
 DEEP DIVE

BLOCKCHAIN

What’s New
in Qubes 4

Shell Scripting
Security

Raspberry Pi
Alternatives

Since 1994: The original magazine of the Linux community

POSTGRESQL 10
The Latest and

Most Interesting Features

BITCOIN AND TAXES
Cryptocurrency and Uncle Sam

LINUXBOOT
FOSS Project Spotlight

PLUS

ISSUE 284 | MARCH 2018
www.linuxjournal.com

http://www.linuxjournal.com

CONTENTS MARCH 2018
ISSUE 284

2 | March 2018 | http://www.linuxjournal.com

DEEP DIVE:
Blockchain
95 Blockchain,
 Part I:
 Introduction and
 Cryptocurrency
 by Petros Koutoupis

 What makes both bitcoin and
 blockchain so exciting? What do
 they provide? Why is everyone
 talking about this? And, what does
 the future hold?

105 Blockchain, Part II:
 Configuring a
 Blockchain Network
 and Leveraging
 the Technology
 by Petros Koutoupis

 How to set up a private etherium
 blockchain using open-source
 tools and a look at some markets
 and industries where blockchain
 technologies can add value.

http://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | March 2018 | http://www.linuxjournal.com

6 From the Editor—Doc Searls
 Help Us Cure Online Publishing of Its Addiction to Personal Data

 UPFRONT
18 FOSS Project Spotlight: LinuxBoot
 by David Hendricks, Ron Minnich, Chris Koch and Andrea Barberio

24 Readers’ Choice Awards

26 Shorter Commands by Kyle Rankin

29 For Open-Source Software, the Developers Are All of Us by Derek Zimmer

32 Taking Python to the Next Level by Joey Bernard

37 Learning IT Fundamentals by Kyle Rankin

40 Introducing Zero-K, a Real-Time Strategy Game for Linux by Oflameo

45 News Briefs

 COLUMNS
46 Kyle Rankin’s Hack and /
 What’s New in Qubes 4

52 Reuven M. Lerner’s At the Forge
 PostgreSQL 10: a Great New Version for a Great Database

64 Shawn Powers’ The Open-Source Classroom
 Cryptocurrency and the IRS

72 Zack Brown’s diff -u
 What’s New in Kernel Development

76 Susan Sons’ Under the Sink
 Security: 17 Things

86 Dave Taylor’s Work the Shell
 Shell Scripting and Security

178 Glyn Moody’s Open Sauce
 Looking Back: What Was Happening Ten Years Ago?

http://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital magazine, in

both PDF and ePub formats. Renewing your subscription, changing your

email address for issue delivery, paying your invoice, viewing your account

details or other subscription inquiries can be done instantly online:

http://www.linuxjournal.com/subs. Email us at subs@linuxjournal.com or reach

us via postal mail at Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.

Please remember to include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download notifications

will have links to the different formats and to the digital archive. To access the

digital archive at any time, log in at http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters and encourage you

to submit them at http://www.linuxjournal.com/contact or mail them to

Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA. Letters may

be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital responsibility seriously.

We've wiped off all old advertising from Linux Journal and are starting with

a clean slate. Ads we feature will no longer be of the spying kind you find on

most sites, generally called "adtech". The one form of advertising we have

brought back is sponsorship. That's where advertisers support Linux Journal

because they like what we do and want to reach our readers in general.

At their best, ads in a publication and on a site like Linux Journal provide

useful information as well as financial support. There is symbiosis there.

For further information, email: sponsorship@linuxjournal.com or call

+1-281-944-5188.

WRITING FOR US: We always are looking for contributed articles, tutorials

and real-world stories for the magazine. An author’s guide, a list of topics and

due dates can be found online: http://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips and tricks,

an inside look at upcoming issues and links to in-depth stories

featured on http://www.linuxjournal.com. Subscribe for free today:

http://www.linuxjournal.com/enewsletters.

CONTENTS

4 | March 2018 | http://www.linuxjournal.com

 ARTICLES
120 ZFS for Linux by Charles Fisher
 Presenting the Solaris ZFS filesystem, as implemented in Linux FUSE, native kernel
 modules and the Antergos Linux installer.

150 Custom Embedded Linux Distributions by Michael J. Hammel
 The proliferation of inexpensive IoT boards means the time has come to gain control
 not only of applications but also the entire software platform. So, how do you build a
 custom distribution with cross-compiled applications targeted for a specific purpose?
 As Michael J. Hammel explains here, it’s not as hard as you might think.

160 Raspberry Pi Alternatives by Kyle Rankin
 A look at some of the many interesting Raspberry Pi competitors.

165 Getting Started with ncurses by Jim Hall
 How to use curses to draw to the terminal screen.

172 Do I Have to Use a Free/Open Source License by VM (Vicky) Brasseur
 Open Source? Proprietary? What license should I use to release my software?

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

CONTRIBUTING EDITOR: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com

Contact: Publisher Carlie Fairchild
Phone: +1-281-944-5188

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/subscribe

FROM THE EDITOR

6 | March 2018 | http://www.linuxjournal.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote for
Harvard Business Review Press
in 2012. On the academic front,
Doc runs ProjectVRM, hosted
at Harvard’s Berkman Klein
Center for Internet and Society,
where he served as a fellow
from 2006–2010. He was also
a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

Help Us
Cure Online
Publishing of
Its Addiction to
Personal Data
Since the turn of the millennium, online
publishing has turned into a vampire, sucking
the blood of readers’ personal data to feed the
appetites of adtech: tracking-based advertising.
Resisting that temptation nearly killed us. But
now that we’re alive, still human and stronger
than ever, we want to lead the way toward curing
the rest of online publishing from the curse of
personal-data vampirism. And we have a plan.
Read on.

By Doc Searls

This is the first issue of the reborn Linux Journal, and my
first as Editor in Chief. This is also our first issue to contain
no advertising.

FROM THE EDITOR

http://www.linuxjournal.com

7 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

We cut out advertising because the whole online publishing industry has become
cursed by the tracking-based advertising vampire called adtech. Unless you wear
tracking protection, nearly every ad-funded publication you visit sinks its teeth
into the data jugulars of your browsers and apps to feed adtech’s boundless
thirst for knowing more about you.

Both online publishing and advertising have been possessed by adtech for so long,
they can barely imagine how to break free and sober up—even though they know
adtech’s addiction to human data blood is killing them while harming everybody
else as well. They even have their own twelve-step program.

We believe the only cure is code that gives publishers ways to do exactly what readers
want, which is not to bare their necks to adtech’s fangs every time they visit a website.

https://digitalcontentnext.org/blog/2017/03/30/5-factors-poised-topple-ad-tech
https://digitalcontentnext.org/blog/2017/03/30/5-factors-poised-topple-ad-tech
http://zgp.org/targeted-advertising-considered-harmful
http://zgp.org/targeted-advertising-considered-harmful
http://trustx.org/
http://www.linuxjournal.com

8 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

We’re doing that by reversing the way terms of use work. Instead of readers always
agreeing to publishers’ terms, publishers will agree to readers’ terms. The first of these
will say something like what’s shown in Figure 1.

That appeared on a whiteboard one day when we were talking about terms readers
proffer to publishers. Let’s call it #DoNotByte. Like others of its kind, #DoNotByte
will live at Customer Commons, which will do for personal terms what Creative
Commons does for personal copyright.

Publishers and advertisers can both accept that term, because it’s exactly what
advertising has always been in the offline world, as well as in the too-few parts
of the online world where advertising sponsors publishers without getting too
personal with readers.

By agreeing to #DoNotByte, publishers will also have a stake it can drive into the
heart of adtech.

At Linux Journal, we have set a deadline for standing up a working proof of concept:
25 May 2018. That’s the day regulatory code from the EU called the General Data
Protection Regulation (GDPR) takes effect. The GDPR is aimed at the same data
vampires, and its fines for violations run up to 4% of a company’s revenues in the
prior fiscal year. It’s a very big deal, and it has opened the minds of publishers and
advertisers to anything that moves them toward GDPR compliance.

Figure 1. Readers’ Terms

http://customercommons.org/
https://creativecommons.org/
https://creativecommons.org/
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation#Sanctions
http://www.linuxjournal.com

9 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

With the GDPR putting fear in the hearts of publishers and advertisers everywhere,
#DoNotByte may succeed where DoNotTrack (which the W3C has now ironically
relabeled Tracking Preference Expression) failed.

In addition to helping Customer Commons with #DoNotByte, here’s what we have in
the works so far:

1. Our steadily improving Drupal website.

2. A protocol from JLINCLabs by which readers can proffer terms, plus a way to
record agreements that leaves an audit trail for both sides.

3. Code from Aloodo that helps sites discover how many visitors are protected from
tracking, while also warning visitors if they aren’t—and telling them how to get
protected. Here’s Aloodo’s Github site. (Aloodo is a project of Don Marti, who
precedes me as Editor in Chief of Linux Journal. He now works for Mozilla.)

We need help with all of those, plus whatever additional code and labor anyone brings
to the table.

Before going more deeply into that, let’s unpack the difference between real
advertising and adtech, and how mistaking the latter for the former is one of the ways
adtech tricked publishing into letting adtech into its bedroom at night:

• Real advertising isn’t personal, doesn’t want to be (and, in the offline world, can’t
be), while adtech wants to get personal. To do that, adtech spies on people and
violates their privacy as a matter of course, and rationalizes it completely, with
costs that include becoming a big fat target for bad actors.

• Real advertising’s provenance is obvious, while adtech messages could be coming
from any one of hundreds (or even thousands) of different intermediaries,
all of which amount to a gigantic four-dimensional shell game no one entity
fully comprehends. Those entities include SSPs, DSPs, AMPs, DMPs, RTBs, data

https://en.wikipedia.org/wiki/Do_Not_Track
http://www.w3.org/2011/tracking-protection/drafts/tracking-dnt.html
https://www.drupal.org/
https://www.jlinclabs.com/
https://www.aloodo.org/
https://github.com/Aloodo/ad.aloodo.com
http://zgp.org/~dmarti
http://www.shoshanazuboff.com/new/recent-publications-and-interviews/big-other-surveillance-capitalism-and-the-prospects-of-an-information-civilization
http://www.shoshanazuboff.com/new/recent-publications-and-interviews/big-other-surveillance-capitalism-and-the-prospects-of-an-information-civilization
https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
https://www.google.com/search?q=lumascapes
https://chiefmartec.com/2017/05/marketing-techniology-landscape-supergraphic-2017
http://www.linuxjournal.com

10 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

suppliers, retargeters, tag managers, analytics specialists, yield optimizers, location
tech providers...the list goes on. And on. Nobody involved—not you, not the
publisher, not the advertiser, not even the third party (or parties) that route
an ad to your eyeballs—can tell you exactly why that ad is there, except to say
they’re sure some form of intermediary AI decided it is “relevant” to you, based
on whatever data about you, gathered by spyware, reveals about you. Refresh the
page and some other ad of equally unclear provenance will appear.

• Real advertising has no fraud or malware (because it can’t—it’s too simple and
direct for that), while adtech is full of both.

• Real advertising supports journalism and other worthy purposes, while adtech
supports “content production”—no matter what that “content” might be. By
rewarding content production of all kinds, adtech gives fake news a business
model. After all, fake news is “content” too, and it’s a lot easier to produce
than the real thing. That’s why real journalism is drowning under a flood of it.
Kill adtech and you kill the economic motivation for most fake news. (Political
motivations remain, but are made far more obvious.)

• Real advertising sponsors media, while adtech undermines the brand value of
both media and advertisers by chasing eyeballs to wherever they show up. For
example, adtech might shoot an Economist reader’s eyeballs with a Range Rover
ad at some clickbait farm. Adtech does that because it values eyeballs more
than the media they visit. And most adtech is programmed to cheap out on
where it is placed, and to maximize repeat exposures wherever it can continue
shooting the same eyeballs.

In the offline publishing world, it’s easy to tell the difference between real advertising
and adtech, because there isn’t any adtech in the offline world, unless we count direct
response marketing, better known as junk mail, which adtech actually is.

In the online publishing world, real advertising and adtech look the same, except for
ads that feature the symbol shown in Figure 2.

https://www.slideshare.net/augustinefou/presentations
https://www.google.com/search?&q=adtech+malware
https://artplusmarketing.com/how-true-advertising-can-save-journalism-from-drowning-in-a-sea-of-content-241f42bd1e0a?gi=bba6d5a1296c
http://www.latimes.com/business/technology/la-fi-tn-fake-news-ad-economy-20161208-story.html
http://www.latimes.com/business/technology/la-fi-tn-fake-news-ad-economy-20161208-story.html
https://www.wired.com/2017/02/veles-macedonia-fake-news
https://www.wired.com/2017/02/veles-macedonia-fake-news
https://artplusmarketing.com/how-true-advertising-can-save-journalism-from-drowning-in-a-sea-of-content-241f42bd1e0a
http://zgp.org/targeted-advertising-considered-harmful
http://zgp.org/targeted-advertising-considered-harmful
https://en.wikipedia.org/wiki/Direct_marketing#Direct_response_marketing
https://en.wikipedia.org/wiki/Direct_marketing#Direct_response_marketing
https://www.thedailybeast.com/facebook-and-googles-dirty-secret-theyre-really-junk-mail-empires
http://www.linuxjournal.com

11 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

Only not so big. You’ll only see it as a 16x16 pixel marker in the corner of an ad, so it
actually looks super small.

Click on that tiny thing and you’ll be sent to an “AdChoices” page explaining how
this ad is “personalized”, “relevant”, “interest-based” or otherwise aimed by personal
data sucked from your digital neck, both in real time and after you’ve been tracked by
microbes adtech has inserted into your app or browser to monitor what you do.

Text on that same page also claims to “give you control” over the ads you see,
through a system run by Google, Adobe, Evidon, TrustE, Ghostery or some other
company that doesn’t share your opt-outs with the others, or give you any record
of the “choices” you’ve made. In other words, together they all expose what a giant
exercise in misdirection the whole thing is. Because unless you protect yourself from
tracking, you’re being followed by adtech for future ads aimed at your eyeballs using
source data sucked from your digital neck.

By now you’re probably wondering how adtech has come to displace real advertising
online. As I put it in “Separating Advertising’s Wheat and Chaff”, “Madison Avenue
fell asleep, direct response marketing ate its brain, and it woke up as an alien replica
of itself.” That happened because Madison Avenue, like the rest of big business,
developed a big appetite for “big data”, starting in the late 2000s. (I unpack this
history in my EOF column in the November 2015 issue of Linux Journal.)

Madison Avenue also forgot what brands are and how they actually work. After a
decade-long trial by a jury that included approximately everybody on Earth with an
internet connection, the verdict is in: after a $trillion or more has been spent on adtech,
no new brand has been created by adtech; nor has the reputation of an existing brand
been enhanced by adtech. Instead adtech does damage to a brand every time it places

Figure 2. Ad Choices Icon

http://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/DAA_Icon_Ad_Creative_Guidelines.pdf
http://youradchoices.com/
https://blogs.harvard.edu/doc/2015/09/18/debugging-adtech-assumptions
https://medium.com/@dsearls/separating-advertisings-wheat-and-chaff-47858adfcb20
http://www.linuxjournal.com/content/how-will-big-data-craze-play-out
http://adcontrarian.blogspot.com/2015/02/theres-no-bullshit-like-brand-bullshit.html
http://adcontrarian.blogspot.com/2017/01/p-to-online-ad-world-weve-had-enough.html
http://www.linuxjournal.com

12 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

that brand’s ad next to fake news or on a crappy publisher’s website.

In “Linux vs. Bullshit”, which ran in the September 2013 Linux Journal, I pointed
to a page that still stands as a crowning example of how much of a vampire the
adtech industry and its suppliers had already become: IBM and Aberdeen’s “The Big
Datastillery: Strategies to Accelerate the Return on Digital Data”.

The “datastillery” is a giant vat, like a whiskey distillery might have. Going into the top
are pipes of data labeled “clickstream data”, “customer sentiment”, “email metrics”,
“CRM” (customer relationship management), “PPC” (pay per click), “ad impressions”,
“transactional data” and “campaign metrics”. All that data is personal, and little if any
of it has been gathered with the knowledge or permission of the persons it concerns.

At the bottom of the vat, distilled marketing goop gets spigoted into beakers rolling
by on a conveyor belt through pipes labeled “customer interaction optimization” and
“marketing optimization.”

Now get this: those beakers are human beings.

Farther down the conveyor belt, exhaust from goop metabolized in these human
beakers is farted upward into an open funnel at the bottom end of the “campaign
metrics” pipe, through which it flows back to the top and is poured back into the vat.

This “datastillery” is an MRI of the vampire’s digestive system: a mirror in which IBM’s
and Aberdeen’s reflection fails to appear because their humanity is gone.

Thus, it should be no wonder ad blocking is now the largest boycott in human
history. Here’s how large:

1. PageFair’s 2017 Adblock Report says at least 615 million devices were
already blocking ads by then. That number is larger than the human
population of North America.

http://adcontrarian.blogspot.com/2017/01/p-to-online-ad-world-weve-had-enough.html
http://www.linuxjournal.com/content/linux-vs-bullshit
http://www.ibmbigdatahub.com/blog/big-datastillery-strategies-accelerate-return-digital-data
http://www.ibmbigdatahub.com/infographic/big-datastillery-strategies-accelerate-return-digital-data
http://www.ibmbigdatahub.com/infographic/big-datastillery-strategies-accelerate-return-digital-data
http://blogs.harvard.edu/doc/2015/09/28/beyond-ad-blocking-the-biggest-boycott-in-human-history
http://blogs.harvard.edu/doc/2015/09/28/beyond-ad-blocking-the-biggest-boycott-in-human-history
https://pagefair.com/blog/2017/adblockreport
http://www.linuxjournal.com

13 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

2. GlobalWebIndex says 37% of all mobile users worldwide were blocking ads
by January 2016, and another 42% would like to. With more than 4.6 billion
mobile phone users in the world, that means 1.7 billion people were blocking ads
already—a sum exceeding the population of the Western Hemisphere.

Naturally, the adtech business and its dependent publishers cannot imagine any form
of GDPR compliance other than continuing to suck its victims dry while adding fresh
new inconveniences along those victims’ path to adtech’s fangs—and then blaming the
GDPR for delaying things.

A perfect example of this non-thinking is a recent Business Insider piece that says
“Europe’s new privacy laws are going to make the web virtually unsurfable” because
the GDPR and ePrivacy (the next legal shoe to drop in the EU) “will require tech
companies to get consent from any user for any information they gather on you and
for every cookie they drop, each time they use them”, thus turning the web “into an
endless mass of click-to-consent forms”.

Speaking of endless, the same piece says, “News sites—like Business Insider—typically
allow a dozen or more cookies to be ‘dropped’ into the web browser of any user who
visits.” That means a future visitor to Business Insider will need to click “agree” before
each of those dozen or more cookies get injected into the visitor’s browser.

After reading that, I decided to see how many cookies Business Insider actually
dropped in my Chrome browser when that story loaded, or at least tried to. Figure 3
shows what Baycloud Bouncer reported.

That’s ten-dozen cookies.

This is in addition to the almost complete un-usability Business Insider achieves with
adtech already. For example:

1. On Chrome, Business Insider’s third-party adtech partners take forever to load
their cookies and auction my “interest” (over a 320MBp/s connection), while

https://blog.globalwebindex.net/
https://blog.globalwebindex.net/chart-of-the-day/37-of-mobile-users-are-blocking-ads
https://blog.globalwebindex.net/chart-of-the-day/37-of-mobile-users-are-blocking-ads
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide
http://www.businessinsider.com/gdpr-europe-privacy-law-advantage-to-us-tech-companies-2018-2
http://www.linuxjournal.com

14 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

populating the space around the story with ads—just before a subscription-
pitch paywall slams down on top of the whole page like a giant metal paving slab
dropped from a crane, making it unreadable on purpose and pitching me to give
them money before they lift the slab.

2. The same thing happens with Firefox, Brave and Opera, although not at the same
rate, in the same order or with the same ads. All drop the same paywall though. It’s
hard to imagine a more subscriber-hostile sales pitch.

3. Yet, I could still read the piece by looking it up in a search engine. It may also be
elsewhere, but the copy I find is on MSN. There the piece is also surrounded by
ads, which arrive along with cookies dropped in my browser by only 113 third-
party domains. Mercifully, no subscription paywall slams down on the page.

Figure 3. Baycloud Bouncer Report

https://www.msn.com/en-us/money/other/gdpr-will-hand-a-huge-advantage-to-big-american-tech-companies-by-making-the-web-unsurfable-in-europe/ar-BBIYF1k
http://www.linuxjournal.com

15 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

So clearly the adtech business and their publishing partners are neither interested in
fixing this thing, nor competent to do it.

But one small publisher can start. That’s us. We’re stepping up.

Here’s how: by reversing the compliance process. By that I mean we are going to agree to
our readers’ terms of data use, rather than vice versa. Those terms will live at Customer
Commons, which is modeled on Creative Commons. Look for Customer Commons to
do for personal terms what Creative Commons did for personal copyright licenses.

It’s not a coincidence that both came out of Harvard’s Berkman Klein Center for
Internet and Society. The father of Creative Commons is law professor Lawrence
Lessig, and the father of Customer Commons is me. In the great tradition of open

Figure 4. Customer Commons’ Terms

http://customercommons.org/terms
http://customercommons.org/
http://customercommons.org/
https://creativecommons.org/
https://cyber.harvard.edu/
https://cyber.harvard.edu/
https://en.wikipedia.org/wiki/Lawrence_Lessig
https://en.wikipedia.org/wiki/Lawrence_Lessig
http://www.linuxjournal.com

16 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

source, I borrowed as much as I could from Larry and friends.

For example, Customer Commons’ terms will come in three forms of code (which I
illustrate with the same graphic Creative Commons uses, shown in Figure 4).

Legal Code is being baked by Customer Commons’ counsel: Harvard Law School
students and teachers working for the Cyberlaw Clinic at the Berkman Klein Center.

Human Readable text will say something like “Just show me ads not based on
tracking me.” That’s the one we’re dubbing #DoNotByte.

For Machine Readable code, we now have a working project at the IEEE:
7012 - Standard for Machine Readable Personal Privacy Terms. There it says:

The purpose of the standard is to provide individuals with means to proffer their
own terms respecting personal privacy, in ways that can be read, acknowledged and
agreed to by machines operated by others in the networked world. In a more formal
sense, the purpose of the standard is to enable individuals to operate as first parties
in agreements with others—mostly companies—operating as second parties.

That’s in addition to the protocol and a way to record agreements that JLINCLabs
will provide.

And we’re wide open to help in all those areas.

Here’s what agreeing to readers’ terms does for publishers:

1. Helps with GDPR compliance, by recording the publisher’s agreement with the
reader not to track them.

2. Puts publishers back on a healthy diet of real (tracking-free) advertising. This
should be easy to do because that’s what all of advertising was before publishers,
advertisers and intermediaries turned into vampires.

http://standards.ieee.org/develop/project/7012.html
https://www.jlinclabs.com/
http://www.linuxjournal.com

17 | March 2018 | http://www.linuxjournal.com

FROM THE EDITOR

3. Restores publishers’ status as good media for advertisers to sponsor, and on which
to reach high-value readers.

4. Models for the world a complete reversal of the “click to agree” process. This way
we can start to give readers scale across many sites and services.

5. Pioneers a whole new model for compliance, where sites and services comply with
what people want, rather than the reverse (which we’ve had since industry won
the Industrial Revolution).

6. Raises the value of tracking protection for everybody. In the words of Don Marti,
“publishers can say, ‘We can show your brand to readers who choose not to
be tracked.’” He adds, “If you’re selling VPN services, or organic ale, the subset
of people who are your most valuable prospective customers are also the early
adopters for tracking protection and ad blocking.”

But mostly we get to set an example that publishing and advertising both desperately
need. It will also change the world for the better.

You know, like Linux did for operating systems. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://medium.com/@dsearls/giving-customers-scale-a5f8a29efcdd
https://cyber.harvard.edu/lists/arc/projectvrm/2018-02/msg00080.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

18 | March 2018 | http://www.linuxjournal.com

UPFRONTUPFRONT

FOSS Project
Spotlight: LinuxBoot
The more things change, the more they stay the same.
That may sound cliché, but it’s still as true for the
firmware that boots your operating system as it was in
2001 when Linux Journal first published Eric Biederman’s
“About LinuxBIOS”. LinuxBoot is the latest incarnation
of an idea that has persisted for around two decades
now: use Linux as your bootstrap.

On most systems, firmware exists to put the hardware in a state where an operating
system can take over. In some cases, the firmware and OS are closely intertwined and
may even be the same binary; however, Linux-based systems generally have a firmware
component that initializes hardware before loading the Linux kernel itself. This may
include initialization of DRAM, storage and networking interfaces, as well as performing
security-related functions prior to starting Linux. To provide some perspective, this pre-
Linux setup could be done in 100 or so instructions in 1999; now it’s more than a billion.

Oftentimes it’s suggested that Linux itself should be placed at the boot vector. That
was the first attempt at LinuxBIOS on x86, and it looked something like this:

#define LINUX_ADDR 0xfff00000; /* offset in memory-mapped NOR flash */
void linuxbios(void) {
 void(*linux)(void) = (void *)LINUX_ADDR;

 linux(); /* place this jump at reset vector (0xfffffff0) */
}

http://www.linuxjournal.com/article/4888
http://www.linuxjournal.com

19 | March 2018 | http://www.linuxjournal.com

UPFRONT

This didn’t get very far though. Linux was not at the point where it could fully
bootstrap itself—for example, it lacked functionality to initialize DRAM. So LinuxBIOS,
later renamed coreboot, implemented the minimum hardware initialization
functionality needed to start a kernel.

Today Linux is much more mature and can initialize much more—although not
everything—on its own. A large part of this has to do with the need to integrate
system and power management features, such as sleep states and CPU/device hotplug
support, into the kernel for optimal performance and power-saving. Virtualization also
has led to improvements in Linux’s ability to boot itself.

Firmware Boot and Runtime Components
Modern firmware generally consists of two main parts: hardware initialization (early
stages) and OS loading (late stages). These parts may be divided further depending

Figure 1. General Overview of Firmware Components and Boot Flow

http://www.linuxjournal.com

20 | March 2018 | http://www.linuxjournal.com

UPFRONT

on the implementation, but the overall flow is similar across boot firmware. The late
stages have gained many capabilities over the years and often have an environment
with drivers, utilities, a shell, a graphical menu (sometimes with 3D animations) and
much more. Runtime components may remain resident and active after firmware
exits. Firmware, which used to fit in an 8 KiB ROM, now contains an OS used to boot
another OS and doesn’t always stop running after the OS boots.

LinuxBoot replaces the late stages with a Linux kernel and initramfs, which are
used to load and execute the next stage, whatever it may be and wherever it may
come from. The Linux kernel included in LinuxBoot is called the “boot kernel” to
distinguish it from the “target kernel” that is to be booted and may be something
other than Linux.

Bundling a Linux kernel with the firmware simplifies the firmware in two major ways.
First, it eliminates the need for firmware to contain drivers for the ever-increasing

Figure 2. LinuxBoot Components and Boot Flow

http://www.linuxjournal.com

21 | March 2018 | http://www.linuxjournal.com

UPFRONT

variety of boot media, networking interfaces and peripherals. Second, we can use
familiar tools from Linux userspace, such as wget and cryptsetup, to handle tasks like
downloading a target OS kernel or accessing encrypted partitions, so that the late
stages of firmware do not need to (re-)implement sophisticated tools and libraries.

For a system with UEFI firmware, all that is necessary is PEI (Pre-EFI Initialization)
and a small number of DXE (Driver eXecution Environment) modules for things like
SMM and ACPI table setup. With LinuxBoot, we don’t need most DXE modules, as
the peripheral initialization is done by Linux drivers. We also can skip the BDS (Boot
Device Selection) phase, which usually contains a setup menu, a shell and various
libraries necessary to load the OS. Similarly, coreboot’s ramstage, which initializes
various peripherals, can be greatly simplified or skipped.

In addition to the boot path, there are runtime components bundled with
firmware that handle errors and other hardware events. These are referred to as
RAS (Reliability, Availability and Serviceability) features. RAS features often are
implemented as high-priority, highly privileged interrupt handlers that run outside the
context of the operating system—for example, in system management mode (SMM)
on x86. This brings performance and security concerns that LinuxBoot is addressing
by moving some RAS features into Linux. For more information, see Ron Minnich’s
ECC’17 talk “Let’s Move SMM out of firmware and into the kernel”.

The initramfs used by the boot kernel can be any Linux-compatible environment
that the user can fit into the boot ROM. For ideas, see “Custom Embedded Linux
Distributions” published by Linux Journal in February 2018.

Some LinuxBoot developers also are working on u-root (u-root.tk), which is a
universal rootfs written in Go. Go’s portability and fast compilation make it possible
to bundle the u-root initramfs as source packages with only a few toolchain binaries
to build the environment on the fly. This enables real-time debugging on systems
(for example, via serial console through a BMC) without the need to recompile or
reflash the firmware. This is especially useful when a bug is encountered in the field
or is difficult to reproduce.

https://www.youtube.com/watch?v=6GEaw4msq6g
http://www.linuxjournal.com/content/custom-embedded-linux-distributions
http://www.linuxjournal.com/content/custom-embedded-linux-distributions
http://www.linuxjournal.com

22 | March 2018 | http://www.linuxjournal.com

UPFRONT

Advantages of Openness and Using LinuxBoot
While LinuxBoot can benefit those who are familiar with Linux and want more control
over their boot flow, companies with large deployments of Linux-based servers or
products stand to gain the most. They usually have teams of engineers or entire
organizations with expertise in developing, deploying and supporting Linux kernel and
userland—their business depends on it after all.

Replacing obscure and often closed firmware code with Linux enables organizations
to leverage talent they already have to optimize their servers’ and products’ boot flow,
maintenance and support functions across generations of hardware from potentially
different vendors. LinuxBoot also enables them to be proactive instead of reactive
when tracking and resolving boot-related issues.

