
ISSUE 300 | JULY 2019
www.linuxjournal.com

Since 1994: The original magazine of the Linux community

Using OpenAI’s
GPT-2

Mastodon
and IRC

Introducing the
Yocto Project

>> Regular Expressions Primer

>> Scripting with Tcl

>> Command-Line Video Game Roundup

>> How to Live Entirely in the Terminal

The Command Line

https://www.linuxjournal.com

CONTENTS JULY 2019
ISSUE 300

2 | July 2019 | https://www.linuxjournal.com

67 A Guide to Basic Command-Line Tasks
by Dave Taylor

 A whirlwind tour of the “user interface that wouldn’t die”.

80 Without a GUI—How to Live Entirely in a Terminal
by Bryan Lunduke

 Sure, it may be hard, but it is possible to give up graphical interfaces
 entirely—even in 2019.

90 How to Expand Your Command-Line Scripting
Options with Tcl
by Mitch Frazier

 Get started scripting with Tcl, the Tool Command Language—this actually
 is your father’s Oldsmobile.

118 Regular Expressions: the Linux User’s Second Language
by Andrew Piziali

 What are “regular expressions”, and why should you bother learning them?
 This article answers those questions and more.

131 The Best Command-Line-Only Video Games
 by Bryan Lunduke

 A rundown of the biggest, most expansive and impressive games that you
 can run entirely in your Linux shell.

66 DEEP DIVE: THE COMMAND LINE

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | July 2019 | https://www.linuxjournal.com

6 The Command-Line Issue
by Bryan Lunduke

10 From the Editor
by Doc Searls

 In the End Is the Command Line

16 Letters

 UPFRONT
21 GIS on Linux with SAGA

by Joey Bernard

27 Patreon and Linux Journal

28 Lessons in Vendor Lock-in: Google and Huawei
 by Kyle Rankin

32 Reality 2.0: a Linux Journal Podcast

33 ASCII Art Contest

35 News Briefs

 COLUMNS
39 Kyle Rankin’s Hack and /
 What Really IRCs Me: Mastodon

45 Reuven M. Lerner’s At the Forge
 Python’s Mypy: Callables and Generators

53 Dave Taylor’s Work the Shell
 Bash Shell Games: Let’s Play Go Fish!

60 Zack Brown’s diff -u
 What’s New in Kernel Development

158 Glyn Moody’s Open Sauce
 Online Censorship Is Coming—Here’s How to Stop It

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-360-890-6285.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | July 2019 | https://www.linuxjournal.com

 ARTICLES
140 An AI Wizard of Words

by Marcel Gagné

 A look at using OpenAI’s Generative Pretrained Transformer 2 (GPT0-2)
 to generate text.

150 Linux IoT Development: Adjusting from a Binary OS to the
 Yocto Project Workflow
 by Mirza Krak

 Introducing the Yocto Project and the benefits of using it in embedded
 Linux development.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

DIRECTOR OF SALES: Danna Vedder, danna@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

COVER IMAGE: aNACHRONiST (Daniel Kelly)

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Lawrence D’Oliveiro, Waikato Linux Users Group; Chris
Ebenezer, Silicon Corridor Linux User Group; David Egts, Akron Linux Users Group;

Michael Fox, Peterborough Linux User Group; Braddock Gaskill, San Gabriel Valley Linux Users’ Group;
Roy Lindauer, Reno Linux Users Group; James Mason, Bellingham Linux User Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com
Contact: Director of Sales Danna Vedder

Phone: +1-360-890-6285

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | July 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
http://blug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:danna@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
http://subscribe.linuxjournal.com

6 | July 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...
and current Deputy Editor
of Linux Journal, Marketing
Director for Purism, as
well as host of the popular
Lunduke Show. More details:
http://lunduke.com.

By Bryan Lunduke

Summer. 1980-something. An elementary-school-attending,
Knight Rider-T-Shirt-wearing version of myself slowly rolls
out of bed and shuffles to the living room. There, nestled
between an imposingly large potted plant and an over-
stocked knick-knack shelf, rested a beautifully gray, metallic
case powered by an Intel 80286 processor—with a glorious,
16-color EGA monitor resting atop.

This was to be my primary resting place for the remainder of
the day: in front of the family computer.

That PC had no graphical user interface to speak of—no
X Window System, no Microsoft Windows, no Macintosh
Finder. There was just a simple command line—in this case,
MS-DOS. (This was long before Linux became a thing.)
Every task I wished to perform—executing a game, moving
files—required me to type the commands in via a satisfyingly
loud, clicky keyboard. No, “required” isn’t the right word
here. Using the computer was a joy. “Allowed” is the right
word. I was allowed to enjoy typing those commands in.
I never once resented that my computer needed to be
interacted with via a keyboard. That is, after all, what

THE
COMMAND-
LINE ISSUE

http://lunduke.com/
https://www.linuxjournal.com

7 | July 2019 | https://www.linuxjournal.com

THE COMMAND-LINE ISSUE

computers do. That’s what they’re for—you type in commands, and the computer
executes them for you, often with a “beep”.

For a kid, this was empowering—taking my rudimentary understanding of language
(aided, at first, by a handy DOS command cheat sheet) and weaving together strings
of words that commanded the computer to do my bidding. It was like organizing runes
to enact an ancient spell. It was magic. And I was a wizard. Did I miss not being able to
“double click” or “drag and drop”? Of course not. I’d seen some such, mouse-driven
user interfaces (like the early Macintoshes), but—from my vantage—that wasn’t how
computers really worked. I viewed such things as cool-looking, but not necessary.
Computers use words. Powerful, magical words.

But this isn’t 1980-something. In fact, it’s barely 2010-something. (Did anyone else
just realize that it’s almost 2020?) For better or worse, how people use—and view—
computers has changed dramatically since the days of Knight Rider. Modern operating
systems are, often, belittled if they require users to interact with the machine via a
command line. The graphical user interface is king. Which is, perhaps, the inevitable
evolution of how we all interact with our computers.

Yet the value of the command line (or terminal, shell and so on) is still there. For
many, it makes using computers more accessible. For others, it provides streamlined
workflows that a mouse or touch-driven interface simply can’t compete with. And,
for others still, the blinking cursor provides a bit of nostalgic joy—or an aesthetically
simple, and distraction-free, environment.

This issue of Linux Journal celebrates the cursor—that wonderful blinking underscore
and all the potential that it holds.

To get warmed up, Dave Taylor (author of Learning Unix for Mac OS X and Wicked Cool
Shell Scripts) starts off with a whirlwind tour of the “the user interface that wouldn’t
die” in his article “A Guide to Basic Command-Line Tasks”.

Then, your favorite Linux Journal Deputy Editor takes you on a tour of command-
line applications that you can use as replacements for some of the most common
graphical tools in “Without a GUI—How to Live Entirely in a Terminal in 2019”.

https://www.linuxjournal.com

8 | July 2019 | https://www.linuxjournal.com

THE COMMAND-LINE ISSUE

Once you’ve gotten a feel for basic shell commands and experience doing some
common computing tasks entirely from the terminal, it’s time to up your game. In
“How to Expand Your Command-Line Scripting Options with Tcl”, Mitch Frazier gives
an introduction to some more advanced scripting with the Tool Command Language.

What about regular expressions? Every Linux aficionado needs, eventually, to get a
basic regex primer. Maybe you’ll love it; maybe you’ll hate it. But, either way, it’s a rite
of passage for Linux users since the dawn of time. Andrew Piziali provides exactly that
in his excellent “Regular Expressions: the Linux User’s Second Language”.

Phew.

Finally, to reward yourself for expanding your command-line knowledge and powers,
let’s play some video games. We’ve pulled together the biggest, most expansive and
impressive command-line-only video games in the aptly titled “The Best Command-
Line-Only Video Games”. No 3D, no VR, no full motion video—just good old-fashioned
ASCII characters flying around your screen.

When all is said and done, the Linux-powered computer in front of me is so much
more powerful than that 1980-something computer—it borders on the ridiculous.
But there are some things to be learned and admired about the text-only computing
heritage—both about how computing used to be and how you can better enjoy and
utilize the computers as they are today. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

Subscr ibe .L inuxJourna l . com

https://subscribe.linuxjournal.com

10 | July 2019 | https://www.linuxjournal.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

In the End Is the
Command Line
Times have changed every character but one in
Neal Stephenson’s classic. That one is Linux.

By Doc Searls

I was wandering
through Kepler’s, the
legendary bookstore,
sometime late in 1999,
when I spotted a thin
volume with a hard-
to-read title on the
new book table. In the
Beginning...Was the
Command Line, the
cover said.

The command line
was new to me when I
started writing for Linux
Journal in 1996. I hadn’t
come from UNIX or
from programming. My

tech background was in ham radio and broadcast engineering,
and nearly all my hacking was on RF hardware. It wasn’t a joke
when I said the only code I knew was Morse. But I was amazed
at how useful and necessary the command line was, and I was

https://www.keplers.com/
https://en.wikipedia.org/wiki/Kepler%27s_Books
https://www.linuxjournal.com

11 | July 2019 | https://www.linuxjournal.com

FROM THE EDITOR

thrilled to see Neal Stephenson was the author of that book. (Pro tip: you can tell
the commercial worth of an author by the size of his or her name on the cover. If it’s
bigger than the title of the book, the writer’s a big deal. Literally.)

So I bought it, and then I read it in one sitting. You can do the same. In fact, I
command that you do, if you haven’t already, because (IMHO) it’s the most classic
book ever written about both the command line and Linux itself—a two-fer of the
first order.

And I say this in full knowledge (having re-read the whole thing many times, which
is easy, because it’s short) that much of what it brings up and dwells on is stale in
the extreme. The MacOS and the Be operating systems are long gone (and the Be
computer was kind of dead on arrival), along with the Windows of that time. Today
Apple’s OS X is BSD at its core, while Microsoft produces lots of open-source code
and contributes mightily to The Linux Foundation. Some of Neal’s observations
and complaints about computing and the culture of the time also have faded
in relevance, although some remain enduringly right-on. (If you want to read a
section-by-section critique of the thing, Garrett Birkel produced one in the
mid-2000s with Neal’s permission. But do read the book first.)

What’s great about Command Line is how well it explains the original virtues of UNIX,
and of Linux as the operating system making the most of it:

The file systems of Unix machines all have the same general structure. On
your flimsy operating systems, you can create directories (folders) and give
them names like Frodo or My Stuff and put them pretty much anywhere you
like. But under Unix the highest level—the root—of the filesystem is always
designated with the single character “/ ” and it always contains the same set
of top-level directories:

• /usr
• /etc
• /var
• /bin
• /proc

https://en.wikipedia.org/wiki/Neal_Stephenson
http://garote.bdmonkeys.net/
http://garote.bdmonkeys.net/commandline/index.html
http://garote.bdmonkeys.net/commandline/permission.html
https://www.linuxjournal.com

12 | July 2019 | https://www.linuxjournal.com

FROM THE EDITOR

• /boot
• /home
• /root
• /sbin
• /dev
• /lib
• /tmp

and each of these directories typically has its own distinct structure of
subdirectories. Note the obsessive use of abbreviations and avoidance of capital
letters; this is a system invented by people to whom repetitive stress disorder is
what black lung is to miners. Long names get worn down to three-letter nubbins,
like stones smoothed by a river.

This is not the place to try to explain why each of the above directories exists,
and what is contained in it. At first it all seems obscure; worse, it seems
deliberately obscure. When I started using Linux I was accustomed to being able
to create directories wherever I wanted and to give them whatever names struck
my fancy. Under Unix you are free to do that, of course (you are free to do
anything) but as you gain experience with the system you come to understand
that the directories listed above were created for the best of reasons and that
your life will be much easier if you follow along (within /home, by the way, you
have pretty much unlimited freedom).

After this kind of thing has happened several hundred or thousand times, the
hacker understands why Unix is the way it is, and agrees that it wouldn’t be
the same any other way. It is this sort of acculturation that gives Unix hackers
their confidence in the system, and the attitude of calm, unshakable, annoying
superiority captured in the Dilbert cartoon. Windows 95 and MacOS are
products, contrived by engineers in the service of specific companies. Unix, by
contrast, is not so much a product as it is a painstakingly compiled oral history
of the hacker subculture. It is our Gilgamesh epic.

What made old epics like Gilgamesh so powerful and so long-lived was that they
were living bodies of narrative that many people knew by heart, and told over

https://www.linuxjournal.com

13 | July 2019 | https://www.linuxjournal.com

FROM THE EDITOR

and over again—making their own personal embellishments whenever it struck
their fancy. The bad embellishments were shouted down, the good ones picked
up by others, polished, improved, and, over time, incorporated into the story.
Likewise, Unix is known, loved, and understood by so many hackers that it can
be re-created from scratch whenever someone needs it. This is very difficult to
understand for people who are accustomed to thinking of OSes as things that
absolutely have to be bought.

Many hackers have launched more or less successful re-implementations of
the Unix ideal. Each one brings in new embellishments. Some of them die out
quickly, some are merged with similar, parallel innovations created by different
hackers attacking the same problem, others still are embraced, and adopted
into the epic. Thus Unix has slowly accreted around a simple kernel and acquired
a kind of complexity and asymmetry about it that is organic, like the roots of
a tree, or the branchings of a coronary artery. Understanding it is more like
anatomy than physics.

There are many other yummy passages. Here’s one example:

Documentation, under Linux, comes in the form of man (short for manual)
pages. You can access these either through a GUI (xman) or from the command
line (man). Here is a sample from the man page for a program called rsh:

“Stop signals stop the local rsh process only; this is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.”

The man pages contain a lot of such material, which reads like the terse
mutterings of pilots wrestling with the controls of damaged airplanes. The general
feel is of a thousand monumental but obscure struggles seen in the stop-action
light of a strobe. Each programmer is dealing with his own obstacles and bugs;
he is too busy fixing them, and improving the software, to explain things at great
length or to maintain elaborate pretensions.

In practice you hardly ever encounter a serious bug while running Linux. When
you do, it is almost always with commercial software (several vendors sell

https://www.linuxjournal.com

14 | July 2019 | https://www.linuxjournal.com

FROM THE EDITOR

software that runs under Linux). The operating system and its fundamental utility
programs are too important to contain serious bugs. I have been running Linux
every day since late 1995 and have seen many application programs go down in
flames, but I have never seen the operating system crash. Never. Not once. There
are quite a few Linux systems that have been running continuously and working
hard for months or years without needing to be rebooted.

Commercial OSes have to adopt the same official stance towards errors as
Communist countries had towards poverty. For doctrinal reasons it was not
possible to admit that poverty was a serious problem in Communist countries,
because the whole point of Communism was to eradicate poverty. Likewise,
commercial OS companies like Apple and Microsoft can’t go around admitting
that their software has bugs and that it crashes all the time, any more than Disney
can issue press releases stating that Mickey Mouse is an actor in a suit.

This is a problem, because errors do exist and bugs do happen. Every few months
Bill Gates tries to demo a new Microsoft product in front of a large audience only
to have it blow up in his face. Commercial OS vendors, as a direct consequence
of being commercial, are forced to adopt the grossly disingenuous position
that bugs are rare aberrations, usually someone else’s fault, and therefore not
really worth talking about in any detail. This posture, which everyone knows
to be absurd, is not limited to press releases and ad campaigns. It informs the
whole way these companies do business and relate to their customers. If the
documentation were properly written, it would mention bugs, errors, and crashes
on every single page. If the on-line help systems that come with these OSes
reflected the experiences and concerns of their users, they would largely be
devoted to instructions on how to cope with crashes and errors.

But this does not happen. Joint stock corporations are wonderful inventions
that have given us many excellent goods and services. They are good at
many things. Admitting failure is not one of them. Hell, they can’t even
admit minor shortcomings.

I could go on, but I’d rather have you read the book than give more away.

https://www.linuxjournal.com

15 | July 2019 | https://www.linuxjournal.com

FROM THE EDITOR

While various sources online (Wikipedia included) say Neal probably won’t update
the book, his own page on the book says:

This was originally just a set of musings about Graphical User Interfaces
(GUIs) that gradually took on the shape of an essay. On the spur of the
moment, the decision was made to post it on my publisher’s website.
Today we would say that it went viral, but back then we said that it had
been Slashdotted. Anyway, the resulting traffic broke the publisher’s
servers until various readers set up mirror sites to handle the load. This
essay is in need of an update, which I’m slowly working on, but there is still
some material in here that many readers might find interesting.

I believe at least some of those many are Linux Journal readers.

If you want to buy the book, here’s the Amazon link. If you want to read the
whole thing online, look it up. (I count four complete copies in the first page of
search results.)

And Neal, let us know when that update is ready. It’ll be news, and we want the scoop. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://en.wikipedia.org/wiki/In_the_Beginning..._Was_the_Command_Line
https://www.nealstephenson.com/in-the-beginning-was-the-command-line.html
https://www.amazon.com/Beginning-was-Command-Line/dp/0380815931
https://www.google.com/search?q=in+the+beginning+was+the+command+line
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

16 | July 2019 | https://www.linuxjournal.com

One for Doc
Doc Searls should find this story of interest: “Data protection watchdog launches
statutory inquiry into Google’s Ad Exchange”.

—Paul Barry

Doc Searls replies: Thanks, Paul. Indeed, there are many snares around the ankles
of Google and Facebook. I also notice that RTE itself is also tracking me, or trying to.
According to Privacy Badger, all of these are “suspected trackers” as well, all meant to
be escorted into my browser by that story:

• logws1309.ati-host.net

• cdnjs.cloudflare.com

• securepubads.g.doubleclick.net

• connect.facebook.net

• www.google-analytics.com

• adservice.google.com

• www.googletagservices.com

• sb.scorecardresearch.com

Their participation in the same icky system as Google, Facebook and other easy
targets is a “third rail” the mainstream media doesn’t want to grab. Yet.

And Paul Barry replies: Yes, and like most sites, they can sometimes take an age
to load too. It can be quite instructive to watch my browser’s status bar during page

LETTERS

https://www.rte.ie/news/business/2019/0522/1051099-data-protection-watchdog-to-probe-googles-ad-exchange/
https://www.rte.ie/news/business/2019/0522/1051099-data-protection-watchdog-to-probe-googles-ad-exchange/
https://www.linuxjournal.com

17 | July 2019 | https://www.linuxjournal.com

LETTERS

loads (especially on a slow connection).

Even though RTE is our national publicly funded broadcaster, they have always run
ads, so no surprise that you’re seeing this.

Keep up the good work, LJ. BTW, I love the podcast too.

Note: check out Doc Searls and Katherine Druckman’s weekly Linux Journal podcast,
“Reality 2.0” here.—Ed.

Re: Auto-Download Linux Journal Each Month
Things like that [the autolj script] are what make us go back and re-subscribe to this
great magazine. Do not lose the geek in you!

—Salahuddin Mohammad ElKazak

If you haven’t already heard, subscribers now can download Linux Journal automatically
with our autolj script, which you can get here. See this article for instructions and
more information.—Ed.

Screenshots from a Longtime Reader
I’m a longtime reader, and I’m most happy that the journal has come back. You’re
doing a great job.

I’m sending some screenshots of my work computer. I use Debian as distribution. I’m
a fanatic of mathematics, so I loved the article “Getting Started with ncurses” from
Jim Hall in issue #284. The Sierpinski’s Triangles are now accompanying me during my
work, as I run a full terminal in one screen. All of them are with a background photo I
took here in Mexico, and the first one is with the cover of issue #284.

I hope that LJ will continue with such great articles!

—Jerome

https://www.linuxjournal.com/podcast
https://linuxjournal.cmail19.com/t/j-l-maujg-tlhrjitiir-t/
https://www.linuxjournal.com/content/auto-download-linux-journal-each-month
https://www.linuxjournal.com/content/getting-started-ncurses
https://www.linuxjournal.com

18 | July 2019 | https://www.linuxjournal.com

LETTERS

https://www.linuxjournal.com

19 | July 2019 | https://www.linuxjournal.com

LETTERS

https://www.linuxjournal.com

20 | July 2019 | https://www.linuxjournal.com

LETTERS

SEND LJ A LETTER We’d love to hear your feedback on the magazine and specific
articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll
publish the best ones here.

https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

21 | July 2019 | https://www.linuxjournal.com

GIS on Linux
with SAGA
In this article, I want to look at a GIS option available for Linux—specifically, a program
called SAGA (System for Automated Geoscientific Analyses). SAGA was developed
at the Department of Physical Geography in Germany. It is built with a plugin module
architecture, where various functions are provided by individual modules. A very
complete API is available to allow users to extend SAGA’s functionality with newly
written modules. I take a very cursory look at SAGA here and describe a few things
you might want to do with it.

UPFRONT

Figure 1. SAGA starts up with a central project window, several tool panes on the left and
console messages at the bottom.

http://www.saga-gis.org/en/index.html
https://www.linuxjournal.com

22 | July 2019 | https://www.linuxjournal.com

UPFRONT

Installing SAGA should be as easy as looking at the software repository for your
favourite distribution. For Debian-based distros, you can install it with the command:

sudo apt-get install saga

When you first start it, you get a blank workspace where you can begin your project.

Two major categories of data sets are available that you can use within your
projects: satellite imagery and terrain data. The tutorial website provides detailed
walk-throughs that show how you can get access to these types of data sets for use in
your own projects. The tutorial website also has sections on some of the processing
tools available for doing more detailed analysis.

SAGA understands several data file formats. The typical ones used in GIS, like SHP files

Figure 2. You can load data sources, such as geotiffs, into your project.

https://sagatutorials.wordpress.com/
https://www.linuxjournal.com

23 | July 2019 | https://www.linuxjournal.com

UPFRONT

or point clouds, are the default options in the file selector window. You can work with
these types of data, or satellite imagery or terrain data.

