setup is the relative instability of the
Internet. If the SSH connection is
severed, the tunnel collapses, and you
no longer can reach the computer
inside the firewall. Thankfully, there’s
a really great tool to help with that
too: AutoSSH.

AutoSSH
Having a diabolical tunnel to an
internal network across the globe is
only awesome until it stops working.

COLUMNS

THE OPEN-SOURCE CLASSROOM

LJ246-Oct2014.indd 47 9/17/14 4:49 PM

http://www.linuxjournal.com
https://www.youtube.com/watch?v=R65HTJeObkI

COLUMNS

48 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

SSH is a finicky protocol, so the
smallest blip over the Internet can
cause the connection to fail. If
you launch the SSH command with
AutoSSH, however, it will monitor
your connection and restart it if
things go wrong. AutoSSH will keep
trying too, so even if the network is
down for an extended time, when it
comes back up, the SSH connection
will be re-established.

AutoSSH is available for just about
every major distribution, but it has to
be installed on the computer inside
the firewall, because that’s where the
connection has to initiate from. How
I do it is basically put something like
this in my crontab to run on @reboot:

autossh -M 41000 -f -N -R 0.0.0.0:2222:127.0.0.1:22 user@remotehost

Only two of the flags are for
AutoSSH; the others get handed
off to SSH itself. Basically, the -M
41000 establishes a monitor port
for AutoSSH to use. It’s possible to
use SSH’s built-in ability to monitor
a connection, but I’ve had very bad
luck with it. Using AutoSSH’s -M flag
seems to work the best. It doesn’t
matter what port you select, as long
as it’s not currently in use on either
computer. The next flag, -f, just tells
AutoSSH to run in the background
and monitor the connection. The rest

of the line is similar to what I showed
typed above.

I used to write complex bash scripts
to check for connectivity, and kill off
then restart SSH, but using AutoSSH
is much more efficient and reliable.
I’ve been using it for years, and it is
rock-solid. The most I’ve ever had to
do is kill off defunct SSH connections
on the public server if for some
reason I can’t connect. AutoSSH then
happily creates a new connection,
and I’m back in business.

What Good Is It?
I personally use this sort of setup to
access internal servers that aren’t
accessible directly from the Internet.
I don’t like to open ports directly
into internal servers if possible, so if
I can grant myself access to multiple
internal servers by SSH’ing to a
remote, unrelated IP on a random
port, I feel a little better about it.

I also use this sort of setup to
expose multiple Web servers from
inside a network to the outside.
Figure 1 shows the basic premise. The
command looks similar to the example
above, but with multiple -R flags.

autossh -M 41000 -f -N -R 0.0.0.0:8001:192.168.1.10:80 \

-R 0.0.0.0:8002:192.168.1.20:80 user@remotehost

To note, that’s all on one line, I

LJ246-Oct2014.indd 48 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 49

COLUMNS

THE OPEN-SOURCE CLASSROOM

just used the backslash so it
formats better. Basically, by using
multiple SSH reverse tunnels
(the -R flags), internal Web servers
are accessible by pointing the
browser to http://remotehost:8001,
http://remotehost:8002 and so on.
I then use a reverse proxy (see my
column in the August 2013 issue
for details) to connect to those
strange URLs with standard virtual
hostnames. SSH is such a powerful,
flexible tool, that its uses are
seemingly unlimited! With that great
power comes great responsibility
though, because SSH allows you to
do some pretty creepy things.

Even Scarier!
You may have noticed that using
an SSH tunnel provides you only
with specific access to specific
ports spelled out with the tunnel
directives. It is possible to pass
multiple -R flags, but it’s tough
to do that on the fly, because the
command is performed on the
computer inside the firewall. If you
need to access the entire network
behind the firewall, that’s where
sshuttle comes into play.

I’ve mentioned sshuttle in past
issues of Linux Journal, but when
used in conjunction with the tunnels
I just described how to create, it

Figure 1. Although there’s a lot going on behind the scenes, an end user accessing
the virtual hosts on the left just sees a Web server.

LJ246-Oct2014.indd 49 9/17/14 4:49 PM

http://www.linuxjournal.com

COLUMNS

50 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

turns into something that should be
impossible, but isn’t. Once you have
the reverse tunnel established, using
the processes above, the command to
get you access to the entire firewalled
network is another one-liner:

sshuttle -D -r user@remotehost:2222 192.168.1.0/24

As a reminder, this runs on your
home workstation, not on the
computer behind the corporate
firewall. (See Figure 2 for a complete
picture.) The -D flag tells sshuttle to
run as a dæmon in the background.
The -r flag tells it what remote

server to connect through—in this
case, user@remotehost on port
2222. Then the last part describes
the internal network behind the
firewall. This is something you’ll
need to know or figure out from
your internal workstation. It will
ask you for your sudo password,
and then establish a network route
through the SSH tunnel.

Basically, you’ve now not only
accessed the workstation inside
the firewall, but you have full access
to anything that workstation has
access to as well—from anywhere
on the Internet.

THE OPEN-SOURCE CLASSROOM

Figure 2. Using SSH tunnels and sshuttle together can provide an incredibly scary level
of network access from outside the firewall.

LJ246-Oct2014.indd 50 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 51

We’re All Doomed!
If you are feeling a bit like the nerdy
hero in a modern espionage film,
well yeah, I get it. There are some
legitimate reasons to create tunnels
like this, although admittedly an
actual VPN is usually the “proper”
way to go about it. It’s important for
those of us in charge of networks to
realize how easy it is to gain access to
internal systems, however. It’s possible
to block access like this at the firewall
level, but honestly, there’s always
ways around the firewall if you’re
able to initiate internally. Plus, using
draconian blocking methods will just
inconvenience your users to the point
of making them revolt. So what’s a
network admin to do?

Obviously, learning about network
security is crucial. The reasons VLANs
and NAC (network access control)
systems exist is to prevent undesired
access to various systems. When
you’re designing or redesigning
your network, don’t assume an
external firewall will protect you from
computers outside your network.
Disgruntled employees, malware
victims or nerdy employees like me
will find a way to access systems from
the outside. Make sure their point
of entry doesn’t give them access to
systems they shouldn’t have access to
in the first place.

Today’s little tutorial isn’t really
hacking. We’re not doing anything
the protocols aren’t designed to do.
Heck, all the tools are available pre-
packaged in your distribution! I don’t
want anyone to spend too much effort
trying to block my “attack”, because
it’s not an attack at all. It’s just using
the tools available in exactly the way
they’re supposed to be used.

SSH is my favorite command-line
utility. It can do so many things, from
transferring files to tunneling X11
traffic. As I described here, you also
can reroute traffic over tunnels giving
you access to systems that shouldn’t
easily be accessible. Ultimately, I
hope learning about SSH will get you
interested in network security, because
until you understand the danger, there’s
not much motivation to learning and
implementing such systems. Until next
time, happy tunneling!

Shawn Powers is the Associate Editor for Linux Journal.
He’s also the Gadget Guy for LinuxJournal.com, and he has an

interesting collection of vintage Garfield coffee mugs. Don’t let

his silly hairdo fool you, he’s a pretty ordinary guy and can be

reached via e-mail at shawn@linuxjournal.com. Or, swing by

the #linuxjournal IRC channel on Freenode.net.

COLUMNS

THE OPEN-SOURCE CLASSROOM

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 51 9/17/14 4:49 PM

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
http://Freenode.net
http://LinuxJournal.com

NEW PRODUCTS

Paragon Software Group
and Cambridge University
Press’ Cambridge English
Pronouncing Dictionary

English-language learners—and American Anglophiles practicing their imitation of James
Bond—will delight in the news that the Cambridge English Pronouncing Dictionary is
now in app form. This latest version of the dictionary, “the classic guide to accurate,
contemporary pronunciation for British and American English”, is published jointly by
Cambridge University Press, the world’s oldest publisher, and Paragon Software Group.
This dictionary app for Android, iOS and Mac OS X users is based on the classic version
of Daniel Jones’ guide to contemporary pronunciation for British and American English
and is designed to meet the needs of English language learners striving to perfect their
pronunciation of even the most challenging words, such as “though” and “hono(u)r”,
personal names, company names, technology and science definitions, and more. The app

and navigation (such as full-text search) and convenience (no Internet connection required).
http://www.cambridge.org and http://www.slovoed.com

Imagineer Systems Ltd.’s
mocha Pro
Visual effects solutions developer Imagineer
Systems Ltd. says that it has made its mark
on such films as The Hobbit, Black Swan,
Transformers and the Harry Potter series. The
latest release in Imagineer’s creativity toolkit

is mocha Pro 4, the company’s updated standalone software utility optimized for visual
effects and post-production challenges. Key existing mocha Pro features include a rock-solid
planar motion tracking engine, advanced roto tools, 3-D camera solver, stereoscopic 3-D
support, calibration of lens distortion, stabilization module and insert module. New features
found in version 4 include new advanced tools for stereoscopic 3-D, customizable keyboard
shortcuts, Adobe Premiere support, Python scripting, improved format support and more.
http://www.imagineersystems.com

52 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

LJ246-Oct2014.indd 52 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.cambridge.org
http://www.slovoed.com
http://www.imagineersystems.com

NEW PRODUCTS

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 53

Checkmarx Game of Hacks
In its new on-line game Game of Hacks, Checkmarx
allows developers to have fun while honing their
security skills and understanding of the hacker’s
perspective. In the game, developers and security
professionals test their application hacking skills,

improve their code security know-how and facilitate better security practices in hope of
reducing the amount of vulnerabilities in their applications. Available for desktop, tablet
and mobile, Game of Hacks presents developers with vulnerable pieces of code and
challenges them to identify the application layer vulnerability as quickly as possible. It even
has a two-player mode allowing head-to-head competition. Players analyze vulnerabilities

myriad programming languages. Additionally, developers can add their own questions and
vulnerable code to the game in any programming language highlighting any vulnerabilities,
growing the game’s scope as more users join.
http://www.gameofhacks.com

Laura Cassell and Alan Gauld’s
Python Projects (Wrox)
Python trainers Laura Cassell and Alan Gauld targeted their new
book Python Projects at the Python programmer with basic skills
who is ready to start building real projects. Programmers who
know the Python syntax and lay of the land, but who still may be
intimidated by larger, more complex projects, will find this book
useful. Python Projects provides a walk-through of the basic setup
for an application and the building and packaging for a library, and explains in detail the
functionalities related to the projects. Topics include maximizing the power of the standard
library modules; finding and utilizing third-party libraries; creating, packaging and reusing
libraries within and across projects; building multilayered functionality, including networks,
data and user interfaces; and using development environments like virtualenv, pip and
more. Publisher Wrox says that Python developers looking to apply their skills to real-world
challenges will find a goldmine of information and expert insight in Python Projects.
http://www.wrox.com

LJ246-Oct2014.indd 53 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.gameofhacks.com
http://www.wrox.com

NEW PRODUCTS

Paul Schuytema’s
The Web Wargame Toolkit
(Mercury Learning & Information)

Paul Schuytema’s new book The Web Wargame Toolkit walks readers
through the process of crafting an old-school, turn-based wargame
in PHP utilizing the CodeIgniter application framework. More
generally, this is a soup-to-nuts how-to book for those interested in
crafting Web game applications utilizing a basic LAMP system. The

wargame project serves as an exciting context for PHP programmers looking to gain more
in-depth application coding experience. Those with an interest in game development will
learn the coding skills to support design decisions as they create the game project. The book
assumes at least a beginning level of PHP coding experience, though no previous CodeIgniter
or game development experience is required. Other features of the book-DVD set include full
database design for game data structures, a flexible game map system, a complete overview
of a simple CRUD system and complete, modifiable source code for the game.
http://www.merclearning.com

54 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

AES’ CleverView for TCP/IP on Linux
and CLEVER Mobile for Linux
The CleverView for TCP/IP on Linux solution from AES addresses the
challenge in cloud-based data centers that an ever-greater amount
of traffic is between servers, preferably Linux-based ones, of course.
CleverView is a performance and availability monitoring solution for
Linux, UNIX and System z that has added new features in its latest v2.3
release. Concurrently, AES released an updated CLEVER Mobile for Linux
so that enterprise knowledge workers can access server performance
and availability details from their mobile devices. The most noteworthy
highlight of CleverView v2.3 is the SMF Host Utility that integrates Linux/UNIX-monitored
metrics with z/OS SMF records, expanding enterprise insight into performance and availability.
Also noteworthy is the real-time notification of problems leading to increased Linux and UNIX
service availability, regardless of the hardware platform on which Linux or UNIX resides.
http://www.aesclever.com

LJ246-Oct2014.indd 54 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.merclearning.com
http://www.aesclever.com

NEW PRODUCTS

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 55

Wolfram SystemModeler
The updated Wolfram SystemModeler 4 is an easy-to-use, next-generation
modeling and simulation environment for cyber-physical systems.
SystemModeler enables users to draw on a large selection of built-in and
expandable modeling libraries to build industrial-strength, multidomain
models of a complete system. Wolfram is also well known for the
complementary Mathematica application, which provides a fully integrated
environment for analyzing, understanding and quickly iterating system
designs. The new SystemModeler 4 vastly expands support for modeling
libraries, adds standardized deployment of models to other simulation tools
and deepens integration with Mathematica. Other key new features include
a library store with verified model libraries, improved modeling features,

model creation support from Mathematica, as well as improved workflow in the integration with
Mathematica, a new documentation center and support for our beloved Linux OS.
http://www.wolfram.com

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or
New Products c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

CacheGuard Technologies Ltd.’s
CacheGuard OS
CacheGuard Technologies Ltd.’s motto is “Web security made
affordable”. The company puts its motto into action with products
like CacheGuard OS, an integrated security solution designed
to manage Web traffic that is based on a custom-hardened version of Linux. The latest “next-
generation” release is CacheGuard OS NG v1. The company calls CacheGuard OS a powerful,
turn-key solution that allows companies to protect and optimize Web traffic traversing their Web
infrastructure. Customers can utilize CacheGuard OS as an appliance or turn their own hardware
into a powerful Web Gateway Appliance. CacheGuard OS integrates numerous Web security and
optimization technologies in a single functional network device. Technologies like proxy, IP firewall,
bandwidth shaping, caching, HTTP compression, URL filtering, Web application firewall and Web
malware filtering are all integrated into a unique operating system.
http://www.cacheguard.com

LJ246-Oct2014.indd 55 9/17/14 4:49 PM

http://www.wolfram.com
mailto:newproducts@linuxjournal.com
http://www.cacheguard.com
http://www.linuxjournal.com

56 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

RASPI-SUMP

How to set up a sump pump monitor

with an ultrasonic sound sensor,‚

Raspberry Pi and Python.