LinuxBoot users gain transparency, auditability and reproducibility with boot code that
has high levels of access to hardware resources and sets up platform security policies.
This is more important than ever with well-funded and highly sophisticated hackers
going to extraordinary lengths to penetrate infrastructure. Organizations must think
beyond their firewalls and consider threats ranging from supply-chain attacks to
weaknesses in hardware interfaces and protocol implementations that can result in
privilege escalation or man-in-the-middle attacks.

Although not perfect, Linux offers robust, well-tested and well-maintained code that
is mission-critical for many organizations. It is open and actively developed by a vast
community ranging from individuals to multibillion-dollar companies. As such, it is
extremely good at supporting new devices, the latest protocols and getting the latest
security fixes.

LinuxBoot aims to do for firmware what Linux has done for the OS.

Who’s Backing LinuxBoot and How to Get Involved
Although the idea of using Linux as its own bootloader is old and used across a broad
range of devices, little has been done in terms of collaboration or project structure.
Additionally, hardware comes preloaded with a full firmware stack that is often closed

http://www.linuxjournal.com

23 | March 2018 | http://www.linuxjournal.com

UPFRONT

and proprietary, and the user might not have the expertise needed to modify it.

LinuxBoot is changing this. The last missing parts are actively being worked out to
provide a complete, production-ready boot solution for new platforms. Tools also are
being developed to reorganize standard UEFI images so that existing platforms can be
retrofitted. And although the current efforts are geared toward Linux as the target
OS, LinuxBoot has potential to boot other OS targets and give those users the same
advantages mentioned earlier. LinuxBoot currently uses kexec and, thus, can boot any
ELF or multiboot image, and support for other types can be added in the future.

Contributors include engineers from Google, Horizon Computing Solutions, Two
Sigma Investments, Facebook, 9elements GmbH and more. They are currently forming
a cohesive project structure to promote LinuxBoot development and adoption. In
January 2018, LinuxBoot became an official project within the Linux Foundation
with a technical steering committee composed of members committed to its long-
term success. Effort is also underway to include LinuxBoot as a component of Open
Compute Project’s Open System Firmware project. The OCP hardware community
launched this project to ensure cloud hardware has a secure, open and optimized
boot flow that meets the evolving needs of cloud providers.

LinuxBoot leverages the capabilities and momentum of Linux to open up firmware,
enabling developers from a variety of backgrounds to improve it whether they are
experts in hardware bring-up, kernel development, tooling, systems integration,
security or networking. To join us, visit linuxboot.org. ◾

—David Hendricks, Ron Minnich, Chris Koch and Andrea Barberio

https://www.linuxboot.org/
http://www.linuxjournal.com

24 | March 2018 | http://www.linuxjournal.com

UPFRONT

Readers’ Choice
Awards 2018

Best Linux Distribution
• Debian: 33%
• openSUSE: 12%
• Fedora: 11%
• Arch Linux and Ubuntu (tie): 9% each
• Linux Mint: 7%
• Manjaro Linux: 4%
• Slackware and “Other” (tie): 3% each
• CentOS, Gentoo and Solus (tie): 2% each
• Alpine Linux, Antergos, elementary OS (tie): 1% each

http://www.linuxjournal.com

25 | March 2018 | http://www.linuxjournal.com

UPFRONT

This year we’re breaking up our Readers’ Choice Awards by category, so check back
weekly for a new poll on the site. We started things off with Best Linux Distribution,
and nearly 10,000 readers voted. The winner was Debian by a landslide, with many
commenting “As for servers, Debian is still the best” or similar. (Note that the
contenders were nominated by readers via Twitter.)

One to watch that is rising in the polls is Manjaro, which is independently based on
the Arch Linux. Manjaro is a favorite for Linux newcomers and is known for its user-
friendliness and accessibility.

Best Web Browser
• Firefox: 57%
• Chrome: 17%
• Chromium: 7%
• Vivaldi: 6%
• Opera: 4%
• Brave: 3%
• qutebrowser: 2%

When the Firefox team released Quantum in November 2017, they boasted it
was “over twice as fast as Firefox from 6 months ago”, and Linux Journal readers
generally agreed, going as far as to name it their favorite web browser. A direct
response to Google Chrome, Firefox Quantum also boasts decreased RAM usage
and a more streamlined user interface.

One commenter, CDN2017, got very specific and voted for “Firefox (with my
favourite extensions: uBlock Origin, Privacy Badger, NoScript, and Firefox
multi-account containers).”

Who to watch for? Vivaldi. Founded by ex-Opera chief Jon von Tetzchner, Vivaldi is
aimed at power users and is loaded with extra features, such as tab stacking, quick
commands, note taking, mouse gestures and side-by-side browsing.

http://www.linuxjournal.com/
https://manjaro.org/
https://vivaldi.com/?lang=en_US
http://www.linuxjournal.com

26 | March 2018 | http://www.linuxjournal.com

UPFRONT

Shorter Commands
Although a GUI certainly has its place, it’s hard to beat the efficiency of the command
line. It’s not just the efficiency you get with a purely keyboard-driven interface, but
also the raw power of piping the output of one command into the input of another.
This drive toward efficiency influenced the commands themselves. In the age before
tab-completion, having a long command, much less a hyphenated command, was
something to avoid. That’s why we call it “tar”, not “tape-archive”, and “cp” instead of
“copy.” I like to think of old UNIX commands like rough stones worn smooth by a river,
all their unnecessary letters worn away by the erosion of years of typing.

Tab completion has made long commands more bearable and more common;
however, there’s still something to be said for the short two- or three-letter
commands that pop from our fingers before we even think about them. Although
there are great examples of powerful short commands (my favorite has to be dd), in
this article, I highlight some short command-line substitutions for longer commands
ordered by how many characters you save by typing them.

Save Four Characters with apt
Example:

sudo apt install vim

I’m a long-time Debian user, but I think I was the last one to get the news that apt-get
was being deprecated in favor of the shorter apt command, at least for interactive use.
The new apt command isn’t just shorter to type, it also provides a new and improved
interactive interface to installing Debian packages, including an RPM-like progress bar
made from # signs. It even takes the same arguments as apt-get, so it’s easy to make
the transition to the shorter command. The only downside is that it’s not recommended
for scripts, so for that, you will need to stick to the trusty apt-get command.

http://www.linuxjournal.com

27 | March 2018 | http://www.linuxjournal.com

UPFRONT

Save Four Characters with dig
Example:

dig linuxjournal.com NS

The nslookup command is a faithful standby for those of us who have performed
DNS lookups on the command line for the past few decades (including on DOS),
but it’s also been deprecated for almost that long. For accurate and supported DNS
searches, dig is the command of choice. It’s not only shorter, it’s also incredibly
powerful. But, with that power comes a completely separate set of command-line
options from what nslookup has.

Save Four Characters with nc
Example:

nc mail.example.com 25

I’ve long used telnet as my trusty sidekick whenever I wanted to troubleshoot a
broken service. I even wrote about how to use it to send email in a past Linux Journal
article. Telnet is great for making simple network connections, but it seems so bloated
standing next to the slim nc command (short for netcat). The nc command is not just
a simple way to troubleshoot network services, it also is a Swiss-army knife of network
features in its own right, and it even can perform basic port-scan style tests in place of
nmap via the nc -zv arguments.

Save Five Characters with ss
Example:

ss -lnpt

http://www.linuxjournal.com

28 | March 2018 | http://www.linuxjournal.com

UPFRONT

When you are troubleshooting a network, it’s incredibly valuable to be able to see
what network connections are currently present on a system. Traditionally, I would use
the netstat tool for this, but I discovered that ss performs the same functions and
even accepts similar arguments. The only downside is that its output isn’t formatted
quite as nicely, but that’s a small price to pay to save an extra five keystrokes.

Save Six Characters with ip
Example:

ip addr

The final command on this list is a bit controversial among old-timers like me who
grew up with the ifconfig command. Sadly ifconfig has been deprecated, so
if you want to check network link state, or set IP addresses or routing tables, the ip
command is what all the kids are using. The syntax and output formats are dramatically
different from what you might be used to with the ifconfig command, but on the
plus side, you are saving six keystrokes.

—Kyle Rankin

http://www.linuxjournal.com

29 | March 2018 | http://www.linuxjournal.com

UPFRONT

For Open-Source
Software, the
Developers Are
All of Us
 “We are stronger together than on our own.” This is a core principle that many
people adhere to in their daily lives. Whether we are overcoming adversity, fighting
the powers that be, protecting our livelihoods or advancing our business strategies,
this mantra propels people and ideas to success.

In the world of cybersecurity, the message of the decade is “you’re not safe.”
Your business secrets, your personal information, your money and your livelihood
are at stake. And the worst part of it is, you’re on your own. Every business is
beholden to hundreds of companies handling its information and security. You enter
information into your Google Chrome browser, on a website running Microsoft
Internet Information Server, and the website is verified through Comodo certificate
verification. Your data is transmitted through Cisco firewalls and routed by Juniper
routers. It passes through an Intel-branded network card on your Dell server and
through a SuperMicro motherboard. Then the data is transmitted through the
motherboard’s serial bus to the SandForce chip that controls your Solid State Disk and
is then written to Micron flash memory, in an Oracle MySQL database.

You are reliant on every single one of those steps being secure, in a world where the
trillion-dollar problem is getting computers to do exactly what they are supposed to
do. All of these systems have flaws. Every step has problems and challenges. And if
something goes wrong, there is no liability. The lost data damages your company,
your livelihood, you.

http://www.linuxjournal.com

30 | March 2018 | http://www.linuxjournal.com

UPFRONT

This problem goes back decades and has multiple root causes that culminate in the
mess we have today. Hardware and software makers lack liability for flaws, which leads
to sub-par rigor in verifying that systems are hardened against known vulnerabilities.
A rise in advertising revenue from “big data” encourages firms to hoard information,
looking for the right time to cash out their users’ information. Privacy violations
go largely unpunished in courts, and firms regularly get away with enormous data
breaches without paying any real price other than pride.

But it doesn’t have to be this way. Open software development has been a resounding
success for businesses, in the form of Linux, BSD and the hundreds of interconnected
projects for their platforms. These open platforms now account for the lion’s share of
the market for servers, and businesses are increasingly looking to open software for
their client structure as well as for being a low-cost and high-security alternative to
Windows and OS X.

The main pitfall of this type of development is the lack of a profit motive for the
developers. If your software is developed in the open, everyone around the world can
find and fix your bugs, but they can also adopt and use your coding techniques and
features. It removes the “walled garden” that so many software companies currently
enjoy. So we as a society trade this off. We use closed software and trust that all
of these companies are not making mistakes. This naiveté costs the US around $16
billion per year from identity theft alone.

So how do we fix this problem? We organize and support open software development.
We make sure that important free and open security projects have the resources they
need to flourish and succeed. We get our development staff involved in open-source
projects so that they can contribute their expertise and feedback to these pillars of
secure computing.

But open software is complex. How do you know which projects to support? How can
you make this software easier to use? How can you verify that it is actually as secure
as possible?

http://www.linuxjournal.com

31 | March 2018 | http://www.linuxjournal.com

UPFRONT

This is where we come in. We have founded the Open Source Technology
Improvement Fund, a 501(c)3 nonprofit whose only job is to fund security research
and development for open-source software. We vet projects for viability, find out what
they need to improve and get them the resources to get there. We then verify that
their software is safe and secure with independent teams of software auditors, and
work with the teams continuously to secure their projects against the latest threats.

The last crucial piece of this project is you—the person reading this. This entire
operation is supported by hundreds of individuals and more than 60 businesses who
donate, sit on our advisory council and participate in the open software movement.
The more people and businesses that join our coalition, the faster we can progress
and fix these problems. Get involved. We can do better.

For more information, visit OSTIF: https://ostif.org. ◾

—Derek Zimmer

https://ostif.org/
https://ostif.org/
http://www.linuxjournal.com

32 | March 2018 | http://www.linuxjournal.com

UPFRONT

Taking Python
to the Next Level
A brief intro to simulating quantum systems with QuTiP.

With the reincarnation of Linux Journal, I thought I’d take this article through a
quantum leap (pun intended) and look at quantum computing. As was true with
the beginning of parallel programming, the next hurdle in quantum computing is
developing algorithms that can do useful work while harnessing the full potential of
this new hardware.

Unfortunately though, most people don’t have a handy quantum computer lying
around on which they can develop code. The vast majority will need to develop
ideas and algorithms on simulated systems, and that’s fine for such fundamental
algorithm design.

So, let’s take look at one of the Python modules available to simulate quantum
systems—specifically, QuTiP. For this short article, I’m focusing on the mechanics of
how to use the code rather than the theory of quantum computing.

The first step is installing the QuTiP module. On most machines, you can install it with:

sudo pip install qutip

This should work fine for most people. If you need some latest-and-greatest feature,
you always can install QuTiP from source by going to the home page.

Once it’s installed, verify that everything worked by starting up a Python instance and
entering the following Python commands:

http://qutip.org/index.html
http://www.linuxjournal.com

33 | March 2018 | http://www.linuxjournal.com

UPFRONT

>> from qutip import *
>> about()

You should see details about the version numbers and installation paths.

The first step is to create a qubit. This is the simplest unit of data to be used
for quantum calculations. The following code generates a qubit for two-level
quantum systems:

>> q1 = basis(2,0)
>> q1
 Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
 Qobj data =
 [[1.]
 [0.]]

By itself, this object doesn’t give you much. The simulation kicks in when you start
applying operators to such an object. For example, you can apply the sigma plus
operator (which is equivalent to the raising operator for quantum states). You can do
this with one of the operator functions:

>> q2 = sigmap * q1
>> q2
 Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
 Qobj data =
 [[0.]
 [0.]]

As you can see, you get the zero vector as a result from the application of
this operator.

You can combine multiple qubits into a tensor object. The following code shows how
that can work:

http://www.linuxjournal.com

34 | March 2018 | http://www.linuxjournal.com

UPFRONT

>> from qutip import *
>> from scipy import *
>> q1 = basis(2, 0)
>> q2 = basis(2,0)
>> print q1
 Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
 Qobj data =
 [[1.]
 [0.]]
>> print q2
 Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
 Qobj data =
 [[1.]
 [0.]]
>> print tensor(q1,q2)
 Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
 Qobj data =
 [[1.]
 [0.]
 [0.]
 [0.]]

This will couple them together, and they’ll be treated as a single object by
operators. This lets you start to build up systems of multiple qubits and more
complicated algorithms.

More general objects and operators are available when you start to get to even
more complicated algorithms. You can create the basic quantum object with the
following constructor:

>> q = Qobj([[1], [0]])
>> q
 Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket

http://www.linuxjournal.com

35 | March 2018 | http://www.linuxjournal.com

UPFRONT

 Qobj data =
 [[1.0]
 [0.0]]

These objects have several visible properties, such as the shape and number of
dimensions, along with the actual data stored in the object. You can use these
quantum objects in regular arithmetic operations, just like any other Python
objects. For example, if you have two Pauli operators, sz and sy, you could create a
Hamiltonian, like this:

>> H = 1.0 * sz + 0.1 * sy

You can then apply operations to this compound object. You can get the trace with
the following:

>> H.tr()

In this particular case, you can find the eigen energies for the given Hamiltonian with
the method eigenenergies():

>> H.eigenenergies()

Several helper objects also are available to create these quantum objects for you. The
basis constructor used earlier is one of those helpers. There are also other helpers,
such as fock() and coherent().

Because you’ll be dealing with states that are so far outside your usual day-to-
day experiences, it may be difficult to understand what is happening within any
particular algorithm. Because of this, QuTiP includes a very complete visualization
library to help see, literally, what is happening within your code. In order to
initialize the graphics libraries, you’ll likely want to stick the following code at
the top of your program:

http://www.linuxjournal.com

36 | March 2018 | http://www.linuxjournal.com

UPFRONT

>> import matplotlib.pyplot as plt
>> import numpy as np
>> from qutip import *

From here, you can use the sphereplot() function to generate three-dimensional
spherical plots of orbitals. The plot_energy_levels() function takes a given
quantum object and calculates the associated energies for the object. Along with
the energies, you can plot the expectation values for a given system with the
function plot_expectation_values().

I’ve covered only the barest tip of the proverbial iceberg when it comes to using QuTiP.
There is functionality that allows you to model entire quantum systems and see them
evolving over time. I hope this introduction sparks your interest in the QuTiP tool if
you decide to embark on research in quantum systems and computation. ◾

—Joey Bernard

http://www.linuxjournal.com

37 | March 2018 | http://www.linuxjournal.com

UPFRONT

Learning IT
Fundamentals
Where do IT fundamentals fit in our modern, cloud- and
abstraction-driven engineering culture?

I was recently discussing the Sysadmin/DevOps/IT industry with a colleague, and we
started marveling at just how few of the skills we learned when we were starting
out are actually needed today. It seems like every year a tool, abstraction layer
or service makes it so you no longer need to know how this or that technology
works. Why compile from source when all of the software you could want is
prepackaged, tested and ready to install? Why figure out how a database works
when you can just point to a pre-configured database service? Why troubleshoot a
malfunctioning Linux server when you can nuke it from orbit and spawn a new one
and hope the problem goes away?

This is not to say that automation is bad or that abstractions are bad. When you
automate repetitive tasks and make complex tasks easier, you end up being able to
accomplish more with a smaller and more junior team. I’m perfectly happy to take a
tested and validated upstream kernel from my distribution instead of spending hours
making the same thing and hoping I remembered to include all of the right modules.
Have you ever compiled a modern web browser? It’s not fun. It’s handy being able to
automate myself out of jobs using centralized configuration management tools.

As my colleague and I were discussing the good old days, what worried us wasn’t that
modern technology made things easier or that past methods were obsolete—learning
new things is what drew us to this career in the first place—but that in many ways,
modern technology has obscured so much of what’s going on under the hood, we
found ourselves struggling to think of how we’d advise someone new to the industry

http://www.linuxjournal.com

38 | March 2018 | http://www.linuxjournal.com

UPFRONT

to approach a modern career in IT. The kind of opportunities for on-the-job training
that taught us the fundamentals of how computers, networks and Linux worked are
becoming rarer and rarer, if they exist at all.

My story into IT mirrors many of my colleagues who started their careers somewhere
between the mid-1990s and early 2000s. I started out in a kind of hybrid IT and
sysadmin jack-of-all-trades position for a small business. I did everything from
installing and troubleshooting Windows desktops to setting up Linux file and web
servers to running and crimping network wires. I also ran a Linux desktop, and in those
days, it hid very little of the underpinnings from you, so you were instantly exposed to
networking, software and hardware fundamentals whether you wanted them or not.

Being exposed to and responsible for all of that technology as “the computer guy”,
you learn pretty quickly that you just have to dive in and figure out how things
work to fix them. It was that experience that cemented the Linux sysadmin and
networking skills I continued to develop as I transitioned away from the help desk
into a full-time Linux sysadmin. Yet these days, small businesses are more likely to
farm out most of their IT functions to the cloud, and sysadmins truly may not need
to know almost anything about how Linux or networking works to manage Linux
servers (and might even manage them from a Mac). So how do they learn what’s
going on under the hood?

This phenomenon isn’t limited to IT. Modern artists, writers and musicians also are
often unschooled in the history and unskilled in the fundamentals of their craft. While
careers in science still seem to stress a deep understanding of everything that has
come before, in so many other fields, it seems we are content to skip that part of
the lesson and just focus on what’s new. The problem when it comes to IT, however,
isn’t that you need to understand the fundamentals to get a good job—you don’t—
but when something goes wrong, without understanding what’s happening behind
the scenes at least to some degree, it’s almost impossible to troubleshoot. When
you can’t fix the problem yourself, you are left rebooting, respawning or calling your
vendor’s support line. Without knowing about the technologies of the past and their
features and failings, you are more likely to repeat their mistakes when someone new

http://www.linuxjournal.com

39 | March 2018 | http://www.linuxjournal.com

UPFRONT

to the industry convinces you they just invented them.

Fortunately the openness of Linux still provides us with one way out of this problem.
Although you can use modern Linux desktops and servers without knowing almost
anything about how computers, networks or Linux itself works, unlike with other
systems, Linux still will show you everything that’s going on behind the scenes if you
are willing to look. You can set up complex networks of Linux servers running the same
services that power the internet—all for free (and with the power of virtualization,
all from a single machine). For the budding engineer who is willing to dive deep into
Linux, you will have superior knowledge and an edge over all of your peers. ◾

—Kyle Rankin

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

40 | March 2018 | http://www.linuxjournal.com

UPFRONT

Introducing Zero-K,
a Real-Time Strategy
Game for Linux
Zero-K is a game where teams of robots fight for metal, energy and dominance. They
use any strategy, tactic or gimmick known to machine. Zero-K is a game for players by
players, and it runs natively on GNU/Linux and Microsoft Windows.

Zero-K runs on the Spring Real Time Strategy Game engine, which is the same engine
that powers Evolution RTS and Kernel Panic the game. Many consider Zero-K to be a
spiritual successor to Supreme Commander and Total Annihilation. Zero-K also has a

Figure 1. Game Start Panel

http://www.linuxjournal.com

41 | March 2018 | http://www.linuxjournal.com

UPFRONT

large and supportive player and developer community.

When you first open the game, you’ll see a panel that shows you what is going on in
the Zero-K community.

The game has a built-in making queue that allows people to play in 1v1, Teams or Coop mode:

 • 1v1: one player plays another player.

 • Teams: 2v2 or 4v4 with a group of players of similar skill.

 • Coop: players vs. AI players or chickens.

You also can play or watch a game via the Battle List, which allows you to make any
custom game mode you like, including:

 • Massive Wars: up 32 players going at it at the same time.

Figure 2. Final Assault on Base

http://www.linuxjournal.com

42 | March 2018 | http://www.linuxjournal.com

UPFRONT

 • Free For Alls: maps supporting up to eight starting spots.

 • Password Protected Rooms: if you just want to goof around with your friends.

If you don’t feel very social, there are plenty of ways to enjoy the game:

 • Single-player campaigns with more than 70 missions.

 • Thousands of replays from all of the multiline games available on the website.

If you are feeling social, you can join a Forum, a Discord Server or Clans.

There are usually tournaments scheduled once a month. You can see commentated
broadcasts of Zero-K tournaments here, as well as some other channels on Youtube
and Twitch.

Figure 3. Campaign Mission in Progress

https://www.youtube.com/user/Shadowfury333
http://www.linuxjournal.com

43 | March 2018 | http://www.linuxjournal.com

UPFRONT

To enhance the team play experience, there is a built-in chat, along with map mark and
label features.

Zero-K is a very dynamic game. It has a flat tech tree, and it allows you to add another
factory whenever you want, as long as you have the resources to pay for it. You can mix
and match units as you see fit, and it allows you to play to any style you desire. There
are more than ten factories from which to build big and small robots, and each factory
produces around ten unique robots. Each also factory has a different flavor of robot.

The game is newbie-friendly with a simple interface and simple economy compared
to other real-time strategy games. You can set the difficulty level to whatever is
appropriate for the player’s skill. There is AI for both first-time RTS players and
veterans of Zero-K. If the hardest AI isn’t strong enough for you, you always can add
more opponents to the opposing side. Conversely, if the easiest AI is too difficult, you
can add AI assistance to your side.

Figure 4. Large Team Game

http://www.linuxjournal.com

44 | March 2018 | http://www.linuxjournal.com

UPFRONT

The economy consists of two things: metal and energy. You spend metal to build bots,
and you spend energy on building bots, cloaks, shields and some static structures.

There are more options to customize your game because it is free and open-source software.
Commanders’ starting units are customizable with modules. Modules give commanders
different abilities. If you have a Zero-K account and you are playing online multiplayer, you can
use a pre-set commander from your profile. You also can create game modes that can add or
remove units, water, metal or energy. Hundreds of maps are available that you also can create
and upload. Additionally, you can program any key binding that’s most convenient for you.

You can get the game from the flagship site or from here. The source code for the
game is available on GitHub.

There also is a wiki that documents every aspect of the game.

The current version of Zero-K at the time of this writing is Zero-K v1.6.2.2. ◾

—Oflameo

Figure 5. Player vs. Chickens

https://zero-k.info/
https://zerok.itch.io/zero-k
https://github.com/ZeroK-RTS
https://zero-k.info/mediawiki/index.php?title=Manual
http://www.linuxjournal.com

45 | March 2018 | http://www.linuxjournal.com

UPFRONT

News Briefs
• Net Neutrality rules will officially die April 23. You can read the full order here. A

new fight is about to begin.

• For those of us who have been holding out to see an Oracle-supported port
of DTrace on Linux, that time is nearly here. Oracle just re-licensed the system
instrumentation tool from the original CDDL to GPLv2.

• We would like to congratulate the hard working folks behind the LibreOffice 6.0
application suite. Officially released on January 31, the site has counted almost 1
million downloads. An amazing accomplishment.

• Starting February 15, 2018, Google Chrome began removing ads from sites that
don’t follow the Better Ads Standards. For more info on how Chrome’s ad filtering
will work, see the Chromium blog.

• Feral Interactive tweeted that Rise of the Tomb Raider will be coming this spring to
Linux and macOS.

• RIP John Perry Barlow, EFF Founder, Internet Pioneer, 1947 – 2018. Cindy Cohn,
Executive Director of the EFF, wrote: “It is no exaggeration to say that major parts
of the Internet we all know and love today exist and thrive because of Barlow’s
vision and leadership. He always saw the Internet as a fundamental place of
freedom, where voices long silenced can find an audience and people can connect
with others regardless of physical distance.”

• A major update of VLC, version 3.0 “Vetinari”, has been released after three years in
the works, and it’s available for all platforms: Linux, Windows, macOS, Android, iOS,
Apple TV and Android TV. New features include support for Google Chromecast
and HDR video—the full list and download links are here.

Visit LinuxJournal.com for
daily news briefs.

https://www.federalregister.gov/documents/2018/02/22/2018-03464/restoring-internet-freedom
https://oss.oracle.com/git/gitweb.cgi?p=linux-uek.git;a=commitdiff;h=e1744f50ee9bc1978d41db7cc93bcf30687853e6
https://blog.documentfoundation.org/blog/2018/02/15/libreoffice-6-0-stats-far/
https://www.betterads.org/standards
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://twitter.com/feralgames/status/963372094775013382
https://www.eff.org/deeplinks/2018/02/john-perry-barlow-internet-pioneer-1947-2018
https://www.videolan.org/vlc/releases/3.0.0.html
http://linuxjournal.com
http://www.linuxjournal.com

46 | March 2018 | http://www.linuxjournal.com

What’s New
in Qubes 4
Considering making the move to Qubes 4?
This article describes a few of the big changes.

By Kyle Rankin

In my recent article “The Refactor Factor”, I talked about
the new incarnation of Linux Journal in the context of a big
software project doing a refactor:

Anyone who’s been involved in the Linux community is familiar
with a refactor. There’s a long history of open-source project
refactoring that usually happens around a major release. GNOME
and KDE in particular both use .0 releases to rethink those
desktop environments completely. Although that refactoring can
cause complaints in the community, anyone who has worked on
a large software project will tell you that sometimes you have to
go in, keep what works, remove the dead code, make it more
maintainable and rethink how your users use the software now
and how they will use it in the future.

I’ve been using Qubes as my primary desktop for more than two
years, and I’ve written about it previously in my Linux Journal
column, so I was pretty excited to hear that Qubes was doing
a refactor of its own in the new 4.0 release. As with most
refactors, this one caused some past features to disappear
throughout the release candidates, but starting with 4.0-rc4,

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books. Rankin
speaks frequently on security
and open-source software
including at BsidesLV, O’Reilly
Security Conference, OSCON,
SCALE, CactusCon, Linux World
Expo and Penguicon. You can
follow him at @kylerankin.

HACK AND /

http://www.linuxjournal.com/content/refactor-factor
http://www.linuxjournal.com

47 | March 2018 | http://www.linuxjournal.com

HACK AND /

the release started to stabilize with a return of most of the features Qubes 3.2 users
were used to. That’s not to say everything is the same. In fact, a lot has changed both
on the surface and under the hood.

Although Qubes goes over all of the significant changes in its Qubes 4 changelog,
instead of rehashing every low-level change, I want to highlight just some of the
surface changes in Qubes 4 and how they might impact you whether you’ve used
Qubes in the past or are just now trying it out.

Installer
For the most part, the Qubes 4 installer looks and acts like the Qubes 3.2 installer
with one big difference: Qubes 4 uses many different CPU virtualization features out
of the box for better security, so it’s now much more picky about CPUs that don’t
have those features enabled, and it will tell you so. At the beginning of the install
process after you select your language, you will get a warning about any virtualization
features you don’t have enabled. In particular, the installer will warn you if you don’t
have IOMMU (also known as VT-d on Intel processors—a way to present virtualized
memory to devices that need DMA within VMs) and SLAT (hardware-enforce memory
virtualization). If you skip the warnings and finish the install anyway, you will find you
have problems starting up VMs.

In the case of IOMMU, you can work around this problem by changing the
virtualization mode for the sys-net and sys-usb VMs (the only ones by default
that have PCI devices assigned to them) from being HVM (Hardware VM) to PV
(ParaVirtualized) from the Qubes dom0 terminal:

$ qvm-prefs sys-net virt_mode pv
$ qvm-prefs sys-usb virt_mode pv

This will remove the reliance on IOMMU support, but it also means you lose the
protection IOMMU gives you—malicious DMA-enabled devices you plug in might be
able to access RAM outside the VM! (I discuss the differences between HVM and PV
VMs in the next section.)

https://www.qubes-os.org/doc/releases/4.0/release-notes
http://www.linuxjournal.com

48 | March 2018 | http://www.linuxjournal.com

HACK AND /

VM Changes
It’s no surprise that the default templates are all updated in Qubes 4—software
updates are always expected in a new distribution release. Qubes 4 now ships with
Fedora 26 and Debian 9 templates out of the box. The dom0 VM that manages the
desktop also has a much newer 4.14.13 kernel and Xen 4.8, so you are more likely
to have better hardware support overall (this newer Xen release fixes some suspend
issues on newer hardware, like the Purism Librem 13v2, for instance).