Let’s start by looking at terrain analysis in SAGA. You’ll need digital elevation data,
in DEM format, which is available from the SRTM Tile Grabber site. You will get
a zip file for each region you select, and these zip files contain geotiff files for the
selected regions.

Load the geotiff file by clicking File→Open. By default, it will show only the common
project file formats. To locate your downloaded geotiff files, you’ll need to change the
filter at the bottom of the file selector window to be all files. Once it is loaded, it will
show up in the list of data sources in the bottom-left window pane.

You may find that the default layout is a bit crowded, so you may want to close

Figure 3. You can play with projection settings for a data source.

http://dwtkns.com/srtm/
https://www.linuxjournal.com

24 | July 2019 | https://www.linuxjournal.com

UPFRONT

some of the detail panes, as I did in the screenshot here. By default, the file is simply
added to the list of data sources in the data manager pane in the bottom left of the
window, and nothing is displayed. To view the newly added data, you can right-click
on the entry in the data manager and select “Add to Map”. Several other options are
available when you right-click the data source. For example, you can click on “Spatial
Reference” to get details about the projection and so on.

Moving to the “Map” tab of the bottom-right pane, you can see the current list of
maps and their layers. Right-clicking on the layers provides only viewing options, like
what layers lie above or below other layers. Right-clicking on the map provides a bit
more functionality. You can save maps as images or even copy them to the clipboard
to be used in some other application. You change the overall view to either a 3D
view or a print layout. You even can add extra items to your map, such as a base map
or a graticule. You also can adjust the order of the layers, in order to have all of the

Figure 4. You can run tools that provide additional layers to be displayed in your map.

https://www.linuxjournal.com

25 | July 2019 | https://www.linuxjournal.com

UPFRONT

appropriate information displayed correctly. Several other tools are available under
the “map” menu item at the top of the window.

When you click the “Geoprocessing” menu item, you’ll see the massive list of tools
available to do processing tasks on the data that you have imported. Some of them
are basic, while others are very computationally intensive. For example, if you
click Terrain Analysis→Basic Terrain Analysis, it can sit and run for quite a while.
You will select single analysis tools if you want to look at some specific items. For
example, you could look at the solar radiation by clicking Geoprocessing→Terrain
Analysis→Lighting→Potential Incoming Solar Radiation.

As you can see, a very dense tree of tools is available. Many of these tools also are
available under the “Tools” tab in the bottom-left pane. You simply find the tool in
question and double-click it. You may, however, discover that it’s difficult to find a

Figure 5. You can do a search for a specific tool, rather than navigating through the menus.

https://www.linuxjournal.com

26 | July 2019 | https://www.linuxjournal.com

UPFRONT

specific tool. If that’s the case, click Geoprocessing→Find and Run Tool, and you’ll get
a pop-up window where you can look for something specific.

To get a better idea of what you can do, the SAGA tutorial site includes a set of
complete application examples that walk you through entire workflows. For instance,
the first one in the list is assessing sediment flows from a point field survey. It explains
how to import data from a CSV file, apply coordinate transformations and visualize
the resulting data. It then walks through how to apply a hydrological analysis tool to
better understand how the sediment flow happens based on the terrain information.

I hope this short article whets your appetite for using GIS in your own projects. I’ve
covered only a small taste of everything you can do with SAGA, and as with many
open-source projects, you always can add extra functionality as needed, which will be
loaded as shared libraries that provide additional tools.

—Joey Bernard

https://www.linuxjournal.com

27 | July 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each
month in the magazine. A very special thank you this month goes to:

• Appahost.com
• Brian Goodrich
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• Fred
• Henrik Halbritter (Albritter)

• James Mayes
• Jay M
• Joe
• Josh Simmons
• LinuxMagic Inc.
• Lorin Ricker
• Paul Wood
• Taz Brown

Now also find @linuxjournal on Liberapay. Thank you to our very first
Liberapay supporter and the person who gave us this great suggestion:
Mostly_Linux.

https://www.patreon.com/linuxjournal
https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

28 | July 2019 | https://www.linuxjournal.com

UPFRONT

Lessons in
Vendor Lock-in:
Google and Huawei
What happens when you’re locked in to a vendor that’s too big to
fail, but is on the opposite end of a trade war?

The story of Google no longer giving Huawei access to Android updates is still
developing, so by the time you read this, the situation may have changed. At the
moment, Google has granted Huawei a 90-day window whereby it will have access to
Android OS updates, the Google Play store and other Google-owned Android assets.
After that point, due to trade negotiations between the US and China, Huawei no
longer will have that access.

Whether or not this new policy between Google and Huawei is still in place when this
article is published, this article isn’t about trade policy or politics. Instead, I’m going to
examine this as a new lesson in vendor lock-in that I don’t think many have considered
before: what happens when the vendor you rely on is forced by its government to
stop you from being a customer?

Too Big to Fail
Vendor lock-in isn’t new, but until the last decade or so, it generally was thought of by
engineers as a bad thing. Companies would take advantage the fact that you used one
of their products that was legitimately good to use the rest of their products that may
or may not be as good as those from their competitors. People felt the pain of being
stuck with inferior products and rebelled.

These days, a lot of engineers have entered the industry in a world where the new

https://www.linuxjournal.com

29 | July 2019 | https://www.linuxjournal.com

UPFRONT

giants of lock-in are still growing and have only flexed their lock-in powers a bit. Many
engineers shrug off worries about choosing a solution that requires you to use only
products from one vendor, in particular if that vendor is a large enough company.
There is an assumption that those companies are too big ever to fail, so why would it
matter that you rely on them (as many companies in the cloud do) for every aspect
of their technology stack?

Many people who justify lock-in with companies who are too big to fail point to all
of the even more important companies who use that vendor who would have even
bigger problems should that vendor have a major bug, outage or go out of business.
It would take so much effort to use cross-platform technologies, the thinking goes,
when the risk of going all-in with a single vendor seems so small.

Huawei also probably figured (rightly) that Google and Android were too big to
fail. Why worry about the risks of being beholden to a single vendor for your OS
when that vendor was used by other large companies and would have even bigger
problems if the vendor went away?

The Power of Updates
Google held a particularly interesting and subtle bit of lock-in power over Huawei
(and any phone manufacturer who uses Android)—the power of software updates.
This form of lock-in isn’t new. Microsoft famously used the fact that software updates
in Microsoft Office cost money (naturally, as it was selling that software) along with
the fact that new versions of Office had this tendency to break backward compatibility
with older document formats to encourage everyone to upgrade. The common
scenario was that the upper-level folks in the office would get brand-new, cutting-
edge computers with the latest version of Office on them. They would start saving
new documents and sharing them, and everyone else wouldn’t be able to open them.
It ended up being easier to upgrade everyone’s version of Office than to have the
bosses remember to save new documents in old formats every time.

The main difference with Android is that updates are critical not because of
compatibility, but for security. Without OS updates, your phone ultimately will

https://www.linuxjournal.com

30 | July 2019 | https://www.linuxjournal.com

UPFRONT

become vulnerable to exploits that attackers continue to find in your software. The
Android OS that ships on phones is proprietary and therefore requires permission
from Google to get those updates.

Many people still don’t think of the Android OS as proprietary software. Although
people talk about the FOSS underpinnings in Android, only people who go to the
extra effort of getting a pure-FOSS version of Android, like LineageOS, on their
phones actually experience it. The version of Android most people tend to use has a
bit of FOSS in the center, surrounded by proprietary Google Apps code.

It’s this Google Apps code that gives Google the kind of powerful leverage over a
company like Huawei. With traditional Android releases, Google controls access to OS
updates including security updates. All of this software is signed with Google’s signing
keys. This system is built with security in mind—attackers can’t easily build their own
OS update to install on your phone—but it also has a convenient side effect of giving
Google control over the updates.

What’s more, the Google Apps suite isn’t just a convenient way to load Gmail or
Google Docs, it also includes the tight integration with your Google account and the
Google Play store. Without those hooks, you don’t have access to the giant library
of applications that everyone expects to use on their phones. As anyone with a
LineageOS phone that uses F-Droid can attest, while a large number of applications
are available in the F-Droid market, you can’t expect to see those same apps as on
Google Play. Although you can side-load some Google Play apps, many applications,
such as Google Maps, behave differently without a Google account. Note that this
control isn’t unique to Google. Apple uses similar code-signing features with similar
restrictions on its own phones and app updates.

Conclusion
Without access to these OS updates, Huawei now will have to decide whether to
create its own LineageOS-style Android fork or a whole new phone OS of its own. In
either case, it will have to abandon the Google Play Store ecosystem and use F-Droid-
style app repositories, or if it goes 100% alone, it will need to create a completely new

https://www.linuxjournal.com

31 | July 2019 | https://www.linuxjournal.com

UPFRONT

app ecosystem. If its engineers planned for this situation, then they likely are working
on this plan right now; otherwise, they are all presumably scrambling to address an
event that “should never happen”. Here’s hoping that if you find yourself in a similar
case of vendor lock-in with an overseas company that’s too big to fail, you never get
caught in the middle of a trade war.

—Kyle Rankin

https://www.linuxjournal.com

32 | July 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

33 | July 2019 | https://www.linuxjournal.com

UPFRONT

ASCII Art Contest
The image on this month’s cover by aNACHRONiST (Daniel Kelly) is the winner
of our contest. Below are the runners-up. Thanks to all who participated!

By Patrick Louis, aka

venam or vnm

https://www.linuxjournal.com

34 | July 2019 | https://www.linuxjournal.com

UPFRONT

By .cn/CRO

https://www.linuxjournal.com

35 | July 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• Windows and Chrome are making 2019 the “year of the desktop”. PCWorld

writes, “After years of endless jokes, 2019 is truly, finally shaping up to be the
year of Linux on the desktop. Laptops, too! But most people won’t know it.
That’s because the bones of the open-source operating system kernel will soon
be baked into Windows 10 and Chrome OS, as Microsoft and Google revealed
at their respective developer conferences this week.”

• Schools in the Indian state of Kerala have chosen Linux as their OS, which will
save them roughly $428 million. According to It’s FOSS, Kerala is “the first
100% literate Indian state”. IT classes have been mandatory since 2003, and
the schools started adopting free and open-source software a few years later,
with the plan of getting rid of proprietary software in the schools. “As a result,
the state claimed to save around $50 million per year in licensing costs in 2015.
Further expanding their open source mission, Kerala is going to put Linux with
open source educational software on over 200,000 school computers.”

• Nextcloud announced a new partnership with Nitrokey, maker of highly
secure, open-source encryption USB keys. From the press release: “The
Nitrokey Pro 2 and Nitrokey Storage 2 devices have been verified to work easily
with Nextcloud’s one-time passwords for secure two-factor authentication
(2FA). This protects users’ accounts in the event of compromised passwords.
Furthermore the USB keys feature a password manager, a cryptographic key
store for email encryption and SSH administration. In addition the Nitrokey
Storage 2 contains an encryption mass storage drive with the option of hidden
volumes.” Nextcloud and Nitrokey also will explore further collaboration
“especially in the area of end-to-end encryption and secure storage of
cryptographic keys”. See the Nextcloud blog for more details.

• The Linux Foundation announced the formation of the Urban Computing
Foundation “to accelerate open source software that improves mobility,

Visit LinuxJournal.com for
daily news briefs.

https://www.pcworld.com/article/3394680/how-windows-and-chrome-quietly-made-2019-the-year-of-linux-on-the-desktop.html
https://www.pcworld.com/article/3394680/how-windows-and-chrome-quietly-made-2019-the-year-of-linux-on-the-desktop.html
https://itsfoss.com/kerala-linux
https://nextcloud.com/
https://www.nitrokey.com/
https://nextcloud.com/blog/nitrokey-and-nextcloud-collaborate-on-securing-private-clouds
https://uc.foundation/#
https://uc.foundation/#
http://linuxjournal.com
https://www.linuxjournal.com

UPFRONT

36 | July 2019 | https://www.linuxjournal.com

safety, road infrastructure, traffic congestion and energy consumption in
connected cities. Initial contributors include developers from Uber, Facebook,
Google, HERE Technologies, IBM, Interline Technologies, Senseable City
Labs, StreetCred Labs and University of California San Diego (UCSD).” The
Foundation’s first project is kepler.gl, “an open-source geospatial analysis tool
created by Uber for building large-scale data sets”.

• The Atomic Pi has recently hit retail channels after its successful Kickstarter
campaign (although it was sold out at the time of this writing). Phoronix
reports that the $35 Atomic Pi “offers an Intel Atom x5-Z8350 quad-core, 2GB
DDR3L-1600 memory, 16GB eMMC, SD slot, USB 3.0/2.0 ports, 802.11ac WiFI,
Bluetooth 4.0, and Gigabit Ethernet”. The article also notes that “It’s quite a
board for the price and [will] compete with the likes of the Raspberry Pi.” Go
to Digital Loggers for more information.

• Hewlett Packard Enterprise is buying supercomputer-maker Cray. Bloomberg
reports that the deal is “valued at about $1.4 billion as the firm works to
become more competitive in high-end computing”, and that “Cray investors will
get $35 a share in cash”.

• Researchers have discovered another Intel processor vulnerability called
Zombieload. According to ZDNet, “The researchers have shown a Zombieload
exploit that can look over your virtual shoulder to see the websites you’re
visiting in real-time. Their example showed someone spying on another
someone using the privacy-protecting Tor Browser running inside a virtual
machine (VM).” But there’s some good news: “To defend yourself, your
processor must be updated, your operating system must be patched, and for
the most protection, Hyper-Threading disabled. When Meltdown and Spectre
showed up, the Linux developers were left in the dark and scrambled to patch
Linux. This time, they’ve been kept in the loop.”

• The Antergos Linux distro is calling it quits. The developers of the Arch-based
distro say they no longer have time to maintain it properly, and they are taking

https://kepler.gl/
https://www.phoronix.com/scan.php?page=news_item&px=Atomic-Pi-OpenBenchmarking
https://www.phoronix.com/scan.php?page=news_item&px=Atomic-Pi-OpenBenchmarking
https://www.digital-loggers.com/api_faqs.html
https://www.bloomberg.com/news/articles/2019-05-17/hp-enterprise-said-to-near-deal-to-buy-supercomputer-maker-cray-jvrfiu79
https://www.bloomberg.com/news/articles/2019-05-17/hp-enterprise-said-to-near-deal-to-buy-supercomputer-maker-cray-jvrfiu79
https://www.zdnet.com/article/linux-vs-zombieload
https://zombieloadattack.com/public/videos/demo_720.mp4
https://zombieloadattack.com/public/videos/demo_720.mp4
https://www.zdnet.com/article/the-linux-vs-meltdown-and-spectre-battle-continues
https://www.linuxjournal.com
news:%E2%80%9CTo

UPFRONT

37 | July 2019 | https://www.linuxjournal.com

action now while the code is still working in case other developers want to
start their own projects with it. From the Antergos blog: “For existing Antergos
users: there is no need to worry about your installed systems as they will
continue to receive updates directly from Arch. Soon, we will release an update
that will remove the Antergos repos from your system along with any Antergos-
specific packages that no longer serve a purpose due to the project ending.
Once that is completed, any packages installed from the Antergos repo that are
in the AUR will begin to receive updates from there.”

• GitHub launched a new tool called Sponsors that lets you make payments to
open-source developers. Tech Crunch reports that “Developers will be able to
opt into having a ‘Sponsor me’ button on their GitHub repositories and open
source projects will also be able to highlight their funding models, no matter
whether that’s individual contributions to developers or using Patreon, Tidelift,
Ko-fi or Open Collective.

• Feral Interactive announced that Total War: THREE KINGDOMS is out on Linux
and macOS (the same day as the Windows release). The game was developed
by Creative Assembly and is the first in the Total War series to be set in ancient
China. It’s available now from the Feral Interactive Store for $59.99, and you
can watch the trailer here.

• You can send the E Foundation your phone if you’d like a Google-free Android.
FOSS Bytes reports that with the E Foundation’s /e/ OS, “the main goal of /e/
is to take away Google’s control over the device. It doesn’t include any Google
apps that you’d normally find on Android phones. Other than UI tweaks and
pre-loading all the essential apps like Browser, Contacts, Calendar, Messaging,
it even has an App Store of its own. You can also have an /e/ account, and take
advantage of its cloud storage service, mail, and search.” The E Foundation
will soon be selling refurbished devices with the OS here, and according to
Foss Bytes, you will be able to send them your phone, and they will install it for
around $50. Or, you can flash your phone yourself and install the beta ROM,
which you can download from here. It currently supports 81 devices from

https://antergos.com/blog/antergos-linux-project-ends
https://github.com/sponsors
https://techcrunch.com/2019/05/23/github-launches-sponsors-lets-you-pay-your-favorite-open-source-contributors
https://store.feralinteractive.com/en/mac-linux-games/threekingdomstw/
https://www.youtube.com/watch?v=NMGN0ZZn6D8&feature=youtu.be
https://fossbytes.com/want-a-google-free-android-send-your-phone-to-this-guy
https://e.foundation/e-pre-installed-smartphones
https://gitlab.e.foundation/e/wiki/en/wikis/devices-list
https://www.linuxjournal.com

38 | July 2019 | https://www.linuxjournal.com

UPFRONT

Google, Motorola, Huawei, Samsung and more.

• Raspberry Pi Camera Modules mounted on Raspberry Pi Zeros provide the
images for the Penguin Watch project. The raspberrypi.org blog post calls
the project “citizen science on a big scale”, noting that “thousands of people
from all over the world come together on the internet to...click on penguins.
By counting the birds in their colonies, users help penguinologists measure
changes in the birds’ behaviour and habitat, and in the larger ecosystem, thus
assisting in their conservation.”

• System76 announced the rebirth of its Gazelle laptop line, offering the
choice of Pop!_OS or Ubuntu as the OS. Beta News reports, “It comes with
a 9th Gen Intel Core i7 by default, and you can choose between an NVIDIA
GeForce GTX 1650 or 1660 Ti for graphics. There are two screen sizes
available -- 15.3-inch and 17.3-inch. Regardless of the display you opt for,
the resolution will be 1080p.” See the full specs and sign up to be notified
when the laptops are available (which should be sometime before this is
published) here.

• Mozilla announced that the Firefox browser will now have Enhanced Tracking
Protection on by default. From Chris Beard’s blog post: “These protections
work in the background, blocking third-parties from tracking your online activity
while increasing the speed of the browser. We’re offering privacy protections
by default as you navigate the web because the business model of the web
is broken, with more and more intrusive personal surveillance becoming the
norm. While we hope that people’s digital rights and freedoms will ultimately be
guaranteed, we’re here to help in the interim.”

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.zooniverse.org/projects/penguintom79/penguin-watch
https://www.raspberrypi.org/blog/penguin-watch
https://betanews.com/2019/05/31/system76-gazelle-linux-laptop-14/
https://system76.com/laptops/Gazelle
https://blog.mozilla.org/blog/2019/06/04/the-web-the-world-needs-can-be-ours-again-if-we-want-it/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

39 | July 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

What Really
IRCs Me:
Mastodon
Learn how to use the Mastodon social network
platform from the comfort of your regular IRC client.

By Kyle Rankin

When it comes to sending text between people, I’ve found
IRC (in particular, a text-based IRC client) works best. I’ve
been using it to chat for decades while other chat protocols
and clients come and go. When my friends have picked other
chat clients through the years, I’ve used the amazing IRC
gateway Bitlbee to connect with them on their chat client
using the same IRC interface I’ve always used. Bitlbee provides
an IRC gateway to many different chat protocols, so you can
connect to Bitlbee using your IRC client, and it will handle any
translation necessary to connect you to the remote chat clients
it supports. I’ve written about Bitlbee a number of times in the
past, and I’ve used it to connect to other instant messengers,
Twitter and Slack. In this article, I describe how I use it to
connect to yet another service on the internet: Mastodon.

Like Twitter, Mastodon is a social network platform, but unlike
Twitter, Mastodon runs on free software and is decentralized,
much like IRC or email. Being decentralized means it works
similar to email, and you can create your own instance or create

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com

40 | July 2019 | https://www.linuxjournal.com

HACK AND /

an account on any number of existing Mastodon networks and then follow people
either on the same Mastodon network or any other instance, as long as you know the
person’s user name (which behaves much like an email address).

I’ve found Bitlbee to be a great interface for keeping track of social media on Twitter,
because I treat reading Twitter like I was the operator for a specific IRC room. The
people I follow are like those I’ve invited and given voice to, and I can read what they
say chronologically in my IRC room. Since I keep my IRC instance running at all times,
I can reconnect to it and catch up with the backlog whenever I want. Since I’m reading
Twitter over a purely text-based IRC client, this does mean that instead of animated
gifs, I just see URLs that point to the image, but honestly, I consider that a feature!

Since Mastodon behaves in many ways like Twitter, using it with Bitlbee works just
as well. Like with Twitter over Bitlbee, it does mean you’ll need to learn some extra
commands so that you can perform Mastodon-specific functions, like boosting a post
(Mastodon’s version of retweet) or replying to a post so that your comment goes
into the proper thread. I’ll cover those commands in a bit.

