
™

Billix: the Sysadmin
Toolkit for Your Pocket

Authentication with
Fedora Directory Server

Remote Desktop Administration
with OpenSSH or VNC

Manage Configuration
Files with Cfengine

Setting Up a
PXE Boot Server

Network Monitoring
with Zenoss

2009 | Supplement Issue | www.linuxjournal.com

Since 1994: The Original Magazine of the Linux Community

SPECIAL SYSTEM
ADMINISTRATION

ISSUE

Cfengine VNC Billix Zenoss Thin Clients MySQL Heartbeat

MAY THE
SOURCE
BE WITH
YOU

http://www.linuxjournal.com
http://www.linuxjournal.com

5 SPECIAL_ISSUE.TAR.GZ
System Administration: Instant
Gratification Edition

Shawn Powers

6 CFENGINE FOR
ENTERPRISE
CONFIGURATION
MANAGEMENT
How to use cfengine to manage
configuration files across large
numbers of machines.

Scott Lackey

10 SECURED REMOTE
DESKTOP/APPLICATION
SESSIONS
Different ways to control a Linux
system over a network.

Mick Bauer

14 BILLIX: A SYSADMIN’S
SWISS ARMY KNIFE
Build a toolbox in your pocket by
installing Billix on that spare USB key.

Bill Childers

17 ZENOSS AND THE ART OF
NETWORK MONITORING
Stay on top of your network with
an enterprise-class monitoring tool.

Jeramiah Bowling

22 THIN CLIENTS BOOTING
OVER A WIRELESS
BRIDGE
Setting up a thin-client
network, and some useful
operation/administration tools.

Ronan Skehill, Alan Dunne

and John Nelson

26 PXE MAGIC: FLEXIBLE
NETWORK BOOTING WITH
MENUS
What if you never had to carry
around an install or rescue CD
again? Set up a PXE boot server
with menus and put them all on
the network.

Kyle Rankin

30 CREATING VPNS WITH
IPSEC AND SSL/TLS
The two most common and current
techniques for creating VPNs.

Rami Rosen

34 MYSQL 5 STORED
PROCEDURES: RELIC OR
REVOLUTION?
Do MySQL 5 Stored Procedures
produce tiers of joy or sorrow?

Guy Harrison

38 GETTING STARTED WITH
HEARTBEAT
Availability in a heartbeat.

Daniel Bartholomew

42 FEDORA DIRECTORY
SERVER: THE EVOLUTION
OF LINUX
AUTHENTICATION
Want an alternative to OpenLDAP?

Jeramiah Bowling

CONTENTS SPECIAL SYSTEM
ADMINISTRATION ISSUE

2 | www. l inux journa l .com

Linux Journal
2009 Lineup

JANUARY
Security

FEBRUARY
Web Development

MARCH
Desktop

APRIL
System Administration

MAY
Cool Projects

JUNE
Readers' Choice Awards

JULY
Mobile Linux

AUGUST
Kernel Capers

SEPTEMBER
Cross-Platform
Development

OCTOBER
Hack This

NOVEMBER
Infrastructure

DECEMBER
Embedded

17 ZENOSS

USPS LINUX JOURNAL (ISSN 1075-3583) (USPS 12854) is published monthly by Belltown Media, Inc., 2211 Norfolk, Ste 514, Houston, TX 77098 USA. Periodicals postage paid at Houston, Texas and at additional mail-
ing offices. Cover price is $5.99 US. Sub scrip tion rate is $29.50/year in the United States, $39.50 in Canada and Mexico, $69.50 elsewhere. POSTMASTER: Please send address changes to Linux Journal, PO Box 16476,
North Hollywood, CA 91615. Subscriptions start with the next issue. Canada Post: Publications Mail Agreement #41549519. Canada Returns to be sent to Bleuchip International, P.O. Box 25542, London, ON N6C 6B2

http://www.linuxjournal.com

www.linuxjournal.com

http://www.linuxjournal.com

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-818-487-2089. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 16476, North Hollywood, CA
91615-9911 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit them
at www.linuxjournal.com/contact or mail
them to Linux Journal, 1752 NW Market
Street, #200, Seattle, WA 98107 USA. Letters
may be edited for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

Executive Editor

Associate Editor

Associate Editor

Senior Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Chef Français

Security Editor

Proofreader

Publisher

General Manager

Sales Manager

Sales and Marketing Coordinator

Circulation Director

Webmistress

Accountant

Jill Franklin
jill@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Mitch Frazier
mitch@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Marcel Gagné
mggagne@salmar.com
Mick Bauer
mick@visi.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Joseph Krack
joseph@linuxjournal.com
Tracy Manford
tracy@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
David A. Bandel • Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti

Ludovic Marcotte • Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Reader Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Caleb S. Cullen • Steve Case

Kalyana Krishna Chadalavada • Keir Davis • Adam M. Dutko • Michael Eager • Nick Faltys • Ken Firestone
Dennis Franklin Frey • Victor Gregorio • Kristian Erik • Hermansen • Philip Jacob • Jay Kruizenga
David A. Lane • Steve Marquez • Dave McAllister • Craig Oda • Rob Orsini • Jeffrey D. Parent

Wayne D. Powel • Shawn Powers • Mike Roberts • Draciron Smith • Chris D. Stark • Patrick Swartz

Editorial Advisory Board
Daniel Frye, Director, IBM Linux Technology Center
Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University
Ransom Love, Director of Strategic Relationships, Family and Church History Department,

Church of Jesus Christ of Latter-day Saints
Sam Ockman
Bruce Perens

Bdale Garbee, Linux CTO, HP
Danese Cooper, Open Source Diva, Intel Corporation

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 818-487-2089

FAX: +1 818-487-4550
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 16476, North Hollywood, CA 91615-9911 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters
mailto:jill@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:mitch@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mggagne@salmar.com
mailto:mick@visi.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:tracy@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe

www.l inux journa l .com | 5

Special_Issue.tar.gz

SHAWN POWERS

Welcome to the Linux Journal family!
The issue you currently hold in your
hands, or more precisely, the issue

you’re reading on your screen, was created
specifically for you. It’s so frustrating to subscribe
to a magazine, and then wait a month or two
before you ever get to read your first issue. You
decided to subscribe, so we decided to give you
some instant gratification. Because really, isn’t
that the best kind?

This entire issue is dedicated to system
administration. As a Linux professional or an
everyday penguin fan, you’re most likely already
a sysadmin of some sort. Sure, some of us are in
charge of administering thousands of computers,
and some of us just keep our single desktop
running. With Linux though, it doesn’t matter
how big or small your infrastructure might be. If
you want to run a MySQL server on your laptop,
that’s not a problem. In fact, in this issue we
even talk about stored procedures on MySQL 5,
so we’ll show you how to get the most out of
that laptop server.

