
LINUX DISTRO ROUNDUP

 BUILD YOUR OWN

 CUSTOM DISTRO

 THE RICH DIVERSITY

OF DISTROS+

Review: elementary
5 “Juno”

Thoughts on
Open Core

Best of Linux
Marketing Campaigns

Since 1994: The original magazine of the Linux community

ISSUE 294 | JANUARY 2019
https://www.linuxjournal.com

https://www.linuxjournal.com

CONTENTS JANUARY 2019
ISSUE 294

2 | January 2019 | https://www.linuxjournal.com

73 The State of Desktop Linux 2019
 by Bryan Lunduke

 A snapshot of the current state of Desktop Linux at the start of
 2019―with comparison charts and a roundtable Q&A with the leaders
 of three top Linux distributions.

92 Linux and the Multiverse
 by Marcel Gagné

 A look at the rich diversity of Linux distributions.

104 Build a Custom Minimal Linux Distribution
 from Source, Part II
 by Petros Koutoupis

 Follow along with this step-by-step guide to creating your
 own distribution.

121 elementary 5 “Juno”
 by Bryan Lunduke

 A review of the elementary distribution and an interview with
 its founders.

72 DEEP DIVE:
 Distributions

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | January 2019 | https://www.linuxjournal.com

6 The Distribution Issue
 by Bryan Lunduke

10 From the Editor—Doc Searls
 Where There’s No Distance or Gravity

 UPFRONT
16 Best Linux Marketing Campaigns
 by Bryan Lunduke

20 Modeling the Entire Universe
 by Joey Bernard

26 Patreon and Linux Journal

27 Some Thoughts on Open Core
 by Kyle Rankin

30 Put Down the Pipe
 by Kyle Rankin

33 FOSS Project Spotlight: Mender.io, an Open-Source Over-the-Air
 Software Update Manager for IoT Devices
 by Ralph Nguyen

37 Reality 2.0: a Linux Journal Podcast

38 News Briefs

 COLUMNS
42 Kyle Rankin’s Hack and /
 Back to Basics: Sort and Uniq

48 Reuven M. Lerner’s At the Forge
 Python Testing with pytest: Fixtures and Coverage

54 Dave Taylor’s Work the Shell
 Converting Decimals to Roman Numerals with Bash

63 Zack Brown’s diff -u
 What’s New in Kernel Development

157 Glyn Moody’s Open Sauce
 IBM Began Buying Red Hat 20 Years Ago

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-281-944-5188.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | January 2019 | https://www.linuxjournal.com

 ARTICLE
138 A Use Case for Network Automation by Eric Pearce
 Use the Python Netmiko module to automate switches, routers and firewalls
 from multiple vendors.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Aaron Chantrill, Bellingham Linux Users Group;
Lawrence D’Oliveiro, Waikato Linux Users Group; Chris Ebenezer, Silicon Corridor Linux User Group;

David Egts, Akron Linux Users Group; Michael Fox, Peterborough Linux User Group;
Braddock Gaskill, San Gabriel Valley Linux Users’ Group; Roy Lindauer, Reno Linux Users Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com

Contact: Publisher Carlie Fairchild
Phone: +1-281-944-5188

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | January 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://blug.org/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://www.meetup.com/Akron-Linux-Users-Group/≠
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
https://www.linuxjournal.com/subscribe

6 | January 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...and
current Deputy Editor of Linux
Journal as well as host of the
(aptly named) Lunduke Show.

Do you remember your first distro?

By Bryan Lunduke

The first version of Linux I truly used, for any length of
time, was back at the end of the 1990s—in Ye Olden
Times, when 56k modems, 3.5” floppies and VGA CRT
monitors reigned supreme.

Linux itself had been a thing for a number of years by
that point—with both SUSE (then known as the gloriously
mixed-case and punctuation-filled S.u.S.E.) and Red Hat
doing good business supporting it—when I decided to
really give this “Free” operating system a try.

Because I’m a nerd. And that’s what we do.

I remember the day well. It was cold. It was rainy. And
I was taking an extended lunch break from my job at
Microsoft (seriously). My days—and, all too often,
nights—spent testing Windows NT 5 (before it was
renamed Windows 2000) had taken a toll. I had reached
peak “burn out”.

After a mildly rejuvenating, two-hour long, burger-eating
(and venting about our job) session with a co-worker,
we made our way to the big-box computer store close
to Microsoft’s main campus. Once inside, we bee-lined
it for the Operating System section (this was back when

THE DISTRIBUTIONS
ISSUE

https://www.linuxjournal.com

7 | January 2019 | https://www.linuxjournal.com

THE DISTRIBUTION ISSUE

computer stores had rows upon rows of actual boxes that contained actual physical
media, which, in turn, contained actual software).

Several versions of Windows were on display, and, lo and behold, right there next to
them, was S.u.S.E. Linux—in a box. I grabbed it immediately. It was heavy. There were
several CDs inside along with a manual (which would turn out to be necessary simply
to get the system to boot).

Fifteen minutes later, we were back in my office installing Linux on one of my little
Dell towers.

That’s right. My first full-time Linux machine? A Microsoft, company-issued work
computer. This was my way of “sticking it to the man”—and boy did it feel good.

Were there problems with my first foray into Linux? You bet. The sound card didn’t
work. Getting an X Server running (with any sort of GUI) was a mildly mystifying
process. And, heck, just getting the darn thing to boot took the better part of an
afternoon. But, even with those challenges, I was in love.

Thus, my 20-year long hobby of “installing every Linux distribution I can get my grubby
little hands on” was born—right there on Microsoft’s main campus, using funds I
earned from my job at Microsoft, on Microsoft-owned hardware, using Microsoft-
supplied electricity and company time.

Shh. Don’t tell Ballmer.

From that point onward, one of the things about Linux that always has made me smile
is the wide variety of distributions out there in the world. There seems to be one
custom-made for every man, woman and child on planet Earth.

In this issue of Linux Journal, Marcel Gagné takes a look at some of the more
interesting aspects of this in a lovely piece titled “Linux and the Multiverse”,
comparing the diverse world of Linux distros with the origins of our own, physical
universe. And the Multiverse—somehow, Hannah Montana Linux is part of that. It’ll
make sense when you read it.

https://www.linuxjournal.com

8 | January 2019 | https://www.linuxjournal.com

THE DISTRIBUTION ISSUE

Also in this issue, I describe sitting down with the project leaders of three
prominent Linux distributions—Debian, Fedora and elementary—to have a bit
of a round-table, Q&A-styled discussion about the broader Linux distribution
ecosystem, marketshare and the challenges we face. It’s truly fascinating
watching these three leaders of our industry present their—sometimes differing,
sometimes similar—views.

Since I was talking to project leaders, I pull aside the elementary founders to talk
about their latest release (version 5.0, code-named “Juno”) and what they’ve got in
store for the future.

But...what if you want to build your own Linux distribution? Like really build it.
From scratch.

Our own Petros Koutoupis provides a detailed, step-by-step guide to doing exactly
that in his perfectly named “Build a Custom Minimal Linux Distribution from Source,
Part II”. He walks you through getting everything built, from source code, to have a
fully functioning system and web server.

It’s an incredibly satisfying process. Highly recommend.

Now, if you’ll excuse me, there’s got to be a distro out there I haven’t installed yet. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.pulseway.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

10 | January 2019 | https://www.linuxjournal.com

Where There’s
No Distance or
Gravity
The more digital we become, the less human
we remain.

By Doc Searls

I had been in Los Angeles only a few times in my life before
the October day in 1987 when I drove down from our home in
the Bay Area with my teenage son to visit family. The air was
unusually clear as we started our drive back north, and soon
the San Gabriel Mountains—Los Angeles’ own Alps (you
can ski there!)—loomed over the region like a crenelated
battlement, as if protecting its inhabitants from cultures and
climates that might invade from the north. So, on impulse, I
decided to drive up to Mount Wilson, the only crest in the
range with a paved road to the top.

I could see from the maps I had already studied that the
drive was an easy one. Our destination also was easily
spotted from below: a long, almost flat ridge topped by
the white domes of Mount Wilson Observatory (where
Hubble observed the universe expanding) and a bristle of
towers radiating nearly all the area’s FM and TV signals.
The site was legendary among broadcast engineering
geeks, and I had longed to visit it ever since I was a ham

https://www.linuxjournal.com

11 | January 2019 | https://www.linuxjournal.com

FROM THE EDITOR

radio operator as a boy in New Jersey.

After checking out the observatory and the towers, my son and I stood on a
promontory next to a parking lot and surveyed the vast spread of civilization below.
Soon four visiting golfers from New York came over and started asking me questions
about what was where.

I answered like a veteran docent, pointing out the Rose Bowl, Palos Verdes Peninsula,
Santa Catalina and other Channel Islands, the Hollywood Hills, the San Fernando
Valley, the Jet Propulsion Laboratory, Santa Anita Park and more. When they asked
where the Whittier Narrows earthquake had happened a few days before, I pointed
at the Puente Hills, off to the southeast, and filled them in on what I knew about the
geology there as well.

After a few minutes of this, they asked me how long I had lived there. I said all this
stuff was almost as new to me as it was to them. “Then how do you know so much
about it?”, they asked. I told them I had studied maps of the area and refreshed my
knowledge over lunch just before driving up there. They were flabbergasted. “Really?”,
one guy said. “You study maps?”

Indeed, I did. I had maps of all kinds and sizes at home, and the door pockets of my

https://www.linuxjournal.com

12 | January 2019 | https://www.linuxjournal.com

FROM THE EDITOR

car bulged with AAA maps of everywhere I might drive in California. I also added local
and regional Southern California maps to my mobile inventory before driving down.

My obsession with maps, and my dependence on them, comported with what a
shrink at a party once told me about obsessive compulsive disorder, aka OCD:
that it accounted both for most mental illnesses and for nearly all of humanity’s
great achievements.

While the achievements in my case might not have been great, obsessively reading
maps got me into geography, geology, astronomy and much of the rest of what I
know about nature and technology.

What got me interested in maps was radio. My interest there was less in radio’s
entertainment value than in how signals worked. That began with wondering what
was happening under the blinking red lights on towers that stood in the swampland
between our house in New Jersey and the New York skyline. Nearly all New York’s
AM stations broadcast from towers in those swaps, mostly to take advantage of both
cheap land and salt water (which AM signals love). My idea of a good time was to ride
my bike down there and visit with engineers staffing the transmitters (which these
days require scant human attention).

I examined signals mostly with my Hammarlund HQ-129X ham radio receiver,
connected to a 40-meter dipole antenna. (I also had an 80 and a 15, and all were
strung to trees in our back yard like a giant spider web.)

In addition to what I learned from beeping in Morse code to hams as far away as
Sweden, I logged more than 800 AM stations (roughly eight per channel) and jammed
a sewing pin for each one into a big map on a bulletin board.

With the help of broadcast engineering manuals (full of maps), I learned about
ground conductivity (affecting AM range along the ground), skywave propagation
(affecting distance reception on AM and shortwave), directional signals (aimed by
multiple towers on AM and fancy antenna designs on shortwave), and most important
by the inverse square law. That law explained why the strength of a radio signal
(also of sound and light) was inversely proportional to the square of the distance

https://www.linuxjournal.com

13 | January 2019 | https://www.linuxjournal.com

FROM THE EDITOR

from the source, which meant signal strength declined across distance roughly on an
asymptotic curve.

Later, as I dug into TV and FM signals (which use the VHF and UHF broadcast bands),
I added fun learnings about other stuff broadcast engineering can teach, such as the
dielectric (or capacitive) properties of atmosphere and how those contribute to
tropospheric bending of signals. Thanks to “tropo” over the Pacific Ocean, on most
days, I can watch TV and listen to FM signals from San Diego and Tijuana—here in
Santa Barbara, 220+ miles away.

But mostly I don’t. To explain why, I submit this conversation I had with my younger
son, who was a teenager when we walked back from a (soon to be doomed) Radio
Shack store in New York. We went there to buy a kitchen radio for an apartment we
were renting, but the store had no radios. Although not verbatim, this was how it went:

“Radio is dead”, he said.

“Why?”, I replied.

“Because it’s obsolete.”

“Why?”

“I mean, look: what is the point of ‘range’ and ‘coverage’?”

“Huh?”

“I mean, what’s the point of a station fading away when you leave town?”

“Those are features, not bugs. Geography limits range. So do transmitter powers and
the inverse square law. Also, you don’t want stations interfering with each other.”

“But all the stations in the world are all on the internet. You can get them on your
phone and none of them interfere with each other there. On top of that, there’s
music streaming and podcasts.”

https://www.linuxjournal.com

14 | January 2019 | https://www.linuxjournal.com

FROM THE EDITOR

I’m with him on that now. Nearly all my consumption of what we now call “content”
is through glowing rectangles connected to the internet. So he and I are alike that
way, but we’re not alike in our knowledge of the physical world. Mine is informed
by experience with maps and analog tech. His is informed mostly by what he gets
through his own glowing rectangles.

Marshall McLuhan said all technologies are extensions of our bodies and minds. He
also said they shape us after we shape them, and that all new technologies “work us
over completely”.

Glowing rectangles have replaced paper maps in my life, along with radios and TVs.
While losing those has changed how I understand and navigate the physical world,
what I’ve gained, along with everybody else connected by the internet, is residence
in a habitat absent of gravity and distance. Sure, there there are propagation delays
on the net (such as those shown by ping and traceroute commands), and
connections can get sphinctered in places (or filtered fully, as they are in China). But
our experience of being present in the networked world is one of absent distance and
of placelessness (and hence of gravity).

We can’t help attempting to reify this virtual world with metaphors borrowed
from the physical one: sites, domains and locations, for example. But they’re
misleading. We really don’t “surf” or “visit” or “browse” those places (which
aren’t). We request files, which get copied onto our screens, without any
sense of a distance having been traveled. Yet we collectively imagine that these
are real sites, and real property, and that we are somehow mere visitors allowed
by their owners to trespass on them. And, because of that assumption, many
liberties are taken with our private digital selves by the operators of those sites
and by the third parties they also bring in. These are privacy abuses we never
would welcome or allow in the physical world. But they are normative in the
virtual one.

For now.

The networked world we have today has been with us only a little more than two
decades. That’s very little time in which to start operating in fully civilized ways.

https://www.linuxjournal.com

15 | January 2019 | https://www.linuxjournal.com

FROM THE EDITOR

My wife, who (far as I know) was the first to observe that the internet gives us
a second world without gravity or distance, insists that we can adapt, much as
astronauts learn to live and work in a zero-gravity habitat. She also believes we are
very early in the process of understanding this world, even as all both occupy it and
continue to build it.

My point with the Mount Wilson story is that none of us are even close to having
equivalents of the tools we use for understanding the physical world. Even the
map metaphor is misleading. Where and how we live in the networked world is too
different, too other, too singular. Like the universe, there are no other examples of it.
There is just one of it.

Even if the networked world seems to start breaking up (as we’re already seeing with
China), at a deeper level that world arises from a simple protocol, TCP/IP, that isn’t
going away soon.

And even if TCP/IP gets replaced, the genie it liberated from the digital bottle won’t
stop giving everyone with a decent connection the experience of being together in a
world without distance or gravity.

We also won’t stop wanting to live in what John Updike (in the 1960s!) called “the
age of full convenience”. We can get full convenience only from networks that are
completely free (as in freedom) and open to whatever.

We never will fully understand nor explain that world, any more than we ever will fully
understood or explain the physical one. But we have much farther to go than we’ve
come so far here on terra firma, especially since we’re still terraforming it. And one of
our jobs here is doing for this new world what maps did for the old one. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

16 | January 2019 | https://www.linuxjournal.com

UPFRONT

Best Linux Marketing
Campaigns
I have long held the opinion that one of the biggest problems holding back Linux-
based systems from dominating (market-share-wise) in the desktop computing
space...is marketing. Our lack of attention-grabbing, hearts-and-minds-winning
marketing is, in my oh-so-humble opinion, one of the most glaring weaknesses of
the Free and Open Source Software world.

But, in a way, me saying that really isn’t fair.

The reality is that we have had some truly fantastic marketing campaigns through the
years. A few even managed to break outside our own Linux-loving community. Let’s
take a stroll through a few of my favorites.

From my vantage point, the best marketing has come from two places: IBM (which is
purchasing Red Hat) and SUSE. Let’s do this chronologically.

IBM’s “Peace. Love. Linux.”
Back in 2001, IBM made a major investment in Linux. To promote that investment,
obviously, an ad campaign must be launched! Something iconic! Something catchy!
Something...potentially illegal!

Boy, did they nail it.

“Peace. Love. Linux.” Represented by simple symbols: a peace sign, a heart and
a penguin, all in little circles next to each other. It was visually pleasing, and it
promoted happiness (or, at least, peace and love). Brilliant!

UPFRONT

https://www.youtube.com/watch?v=VruNCQZDvRE
https://www.linuxjournal.com

17 | January 2019 | https://www.linuxjournal.com

UPFRONT

IBM then paid to have more than 300 of these images spray-painted across
sidewalks all over San Francisco. The paint was supposed to be biodegradable and
wash away quickly. Unfortunately, that didn’t happen—many of the stencils still
were there months later.

And, according to the mayor, “Some were etched into the concrete, so, in those
cases, they will never be removed.”

The response from the city was...just as you’d expect.

After months of discussion, the City of San Francisco fined Big Blue $100,000, plus
any additional cleanup costs, plus legal fees.

On the flip-side, the stories around it made for a heck of a lot of advertising!

IBM’s “The Kid”
Remember the Linux Super Bowl ad from IBM? The one with the little boy sitting in a
room of pure white light?

“He’s learning. Absorbing. Getting smarter every day.”

When that hit in 2004, it was like, whoa. Linux has made it. IBM made a Super Bowl
ad about it!

“Does he have a name? His name...is Linux.”

That campaign included Penny Marshall and Muhammad Ali. That’s right. Laverne from
Laverne & Shirley endorsed Linux in a Super Bowl ad. Let that sink in for a moment.

This was mind-blowing in 2004. Heck. It’s kind of mind-blowing in 2019.

Novell’s “PC, Mac & Linux”
Remember those “I’m a Mac” commercials from Apple? One guy (“Mac”) poking

https://www.computerworld.com/article/2592386/operating-systems/ibm-s-linux-ad-campaign-trips-on-city-sidewalks.html
https://www.zdnet.com/article/ibm-gets-100000-fine-for-peace-love-and-linux-campaign
https://www.youtube.com/watch?v=x7ozaFbqg00
https://www.youtube.com/watch?v=x7ozaFbqg00
https://www.youtube.com/watch?v=mRmKzxhMzwo
https://www.youtube.com/watch?v=qfv6Ah_MVJU
https://www.linuxjournal.com

18 | January 2019 | https://www.linuxjournal.com

UPFRONT

fun at how boring another guy (“PC”) is? Well, Novell—which, you might recall,
had purchased Linux company SuSE (back when the “U” was lowercase) a few
years earlier—added a nice lady named “Linux” to the mix in 2007.

And, the results were kind of adorable. The videos had a decidedly “homemade
but really well” feel to them. Every Linux podcast, blog and magazine talked about
those little videos for a solid month after they were released.

SUSE’s Music Videos
In the past few years, SUSE started regularly making parody music videos, and
some of them are absolutely fantastic.

(Full disclosure: I used to work for SUSE—specifically the marketing department of
SUSE. More specific still, I wrote the lyrics to some of these songs. There’s a slim
possibility that I am mildly biased.)

SUSE’s music video adventure really kicked off in 2013 with a parody of Ylvis’
“What Does the Fox Say?”—the aptly titled “What Does the Chameleon Say?”. It
was simple, dorky, fun and charming.

(Note: the guy in the chameleon costume? He doesn’t actually work for SUSE, but
his dad is the video producer behind all of these videos, and he got roped in. You’ll
note that he plays the chameleon in a pretty large number of the music videos.
Huzzah for consistency!)

The most popular of the SUSE music videos came as a parody of Mark Ronson and
Bruno Mars’ “Uptown Funk”—”Uptime Funk.” Believed to be the first music video
about live-patching a Linux kernel on a running server, that 2015 song brought in a
lot of attention both within and outside of the Linux community.

Beyond being the most popular, that one is also my personal favorite. And, yeah. I
wrote it. I’m biased.

https://www.youtube.com/watch?v=cldeHjFig_c
https://www.youtube.com/watch?v=jofNR_WkoCE
https://www.youtube.com/watch?v=VNkDJk5_9eU
https://www.youtube.com/watch?v=OPf0YbXqDm0
https://www.youtube.com/watch?v=SYRlTISvjww
https://www.linuxjournal.com

19 | January 2019 | https://www.linuxjournal.com

UPFRONT

There are, of course, more. More music videos. More fun print and video ads. But
these are the ones that have stood out to me through the years. The ones that felt
noteworthy, like a landmark has been reached in the continual quest of spreading
the word about Linux to the masses.

—Bryan Lunduke

https://www.linuxjournal.com

20 | January 2019 | https://www.linuxjournal.com

UPFRONT

Modeling the
Entire Universe
For this article, I want to look at the largest thing possible, the whole universe. At
least, that’s the claim made by Celestia, the software package I’m introducing here.
In all seriousness though, Celestia is a very well done astronomical simulator, similar
to other software packages like Stellarium. Celestia is completely open source and is
licensed under the GPL.

Figure 1. Celestia begins your exploration of space with a 3D view of Earth.

https://www.linuxjournal.com

21 | January 2019 | https://www.linuxjournal.com

UPFRONT

If Celestia isn’t available via the package management system for your favorite
distribution, you always can get the latest stable version from the Celestia’s website
as an installable binary package. If you really need the absolute latest version, you can
grab it from the GitHub repository. Binaries also are available for Windows and Mac
OS X, in case you need to travel on the dark side of computing.

Once you have installed Celestia, starting it provides a view of the Earth from space.

You’re first placed on a track that follows the Earth through space. This is necessary,
because Celestia is actually a real-time simulation. If you were in a fixed location in
space, any object you were looking at quickly would leave your field of view. You can
pause the simulation by pressing the spacebar. Once you are following an object,

Figure 2. You can
use the solar
system browser to
select objects to
center on within
the solar system.

https://celestia.space/index.html
https://www.linuxjournal.com

22 | January 2019 | https://www.linuxjournal.com

UPFRONT

you can rotate your view by clicking the left mouse button and dragging left/right
or up/down.

If you’re more interested in observing a centered object, you can click the right mouse
button, and then dragging will move you around the object instead, allowing you to
see the object’s details. You can zoom in or out by using the mouse wheel. All of these
navigation actions also have keyboard shortcuts, for those who prefer that to using a
mouse.

But, how do you select which object you are centered on? The easiest option is to
click the Navigation→Solar System Browser menu item to pop up a selection window.

Figure 3. You can view objects beyond the solar system by bringing up the star browser window.

https://www.linuxjournal.com

23 | January 2019 | https://www.linuxjournal.com

UPFRONT

From here, you can choose from planets, moons, asteroids and other solar
system objects available by default within Celestia (I’ll explain how to add even
more items shortly).

If you’re looking at items beyond the solar system, you can click the Navigation→Star
Browser menu item to open a new window.

From here, you can select from a large number of stars that are available in the
standard library. If you want to go to a specific object or a specific location, click the
Navigation→Goto Object menu item to open an input dialog where you can enter the
details of where you want to go.

Until now, all of the objects that are available for viewing come with the standard
installation of Celestia. However, Celestia also includes the ability to add extra items
to the catalog. You can add object files for these additional objects in the extras sub-
directory where Celestia is installed.