Another big difference in Qubes 4 is the default VM type it uses. Qubes relies on Xen
for its virtualization platform and provides three main virtualization modes for VMs:

• PV (ParaVirtualized): this is the traditional Xen VM type that requires a Xen-
enabled kernel to work. Because of the hooks into the OS, it is very efficient;
however, this also means you can’t run an OS that doesn’t have Xen enabled (such
as Windows or Linux distributions without a Xen kernel).

• HVM (Hardware VM): this VM type uses full hardware virtualization features in the CPU,
so you don’t need special Xen support. This means you can run Windows VMs or any
other OS whether or not it has a Xen kernel, and it also provides much stronger security
because you have hardware-level isolation of each VM from other VMs.

• PVH (PV Hybrid mode): this is a special PV mode that takes advantage of
hardware virtualization features while still using a pavavirtualized kernel.

In the past, Qubes would use PV for all VMs by default, but starting with Qubes 4,
almost all of the VMs will default to PVH mode. Although initially the plan was to
default all VMs to HVM mode, now the default for most VMs is PVH mode to help
protect VMs from Meltdown with HVM mode being reserved for VMs that have PCI
devices (like sys-net and sys-usb).

GUI VM Manager
Another major change in Qubes 4 relates to the GUI VM manager. In past
releases, this program provided a graphical way for you to start, stop and pause

https://www.qubes-os.org/news/2018/01/24/qsb-37-update
http://www.linuxjournal.com

49 | March 2018 | http://www.linuxjournal.com

HACK AND /

VMs. It also allowed you to change all your VM settings, firewall rules and even
which applications appeared in the VM’s menu. It also provided a GUI way to back
up and restore VMs. With Qubes 4, a lot has changed. The ultimate goal with
Qubes 4 is to replace the VM manager with standalone tools that replicate most
of the original functionality.

One of the first parts of the VM manager to be replaced is the ability to manage
devices (the microphone and USB devices including storage devices). In the
past, you would insert a USB thumb drive and then right-click on a VM in the VM
manager to attach it to that VM, but now there is an ever-present icon in the
desktop panel (Figure 1) you can click that lets you assign the microphone and
any USB devices to VMs directly. Beside that icon is another Qubes icon you can
click that lets you shut down VMs and access their preferences.

For quite a few release candidates, those were the only functions you could
perform through the GUI. Everything else required you to fall back to the
command line. Starting with the Qubes 4.0-rc4 release though, a new GUI tool
called the Qube Manager has appeared that attempts to replicate most of the
functionality of the previous tool including backup and restore (Figure 2). The
main features the new tool is missing are those features that were moved out

Figure 1. Device Management from the Panel

http://www.linuxjournal.com

50 | March 2018 | http://www.linuxjournal.com

HACK AND /

into the panel. It seems like the ultimate goal is to move all of the features out
into standalone tools, and this GUI tool is more of a stopgap to deal with the
users who had relied on it in the past.

Backup and Restore
The final obvious surface change you will find in Qubes 4 is in backup and restore.
With the creation of the Qube Manager, you now can back up your VM’s GUI again,
just like with Qubes 3.2. The general backup process is the same as in the past, but
starting with Qubes 4, all backups are encrypted instead of having that be optional.

Restoring backups also largely behaves like in past releases. One change, however,
is when restoring Qubes 3.2 VMs. Some previous release candidates couldn’t
restore 3.2 VMs at all. Although you now can restore Qubes 3.2 VMs in Qubes 4,
there are a few changes. First, old dom0 backups won’t show up to restore, so
you’ll need to move over those files manually. Second, old template VMs don’t
contain some of the new tools Qubes 4 templates have, so although you can

Figure 2. New Qube Manager

http://www.linuxjournal.com

51 | March 2018 | http://www.linuxjournal.com

HACK AND /

restore them, they may not integrate well with Qubes 4 without some work. This
means when you restore VMs that depend on old templates, you will want to
change them to point to the new Qubes 4 templates. At that point, they should
start up as usual.

Conclusion
As I mentioned at the beginning of this article, these are only some of the more
obvious surface changes in Qubes 4. Like with most refactors, even more has
changed behind the scenes as well. If you are curious about some the underlying
technology changes, check out the Qubes 4 release notes and follow the links
related to specific features. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.qubes-os.org/doc/releases/4.0/release-notes
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

52 | March 2018 | http://www.linuxjournal.com

PostgreSQL 10:
a Great New
Version for a
Great Database
Reuven reviews the latest and most interesting
features in PostgreSQL 10.

By Reuven M. Lerner

PostgreSQL has long claimed to be the most advanced open-
source relational database. For those of us who have been using
it for a significant amount of time, there’s no doubt that this is
true; PostgreSQL has consistently demonstrated its ability to
handle high loads and complex queries while providing a rich set
of features and rock-solid stability.

But for all of the amazing functionality that PostgreSQL offers,
there also have long been gaps and holes. I’ve been in meetings
with consulting clients who currently use Oracle or Microsoft
SQL Server and are thinking about using PostgreSQL, who ask
me about topics like partitioning or query parallelization. And
for years, I’ve been forced to say to them, “Um, that’s true.
PostgreSQL’s functionality in that area is still fairly weak.”

So I was quite excited when PostgreSQL 10.0 was released

AT THE FORGE

Reuven M. Lerner teaches
Python, data science and
Git to companies around the
world. His free, weekly “better
developers” email list reaches
thousands of developers
each week; subscribe here.
Reuven lives with his wife and
children in Modi’in, Israel.

http://lerner.co.il/newsletter
http://www.linuxjournal.com

53 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

in October 2017, bringing with it a slew of new features and enhancements. True,
some of those features still aren’t as complex or sophisticated as you might find
in commercial databases. But they do demonstrate that over time, PostgreSQL is
offering an amazing amount of functionality for any database, let alone an open-
source project. And in almost every case, the current functionality is just the first part
of a long-term roadmap that the developers will continue to follow.

In this article, I review some of the newest and most interesting features in
PostgreSQL 10—not only what they can do for you now, but what you can expect
to see from them in the future as well. If you haven’t yet worked with PostgreSQL,
I’m guessing you’ll be impressed and amazed by what the latest version can do.
Remember, all of this comes in an open-source package that is incredibly solid, often
requires little or no administration, and which continues to exemplify not only high
software quality, but also a high-quality open-source project and community.

PostgreSQL Basics
If you’re new to PostgreSQL, here’s a quick rundown: PostgreSQL is a client-
server relational database with a large number of data types, a strong system for
handling transactions, and functions covering a wide variety of tasks (from regular
expressions to date calculations to string manipulation to bitwise arithmetic). You
can write new functions using a number of plugin languages, most commonly PL/
PgSQL, modeled loosely on Oracle’s PL/SQL, but you also can use languages like
Python, JavaScript, Tcl, Ruby and R. Writing functions in one of these extension
languages provides you not only with the plugin language’s syntax, but also its
libraries, which means that if you use R, for example, you can run statistical
analyses inside your database.

PostgreSQL’s transactions are handled using a system known as MultiVersion
Concurrency Control (MVCC), which reduces the number of times the database
must lock a row. This doesn’t mean that deadlocks never happen, but they
tend to be rare and are relatively easy to avoid. The key thing to understand
in PostgreSQL’s MVCC is that deleting a row doesn’t actually delete it, but
merely marks it as deleted by indicating that it should no longer be visible after

http://www.linuxjournal.com

54 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

a particular transaction. When all of the transaction IDs are greater than that
number, the row’s space can be reclaimed and/or reused—a process known as
“vacuuming”. This system also means that different transactions can see different
versions of the same row at the same time, which reduces locks. MVCC can be
a bit hard to understand, but it is part of PostgreSQL’s success, allowing you to
run many transactions in parallel without worrying about who is reading from or
writing to what row.

The PostgreSQL project started more than 20 years ago, thanks to a merger
between the “Postgres” database (created by Michael Stonebreaker, then a
professor at Berkeley, and an expert and pioneer in the field of databases) and the
SQL query language. The database tries to follow the SQL standard to a very large
degree, and the documentation indicates where commands, functions and data
types don’t follow that standard.

For two decades, the PostgreSQL “global development group” has released a
new version of the database roughly every year. The development process, as
you would expect from an established open-source project, is both transparent
and open to new contributors. That said, a database is a very complex piece of
software, and one that cannot corrupt data or go down if it’s going to continue to
have users, so development tends to be evolutionary, rather than revolutionary.
The developers do have a long-term roadmap, and they’ll often roll out features
incrementally across versions until they’re complete. Beyond the core developers,
PostgreSQL has a large and active community, and most of that community’s
communication takes place on email lists.

PostgreSQL 10
Open-source projects often avoid making a big deal out of a software release. After
all, just about every release of every program fixes bugs, improves performance and
adds features. What does it matter if it’s called 3.5 or 2.8 or 10.0?

That said, the number of huge features in this version of PostgreSQL made it almost
inevitable that it was going to be called 10.0, rather than 9.7 (following the previous

http://www.linuxjournal.com

55 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

version, 9.6). What is so deserving of this big, round number?

Two big and important features were the main reasons: logical replication and better
table partitions. There were many other improvements, of course, but in this article, I
focus on these big changes.

Before continuing, I should note that installing PostgreSQL 10 is quite easy, with
ports for many operating systems—including various Linux distributions—readily
available. Go to the main PostgreSQL site, and click on the link for “download”.
That will provide the instructions you need to add the PostgreSQL distribution to
the appropriate package repository, from which you can then download and install
it. If you’re upgrading from a previous version, of course, you should be a bit more
conservative, double-checking to make sure the data has been upgraded correctly.

I also should note that in the case of Ubuntu, which I’m running on my server,
the number of packages available for PostgreSQL 10 is massive. It’s normal to
install only the base server and client packages, but there are additional ones for
some esoteric data types, foreign data wrappers, testing your queries and even
such things as an internal cron system, a query preprocessor and a number of
replication options. You don’t have to install all of them, and you probably won’t
want to do so, but the sheer number of packages demonstrates how complex and
large PostgreSQL has become through the years, and also how much it does.

Logical Replication
For years, PostgreSQL lacked a reasonable option for replication. The best you
could do was take the “write-ahead logs”, binary files that described transactions
and provided part of PostgreSQL’s legendary stability, and copy them to another
server. Over time, this became a standard way to have a slave server, until several
years ago when you could stream these write-ahead log (WAL) files to another
server. Master-slave replication thus became a standard PostgreSQL feature, one
used by many organizations around the world—both to distribute the load across
multiple servers and to provide for a backup in the case of server failure. One
machine (the master) would handle both read and write queries, while one or

https://www.postgresql.org/
http://www.linuxjournal.com

56 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

more other (slave) machines would handle read-only queries.

Although streaming WALs certainly worked, it was limited in a number of ways.
It required that both master and slave use the same version of PostgreSQL,
and that the entire server’s contents be replicated on the slave. For reasons of
performance, privacy, security and maintenance, those things deterred many
places from using PostgreSQL’s master-slave streaming.

So it was with great fanfare that “logical replication” was included in PostgreSQL
10. The idea behind logical replication is that a server can broadcast (“publish”)
the changes that are made not using binary files, but rather a protocol that
describes changes in the publishing database. Moreover, details can be published
about a subset of the database; it’s not necessary to send absolutely everything
from the master to every single slave.

In order to get this to work, the publishing server must create a “publication”. This
describes what will be sent to subscribing servers. You can use the new CREATE
PUBLICATION command to do this.

As I wrote above, replication of the WAL files meant that the entire database server
(or “cluster”, in PostgreSQL terminology) needed to be replicated. In the case of
logical replication, the replication is done on a per-database basis. You then can
decide to create a publication that serves all tables:

CREATE PUBLICATION mydbpub FOR ALL TABLES;

Note that when you say FOR ALL TABLES, you’re indicating that you want to
publish not only all of the tables that currently exist in this database, but also tables
that you will create in the future. PostgreSQL is smart enough to add tables to the
publication when they are created. However, the subscriber won’t know about them
automatically (more on that to come).

If you want to restrict things, so that only a specific table is replicated, you can do

http://www.linuxjournal.com

57 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

so with this:

CREATE PUBLICATION MyPeoplePub FOR TABLE People;

You also can replicate more than one table:

CREATE PUBLICATION MyPeopleFooPub FOR TABLE People, Foo;

If you are publishing one or more specific tables, the tables must already exist at the
time you create the publication.

The default is to publish all actions that take place on the published tables. However,
a publication can specify that it’s going to publish only inserts, updates and/or deletes.
All of this is configurable when the publication is created and can be updated with the
ALTER PUBLICATION command later.

If you’re using the interactive “psql” shell, you can take a look at current publications
with \dRp, which is short for “describe replication publications”. It’s not the easiest
command to remember, but they long ago ran out of logical candidates for single-
letter commands. This command will show you which publications have been defined
and also what permissions they have (more on that in a moment). If you want to
know which tables are included in a publication, you can use \dRp+.

Once you’ve set up the publication, you can set up a subscription with (not
surprisingly) the CREATE SUBSCRIPTION command. Here, things are a bit trickier,
because the data is actually arriving into the subscriber’s database, which means there
might be conflicts or issues.

First and foremost, creating a subscription requires that you have a valid login (user
name and password) on the publisher’s system. With that in hand, you can say:

CREATE SUBSCRIPTION mysub CONNECTION 'host=mydb user=myuser'
 ↪PUBLICATION MyPeoplePub;

http://www.linuxjournal.com

58 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

Notice that you use a standard PostgreSQL “connecting string” to connect to
the server. You can use additional options if you want, including setting the port
number and the connection timeout. Because a database might have multiple
publications, you have to indicate the publication name to which you want to
subscribe, as indicated here. Also note that the user indicated in this connection
string must have “replication” privileges in the database.

Once the subscription has been created, the data will be replicated from its
current state on the publisher.

I’ve already mentioned that uSing the FOR ALL TABLES option with CREATE
PUBLISHER means that even if and when new tables are added, they will be
included as well. However, that’s not quite true for the subscriber. On the
subscriber’s side, you need to indicate that there have been changes in the
publisher and that you want to refresh your subscription:

ALTER SUBSCRIPTION testsub REFRESH PUBLICATION;

If you’ve done any binary replication in previous PostgreSQL versions, you already
can see what an improvement this is. You don’t have to worry about WALS, or
about them being erased, or about getting the subscribing server up to speed
and so forth.

Now, it’s all well and good to talk about replication, but there’s always the
possibility that problems will arise. For example, what happens if the incoming
data violates one or more constraints? Under such circumstances, the replication
will stop.

There are also a number of caveats regarding what objects are actually
replicated—for example, only tables are replicated, such objects as views and
sequences are not.

http://www.linuxjournal.com

59 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

Table Partitioning
Let’s say you’re using PostgreSQL to keep track of invoices. You might want to have
an “invoices” table, which you can query by customer ID, date, price or other factors.
That’s fine, but what happens if your business becomes extremely popular, and you’re
suddenly handling not dozens of customers a month, but thousands or even millions?
Keeping all of that invoicing data in a single database table is going to cause problems.
Not only are many of the older invoices taking up space on your primary filesystem,
but your queries against the table are going to take longer than necessary, because
these older rows are being scanned.

A standard solution to this problem in the database world is partitioning. You divide
the table into one or more sub-tables, known as “partitions”. Each partition can exist
on a different filesystem. You get the benefits of having a single table on a single
database, but you also enjoy the benefits of working with smaller tables.

Unfortunately, such partitioning was available in previous versions of PostgreSQL—
and although it worked, it was difficult to install, configure and maintain. PostgreSQL
10 added “declarative partitioning”, allowing you to indicate that a table should be
broken into separate partitions—meaning that when you insert data into a partitioned
table, PostgreSQL looks for the appropriate partition and inserts it there.

PostgreSQL supports two types of partitioning schemes. In both cases, you have
to indicate one or more columns on which the partitioning will be done. You can
partition according to “range”, in which case each partition will contain data from a
range of values. A typical use case for this kind of partition would be dates, such as
the invoices example above.

But, you also can partition over a “list” value, which means that you divide things
according to values. For example, you might want to have a separate partition for
each state in the US or perhaps just for different regions. Either way, the list will
determine which partition receives the data.

For example, you can implement the date invoice example from above as follows.

http://www.linuxjournal.com

60 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

First, create an Invoices table:

postgres=# CREATE TABLE Invoices (
 id SERIAL,
 issued_at TIMESTAMP NOT NULL,
 customer_name TEXT NOT NULL,
 amount INTEGER NOT NULL,
 product_bought TEXT NOT NULL
) partition by range (issued_at);
CREATE TABLE

(And yes, in an actual invoice system, you would be using foreign keys to keep track
of customers and products.)

Notice that at the conclusion of the CREATE TABLE command, I’ve added a
“partition by range” statement, which indicates that partitions of this table will work
according to ranges on issued_at, a timestamp.

But perhaps even more interesting is the fact that id, the SERIAL (that is,
sequence) value, is not defined as a primary key. That’s because you cannot have a
primary key on a partitioned table; that would require checking a constraint across
the various partitions, which PostgreSQL cannot guarantee.

With the partitioned table in place, you now can create the individual partitions:

postgres=# CREATE TABLE issued_at_y2018m01 PARTITION OF Invoices
 FOR VALUES FROM ('2018-jan-01') to ('2018-jan-31');
CREATE TABLE

postgres=# CREATE TABLE issued_at_y2018m02 PARTITION OF Invoices
postgres-# FOR VALUES FROM ('2018-feb-01') to ('2018-feb-28');
CREATE TABLE

http://www.linuxjournal.com

61 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

Notice that these partitions don’t have any column definition. That’s because the
columns are dictated by the partitioned table. In psql, I can ask for a description of
the first partition. See Table 1 for an example of what this would look like.

Table 1. public.issued_at_y2018m01

Column Type Collation Nullable Default

id integer not null nextval('invoices_

id_seq'::regclass)

issued_at

timestamp

without

time zone

not null

customer_name text not null

amount integer not null

product_bought text not null

Partition of: invoices FOR VALUES FROM ('2018-01-01 00:00:00')
 ↪TO ('2018-01-31 00:00:00')

You can see from the example shown in Table 1 not only that the partition acts like
a regular table, but also that it knows very well what its range of values is. See what
happens if I now insert rows into the parent “invoices” table:

postgres=# insert into invoices (issued_at , customer_name,
 ↪amount, product_bought)
postgres-# values ('2018-jan-15', 'Jane January', 100, 'Book');
INSERT 0 1

http://www.linuxjournal.com

62 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

postgres=# insert into invoices (issued_at , customer_name,
 ↪amount, product_bought)
values ('2018-jan-20', 'Jane January', 200, 'Another book');
INSERT 0 1
postgres=# insert into invoices (issued_at , customer_name,
 ↪amount, product_bought)
values ('2018-feb-3', 'Fred February', 70, 'Fancy pen');
INSERT 0 1
postgres=# insert into invoices (issued_at , customer_name,
 ↪amount, product_bought)
values ('2018-feb-15', 'Fred February', 60, 'Book');
INSERT 0 1

So far, so good. But, now how about a query on “invoices”:

postgres=# select * from invoices;
 id | issued_at | customer_name | amount | product_bought
----+---------------------+---------------+--------+----------------
 3 | 2018-02-03 00:00:00 | Fred February | 70 | Fancy pen
 4 | 2018-02-15 00:00:00 | Fred February | 60 | Book
 1 | 2018-01-15 00:00:00 | Jane January | 100 | Book
 2 | 2018-01-20 00:00:00 | Jane January | 200 | Another book
(4 rows)

I also can , if I want, query one of the partitions directly:

postgres=# select * from issued_at_y2018m01 ;
 id | issued_at | customer_name | amount | product_bought
----+---------------------+---------------+--------+----------------
 1 | 2018-01-15 00:00:00 | Jane January | 100 | Book
 2 | 2018-01-20 00:00:00 | Jane January | 200 | Another book
(2 rows)

http://www.linuxjournal.com

63 | March 2018 | http://www.linuxjournal.com

AT THE FORGE

Although you don’t have to do so, it’s probably a good idea to set an index on the
partition key on each of the individual partitions:

postgres=# create index on issued_at_y2018m01(issued_at);
CREATE INDEX
postgres=# create index on issued_at_y2018m02(issued_at);
CREATE INDEX

That will help PostgreSQL find and update the appropriate partition.

Not everything is automatic or magical here; you’ll have to add partitions, and you
even can remove them when they’re no longer needed. But this is so much easier than
used to be the case, and it offers more flexibility as well. It’s no surprise that this is
one of the features most touted in PostgreSQL 10.

Conclusion
I’ve personally been using PostgreSQL for about 20 years—and for so many years
people said, “Really? That’s your preferred open-source database?” But, now a large
and growing number of people are adopting and using PostgreSQL. It already was full
of great features, but there’s always room to improve—and with PostgreSQL 10, there
are even more reasons to prefer it over the alternatives.

Resources
To learn more about PostgreSQL, download the code, read the documentation and
sign up for the community e-mail lists, go to https://www.postgresql.org. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.postgresql.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

64 | March 2018 | http://www.linuxjournal.com

Cryptocurrency
and the IRS
One for you, one for me, and 0.15366BTC for
Uncle Sam.

By Shawn Powers

When people ask me about bitcoin, it’s usually because
someone told them about my days as an early miner. I had
thousands of bitcoin, and I sold them for around a dollar each.
At the time, it was awesome, but looking back—well you can
do the math. I’ve been mining and trading with cryptocurrency
ever since it was invented, but it’s only over the past few years
that I’ve been concerned about taxes.

In the beginning, no one knew how to handle the tax
implications of bitcoin. In fact, that was one of the favorite
aspects of the idea for most folks. It wasn’t “money”, so it
couldn’t be taxed. We could start an entire societal revolution
without government oversight! Those times have changed, and
now the government (at least here in the US) very much does
expect to get taxes on cryptocurrency gains. And you know
what? It’s very, very complicated, and few tax professionals
know how to handle it.

What Is Taxable?
Cryptocurrencies (bitcoin, litecoin, ethereum and any of the
10,000 other altcoins) are taxed based on the “gains” you make

THE OPEN-SOURCE CLASSROOM

Shawn Powers is Associate
Editor here at Linux Journal,
and has been around Linux
since the beginning. He has
a passion for open source,
and he loves to teach. He also
drinks too much coffee, which
often shows in his writing.

http://www.linuxjournal.com

65 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

with them. (Often in this article I mention bitcoin specifically, but the rules are the same
for all cryptocurrency.) Gains are considered income, and income is taxed. What sorts of
things are considered gains? Tons. Here are a few examples:

• Mining.

• Selling bitcoin for cash.

• Trading one crypto coin for another on an exchange.

• Buying something directly with bitcoin.

The frustrating part about taxes and cryptocurrency is that every transaction must be
calculated. See, with cash transactions, a dollar is always worth a dollar (according
to the government, let’s not get into a discussion about fiat currency). But with
cryptocurrency, at any given moment, the coin is worth a certain amount of dollars.
Since you’re taxed on dollars, that variance must be tracked so you are sure to report
how much “money” you had to spend.

It gets even more complicated, because you’re taxed on the same bitcoin over and
over. It’s not “double dipping”, because the taxes are only on the gains and losses that
occurred between transactions. It’s not unfair, but it’s insanely complex. Let’s look at
the life of a bitcoin from the moment it’s mined. For simplicity’s sake, let’s say it took
exactly one day to mine one bitcoin:

1) After 24 hours of mining, I receive 1BTC. The market price for bitcoin that day was
$1,000 per BTC. It took me $100 worth of electricity that day to mine (yes, I need to
track the electrical usage if I want to deduct it as a loss).

Taxable income for day 1: $900.

2) The next day, I trade the bitcoin for ethereum on an exchange. The cost of bitcoin
on this day is $1,500. The cost of ethereum on this day is $150. Since the value of my 1

http://www.linuxjournal.com

66 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

bitcoin has increased since I mined it, when I make the trade on the exchange, I have to
claim the increase in price as income. I now own 10 ethereum, but because of the bitcoin
value increase, I now have more income. There are no deductions for electricity, because
I already had the bitcoin; I’m just paying the capital gains on the price increase.

Taxable income for day 2: $500.

3) The next day, the price of ethereum skyrockets to $300, and the price of bitcoin
plummets to $1,000. I decide to trade my 10 ethereum for 3BTC. When I got my
ethereum, they were worth $1,500, but when I just traded them for BTC, they were
worth $3,000. So I made $1,500 worth of profit.

Taxable income for day 3: $1,500.

4) Finally, on the 4th day, even though the price is only $1,200, I decide to sell my
bitcoin for cash. I have 3BTC, so I get $3,600 in cash. Looking back, when I got those
3BTC, they were worth $1,000 each, so that means I’ve made another $600 profit.

Taxable income for day 4: $600.

It might seem unfair to be taxed over and over on the same initial investment, but
if you break down what’s happening, it’s clear you’re getting taxed only on price
increases. If the price drops and then you sell, your taxable income is negative for
that, and it’s a deduction. If you have to pay a lot in taxes on bitcoin, it means you’ve
made a lot of money with bitcoin!

Exceptions?
There are a few exceptions to the rules—well, they’re not really exceptions, but more
clarifications. Since you’re taxed only on gains, it’s important to think through the life
of your bitcoin. For example:

1. Employer paying in bitcoin: I work for a company that will pay me in bitcoin if
I desire. Rather than a check going into my bank account, every two weeks a

http://www.linuxjournal.com

67 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

bitcoin deposit goes into my wallet. I need to track the initial cost of the bitcoin
as I receive it, but usually employers will send you the “after taxes” amount. That
means the bitcoin you receive already has been taxed. You still need to track what
it’s worth on the day you receive it in order to determine gain/loss when you
eventually spend it, but the initial total has most likely already been taxed. (Check
with your employer to be sure though.)

2. Moving bitcoin from one wallet to another: this is actually a tougher question and
is something worth talking about with your tax professional. Let’s say you move
your bitcoin from a BitPay wallet to your fancy new Trezor hardware wallet. Do you
need to count the gains/losses since the time it was initially put into your BitPay
wallet? Regardless of what you and your tax professional decide, you’re not going
to “lose” either way. If you decide to report the gain/loss, your cost basis for that
bitcoin changes to the current date and price. If you don’t count a gain/loss, you
stick to the initial cost basis from the deposit into the BitPay wallet.

The moral of the story here is to find a tax professional comfortable with cryptocurrency.

Accounting Complications
If you’re a finance person, terms like FIFO and LIFO make perfect sense to you. (FIFO
= First In First Out, and LIFO = Last In First Out.) Although it’s certainly easy to
understand, it wasn’t something I’d considered before the world of bitcoin. Here’s an
example of how they differ:

• Day 1: buy 1BTC for $100.

• Day 2: buy 1BTC for $500.

• Day 3: buy 1BTC for $1,000.

• Day 4: buy 1BTC for $10,000.

• Day 5: sell 1BTC for $12,000.

http://www.linuxjournal.com

68 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

If I use FIFO to determine my gains and losses, when I sell the 1BTC on day 5, I have
to claim a capital gain of $11,900. That’s considered taxable income. However, if I use
LIFO to determine the gains and losses, when I sell the 1BTC on day 5, I have to claim
only $2,000 worth of capital gains. The question is basically “which BTC am I selling?”

There are other accounting methods too, but FIFO and LIFO are the most common,
and they should be okay to use with the IRS. Please note, however, that you can’t mix
and match FIFO/LIFO. You need to pick one and stick with it. In fact, if you change
the method from year to year, you need to change the method officially with the IRS,
which is another task for your tax professional.

The Long and Short of It
Another complication when it comes to calculating taxes doesn’t have to do with
gains or losses, but rather the types of gains and losses. Specifically, if you have an
asset (such as bitcoin) for longer than a year before you sell it, it’s considered a long-
term gain. That income is taxed at a lower rate than if you sell it within the first year of
ownership. With bitcoin, it can be complicated if you move the currency from wallet
to wallet. But if you can show you’ve had the bitcoin for more than a year, it’s very
much worth the effort, because the long-term gain tax is significantly lower.

This was a big factor in my decision on whether to cash in ethereum or bitcoin for
a large purchase I made this year. I had the bitcoin in a wallet, but it didn’t “age” as
bitcoin for a full year. The ethereum had just been sitting in my Coinbase account for
13 months. I ended up saving significant money by selling the ethereum instead of a
comparable amount of bitcoin, even though the capital gain amount might have been
similar. The difference in long-term and short-term tax rates are significant enough
that it’s worth waiting to sell if you can.

Overwhelmed?
If you’ve made only a couple transactions during the past year, it almost can be fun to
figure out your gains/losses. If you’re like me, however, and you try to purchase things
with bitcoin at every possible opportunity, it can become overwhelming fast. The first
thing I want to stress is that it’s important to talk to someone who is familiar with

http://www.linuxjournal.com

69 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

cryptocurrency and taxes. This article wasn’t intended to prepare you for handling the
tax forms yourself, but rather to show why you might need professional help!

Unfortunately, if you live in a remote rural area like I do, finding a tax professional who
is familiar with bitcoin can be tough—or potentially impossible. The good news is that
the IRS is handling cryptocurrency like any other capital gain/loss, so with the proper
help, any good tax person should be able to get through it. FIFO, LIFO, cost basis and
terms like those aren’t specific to bitcoin. The parts that are specific to bitcoin can be
complicated, but there is an incredible resource online that will help.

If you head over to BitcoinTaxes (Figure 1), you’ll find an incredible website designed for
bitcoin and crypto enthusiasts. I think there is a free offering for folks with just a handful
of transactions, but for $29, I was able to use the site to track every single cryptocurrency
transaction I made throughout the year. BitcoinTaxes has some incredible features:

Figure 1. The BitcoinTaxes site makes calculating tax burdens far less burdensome.

https://bitcoin.tax/
https://bitcoin.tax/
http://www.linuxjournal.com

70 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

• Automatically calculates rates based on historical market prices.