If you do manage lots of machines, however,
there are some tools that can make your job much
easier. Cfengine, for instance, can help with
configuration management for tens, hundreds
or even thousands of remote computers. It sure
beats running to every server and configuring
them individually. But, what if you mess up
those configuration files and half your servers
go off-line? Don’t worry, we’ll teach you about
Heartbeat. It’s one of those high-availability
programs that helps you keep going, even
when some of your servers die. If a computer
dies alone in your server room, does anyone
hear it scream? Heartbeat does.

Do you have more than one server room?
More than one location? Many of us do.
Programs like Zenoss can help you monitor
your whole organization from one central
place. In the following pages, we’ll show you
all about it. In fact, using a VPN (which we
talk about here) and remote desktop sessions

(again, covered here), you probably can
manage most of your network without even
leaving home. If you haven’t reconfigured a
server from a coffee shop across the country,
you haven’t lived.

I do understand, however, that lots of
sysadmins enjoy going in to work. That’s
great; we like office coffee too. Keep reading
to find many hands-on tools that will make
your work day more efficient, more productive
and even more fun. Billix, for example, is a USB-
booting Linux distribution that has tons of great
features ready to use. It can install operating
systems, rescue broken computers, and if you
want to do something it doesn’t do by default,
that’s okay, the article explains how to include
any custom tools you might want.

Whether it’s booting thin clients over a
wireless bridge or creating custom PXE boot
menus, the life of a system administrator is
never boring. At Linux Journal, we try to
make your job easier month after month with
product reviews, tech tips, games (you know,
for your lunch break) and in-depth articles like
you’ll read here. Whether you’re a command-
line junkie or a GUI guru, Linux has the tools
available to make your life easier.

We hope you enjoy this bonus issue of
Linux Journal. If you read this whole thing and
are still anxious to get your hands on more
Linux and open-source-related information, but
your first paper issue hasn’t arrived yet, don’t
forget about our Web site. Check us out at
www.linuxjournal.com. If you manage to read
the thousands and thousands of on-line articles
and still don’t have your first issue, I suggest
checking with the post office. There must be
something wrong with your mailbox!�

Shawn Powers is the Associate Editor for Linux Journal. He’s also the Gadget
Guy for LinuxJournal.com, and he has an interesting collection of vintage
Garfield coffee mugs. Don’t let his silly hairdo fool you, he’s a pretty
ordinary guy and can be reached via e-mail at shawn@linuxjournal.com.
Or, swing by the #linuxjournal IRC channel on Freenode.net.

System Administration:
Instant Gratification
Edition

http://www.linuxjournal.com
http://www.linuxjournal.com
mailto:shawn@linuxjournal.com

6 | www. l inux journa l .com

Cfengine is known by many system administrators to be
an excellent tool to automate manual tasks on UNIX and
Linux-based machines. It also is the most comprehensive
framework to execute administrative shell scripts across
many servers running disparate operating systems.
Although cfengine is certainly good for these purposes,
it also is widely considered the best open-source tool
available for configuration management. Using cfengine,
sysadmins with a large installation of, say, 800 machines,
can have information about their environment quickly
that otherwise would take months to gather, as well as
the ability to change the environment in an instant. For
an initial example, if you have a set of Linux machines
that need to have a different /etc/nsswitch.conf, and then
have some processes restarted, there’s no need to connect
to each machine and perform these steps or even to write
a script and run it on the machines once they are identi-
fied. You simply can tell cfengine that all the Linux
machines running Fedora/Debian/CentOS with XGB of
RAM or more need to use a particular /etc/nsswitch.conf
until a newer one is designated. Cfengine can do all that
in a one-line statement.

Cfengine’s configuration management capabilities can
work in several different ways. In this article, I focus on a
make-it-so-and-keep-it-so approach. Let’s consider a small
hosting company configuration, with three administrators
and two data centers (Figure 1).

Each administrator can use a Subversion/CVS sandbox
to hold repositories for each data center. The cfengine
client will run on each client machine, either through a
cron job or a cfengine execution dæmon, and pull the
cfengine configuration files appropriate for each machine
from the server. If there is work to be done for that partic-
ular machine, it will be carried out and reported to the
server. If there are configuration files to copy, the ones
active on the client host will be replaced by the copies on
the cfengine server. (Cfengine will not replace a file if the
copy process is partial or incomplete.)

A cfengine implementation has three major components:

� Version control: this usually consists of a versioning system,
such as CVS or Subversion.

� Cfengine internal components: cfservd, cfagent, cfexecd,
cfenvd, cfagent.conf and update.conf.

� Cfengine commands: processes, files, shellcommands,
groups, editfiles, copy and so forth.

The cfservd is the master dæmon, configured with
/etc/cfservd.conf, and it listens on port 5803 for connections to
the cfengine server. This dæmon controls security and directory
access for all client machines connecting to it. cfagent is the
client program for running cfengine on hosts. It will run either
from cron, manually or from the execution dæmon for cfengine,
cfexecd. A common method for running the cfagent is to exe-
cute it from cron using the cfexecd in non-dæmon mode. The
primary reason for using both is to engage cfengine’s logging
system. This is accomplished using the following:

*/10 * * * * /var/cfengine/sbin/cfexecd -F

as a cron entry on Linux (unless Solaris starts to understand
*/10). Note that this is fairly frequent and good only for a low
number of servers. We don’t want 800 servers updating within

Cfengine for Enterprise
Configuration Management
Cfengine makes it easier to manage configuration files across large numbers of machines.
SCOTT LACKEY

SYSTEM ADMINISTRATION

Figure 1. How the Few Control the Many

http://www.linuxjournal.com

the same ten minutes.
The cfenvd is the “environment dæmon” that runs on the

client side of the cfengine implementation. It gathers informa-
tion about the host machine, such as hostname, OS and IP
address. The cfenvd detects these factors about a host and
uses them to determine to which groups the machine belongs.
This, in effect, creates a profile for each machine that cfengine
uses to determine what work to perform on each host.

The master configuration file for each host is cfagent.conf.
This file can contain all the configuration information and
cfengine code for the host, a subset of hosts or all hosts in the
cfengine network. This file is often just a starting point where
all configurations are stored in other files and “imported” into
cfagent.conf, in a very similar fashion to Nagios configuration
files. The update.conf file is the fundamental configuration file
for the client. It primarily just identifies the cfengine server and
gets a copy of the cfagent.conf.

Figure 2. Automated Distribution of Cfengine Files

The update.conf file tells the cfengine server to deploy a
new cfagent.conf file (and perhaps other files as well) if the
current copy on the host machine is different. This adds some
protection for a scenario where a corrupt cfagent.conf is
sent out or in case there never was one. Although you could
use cfengine to distribute update.conf, it should be copied
manually to each host.