Figure 4. You can go to specific locations within the universe.

https://www.linuxjournal.com

24 | January 2019 | https://www.linuxjournal.com

UPFRONT

Several available objects are hosted at the Celestia Motherlode website. These are
zip files, containing everything you need if you want to include that object in your
installation of Celestia. You also can create your own extra objects and upload them
to the Celestia Motherlode site in order to share them with other users.

You mostly interact with Celestia via text files. You can define how it behaves at start
up by editing the start.cel and celestia.cfg files. These files are well commented, so
you should be able to tune the way Celestia behaves relatively easily.

This interaction extends to being able to script Celestia, which is handy if you want to
use it to create guided tours of celestial objects to show other people. These scripts
are text files, with the filename ending in .celx. There’s a complete scripting language
that allows you to control most aspects of Celestia.

Once you have a certain view prepared, there are a few ways to share it with others.
If you click File→Capture Image, a pop-up window appears where you can save the

Figure 5. You can choose the video compression scheme to use when you record a video from Celestia.

http://celestiamotherlode.net/
https://www.linuxjournal.com

25 | January 2019 | https://www.linuxjournal.com

UPFRONT

currently rendered view as either a JPEG or PNG image file. Clicking File→Capture
Movie opens a window where you can record a video file of what’s occurring on
the screen right then. You also can select the compression scheme to use or leave
it as raw video.

This is handy if you want to share a tour of the universe with someone who may not
have Celestia installed. However, instead of sharing images or videos, you also can
share something called a Celestia URL (or Cel: URL). This URL includes the details of
the rendered view, but when you do share it, the other person needs to have Celestia
installed. One thing to be aware of is that there are some incompatibilities between
versions of Celestia, so you may need to coordinate with the other person if you run
into any issues.

Celestia should make a great addition to your astronomy toolkit. Its ability to script
views is especially useful if you want to share something with students. See also the
Celestia Wikibook for more information.―

—Joey Bernard

https://en.wikibooks.org/wiki/Celestia
https://www.linuxjournal.com

26 | January 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each month
in the magazine. A very special thank you this month goes to:

• Appahost.com
• Black Baron
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• James Mayes
• James Weatherell
• Josh Simmons
• Magnus Magicman
• Mostly_Linux
• NDCHost.com
• Robert J. Hansen

https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

27 | January 2019 | https://www.linuxjournal.com

UPFRONT

Some Thoughts on
Open Core

Why open core software is bad for the FOSS movement.

Nothing is inherently anti-business about Free and Open Source Software (FOSS). In
fact, a number of different business models are built on top of FOSS. The best models
are those that continue to further FOSS by internal code contributions and that
advance the principles of Free Software in general. For instance, there’s the support
model, where a company develops free software but sells expert support for it.

Here, I’d like to talk a bit about one of the more problematic models out there, the
open core model, because it’s much more prevalent, and it creates some perverse
incentives that run counter to Free Software principles.

If you haven’t heard about it, the open core business model is one where a company
develops free software (often a network service intended to be run on a server)
and builds a base set of users and contributors of that free code base. Once there
is a critical mass of features, the company then starts developing an “enterprise”
version of the product that contains additional features aimed at corporate use.
These enterprise features might include things like extra scalability, login features like
LDAP/Active Directory support or Single Sign-On (SSO) or third-party integrations,
or it might just be an overall improved version of the product with more code
optimizations and speed.

Because such a company wants to charge customers to use the enterprise version, it
creates a closed fork of the free software code base, or it might provide the additional
proprietary features as modules so it has fewer problems with violating its free
software license.

https://www.linuxjournal.com

28 | January 2019 | https://www.linuxjournal.com

UPFRONT

The first problem with the open core model is that on its face it doesn’t further
principles behind Free Software, because core developer time gets focused instead of
writing and promoting proprietary software. Instead of promoting the importance of
the freedoms that Free Software gives both users and developers, these companies
often just use FOSS as a kind of freeware to get an initial base of users and as free
crowdsourcing for software developers that develop the base product when the
company is small and cash-strapped. As the company get more funding, it’s then able
to hire the most active community developers, so they then can stop working on the
community edition and instead work full-time on the company’s proprietary software.

This brings me to the second problem. The very nature of open core creates a
perverse situation where a company is incentivized to put developer effort into
improving the proprietary product (that brings in money) and is de-incentivized to
move any of those improvements into the Free Software community edition. After
all, if the community edition gets more features, why would someone pay for the
enterprise edition? As a result, the community edition is often many steps behind the
enterprise edition, if it gets many updates at all.

All of those productive core developers are instead working on improving the closed
code. The remaining community ends up making improvements, often as (strangely
enough) third-party modules, because it can be hard to get the company behind an
open core project to accept modules that compete with its enterprise features.

What’s worse is that a lot of the so-called “enterprise” features end up being
focused on speed optimizations or basic security features like TLS support—simple
improvements you’d want in the free software version. These speed or security
improvements never make their way into the community edition, because the
company intends that only individuals will use that version.

The message from the company is clear: although the company may support free
software on its face (at the beginning), it believes that free software is for hobbyists
and proprietary software is for professionals.

https://www.linuxjournal.com

29 | January 2019 | https://www.linuxjournal.com

UPFRONT

The final problem with the open core model is that after these startups move to
the enterprise phase and start making money, there is zero incentive to start any
new free software projects within the company. After all, if a core developer comes
up with a great idea for an improvement or a new side project, that could be
something the company could sell, so it winds up under the proprietary software
“enterprise” umbrella.

Ultimately, the open core model is a version of Embrace, Extend and Extinguish
made famous by Microsoft, only designed for VC-backed startups. The model allows
startups to embrace FOSS when they are cash- and developer-strapped to get some
free development and users for their software. The moment they have a base product
that can justify the next round of VC funding, they move from embracing to extending
the free “core” to add proprietary enterprise software. Finally, the free software core
gets slowly extinguished. Improvements and new features in the core product slow
to a trickle, as the proprietary enterprise product gets the majority of developer time
and the differences between the two versions become too difficult to reconcile. The
free software version becomes a kind of freeware demo for enterprise users to try
out before they get the “real” version. Finally, the community edition lags too far
behind and is abandoned by the company as it tries to hit the profitability phase of
its business and no longer can justify developer effort on free software. Proprietary
software wins, Free Software loses.

—Kyle Rankin

https://www.linuxjournal.com

30 | January 2019 | https://www.linuxjournal.com

UPFRONT

Put Down the Pipe
Learn a few techniques for avoiding the pipe and making your
command-line commands more efficient.

Anyone who uses the command line would acknowledge how powerful the pipe is.
Because of the pipe, you can take the output from one command and feed it to
another command as input. What’s more, you can chain one command after another
until you have exactly the output you want.

Pipes are powerful, but people also tend to overuse them. Although it’s not
necessarily wrong to do so, and it may not even be less efficient, it does make your
commands more complicated. More important though, it also wastes keystrokes!
Here I highlight a few examples where pipes are commonly used but aren’t necessary.

Stop Putting Your Cat in Your Pipe
One of the most common overuses of the pipe is in conjunction with cat. The cat
command concatenates multiple files from input into a single output, but it has
become the overworked workhorse for piped commands. You often will find people
using cat just to output the contents of a single file so they can feed it into a pipe.
Here’s the most common example:

cat file | grep "foo"

Far too often, if people want to find out whether a file contains a particular pattern,
they’ll cat the file piped into a grep command. This works, but grep can take a
filename as an argument directly, so you can replace the above command with:

grep "foo" file

The next most common overuse of cat is when you want to sort the output from one

https://www.linuxjournal.com

31 | January 2019 | https://www.linuxjournal.com

UPFRONT

or more files:

cat file1 file2 | sort | uniq

Like with grep, sort supports multiple files as arguments, so you can replace the
above with:

sort file1 file2 | uniq

In general, every time you find yourself catting a file into a pipe, re-examine the piped
command and see whether it can accept files directly as input first either as direct
arguments or as STDIN redirection. For instance, both sort and grep can accept files
as arguments as you saw earlier, but if they couldn’t, you could achieve the same thing
with redirection:

sort < file1 file2 | uniq
grep "foo" < file

Remove Files without xargs
The xargs command is very powerful on the command line—in particular, when
piped to from the find command. Often you’ll use the find command to pick out
files that have a certain criteria. Once you have identified those files, you naturally
want to pipe that output to some command to operate on them. What you’ll
eventually discover is that commands often have upper limits on the number of
arguments they can accept.

So for instance, if you wanted to perform the somewhat dangerous operation of
finding and removing all of the files under a directory that match a certain pattern
(say, all mp3s), you might be tempted to do something like this:

find ./ -name "*.mp3" -type f -print0 | rm -f

Of course, you should never directly pipe a find command to remove. First, you

https://www.linuxjournal.com

32 | January 2019 | https://www.linuxjournal.com

UPFRONT

should always pipe to echo to ensure that the files you are about to delete are the
ones you want to delete:

find ./ -name "*.mp3" -type f -print0 | echo

If you have a lot of files that match the pattern, you’ll probably get an error about the
number of arguments on the command line, and this is where xargs normally comes
in:

find ./ -name "*.mp3" -type f -print0 | xargs echo
find ./ -name "*.mp3" -type f -print0 | xargs rm -f

This is better, but if you want to delete files, you don’t need to use a pipe at all.
Instead, first just use the find command without a piped command to see what files
would be deleted:

find ./ -name '*.mp3" -type f

Then take advantage of find’s -delete argument to delete them without piping to
another command:

find ./ -name '*.mp3" -type f -delete

So next time you find your pinky finger stretching for the pipe key, pause for a second
and think about whether you can combine two commands into one. Your efficiency
and poor overworked pinky finger (whoever thought it made sense for the pinky to
have the heaviest workload on a keyboard?) will thank you.

—Kyle Rankin

https://www.linuxjournal.com

33 | January 2019 | https://www.linuxjournal.com

UPFRONT

FOSS Project Spotlight:
Mender.io, an Open-Source
Over-the-Air Software
Update Manager for
IoT Devices
Mender is an open-source (Apache 2.0) project to address over-the-air (OTA)
software update management for Linux-based IoT devices. When we researched this
five years ago, there were no open-source end-to-end (device-to-server) options
to manage the lifecycle of OTA updates for connected devices. Some open-source
options were available, but they either had a proprietary management server, or they
were client-only and required integration with another back-end server.

In short, the options available to IoT device-makers either had vendor lock-in or
simply were too kludgy. Thus, we created Mender, which has two components: the
runtime client integrated into the device and the management server with an intuitive
user interface to manage updates at scale for large fleets.

We found in our initial research phase that many embedded systems developers
created their own remote update mechanism, which usually took risky shortcuts
around security and robustness. Embedded development traditionally has been a very
diverse space, and the lack of technology standardization generates a lot of custom
work for device-makers. Unlike web development and accepted standards, such as
the LAMP stack, device-makers had to create much of their stack. This includes the
fundamental capability of remote updates. And, most developers had no other choice
but to build their own, given how exotic hardware and OS combinations could be
for connected devices. We created a community repository called Mender Hub to

https://mender.io/
https://mender.io/blog/announcing-mender-hub
https://www.linuxjournal.com

34 | January 2019 | https://www.linuxjournal.com

UPFRONT

allow developers to create and reuse tested and validated integrations to enable OTA
updates for any combination of hardware and OS.

A consequence of the growth of IoT devices is the increase of easy targets for
malicious actors, evident in the proliferation of malware targeting poorly secured IoT
devices. There have been an increasing number of malware attacks infecting poorly
secured connected devices. The 2016 Dyn DDoS attack was one of the clearest
examples of the ramifications of poorly secured IoT devices, which was executed
through the Mirai malware infecting a large number of IoT devices and enslaved them
into a botnet. The IoT botnet attack caused major outages across internet platforms
and services, including Amazon, GitHub and Netflix.

The increasing connectivity of cars, medical devices and more is making IoT security a
serious public health issue. We created Mender to help with baseline security-hardening,
and security patching is fundamental. But remote updates is quite challenging and has a

Figure 1. The Mender Server’s User Interface

https://www.linuxjournal.com

35 | January 2019 | https://www.linuxjournal.com

UPFRONT

lot of nuances to consider to establish a secure and robust OTA process.

There are many real-world examples of connected devices bricking or otherwise
becoming unusable due to a brittle update mechanism. Devices can be bricked if
an update is interrupted for any reason, including power loss on the device or poor
network connectivity. Lockstate, a smart lock company recommended by Airbnb,
bricked their devices after a software update and their customers were required to
ship back their locks to be repaired manually. The underlying reason is as follows: “A
feature update for a different set of locks accidentally included this subset of locks
from a first generation 6000i WiFi lock we stopped making a year ago.”

Mender has a concept of device types to make sure software can be deployed only to
compatible hardware. In the situation with Lockstate, the software simply wouldn’t have
been able to be deployed to an incorrect version of the device, as it would have crashed
at boot time, and Mender would automatically roll back to the last working version.

Fiat Chrysler also had an issue with an OTA software update causing its UConnect
infotainment system to go into a reboot loop and in some cases caused the eventual
draining of the vehicle’s battery. Mender has adopted a dual root filesystem approach
to avoid this issue, where an update would be installed in the passive rootfs partition
with sanity checks to ensure it is working properly before making that partition active.
In this situation, Mender’s post-install scripts would have avoided this situation
entirely, as Mender has automatic rollback built in.

Mender has full image updates today in order to avoid partially updated devices.
The typical output of an embedded Linux CI build is a complete root filesystem, and
we wanted to avoid the unmanageability of caring for individual packages. Atomic,
full image updates help make deployments reproducible, as all devices will get the
same version of all subcomponents. In a fleet of devices, having some with untested
configurations because there was a package-based partial installation would become
chaotic very quickly.

Mender’s security features include requiring a secure communication channel between

https://docs.mender.io/artifacts/state-scripts
https://www.linuxjournal.com

36 | January 2019 | https://www.linuxjournal.com

UPFRONT

the device and server with TLS. Mender also has code-signing for the verification
of update artifacts, a feature that industry-leader Tesla implemented after being
hacked by Tencent’s Keen Security Lab, who was able to get through the vehicle’s
WiFi connection of a Model S and was able to reach the driving systems and
manipulate the brakes while it moved.

Mender can be deployed on-premises or can be used as a service with Hosted
Mender. We also have collaborated with Google to integrate Mender into Cloud
IoT. Other capabilities include device groupings for controlled update rollouts and an
integration to the Yocto Project, a popular build system for embedded Linux. Mender
also provides out-of-the-box support for binary distributions including Debian,
Raspbian and Ubuntu, and it has the Beaglebone Black and Raspberry Pi 3 as reference
devices. The Mender team also is working on the ability to install updates to smaller
devices as well as delta updates.

—Ralph Nguyen

Figure 2. General IoT Software Update Workflow

https://docs.mender.io/artifacts/signing-and-verification
https://docs.mender.io/getting-started
https://mender.io/product/hosted-mender
https://mender.io/product/hosted-mender
https://cloud.google.com/blog/products/iot-devices/mender-and-cloud-iot-facilitate-robust-device-update-management
https://cloud.google.com/blog/products/iot-devices/mender-and-cloud-iot-facilitate-robust-device-update-management
https://www.linuxjournal.com

37 | January 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

38 | January 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• There’s a new project called iSH that lets you run a Linux shell on an iOS device.

Bleeping Computer reports that the project is available as a TestFlight beta for
iOS devices, and it is based on Alpine Linux. It allows you to “transfer files, write
shell scripts, or simply to use Vi to develop code or edit files”. You first need to
install the TestFlight app, and then you can start testing the app by visiting this
page: https://testflight.apple.com/join/97i7KM8O.

• Debian is phasing out vendor-specific patches. Phoronix reports that “effective
immediately these vendor-specific patches to source packages will be treated as
a bug and will be unpermitted following the Debian 10 ‘Buster’ release”. See the
mailing-list announcement for more information.

• Raspberry Pi 3 Model A+ is now available: “you can now get the 1.4GHz clock
speed, 5GHz wireless networking and improved thermals of Raspberry Pi 3B+ in a
smaller form factor, and at the smaller price of $25.” You can order one here.

• The LF Deep Learning Foundation (a project of The Linux Foundation) announced
the first software release of the Acumos AI Project, Athena. From the press
release: “Acumos AI is a platform and open source framework that makes it easy to
build, share and deploy AI applications. Acumos AI standardizes the infrastructure
stack and components required to run an out-of-the-box general AI environment.
This frees data scientists and model trainers to focus on their core competencies
and accelerate innovation.” See the full release notes here.

• Simon Long has released a new Raspbian update. This update includes a
“fully hardware-accelerated version of VLC”, version 3 of the Thonny Python
development environment, improved desktop configuration and more. You can
download the update from here.

• Uber has joined The Linux Foundation. The press release quotes Linux Foundation

Visit LinuxJournal.com for
daily news briefs.

https://www.bleepingcomputer.com/news/linux/ish-an-ios-linux-shell-for-your-iphone-or-ipad/
https://itunes.apple.com/us/app/testflight/id899247664?mt=8
https://testflight.apple.com/join/97i7KM8O
https://www.phoronix.com/scan.php?page=news_item&px=Debian-No-Vendor-Specific-Patch
https://lists.debian.org/debian-devel-announce/2018/11/msg00004.html
https://www.raspberrypi.org/blog/
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://www.acumos.org/
https://wiki.acumos.org/display/REL/Athena+Release
https://www.raspberrypi.org/blog/raspbian-update-november-2018/
https://www.raspberrypi.org/downloads/
https://www.linuxfoundation.org/embedded-auto-iot/2018/11/uber-joins-lf/
http://linuxjournal.com
https://www.linuxjournal.com

39 | January 2019 | https://www.linuxjournal.com

UPFRONT

Executive Director Jim Zemlin: “Uber has been active in open source for years,
creating popular projects like Jaeger and Horovod that help businesses build
technology at scale. We are very excited to welcome Uber to the Linux Foundation
community. Their expertise will be instrumental for our projects as we continue
to advance open solutions for cloud native technologies, deep learning, data
visualization and other technologies that are critical to businesses today.”

• Feral Interactive announced that Shadow of the Tomb Raider is coming to Linux in
2019. Shadow of the Tomb Raider is the conclusion of Laura Croft’s origin story;
the previous two installments are available for Linux now from Feral Interactive.
You can view the Shadow of the Tomb Raider trailer here.

• UserLAnd is now available on F-Droid. With UserLAnd, you can run full Linux
distributions or specific apps on top of Android, and you can install and uninstall
it like a regular app—you don’t need root. This version requires Android 5.0 or
newer, and UserLAnd recommends that you install the F-Droid client to build it
rather than download the APK.

• A new cybersecurity company called Darktrace has developed a tool in
collaboration with the University of Cambridge that uses machine learning to
detect internal security breaches. According to FossBytes, Darktrace created an
algorithm that “recognizes new instances of unusual behavior”. This technique is
“based on unsupervised learning, which doesn’t require humans to specify what to
look for. The system works like the human body’s immune system.”

• France is dumping Google. Wired reports that to “avoid becoming a digital colony
of the US or China”, the French National Assembly and the French Army Ministry
“declared that their digital devices would stop using Google as their default search
engines. Instead, they will use Qwant, a French and German search engine that
prides itself for not tracking its users.”

• Chrome and Firefox developers plan to end support for FTP. BleepingComputer
reports that “an upcoming change in how files stored on FTP servers are rendered

https://feralinteractive.us1.list-manage.com/track/click?u=27ffb222c33986fdd91dd51b2&id=d105acb546&e=a4da434722
https://userland.tech/
https://f-droid.org/en/packages/tech.ula/
https://f-droid.org/FDroid.apk
https://fossbytes.com/this-ml-algorithm-can-find-hackers-who-have-broken-in-before/
https://www.wired.co.uk/article/google-france-silicon-valley
https://www.defense.gouv.fr/salle-de-presse/communiques/communiques-de-florence-parly/cp_communique-du-ministere-des-armees
https://www.bleepingcomputer.com/news/google/chrome-and-firefox-developers-aim-to-remove-support-for-ftp/
https://www.bleepingcomputer.com/news/google/chrome-and-firefox-developers-aim-to-remove-support-for-ftp/
https://www.linuxjournal.com

40 | January 2019 | https://www.linuxjournal.com

UPFRONT

in the browser may be the first step in its ultimate removal”, and also that “Google
developers have advocated for the removal of FTP support in Chrome for over 4
years” due to its low usage and the additional attack surface it creates that Chrome
is unable to secure properly, compared to offering the same files over an HTTPS
connection.

• The CubeSat satellites that confirmed the successful landing of the Mars Insight
lander on Mars contained Gumxtix’s Linux-driven Overo IronStorm-Y module and
Caspa VL camera. According to Linux Gizmos, “the Mars Cube One (MarCO)
satellites are the first CubeSats to have traveled beyond low Earth orbit. They also
likely represent the farthest distance a Linux computer has traveled into space.”

• Microsoft is building its own Chromium browser to replace Edge on Windows
10. The Verge reports that “Microsoft will announce its plans for a Chromium
browser as soon as this week, in an effort to improve web compatibility for
Windows.” The Verge article also notes that “There were signs Microsoft
was about to adopt Chromium onto Windows, as the company’s engineers
have been working with Google to support a version of Chrome on an ARM-
powered Windows operating system.”

• Australia plans to give law enforcement and intelligence agencies the ability
to access encrypted messages on platforms like WhatsApp, putting public
safety concerns ahead of personal privacy. Bloomberg reports that “Amid
protests from companies such as Facebook Inc. and Google, the government
and main opposition struck a deal on Tuesday [December 4, 2018] that
should see the legislation passed by parliament this week. Under the
proposed powers, technology companies could be forced to help decrypt
communications on popular messaging apps, or even build new functionality
to help police access data.”

http://linuxgizmos.com/cubesats-that-confirmed-mars-insight-landing-feature-embedded-linux-com
https://www.theverge.com/2018/12/4/18125238/microsoft-chrome-browser-windows-10-edge-chromium
https://www.bloomberg.com/news/articles/2018-12-04/australia-set-to-pass-encryption-law-despite-tech-giant-protests
https://www.linuxjournal.com

Decentralized

Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

http://handshake.org/signup

42 | January 2019 | https://www.linuxjournal.com

Back to Basics:
Sort and Uniq
Learn the fundamentals of sorting and
de-duplicating text on the command line.

By Kyle Rankin

If you’ve been using the command line for a long time, it’s easy to
take the commands you use every day for granted. But, if you’re
new to the Linux command line, there are several commands
that make your life easier that you may not stumble upon
automatically. In this article, I cover the basics of two commands
that are essential in anyone’s arsenal: sort and uniq.

The sort command does exactly what it says: it takes text data
as input and outputs sorted data. There are many scenarios on
the command line when you may need to sort output, such as
the output from a command that doesn’t offer sorting options
of its own (or the sort arguments are obscure enough that you
just use the sort command instead). In other cases, you may
have a text file full of data (perhaps generated with some other
script), and you need a quick way to view it in a sorted form.