Installing the Mastodon Bitlbee Plugin
The first step is to install the Mastodon Bitlbee Plugin. This plugin is already packaged
for Debian and other distributions—look for the bitlbee-mastodon package. In that
case, you can just install it with your package manager. Otherwise, you’ll need to clone
the source code from the plugin’s git repo and build it from source:

git clone https://alexschroeder.ch/cgit/bitlbee-mastodon

cd bitlbee-mastodon

./autogen.sh

./configure

make

sudo make install

Note that if you build it from source, you need to have the Bitlbee development package
installed on your distribution (usually called bitlbee-dev or bitlbee-devel).

https://www.linuxjournal.com

41 | July 2019 | https://www.linuxjournal.com

HACK AND /

Configure Mastodon
Once you have installed the plugin, restart the bitlbee service (sudo service
bitlbee restart should work on most distributions these days). Then when you
connect to Bitlbee with your IRC client, make sure you are in the specific &bitlbee IRC
channel it creates. From that room, you’ll be able to register your new account using
the standard account tools within Bitlbee. For this example, let’s assume I want to
connect to my @kyle@librem.one Mastodon account:

@greenfly| account add mastodon @kyle

@ root| Account successfully added with tag mastodon

This creates a new Mastodon account in Bitlbee and names it “mastodon”, but
note that if I already had a Mastodon account present, it would have started adding
numbers at the end, such as “mastodon2” instead. Pay attention to this tag, as you
will use it in the next command to configure this Mastodon account to point it at your
particular Mastodon network:

@greenfly| account mastodon set base_url

 ↪https://social.librem.one/api/v1
@ root| base_url = 'https://social.librem.one/api/v1'
@greenfly| account mastodon on

At this point, Bitlbee will connect to Mastodon, and you’ll need to authenticate this
client. You’ll get a private message from the mastodon_oauth user that will send you
a URL to visit in a browser. When you visit the URL, you’ll see a long string of text that
you’ll need to copy and then paste back as a reply to the mastodon_oauth user:

mastodon_oauth| Open this URL in your browser to authenticate:

https://social.librem.one/...

mastodon_oauth| Respond to this message with the returned

 ↪authorization token.
 greenfly| somelongstringoftext

https://www.linuxjournal.com

42 | July 2019 | https://www.linuxjournal.com

HACK AND /

After you complete this authentication step, you can go back to the main &bitlbee
channel, and you’ll see that your login has completed. From this point on, your Bitlbee
Mastodon account will have an authentication token it can use to log in in the future,
so in that &bitlbee window, be sure to save your configuration:

@greenfly| save

@ root | Configuration saved

Using Mastodon
If you are familiar with using Twitter on Bitlbee, using Mastodon is similar. Bitlbee will
open a new IRC channel for your Mastodon account, and anything anyone posts will
show up there. Anything you type into the channel will be posted on your Mastodon
account by default. If you want to restrict that so it posts things only when you
explicitly use the post command, you’ll need to set your Mastodon account to strict
mode, so inside the main &bitlbee control channel, type:

@greenfly| account mastodon set commands strict

To revert to the default behavior, type:

@greenfly| account mastodon set commands true

To post something, either just type the message and press Enter, like any other
IRC channel, or if you have enabled strict commands, preface the post with the
post command:

post My first toot from Bitlbee!

Each post in your Mastodon channel will be prefaced with a hexadecimal ID. You can
use that ID if you want to boost, favorite or reply to that status. For instance, if you
saw a post like the following:

kyle| [15] My first toot from Bitlbee!

https://www.linuxjournal.com

43 | July 2019 | https://www.linuxjournal.com

HACK AND /

You would use the ID “15” to interact with it:

favorite 15
boost 15
reply 15 The Mastodon Bitlbee plugin is the best!

If you decide you want to remove that last reply, you can use either the undo
command to undo your last action or the del command to delete a particular status
based on ID. You can also unfavorite and unboost to undo those commands.

To follow an account, use the follow command along with the person’s Mastodon
account ID (for instance @kyle@librem.one), and use unfollow along with the
account ID to unfollow someone. You can block, unblock, mute and unmute
someone using the commands with the same names. You also can mute a particular
conversation by specifying the post’s ID. Finally, you can use the report command to
a particular status for moderation.

Searches
You can perform Mastodon searches and create whole rooms that follow hashtags
from within Bitlbee as well. The search command lets you search for users, hashtags
and the URL for a particular status. If you want to follow a hashtag in its own room,
you need to perform a series of Bitlbee commands to create the chat room. For
instance, if you wanted to follow the hashtag #linuxjournal you would type:

chat add mastodon hashtag #linuxjournal

channel #linuxjournal set auto_join true

/join #linuxjournal

The first command sets that hashtag search in the account named “mastodon”, but
if you have multiple Mastodon accounts, replace “mastodon” with “mastodon2”
or whatever the appropriate account is labeled. The second command creates the
specific channel related to that hashtag search, and the /join command will connect
to that channel.

https://www.linuxjournal.com

44 | July 2019 | https://www.linuxjournal.com

HACK AND /

Conclusion
Reading social media from IRC makes following lots of people much easier and feels
more like a regular chat room. Although it’s true that you can’t immediately see
images, some people probably would consider that as a feature. Even better, it means
you can channel yet another communication medium through IRC and not have to
learn the quirks of a new client. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

45 | July 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Python’s Mypy:
Callables and
Generators
Learn how Mypy’s type checking works with
functions and generators.

By Reuven M. Lerner

In my last two articles I’ve described some of the ways Mypy, a
type checker for Python, can help identify potential problems
with your code. [See “Introducing Mypy, an Experimental
Optional Static Type Checker for Python” and “Python’s
Mypy—Advanced Usage”.] For people (like me) who have
enjoyed dynamic languages for a long time, Mypy might seem
like a step backward. But given the many mission-critical
projects being written in Python, often by large teams with
limited communication and Python experience, some kind of
type checking is an increasingly necessary evil.

It’s important to remember that Python, the language, isn’t
changing, and it isn’t becoming statically typed. Mypy is a
separate program, running outside Python, typically as part
of a continuous integration (CI) system or invoked as part of
a Git commit hook. The idea is that Mypy runs before you put
your code into production, identifying where the data doesn’t
match the annotations you’ve made to your variables and
function parameters.

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
https://www.linuxjournal.com/content/pythons-mypy-advanced-usage
https://www.linuxjournal.com/content/pythons-mypy-advanced-usage
http://lerner.co.il/
https://www.linuxjournal.com

46 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

I’m going to focus on a few of Mypy’s advanced features here. You might not
encounter them very often, but even if you don’t, it’ll give you a better picture of
the complexities associated with type checking, and how deeply the Mypy team
is thinking about their work, and what tests need to be done. It’ll also help you
understand more about the ways people do type checking, and how to balance
the beauty, flexibility and expressiveness of dynamic typing with the strictness and
fewer errors of static typing.

Callable Types
When I tell participants in my Python classes that everything in Python is an object,
they nod their heads, clearly thinking, “I’ve heard this before about other languages.”
But then I show them that functions and classes are both objects, and they realize
that Python’s notion of “everything” is a bit more expansive than theirs. (And yes,
Python’s definition of “everything” isn’t as wide as Smalltalk’s.)

When you define a function, you’re creating a new object, one of type “function”:

>>> def foo():

... return "I'm foo!"

>>> type(foo)

<class 'function'>

Similarly, when you create a new class, you’re adding a new object type to Python:

>>> class Foo():

... pass

>>> type(Foo)

<class 'type'>

It’s a pretty common paradigm in Python to write a function that, when it runs,
defines and runs an inner function. This is also known as a “closure”, and it has a few

https://www.linuxjournal.com

47 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

different uses. For example, you can write:

def foo(x):

 def bar(y):

 return f"In bar, {x} * {y} = {x*y}"

 return bar

You then can run:

b = foo(10)
print(b(2))

And you’ll get the following output:

In bar, 10 * 2 = 20

I don’t want to dwell on how all of this works, including inner functions and Python’s
scoping rules. I do, however, want to ask the question “how can you use Mypy to
check all of this?”

You could annotate both x and y as int. And you can annotate the return value
from bar as a string. But how can you annotate the return value from foo? Given
that, as shown above, functions are of type function, perhaps you can use that. But
function isn’t actually a recognized name in Python.

Instead, you’ll need to use the typing module, which comes with Python 3 so you
can do this kind of type checking. And in typing, the name Callable is defined for
precisely this purpose. So you can write:

from typing import Callable

def foo(x: int) -> Callable:

https://www.linuxjournal.com

48 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

 def bar(y: int) -> str:

 return f"In bar, {x} * {y} = {x*y}"

 return bar

b = foo(10)
print(b(2))

Sure enough, this passes Mypy’s checks. The function foo returns Callable, a
description that includes both functions and classes.

But, wait a second. Maybe you don’t only want to check that foo returns a Callable.
Maybe you also want to make sure that it returns a function that takes an int as an
argument. To do that, you’ll use square brackets after the word Callable, putting
two elements in those brackets. The first will be a list (in this case, a one-element list)
of argument types. The second element in the list will describe the return type from
the function. In other words, the code now will look like this:

#!/usr/bin/env python3

def foo(x: int) -> Callable[[int], str]:
 def bar(y: int) -> str:

 return f"In bar, {x} * {y} = {x*y}"

 return bar

b = foo(10)
print(b(2))

Generators
With all this talk of callables, you also should consider what happens with generator
functions. Python loves iteration and encourages you to use for loops wherever
you can. In many cases, it’s easiest to express your iterator in the form of a function,

https://www.linuxjournal.com

49 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

known in the Python world as a “generator function”. For example, you can create a
generator function that returns the Fibonacci sequence as follows:

def fib():

 first = 0
 second = 1
 while True:
 yield first

 first, second = second, first+second

You then can get the first 50 Fibonacci numbers as follows:

g = fib()

for i in range(50):
 print(next(g))

That’s great, but what if you want to add Mypy checking to your fib function? It
would seem that you can just say that the return value is an integer:

def fib() -> int:

 first = 0
 second = 1
 while True:
 yield first

 first, second = second, first+second

But if you try running this via Mypy, you get a pretty stern response:

atf201906b.py:4: error: The return type of a generator function
should be "Generator" or one of its supertypes

atf201906b.py:14: error: No overload variant of "next" matches
argument type "int"

atf201906b.py:14: note: Possible overload variant:

https://www.linuxjournal.com

50 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

atf201906b.py:14: note: def [_T] next(i: Iterator[_T]) -> _T
atf201906b.py:14: note: <1 more non-matching overload not
shown>

Whoa! What’s going on?

Well, it’s important to remember that the result of running a generator function is not
whatever you’re yielding with each iteration. Rather, the result is a generator object.
The generator object, in turn, then yields a particular type with each iteration.

So what you really want to do is tell Mypy that fib will return a generator, and that
with each iteration of the generator, you’ll get an integer. You would think that you
could do it this way:

from typing import Generator

def fib() -> Generator[int]:
 first = 0
 second = 1
 while True:
 yield first

 first, second = second, first+second

But if you try to run Mypy, you get the following:

atf201906b.py:6: error: "Generator" expects 3 type arguments,
but 1 given

It turns out that the Generator type can (optionally) get arguments in square
brackets. But if you provide any arguments, you must provide three:

• The type returned with each iteration—what you normally think about from iterators.

https://www.linuxjournal.com

51 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

• The type that the generator will receive, if you invoke the send method on it.

• The type that will be returned when the generator exits altogether.

Since only the first of these is relevant in this program, you’ll pass None for each of
the other values:

from typing import Generator

def fib() -> Generator[int, None, None]:
 first = 0
 second = 1
 while True:
 yield first

 first, second = second, first+second

Sure enough, it now passes Mypy’s tests.

Conclusion
You might think that Mypy isn’t up to the task of dealing with complex typing
problems, but it actually has been thought out rather well. And of course, what
I’ve shown here (and in my previous two articles on Mypy) is just the beginning;
the Mypy authors have solved all sorts of problems, from modules mutually
referencing each others’ types to aliasing long type descriptions.

If you’re thinking of tightening up your organization’s code, adding type checking
via Mypy is a great way to go. A growing number of organizations are adding
its checks, little by little, and are enjoying something that dynamic-language
advocates have long ignored, namely that if the computer can check what types
you’re using, your programs actually might run more smoothly. ◾

https://www.linuxjournal.com

52 | July 2019 | https://www.linuxjournal.com

AT THE FORGE

Resources

You can read more about Mypy here. That site has documentation,
tutorials and even information for people using Python 2 who want to
introduce mypy via comments (rather than annotations).

You can read more about the origins of type annotations in Python, and
how to use them, in PEP (Python enhancement proposal) 484, available
online here.

See my previous two articles on Mypy: “Introducing Mypy, an
Experimantal Optional Static Type Cheker for Python” and
“Python's Mypy—Advanced Usage”.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://mypy-lang.org/
https://www.python.org/dev/peps/pep-0484
https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
https://www.linuxjournal.com/content/pythons-mypy-advanced-usage
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

53 | July 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Bash Shell
Games: Let’s
Play Go Fish!
How to begin developing a computer version of
the popular card game.

By Dave Taylor

Between the previous 163 columns I’ve written here in Linux
Journal and the dozens of games I programmed and explored
during the creation of my Wicked Cool Shell Scripts book, I’ve
written a lot of Bash shell games. The challenge is to find one
that’s simple enough where a shell script will work, but isn’t so
simple that it ends up being only a half-dozen lines.

Magic 8-Ball is a perfect example. It turns out that the entire
“predict the future” gizmo was really just a 20-sided die
floating in dark purple fluid. So an array of 20 possible values
and a random number selector and boom—you’ve got a
magic 8-ball script:

#!/bin/sh

magic 8 ball. Yup. Pick a random number, output message

messages harvested from the Wikipedia entry

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.askdavetaylor.com/
https://www.linuxjournal.com

54 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

answers=("It is certain." "It is decidedly so."

 "Without a doubt." "Yes - definitely."

 "You may rely on it." "As I see it, yes." "Most likely."

 "Outlook good." "Yes." "Signs point to yes."

 "Reply hazy, try again." "Ask again later."
 "Better not tell you now." "Cannot predict now."

 "Concentrate and ask again." "Don't count on it."

 "My reply is no." "My sources say no."

 "Outlook not so good." "Very doubtful.")

echo "Oh! Magic 8 Ball, Please Tell Me True..." ; echo ""
/bin/echo -n "What is your question? "

read question

answer=$(($RANDOM % 20))

echo ""

echo "I have looked into the future and I say: "

echo " ${answers[$answer]}" ; echo ""

exit 0

Let’s do a quick run to see if I’m the most popular LJ writer:

$ sh magic8.sh

Oh! Magic 8 Ball, Please Tell Me True...

What is your question? Am I the most popular LJ writer?

I have looked into the future and I say:

 My reply is no.

Ouch, that’s harsh. I write the darn divination program, and it just drops a brick on my

https://www.linuxjournal.com

55 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

foot. Yeesh.

More seriously, Magic 8 Ball is too simple to make an interesting shell script. By
contrast, Call of Duty is way too complex, even if I did a version with text output
instead of gorgeously rendered 3D graphics.

Card Game Function Library
That’s why card games prove to be good as programming challenges or exercises: the
core mechanism of a 52-card random deck is pretty straightforward, so it’s all about
the actual cardplay.

Not only that, but as I’ve written before about card games as shell scripts, I already
have a handy set of functions to create, shuffle and display cards out of a deck. If you
want to rummage in the archives, I’ve tackled Acey-Deucey, Baccarat and some bits and
pieces of Cribbage.

In order to jump right into the new game that I’m going to describe how to build,
Go Fish!, let’s steal the following functions from my earlier scripts:

• initializeDeck
• shuffleDeck
• pickCard
• showCard

I’ve uploaded the script library to my AskDaveTaylor site, so you can grab it here if
you like.

With those functions all available, let’s start writing a Go Fish! game.

Heading to the Fishing Hole
If you don’t have kids, it might have been a while since you’ve played the simple
game of Go Fish!. I would categorize it as a memorization game, because if you can
remember what the other player has asked, you’ll generally win the game.

https://www.askdavetaylor.com/playing-card-library/
https://www.linuxjournal.com

56 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

Go Fish! is pretty simple. Each player starts with seven cards, and they take turns
asking the other player if they have one or more of a particular card rank. If they do,
they hand over all of their cards of that rank. If they do not, then you “go fish” and
take the top card from the deck.

Once you have four of a kind, you immediately place those in front of you. If you
ever have no cards in your hand, you immediately pick two from the deck and play
proceeds. The game ends when there are no cards left in either person’s hand and
none in the deck. The winner is the one with more sets at the end of the game. It’s
pretty simple.

Note: the game becomes a lot more interesting with three or four players. Try it!

To get started, here’s an easy way to include a set of functions from another file:

cardlib="playing-card-library.sh"

if [! -f $cardlib] ; then
 echo "Can't find the playing card library $cardlib"

 exit 1
fi

. $cardlib

The conditional test before the “.” source statement might be redundant, but why not
have a nice error message in the case that the cardlib file isn’t found?

The source statement (with slightly different syntax in different shells) is interesting.
It reads the specified file as if its contents were part of the current file. This means
any functions, any variables, anything that’s in the file is incorporated into the current
shell, not a subshell (as would happen if you used sh $cardlib, for example).

Now that the functions are defined, it’s time to deal seven cards to both the computer

https://www.linuxjournal.com

57 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

player and the user. To track all this, I’m going to use two arrays: myhand and
yourhand. The shell dynamically resizes arrays as needed, which is great for Go Fish!,
because you could end up having a lot more than seven cards during the game:

i=1

while [$i -lt 8] ; do
 myhand[$i]=${newdeck[$i]}
 yourhand[$i]=${newdeck[$(($i + 7))]}
 i=$(($i + 1))
done

There are a lot of punctuation symbols in this line:

yourhand[$i]=${newdeck[$(($i + 7))]}

Unwrap it step by step, and you’ll remember that any array reference must be
${name[x]}, which is half the complexity. The other half is the $((equation))
notation to do some basic math without a subshell. Basically, this is like the worst
dealer in the world, dealing cards 1–7 to the computer and 8–14 to the player. But if
it’s shuffled...

The showCard function (part of cardlib) is a bit clunky, because it doesn’t actually
output the card name, it just preloads global variable cardname with the correct
value. So here’s how to show a hand:

echo computer hand:

showCard ${myhand[1]} ; echo " $cardname"
showCard ${myhand[2]} ; echo " $cardname"
showCard ${myhand[3]} ; echo " $cardname"
showCard ${myhand[4]} ; echo " $cardname"
showCard ${myhand[5]} ; echo " $cardname"
showCard ${myhand[6]} ; echo " $cardname"

https://www.linuxjournal.com

58 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

showCard ${myhand[7]} ; echo " $cardname"

Running this, it’s clear that I might need to sort the cards by rank to make the game
easier to play:

$ sh gofish.sh

computer hand:

 5 of Diamonds
 9 of Hearts
 4 of Clubs
 7 of Diamonds
 8 of Hearts
 K of Hearts
 K of Clubs

your hand:

 5 of Hearts
 9 of Diamonds
 Q of Diamonds

 2 of Spades

 6 of Clubs
 2 of Diamonds

 Q of Spades

Since the player won’t ever have to specify an individual card, I think I can get away
without sorting the hand, so I’ll leave that as a task for you, dear reader, when you
start fiddling with the code.

Won’t need to specify a card? Right. You’ll ask the computer if it has any, say, “twos”
by entering a “2” at the prompt. In fact, to make this interesting, let’s let the player
potentially cheat by having the computer ask if they have a specific card, rather than
automatically just taking it out of the hand.

I’m imagining a play sequence like this:

https://www.linuxjournal.com

59 | July 2019 | https://www.linuxjournal.com

WORK THE SHELL

Your hand:

 5 of Hearts
 9 of Diamonds
 Q of Diamonds

 2 of Spades

 6 of Clubs
 2 of Diamonds

 Q of Spades

You go first. You ask me if I have: 3

** You don't have any 3s so you can't ask for that!

You ask me if I have: 2

** I do not. Go fish.

((you pick up the 9 of Hearts))

My turn. Do you have any 7s? (yes/no):

With that in mind, let’s stop here and pick up this coding project next time. See you
then, and in the meantime, find a youngling and play a few games of Go Fish! to see
the (admittedly fairly minimal) nuances of the game. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

60 | July 2019 | https://www.linuxjournal.com

diff -u

What’s New
in Kernel
Development
By Zack Brown

Simplifying Function Tracing for the
Modern GCC
Steven Rostedt wanted to do a little housekeeping,
specifically with the function tracing code used in debugging
the kernel. Up until then, the kernel could enable function
tracing using either GCC’s -pg flag or a combination of
-pg and -mfentry. In each case, GCC would create a special
routine that would execute at the start of each function, so
the kernel could track calls to all functions. With just -pg,
GCC would create a call to mcount() in all C functions,
although with -pg coupled with -mfentry, it would create a
call to fentry().

Steven pointed out that using -mfentry was generally
regarded as superior, so much so that the kernel build
system always would choose it over the mcount()
alternative by testing GCC at compile time to see if it
actually supported that command-line argument.

This is all very normal. Since any user might have any version
of a given piece of software in the toolchain, or a variety of
different CPUs and so on, each with different capabilities, the

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends‘n’family.

https://www.linuxjournal.com

61 | July 2019 | https://www.linuxjournal.com

diff -u

kernel build system runs many tests to identify the best available features that the
kernel will be able to rely on.

But in this case, Steven noticed that for Linux version 4.19, Linus Torvalds had
agreed to bump the minimum supported GCC version to 4.6. Coincidentally, as Steven
now pointed out, GCC version 4.6 was the first to support the -mfentry argument.
And, this was his point—all supported versions of GCC now supported the better
function tracing option, and so there was no need for the kernel build system to cling
to the mcount() implementation at all.

Steven posted a patch to rip it out by the roots.