AL AUDET

LJ246-Oct2014.indd 56 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 57

I
n June 2013, we had the
unfortunate luck of a basement
flood, caused by a tripped electrical

breaker connected to our sump pump.
There are so many things that can go
wrong with a sump pump. You always
are on guard for power outages,
blown breakers, sump pump failures,
clogged pipes and all manner of
issues that can arise, which ultimately
can end with a flooded basement. I
needed a way to alert me of issues
when I was not at home. Audible
alarms are fairly cheap and are great
when you are physically in the house.
They fail miserably when you are ten
miles away at work. I had a Raspberry
Pi that I had tinkered with periodically
but for which I never had a real
purpose. I decided to try to put the
Pi to work as a dedicated sump pit
monitoring device. Hopefully, the Pi
could send me SMS alerts if a problem
arose while I was away.

Since I did not have a programming
background, I started to look for
an existing project I could install on
the Pi that could act as a sump pit
monitor. There are other projects
that can monitor sump pump activity;
however, it seemed that everything I
came across looked overly complicated
or didn’t have the features I required.
I needed something simple that
monitored the water level in the sump

pit at regular intervals and sent me a
text if there was a problem. If it also
could display pretty graphs of sump
pit activity that I could access easily,
that would be a bonus.

Although I had written many scripts
through the years at work, I never
learned object-oriented programming.
I made the decision to learn Python,
and a few months later, set myself
to work on a monitoring system. I
chose Python because it has an active
community, and many Raspberry
Pi enthusiasts use it as their main
scripting language. The Raspberry
Pi uses Raspbian Linux, which is
based on Debian, so that already was
familiar ground. With these tools in
hand and in true Linux and Raspberry
Pi spirit, I decided to build my own
and called it Raspi-Sump.

Raspi-Sump is a sump pit water-level
monitoring system written in Python.
It uses a Raspberry Pi and an HC-SR04
ultrasonic sensor to monitor the water
level in a sump pit, log the readings
and send SMS e-mail alerts if the
water rises above a predefined level.

In this article, I show the methodology
I used to create Raspi-Sump. I also
describe the physical setup of the
monitor and the scripts that make it
work. If you choose to do something
similar, the source code and install
instructions are available on GitHub.

LJ246-Oct2014.indd 57 9/17/14 4:49 PM

http://www.linuxjournal.com

58 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

It is free to use and modify as you
wish (see Resources).

I determined that the features
I required in a monitor included
the following:

 Regular one-minute-interval
readings of the water depth in
my sump pit.

 Logging of readings to a comma-
delimited file for processing graphs
and historical pump activity.

 Automated SMS e-mail alerts if the
water exceeds a predefined level.

 Off-site graphical reports of the
current water level to a Web site.

 Web-based historical information
on sump pump activity.

 Automatic restart of the raspisump.py
process after an unexpected failure.

The Physical Setup
The complete list of components for

Raspi-Sump includes:

 Raspberry Pi Model B and case.

 Raspbian Linux.

 HC-SR04 ultrasonic sensor.

 Five feet of Cat5 wire (four 24AWG
strands needed).

 Two resistors (one 470R Ohm and
one 1K Ohm).

 Heat-shrink tubing to protect
soldered connections.

 Plastic bracket to hold the sensor.

 One two-foot piece of wood
strapping to mount the plastic
bracket in the pit.

 One floppy drive four-pin power
connector salvaged from an old PC.

 Two case-fan power connectors,
also salvaged from the same PC.

58 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

With the help of a Python script,‚ the sensor,‚

which is mounted inside the sump pit facing

the water,‚ sends a sound pulse that reflects

off the water and back to the sensor.

LJ246-Oct2014.indd 58 9/17/14 4:49 PM

http://www.linuxjournal.com
http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 59

Total cost for materials, including
a couple spare sensors, was $80.

The ultrasonic sensor I chose
is the HC-SR04, which has four
connections that are wired to the
GPIO pins of the Raspberry Pi. With
the help of a Python script, the
sensor, which is mounted inside the
sump pit facing the water, sends
a sound pulse that reflects off
the water and back to the sensor.
The script monitors the amount of

time it takes for the sound pulse
to bounce back to the sensor. It
calculates the distance by measuring
the time required for the pulse to
return at the speed of sound. This
gives you a reading of the distance
between the sensor and the water.
The distance is used to calculate the
water depth and log a time-stamped
result to a CSV fi le.

Figure 1 shows a closer look at
the connections.

Figure 1. Wiring Diagram

LJ246-Oct2014.indd 59 9/17/14 4:49 PM

http://www.linuxjournal.com

60 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

The four pins on the sensor are
wired to the Raspberry Pi as follows:

 Pin 1 VCC connects to the 5V pin 2.

 Pin 2 Trig connects to GPIO17 pin 11.

 Pin 3 Echo connects to GPIO27 pin 13.

 Pin 4 Ground connects to pin
6 Ground.

I chose GPIO17 and 27, but you can
use any available GPIO pins on the Pi
as long as they are identified properly
in the Python script.

Pin 1 provides 5V of power to
the HC-SR04 sensor. A command
is initiated on GPIO17 (Trig) that
sets the value of the pin to True
for 10 micro seconds. This causes
the sensor to initiate a series of
sound pulses toward the water
for that short amount of time.
The Echo pin connected to GPIO27
listens for a return pulse. The
difference between the send and
the return of the pulse gives a
time measurement. The
measurement is used to calculate
the distance of the water.

This causes a small problem as
Raspberry Pi GPIO pins are rated
only for 3.3V. The sensor sends a
5V current back toward GPIO27.

A way is needed to throttle the
current to 3.3V, which won’t damage
the Pi. To protect the Pi from damage,
simply insert a voltage divider on
the Echo line between the sensor
and the Pi.

Voltage Divider
The purpose of a voltage divider is
to reduce the amount of current sent
from one component to another.
As shown in Figure 1, I soldered
a 470R Ohm resistor on the Echo
wire and bridged a 1K Ohm resistor
between the Echo and Ground wires.
This prevents blasting 5V to a pin
that is rated only for 3.3V. With
these resistors, voltage is actually
a touch higher at 3.4V, which is
within a tolerable level. All soldered
connections are covered with
heat-shrinking tube to avoid
electrical shorts.

Calculating resistor types required
is beyond the scope of this article,
but there are many handy Web-
based voltage divider calculators
available to determine your
requirements. In this example, a 1K
and 2K Ohm resistor would reduce
the current to 3.333V.

Wiring
The Raspberry Pi is connected to the
sensor with a five-foot length of

LJ246-Oct2014.indd 60 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 61

CAT5 cable. Because there are four
connections, only four of the eight
twisted wires are used. On each
end of the selected wires, I soldered
connectors that were compatible
with the sensor pins and the pins
on the Pi. An old 3.5" floppy drive
power connector works great for
the sensor connection (Figure 2). I
used a couple two-pin PC case-fan
connectors, salvaged from an old
PC, for the connections on the Pi’s
pins. These connectors are available

on-line, but anything you can
salvage from an old PC works great.

Mounting
The HC-SR04 is attached to a plastic
case and screwed onto a piece of
wood strapping. The wood strapping
is inserted into the sump pit facing
downward and is easily adjustable
and removable if needed. The Cat5
wire is securely taped to the sump
pump’s ABS pipe and an open
wall stud to prevent tangling and

Figure 2. Floppy Connector

LJ246-Oct2014.indd 61 9/17/14 4:49 PM

http://www.linuxjournal.com

62 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

disconnection of the wire when
removing the sump pit lid.

Finally, the Raspberry Pi is
mounted on a wall stud and plugged
in to a UPS unit. Figure 4 shows the
finished view.

Raspi-Sump
The Raspi-Sump program currently
consists of three Python scripts. The
main script is raspisump.py. The script
is very simple and is only about 100
lines of code. The first thing it does
is set the variables of the sump pit,
like depth (72cm), critical water level
(35cm) and GPIO pin assignments

Figure 3. Open
Sump Pit View

Figure 4. Finished Pit View

LJ246-Oct2014.indd 62 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 63

as mentioned earlier.
The script then takes
a sample of 11 water-
level readings every
minute and uses the
median sample as the
best reading (more on
this later). Once the
reading is established,
the script determines
if the water is at a
safe or critical level.
Safe levels are logged
to a CSV file, and the
script waits for another
minute to take the
next reading. Critical
levels are passed to a
function that logs the
level to the same CSV
file and initiates an SMS
e-mail to my cell phone
(Figure 5). I use the
Python smtplib module
to handle e-mail alerts.
You can configure any
e-mail server to handle
the alerts, including
a localhost mail server on the Pi, if
your ISP allows port 25 traffic. You
also can use your ISP’s SMTP server or
Google’s Gmail SMTP server if you are
using a Gmail account.

The key Python module used to
communicate between the Pi and the

sensor is called RPi.GPIO. This module
can be used to control so many
different types of equipment with your
Pi. Without delving into the “nuts and
bolts” of RPi.GPIO, the module helps
you take control of the pins by turning
them on and off. This allows you to

Figure 5. SMS Alert

LJ246-Oct2014.indd 63 9/17/14 4:49 PM

http://www.linuxjournal.com

64 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

control all sorts of equipment, like
sensors and LEDs, for example.

You can view the GPIO code in
the raspisump.py script within the
water_level() function. Similar code
is used by many other projects that
communicate with the Pi’s GPIO pins.
Adam Lappin’s Byte Creation Blog has
a good example that helped me learn
how to use the RPi.GPIO module in
this project (see Resources).

Raspi-Sump is started automatically
on bootup of the Raspberry Pi by
adding this line to /etc/rc.local right
before the last line exit 0:

/home/pi/raspi-sump/raspisump.py &

The ampersand (&) starts the script
as a background process.

Access to GPIO pins requires elevated
privileges on the Pi. To start the script
manually, issue the command:

sudo /home/pi/raspisump/raspisump.py &

Figure 6 shows using the tail
command to demonstrate the
CSV file being updated in real
time by raspisump.py.

What is displayed in Figure 6 is
rather strange. The water depth is
bouncing around. You would expect
the water to be consistently higher
with each reading. The reason for

Figure 6. CSV File Being Updated in Real Time by raspisump.py

LJ246-Oct2014.indd 64 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 65

this is that there is a one-centimeter
variance in each reading. Linux is a
multitasking OS and not a real-time
one. It is not optimal for real-time
applications like communicating with
sensors and returning precise results.
The best reason I can come up with is
that the OS is busy doing other tasks
and allows raspisump.py to record the
reading when it is finished dealing
with those other processes.

This brings me back to the reason
I use the median reading of a sorted
sample. Every once in a while, the
script gives an invalid reading that can
be way off. This can trigger a false
warning SMS alert even if the water is
below my critical level. However, these
readings are rare. By using a sorted
sample, I can remove those fringe
readings at the high and low end if
they occur. The median reading is
always accurate within one centimeter

of the actual water level. For a
residential system, I am not concerned
with millimeter accuracy. A small
variance in readings still provides safe
reporting of the water level. This also
helps explain the jagged line in the
graphs that are generated and sent to
a Web server at regular intervals.