• Tracks gains/losses including long-term/short-term ramifications.

• Handles purchases made with bitcoin individually and determines gains/losses per
transaction (Figure 2).

• Supports multiple accounting methods (FIFO/LIFO).

• Integrates with online exchanges/wallets to pull data.

• Creates tax forms.

The last bullet point is really awesome. The intricacies of bitcoin and taxes are
complicated, but the BitcoinTaxes site can fill out the forms for you. Once you’ve
entered all your information, you can print the tax forms so you can deliver them to
your tax professional. The process for determining what goes on the forms might
be unfamiliar to many tax preparers, but the forms you get from BitcoinTaxes are
standard IRS tax forms, which the tax pro will fully understand.

Figure 2. If you do the math, you can see the price of bitcoin was drastically different for each
transaction.

http://www.linuxjournal.com

71 | March 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

Do you need to pay $29 in order to calculate all your cryptocurrency tax information
properly? Certainly not. But for me, the site saved me so many hours of labor that it
was well worth it. Plus, while I’m a pretty smart guy, the BitcoinTaxes site was designed
with the sole purpose of calculating tax information. It’s nice to have that expertise
on hand. My parting advice is please take taxes seriously—especially this year. The
IRS has been working hard to get information from companies like Coinbase regarding
taxpayer’s gains/losses. In fact, Coinbase was required to give the IRS financial records
on 14,355 of its users. Granted, those accounts are only people who have more than
$20,000 worth of transactions, but it’s just the first step. Reporting things properly
now will make life far less stressful down the road. And remember, if you have a ton
of taxes to pay for your cryptocurrency, that means you made even more money in
profit. It doesn’t make paying the IRS any more fun, but it helps make the sore spot in
your wallet hurt a little less. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

72 | March 2018 | http://www.linuxjournal.com

diff -u
What’s New in Kernel Development

by Zack Brown

Automated Bug Reporting
Bug reports are good. Anyone with a reproducible crash
should submit a bug report on the linux-kernel mailing list.
The developers will appreciate it, and you’ll be helping make
Linux better!

A variety of automated bug-hunters are roaming around
reporting bugs. One of them is Syzbot, an open-source tool
specifically designed to find bugs in Linux and report them.
Dmitry Vyukov recently sent in a hand-crafted email asking for
help from the community to make Syzbot even more effective.

The main problems were how to track bugs after Syzbot had
reported them and how to tell when a patch went into the
kernel to address a given bug.

It turned out that Andrey Ryabinin and Linus Torvalds
got together to collaborate on an easy solution for Dmitry’s
problem: Syzbot should include a unique identifier in its own
email address. The idea is that anything after a “+” in an email
address is completely ignored. So zbrown@gmail.com is exactly
the same as zbrown+stoptrump@gmail.com. Andrey and Linus
suggested that Syzbot use this technique to include a hash value
associated with each bug report. Then, Linux developers would
include that email address in the “Reported-By” portion of their

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

http://www.linuxjournal.com

73 | March 2018 | http://www.linuxjournal.com

diff -u

patch submissions as part of the normal developer process.

Presto! The unique hash would follow the patch around through every iteration.

Other folks had additional feedback about Syzbot. Eric Biggers wanted to see a
public-facing user interface, so developers could check the status of bugs, diagnose
which versions of kernels were affected and so on. It turned out that Dmitry was hard
at work on just such a thing, although he’d need more time before it was ready for
public consumption.

And, Eric W. Biederman was utterly disgruntled about several Syzbot deficiencies.
For one thing, he felt Syzbot didn’t do a good enough job explaining how to
reproduce a given bug. It just reported the problem and went on its merry way. Also,
Eric didn’t like the use of the Go language in Syzbot, which he said handled threading
in a complex manner that made it difficult to interact in simple ways with the kernel.

But Dmitry assured Eric that the significant parts of Syzbot were written in C++ and
that the portions using the Go language were not used for kernel interactions. Dmitry
also pointed out that Syzbot did provide information on how to reproduce crashes
whenever possible, but that it just wasn’t always possible, and in a lot of cases, the
bugs were so simple, it wasn’t even necessary to reproduce them.

In fact, there really wasn’t much discussion. Dmitry’s original problem was solved
very quickly, and it appears that Syzbot and its back-end software is under very
active development.

Adding Encryption to printk()
When is security not security? When it guards against the wrong people or against
things that never happen. A useless security measure is just another batch of code
that might contain an exploitable bug. So the Linux developers always want to make
sure a security patch is genuinely useful before pulling it in.

A patch from Dan Aloni recently came in to create the option to encrypt printk()

http://www.linuxjournal.com

74 | March 2018 | http://www.linuxjournal.com

diff -u

output. This would make all dmesg information completely inaccessible to users,
including hostile attackers. His idea was that the less information available to hostile
users, the better.

The problem with this, as Steven Rostedt pointed out, was that it was essentially just
a way for device makers and Linux distributions to shut out users from meaningfully
understanding what their systems were doing. On the other hand, Steven said,
he wouldn’t be opposed to including an option like that if a device maker or Linux
distribution actually would find it legitimately useful.

He asked if anyone on the mailing list was part of a group that wanted such a feature,
but no one stepped forward to defend it. On the contrary, Daniel Micay, an Android
security contributor who was not part of the official Android development team, said
that Android already prevented users from seeing dmesg output, using the SELinux
module. So, Dan’s patch would be redundant in that case.

The mailing list discussion petered out around there. Maybe the goal of the patch
after all was not about protecting users from hostile attackers, but about protecting
vendors from users who want control of their systems.

The reason I sometimes write about these patch submissions that go nowhere is that
the reasons they go nowhere are always interesting, and they also help me better
understand the cases where patches come in and are accepted.

Detainting the Kernel
Sometimes someone submits a patch without offering a clear explanation of why the
patch would be useful, and when questioned by the developers, the person offers
vague or hypothetical explanations. Something like that happened recently when
Matthew Garrett submitted a patch to disable a running kernel’s ability to detect
whether it was running entirely open-source code.

Specifically, he wanted to be able to load unsigned modules at runtime, without the
kernel detecting the situation and “tainting” itself. Tainting the kernel doesn’t affect

http://www.linuxjournal.com

75 | March 2018 | http://www.linuxjournal.com

diff -u

its behavior in any significant way, but it is extremely useful to the kernel developers,
who typically will refuse to chase bug reports on any kernel that uses closed-source
software. Without a fully open-source kernel, there’s no way to know that a given bug
is inside the open or closed portion of the kernel. For this reason, anyone submitting
bug reports to the kernel developers always should make sure to reproduce the bug
on an untainted kernel.

Matthew’s patch would make it impossible for developers to know whether a kernel
had or had not been tainted, and this could result in many wasted hours chasing bugs
on kernels that should have been tainted.

So, why did Matthew want this patch in the kernel? It never was made clear. At times
he seemed to suggest that the patch was simply a way to avoid having users complain
about their kernel being tainted when it shouldn’t have been. At one point Ben
Hutchings suggested that Matthew might want to allow third parties to sign modules
on their own for some reason.

But as no one was able to get real clarity on the reason for the patch, and as tainting
the kernel is traditionally a good way to avoid chasing down bugs in closed-source
code, none of the developers seemed anxious to accept Matthew’s patch. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

76 | March 2018 | http://www.linuxjournal.com

Security:
17 Things
A list for protecting yourself and others from
the most common and easiest-to-pull-off
security crimes.

By Susan Sons

I spend a lot of time giving information security advice, such as
why RMF (Risk Management Framework) is too top-heavy for
implementing risk management practices in small or R&D-focused
organizations, what the right Apache SSL settings really are or how
static analysis can help improve C code. What I’m asked for the
most though isn’t any of those things; it’s the everyday stuff that
even non-technical people can do to protect themselves from the
looming but nebulous threat of an information security accident.

This article does not attempt to make you an information security
guru or provide everything needed for those who are special
targets. This is a list you can use to secure yourself, your significant
other and your non-techie loved ones from the majority of the
most-common and easiest-to-pull-off types of crime and cruelty.
It’s based on a talk regularly given by myself and my colleague Craig
Jackson at Indiana University’s Center for Applied Cybersecurity
Research. We do our best to offer steps to follow that are easy and
accessible but also high impact. Lots of good advice didn’t make this
list, either because it’s not yet easy enough for the non-technically-
inclined, or it’s expensive, or it isn’t quite as valuable as we want it to
be before we add to the infosec burden of non-computing-nerds.

Susan Sons is an information
security professional from
Bloomington, Indiana, with
a penchant for securing
edge-case technologies
and environments. As Chief
Security Analyst at Indiana
University’s Center for Applied
Cybersecurity Research
(CACR), Susan works with
her team to secure rapidly
changing R&D environments
for NSF science, the private
sector and others. In her
role as President and
Hacker-in-Chief of the
Internet Civil Engineering
Institute (ICEI), Susan has
focused her energies on
building the next generation
of internet infrastructure
software maintainers and
saving often-neglected
infrastructure software.

UNDER THE SINK

http://www.linuxjournal.com

77 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

1. Lock Your Screens
Lock your computer. Lock your phone. Lock them whether you are leaving the building
or just stepping away for a minute. At first, this seems annoying, but once you get used
to it, unlocking screens becomes as automatic as unlocking your car or your front door.
Meanwhile, if you don’t lock your devices, anyone who walks up to them has access to all
of your logged-in accounts and can impersonate you easily or steal private information.

2. Use Full Disk Encryption Everywhere
Full-disk encryption (FDE) is a little bit of a misnomer. For Linux geeks, it may be
helpful to know that this is generally done at the partition level, not the physical disk
in practice. All that non-technical users need to know is this: if you do not use FDE,
anyone who picks up your device, even if it’s locked, even if it’s powered off and can’t
be powered back on, can attach its storage to another machine—a machine that
doesn’t care about your privacy—and get everything with very little effort.

http://www.linuxjournal.com

78 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

This is not just a Linux thing. All major operating systems now offer FDE. Current
versions of Linux (RHEL, Gentoo, Debian/Ubuntu, Slackware and all their various
derivatives plus some others) offer FDE via LUKS (Linux Universal Key System)
and dmcrypt, in most cases without you having to do more than give a strong
passphrase in an install dialog. Windows has Bitlocker, or if you’re on a budget,
there’s VeraCrypt. (Note: there are still some open questions about VeraCrypt
security vs. state actors, but if you can’t get Bitlocker, VeraCrypt is at least good
enough to thwart the common laptop thief.)

macOS has built-in encryption that even can be done retroactively, post-install.
Both iOS (iPhones and iPads) and Android (most other smartphones and
tablets) have built-in FDE as well.

Regardless of what OS you are on, you absolutely must record your FDE
passphrase somewhere secure. You can’t recover a device for which you’ve lost
that passphrase.

3. Consider Using a Remote Device Manager
Phones are the most commonly lost devices, and they can carry a staggering amount
of information about you, not to mention access to bank accounts, online accounts
and more. Both iOS and Android offer remote device managers that can be turned
on via your Apple account or Google Play account, respectively. Although this level of
access may have downsides in edge cases where it’s not appropriate to use Google’s
or Apple’s services at all, generally it’s a huge win to be able to locate a lost device
remotely or wipe it when you’re sure it’s gone.

4. Make Regular, Secure Backups—and Test Them
Ransomware is becoming more popular and more profitable. The best defense is
“I can wipe and re-install from back-up; I don’t need to pay.” Unfortunately, too
many people don’t keep backups at all or don’t test them to ensure that they
work and that any ransomware intrusion into backups would be noticed before
it’s too late. Backups (bonus points for off-site backups) also protect you from
fire, spills, thefts and failed storage devices.

http://www.linuxjournal.com

79 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

5. Take Software Updates Seriously
Apply security updates regularly, and when it comes to end-of-life (EOL) software,
just say no.

When a security bug gets patched, it is publicly known, and if not already being exploited
in the wild, it will be seen in mass, untargeted attacks within 6–24 hours. That’s right:
6–24 hours before random nobodies with IP addresses start getting hit. Failing to apply
patches promptly means guaranteeing the bad guys have a way into your system.

End-of-life software is software that is no longer maintained by anyone. So no matter
how bad the vulnerability, it won’t be fixed. Just say no.

6. Isolate User Accounts
Never log in as root or the equivalent unless you really need that level of privilege
to perform an administrative task.

Ideally, your kids and their terrible flash game with the penguins are not on the
same device as your tax returns, but if they must be, give them their own user
accounts to create as much separation as possible. Operating systems attempt
to keep users from impacting one another’s data and settings, so use this
protection to your advantage. You may trust your spouse, but do you trust every
app and document he or she runs and opens?

If at all possible, keep completely separate devices for the sensitive stuff and
the things less likely to have scrutiny from a security perspective. I have a work
laptop and a personal laptop. My gaming computer is not only a third machine
entirely, but it lives on a completely separate subnet at home where it can’t talk
to anything I care about.

7. Monitor Your Financial and Sensitive Accounts
If you don’t notice a theft until six months later, you are in a vastly different position from
if you notice it within 30 days. Check your bank and credit card statements. Make sure
you don’t see any unrecognized transactions. Set up automated alerts where possible.

http://www.linuxjournal.com

80 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

8. Use Your Credit Card
At least here in the US, credit and debit cards are regulated very differently. If your
credit card is the subject of a theft or fraud, your liability is capped at $50. That’s the
most you lose; the bank, payment processors and retailers get to argue over the rest.
If you find yourself in that position with your debit card, it’s generally up to your bank
and any specific, written contract you have with it. In many cases, you could end up
on the hook for any fraudulent spending that occurs.

9. Freeze Your Credit
Here’s another US-centric piece of advice. Freezing your credit with all three credit
bureaus will greatly reduce your exposure to identity theft or the theft of your tax
return, or the risk of being left with someone else’s bad debt. Why make it easy on
scammers? You can unfreeze as needed using the code you received at freeze time
when you are ready to take out a loan or a line of credit. It’s especially important to

http://www.linuxjournal.com

81 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

do this for minors and children, as they are attractive targets for identity theft.

10. Store Your Passwords Safely
You can remember only a finite number of passwords, and the more complex those
passwords become, the fewer you can remember. LastPass and Password Safe are
decent options for password managers, but others are worthy of consideration
as well. The point is to make sure you aren’t limited to the number and quality of
passwords that you can remember easily, and that you keep your sanity.

For non-technical people who just can’t get into the password manager workflow, a
small notebook with all of their passwords in it kept in a reasonably secure location,
such as a household safe or lockbox, is still more secure than storing passwords on
computers in plain-text files or Google Docs, and also more secure than recycling the
same passwords over and over.

11. Use Unique Passwords
Now that you are storing passwords safely, you should never, ever recycle one. If one
service that you use loses its password database, you don’t want that to give away
your passwords on the other services you use. It’s an all-too-common pattern.

12. Use Strong, Hard-to-Guess Passwords and
Passphrases
Your shiny new password manager probably can generate these for you. A strong
password or passphrase will have at least 24 characters in a mix of uppercase and
lowercase, with some digits and symbols as well. If your password looks like this, it will
be nearly impossible to remember, but your password manager will type it for you:

gaegie7o@oth8Aic8xeigei5%eozieF7

So, if for some reason you must memorize (for example, for your computer’s FDE),
use a passphrase, like this:

14cute Canaries are nevertheLess LOUD*-64

http://www.linuxjournal.com

82 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

Just a thought: I am not responsible for anything that gets stolen if you actually use
password or passphrase examples from a magazine.

Your goal is to resist human guessing. Consider that most human guessing is done by
someone who knows you well enough to have at least seriously trolled your social-
media life, if not met you and gotten to know you personally—and also make sure that
computerized guessing is slow enough that an attack likely would be noticed before
your account is compromised.

13. Use Two-Factor Authentication
Two-factor authentication (2FA), sometimes called multi-factor authentication
(MFA), is the easiest, most powerful weapon against account compromise because
it vastly raises the complexity of what an attacker has to accomplish. Without
2FA, if your computer gets a piece of keylogging malware, if someone looks over
your shoulder at a coffee shop and sees your password, if you lose your password
notebook, or if a password database falls off a truck somewhere, your account is
done. It’s compromised. End of story.

However, with two-factor authentication, none of those things alone can compromise
an account. Two-factor authentication uses two unrelated things—usually something
you know (like a password) and something you have (like a phone or a hardware
token)—to log in to an account. The types of attacks that make it easy to steal
your password (such as a virus on your computer or a break-in on a server) aren’t
the same kind of attacks that make it easy to steal your second factor (such as
pickpocketing your mobile phone or your keys).

My preferred form of 2FA is using a simple FIDO U2F device, such as a Yubikey 4,
kept on your keyring to pop in to a phone or computer when you log in. This special
key is no good without your account password, and your account password is no
good without the key. There’s a secret crypto key inside the key. When it plugs in to
a USB port, the port powers it up, and it can send a response without giving out your
secret key. Even if your computer has a virus and you stick this key in, the key still can
protect you. It’s just so hard to get this wrong. It’s like a house key; if it’s still on your

http://www.linuxjournal.com

83 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

keyring, you’re probably okay. (Note that if you used the simple password function of
a Yubikey instead of its FIDO or other private-key-based features, malware could still
observe that password being entered by the key.)

If you can’t do that, try TOTP (Time-based One Time Passcode), such as Google
Authenticator or FreeOTP running on a smartphone, which generates a temporary
passcode for you when you want to log in. SMS two-factor is pretty bad, because SMS
messages can be easy to observe in many cases. Biometrics also are bad, because you
leave your fingerprints everywhere you go! Even an iris scan is scary; who’s going to
give you a new eye when a company loses its password database? Don’t go there.

14. Become Scam-Resistant
Most breaches begin with humans doing something they should not. What we call
“social engineering” among hackers is the same thing that any old con artist of any other
generation did: try to look legitimate and ask, or get people to act in a hurry out of fear
or absentmindedness when they don’t realize they are giving up something of value.

Dumpster-diving is a time-honored tradition. Shred or burn documents and destroy hard
disks or other digital storage when you are done with them. Don’t give out your personal
information unless you are sure of why you are doing so, that it is necessary, and that you
are giving it to someone you trust. When you read an email, imagine a stranger walking
up to you in a big city saying the same thing. Is this something you should trust? Would
you give strangers on the street your financial info if they said you just won a prize? I
hope not, but people do this with malicious emails and websites every day.

Never give out any of your passwords. Any system you log in to has a system
administrator who can get at your data or reset your password if something has
gone wrong. Don’t believe “support” people who ask for your password.

15. Treat Email Like a Post Card
Assuming that the parties to an email aren’t all using end-to-end encryption, at least
the senders’ and receivers’ email servers can read your email, as can the people who
own and maintain them. In the typical case, many internet waypoints in between can

http://www.linuxjournal.com

84 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

read it as well, and you don’t control which waypoints see your mail.

Even when email is encrypted, it’s like a sealed letter: anyone can still see the outside
of the envelope, including the to/from information, size and postmark date.

Would you risk sending passwords, credit card numbers, Social Security Numbers
or other sensitive information on a postcard to an unsecured (not locked)
mailbox on the street? I didn’t think so. A post card is open for anyone to read,
and you don’t really know how many hands it will pass through on the way to its
destination. Email is the same.

16. Beware the Creep of the Internet of Things
More cool toys are being connected to networks every day: toothbrushes, dolls,
bathroom scales, thermostats, kitchen appliances and so on. However, few of
them are examined for security at any point in their design, and even fewer
receive updates for their entire lifespans. At the best of times, they leak data
about you: when your house is empty, what your children are doing, your health
and more. All too often, these insecure devices are easily broken into and give an
intruder ready access to everything else in your home, from security cameras to
your refrigerator.

This doesn’t mean never allow a network-connected device into your home; just
think before you do. Ask yourself if this really needs your WiFi password. Ask
who is maintaining it and for how long after you buy it. Ask what kind of data it
has, and ask yourself what is the worst-case scenario if that data gets out. Think
about what else is on your network with that device.

17. Help Your Loved Ones Secure Themselves
If you are reading Linux Journal, chances are you have some sort of handle on
technology in general, if not security in particular. You probably have people
in your life who do not. All the regulation and formal education in the world
cannot match a person who cares about you saying “Here, let me help. I want
you to be safe.”

http://www.linuxjournal.com

85 | March 2018 | http://www.linuxjournal.com

UNDER THE SINK

Keep in mind that “network nannies” are easy to circumvent and won’t be in place
on every computing device your child sees. Kids learn to protect themselves by
doing so under the guidance of a patient adult, and young children are generally
more receptive than teens. If you teach your kids to protect themselves early,
you can spare yourself some arguments later and be more likely to succeed. My
son, at four, learned to plonk (ignore) rude or mean people on the internet. He
used to yell “PLONK!” really loudly when he did it. As a teenager, he still responds
to toxicity by ignoring instead of engaging, without really thinking about it. That’s
the benefit of teaching them when they are little.

Seniors are often at greater risk than kids, as they have a bigger learning curve
when dealing with tech. Take the time to help them select things that you easily
can help them use, and help them use those things safely.

Have concrete goals; “be safe” is too vague to ask of anyone. This list of 17
things, especially if you chip away one or two at a time, should be within anyone’s
grasp. It’s not everything one could possibly do, but it’s a reasonable place to
start. Be the person who gets someone you love started. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

86 | March 2018 | http://www.linuxjournal.com

Shell Scripting
and Security
Basic ways you can use shell scripts to monitor
password strength and secret accounts.

By Dave Taylor

The internet ain’t what it used to be back in the old days.
I remember being online when it was known as ARPAnet
actually—back when it was just universities and a handful of
corporations interconnected. Bad guys sneaking onto your
computer? We were living in blissful ignorance then.

Today the online world is quite a bit different, and a quick
glimpse at the news demonstrates that it’s not just global, but
that bad actors, as they say in security circles, are online and
have access to your system too. The idea that any device that’s
online is vulnerable is more true now than at any previous time
in computing history.

Fortunately, a lot of smart people are working on security both
for networks and Internet of Things devices. We don’t want
hackers gaining control of our smart homes or autonomous
cars.

Whether you have Linux running on your laptop or ancient
PC file server, or whether you’re managing a data center, your
system is also vulnerable to malicious users. I can’t offer any
sort of robust solution in this article, but let’s have a look at

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
He can be found on Twitter
as @DaveTaylor and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.askdavetaylor.com/
http://www.linuxjournal.com

87 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

some basic things you can do with shell scripts to keep an eye on your system.

First and foremost, make sure you have complex non-guessable passwords for all your
accounts and particularly your administrative or root account. It’s tough to check
existing passwords, since they’re all stored in an encrypted manner without spending
oodles of CPU cycles brute-forcing it, but how about a script where users can enter
their password and it’ll confirm whether it’s hard to guess?

Password Tester
The general rule of thumb with modern password creation is that you should use a
combination of uppercase, lowercase, digits and one or more punctuation characters,
and that the password should be longer, not shorter. So “meow” is horrible as a
password, and “Passw0rd!” is pretty good, but “F#g_flat_33” is a secure choice.

First things first though. A script that is checking passwords should let users enter
their password choice invisibly. You can do so with the stty command:

stty -echo
echo -n "Enter password: "
read password
stty echo

Now the algorithmic approach to testing for a particular type of character is simple.
Remove every occurrence of that particular character in the user input and compare
it to the original. If they’re the same, the user didn’t actually use that particular class
of characters.

For example, here’s the code to test for the presence of lowercase letters:

chop=$(echo "$password" | sed -E 's/[[:lower:]]//g')
echo "chopped to $chop"

if ["$password" == "$chop"] ; then

http://www.linuxjournal.com

88 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

 echo "Fail: You haven't used any lowercase letters."
fi

Notable here is the use of what are known as bracket expressions. Notice I didn’t
specify [a-z] above, but rather used the locale-smart range :lower:. In a regular
expression, that would have a pair of square brackets around it: [:lower:]. But,
since it’s part of a search and replace pattern for sed, it picks up a second pair of
square brackets too: [[:lower:]].

It turns out there are a lot of bracket expressions, so you can use :upper: to test
for uppercase, :lower: for lowercase letters, :digit: for the digits and :punct:
for punctuation. There are plenty more, but those will suffice for the scope of this
article.

The good news is that it’s straightforward to write a function that will check for the
specified bracket expression and output an appropriate error as, well, appropriate:

checkfor()
{
 pattern="$1"
 errormsg="$2"

 sedpattern="s/$pattern//g"

 chop=$(echo "$password" | sed -E $sedpattern)

 if ["$password" == "$chop"] ; then
 echo "Fail: You haven't used any ${errormsg}."
 fi
}

Then you can invoke it like this:

http://www.linuxjournal.com

89 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

checkfor "[[:lower:]]" "lowercase letters"
checkfor "[[:upper:]]" "uppercase letters"
checkfor "[[:digit:]]" "digits"
checkfor "[[:punct:]]" "punctuation"

Nice and short. So, let’s give this script a quick test at the command line with the
password “B3g”:

$ sh checkpw.sh
Enter password:
You entered B3g
Fail: You haven't used any punctuation.

An accurate error message. In the final script, of course, you won’t echo the entered
password, as that’s not so good from a privacy and security perspective.

To test for length, it’s easy to use wc -c, but there’s a special variable reference
format in shell scripts that offers access to the number of characters too: ${#xxx}.
For example, consider this brief snippet:

$ test="Hi Mom"
$ echo ${#test}
6

With this in mind, the test to see whether a specified sample password is at least eight
characters long is easily coded as:

if [${#password} -lt $minlength] ; then
 echo "Fail: Password must be $minlength characters."
fi

Set the $minlength variable to something reasonable at the top of the script. I
suggest 8 as a good minimum length.

http://www.linuxjournal.com

90 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

I designed the script here to be purely informational, and if you use a terrible
password like “kitty”, you’re going to see a lot of errors:

$ sh checkpw.sh
Enter password:
You entered kitty
Fail: You haven't used any uppercase letters.
Fail: You haven't used any digits.
Fail: You haven't used any punctuation.
Fail: Password must be at least 8 characters.

There are plenty of tweaks you can make if you want, ranging from having a
counter that can tell if there were more than zero errors with a resultant success
message if all tests succeed to having the script quit as soon as the first error
condition is encountered.

Now, with this script as a simple password-testing tool, it’s easy to request every user
set up a new, secure password that passes all these tests.

New Account Creation
Another way to keep an eye on your system is to get a notification any time a
new account is created. Whether or not you’re the only admin, that shouldn’t be
something that happens too often. But, if you are the only admin and it happens
without you knowing? Danger, Will Robinson!

In the old days, salted (encrypted) passwords were part of what was stored in
/etc/passwd, but modern systems keep that encrypted data more safely tucked away
in /etc/shadow. User accounts, however, still show up in the /etc/passwd file, so you
can use that as the basis for this simple script.

The idea is that you’re going to grab all the user account names and save them to a
hidden file, and every time you run the script, you’ll compare the latest to the saved. If
there are new entries, that’s bad!

http://www.linuxjournal.com

91 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

This approach is definitely not robust, of course, and I wouldn’t trust credit report data
servers with a tool this lightweight, but it’s an interesting script to consider nonetheless.

Let’s see how to pull out just user account names from the file:

$ cat /etc/passwd | cut -d: -f1
root
bin
daemon
adm
. . .

It’s all about that cut command! The -d flag specifies the field delimiter, and -f1
requests that just the first field is output. Given an input line like this:

root:x:0:0:root:/root:/bin/bash

you can see that the output becomes just the account names. This script could
compare full files—heck, there’s even a Linux command for the job—but you
don’t want to get false positives if users change their user names but otherwise
leave their accounts intact. Further, I like clean, readable output, so that’s what
this will produce.

Here’s the full script:

#!/bin/sh

watch accounts - keep an eye on /etc/passwd,
report if accounts change

secretcopy="$HOME/.watchdb"
tempfile="$HOME/.watchdb.new"
passwd="/etc/passwd"

http://www.linuxjournal.com

92 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

compare=0 # by default, don't compare

trap "/bin/rm -f $tempfile" 0

if [-s "$secretcopy"] ; then
 lastrev="$(cat $secretcopy)"
 compare=1
fi

cat $passwd | cut -d: -f1 > $tempfile

current="$(cat $tempfile)"

if [$compare -eq 1] ; then
 if ["$current" != "$lastrev"] ; then
 echo "WARNING: password file has changed"
 diff $secretcopy $tempfile | grep '^[<>]' |
 sed 's/</Removed: /;s/>/Added:/'
 fi
else
 mv $tempfile $secretcopy
fi

exit 0

This is a pretty simple script, all in all. Close inspection will reveal that the secret copy
of accounts will be saved in $HOME/.watchdb. The trap command is used to ensure
that the temp file is removed when the script finishes up, of course.

The $compare variable relates to the case when it’s the very first time you run the
script. In that situation, there is no .watchdb, so it can’t be used to test or compare.
Otherwise, the contents of that file are stored in the local variable $secretcopy
and $compare is set to 1.

http://www.linuxjournal.com

93 | March 2018 | http://www.linuxjournal.com

WORK THE SHELL

Block two is the actual comparison, and the only part that’s interesting is the
invocation of diff to compare the two files:

diff $secretcopy $tempfile | grep '^[<>]' |
 sed 's/</Removed: /;s/>/Added:/'

diff by default outputs commands for the ancient ed editor, so you mask that out
by considering only lines that begin with a < or >. Those denote entries that are only
in the old version of the password file (removed in the current live copy) and those
only in the new, live version (added accounts).