Peter Zijlstra gave his support for this plan, as did Jiri Kosina. And, Jiri in particular
spat upon the face of the mcount() solution.

Linus also liked Steven’s patch, and he pointed out that with mcount() out of
the picture, there were several more areas in the kernel that had existed simply to
help choose between mcount() and fentry(), and that those now also could be
removed. But Steven replied that, although yes this should be done, he still wanted to
do split it up into a separate patch, for cleanliness’ sake.

As it turned out, Steven’s patch actually applied only to the x86 kernel port. A lot of
other architectures still used mcount(), as Josh Poimboeuf pointed out. And Steven
confirmed, “fentry works nicely when you have a single instruction that pushes the
return address on the stack and then jumps to another location. It’s much trickier to
implement with link registers. There’s a few different implementations for other archs,
but mcount happens to be the one supported by most.”

And that was that. Steven’s patch certainly will go into the kernel as soon as it’s fully
ready. It’s enjoyable to watch these details shake out, after the relatively large decision
to change the minimum supported GCC version. I imagine there are several more
areas of the kernel that can be simplified and cleaned up, now that they don’t have to
support older versions of GCC.

https://www.linuxjournal.com

62 | July 2019 | https://www.linuxjournal.com

diff -u

Shrinking Linux Attack Surfaces
Often, a kernel developer will try to reduce the size of an attack surface against
Linux, even if it can’t be closed entirely. It’s generally a toss-up whether such a patch
makes it into the kernel. Linus Torvalds always prefers security patches that really
close a hole, rather than just give attackers a slightly harder time of it.

Matthew Garrett recognized that userspace applications might have secret data
that might be sitting in RAM at any given time, and that those applications might
want to wipe that data clean so no one could look at it.

There were various ways to do this already in the kernel, as Matthew pointed out. An
application could use mlock() to prevent its memory contents from being pushed
into swap, where it might be read more easily by attackers. An application also could
use atexit() to cause its memory to be thoroughly overwritten when the application
exited, thus leaving no secret data in the general pool of available RAM.

The problem, Matthew pointed out, came if an attacker was able to reboot the
system at a critical moment—say, before the user’s data could be safely overwritten. If
attackers then booted into a different OS, they might be able to examine the data still
stored in RAM, left over from the previously running Linux system.

As Matthew also noted, the existing way to prevent even that was to tell the UEFI
firmware to wipe system memory before booting to another OS, but this would
dramatically increase the amount of time it took to reboot. And if the good guys had
won out over the attackers, forcing them to wait a long time for a reboot could be
considered a denial of service attack—or at least downright annoying.

Ideally, Matthew said, if the attackers were only able to induce a clean shutdown—not
simply a cold boot—then there needed to be a way to tell Linux to scrub all data out
of RAM, so there would be no further need for UEFI to handle it, and thus no need for
a very long delay during reboot.

Matthew explained the reasoning behind his patch. He said:

https://www.linuxjournal.com

63 | July 2019 | https://www.linuxjournal.com

diff -u

Unfortunately, if an application exits uncleanly, its secrets may still be present in
RAM. This can’t be easily fixed in userland (eg, if the OOM killer decides to kill a
process holding secrets, we’re not going to be able to avoid that), so this patch
adds a new flag to madvise() to allow userland to request that the kernel clear
the covered pages whenever the page reference count hits zero. Since vm_flags
is already full on 32-bit, it will only work on 64-bit systems.

Matthew Wilcox liked this plan and offered some technical suggestions for Matthew
G’s patch, and Matthew G posted an updated version in response.

Michal Hocko also had some technical suggestions, including the idea that the patch
should not just wipe RAM, but also any swap space, for added protection.

But, Christopher Lameter replied to Matthew G’s patch, saying that it didn’t actually
fix the problem, even if it made the attack more difficult to carry out. As he put it:

The pages are cleared anyways when reallocated to another process. This just
clears it sooner before reuse. So it will reduce the time that a page contains the
secret sauce in case the program is aborted and cannot run its exit handling.

Is that really worth extending system calls and adding kernel handling for this? Maybe
the answer is yes given our current concern about anything related to “security”.

Matthew G pointed out that if the system was mostly idle, no other process might claim
the RAM that still held secret data. In this case, those secrets would sit unguarded. And if
someone did reboot the system at that time, the secret data would be exposed.

A bunch of people contributed technical suggestions, and Matthew G submitted
several new versions of his patch, before the discussion ended.

There’s clearly some interest in this patch, but no one was singing about it on their
way to the Grey Havens. It clearly represents a security improvement, in the sense
that it makes the time window a bit tighter for an attacker to take advantage of

https://www.linuxjournal.com

64 | July 2019 | https://www.linuxjournal.com

diff -u

exposed data, but at the same time, that window does remain open for a certain
amount of time. Hostile attackers could potentially take advantage of that to gain
access to privileged data, even with Matthew G’s patch. It’s unclear to me whether or
not this patch will go into the kernel.

Address Space Isolation and the Linux Kernel
Mike Rapoport from IBM launched a bid to implement address space isolation in the
Linux kernel. Address space isolation emanates from the idea of virtual memory—
where the system maps all its hardware devices’ memory addresses into a clean virtual
space so that they all appear to be one smooth range of available RAM. A system that
implements virtual memory also can create isolated address spaces that are available
only to part of the system or to certain processes.

The idea, as Mike expressed it, is that if hostile users find themselves in an isolated
address space, even if they find bugs in the kernel that might be exploited to gain
control of the system, the system they would gain control over would be just that
tiny area of RAM to which they had access. So they might be able to mess up their
own local user, but not any other users on the system, nor would they be able to gain
access to root level infrastructure.

In fact, Mike posted patches to implement an element of this idea, called System
Call Isolation (SCI). This would cause system calls to each run in their own isolated
address space. So if, somehow, an attacker were able to modify the return values
stored in the stack, there would be no useful location to which to return.

His approach was relatively straightforward. The kernel already maintains a “symbol
table” with the addresses of all its functions. Mike’s patches would make sure that any
return addresses that popped off the stack corresponded to entries in the symbol
table. And since “attacks are all about jumping to gadget code which is effectively in
the middle of real functions, the jumps they induce are to code that doesn’t have an
external symbol, so it should mostly detect when they happen.”

The problem, he acknowledged, was that implementing this would have a speed hit.

https://www.linuxjournal.com

65 | July 2019 | https://www.linuxjournal.com

diff -u

He saw no way to perform and enforce these checks without slowing down the kernel.
For that reason, Mike said, “it should only be activated for processes or containers we
know should be untrusted.”

There was not much enthusiasm for this patch. As Jiri Kosina pointed out, Mike’s code
was incompatible with other security projects like retpolines, which tries to prevent
certain types of data leaks falling into an attacker’s hands.

There was no real discussion and no interest was expressed in the patch. The
combination of the speed hit, the conflict with existing security projects, and the fact
that it tried to secure against only hypothetical security holes and not actual flaws in the
system, probably combined to make this patch set less interesting to kernel developers.

It’s one of the less pleasant aspects of kernel development. Someone can put a lot of hours
into a project, with no way to know in advance what objections might be raised at the
end. It wouldn’t have been obvious to Mike and his colleagues that a speed hit would be
necessary. And the possibility of conflict with other existing kernel projects is always very
difficult to predict, especially since there often are workarounds that can be discovered
only once members of the two projects start debating the various issues in public.

Only Linus Torvalds’ general reluctance to add security features that do not address existing
security holes could have been predicted. He seems very consistent on that point, much to
the annoyance of security-minded developers throughout the Open Source world. The idea
of reducing the size of an attack surface seems self-evident to them; while to Linus, it seems
self-evident that you shouldn’t fix what isn’t broken, especially where the fix adds bloat and
increases the maintenance costs for the whole project. I think it’s likely that even if Jiri and
other developers had approved of Mike’s patches, Linus might have objected later on.

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com, and we’ll run it in
the next Letters section and post it on the website
as an addendum to the original article. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

66 | July 2019 | https://www.linuxjournal.com

DEEP DIVE
THE

Im
ag

e
by

 J
es

se
 R

at
te

rr
ee

https://www.linuxjournal.com

DEEP
DIVE

DEEP DIVE
THE

67 | July 2019 | https://www.linuxjournal.com

A Guide to
Basic Command-
Line Tasks
A whirlwind tour of the “the user interface that wouldn’t die”.

By Dave Taylor

Opening scene: a dusty 1950s-era computer room with spinning mag tapes and hundreds
of flashing lights. There’s an imposing grey teletype machine and empty chair front and
center. To the right is a huge, messy pile of printouts clearly torn off the machine and
marked up with pencils. It’s late at night with minimal room lighting.

Cut to opening animation: “The User Interface That Wouldn’t Die!”

Sf/x a scream as the screen bursts into a pure white...

Okay, so maybe using the command line isn’t quite this dramatic as we move slowly
but inexorably into the year 2020. Twenty twenty. Hard to believe we’re already that
far into the 21st century. And remember, the very first command lines were from the
Multics era, if not earlier (Multics begat Unix which begat Linux many years later).
We’re talking about a user interface that’s been around since the early 1960s.

This leads to the obvious question, “What’s the darn appeal for people to use
such an ancient interface when there are fancy graphical window managers, mice,
touchscreens and swanky million-color displays?”

I occasionally ask myself this very question when I crack open a terminal window and

Im
ag

e
by

 J
es

se
 R

at
te

rr
ee

https://www.linuxjournal.com

start typing at the command line, just to realize that the command-line interface is still
popular because it’s so incredibly efficient.

Want to list only files that have a “z” in their name? Want to check the last time that
user “maria” logged in? Need to change all the filenames in that archive from your
supplier so that everything’s in lowercase? Want to bulk-resize thousands of images?
Create an encrypted backup and automatically copy it to a cloud server? Log in to a
customer’s system 7,500 miles away for remote diagnostics?

Those are just a few of the millions of tasks you can accomplish with the command
line in Linux, and it’s exactly why smart users still are finding that CLI and using it. My
guess is that a significant subset of Linux Journal readers type in a command at least
weekly, if not much more frequently.

But, how well do you actually know the command line, the user interface that wouldn’t
die? Let’s have a refresher of the commands folks likely use the most often since this is
the command-line issue of the magazine.

Note: I’ve been writing about the command line for eons. Books I’ve written on the
subject include Teach Yourself Unix in a Week (which turned into Teach Yourself Unix
in 24 Hours when a week seemed like too much time), Learning Unix for MacOS X
and the ever-popular Wicked Cool Shell Scripts.

Editing Commands and Command History
Before you start typing in commands, it’s really helpful to know how you can tweak
and modify your command line. Start with history, and you’ll see a list of your
previous commands. Each is prefaced by a number, and you can repeat an earlier
command quickly and easily with the shortcut !number, as shown:

$ history

 1 PS1="$ "
 2 uptime

 3 history 10

DEEP
DIVE

68 | July 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

69 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

 4 ls -F
 5 find . -name "*.c" -print
 6 who
 7 date
 8 clear

 9 history
$!2

uptime

 08:16:03 up 1:11, 1 user, load average: 0.17, 0.18, 0.18
$

Notice that when I did !2 to repeat command #2, the shell then showed the command
I’d matched (uptime) followed by the result of that command being invoked.

You also can repeat a command by using that same ! followed by a letter or two, so I
easily could repeat the find command (command #5) with this:

$!f

find . -name "*.c" -print

...

That’s the majority of my command-line manipulation, actually. On many systems, you
also can use the cursor up and cursor down arrows to scroll through your command
history, but that almost feels like cheating if I’m talking about a throwback to the
teletype machine.

Trivia: /dev/tty is named after the teletype system, and it’s still the mnemonic for your
terminal session all these decades later. That teletype hasn’t completely vanished!

There’s quite a bit more you can do with the command line, including pulling
arguments from one command into another and so on, but those things are a bit
more obscure and probably not as helpful as just knowing that you always can check
and access your history with just a keystroke or two. In fact, when developing a script,

https://www.linuxjournal.com

70 | July 2019 | https://www.linuxjournal.com

I often find myself in a cycle of !v to edit and !. to execute it once I’ve typed in the
full commands a single time.

Navigating the Filesystem
The most rudimentary use of the command line is to explore the filesystem. You
surely already know that the Linux filesystem is an inverted hierarchical tree, right? Yes,
and don’t call me Shirley!

As a result, the key commands to learn for filesystem navigation are to identify your
current location in the filesystem (pwd) and how to move around (cd):

$ pwd

/home/taylor

$ cd /home

$ pwd

/home

You can see that I started out with a present working directory of /home/taylor, then
used the change directory command to move to /home, at which point my pwd is now,
logically enough, /home.

There are two additional shortcuts for navigating the filesystem in Linux, and those are
.. to back up one level in the system and ~ as a shortcut for your home directory. Your
home directory, just to be clear, is where you start when you’ve logged in to the system.

This should all make sense:

$ cd ~

$ pwd

/home/taylor

$ cd ..

$ pwd

/home

DEEP
DIVE

https://www.linuxjournal.com

71 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

That’s the basics of moving around. Pretty darn easy, really.

Listing Files and Directories
Moving around in the filesystem is of limited value if you can’t actually look at what’s in
your current location. That’s what the ls command is for, and if there’s one command
that you should grow to love, it’s ls. This is also the first command I’m considering
here that has arguments and command flags—lots of them actually. But to start, at its
most basic:

$ cd ~

$ ls

Desktop Downloads Music Public Videos
Documents examples.desktop Pictures Templates

You can see that there are eight entries in my home directory (remember, ~ is
a shortcut for home), but what are they? My notational convention is to have
directories start with an uppercase letter and have files all be lowercase, but that
doesn’t mean I’m 100% consistent.

To find out, add the -F flag to the ls command, which appends a symbol suffix to
indicate file or directory type:

$ ls -F

Desktop/ Downloads/ Music/ Public/ Videos/
Documents/ examples.desktop Pictures/ Templates/

Everything with a trailing / is a directory.

This is a good moment to point out something pretty important. Although we see
directories and files as being quite different, the Linux filesystem views them all as just
objects or entities. You can rename a directory the same way you can rename a file,
for example, and directories and files can move around in just about identical fashions
too. In fact, Linux has a sloppy habit of using the filename suffix to identify the type of

https://www.linuxjournal.com

72 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

file too, so rename “resume.docx” to “resume.mp3”, and suddenly it’ll try to play your
résumé instead of letting you edit it.

The -F flag is useful, but -l (that’s a lowercase L) is much more useful as it offers up
what’s known as a “long listing” format:

$ ls -l

total 44
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Desktop
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Documents
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Downloads
-rw-r--r-- 1 taylor taylor 8980 Mar 9 06:44 examples.desktop
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Music
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Pictures
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Public
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Templates
drwxr-xr-x 2 taylor taylor 4096 Mar 9 06:48 Videos

Now you can see permissions, ownership, group ownership, size (sort of), last
modified dates and the file or directory name. Confusingly, the meaning of these values
is different based on the type of file or object represented. All directories are shown
with basically the same size (4K here), which is basically useless, but notice that the
lone file, examples.desktop, has a different value. That’s its actual size: 8,980 bytes.

It’s the permissions string that’s more interesting, however. Linux permissions model
UNIX permissions and are based on three concentric circles of access: owner, group
and everyone. To decode one of the permissions strings, know that the first character
indicates type, then each three-character set is read/write/execute permission status
for each of the three circles of access.

The directory Desktop, for example, has a d as its first letter. Then the owner of the
file (taylor, as shown in column 4) has read+write+execute permission as denoted
by rwx. The group to which the directory is assigned (also taylor in this example,

https://www.linuxjournal.com

73 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

as shown in column 5) has read+execute permission, as denoted by r-x. Finally,
everyone else on the system has read+execute only permission, meaning that only the
owner of the directory can edit or change it.

Similarly, the file examples.desktop has read+write permission for its owner, taylor,
and everyone else has read-only permission and cannot edit or change it or its
content. That’s what -rw-r--r-- means. Focus on the three-letter sequence * three
access levels, and it shouldn’t be too intimidating. But there’s no way around it,
permissions for directories are a bit more confusing. Suffice it to say, if you want
someone to have access, make it r-x, and if you want them to be able to change, add
and edit, use rwx. Close it off? That’s what -- is for.

Let’s check out the topmost directory for some more interesting examples of permissions:

$ cd /

$ ls -l

total 970072
drwxr-xr-x 2 root root 4096 Mar 9 06:52 bin
drwxr-xr-x 19 root root 4060 Mar 9 06:56 dev
drwxr-xr-x 124 root root 12288 Mar 9 07:03 etc
drwxr-xr-x 3 root root 4096 Mar 9 06:44 home
lrwxrwxrwx 1 root root 33 Mar 9 06:54 initrd.img ->
boot/initrd.img-4.18.0-16-generic
drwxr-xr-x 21 root root 4096 Mar 9 06:46 lib
drwxr-xr-x 2 root root 4096 Oct 17 16:23 lib64
drwx------ 2 root root 16384 Mar 9 06:42 lost+found
dr-xr-xr-x 258 root root 0 Mar 9 06:56 proc
drwx------ 3 root root 4096 Oct 17 16:34 root
drwxr-xr-x 31 root root 880 Apr 8 08:05 run
drwxr-xr-x 2 root root 4096 Oct 17 16:23 sry
-rw------- 1 root root 993244160 Mar 9 06:42 swapfile

I’ve pruned the above just a bit to make it less overwhelming, but notice how much

https://www.linuxjournal.com

74 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

variation there is! The first letter of the permissions string can also be an “l” (lowercase
L) to indicate a symbolic link. In this instance, it shows that the entry /initrd.img is
actually a link to /boot/initd.img-4.18.0-16-generic. Symbolic links are super small too,
as they need to contain only the destination filename. This one’s 33 bytes in size.

Notice the permission for lost+found: rwx for owner (root) and completely shut off
for everyone else. Oh, and see that swapfile? How big is it?

Fortunately, there’s one more ls flag worth mentioning: -h. That offers a “human-
friendly” size. Add that to the ability to specify a directory or even a single file on the
command line, and you can figure it out quickly:

$ ls -lh /swapfile

-rw------- 1 root root 948M Mar 9 06:42 /swapfile

Between cd and ls, you now can move around the filesystem quickly.

Tip: when you’re typing in a file or directory name, try pressing the Tab key to expand it. As
long as it will expand to a unique word or name, that’s all you need to do, so typing /sw and
then pressing Tab would work fine in the above example. Handy indeed!

Moving and Copying Files and Directories
Next up in this quick tour of the command line are the commands that let you move
and copy files and folders, and the command that lets you create new directories.
Moving and copying at some level are the same task, a stream of bytes moving into a
new file container, but the big difference is what happens to the original file. With a
move, the source file is deleted.

Let’s jump back to my home directory and move that examples.desktop file to the
Desktop directory:

$ cd ~

$ ls -l examples.desktop

https://www.linuxjournal.com

75 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

-rw-r--r-- 1 taylor taylor 8980 Mar 9 06:44 examples.desktop
$ mv examples.desktop Desktop/

$ ls -F

Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/
Templates/ Videos/

There’s another handy shortcut demonstrated here. If you move or copy a file into a
new directory, you can just specify the destination directory, and it’ll retain its name.
This means that, as shown, there’s no longer a file called examples.desktop in my
home directory.

You can rename it as you move or copy a file or folder, of course, so this would
work fine:

$ mv Videos Desktop/my-video-archive

$

And this would work too:

$ cp Desktop/examples.desktop my-example

$

In fact, if you want to rename a file, it’s the mv command you’ll use, even if you’re
“moving” it within the same directory:

$ mv my-example demo-example.txt

$

There’s no rename command in Linux, nor do you need one.

Of Wildcards, Asterisks and Quotes
In the old days, UNIX commands were all lowercase and filenames also were all
lowercase and never had spaces within them. So it was easy to mv test test.c

https://www.linuxjournal.com

76 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

and know it’d work properly. Modern graphical interfaces work fine with more
complex names, so it’s no surprise that there now are multiword directories
and filenames.

To deal with complex names, quote things, ideally with the double quotes:

$ ls

examples.desktop

$ mv examples.desktop "My Favorite Examples"

$ ls -l My\ Favorite\ Examples

-rw-r--r-- 1 taylor taylor 8980 Mar 9 06:44 'My Favorite
 ↪Examples'

Specific characters that cause trouble can be escaped with a prefacing backslash, as
the second ls command shows. Better yet, that’s from me doing a Tab expansion, so
the shell’s smart enough to do this all by itself. Helpful!

The shell also has a cool wildcard feature, which is great if you want to do any sort
of bulk moving. For example, C program files are denoted with a “.c” suffix, so a
directory full of C source files might look like this:

$ ls -F

demoprog* libalt.c library.c main1.c main2.c main.c
Makefile README utilities.c

Notice in this instance that the -F flag has given a “*” suffix to indicate that demoprog
is executable.

To reference all the C source files en masse, you could use *.c as the notation. Copy
them all into a backup directory? Easy:

$ cp *.c ../backupdir

https://www.linuxjournal.com

77 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

This proves generally true, so doing this:

$ cp * ../backupdir

will copy everything from this directory, including the executable. There’s lots more to
the wildcard language of the shell, including ? to match a single letter (so main?.c will
match main1.c and main2.c, but not main.c) and sets like [MR]* to match M* and R*,
but the asterisk wildcard will definitely get you started.

Pipes and Redirects
Think about this: every command invoked on the command line automatically has an input,
an output and an error device associated. By default, the input is the keyboard, and the
output and error output are both the screen or terminal. But, you can change them.