Cfengine “commands” are not entered on the command
line. They make up the syntax of the cfengine configuration
language. Because cfengine is a framework, the system
administrator must write the necessary commands in cfengine
configuration files in order to move and manipulate data. As
an example, let’s take a look at the files command as it would
appear in the cfagent.conf file:

files:

/etc/passwd mode=644

owner=root action=fixall

/etc/shadow mode=600

owner=root action=fixall

This would set all machines’ /etc/passwd and /etc/shadow
files to the permissions listed in the file (644 and 600). It also

would change the owner of the file to root and fix all of these
settings if they are found to be different, each time cfengine
runs. It’s important to keep in mind that there are no group
limitations to this particular files command. If cfengine does
not have a group listed for the command, it assumes you
mean any host. This also could be written as:

files:

any::

/etc/passwd mode=644

owner=root action=fixall

/etc/shadow mode=600

owner=root action=fixall

This brings us to an important topic in building a cfengine
implementation: groups. There is a groups command that can
be used to assign hosts to groups based on various criteria.
Custom groups that are created in this way are called soft
groups. The groups that are filled by the cfenvd dæmon
automatically are referred to as hard groups. To use the
groups feature of cfengine and assign some soft groups,
simply create a groups.cf file, and tell the cfagent.conf to
import it somewhere in the beginning of the file:

import:

any::

groups.cf

Cfengine will look in the default directory for the groups.cf
file in /var/cfengine/inputs. Now you can create arbitrary
groups based on any criteria. It is important to remember that
the terms groups and classes are completely interchangeable
in cfengine:

groups:

development = (nfs01 nfs02 10.0.0.17)

production = (app01 app02 !development)

You also can combine hard groups that have been discov-
ered by cfenvd with soft groups:

groups:

legacy = (irix compiled_on_cygwin sco)

Let’s get our testing setup in order. First, install cfengine on a
server and a client or workstation. Cfengine has been compiled
on almost everything, so there should be a package for your
OS/distribution. Because the source is usually the latest version,
and many versions are bug fixes, I recommend compiling it your-
self. Installing cfengine gives you both the server and client binaries

www. l inux journa l .com | 7

Because cfengine is a framework,
the system administrator must
write the necessary commands
in cfengine configuration files in
order to move and manipulate data.

http://www.linuxjournal.com

and utilities on every machine, so be careful not to run
the server dæmon (cfservd) on a client machine unless
you specifically intend to do that. After the install, you
should have a /var/cfengine/ directory and the binaries
mentioned previously.

Before any host can actually communicate with the
cfengine server, keys must be exchanged between the two.
Cfengine keys are similar to SSH keys, except they are
one-way. That is to say, both the server and the client
must have each other’s public key in order to communi-
cate. Years of sysadmin paranoia cause me to recommend
manually copying all keys and trusting nothing. Copy
/var/cfengine/ppkeys/localhost.pub from the server to all the
clients and from the clients to the server in the same directory,
renaming them /var/cfengine/ppkeys/root-10.11.0.1.pub,
where the IP is 10.11.0.1.

On the server side, cfservd.conf must be configured to
allow clients to access particular directories. To do this, create
an AllowConnectionsFrom and an admit section:

#cfservd.conf

control:

AllowConnectionsFrom = (192.168.0.0/24)

admit:

/configs/datacenter1 *.example1.com

/configs/datacenter2 *.example2.com

To test your example client to see whether it is connecting
to the cfengine server, make sure port 5803 is clear between
them, and run the server with:

cfservd -v -d2

And, on the client run:

cfagent -v --no-splay

This will give you a lot of debugging information on the
server side to see what’s working and what isn’t.

Now, let’s take a look at distributing a configuration
file. Although cfengine has a full-featured file editor in
the editfiles command, using this method for distributing
configurations is not advised. The copy command will
move a file from the server to the client machine with
.cfnew appended to the filename. Then, once the file has
been copied completely, it renames the file and saves the
old copy as .cfsaved in the specified directory. Here’s the
copy command syntax:

copy:

class::

<<master-file>>

dest=target-file

server=server

mode=mode

owner=owner

group=group

backup=true/false

repository=backup dir

recurse=number/inf/0

define=classlist

Only the dest= is required, along with the filename to
save at the destination. These can be different. Here’s
another example:

copy:

linux::

${copydir}/linux/resolv.conf

dest=/etc/resolv.conf

server=cfengine.example1.com

mode=644

owner=root

group=root

backup=true

repository=/var/cfengine/cfbackup

recurse=0

define=copiedresolvdotconf

The last line in this copy statement assigns this host to a
group called copiedresolvdotconf. Although we don’t have to do
anything after copying this particular file, we may want to do
some action on all hosts that just had this file successfully sent to
them, such as sending an e-mail or restarting a process. As
another example, if you update a configuration file that is
attached to a dæmon, you may want to send a SIGHUP to the
process to cause it to reread the configuration file. This is com-
mon with Apache’s httpd.conf or inetd.conf. If the copy is not
successful, this server won’t be added to the copiedresolvdotconf
class. You can query all servers in the network to see whether
they are members and, if not, find out what went wrong.

A great way to version control your config files is to use a
cfengine variable for the filename being copied to control which
version gets distributed. Such a line may look something like this:

copy:

linux::

${copydir}/linux/${resolv_conf}

Or, better yet, you can use cfengine’s class-specific vari-
ables, whose scope is limited to the class with which they are
associated. This makes copy statements much more elegant
and can simplify changes as your cfengine files scale:

control:

${resolve_conf} value depends on context,

8 | www. l inux journa l .com

SYSTEM ADMINISTRATION

A great way to version control
your config files is to use a cfengine
variable for the filename being
copied to control which version
gets distributed.

http://www.linuxjournal.com

is this a linux machine or hpux?

linux:: resolve_conf = ("${copydir}"/linux/resolv.conf)

hpux:: resolve_conf = ("${copydir}"/hpux/resolv.conf)

copy:

linux::

${resolve_conf}

Here is a full cfagent.conf file that makes use of everything
I’ve covered thus far. It also adds some practical examples of
how to do sysadmin work with cfengine:

cfagent.conf

control:

actionsequence = (files editfiles processes)

AddInstallable = (cron_restart)

solaris:: crontab = (/var/spool/cron/crontabs/root

)

linux:: crontab = (/var/spool/cron/root)

files:

solaris::

${crontab}

action=touch

linux::

${crontab}

action=touch

editfiles:

solaris::

{ ${crontab}

AppendIfNoSuchLine "0,10,20,30,40,50 * * * *

�/var/cfengine/sbin/cfexecd -F"

DefineClasses "cron_restart"

}

linux::

{ ${crontab}

AppendIfNoSuchLine "0,10,20,30,40,50 * * * *

�/var/cfengine/sbin/cfexecd -F"

#linux doesn't need a cron restart.