The second script I use is
todaychart.py. This script generates
graphs, as shown in Figure 7, of
water level activity from my CSV log
files. It uses the Python matplotlib
and NumPy modules to generate the
graphs. rsync over SSH copies the
graphs and CSV log files hourly to my
Web server via a cron script. I chose
to generate graphs on the Pi instead
of the Web server, because different
Linux distributions package different
versions of matplotlib and NumPy. I
prefer using the packaged versions for
simplicity. Always using the Raspberry

Figure 7. Graphs Generated by todaychart.py

LJ246-Oct2014.indd 65 9/17/14 4:49 PM

http://www.linuxjournal.com

66 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE Raspi-Sump

Pi renders more consistent graphs, no
matter which distro you use for your
off-site component.

The third and final script is
checkpid.py. Its purpose is to monitor
the health of the raspisump.py process
and restart it if it is stopped. Cron
runs the script at regular intervals and
looks for one of three outcomes. If the
script returns 0, this indicates a failed
process. checkpid.py then initiates a
restart command. If the script returns
1, the process is fine, and the script
exits cleanly. If the number is greater
than 1, this indicates more than one
raspisump.py process. In this instance,
a killall 09 raspisump.py
directive is initiated, and the process
is restarted.

Other Issues with Raspi-Sump
The HC-SR04 sensor has a fairly wide
sonar field. The user manual states
that it works best with a 30° angle.
My sump pit is a busy place. It has a
backup pump that sits higher than the
main pump on a 2x6 stud. Each pump
has a float ball that bounces around
in the pit. This results in false readings
when the sensor picks up an object
that enters its field. This problem can
be mitigated by strategically placing
the sensor further away from these
objects. If that is not possible, you can
vertically insert a 3" or greater piece

of PVC pipe in the sump pit and force
the sensor to take its reading down
the empty pipe. This will focus the
pulse and hide the objects in the pit
that are causing problems.

Conclusion
Raspi-Sump is still in the early stages
of development. There are other
features I would like to add, such as:

 A manual power button to start
and shut down the Raspberry Pi
gracefully without logging in.

 A small LCD display to show
the current water level without
opening the lid.

 A Web-based reporting system
using a Python Web framework.

 A Web-based management
interface for Raspi-Sump on the Pi
(like a home router).

 A GSM module component to
use the cellular network for alerts
instead of the Internet.

 A configuration file to store variables
as opposed to within the script.

 Package management for
installation of Raspi-Sump.

LJ246-Oct2014.indd 66 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 67

A sump pit monitor is just one tool
you can use to help avoid a flooded
basement. It’s not a replacement for
a complete strategy that includes a
backup pump on a separate electrical
breaker. A gas-powered electrical
generator is also essential for
extended power outages. Also, I kept
my cheap Home Depot audible alarm.
A text alert at two in the morning is
useless if I am sound asleep. I want a
“full-out” screech to wake me up.

I welcome all feedback on this project.
I am not a professional programmer, and
I am sure that I can substantially improve
the code or add useful features that I
have not even considered.

Although it’s not perfect, I now have
a system that works and gives me extra
peace of mind while I am away. If you
are looking for a similar solution, I
hope you can use, modify and improve

Raspi-Sump to suit your needs. If you
do, I would love to hear from you.

Acknowledgement
Special thanks to Ron Hiller (GitHub
user @rhiller) for tirelessly answering
my questions about voltage dividers
and his own sump pump monitor called
pi-distance: https://github.com/rhiller/
pi-distance.

Al Audet lives in Timmins, Ontario, with his wife Lucie and

five-year-old son Nicholas. He works as a Team Leader and

Technical Advisor in Platform Virtualization Services for Shared

Services Canada and has been a Linux enthusiast and advocate

since 1997. He loves all technology whose purpose is to increase

quality of life. He is user @Al_Audet on Twitter.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

Resources

Raspi-Sump Web Site: http://www.linuxnorth.org/raspi-sump

Source Code: https://github.com/alaudet/raspi-sump

Quick Start Guide: https://github.com/alaudet/raspi-sump/tree/master/docs

MIT License: https://github.com/alaudet/raspi-sump/blob/master/License

HC-SR04 User Manual: http://www.linuxnorth.org/raspi-sump/HC-SR04Users_Manual.pdf

Adam Lappin’s Byte Creation Blog:
http://www.bytecreation.com/blog/2013/10/13/raspberry-pi-ultrasonic-sensor-hc-sr04

LJ246-Oct2014.indd 67 9/17/14 4:49 PM

https://github.com/rhiller/pi-distance
https://github.com/rhiller/pi-distance
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxnorth.org/raspi-sump
https://github.com/alaudet/raspi-sump
https://github.com/alaudet/raspi-sump/tree/master/docs
https://github.com/alaudet/raspi-sump/blob/master/License
http://www.linuxnorth.org/raspi-sump/HC-SR04Users_Manual.pdf
http://www.bytecreation.com/blog/2013/10/13/raspberry-pi-ultrasonic-sensor-hc-sr04
http://www.linuxjournal.com

68 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE U-Boot Environment Variables

U-Boot
Environment

Variables
A close look

at the anatomy
of the

U-Boot environment.
SACHIN VERMA

LJ246-Oct2014.indd 68 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 69

D
as U-Boot is a popular
bootloader for embedded
systems. This wide adoption of

U-Boot is hardly surprising given the
number of architectures and platforms
it supports. Additionally, U-Boot has
a flexible compile-time configuration
setup. You can select different
features and drivers via config options
and build a custom bootloader image
for your platform. U-Boot’s flexibility
is extended at runtime as well. Using
U-Boot environment variables, you can
influence the program execution flow.

U-Boot comes with a CLI
(command-line interpreter), which
has basic scripting capabilities. This
scripting ability combined with the
U-Boot environment variables can
be used to create some powerful
booting scenarios. The ability to
manipulate program behavior using
environment variables is beneficial
for both development and production
setups alike. During development,
people strive to test all possible paths
for loading and booting images for
their platforms. So, you may try to
load a Linux kernel image from a local
storage (Flash, SDcard, USB, eMMC
and so on), or access it over the
network (NFS, TFTP and so on).

U-Boot simply makes your life easier
as a developer. You just need to tweak
the scripts combining environment

variables in a fruitful way. Production
images also need some versatility.
When a product’s OS images need
an upgrade, the bootloader must be
configurable to fetch the images from
different sources.

U-Boot has a number of system
variables that you can modify to
achieve your desired results. For
example, on certain systems, initrd
images loaded on top of DDR may
not be accessible to the Linux kernel.
To counter this, you can instruct
U-Boot to load initrd at a lower DDR
address. You can do this by setting the
initrd_high environment variable.

Another common situation during
development is the presence of
different network configurations.
On your home setup, you may be
working on a static IP configuration
using NFS. But, when you are out
for a demo at a client location,
you only have DHCP available with
images kept on a TFTP server. U-Boot
is highly configurable for such
scenarios because it provides so
many options. You can change the
network configuration, modify the
IP addresses of image servers and
gateway servers with the help of
environment variables. You
could assign a console over serial
port, or you could use netconsole or
usbtty if you prefer.

LJ246-Oct2014.indd 69 9/17/14 4:49 PM

http://www.linuxjournal.com

70 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE U-Boot Environment Variables

So, What Is This U-Boot
Environment?
A simple answer to that question
would be “a collection of name=value
pairs”. Here, “name” refers to the
name of the environment variable
to which you want to assign some
“value”. This “value” could be of any
type: string, hexadecimal, boolean and
so forth. Whatever type the value is, it
is converted into a string before being
stored in a linearized environment
data block. Each environment
variable pair (“name=value”) would
be stored as a null-terminated
string. So, the collection of many
environment variables is nothing but
a null-separated list with a double-
null terminator. Figure 1 illustrates
how a list of strings is actually
stored. The left-hand side is just a
logical representation of environment
variables, whereas the right-hand

side shows that the variables have
been flattened and written in a
serialized form.

How Is the Environment Stored?
U-Boot has two types of
persistent environments.

1) Default Environment
(Compiled-In, Read-Only): Every
U-Boot binary has a default built-in
environment of its own (Figure 2a).
During compilation, a character array
called default_environment is
embedded into the U-Boot image. This
character array stores the environment
variables as a list of null-terminated
strings with a double-null terminator.
The contents of this array are
populated conditionally based on
the config options selected for your
board. Environment variables that
are commonly used can be enabled
by defining the corresponding

Figure 1. Linearized Representation of Environment Variables

LJ246-Oct2014.indd 70 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 71

CONFIGs in your board’s config file
(include/configs/<YOUR_BOARD>.h).
Figure 3 lists some commonly used
options, which, once defined, would
make their way into the default
environment of your board.

Apart from the standard variables
used across boards, you may want

to add certain environment
variables that are specific to your
board or that just are convenient
for you. You may, for instance,
want to embed the revision number
of the board into this environment.
You could do that by defining
all of these variables in a macro

Figure 2. (a) Type 1 Persistent Environment Read-Only, Embedded; (b) Type 2 Persistent
Environment User-Supplied, Read-Write Enabled

LJ246-Oct2014.indd 71 9/17/14 4:49 PM

http://www.linuxjournal.com

72 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE U-Boot Environment Variables

called CONFIG_EXTRA_ENV_SETTINGS
in your board’s config fi le:

#define CONFIG_EXTRA_ENV_SETTINGS \

 "board=" XSTR(BOARD) "\0" \

 "load_addr=" XSTR(CONFIG_SYS_LOAD_ADDR) "\0"

Remember that the default
environment is “read-only”, as it
is part of the U-Boot image itself.
Vendors normally keep some
essential system variables as part
of this environment.

There are some good reasons to
keep a default environment as part
of the image:

 Because it is read-only, you always
have a default state to revert to.

 During early bootup, a user-
supplied environment (defined

next) may be inaccessible
or must not be used due to
security concerns.

 A user-supplied environment may
be inaccessible due to a storage
device malfunction or environment
data corruption.

You shouldn’t keep too much
data in this default environment,
as it directly adds to the weight of
the binary. Keep only critical system
variables in this environment.

2) User-Supplied Environment
(Flashed in External Storage, Writable):
Typically, vendors flash an environment
data image to external storage present
on your board. The format of this pre-
built environment is again the same—
that is, a linearized list of strings, but
there is a 4-byte CRC header prefixed

Figure 3. System variables defined in your board’s config become part of the default
environment.

LJ246-Oct2014.indd 72 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 73

to it. This CRC is computed over the
environment data. Figure 2b illustrates
such an environment blob with CRC
data, followed by valid environment
data and an invalid one after that. The
total size of this environment data is
fixed to CONFIG_ENV_SIZE during
compilation. So, if your environment
usage exceeds this size, you would
need to recompile your U-Boot binary
after increasing CONFIG_ENV_SIZE.
If you do not increase the size,
U-Boot will refuse to save the
environment variables.

You may decide to keep this
environment in external storage,
but you must configure the board’s
config accordingly. U-Boot must
know which storage method (and at
what offset) will be used to hold the
user environment. U-Boot provides a
number of options to configure the
location of the environment data.
U-Boot has the infrastructure to access
environment data stored in serial
flashes, NVRAM, NAND, dataflash,
MMC and even UBI volumes. See
the U-Boot documentation for more
information on how to use these
CONFIG options. Since the default
environment size has to be minimized,
most of the environment variables
are stored here. Certain storage
technologies like raw NAND flashes
are inherently unreliable. To combat

such possibilities (including power
failure), and for robustness in general,
you also can configure a redundant
user environment. You can configure
the location and size of this duplicate
environment data as well in your
board’s config.

Saving Environment
Out of the two default environments
(default and user), only the user is
writable. So, whenever you modify
a variable and issue a saveenv
command, that variable ends up in
the user environment.

When you do a saveenv, U-Boot
does the following:

 Sorts the list of current
environment variables.

 Converts them to a linearized list
of strings.

 Computes CRC over this data and
burns the env back at its fixed
location in storage.

Creating a Pre-Built User
Environment
U-Boot provides a utility named
mkenvimage that can be used to
generate an environment blob suitable
to be flashed. mkenvimage needs at
least two inputs to create the blob:

LJ246-Oct2014.indd 73 9/17/14 4:49 PM

http://www.linuxjournal.com

74 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

FEATURE U-Boot Environment Variables

1. Environment variables in a text file
(only one env “name=value” string
on each line).

2. The size of the environment
blob in bytes (remember,
this must comply with the
CONFIG_ENV_SIZE you have
defined in your board’s config).