To demonstrate, I’m going to introduce another command: wc. The wc command
does not point you to the closest restroom when you’re in the UK (yeah, bad joke!),
it offers up the word count for a file. For example:

$ wc main.c

 44 129 1172 main.c

This shows you that there are 44 lines, 129 words and 1172 characters in the C
source file main.c—useful. Add -w, and it’ll just report words too: wc -w main.c.

But, this command also can use the < symbol to redirect input. Notice how it subtly
changes the results:

$ wc -w < main.c

129

Because I used redirection, it didn’t know the name of the input file. You can use <
to redirect input, but you also can use > to redirect the output of the command and
even >> to redirect output and append it to an existing file. Consider this:

https://www.linuxjournal.com

78 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

$ date > uptime.log

$ uptime >> uptime.log

$

$ cat uptime.log

Mon Apr 8 12:17:49 MDT 2019
 12:17:53 up 14 min, 1 user, load average: 0.23, 0.41, 0.45
$

Oops, the cat program—short for concatenate—dumps the contents of a file—any
file, even one that’s not actually readable. In the above, the date command created
the output file (or overwrote it if it already existed, which is a danger if you mess up
input and output files), then the second command had its output appended. Finally,
cat showed what’s in uptime.log.

If you can change the input and output of a command, can you have one command’s
output be the input to another command’s input? That’s what pipes are for, and it’s
one of the most powerful—and wicked cool—capabilities of the command line. There
are hundreds of commands with thousands of flags and options, but once you realize
that one command’s output can be another’s input, and that output can be hooked
to yet another, well, then you realize there are millions of different commands you can
form with a few dozen keystrokes.

At its most simple, how about this:

$ uptime | wc

 1 10 61
$ uptime | wc | wc

 1 3 24

See what I did in that second command? I used wc the second time to count the
number of words, lines and characters that were the output of the first wc invocation.
It’s kind of a weird example, but it highlights that any command that’s in a pipe acts
independently, so the second wc couldn’t know that it was being invoked twice.

https://www.linuxjournal.com

79 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

The combination of pipes and redirection offers an extraordinarily rich environment
within which you can create just about any possible command you can imagine. That’s
where a lot of the fun of working with the Linux command line comes from. The other
thing that makes it great fun for me is...

Shell Script Programming
Yep, that should be no surprise since I have been writing the Shell Script Programming
column here in Linux Journal for more years than I want to remember. Imagine that
everything you can do on the command line you can easily do within a simple script.
Add conditional statements, functions and variables—the sky’s the limit on what you
can do with shell scripts, and I’ve written hundreds of different scripts, ranging from a
few lines to hundreds of lines of complex code.

You can see 101 of my best and most interesting in my book Wicked Cool Shell Scripts,
or just read my column here in the magazine. Or even better, do both!

I’m way out of space, which is too bad, because I could keep going for many, many
more pages. Indeed, I have, which is why I’ve written an introduction to the Linux
command line three times in different books. None were shorter than 300 pages
either. Still, I hope this has whetted your appetite to learn more about the fantastic
Linux command line, and remember that both MacOS X and Windows have command-
line interfaces too.

It really is “the User Interface that Wouldn’t Die” after all. ◾

Dave Taylor has been hacking shell scripts on UNIX and Linux systems for a really long time. He’s the author of
Learning Unix for Mac OS X and Wicked Cool Shell Scripts. You can find him on Twitter as @DaveTaylor, and you can
reach him through his tech Q&A site: Ask Dave Taylor.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.askdavetaylor.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

DEEP
DIVE

Without a GUI—How
to Live Entirely in a
Terminal
Sure, it may be hard, but it is possible to give up graphical interfaces
entirely—even in 2019.

By Bryan Lunduke

About three years back, I attempted to live entirely on the command line for 30
days—no graphical interface, no X Server, just a big-old terminal and me, for a month.

I lasted all of ten days.

Why did I attempt this? What on Earth would compel a man to give up all the
trappings and features of modern graphical desktops and, instead, artificially restrict
himself to using nothing but text-based, command-line software, as if he were stuck in
the early 1980s?

Who knows. Clearly, I make questionable decisions.

But you know, if I’m being honest, the experience was not entirely unpleasant. Sure, I
missed certain niceties from the graphical side of things, but there were some distinct
benefits to living in a shell. My computers, even the low-powered ones, felt faster
(command-line software tends to be a whole lot lighter and leaner than those with a
graphical user interface). Plus, I was able to focus and get more work done without all
the distractions of a graphical desktop, which wasn’t bad.

80 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

81 | July 2019 | https://www.linuxjournal.com

What follows are the applications I found myself relying upon the most during those
fateful ten days, separated into categories. In some cases, these are applications I
currently use over (or in addition to) their graphical equivalents.

Quite honestly, it is entirely possible to live completely without a GUI (more or
less)—even today, in 2019. And, these applications make it possible—challenging,
but possible.

Web Browsing
Plenty of command-line web browsers exist. The classic Lynx typically comes to
mind, as does ELinks. Both are capable of browsing basic HTML websites just fine.
In fact, the experience of doing so is rather enjoyable. Sure, most websites don’t
load properly in the “everything is a dynamically loading, JavaScript thingamadoodle”
future we live in, but the ones that do load, load fast, and free of distractions, which
makes reading them downright enjoyable.

But for me, personally, I recommend w3m.

w3m supports inline images (via installing the w3m-img package)—seriously, a web
browser with image support, inside the terminal. The future is now.

It also makes filling out web forms easy—well, maybe not easy, but at least doable—by
opening a configured text editor (such as nano or vim) for entering form text. It feels
a little weird the first time you do it, but it’s surprisingly intuitive.

Email
Email is another one of those things you simply can’t live without. Luckily, people were
emailing each other from UNIX/Linux machines long before modern graphical email
clients (or webmail) even existed.

There are a few quality options for sending mail from the comforts of your terminal
(including Mutt and Notmuch), but for my money, it doesn’t get much better than
Alpine. It is, by far, the most approachable and learnable. Common hot-keys are

https://www.linuxjournal.com

82 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

displayed right on screen (such as press r to reply to a selected email), and the
overall layout and interface is going to be immediately recognizable to anyone who
has used a graphical email client or webmail.

Figure 1. Browsing Wikipedia with Inline Images Using w3m

https://www.linuxjournal.com

83 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Some other clients (like Mutt) also are quite excellent, but they have a bit steeper of
a learning curve.

Instant Messaging
Wouldn’t it be great if there was something like Pidgin, but entirely command-line
based? Something that supports multiple chat protocols (like IRC, XMPP and so on)
and lets you have chats with multiple people at once?

It turns out there is. It’s called Finch, and it’s made by the Pidgin folks.

Figure 2. The Alpine Email Client Main Menu

https://www.linuxjournal.com

84 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

It even has a nice TUI (Text User Interface) that somewhat mimics the GUI of Pidgin.
Navigating around that interface without a mouse can be a bit confusing at first
(Alt-N goes to the next “window”, Alt-P to the previous and so forth), so taking a few
minutes to learn the keyboard commands will save you much frustration.

It’s not a perfect solution, mind you. Some of the protocols that Finch supports are
either dead or dying (such as AOL Instant Messenger), but the support that is there
works surprisingly well.

Word Processing
WordGrinder is the terminal-based word processor you’ve been looking for.

WordGrinder has a simple interface (press Escape to bring up a global menu
with all the functions and feature available), is fast as heck, and is just downright

Figure 3. The File Menu in WordGrinder

https://www.linuxjournal.com

85 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

delightful to write in.

The darn thing even supports writing to ODT, HTML and Latex, and it can import
ODT, HTML and text. There’s even some basic formatting options (italic, bold,
underline, margins), which is a bit surprising for a terminal-based word processor.

Spreadsheets
Text-based spreadsheet programs are nothing new. Heck, the fabled VisiCalc had
an entirely text-based user interface, as did most spreadsheet programs built for a
decade after that point.

Just the same, the spreadsheet options when running in Linux terminal are...limited.

The most commonly used option is known as sc (for Spreadsheet Calculator). It’s
been around for a good long time and works wonderfully well—for what it does. Enter
text into a cell? Check. Enter numbers into a cell with some computation options?
Double check.

Want to open a spreadsheet created in something like LibreOffice? Well, you’re going
to be plum out of luck there. sc uses a custom file format. Why not simply default to
using CSV or some other standardized, text-based format for spreadsheets? I couldn’t
tell you. That confuses me too.

But luckily, the sc file format isn’t too far off from CSV, and folks around the internet
have created a variety of scripts to help convert between the two. It’s not a seamless
workflow, but sc is usable—once you learn the key bindings and get some supporting
scripts in place to convert files.

Presentations
Yes! You can create and give presentations entirely from the terminal! It really works! I
mean, there’s not going to be any images, but who needs pictures in this day and age?

The program is called “tpp” (Text Presentation Program), and it’s in just about

https://www.linuxjournal.com

86 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

every repository on the planet. It has a bit steeper requirements than many terminal
applications, as it relies on Ruby, but it’s still lighter and faster than any graphical
presentation program out there.

Presentations are created, in whatever text editor you choose (I’m a nano man,
myself), and they’re saved in a simple sort of markdown language. It has a very low
learning curve.

So, maybe you won’t be giving a presentation using tpp to a bunch of folks who
expect copious clip art on your slides, but for a nice, nerdy audience? A purely text-
based presentation will, if nothing else, win you a few high fives.

File Management
Copying files around in the terminal isn’t exactly difficult once you learn a few
commands (like cp, mv and rm), but having a nice interface to browse and copy files
in bulk is simply a must.

And the very best option, in my humble opinion, is Midnight Commander, which is
also known as simply mc. An open “clone” of the famous Norton Commander file
browser, mc is one of the first applications I install on a new Linux system. It’s simply
the king of terminal file management.

Music
cmus is the music player you want to be using. It’s light. It’s fast. It’s easy to use. It
supports just about any audio format you could ever want (everything from MP3s and
Oggs to MOD and SHN), plus streaming formats and playlists. It’s just...the best.

Window Management
Just because you’re living in a terminal doesn’t mean you need to give up running (and
looking at) multiple applications at the same time.

What one would call a window manager in a graphical desktop, in terminals is called a
terminal multiplexer—same idea, more or less.

https://www.linuxjournal.com

87 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

There are three terminal multiplexers that most people tend to use: GNU Screen,
tmux and Byobu.

GNU Screen and tmux are, for most people, fairly interchangeable. Once you figure
out the keyboard shortcuts for creating new “windows” and moving between them,
you’re all set.

Byobu (which actually utilizes Screen and tmux behind the scenes) aims to be a
bit more full featured, emulating aspects of a traditional desktop environment and
providing just a bit more visual information. Although it does tend to be slightly more
finicky than the others.

Personally, I love tmux and use that one almost exclusively. Just do yourself a favor
and really read through the man page first. Otherwise, you might end up pulling out a
fair bit of hair as you learn how to switch between applications.

Figure 4. Three Terminal “Windows” Open in Byobu

https://www.linuxjournal.com

88 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Really? No GUI? In 2019?
Seriously, it’s doable. Sure, there are pain points—some pretty big ones at that. But,
there’s also something magical about it. Then again, maybe that’s just the nostalgia
centers of my brain talking.

Regardless, having these sorts of tools available (even if just to use when SSHing into
a server) is downright handy. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal, Marketing Director for
Purism, as well as host of the popular Lunduke Show. More details: http://lunduke.com.

Resources
• Lynx

• ELinks

• w3m

• Mutt Email Client
• Notmuch—Just an email system

• Alpine

• Finch

• WordGrinder

• sc, Spreadsheet Calculator

• tpp, Text Presentation Program

• Midnight Commander

• cmus

• GNU Screen

• tmux

• Byobu Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://lynx.browser.org/
http://elinks.or.cz/
http://w3m.sourceforge.net/
http://www.mutt.org/
https://notmuchmail.org/
http://alpine.x10host.com/alpine
http://cowlark.com/wordgrinder/index.html
https://github.com/n-t-roff/sc
https://github.com/cbbrowne/tpp
https://midnight-commander.org/
https://cmus.github.io/
https://www.gnu.org/software/screen
https://github.com/tmux/tmux
http://byobu.co/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
http://www.pulseway.com
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors

90 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

How to Expand
Your Command-Line
Scripting Options
with Tcl
Get started scripting with Tcl, the Tool Command Language—this
actually is your father’s Oldsmobile.

By Mitch Frazier

The Tcl scripting language has been around a long time, and it tends to keep a pretty
low profile. In fact, it’s so long and so low, if you’re not of a certain age and not a
language junkie, you may never have even heard of it.

Despite its lack of headlines, Tcl still has a “vibrant community” (according to its
website), and it continues to evolve, albeit slowly: versions 8.6.8 and 8.6.9 were
released 11 months apart.

Tcl stands for Tool Command Language, and it originally was designed to be used as
a language for embedding inside other applications. It still can be used for that, but it
also has found success as a standalone scripting language.

If you’ve ever used or heard of git (who hasn’t at least heard of it), the default GUI
that comes with git is written in Tcl, using Tcl’s GUI toolkit Tk.

https://www.tcl.tk/
https://www.linuxjournal.com

91 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

If you do any embedded programming with ARM CPUs, the popular tool OpenOCD
uses Tcl as its embedded programming language.

Tcl is not a scripting language like Bash in the sense that it does not “script”
Linux commands.

In other words, when writing Tcl, you aren’t generally executing grep and sed or any
other commands that you normally would type at the command line, you’re executing
the commands that are built in to Tcl.

In this sense, Tcl is more akin to Python than to Bash.

In this article, I want to do five things:

1. Provide a “drink from the firehose” introduction to Tcl.

2. Take a quick look at some of the commands that are built in to Tcl.

3. Take an even quicker look at the Tk toolkit.

4. Show how to run Tcl scripts and introduce TclKits.

5. Explain how to use TclKit to create single file applications containing scripts
and data files.

The Tcl Language
You can assign values to variables:

set a_num 99
set a_string "some string"

set a_list { 99 100 101 102 }
set an_array(0) 12
set an_array(1) 13

https://www.arm.com/
http://openocd.org/
https://www.linuxjournal.com

92 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

As you might expect for a scripting language, comments are lines that start with a
hash sign (#). But contrary to what you might expect, hash signs on the same line as
code are not seen as comments:

This is a comment.
set a 12 # WRONG: this is not a comment

Within a “value”, three types of substitution are done:

1. Variable substitution (for example, $name is replaced with the value of the
variable name).

2. Command substitution (for example, [cname...] is replaced with the return value
of the command cname). This is akin to Bash’s backticks or its $(...) syntax.

3. Backslash substitution (for example, \<char> is replaced with the
character <char>).

For example:

Set a to 99 and b to 100
set a 99
set b [expr $a + 1]
set c \n

In set b above, the command [expr ...] evaluates its arguments as an expression
and returns the result (all the “normal” operators are available).

All of these substitutions also work inside double-quoted strings:

set a 99
set b " a is $a\n setting b to [expr $a + 1]"

https://www.linuxjournal.com

93 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Somewhat unexpectedly though, no substitutions are done in lists:

WRONG: the first element of a_list will be "$a" not 99.
set a 99
set a_list { $a 100 101 102 }

If you want to do the above, you need to use the list command:

RIGHT: the first element of a_list will 99.
set a 99
set a_list [list $a 100 101 102]

The reason for this strangeness will become clear in a bit.

Tcl also has control statements:

if statements:

if { $a > 20 } {
 puts "a is greater than 20"
} elseif { $a > 10 } {
 puts "a is greater than 10"
} else {

 puts "a is less than or equal to 10"
}

loop statements:

foreach var $list {

 puts "$var"

}

foreach var {1 2 3 4} {
 puts "$var"

}

https://www.linuxjournal.com

94 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Tcl has functions as well:

proc myfunc {arg1 arg2} {
 puts "arg1 is $arg1"
 puts "arg2 is $arg2"

}

Call function:

myfunc 12 13

proc mysum {a b} {

 return [expr $a + $b]
}

Capture return value of function:

set sum [mysum 12 13]

Note that in the examples above, the curly brace that starts a “block” of code must be
on the same line as the previous part of the statement:

########

WRONG:
########

if { $a > 20 }
{

}

elseif { $a > 10 }
{

}

else

{

}

https://www.linuxjournal.com

95 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

foreach var $list

{

}

proc myfunc {arg1 arg2}
{

}

To overcome this, you can can escape the newline before the start of the block:

###########################

OK (but not very Tclish):
###########################

if { $a > 20 } \
{

}

elseif { $a > 10 } \
{

}

else \

{

}

foreach var $list \

{

}

proc myfunc {arg1 arg2} \
{

}

Again, the reason for this strangeness will be revealed shortly.

https://www.linuxjournal.com

96 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

So except for using curly braces {...} around control statement conditions and
formal function parameters, there’s nothing too syntactically strange in Tcl.

Speaking of syntax, let’s take a step back and look at Tcl’s syntax in general.

It’s only a slight exaggeration to say that Tcl’s syntax can be defined in a single line:

WORD...

I know what you’re thinking: “wait, you just showed me if statements, loops and
functions, so how can one word and some ellipses define Tcl’s syntax?”

Obviously, syntax alone doesn’t define a language; you also need to understand the
semantics or meaning of the syntax.

First, it’s important to know what a WORD is in Tcl:

• A normal unquoted sequence of characters like the words in this sentence or most
any sequence of characters without spaces.

• A string in double quotes.

• Text between matching opening and closing square brackets ([]).

• All the text, including newlines between match opening and closing curly braces ({}).

In all but the last item above, backslash substitution, variable substitution and
command substitution is done. For the first item above, somewhat unexpectedly
perhaps, this means unquoted words can include $var and [command] substitutions
(as well as backslash substitutions); see the examples below.

Curly braces are a bit like Python’s triple quotes (""" ... """).

https://www.linuxjournal.com

97 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Some sample words:

avar

some_name

if b has the value 12, this will be the word "a12"
a$b

if a is 1 and b is 2, this will be the word "c3"
c[expr $a + $b]

"double quoted string"

"$vars [commands] and backslash\n expansion is done"

{ this is one word }

{ this

 is

 one

 word

 too

}

I mentioned earlier that a WORD can be “most any sequence of characters without
spaces”, so you also can write code like the following, although you won’t make many
friends doing stuff like this:

set a'b'c 12
set a\"bcd\"e 99

The second thing to understand about the semantics of Tcl is that in Tcl everything is
a command.

The first word on a line is the command, and the words that follow are the arguments

https://www.linuxjournal.com

98 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

to the command. So, the truth is that Tcl doesn’t have an “if statement”; it has an “if
command” that looks like this:

if COND_WORD THEN_CODE_WORD optional-elseif-else-words

And since WORDs can be curly-brace blocks that span lines, if commands look like
they should. So the following if command:

if { ... } {

 ...

} else {

 ...

}

Consists of five WORDs:

1. The literal if.

2. The if condition between braces { ... }.

3. The “then” code block {\n ... \n}.

4. The literal else.

5. The else code block {\n ... \n}.

Okay, so there are no if statements, just if commands. At this point, you’re probably
thinking that this seems like a distinction without a difference, and most of the time it
is, but not always.

For instance, let’s say I’m working with a bunch of dates, and I have a bunch of code
that checks to see if my date value is on a Monday:

https://www.linuxjournal.com

99 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

[clock scan ...] - converts a string to a time
[clock format ...] - similar to Linux's "date +FORMAT"
if { [clock format [clock scan $date] -format %A] ==
 ↪"Monday" } {
 puts "It's Monday"

 # ,..

}

And further, let’s say I get a bit tired of typing all that, so I decide to do this:

proc if_monday {date block} {

 set day [uplevel clock format \[clock scan $date \]
 ↪-format "\{%A\}"]

 if { $day == "Monday" } {

 uplevel $block

 }

}

Now I can just do the following:

if_monday { $date } {

 puts "It's Monday"

 # ,..

}

In other words, I just added a new command named if_monday that looks just like an
if “statement” (for the sake of simplicity, I’m going to ignore the else part here).

The secret sauce here is the uplevel command. uplevel evaluates its arguments
(the if expression or the if code block) in the context of the caller of the if_monday
command. To see what this means, consider this implementation and its usage:

https://www.linuxjournal.com

100 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

WRONG:
proc if_monday {date block} {

 set day [uplevel clock format \[clock scan $date \]
 ↪-format "\{%A\}"]

 if { $day == "Monday" } {

 # WRONG
 eval $block

 }

}

set var 99
if_monday { $date } {

 puts "It's monday"

 set var 100
}

var will have the value 99 not 100
puts "$var"

Since the if_monday command evaluated the code block using eval rather than
uplevel, the set var 100 that’s inside the code block sets a variable named var in
the if_monday procedure and not the var that’s right before the call to if_monday.

On the other hand, if you use uplevel instead of eval, the correct version of the
variable gets set—the one that’s in the “context of the caller”.

Not to beat a dead horse, but again, commands are just a sequence of words. Given
these stub functions:

proc start {} { puts start }

proc stop {} { puts stop }

https://www.linuxjournal.com

101 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

I also can write my if statements like this:

if 1 start else stop
if [expr 1 == 0] start else stop

The if condition and the code blocks don’t have to be inside curly braces; they just
need to be something that Tcl considers to be a WORD.

Note, however, that there’s a subtle, probably undesirable side effect of doing stuff
like this. Consider the code:

proc test {v} { puts $v; return 1 }

if 1 start elseif [test 44] { puts "elseif" } else stop

If you run this, the output will be:

44
start

Because the elseif condition is not inside curly braces, it is evaluated “before”
the if command (so that the result can be passed as one of the arguments to the
if command). So, although you can skip the curly braces, don’t.