That’s it. Let’s run it once to create the secret archive file, then I’ll change the
password file to remove one account and create another, then run the script again:

$ sh watchaccounts.sh
$
edit password file
$ sh watchaccounts.sh
WARNING: password file has changed
Removed: johndoe
Added: hack3r666

Nice, eh? Now, there are some useful additions to the script that you might consider,
notably encrypting .watchdb for security and adding a prompt or command flag to
update the secret password file after changes have been reported. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

94 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE
BLOCKCHAIN

http://www.linuxjournal.com

95 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

DEEP
DIVE

DEEP
DIVE

Blockchain, Part I:
Introduction and
Cryptocurrency
It seems nearly impossible these days to open a news feed
discussing anything technology- or finance-related and not
see a headline or two covering bitcoin and its underlying
framework, blockchain. But why? What makes both bitcoin
and blockchain so exciting? What do they provide? Why is
everyone talking about this? And, what does the future hold?

By Petros Koutoupis

In this two-part series, I introduce this now-trending technology, describe how it works
and provide instructions for deploying your very own private blockchain network.

Bitcoin and Cryptocurrency
The concept of cryptocurrency isn’t anything new, although with the prevalence of
the headlines alluded to above, one might think otherwise. Invented and released in
2009 by an unknown party under the name Satoshi Nakamoto, bitcoin is one such
kind of cryptocurrency in that it provides a decentralized method for engaging in
digital transactions. It is also a global technology, which is a fancy way of saying that
it’s a worldwide payment system. With the technology being decentralized, not one
single entity is considered to have ownership or the ability to impose regulations on
the technology.

http://www.linuxjournal.com

96 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

But, what does that truly mean? Transactions are secure. This makes them more
difficult to track and, therefore, difficult to tax. This is because these transactions
are strictly peer-to-peer, without an intermediary in between. Sounds too good to be
true, right? Well, it is that good.

Although transactions are limited to the two parties involved, they do, however, need to
be validated across a network of independently functioning nodes, called a blockchain.
Using cryptography and a distributed public ledger, transactions are verified.

Now, aside from making secure and more-difficult-to-trace transactions, what is the
real appeal to these cryptocurrency platforms? In the case of bitcoin, a “bitcoin” is
generated as a reward through the process of “mining”. And if you fast-forward to the
present, bitcoin has earned monetary value in that it can be used to purchase both
goods and services, worldwide. Remember, this is a digital currency, which means no
physical “coins” exist. You must keep and maintain your own cryptocurrency wallet
and spend the money accrued with retailers and service providers that accept bitcoin
(or any other type of cryptocurrency) as a method of payment.

All hype aside, predicting the price of cryptocurrency is a fool’s errand, and there’s not
a single variable driving its worth. One thing to note, however, is that cryptocurrency
is not in any way a monetary investment in a real currency. Instead, buying into
cryptocurrency is an investment into a possible future where it can be exchanged for
goods and services—and that future may be arriving sooner than expected.

Now, this doesn’t mean cryptocurrency has no cash value. In fact, it does. As
of the day I am writing this (January 27, 2018), a single bitcoin is $11,368.56
USD. This value is extremely volatile, and who knows what direction it will take
tomorrow. One thing influencing the value of a bitcoin is the rate of adoption.
More people using the technology results in more transactions being verified by
the people-owned nodes forming the underlying blockchain. In turn, the owners
of the verification systems earn their rewards, thereby increasing the value of the
technology. It’s simple: verify more transactions, and earn more money. Sure, there
is a bit more to it, but that’s the general idea.

http://www.linuxjournal.com

97 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

The owners of the verification systems are referred to as “miners”. Miners provide a
service of record keeping. Such a service requires a good amount of processing power
to handle the cryptographic computations. The purpose of the miner is to keep
the underlying blockchain consistent, complete and unaltered. A miner repeatedly
verifies and collects broadcasted transactions into groups of transactions referred to
as blocks. Using an SHA-256 algorithm (Secure Hash Algorithm 256-bit hash), each
new block contains a cryptographic hash of the block prior to it, establishing a link for
forming the chain of blocks, hence the name, blockchain.

A Global “Crisis”
With the rise of cryptocurrency and the rise of miners competing to earn their fair
share of the digital currency, we are now facing a dilemma—a global shortage of high-
end PC graphics adapters. Even previously used adapters are resold at a much higher
price than newly boxed versions. But why is that? Using such high-end cards with
enough onboard memory and dedicated processing capabilities easily can yield several
dollars in cryptocurrency per day. Remember, mining requires the processing of
memory-hungry algorithms. And as cryptocurrency prices continue to increase, albeit
at a rapid rate, the value of the digital currency awarded to miners also increases.
This shortage of graphics adapters has become an increasing bottleneck for existing
miners looking to expand their operations or for new miners to get in on the action.
Hopefully, graphic card vendors will address this shortage sooner rather than later.

Comparing Blockchain Technologies
Multiple platforms exist for crypto-trading. You may come across articles discussing

Figure 1. An Example of How Blocks of Data Are “Chained” to One Another

http://www.linuxjournal.com

98 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

bitcoin and comparing that currency to others like ethereum or litecoin. Initially,
those articles can lead to confusion between the two different types of digital coins:
1) cryptocurrencies and 2) tokens. The key things to remember are the following:

• A bitcoin or litecoin or any other form of cryptocurrency actively competes
against existing money and gold in the hopes of replacing them as an accepted
form of global currency. As mentioned previously, the technology promises a non-
regulated and globally accessible currency—one that contains the same stable
value regardless of location. This concept definitely could appeal to those living in
unstable countries with unstable currencies.

• And ethereum? Well, it deals in tokens. It works on the idea of contracts. Ethereum
is a platform that allows its users to write conditional digital “smart contracts”,
showing proof of a transaction that never can be deleted.

In the modern world, a traditionally written contract will outline the terms of a
relationship, usually enforceable by law. A smart contract will enforce a relationship
using cryptographic code—that is, by executing the conditions defined by its creators
using a program. What makes ethereum more interesting is that unlike bitcoin (or
litecoin for that matter), the platform does not limit itself to the currency use case.

Much like bitcoin, when a transaction takes place utilizing one or more of these
contracts, transaction fees are charged to source the computation power required.
The more computational power needed, the higher the fee.

What Is Blockchain?
To understand this cryptocurrency phenomenon and its explosive growth in
popularity, you need to understand the technology supporting it: the blockchain. As
mentioned previously, a blockchain consists of a continuously growing list of records
captured in the form of blocks. Using cryptography, each new block is linked and
secured to an existing chain of blocks.

Each block will contain a hash pointer to the previous block within the chain, a timestamp

http://www.linuxjournal.com

99 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

and transactional data. By design, the blockchain is resistant to any sort of modification
of data. This is because a blockchain provides an open and distributed ledger to record
transactions between two interested parties efficiently, reliably and permanently.

Once data has been recorded, the data in a given block cannot be altered without
altering all subsequent blocks.

I guess you can think of this as a distributed “database” where its contents are
duplicated hundreds, if not thousands, of times across a network of computers.
This method of replication emphasizes the decentralized aspect of the technology.
Without a centralized version or a single “master” copy, this database is public
and, therefore, can be verified easily without risk or fear of hacking or corruption.
Simultaneously hosted by millions of computing nodes, the contents of this database
are accessible to anyone on the internet. As an added benefit, the distributed and
decentralized model reassures its users that no single point of failure exists. Imagine
that one or more of these computing nodes are either inaccessible or experiencing
some sort of internal failures or are even producing corrupted data. The blockchain
is resilient in that it will continue to make available the requested data contents and in
their proper (that is, uncorrupted) format. This is because of a technique commonly
referred to as the Byzantine Fault Tolerance method.

Byzantine Fault Tolerance
Systems fail, and they can fail for multiple reasons (such as hardware, software,
power, networking connectivity and others). This is a fact. Also, not all failures are
easily detectable (even through traditional fault-tolerance mechanisms) nor will they
always appear the same to the rest of the systems in the networked cluster. Again,
imagine a large network consisting of hundreds, if not thousands, of nodes. To handle
such unpredictable conditions, one must employ a voting system to ensure that the
cluster will tolerate the failure or misbehavior.

A Byzantine fault is defined by any fault showcasing different types of symptoms to
different observers (that is, distributed computing systems). A Byzantine failure is the
loss of a system service due to a Byzantine fault in an environment where a consensus

http://www.linuxjournal.com

100 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

must reached in order to perform that one service or operation.

The purpose of Byzantine Fault Tolerance (BFT) is to defend the distributed platform
against such Byzantine failures. Failing components of the system will not prevent the
remaining components from reaching an agreement among themselves, where such
an agreement is required to perform an operation. Correctly functioning components
of a BFT system will continue to provide uninterrupted service, assuming that not too
many faults exist.

The name of this mechanism is derived from the Byzantine Generals’ Problem (BGP).
The BGP highlights an agreement problem, where there is a disagreement with all
participating members. Imagine a scenario where several divisions of the Byzantine
army are camped outside a fortified city. Each division has its own general, and the
only way the generals are able to communicate with each other is through the use of
messengers. The generals need to decide on a common plan of action. The problem
is, some of the generals may and very well could be traitors. With one traitor in their
midst, can the non-traitors decide on a common plan?

Figure 2. The Byzantine Generals’ Problem Illustrated

http://www.linuxjournal.com

101 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

In a BFT environment, the answer to this question is yes. In a group of three, one
traitor makes it impossible not to reach a majority consensus. For instance, if one
general says “attack” while the other two say to “retreat”, it is easy to determine who
the traitor of the group is. It is also possible to reach some sort of agreement across
the non-traitors. Now, apply this concept to a distributed network of computing
nodes. For example, when f number of nodes go Byzantine, 2f + 1 nodes will not
tolerate the misbehavior. All you need is 1 properly functioning node more than the
potentially faulty nodes.

Now, why am I talking about this? The BFT is at the core of a blockchain’s resiliency. If
a consensus cannot be made to handle a transaction, the blockchain itself is no good.

The Network
A network consisting of computing nodes is what makes up the blockchain. A node

Figure 3. An
Example of a
Decentralized
Blockchain
Network

http://www.linuxjournal.com

102 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

gets an identical copy of the blockchain as soon as it joins the network. Each node is
considered to be an administrator of the blockchain and not in any more control over
the other nodes within the cluster—again, the result of being decentralized.

This method of computing is what lends the blockchain its robustness. Aside from
updating the blockchain, each node can and will act independently from the other
regardless of how it was accessed. And when it needs to append a new block to the
chain, it will broadcast the update to the rest of the nodes (updating the public ledger).

Whatever the user-driven event, it is considered to be a function of the network as
a whole. It is the global network that manages the application, and it will operate
on a user-to-user or peer-to-peer basis. Each node, when accessed independently,
is tasked with confirming the requested transaction (such as mining). Already
alluded to previously, it is this core concept that makes the blockchain that much
more secure. The blockchain technology eliminates the risks (and vulnerabilities)
introduced with data being held (or managed) centrally and not replicated across the
network. Another way to think of it is this: instead of having a single entity validate the
transaction, you now have multiple entities validating the transaction after reaching a
consensus. They act as witnesses, and not one single entity has more authority over
the other. This leaves no room for ambiguity, and if one or more nodes misrepresents
the original data, the BFT model will address that.

Almost everyone reading this is familiar with the constant security problems running
rampant on the internet. We personally attempt to protect both our identity and
our assets online by relying on the traditional “user name” and “password” systems.
Blockchain takes this a step further and differs in that its security stems from its use of
encryption technologies. The authentication “problem” is solved with the generation of
“keys”. A user will create a public key (a long and randomly generated numeric string)
and a private key (which acts like a password). The public key serves as the user’s
address within the blockchain, and any transaction involving that address will be recorded
as belonging to that address. The private key gives its owner access to his or her digital
assets. The combination of both public and private keys provides a digital signature. The
only concern here is taking the appropriate measures to protect private keys.

http://www.linuxjournal.com

103 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

Putting the Pieces Together
By now, you should have more of a complete picture of how all of these components
tie together.

For example, let’s say there’s a bitcoin transaction (or it could be something entirely
different), but imagine someone in the network is requesting the transaction.
This requested transaction is then broadcasted across a peer-to-peer network of
computing nodes. Using cryptographic algorithms, the network of nodes validates
the user’s status and the transaction. Once verified, the transaction is combined with
other transactions, creating a new block of data for the public ledger. The new block
of data is then appended to the existing blockchain and is done in a way that makes
it permanent and unalterable. Then the transaction is complete. Using timestamping
schemes, all transactions are serialized.

Figure 4. The General Handling of a Transaction across a Blockchain Network

http://www.linuxjournal.com

104 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

What Makes Blockchain Important?
Much like TCP/IP, the blockchain is a foundation technology. As TCP/IP enabled the
internet by the 1990s, you can expect wonderful new beginnings with the blockchain.
It is still a bit too early to see how it will evolve. This revolutionary technology has
enabled organizations to explore what it can and will mean for their businesses. Many
of these same organizations already have begun the exploration, although it primarily
has been focused around financial services. The possibilities are enormous, and it
seems that any industry dealing with any sort of transaction-based model will be
disrupted by the technology.

Summary
This article covers the rise and interest in cryptocurrencies and begins to dive into the
underlying blockchain technology that enables it. In the next part of this series, using
open-source tools, I start to describe how to build your very own private blockchain
network. This private deployment will allow you to dig deeper into the details
highlighted here. The technology may be centered around cryptocurrency today, but
I also look at various industries the blockchain can help to redefine and the potential
for a promising future leveraging the technology.

Petros Koutoupis , LJ Contributing Editor, is currently a senior platform architect at IBM for its Cloud Object
Storage division (formerly Cleversafe). He is also the creator and maintainer of the Rapid Disk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.rapiddisk.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

105 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

Blockchain, Part II:
Configuring a
Blockchain Network
and Leveraging the
Technology
How to set up a private ethereum blockchain using
open-source tools and a look at some markets and
industries where blockchain technologies can add value.

By Petros Koutoupis

In Part I, I spent quite a bit of time exploring cryptocurrency and the mechanism
that makes it possible: the blockchain. I covered details on how the blockchain works
and why it is so secure and powerful. In this second part, I describe how to set up
and configure your very own private ethereum blockchain using open-source tools. I
also look at where this technology can bring some value or help redefine how people
transact across a more open web.

Setting Up Your Very Own Private Blockchain Network
In this section, I explore the mechanics of an ethereum-based blockchain network—
specifically, how to create a private ethereum blockchain, a private network to host and share

http://www.linuxjournal.com

106 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

this blockchain, an account, and then how to do some interesting things with the blockchain.

What is ethereum, again? Ethereum is an open-source and public blockchain platform
featuring smart contract (that is, scripting) functionality. It is similar to bitcoin but
differs in that it extends beyond monetary transactions.

Smart contracts are written in programming languages, such as Solidity (similar
to C and JavaScript), Serpent (similar to Python), LLL (a Lisp-like language) and
Mutan (Go-based). Smart contracts are compiled into EVM (see below) bytecode
and deployed across the ethereum blockchain for execution. Smart contracts help
in the exchange of money, property, shares or anything of value, and they do so in a
transparent and conflict-free way avoiding the traditional middleman.

If you recall from Part I, a typical layout for any blockchain is one where all nodes are
connected to every other node, creating a mesh. In the world of ethereum, these
nodes are referred to as Ethereum Virtual Machines (EVMs), and each EVM will host
a copy of the entire blockchain. Each EVM also will compete to mine the next block or
validate a transaction. Once the new block is appended to the blockchain, the updates
are propagated to the entire network, so that each node is synchronized.

In order to become an EVM node on an ethereum network, you’ll need to download
and install the proper software. To accomplish this, you’ll be using Geth (Go
Ethereum). Geth is the official Go implementation of the ethereum protocol. It is one
of three such implementations; the other two are written in C++ and Python. These
open-source software packages are licensed under the GNU Lesser General Public
License (LGPL) version 3. The standalone Geth client packages for all supported
operating systems and architectures, including Linux, are available here. The source
code for the package is hosted on GitHub.

Geth is a command-line interface (CLI) tool that’s used to communicate with the
ethereum network. It’s designed to act as a link between your computer and all other
nodes across the ethereum network. When a block is being mined by another node
on the network, your Geth installation will be notified of the update and then pass the

https://geth.ethereum.org/downloads
https://github.com/ethereum/go-ethereum
http://www.linuxjournal.com

107 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

information along to update your local copy of the blockchain. With the Geth utility,
you’ll be able to mine ether (similar to bitcoin but the cryptocurrency of the ethereum
network), transfer funds between two addresses, create smart contracts and more.

Download and Installation
In my examples here, I’m configuring this ethereum blockchain on the latest
LTS release of Ubuntu. Note that the tools themselves are not restricted to this
distribution or release.

Downloading and Installing the Binary from the Project Website

Download the latest stable release, extract it and copy it to a proper directory:

$ wget https://gethstore.blob.core.windows.net/builds/
↪geth-linux-amd64-1.7.3-4bb3c89d.tar.gz
$ tar xzf geth-linux-amd64-1.7.3-4bb3c89d.tar.gz
$ cd geth-linux-amd64-1.7.3-4bb3c89d/
$ sudo cp geth /usr/bin/

Building from Source Code

If you are building from source code, you need to install both Go and C compilers:

$ sudo apt-get install -y build-essential golang

Change into the directory and do:

$ make geth

Installing from a Public Repository

If you are running on Ubuntu and decide to install the package from a public
repository, run the following commands:

http://www.linuxjournal.com

108 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

$ sudo apt-get install software-properties-common
$ sudo add-apt-repository -y ppa:ethereum/ethereum
$ sudo apt-get update
$ sudo apt-get install ethereum

Getting Started
Here is the thing, you don’t have any ether to start with. With that in mind, let’s
limit this deployment to a “private” blockchain network that will sort of run as a
development or staging version of the main ethereum network. From a functionality
standpoint, this private network will be identical to the main blockchain, with the
exception that all transactions and smart contracts deployed on this network will
be accessible only to the nodes connected in this private network. Geth will aid in
this private or “testnet” setup. Using the tool, you’ll be able to do everything the
ethereum platform advertises, without needing real ether.

Remember, the blockchain is nothing more than a digital and public ledger preserving
transactions in their chronological order. When new transactions are verified and
configured into a block, the block is then appended to the chain, which is then
distributed across the network. Every node on that network will update its local copy of
the chain to the latest copy. But you need to start from some point—a beginning or a
genesis. Every blockchain starts with a genesis block, that is, a block “zero” or the very
first block of the chain. It will be the only block without a predecessor. To create your
private blockchain, you need to create this genesis block. To do this, you need to create
a custom genesis file and then tell Geth to use that file to create your own genesis block.

Create a directory path to host all of your ethereum-related data and configurations,
and change into the config subdirectory:

$ mkdir ~/eth-evm
$ cd ~/eth-evm
$ mkdir config data
$ cd config

http://www.linuxjournal.com

109 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

Open your preferred text editor and save the following contents to a file named
Genesis.json in that same directory:

{
 "config": {
 "chainId": 999,
 "homesteadBlock": 0,
 "eip155Block": 0,
 "eip158Block": 0
 },
 "difficulty": "0x400",
 "gasLimit": "0x8000000",
 "alloc": {}
}

This is what your genesis file will look like. This simple JSON-formatted string
describes the following:

• config — this block defines the settings for your custom chain.

• chainId — this identifies your Blockchain, and because the main ethereum network
has its own, you need to configure your own unique value for your private chain.

• homesteadBlock — defines the version and protocol of the ethereum platform.

• eip155Block / eip158Block — these fields add support for non-backward-
compatible protocol changes to the Homestead version used. For the purposes of
this example, you won’t be leveraging these, so they are set to “0”.

• difficulty — this value controls block generation time of the blockchain. The
higher the value, the more calculations a miner must perform to discover a valid
block. Because this example is simply deploying a test network, let’s keep this value
low to reduce wait times.

http://www.linuxjournal.com

110 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

• gasLimit — gas is ethereum’s fuel spent during transactions. As you do not want
to be limited in your tests, keep this value high.

• alloc — this section prefunds accounts, but because you’ll be mining your ether
locally, you don’t need this option.

Now it’s time to instantiate the data directory. Open a terminal window, and
assuming you have the Geth binary installed and that it’s accessible via your working
path, type the following:

$ geth --datadir /home/petros/eth-evm/data/PrivateBlockchain
 ↪init /home/petros/eth-evm/config/Genesis.json
WARN [02-10|15:11:41] No etherbase set and no accounts found
 ↪as default
INFO [02-10|15:11:41] Allocated cache and file handles
 ↪database=/home/petros/eth-evm/data/PrivateBlockchain/
↪geth/chaindata cache=16 handles=16
INFO [02-10|15:11:41] Writing custom genesis block
INFO [02-10|15:11:41] Successfully wrote genesis state
 ↪database=chaindata
hash=d1a12d...4c8725
INFO [02-10|15:11:41] Allocated cache and file handles
 ↪database=/home/petros/eth-evm/data/PrivateBlockchain/
↪geth/lightchaindata cache=16 handles=16
INFO [02-10|15:11:41] Writing custom genesis block
INFO [02-10|15:11:41] Successfully wrote genesis state
 ↪database=lightchaindata

The command will need to reference a working data directory to store your private
chain data. Here, I have specified eth-evm/data/PrivateBlockchain subdirectories in my
home directory. You’ll also need to tell the utility to initialize using your genesis file.

This command populates your data directory with a tree of subdirectories and files:

http://www.linuxjournal.com

111 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

$ ls -R /home/petros/eth-evm/
.:
config data

./config:
Genesis.json

./data:
PrivateBlockchain

./data/PrivateBlockchain:
geth keystore

./data/PrivateBlockchain/geth:
chaindata lightchaindata LOCK nodekey nodes transactions.rlp

./data/PrivateBlockchain/geth/chaindata:
000002.ldb 000003.log CURRENT LOCK LOG MANIFEST-000004

./data/PrivateBlockchain/geth/lightchaindata:
000001.log CURRENT LOCK LOG MANIFEST-000000

./data/PrivateBlockchain/geth/nodes:
000001.log CURRENT LOCK LOG MANIFEST-000000

./data/PrivateBlockchain/keystore:

Your private blockchain is now created. The next step involves starting the private
network that will allow you to mine new blocks and have them added to your
blockchain. To do this, type:

petros@ubuntu-evm1:~/eth-evm$ geth --datadir
 ↪/home/petros/eth-evm/data/PrivateBlockchain --networkid 9999

http://www.linuxjournal.com

112 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

WARN [02-10|15:11:59] No etherbase set and no accounts found
 ↪as default
INFO [02-10|15:11:59] Starting peer-to-peer node
 ↪instance=Geth/v1.7.3-stable-4bb3c89d/linux-amd64/go1.9.2
INFO [02-10|15:11:59] Allocated cache and file handles
 ↪database=/home/petros/eth-evm/data/PrivateBlockchain/
↪geth/chaindata cache=128 handles=1024
WARN [02-10|15:11:59] Upgrading database to use lookup entries
INFO [02-10|15:11:59] Initialised chain configuration
 ↪config="{ChainID: 999 Homestead: 0 DAO: <nil> DAOSupport:
 ↪false EIP150: <nil> EIP155: 0 EIP158: 0 Byzantium: <nil>
 ↪Engine: unknown}"
INFO [02-10|15:11:59] Disk storage enabled for ethash caches
 ↪dir=/home/petros/eth-evm/data/PrivateBlockchain/
↪geth/ethash count=3
INFO [02-10|15:11:59] Disk storage enabled for ethash DAGs
 ↪dir=/home/petros/.ethash count=2
INFO [02-10|15:11:59] Initialising Ethereum protocol
 ↪versions="[63 62]" network=9999
INFO [02-10|15:11:59] Database deduplication successful
 ↪deduped=0
INFO [02-10|15:11:59] Loaded most recent local header
 ↪number=0 hash=d1a12d...4c8725 td=1024
INFO [02-10|15:11:59] Loaded most recent local full block
 ↪number=0 hash=d1a12d...4c8725 td=1024
INFO [02-10|15:11:59] Loaded most recent local fast block
 ↪number=0 hash=d1a12d...4c8725 td=1024
INFO [02-10|15:11:59] Regenerated local transaction journal
 ↪transactions=0 accounts=0
INFO [02-10|15:11:59] Starting P2P networking
INFO [02-10|15:12:01] UDP listener up
 ↪self=enode://f51957cd4441f19d187f9601541d66dcbaf560
↪770d3da1db4e71ce5ba3ebc66e60ffe73c2ff01ae683be0527b77c0f96

http://www.linuxjournal.com

113 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

↪a178e53b925968b7aea824796e36ad27@[::]:30303
INFO [02-10|15:12:01] IPC endpoint opened: /home/petros/eth-evm/
↪data/PrivateBlockchain/geth.ipc
INFO [02-10|15:12:01] RLPx listener up
 ↪self=enode://f51957cd4441f19d187f9601541d66dcbaf560
↪770d3da1db4e71ce5ba3ebc66e60ffe73c2ff01ae683be0527b77c0f96
↪a178e53b925968b7aea824796e36ad27@[::]:30303

Notice the use of the new parameter, networkid. This networkid helps ensure
the privacy of your network. Any number can be used here. I have decided to use
9999. Note that other peers joining your network will need to use the same ID.

Your private network is now live! Remember, every time you need to access your
private blockchain, you will need to use these last two commands with the exact same
parameters (the Geth tool will not remember it for you):

$ geth --datadir /home/petros/eth-evm/data/PrivateBlockchain
 ↪init /home/petros/eth-evm/config/Genesis.json
$ geth --datadir /home/petros/eth-evm/data/PrivateBlockchain
 ↪--networkid 9999

Configuring a User Account
So, now that your private blockchain network is up and running, you can start
interacting with it. But in order to do so, you need to attach to the running
Geth process. Open a second terminal window. The following command will
attach to the instance running in the first terminal window and bring you to a
JavaScript console:

$ geth attach /home/petros/eth-evm/data/PrivateBlockchain/geth.ipc
Welcome to the Geth JavaScript console!

instance: Geth/v1.7.3-stable-4bb3c89d/linux-amd64/go1.9.2
 modules: admin:1.0 debug:1.0 eth:1.0 miner:1.0 net:1.0

http://www.linuxjournal.com

114 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

 ↪personal:1.0 rpc:1.0 txpool:1.0 web3:1.0

>

Time to create a new account that will manipulate the Blockchain network:

> personal.newAccount()
Passphrase:
Repeat passphrase:
"0x92619f0bf91c9a786b8e7570cc538995b163652d"

Remember this string. You’ll need it shortly. If you forget this hexadecimal string, you
can reprint it to the console by typing:

> eth.coinbase
"0x92619f0bf91c9a786b8e7570cc538995b163652d"

Check your ether balance by typing the following script:

> eth.getBalance("0x92619f0bf91c9a786b8e7570cc538995b163652d")
0

Here’s another way to check your balance without needing to type the entire
hexadecimal string:

> eth.getBalance(eth.coinbase)
0

Mining
Doing real mining in the main ethereum blockchain requires some very specialized
hardware, such as dedicated Graphics Processing Units (GPUs), like the ones found
on the high-end graphics cards mentioned in Part I. However, since you’re mining
for blocks on a private chain with a low difficulty level, you can do without that

http://www.linuxjournal.com

115 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

requirement. To begin mining, run the following script on the JavaScript console:

> miner.start()
null

Updates in the First Terminal Window

You’ll observe mining activity in the output logs displayed in the first
terminal window:

INFO [02-10|15:14:47] Updated mining threads
 ↪threads=0
INFO [02-10|15:14:47] Transaction pool price threshold
 ↪updated price=18000000000
INFO [02-10|15:14:47] Starting mining operation
INFO [02-10|15:14:47] Commit new mining work
 ↪number=1 txs=0 uncles=0 elapsed=186.855us
INFO [02-10|15:14:57] Generating DAG in progress
 ↪epoch=1 percentage=0 elapsed=7.083s
INFO [02-10|15:14:59] Successfully sealed new block
 ↪number=1 hash=c81539...dc9691
INFO [02-10|15:14:59] mined potential block
 ↪number=1 hash=c81539...dc9691
INFO [02-10|15:14:59] Commit new mining work
 ↪number=2 txs=0 uncles=0 elapsed=211.208us
INFO [02-10|15:15:04] Generating DAG in progress
 ↪epoch=1 percentage=1 elapsed=13.690s
INFO [02-10|15:15:06] Successfully sealed new block
 ↪number=2 hash=d26dda...e3b26c
INFO [02-10|15:15:06] mined potential block
 ↪number=2 hash=d26dda...e3b26c
INFO [02-10|15:15:06] Commit new mining work
 ↪number=3 txs=0 uncles=0 elapsed=510.357us

http://www.linuxjournal.com

116 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

[...]

INFO [02-10|15:15:52] Generating DAG in progress
 ↪epoch=1 percentage=8 elapsed=1m2.166s
INFO [02-10|15:15:55] Successfully sealed new block
 ↪number=15 hash=d7979f...e89610
INFO [02-10|15:15:55] block reached canonical chain
 ↪number=10 hash=aedd46...913b66
INFO [02-10|15:15:55] mined potential block
 ↪number=15 hash=d7979f...e89610
INFO [02-10|15:15:55] Commit new mining work
 ↪number=16 txs=0 uncles=0 elapsed=105.111us
INFO [02-10|15:15:57] Successfully sealed new block
 ↪number=16 hash=61cf68...b16bf2
INFO [02-10|15:15:57] block reached canonical chain
 ↪number=11 hash=6b89ff...de8f88
INFO [02-10|15:15:57] mined potential block
 ↪number=16 hash=61cf68...b16bf2
INFO [02-10|15:15:57] Commit new mining work
 ↪number=17 txs=0 uncles=0 elapsed=147.31us

Back to the Second Terminal Window

Wait 10–20 seconds, and on the JavaScript console, start checking your balance:

> eth.getBalance(eth.coinbase)
10000000000000000000

Wait some more, and list it again:

> eth.getBalance(eth.coinbase)
75000000000000000000

http://www.linuxjournal.com

117 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

Remember, this is fake ether, so don’t open that bottle of champagne, yet. You are
unable to use this ether in the main ethereum network.