For example, if my env data fi le
is called my_env_data.txt, and
the size of my desired env blob
is 16384 (16 KiB), I would use the
following command:

$./tools/mkenvimage -s 16384 -o env_blob my_env_data.txt

You can see the dump of the env
blob using the od command:

$ od -t x1c env_blob

0000000 0d d2 49 96 62 61 75 64 72 61 74 65 3d 31 31 35

 \r 322 I 226 b a u d r a t e = 1 1 5

0000020 32 30 30 00 62 6f 6f 74 64 65 6c 61 79 3d 31 30

 2 0 0 \0 b o o t d e l a y = 1 0

0000040 00 6c 6f 61 64 5f 61 64 64 72 3d 30 78 34 30 30

 \0 l o a d _ a d d r = 0 x 4 0 0

0000060 30 30 30 30 30 00 00 00 00 00 00 00 00 00 00 00

 0 0 0 0 0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

0040000

This environment data blob must
be flashed at the predefined offset
in the storage device. You can use
U-Boot, Linux or any other flasher to
burn this blob.

Relocation of Environment Data
to RAM
During an early boot when
U-Boot has not relocated to RAM,
it uses the l inearized form of
environment data (as shown in
Figure 1). But once U-Boot has
relocated to RAM, this l inearized
form is no longer used. Instead,
U-Boot imports all such env data
stored from persistent storage
into a RAM-resident hashtable. If
the user-supplied environment is
good (that is, the CRC is okay),
it is imported from Flash to RAM.
Otherwise, U-Boot imports the
default compiled-in environment
to this hashtable. Figure 4 shows
how the user environment is
imported in to the hashtable,
whereas U-Boot along with its
default environment relocates to
top of the RAM. If the user
environment is corrupt or
inaccessible, U-Boot would import
the default environment in to
the hashtable.

The use of the RAM-resident data
structure (hashtable) is important for

LJ246-Oct2014.indd 74 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 75

various reasons:

 It boosts performance, as you are
manipulating variables in RAM and
not in Flash.

 You have to manipulate data only
in RAM and need not access some
slow Flash driver (and deal with the
associated complexity).

 It allows U-Boot to deploy type
checks and access control attributes

on different variables while still
keeping the persistent storage form
simple (a linear list).

Once the environment has relocated
to RAM (into the hashtable), all
commands operating on environment
variables will be working only on this
hashtable. U-Boot does not touch
the environment variables stored in
the persistent storage at all (unless it
needs to save the env).

Each environment variable entry

Figure 4. The user environment is imported into a hashtable. If the user environment is
corrupt, the default environment is imported instead.

LJ246-Oct2014.indd 75 9/17/14 4:49 PM

http://www.linuxjournal.com

76 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

inside the hashtable is represented
by a data structure called a struct
entry (Figure 5). Apart from the
members key and data, which
correspond to “name” and “value” in
the linearized representation of data,
you have members called callback
and flags. flags is of integer type
and is used to implement type check
and access control. callbacks is the
callback function associated with this

environment variable. If defined, this
callback handler would be invoked
whenever any operation (like add,
delete or modify) is performed on this
environment variable.

How to Control/React to
Environment Variable Modification?
At times you may want to do your own
runtime configurations. You may want
to react (accept, reject or produce

Figure 5. Hashtable representation of an environment variable. There is an associated
callback function, as well as a bitmap to store type and access control.

FEATURE U-Boot Environment Variables

LJ246-Oct2014.indd 76 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 77

some side effects) to the changes
done to some environment variable.
For such use cases, U-Boot provides
a mechanism of deploying callback
handlers. You can associate a callback
function with an environment variable.
As a first step, you have to register
a callback handler with U-Boot. This
function would be called whenever
you do any modifications to the
environment variable. Figure 6 shows
sample code to register a callback with
U-Boot. You can place such handler
code in your board-specific file.
The macro U_BOOT_ENV_CALLBACK
registers the callback function
on_change_foo with the handler named
foo_h. Your handler is now registered
with U-Boot with the name “foo”.

Now, you need to establish a link
to this registered handler with an
environment variable. Take a look at
the struct entry in Figure 6. You can
see that there is a member named
callback (a function pointer) for each
environment variable. U-Boot would
invoke this handler before committing
the modified environment variable to
the hashtable. You can make this as-
sociation of callback handler with the
environment variable either at compile
time or at runtime. For compile-time
association, you need to define the
config option #define
CONFIG_ENV_CALLBACK_LIST_DEFAULT

foo:foo_h in your board’s config file.
You also can do runtime association

as depicted in Figure 7. Here I have

Figure 6. Code a handler you want to call for an environment variable.

LJ246-Oct2014.indd 77 9/17/14 4:49 PM

http://www.linuxjournal.com

78 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

created a new environment variable
.callbacks, which is a standard
U-Boot system variable to make such
associations. I have deployed a handler
named foo_h for the environment
variable foo. Once this registration
is done, whenever you do some
modification to variable foo, the
function on_change_foo() would
be invoked. You now can deliver your
reaction to different types of actions
(env_op_create, env_op_overwrite
or env_op_delete).

U-Boot already deploys similar
handlers for managing console
changes, splash images and so on.

Type and Access Control of
Environment Variables
There are certain environment variables
that you want to use but do not
want to do casual modifications. For
example, say you have an environment
variable serial#; you definitely want
this variable to be read-only, and
you want automatic rejection of any

attempt to change it. Another such
example is the MAC address of the
device. Again, you want to keep that
variable as read-only or, at worst,
write-once. U-Boot supports different
access modifiers: any, read-only,
write-once and change-default
(Figure 5). The U-Boot hashtable
representation of environment
variables has a member
(Figure 5). The member is used
to keep a bitmap specifying the access
permission associated with variable.
So, whenever any modification attempt
is done on variable, it must comply
with the access permission; otherwise,
U-Boot will reject the changes.

Another problem faced by users is
the basic sanity check of environment
variable type. Since the linearized form
of environment keeps only strings,
U-Boot needs to make sure that it can
do some kind of type check before
assigning a value to a variable. To
address this issue, U-Boot makes use of
some predefined types, such as “string”,

Figure 7. Associate the callback handler with the environment variable by
setting an environment variable .callbacks. Here, any modification of foo
would invoke on_change_foo().

FEATURE U-Boot Environment Variables

LJ246-Oct2014.indd 78 9/17/14 4:49 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 79

“decimal”, “hexadecimal”, “boolean”,
“IP address” and “MAC address”.
There are corresponding codes for
these type modifiers: “s”, “d”, “x”,
“b”, “i” and “m”. Again, U-Boot
stores this type information of variables
in flags as a bitmap (Figure 5).

You can associate “type” and
“access control” to a variable either
at compile time or at runtime.
For compile-time association, you
need to define a config #define
CONFIG_ENV_FLAGS_LIST_DEFAULT

foo:sr in your board file. For
runtime association, you can define
an environment variable .flags
(Figure 8). Here, I am associating an
environment variable foo with type
s (meaning the value is a string) and
access control r (meaning it is read-
only). Once deployed, if you try to
modify the variable foo, U-Boot will
reject your request. Also, if a value is
not of specified “type”, your update to
the environment variable will fail.

Environment variables like MAC

address make use of type m. This will
make U-Boot do a sanity check on the
value entered by the user to confirm
whether the value is indeed a valid
MAC address.

Modifying the U-Boot User
Environment from Linux
U-Boot environment variables can
be added, modified or deleted from
Linux as well. U-Boot provides a set
of utilities called fw_printenv and
fw_setenv to do the job. First, you
need to compile these utilities for
Linux. Figure 9 shows the compilation
steps for the utility. Here, I am cross-
compiling it for the ARM platform. It
is a multi-call binary. So, you need to
make a symlink named fw_setenv to
the binary fw_printenv.

To modify the environment, you
first need to boot in to Linux on
the target board. Next, you need to
create a file called /etc/fw_env.config.
This file contains all the information
needed to specify the location of

Figure 8. Each environment variable can be associated with a type and access
permission in the environment variable .flags.

LJ246-Oct2014.indd 79 9/17/14 4:49 PM

http://www.linuxjournal.com

80 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

the environment data blob. Figure
10 shows my configuration file. I
kept my environment in an SPI Flash,
which appeared as /dev/mtd0 to my
kernel. My environment blob was
configured at an offset of 0x80000

from the beginning of Flash and had
a size of 0x40000. The size of each
sector of my Flash is 0x10000. This
is all the information I needed to
provide in order for the environment
manipulation utilities to work.

Figure 9. Compiling fw_printenv/fw_setenv for an armv7 Host

Figure 10. My Configuration File

FEATURE U-Boot Environment Variables

LJ246-Oct2014.indd 80 9/19/14 9:23 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 81

As soon as I keyed in the command
fw_printenv, I could see the variables
that I saved in the U-Boot user
environment appearing on my console.

You also can set the environment
variables using fw_setenv. As shown
in Figure 10, I make use of a text file
(list.txt) containing the variables I
want to set. The format is simple. The
first whitespace after a name acts as a
delimiter, and the characters until the
end of line thereafter are considered
the value for the key.

You can verify that the variables have
been set by executing fw_printenv.
These variables now would be visible
from U-Boot as well.

Restoring the Default Environment
Sometimes after a lot of
environment variable changes, you
can corrupt the state. To restore
sanity and get the original values of
the default environment, you can
use the env command:

env default [-f] var [...]

The above command would forcibly

reset the specified variables to a value
from the default environment.

To restore the complete
environment from the default,
invoke the following command:

env default -a

The env command is very powerful;
you can use it import/export
environment data from/to RAM.

Final Comments
The U-Boot environment can act as a
very useful runtime configuration tool.
When combined with scripting, it can
make the arduous task of development
and testing boot scenarios much
simpler and more fun to do.

Sachin Verma is a Linux kernel Engineer with

STMicroelectronics Pvt Limited. His interest areas include

the Linux kernel, virtualization and multicore computing.

He can be reached at simplysachin@gmail.com.

Resources

U-Boot Source Code: http://git.denx.de/u-boot.git

Das U-Boot Development Wiki: http://www.denx.de/wiki/U-Boot

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 81 9/17/14 4:50 PM

mailto:simplysachin@gmail.com
http://git.denx.de/u-boot.git
http://www.denx.de/wiki/U-Boot
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

Accessing
the I/O Ports

of the
BeagleBone

Black
with Python

The BeagleBone Black is a wonderful little piece of
hardware. You could use it to send your next rocket to

Mars with just a few lines of Python.

SAMUEL BUCQUET

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

82 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

LJ246-Oct2014.indd 82 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 83

T he BeagleBone Black (BBB) is
a low-cost, low-power, credit-
card size (3.4" x 2.1") board

with a lot of features, and it costs
about $60. It sports a 1GHz Sitara
AM335x ARM Cortex-A8 (an ARMv7)
processor from Texas Instruments,
512MB of RAM, and it has all the
I/O capabilities you’d expect from a
typical microcontroller, such as access
to a CAN bus, SPI interface and i2c,
analog input, PWM and so on.

But, the board also holds two
PRUs, an HDMI video output, an SD
card slot and 100Mb Ethernet. This
makes the board a complete ARM
PC, fully compatible with Linux. As
icing on the cake, Beagle fancies an
open hardware philosophy: all of
the chips and designs are available
to the public.

Right out of the box, you can use it
for the following:

 A great learning platform with
easy access to the connected
hardware. You can play with
almost all the functionalities
from the Web interface with the
Bonescript language. Just plug in
the board via the USB client on a
PC, open the page of the board
(http://192.168.7.2) and voilà!
(See http://beagleboard.org/
getting-started.)

 A light desktop system if you
add a 5VDCC external power
supply, an HDMI cable, a screen,
keyboard and mouse.

This article focuses on working
on a BBB from a Debian system
with Python and some minimalism
in mind. But, this is sti l l a fully-
fledged Linux system, not an
Arduino or microcontroller.

In this article, I describe how to

Figure 1. The BeagleBone Black board—
isn’t she beautiful?

LJ246-Oct2014.indd 83 9/17/14 4:50 PM

http://beagleboard.org/getting-started
http://beagleboard.org/getting-started
http://www.linuxjournal.com

84 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

access some of the I/O ports:

 The serial ports, to read and write
on devices with an RS232 interface
like a GPS, for example.

 The GPIOs, which allow you to
trap or send TTL signals, drive
a relay, read a button status,
and in particular, let you add a
PPS to Linux.

 The analog input voltage for
reading voltages coming from
a lot of sensors.

 Components on the i2c bus: an
RTC handled by the system and a
DAC driven from your applications.

I finish the article explaining how
to use the BBB as a time server,
thanks to a GPS.

What Do We Use It For?
In our project, the BBB boards are
embedded in small compartments,

accessible only through a network
connection. I chose to configure
them with the bare minimum, from
the eLinux version. There is no X
session, no fancy Web interface, just
the good-old command line via SSH,
and the applications are launched
automatically at boot via /etc/rc.local.
They are used in a Unmanned Surface
Vehicle (USV), and the interactions
with the operator are done through
a hardware control panel via a serial
line, through Web interfaces and
with networked applications. The
interactions with the hardware of the
USV are done through its many I/O
ports, of course.