Earlier I mentioned there were a number of things that seemed strange and that I’d
get back to them. Here they are:

1) Putting the code block or key word to a control statement on a newline:

WRONG:
if { ... }

{

}

https://www.linuxjournal.com

102 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

else

{

}

This doesn’t work because the “then” code block is on a newline and, therefore, is not
seen as an argument to the if command. Similarly, the else and its code block also
are on separate lines and are not seen as part of the if command.

2) Using variable substitution when creating a list with curly braces:

set a 99
set a_list { $a 100 101 102 }

This doesn’t work because no substitutions of any kind are done inside a curly-brace
delimited WORD.

You also now probably can understand why Tcl has a set command and not an
assignment statement, since each line needs to start with a command name, so a =
12 wouldn’t fly, as “a” is not a command name.

Because Tcl consists of “commands”, another somewhat unexpected thing that you
see are “control” statements with options—for example, the switch statement looks
like this:

set var def

switch $var {

 abc { puts "won't match this one" }

 def { puts "should match this one" }

}

The switch statement also accepts options—for example, the -glob option:

set var def

https://www.linuxjournal.com

103 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

switch -glob $var {

 abc { puts "won't match this one" }

 d*f { puts "should match this one" }

}

With the -glob option, the matching is done using glob-style matching. Note: Tcl
predates the era of double-dash options, so all the standard Tcl commands use single-
dash options.

Before wrapping up this section, I want to note one thing about Tcl’s variable
expansion that should come as a relief to any Bash programmers who have ever
been caught in “quote hell”: once Tcl expands a variable, it doesn’t do any further
interpretation of the resulting value.

For example, consider the following Bash code:

function one_arg_func()

{

 echo $1
}

When executed, you get:

$ one_arg_func 1
1
$ one_arg_func "1 2"
1 2

That seems fine, but now try this:

$ a="1 2"
$ one_arg_func $a

1

https://www.linuxjournal.com

104 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

What happened? Bash happened. It expanded $a and then reinterpreted the value as
being two separate words and passed two arguments to the function rather than one.
Tcl doesn’t do that:

proc one_arg_func {arg} {

 puts $arg

}

set a "1 2"
one_arg_func $a

Tcl expands the variable a once, and that’s it, whatever value it has is the value of the
argument to the command, regardless of embedded spaces or quotes or anything else
that it has in its value.

In Tcl and the Tk Toolkit, John Ousterhout, the originator of Tcl, states:

Tcl’s substitutions are simpler and more regular than you may be used to if you’ve
programmed with UNIX shells (particularly csh). When new users run into
problems with Tcl substitutions, it is often because they have assumed a more
complex model than actually exists.

Some Tcl Commands
The previous examples have contained some Tcl commands; in this section, I want to
cover just a few more commands to give you a bit of a feel for what you can do with
Tcl, and for how you do it.

Read and write files:

Open and read input file then close the file.

set fd [open "infile.txt" "r"]
set fdata [read $fd]
close $fd

https://www.amazon.com/Tcl-Toolkit-2nd-John-Ousterhout/dp/032133633X
https://www.linuxjournal.com

105 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Open and write output file.

set fd [open "outfile.txt" "w"]
puts -nonewline $fd $fdata

close $fd

Work with strings:

Get length of string.

set len [string length $str]

Convert to upper/lower case.

set upper [string toupper $str]
set upper [string tolower $str]

Trim characters (default is spaces).
set trimmed [string trim $str]

List of changes to make to a string as a list.

Values in the first column are changed to the value

in the second column.

set chgs {

 abc def

 ghi jkl

}

set newstr [string map $chgs $oldstr]

Work with regular expressions:

set text {

 My name is Bob

 Hello Bob
 My name is Mary

https://www.linuxjournal.com

106 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

 Hello Mary
}

Find all names found in the phrases "My name is XXX".

set matches [regexp -nocase -all -inline

 ↪{my\s+name\s+is\s+(\w+)} $text]
foreach {match submatch} $matches {

 puts "Name: $submatch"
}

Will output:

Name: Bob
Name: Mary

Change "My name is XXX" to "Your name is XXX".

set newstr [regsub -nocase -all {my\s+name\s+is\s+(\w+)}

 ↪$text {Your name is \1}]
puts $newstr

Will output:

Your name is Bob

Hello Bob
Your name is Mary

Hello Mary

Work with expressions:

set a 1
set sum [expr 99 + $a]
set lt [expr $a < 10]
set two 2

set four [$two << 1]

https://www.linuxjournal.com

107 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Work with lists:

set alist { 1 2 3 }

Get first item in list:

set one [lindex $alist 0]

Append item to list:

lappend alist 0

Sort a list:

set slist [lsort $alist]

alist is { 1 2 3 0 }
slist is { 0 1 2 3 }

Execute external commands:

Execute grep and put output in Tcl variable:
set result [exec grep string file.txt]

Catch errors in execution:

if { [catch {exec grep string file.txt} results options] } {
 puts "Error executing grep"

} else {

 puts "Grep executed ok: $results"

}

This only skims the surface of Tcl’s commands. For more information on what you can
do with Tcl, see the full list of the available Tcl Commands.

The Tk Toolkit
Quite often when you see a reference to Tcl, it’s written as Tcl/Tk. Tk is the GUI toolkit

https://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm
https://www.linuxjournal.com

108 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

that is closely associated with Tcl, although Tk is usable from other languages (it
comes with most Python distributions).

At the start of the article, I noted that the GUI that comes with git is written in Tcl.

So obviously, you can write some pretty sophisticated GUI applications with Tcl/Tk,
but if you’ve ever run the git GUI, you probably weren’t exactly “wowed” by its look
(unless you long for the days of Motif).

But for some simple GUI tasks, like adding a small pop-up window to some of your
command-line scripts, Tk can be quite useful. Note that the latest versions of Tk (in
“Tcl-time” this means circa 2007) have themeable widgets, and with a bit of work, you

Figure 1. Git GUI

https://www.linuxjournal.com

109 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

can make your Tcl/Tk apps look a bit more modern.

As an example of Tk with Tcl, the following code creates a window with two radio
buttons and an “ok” button.

When the “ok” button is checked, the “value” of the selected radio button is printed
and the program exits:

set yesno -1

wm title . "Which do you like?"

wm geometry . 300x90

radiobutton .rb1 -variable yesno -value 1 -text "I like yes"
radiobutton .rb2 -variable yesno -value 0 -text "I like no"
button .ok -text "Ok" -command { puts $yesno; exit }

grid .rb1 -sticky nw
grid .rb2 -sticky nw

grid .ok

In Tk, the top-level window/widget is named ., and child widgets are named
.child. So, for example, a button inside a frame would have a name that looks
like “.frame.button”.

In the previous example:

• The wm command sets some options on the top-level window, the title and the size.

• The radiobutton .rb1 ... command creates a radio button named .rb1.
The radio button displays the text given to the -text option, and when it’s
selected, it sets the variable given to the -variable option to the value given
to the -value option.

https://www.linuxjournal.com

110 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

• And, the same for button .rb2.

• The button command creates a push button with the given text, and when the
button is pressed, the block argument to the -command option is executed.

• The grid commands place the buttons into a grid layout (one widget per row in
this case). The -sticky option sets the widget’s alignment.

Valid widget alignment characters are:

• n — North (aka top).

• s — South (aka bottom).

• e — East (aka right).

• w — West (aka left).

Since the script is showing a window, at the end of the script, instead of exiting, the
script waits for GUI events. The window should look something like Figure 2.

For more information on what you can do with Tk, see the full list of the available
Tk Commands.

Figure 2. Example
Window

https://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.linuxjournal.com

111 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Running Tcl
So now that you’ve seen some Tcl (and a bit of Tk), you’re probably itching to
try it out.

On Linux, there are two commands for running Tcl scripts: tclsh runs scripts that
don’t use Tk, and wish runs scripts that use Tk:

$ tclsh my-script.tcl

$ wish my-tkscript.tcl

However, note that with many versions of Tcl, you also can use Tk commands with
tclsh by including the command package require Tk in your script before
executing any Tk-related commands.

On Linux, Tcl is likely already installed. If not, it should be found in a package named
tcl in your distro’s standard repositories. Another option is to install the commercial
distribution of Tcl from ActiveState.

A third option is the open-source Tcl distribution called TclKit. TclKit has some
interesting and useful features that I cover a bit more in the next section.

But before I get to that, I need to issue a warning about the next section. I’m going
to use some trigger language that may cause discomfort to some readers. So if
you’re a sensitive type, take a Xanax before reading on.

TclKit—the Batteries-Included Tcl Distribution
TclKits are Tcl and Tcl/Tk distributions that are contained in a single file.

These distributions have a number of uses, and one of the places I’ve found them to
be particularly useful is (and here’s the unsettling language) on Windows.

In my day job, I work with Windows, and if you’ve ever had to write a script (aka batch
file) on Windows, you know it can be painful.

https://www.activestate.com/products/activetcl/downloads/
http://tclkits.rkeene.org/fossil/wiki/Downloads
https://www.linuxjournal.com

112 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Since Windows NT arrived, batch files can do quite a bit more than DOS batch files
could, but it’s still not very much fun.

I’ve used both Cygwin and MSYS2, but both of those are heavyweight options that
aren’t really suited to sending a “quick” script to somebody to run.

I considered using PowerShell, but I haven’t yet convinced myself that dotnet for
the command line is the way to go, and on top of that, my organization doesn’t allow
users to run Powershell scripts by default.

So, none of those options work for the sorts of simple tasks I wanted to automate
and potentially share with others. And, this is where TclKits come in handy.

A TclKit allows me to write scripts that don’t require me to pull my hair out and that I
can distribute in a single file, even if the “script” itself is composed of multiple files and
includes some additional data files.

And, if I want to distribute it to someone who doesn’t even have the TclKit executable,
I even can package my scripts into a custom TclKit and still send only one file (albeit a
bit bigger than just some script files).

These distributions come in a file that’s called a “Starkit”. These Starkits contain
the Tcl interpreter (optionally with Tk) and any required support files in a virtual
filesystem contained inside the executable itself.

Furthermore, you can create your own Starkits and package your scripts and data
files inside your custom Starkit and even include a copy of the Tcl interpreter in your
Starkit to give yourself a single file executable.

To create your own Starkits, you need to download TclKit (tclkitsh and/or tclkit) and
the the Starkit Developer’s eXtension (sdx.kit).

To “wrap” your Tcl script into a kit:

https://www.cygwin.com/
https://www.msys2.org/
https://docs.microsoft.com/en-us/powershell/
http://tclkits.rkeene.org/fossil/wiki/Downloads
https://equi4.com/pub/sk/sdx.kit
https://www.linuxjournal.com

113 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

$ ls

sdx.kit test.tcl

$ cat test.tcl

puts "Hello Tcl"

Wrap test.tcl into test.kit.

Note the Tcl interpreter is not included in the .kit file.
$ tclkitsh sdx.kit qwrap test.tcl

5 updates applied

$ ls

sdx.kit test.tcl test.kit

The sdx command qwrap puts your script into a kit, which you can now run:

$ tclkitsh test.kit

Hello Tcl

Next you can unwrap your kit and see what’s inside:

$ tclkitsh sdx.kit unwrap test.kit

5 updates applied

$ ls

sdx.kit test.tcl test.kit test.vfs

$ find test.vfs

test.vfs

test.vfs/lib

test.vfs/lib/app-test

test.vfs/lib/app-test/pkgIndex.tcl

test.vfs/lib/app-test/test.tcl

test.vfs/main.tcl

https://www.linuxjournal.com

114 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

The new directory test.vfs contains the unwrapped contents of the kit (vfs stands for
Virtual File System).

With an unwrapped Starkit, you now can wrap it into a new Starkit that also includes
the Tcl interpreter, giving you a single file executable:

$ ls -la test.kit

-rwxr-xr-x ... 781 ... test.kit

Make copy of tclkitsh to use as the runtime.

$ cp ~/bin/tclkitsh tclkitsh-runtime

Wrap .vfs and tclkitsh runtime into a single file

$ tclkitsh sdx.kit wrap test -runtime tclkitsh-runtime

4 updates applied

This latest wrapping of the script now contains a copy of the Tcl interpreter, so you
can run it directly (and distribute it to users that don’t have a copy of tclkit):

$ ls -la tclkitsh-runtime test

-rwxr-xr-x ... 4421483 ... tclkitsh-runtime
-rwxr-xr-x ... 4425769 ... test

$./test

Hello Tcl

It’s not too exciting so far, but now modify the test script as follows:

$ cat test.tcl

package provide app-test 1.0
package require starkit

puts "Hello Tcl"

https://www.linuxjournal.com

115 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

set fname [file join $starkit::topdir payload.txt]
set fd [open $fname]
set fdata [read $fd]

puts "Contents of $fname:"

puts $fdata

Then create a new file in the VFS and rewrap your Starkit:

$ echo "Hello Tcl from VFS" >test.vfs/payload.txt

$ tclkitsh sdx.kit wrap test -runtime tclkitsh-runtime

4 updates applied

$./test

Hello Tcl

Oops, that didn’t do anything. If you look back at the contents of the unwrapped
Starkit, you’ll notice that there’s now a copy of your script in the Starkit. That’s the
one you need to modify:

$ mv test.tcl test.vfs/lib/app-test/

$ tclkitsh sdx.kit wrap test -runtime tclkitsh-runtime

4 updates applied

$./test

Hello Tcl
Contents of .../test/payload.txt:

Hello Tcl from VFS

So now, you’ve embedded a data file within your Starkit, opened it from the Tcl script

https://www.linuxjournal.com

116 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

that’s wrapped inside the Starkit and read it like any normal file.

The only difference is the path you used to open it.

Note that on Linux, you can chmod +x sdx.kit and put it somewhere in your path
and execute it directly.

Conclusion
In this whirlwind tour of Tcl, you’ve seen what the language looks like, some of
the built-in commands, the GUI package named Tk, how to run Tcl scripts and the
TclKit version of Tcl. It’s lot to digest in one article, but I hope it’s given you enough
information to get started with Tcl, and I also hope it’s garnered enough interest for
you to want to give Tcl a try. ◾

Mitch Frazier is an embedded systems programmer at Emerson Electric Co. Mitch has been a contributor to and a friend of Linux
Journal since the early 2000s.

https://www.linuxjournal.com

117 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Resources
• Tcl/Tk Website

• ARM

• OpenOCD

• Tcl and the Tk Toolkit by John Ousterhout

• Full List of Tcl Commands

• Full List of Tk Commands

• Commercial Distribution of Tcl from ActiveState

• TclKit

• Cygwin

• MSYS2

• PowerShell

• the Starkit Developer’s eXtension (sdx.kit)

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.tcl.tk/
https://www.arm.com/
http://openocd.org/
https://www.amazon.com/Tcl-Toolkit-2nd-John-Ousterhout/dp/032133633X
https://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.activestate.com/products/activetcl/downloads/
http://tclkits.rkeene.org/fossil/wiki/Downloads
https://www.cygwin.com/
https://www.msys2.org/
https://docs.microsoft.com/en-us/powershell/
https://equi4.com/pub/sk/sdx.kit
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

118 | July 2019 | https://www.linuxjournal.com

Regular
Expressions:
the Linux User’s
Second Language
What are “regular expressions”, and why should you bother learning
them? This article answers those questions and more.

By Andrew Piziali

Back when I was in high school in the 1970s, if you were taking an advanced
placement math class, you could sign up for half an hour of computer time each
day. An IBM Selectric typewriter and acoustically coupled modem connected you
to an APL\360 timesharing system, ideal for my passion at the time: telescope
design using optical ray tracing. Rather quickly I realized that if I was going to be
typing throughout my lifetime, touch typing was essential for productivity.

In the same way, if you use a POSIX operating system, such as Linux, regular
expressions are essential for productivity—your second language next to
glob patterns. In this article, I introduce regular expressions and their origin,
distinguish them from glob patterns (the other essential language in a POSIX
environment), elaborate on both basic regular expressions (BRE) and extended
regular expressions (ERE), and finally discuss one of a number of regular
expression extensions. The regular expressions described in this article are based
upon the POSIX standard: IEEE Standard 1003.1-2017. Now, why do you really

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
https://www.linuxjournal.com

119 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

need to know this arcane language?

Copy and Paste into a Plain-Text File
Although all of my writing is done in a plain-text editor, such as Vim, I often find
myself copying quoted text into the file from a formatted text source, such as a PDF
document or web page. Invariably, characters outside the printable character set are
pasted in—characters like a left or right quote or an em dash. How can I find those
quickly and replace them with a printable equivalent?

The regular expression [^<tab><sp>-~]—where <tab> is a tab character and <sp>
is a space character—will match each non-printable character. Hence, using Vim in its
normal mode, if I enter:

/[^<tab><sp>-~]

the cursor will be placed on the next nonprintable character. I can then
substitute a printable character at that position. If there are no such characters,

Figure 1. IBM 2741 APL Terminal and Acoustic Modem

http://man7.org/linux/man-pages/man7/ascii.7.html
https://www.linuxjournal.com

120 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Vim will display the message Pattern not found: [^^I -~]. (I’ll revisit this
regular expression shortly.)

Throughout this article, I refer to the character as the fundamental unit matched
by a regular expression. However, the POSIX standard actually allows for this unit to
be a wide character string based upon the current locale. This string is defined as a
“collating element”.

Before diving into the details of regular expressions, what is this first language of
glob patterns?

Glob Patterns
A related, but distinct language from regular expressions in a POSIX environment

Figure 2. Vim Search for a Non-ASCII Character

https://www.linuxjournal.com

121 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

is the glob pattern. A glob pattern is most commonly used to find and match
file and directory names from a shell prompt. For example, here’s the familiar
command to list the files that begin with “t” by those files and directories in
the current working directory, whose first character is “t” and may have
subsequent characters:

$ ls -d t*

terry

togo

$

The -d switch of ls tells it to display directory names, not their contents. Hence, in
the example above, the shell invokes the program ls with the expanded string ls -d
terry togo. ls simply echoes each of its arguments, one line at a time.

As you’ll see with regular expressions, glob patterns use ordinary and special
characters, but some of those characters have different meanings. If you are typing
at a shell prompt, you are using a glob pattern. If you are using a search string in an
editor or file browser, such as less, you are using a regular expression, sometimes
referred to as a “regex”.

Origin of Regular Expressions
The American mathematician Stephen Cole Kleene is credited with originating
regular expressions when he defined “regular languages”. He used a mathematical
notation known as a “regular set” to describe a “regular language”. A regular set
was a forerunner of regular expressions that was used to define the syntax of a
programming language.

A year before UNIX was invented (1969), regular expressions were incorporated
in the text editor QED by Ken Thompson. At about the same time, these
expressions started to be used for lexical analysis by compilers. UNIX Version
1 was introduced with the editor “ed”, still a useful tool in a bare-bones Linux

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_13
https://en.wikipedia.org/wiki/Regular_expression#History
https://www.linuxjournal.com

122 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

environment. In ed, if you wanted to print those lines in a file that contained the
letter pair “re”, you would type:

g/re/p

Look familiar? Yes, the early text search program grep took its name from that ed
command: g (globally), / (search), re (regular expression), / (delimit search), p
(print). Of course, “re” normally would be a more complex regular expression.

Posix Basic Regular Expressions
The POSIX standard defines two classes of regular expressions: basic and extended.
Basic regular expressions (BRE) are derived from Ken Thompson’s original use in the
ed editor and in grep. Extended regular expressions (ERE) were introduced in the
1980s, appearing in the program egrep. First I’ll dive into basic regular expressions
and then extended regular expressions.

Literal Regular Expressions A regular expression (BRE or ERE) is composed
of ordinary characters and special characters. An ordinary character simply
represents itself. For example “A” and “4” are each ordinary characters, while
the special characters “.”, “*”, “^”, “$”, “[“, “]” and “\” each have an associated
regex semantic meaning. If you need to use a special character as an ordinary
character, you must precede it with a backslash (“\”)—that is, escape it. Hence,
the backslash means interpret the following character as an ordinary character,
even if it is a backslash itself!

The simplest regular expression is composed solely of ordinary characters. When I typed:

g/re/p

in the example above, the letter pair “re” is a literal regular expression composed
of two ordinary characters. Now let’s walk through matching single and multiple
characters, using BRE special characters.

https://www.linuxjournal.com

123 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Matching a Single Character There are two BREs for matching a single character:
the period (“.”) and the bracket expression. The period matches any character in
the character set, except NUL. However, some text processing programs like grep
further restrict the match to the printable characters, excluding, for example, newline
and carriage return. Hence, the regular expression “.” matches “a” in the string “abcd”
because “a” is the first character that matches, starting from the left and scanning to
the right.

Suppose though you want to match a single character, and not just any character,
but rather one of the characters in a set? BRE defines six bracket expressions for this
purpose: the matching list, non-matching list, range, collating symbol, equivalence
class and character class expressions. The bracket expression is delimited by the left
and right bracket characters: “[“ and “]”. (Note the names of these two characters
are “left bracket” and “right bracket”. They are not “square brackets”, because those
other two characters—”{“ and “}”—are “left brace” and “right brace”. (Stepping off
soap box now.) I’ll look at each of the bracket expressions in turn, starting with the
matching list.

The matching list BRE [eio] matches a single character that is one of “e”, “i” or “o”.
Hence, when applied to the string “jettison”, it matches the “e”, because “e” is the first
character that matches a character in the BRE. If applied to the string “archipeligo”, it
matches the left-most “i”.

Sometimes it is easier to specify any character except one or more characters. The
non-matching list serves this purpose. For example, let’s say you want to match a
consonant—that is a non-vowel. The BRE [^aeiou] performs that match because
the caret (^) negates the bracket expression. If applied to the string “jettison”, it
matches the “j”. As an aside, the characters period, asterisk, left bracket and backslash
are interpreted as ordinary characters within a bracket expression—that is, they are
treated as literal characters.