Let’s start with a file named “test” that contains three lines:

Foo
Bar
Baz

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com

43 | January 2019 | https://www.linuxjournal.com

HACK AND /

sort can operate either on STDIN redirection, the input from a pipe, or, in the
case of a file, you also can just specify the file on the command. So, the three
following commands all accomplish the same thing:

cat test | sort
sort < test
sort test

And the output that you get from all of these commands is:

Bar
Baz
Foo

Sorting Numerical Output
Now, let’s complicate the file by adding three more lines:

Foo
Bar
Baz
1. ZZZ
2. YYY
11. XXX

If you run one of the above sort commands again, this time, you’ll see
different output:

11. XXX
1. ZZZ
2. YYY
Bar
Baz
Foo

https://www.linuxjournal.com

44 | January 2019 | https://www.linuxjournal.com

HACK AND /

This is likely not the output you wanted, but it points out an important fact about
sort. By default, it sorts alphabetically, not numerically. This means that a line that
starts with “11.” is sorted above a line that starts with “1.”, and all of the lines that
start with numbers are sorted above lines that start with letters.

To sort numerically, pass sort the -n option:

sort -n test

Bar
Baz
Foo
1. ZZZ
2. YYY
11. XXX

Find the Largest Directories on a Filesystem
Numerical sorting comes in handy for a lot of command-line output—in particular,
when your command contains a tally of some kind, and you want to see the largest
or smallest in the tally. For instance, if you want to find out what files are using
the most space in a particular directory and you want to dig down recursively, you
would run a command like this:

du -ckx

This command dives recursively into the current directory and doesn’t traverse
any other mountpoints inside that directory. It tallies the file sizes and then
outputs each directory in the order it found them, preceded by the size of the
files underneath it in kilobytes. Of course, if you’re running such a command, it’s
probably because you want to know which directory is using the most space, and
this is where sort comes in:

du -ckx | sort -n

https://www.linuxjournal.com

45 | January 2019 | https://www.linuxjournal.com

HACK AND /

Now you’ll get a list of all of the directories underneath the current directory,
but this time sorted by file size. If you want to get even fancier, pipe its output
to the tail command to see the top ten. On the other hand, if you wanted the
largest directories to be at the top of the output, not the bottom, you would add
the -r option, which tells sort to reverse the order. So to get the top ten (well,
top eight—the first line is the total, and the next line is the size of the current
directory):

du -ckx | sort -rn | head

This works, but often people using the du command want to see sizes in more
readable output than kilobytes. The du command offers the -h argument that
provides “human-readable” output. So, you’ll see output like 9.6G instead of
10024764 with the -k option. When you pipe that human-readable output to sort
though, you won’t get the results you expect by default, as it will sort 9.6G above
9.6K, which would be above 9.6M.

The sort command has a -h option of its own, and it acts like -n, but it’s able to
parse standard human-readable numbers and sort them accordingly. So, to see the
top ten largest directories in your current directory with human-readable output,
you would type this:

du -chx | sort -rh | head

Removing Duplicates
The sort command isn’t limited to sorting one file. You might pipe multiple
files into it or list multiple files as arguments on the command line, and it
will combine them all and sort them. Unfortunately though, if those files
contain some of the same information, you will end up with duplicates in
the sorted output.

To remove duplicates, you need the uniq command, which by default removes
any duplicate lines that are adjacent to each other from its input and outputs

https://www.linuxjournal.com

46 | January 2019 | https://www.linuxjournal.com

HACK AND /

the results. So, let’s say you had two files that were different lists of names:

cat namelist1.txt
Jones, Bob
Smith, Mary
Babbage, Walter

cat namelist2.txt
Jones, Bob
Jones, Shawn
Smith, Cathy

You could remove the duplicates by piping to uniq:

sort namelist1.txt namelist2.txt | uniq
Babbage, Walter
Jones, Bob
Jones, Shawn
Smith, Cathy
Smith, Mary

The uniq command has more tricks up its sleeve than this. It also can output only the
duplicated lines, so you can find duplicates in a set of files quickly by adding the -d
option:

sort namelist1.txt namelist2.txt | uniq -d
Jones, Bob

You even can have uniq provide a tally of how many times it has found each entry
with the -c option:

sort namelist1.txt namelist2.txt | uniq -c
1 Babbage, Walter

https://www.linuxjournal.com

47 | January 2019 | https://www.linuxjournal.com

HACK AND /

2 Jones, Bob
1 Jones, Shawn
1 Smith, Cathy
1 Smith, Mary

As you can see, “Jones, Bob” occurred the most times, but if you had a lot of lines,
this sort of tally might be less useful for you, as you’d like the most duplicates to
bubble up to the top. Fortunately, you have the sort command:

sort namelist1.txt namelist2.txt | uniq -c | sort -nr
2 Jones, Bob
1 Smith, Mary
1 Smith, Cathy
1 Jones, Shawn
1 Babbage, Walter

Conclusion
I hope these cases of using sort and uniq with realistic examples show you how
powerful these simple command-line tools are. Half the secret with these foundational
command-line tools is to discover (and remember) they exist so that they’ll be at
your command the next time you run into a problem they can solve. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

48 | January 2019 | https://www.linuxjournal.com

UPFRONT

48 | January 2019 | https://www.linuxjournal.com

Python Testing
with pytest:
Fixtures and
Coverage
Improve your Python testing even more.

By Reuven Lerner

In my last two articles, I introduced pytest, a library for
testing Python code (see “Testing Your Code with Python’s
pytest” Part I and Part II). pytest has become quite
popular, in no small part because it’s so easy to write tests
and integrate those tests into your software development
process. I’ve become a big fan, mostly because after years of
saying I should get better about testing my software, pytest
finally has made it possible.

So in this article, I review two features of pytest that I haven’t
had a chance to cover yet: fixtures and code coverage, which
will (I hope) convince you that pytest is worth exploring and
incorporating into your work.

Fixtures
When you’re writing tests, you’re rarely going to write just one
or two. Rather, you’re going to write an entire “test suite”,
with each test aiming to check a different path through your

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

https://www.linuxjournal.com/content/testing-your-code-pythons-pytest
https://www.linuxjournal.com/content/testing-your-code-pythons-pytest-part-ii
http://lerner.co.il/
https://www.linuxjournal.com

49 | January 2019 | https://www.linuxjournal.com

AT THE FORGE

code. In many cases, this means you’ll have a few tests with similar characteristics,
something that pytest handles with “parametrized tests”.

But in other cases, things are a bit more complex. You’ll want to have some objects
available to all of your tests. Those objects might contain data you want to share
across tests, or they might involve the network or filesystem. These are often known
as “fixtures” in the testing world, and they take a variety of different forms.

In pytest, you define fixtures using a combination of the pytest.fixture decorator,
along with a function definition. For example, say you have a file that returns a list of
lines from a file, in which each line is reversed:

def reverse_lines(f):
 return [one_line.rstrip()[::-1] + '\n'
 for one_line in f]

Note that in order to avoid the newline character from being placed at the start of
the line, you remove it from the string before reversing and then add a '\n' in each
returned string. Also note that although it probably would be a good idea to use
a generator expression rather than a list comprehension, I’m trying to keep things
relatively simple here.

If you’re going to test this function, you’ll need to pass it a file-like object. In my
last article, I showed how you could use a StringIO object for such a thing, and
that remains the case. But rather than defining global variables in your test file,
you can create a fixture that’ll provide your test with the appropriate object at
the right time.

Here’s how that looks in pytest:

@pytest.fixture
def simple_file():
 return StringIO('\n'.join(['abc', 'def', 'ghi', 'jkl']))

https://www.linuxjournal.com/content/testing-your-code-pythons-pytest-part-ii
https://www.linuxjournal.com

50 | January 2019 | https://www.linuxjournal.com

AT THE FORGE

On the face of it, this looks like a simple function—one that returns the value you’ll
want to use later. And in many ways, it’s similar to what you’d get if you were to define
a global variable by the name of “simple_file”.

At the same time, fixtures are used differently from global variables. For example,
let’s say you want to include this fixture in one of your tests. You then can mention
it in the test’s parameter list. Then, inside the test, you can access the fixture by
name. For example:

def test_reverse_lines(simple_file):
 assert reverse_lines(simple_file) == ['cba\n', 'fed\n',
 ↪'ihg\n', 'lkj\n']

But it gets even better. Your fixture might act like data, in that you don’t invoke it with
parentheses. But it’s actually a function under the hood, which means it executes
every time you invoke a test using that fixture. This means that the fixture, in contrast
with regular-old data, can make calculations and decisions.

You also can decide how often a fixture is run. For example, as it’s written now,
this fixture will run once per test that mentions it. That’s great in this case,
when you want to compare with a list or file-like structure. But what if you
want to set up an object and then use it multiple times without creating it again?
You can do that by setting the fixture’s “scope”. For example, if you set the scope
of the fixture to be “module”, it’ll be available throughout your tests but will
execute only a single time. You can do this by passing the scope parameter to
the @pytest.fixture decorator:

@pytest.fixture(scope='module')
def simple_file():
 return StringIO('\n'.join(['abc', 'def', 'ghi', 'jkl']))

I should note that giving this particular fixture “module” scope is a bad idea, since the
second test will end up having a StringIO whose location pointer (checked with

https://www.linuxjournal.com

51 | January 2019 | https://www.linuxjournal.com

AT THE FORGE

file.tell) is already at the end.

These fixtures work quite differently from the traditional setup/teardown system that
many other test systems use. However, the pytest people definitely have convinced
me that this is a better way.

But wait—perhaps you can see where the “setup” functionality exists in these fixtures.
And, where’s the “teardown” functionality? The answer is both simple and elegant.
If your fixture uses “yield” instead of “return”, pytest understands that the post-
yield code is for tearing down objects and connections. And yes, if your fixture has
“module” scope, pytest will wait until all of the functions in the scope have finished
executing before tearing it down.

Coverage
This is all great, but if you’ve ever done any testing, you know there’s always the
question of how thoroughly you have tested your code. After all, let’s say you’ve
written five functions, and that you’ve written tests for all of them. Can you be sure
you’ve actually tested all of the possible paths through those functions?

For example, let’s assume you have a very strange function, only_odd_mul, which
multiplies only odd numbers:

def only_odd_mul(x, y):
 if x%2 and y%2:
 return x * y
 else:
 raise NoEvenNumbersHereException(f'{x} and/or {y}
 ↪not odd')

Here’s a test you can run on it:

def test_odd_numbers():
 assert only_odd_mul(3, 5) == 15

https://www.linuxjournal.com

52 | January 2019 | https://www.linuxjournal.com

AT THE FORGE

Sure enough, the test passed. It works great! The software is terrific!

Oh, but wait—as you’ve probably noticed, that wasn’t a very good job of testing
it. There are ways in which the function could give a totally different result (for
example, raise an exception) that the test didn’t check.

Perhaps it’s easy to see it in this example, but when software gets larger and more
complex, it’s not going to be so easy to eyeball it. That where you want to have
“code coverage”, checking that your tests have run all of the code.

Now, 100% code coverage doesn’t mean that your code is perfect or that it lacks
bugs. But it does give you a greater degree of confidence in the code and the fact
that it has been run at least once.

So, how can you include code coverage with pytest? It turns out that there’s a
package called pytest-cov on PyPI that you can download and install. Once that’s
done, you can invoke pytest with the --cov option. If you don’t say anything more
than that, you’ll get a coverage report for every part of the Python library that your
program used, so I strongly suggest you provide an argument to --cov, specifying
which program(s) you want to test. And, you should indicate the directory into
which the report should be written. So in this case, you would say:

pytest --cov=mymul .

Once you’ve done this, you’ll need to turn the coverage report into something human-
readable. I suggest using HTML, although other output formats are available:

coverage html

This creates a directory called htmlcov. Open the index.html file in this directory using
your browser, and you’ll get a web-based report showing (in red) where your program
still lacks coverage. Sure enough, in this case, it showed that the even-number path
wasn’t covered. Let’s add a test to do this:

https://www.linuxjournal.com

53 | January 2019 | https://www.linuxjournal.com

AT THE FORGE

def test_even_numbers():
 with pytest.raises(NoEvenNumbersHereException):
 only_odd_mul(2,4)

And as expected, coverage has now gone up to 100%! That’s definitely something
to appreciate and celebrate, but it doesn’t mean you’ve reached optimal testing.
You can and should cover different mixtures of arguments and what will happen
when you pass them.

Summary
If you haven’t guessed from my three-part focus on pytest, I’ve been bowled over
by the way this testing system has been designed. After years of hanging my head
in shame when talking about testing, I’ve started to incorporate it into my code,
including in my online “Weekly Python Exercise” course. If I can get into testing, so
can you. And although I haven’t covered everything pytest offers, you now should
have a good sense of what it is and how to start using it. ◾

Resources
• The pytest website is at http://pytest.org.

• An excellent book on the subject is Brian Okken’s Python testing with pytest,
published by Pragmatic Programmers. He also has many other resources,
about pytest and code testing in general, at http://pythontesting.net.

• Brian’s blog posts about pytest’s fixtures are informative and useful to
anyone wanting to get started with them.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://pytest.org/
http://pythontesting.net/
http://pythontesting.net/framework/pytest/pytest-fixtures-nuts-bolts
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

54 | January 2019 | https://www.linuxjournal.com

UPFRONT

54 | January 2019 | https://www.linuxjournal.com

Converting
Decimals to
Roman Numerals
with Bash
Decimals to Roman numerals—here we hit all the
limitations of Bash shell scripting.

By Dave Taylor

My last few articles have given me a chance to relive my
undergraduate computer science degree and code a Roman
numeral to decimal converter. It’s quite handy when you’re watching
old movies (when was MCMLVII anyway?), and the basic coding
algorithm was reasonably straightforward. (See Dave’s “Roman
Numerals and Bash” and “More Roman Numerals and Bash”.)

The trick with Roman numerals, however, is that it’s what’s
known as a subtractive notation. In other words, it’s not a
position → value or even symbol → value notation, but a sort
of hybrid. MM = 2000, and C = 100, but MMC and MCM are
quite different: the former is 2100, and the latter is 1000 +
(–100 + 1000) = 1900.

This means that the conversion isn’t quite as simple as a
mapping table, which makes it a good homework assignment
for young comp-sci students!

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.linuxjournal.com/content/roman-numerals-and-bash
https://www.linuxjournal.com/content/roman-numerals-and-bash
https://www.linuxjournal.com/content/more-roman-numerals-and-bash
https://www.askdavetaylor.com/
https://www.linuxjournal.com

55 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

Let’s Write Some Code
In the Roman numeral to decimal conversion, a lot of the key work was done by this
simple function:

mapit() {
 case $1 in
 I|i) value=1 ;;
 V|v) value=5 ;;
 X|x) value=10 ;;
 L|l) value=50 ;;
 C|c) value=100 ;;
 D|d) value=500 ;;
 M|m) value=1000 ;;
 *) echo "Error: Value $1 unknown" >&2 ; exit 2 ;;
 esac
}

You’ll need this function to proceed, but as a cascading set of conditional
statements. Indeed, in its simple form, you could code a decimal to Roman
numeral converter like this:

while [$decvalue -gt 0] ; do

 if [$decvalue -gt 1000] ; then
 romanvalue="$romanvalue M"
 decvalue=$(($decvalue - 1000))
 elif [$decvalue -gt 500] ; then
 romanvalue="$romanvalue D"
 decvalue=$(($decvalue - 500))
 elif [$decvalue -gt 100] ; then
 romanvalue="$romanvalue C"
 decvalue=$(($decvalue - 100))
 elif [$decvalue -gt 50] ; then

https://www.linuxjournal.com

56 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

 romanvalue="$romanvalue L"
 decvalue=$(($decvalue - 50))
 elif [$decvalue -gt 10] ; then
 romanvalue="$romanvalue X"
 decvalue=$(($decvalue - 10))
 elif [$decvalue -gt 5] ; then
 romanvalue="$romanvalue V"
 decvalue=$(($decvalue - 5))
 elif [$decvalue -ge 1] ; then
 romanvalue="$romanvalue I"
 decvalue=$(($decvalue - 1))
 fi

done

This actually works, though the results are, um, a bit clunky:

$ sh 2roman.sh 25
converts to roman numeral X X I I I I I

Or, more overwhelming:

$ sh 2roman.sh 1900
converts to roman numeral M D C C C L X X X X V I I I I I

I suppose there is some sort of charm to the latter, but there also are much, much
better ways to simplify this. You can do all the math, but since my approach to coding
is often “be lazy, get it done, move on”, let’s recognize that there are a very small
number of special case numeric values:

900 = CM
400 = CD
90 = XC

https://www.linuxjournal.com

57 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

40 = XL
9 = IX
4 = IV

That’s really it. The notation allows only a single character subtracting from another,
so you can’t have CCM or IIX (the latter being correctly written as VIII), and some of
the other possible two-character notations don’t make sense. For example, why use
VX when V is the same value?

So given that, all you really need to do is expand the if-elseif block to add the five
possible values above, which makes for a pretty darn long code block. But before I
share it, did you catch the error in the above code?

It’s the other reason that the resultant Roman numerals are so darn long, actually.
Let’s look at just the very first conditional statement:

if [$decvalue -gt 1000] ; then
 romanvalue="$romanvalue M"
 decvalue=$(($decvalue - 1000))

Here’s the question to ask yourself: what happens if the $decvalue is exactly 1000?
Isn’t that “M”? Yes, it is. Which means that all these conditionals are wrong; instead of
being -gt they should be -ge.

With that fix, here’s the big block of code:

while [$decvalue -gt 0] ; do

 if [$decvalue -ge 1000] ; then
 romanvalue="$romanvalue M"
 decvalue=$(($decvalue - 1000))
 elif [$decvalue -ge 900] ; then
 romanvalue="$romanvalue CM"

https://www.linuxjournal.com

58 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

 decvalue=$(($decvalue - 900))
 elif [$decvalue -ge 500] ; then
 romanvalue="$romanvalue D"
 decvalue=$(($decvalue - 500))
 elif [$decvalue -ge 400] ; then
 romanvalue="$romanvalue CD"
 decvalue=$(($decvalue - 400))
 elif [$decvalue -ge 100] ; then
 romanvalue="$romanvalue C"
 decvalue=$(($decvalue - 100))
 elif [$decvalue -ge 90] ; then
 romanvalue="$romanvalue XC"
 decvalue=$(($decvalue - 90))
 elif [$decvalue -ge 50] ; then
 romanvalue="$romanvalue L"
 decvalue=$(($decvalue - 50))
 elif [$decvalue -ge 40] ; then
 romanvalue="$romanvalue XL"
 decvalue=$(($decvalue - 40))
 elif [$decvalue -ge 10] ; then
 romanvalue="$romanvalue X"
 decvalue=$(($decvalue - 10))
 elif [$decvalue -ge 9] ; then
 romanvalue="$romanvalue IX"
 decvalue=$(($decvalue - 9))
 elif [$decvalue -ge 5] ; then
 romanvalue="$romanvalue V"
 decvalue=$(($decvalue - 5))
 elif [$decvalue -ge 4] ; then
 romanvalue="$romanvalue IV"
 decvalue=$(($decvalue - 4))
 elif [$decvalue -ge 1] ; then
 romanvalue="$romanvalue I"

https://www.linuxjournal.com

59 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

 decvalue=$(($decvalue - 1))
 fi

done

It works (albeit with some easily removed spaces) with some basic numeric tests:

$ sh 2roman.sh 71
converts to roman numeral L X X I
$ sh 2roman.sh 1997
converts to roman numeral M CM XC V I I
$ sh 2roman.sh 666
converts to roman numeral D C L X V I

The problem is, that’s a long and graceless block of code, even if it does solve
the problem.

Making the Code More Concise
Obviously, every block of code has the very same format:

elif [$decvalue -ge VALUE] ; then
 romanvalue="$romanvalue NOTATION-FOR-VALUE"
 decvalue=$(($decvalue - VALUE))

As highlighted, there are only two values to consider: the numeric value VALUE
and the one or two character NOTATION-FOR-VALUE. As an example, VALUE=90,
NOTATION=XC. The logical function then is:

SubIfValue()
{
 # if $decvalue >= $2 then add $3 to romanvalue
 # and subtract $2 from decvalue

https://www.linuxjournal.com

60 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

 if [$decvalue -ge $1] ; then
 romanvalue="${romanvalue}$2"
 decvalue=$(($decvalue - $1))
 fi
}

This would produce a series of invocations like this:

SubIfValue 500 "D"
SubIfValue 400 "CD"
SubIfValue 100 "C"
SubIfValue 90 "XC"

But there’s a problem with this. The loop has to iterate and subtract the largest
possible value each time through; otherwise, you get very odd results.

So algorithmically, you still need to have the if-then-elif loop anyway:

if (SubIfValue 500 "D" fails) then

The problem is, that’s really hard to do cleanly because you can’t actually return
values from a Bash shell function. Rather than be too clunky, therefore, I’m going
to find a compromise on my quest to clean up the code. I can leave the function
mostly the same:

SubValue()
{
 # add $3 to romanvalue and subtract $2 from decvalue

 romanvalue="${romanvalue}$2"
 decvalue=$(($decvalue - $1))

}

https://www.linuxjournal.com

61 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

The sequence of calls is going to look more succinct, however:

if [$decvalue -ge 1000] ; then
 SubValue 1000 "M"
elif [$decvalue -ge 900] ; then
 SubValue 900 "CM"
elif [$decvalue -ge 500] ; then
 SubValue 500 "D"
elif [$decvalue -ge 400] ; then
 SubValue 400 "CD"
elif [$decvalue -ge 100] ; then
 SubValue 100 "C"
elif [$decvalue -ge 90] ; then
 SubValue 90 "XC"
elif [$decvalue -ge 50] ; then
 SubValue 50 "L"
elif [$decvalue -ge 40] ; then
 SubValue 40 "XL"
elif [$decvalue -ge 10] ; then
 SubValue 10 "X"
elif [$decvalue -ge 9] ; then
 SubValue 9 "IX"
elif [$decvalue -ge 5] ; then
 SubValue 5 "V"
elif [$decvalue -ge 4] ; then
 SubValue 4 "IV"
elif [$decvalue -ge 1] ; then
 SubValue 1 "I"
fi

And, that’s the fully functional script once you wrap it in the while;do / done loop.

https://www.linuxjournal.com

62 | January 2019 | https://www.linuxjournal.com

WORK THE SHELL

A few tests:

$ sh 2roman.sh 1991
converts to roman numeral MCMXCI
$ sh 2roman.sh 2222
converts to roman numeral MMCCXXII
$ sh 2roman.sh 1234
converts to roman numeral MCCXXXIV

So there you go. Solved. Now I can’t recall why it seemed so daunting when I was in
college. I will note that in a more sophisticated programming language, you could
come up with a considerably shorter solution, particularly if you could utilize a
two-dimensional array for number/characters pairs. But, that’s not the Bash shell,
so we work with what we have, right?

See you next time. Meanwhile, do you have an interesting programming puzzle?
Drop me a note, and I’ll have a look at it! ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

63 | January 2019 | https://www.linuxjournal.com

diff -u

What’s New
in Kernel
Development
By Zack Brown

Unit Testing in the Linux Kernel
Brendan Higgins recently proposed adding unit tests to the
Linux kernel, supplementing other development infrastructure
such as perf, autotest and kselftest. The whole issue of
testing is very dear to kernel developers’ hearts, because Linux
sits at the core of the system and often has a very strong
stability/security requirement. Hosts of automated tests
regularly churn through kernel source code, reporting any
oddities to the mailing list.

Unit tests, Brendan said, specialize in testing standalone code
snippets. It was not necessary to run a whole kernel, or even to
compile the kernel source tree, in order to perform unit tests.
The code to be tested could be completely extracted from
the tree and tested independently. Among other benefits, this
meant that dozens of unit tests could be performed in less than
a second, he explained.