Why Python?
Do I really need to tell you? Okay,
we have enough processing power,
so Python equals less code and more
readability of the applications, and a lot
of useful modules already are available.
All code and examples in this article are
for Python 2.7, but it would be not very
difficult to port it to Python 3.4.

There is no X session, no fancy Web interface,
just the good-old command line via SSH, and
the applications are launched automatically at
boot via /etc/rc.local.

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 84 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 85

Pimp My BBB
The Debian system: When we
received our BBB boards in September
2013, they were pre-installed with
the Angstrom distribution. Thanks
to the work of others who were also
attached to Debian, I quickly was able
to keep playing with my favorite Linux
system on my fresh BBBs.

I installed the images provided by
eLinux, but you also can

fetch an image from armhf:
http://www.armhf.com/boards/
beaglebone-black/#wheezy.

Since March 2014, Debian
Wheezy (stable) is an official system
image available for the BeagleBone
Black (rev B and C). For the latest
images, see http://beagleboard.org/
latest-images.

You can choose to upgrade to testing
(or sid if you feel more adventurous) in

Danger: Important Usage Precautions

You need to take several precautions

when working the expansion headers

to prevent damage to the board:

 All voltage levels are 3.3V max. Application

of 5V to any I/O pin will damage the

processor and void the warranty.

 Analog in voltages are 1.8V max.

Application of >1.8V to any A/D pin

will damage the processor and void

the warranty.

 Do not apply any voltages to any I/O pins

when the board is not powered on.

 Do not drive any external signals into the

I/O pins until after the SYS_RESETn signal

is HI (3.3V).

 Do not apply any voltages that are

generated from external sources until

the SYS_RESETn signal is HI.

 If voltages are generated from the

VDD_5V signal, those supplies must

not become active until after the

SYS_RESETn signal is HI.

 If you are applying signals from other

boards into the expansion headers,

make sure you power up the board

after you power up the BeagleBone

Black or make the connections after

power is applied on both boards.

 Powering the processor via its

I/O pins can cause damage to

the processor.

LJ246-Oct2014.indd 85 9/17/14 4:50 PM

http://www.armhf.com/boards/beaglebone-black/#wheezy
http://www.armhf.com/boards/beaglebone-black/#wheezy
http://beagleboard.org/latest-images
http://beagleboard.org/latest-images
http://www.linuxjournal.com

86 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

order to enjoy more recent software.
(See the Upgrading from Debian Stable
to Debian Testing sidebar.)

The BBB accepts booting from the
internal memory, the eMMC or from
an external SD. (See the Booting the
BBB from an SD Card sidebar.)

To test another version of the system,
simply download and write it on your
SD. If you are satisfied with it, you have
the option to put it on the eMMC.

As the environment hosting our
BBBs is subject to strong vibrations, I
chose to put my system in the eMMC
rather than on an SD.

Flash the eMMC: In order to flash
your new system to your eMMC,
download the flasher version from
eLinux or the official one. Write it
to your SD and boot your BBB from
the SD. The flashing process happens
automagically. You will have to wait
less than ten minutes before the four
blue LEDs become steady, indicating
that the flashing is over. As the official
firmware is much larger, the flashing
will take a lot longer (45 minutes).

Danger: you need to power the
board with an external 5VDC power
supply when flashing!

In order to use the armhf version,

Upgrading from
Debian Stable to
Debian Testing
First, update your system with apt-get

update && apt-get upgrade.

Next, modify your /etc/apt/sources.list.d/

debian.list file. Copy the lines with

wheezy or stable, and replace all

occurrences of wheezy with jessie

on the copied lines. You can choose

testing instead of jessie if you

want to keep on with the testing release

after jessie was made stable.

Then launch apt-get update &&

apt-get upgrade again, and if all

is well (it might take a long time

depending on your connection quality

and the packages already installed),

run apt-get dist-upgrade.

Booting the BBB from an SD Card
Power off the board, then with the SD card inserted, hold down the S2 button near the

SD slot, apply power, and continue to hold down the button until the first LED comes on.

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 86 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 87

partition and format your SD card
following the armhf site instructions
at http://www.armhf.com/boards/
beaglebone-black/bbb-sd-install.
You then can download a recent armhf
rootfs archive (http://s3.armhf.com/
dist/bone/debian-wheezy-7.5-rootfs-
3.14.4.1-bone-armhf.com.tar.xz)
and copy it to your SD. Then, when
booting from the SD, you likewise
can copy your SD installation to
your eMMC.

As the time of this writing (July 2014),
these Debian images come with Linux
kernel 3.8.13. This version brought many
improvements to accessing the BBB
hardware by the kernel via sysfs.

Here is a list of packages I
recommend for working with the
board from the shell and from Python:

apt-get install kbd locales htop vim screen \

rsync build-essential git python-setuptools \

cython python-pip python-virtualenv python-dev \

manpages-{dev,posix{,-dev}} glibc-doc- \

reference python-serial python-smbus python- \

lxml python-psutil i2c-tools

For interfacing with a GPS with a PPS:

apt-get install gpsd python-gps pps-tools \

bison flex git-core

If you want to play with NTPd:

apt-get install ntp

Configure the System
What Time Is It? If an NTP server is
available to your BBB, good for you,
but as the BBB lacks a backed battery
RTC, it doesn’t retain date and time
after reboot, so you will have to take
a few measures.

First, enter the date in UTC
manually, before anything else:

date -u 072314512014.30

Wed Jul 23 14:51:30 UTC 2014

If your BBB must be isolated from
an NTP server, one solution is to
add an RTC to the board, like a
ds1307. (I will show how to add
one on the i2c bus.)

If an NTP server is available to your BBB, good
for you, but as the BBB lacks a backed battery
RTC, it doesn’t retain date and time after
reboot, so you will have to take a few measures.

LJ246-Oct2014.indd 87 9/17/14 4:50 PM

http://www.armhf.com/boards/beaglebone-black/bbb-sd-install
http://www.armhf.com/boards/beaglebone-black/bbb-sd-install
http://s3.armhf.com/dist/bone/debian-wheezy-7.5-rootfs-3.14.4.1-bone-armhf.com.tar.xz
http://s3.armhf.com/dist/bone/debian-wheezy-7.5-rootfs-3.14.4.1-bone-armhf.com.tar.xz
http://s3.armhf.com/dist/bone/debian-wheezy-7.5-rootfs-3.14.4.1-bone-armhf.com.tar.xz
http://www.linuxjournal.com

88 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Finally, if you are isolated and
without an RTC module, try the
fake-hwclock package from the
Debian repositories. It will allow
your clock to restart with the last

date saved when the system halted.
To DHCP or Not to DHCP: If your

network hosts a DHCP server, you are
fine; otherwise, you can configure
your network card “static” in order to
avoid a big DHCP timeout when you
boot your BBB with the Ethernet cable
plugged in. (See the Configuring the
Network Card Static sidebar.)

A Life Line (Serial Debug): More
often than not, the boards are in a
place where we can’t have a keyboard
and display attached to them. We
can work remotely by SSH, but if
something goes wrong, we need to
access the serial debug interface on
the board.

The serial interface available
through the USB connection to the
board is not ready when you boot
with U-Boot—you can’t see the kernel
starting or intervene. That’s why we
use the serial debug provided by the
J1 connector on the board, referred to
as ttyO0 by the system.

As a side note, this serial line can
be made available via Ethernet with
a cheap RS232IP converter if remote
boot monitoring is needed.

Before connecting our BBB on a
PC via this serial line, we need a
TTLRS232 converter. See some
serial debug references on
eLinux at http://elinux.org/
Beagleboard:BeagleBone_Black_Serial.

Configuring
the Network Card
Static

Edit the /etc/network/interfaces file

and change the line reading:

iface eth0 inet dhcp

to:

iface eth0 inet static

 address 192.168.1.101

 netmask 255.255.255.0

 broadcast 192.168.1.255

 gateway 192.168.1.254

Then restart networking with:

/etc/init.d/networking stop

/etc/init.d/networking start

Note: if you are editing the file via SSH,

you will lose your connection right now!

You should do it with a keyboard and

display or the serial access instead.

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 88 9/17/14 4:50 PM

http://www.linuxjournal.com
http://elinux.org/Beagleboard:BeagleBone_Black_Serial
http://elinux.org/Beagleboard:BeagleBone_Black_Serial

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 89

You can purchase a PL2303HX
USB to RS232 TTL auto
converter module—they are
very cheap. Just make sure
the end of the cable is made
of jumper wires and not a
fixed connector (Figure 2).

This Code Chief’s Space
page provides a very
thorough step-by-step guide:
http://codechief.wordpress.com/
2013/11/11/beaglebone-black-
serial-debug-connection.

Serial Login into the
System: You probably are
familiar with the text consoles
with Login: that you make
appear with Ctrl-Alt-F{1..6}.
We wanted the same, but
through our serial debug.
So, we configured a tty on
the BBB allowing us to connect to it
via the serial line when it is booted.
Just add this line (if it’s not already
present) to the end of /etc/inittab:

T0:23:respawn:/sbin/getty -L ttyO0 115200 vt102

And, make sure the kernel knows
the correct console on which to
output its messages. In the /boot/
uboot/uEnv.txt file, it should read:

console=ttyO0,115200n8

#console=tty

Finally, to connect us to the
BBB through our serial debug
l ine from another PC with a
USBRS232 adapter:

$ screen /dev/ttyUSB0 115200

Access the Input/Output Ports
The Serial Ports: As you
previously saw, the serial port
must be accessed with a TTL/RS232
adapter. In our project, we re-used
some old Maxim MAX3232s to
do it , and it works, of course,

Figure 2. An Essential Accessory—PL2303HX USB
to RS232 TTL Converter

LJ246-Oct2014.indd 89 9/17/14 4:50 PM

http://www.linuxjournal.com
http://codechief.wordpress.com/2013/11/11/beaglebone-black-serial-debug-connection

90 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

for the other UARTs avai lable on
the board.

The BBB comes with six UARTs, but
three of them can’t be addressed by
our applications:

 UART0 is the serial debug on J1.

 UART3 lacks an RX line.

 UART5 can’t be used altogether
with the HDMI output.

So UART1, UART2 and UART4
are the ones available, and they
are addressed, respectively, as
/dev/ttyO1, /dev/ttyO2 and /dev/ttyO4.
Note that only UART1 and UART4
have CTS and RTS pins.

Figure 3. The Board “bbbO2” in situ with three serial ports and the serial debug
port, a temperature sensor on AIN0, a water detector on GPIO_48, a PPS input on
GPIO_49 and a POWER_RESET button.

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 90 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 91

Load the CAPE files for each UART:

for i in {1,2,4}

do

 echo BB-UART$i > /sys/devices/bone_capemgr.*/ \

slots

done

The output of dmesg should show
a correct initialization:

dmesg |grep tty

...

[1.541819] console [ttyO0] enabled

[286.489374] 48022000.serial: ttyO1 at MMIO \

0x48022000 (irq = 89) is a OMAP UART1

[286.627996] 48024000.serial: ttyO2 at MMIO \

0x48024000 (irq = 90) is a OMAP UART2

[286.768652] 481a8000.serial: ttyO4 at MMIO \

0x481a8000 (irq = 61) is a OMAP UART4

Figure 4. Our CAPE with Two MAX3232s

LJ246-Oct2014.indd 91 9/17/14 4:50 PM

http://www.linuxjournal.com

92 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Now you can ask the kernel to
load them at boot time. Edit
/boot/uboot/uEnv.txt and modify
the line with optargs, like this:

optargs=capemgr.enable_partno=BB-UART1, \

BB-UART2,BB-UART4

(See the Passing Arguments at
Boot Time sidebar.)

Okay, but Does It Work? To
test the serial lines, we just have
to connect two of them together
(Figure 5).

Now, launch a screen session

Passing Arguments
at Boot Time
To give command-line options to the

kernel, modify the optargs variable in

the /boot/uboot/uEnv.txt file. Only one

optargs line is allowed, so if you need

several options passed to the kernel, just

add them separated by a space like this:

optargs=quiet fixrtc \

capemgr.enable_partno=BB-ADC,BB-UART1,\

BB-UART2,BB-UART4

Figure 5. Direct
Connection between
UART1 and UART4

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 92 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 93

on UART1 with screen /dev/ttyO1
115200, split your window with a
Ctrl-A S, move to the next window
with Ctrl-Tab, open a screen on
UART4 with Ctrl-A :, then type
screen /dev/ttyO4 115200, and

check that what you type in one
window appears in the other
(Figure 6).