To stop the miner, invoke the following script:

> miner.stop()
true

Well, you did it. You created your own private blockchain and mined some ether.

Who Will Benefit from This Technology Today and in
the Future?
Although the blockchain originally was developed around cryptocurrency (more
specifically, bitcoin), its uses don’t end there. Today, it may seem like that’s the case, but
there are untapped industries and markets where blockchain technologies can redefine
how transactions are processed. The following are some examples that come to mind.

Improving Smart Contracts
Ethereum, the same open-source blockchain project deployed earlier, already is doing
the whole smart-contract thing, but the idea is still in its infancy, and as it matures, it
will evolve to meet consumer demands. There’s plenty of room for growth in this area.
It probably and eventually will creep into governance of companies (such as verifying
digital assets, equity and so on), trading stocks, handling intellectual property and
managing property ownership, such as land title registration.

Enabling Market Places and Shared Economies
Think of eBay but refocused to be peer-to-peer. This would mean no more transaction fees,
but it also will emphasize the importance of your personal reputation, since there will be no
single body governing the market in which goods or services are being traded or exchanged.

Crowdfunding
Following in the same direction as my previous remarks about a decentralized marketplace,
there also are opportunities for individuals or companies to raise the capital necessary to

http://www.linuxjournal.com

118 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

help “kickstart” their initiatives. Think of a more open and global Kickstarter or GoFundMe.

Multimedia Sharing or Hosting
A peer-to-peer network for aspiring or established musicians definitely could go a
long way here—one where the content will reach its intended audiences directly
and also avoid those hefty royalty costs paid out to the studios, record labels and
content distributors. The same applies to video and image content.

File Storage and Data Management
By enabling a global peer-to-peer network, blockchain technology takes cloud
computing to a whole new level. As the technology continues to push itself into
existing cloud service markets, it will challenge traditional vendors, including Amazon
AWS and even Dropbox and others—and it will do so at a fraction of the price. For
example, cold storage data offerings are a multi-hundred-billion-dollar market today.
By distributing your encrypted archives across a global and decentralized network, the
need to maintain local data-center equipment by a single entity is reduced significantly.

Social media and how your posted content is managed would change under this
model as well. Under the blockchain, Facebook or Twitter or anyone else cannot
lay claim to what you choose to share.

Another added benefit to leveraging blockchain here is making use of the
cryptography securing your valuable data from getting hacked or lost.

Internet of Things
What is the Internet of Things (IoT)? It is a broad term describing the networked
management of very specific electronic devices, which include heating and cooling
thermostats, lights, garage doors and more. Using a combination of software,
sensors and networking facilities, people can easily enable an environment where
they can automate and monitor home and/or business equipment.

Supply Chain Audits
With a distributed public ledger made available to consumers, retailers can’t falsify

http://www.linuxjournal.com

119 | March 2018 | http://www.linuxjournal.com

DEEP
DIVE

claims made against their products. Consumers will have the ability to verify their
sources, be it food, jewelry or anything else.

Identity Management
There isn’t much to explain here. The threat is very real. Identity theft never
takes a day off. The dated user name/password systems of today have run their
course, and it’s about time that existing authentication frameworks leverage the
cryptographic capabilities offered by the blockchain.

Summary
This revolutionary technology has enabled organizations in ways that weren’t
possible a decade ago. Its possibilities are enormous, and it seems that any
industry dealing with some sort of transaction-based model will be disrupted by
the technology. It’s only a matter of time until it happens.

Now, what will the future for blockchain look like? At this stage, it’s difficult to say.
One thing is for certain though; large companies, such as IBM, are investing big into
the technology and building their own blockchain infrastructure that can be sold to
and used by corporate enterprises and financial institutions. This may create some
issues, however. As these large companies build their blockchain infrastructures,
they will file for patents to protect their technologies. And with those patents in
their arsenal, there exists the possibility that they may move aggressively against the
competition in an attempt to discredit them and their value.

Anyway, if you will excuse me, I need to go make some crypto-coin. ◾

Petros Koutoupis, LJ Contributing Editor, is currently a senior platform architect at IBM for its Cloud Object
Storage division (formerly Cleversafe). He is also the creator and maintainer of the Rapid Disk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.rapiddisk.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

120 | March 2018 | http://www.linuxjournal.com

ZFS for Linux
Presenting the Solaris ZFS filesystem, as implemented in Linux
FUSE, native kernel modules and the Antergos Linux installer.

By Charles Fisher

ZFS remains one of the most technically advanced and feature-complete filesystems
since it appeared in October 2005. Code for Sun’s original Zettabyte File System
was released under the CDDL open-source license, and it has since become a
standard component of FreeBSD and slowly migrated to various BSD brethren,
while maintaining a strong hold over the descendants of OpenSolaris, including
OpenIndiana and SmartOS.

Oracle is the owner and custodian of ZFS, and it’s in a peculiar position
with respect to Linux filesystems. Btrfs, the main challenger to ZFS, began
development at Oracle, where it is a core component of Oracle Linux, despite
stability issues. Red Hat’s recent decision to deprecate Btrfs likely introduces
compatibility and support challenges for Oracle’s Linux road map. Oracle
obviously has deep familiarity with the Linux filesystem landscape, having recently
released “dedup” patches for XFS. ZFS is the only filesystem option that is
stable, protects your data, is proven to survive in most hostile environments and
has a lengthy usage history with well understood strengths and weaknesses.

ZFS has been (mostly) kept out of Linux due to CDDL incompatibility with
Linux’s GPL license. It is the clear hope of the Linux community that Oracle will re-
license ZFS in a form that can be included in Linux, and we should all gently cajole
Oracle to do so. Obviously, a re-license of ZFS will have a clear impact on Btrfs
and the rest of Linux, and we should work to understand Oracle’s position as the
holder of these tools. However, Oracle continues to gift large software projects
for independent leadership. Incomplete examples of Oracle’s largesse include
OpenOffice and recently Java Enterprise Edition, so it is not inconceivable that

ZFS FOR LINUX

http://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_btrfs.html
https://www.suse.com/communities/blog/butter-bei-die-fische
https://www.theregister.co.uk/2017/08/16/red_hat_banishes_btrfs_from_rhel
https://blogs.oracle.com/linuxkernel/upcoming-xfs-work-in-linux-v48-v49-and-v410%2C-by-darrick-wong
https://sfconservancy.org/blog/2016/feb/25/zfs-and-linux
http://www.zdnet.com/article/oracle-gives-openoffice-to-apache
https://adtmag.com/articles/2017/09/12/java-ee-moving-to-eclipse.aspx
http://www.linuxjournal.com

121 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

Oracle’s generosity may at some point extend additionally to ZFS.

To further this conversation, I want to investigate the various versions of ZFS for
Linux. Starting within an RPM-centric environment, I first describe how to install
the minimally invasive FUSE implementation, then proceed with a native install of
ZFS modules from source. Finally, leaving RPM behind, I proceed to the Antergos
distribution that implements native ZFS as a supported installation option.

ZFS Technical Background
ZFS is similar to other storage management approaches, but in some ways, it’s
radically different. ZFS does not normally use the Linux Logical Volume Manager
(LVM) or disk partitions, and it’s usually convenient to delete partitions and LVM
structures prior to preparing media for a zpool.

The zpool is the analog of the LVM. A zpool spans one or more storage devices, and
members of a zpool may be of several various types. The basic storage elements are
single devices, mirrors and raidz. All of these storage elements are called vdevs.

Mirrored vdevs in a zpool present storage that’s the size of the smallest physical drive.
A mirrored vdev can be upgraded (that is, increased in size) by attaching larger drives
to the mirrorset and “resilvering” (synchronizing the mirrors), then detaching the
smaller drives from the set. Resilvering a mirror will involve copying only used blocks to
the target device—unused blocks are not touched, which can make resilvering much
faster than hardware-maintained disk mirroring (which copies unused storage).

ZFS also can maintain RAID devices, and unlike most storage controllers, it can
do so without battery-backed cache (as long as the physical drives honor “write
barriers”). ZFS can create a raidz vdev with multiple levels of redundancy, allowing
the failure of up to three physical drives while maintaining array availability.
Resilvering a raidz also involves only used blocks and can be much faster than a
storage controller that copies all disk blocks during a RAID rebuild. A raidz vdev
should normally compose 8–12 drives (larger raidz vdevs are not recommended).
Note that the number of drives in a raidz cannot be expanded.

http://docs.oracle.com/cd/E19253-01/819-5461/gcfhe/index.html
http://louwrentius.com/the-hidden-cost-of-using-zfs-for-your-home-nas.html
http://www.linuxjournal.com

122 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

ZFS greatly prefers to manage raw disks. RAID controllers should be configured to
present the raw devices, never a hardware RAID array. ZFS is able to enforce storage
integrity far better than any RAID controller, as it has intimate knowledge of the
structure of the filesystem. All controllers should be configured to present “Just a
Bunch Of Disks” (JBOD) for best results in ZFS.

Data safety is an important design feature of ZFS. All blocks written in a zpool are
aggressively checksummed to ensure the data’s consistency and correctness. You
can select the checksum algorithm from sha256, fletcher2 or fletcher4. You also
can disable the checksum on user data, which is specifically never recommended
(this setting might be useful on a scratch/tmp filesystem where speed is critical,
while consistency and recovery are irrelevant; however, sync=disabled is the
recommended setting for temporary filesystems in ZFS).

You can change the checksum algorithm at any time, and new blocks will use the
updated algorithm. A checksum is stored separately from the data block, with the
parent block, in the hope that localized block damage can be detected. If a block
is found to disagree with the parent’s checksum, an alternate copy of the block is
retrieved from either a mirror or raidz device, rewritten over the bad block, then the
I/O is completed without incident. ZFS filesystems can use these techniques to “self-
heal” and protect themselves from “bitrot” data changes on hard drive platters that
are caused by controller errors, power loss/fluctuations in the read/write heads, and
even the bombardment of cosmic rays.

ZFS can implement “deduplication” by maintaining a searchable index of block
checksums and their locations. If a new block to be written matches an existing
block within the index, the existing block is used instead, and space is saved.
In this way, multiple files may share content by maintaining single copies of
common blocks, from which they will diverge if any of their content changes. The
documentation states that a “dedup-capable checksum” must be set before dedup
can be enabled, and sha256 is offered as an example—the checksum must be
“collision-resistant” to identify a block uniquely to assure the safety of dedup. Be
warned that memory requirements for ZFS expand drastically when deduplication is

https://wiki.archlinux.org/index.php/ZFS
http://www.linuxjournal.com

123 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

enabled, which quickly can overwhelm a system lacking sufficient resources.

The zpool can hold datasets, snapshots, clones and volumes. A “dataset” is a
standard ZFS filesystem that has a mountpoint and can be modified. A “snapshot”
is a point-in-time copy of a filesystem, and as the parent dataset is changed, the
snapshot will collect the original blocks to maintain a consistent past image. A
“clone” can be built upon a snapshot and allows a different set of changes to be
applied to the past image, effectively allowing a filesystem to branch—the clone
and original dataset will continue to share unchanged blocks, but otherwise will
diverge. A “volume” is similar to a block device, and can be loopback-mounted with
a filesystem of any type, or perhaps presented as an iscsi target. Checksums are
enforced on volumes. Note that, unlike partitions or logical volumes, elements in a
zpool can be intermingled. ZFS knows that the outside edge of a disk is faster than
the interior, and it may decide to mix blocks from multiple objects in a zpool at
these locations to increase performance. Due to this commingling of filesystems,
forensic analysis of zpools is difficult and expensive:

But, no matter how much searching you do, there is [sic] no ZFS recovery tools
out there. You are welcome to call companies like Ontrack for data recovery. I
know one person that did, and they spent $3k just to find out if their data was
recoverable. Then they spent another $15k to get just 200GB of data back.

There are no fsck or defrag tools for ZFS datasets. The boot process never will be
delayed because a dataset was not cleanly unmounted. There is a “scrub” tool that will
walk a dataset and verify the checksum of every used block on all vdevs, but the scrub
takes place on mounted and active datasets. ZFS can recover very well from power
losses or otherwise dirty dismounts.

Fragmentation in ZFS is a larger question, and it appears related more to remaining
storage capacity than rapid file growth and reduction. Performance of a heavily
used dataset will begin to degrade when it is 50% full, and it will dramatically
drop over 80% usage when ZFS begins to use “best-fit” rather than “first-fit” to
store new blocks. Regaining performance after dropping below 50% usage can

https://forums.freenas.org/index.php?threads/ecc-vs-non-ecc-ram-and-zfs.15449
http://www.linuxjournal.com

124 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

involve dropping and resilvering physical disks in the containing vdev until all of
the dataset’s blocks have migrated. Otherwise, the dataset should be completely
unloaded and erased, then reloaded with content that does not exceed 50% usage
(the zfs send and receive utilities are useful for this purpose). It is important to
provide ample free disk space to datasets that will see heavy use.

It is strongly encouraged to use ECC memory with ZFS. Error-correcting memory
is advised as critical for the correct processing of checksums that maintain zpool
consistency. Memory can be altered by system errors and cosmic rays—ECC memory
can correct single-bit errors and panic/halt the system when multi-bit errors are
detected. ECC memory is normally found in servers, but becomessomewhat rare
with desktops and laptops. Some warn of the “scrub of death” and describe actual
lost data from non-ECC RAM. However, one of the creators of ZFS says that all
filesystems are vulnerable when non-ECC memory is in use, and ZFS is actually
more graceful in failure than most, and further describes undocumented settings
that force ZFS to recompute checksums in memory repeatedly, which minimizes
dangers from non-ECC RAM. A lengthy configuration guide addresses ZFS safety in
a non-ECC environment with these undocumented settings, but the guide does not
appear to cover the FUSE implementation.

zfs-fuse
The Linux implementation of FUSE received a ZFS port in 2006. FUSE is an interface
that allows a filesystem to be implemented by a process that runs in userspace.
Fedora has maintained zfs-fuse as an RPM package for some time, but this package
does not appear in any of the Red Hat-based distributions, including Oracle Linux.
Red Hat appears to have intentionally omitted any relevant RPM for ZFS support.

The FUSE implementation is likely the only way to (currently) use ZFS on Linux in a
manner that is fully compliant with both the CDDL and the GPL.

The FUSE port is relatively slow compared to a kernel ZFS implementation. FUSE
is not generally installed in a manner that is compatible with NFS, so a zfs-fuse
filesystem cannot be exported over the network without preparing a FUSE version

https://docs.oracle.com/cd/E18752_01/html/819-5461/gbchx.html
http://jrs-s.net/2015/02/03/will-zfs-and-non-ecc-ram-kill-your-data
https://arstechnica.com/civis/viewtopic.php?f=2&t=1235679&p=26303271#p26303271
https://arstechnica.com/civis/viewtopic.php?f=2&t=1235679&p=26303271#p26303271
https://www.csparks.com/ZFS%20Without%20Tears.html
https://github.com/libfuse/libfuse
http://www.linuxjournal.com

125 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

with NFS support (NFSv4 might be available if an fsid= is supplied). The zfs-fuse
implementation is likely reasonable for local, archival and potentially compressed
datasets. Some have used Btrfs for ad-hoc compressed filesystems, and zfs-fuse
is certainly an option for similar activity.

The last version of zfs-fuse that will work in Oracle Linux 7.4 is the RPM in Fedora
25. A new ZFS release is in Fedora 26, but it fails to install on Oracle Linux 7.4 due to
an OpenSSL dependency—Red Hat’s OpenSSL is now too old. The following shows
installing the ZFS RPM:

rpm -Uvh zfs-fuse-0.7.0-23.fc24.x86_64.rpm
Preparing... ################################# [100%]
Updating / installing...
 1:zfs-fuse-0.7.0-23.fc24 ################################# [100%]

cat /etc/redhat-release /etc/oracle-release
Red Hat Enterprise Linux Server release 7.4 (Maipo)
Oracle Linux Server release 7.4

The zfs-fuse userspace agent must be executed before any zpools can be manipulated
(note a systemd unit is included for this purpose):

zfs-fuse
#

For an easy example, let’s re-task a small hard drive containing a Windows 7 installation:

fdisk -l /dev/sdb

Disk /dev/sdb: 160.0 GB, 160000000000 bytes, 312500000 sectors

Disk label type: dos

Disk identifier: 0x8d206763

http://www.excamera.com/sphinx/article-btrfs.html
https://mirrors.lug.mtu.edu/fedora/linux/releases/25/Everything/x86_64/os/Packages/z
https://mirrors.lug.mtu.edu/fedora/linux/releases/25/Everything/x86_64/os/Packages/z
http://www.linuxjournal.com

126 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

 Device Boot Start End Blocks Id System

/dev/sdb1 * 2048 206847 102400 7 HPFS/NTFS/exFAT

/dev/sdb2 206848 312496127 156144640 7 HPFS/NTFS/exFAT

It is usually most convenient to dedicate an entire disk to a zpool, so delete all the
existing partitions:

fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): d
Partition number (1,2, default 2): 2
Partition 2 is deleted

Command (m for help): d
Selected partition 1
Partition 1 is deleted

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Now a zpool can be added on the drive (note that creating a pool adds a dataset of
the same name, which, as you see here, is automatically mounted):

zpool create vault /dev/sdb

http://www.linuxjournal.com

127 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

df | awk 'NR==1||/vault/'
Filesystem 1K-blocks Used Available Use% Mounted on
vault 153796557 21 153796536 1% /vault

mount | grep vault
vault on /vault type fuse.zfs

Creating a zpool on non-redundant devices is informally known as “hating your
data” and should be contemplated only for demonstration purposes. However,
zpools on non-redundant media (for example, flash drives) have obvious data-
consistency and compression advantages to VFAT, and the copies parameter
can be adjusted for such a dataset to force all blocks to be recorded on the media
multiple times (up to three) to increase recoverability.

Mirrored drives can be created with zpool create vault mirror /dev/sdb
/dev/sdc. Additional drives can be added as mirrors to an existing drive with
zpool attach. A simple RAIDset can be created with zpool create vault
raidz /dev/sdb /dev/sdc /dev/sdd.

The standard umount command should (normally) not be used to unmount
ZFS datasets—use the zpool/zfs tools instead (note the “unmount” rather than
“umount” spelling):

zfs unmount vault

df | awk 'NR==1||/vault/'
Filesystem 1K-blocks Used Available Use% Mounted on

zfs mount vault

df | awk 'NR==1||/vault/'
Filesystem 1K-blocks Used Available Use% Mounted on
vault 153796557 21 153796536 1% /vault

https://arstechnica.com/information-technology/2014/02/ars-walkthrough-using-the-zfs-next-gen-filesystem-on-linux
https://arstechnica.com/information-technology/2014/02/ars-walkthrough-using-the-zfs-next-gen-filesystem-on-linux
http://docs.oracle.com/cd/E19253-01/819-5461/gevpg/index.html
http://www.linuxjournal.com

128 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

A ZFS dataset can be mounted in a new location by altering the “mountpoint”:

zfs unmount vault

mkdir /root/vault

zfs set mountpoint=/root/vault vault

zfs mount vault

df | awk 'NR==1||/vault/'
Filesystem 1K-blocks Used Available Use% Mounted on
vault 153796547 21 153796526 1% /root/vault

zfs unmount vault

zfs set mountpoint=/vault vault

zfs mount vault

df | awk 'NR==1||/vault/'
Filesystem 1K-blocks Used Available Use% Mounted on
vault 153796547 21 153796526 1% /vault

The mountpoint is retained and is persistent across reboots.

Creating an additional dataset (and mounting it) is as easy as creating a directory
(note this command can take some time):

zfs create vault/tmpdir

df | awk 'NR==1||/(vault|tmpdir)/'
Filesystem 1K-blocks Used Available Use% Mounted on

http://www.linuxjournal.com

129 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

vault 153796496 800 153795696 1% /vault
vault/tmpdir 153795717 21 153795696 1% /vault/tmpdir

cp /etc/yum.conf /vault/tmpdir/

ls -l /vault/tmpdir/
-rw-r--r--. 1 root root 813 Sep 23 16:47 yum.conf

ZFS supports several types of compression in a dataset. Gzip of varying degrees, zle
and lzjb can all be present in a single mountpoint. The checksum algorithm also can be
adjusted on the fly:

zfs get compress vault/tmpdir
NAME PROPERTY VALUE SOURCE
vault/tmpdir compression off local

zfs get checksum vault/tmpdir
NAME PROPERTY VALUE SOURCE
vault/tmpdir checksum on default

zfs set compression=gzip vault/tmpdir

zfs set checksum=fletcher2 vault/tmpdir

cp /etc/redhat-release /vault/tmpdir

zfs set compression=zle vault/tmpdir

zfs set checksum=fletcher4 vault/tmpdir

cp /etc/oracle-release /vault/tmpdir

zfs set compression=lzjb vault/tmpdir

http://www.linuxjournal.com

130 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

zfs set checksum=sha256 vault/tmpdir

cp /etc/os-release /vault/tmpdir

Note that the GZIP compression factor can be adjusted (the default is six, just as in
the GNU GZIP utility). This will directly impact the speed and responsiveness of a
dataset:

zfs set compression=gzip-1 vault/tmpdir

cp /etc/profile /vault/tmpdir

zfs set compression=gzip-9 vault/tmpdir

cp /etc/grub2.cfg /vault/tmpdir

ls -l /vault/tmpdir
-rw-r--r--. 1 root root 6308 Sep 23 17:06 grub2.cfg
-rw-r--r--. 1 root root 32 Sep 23 17:00 oracle-release
-rw-r--r--. 1 root root 398 Sep 23 17:00 os-release
-rw-r--r--. 1 root root 1795 Sep 23 17:05 profile
-rw-r--r--. 1 root root 52 Sep 23 16:59 redhat-release
-rw-r--r--. 1 root root 813 Sep 23 16:58 yum.conf

Should the dataset no longer be needed, it can be dropped:

zfs destroy vault/tmpdir

df | awk 'NR==1||/(vault|tmpdir)/'
Filesystem 1K-blocks Used Available Use% Mounted on
vault 153796523 800 153795723 1% /vault

http://www.linuxjournal.com

131 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

You can demonstrate a recovery in ZFS by copying a few files and creating a snapshot:

cp /etc/passwd /etc/group /etc/shadow /vault

ls -l /vault
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
----------. 1 root root 1255 Sep 23 14:41 shadow

zfs snapshot vault@goodver

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
vault@goodver 0 - 27K -

Then you can simulate more file manipulations that involve the loss of a critical file:

rm /vault/shadow
rm: remove regular file '/vault/shadow'? y

cp /etc/resolv.conf /etc/nsswitch.conf /etc/services /vault/

ls -l /vault
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 1760 Sep 23 16:14 nsswitch.conf
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
-rw-r--r--. 1 root root 98 Sep 23 16:14 resolv.conf
-rw-r--r--. 1 root root 670311 Sep 23 16:14 services

Normally, snapshots are visible in the .zfs directory of the dataset. However, this
functionality does not exist within the zfs-fuse implementation, so you are forced to
create a clone to retrieve your lost file:

http://www.linuxjournal.com

132 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

zfs clone vault@goodver vault/history

ls -l /vault/history
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
----------. 1 root root 1255 Sep 23 14:41 shadow

Note that the clone is not read-only, and you can modify it. The two mountpoints will
maintain a common set of blocks, but are otherwise independent:

cp /etc/fstab /vault/history

ls -l /vault/history
-rw-r--r--. 1 root root 541 Sep 23 16:23 fstab
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
----------. 1 root root 1255 Sep 23 14:41 shadow

Assuming that you have completed your recovery activity, you can destroy the clone
and snapshot. A scrub of the parent dataset to verify its integrity at that point might
be wise, and then you can list your zpool history to see evidence of your session:

zfs destroy vault/history

zfs destroy vault@goodver

zpool scrub vault

zpool status vault
 pool: vault
 state: ONLINE
 scrub: scrub in progress for 0h1m, 30.93% done, 0h3m to go
config:

http://www.linuxjournal.com

133 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

 NAME STATE READ WRITE CKSUM
 vault ONLINE 0 0 0
 sdb ONLINE 0 0 0

errors: No known data errors

zpool history vault

For my final words on zfs-fuse, I’m going to list the software version history for zpool
and zfs. Note: it is critical that you create your zpools with the lowest ZFS version that
you wish to use, which in this case is zpool version 23 and zfs version 4:

zpool upgrade -v
This system is currently running ZFS pool version 23.

The following versions are supported:

VER DESCRIPTION
--- --
 1 Initial ZFS version
 2 Ditto blocks (replicated metadata)
 3 Hot spares and double parity RAID-Z
 4 zpool history
 5 Compression using the gzip algorithm
 6 bootfs pool property
 7 Separate intent log devices
 8 Delegated administration
 9 refquota and refreservation properties
 10 Cache devices
 11 Improved scrub performance
 12 Snapshot properties
 13 snapused property

http://www.linuxjournal.com

134 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

 14 passthrough-x aclinherit
 15 user/group space accounting
 16 stmf property support
 17 Triple-parity RAID-Z
 18 Snapshot user holds
 19 Log device removal
 20 Compression using zle (zero-length encoding)
 21 Deduplication
 22 Received properties
 23 Slim ZIL

zfs upgrade -v
The following filesystem versions are supported:

VER DESCRIPTION
--- --
 1 Initial ZFS filesystem version
 2 Enhanced directory entries
 3 Case insensitive and File system unique identifier (FUID)
 4 userquota, groupquota properties

Native ZFS
You can obtain a zfs.ko kernel module from the ZFS on Linux site and load into
Linux, which will provide high-performance ZFS with full functionality. In order to
install this package, you must remove the FUSE version of ZFS (assuming it was
installed as in the previous section):

rpm -e zfs-fuse
Removing files since we removed the last package

After the FUSE removal, you need to install a new yum repository on the target
system. ZFS on a Red Hat-derivative likely will require network access to the ZFS

http://zfsonlinux.org/
http://www.linuxjournal.com

135 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

repository (standalone installations will be more difficult and are not covered here):

yum install \
 http://download.zfsonlinux.org/epel/zfs-release.el7_4.noarch.rpm
...
==
 Package Repository Size
==
Installing:
 zfs-release /zfs-release.el7_4.noarch 2.9 k

==
Install 1 Package

Total size: 2.9 k
Installed size: 2.9 k
Is this ok [y/d/N]: y
...

Installed:
 zfs-release.noarch 0:1-5.el7_4

Complete!

After configuring the repository, load the GPG key:

gpg --quiet --with-fingerprint /etc/pki/rpm-gpg/RPM-GPG-KEY-zfsonlinux
pub 2048R/F14AB620 2013-03-21 ZFS on Linux
 Key fingerprint = C93A FFFD 9F3F 7B03 C310 CEB6 A9D5 A1C0 F14A B620
sub 2048R/99685629 2013-03-21

At this point, you’re ready to proceed with a native ZFS installation.

http://www.linuxjournal.com

136 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

The test system used here, Oracle Linux 7.4, normally can boot from one of
two kernels. There is a “Red Hat-Compatible Kernel” and also an “Unbreakable
Enterprise Kernel” (UEK). Although the FUSE version is completely functional
under both kernels, the native ZFS installer does not work with the UEK (meaning
further that Oracle Ksplice is precluded with the standard ZFS installation). If you
are running Oracle Linux, you must be booted on the RHCK when manipulating
a native ZFS configuration, and this includes the initial install. Do not attempt
installation or any other native ZFS activity while running the UEK:

rpm -qa | grep ^kernel | sort
kernel-3.10.0-693.2.2
kernel-devel-3.10.0-693.2.2
kernel-headers-3.10.0-693.2.2
kernel-tools-3.10.0-693.2.2
kernel-tools-libs-3.10.0-693.2.2
kernel-uek-4.1.12-103.3.8.1
kernel-uek-firmware-4.1.12-103.3.8.1

The ZFS installation actually uses yum to compile C source code in the default
configuration (DKMS), then prepares an initrd with dracut (use top to monitor this
during the install). This installation will take some time, and there are notes on using a
pre-compiled zfs.ko collection in an alternate installation configuration (kABI). The test
platform used here is Oracle Linux, and the Red Hat-Compatible kernel may not be fully
interoperable with the precompiled zfs.ko collection (not tested while preparing this
article), so the default DKMS build was retained. Here’s an example installation session:

yum install kernel-devel zfs
...
==
 Package Repository Size
==
Installing:
 zfs zfs 405 k

http://www.linuxjournal.com

137 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

Installing for dependencies:
 dkms epel 78 k
 libnvpair1 zfs 29 k
 libuutil1 zfs 35 k
 libzfs2 zfs 129 k
 libzpool2 zfs 587 k
 spl zfs 29 k
 spl-dkms zfs 454 k
 zfs-dkms zfs 4.9 M

==
Install 1 Package (+8 Dependent packages)

Total download size: 6.6 M
Installed size: 29 M
Is this ok [y/d/N]: y
...
 - Installing to /lib/modules/3.10.0-693.2.2.el7.x86_64/extra/
spl:
splat.ko:
zavl:
znvpair.ko:
zunicode.ko:
zcommon.ko:
zfs.ko:
zpios.ko:
icp.ko:

Installed:
 zfs.x86_64 0:0.7.1-1.el7_4

Complete!

http://www.linuxjournal.com

138 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

After the yum session concludes, you can load the native zfs.ko into the “RHCK” Linux
kernel, which will pull in a number of dependent modules:

modprobe zfs

lsmod | awk 'NR==1||/zfs/'
Module Size Used by
zfs 3517672 0
zunicode 331170 1 zfs
zavl 15236 1 zfs
icp 266091 1 zfs
zcommon 73440 1 zfs
znvpair 93227 2 zfs,zcommon
spl 102592 4 icp,zfs,zcommon,znvpair

At this point, the pool created by FUSE can be imported back into the system (note
the error):

/sbin/zpool import vault
cannot import 'vault': pool was previously in use from another system.
Last accessed at Sun Sep 24 2017
The pool can be imported, use 'zpool import -f' to import the pool.