}

shellcommands:

solaris.cron_restart::

"/etc/init.d/cron stop"

"/etc/init.d/cron start"

import:

any::

groups.cf

copy.cf

The above is a full cfagent configuration that adds
cfengine execution from cron to each client (if it’s Linux or
Solaris). So effectively, once you run cfengine manually for the
first time with this cfagent.conf file, cfengine will continue to
run every five minutes from that host, but you won’t need to
edit or restart cron. The control section of the cfagent.conf is
where you can define some variables that will control how

cfengine handles the configuration file. actionsequence
tells cfengine what order to execute each command, and
AddInstallable is a variable that holds soft groups that get
defined later in the file in a “define” statement, such as after
the editfiles command where the line is DefineClasses
"cron_restart". The reason for using AddInstallable is
sometimes cfengine skips over groups that are defined
after command execution, and defining that group in the
control section ensures that the command will be recognized
throughout the configuration.

Being able to check configuration files out from a
versioning system and distribute them to a set of servers
is a powerful system administration tool. A number of
independent tools will do a subset of cfengine’s work (such
as rsync, ssh and make), but nothing else allows a small
group of system administrators to manage such a large
group of servers. Centralizing configuration management
has the dual benefit of information and control, and
cfengine provides these benefits in a free, open-source tool
for your infrastructure and application environments.�

Scott Lackey is an independent technology consultant who has developed and deployed
configuration management solutions across industry from NASA to Wall Street. Contact him
at slackey@violetconsulting.net, www.violetconsulting.net.

www.l inux journa l .com | 9

http://www.linuxjournal.com/rss_feeds

Linux News and Headlines
Delivered To You

Linux Journal topical RSS feeds NOW AVAILABLE

mailto:slackey@violetconsulting.net
http://www.violetconsulting.net
http://www.linuxjournal.com/rss_feeds
http://www.linuxjournal.com

1 0 | www. l inux journa l .com

There are many different ways to control a Linux system
over a network, and many reasons you might want to do so.
When covering remote control in past columns, I’ve tended
to focus on server-oriented usage scenarios and tools, which
is to say, on administering servers via text-based applications,
such as OpenSSH. But, what about GUI-based applications
and remote desktops?

Remote desktop sessions can be very useful for technical
support, surveillance and remote control of desktop appli-
cations. But, it isn’t always necessary to access an entire
desktop; you may need to run only one or two specific
graphical applications.

In this month’s column, I describe how to use VNC (Virtual
Network Computing) for remote desktop sessions and
OpenSSH with X forwarding for remote access to specific
applications. Our focus here, of course, is on using these
tools securely, and I include a healthy dose of opinion as
to the relative merits of each.

Remote Desktops vs. Remote Applications
So, which approach should you use, remote desktops or
remote applications? If you’ve come to Linux from the
Microsoft world, you may be tempted to assume that because
Terminal Services in Windows is so useful, you have to have
some sort of remote desktop access in Linux too. But, that
may not be the case.

Linux and most other UNIX-based operating systems use
the X Window System as the basis for their various graphical
environments. And, the X Window System was designed to
be run over networks. In fact, it treats your local system as
a self-contained network over which different parts of the
X Window System communicate.

Accordingly, it’s not only possible but easy to run individual
X Window System applications over TCP/IP networks—that is,
to display the output (window) of a remotely executed
graphical application on your local system. Because the X
Window System’s use of networks isn’t terribly secure (the
X Window System has no native support whatsoever for
any kind of encryption), nowadays we usually tunnel X
Window System application windows over the Secure Shell
(SSH), especially OpenSSH.

The advantage of tunneling individual application windows
is that it’s faster and generally more secure than running the
entire desktop remotely. The disadvantages are that OpenSSH
has a history of security vulnerabilities, and for many Linux
newcomers, forwarding graphical applications via commands
entered in a shell session is counterintuitive. And besides, as I

mentioned earlier, remote desktop control (or even just
viewing) can be very useful for technical support and for
security surveillance.

Using OpenSSH with X Window System
Forwarding
Having said all that, tunneling X Window System applications
over OpenSSH may be a lot easier than you imagine. All you
need is a client system running an X server (for example, a
Linux desktop system or a Windows system running the
Cygwin X server) and a destination system running the
OpenSSH dæmon (sshd).

Note that I didn’t say “a destination system running sshd
and an X server”. This is because X servers, oddly enough,
don’t actually run or control X Window System applications;
they merely display their output. Therefore, if you’re running
an X Window System application on a remote system, you
need to run an X server on your local system, not on the
remote system. The application will execute on the remote
system and send its output to your local X server’s display.

Suppose you’ve got two systems, mylaptop and
remotebox, and you want to monitor system resources
on remotebox with the GNOME System Monitor. Suppose
further you’re running the X Window System on mylaptop
and sshd on remotebox.

First, from a terminal window or xterm on mylaptop, you’d
open an SSH session like this:

mick@mylaptop:~$ ssh -X admin-slave@remotebox

admin-slave@remotebox's password: **********

Last login: Wed Jun 11 21:50:19 2008 from

dtcla00b674986d

admin-slave@remotebox:~$

Note the -X flag in my ssh command. This enables X
Window System forwarding for the SSH session. In order for
that to work, sshd on the remote system must be configured
with X11Forwarding set to yes in its /etc/ssh/sshd.conf file. On
many distributions, yes is the default setting, but check yours
to be sure.

Next, to run the GNOME System Monitor on remotebox,
such that its output (window) is displayed on mylaptop, simply
execute it from within the same SSH session:

admin-slave@remotebox:~$ gnome-system-monitor &

The trailing ampersand (&) causes this command to run in

Secured Remote
Desktop/Application Sessions
Run graphical applications from afar, securely. MICK BAUER

SYSTEM ADMINISTRATION

http://www.linuxjournal.com

the background, so you can initiate other commands from the
same shell session. Without this, the cursor won’t reappear in
your shell window until you kill the command you just started.

At this point, the GNOME System Monitor window should
appear on mylaptop’s screen, displaying system performance
information for remotebox. And, that really is all there is to it.

This technique works for practically any X Window System
application installed on the remote system. The only catch is
that you need to know the name of anything you want to run
in this way—that is, the actual name of the executable file.

If you’re accustomed to starting your X Window System
applications from a menu on your desktop, you may not
know the names of their corresponding executables. One
quick way to find out is to open your desktop manager’s
menu editor, and then view the properties screen for the
application in question.

For example, on a GNOME desktop, you would right-click
on the Applications menu button, select Edit Menus, scroll
down to System/Administration, right-click on System Monitor
and select Properties. This pops up a window whose
Command field shows the name gnome-system-monitor.

Figure 1 shows the Launcher Properties, not for the
GNOME System Monitor, but instead for the GNOME File
Browser, which is a better example, because its launcher
entry includes some command-line options. Obviously, all
such options also can be used when starting X applications
over SSH.

Figure 1. Launcher Properties for the GNOME File Browser (Nautilus)

If this sounds like too much trouble, or if you’re worried
about accidentally messing up your desktop menus, you simply
can run the application in question, issue the command
ps auxw in a terminal window, and find the entry that
corresponds to your application. The last field in each row
of the output from ps is the executable’s name plus the
command-line options with which it was invoked.