From now on, you can use
the python-serial module to
read and write on your serial ports,

Table 1. Direct Connection of UART1 with UART4

UART4_Tx PIN __13__ of P9 PIN __26__ of P9 UART1_Rx

UART4_Rx PIN __11__ of P9 PIN __24__ of P9 UART1_Tx

Figure 6. ttyO1 and ttyO4 Screen Session

LJ246-Oct2014.indd 93 9/17/14 4:50 PM

http://www.linuxjournal.com

94 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

like this:

import time

from serial import Serial

ctrl_panel = Serial(port=comport, baudrate=9600,

bytesize=8, parity='N', stopbits=1, timeout=0.25)

send a commande

ctrl_panel.write(pupitre_commande)

read an answer

buff = ctrl_panel.read(answer_size)

as the serial port is configured non-blocking

with 'timeout=0.25', we make sure all the

bytes asked for are received.

while len(buff) < answer_size:

 n = len(buff)

 b = ctrl_panel.read(answer_size-n)

 buff += b

 print "------",n,"------"

 time.sleep(0.02)

print "Serial IN: ",

print ' '.join(['%02X' % ord(c) for c in buff])

The python-serial module is
quite efficient. We managed to
read two serial ports refreshed at
50Hz plus a third at 5Hz (on the
same board and simultaneously)
with a few glitches between the
timestamps, and the CPU load
stayed below 50%.

The GPIO: The General-Purpose
Input or Output pins allow the

board to receive a signal, read a
frequency on input or drive a relay
on output.

First we had to understand the
mapping between the pin on the
P8 and P9 connectors and the GPIO
numbers as seen by the kernel. The
BBB System Reference Manual gives
the Expansion Header P9 pinout
(http://elinux.org/Beagleboard:
BeagleBoneBlack#Hardware_Files).

For each GPIO, the name is made
up of the GPIO controller number
between 0 and 3 and the pin number

numbers the GPIO pin with PIN +
(GPIO controller number * 32). If
we pick the GPIO1_16 on the pin 15
of the P9 connector, the kernel will
see it as GPIO_48 (16+(1 * 32)). See
Figure 7 to read the direct mapping
for all the GPIOs.

And, you can find a similar
table for each kind of I/O port of
the BBB on this Cape Expansion
Headers page: http://elinux.org/
Beagleboard:Cape_Expansion_Headers

Operate the GPIO: The gpio_sysfs.txt
file, provided with your kernel
documentation, explains how to
work with GPIOs with a Linux kernel
(https://www.kernel.org/doc/
Documentation/gpio/sysfs.txt).

These steps are for Linux kernel
version 3.8.13. Each GPIO must be

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 94 9/17/14 4:50 PM

http://www.linuxjournal.com
http://elinux.org/Beagleboard:BeagleBoneBlack#Hardware_Files
http://elinux.org/Beagleboard:BeagleBoneBlack#Hardware_Files
http://elinux.org/Beagleboard:Cape_Expansion_Headers
http://elinux.org/Beagleboard:Cape_Expansion_Headers
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 95

enabled independently, so for the
GPIO_48 on P9_15:

echo 48 > /sys/class/gpio/export

Next, choose the way it will operate.
If you want to process input signals:

echo in > /sys/class/gpio/gpio48/direction

Then choose if you want to detect a
“rising” or “falling” edge or “both”:

echo both > /sys/class/gpio/gpio48/edge

If you want to output signals,
you can choose “out” or one of
“high” or “low” (tell ing when the
signal is active):

echo high > /sys/class/gpio/gpio48/direction

And to stop emitting the signal:

echo 0 > /sys/class/gpio/gpio48/value

Figure 7. Mapping GPIO Kernel Numbers with P8 and P9 Pinouts

LJ246-Oct2014.indd 95 9/17/14 4:50 PM

http://www.linuxjournal.com

96 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

At the end, release the GPIO:

echo 48 > /sys/class/gpio/unexport

Wait for a Signal on a GPIO from
Python: We connected an optical
water detector to one of our BBBs
inside an enclosure, on the GPIO_48
(P9_15) (Figure 3). The water detector
sends a TTL signal if there is water
passing through its lens. Here is how
we wait for an event describing water
presence from Python using the
BBB_GPIO class from bbb_gpio.py:

from bbb_gpio import BBB_GPIO

water = BBB_GPIO(48,gpio_edge='both',\

 active_low=True)

for value in water:

 if value:

 print "Water detected !"

 else:

 print "No more water !"

The BBB_GPIO class is a generator.
For each iteration, we wait for a
change on the GPIO and return
in value the GPIO status. When
the GPIO is waiting for an event,
we don’t want to be poll ing
aggressively on the system, but to
be awakened only when the event
occurs. That’s what the poll()
system call does. (See bbb_gpio.py

line 58—there is a link to my GitHub
page with all the code for this article
in the Resources section.)

A Special Case, the PPS Signal:
A GPS often delivers a PPS (Pulse
Per Second) signal in order to
synchronize with good accuracy
the timing NMEA sentences, l ike

we can connect to a GPIO; we
chose GPIO_49 (P9_23). Once
wired, we check whether the signal
is present and can be read:

echo 49 > /sys/class/gpio/export

echo in > /sys/class/gpio/gpio49/direction

echo rising /sys/class/gpio/gpio49/edge

cat /sys/class/gpio/gpio49/value

1

Be careful as to the output voltage
of the PPS, as the GPIOs of the BBB
accept a TTL of 3.3V max.

The PPS signal is also a special
input understood by the Linux kernel.
In order to enable our GPIO input
as a PPS, we have to compile a dts
(Device Tree Source file) into a dtbo
(Device Tree Binary Object file) with
the dtc (Device Tree Compiler) tool
(see the GPS-PPS-P9_23-00A0.dts file
on my GitHub page):

./dtc -O dtb -o GPS-PPS-P9_23-00A0.dtbo -b 0 \

-@ GPS-PPS-P9_23-00A0.dts

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 96 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 97

Danger: the dtc program available
in Debian Wheezy is not able to write
a dynamically loadable dtbo file. It
may lack the -@ option, depending
on the system you installed. Check
the output of dtc -h and whether
the -@ is present. (See the Fetching a
Good dtc sidebar.)

The dtbo file produced will then be
loaded to the kernel:

cp GPS-PPS-P9_23-00A0.dtbo /lib/firmware

echo GPS-PPS-P9_23 > /sys/devices/\

bone_capemgr.*/slots

To verify that the PPS is seen
correctly by the Linux kernel, you need
the pps-tools package installed:

ppstest /dev/pps0

trying PPS source "/dev/pps0"

found PPS source "/dev/pps0"

ok, found 1 source(s), now start fetching data...

source 0 - assert 1391436014.956450656, sequence:\

 202 - clear 0.000000000, sequence: 0

source 0 - assert 1391436015.956485865, sequence:\

 203 - clear 0.000000000, sequence: 0

source 0 - assert 1391436016.956517240, sequence:\

 204 - clear 0.000000000, sequence: 0

source 0 - assert 1391436017.956552407, sequence:\

 205 - clear 0.000000000, sequence: 0

...

(Ctrl-C to end)

You see here a signal received at
1Hz, with a timestamp jitter less
than 1ms.

Fetching a Good dtc
This one is tricky. One year ago, I successfully downloaded and patched dtc, but now

the patch is not synchronized with the versions of dtc I can find. Thanks to Robert

Nelson (https://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-

Upgradedistro%22device-tree-compiler%22package), you just have to download and

execute his version:

wget -c https://raw.github.com/RobertCNelson/\

tools/master/pkgs/dtc.sh

chmod +x dtc.sh

./dtc.sh

The script will fetch the tools on-line, so if your BBB is not connected, you can compile

your dtbo file from another Linux machine.

LJ246-Oct2014.indd 97 9/17/14 4:50 PM

https://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-Upgradedistro%22device-tree-compiler%22package
https://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-Upgradedistro%22device-tree-compiler%22package
https://raw.github.com/RobertCNelson/%5C
http://www.linuxjournal.com

98 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

The i2C Bus: Two i2c buses on
the BBB are available. The kernel sees
them as i2c-0 for I2C1 on P9_17(SCL)
and P9_18(SDA), and i2c-1 for I2C2
on P9_19(SCL) and P9_20(SDA).

Add an RTC to the BBB: The
DS1307 or the DS3231 are RTC
modules with a battery keeping the
clock running when there is no power.
The ChronoDot RTC (with a ds3231) is
much more accurate, and the ds1307
is much less expensive.

Wire the RTC on i2c: You can
feed the 5VDCC of the board to the
RTC module as long as you clip out

the two 2.2k resistors (Figure 8). The
internal resistors of the BBB i2c bus
will then be used.

Danger: if you power the BBB over
USB, use P9_7 (SYS 5V) instead.

Enable the New RTC: Declare the

Table 2. ds1307 Wiring on the BBB i2c_2 Bus

P9 ds1307

pin 1 GND

pin 5 5VCC

pin 19 SDA

pin 20 SCL

Figure 8. The Adafruit RTC ds1307 Module Wired on the BBB

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 98 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 99

new RTC to the kernel:

echo ds1307 0x68 >

/sys/class/i2c-adapter/i2c-1/new_device

[73.993241] rtc-ds1307 1-0068: rtc core: \

registered ds1307 as rtc1

[74.007187] rtc-ds1307 1-0068: 56 bytes \

nvram

[74.018913] i2c i2c-1: new_device: \

Instantiated device ds1307 at 0x68

Push the current UTC date to
the ds1307:

hwclock -u -w -f /dev/rtc1

Verify the clock:

hwclock --debug -r -f /dev/rtc1

hwclock from util-linux 2.20.1

Using /dev interface to clock.

Last drift adjustment done at 1406096765 seconds \

after 1969

Last calibration done at 1406096765 seconds after\

 1969

Hardware clock is on UTC time

Assuming hardware clock is kept in UTC time.

Waiting for clock tick...

...got clock tick

Time read from Hardware Clock: 2014/07/23 15:42:51

Hw clock time : 2014/07/23 15:42:51 = 1406130171 \

seconds since 1969

Wed Jul 23 17:42:51 2014 -0.438131 seconds

To benefit from the new RTC

permanently, as soon as the system
boots, modify the /etc/init.d/hwclock.sh
file with this little dirty hack. Add to
the end of the file:

echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/\

new_device

HCTOSYS_DEVICE=rtc1

hwclocksh "$@"

Danger: I had to comment the
udev part of the file, and I’m still
trying to figure how to do that part
in a cleaner way:

#if [-d /run/udev] || [-d /dev/.udev]; then

return 0

#fi

If Something Goes Wrong
with a Component on i2c: If the
kernel can’t see the ds1307, for
example, try to detect it on the i2c
bus with this:

i2cdetect -y -r 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

LJ246-Oct2014.indd 99 9/17/14 4:50 PM

http://www.linuxjournal.com

100 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

If 68 is not here, but UU is
printed, the kernel already keeps
hold of the ds1307 with a driver.
Recheck your kernel messages and
try to unload the driver for the
ds1307 with the following, and
then retry:

echo 0x68 >

/sys/class/i2c-adapter/i2c-1/delete_device

rmmod rtc_ds1307

If this is just -- instead of 68,
recheck your wiring.

Add a DAC, the MCP4725,
on i2c: The MCP4725 is a 12-bit
digital analog converter, al lowing
you to output a voltage from a
numerical value between 0 and
4095 (212 - 1). I ts EEPROM al lows
you to store a value in a register
that becomes the default value
as soon as the DAC is powered
on. When you want to drive a
motor with it , you then can store
a default safe value in EEPROM,
and then make certain that when
the power is restored, your motor
doesn’t start at ful l speed.

The wiring is almost identical
as for the ds1307 module; take
the 3.3V VDD (P9_3) as VREF
for the MCP4725.

The MCP4725 address on i2c is
0x60 or 0x61; select it with the A0

pin on the MCP4725. Thus, you can
use two MCP4725s on the same bus,
so with two i2c buses, you easily can
output four independent voltages
from your BBB.

Write a Value to the MCP4725:
To set a voltage ouput on the
MCP4725, write to the i2c bus. So
for a value of 0x0FFF (4095) at the
address 0x60 on i2c-1:

$ i2cset -f -y 1 0x60 0x0F 0xFF

Write to the MCP4725 from
Python: The Python module to
access the MCP4725 (see the
i2c_mcp4725.py fi le on my GitHub
page) is a bit more complex,
because we try to handle all the
functionalities of the DAC. It
depends on the python-smbus
package. Here is how we use it:

import time

from smbus import SMBus

from i2c_mcp4725 import MCP4725

dac = MCP4725(SMBus(1), int('0x60', 16))

safe_value = 2047

write to the DAC and store the value in EEPROM

dac.write_dac_and_eeprom(safevalue, True)

read the value ouput by the dac and the content

of its EEPROM

dac.read_and_eeprom()

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 100 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 101

print dac

send a mid-ramp 1.69V to 3.38V

for value in range(2048,4096):

 # write to the DAC without storing value

 dac.write_dac_fast(value)

 time.sleep(0.2)

Python subtleties allow us simply to
do this:

send a new value to output a voltage

dac(new_value)

check the value currently ouput by the DAC

current_value = dac()

How to Read and Verify the
Output Voltage? The BBB has
seven analog input ports named
AIN{0..6}. They are 12-bit analog
digital converters, and they accept
a max voltage of 1.8V. To read
the voltage from an analog input,
wire the GND (P9_1) and the + of
the voltage you want to measure.