Giving credit where credit was due, Brendan identified JUnit,
Python’s unittest.mock and Googletest/Googlemock for
C++ as the inspirations for this new KUnit testing idea.

Brendan also pointed out that since all code being unit-tested

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

https://www.linuxjournal.com

64 | January 2019 | https://www.linuxjournal.com

diff -u

is standalone and has no dependencies, this meant the tests also were deterministic.
Unlike on a running Linux system, where any number of pieces of the running system
might be responsible for a given problem, unit tests would identify problem code with
repeatable certainty.

Daniel Vetter replied extremely enthusiastically to Brendan’s work. In particular,
he said, “Having proper and standardized infrastructure for kernel unit tests sounds
terrific. In other words: I want.” He added that he and some others already had been
working on a much more specialized set of unit tests for the Direct Rendering
Manager (DRM) driver. Brendan’s approach, he said, would be much more
convenient than his own more localized efforts.

Dan Williams was also very excited about Brendan’s work, and he said he had been
doing a half-way job of unit tests on the libnvdimm (non-volatile device) project
code. He felt Brendan’s work was much more general-purpose, and he wanted to
convert his own tests to use KUnit.

Tim Bird replied to Brendan’s initial email as well, saying he thought unit tests could
be useful, but he wanted to make sure the behaviors were correct. In particular, he
wanted clarification on just how it was possible to test standalone code. If the code
were to be compiled independently, would it then run on the local system? What if
the local system had a different hardware architecture from the system for which
the code was intended? Also, who would maintain unit tests, and where would the
tests live, within the source tree? Would they clutter up the directory being tested,
or would they live far away in a special directory reserved for test code? And finally,
would test code be easier to write than the code being tested? In other words, could
new developers cut their teeth on a project by writing test code, as a gateway to
helping work on a given driver or subsystem? Or would unit tests have to be written
by people who had total expertise in the area already?

Brendan attempted to address each of those issues in turn. To start, he confirmed
that the test code was indeed extracted and compiled on the local system. Eventually,
he said, each test would compile into its own completely independent test binary,

https://www.linuxjournal.com

65 | January 2019 | https://www.linuxjournal.com

diff -u

although for the moment, they were all lumped together into a single user-mode-
linux (UML) binary.

In terms of cross-compiling test code for other architectures, Brendan felt this would
be hard to maintain and had decided not to support it. Tests would run locally and
would not depend on architecture-specific characteristics.

In terms of where the unit tests would live, Brendan said they would be in the same
directory as the code being tested. So every directory would have its own set of unit
tests readily available and visible. The same person maintaining the code being tested
would maintain the tests themselves. The unit tests, essentially, would become an
additional element of every project. That maintainer would then presumably require
that all patches to that driver or subsystem pass all the unit tests before they could be
accepted into the tree.

In terms of who was qualified to write unit tests for a given project, Brendan explained:

In order to write a unit test, the person who writes the test must understand what
the code they are testing is supposed to do. To some extent that will probably require
someone with some expertise to ensure that the test makes sense, and indeed a change
that breaks a test should be accompanied by an update to the test. On the other hand,
I think understanding what pre-existing code does and is supposed to do is much easier
than writing new code from scratch, and probably doesn’t require too much expertise.

Brendan added that unit tests would probably reduce, rather than increase, a
maintainer’s workload. In spite of representing more code overall:

Code with unit tests is usually cleaner, the tests tell me exactly what the code is supposed
to do, and I can run the tests (or ideally have an automated service run the tests) that
tell me that the code actually does what the tests say it should. Even when it comes to
writing code, I find that writing code with unit tests ends up saving me time.

Overall, Brendan was very pleased by all the positive interest, and said he planned

https://www.linuxjournal.com

66 | January 2019 | https://www.linuxjournal.com

diff -u

to do additional releases to address the various technical suggestions that came up
during the course of discussion. No voices really were raised in opposition to any of
Brendan’s ideas. It appears that unit tests may soon become a standard part of many
drivers and subsystems.

Ditching Out-of-Date Documentation Infrastructure
Long ago, the Linux kernel started using 00-Index files to list the contents of each
documentation directory. This was intended to explain what each of those files
documented. Henrik Austad recently pointed out that those files have been out
of date for a very long time and were probably not used by anyone anymore. This is
nothing new. Henrik said in his post that this had been discussed already for years,
“and they have since then grown further out of date, so perhaps it is time to just
throw them out.”

He counted hundreds of instances where the 00-index file was out of date or not
present when it should have been. He posted a patch to rip them all unceremoniously
out of the kernel.

Joe Perches was very pleased with this. He pointed out that .rst files (the kernel’s
native documentation format) had largely taken over the original purpose of those
00-index files. He said the oo-index files were even misleading by now.

Jonathan Corbet was more reserved. He felt Henrik should distribute the patch
among a wider audience and see if it got any resistance. He added:

I’ve not yet decided whether I think this is a good idea or not. We certainly don’t need
those files for stuff that’s in the RST doctree, that’s what the index.rst files are for. But I
suspect some people might complain about losing them for the rest of the content. I do
get patches from people updating them, so some folks do indeed look at them.

Henrik told Jonathan he was happy to update the 00-index files if that would
be preferable. But he didn’t want to do that if the right answer was just to get
rid of them.

https://www.linuxjournal.com

67 | January 2019 | https://www.linuxjournal.com

diff -u

Meanwhile, Josh Triplett saw no reason to keep the 00-index files around at
all. He remarked, “I was *briefly* tempted, reading through the files, to suggest
ensuring that the one-line descriptions from the 00-INDEX files end up in the
documents themselves, but the more I think about it, I don’t think even that is
worth anyone’s time to do.”

Paul Moore also voiced his support for removing the 00-index files, at least the ones
for NetLabel, which was his area of interest.

The discussion ended there. It’s nice that even for apparently obvious patches, the
developers still take the time to consider various perspectives and try to retain any
value from the old thing to the new. It’s especially nice to see this sort of attention
given to documentation patches, which tend to get left out in the cold when it comes
to coding projects.

Non-Child Process Exit Notification Support
Daniel Colascione submitted some code to support processes knowing when
others have terminated. Normally a process can tell when its own child processes
have ended, but not unrelated processes, or at least not trivially. Daniel’s patch
created a new file in the /proc directory entry for each process a file called “exithand”
that is readable by any other process. If the target process is still running, attempts
to read() its exithand file will simply block, forcing the querying process to wait.
When the target process ends, the read() operation will complete, and the querying
process will thereby know that the target process has ended.

It may not be immediately obvious why such a thing would be useful. After all,
non-child processes are by definition unrelated. Why would the kernel want to
support them keeping tabs on each other? Daniel gave a concrete example, saying:

Android’s lmkd kills processes in order to free memory in response to various memory
pressure signals. It’s desirable to wait until a killed process actually exits before moving
on (if needed) to killing the next process. Since the processes that lmkd kills are not
lmkd’s children, lmkd currently lacks a way to wait for a process to actually die after

https://www.linuxjournal.com

68 | January 2019 | https://www.linuxjournal.com

diff -u

being sent SIGKILL.

Daniel explained that on Android, the lmkd process currently would simply keep
checking the proc directory for the existence of each process it tried to kill. By
implementing this new interface, instead of continually polling the process, lmkd
could simply wait until the read() operation completed, thus saving the CPU cycles
needed for continuous polling.

And more generally, Daniel said in a later email:

I want to get polling loops out of the system. Polling loops are bad for wakeup
attribution, bad for power, bad for priority inheritance, and bad for latency. There’s no
right answer to the question “How long should I wait before checking $CONDITION
again?”. If we can have an explicit waitqueue interface to something, we should. Besides,
PID polling is vulnerable to PID reuse, whereas this mechanism (just like anything based
on struct pid) is immune to it.

Joel Fernandes suggested, as an alternative, using ptrace() to get the process exit
notifications, instead of creating a whole new file under /proc. Daniel explained:

Only one process can ptrace a given process at a time, so I don’t like ptrace as a
mechanism for anything except debugging. Relying on ptrace for exit notification would
interfere with things like debuggers and crash dump collection systems. Besides, ptrace
can do too much (like read and write process memory) and so requires very strong
privileges not necessary for this mechanism. Besides: ptrace’s interface is complicated
and relies on repeated calls to various wait functions, whereas the interface in this patch
is simple enough to use from the shell.

The issue of PID (process ID) reuse came up again, because it wasn’t clear to
everyone that a whole new file in the /proc directory was the best way to solve the
problem. As David Laight said, Linux used a reference counter on all PIDs, so that
any reuse could be seen. He figured the /proc directory should include some way to
expose that reference count.

https://www.linuxjournal.com

69 | January 2019 | https://www.linuxjournal.com

diff -u

Other operating system kernels have other ways of trying to avoid PIT reuse or at
least mitigate its downsides. As Joel explained:

If you look at the NetBSD pid allocator you’ll see that it uses the low pid bits to index an
array and the high bits as a sequence number. The array slots are also reused LIFO, so you
always need a significant number of pid allocate/free before a number is reused. The non-
sequential allocation also makes it significantly more difficult to predict when a pid will be
reused. The table size is doubled when it gets nearly full.

But to this, Daniel replied:

NetBSD is still just papering over the problem. The real issue is that the whole PID-based
process API model is unsafe, and a clever PID allocator doesn’t address the fundamental
race condition. As long as PID reuse is possible at all, there’s a potential race condition,
and correctness depends on hope. The only way you could address the PID race problem
while not changing the Unix process API is by making pid_t ridiculously wide so that it
never wraps around.

Elsewhere, Aleksa Sarai was still unconvinced that that a whole new file in the /proc
directory would be a good thing, if there were a way to avoid it. Aleksa understood
that Daniel wanted to avoid continuous polling, but felt there were still workable
alternatives. For example, Aleksa said, “When you open /proc/$pid, you already have
a handle for the underlying process, and you can already poll to check whether the
process has died (fstatat fails for instance). What if we just used an inotify event to
tell userspace that the process has died—to avoid userspace doing a poll loop?”

Daniel replied that Aleksa’s solution was far more complicated than Daniel’s. He said
that inotify and related APIs were:

...intended for broad monitoring of system activity, not for waiting for some specific
event. They require a substantial amount of setup code, and since both are event-
streaming APIs with buffers that can overflow, both need some logic for userspace to
detect buffer overrun and fall back to explicit scanning if that happens. They’re also

https://www.linuxjournal.com

70 | January 2019 | https://www.linuxjournal.com

diff -u

optional part of the kernel.

Daniel went on:

Given that we *can*, cheaply, provide a clean and consistent API to userspace, why
would we instead want to inflict some exotic and hard-to-use interface on userspace
instead? Asking that userspace poll on a directory file descriptor and, when poll returns,
check by looking for certain errors (we’d have to spec which ones) from fstatat is
awkward. /proc/pid is a directory. In what other context does the kernel ask userspace to
use a directory this way?

The debate went on, with no resolution on the mailing list. Daniel continued to insist
that his approach was simpler than any of the proposed alternatives, and he also felt it
was in keeping with the spirit of UNIX itself. At one point, he explained:

The basic unix data access model is that a userspace application wants information (e.g.,
next bunch of bytes in a file, next packet from a socket, next signal from a signal FD,
etc.), and tells the kernel so by making a system call on a file descriptor. Ordinarily, the
kernel returns to userspace with the requested information when it’s available, potentially
after blocking until the information is available. Sometimes userspace doesn’t want to
block, so it adds O_NONBLOCK to the open file mode, and in this mode, the kernel
can tell the userspace requestor “try again later”, but the source of truth is still that
ordinarily-blocking system call. How does userspace know when to try again in the “try
again later” case? By using select/poll/epoll/whatever, which suggests a good time for that
“try again later” retry, but is not dispositive about it, since that ordinarily-blocking system
call is still the sole source of truth, and that poll is allowed to report spurious readabilty.
This model works fine and has a ton of mental and technical infrastructure built around it.
It’s the one the system uses for almost every bit of information useful to an application.

The opposition to Daniel’s patch seems to emanate from the desire to avoid adding
new files to /proc. There’s a real risk of /proc, and other kernel interfaces, growing
bloated, overly complex and unmaintainable over time. Linus Torvalds and other
top contributors want to avoid this, especially since it is very difficult to remove

https://www.linuxjournal.com

71 | January 2019 | https://www.linuxjournal.com

diff -u

interfaces once they are implemented. Once user software starts to rely on a given
interface, there’s a great reluctance in Linux to break that software. One reason for
this is that not all software is open source, and older closed-source tools may not
be maintained, and thus may not have the option to adapt to any new interface. A
change in something they rely on may mean the software simply can’t be used with
newer kernels. The kernel developers want to avoid that situation if at all possible.

It’s unclear whether Daniel’s patch will go into the tree in its current form, given
the opposition. It may be that user code—the Android OS in this case—for now
will have to continue to use other, more complicated ways of knowing when
processes have died. ◾

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com, and we’ll run it in the
next Letters section and post it on the website as an addendum to the original article.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

72 | January 2019 | https://www.linuxjournal.com

DEEP DIVE
DISTRIBUTIONS

https://www.linuxjournal.com

73 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

The State of
Desktop Linux 2019
A snapshot of the current state of Desktop Linux at the start of
2019—with comparison charts and a roundtable Q&A with the
leaders of three top Linux distributions.

By Bryan Lunduke

I’ve never been able to stay in one place for long—at least in terms of which Linux
distribution I call home. In my time as a self-identified “Linux Person”, I’ve bounced
around between a number of truly excellent ones. In my early days, I picked up boxed
copies of S.u.S.E. (back before they made the U uppercase and dropped the dots
entirely) and Red Hat Linux (before Fedora was a thing) from store shelves at various
software outlets.

Debian, Ubuntu, Fedora, openSUSE—I spent a good amount of time living in the
biggest distributions around (and many others). All of them were fantastic. Truly
stellar. Yet, each had their own quirks and peculiarities.

Side note: remember when we used to buy Operating Systems—and even
most software—in actual boxes, with actual physical media and actual printed
manuals? I still have big printed manuals for a few early Linux versions, which,
back then, were necessary for getting just about everything working (from X11
to networking and sound). Heck, sometimes simply getting a successful boot
required a few trips through those heavy manuals. Ah, those were the days.

https://www.linuxjournal.com

As I bounced from distro to distro, I developed a strong attachment to just about
all of them, learning, as I went, to appreciate each for what it was. Just the same,
when asked which distribution I recommend to others, my brain begins to melt down.
Offering any single recommendation feels simply inadequate.

Choosing which one to call home, even if simply on a secondary PC, is a deeply
personal choice.

Maybe you have an aging desktop computer with limited RAM and an older, but still
absolutely functional, CPU. You’re going to need something light on system resources
that runs on 32-bit processors.

Or, perhaps you work with a wide variety of hardware architectures and need a single
operating system that works well on all of them—and standardizing on a single Linux
distribution would make it easier for you to administer and update all of them. But
what options even are available?

To help make this process a bit easier, I’ve put together a handy set of charts and graphs
to let you quickly glance and find the one that fits your needs (Figures 1 and 2).

But, let’s be honest, knowing that a particular system meets your hardware needs
(and preferences) simply is not enough. What is the community like? What’s in store
for the future of this new system you are investing in? Do the ideals of its leadership
match up with your own?

In the interests of helping to answer those questions, I sat down with the leaders of
three of the most prominent Linux distros of the day:

• Chris Lamb: Debian Project Leader

• Daniel Fore: elementary Founder

• Matthew Miller: Fedora Project Leader

DEEP
DIVE

74 | January 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

75 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 1. Distribution Comparison Chart I

https://www.linuxjournal.com

76 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 2. Distribution Comparison Chart II

https://www.linuxjournal.com

77 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Each of these systems is unique, respected and brings something truly valuable to
the world.

I asked all three leaders the exact same questions—and gave each the chance to
respond to each other. The topics are all over the place and designed to help
show the similarities and differences between the distributions, both in terms of
goals and culture.

Note that the Fedora project leader, Matthew Miller, was having an unusually busy
time (both for work and personally), but he still made time to answer as many
questions as he could. That, right there, is what I call dedication.

Bryan (LJ):
Introduce your Linux distribution (the short, elevator-pitch version—just a few
sentences) and your role within it.

Daniel (elementary):
elementary is focused on growing the market for open-source software and
chipping away at the share of our closed-source competitors. We believe in
providing a great user experience for both new users and pro users, and putting
a strong emphasis on security and privacy. We build elementary OS: a consumer-
focused operating system for desktops and notebooks.

My role at elementary is as Founder and CEO. I work with our various teams
(like design, development, web and translation teams) to put together a
cohesive vision, product roadmap and ensure that we’re following an ethical
path to sustainable funding.

Chris (Debian):
The Debian Project, which celebrated its 25th birthday this year, is one of the oldest
and largest GNU/Linux distributions and is run on an entirely volunteer basis.

Not only does it have stellar reputation for stability and technical excellence, it

https://debian.org/
https://bits.debian.org/2018/08/debian-is-25.html
https://www.linuxjournal.com

78 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

has a unwavering philosophical stance on free software (i.e., it comes with no
proprietary software pre-installed and the main repository is only free software).
As it underpins countless derivative distributions, such as Ubuntu, et al., it is
uniquely poised and able to improve the Free Software world as a whole.

The Debian Project Leader (DPL) is a curious beast. Far from being a BDFL—the DPL
has no authoritative or deciding say in technical matters—the project leader is elected
every year to a heady mix of figurehead, spokesperson and focus/contact point, but
the DPL is also responsible for the quotidian business of keeping the project moving
with respect to reducing bureaucracy and smoothing any and all roadblocks to
Debian Developers’ productivity.

Matthew (Fedora):
The Fedora distribution brings all of the innovation of thousands of upstream
projects and hundreds of thousands of upstream developers together into a
polished operating system for users, with releases on a six-month cadence.
We’re a community project tied together through the shared project mission and
through the “four Fs” of our foundations: Freedom, Friends, Features and First.
Something like 3,000 people contribute directly to Fedora in any given year, with
a core active group of around 400 people participating in any given week.

We just celebrated the 15th anniversary of our first release, but our history goes
back even further than that to Red Hat Linux. I’m the Fedora Project Leader, a role
funded by Red Hat—paying people to work on the project is the largest way Red
Hat acts as a sponsor. It’s not a dictatorial role; mostly, I collect good ideas and
write short persuasive essays about them. Leadership responsibility is shared with
the Fedora Council, which includes both funded roles, members selected by parts
of the community and at-large elected representatives.

Bryan (LJ):
With introductions out of the way, let’s start with this (perhaps deceptively)
simple question:

https://www.debian.org/vote/2004/vote_002
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://lists.debian.org/debian-devel-announce/2018/10/msg00005.html
https://lists.debian.org/debian-devel-announce/2018/10/msg00005.html
https://www.linuxjournal.com

79 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

How many Linux distributions should there be? And why?

Daniel (elementary):
As long as there are a set of users who aren’t getting their needs met by existing
options, there’s a purpose for any number of distros to exist. Some come and some
go, and many are very very niche, but that’s okay. I think there’s a lot of people who
are obsessed with trying to have some dominant player take a total monopoly, but
in every other market category, it’s immediately apparent how silly that idea is. You
wouldn’t want a single clothing manufacturer or a single restaurant chain or a single
internet provider (wink hint nudge) to have total market dominance. Diversity and
choice in the marketplace is good for customers, and I think it’s no different when it
comes to operating systems.

Matthew (Fedora):
[Responding to Daniel] Yes, I agree exactly. That said, creating an entirely from
scratch distro is a lot of work, and a lot of it not very interesting work. If you’ve
got something innovative at the how-we-put-the-OS-together level (like CoreOS),
there’s room for that, but if you’re focused higher up the stack, like a new desktop
environment or something else around user experience, it makes the most sense
to make a derivative of one of the big community-powered distros. There’s a lot of
boring hard work, and it makes sense to reuse rather than carry those same rocks to
the top of a slightly different hill.

In Fedora, we’re aiming to make custom distro creation as easy as possible. We have
“spins”, which are basically mini custom distros. This is stuff like the Python Classroom
Lab or Fedora Jam (which is focused on musicians). We have a framework for making
those within the Fedora project—I’m all about encouraging bigger, broader sharing
and collaboration in Fedora. But if you want to work outside the project—say, you
really have different ideas on free and open-source vs. proprietary software—we have
Fedora Remixes that let you do that.

Chris (Debian):
The competing choice of distributions is often cited as a reason preventing Linux

https://www.linuxjournal.com

80 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

from becoming mainstream as it robs the movement of a consistent and focused
marketing push.

However, philosophical objections against monopolistic behaviour granted, the
diversity and freedom that this bazaar of distributions affords is, in my view,
paradoxically exactly why it has succeeded.

That people are free—but more important, feel free—to create a new distribution as
a means to try experimental or outlandish approaches to perceived problems is surely
sufficient justification for some degree of proliferation or even duplication of effort.

In this capacity, Debian’s technical excellence, flexibility and deliberate lack of a
top-down direction has resulted in it becoming the base underpinning countless
derivatives, clearly and evidently able to provide the ingredients to build one’s “own”
distribution, often without overt credit.

Matthew wrote: “if you want to work outside the project—say, you really have
different ideas on free and open source vs. proprietary software—we have Fedora
Remixes that let you do that.”

Given that, I would be curious to learn how you protect your reputation if you
encourage, or people otherwise use your infrastructure, tools and possibly even your
name to create and distribute works that are antithetical to the cause of software and
user freedom?

Bryan (LJ):
Thinking about it from a slightly different angle—how many distros would be TOO
many distros?

Daniel (elementary):
More than the market can sustain I guess? The thing about Linux is that it powers all
kinds of stuff. So even for one non-technical person, they could still end up running a
handful of distros for their notebook, their router, their phone someday, IoT devices,

https://www.linuxjournal.com

81 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

etc. So the number of distros that could exist sustainably could easily be in the
hundreds or thousands, I think.

Chris (Debian):
If I may be so bold as to interpret this more widely, whilst it might look like we have
“too many” distributions, I fear this might be misunderstanding the reasons why
people are creating these newer offerings in the first place.

Apart from the aforementioned distros created for technical experimentation,
someone spinning up their own distribution might be (subconsciously!) doing it for
the delight and satisfaction in building something themselves and having their name
attached to it—something entirely reasonable and justifiable IMHO.

To then read this creation through a lens of not being ideal for new users or even
some silly “Linux worldwide domination” metric could therefore even be missing the
point and some of the sheer delight of free software to begin with.

Besides, the “market” for distributions seems to be doing a pretty good job of
correcting itself.

Bryan (LJ):
Okay, since you guys brought it up, let’s talk about world domination.

How much of what you do (and what your teams do) is influenced by a desire
to increase marketshare (either of your distribution specifically or desktop Linux
in general)?

Daniel (elementary):
When we first started out, elementary OS was something we made for fun out of a
desire to see something exist that we felt didn’t yet. But as the company, and our user
base, has grown, it’s become more clear that our mission must be about getting open-
source software in the hands of more people. As of now, our estimated userbase is
somewhere in the hundreds of thousands with more than 75% of downloads coming

https://www.linuxjournal.com

82 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

from users of closed-source operating systems, so I think we’re making good progress
toward that goal. Making the company mission about reaching out to people directly
has shaped the way we monetize, develop products, market and more, by ensuring we
always put users’ needs and experiences first.

Chris (Debian):
I think it would be fair to say that “increasing market share” is not an overt nor overly
explicit priority for Debian.