Once you’ve finished running your remote X Window
System application, you can close it the usual way (selecting
Exit from its File menu, clicking the x button in the upper
right-hand corner of its window and so forth). Don’t forget to
close your SSH session too, by issuing the command exit in
the terminal window where you’re running SSH.

Virtual Network Computing (VNC)
Now that I’ve shown you the preferred way to run remote X
Window System applications, let’s discuss how to control an
entire remote desktop. In the Linux/UNIX world, the most
popular tool for this is Virtual Network Computing, or VNC.

Originally a project of the Olivetti Research Laboratory
(which was subsequently acquired by Oracle and then AT&T
before being shut down), VNC uses a protocol called Remote
Frame Buffer (RFB). The original creators of VNC now maintain
the application suite RealVNC, which is available in free and
commercial versions, but TightVNC, UltraVNC and GNOME’s
vino VNC server and vinagre VNC client also are popular.

VNC’s strengths are its simplicity, ubiquity and portability—
it runs on many different operating systems. Because it runs
over a single TCP port (usually TCP 5900), it’s also firewall-
friendly and easy to tunnel.

Its security, however, is somewhat problematic. VNC
authentication uses a DES-based transaction that, if eaves-
dropped-on, is vulnerable to optimized brute-force (password-
guessing) attacks. This vulnerability is exacerbated by the
fact that many versions of VNC support only eight-character
passwords.

Furthermore, VNC session data usually is transmitted
unencrypted. Only a couple flavors of VNC support TLS
encryption of RFB streams, and it isn’t clear how securely
TLS has been implemented even in those. Thus, an attacker
using a trivially hacked VNC client may be able to reconstruct
and view eavesdropped VNC streams.

www. l inux journa l .com | 1 1

But Don’t Real
Sysadmins Stick to
Terminal Sessions?
If you’ve read my book or my past columns, you’ve
endured my repeated exhortations to keep the X Window
System off of Internet-facing servers, or any other system
on which it isn’t needed, due to X’s complexity and histo-
ry of security vulnerabilities. So, why am I devoting an
entire column to graphical remote system administration?

Don’t worry. I haven’t gone soft-hearted (though possibly
slightly soft-headed); I stand by that advice. But, there are
plenty of contexts in which you may need to administer
or view things remotely besides hardened servers in
Internet-facing DMZ networks.

And, not all people who need to run remote applications
in those non-Internet-DMZ scenarios are advanced Linux
users. Should they be forbidden from doing what they
need to do until they’ve mastered using the vi editor and
writing bash scripts? Especially given that it is possible to
mitigate some of the risks associated with the X Window
System and VNC?

Of course they shouldn’t! Although I do encourage all Linux
newcomers to embrace the command line. The day may
come when Linux is a truly graphically oriented operating
system like Mac OS, but for now, pretty much the entire OS
is driven by configuration files in /etc (and in users’ home
directories), and that’s unlikely to change soon.

http://www.linuxjournal.com

Luckily, as it operates over a single TCP port, VNC is easy to
tunnel through SSH, through Virtual Private Network (VPN)
sessions and through TLS/SSL wrappers, such as stunnel. Let’s
look at a simple VNC-over-SSH example.

Tunneling VNC over SSH
To tunnel VNC over SSH, your remote system must be running
an SSH dæmon (sshd) and a VNC server application. Your
local system must have an SSH client (ssh) and a VNC
client application.

Our example remote system, remotebox, already is running
sshd. Suppose it also has vino, which is also known as the
GNOME Remote Desktop Preferences applet (on Ubuntu sys-
tems, it’s located in the System menu’s Preferences section).
First, presumably from remotebox’s local console, you need to
open that applet and enable remote desktop sharing. Figure 2
shows vino’s General settings.

If you want to view only this system’s remote desktop
without controlling it, uncheck Allow other users to control
your desktop. If you don’t want to have to confirm remote
connections explicitly (for example, because you want to
connect to this system when it’s unattended), you can
uncheck the Ask you for confirmation box. Any time you
leave yourself logged in to an unattended system, be sure
to use a password-protected screensaver!

vino is limited in this way. Because vino is loaded only
after you log in, you can use it only to connect to a fully
logged-in GNOME session in progress—not, for example,
to a gdm (GNOME login) prompt. Unlike vino, other versions
of VNC can be invoked as needed from xinetd or inetd.
That technique is out of the scope of this article, but see
Resources for a link to a how-to for doing so in Ubuntu,
or simply Google the string “vnc xinetd”.

Continuing with our vino example, don’t close that Remote
Desktop Preferences applet yet. Be sure to check the
Require the user to enter this password box and to select
a difficult-to-guess password. Remember, vino runs in an

already-logged-in desktop session, so unless you set a
password here, you’ll run the risk of allowing completely
unauthenticated sessions (depending on whether a password-
protected screensaver is running).

If your remote system will be run logged in but unattend-
ed, you probably will want to uncheck Ask you for confirma-
tion. Again, don’t forget that locked screensaver.

We’re not done setting up vino on remotebox yet. Figure 3
shows the Advanced Settings tab.

Several advanced settings are particularly noteworthy. First,
you should check Only allow local connections, after which
remote connections still will be possible, but only via a port-
forwarder like SSH or stunnel. Second, you may want to set a
custom TCP port for vino to listen on via the Use an alternative
port option. In this example, I’ve chosen 20226. This is an
instance of useful security-through-obscurity; if our other

1 2 | www. l inux journa l .com

SYSTEM ADMINISTRATION

On the Web, Articles Talk!

Every couple weeks over at LinuxJournal.com, our Gadget
Guy Shawn Powers posts a video. They are fun, silly, quirky
and sometimes
even useful. So,
whether he's
reviewing a new
product or
showing how to
use some Linux
software, be
sure to swing
over to the Web site and check out the latest video:
www.linuxjournal.com/video.

We'll see you there, or more precisely, vice versa!

Figure 2. General Settings in GNOME Remote Desktop Preferences (vino)

Figure 3. Advanced Settings in GNOME Remote Desktop Preferences (vino)

http://www.linuxjournal.com/video
http://www.linuxjournal.com

(more meaningful) security controls fail, at least we won’t be
running VNC on the obvious default port.

Also, you should check the box next to Lock screen on discon-
nect, but you probably should not check Require encryption, as
SSH will provide our session encryption, and adding redundant
(and not-necessarily-known-good) encryption will only increase
vino’s already-significant latency. If you think there’s only a moder-
ate level of risk of eavesdropping in the environment in which you
want to use vino—for example, on a small, private, local-area net-
work inaccessible from the Internet—vino’s TLS implementation
may be good enough for you. In that case, you may opt to check
the Require encryption box and skip the SSH tunneling.