If you want to match one of a set of characters that are consecutive in the
character collating sequence, the range operator may be used. [a-f] matches

https://www.linuxjournal.com

124 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

a single letter between “a” and “f”. Again, if applied to the string “jettison”, it
matches the left-most “e”. Finally, the basic regular expression defines delimiters
for specifying collating symbols, equivalence class expressions and character
class expressions. The delimiters are:

• [. .] — collating symbols.

• [= =] — equivalence class expression.

• [: :] — character class expression.

The delimiter pair and its contents match only a single character within a
bracket expression.

The symbols used in some locales must be represented by more than one
character. For example, the cedilla diacritical mark may appear beneath certain
letters, such as “C”, yielding the symbol Ç. The corresponding digraph is
represented by a letter pair like “ch”. The collating symbol expression, such as
[.ch.], is used to distinguish the letters that comprise such a pair from the
individual letters in a bracket expression. The collating symbol bracket expression
[[.ch.]] matches a single C cedilla collating symbol; whereas [ch] matches the
letter “c” or “h”. The expression [A[.ch.]e] matches the character sequence
“A”, “Ç”, “e”.

A locale may define a number of characters that are equivalent to one another. For
example, “a”, “à” and “á” may be considered the same for the purposes of a regular
expression match. The equivalence class expression [=a=] defines this equivalence,
appearing in a bracket expression as [[=a=]].

A character class expression is a shorthand for a subset of characters in the
character class of the current locale. The latter are defined by the value of the
environment variable LC_CTYPE, such as “en_US.UTF-8”. The character class
expression is a name delimited by [: and :]. The following character classes are

https://www.linuxjournal.com

125 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

supported in all locales:

• alnum
• cntrl
• lower
• space
• alpha
• digit
• print
• upper
• blank
• graph
• punct
• xdigit

Each character class is defined by the LC_CTYPE locale category. On my Ubuntu Linux
system, the file /usr/share/i18n/locales/i18n defines each class. Hence, if the BRE
[[:digit:]] is applied against the string “ab4cd5”, it will match the third character
of the string: “4”.

Having explained bracket expressions, the BRE I used in the introduction,
[^<tab><sp>-~], can now be understood as “Find the next character that is not a
tab or a character between space and tilde”. Now that you’ve got matching a single
character under your belt, let’s look at matching a group of characters.

Matching Multiple Characters Before tackliing multiple character matching, keep
in mind a fundamental rule defined by POSIX. If a regular expression will match
substrings of various lengths in the examined string, the longest string will be matched.

Four expressions are used to match a sequence of multiple characters: concatenation,
back reference, zero-or-more repeat and interval repeat. If two BREs are concatenated
together, they match the concatenation of their corresponding match strings. For
example, the BRE [A-Z][a-z] applied to the string “Linux Journal” matches “Li”, the

https://www.linuxjournal.com

126 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

first character pair that is an uppercase letter followed by a lowercase letter.

The back reference expression \n, where “n” is a single digit integer 1–9, matches the
corresponding nth subexpression of the current BRE enclosed by “\(“ and “\)”. Hence,
the BRE \(fly\) \1 applied to the string “he fly fly flies” matches “fly fly”. “\(“ and
“\)” may be used to group BRE subexpressions wherever it is convenient.

The zero-or-more repeat is defined by the asterisk operator (“*”). If a BRE is followed
by an asterisk, it matches zero or more strings matched by the BRE. The BRE may be
a single character, a subexpression or a back reference. If you consider the following
string, an H.T. McAdams quote, beginning with:

"The problem is

and ending with:

Lecture Notes," 1967

"The problem is not that we are ignorant but that we know so much that\n\
isn't true." -- H.T. McAdams, "Elements of Experimental Design -\n\
A Set of Lecture Notes," 1967

Table 1 illustrates zero-or-more repeat matches.

Table 1. Zero-or-More Repeat Matches

BRE Matches

“*The “The

--* --

\(we\).*\1 we are ignorant but that we

[[:alpha:]]* The

i[^i]*i is not that we are i

https://www.linuxjournal.com

127 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Whereas the zero-or-more repeat expression is an all or nothing match, the
interval expression allows you to specify precisely the number of BREs that
match. When a BRE is followed by one of the following expressions: \{m\},
\{m,\} or \{m,n\}, the string matched by the BRE must be repeated m times,
m or more times, or m to n times. m and n are decimal integers, where m is less
than n. Note that POSIX disallows specifying “n or less times” using \{,n\},
although some applications support this extension.

Referring back to the H.T. McAdams quote above, Table 2 shows the interval
expressions matching the illustrated text.

Table 2. Interval Expressions Matching the Example Text

BRE Matches

\(a[^a]*\)\{2\} at we are ignor

E[lx][a-z]\{1,\} Elements

E[lx][a-z]\{1,12\} Elements of

Anchor Characters If you want to match a character sequence at the beginning or
end—or beginning and end—of a line, an anchor character is required. The anchor
characters are ^ (circumflex) and $ (dollar sign). When a BRE is preceded by a
circumflex, the matching string must consist of the first characters of the examined
string. For example, the BRE:

^"The problem

matches:

"The problem

in the McAdams string. Likewise, when a BRE is suffixed with a dollar sign, the
matching string must be the last characters of the examined string. Again, the BRE
1967$ matches “1967” in McAdams. To anchor the left and right ends of the BRE, use

https://www.linuxjournal.com

128 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

both the circumflex and the dollar sign. The BRE:

^"The problem.*1967$

matches the complete McAdams string. Now that I’ve covered basic regular
expressions, let’s look at extended regular expressions (EREs).

Posix Extended Regular Expressions
The most ubiquitous application of extended regular expressions is in the program
egrep, a deprecated means of invoking grep with the -E switch. ERE adds three
special characters—?, + and |—and eliminates the need to escape () and { }. In
other words, the latter four also become special characters. I’ll describe each in turn.

Just as an asterisk matches the previous BRE zero or more times, the question mark
matches the previous ERE once or not at all. Hence, the ERE (is)? not applied to
the McAdams string matches “is not”.

Similarly, the plus sign matches the preceding ERE one or more times. This means the
ERE (that we[a-z]+)+ matches:

that we are ignorant but that we know so much that

in the McAdams string.

I find the vertical bar (“|”) operator one of the most useful, because it extends
the OR function of single character matching in a bracket expression to an OR of
arbitrary EREs. For example, (The|that) matches (surprise!) “The” and “that” in
the McAdams string. Yet, an ERE as complex as <sp>(th|kn|tr)[[:alpha:]]* also
matches the words “that”, “know” and “true” in the McAdams string.

The brace characters { and } serve the same purpose for an interval expression as in a
BRE, without requiring a preceding backslash. Hence, [1-9]{1,4} matches “1967” in
the McAdams string.

https://www.linuxjournal.com

129 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Regular Expression Extensions
In addition to POSIX-defined basic and extended regular expressions, a variety of
extensions to regular expressions exist in the wild, such as those in Henry Spencer’s
regex library, Apache, Tcl and Perl. However, the most widely used regular expression
extensions are those defined by Perl. I briefly touch on them here, but the definitive
reference is perldoc.perl.org.

Perl regular expressions (PREs) build upon EREs in a number of ways, including
extended escape sequences, ERE modifiers, extended bracketed character classes and
zero-width assertions. Let’s look at each of these.

Although ERE restricts escape sequences to \1–\9, PRE allows any ASCII letter or digit
to either represent a character or serve another purpose. For example, \a, \e and
\n represent the bell, escape and newline characters. \N{...} matches a named or
numbered Unicode character or sequence.

PRE allows you to change the default behavior for matching using modifiers. A
modifier is a letter appended to a Perl pattern, such as /ab\ncd/m. The “m” means
treat the string as multiple lines so that the anchors “^” and “$” match the beginning
and end of string, rather than the beginning and end of line. /ab\ncd/m matches the
five characters “a”, “b”, newline, “c” and “d”.

An extended bracketed character class is a POSIX bracket expression that supports
more readable classes and set operations. It uses the syntax ?[...], where the “...”
is a character class set expression. For example, the expression ?[\p{Thai} &
\p{Digit}] matches any Thai digit character.

Zero-width assertions match the context of characters rather than characters
themselves. For example, \b matches a boundary between a word and non-word.

Conclusion
In this article, I surveyed regular expressions—both basic and extended—and
discussed their history. I distinguished them from glob patterns, which are used

https://perldoc.perl.org/perlre.html
https://www.linuxjournal.com

130 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

primarily at the command-line shell prompt. Finally, I touched briefly on Perl regular
expressions, the most common of a number of extensions. If you become proficient
using this second language of POSIX computing, you’ll find navigating through plain-
text files far easier and more efficient! ◾

Andrew Piziali cut his teeth on APL\360 in high school, maintained COBOL, FORTRAN and BPL compilers for the US Air Force and fell in
love with Pascal running on a PDP 11/70 near the end of his enlistment. After receiving a BSEE in 1983, he pursued a career in function
design verification. Andrew installed IBM Xenix 3.0 on his IBM PC-AT in 1984. He replaced this with Softlanding Linux System (SLS) in
1992, based on the Linux 0.95 kernel, and he has had a Linux-only household ever since. He applied his engineering expertise for 25
years, verifying mainframes, supercomputers and microprocessors. Having an avid interest in coverage-driven verification, in 2004 he
authored the book Functional Verification Coverage Measurement and Analysis. Later he co-authored ESL Design and Verification with
Grant Martin and Brian Bailey.

Resources
• Regular-Expressions.info

• Regular Expression History (Wikipedia)

• Pattern Matching Notation

• Regular Expression Definitions

• Printable Character Set

• perlre

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.regular-expressions.info/posix.html
https://en.wikipedia.org/wiki/Regular_expression#History
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_13
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
http://man7.org/linux/man-pages/man7/ascii.7.html
https://perldoc.perl.org/perlre.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

131 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

The Best
Command-Line-Only
Video Games
A rundown of the biggest, most expansive and impressive games that
you can run entirely in your Linux shell.

By Bryan Lunduke

The original UNIX operating system was created, in large part, to facilitate
porting a video game to a different computer. And, without UNIX, we wouldn’t
have Linux, which means we owe the very existence of Linux to...video games.

It’s crazy, but it’s true.

With that in mind, and in celebration of all things shell/terminal/command line, I
want to introduce some of the best video games that run entirely in a shell—no
graphics, just ASCII jumping around the screen.

And, when I say “best”, I mean the very best—the terminal games that really
stand out above the rest.

Although these games may not be considered to have “modern fancy-pants
graphics” (also known as MFPG—it’s a technical term), they are fantastically fun.
Some are big, sprawling adventures, and others are smaller time-wasters. Either
way, none of them are terribly large (in terms of drive storage space), and they
deserve a place on any Linux rig.

https://www.linuxjournal.com

132 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

AsciiPatrol AsciiPatrol is, in my opinion, one of the most impressive terminal
games out there. A clone of the classic Moon Patrol, which is a ton of fun
already, this terminal-based game provides surprisingly good visuals for a game
using only ASCII characters for artwork.

It has color, parallax scrolling backgrounds, animated enemies, sound effects—I
mean, even the opening screen is impressive looking in a terminal.

For a quick round of arcade-style fun, this one really can’t be beat.

Cataclysm: Dark Days Ahead Cataclysm: Dark Days Ahead is absolutely huge in
scale. Think of it as a top-down, rogue-like, survival game with zombies, monsters
and real end-of-the-world-type stuff.

The game features a crafting system, bodily injuries (such as a broken arm),
bionic implants, farming, building of structures and vehicles, a huge map (with
destructible terrain)—this game is massive. The visuals may be incredibly simple,

Figure 1. Shooting Aliens and Dodging Potholes in AsciiPatrol

https://www.linuxjournal.com

133 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

but the gameplay is deep and open-ended.

SSHTron The Tron-inspired light-cycle games (and non-Tron-themed variants,
such as Snake) have been a staple of gaming since the 1980s. And, SSHTron
provides a four-player version right in your terminal.

Simply open your terminal and type in the following:

ssh sshtron.zachlatta.com

And, away you go! You’ll instantly be connected and can join a game with up to
three other players. It’s simple. It’s quick. It’s fun. You can’t beat that.

Figure 2. Running from zombies in Cataclysm

https://www.linuxjournal.com

134 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 3. Magenta FTW in SSHTron

Figure 4. Find your very own missile launcher in DoomRL.

https://www.linuxjournal.com

135 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

DRL (Doom, Rogue-Like) What if you took the classic first-person shooter, Doom,
and turned it into a top-down, dungeon-crawling adventure (à la the classic Rogue)?
Enter DRM (aka Doom...Rogue-Like).

The gameplay is fast and easy to pick up. It’s a quick way to get your adventure game
fix in without spending a huge amount of time playing something more demanding
(like Cataclysm).

Ascii Sector This is one of my personal favorites.

Ascii Sector is a space-exploration game set entirely in your terminal. Travel around
between worlds, trade goods, fight alien ships, upgrade your ship, go on quests. The
scope is huge, and the atmosphere is delightfully retro-sci-fi.

Figure 5. Approaching a Planet in Ascii Sector

https://www.linuxjournal.com

136 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Think of this game as being in
the same mold as Elite, Wing
Commander: Privateer or
TradeWars 2002. If you’ve ever
enjoyed any of those, Ascii
Sector will not disappoint.

There are moments in this game
that simply make me smile.
When coming to a planet, for
example, and it’s displayed
entirely in colorful ASCII, it
just looks glorious. I can’t
recommend this game enough.

Dwarf Fortress This is the
only non-open-source game I’m
recommending on this list. But
the game is so truly spectacular,
it has earned a place here. And,
it’s free (as in beer).

Think of Dwarf Fortress
like a combination between
Minecraft, a top-down
adventure game and a general
construction simulator.
There’s a huge world to explore and build, with the player not so much directly
controlling any of the characters, as giving them tasks and roles. Woodworking,
crafting, farming, brewing—there are so many details and options in this game.

Dwarf Fortress is the kind of game you easily can sink countless hours (and days
and weeks) into. It’s absolutely staggering in scope and complexity.

Figure 6. One of Many World Maps in
Dwarf Fortress

https://www.linuxjournal.com

137 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Frotz Although not technically a “game” in the traditional sense of the word,
Frotz is an interpreter for text adventure games—like the Infocom classic, Zork.

Being able to enjoy these adventures, many of which still hold up today, right in
your terminal is absolutely delightful. You can find text adventures (or interactive
fiction) all over the internet. Some made by companies long since abandoned,
others released (usually for free) by independent creators.

Making the Experience Fancier
If you really want to get the most out of playing games in your terminal, you’ll
want to make sure you have a terminal emulator that does them justice—
especially one that supports color text.

Figure 7. At least you haven’t been eaten by a grue yet.

https://www.linuxjournal.com

138 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

And, if you really want to step up your “I’m playing these like they were in the
1980s” game, I recommend cool-retro-term. It’s a terminal emulator that mimics
(quite well) the look of old CRT monitors, including tons of options for scan
lines, amber text and more. It really makes these games pop.

Cool-Retro-Term is sure to win over even the most die-hard skeptic of playing
text-based games. ◾

Figure 8. Even the man page for GCC looks fancy in Cool-Retro-Term.

https://www.linuxjournal.com

139 | July 2019 | https://www.linuxjournal.com

DEEP
DIVE

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal, Marketing Director for
Purism, as well as host of the popular Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• AsciiPatrol

• Cataclysm: Dark Days Ahead

• SSHTron

• DoomRL

• Ascii Sector

• Dwarf Fortress

• Frotz

• Cool-Retro-Term

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://github.com/msokalski/ascii-patrol
https://cataclysmdda.org/
http://sshtron.zachlatta.com/
https://drl.chaosforge.org/
https://www.asciisector.net/
http://www.bay12games.com/dwarves
https://davidgriffith.gitlab.io/frotz
https://github.com/Swordfish90/cool-retro-term
https://www.linuxjournal.com

140 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

An AI Wizard
of Words
A look at using OpenAI’s Generative Pretrained Transformer 2
(GPT-2) to generate text.

By Marcel Gagné

It’s probably fair to say that there’s more than one person out there who is worried
about some version of artificial intelligence, or AI, possibly in a robot body of some
kind, taking people’s jobs. Anything that is repetitive or easily described is considered
fair game for a robot, so driving a car or working in a factory is fair game.

Until recently, we could tell ourselves that people like yours truly—the writers and
those who create things using some form of creativity—were more or less immune to
the march of the machines. Then came GPT-2, which stands for Generative Pretrained
Transformer 2. I think you’ll agree, that isn’t the sexiest name imaginable for a
civilization-ending text bot. And since it’s version 2, I imagine that like Star Trek’s M-5
computer, perhaps GPT-1 wasn’t entirely successful. That would be the original series
episode titled, “The Ultimate Computer”, if you want to check it out.

So what does the name “GPT-2” stand for? Well, “generative” means pretty much
what it sounds like. The program generates text based on a predictive model,
much like your phone suggests the next word as you type. The “pretrained” part
is also quite obvious in that the model released by OpenAI has been built and
fine-tuned for a specific purpose. The last word, “Transformer”, refers to the
“transformer architecture”, which is a neural network design architecture suited for
understanding language. If you want to dig deeper into that last one, I’ve included a
link from a Google AI blog that compares it to other machine learning architecture
(see Resources).

https://www.linuxjournal.com

141 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

On February 14, 2019, Valentine’s Day, OpenAI released GPT-2 with a warning:

Our model, called GPT-2 (a successor to GPT), was trained simply to predict
the next word in 40GB of Internet text. Due to our concerns about malicious
applications of the technology, we are not releasing the trained model. As an
experiment in responsible disclosure, we are instead releasing a much smaller
model for researchers to experiment with, as well as a technical paper.

I’ve included a link to the blog in the Resources section at the end of this article.
It’s worth reading partly because it demonstrates a sample of what this software
is capable of using the full model (see Figure 1 for a sample). We already have a
problem with human-generated fake news; imagine a tireless machine capable of
churning out vast quantities of news and posting it all over the internet, and you
start to get a feel for the dangers. For that reason, OpenAI released a much smaller
model to demonstrate its capabilities and to engage researchers and developers.

If you want to try this “too dangerous to release” AI for yourself, you can. Here’s
what you need to do. OpenAI has a GitHub page for the GPT-2 code from which
you can either download via a git clone or simply pick up the latest bundle as a
ZIP file:

$ git clone https://github.com/openai/gpt-2.git

Cloning into 'gpt-2'...

remote: Enumerating objects: 174, done.
remote: Total 174 (delta 0), reused 0 (delta 0), pack-reused 174
Receiving objects: 100% (174/174), 4.35 MiB | 1.72 MiB/s, done.
Resolving deltas: 100% (89/89), done.

This will create a folder called “gpt-2” from which everything else will flow. Before
you can jump in and make this all work, you’re likely going to need to install a few
prerequisites. The biggest of these is a Python 3 environment, pip and tqdm. If you
are lucky enough to have an NVIDIA GPU on-board, you’ll also want to install CUDA;
it’s not required, but it does make things go a lot faster. On my Ubuntu system, I

https://www.linuxjournal.com

142 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

installed the packages like this:

sudo apt install python3-pip python3-tqdm python3-cuda

Before I continue, here’s a treat. When the code was first released, it included a 117M
(million) parameter model to limit the potential danger of releasing a better version
into the wild. Apparently, some of those fears have been put to rest, because as of
May 4, 2019, there is now a 345M parameter model. The largest model in the code
base, if and when it is released, is (or will be) 1542M parameters.

You will need that 345M model on your computer, so let’s download it now:

python3 download_model.py 345M

How long this step takes will depend a bit on your connection speed since you are
downloading a lot of data, so this might be a good time to get yourself a snack,

Figure 1. Part of the Sample Provided in the OpenAI Blog

https://www.linuxjournal.com

143 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

or a drink. As it downloads, you’ll get a visual update on the various parts of the
model (Figure 2).

Yes, there are more prerequisites to install. Luckily, you can install a number of them
via a file in the gpt-2 source called requirements.txt:

pip3 install -r requirements.txt

There are only four packages, so you also can just do this:

pip3 install fire regex requests tqdm

Figure 2. Downloading the GPT-2 Language Model

https://www.linuxjournal.com

144 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

The next step is to install tensorflow, of which there are two versions. GPT-2 will
run on any system where the requirements are met, but if you happen to be lucky
enough to have that NVIDIA GPU with the appropriate driver, it will all run much
faster. To install the GPU version of the tensorflow code, do the following:

pip3 install tensorflow-gpu==1.12.0

To install the non-GPU version, the command looks like this:

pip3 install tensorflow-gpu==1.12.0

Once again, this is a big package, so it might take a few minutes. Once done,
several other packages, all of which make up tensorflow, also will have been
installed. By this point, a number of commands will have been installed in your
$HOME directory under .local/bin. Save yourself some pain and include that in
your .bash_profile’s $PATH. If you’re in a hurry, and you don’t want to log out and
back in right now, you can always update your $PATH on the fly:

export PATH=$PATH:/home/mgagne/.local/bin

Perfect! Now you’re ready to generate a textual masterpiece. In the src directory,
you’ll see two scripts to generate text:

src/generate_unconditional_samples.py

src/interactive_conditional_samples.py

Let’s start with the unconditional script.

python3 src/generate_unconditional_samples.py --top_k 40
 ↪--model-name 345M

If you are running this entirely from the CPU, it may take a few seconds to start
generating text, so be patient. Before I show you a sample of what I managed to

https://www.linuxjournal.com

145 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

generate on my first pass, I want you to look at a couple command-line options.
One of them is fairly obvious, and that’s the --model-name option, which selects
the model should you have more than one installed. Remember that there
are now two available; one is 117M parameters, and the other is 345M. The
second option I want you to look at is top_k, which represents the percentage
of logits used in selecting words. A lower value will tend to create text using
simpler words, but it also tends to be more repetitive. A higher top_k tends to
generate more realistic text.