We re-inject the output of our
MCP4725 in AIN0. In this case, the
VDD for the MCP4725 is 3.38V
(the 3.3V of the PIN 3 and 4 of
P9). We divide it by two with two
resistors, as it must not be greater
than 1.8V. And, we wire the output
of the resistors to P9_39 (AIN0).

The vRef for the MCP4725 is
VMAX (3.38V), so the voltage we

send is:

The vRef for the AIN is always 1.8V, so
in order to convert our 12-bit numerical
value into a voltage reading, we have:

For a numerical raw value “out”, we
must read a numerical raw value “in”,
such as:

Read AIN0 from sysfs: If the BBB
ADC kernel driver is not loaded, load
it now with:

echo BB-ADC /sys/devices/bone_capemgr.8/slots

If you need it loaded automatically at
boot, do like we did for the BB-UARTs
(see the Passing Arguments at Boot
Time sidebar).

To read a raw numerical value on AIN0:

$ cat /sys/bus/iio/devices/iio\:device0/\

in_voltage0_raw

3855

$

Is the Input Consistent with the
Output? We can see that the value

LJ246-Oct2014.indd 101 9/17/14 4:50 PM

http://www.linuxjournal.com

102 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

sent to the MCP4725 is correctly
reread on AIN0 (Table 3).

The values match, but there still
are some inaccuracies. We need to
record a table of corresponding values
between the MCP4725 and AIN0 in this

configuration. Our control loop driving
our propeller’s speed can better handle
the re-injection of the output voltage.

Read AIN0 from Python: To read
a temperature sensor wired on AIN0
giving 1mV for 0.1°C, we use the

Figure 9. Bipolar Operation Circuit

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

Table 3. Discrepancies between DAC Output and ADC Input

OUT raw value IN theoretical raw value IN read raw value

255 239 243

2047 1927 1929

3839 3614 3613

4095 3855 3835

LJ246-Oct2014.indd 102 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 103

BBB_AIN class from the bbb_ain.py file
(see my GitHub page):

import time

from bbb_ain import BBB_AIN

tempe = BBB_AIN(0, valeurmax=180)

for value in tempe:

 print "%.4f" % value

 time.sleep(0.5)

Once again, we use a generator. At
each iteration, we read a value on the
AIN. There is no interrupt mechanism on
the AIN; we read at the frequency of the
“for loop”—that’s why we have to pause

at each iteration. The only catch is the
error “Resource Temporarily unavailable”
(error=11), which may occur occasionally.

How We Use It: To pilot our
propellers, we need to output a
voltage between –10 V and 10 V. We
use two MCP4725s on i2c_1: one
with A0 on V~SS~ (0x60) and the
other with A0 on V~DD~ (0x61). We
use a bipolar operation type circuit to
output –10V/10V from the MCP4725’s
0/3.3V output (Figure 9).

The MCP4725 outputs are re-injected
into AIN0 and AIN1 in order to improve
the control loop accuracy. And, we
read the speed of the propellers back

Figure 10. The Box in Charge of the Propellers

LJ246-Oct2014.indd 103 9/17/14 4:50 PM

http://www.linuxjournal.com

104 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

with two frequency/voltage converters,
which we feed to AIN2 and AIN3
(Figure 10).

The BBB as Time Server from a
GPS: What if you put together the
interface to your GPS, the NTP server
of your Linux machine equipped with
an RTC and the accuracy provided
with the PPS signal? You can build
an NTP server for other CPUs in your
network, and with good accuracy, as
soon as the GPS is aligned.

Keep in mind that you need a

good RTC wired to the BBB for a
real NTP server, so choose one
like the Adafruit Chronodot
(http://www.adafruit.com/
products/255) rather than the
simple DS1307.

GPSd: Now that you know how to
handle a serial port, you can install
the GPSd software. GPSd connects to
a local GPS, as the one we wired to
UART4, and serves GPS data to clients:

apt-get install gpsd python-gps gpsd-clients

Figure 11. A Session with gpsmon

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 104 9/17/14 4:50 PM

http://www.linuxjournal.com
http://www.adafruit.com/products/255
http://www.adafruit.com/products/255

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 105

Edit the /etc/default/gpsd.conf file,
modify it to connect to your serial
port (here ttyO4), and tell GPSd to
listen to all network interfaces (-G):

START_DAEMON="true"

GPSD_OPTIONS="-G -n"

DEVICES="/dev/ttyO4"

USBAUTO="false"

GPSD_SOCKET="/var/run/gpsd.sock"

Then restart it:

/etc/init.d/gpsd stop

/etc/init.d/gpsd start

By now, your GPS is available to all
clients on your network, and you can

OpenCPN, for example, but a rather
simple solution is with gpsmon. On
another machine with the gpsd-clients
package installed, launch:

$ gpsmon tcp://bbb02:2947

And, you should see a screen like
the one shown in Figure 11.

Connect to GPSd from Python:
The python-gps package provides
what you need, but the dialog
sequence with GPSd is not trivial. I
wrote a little Python class GPSd_client
(see the gpsd_client.py file on my
GitHub page) in order to be able to

access my GPS, like this:

$ ipython

Python 2.7.8 (default, Jul 22 2014, 20:56:07)

Type "copyright", "credits" or "license" for more \

information.

...

In [1]: from gpsd_client import GPSd_client

In [2]: gps = GPSd_client('bbb02')

In [3]: for gpsdata in gps:

 print gpsdata

 ...:

GPS(time=u'2014-07-24T08:53:54.000Z', latitude=\

48.3938485,longitude=-4.505373, altitude=\

30.4, sog=0.051, cog=187.71, ept=0.005, mode=3)

GPS(time=u'2014-07-24T08:53:55.000Z', latitude=\

48.393848, longitude=-4.505373167, altitude=\

30.3, sog=0.067, cog=194.8, ept=0.005, mode=3)

GPS(time=u'2014-07-24T08:53:56.000Z', latitude=\

48.393847667, longitude=-4.505373167, altitude=\

30.2, sog=0.062, cog=184.8, ept=0.005, mode=3)

GPS(time=u'2014-07-24T08:53:57.000Z', latitude=\

48.393847333, longitude=-4.505373167, altitude=\

30.2, sog=0.036, cog=189.77, ept=0.005, mode=3)

GPS(time=u'2014-07-24T08:53:58.000Z', latitude=\

48.393847167, longitude=-4.505373, altitude=\

30.1, sog=0.041, cog=175.46, ept=0.005, mode=3)

^C---\

Again, we use a generator. For
each iteration, the GPSd_client class
opens a session with GPSd, listens

LJ246-Oct2014.indd 105 9/17/14 4:50 PM

http://www.linuxjournal.com

106 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

for a report with position and time
information, closes the session and
returns a namedtuple with the
information we wanted.

NTPd: One of these GPSd clients
is NTP. NTPd processes the NMEA
GPS timing sentences to set the
date and uses the PPS signal to
be more accurate. The handling
of the PPS signal is available only
in the development versions of
NTPd, not the version in the Debian
repositories. The version we installed
is ntp-dev-4.2.7p416. Grab it and
compile it like this:

apt-get install libcap-dev

wget http://www.eecis.udel.edu/~ntp/ntp_spool/\

ntp4/ntp-dev/ntp-dev-4.2.7p416.tar.gz

tar xf ntp-dev-4.2.7p416.tar.gz

cd ntp-dev-4.2.7p416/

./configure --enable-all-clocks --enable-\

linuxcaps

make

Modify the /etc/ntp.conf file for
the connection to GPSd and the PPS
signal listening:

Server from shared memory provided by gpsd

server 127.127.28.0 prefer

fudge 127.127.28.0 time1 0.040 refid GPS

Kernel-mode PPS ref-clock for the precise seconds

server 127.127.22.0

fudge 127.127.22.0 flag2 0 flag3 1 refid PPS

allow ntpd to serve time if GPS is OFF

tos orphan 5

The 0.040 might need adjusting
relative to your GPS, but it’s a safe
bet. The 127.127.22.0 is the NTPd
reference to /dev/pps0. If your GPSd
declares a /dev/pps to the kernel, your
real PPS signal might become /dev/pps1.
The bottom line is try to load your PPS
signal before starting GPSd.

Verify that NTPd has started and
serves the time with ntpq:

ntpq -p

 remote refid st t when poll \

 reach delay offset jitter

==\

==============================

*SHM(0) .GPS. 0 l 13 64 \

 377 0.000 -50.870 0.886

oPPS(0) .PPS. 0 l 12 64 \

 377 0.000 -1.419 0.128

You can see here that .GPS. is
identified as the system peer by
ntpd (*), and .PPS. is also correctly
recognized and valid (o).

The PRU, a Very Hot Topic
The two Programmable Realtime
Units of the BBB can work
independently of the main CPU

FEATURE Accessing the I/O Ports of the BeagleBone Black with Python

LJ246-Oct2014.indd 106 9/17/14 4:50 PM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 107

on I/O ports, AINs and PWM. They
are sophisticated enough to share
memory with a CPU up to 300MB,
have a rich instruction set and can
trigger or receive interrupts.

Recently, some hard workers
managed to make the use of the
BBB PRUs more accessible. And,
there is this great promising
GSOC 2014 coming, BeagleLogic:
https://github.com/abhishek-kakkar/
BeagleLogic/wiki.

See also the work of Fabien Le
Mentec: “Using the BeagleBone
PRU to achieve real time at low cost”
(http://www.embeddedrelated.com/
showarticle/586.php).

Conclusion
The BeagleBone Black is a very fun
platform to play with. As a Linux
sysadmin for nearly 20 years, I’m
very comfortable using it to access
electronic hardware I’m not so well

acquainted with usually.
I want to thank my co-worker,

Rodolphe Pellaë, whose skills
in electronics were essential in
connecting all the components to the
board. He did our four homemade
Capes in no time and did them well.

The community orbiting the BBB
is large with a lot of good on-line
resources. We managed to learn
some complex stuff in very little
time and with almost no confusion,
because we can profit from the work
of those people and from the Linux
and Python ecosystems.

Samuel Bucquet is a system developer and a sysadmin on

robotic platforms in the French DOD. He is married with four kids

and lives in Brest, France, and he is a longtime Linux aficionado.

Resources

You will find the source of the Python code used in this article on my GitHub account:
https://github.com/samgratte/BeagleboneBlack.

PyBBIO is a Python Library for the BBB mimicking the Arduino IO access by Alexander Hiam:
https://github.com/alexanderhiam/PyBBIO.

Of course, there is also the Python Adafruit Library, initially for the Raspberry Pi, now for
the BBB: https://github.com/adafruit/adafruit-beaglebone-io-python.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 107 9/17/14 4:50 PM

https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki
http://www.embeddedrelated.com/showarticle/586.php
http://www.embeddedrelated.com/showarticle/586.php
https://github.com/samgratte/BeagleboneBlack
https://github.com/alexanderhiam/PyBBIO
https://github.com/adafruit/adafruit-beaglebone-io-python
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

KNOWLEDGE HUB

WEBCASTS

WHITE PAPERS

White Paper: JBoss Enterprise Application
Platform for OpenShift Enterprise

Sponsor: DLT Solutions

Red Hat’s® JBoss Enterprise Application Platform for OpenShift Enterprise offering provides IT organizations with a simple and
straightforward way to deploy and manage Java applications. This optional OpenShift Enterprise component further extends
the developer and manageability benefits inherent in JBoss Enterprise Application Platform for on-premise cloud environments.

Unlike other multi-product offerings, this is not a bundling of two separate products. JBoss Enterprise Middleware has been
hosted on the OpenShift public offering for more than 18 months. And many capabilities and features of JBoss Enterprise
Application Platform 6 and JBoss Developer Studio 5 (which is also included in this offering) are based upon that experience.

This real-world understanding of how application servers operate and function in cloud environments is now available in this
single on-premise offering, JBoss Enterprise Application Platform for OpenShift Enterprise, for enterprises looking for cloud
benefits within their own datacenters.