(If any of you know more about TLS in vino than I was able
to divine from the Internet, please write in. During my research
for this article, I found no documentation or on-line discus-
sions of vino’s TLS design details whatsoever—beyond people
commenting that the soundness of TLS in vino is unknown.)

This month, I seem to be offering you more “opt-out”
opportunities in my examples than usual. Perhaps I’m becom-
ing less dogmatic with age. Regardless, let’s assume you’ve fol-
lowed my advice to forego vino’s encryption in favor of SSH.

At this point, you’re done with the server-side settings. You
won’t have to change those again. If you restart your GNOME
session on remotebox, vino will restart as well, with the options
you just set. The following steps, however, are necessary each
time you want to initiate a VNC/SSH session.

On mylaptop (the system from which you want to connect to
remotebox), open a terminal window, and type this command:

mick@mylaptop:~$ ssh -L 20226:remotebox:20226 admin-slave@remotebox

OpenSSH’s -L option sets up a local port-forwarder. In this
example, connections to mylaptop’s TCP port 20226 will be
forwarded to the same port on remotebox. The syntax for this
option is “-L [localport]:[remote IP or hostname]:[remoteport]”.
You can use any available local TCP port you like (higher than
1024, unless you’re running SSH as root), but the remote port
must correspond to the alternative port you set vino to listen
on (20226 in our example), or if you didn’t set an alternative
port, it should be VNC’s default of 5900.

That’s it for the SSH session. You’ll be prompted for a pass-
word and then given a bash prompt on remotebox. But, you
won’t need it except to enter exit when your VNC session is
finished. It’s time to fire up your VNC client.

vino’s companion client, vinagre (also known as the
GNOME Remote Desktop Viewer) is good enough for our pur-
poses here. On Ubuntu systems, it’s located in the Applications
menu in the Internet section. In Figure 4, I’ve opened the
Remote Desktop Viewer and clicked the Connect button. As
you can see, rather than remotebox, I’ve entered localhost as
the hostname. I’ve also entered port number 20226.

When I click the Connect button, vinagre connects to
mylaptop’s local TCP port 20226, which actually is being listened
on by my local SSH process. SSH forwards this connection attempt
through its encrypted connection to TCP 20226 on remotebox,
which is being listened on by remotebox’s vino process.

At this point, I’m prompted for remotebox’s vino password
(shown in Figure 2). On successful authentication, I’ll have full
access to my active desktop session on remotebox.

To end the session, I close the Remote Desktop Viewer’s

session, and then enter exit in my SSH session to remote-
box—that’s all there is to it.

This technique is easy to adapt to other versions of VNC
servers and clients, and probably also to other versions of
SSH—there are commercial alternatives to OpenSSH, including
Windows versions. I mentioned that VNC client applications
are available for a wide variety of platforms; on any such
platform, you can use this technique, so long as you also
have an SSH client that supports port forwarding.

Conclusion
Thus ends my crash course on how to control graphical appli-
cations over networks. I hope my examples of both tech-
niques, SSH with X forwarding and VNC over SSH, help you
get started with whatever particular distribution and software
packages you prefer. Be safe!�

Mick Bauer (darth.elmo@wiremonkeys.org) is Network Security Architect for one of the US’s
largest banks. He is the author of the O’Reilly book Linux Server Security, 2nd edition (formerly
called Building Secure Servers With Linux), an occasional presenter at information security
conferences and composer of the “Network Engineering Polka”.

www.l inux journa l .com | 1 3

Resources

The Cygwin/X (information about Cygwin’s free X server for
Microsoft Windows): x.cygwin.com.

Tichondrius’ HOWTO for setting up VNC with resumable
sessions—Ubuntu-centric, but mostly applicable to other
distributions: ubuntuforums.org/
showthread.php?t=122402.

Wikipedia’s VNC article, which may be helpful in
making sense of the different flavors of VNC:
en.wikipedia.org/wiki/Vnc.

Figure 4. Using vinagre to Connect to an SSH-Forwarded Local Port

mailto:darth.elmo@wiremonkeys.org
http://www.linuxjournal.com
x.cygwin.com
http://ubuntuforums.org/showthread.php?t=122402
en.wikipedia.org/wiki/Vnc

1 4 | www. l inux journa l .com

Does anyone remember Linuxcare? Founded in 1998,
Linuxcare was a company that provided support services
for Linux users in corporate environments. I remember see-
ing Linuxcare at the first ever LinuxWorld conference in
San Jose, and the thing I took away from that LinuxWorld
was the Linuxcare Bootable Business Card (BBC). The BBC
was a 50MB cut-down Linux distribution that fit on a
business-card-size compact disc. I used that distribution to
recover and repair quite a few machines, until the advent
of Knoppix. I always loved the portability of that little CD
though, and I missed it greatly until I stumbled across
Damn Small Linux (DSL) one day.

After reading through the DSL Web site, I discovered that it
was possible to run DSL off of a bootable USB key, and that
old love for the Bootable Business Card was rekindled in a
new way. It wasn’t until I had a conversation with fellow
sysadmin Kyle Rankin about the PXE boot environment he’d
implemented, that I realized it might be possible to set up a
USB key to do more than merely boot a recovery environment.
Before long, I had added the CentOS and Ubuntu netinstalls
to my little USB key. Not long after that, I was mentioning this

in my favorite IRC channel, and one of the fellows in there
suggested I put the code on SourceForge and call it Billix. I’d
had a couple beers by then and thought it sounded like a
great idea. In that instant, Billix was born.

Billix is an aggregation of many different tools that can be
useful to system administrators, all compressed down to fit
within a 256MB bootable USB thumbdrive. The 256MB size is
not an arbitrary number; rather, it was chosen because USB
thumbdrives are very inexpensive at that size (many companies
now give them away as advertising gimmicks). This allows me
to have many Billix keys lying around, just waiting to be used.
Because the keys are cheap or free, I don’t feel bad about

leaving one in a server for a day or two. If your USB drive is
larger than 256MB, you still can use it for its designed pur-
pose—storing files. Billix doesn’t hamper normal use of the
USB drive in any way. There also is an ISO distribution of Billix
if you want to burn a CD of it, but I feel it’s not nearly as
convenient as having it on a USB key.

The current Billix distribution (0.21 at the time of this
writing) includes the following tools:

� Damn Small Linux 4.2.5

� Ubuntu 8.04 LTS netinstall

� Ubuntu 7.10 netinstall

� Ubuntu 6.06 LTS netinstall

� Fedora 8 netinstall

� CentOS 5.1 netinstall

� CentOS 4.6 netinstall

� Debian Etch netinstall

� Debian Sarge netinstall

� Memtest86 memory-checking utility

� Ntpwd Windows password changing utility

� DBAN disk wiper utility

So, with one USB key, a system administrator can recover
or repair a machine, install one of eight different Linux distri-
butions, test the memory in a system, get into a Windows
machine with a lost password or wipe the disks of a machine
before repurpose or disposal. In order to install any of the
netinstall-based Linux distributions, a working Internet con-
nection with DHCP is required, as the netinstall downloads
the installation bits for each distribution on the fly from
Internet-based mirrors.