/sbin/zpool import vault -f

The import will mount the dataset automatically:

ls -l /vault
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 1760 Sep 23 16:14 nsswitch.conf
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
-rw-r--r--. 1 root root 98 Sep 23 16:14 resolv.conf
-rw-r--r--. 1 root root 670311 Sep 23 16:14 services

http://www.linuxjournal.com

139 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

You can create a snapshot, then delete another critical file:

/sbin/zfs snapshot vault@goodver

rm /vault/group
rm: remove regular file '/vault/group'? y

At this point, you can search the /vault/.zfs directory for the missing file (note that
.zfs does not appear with ls -a, but it is present nonetheless):

ls -la /vault
drwxr-xr-x. 2 root root 6 Sep 25 17:47 .
dr-xr-xr-x. 19 root root 4096 Sep 25 17:17 ..
-rw-r--r--. 1 root root 1760 Sep 23 16:14 nsswitch.conf
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
-rw-r--r--. 1 root root 98 Sep 23 16:14 resolv.conf
-rw-r--r--. 1 root root 670311 Sep 23 16:14 services

ls -l /vault/.zfs
dr-xr-xr-x. 2 root root 2 Sep 23 13:54 shares
drwxrwxrwx. 2 root root 2 Sep 25 17:47 snapshot

ls -l /vault/.zfs/snapshot/
drwxr-xr-x. 2 root root 7 Sep 24 18:58 goodver

ls -l /vault/.zfs/snapshot/goodver
-rw-r--r--. 1 root root 965 Sep 23 14:41 group
-rw-r--r--. 1 root root 1760 Sep 23 16:14 nsswitch.conf
-rw-r--r--. 1 root root 2269 Sep 23 14:41 passwd
-rw-r--r--. 1 root root 98 Sep 23 16:14 resolv.conf
-rw-r--r--. 1 root root 670311 Sep 23 16:14 services

Native ZFS implements newer software versions of zpool and zfs—remember, it is

http://www.linuxjournal.com

140 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

critical that you create your zpools with the lowest ZFS version that you ever intend
to use, which in this case is zpool version 28, and zfs version 5. The FUSE version
is far simpler to install on a fresh Red Hat OS for recovery purposes, so consider
carefully before upgrading to the native ZFS versions:

/sbin/zpool upgrade -v
...

 23 Slim ZIL
 24 System attributes
 25 Improved scrub stats
 26 Improved snapshot deletion performance
 27 Improved snapshot creation performance
 28 Multiple vdev replacements

/sbin/zfs upgrade -v
...

 4 userquota, groupquota properties
 5 System attributes

Strong words of warning should accompany the use of native ZFS on a Red Hat-derivative.

Kernel upgrades are a cause for concern. If the zfs.ko family of modules are not
installed correctly, then no pools can be brought online. For this reason, it is
far more imperative to retain known working kernels when upgraded kernels are
installed. As I’ve noted previously, Oracle’s UEK is not ZFS-capable when using the
default native installation.

OS release upgrades also introduce even more rigorous warnings. Before attempting
an upgrade, remove all of the ZFS software. Upon upgrade completion, repeat
the ZFS software installation using a yum repository that is specific for the new

http://www.linuxjournal.com

141 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

OS release. At the time of this writing, the ZFS on Linux site lists repositories for
Red Hat releases 6, 7.3 and 7.4. It is wise to stay current on patches and releases,
and strongly consider upgrading a 7.0 – 7.2 Red Hat-derivative where native ZFS
installation is contemplated or desired.

Note also that Solaris ZFS has encryption and Windows SMB capability—these are not
functional in the Linux port.

Perhaps someday Oracle will permit the Red Hat family to bundle native ZFS by
relaxing the license terms. That will be a very good day.

Antergos
Definite legal ambiguity remains with ZFS. Although Ubuntu recently announced
support for the zfs.ko module for its container subsystem, its legal analysis
remains murky. Unsurprisingly, none of the major enterprise Linux distributions
have been willing to bundle ZFS as a first-class supported filesystem.

Into this void comes Antergos, a descendant of Arch Linux. The Antergos installer
will download and compile ZFS source code into the installation kernel in a manner
similar to the previous section. Although the example installation detailed here did
not proceed without incident, it did leave a working, mirrored zpool for the root
filesystem running the same version release as the native RPM installs.

What Antergos did not do was install the Linux kernel itself to both drives. A
separate ext4 partition was configured for /boot on only one drive, because Grub2
does not support ZFS, and there appears to be a current lack of alternatives for
booting Linux from a ZFS dataset. I had expected to see an installation similar
to MirrorDisk/UX for HP-UX, where the firmware is configured with primary and
alternate boot paths, and the OS is intelligent enough to manage identical copies
of the boot and root filesystems on multiple drives. What I actually found was
the root filesystem mirrored by ZFS, but the kernel in /boot is not, nor is the
system bootable if the single ext4 /boot partition fails. A fault-tolerant Antergos
installation will require RAID hardware—ZFS is not sufficient.

https://insights.ubuntu.com/2016/02/18/zfs-licensing-and-linux
https://insights.ubuntu.com/2016/02/18/zfs-licensing-and-linux
https://forums.freebsd.org/threads/25164
https://forums.freebsd.org/threads/25164
http://www.linuxjournal.com

142 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

You can download the Antergos Live ISO and write it as a bootable image to a flash
drive with the command:

dd bs=4M if=antergos-17.9-x86_64.iso of=/dev/sdc

Note that the Antergos Minimal ISO does not support ZFS; it’s only in the Live
ISO. Internet access is required while the installer is running. The latest packages
will be downloaded in the installer session, and very little is pulled from the
ISO media.

After booting your system on the live ISO, ensure that you are connected to
the internet and activate the installer dialog. Note the warnings of beta software
status—whether this refers to ZFS, Btrfs or other Linux RAID configurations is
an open question.

Figure 1. Installer Warning

https://antergos.com/try-it
https://github.com/Antergos/Cnchi/issues/573
http://www.linuxjournal.com

143 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

Select your territory or locale, time zone, keyboard layout (I suggest the “euro
on 5”), and choose your desktop environment. After I chose GNOME, I also
added Firefox and the SSH Service. Finally, a ZFS option is presented—enable it
(Figure 2).

As Figure 3 shows, I configured two SATA drives in a zpool mirror. I named the
pool “root”, which may have caused an error at first boot. Note also the 4k block
size toggle—this is a performance-related setting that might be advisable for
some configurations and usage patterns.

The next pages prompt for the final confirmation before the selected drives are
wiped, after which you will be prompted to create a default user.

While the installer is running, you can examine the zpool. After opening a terminal and

Figure 2. Toggle ZFS

http://www.linuxjournal.com

144 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

running sudo sh, I found the following information about the ZFS configuration:

sh-4.4# zpool history
History for 'root': 2017-09-30 16:10:28
zpool create -f -m /install root mirror /dev/sda2 /dev/sdb
zpool set bootfs=root root
zpool set cachefile=/etc/zfs/zpool.cache root
zfs create -V 2G root/swap
zfs set com.sun:auto-snapshot=false root/swap
zfs set sync=always root/swap
zpool export -f root
zpool import -f -d /dev/disk/by-id -R /install 13754361671922204858

Note that /dev/sda2 has been mirrored to /dev/sdb, showing that Antergos has installed a
zpool on an MBR partition. More important, these drives are not configured identically.

Figure 3. Configure the zpool

http://www.linuxjournal.com

145 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

This is not a true redundant mirror with the ability to boot from either drive.

After fetching and installing the installation packages, Antergos will build zfs.ko. You
can see the calls to gcc if you run the top command in a terminal window.

My installation session completed normally, and the system rebooted. GRUB presented
me with the Antergos boot splash, but after booting, I was thrown into single-user mode:

starting version 234
ERROR: resume: no device specified for hibernation
ZFS: Unable to import pool root.
cannot import 'root': pool was previously in use from another system.
Last accessed by <unknown> (hostid=0) at Tue Oct 3 00:06:34 2017
The pool can be imported, use 'zpool import -f' to import the pool.
ERROR: Failed to mount the real root device.

Figure 4. Building ZFS

http://www.linuxjournal.com

146 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

Bailing out, you are on your own. Good luck.

sh: can't access tty; job control turned off

[rootfs]# zpool import -f root
cannot mount '/': directory is not empty
[rootfs]# zfs create root/hold
[rootfs]# cat /dev/vcs > /hold/vcs.txt

The zpool import error above also was encountered when the FUSE pool was
imported by the native driver. I ran the force import (zpool import -f root),
which succeeded, then created a new dataset and copied the terminal to it, so you
can see the session here. After a Ctrl-Alt-Delete, the system booted normally. Naming
the zpool “root” in the installer may have caused this problem.

My test system does not have ECC memory, so I attempted to adjust the
undocumented kernel parameter below, followed by a reboot:

echo options zfs zfs_flags=0x10 >> /etc/modprobe.d/zfs.conf

After the test system came up, I checked the flags and found that the ECC memory
feature had not been set. I set it manually, then ran a scrub:

cat /sys/module/zfs/parameters/zfs_flags
0

echo 0x10 > /sys/module/zfs/parameters/zfs_flags

cat /sys/module/zfs/parameters/zfs_flags
16

zpool scrub root

http://www.linuxjournal.com

147 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

zpool status root
 pool: root
 state: ONLINE
 scan: scrub in progress since Sun Oct 1 12:08:50 2017
 251M scanned out of 5.19G at 25.1M/s, 0h3m to go
 0B repaired, 4.72% done
config:

 NAME STATE READ WRITE CKSUM
 root ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 wwn-0x5000cca20cda462e-part2 ONLINE 0 0 0
 wwn-0x5000c5001a0d9823 ONLINE 0 0 0

errors: No known data errors

I also found that the kernel and initrd do not incorporate version numbers in their
filenames, indicating that an upgrade may overwrite them. It likely will be wise to copy
them to alternate locations within boot to ensure that a fallback kernel is available
(this would need extra menu entries in GRUB):

ls -l /boot
-rw-r--r-- 1 root root 26729353 Sep 30 17:25 initramfs-linux-fallback.img
-rw-r--r-- 1 root root 9225042 Sep 30 17:24 initramfs-linux.img
-rw-r--r-- 1 root root 5474064 Sep 21 13:34 vmlinuz-linux

You can continue your investigation into the Antergos zpool mirror by probing the
drives with fdisk:

sh-4.4# fdisk -l /dev/sda
Disk /dev/sda: 232.9 GiB, 250059350016 bytes, 488397168 sectors
Disklabel type: dos

http://www.linuxjournal.com

148 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1048575 1046528 511M 83 Linux
/dev/sda2 1048576 488397167 487348592 232.4G 83 Linux

sh-4.4# fdisk -l /dev/sdb
Disk /dev/sdb: 149 GiB, 160000000000 bytes, 312500000 sectors
Disklabel type: gpt

Device Start End Sectors Size Type
/dev/sdb1 2048 312481791 312479744 149G Solaris /usr & Apple ZFS
/dev/sdb9 312481792 312498175 16384 8M Solaris reserved 1

Antergos appears to be playing fast and loose with the partition types. You also can
see that the /boot partition is a non-redundant ext4:

grep -v ^# /etc/fstab
UUID=f9fc... /boot ext4 defaults,relatime,data=ordered 0 0
/dev/zvol/root/swap swap swap defaults 0 0

df|awk 'NR==1||/boot/'
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 498514 70732 418454 15% /boot

Antergos is not configuring a completely fault-tolerant drive mirror, and this is a
known problem. The ext4 partition holding the kernel is a single point of failure,
apparently required for GRUB. In the event of the loss of /boot, the Live ISO could
be used to access the zpool, but restoring full system availability would require
much more effort. The same likely will apply to raidz.

Conclusion
ZFS is the filesystem that is “often imitated, never duplicated”.

https://github.com/Antergos/Cnchi/issues/569
http://www.linuxjournal.com

149 | March 2018 | http://www.linuxjournal.com

ZFS FOR LINUX

The main contenders for ZFS functionality appear to be Btrfs, Apple APFS and
Microsoft’s ReFS. After many years of Btrfs development, it still lacks performance
and maturity (“we are still refusing to support ‘Automatic Defragmentation’, ‘In-
band Deduplication’ and higher RAID levels, because the quality of these options is
not where it ought to be”). Apple very nearly bundled ZFS into OS X, but backed
out and produced APFS instead. Microsoft is also trying to create a next-generation
filesystem named ReFS, but in doing so it is once again proving Henry Spencer’s
famous quote, “Those who do not understand Unix are condemned to reinvent it,
poorly.” ReFS will lack compression, deduplication and copy-on-write snapshots.

All of us have critical data that we do not wish to lose. ZFS is the only filesystem option
that is stable, protects our data, is proven to survive in most hostile environments and
has a lengthy usage history with well understood strengths and weaknesses. Although
many Linux administrators who need its features likely will load ZFS, the installation and
maintenance tools have obvious shortcomings that can trap the unwary.

It is time once again to rely on Oracle’s largesse and ask Oracle to open the ZFS
filesystem fully to Linux for the benefit of the community. This will solve many
problems, including Oracle’s, and it will engender goodwill in the Linux community
that, at least from a filesystem perspective, is sorely lacking.

Disclaimer
The views and opinions expressed in this article are those of the author and do not
necessarily reflect those of Linux Journal. ◾

Charles Fisher has an electrical engineering degree from the University of Iowa and works as a systems and database administrator for
a Fortune 500 mining and manufacturing corporation.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://blog.pgaddict.com/posts/friends-dont-let-friends-use-btrfs-for-oltp
https://blog.pgaddict.com/posts/friends-dont-let-friends-use-btrfs-for-oltp
https://arstechnica.com/gadgets/2016/06/zfs-the-other-new-apple-file-system-that-almost-was-until-it-wasnt
https://en.wikipedia.org/wiki/Apple_File_System
https://en.wikipedia.org/wiki/ReFS
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

150 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

Custom Embedded
Linux Distributions
The proliferation of inexpensive IoT boards means the time has
come to gain control not only of applications but also the entire
software platform. So, how do you build a custom distribution
with cross-compiled applications targeted for a specific
purpose? As Michael J. Hammel explains here, it’s not as hard
as you might think.

By Michael J. Hammel

Why Go Custom?
In the past, many embedded projects used off-the-shelf distributions and stripped
them down to bare essentials for a number of reasons. First, removing unused
packages reduced storage requirements. Embedded systems are typically shy of large
amounts of storage at boot time, and the storage available, in non-volatile memory,
can require copying large amounts of the OS to memory to run. Second, removing
unused packages reduced possible attack vectors. There is no sense hanging on to
potentially vulnerable packages if you don’t need them. Finally, removing unused
packages reduced distribution management overhead. Having dependencies between
packages means keeping them in sync if any one package requires an update from the
upstream distribution. That can be a validation nightmare.

Yet, starting with an existing distribution and removing packages isn’t as easy as it
sounds. Removing one package might break dependencies held by a variety of other
packages, and dependencies can change in the upstream distribution management.
Additionally, some packages simply cannot be removed without great pain due to
their integrated nature within the boot or runtime process. All of this takes control of

http://www.linuxjournal.com

151 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

the platform outside the project and can lead to unexpected delays in development.

A popular alternative is to build a custom distribution using build tools available
from an upstream distribution provider. Both Gentoo and Debian provide options
for this type of bottom-up build. The most popular of these is probably the Debian
debootstrap utility. It retrieves prebuilt core components and allows users to cherry-
pick the packages of interest in building their platforms. But, debootstrap originally
was only for x86 platforms. Although there are ARM (and possibly other) options
now, debootstrap and Gentoo’s catalyst still take dependency management away from
the local project.

Some people will argue that letting someone else manage the platform software
(like Android) is much easier than doing it yourself. But, those distributions are
general-purpose, and when you’re sitting on a lightweight, resource-limited IoT
device, you may think twice about any any advantage that is taken out of your hands.

System Bring-Up Primer
A custom Linux distribution requires a number of software components. The first is
the toolchain. A toolchain is a collection of tools for compiling software, including
(but not limited to) a compiler, linker, binary manipulation tools and standard C
library. Toolchains are built specifically for a target hardware device. A toolchain
built on an x86 system that is intended for use with a Raspberry Pi is called a cross-
toolchain. When working with small embedded devices with limited memory and
storage, it’s always best to use a cross-toolchain. Note that even applications written
for a specific purpose in a scripted language like JavaScript will need to run on a
software platform that needs to be compiled with a cross-toolchain.

The cross-toolchain is used to build software components for the target hardware.
The first component needed is a bootloader. When power is applied to a board, the
processor (depending on design) attempts to jump to a specific memory location
to start running software. That memory location is where a bootloader is stored.
Hardware can have a built-in bootloader that can be run directly from its storage
location or it may be copied into memory first before it is run. There also can be

http://www.linuxjournal.com

152 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

multiple bootloaders. A first-stage bootloader would reside on the hardware in NAND
or NOR flash, for example. Its sole purpose would be to set up the hardware so a
second-stage bootloader, such as one stored on an SD card, can be loaded and run.

Bootloaders have enough knowledge to get the hardware to the point where it can
load Linux into memory and jump to it, effectively handing control over to Linux.
Linux is an operating system. This means that, by design, it doesn’t actually do anything
other than monitor the hardware and provide services to higher layer software—aka
applications. The Linux kernel often is accompanied by a variety of firmware blobs.

Figure 1. Compile Dependencies and Boot Order

https://www.kernel.org/
http://www.linuxjournal.com

153 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

These are software objects that have been precompiled, often containing proprietary
IP (intellectual property) for devices used with the hardware platform. When building
a custom distribution, it may be necessary to acquire any firmware blobs not provided
by the Linux kernel source tree before beginning compilation of the kernel.

Applications are stored in the root filesystem. The root filesystem is constructed by
compiling and collecting a variety of software libraries, tools, scripts and configuration
files. Collectively, these all provide the services, such as network configuration and
USB device mounting, required by applications the project will run.

In summary, a complete system build requires the following components:

1. A cross-toolchain.

2. One or more bootloaders.

3. The Linux kernel and associated firmware blobs.

4. A root filesystem populated with libraries, tools and utilities.

5. Custom applications.

Start with the Right Tools
The components of the cross-toolchain can be built manually, but it’s a complex
process. Fortunately, tools exist that make this process easier. The best of them is
probably Crosstool-NG. This project utilizes the same kconfig menu system used
by the Linux kernel to configure the bits and pieces of the toolchain. The key to
using this tool is finding the correct configuration items for the target platform. This
typically includes the following items:

1. The target architecture, such as ARM or x86.

2. Endianness: little (typically Intel) or big (typically ARM or others).

http://crosstool-ng.github.io/
http://www.linuxjournal.com

154 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

3. CPU type as it’s known to the compiler, such as GCC’s use of either -mcpu or
--with-cpu.

4. The floating point type supported, if any, by the CPU, such as GCC’s use of either
-mfpu or --with-fpu.

5. Specific version information for the binutils package, the C library and the C compiler.

The first four are typically available from the processor maker’s documentation. It
can be hard to find these for relatively new processors, but for the Raspberry Pi or
BeagleBoards (and their offspring and off-shoots), you can find the information
online at places like the Embedded Linux Wiki.

The versions of the binutils, C library and C compiler are what will separate the
toolchain from any others that might be provided from third parties. First, there are
multiple providers of each of these things. Linaro provides bleeding-edge versions for
newer processor types, while working to merge support into upstream projects like
the GNU C Library. Although you can use a variety of providers, you may want to stick

Figure 2. Crosstool-NG Configuration Menu

https://elinux.org/Main_Page
http://www.linuxjournal.com

155 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

to the stock GNU toolchain or the Linaro versions of the same.

Another important selection in Crosstool-NG is the version of the Linux kernel. This
selection gets headers for use with various toolchain components, but it is does not
have to be the same as the Linux kernel you will boot on the target hardware. It’s
important to choose a kernel that is not newer than the target hardware’s kernel.
When possible, pick a long-term support kernel that is older than the kernel that will
be used on the target hardware.

For most developers new to custom distribution builds, the toolchain build is the
most complex process. Fortunately, binary toolchains are available for many target
hardware platforms. If building a custom toolchain becomes problematic, search
online at places like the Embedded Linux Wiki for links to prebuilt toolchains.

Booting Options
The next component to focus on after the toolchain is the bootloader. A bootloader
sets up hardware so it can be used by ever more complex software. A first-stage
bootloader is often provided by the target platform maker, burned into on-hardware
storage like an EEPROM or NOR flash. The first-stage bootloader will make it possible
to boot from, for example, an SD card. The Raspberry Pi has such a bootloader, which
makes creating a custom bootloader unnecessary.

Despite that, many projects add a secondary bootloader to perform a variety of tasks.
One such task could be to provide a splash animation without using the Linux kernel
or userspace tools like plymouth. A more common secondary bootloader task is to
make network-based boot or PCI-connected disks available. In those cases, a tertiary
bootloader, such as GRUB, may be necessary to get the system running.

Most important, bootloaders load the Linux kernel and start it running. If the first-
stage bootloader doesn’t provide a mechanism for passing kernel arguments at boot
time, a second-stage bootloader may be necessary.

A number of open-source bootloaders are available. The U-Boot project often is used

https://elinux.org/Main_Page
https://www.denx.de/wiki/U-Boot
http://www.linuxjournal.com

156 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

for ARM platforms like the Raspberry Pi. CoreBoot typically is used for x86 platform
like the Chromebook. Bootloaders can be very specific to target hardware. The
choice of bootloader will depend on overall project requirements and target hardware
(search for lists of open-source bootloaders online).

Now Bring the Penguin
The bootloader will load the Linux kernel into memory and start it running. Linux is
like an extended bootloader: it continues hardware setup and prepares to load higher-
level software. The core of the kernel will set up and prepare memory for sharing
between applications and hardware, prepare task management to allow multiple
applications to run at the same time, initialize hardware components that were not
configured by the bootloader or were configured incompletely and begin interfaces
for human interaction. The kernel may not be configured to do this on its own,
however. It may include an embedded lightweight filesystem, known as the initramfs
or initrd, that can be created separately from the kernel to assist in hardware setup.

Another thing the kernel handles is downloading binary blobs, known generically
as firmware, to hardware devices. Firmware is pre-compiled object files in formats
specific to a particular device that is used to initialize hardware in places that the
bootloader and kernel cannot access. Many such firmware objects are available from
the Linux kernel source repositories, but many others are available only from specific
hardware vendors. Examples of devices that often provide their own firmware include
digital TV tuners or WiFi network cards.

Firmware may be loaded from the initramfs or may be loaded after the kernel
starts the init process from the root filesystem. However, creating the kernel often
will be the process where obtaining firmware will occur when creating a custom
Linux distribution.

Lightweight Core Platforms
The last thing the Linux kernel does is to attempt to run a specific program called the
init process. This can be named init or linuxrc, or the name of the program can be
passed to the kernel by the bootloader. The init process is stored in a filesystem that

http://www.linuxjournal.com

157 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

the kernel can access. In the case of the initramfs, the filesystem is stored in memory
(either by the kernel itself or by the bootloader placing it there). But the initramfs
is not typically complete enough to run more complex applications. So another
filesystem, known as the root filesystem, is required.

The initramfs filesystem can be built using the Linux kernel itself, but more commonly,
it is created using a project called BusyBox. BusyBox combines a collection of GNU
utilities, such as grep or awk, into a single binary in order to reduce the size of the
filesystem itself. BusyBox often is used to jump-start the root filesystem’s creation.

But, BusyBox is purposely lightweight. It isn’t intended to provide every tool that a
target platform will need, and even those it does provide can be feature-reduced.
BusyBox has a sister project known as Buildroot, which can be used to get a complete
root filesystem, providing a variety of libraries, utilities and scripting languages.
Like Crosstool-NG and the Linux kernel, both BusyBox and Buildroot allow custom
configuration using the kconfig menu system. More important, the Buildroot system
handles dependencies automatically, so selection of a given utility will guarantee that
any software it requires also will be built and installed in the root filesystem.

Figure 3. Buildroot Configuration Menu

https://busybox.net/
https://buildroot.org/
http://www.linuxjournal.com

158 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

Buildroot can generate a root filesystem archive in a variety of formats. However,
it is important to note that the filesystem only is archived. Individual utilities and
libraries are not packaged in either Debian or RPM formats. Using Buildroot will
generate a root filesystem image, but its contents are not managed packages. Despite
this, Buildroot does provide support for both the opkg and rpm package managers.
This means custom applications that will be installed on the root filesystem can be
package-managed, even if the root filesystem itself is not.

Cross-Compiling and Scripting
One of Buildroot’s features is the ability to generate a staging tree. This directory
contains libraries and utilities that can be used to cross-compile other applications.
With a staging tree and the cross toolchain, it becomes possible to compile additional
applications outside Buildroot on the host system instead of on the target platform.
Using rpm or opkg, those applications then can be installed to the root filesystem on
the target at runtime using package management software.

Most custom systems are built around the idea of building applications with scripting
languages. If scripting is required on the target platform, a variety of choices are
available from Buildroot, including Python, PHP, Lua and JavaScript via Node.js.
Support also exists for applications requiring encryption using OpenSSL.

What’s Next
The Linux kernel and bootloaders are compiled like most applications. Their build
systems are designed to build a specific bit of software. Crosstool-NG and Buildroot
are metabuilds. A metabuild is a wrapper build system around a collection of
software, each with their own build systems. Alternatives to these include Yocto
and OpenEmbedded. The benefit of Buildroot is the ease with which it can be
wrapped by an even higher-level metabuild to automate customized Linux distribution
builds. Doing this opens the option of pointing Buildroot to project-specific cache
repositories. Using cache repositories can speed development and offers snapshot
builds without worrying about changes to upstream repositories.

An example implementation of a higher-level build system is PiBox. PiBox is a

https://www.yoctoproject.org/
https://www.openembedded.org/wiki/Main_Page
https://www.piboxproject.com/
http://www.linuxjournal.com

159 | March 2018 | http://www.linuxjournal.com

CUSTOM EMBEDDED LINUX DISTRIBUTIONS

metabuild wrapped around all of the tools discussed in this article. Its purpose is
to add a common GNU Make target construction around all the tools in order to
produce a core platform on which additional software can be built and distributed.
The PiBox Media Center and kiosk projects are implementations of application-layer
software installed on top of the core platform to produce a purpose-built platform.
The Iron Man project is intended to extend these applications for home automation,
integrated with voice control and IoT management.

But PiBox is nothing without these core software tools and could never run without
an in-depth understanding of a complete custom distribution build process. And,
PiBox could not exist without the long-term dedication of the teams of developers for
these projects who have made custom-distribution-building a task for the masses. ◾

Michael J. Hammel is a Software Engineer for NetApp living with his wife Brinda and two Golden Retrievers in Broomfield, Colorado,
USA. When he isn’t working on embedded systems or other geekery, he likes to camp, walk his dogs around the park, and drink tea with
his wife and revel in the joy of his daughter’s success. He has written more than 100 articles for numerous online and print magazines
and is the author of four books on GIMP, the GNU Image Manipulation Program.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://redmine.graphics-muse.org/projects/ironman/wiki/Getting_Started
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

160 | March 2018 | http://www.linuxjournal.com

RASPBERRY PI ALTERNATIVES

Raspberry Pi
Alternatives
A look at some of the many interesting Raspberry Pi competitors.

By Kyle Rankin

The phenomenon behind the Raspberry Pi computer series has been pretty amazing. It’s
obvious why it has become so popular for Linux projects—it’s a low-cost computer that’s
actually quite capable for the price, and the GPIO pins allow you to use it in a number of
electronics projects such that it starts to cross over into Arduino territory in some cases.
Its overall popularity has spawned many different add-ons and accessories, not to mention
step-by-step guides on how to use the platform. I’ve personally written about Raspberry Pis
often in this space, and in my own home, I use one to control a beer fermentation fridge,
one as my media PC, one to control my 3D printer and one as a handheld gaming device.

The popularity of the Raspberry Pi also has spawned competition, and there are all kinds
of other small, low-cost, Linux-powered Raspberry Pi-like computers for sale—many of
which even go so far as to add “Pi” to their names. These computers aren’t just clones,
however. Although some share a similar form factor to the Raspberry Pi, and many also
copy the GPIO pinouts, in many cases, these other computers offer features unavailable
in a traditional Raspberry Pi. Some boards offer SATA, Wi-Fi or Gigabit networking;
others offer USB3, and still others offer higher-performance CPUs or more RAM. When
you are choosing a low-power computer for a project or as a home server, it pays to be
aware of these Raspberry Pi alternatives, as in many cases, they will perform much better.
So in this article, I discuss some alternatives to Raspberry Pis that I’ve used personally,
their pros and cons, and then provide some examples of where they work best.

Banana Pi
I’ve mentioned the Banana Pi before in past articles (see “Papa’s Got a Brand New

http://www.linuxjournal.com/content/papas-got-brand-new-nas
http://www.linuxjournal.com

161 | March 2018 | http://www.linuxjournal.com

RASPBERRY PI ALTERNATIVES

NAS” in the September 2016 issue and “Banana Backups” in the September 2017
issue), and it’s a great choice when you want a board with a similar form factor,
similar CPU and RAM specs, and a similar price (~$30) to a Raspberry Pi but need
faster I/O. The Raspberry Pi product line is used for a lot of home server projects,
but it limits you to 10/100 networking and a USB2 port for additional storage. Where
the Banana Pi product line really shines is in the fact that it includes both a Gigabit
network port and SATA port, while still having similar GPIO expansion options and
running around the same price as a Raspberry Pi.

Before I settled on an Odroid XU4 for my home NAS (more on that later), I first
experimented with a cluster of Banana Pis. The idea was to attach a SATA disk to each
Banana Pi and use software like Ceph or GlusterFS to create a storage cluster shared
over the network. Even though any individual Banana Pi wasn’t necessarily that fast,
considering how cheap they are in aggregate, they should be able to perform reasonably
well and allow you to expand your storage by adding another disk and another Banana Pi.
In the end, I decided to go a more traditional and simpler route with a single server and
software RAID, and now I use one Banana Pi as an image gallery server. I attached a 2.5”
laptop SATA drive to the other and use it as a local backup server running BackupPC. It’s
a nice solution that takes up almost no space and little power to run.