> http://lnxjr.nl/jbossapp

Modernizing SAP Environments with Minimum
Risk—a Path to Big Data

Sponsor: SAP | Topic: Big Data

Is the data explosion in today’s world a liability or a competitive advantage for your business? Exploiting massive amounts
of data to make sound business decisions is a business imperative for success and a high priority for many firms. With rapid
advances in x86 processing power and storage, enterprise application and database workloads are increasingly being moved
from UNIX to Linux as part of IT modernization efforts. Modernizing application environments has numerous TCO and ROI
benefits but the transformation needs to be managed carefully and performed with minimal downtime. Join this webinar to
hear from top IDC analyst, Richard Villars, about the path you can start taking now to enable your organization to get the
benefits of turning data into actionable insights with exciting x86 technology.

> http://lnxjr.nl/modsap

Learn the 5 Critical Success Factors to Accelerate
IT Service Delivery in a Cloud-Enabled Data Center

Today's organizations face an unparalleled rate of change. Cloud-enabled data centers are increasingly seen as a way to accelerate
IT service delivery and increase utilization of resources while reducing operating expenses. Building a cloud starts with virtualizing
your IT environment, but an end-to-end cloud orchestration solution is key to optimizing the cloud to drive real productivity gains.

> http://lnxjr.nl/IBM5factors

108 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

LJ246-Oct2014.indd 108 9/17/14 4:50 PM

http://www.linuxjournal.com
http://lnxjr.nl/jbossapp
http://lnxjr.nl/modsap
http://lnxjr.nl/IBM5factors

KNOWLEDGE HUB

WHITE PAPERS

Linux Management with Red Hat Satellite:
Measuring Business Impact and ROI
Sponsor: Red Hat | Topic: Linux Management

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to de-
ploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT
organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility
workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows
in importance in terms of value to the business, managing Linux environments to high standards of service quality —
availability, security, and performance — becomes an essential requirement for business success.

> http://lnxjr.nl/RHS-ROI

Standardized Operating Environments
for IT Efficiency
Sponsor: Red Hat

The Red Hat® Standard Operating Environment SOE helps you define, deploy, and maintain Red Hat Enterprise Linux®
and third-party applications as an SOE. The SOE is fully aligned with your requirements as an effective and managed
process, and fully integrated with your IT environment and processes.

Benefits of an SOE:

SOE is a specification for a tested, standard selection of computer hardware, software, and their configuration for use
on computers within an organization. The modular nature of the Red Hat SOE lets you select the most appropriate
solutions to address your business' IT needs.

SOE leads to:

> http://lnxjr.nl/RH-SOE

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 109

LJ246-Oct2014.indd 109 9/17/14 4:50 PM

http://lnxjr.nl/RHS-ROI
http://lnxjr.nl/RH-SOE
http://www.linuxjournal.com

110 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

Learn
GNU/Linux
the Fun Way
A great “hello world” from rural Utah.

S ometimes a gift just falls in
your lap. This month, it came
in the form of an e-mail out

of the blue from Jared Nielsen, one
of two brothers (the other is J.R.
Nielsen) who created The Hello
World Program, “an educational
web series making computer
science fun and accessible to all”
(http://www.thehelloworldprogram.com).
If it had been just that, I might not
have been interested.

But when I looked at it, I saw it
was hugely about Linux. And the
human story was interesting too.
Wrote Jared, “Working in rural Utah
with minimal resources, we combine
technology and craft to make
educational yet entertaining videos
and tutorials. Learn to code with
our cute and clever puppets.” So I
said I’d l ike to interview them, and

here’s how it went.

DS: What got you going on this?

JN: Growing up, we wanted to be
making creative media, such as
games, videos, animations, etc.,
but in the days before the Internet,
training was either difficult or
expensive to find, especially in
small-town Utah. We figured things
out on our own, through trial
and error, visits to the l ibrary and
countless hours watching PBS. The
Hello World Program is the show
we wish we watched as kids.

DS: Do you or your brother have
kids yourselves?

JN: Neither of us have kids, but we are
both kids at heart.

EOF
DOC SEARLS

LJ246-Oct2014.indd 110 9/17/14 4:50 PM

http://www.linuxjournal.com
http://www.thehelloworldprogram.com

EOF

DS: How long have you been
doing it?

JN: We started kicking around
ideas for an educational Web series
in January 2012. Then we sat on
our hands for a few months. We
published our first video, “What Is
a Robot?” in May of that year. Since
then, The Hello World Program has
significantly evolved. We introduced
several new characters and
expanded our scope to include Web
development and programming.

DS: Where in rural Utah are
you? (A side thing—I love Utah
and have shot it a lot from

the air: https://www.flickr.com/
search/?text=Utah&user_id=52614599
%40N00&sort=interestingness-desc.)

JN: Our home is Richfield, the gateway
to adventure in Southern Utah.

DS: Cool! I shot your house
from the sky just this past
May 4th, in fact. (Here it is:
https://www.flickr.com/photos/
docsearls/14861798514/in/
set-72157646284287131).

So, why Linux? We love Linux
here, but not all computer
science education starts with
Linux, especially for kids. But you
started there, which is very cool.

WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 111

LJ246-Oct2014.indd 111 9/17/14 4:50 PM

http://www.linuxjournal.com
https://www.flickr.com/search/?text=Utah&user_id=52614599%40N00&sort=interestingness-desc
https://www.flickr.com/search/?text=Utah&user_id=52614599%40N00&sort=interestingness-desc
https://www.flickr.com/search/?text=Utah&user_id=52614599%40N00&sort=interestingness-desc
https://www.flickr.com/search/?text=Utah&user_id=52614599%40N00&sort=interestingness-desc
https://www.flickr.com/photos/docsearls/14861798514/in/set-72157646284287131
https://www.flickr.com/photos/docsearls/14861798514/in/set-72157646284287131
https://www.flickr.com/photos/docsearls/14861798514/in/set-72157646284287131

112 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

JN: Linux is the future! So we
hope. Between the two poles of
servers and smartphones—and the
ubiquity of computers—we think
the majority of users wil l eventually
run a Linux distribution. One of our
goals is to remove the economic
barrier associated with learning
computer science. Not only are
the majority of Linux distros free,
they are amazingly powerful and
customizable and can breathe new
life into old hardware.

Linux is also very hands-on, and
learning it is also learning how a
computer works. Other popular
operating systems obscure the inner
workings of the computer from
the user. With Linux, students can
choose how deep they want to dive
into their machines.

DS: And you do all your production
on Linux?

JN: Yes. We have such an appreciation
for this operating system that we
challenged ourselves to produce all

of our media using Linux machines.
We edit our videos with Lightworks
(http://www.lwks.com). Our
computer graphics are rendered in
Blender (http://www.blender.org).
Our audio is processed using Audacity
(http://audacity.sourceforge.net) and
Ardour (https://ardour.org), and our
stopmotion animations are created using
Entangle (http://entangle-photo.org)
and compiled with avconv
(https://libav.org/avconv.html).

DS: Why puppets? (Side thing—
my daughter Colette is a college
professor who teaches puppet
theater: http://www.umbc.edu/
theatre/searls.html.)

JN: We learned about the world
by watching Sesame Street,
The Muppets and Mr. Rogers’
Neighborhood. We wanted to create
a show in the same vein with a
contemporary sensibility. We loved
the idea of merging analog craft
with digital technology. In addition
to puppets, a lot of our new content

EOF

Between the two poles of servers and
smartphones—and the ubiquity of
computers—we think the majority of users
will eventually run a Linux distribution.

LJ246-Oct2014.indd 112 9/17/14 4:50 PM

http://www.linuxjournal.com
http://www.lwks.com
http://www.blender.org
http://audacity.sourceforge.net
https://ardour.org
http://entangle-photo.org
https://libav.org/avconv.html
http://www.umbc.edu/theatre/searls.html
http://www.umbc.edu/theatre/searls.html

features stopmotion and hand-drawn
animation as well as 3-D computer-
generated animation.

DS: Why Python? We can guess,
but we’d rather ask anyway.

JN: Python is an excellent choice for a
beginner because it issues immediate
results, it’s very easy to read, and
it can be used for a wide variety of
applications. Best of all, it is included
with most Linux distributions.

DS: Do you teach locally as well
as on-line (for example, in local
schools)? If so, how and where?

JN: We ran workshops with hacker/
Makerspaces in the past, but found
that our two-man team didn’t have
the time and resources necessary to
teach and continue producing new
content for our site.

DS: Do you have commercial or
other ambitions besides what
you’re doing now? (Such as seeing
these adopted in schools?)

JN: We would love to see our
curriculum adopted in schools, though
our ambitions are more autodidactic.
Our primary goal is to empower young
people to make their own media.

Advertiser
Index
Thank you as always for supporting our

advertisers by buying their products!

ADVERTISER URL PAGE #

All Things Open http://allthingsopen.org 2

Drupalize.me http://www.drupalize.me 7

EmperorLinux http://www.emperorlinux.com 21

Silicon Mechanics http://www.siliconmechanics.com 3

ATTENTION ADVERTISERS

The Linux Journal brand’s following has

grown to a monthly readership nearly

one million strong. Encompassing the

magazine, Web site, newsletters and

much more, Linux Journal offers the

ideal content environment to help you

reach your marketing objectives. For

more information, please visit

http://www.linuxjournal.com/advertising.

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 113

LJ246-Oct2014.indd 113 9/17/14 4:50 PM

http://allthingsopen.org
http://www.drupalize.me
http://www.emperorlinux.com
http://www.siliconmechanics.com
http://www.linuxjournal.com/advertising
http://www.linuxjournal.com

114 / OCTOBER 2014 / WWW.LINUXJOURNAL.COM

DS: Do you have a business with
this as well?

JN: Yes. We’re bundling our videos
and selling them as a digital
download. Our first complete
segment, Daisy’s Web Dev Diary, is
available for purchase via Gumroad
(https://gumroad.com/l/daisy).

We’re also planning to release
e-books for each of the four tracks
of The Hello World Program. And
we’re slowly building a merchandise
store, for fans to purchase Hello
World-themed T-shirts, stickers and
posters (http://www.zazzle.com/
dototot).

DS: You identify on Twitter as a
“Creative media company and
think tank” (https://twitter.com/
dotototdotcom). Tell us more
about both (especially the think
tank part).

JN: The Hello World Program is
our first project. As a creative
media company, we are producing
an educational and entertaining
series of videos and tutorials
combining art and technology.
As a think tank, we recognize
that understanding the basics
of computer science wil l be
a necessary skil l set for the

EOF

LJ246-Oct2014.indd 114 9/17/14 4:50 PM

http://www.linuxjournal.com
https://gumroad.com/l/daisy
http://www.zazzle.com/dototot
http://www.zazzle.com/dototot
https://twitter.com/dotototdotcom
https://twitter.com/dotototdotcom

 WWW.LINUXJOURNAL.COM / OCTOBER 2014 / 115

EOF

future. Through STEM initiatives,
technological l iteracy wil l be
taught to students at a younger
age and eventually incorporated
in standard curriculum. We’re
predicting that Linux and Python
will be at the forefront of this
movement. We support an
open-source future and consider
our current project a contribution
to furthering the cause.

Otherwise, we’re perpetually
brainstorming new endeavors
beyond puppets and video. But
we’re not ready to talk about
them yet.

DS: Can you give us some success
stories with kids?

JN: Our booth at Maker Faire Bay
Area 2013 was wildly successful.
It was tit led “Robot Puppet
Party”, and we invited young
makers to use our puppets to
create their own short videos.
We were awarded two Editor’s
Choice blue ribbons. But more
important, the kids loved it.

We’re also launching an Indiegogo
campaign called “Hands-On
Computer Science: The Hello World
Program”, which should go up
in September (http://igg.me/at/
hello-world).

DS: Good. That’s just in advance
of this issue of the magazine. Any
other projects?

JN: We’re launching a new
segment, “Superusers: The
Legendary GNU/Linux Show”
(https://www.youtube.com/watch?v=
DQbODhkyA4g&feature=youtu.be).

DS: Excellent! I like Aramis the
Gnu and Adalie the penguin!

JN: We’re also launching a
crowdfunding campaign on
Indiegogo that should be up by
the time you read this.

DS: Where can readers follow you?

JN: Find us at http://www.dototot.com
and on Twitter at https://twitter.com/
dotototdotcom or https://twitter.com/
helloworldshow.

Doc Searls is Senior Editor of Linux Journal. He is also a

fellow with the Berkman Center for Internet and Society

at Harvard University and the Center for Information

Technology and Society at UC Santa Barbara.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ246-Oct2014.indd 115 9/17/14 4:50 PM

http://igg.me/at/hello-world
http://igg.me/at/hello-world
https://www.youtube.com/watch?v=DQbODhkyA4g&feature=youtu.be
https://www.youtube.com/watch?v=DQbODhkyA4g&feature=youtu.be
http://www.dototot.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
https://twitter.com/dotototdotcom
https://twitter.com/helloworldshow
https://twitter.com/helloworldshow
https://twitter.com/dotototdotcom