Hopefully, you’re excited to check out Billix. You simply can
download the ISO version and burn it to a CD to get started,
but the full utility of Billix really shines when you install it on a
USB disk. Before you install it on a USB disk, you need to meet
the following prerequisites:

Billix: a Sysadmin’s Swiss
Army Knife
Turn that spare USB stick into a sysadmin’s dream with Billix. BILL CHILDERS

SYSTEM ADMINISTRATION

It wasn’t until I had a conversation
with fellow sysadmin Kyle Rankin
about the PXE boot environment
he’d implemented, that I realized it
might be possible to set up a USB
key to do more than merely boot a
recovery environment.

http://www.linuxjournal.com

� 256MB or greater USB drive with FAT- or FAT32-based
filesystem.

� Internet connection with DHCP (for netinstalls only, not
required for DSL, Windows password removal or disk
wiping with DBAN).

� install-mbr (part of the mbr package on Ubuntu or Debian,
needed for some USB drives).

� syslinux (from the syslinux package on Ubuntu or Debian,
required to create the bootsector on the USB drive).

� Your system must be capable of booting from USB devices
(most have this ability if they’re made after 2005).

To install the USB-based version of Billix, first check your
drive. If that drive has the U3 Windows software on it, you
may want to remove it to unlock all of the drive’s capacity (see
the Resources section for U3 removal utilities, which are typi-
cally Windows-based). Next, if your USB drive has data on it,
back up the data. I cannot stress this enough. You will be
making adjustments to the partition table of the USB drive, so
backing up any data that already is on the key is critical.
Download the latest version of Billix from the Sourceforge.net
project page to your computer. Once the download is com-
plete, untar the contents of the tarball to the root directory of
your USB drive.

Now that the contents of the tarball are on your USB drive,
you need to install a Master Boot Record (MBR) on the drive
and set a bootsector on the drive. The Master Boot Record
needs to be set up on the USB drive first. Issue a install-mbr
-p1 <device> (where <device> is your USB drive, such as
/dev/sdb). Warning: make sure that you get the device of the
USB drive correct, or you run the risk of messing up the MBR
on your system’s boot device. The -p1 option tells install-mbr
to set the first partition as active (that’s the one that will
contain the bootsector).

Next, the bootsector needs to be installed within the first
partition. Run syslinux -s <device/partition> (where
<device/partition> is the device and partition of the USB
drive, such as /dev/sdb1). Warning: much like installing the
MBR, installing the bootsector can be a dangerous operation if
you run it on the wrong device, so take care and double-check
your command line before pressing the Enter key.

Figure 1. The Billix Boot Menu

At this point, your USB drive can be unmounted safely,
and you can test it out by booting from the USB drive.
Once your system successfully boots from the USB drive,
you should see a menu similar to the one shown in Figure
1. Simply choose the number for what you want to boot,
run or install, and that distribution will spring into action.
If you don’t select a number, Damn Small Linux will boot
automatically after 30 seconds.

Damn Small Linux is a miniature version of Knoppix (it
actually has much of the automatic hardware-detection rou-
tines of Knoppix in it). As such, it makes an excellent rescue
environment, or it can be used as a quick “trusted desktop”
in the event you need to “borrow” a friend’s computer to
do something. I have used DSL in the past to commandeer a
system temporarily at a cybercafé, so I could log in to work
and fix a sick server. I’ve even used DSL to boot and mount
a corrupted Windows filesystem, and I was able to save
some of the data. DSL is fairly full-featured for its size, and
it comes with two window managers (JWM or Fluxbox). It
can be configured to save its data back to the USB disk in a
persistent fashion, so you always can be sure you have your
critical files with you and that it’s easily accessible.

All the Linux distribution installations have one thing in
common: they are all network-based installs. Although this is a
good thing for Billix, as they take up very little space (around
10MB for each distro), it can be a bad thing during installation
as the installation time will vary with the speed of your
Internet connection. There is one other upside to a network-
based installation. In many cases, there is no need to update

www. l inux journa l .com | 1 5

Troubleshooting
Billix

A few things can go wrong when converting a USB key
to run Billix (or any USB-based distribution). The most
common issue is for the USB drive to fail to boot the sys-
tem. This can be due to several things. Older systems
often split USB disk support into USB-Floppy emulation
and USB-HDD emulation. For Billix to work on these sys-
tems, USB-HDD needs to be enabled. If your drive came
with the U3 Windows-based software vault, this typically
needs to be disabled or removed prior to installing Billix.

If you’re seeing “MBR123” or something similar in the
upper-left corner, but the system is hanging, you have a
misconfigured MBR. Try install-mbr again, and make
sure to use the -p1 switch. You will need to run syslinux
again after running install-mbr. If all else fails, you
probably need to wipe the USB drive and begin again.
Back up the data on the USB drive, then use fdisk to
build a new partition table (make sure to set it as FAT
or FAT32). Use mkfs.vfat (with the -F 32 switch if it’s a
FAT32 filesystem) to build a new blank filesystem, untar
the tarball again, and run install-mbr and syslinux on
the newly defined filesystem.

http://www.linuxjournal.com

the newly installed operating system after installation, because
the OS bits that are downloaded are typically up to date. Note
that when using the Red Hat-based installers (CentOS 4.6,
CentOS 5.1 and Fedora 8), the system may appear to hang
during the download of a file called minstg2.img. The system
probably isn’t hanging; it’s just downloading that file, which is

fairly large (around 40MB), so it can take a while depending
on the speed of the mirror and the speed of your connection.
Take care not to specify the USB disk accidentally as the install
target for the distribution you are attempting to install.

The memtest86 utility has been around for quite a few

years, yet it’s a key tool for a sysadmin when faced with a
flaky computer. It does only one thing, but it does it very well:
it tests the RAM of a system very thoroughly. Simply boot off
the USB drive, select memtest from the menu, and press Enter,
and memtest86 will load and begin testing the RAM of the
system immediately. At this point, you can remove the USB
drive from the computer. It’s no longer needed as memtest86
is very small and loads completely into memory on startup.

The ntpwd Windows password “cracking” tool can be
a controversial tool, but it is included in the Billix distribu-
tion because as a system administrator, I’ve been asked
countless times to get into Windows systems (or accounts
on Windows systems) where the password has been lost or
forgotten. The ntpwd utility can be a bit daunting, as the
UI is text-based and nearly nonexistent, but it does a good
job of mounting FAT32- or NTFS-based partitions, editing
the SAM account database and saving those changes. Be
sure to read all the messages that ntpwd displays, and take
care to select the proper disk partition to edit. Also, take
the program’s advice and nullify a password rather than
trying to change it from within the interface—zeroing the
password works much more reliably.