In our 25-year history, Debian has found that if we just continue to do good work,
then good things will follow.

That is not to say that other approaches can’t work or are harmful, but chasing
potentially chimeric concepts such as “market share” can very easily lead to negative
outcomes in the long run.

Matthew (Fedora):
A project’s user base is directly tied to its ability to have an effect in the world. If we
were just doing cool stuff but no one used it, it really wouldn’t matter much. And, no
one really comes into working on a distro without having been a user first. So I guess
to answer the question directly for me at least, it’s pretty much all of it—even things
that are not immediately related are about helping keep our community healthy and
growing in the long term.

Bryan (LJ):
The three of you represent distros that are “funded” in very different ways. Fedora
being sponsored (more or less) by Red Hat, elementary being its own company and
Debian being, well, Debian.

I would love to hear your thoughts around funding the work that goes into building a
distribution. Is there a “right” or “ideal” way to fund that work (either from an ethical
perspective or a purely practical one)?

https://www.linuxjournal.com

83 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Chris (Debian):
Clearly, melding “corporate interests” with the interests of a community distribution
can be fraught with issues.

I am always interested to hear how other distros separate influence and power
particularly in terms of increasing transparency using tools such as Councils with
community representation, etc. Indeed, this question of “optics” is often highly under-
appreciated; it is simply not enough to be honest, you must be seen to be honest too.

Unfortunately, whilst I would love to be able to say that Debian is by-definition free (!)
of all such problems by not having a “big sister” company sitting next to it, we have a
long history of conversations regarding the role of money in funding contributors.

For example, is it appropriate to fund developers to do work that might not not be
done otherwise? And if it is paid for, isn’t this simply a feedback loop that effectively
ensures that this work will cease to within the remit of volunteers. There are no easy
answers and we have no firm consensus, alas.

Daniel (elementary):
I’m not sure that there’s a single right way, but I think we have the opinion that
there are some wrong ways. The biggest questions we’re always trying to ask about
funding are where it’s coming from and what it’s incentivizing. We’ve taken a hard
stance that advertising income is not in the interest of our users. When companies
make their income from advertising, they tend to have to make compromises to
display advertising content instead of the things their users actually want to see,
and oftentimes are they incentivized to invade their users’ privacy in order to target
ads more effectively. We’ve also chosen to avoid big enterprise markets like server
and IoT, because we believe that since companies will naturally be incentivized to
work on products that turn a profit, that making that our business model would
result in things like the recent Red Hat acquisition or in killing products that users
love, like Ubuntu’s Unity.

Instead, we focus on things like individual sales of software directly to our users,

https://www.linuxjournal.com

84 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

bug bounties, Patreon, etc. We believe that doing business directly with our users
incentivizes the company to focus on features and products that are in the benefit of
those paying customers. Whenever a discussion comes up about how elementary is
funded, we always make a point to evaluate if that funding incentivizes outcomes that
are ethical and in the favor of our users.

Regarding paying developers, I think elementary is a little different here. We
believe that people writing open-source software should be able to make a living
doing it. We owe a lot to our volunteer community, and the current product
could not be possible without their hard work, but we also have to recognize that
there’s a significant portion of work that would never get done unless someone
is being paid to do it. There are important tasks that are difficult or menial, and
expecting someone to volunteer their time to them after their full work day is
a big ask, especially if the people knowledgeable in these domains would have
to take time away from their families or personal lives to do so. Many tasks are
also just more suited to sustained work and require the dedicated attention of
a single person for several weeks or months instead of some attention from
multiple people over the span of years. So I think we’re pretty firmly in the camp
that not only is it important for some work to be paid, but the eventual goal
should be that anyone writing open-source code should be able to get paid for
their contributions.

Chris (Debian):
Daniel wrote: “So I think we’re pretty firmly in the camp that not only is it important
for some work to be paid, but the eventual goal should be that anyone writing open-
source code should be able to get paid.”

Do you worry that you could be creating a two-tier community with this approach?

Not only in terms of hard influence (eg. if I’m paid, I’m likely to be able to simply
spend longer on my approach) but moreover in terms of “soft” influence during
discussions or by putting off so-called “drive-thru” contributions? Do you do anything
to prevent the appearance of this?

https://www.linuxjournal.com

85 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Matthew (Fedora):
Chris wrote: “Do you worry that you could be creating a two-tier community with
this approach?”

Yeah, this is a big challenge for us. We have many people who are paid by Red
Hat to work on Fedora either full time or as part of their job, and that gives a
freedom to just be around a lot more, which pretty much directly translates
to influence. Right now, many of the community-elected positions in Fedora
leadership are filled by Red Hatters, because they’re people the community knows
and trusts. It takes a lot of time and effort to build up that visibility when you
have a different day job. But there’s some important nuances here too, because
many of these Red Hatters aren’t actually paid to work on Fedora at all—they’re
doing it just like anyone else who loves the project.

Daniel (elementary):
Chris wrote: “Do you worry that you could be creating a two-tier community with
this approach?”

It’s possible, but I’m not sure that we’ve measured anything to this effect. I think
you might be right that employees at elementary can have more influence just
as a byproduct of having more time to participate in more discussions, but I
wouldn’t say that volunteers’ opinions are discounted in any way or that they’re
underrepresented when it comes to major technical decisions. I think it’s more
that we can direct labor after design and architecture decisions have been
discussed. As an example, we recently had decided to make the switch from
CMake to Meson. This was a group discussion primarily led by volunteers, but the
actual implementation was then largely carried out by employees.

Chris (Debian):
Daniel wrote: “Do you worry that you could be creating a two-tier community with
this approach? ... It’s possible, but I’m not sure that we’ve measured anything to
this effect.”

https://www.linuxjournal.com

86 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

I think it might be another one of those situations where the optics in play is perhaps
as important as the reality. Do you do anything to prevent the appearance of any bias?

Not sure how best to frame it hypothetically, but if I turned up to your project
tomorrow and learned that some developers were paid for their work (however fairly
integrated in practice), that would perhaps put me off investing my energy.

Bryan (LJ):
What do you see as the single biggest challenge currently facing both your specific
project—and desktop Linux in general?

Daniel (elementary):
Third-party apps! Our operating systems are valuable to people only if they can use
them to complete the tasks that they care about. Today, that increasingly means using
proprietary services that tie in to closed-source and non-native apps that often have
major usability and accessibility problems. Even major open-source apps like Firefox
don’t adhere to free desktop standards like shipping a .desktop file or take advantage
of new cross-desktop metadata standards like AppStream. If we want to stay relevant
for desktop users, we need to encourage the development of native open-source
apps and invest in non-proprietary cloud services and social networks. The next set of
industry-disrupting apps (like DropBox, Sketch, Slack, etc.) need to be open source
and Linux-first.

Chris (Debian):
Third-party apps/stores are perhaps the biggest challenge facing all distributions
within the medium- to long-term, but whilst I would concede there are cultural
issues in play here, I believe they have some element of being technical challenges
or at least having some technical ameliorations.

More difficult, however, is that our current paradigms of what constitutes software
freedom are becoming difficult to square with the increased usage of cloud
services. In the years ahead we may need to revise our perspectives, ideas and
possibly even our definitions of what constitutes free software.

https://www.linuxjournal.com

87 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

There will be a time when the FLOSS community will have to cease the casual
mocking of “cloud” and acknowledge the reality that it is, regardless of one’s view
of it, here to stay.

Matthew (Fedora):
For desktop Linux, on the technical side, I’m worried about hardware
enablement—not just the work dealing with driver compatibility and proprietary
hardware, but more fundamentally, just being locked out. We’ve just seen Apple
come out with hardware locked so Linux won’t even boot—even with signed
kernels. We’re going to see more of that, and more tablets and tablet-keyboard
combos with similar locked, proprietary operating systems.

A bigger worry I have is with bringing the next generation to open source—a
lot of Fedora core contributors have been with the project since it started 15
years ago, which on the one hand is awesome, but also, we need to make sure
that we’re not going to end up with no new energy. When I was a kid, I got into
computers through programming BASIC on an Apple][. I could see commercial
software and easily imagine myself making the same kind of thing. Even the
fanciest games on offer—I could see the pixels and could use PEEK and POKE
to make those beeps and boops. But now, with kids getting into computers via
Fortnite or whatever, that’s not something one can just sit down and make an
approximation of as a middle-school kid. That’s discouraging and makes a bigger
hill to climb.

This is one reason I’m excited about Fedora IoT—you can use Linux and open
source at a tinkerer’s level to make something that actually has an effect on the
world around you, and actually probably a lot better than a lot of off-the-shelf
IoT stuff.

Bryan (LJ):
Where do you see your distribution in five years? What will be its place be in the
broader Linux and computing world?

https://www.linuxjournal.com

88 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Chris (Debian):
Debian naturally faces some challenges in the years ahead, but I sincerely believe
that the Project remains as healthy as ever.

We are remarkably cherished and uniquely poised to improve the free software
ecosystem as a whole. Moreover, our stellar reputation for technical excellence,
stability and software freedom remains highly respected where losing this would
surely be the beginning of the end for Debian.

Daniel (elementary):
Our short-term goals are mostly about growing our third-party app ecosystem
and improving our platform. We’re investing a lot of time into online accounts
integration and working with other organizations, like GNOME, to make our
libraries and tooling more compelling. Sandboxed packaging and Wayland will
give us the tools to help keep our users’ data private and to keep their operating
system stable and secure. We’re also working with OEMs to make elementary OS
more shippable and to give users a way to get an open-source operating system
when they buy a new computer. Part of that work is the new installer that we’re
collaborating with System76 to develop. Overall, I’d say that we’re going to
continue to make it easier to switch away from closed-source operating systems,
and we’re working on increasing collaborative efforts to do that.

Bryan (LJ):
When you go to a FOSS or Linux conference and see folks using Mac and Windows
PCs, what’s your reaction? Is it a good thing or a bad thing when developers of Linux
software primarily use another platform?

Chris (Debian):
Rushing to label this as a “good” or “bad” thing can make it easy to miss the
underlying and more interesting lessons we can learn here.

Clearly, if everyone was using a Linux-based operating system, that would be
a better state of affairs, but if we are overly quick to dismiss the usage of Mac

https://www.linuxjournal.com

89 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

systems as “bad”, then we can often fail to understand why people have chosen
to adopt the trade-offs of these platforms in the first place.

By not demonstrating sufficient empathy for such users as well as newcomers or
those without our experience, we alienate potential users and contributors and
tragically fail to communicate our true message. Basically, we can be our own
worst enemy sometimes.

Daniel (elementary):
Within elementary, we strongly believe in dogfood, but I think when we see someone
at a conference using a closed-source operating system, it’s a learning opportunity.
Instead of being upset about it or blaming them, we should be asking why we haven’t
been able to make a conversion. We need to identify if the problem is a missing
product, feature, or just with outreach and then address that.

Bryan (LJ):
How often do you interact with the leaders of other distributions? And is that the
right amount?

Chris (Debian):
Whilst there are a few meta-community discussion groups around, they tend to
have a wider focus, so yes, I think we could probably talk a little more, even just as
a support group or a place to rant!

More seriously though, this conversation itself has been fairly insightful, and I’ve
learned a few things that I think I “should” have known already, hinting that we
could be doing a better job here.

Daniel (elementary):
With other distros, not too often. I think we’re a bit more active with our partners,
upstreams and downstreams. It’s always interesting to hear about how someone
else tackles a problem, so I would be interested in interacting more with others,
but in a lot of cases, I think there are philosophical or technical differences that

https://www.linuxjournal.com

90 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

mean our solutions might not be relevant for other distros.

Bryan (LJ):
Is there value in the major distributions standardizing on package management
systems? Should that be done? Can that be done?

Chris (Debian):
I think I would prefer to see effort go toward consistent philosophical outlooks
and messaging on third-party apps and related issues before I saw energy being
invested into having a single package management format.

I mean, is this really the thing that is holding us all back? I would grant there is
some duplication of effort, but I’m not sure it is the most egregious example and—
as you suggest—it is not even really technically feasible or is at least subject to
severe diminishing returns.

Daniel (elementary):
For users, there’s a lot of value in being able to sideload cross-platform, closed-
source apps that they rely on. But outside of this use case, I’m not sure that
packaging is much more than an implementation detail as far as our users are
concerned. I do think though that developers can benefit from having more
examples and more documentation available, and the packaging formats can
benefit from having a diverse set of implementations. Having something like
Flatpak or Snap become as well accepted as SystemD would probably be good
in the long run, but our users probably never noticed when we switched from
Upstart, and they probably won’t notice when we switch from Debian packages.

Bryan (LJ):
Big thanks to Daniel, Matthew and Chris for taking time out to answer questions
and engage in this discussion with each other. Seeing the leadership of such
excellent projects talking together about the things they differ on—and the
things they align on completely—warms my little heart. ◾

https://www.linuxjournal.com

91 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing Guy (tm),
former openSUSE Board Member.. . and current Deputy Editor of Linux Journal as well as host of the popular Lunduke Show .
More details: http://lunduke.com .

Resources
• Debian Project

• Debian’s Unwavering Philosophical Stance on Free Software

• Debian’s 25th Birthday

• Benevolent Dictator for Life (Wikipedia)

• Debian Project Leader Elections 2017

• Debian Project Leader Elections 2018

• Bits from the DPL (October 2018)

• Get Fedora

• Fedora’s Mission and Foundations

• Celebrate 15 Years of Fedora

• elementary OS

• Publish on AppCenter

http://lunduke.com/
https://debian.org/
https://www.debian.org/vote/2004/vote_002
https://bits.debian.org/2018/08/debian-is-25.html
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://www.debian.org/vote/2017/vote_001
https://www.debian.org/vote/2018/vote_001
https://lists.debian.org/debian-devel-announce/2018/10/msg00005.html
https://getfedora.org/
https://docs.fedoraproject.org/en-US/project
https://fedoramagazine.org/celebrate-fifteen-years-fedora
https://elementary.io/
https://developer.elementary.io/
https://www.linuxjournal.com

DEEP
DIVE

92 | January 2019 | https://www.linuxjournal.com

Linux and the
Multiverse
A look at the rich diversity of Linux distributions.

By Marcel Gagné

What do Linux distributions and the Nobel Prize-winning work by Saul Perlmutter,
Brian P. Schmidt and Adam G. Riess have in common? Well, Linux was originally the
hobby project of one Linus Torvalds back in 1991 when he lived in Helsinki, Finland.
Perlmutter, on the other hand, worked on the Supernova Cosmology Project at the
Lawrence Berkeley National Laboratory and the University of California in Berkeley.
Schmidt was part of the High-z Supernova Search Team at Australian National
University, and Riess was also on the High-z Supernova Search Team but worked out
of Johns Hopkins University and Space Telescope Science Institute in Baltimore.

You see where I’m going with this? The supernova team won the 2011 Nobel
Prize for physics for “the discovery of the accelerating expansion of the Universe
through observations of distant supernovae”. In short, they discovered that the
universe is not only expanding, as Edwin Hubble observed back in 1929 when
he noticed that everything seemed to be moving away from us, but that the
expansion was accelerating. This is a big deal, because everyone assumed that
gravity would eventually do its dirty work and slow the whole expanding mess
down. That turns out not to be the case.

So what’s causing this anti-gravity force? Dark energy, for which the team actually
came up with a number, a number which, as it turns out, is super tiny and its source,
unknown. Later work, based on these observations, suggests that string theory
might hold the answer, while others point to the Higgs Field, long theorized but

https://www.linuxjournal.com

93 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

only recently confirmed. Spoiler alert: nobody knows for sure, but if you follow this
whole thing down the proverbial rabbit hole, you wind up concluding that there are
countless universes in addition to our own—what we now refer to as the multiverse.

Just as the possibility exists for countless universes, so does the possibility exist
for countless Linux distributions, When Linus chose to open the code for his
new kernel, he unknowingly set in motion a kind of “distribution Big Bang”, where
the original code, combined with other open-source projects, began stretching
out into the furthest reaches of the internet, where those combinations could
spawn other versions of what eventually would form what we now think of as
distributions. Just as matter from the early universe coalesced into dust clouds and
then into stars that through their eventual cataclysmic destruction in supernovae
would spawn the heavier elements that would, in time, create our own solar system
with our planetary home, the Earth, so too did this early code evolve to create the
rich diversity of Linux distributions.

We tend to think of our Earth as being a pretty mundane place, which is why
we invented the Star Trek Federation, Agartha, Middle Earth, Narnia, Dune
and Westeros. The same is true for Linux distributions. Sure, we all could be
running a single version of Linux, like Red Hat or Ubuntu, but that would go
against the very laws of the, ahem, multiverse. Just as we aren’t always aware
of the many universes that exist, you may not be aware as to just how many
Linux distributions there are. Today, I’m going to give you a sample. Best of all,
although it has proven to be insanely difficult to travel to any universe but our
own, trying a different Linux distribution is as easy as downloading an ISO and
rebooting. Welcome to the Linuverse.

To the Moon!
This one seems like a great place to start, because, well, it’s out of this world. You can
get Lunar Linux (Figure 1) from lunar-linux.org where you’ll find images compressed
using the xz format. Consequently, your first step is to unxz the file:

unxz lunar-1.7.0-x86_64.iso.xz

http://www.lunar-linux.org/
https://www.linuxjournal.com

94 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Lunar boots using a classic text screen, and that’s something I never want to see
disappear from the Linuverse. The installation is fascinating, because it’s somewhat
reminiscent of Slackware, with its blue text screen, but each item invites you to take
“one step forward”. If you mess up, you can take one step back. You’ll be asked to
select language and keyboard, and to partition your disk. There’s a variety of tools
for the latter, but I picked fdisk, just because. After jumping through a few hoops and
answering a variety of questions, you’ll need to install a kernel (which will be visible
from the boot screen) and finally reboot.

Yes, this is a classic “Take chances, make mistakes and get messy” distribution, as Ms.
Frizzle from the Magic School Bus would say. And, messy you will get. Once you boot
and log in to root, the first thing you’ll do is build your X environment from scratch.
That’s right:

lin XOrg7

That command will start a dialog asking you to choose the various installation

Figure 1. Lunar Linux, where anything you want, including X, you need to build.

https://www.linuxjournal.com

95 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

components (Figure 1). Stay with me. This is actually fun.

Once you build X, you’ll probably want a desktop with that distribution, so like X, you’ll
need to build that too. I happen to like KDE, so I decided to build that:

lin kde4

Substitute xfce4 for kde4 if you want XFCE or gnome2 if you want GNOME for
your desktop environment. If you’re bored with the simplicity of apt-get or yum for
installing packages, and you long for those early days of compiling everything, Lunar
is for you. A word of warning though: you may find that the Lunar cache isn’t always
fresh, and lin might have trouble finding the odd package. If that happens, visit the
lunar download page on the web, find your package, and download it manually. Oh,
you’ll definitely want to install “links” before you do that:

lin links

The repository is here. If you find yourself having to download a package, say
“libpng”, as I did, you’ll need to install it by referencing your local directory (for
example, /tmp):

lin -f /tmp -w 1.6.35 libpng

What that means is find the source bundle in /tmp where you want (the -w flag)
version 1.6.35 of the package. It’s a strange bit of nostalgic fun, and I spent far more
time on this than I would have thought possible.

Paldo Linux
Maybe you don’t want to start right from scratch, and you would fancy a desktop
environment to work from, in which case you might want to try Paldo (Figure 2),
which stands for “pure adaptable Linux distribution”. Paldo is a strange beast in that
it looks a lot like a typical GNOME-based desktop system, but the philosophy is one
I hadn’t run into before. Think of it as a source-and-binary hybrid where packages

http://download.lunar-linux.org/lunar/cache
https://www.linuxjournal.com

96 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

are built and binaries installed, but with all source and development files installed by
default. Packages are not split, so you get everything related to that package. You can
make local changes and use local “differential” repositories for maximum flexibility.

Another thing that sets Paldo apart from other distributions is its choice of
package manager, UPKG. To install LibreOffice, for example, you would use the
following command:

upkg-install libreoffice

The upkg approach, along with Paldo’s stated goal of building a “just works” system,

Figure 2. Using upkg to Install LibreOffice in Paldo

https://www.linuxjournal.com

97 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

does come at a price. It does not provide an everything package that you might have
come to expect, choosing instead what it considers to be the right program for the
right task. For instance, when it comes to desktop environment, you have one choice:
GNOME. Also, the source/binary approach means some packages will download
source and build locally, which can take some getting used to and is definitely not
recommended for anyone lacking in patience.

In another part of the Linuverse, Linux plays alongside Pokemon, Fullmetal Alchemist
and Yu-Gi-Oh!, and the distribution they run is Linux Mangaka (Figure 3), a Manga-
focused distribution based on Ubuntu LTS releases. The current version, Cho

Figure 3. Linux Mangaka contains tools for Manga creators and enthusiasts.

https://www.linuxjournal.com

98 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

(Japanese for “butterfly”), runs Ubuntu 16.04 LTS with AIO (Japanese for “love”),
which likely will be out by the time this article is published.

Aside from the colorful Manga-styled desktop artwork, there’s a serious
distribution under the surface that’s more than straight Ubuntu. In addition to
things like Comix, a comic-book-reader app, there’s Synfig, a powerful tool for
creating 2D animation, and Aegisub, an application to allow fans to create their
own subtitles for foreign language videos.

Figure 4. The First Issue
of Ubunchu!, a Manga for
Ubuntu Users

https://www.linuxjournal.com

99 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

One more thing before I move on. In the Mangaka part of the Linuverse, the number-
one favorite Manga is called Ubunchu!, the ongoing story of three young students
in a school computer lab, all facing the challenges we encounter every day. It’s truly
inspiring stuff. We’re lucky in that this Ubuntu-themed Manga, of which there are now
seven issues, is available for download and your reading pleasure.

Now, it’s time to get serious again. With infinite possibilities, you get some fascinating
and highly specialized creations. For instance, eucalyptus leaves are far from nutritious
and, for most animals, are actually poisonous. That doesn’t stop Australia’s Koala from
living on a diet of these plants. With millions of years of evolution and some serious
specialization, you can produce some pretty amazing creatures.

Figure 5. Iro OS, a Distribution for the Visual and Film Arts

http://divajutta.com/doctormo/ubunchu/c.html
https://www.linuxjournal.com

100 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

In the Linuverse, specialization can spawn fun distributions, like Hannah Montana
Linux (seriously, go look it up; I’m not helping you with this one), but that also
makes it possible to create distributions that focus on a collection of niche or
industry-specific tools. Take Iro OS (Figure 5), a Linux distribution built specifically
for animators, video and film producers, artists and others who work in the visual
arts. It’s also the first time I’ve seen the GNOME Pie menus, so that was a pretty cool
discovery in and of itself. You can see the “3D and Video” menu opened up in the
screenshot shown in Figure 5.

The collection of applications is rich but industry-specific. There’s Blender for
3D modeling and rendering, Inkscape for vector graphics, MakeHuman to create
and render realistic anatomically correct human figures, Natron for node-based
compositing, Kdenlive for video editing, Synfig (which I mentioned earlier), and a few
more familiar apps like GIMP, Krita and others. It’s a well thought out set of tools, and
the distribution looks super slick in red and black.

Way, Way Outside!
With an infinite number of universes, there may be no end to the extent of “weird
and wonderful” out there. Why should it be any different with the world of Linux and
open source? I want to wrap up this exploration with a couple other distributions
that, although not Linux-based, are fully open source, and give you a glimpse into that
infinite collection of weird and wonderful.