To make things more interesting, you’ll want to give the AI writer a place to start by
providing it an opening line, and that means you’ll want to use the interactive script:

python3 src/interactive_conditional_samples.py --top_k 40
 ↪--model-name 345M

When you run this, it will take a few seconds (or more if you are using the CPU
version of tensorflow), at which point it will give you a Model prompt >>> prompt.
This is where you type in your line of text. When you press Enter, the magic begins.
Again, be patient. I decided to give it a simple one-line prompt of “Once upon a time,
there was a beautiful princess.” Everyone likes a fairy tale, right?

With a top_k of 10, the AI writer produced the following (I’m including only the first
two paragraphs):

The princess was a princess of the land of the moon. The moon was her favorite.
She was born a princess, but she was not a princess in her own right. She was
called a princess by the people of the moon, but they didn’t know what it meant
or what it meant to be a princess.

The princess had the same name as her father.

Let’s try dropping that top_k to 1 using the same prompt. I’ll show you the first five
paragraphs because they’re so short:

https://www.linuxjournal.com

146 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

She had a beautiful face, a beautiful smile.

Her eyes, her hair, her body were all beautiful.

Her hair was long and beautiful.

Her eyes, her hair, her body, her body was all beautiful.

Her hair was long and beautiful.

Ouch! I think the books my kids read when they were five years old had more depth.

Figure 3. Tolkien is safe—for now.

https://www.linuxjournal.com

147 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

Okay, one last pass before visiting some of the other command-line options you can
use. I’ve gone back to the default of a top_k of 40:

At the age of seven, she learned to read and write, became a famous author,
gave birth to a handsome prince (in other words, she was just about to enter
the Royal Family). At age twenty she reached puberty. At seventeen she gave
birth to a prince of the same class as her own. At twenty-four she had already
entered her second period, and was then named Countess. What happened
to her?

That’s when I realized that I was living a story, that was told on both sides
of every age-related phenomenon. There’s always a second gender, a third
gender, a fourth gender. And when someone falls into any of those different,
the gender they are inside of can change in accordance with their situation.
As it turns out, the “male” aspect in life may actually be the opposite of the
“female” aspect of reality.

So, fiction writers are probably okay for a little while, or at least until OpenAI
releases the full model, but it does give you an interesting example of where this is
all going.

Some of other command-line options hidden in the code include the following:

• --nsamples
• --length
• --temperature

I’ve been experimenting with these to see how they affect results. Temperature is
interesting in that it affects the “creativity” of the program in that it decreases the
likelihood that the AI writer will take the safe road. If you want more than one sample
generated each time, set the --nsamples number. The --length option is measured
in words. So, let’s say I want two samples of 150 words each, I might issue the
following command (note that the whole command is actually one line):

https://www.linuxjournal.com

148 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

python3 src/interactive_conditional_samples.py --top_k 40
 ↪--temperature 5 --length 150 --nsamples 2
 ↪--model-name 345M

As a starting point, I used the first line of Tolkien’s The Hobbit: “In a hole in the ground
there lived a hobbit.” Figure 3 shows the results. Let’s just say that Tolkien, if he were
still alive, would be safe as a novelist—for now.

For a more complete list of command-line options to GPT-2, use the following
command (pay attention to the two hyphens before the --help):

python3 src/interactive_conditional_samples.py -- --help

I’ve been making fun of the output,
but there’s something amazing
happening here that can’t be
completely ignored. The model I’m
forced to work with is better than
the original that was released, but
it’s nowhere near what OpenAI still
has sitting out there. This also is still
in development, so it has a way to
go. In addition, as I mentioned in
the opening, there is a dark side to
this that can’t be ignored, beyond
even the potential career-ending
aspect that writers like myself may be
facing, and that’s the spectre of just
what these tireless AI writers may be
releasing into the world.

One sample I did not include in this
article made me cringe with horror.

https://www.linuxjournal.com
http://www.storix.com/linux

149 | July 2019 | https://www.linuxjournal.com

AN AI WIZARD OF WORDS

I submitted the first line of Jane Austen’s Pride and Prejudice: “It is a truth universally
acknowledged, that a single man in possession of a good fortune, must be in want of
a wife.”

The result was hateful, misogynistic, homophobic and included made-up but
plausible quotes from the Bible. This is fascinating technology and well worth
your time and exploration. The more we all understand these forays into machine
learning and artificial intelligence, the better prepared we will be when Jane
Austen turns into Alex Jones. ◾

Marcel Gagné is Writer and Free Thinker at Large. The Cooking With Linux guy. Ruggedly handsome! Science, Linux and technology
geek. Occasionally opinionated. Always confused. Loves wine, food, music and the occasional single malt Scotch.

Resources
• Google AI Blog: Transformer: A Novel Neural Network Architecture for

Language Understanding

• OpenAI GPT-2 on GitHub

• OpenAI Blog: Better Language Models and Their Implications

• YouTube clip from Star Trek’s “The Ultimate Computer”

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.cookingwithlinux.com/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://github.com/openai/gpt-2
https://openai.com/blog/better-language-models/
https://youtu.be/jQT9QW1En5Q
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

150 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

Linux IoT Development:
Adjusting from a
Binary OS to the
Yocto Project Workflow
Introducing the Yocto Project and the benefits of using it in
embedded Linux development.

By Mirza Krak

In embedded Linux development, there are two approaches when it comes
to what operating system to run on your device. You either build your own
distribution (with tools such as Yocto/OpenEmbedded-Core, Buildroot and so
on), or you use a binary distribution where Debian and derivatives are common.

It’s common to start out with a binary distribution. This is a natural approach,
because it’s a familiar environment for most people who have used Linux on a PC.
All the commodities are in place, and someone else has created the distribution
image for you to download. There normally are custom vendor images for
specific hardware that contain optimizations to make it easy to get started to
utilize your hardware fully.

Any package imaginable is an apt install command away. This, of course,
makes it suitable for prototyping and evaluation, giving you a head start in
developing your application and your product. In some cases, you even might
ship pre-series devices using this setup to evaluate your idea and product
further. This is referred to as the “golden image” approach and involves the

https://www.linuxjournal.com

151 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

following steps:

1. Flash the downloaded Debian image to an SD card.

2. Boot the SD card, log in and make any modifications needed (for example,
installing custom applications). Once all the modifications are complete, this
becomes your golden image.

3. Duplicate the SD card into an image on your workstation (for example,
using dd).

4. Flash the “golden image” to a fleet of devices.

And every time you need to make a change, you just repeat steps 2–4, with one
change—that is, you boot the already saved “golden image” in step 2 instead of
the “vanilla” image.

At a certain point, the approach of downloading a pre-built distribution image
and applying changes to it manually will become a problem, as it does not
scale well and is error-prone due to the amount of manual labor that can lead
to inconsistent output. The optimization would be to find ways to automate
this, generating distribution images that contain your applications and your
configuration in a reproducible way.

This is a crossroad where you decide either to stick with a binary distribution or
move your idea and the result of the evaluation and prototyping phase to a tool
that’s able to generate custom distributions and images in a reproducible and
automated way.

There are, of course, ways to generate custom Debian images, but the problem
here is fragmentation. If you’re using vendor-provided images, they probably have
created their own tools (a bash script wrapper around debootstrap) to generate
those images that you might be able to get access to. The fragmentation results

https://www.linuxjournal.com

152 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

in very little re-use, and if you decide to change the hardware later but still base
it on Debian, you might need to re-work your process completely, as this might
be using a different set of tools.

The remainder of this article assumes you’ve made the choice to switch to a tool
that’s able to build Linux distributions—specifically the Yocto Project, which is
based on OpenEmbedded-Core. This has some implications, and I try to cover
the key parts.

Here’s a quote from the yoctoproject.org website to give you a quick summary
of the Yocto Project:

The Yocto Project (YP) is an open-source collaboration project that helps
developers create custom Linux-based systems regardless of the hardware
architecture.

The project provides a flexible set of tools and a space where embedded
developers worldwide can share technologies, software stacks,
configurations, and best practices that can be used to create tailored
Linux images for embedded and IOT devices, or anywhere a customized
Linux OS is needed.

Next, let’s look at the key differences when moving from a binary distribution to
the Yocto Project that will impact your workflow.

The Yocto Project Is a Cross-Development Environment
Because the Yocto Project is a cross-development environment, this means the
build and generation of the custom Linux distribution image happens on the host
machine, with the intention of the output running on a target. This could mean
that the host is an x86_64 machine and the target is an ARM-v7—hence, the
“cross-development”.

And, this can be frightening at first; coming from a binary distribution, you might

https://www.yoctoproject.org/
https://www.linuxjournal.com

153 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

not have encountered this workflow before. In the “golden image” example, you
perform all the changes on the actual devices, but that’s rarely needed in a Yocto
environment where changes are applied during the build on the host machine,
and you only provision your target device with the output image.

You can read more about cross-compilers on this Wikipedia post. It’s important to
build an understanding of this concept for a more seamless experience with Yocto.

The Yocto Project Is a Ground-Up Approach
The starting point in Yocto is to build a distribution image that contains the
necessities to boot a system, and that is about it. This is, of course, not very
useful on its own, but it’s the foundation that you build upon and where only the
components that you select to be included are included, and nothing else. This
means you’re in full control of the distribution that’s generated, and it can be
tailored for very specific use cases.

Understanding which components make up a Linux distribution might require
additional knowledge acquisition. It’s not normally something that you piece
together when working with binary distributions, as it’s already done by someone
else. A good reference is the Linux From Scratch project, which is a step-
by-step tutorial on how to create your own Linux distribution. It’s essentially
what Yocto does but in an automated fashion. I don’t believe that you need to
understand each step that’s involved in detail, but you can use the LFS book to
get a quick overview of which components can make up a Linux distribution.

The Yocto Project Builds from Source Code
This means instead of working with binary packages, which have been compiled
and packaged by someone else, with the Yocto Project, you work with metadata
that describes how to build packages from source code. This implies that
everything is built from source, including toolchains, Linux kernel images,
bootloader images, applications and more.

The workflow in Yocto to install a package onto your custom distribution is

https://en.wikipedia.org/wiki/Cross_compiler
http://wiki.linuxfromscratch.org/lfs
http://www.linuxfromscratch.org/lfs/view/stable
https://www.linuxjournal.com

154 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

to change the configuration and rebuild. This is the equivalent of running apt
install on a Debian distribution.

The “build from source” approach is one of the Yocto Project’s strengths in
the flexibility it provides. Using this approach, you can customize every single
package to your needs, and all the changes necessary are applied at build time,
which means the output image will contain all the desired customizations—that is
a big difference compared to working with a “golden image”.

There also are drawbacks to the “build from source” approach. It has significant
impact on the time it takes to construct a distribution image, which typically
ranges in hours in build time, and involves steps such as fetching source code,
unpacking, compiling, installing and so on. Yocto does support a caching
mechanism, meaning that subsequent builds will be much faster and are typically
in the range of minutes instead of hours.

Because Yocto is a resource-heavy tool, a project using it needs to plan for
infrastructure changes and optimizations. This could involve sourcing capable
machines to speed up builds or setting up build servers that can be utilized by
developers but also where one could run automated builds. There are many
optimizations that can be done within Yocto to help speed up builds; you can
read more about it in the Yocto Project Mega-Manual.

The Yocto Project—Open-Source License Compliance
It’s worth mentioning that open-source license compliance is slightly different in
Yocto, because you hold the sources of the produced binaries, in case you need to
re-distribute it—for example, for GPL-licensed code. In a binary distribution, the
source code of the produced binaries are hosted by the distribution.

For more information, see the section Maintaining Open Source License
Compliance During Your Product’s Lifecycle in the Yocto Mega-Manual.

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
https://www.linuxjournal.com

155 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

Conclusion
Yocto has a steep learning curve, and you should be prepared for it. Yocto has its
strength in flexibility, but this also adds to the complexity.

It’s fairly easy to do a quick build of a base image, but the hurdle is often moving
from this to creating something custom, and to do this, you’ll need to spend
time reading the Yocto Project Mega-Manual to understand the core concepts.
Here are a few topics to start with:

• The layer structuring and overlays, which includes core layers, board support
package layers and distribution layers.

• The bitbake build engine and how it parses metadata and executes tasks.

• The Yocto Project workflow.

The investment of learning Yocto does come with benefits that will be valuable in
the long-term:

• You will have mastered a tool that gives full insights and control on how
you are building the distribution image. The deeper understanding of the
system definitely will be helpful when debugging problems once products
are in the field.

• You will have a streamlined development workflow with higher automation and
a higher level of reproducibility.

• You will have increased re-usability of the software stack if you decide to
change hardware or plan to release similar products that are based on the
same platform.

• You will gain access to a large community of experienced developers that are

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#brief-yocto-project-qs-intro
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#usingpoky-components-bitbake
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#openembedded-build-system-workflow
https://www.linuxjournal.com

156 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

willing to help you along the way.

• You will gain access to a large ecosystem of production-grade software that is
easily integrated into your software stack due to Yocto’s layering design. ◾

Mirza Krak is an embedded Linux solution specialist with the open-source Mender.io project to manage updates for IoT. He has eight
years of experience in the field. He is involved in various other open-source projects and is a Linux kernel contributor. Mirza has spoken
at various conferences including the Embedded Linux Conferences.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources

A large portion of the information and reflections in this article comes from
my experience working in the embedded Linux field and my involvement in
numerous projects that shipped products based on Linux.

Further resources:

• yoctoproject.org

• Yocto Project Mega-Manual

• Yocto Project Wiki

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.yoctoproject.org/
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
https://wiki.yoctoproject.org/wiki/Main_Page
https://www.linuxjournal.com

157 | July 2019 | https://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

https://www.linuxjournal.com
https://handshake.org/signup

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Online Censorship
Is Coming—Here’s
How to Stop It
EU’s upload filters are coming. Why and how the
Open Source world must fight them.

By Glyn Moody

A year ago, I warned about some terrible copyright legislation
being drawn up in the EU that would have major adverse
effects on the Open Source world. Its most problematic
provision would force many for-profit sites operating in the EU
to use algorithmic filters to block the upload of unauthorized
material by users. As a result of an unprecedented campaign of
misinformation, smears and outright lies, supporters managed
to convince/trick enough Members of the European Parliament
(MEPs) to vote in favour of the the new Copyright Directive,
including the deeply flawed upload filters.

A number of changes were made from the original proposals
that I discussed last year. Most important, “open source software
development and sharing platforms” are explicitly excluded
from the scope of the requirement to filter uploads. However,
it would be naïve to assume that the Copyright Directive is now
acceptable, and that free software will be unaffected.

Open source and the open internet have a symbiotic

158 | July 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://www.linuxjournal.com/content/how-eus-copyright-reform-threatens-open-source-and-how-fight-it
http://www.europarl.europa.eu/doceo/document/TA-8-2019-0231_EN.html
https://www.linuxjournal.com

159 | July 2019 | https://www.linuxjournal.com

OPEN SAUCE

relationship—each has fed constantly into the other. The upload filters are a direct
attack on the open internet, turning it into a permissioned online space. They will create
a censorship system that past experience shows is bound to be abused by companies
and governments alike to block legitimate material. It would be a mistake of the highest
order for the Open Source community to shrug its shoulders and say: “we’re okay—not
our problem.” The upload filters are most definitely the problem of everyone who cares
about the open and healthy internet, and about freedom of speech. For example, the
GitHub blog points out that false positives are likely to be a problem when upload
filters are implemented—regardless of nominal “exemptions” for open source: “When a
filter catches a false positive and dependencies disappear, this not only breaks projects—
it cuts into software developers’ rights as copyright holders too.”

So, what can be done?

As the Pirate MEP Julia Reda emphasises in her post summarizing the multi-year
battle to improve the text of the Copyright Directive: “My message to all who took
part in this movement: Be proud of how far we came together! We’ve proven that
organised citizens can make an impact—even if we didn’t manage to kill the whole bill
in the end. So don’t despair!” Specifically:

A novel alliance of digital rights NGOs, political parties and social media
personalities succeeded in politicising and mobilising an entire generation of
digital natives. Countless people rose to new challenges: Entertainment YouTubers
suddenly found themselves in the role of reporters or political commentators,
internet users became activists and organisers, and many participated in the first
protests of their lives. These experiences will leave a lasting impact.

That’s important, because the concerns and beliefs of that “novel alliance” are
closely aligned with those of the Free Software community. The new-found interest
in hitherto obscure aspects of the online world and its software are an opportunity
for the Open Source world to increase awareness of what it does, and to garner
support for its activities. The potential for spreading the word is huge: over five
million people signed an EU petition against upload filters, and 200,000 took to the

https://github.blog/2019-04-17-github-shares-lessons-learned-from-eu-copyright-directive-at-us-dmca-roundtable
https://juliareda.eu/2019/04/not-in-vain/
https://juliareda.eu/2019/04/not-in-vain/
https://www.change.org/p/european-parliament-stop-the-censorship-machinery-save-the-internet
https://www.change.org/p/european-parliament-stop-the-censorship-machinery-save-the-internet
https://www.linuxjournal.com

160 | July 2019 | https://www.linuxjournal.com

OPEN SAUCE

streets to protest. Where new digital rights initiatives are set up to harness the recent
mobilization of “digital natives”, free software coders can help people understand that
open source is a key part of the solution to the problems they seek to address.

Another option is for the community to become involved in the next stage of the
fight against upload filters. The legislation just passed by the EU is what is known as
a directive; as such, it must be transposed into national law in all the EU’s Member
States during the next two years. Exactly how that is done, and what the result is,
depends on the local legislative process and debate. There is plenty of scope for local
variations in the laws implementing the Copyright Directive. This means there will be
numerous local battles where open-source organizations can help to blunt the worst
aspects of the new law.

Once local transpositions exist, it will be possible to begin the process of challenging
upload filters as being inconsistent with existing EU law. There are a number of ways
of doing that. When the time comes, the Free Software world can help encourage
people to defray the considerable costs of doing so.

Assuming the worst, and that the upload filters survive legal challenges and are widely
implemented, there is one final role that open source can—and arguably must—play.
The EU Copyright Directive was a deeply dishonest piece of legislation, because
it pretended to be about helping artists—a laudable aim. But it was really about
attacking Google and, to a lesser extent, Facebook. Its main intent is to force them to
pay EU publishers and recording companies, essentially as a punishment for thriving,
while the traditional copyright industry is not, largely because of the latter’s refusal to
embrace fully the digital world and its new possibilities. The EU Copyright Directive is
a misguided attempt to turn back the clock and make the internet a tightly controlled,
passive medium like television.

In the coming world of the EU Copyright Directive, only big players can afford to
participate. The new law will require the licensing of huge quantities of material,
and the implementation of complex (and fallible) upload filters to block everything
else. Both will be punitively expensive for smaller EU companies. Media power will be

https://www.techdirt.com/articles/20190412/07120341988/could-article-13s-upload-filters-be-thrown-out-because-eu-canada-trade-deal-ceta.shtml
https://www.techdirt.com/articles/20190412/07120341988/could-article-13s-upload-filters-be-thrown-out-because-eu-canada-trade-deal-ceta.shtml
https://www.linuxjournal.com

161 | July 2019 | https://www.linuxjournal.com

OPEN SAUCE

concentrated in the hands of the main copyright players, which will emerge as the
gatekeepers and censors in this highly centralized system. A powerful way to fight
upload filters and their threat to freedom of speech is to create internet services that
are outside this framework—specifically, those that are completely distributed. Eben
Moglen, General Counsel of the Free Software Foundation for 13 years, and
co-creator of the most recent versions of the GNU GPL, understood this ten years
ago. Here’s what he said when I interviewed him on the subject in 2010:

What I am proposing is that we build a social networking stack based around
the existing free software we have, which is pretty much the same existing free
software the server-side social networking stacks are built on; and we provide
ourselves with an appliance which contains a free distribution everybody can
make as much of as they want, and cheap hardware of a type which is going to
take over the world whether we do it or we don’t, because it’s so attractive a form
factor and function, at the price.

He set up the FreedomBox project to realize that vision. It has been running since
2011, and it has created that “social networking stack” for various single-board
computers. Recently, the FreedomBox Foundation launched a plug-and-play
commercial version costing 82 euros, widening the reach of the project to non-
technical users.

For years, the FreedomBox has been an important if little-known project. Today, in the
wake of the disastrous EU Copyright Directive, it is indispensable. Although much good
work has already been done by the dedicated FreedomBox coders, key software elements
still are missing, and existing programs could be improved. As well as helping to create an
alternative to the non-open, filtered internet that is coming to the EU, the FreedomBox
initiative will move us closer to creating a more resilient global internet that is censorship-
resistant. It should become a priority for the Open Source community. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.h-online.com/open/features/Interview-Eben-Moglen-Freedom-vs-the-Cloud-Log-955421.html
https://freedombox.org/
https://freedombox.org/download/stable/
https://freedombox.org/download/stable/
https://freedomboxfoundation.org/
https://www.olimex.com/Products/OLinuXino/Home-Server/Pioneer-FreedomBox-HSK/
https://www.olimex.com/Products/OLinuXino/Home-Server/Pioneer-FreedomBox-HSK/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