Orange Pi Zero
I was really excited when I first heard about the Raspberry Pi Zero project. I couldn’t
believe there was such a capable little computer for only $5, and I started imagining
all of the cool projects I could use one for around the house. That initial excitement
was dampened a bit by the fact that they sold out quickly, and just about every vendor
settled into the same pattern: put standalone Raspberry Pi Zeros on backorder but
have special $20 starter kits in stock that include various adapter cables, a micro
SD card and a plastic case that I didn’t need. More than a year after the release, the
situation still remains largely the same. Although I did get one Pi Zero and used it for a
cool Adafruit “Pi Grrl Zero” gaming project, I had to put the rest of my ideas on hold,
because they just never seemed to be in stock when I wanted them.

The Orange Pi Zero was created by the same company that makes the entire line of

http://www.linuxjournal.com/content/papas-got-brand-new-nas
http://www.linuxjournal.com/content/banana-backups
http://www.linuxjournal.com

162 | March 2018 | http://www.linuxjournal.com

RASPBERRY PI ALTERNATIVES

Orange Pi computers that compete with the Raspberry Pi. The main thing that makes
the Orange Pi Zero shine in my mind is that they have a small, square form factor that is
wider than a Raspberry Pi Zero but not as long. It also includes a Wi-Fi card like the more
expensive Raspberry Pi Zero W, and it runs between $6 and $9, depending on whether
you opt for 256MB of RAM or 512MB of RAM. More important, they are generally in
stock, so there’s no need to sit on a backorder list when you have a fun project in mind.

The Orange Pi Zero boards themselves are pretty capable. Out of the box, they
include a quad-core ARM CPU, Wi-Fi (as I mentioned before), along with a 10/100
network port and USB2. They also include Raspberry-Pi-compatible GPIO pins, but
even more interesting is that there is a $9 “NAS” expansion board for it that mounts
to its 13-pin header and provides extra USB2 ports, a SATA and mSATA port, along
with an IR and audio and video ports, which makes it about as capable as a more

Figure 1. An Orange Pi Zero (left) and an Espressobin (right)

http://www.linuxjournal.com

163 | March 2018 | http://www.linuxjournal.com

RASPBERRY PI ALTERNATIVES

expensive Banana Pi board. Even without the expansion board, this would make a nice
computer you could sit anywhere within range of your Wi-Fi and run any number of
services. The main downside is you are limited to composite video, so this isn’t the
best choice for gaming or video-based projects.

Although Orange Pi Zeros are capable boards in their own right, what makes them
particularly enticing to me is that they are actually available when you want them, unlike
some of the other sub-$10 boards out there. There’s nothing worse than having a cool idea
for a cheap home project and then having to wait for a board to come off backorder.

Odroid XU4
When I was looking to replace my rack-mounted NAS at home, I first looked at all of
the Raspberry Pi options, including Banana Pi and other alternatives, but none of them
seemed to have quite enough horsepower for my needs. I needed a machine that not
only offered Gigabit networking to act as a NAS, but one that had high-speed disk I/O as
well. The Odroid XU4 fit the bill with its eight-core ARM CPU, 2GB RAM, Gigabit network
and USB3 ports. Although it was around $75 (almost twice the price of a Raspberry Pi),
it was a much more capable computer all while being small and low-power.

The entire Odroid product line is a good one to consider if you want a low-power home
server but need more resources than a traditional Raspberry Pi can offer and are willing
to spend a little bit extra for the privilege. In addition to a NAS, the Odroid XU4, with its
more powerful CPU and extra RAM, is a good all-around server for the home. The USB3
port means you have a lot of storage options should you need them.

Espressobin
Although the Odroid XU4 is a great home server, I still sometimes can see that
it gets bogged down in disk and network I/O compared to a traditional higher-
powered server. Some of this might be due to the chips that were selected for
the board, and perhaps some of it has to do with the fact that I’m using both disk
encryption and software RAID over USB3. In either case, I started looking for
another option to help take a bit of the storage burden off this server, and I came
across the Espressobin board.

http://www.linuxjournal.com

164 | March 2018 | http://www.linuxjournal.com

RASPBERRY PI ALTERNATIVES

The Espressobin is a $50 board that launched as a popular Indiegogo campaign and is
now a shipping product that you can pick up in a number of places, including Amazon.
Although it costs a bit more than a Raspberry Pi 3, it includes a 64-bit dual-core
ARM Cortex A53 at 1.2GHz, 1–2Gb of RAM (depending on the configuration), three
Gigabit network ports with a built-in switch, a SATA port, a USB3 port, a mini-PCIe
port, plus a number of other options, including two sets of GPIO headers and a nice
built-in serial console running on the micro-USB port.

The main benefit to the Espressobin is the fact that it was designed by Marvell with
chips that actually can use all of the bandwidth that the board touts. In some other
boards, often you’ll find a SATA2 port that’s hanging off a USB2 interface or other
architectural hacks that, although they will let you connect a SATA disk or Gigabit
networking port, it doesn’t mean you’ll get the full bandwidth the spec claims.
Although I intend to have my own Espressobin take over home NAS duties, it also
would make a great home gateway router, general-purpose server or even a Wi-Fi
access point, provided you added the right Wi-Fi card.

Conclusion
A whole world of alternatives to Raspberry Pis exists—this list covers only some of the
ones I’ve used myself. I hope it has encouraged you to think twice before you default
to a Raspberry Pi for your next project. Although there’s certainly nothing wrong with
Raspberry Pis, there are several small computers that run Linux well and, in many
cases, offer better hardware or other expansion options beyond the capabilities of a
Raspberry Pi for a similar price. ◾

Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux
Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference,
Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O’Reilly books. Rankin speaks frequently on
security and open-source software including at BsidesLV, O’Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and
Penguicon. You can follow him at @kylerankin.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

165 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

Getting Started
with ncurses
How to use curses to draw to the terminal screen.

By Jim Hall

While graphical user interfaces are very cool, not every program needs to
run with a point-and-click interface. For example, the venerable vi editor
ran in plain-text terminals long before the first GUI.

The vi editor is one example of a screen-oriented program that draws in “text” mode,
using a library called curses, which provides a set of programming interfaces to
manipulate the terminal screen. The curses library originated in BSD UNIX, but Linux
systems provide this functionality through the ncurses library.

[For a “blast from the past” on ncurses, see “ncurses: Portable Screen-Handling
for Linux”, September 1, 1995, by Eric S. Raymond.]

Creating programs that use curses is actually quite simple. In this article, I show an
example program that leverages curses to draw to the terminal screen.

Sierpinski’s Triangle
One simple way to demonstrate a few curses functions is by generating Sierpinski’s
Triangle. If you aren’t familiar with this method to generate Sierpinski’s Triangle, here
are the rules:

1. Set three points that define a triangle.

2. Randomly select a point anywhere (x,y).

http://www.linuxjournal.com/article/1124
http://www.linuxjournal.com/article/1124
http://www.linuxjournal.com

166 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

Then:

1. Randomly select one of the triangle’s points.

2. Set the new x,y to be the midpoint between the previous x,y and the triangle point.

3. Repeat.

So with those instructions, I wrote this program to draw Sierpinski’s Triangle to the
terminal screen using the curses functions:

 1 /* triangle.c */
 2
 3 #include <curses.h>
 4 #include <stdlib.h>
 5
 6 #include "getrandom_int.h"
 7
 8 #define ITERMAX 10000
 9
 10 int main(void)
 11 {
 12 long iter;
 13 int yi, xi;
 14 int y[3], x[3];
 15 int index;
 16 int maxlines, maxcols;
 17
 18 /* initialize curses */
 19
 20 initscr();
 21 cbreak();
 22 noecho();

http://www.linuxjournal.com

167 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

 23
 24 clear();
 25
 26 /* initialize triangle */
 27
 28 maxlines = LINES - 1;
 29 maxcols = COLS - 1;
 30
 31 y[0] = 0;
 32 x[0] = 0;
 33
 34 y[1] = maxlines;
 35 x[1] = maxcols / 2;
 36
 37 y[2] = 0;
 38 x[2] = maxcols;
 39
 40 mvaddch(y[0], x[0], '0');
 41 mvaddch(y[1], x[1], '1');
 42 mvaddch(y[2], x[2], '2');
 43
 44 /* initialize yi,xi with random values */
 45
 46 yi = getrandom_int() % maxlines;
 47 xi = getrandom_int() % maxcols;
 48
 49 mvaddch(yi, xi, '.');
 50
 51 /* iterate the triangle */
 52
 53 for (iter = 0; iter < ITERMAX; iter++) {
 54 index = getrandom_int() % 3;
 55

http://www.linuxjournal.com

168 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

 56 yi = (yi + y[index]) / 2;
 57 xi = (xi + x[index]) / 2;
 58
 59 mvaddch(yi, xi, '*');
 60 refresh();
 61 }
 62
 63 /* done */
 64
 65 mvaddstr(maxlines, 0, "Press any key to quit");
 66
 67 refresh();
 68
 69 getch();
 70 endwin();
 71
 72 exit(0);
 73 }

Let me walk through that program by way of explanation. First, the getrandom_int()
is my own wrapper to the Linux getrandom() system call, but it’s guaranteed to return
a positive integer value. Otherwise, you should be able to identify the code lines that
initialize and then iterate Sierpinski’s Triangle, based on the above rules. Aside from that,
let’s look at the curses functions I used to draw the triangle on a terminal.

Most curses programs will start with these four instructions. 1) The initscr()
function determines the terminal type, including its size and features, and sets up
the curses environment based on what the terminal can support. The cbreak()
function disables line buffering and sets curses to take one character at a time. The
noecho() function tells curses not to echo the input back to the screen, and the
clear() function clears the screen:

 20 initscr();

http://www.linuxjournal.com

169 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

 21 cbreak();
 22 noecho();
 23
 24 clear();

The program then sets a few variables to define the three points that define a triangle.
Note the use of LINES and COLS here, which were set by initscr(). These values
tell the program how many lines and columns exist on the terminal. Screen coordinates
start at zero, so the top-left of the screen is row 0, column 0. The bottom-right of the
screen is row LINES - 1, column COLS - 1. To make this easy to remember, my
program sets these values in the variables maxlines and maxcols, respectively.

Two simple methods to draw text on the screen are the addch() and addstr()
functions. To put text at a specific screen location, use the related mvaddch() and
mvaddstr() functions. My program uses these functions in several places. First, the
program draws the three points that define the triangle, labeled “0”, “1” and “2”:

 40 mvaddch(y[0], x[0], '0');
 41 mvaddch(y[1], x[1], '1');
 42 mvaddch(y[2], x[2], '2');

To draw the random starting point, the program makes a similar call:

 49 mvaddch(yi, xi, '.');

And to draw each successive point in Sierpinski’s Triangle iteration:

 59 mvaddch(yi, xi, '*');

When the program is done, it displays a helpful message at the lower-left corner of
the screen (at row maxlines, column 0):

 65 mvaddstr(maxlines, 0, "Press any key to quit");

http://www.linuxjournal.com

170 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

It’s important to note that curses maintains a version of the screen in memory
and updates the screen only when you ask it to. This provides greater performance,
especially if you want to display a lot of text to the screen. This is because curses
can update only those parts of the screen that changed since the last update. To
cause curses to update the terminal screen, use the refresh() function.

In my example program, I’ve chosen to update the screen after “drawing” each
successive point in Sierpinski’s Triangle. By doing so, users should be able to observe
each iteration in the triangle.

Before exiting, I use the getch() function to wait for the user to press a key. Then
I call endwin() to exit the curses environment and return the terminal screen to
normal control:

 69 getch();
 70 endwin();

Compiling and Sample Output
Now that you have your first sample curses program, it’s time to compile and run it.
Remember that Linux systems implement the curses functionality via the ncurses
library, so you need to link with -lncurses when you compile—for example:

$ ls
getrandom_int.c getrandom_int.h triangle.c

$ gcc -Wall -lncurses -o triangle triangle.c getrandom_int.c

Running the triangle program on a standard 80x24 terminal is not very interesting.
You just can’t see much detail in Sierpinski’s Triangle at that resolution. If you run
a terminal window and set a very small font size, you can see the fractal nature of
Sierpinski’s Triangle more easily. On my system, the output looks like Figure 1.

Despite the random nature of the iteration, every run of Sierpinski’s Triangle will look

http://www.linuxjournal.com

171 | March 2018 | http://www.linuxjournal.com

GETTING STARTED WITH ncurses

pretty much the same. The only difference will be where the first few points are drawn
to the screen. In this example, you can see the single dot that starts the triangle, near
point 1. It looks like the program picked point 2 next, and you can see the asterisk
halfway between the dot and the “2”. And it looks like the program randomly picked
point 2 for the next random number, because you can see the asterisk halfway
between the first asterisk and the “2”. From there, it’s impossible to tell how the
triangle was drawn, because all of the successive dots fall within the triangle area.

Starting to Learn ncurses
This program is a simple example of how to use the curses functions to draw
characters to the screen. You can do so much more with curses, depending on what
you need your program to do. In a follow up article, I will show how to use curses to
allow the user to interact with the screen. If you are interested in getting a head start
with curses, I encourage you to read Pradeep Padala’s “NCURSES Programming
HOWTO”, at the Linux Documentation Project. ◾

Jim Hall is an advocate for free and open-source software, best known for his
work on the FreeDOS Project, and he also focuses on the usability of open-source
software. Jim is the Chief Information Officer at Ramsey County, Minnesota.

Figure 1. Output of the triangle Program

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

172 | March 2018 | http://www.linuxjournal.com

DO I HAVE TO USE A FREE/OPEN SOURCE LICENSE?

Do I Have to
Use a Free/Open
Source License?
Open source? Proprietary? What license should I use to release
my software?

By VM (Vicky) Brasseur

A few weeks ago I ran into a neighbor, whom I’ll call Leo, while he was out taking his
dogs to the park. Leo stopped me to ask about some software he’s developing.

“Hey, you do open source stuff for companies, right?” Leo asked.

“Yeah, that’s my freelance business. Do you need some help with something?”

“Well”, he said, “I’m getting ready to release my software, and it’s time to start
thinking about a license. Which open source license should I use if I want people
to know it’s okay to use my software, but if they make money from it they have to
pay me?”

I blinked, stared at Leo for a moment, then answered, “None of them. No open
source licenses allow for that.”

“No, you see”, he continued, “this guy told me that there must be plenty of licenses
that will let me do this with my software.”

“Plenty of proprietary licenses, maybe”, I explained, “but no open source ones.

http://www.linuxjournal.com

173 | March 2018 | http://www.linuxjournal.com

DO I HAVE TO USE A FREE/OPEN SOURCE LICENSE?

According to Item 6 in the Open Source Definition, no open source license may
prevent someone from making money from software released under it. That’s
what you’re suggesting, and it’s not possible to do with an open source license.”

Leo did not seem pleased with this answer. “So what you’re saying”, he fretted, “is
that I can’t release my software at all!”

“No, no!” I assured him, “You definitely can release and distribute your software.
You’ll just have to get an intellectual property lawyer to help you write the
proprietary license you want, and maybe to help you release it under a dual license
(one open source and one proprietary).”

He nodded (not altogether happily), and headed off to the park with his now very
impatient dogs. I continued my walk, pondering what I’d just experienced.

The thing is, Leo was not the first person I’ve spoken to who assumed that software
had to be released under an open source license. I’ve had multiple conversations
with different people, all of whom had mentally equated “software license” with
“open source license.”

It’s easy to understand why. Of all software pursuits, only free and open source
software is defined purely in terms of its licenses. Without that license, a piece of
software cannot be either free or open. This leads to a greater focus on licensing
than for other types of software, which then itself gains a lot of mindshare. The
larger intellectual property concept of “licensing” becomes so closely associated
with “open source”, and is often the only context in which someone hears of
licensing, that people understandably start to assume that all licenses must
therefore be open source.

That, as we all probably already know, is not the case. The only licenses that can be
called “open source” are those that are reviewed and approved as such by the Open
Source Initiative (aka OSI). Its list of OSI-Approved licenses allows developers
to choose and apply a license without having to hire a lawyer. It also means that

https://opensource.org/osd-annotated
https://opensource.org/
https://opensource.org/
https://opensource.org/licenses
http://www.linuxjournal.com

174 | March 2018 | http://www.linuxjournal.com

DO I HAVE TO USE A FREE/OPEN SOURCE LICENSE?

companies no longer need to have their own lawyers review every single license
in every piece of software they use. Can you imagine how expensive it would be if
every company needed to do this? Aside from the legal costs, the duplication of
effort alone would lead to millions of dollars in lost productivity. While the OSI’s
other outreach and advocacy efforts are important, there’s no doubt that its
license approval process is a service that provides an outsized amount of value
for developers and companies alike.

OSI approves or rejects licenses as qualifying as “open source” by comparing them
to the Open Source Definition. A license must not violate any of the sections of
the definition in order to be added to the list of approved (and therefore open
source) licenses. Aside from the, “you can’t prevent people from making money
from it” precept mentioned above, other requirements contained in the Open
Source Definition include non-descrimination (you may not prevent certain
people or groups from using your software), that the license be technology
neutral, and of course, the requirements of the Four Freedoms as originally
defined by the Free Software Foundation. If you haven’t read the Open Source
Definition before (or not for many years), I encourage you to do it again now.
It’s an important and powerful work that is the foundation for much of how many
of us spend our days.

It’s worth stressing again that no license can be called an “open source” license
if it does not adhere to the Open Source Definition. Full stop. No exceptions. It’s
illogical to think that something that doesn’t meet the official definition of open
source could ever legitimately be called open source. Yet people try it every day,
mostly because they, like Leo, don’t know any better. Thankfully, there’s an easy way
to fix this. It’s called Education.

Basically, you have to choose from only two different types of licenses:

1. Free and open source: if you agree that the software you want to release
should obey the Open Source Definition, you should select one of the
OSI-approved open source licenses from the list it provides. You may still

https://opensource.org/osd-annotated
https://www.gnu.org/philosophy/free-sw.en.html
https://www.fsf.org/
https://opensource.org/licenses
http://www.linuxjournal.com

175 | March 2018 | http://www.linuxjournal.com

DO I HAVE TO USE A FREE/OPEN SOURCE LICENSE?

need an IP lawyer to help you make the correct license selection, but you’ll
need considerably less of that lawyer’s time than if you weren’t to use one of
those licenses.

2. Proprietary (and likely custom): if there are any parts of the Open Source
Definition that you don’t want to apply to the software you want to release,
you’ll still need a license, but it will have to be a proprietary one, likely custom-
written for your purposes. This absolutely requires an IP lawyer. Where licenses
are concerned, you should never roll your own. Copyright and licensing are
very complex legal issues that you should in no way undertake on your own
without professional assistance. Doing so puts yourself, your software and your
organisation at risk of large legal problems.

To be clear here: there is nothing wrong with using a proprietary license for the
software that keeps the lights on at your company (figuratively speaking). While I,
personally, would prefer everything be free and open, I also prefer that companies
remain solvent. To do that, it’s usually necessary for some software to remain
proprietary, if only for a while. It’s bordering on business malpractice to release
the “secret sauce” of your company’s product offering without a business model
that will allow the company to remain or become profitable. Once your company
has established itself and is secure in its market, only then should it consider
releasing its mission-critical software under an open source license (and I do hope
it does do so).

Companies like Amazon and Google can release critical infrastructure as open
source because they no longer really compete on product, they compete by having
scaled to a point that no newcomer to their product spaces could possibly replicate.
If tomorrow Amazon were to release the software for S3 under the GPLv3, it’s
unlikely that would at all impact Amazon’s profitability. The number of companies
that could take this code and spin up and scale their own product offering with it
and do so in a way that could compete with Amazon’s existing dominance and scale?
Vanishingly small, and those that could do it are unlikely to be interested in doing
such a thing anyway (or already have their own solutions).

http://www.linuxjournal.com

176 | March 2018 | http://www.linuxjournal.com

DO I HAVE TO USE A FREE/OPEN SOURCE LICENSE?

With open source as with all technical and business decisions: do not do something
simply because the big players do it. Unless your company has the advantages of
scale of an Amazon or a Google, please be very careful about open sourcing the
technology that pays the bills. Instead, hire a good intellectual property lawyer
and have that lawyer write you a proprietary license for the critical software that
you distribute. ◾

VM (aka Vicky Brasseur) spent most of her 20 years in the tech industry leading software development departments and teams,
and providing technical management and leadership consulting for small and medium businesses. Now she leverages nearly 30 years of
free and open source software experience and a strong business background to advise companies about free/open source, technology,
community, business, and the intersections between them.

She is the author of Forge Your Future with Open Source, the first book to detail how to contribute to free and open source software
projects. Think of it as the missing manual of open source contributions and community participation. The book is published by
The Pragmatic Programmers and is now available in an early release beta version. It’s available at https://fossforge.com.

Vicky is the proud winner of the Perl White Camel Award (2014) and the O’Reilly Open Source Award (2016). She’s a moderator
and author for opensource.com and a frequent and popular speaker at free/open source conferences and events. She blogs about
free/open source, business, and technical management at http://anonymoushash.vmbrasseur.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.vmbrasseur.com/services
https://www.vmbrasseur.com/services
https://pragprog.com/book/vbopens/forge-your-future-with-open-source
https://pragprog.com/
https://pragprog.com/book/vbopens/forge-your-future-with-open-source
https://fossforge.com/
http://anonymoushash.vmbrasseur.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

The Linux Journal
team would like to
extend our sincere
thanks to leading

VPN provider,
Private Internet

Access. Thank you
for supporting

and making
Linux Journal

possible.

See a full list of companies and projects Private Internet Access supports:
https://www.privateinternetaccess.com/pages/companies-we-sponsor

always use protection

https://www.privateinternetaccess.com/
https://www.privateinternetaccess.com/
https://www.privateinternetaccess.com/pages/companies-we-sponsor

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Looking Back:
What Was
Happening
Ten Years Ago?
That was then, this is now: what’s next for the
Open Source world?

by Glyn Moody

A decade passes so quickly. And yet, ten years for open source
is half its life. How have things changed in those ten years? So
much has happened in this fast-moving and exciting world, it’s
hard to remember. But we’re in luck. The continuing availability
of Linux Journal’s past issues and website means we have a kind
of time capsule that shows us how things were, and how we
saw them.

Ten years ago, I was writing a regular column for Linux Journal,
much like this one. Looking through the 80 or so posts from
that time reveals a world very different from the one we inhabit
today. The biggest change from then to now can be summed up
in a word: Microsoft. A decade back, Microsoft towered over
the world of computing like no other company. More important,
it (rightly) saw open source as a threat and took continuing,
wide-ranging action to weaken it in every way it could.

178 | March 2018 | http://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://opensource.com/article/18/2/open-source-20-years-and-counting
http://www.linuxjournal.com/blogs/glyn-moody
http://www.linuxjournal.com/blogs/glyn-moody
http://www.linuxjournal.com

179 | March 2018 | http://www.linuxjournal.com

OPEN SAUCE

Its general strategy was to spread FUD (fear, uncertainty and doubt). At every
turn, it sought to question the capability and viability of open source. It even tried to
convince the world that we no longer needed to talk about free software and open
source—anyone remember “mixed source”?

Alongside general mud-flinging, Microsoft’s weapon of choice to undermine and
thwart open source was a claim of massive patent infringement across the entire
ecosystem. The company asserted that the Linux kernel violated 42 of its patents; free
software graphical interfaces another 65; the OpenOffice.org suite of programs, 45;
and assorted other free software 83 more. The strategy was two-fold: first to squeeze
licensing fees from companies that were using open source, and second, perhaps
even more important, to paint open source as little more than a pale imitation of
Microsoft’s original and brilliant ideas.

The patent battle rumbled on for years. And although it did generate considerable
revenues for the company, it failed dismally in its aim to discredit free software.

But alongside the patent attack, there was one particular area where Microsoft
conducted perhaps its dirtiest campaign against openness and freedom. Although it’s
hard to believe this today, one of the fiercest battles ever fought between Microsoft
and the Open Source world was over the approval of the company’s OOXML
format (Office Open XML, the name of which was chosen to be confusingly close
to OpenOffice XML and later renamed OpenDocument Format or ODF) as an
open standard. As I wrote in May 2008 in a Linux Journal column titled “The Great
Besmirching”:

In the course of trying to force OOXML through the ISO fast-track process,
[Microsoft] has finally gone further and attacked the system itself; in the process it
has destroyed the credibility of the ISO, with serious knock-on consequences for the
whole concept of open standards.

OOXML was approved by the ISO, and it remains the dominant format for word
processing and spreadsheet files. Microsoft may have won that battle, but it lost the

http://www.linuxjournal.com/node/1000097
http://www.linuxjournal.com/content/why-microsoft-wants-us-get-all-mixed
http://www.linuxjournal.com/content/meeting-microsofts-patent-threat
http://www.businessinsider.com/microsoft-earns-2-billion-per-year-from-android-patent-royalties-2013-11
http://www.businessinsider.com/microsoft-earns-2-billion-per-year-from-android-patent-royalties-2013-11
http://officeopenxml.com/
https://www.openoffice.org/xml/general.html
http://opendocumentformat.org/aboutODF
http://www.linuxjournal.com/content/microsofts-great-besmirching
http://www.linuxjournal.com/content/microsofts-great-besmirching
http://www.linuxjournal.com

180 | March 2018 | http://www.linuxjournal.com

OPEN SAUCE

war. Although still a hugely profitable company, it is largely irrelevant in today’s key
markets—for smartphones, supercomputers, the Internet of Things, online search
and social media, all of which run on open-source code.

Another name figured quite prominently in my columns of ten years ago: Firefox.
Along with the Apache web server, it is one of open source’s great success stories,
taking on Microsoft’s slow and bloated Internet Explorer, and winning. At the time, it
seemed like Mozilla might be able to build on the success of Firefox to strengthen
the wider open-source ecosystem. Mozilla is still with us, and it’s doing rather well
financially, but it has had less success with its share of the web browser market. As
a graph on Wikipedia shows, Firefox’s ascent came to a halt around 2010, and its
market share has been in decline pretty much ever since. That’s not to say that Mozilla
is not important to the world of free software—partly because of its solid finances, it
does much valuable work in many related fields. But Firefox has become something of
a niche browser, used mostly by die-hard supporters.

As well as some serious missteps by Mozilla—moves to support building DRM into
the fabric of the web lost it many friends—Firefox’s fall was driven above all by the
rise of Chrome. Google’s browser was first released in September 2008, precisely
during the time I was writing my Linux Journal columns. It seemed an interesting
project, but few foresaw that it would come to dominate the browser market by such
a wide margin. Recent surveys put its share around 60%, with other players down in
the teens and below. It’s worrisome that Google’s effective monopoly seems to be
recapitulating the worst aspects of Microsoft’s Internet Explorer days, as we start to
see services and sites optimized for Chrome to the detriment of other browsers and
open standards.

In retrospect, the most striking absences from those ancient posts are the social-
networking companies. Although Facebook was launched in 2004 and Twitter in 2006,
and both were well known at the end of that decade, there was little sense that social
networks would come to dominate online activity as they do today (or to bring with
them a host of problems that go way beyond the technical realm). In a sense, this
particular aspect of digital technology has succeeded too well, forming a critical part

http://www.linuxjournal.com/content/how-can-we-harness-firefox-effect
http://www.linuxjournal.com/content/how-should-mozilla-execute-its-vision
https://www.recode.net/2016/7/7/12116296/marissa-mayer-deal-mozilla-yahoo-payment
https://www.recode.net/2016/7/7/12116296/marissa-mayer-deal-mozilla-yahoo-payment
https://en.wikipedia.org/wiki/File:Web_browser_usage_share,_May_2017.svg
https://www.defectivebydesign.org/tell-mozilla-keep-drm-out-of-firefox
https://www.privateinternetaccess.com/blog/2017/07/encrypted-media-extensions-copyright-drm-end-open-web
https://www.privateinternetaccess.com/blog/2017/07/encrypted-media-extensions-copyright-drm-end-open-web
https://www.theverge.com/2018/1/4/16805216/google-chrome-only-sites-internet-explorer-6-web-standards
http://www.linuxjournal.com

181 | March 2018 | http://www.linuxjournal.com

OPEN SAUCE

of modern life, but with pronounced negative aspects that are leading to something
of a backlash. What’s ironic is that both Facebook and Twitter are built largely on
open-source code, and yet they remain deeply proprietary in the way they control
access to people’s personal data. The lack of viable free software alternatives—despite
attempts to create them—is a major failure.

The other major challenge concerns the mobile space. Although I missed the future
dominance of Chrome, I was right about Android. Back in 2009, I wrote:

It already looks increasingly likely that the world of smartphones will be dominated
by two platforms: the iPhone and Android. If, as some believe, Google does
come out with its own branded mobile, this will give an even greater impetus to
Android’s uptake. But while the vast majority of its apps are closed source, they will
not help spread real user freedom or offer much of an alternative to Apple’s tightly
controlled approach.

The paucity of open-source apps on Google’s smartphone platform and the elements
of proprietary lock-in found in Android itself remain, a decade later, key problems that
the Free Software world still needs to address if it wants to become more relevant for
general users of mobile and online services. That’s one clear challenge, but where else
should the Open Source community be directing its efforts? What are the key trends
and technologies for the future that the Free Software world needs to recognize and
tackle? Please send your thoughts to ljeditor@linuxjournal.com, and then we can
come back in ten years to see who was right. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.nytimes.com/2018/02/04/technology/early-facebook-google-employees-fight-tech.html
https://www.theguardian.com/technology/2017/dec/22/tech-year-in-review-2017
http://www.linuxjournal.com/content/success-googles-android-threat-free-software
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