Behold, my friends, an operating system for everypony—not everybody, but
everypony. This is PonyOS (Figure 6). The developer of PonyOS swears that although
it feels Linux-ish, the kernel is not Linux (or Hurd or Mimix, etc.), but rather it’s
something cooked up by the mind or minds behind this odd distribution. PonyOS
has its own package manager, runs on a variety of hardware, albeit small, and it easily
runs inside 512MB. It’s so small, in fact, that I ran it entirely in memory and from the
command line, like this:

qemu-system-i386 -m 512M -enable-kvm -soundhw ac97 ponyos.iso

https://www.linuxjournal.com

101 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

You can open a terminal window and play some games, or open up vim and get
creative—maybe cook up your own wacky distribution.

Reacting to Windows
Way back when, before Microsoft loved Linux (it says so right there on its website),
there was a kind of friendly enemy relationship between the open world of Linux and
the tightly closed world of Microsoft. Let’s just say we didn’t get along. Part of the
Linux master plan was to get everyone to leave that terrible virus-prone Windows
system and move to the land of rock-solid freedom that was the Linux desktop. In an
effort to pull people away, we created all sorts of Windows-like desktops and even
advertised them as such. Developers also built Wine, an open-source compatibility

Figure 6. PonyOS, the OS for Everypony

https://www.linuxjournal.com

102 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

layer that would allow some Windows software to run on top of Linux.

Some people in the Open Source world, however, chose to go a lot further, and they
created the altogether unmistakably Windows-like ReactOS (Figure 7).

Perhaps the most interesting thing about ReactOS is its resilience over time. When
it first appeared, it was seen as more of a joke than anything else. Yet, years later,
it’s still going strong, with a large number of developers continuing to improve it.
These days, it feels like an almost perfect copy of Windows NT, right down to the
installation process. Most interesting is the number of apps that you can install from

Figure 7. ReactOS even has a number of apps you can install from inside the OS.

https://www.linuxjournal.com

103 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

the Add/Remove Programs section of the Control Panel, including open-source
programs like LibreOffice and GnuCash.

The Linuverse may not be totally infinite, but the potential for the new, the
interesting, the strange and the downright bizarre means that your Linux and open-
source journey has only just begun.

Now, let’s see what other weirdness I can find. ◾

Marcel Gagné is Writer and Free Thinker at Large. The Cooking With Linux guy. Ruggedly handsome! Science, Linux and technology geek.
Occasionally opinionated. Always confused. Loves wine, food, music and the occasional single malt Scotch.

Resources
• Lunar Linux

• Paldo Linux

• Linux Mangaka

• Iro OS

• PonyOS

• ReactOS

• Hannah Montana Linux

http://www.cookingwithlinux.com/
https://lunar-linux.org/
https://www.paldo.org/
https://animesoft.wordpress.com/mangaka
http://www.iroos.net/
https://ponyos.org/
https://reactos.org/
http://hannahmontana.sourceforge.net/
https://www.linuxjournal.com

104 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Build a Custom
Minimal Linux
Distribution from
Source, Part II
Follow along with this step-by-step guide to creating your
own distribution.

By Petros Koutoupis

In an article in the June 2018 issue of LJ, I introduced a basic recipe for building
your own minimal Linux-based distribution from source code packages. The guide
started with the compilation of a cross-compiler toolchain that ran on your host
system. Using that cross-compiler, I explained how to build a generic x86-64 target
image, and the Linux Journal Operating System (LJOS) was born.

This guide builds on what you learned from Part I, so if you haven’t already, be sure to
go through those original steps up to the point where you are about to package the
target image for distribution.

Gathering the Packages
To follow along, you’ll need the following:

• busybox-1.28.3.tar.bz2 (the same package used in Part I).

https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com

105 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

• clfs-embedded-bootscripts-1.0-pre5.tar.bz2 (the same package used in Part I).

• Dropbear-2018.76.tar.bz2.

• Iana-etc-2.30.tar.bz2.

• netplug-1.2.9.2.tar.bz2.

• sysstat-12.1.1.tar.gz.

Note: I ended up rebuilding this distribution with the 4.19.1 Linux kernel. If you want
to do the same, be sure to install the development package of the OpenSSL libraries
on your host machine or else the build will fail. On distributions like Debian or Ubuntu,
this package is named libssl-dev.

Glossary
Here’s a quick review the terminology from the first part of this series:

• Host: the host signifies the very machine on which you’ll be doing the vast
majority of work, including cross-compiling and installing the target image.

• Target: the target is the final cross-compiled operating system that you’ll
be building from source packages. You’ll build it using the cross-compiler on
the host machine.

• Cross-Compiler: you’ll be building and using a cross-compiler to create the
target image on the host machine. A cross-compiler is built to run on a host
machine, but it’s used to compile for an architecture or microprocessor that
isn’t compatible with the target machine.

https://www.linuxjournal.com

106 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Fixing Some Boot-Time Errors
After following along with Part I, you will have noticed that during boot time, a couple
errors are generated (Figure 1).

Let’s clear out some of those errors. The first one relates to a script not included
in BusyBox: usbdisk_link. For the purpose of this exercise (and because it isn’t
important for this example), remove the references to both usbdisk_link and
ide_link in the ${LJOS}/etc/mdev.conf file. Refer to the following diff output to
see what I mean (focus closely on the lines that begin with both sd and hd):

--- mdev.conf.orig 2018-11-10 18:10:14.561278714 +0000
+++ mdev.conf 2018-11-10 18:11:07.277759662 +0000
@@ -26,8 +26,8 @@ ptmx root:tty 0666
 # ram.*
 ram([0-9]*) root:disk 0660 >rd/%1
 loop([0-9]+) root:disk 0660 >loop/%1

Figure 1. Errors generated during the init process of a system boot.

https://www.linuxjournal.com

107 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

-sd[a-z].* root:disk 0660 */lib/mdev/usbdisk_link
-hd[a-z][0-9]* root:disk 0660 */lib/mdev/ide_links
+sd[a-z].* root:disk 0660
+hd[a-z][0-9]* root:disk 0660

 tty root:tty 0666
 tty[0-9] root:root 0600

Now, let’s address the networking-related errors. Create the ${LJOS}/etc/network/
interfaces file:

$ cat > ${LJOS}/etc/network/interfaces << "EOF"
> auto eth0
> iface eth0 inet dhcp
> EOF

Now create the ${LJOS}/etc/network.conf file with the following contents:

/etc/network.conf
Global Networking Configuration
interface configuration is in /etc/network.d/

INTERFACE="eth0"

set to yes to enable networking
NETWORKING=yes

set to yes to set default route to gateway
USE_GATEWAY=no

set to gateway IP address
GATEWAY=10.0.2.2

https://www.linuxjournal.com

108 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Finally, create the udhcpc script. udhcpc is a small DHCP client primarily written
for minimal or embedded Linux systems. It was (or should have been) built with
your BusyBox installation if you followed the steps in Part I of this series. Create the
following directories:

$ mkdir -pv ${LJOS}/etc/network/if-{post-{up,down},
↪pre-{up,down},up,down}.d
$ mkdir -pv ${LJOS}/usr/share/udhcpc

Now, create the ${LJOS}/usr/share/udhcpc/default.script file with the following
contents:

#!/bin/sh
udhcpc Interface Configuration
Based on http://lists.debian.org/debian-boot/2002/11/
↪msg00500.html
udhcpc script edited by Tim Riker <Tim@Rikers.org>

[-z "$1"] && echo "Error: should be called from udhcpc"
 ↪&& exit 1

RESOLV_CONF="/etc/resolv.conf"
[-n "$broadcast"] && BROADCAST="broadcast $broadcast"
[-n "$subnet"] && NETMASK="netmask $subnet"

case "$1" in
 deconfig)
 /sbin/ifconfig $interface 0.0.0.0
 ;;

 renew|bound)
 /sbin/ifconfig $interface $ip $BROADCAST $NETMASK

https://www.linuxjournal.com

109 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

 if [-n "$router"] ; then
 while route del default gw 0.0.0.0 dev
 ↪$interface ; do
 true
 done

 for i in $router ; do
 route add default gw $i dev
 ↪$interface
 done
 fi

 echo -n > $RESOLV_CONF
 [-n "$domain"] && echo search $domain >>
 ↪$RESOLV_CONF
 for i in $dns ; do
 echo nameserver $i >> $RESOLV_CONF
 done
 ;;
esac

exit 0

Change the file’s permission to enable the execution bit for all users:

$ chmod +x ${LJOS}/usr/share/udhcpc/default.script

The next time you boot up the target image (after re-preparing it), those boot errors
will have disappeared.

One last thing I want to address is the root user’s default shell. In my instructions from
Part I, I had you set the shell to ash. For some odd reason, this will give you issues
when attempting to ssh in to the distribution (via Dropbear). To avoid this, modify

https://www.linuxjournal.com

110 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

the entry in the ${LJOS}/etc/passwd file so that it reads:

root::0:0:root:/root:/bin/sh

Notice the substitution of ash with sh. Ultimately, it’s the same shell, as sh is a
softlink to ash.

Re-Configuring the Environment
The cross-compilation build directory and the headers from the previous article
should not have been deleted. Export the following variables (which you probably can
throw into a script file):

set +h
umask 022

Figure 2. A Cleaned-Up System Boot

https://www.linuxjournal.com

111 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

export LJOS=~/lj-os
export LC_ALL=POSIX
export PATH=${LJOS}/cross-tools/bin:/bin:/usr/bin
unset CFLAGS
unset CXXFLAGS
export LJOS_HOST=$(echo ${MACHTYPE} | sed "s/-[^-]*/-cross/")
export LJOS_TARGET=x86_64-unknown-linux-gnu
export LJOS_CPU=k8
export LJOS_ARCH=$(echo ${LJOS_TARGET} | sed -e 's/-.*//'
 ↪-e 's/i.86/i386/')
export LJOS_ENDIAN=little
export CC="${LJOS_TARGET}-gcc"
export CXX="${LJOS_TARGET}-g++"
export CPP="${LJOS_TARGET}-gcc -E"
export AR="${LJOS_TARGET}-ar"
export AS="${LJOS_TARGET}-as"
export LD="${LJOS_TARGET}-ld"
export RANLIB="${LJOS_TARGET}-ranlib"
export READELF="${LJOS_TARGET}-readelf"
export STRIP="${LJOS_TARGET}-strip"

Dropbear
Dropbear is a lightweight SSH server and client. It’s especially useful in minimal or
embedded Linux distributions, and that’s why you’ll be installing it here. But before doing
so, change into the CLFS bootscripts directory (clfs-embedded-bootscripts-1.0-pre5)
from the previous part and install the customized init scripts:

$ make DESTDIR=${LJOS}/ install-dropbear

Now that you’ve installed the init scripts for Dropbear, install the SSH server
and client package. Change into the package directory, and run the following
configure command:

https://www.linuxjournal.com

112 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

CC="${CC} -Os" ./configure --prefix=/usr --host=${LJOS_TARGET}

Compile the package:

$ make MULTI=1 PROGRAMS="dropbear dbclient dropbearkey
 ↪dropbearconvert scp"

Install the package:

$ make MULTI=1 PROGRAMS="dropbear dbclient dropbearkey
 ↪dropbearconvert scp" DESTDIR=${LJOS}/ install

Make sure the following directories are created:

$ mkdir -pv ${LJOS}/{etc,usr/sbin}
$ install -dv ${LJOS}/etc/dropbear

And, softlink the following binary:

ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/sbin/dropbear
ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/bin/dbclient
ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/bin/dropbearkey
ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/bin/dropbearconvert
ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/bin/scp
ln -svf /usr/bin/dropbearmulti ${LJOS}/usr/bin/ssh

BusyBox (Revisited)
Later in this tutorial, I take a look at the HTTP dæmon included in the BusyBox
package. If you haven’t already, customize the package’s config file to make sure that
httpd is selected and built:

$ make CROSS_COMPILE="${LJOS_TARGET}-" menuconfig

https://www.linuxjournal.com

113 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Compile and install the package:

$ make CROSS_COMPILE="${LJOS_TARGET}-"
$ make CROSS_COMPILE="${LJOS_TARGET}-" \
CONFIG_PREFIX="${LJOS}" install

Iana-Etc
The Iana-Etc package provides your distribution with the data for the various network
services and protocols as it relates to the files /etc/services and /etc/protocols. The
package itself most likely will come with outdated data and IANA (Internet Assigned
Numbers Authority), which is why you’ll need to apply a patch written by Andrew
Bradford to adjust the download location for the data update.

Change into the package directory and apply the patch:

$ patch -Np1 -i ../iana-etc-2.30-update-2.patch

Figure 3. The Busybox Configuration Menu

http://patches.clfs.org/embedded-dev/iana-etc-2.30-update-2.patch
http://patches.clfs.org/embedded-dev/iana-etc-2.30-update-2.patch
https://www.linuxjournal.com

114 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Update the package’s data:

$ make get

Convert the raw data and IANA into their proper formats:

$ make STRIP=yes

Install the newly created /etc/services and /etc/protocols files:

make DESTDIR=${LJOS} install

Netplug
The Netplug dæmon detects the insertion and removal of network cables and will
react by bringing up or taking down the respective network interface. Similar to
the Iana-Etc package, the same Andrew Bradford wrote a patch to address some
issues with Netplug.

Change into the package directory and apply the patch:

$ patch -Np1 -i ../netplug-1.2.9.2-fixes-1.patch

Compile and install the package:

$ make && make DESTDIR=${LJOS}/ install

Sysstat
This is a simple one, and although you don’t necessarily need this package, let’s
install it anyway, because it provides a nice example of how other packages are to
be installed (should you choose to install more on your own). Sysstat provides a
collection of monitoring utilities, which include sar, sadf, mpstat, iostat, tapestat,
pidstat, cifsiostat and sa tools.

http://patches.clfs.org/embedded-dev/netplug-1.2.9.2-fixes-1.patch
http://patches.clfs.org/embedded-dev/netplug-1.2.9.2-fixes-1.patch
https://www.linuxjournal.com

115 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Change into the package directory and configure/compile/install the package:

$./configure --prefix=/usr --disable-documentation
$ make
$ make DESTDIR=${LJOS}/ install

Installing the Target Image (Again)
You’ll need to create a staging area to remove unnecessary files and strip your
binaries of any and all debugging symbols, but in order to do so, you’ll need to
copy your entire target build environment to a new location:

$ cp -rf ${LJOS}/ ${LJOS}-copy

Remove the cross-compiler toolchain and source/header files from the copy:

$ rm -rfv ${LJOS}-copy/cross-tools
$ rm -rfv ${LJOS}-copy/usr/src/*

Generate a list of all static libraries and remove them:

$ FILES="$(ls ${LJOS}-copy/usr/lib64/*.a)"
$ for file in $FILES; do
> rm -f $file
> done

Strip all debugging symbols from every binary:

$ find ${LJOS}-copy/{,usr/}{bin,lib,sbin} -type f -exec
 ↪sudo strip --strip-debug '{}' ';'
$ find ${LJOS}-copy/{,usr/}lib64 -type f -exec sudo
 ↪strip --strip-debug '{}' ';'

https://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

Change ownership of every file to root:

$ sudo chown -R root:root ${LJOS}-copy

And change the group and permissions of the following three files:

$ sudo chgrp 13 ${LJOS}-copy/var/run/utmp
 ↪${LJOS}-copy/var/log/lastlog
$ sudo chmod 4755 ${LJOS}-copy/bin/busybox

Create the following character device nodes:

$ sudo mknod -m 0666 ${LJOS}-copy/dev/null c 1 3
$ sudo mknod -m 0600 ${LJOS}-copy/dev/console c 5 1

You’ll need to change into the directory of your copy and compress everything
into a tarball:

cd ${LJOS}-copy/
sudo tar cfJ ../ljos-build-10Nov2018.tar.xz *

Now that you have your entire distribution archived into a single file, you’ll need
to move your attention to the disk volume on which it will be installed. For the
rest of this tutorial, you’ll need a free disk drive, and it will need to enumerate as a
traditional block device (in my case, it’s /dev/sdd):

$ cat /proc/partitions |grep sdd
 8 48 256000 sdd

That block device needs to be partitioned. A single partition should suffice,
and you can use any one of a number of partition utilities, including fdisk or
parted. Once that partition is created and detected by the host system, format
the partition with an Ext4 filesystem, mount it to a staging area and change into

116 | January 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

DEEP
DIVE

117 | January 2019 | https://www.linuxjournal.com

that directory:

$ sudo mkfs.ext4 /dev/sdd1
$ sudo mkdir tmp
$ sudo mount /dev/sdd1 tmp/
$ cd tmp/

Uncompress the operating system tarball of the entire target operating system into
the root of the staging directory:

$ sudo tar xJf ../ljos-build-10Nov2018.tar.xz

Now run grub-install to install all the necessary modules and boot records to
the volume:

$ sudo grub-install --root-directory=/mnt/tmp/ /dev/sdd

The --root-directory parameter defines the absolute path of the staging
directory, and the last parameter is the block device without the partition’s label.

Once complete, install the HDD to the physical or virtual machine, and power
it up (as the primary disk drive). Within one second, you’ll be at the operating
system’s login prompt.

Note: if you’re planning to load this into a virtual machine, it’ll make your life much
easier if the network interface to the VM is bridged to the local Ethernet interface
of your host machine.

As was the case with Part I, you never set a root password. Log in as root, and
you’ll immediately fall into a shell without needing to input a password. You can
change this behavior by using BusyBox’s passwd command, which should have
been built in to this image. Before proceeding, change your root password.

https://www.linuxjournal.com

118 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

To test the SSH dæmon, you’ll need to assign an IP address to your Ethernet port. If
you type ip addr show at the command line, you’ll see that one does not exist for
eth0. To address that, run:

$ udhcpc

The above command will work only if the udhcpc scripts from earlier were
created and saved to the target area of your distribution. If successful,
re-running ip addr show will show an IP address for eth0. In my case,
the address is 192.168.1.90.

On a separate machine, log in to your LJOS distribution via SSH:

$ ssh root@192.168.1.90
The authenticity of host '192.168.1.90 (192.168.1.90)'
 ↪can't be established.
RSA key fingerprint is SHA256:Jp64l+7ECw2Xm5JjTXCNtEvrh
↪YRZiQzgJpBK5ljNfwk.
Are you sure you want to continue connecting (yes/no)? Yes
root@192.168.1.90's password:
~ #

Voilà! You’re officially remotely connected.

There is so much more you can do here. Remember earlier, when I requested that
you double-check that BusyBox is building its lightweight HTTP dæmon? Let’s take
a look at that.

Create a home directory for the dæmon:

mkdir /var/www

And using BusyBox’s lightweight vi program, create the /var/www/index.html file and

https://www.linuxjournal.com

119 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

make sure it contains the following:

<html>
<head><title>This is a test.</title></head>
<body><h1>This is a test.</h1></body>
</html>

Save and exit. Then manually bring up the HTTP dæmon with the argument defining
its home directory:

httpd -h /var/www

Verify that the service is running:

ps aux|grep http
 1177 root 0:00 httpd -h /var/www

On a separate machine and using your web browser, connect to the IP address of your

Figure 4. Accessing the Web Server Hosted from Your Custom Distribution

https://www.linuxjournal.com

120 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Linux distribution (the same address you SSH’d to). A crude HTML web page hosted
by your distribution will appear.

Summary
This article builds on the exercise from my previous article and added more to the
minimal and custom Linux distribution. It doesn’t need to end here though. Find a
purpose for it, and using the examples highlighted here, build more packages into it. ◾

Petros Koutoupis , LJ Editor at Large, is currently a senior platform architect at IBM for its Cloud Object
Storage division (formerly Cleversafe). He is also the creator and maintainer of the RapidDisk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• “DIY: Build a Custom Linux Distribution from Source” by Petros

Koutoupis, Linux Journal, June 2018

• iana-etc-2.30.patch, written by Andrew Bradford

• netplug-1.2.9.2-fixes-1.patch, written by Andrew Bradford

https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
http://patches.clfs.org/embedded-dev/iana-etc-2.30-update-2.patch
http://patches.clfs.org/embedded-dev/netplug-1.2.9.2-fixes-1.patch
https://www.linuxjournal.com

121 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

elementary 5 “Juno”
A review of the elementary distribution and an interview with
its founders.

By Bryan Lunduke

In the spring of 2014 (nearly five years ago), I was preparing a regular presentation I
give most years, where I look at the bad side (and the good side) of the greater Linux
world. As I had done in years prior, I was creating a graph showing the market share of
various Linux distributions changing over time.

But, this year, something was different.

In the span of less than two years, a tiny little Linux distro came out of nowhere to
become one of the most watched and talked about systems available. In the blink of
an eye, it went from nothing to passing several granddaddies of Linux flavors that had

Figure 1.
elementary 5
“Juno”

https://www.linuxjournal.com

122 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

been around for decades.

This was elementary. Needless to say, it caught my attention.

In the years that followed, I’ve interviewed elementary’s founders on a few
occasions—for articles, videos or podcasts—and consistently found their vision,
dedication and attitudes rather intriguing.

Then in 2016, I was at a Linux conference—SCaLE (the Southern California Linux
Expo). One bright, sunshiny morning, I found myself heading from my hotel room
down to the conference floor. On my way, I got it in my head that I really could
use some French toast. I had a hankering—a serious one. And when Lunduke gets
a hankering, no force in the cosmos can stop him (he says, switching to talking
about himself in the third person seemingly at random).

Somehow or another, I ended up convincing the elementary crew (four of them,
also at SCaLE, with a booth to promote their system) to join me on my French
toast quest.

After searching the streets of downtown Pasadena, we found ourselves in a small, but
packed, diner—solving French Toast Crisis 2016—and allowing us to chat and get to
know each other, in person, a bit better.

These were...kids—in their mid-20s, practically wee babies.

But, I tell you, they impressed me. Their vision for what elementary was—and
what it could be—was clear. Their passion was contagious. It was hard to sit with
them, in that cramped little diner, and not feel excited and optimistic for what
the future held.

And, what’s more, they were simply nice people. They oozed goodness and
kindness. Their spirit had not yet been crushed by a string of IT managers that
make soul-crushing a hobby.

https://www.linuxjournal.com

123 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

They were the future of desktop Linux (or at least a rather big part of it). This was
evident, even back then. And, that wasn’t just the French toast talking.

When the latest release came out (elementary 5, code-name “Juno”), I got ahold
of the two co-founders of elementary: Daniel Fore and Cassidy Blaede, both
of whom work full time on the project as their day jobs. That’s right. This is a
free and open-source system, started as a passion project, that is now a small
company with full-time employees working on it. It’s always nice to see that sort
of success in the Linux world.

First, some thoughts on elementary 5, then let’s talk to the founders.

Review: elementary 5 “Juno”
I’ve spent some time with every release of elementary to date, and I’ve had some
pretty glowing words for each. Yet, perhaps oddly, I’ve never stuck with elementary as
my primary desktop system.

After a week or two with elementary I would, invariably, find my way back to
the warm embrace of the likes of Debian or openSUSE—mostly, I think, due to
familiarity. No matter how much I enjoyed my time with elementary, I just wasn’t
prepared to commit fully.

That time, I believe, has arrived.

AppCenter
One of the biggest challenges in the Linux (and greater Free and Open Source)
world is how to make a good living developing software, when you’re just giving the
code away for free.

Some companies have pulled off this seemingly magical feat, often through paid
support contracts or add-on services. Unfortunately, this tends to work really well
only when your market is business-oriented, such as the enterprise offerings of
Red Hat, SUSE or Canonical. Consumer-oriented applications (and games) need a

https://www.linuxjournal.com

124 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

different approach.

For that, you need a place to buy the software—a place that regular people (not
businesses) feel comfortable using, be it a physical brick-and-mortar store or a virtual
“app store”.

Through the years, there have been several attempts at building app stores for
Linux. The Linspire/Lindows Click N Run store and the Ubuntu Software Center
spring to mind. Both offered the ability to buy and sell Linux software, and both
failed to achieve much success before being shelved entirely. Only Valve’s Steam
store has endured, but since Steam focuses on games (and is closed-source),
there has been a major void in the market for a solution that caters to non-game
software and is something that open-source and free software proponents could
feel comfortable using.

Figure 2. AppCenter

https://www.linuxjournal.com

125 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

The elementary team thinks they have the answer in their AppCenter.

AppCenter is, as the name suggests, a pretty traditional “app store” in most respects.
There are applications organized into categories that you can search through,
featured applications and update functionality—all pretty run-of-the-mill stuff.

What truly makes AppCenter exciting are two key points:

1. Every application is open source, making this a viable solution for those of us who
try to avoid closed-source software.

2. Applications are “pay what you want”.

That “pay what you want” bit is a pretty big deal, and it goes a long way toward making
the AppCenter viable and approachable for folks used to all of their software being

Figure 3. AppCenter, Pay What You Want

https://www.linuxjournal.com

126 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

“free” (as in cost) as well as those who simply cannot afford to pay for software for
whatever reason.

It also means that any application within AppCenter is, effectively, “try before you
buy”, as you can elect to pay zero dollars ($0.00) for something, and then, if you like
it, come back later and pay the developer any price you feel the software is worth.

These two key items have been missing from every previous application store for
desktop Linux. And, I believe, this is an excellent strategy from the elementary team.
Given time and adequate user numbers, this could grow to become a viable revenue
stream for independent Linux software developers building consumer-oriented, open-
source applications and games.

And that’s a very good thing.

Figure 4. Photos

https://www.linuxjournal.com

127 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Applications Named What They Do
Within elementary, a large majority of the built-in software is named after exactly what
the software does. Although this approach may lack originality, it makes up for it in
ease of discoverability. People new to the platform will be able to find the exact piece
of software needed for a task quickly. The file browser? It’s called “Files”. “Code” is the
code editor. “Music” is the music player. “Photos” is the photo organizer.

The applications themselves are laser-focused on doing what they say they do. There
tends to be very little “feature bloat” with these tools; the “Camera” application takes
pictures and video—and that’s it.

This modularity really speaks to my UNIX-loving sensibilities of “do one thing and do it well”.

There are some applications included that don’t strictly adhere to this naming scheme
(such as Epiphany, the included web browser), but the exceptions are few.

Picture-in-Picture
I’m typically a pretty “traditional” person when it comes to window management on
my desktop. I tend not to use features that “dock” application windows to a side of
the screen or the like. But there’s one new feature of elementary that I find rather
fantastic. It’s called “Picture-in-Picture” mode, and it works exactly like you’d expect it.

Press a hot-key, and select any window you like. That Window now becomes a small,
floating, live version of itself—one that you can move and resize however you like and
that stays above all other applications, on every virtual desktop (until you close it).

The obvious use for this is if you are watching a video. You can keep it playing in the
corner while working on—whatever else it is you need to work on. Although I’ve also
found it to be fun to use for things like system monitors (htop running in a terminal,
put into Picture-in-Picture mode is oddly satisfying) and chat applications.

Configurable Shortcuts
Speaking of hot-keys (elementary calls them Shortcuts), elementary 5 adds a few

https://www.linuxjournal.com

128 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

goodies in that department.

To start with, you can tap the super key (such as the “Command” key on a Mac
keyboard, or the “Windows” key) to bring up an overlay showing you the system-wide
shortcuts. Handy.

Extra nice: at the top of that Shortcut Overlay is a little gear icon. Tap it and up pops
the settings panel that allows you to change every Shortcut for the entire system (in
case you have a bit of muscle memory from a different operating system).

Figure 5. Shortcuts Overlay

https://www.linuxjournal.com

129 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

It may seem like a little thing, but that’s a level of customization that really allows
people to make a system their own—to make it home.

Hardware Support
elementary makes use of the kernel and hardware support offered by Ubuntu—
meaning if you have a piece of hardware that works in Ubuntu, it’ll work in elementary.
And, nowadays, that means pretty much everything.

I had no issues, with any component, in my testing. NVIDIA graphics cards, HDMI
capture devices, wireless chipsets—everything worked right out of the box with
absolutely no additional packages, tweaking or compiling required.

Figure 6. Shortcuts

https://www.linuxjournal.com

130 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

Housekeeping
One of the cool little features of this release is a new (optional) feature called
Housekeeping. It does one thing and one thing only: it deletes temporary files (or files
in the trash) after a configurable number of days.

That’s it, and I love that. On systems running low on storage, this is handy. But
more important, it removes things you don’t want around—an obvious need for
keeping a system secure.

The Not-Visible Stuff
elementary has a lot of unique pieces and parts—not least of which is the desktop
environment itself, Pantheon, developed specifically for the system.

But, because this is the world of Free Software, people on non-elementary

Figure 7. Housekeeping

https://www.linuxjournal.com

131 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

distributions want to be able to enjoy the elementary experience. In the past,
getting Pantheon up and running on other systems (such as Fedora or stock
Debian) was more than a small headache.

That all appears to be changing. From the elementary 5 release notes:

...with the Juno development cycle we’ve adopted more cross-desktop standards and
improved the cross-distro support for several components. This came with a lot of help
from Fedora maintainers and developers. The result is more reusable code for other
desktops and users of other distros like Fedora, Arch, openSUSE, etc.

Working with other distributions—I like that. This is how it should be in the Open
Source world.

Overall Impressions
elementary’s performance is phenomenal. Interacting with the system, even on
lower-end hardware, is snappy and responsive. Considering the emphasis on design
and visuals, you’d almost expect the system to become a bit more sluggish (such as
what people experience with Apple’s Mac OS X). But there simply aren’t slow-downs
here. It’s like you’re running a lightweight system, but with all the bells and whistles of
the heavier, more resource-intensive systems—an impressive feat.

Stability, likewise, has not been a concern. I’ve been running the release candidate version
on both my laptop and my primary desktop for a week. No crashes. No hangs. Flawless.

The attention to detail throughout the system—from the application designs, to the
smallest user interface items—is nothing short of impressive. Every little touch adds
up to give the entire experience a polished feel.

As I wrapped up my time reviewing this release, I was left with a question I ask myself
after reviewing every operating system:

Will I keep using this? Will this system replace what I’ve been running?

https://www.linuxjournal.com

132 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

The answer is, unequivocally, yes. elementary is, in my opinion, shaping up to be one of the
brightest stars in the desktop Linux sky, and I see no reason to stop using it any time soon.

Chat with elementary’s Founders
After using elementary 5, I had a hodge-podge of questions for the founders (Daniel
Fore and Cassidy Blaede).

Bryan Lunduke: What’s the current best estimate for user base size?

Daniel Fore: Best guess is somewhere in the hundreds of thousands, likely at least
200k. It’s hard to know because we don’t have any sort of telemetry in the OS, and we
don’t generate any kind of unique fingerprint for users. The best guesses we can make
is how many times packages were downloaded, which might not necessarily be unique

Daniel Fore Cassidy Blaede

https://www.linuxjournal.com

133 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

downloads and don’t reflect users who haven’t run updates, etc. So it could be many
more or many less.

BL: How many employees are you at for the company itself, elementary, inc.?

Cassidy Blaede: Three full-time, one part-time [Daniel went full time in...] April,
2015.

BL: Have to ask—how old are you two?

CB: Personally, I’m ageless. I was here before you were born and will be here long
after you’re gone.

I kid, I’m 26.

DF: I’m 29.

BL: Do you remember the moment you decided elementary would be an operating
system? That you needed to make it?

DF: Not really. I think there was always kind of a vision of having a complete package
easily installable all together. There had been mockups of a desktop and things for
quite a while. I remember the first time using Linux though and knowing that this thing
was the future, and that this was the technology that was going to enable me to build
the desktop I wanted to see. It was like going from drawing in black and white to color.

BL: What was that moment? And what Linux distribution did you use?

DF: It was the Kororaa LiveCD and XGL demo with Compiz. Coming from Windows
XP, it was just amazing to see what you could do and that all the pieces were there,
and you could build whatever you wanted.

That had to be in like 2006 or 2007.

https://www.linuxjournal.com

134 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

BL: Does that mean we’ll get wobbly windows and 3D virtual desktop cubes in elementary?

DF: Haha probably not. I think a lot of those flashy effects were interesting for a time
when the technology was new, but motion design has matured a lot since then, and
now when we use animations, we’re using them to convey something meaningful or to
provide hints or affordances about the way the UI can be interacted with. Now, users
expect animations to be fast and not interrupt their workflow.

BL: Cassidy, talk some sense into Daniel. Wobbly windows for life (tm).

CB: Ha, my first Linux experience was actually a Knoppix live CD, but the first long-
term version I used was Ubuntu. I too always would go in and enable the fancy
compositor and turn on wobbly windows and exploding closing windows and all that
jazz. And in the early days of elementary OS, Compiz actually let us really fine-grain
control the motion design of windows and workspaces without having to write code
or make our own window manager. So that was a huge boon to getting started. But
these days, we have accelerated, composited windowing libraries by default, plus we
actually develop the window manager itself. So we can decide exactly how to animate
things so that it’s all self-consistent.

Wobbly windows were a great tech demo, but I think the performance and, uh, “taste”
trade-offs might not be quite up our alley.

BL: Okay. Now an open-ended question: where from here?

DF: To the cloud!

CB: Juno is really about nailing a lot of aspects about elementary OS: refining it, making
it more productive and making it even better for developers. But like Dan alluded to,
we’re also laying the groundwork for much better online accounts integration so users
can access their data and accounts no matter where they’re stored.

(I also don’t know if Dan was just joking or not, but there you go.)

https://www.linuxjournal.com

135 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

DF: There’s been a lot of work with upstream projects on things like Online Accounts and
Evolution Data Server. We’re working on a brand-new version of Mail powered by EDS.
There’s work on showing cloud storage devices in Files. We’re working on a new installation
and onboarding experience, so we’ll hopefully get those accounts connected right from
the beginning. So overall, I think the next big moves for the whole desktop will be making it
much more connected to all the online services that our users are interested in.

CB: There’s also AppCenter: we’ve laid a great foundation for our app ecosystem, and
now it’s time to really dial in that experience for users. We’re always working on ways
to enhance discovery of existing apps and also engaging with app developers to bring
even more quality apps to the platform.

DF: Cassidy blogged recently about digital well being and how some of our next
steps down that path involve content controls, so that’s another thing we’re really
interested in is giving our users control over the kind of content that they and the
ones they’re responsible for see.

BL: Can you say, at this point, what the best-selling app in your AppCenter is?

DF: I’m having a tough time with trying to see if I can get stats for this, but I’m fairly
confident the top grossing app is the torrent client Torrential by David Hewitt.

BL: What’s the moment where you realized elementary had “made it” as an operating
system/distro?

CB: So that’s a fun question. I think there are still pretty frequent days when impostor
syndrome picks up, and there’s this nagging voice telling myself that we’re nobodies and
are never going to “make it”. But on the flip side, there are days when I see that there are
hundreds of thousands of people out there using something I’ve helped make, and that’s
pretty humbling. I don’t know if there has really been an individual moment for me; it’s
more like a pendulum constantly swinging between those two mental states.

I do remember the first time we got an interview in a physical magazine, and I went to

https://appcenter.elementary.io/com.github.davidmhewitt.torrential
https://www.linuxjournal.com

136 | January 2019 | https://www.linuxjournal.com

DEEP
DIVE

the bookstore where my girlfriend worked, and it was right there on the shelf. That
was pretty wild and felt like we’d made it in some sense.

DF: Yeah, I agree with Cassidy that a lot of times I feel like we haven’t “made it”,
and there’s so much to go before we can possibly try to compete with the major
proprietary operating systems. But then you see a tweet about how elementary OS
is being used in a school, or you interact with someone new at a conference who has
heard of it or used it. I heard from my cousin recently that her new boyfriend used
elementary OS, and seeing stuff like that is really encouraging and makes me feel like
we’ve made a difference and an impact.

CB: Oh yeah, running into users outside an expected situation is always super
encouraging. A friend of mine is a teacher, and she recently messaged me that one of
her students was using elementary OS and showing it to her. He was super impressed
when she told him she hadn’t just heard of it, but she knew one of the founders!

So I guess “making it” isn’t really this binary thing. We don’t have to dethrone
somebody to have made it, but we’re making it more and more every day. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing Guy (tm), former openSUSE
Board Member... and current Deputy Editor of Linux Journal as well as host of the popular Lunduke Show. More details: http://lunduke.com.

Resources
• elementary OS

• AppCenter

• Get elementary OS

• Torrential by David Hewitt
Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

S u b s c r i b e . L i n u x J o u r n a l . c o m

http://lunduke.com/
https://elementary.io/
https://appcenter.elementary.io/
https://elementary.io/
https://appcenter.elementary.io/com.github.davidmhewitt.torrential
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

S u b s c r i b e . L i n u x J o u r n a l . c o m

https://subscribe.linuxjournal.com

138 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

A Use Case for
Network Automation
Use the Python Netmiko module to automate switches, routers and
firewalls from multiple vendors.

By Eric Pearce

I frequently find myself in the position of confronting “hostile” networks. By hostile, I
mean that there is no existing documentation, or if it does exist, it is hopelessly out of
date or being hidden deliberately. With that in mind, in this article, I describe the tools
I’ve found useful to recover control, audit, document and automate these networks.
Note that I’m not going to try to document any of the tools completely here. I mainly
want to give you enough real-world examples to prove how much time and effort
you could save with these tools, and I hope this article motivates you to explore the
official documentation and example code.

In order to save money, I wanted to use open-source tools to gather information
from all the devices on the network. I haven’t found a single tool that works with all
the vendors and OS versions that typically are encountered. SNMP could provide a lot
the information I need, but it would have to be configured on each device manually
first. In fact, the mass enablement of SNMP could be one of the first use cases for the
network automation tools described in this article.

Most modern devices support REST APIs, but companies typically are saddled with
lots of legacy devices that don’t support anything fancier than Telnet and SSH. I
settled on SSH access as the lowest common denominator, as every device must
support this in order to be managed on the network.

My preferred automation language is Python, so the next problem was finding

https://www.linuxjournal.com

139 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

a Python module that abstracted the SSH login process, making it easy to run
commands and gather command output.

Why Netmiko?
I discovered the Paramiko SSH module quite a few years ago and used it to create
real-time inventories of Linux servers at multiple companies. It enabled me to log in to
hosts and gather the output of commands, such as lspci, dmidecode and lsmod.

The command output populated a database that engineers could use to search
for specific hardware. When I then tried to use Paramiko to inventory network
switches, I found that certain switch vendor and OS combinations would
cause Paramiko SSH sessions to hang. I could see that the SSH login itself was
successful, but the session would hang right after the login. I never was able to
determine the cause, but I discovered Netmiko while researching the hanging
problem. When I replaced all my Paramiko code with Netmiko code, all my
session hanging problems went away, and I haven’t looked back since. Netmiko
also is optimized for the network device management task, while Paramiko is
more of a generic SSH module.

Programmatically Dealing with the Command-Line
Interface
People familiar with the “Expect” language will recognize the technique for sending a
command and matching the returned CLI prompts and command output to determine
whether the command was successful. In the case of most network devices, the CLI
prompts change depending on whether you’re in an unprivileged mode, in “enable”
mode or in “config” mode.

For example, the CLI prompt typically will be the device hostname followed by
specific characters.

Unprivileged mode:

sfo03-r7r9-sw1>

https://www.linuxjournal.com

140 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

Privileged or “enable” mode:

sfo03-r7r9-sw1#

“Config” mode:

sfo03-r7r9-sw1(config)#

These different prompts enable you to make transitions programmatically from one
mode to another and determine whether the transitions were successful.

Abstraction
Netmiko abstracts many common things you need to do when talking to switches. For
example, if you run a command that produces more than one page of output, the switch
CLI typically will “page” the output, waiting for input before displaying the next page. This
makes it difficult to gather multipage output as single blob of text. The command to turn
off paging varies depending on the switch vendor. For example, this might be terminal
length 0 for one vendor and set cli pager off for another. Netmiko abstracts this
operation, so all you need to do is use the disable_paging() function, and it will run
the appropriate commands for the particular device.

Dealing with a Mix of Vendors and Products
Netmiko supports a growing list of network vendor and product combinations.
You can find the current list in the documentation. Netmiko doesn’t auto-detect
the vendor, so you’ll need to specify that information when using the functions.
Some vendors have product lines with different CLI commands. For example, Dell
has two types: dell_force10 and dell_powerconnect; and Cisco has several
CLI versions on the different product lines, including cisco_ios, cisco_nxos
and cisco_asa.

Obtaining Netmiko
The official Netmiko code and documentation is at https://github.com/ktbyers/
netmiko, and the author has a collection of helpful articles on his home page.

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://pynet.twb-tech.com/
https://www.linuxjournal.com

141 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

If you’re comfortable with developer tools, you can clone the GIT repo directly. For
typical end users, installing Netmiko using pip should suffice:

pip install netmiko

A Few Words of Caution
Before jumping on the network automation bandwagon, you need to sort out
 the following:

• Mass configuration: be aware that the slowness of traditional “box-by-box” network
administration may have protected you somewhat from massive mistakes. If you
manually made a change, you typically would be alerted to a problem after visiting
only a few devices. With network automation tools, you can render all your
network devices useless within seconds.

• Configuration backup strategy: this ideally would include a versioning feature, so
you can roll back to a specific “known good” point in time. Check out the RANCID
package before you spend a lot of money on this capability.

• Out-of-band network management: almost any modern switch or network device is
going to have a dedicated OOB port. This physically separate network permits you
to recover from configuration mistakes that potentially could cut you off from the
very devices you’re managing.

• A strategy for testing: for example, have a dedicated pool of representative
equipment permanently set aside for testing and proof of concepts. When rolling
out a change on a production network, first verify the automation on a few devices
before trying to do hundreds at once.

Using Netmiko without Writing Any Code
Netmiko’s author has created several standalone scripts called Netmiko Tools that
you can use without writing any Python code. Consult the official documentation for
details, as I offer only a few highlights here.

https://github.com/ktbyers/netmiko_tools
https://www.linuxjournal.com

142 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

At the time of this writing, there are three tools: netmiko-show, netmiko-cfg
and netmiko-grep.

netmiko-show
Run arbitrary “show” commands on one or more devices. By default, it will display
the entire configuration, but you can supply an alternate command with the --cmd
option. Note that “show” commands can display many details that aren’t stored
within the actual device configurations.

For example, you can display Spanning Tree Protocol (STP) details from
multiple devices:

% netmiko-show --cmd "show spanning-tree detail" arista-eos |
 ↪egrep "(last change|from)"
sfo03-r1r12-sw1.txt: Number of topology changes 2307 last
 ↪change occurred 19:14:09 ago
sfo03-r1r12-sw1.txt: from Ethernet1/10/2
sfo03-r1r12-sw2.txt: Number of topology changes 6637 last
 ↪change occurred 19:14:09 ago
sfo03-r1r12-sw2.txt: from Ethernet1/53

This information can be very helpful when tracking down the specific switch and switch
port responsible for an STP flapping issue. Typically, you would be looking for a very
high count of topology changes that is rapidly increasing, with a “last change time” in
seconds. The “from” field gives you the source port of the change, enabling you to
narrow down the source of the problem.

The “old-school” method for finding this information would be to log in to the
top-most switch, look at its STP detail, find the problem port, log in to the switch
downstream of this port, look at its STP detail and repeat this process until you find
the source of the problem. The Netmiko Tools allow you to perform a network-wide
search for all the information you need in a single operation.

https://www.linuxjournal.com

143 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

netmiko-cfg
Apply snippets of configurations to one or more devices. Specify the configuration
command with the --cmd option or read configuration from a file using --infile.
This could be used for mass configurations. Mass changes could include DNS servers,
NTP servers, SNMP community strings or syslog servers for the entire network. For
example, to configure the read-only SNMP community on all of your Arista switches:

$ netmiko-cfg --cmd "snmp-server community mysecret ro"
 ↪arista-eos

You still will need to verify that the commands you’re sending are appropriate for the
vendor and OS combinations of the target devices, as Netmiko will not do all of this
work for you. See the “groups” mechanism below for how to apply vendor-specific
configurations to only the devices from a particular vendor.

netmiko-grep
Search for a string in the configuration of multiple devices. For example, verify the
current syslog destination in your Arista switches:

$ netmiko-grep --use-cache "logging host" arista-eos
sfo03-r2r7-sw1.txt:logging host 10.7.1.19
sfo03-r3r14-sw1.txt:logging host 10.8.6.99
sfo03-r3r16-sw1.txt:logging host 10.8.6.99
sfo03-r4r18-sw1.txt:logging host 10.7.1.19

All of the Netmiko tools depend on an “inventory” of devices, which is a YAML-
formatted file stored in “.netmiko.yml” in the current directory or your home directory.

Each device in the inventory has the following format:

sfo03-r1r11-sw1:
 device_type: cisco_ios
 ip: sfo03-r1r11-sw1

https://www.linuxjournal.com

144 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

 username: netadmin
 password: secretpass
 port: 22

Device entries can be followed by group definitions. Groups are simply a group name
followed by a list of devices:

cisco-ios:
 - sfo03-r1r11-sw1
cisco-nxos:
 - sfo03-r1r12-sw2
 - sfo03-r3r17-sw1
arista-eos:
 - sfo03-r1r10-sw2
 - sfo03-r6r6-sw1

For example, you can use the group name “cisco-nxos” to run Cisco Nexus NX-OS-
unique commands, such as feature:

% netmiko-cfg --cmd "feature interface-vlan" cisco-nxos

Note that the device type example is just one type of group. Other groups could
indicate physical location (“SFO03”, “RKV02”), role (“TOR”, “spine”, “leaf”, “core”),
owner (“Eng”, “QA”) or any other categories that make sense to you.

As I was dealing with hundreds of devices, I didn’t want to create the YAML-formatted
inventory file by hand. Instead, I started with a simple list of devices and the
corresponding Netmiko “device_type”:

sfo03-r1r11-sw1,cisco_ios
sfo03-r1r12-sw2,cisco_nxos
sfo03-r1r10-sw2,arista_eos
sfo03-r4r5-sw3,arista_eos

https://www.linuxjournal.com

145 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

sfo03-r1r12-sw1,cisco_nxos
sfo03-r5r15-sw2,dell_force10

I then used standard Linux commands to create the YAML inventory file:

% grep -v '^#' simplelist.txt | awk -F, '{printf("%s:\n
 ↪device_type:
%s\n ip: %s\n username: netadmin\n password:
 ↪secretpass\n port:
22\n",$1,$2,$1)}' >> .netmiko.yml

I’m using a centralized authentication system, so the user name and password
are the same for all devices. The command above yields the following YAML-
formatted file:

sfo03-r1r11-sw1:
 device_type: cisco_ios
 ip: sfo03-r1r11-sw1
 username: netadmin
 password: secretpass
 port: 22
sfo03-r1r12-sw2:
 device_type: cisco_nxos
 ip: sfo03-r1r12-sw2
 username: netadmin
 password: secretpass
 port: 22
sfo03-r1r10-sw2:
 device_type: arista_eos
 ip: sfo03-r1r10-sw2
 username: netadmin
 password: secretpass
 port: 22

https://www.linuxjournal.com

146 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

Once you’ve created this inventory, you can use the Netmiko Tools against individual
devices or groups of devices.

A side effect of creating the inventory is that you now have a master list of devices on
the network; you also have proven that the device names are resolvable via DNS and
that you have the correct login credentials. This is actually a big step forward in some
environments where I’ve worked.

Note that netmiko-grep caches the device configs locally. Once the cache has been
built, you can make subsequent search operations run much faster by specifying the
--use-cache option.

It now should be apparent that you can use Netmiko Tools to do a lot of
administration and automation without writing any Python code. Again, refer to
official documentation for all the options and more examples.

Start Coding with Netmiko
Now that you have a sense of what you can do with Netmiko Tools, you’ll likely come
up with unique scenarios that require actual coding.

For the record, I don’t consider myself an advanced Python programmer at this
time, so the examples here may not be optimal. I’m also limiting my examples
to snippets of code rather than complete scripts. The example code is using
Python 2.7.

My Approach to the Problem
I wrote a bunch of code before I became aware of the Netmiko Tools commands,
and I found that I’d duplicated a lot of their functionality. My original approach was to
break the problem into two separate phases. The first phase was the “scanning” of the
switches and storing their configurations and command output locally. The second
phase was processing and searching across the stored data.

My first script was a “scanner” that reads a list of switch hostnames and

https://www.linuxjournal.com

147 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

Netmiko device types from a simple text file, logs in to each switch, runs a
series of CLI commands and then stores the output of each command in text
files for later processing.

Reading a List of Devices
My first task is to read a list of network devices and their Netmiko “device type” from a
simple text file in the CSV format. I include the csv module, so I can use the csv.Dictreader
function, which returns CSV fields as a Python dictionary. I like the CSV file format, as
anyone with limited UNIX/Linux skills likely knows how to work with it, and it’s a very
common file type for exporting data if you have an existing database of network devices.

For example, the following is a list of switch names and device types in CSV format:

sfo03-r1r11-sw1,cisco_ios
sfo03-r1r12-sw2,cisco_nxos
sfo03-r1r10-sw2,arista_eos
sfo03-r4r5-sw3,arista_eos
sfo03-r1r12-sw1,cisco_nxos
sfo03-r5r15-sw2,dell_force10

The following Python code reads the data filename from the command line, opens the
file and then iterates over each device entry, calling the login_switch() function
that will run the actual Netmiko code:

import csv
import sys
import logging
def main():
get data file from command line
 devfile = sys.argv[1]
open file and extract the two fields
 with open(devfile,'rb') as devicesfile:
 fields = ['hostname','devtype']

https://www.linuxjournal.com

148 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

 hosts = csv.DictReader(devicesfile,fieldnames=fields,
↪delimiter=',')
iterate through list of hosts, calling "login_switch()"
for each one
 for host in hosts:
 hostname = host['hostname']
 print "hostname = ",hostname
 devtype = host['devtype']
 login_switch(hostname,devtype)

The login_switch() function runs any number of commands and stores the output
in separate text files under a directory based on the name of the device:

import required module
from netmiko import ConnectHandler
login into switch and run command
def login_switch(host,devicetype):
required arguments to ConnectHandler
 device = {
device_type and ip are read from data file
 'device_type': devicetype,
 'ip':host,
device credentials are hardcoded in script for now
 'username':'admin',
 'password':'secretpass',
 }
if successful login, run command on CLI
 try:
 net_connect = ConnectHandler(**device)
 commands = "show version"
 output = net_connect.send_command(commands)
construct directory path based on device name
 path = '/root/login/scan/' + host + "/"

https://www.linuxjournal.com

149 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

 make_dir(path)
 filename = path + "show_version"
store output of command in file
 handle = open (filename,'w')
 handle.write(output)
 handle.close()
if unsuccessful, print error
 except Exception as e:
 print "RAN INTO ERROR "
 print "Error: " + str(e)

This code opens a connection to the device, executes the show version command
and stores the output in /root/login/scan/<devicename>/show_version.

The show version output is incredibly useful, as it typically contains the vendor,
model, OS version, hardware details, serial number and MAC address. Here’s an
example from an Arista switch:

Arista DCS-7050QX-32S-R
Hardware version: 01.31
Serial number: JPE16292961
System MAC address: 444c.a805.6921

Software image version: 4.17.0F
Architecture: i386
Internal build version: 4.17.0F-3304146.4170F
Internal build ID: 21f25f02-5d69-4be5-bd02-551cf79903b1

Uptime: 25 weeks, 4 days, 21 hours and 32
 minutes
Total memory: 3796192 kB
Free memory: 1230424 kB

https://www.linuxjournal.com

150 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

This information allows you to create all sorts of good stuff, such as a hardware
inventory of your network and a software version report that you can use for audits
and planned software updates.

My current script runs show lldp neighbors, show run, show interface
status and records the device CLI prompt in addition to show version.

The above code example constitutes the bulk of what you need to get started with
Netmiko. You now have a way to run arbitrary commands on any number of devices
without typing anything by hand. This isn’t Software-Defined Networking (SDN)
by any means, but it’s still a huge step forward from the “box-by-box” method of
network administration.

Next, let’s try the scanning script on the sample network:

$ python scanner.py devices.csv
hostname = sfo03-r1r15-sw1
hostname = sfo03-r3r19-sw0
hostname = sfo03-r1r16-sw2
hostname = sfo03-r3r8-sw2
RAN INTO ERROR
Error: Authentication failure: unable to connect dell_force10
 ↪sfo03-r3r8-sw2:22
Authentication failed.
hostname = sfo03-r3r10-sw2
hostname = sfo03-r3r11-sw1
hostname = sfo03-r4r14-sw2
hostname = sfo03-r4r15-sw1

If you have a lot of devices, you’ll likely experience login failures like the one in the
middle of the scan above. These could be due to multiple reasons, including the
device being down, being unreachable over the network, the script having incorrect
credentials and so on. Expect to make several passes to address all the problems

https://www.linuxjournal.com

151 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

before you get a “clean” run on a large network.

This finishes the “scanning” portion of process, and all the data you need is
now stored locally for further analysis in the “scan” directory, which contains
subdirectories for each device:

$ ls scan/
sfo03-r1r10-sw2 sfo03-r2r14-sw2 sfo03-r3r18-sw1 sfo03-r4r8-sw2
 ↪sfo03-r6r14-sw2
sfo03-r1r11-sw1 sfo03-r2r15-sw1 sfo03-r3r18-sw2 sfo03-r4r9-sw1
 ↪sfo03-r6r15-sw1
sfo03-r1r12-sw0 sfo03-r2r16-sw1 sfo03-r3r19-sw0 sfo03-r4r9-sw2
 ↪sfo03-r6r16-sw1
sfo03-r1r12-sw1 sfo03-r2r16-sw2 sfo03-r3r19-sw1 sfo03-r5r10-sw1
 ↪sfo03-r6r16-sw2
sfo03-r1r12-sw2 sfo03-r2r2-sw1 sfo03-r3r4-sw2 sfo03-r5r10-sw2
 ↪sfo03-r6r17- sw1

You can see that each subdirectory contains separate files for each command output:
$ ls sfo03-r1r10-sw2/
show_lldp prompt show_run show_version show_int_status

Debugging via Logging
Netmiko normally is very quiet when it’s running, so it’s difficult to tell where
things are breaking in the interaction with a network device. The easiest way I
have found to debug problems is to use the logging module. I normally keep this
disabled, but when I want to turn on debugging, I uncomment the line starting
with logging.basicConfig line below:

import logging
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
 main()

https://www.linuxjournal.com

152 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

Then I run the script, and it produces output on the console showing the entire SSH
conversation between the netmiko module and the remote device (a switch named
“sfo03-r1r10-sw2” in this example):

DEBUG:netmiko:In disable_paging
DEBUG:netmiko:Command: terminal length 0
DEBUG:netmiko:write_channel: terminal length 0
DEBUG:netmiko:Pattern is: sfo03\-r1r10\-sw2
DEBUG:netmiko:_read_channel_expect read_data: terminal
 ↪length 0
DEBUG:netmiko:_read_channel_expect read_data: Pagination
disabled.
sfo03-r1r10-sw2#
DEBUG:netmiko:Pattern found: sfo03\-r1r10\-sw2 terminal
 ↪length 0
Pagination disabled.
sfo03-r1r10-sw2#
DEBUG:netmiko:terminal length 0
Pagination disabled.
sfo03-r1r10-sw2#
DEBUG:netmiko:Exiting disable_paging

In this case, the terminal length 0 command sent by Netmiko is successful. In the
following example, the command sent to change the terminal width is rejected by the
switch CLI with the “Authorization denied” message:

DEBUG:netmiko:Entering set_terminal_width
DEBUG:netmiko:write_channel: terminal width 511
DEBUG:netmiko:Pattern is: sfo03\-r1r10\-sw2
DEBUG:netmiko:_read_channel_expect read_data: terminal
 ↪width 511
DEBUG:netmiko:_read_channel_expect read_data: % Authorization
denied for command 'terminal width 511'

https://www.linuxjournal.com

153 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

sfo03-r1r10-sw2#
DEBUG:netmiko:Pattern found: sfo3\-r1r10\-sw2 terminal
 ↪width 511
% Authorization denied for command 'terminal width 511'
sfo03-r1r10-sw2#
DEBUG:netmiko:terminal width 511
% Authorization denied for command 'terminal width 511'
sfo03-r1r10-sw2#
DEBUG:netmiko:Exiting set_terminal_width

The logging also will show the entire SSH login and authentication sequence in detail.
I had to deal with one switch that was using a depreciated SSH cypher that was
disabled by default in the SSH client, causing the SSH session to fail when trying to
authenticate. With logging, I could see the client rejecting the cypher being offered
by the switch. I also discovered another type of switch where the Netmiko connection
appeared to hang. The logging revealed that it was stuck at the more? prompt, as
the paging was never disabled successfully after login. On this particular switch, the
commands to disable paging had to be run in a privileged mode. My quick fix was
adding a disable_paging() function after the “enable” mode was entered.

Analysis Phase
Now that you have all the data you want, you can start processing it.

A very simple example would be an “audit”-type of check, which verifies that the
hostname registered in DNS matches the hostname configured in the device. If
these do not match, it will cause all sorts of confusion when logging in to the device,
correlating syslog messages or looking at LLDP and CPD output:

import os
import sys
directory = "/root/login/scan"
for filename in os.listdir(directory):
 prompt_file = directory + '/' + filename + '/prompt'

https://www.linuxjournal.com

154 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

 try:
 prompt_fh = open(prompt_file,'rb')
 except IOError:
 "Can't open:", prompt_file
 sys.exit()

 with prompt_fh:
 prompt = prompt_fh.read()
 prompt = prompt.rstrip('#')
 if (filename != prompt):
 print 'switch DNS hostname %s != configured
 ↪hostname %s' %(filename, prompt)

This script opens the scan directory, opens each “prompt” file, derives the configured
hostname by stripping off the “#” character, compares it with the subdirectory
filename (which is the hostname according to DNS) and prints a message if they don’t
match. In the example below, the script finds one switch where the DNS switch name
doesn’t match the hostname configured on the switch:

$ python name_check.py
switch DNS hostname sfo03-r1r12-sw2 != configured hostname
 ↪SFO03-R1R10-SW1-Cisco_Core

It’s a reality that most complex networks are built up over a period of years by multiple
people with different naming conventions, work styles, skill sets and so on. I’ve
accumulated a number of “audit”-type checks that find and correct inconsistencies
that can creep into a network over time. This is the perfect use case for network
automation, because you can see everything at once, as opposed going through each
device, one at a time.

Performance
During the initial debugging, I had the “scanning” script log in to each switch in a serial
fashion. This worked fine for a few switches, but performance became a problem

https://www.linuxjournal.com

155 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

when I was scanning hundreds at a time. I used the Python multiprocessing module
to fire off a bunch of “workers” that interacted with switches in parallel. This cut the
processing time for the scanning portion down to a couple minutes, as the entire
scan took only as long as the slowest switch took to complete. The switch scanning
problem fits quite well into the multiprocessing model, because there are no events
or data to coordinate between the individual workers. The Netmiko Tools also take
advantage of multiprocessing and use a cache system to improve performance.

Future Directions
The most complicated script I’ve written so far with Netmiko logs in to every switch,
gathers the LLDP neighbor info and produces a text-only topology map of the entire
network. For those who are unfamiliar with LLDP, this is the Link Layer Discovery
Protocol. Most modern network devices are sending LLDP multicasts out every
port every 30 seconds. The LLDP data includes many details, including the switch
hostname, port name, MAC address, device model, vendor, OS and so on. It allows
any given device to know about all its immediate neighbors.

For example, here’s a typical LLDP display on a switch. The “Neighbor” columns show
you details on what is connected to each of your local ports:

sfo03-r1r5-sw1# show lldp neighbors
Port Neighbor Device ID Neighbor Port ID TTL
Et1 sfo03-r1r3-sw1 Ethernet1 120
Et2 sfo03-r1r3-sw2 Te1/0/2 120
Et3 sfo03-r1r4-sw1 Te1/0/2 120
Et4 sfo03-r1r6-sw1 Ethernet1 120
Et5 sfo03-r1r6-sw2 Te1/0/2 120

By asking all the network devices for their list of LLDP neighbors, it’s possible to build
a map of the network. My approach was to build a list of local switch ports and their
LLDP neighbors for the top-level switch, and then recursively follow each switch
link down the hierarchy of switches, adding each entry to a nested dictionary. This
process becomes very complex when there are redundant links and endless loops to

https://www.linuxjournal.com

156 | January 2019 | https://www.linuxjournal.com

A USE CASE FOR NETWORK AUTOMATION

avoid, but I found it a great way to learn more about complex Python data structures.

The following output is from my “mapper” script. It uses indentation (from left to
right) to show the hierarchy of switches, which is three levels deep in this example:

sfo03-r1r5-core:Et6 sfo03-r1r8-sw1:Ethernet1
 sfo03-r1r8-sw1:Et22 sfo03-r6r8-sw3:Ethernet48
 sfo03-r1r8-sw1:Et24 sfo03-r6r8-sw2:Te1/0/1
 sfo03-r1r8-sw1:Et25 sfo03-r3r7-sw2:Te1/0/1
 sfo03-r1r8-sw1:Et26 sfo03-r3r7-sw1:24

It prints the port name next to the switch hostname, which allows you to see both
“sides” of the inter-switch links. This is extremely useful when trying to orient yourself
on the network. I’m still working on this script, but it currently produces a “real-time”
network topology map that can be turned into a network diagram.

I hope this information inspires you to investigate network automation. Start with
Netmiko Tools and the inventory file to get a sense of what is possible. You likely
will encounter a scenario that requires some Python coding, either using the output
of Netmiko Tools or perhaps your own standalone script. Either way, the Netmiko
functions make automating a large, multivendor network fairly easy. ◾

Eric Pearce is an IT Architect at Nutanix in San Jose, California. He has written for Linux Journal in the past, and
he’s also the author of several books published by O’Reilly and Associates.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

IBM Began
Buying Red Hat
20 Years Ago
How Big Blue became an open-source company.

By Glyn Moody

News that IBM is buying Red Hat is, of course, a significant
moment for the world of free software. It’s further proof,
as if any were needed, that open source has won, and
that even the mighty Big Blue must make its obeisance.
Admittedly, the company is not quite the behemoth it was
back in the 20th century, when “nobody ever got fired
for buying IBM”. But it remains a benchmark for serious,
mainstream—and yes, slightly boring—computing. Its
acquisition of Red Hat for the not inconsiderable sum
of $34 billion, therefore, proves that selling free stuff is
now regarded as a completely normal business model,
acknowledged by even the most conservative corporations.

Many interesting analyses have been and will be written
about why IBM bought Red Hat, and what it means for open
source, Red Hat, Ubuntu, cloud computing, IBM, Microsoft
and Amazon, amongst other things. But one aspect of the
deal people may have missed is that in an important sense,
IBM actually began buying Red Hat 20 years ago. After all, $34
billion acquisitions do not spring fully formed out of nowhere.

157 | January 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://www.redhat.com/en/about/press-releases/ibm-acquire-red-hat-completely-changing-cloud-landscape-and-becoming-worlds-1-hybrid-cloud-provider
https://www-03.ibm.com/ibm/history/ibm100/us/en/icons/personalcomputer/words
https://www-03.ibm.com/ibm/history/ibm100/us/en/icons/personalcomputer/words
https://www.linuxjournal.com

158 | January 2019 | https://www.linuxjournal.com

OPEN SAUCE

Reaching the point where IBM’s management agreed it was the right thing to do
required a journey. And, it was a particularly drawn-out and difficult journey, given
IBM’s starting point not just as the embodiment of traditional proprietary computing,
but its very inventor.

Even the longest journey begins with a single step, and for IBM, it was taken on
June 22, 1998. On that day, IBM announced it would ship the Apache web server
with the IBM WebSphere Application Server, a key component of its WebSphere
product family. Moreover, in an unprecedented move for the company, it would offer
“commercial, enterprise-level support” for that free software.

When I was writing my book Rebel Code: inside Linux and the open source
revolution in 2000, I had the good fortune to interview the key IBM employees
who made that happen. The events of two years before still were fresh in their
minds, and they explained to me why they decided to push IBM toward the bold
strategy of adopting free software, which ultimately led to the company buying
Red Hat 20 years later.

One of those people was James Barry, who was brought in to look at IBM’s lineup in
the web server sector. He found a mess there; IBM had around 50 products at the
time. During his evaluation of IBM’s strategy, he realized the central nature of the web
server to all the other products. At that time, IBM’s offering was Internet Connection
Server, later re-branded to Domino Go. The problem was that IBM’s web server held
just 0.2% of the market; 90% of web servers came from Netscape (the first internet
company, best known for its browser), Microsoft and Apache. Negligible market
share meant it was difficult and expensive to find staff who were trained to use IBM’s
solution. That, in its turn, meant it was hard to sell IBM’s WebSphere product line.

Barry, therefore, realized that IBM needed to adopt one of the mainstream web
servers. IBM talked about buying Netscape. Had that happened, the history of open
source would have been very different. As part of IBM, Netscape probably would not
have released its browser code as the free software that became Mozilla. No Mozilla
would have meant no Firefox, with all the knock-on effects that implies. But for

https://books.google.com/books/about/Rebel_Code.html?id=PrtQAAAAMAAJ&redir_esc=y
https://books.google.com/books/about/Rebel_Code.html?id=PrtQAAAAMAAJ&redir_esc=y
https://www.linuxjournal.com

159 | January 2019 | https://www.linuxjournal.com

OPEN SAUCE

various reasons, the idea of buying Netscape didn’t work out. Since Microsoft was too
expensive to acquire, that left only one possibility: Apache.

For Barry, coming to that realization was easy. The hard part was convincing the
rest of IBM that it was the right thing to do. He tried twice, unsuccessfully, to get his
proposal adopted. Barry succeeded on the third occasion, in part because he teamed
up with someone else at IBM who had independently come to the conclusion that
Apache was the way forward for the company.

Shan Yen-Ping was working on IBM’s e-business strategy in 1998 and, like Barry,
realized that the web server was key in this space. Ditching IBM’s own software in
favor of open source was likely to be a traumatic experience for the company’s
engineers, who had invested so much in their own code. Shan’s idea to request his
senior developers to analyze Apache in detail proved key to winning their support.
Shan says that when they started to dig deep into the code, they were surprised by
the elegance of the architecture. As engineers, they had to admit that the open-
source project was producing high-quality software. To cement that view, Shan asked
Brian Behlendorf, one of the creators and leaders of the Apache project, to come in
and talk with IBM’s top web server architects. They too were impressed by him and his
team’s work. With the quality of Apache established, it was easier to win over IBM’s
developers for the move.

Shortly after the announcement that IBM would be adopting Apache as its web server,
the company took another small but key step toward embracing open source more
widely. It involved the Jikes Java compiler that had been written by two of IBM’s
researchers: Philippe Charles and Dave Shields. After a binary version of the program
for GNU/Linux was released in July 1998, Shields started receiving requests for the
source code. For IBM to provide access to the underlying code was unprecedented,
but Shields said he would try to persuade his bosses that it would be a good move for
the company.

A Jikes user suggested he should talk to Brian Behlendorf, who put him in touch
with James Barry. IBM’s recent adoption of Apache paved the way for Shield’s own

http://jikes.sourceforge.net/
https://www.linuxjournal.com

160 | January 2019 | https://www.linuxjournal.com

OPEN SAUCE

efforts to release the company’s code as open source. Shields wrote his proposal in
August 1998, and it was accepted in September. The hardest part was not convincing
management, but drawing up an open-source license. Shields said this involved
“research attorneys, the attorneys at the software division who dealt with Java, the
trademark attorneys, patents attorneys, contract attorneys”. Everyone involved was
aware that they were writing IBM’s first open-source license, so getting it right was
vital. In fact, the original Jikes license of December 1998 was later generalized into
the IBM Public License in June 1999. It was a key moment, because it made releasing
more IBM code as open source much easier, smoothing the way for the company’s
continuing march into the world of free software.

Barry described IBM as being like “a big elephant: very, very difficult to move an
inch, but if you point the elephant toward the right direction and get it moving, it’s
also very difficult to stop it.” The final nudge that set IBM moving inexorably toward
the embrace of open source occurred on January, 10, 2000, when the company
announced that it would make all of its server platforms “Linux-friendly”, including the
S/390 mainframe, the AS/400 minicomputer and the RS/6000 workstation. IBM was
supporting GNU/Linux across its entire hardware range—a massive vote of confidence
in freely available software written by a distributed community of coders.

The man who was appointed at the time was what amounted to a Linux Tsar for the
company, Irving Wladawsky-Berger, said that there were three main strands to that
historic decision. One was simply that GNU/Linux was a platform with a significant
market share in the UNIX sector. Another was the early use of GNU/Linux by the
supercomputing community―something that eventually led to every single one of the
world’s top 500 supercomputers running some form of Linux today.

The third strand of thinking within IBM is perhaps the most interesting. Wladawsky-
Berger pointed out how the rise of TCP/IP as the de facto standard for networking had
made interconnection easy, and powered the rise of the internet and its astonishing
expansion. People within IBM realized that GNU/Linux could do the same for
application development. As he told me back in 2000:

https://blog.irvingwb.com/about.html
https://www.top500.org/statistics/list
https://www.top500.org/statistics/list
https://www.linuxjournal.com

161 | January 2019 | https://www.linuxjournal.com

OPEN SAUCE

The whole notion separating application development from the underlying deployment
platform has been a Holy Grail of the industry because it would all of the sudden
unshackle the application developers from worrying about all that plumbing. I think with
Linux we now have the best opportunity to do that. The fact that it’s not owned by any
one company, and that it’s open source, is a huge part of what enables us to do that. If
the answer had been, well, IBM has invented a new operating system, let’s get everybody
in the world to adopt it, you can imagine how far that would go with our competitors.

Far from inventing a “new operating system”, with its purchase of Red Hat, IBM has
now fully embraced the only one that matters any more—GNU/Linux. In doing so,
it confirms Wladawsky-Berger’s prescient analysis and completes that fascinating
journey the company began all those years ago. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