DBAN (otherwise known as Darik’s Boot and Nuke) is a
very good “nuke it from orbit” hard disk wiper. It provides
various levels of wipe, from a basic “overwrite the disk with
zeros” to a full DoD-certified, multipass wipe. Like memtest86,
DBAN is small and loads completely into memory, so you can
boot the utility, remove the USB drive, start a wipe and move
on to another system. I’ve used to this to wipe clean disks
on systems before handing them over to a recycler or before
selling a system.

In closing, Billix may not make you coffee in the morning or
eradicate Windows from the face of the earth, but having a USB
key in your pocket that offers you the functionality to do all of
those tasks quickly and easily can make the life of a system
administrator (or any Linux-oriented person) much easier.�

Bill Childers is an IT Manager in Silicon Valley, where he lives with his wife and two children. He
enjoys Linux far too much, and probably should get more sun from time to time. In his spare time,
he does work with the Gilroy Garlic Festival, but he does not smell like garlic.

1 6 | www. l inux journa l .com

SYSTEM ADMINISTRATION

Billix is an aggregation of many
different tools that can be useful
to system administrators, all
compressed down to fit within a
256MB bootable USB thumbdrive.

Expanding Billix
It’s relatively easy to expand Billix to support other Linux
distributions, such as Knoppix or the Ubuntu live CDs.
Copy the contents of the Billix USB tarball to a directory
on your hard disk, and download the distro you want.
Copy the necessary kernel and initrd to the directory
where you put the contents of the USB tarball, taking
care to rename any files if there are files in that directory
with the same name. Copy any compressed filesystems
that your new distro may use to the USB drive (for exam-
ple, Knoppix has the KNOPPIX directory, and Puppy Linux
uses PUP_XXX.SFS). Then, look at the boot configuration
for that distro (it should be in isolinux.cfg). Take the
necessary lines out of that file, and put them in the Billix
syslinux.cfg file, changing filenames as necessary.
Optionally, you can add a menu item to the boot.msg file.
Finally, run syslinux -s <device>, and reboot your
system to test out your newly expanded Billix.

I have a 2GB USB drive that has a “Super-Billix” installa-
tion that includes Knoppix and Ubuntu 8.04. An added
bonus of having the entire Ubuntu live CD in your pocket
is that, thanks to the speed of USB 2.0, you can install
Ubuntu in less than ten minutes, which would be really
useful at an installfest. There is good information on
creating Ubuntu-bootable USB drives available at the
Pendrive Linux Web site.

Alternatively, a really neat thing to do (but way beyond
the scope of this article) is to convert Billix into a network-
boot (via Pre-Execution Environment, or PXE) environment.
I’ve actually got a VMware virtual machine running Billix
as a PXE boot server.

Resources

Billix Project Page: sourceforge.net/projects/billix

Damn Small Linux: www.damnsmalllinux.org

DBAN Project Page: dban.sourceforge.net

Knoppix: www.knoppix.net

Pendrive Linux: www.pendrivelinux.com

Syslinux: syslinux.zytor.com/index.php

Pxelinux: syslinux.zytor.com/pxe.php

U3 Removal Software: www.u3.com/uninstall

http://www.linuxjournal.com
http://www.damnsmalllinux.org
http://www.knoppix.net
http://www.pendrivelinux.com
http://www.u3.com/uninstall
http://sourceforge.net/projects/billix
http://dban.sourceforge.net
http://syslinux.zytor.com/index.php
http://syslinux.zytor.com/pxe.php

www.l inux journa l .com | 1 7

If a tree falls in the woods and no one is there to hear it,
does it make a sound? This the classic query designed to place
your mind into the Zen-like state known as the silent mind.
Whether or not you want to hear a tree fall, if you run a net-
work, you probably want to hear a server when it goes down.
Many organizations utilize the long-established Simple
Network Management Protocol (SNMP) as a way to monitor
their networks proactively and listen for things going down.

At a rudimentary level, SNMP requires only two items to
work: a management server and a managed device (or
devices). The management server pulls status and health infor-
mation at regular intervals from the managed devices and
stores the information in a table. Managed devices use local
SNMP agents to notify the management server when defined
behavior occurs (such as errors or “traps”), which are stored in
the same table on the server. The result is an accurate, real-
time reporting mechanism for outages. However, SNMP as a
protocol does not stipulate how the data in these tables is to
be presented and managed for the end user. That’s where a
promising new open-source network-monitoring software
called Zenoss (pronounced Zeen-ohss) comes in.

Available for most Linux distributions, Zenoss builds on the
basic operation of SNMP and uses a comprehensive interface
to manage even the largest and most diverse environment.
The Core version of Zenoss used in this article is freely avail-
able under the GPLv2. An Enterprise version also is available
with additional features and support. In this article, we install
Zenoss on a CentOS 5.1 system to observe its usefulness in a
network-monitoring role. From there, we create a simulated
multisystem server network using the following systems: a
Fedora-based Postfix e-mail server, an Ubuntu server running
Apache and a Windows server running File and Print services.
To conserve space, only the CentOS installation is discussed in
detail here. For the managed systems, only SNMP installation
and configuration are covered.

Building the Zenoss Server
Begin by selecting your hardware. Zenoss lacks specific hard-
ware requirements, but it relies heavily MySQL, so you can use
MySQL requirements as a rough guideline. I recommend using
the fastest processor available, 1GB of memory, fast enough
hard disks to provide acceptable MySQL performance and
Gigabit Ethernet for the network. I ran several test configura-
tions, and this configuration seemed adequate enough for a
medium-size network (100+ nodes/devices). To keep configu-
ration simple, all firewalls and SELinux instances were disabled
in the test environment. If you use firewalls in your environ-
ment, open ports 161 (SNMP), 8080 (Zenoss Management

Page) and 514 (if you integrate syslog with Zenoss).
Install CentOS 5.1 on the server using your own prefer-

ences. I used a bare install with no X Window System or
desktop manager. Assign a static IP address and any other
pertinent network information (DNS servers and so forth).
After the OS install is complete, install the following packages
using the yum command below:

yum install mysql mysql-server net-snmp net-snmp-utils gmp httpd

If the mysqld or the httpd service has not started after
yum installs it, start it and set it to run for your configured
runlevel. Next, download the latest Zenoss Core .rpm from
Sourceforge.net (2.1.3 at the time of this writing), and install
it using rpm from the command line. To start all the Zenoss-
related dæmons after the .rpm has been installed, type the
following at a command prompt:

service zenoss start

Launch a Web browser from any machine, and type the IP
address of the Zenoss server using port 8080 (for example,
http://192.168.142.6:8080). Log in to the site using the
default account admin with a password of zenoss. This brings
up the main dashboard. The dashboard is a compartmental-
ized view of the state of your managed devices. If you don’t
like the default display, you can arrange your dashboard
any way you want using the various drop-down lists on the
portlets (windows). I recommend setting the Production States
portlet to display Production, so we can see our test systems
after they are added.

Almost everything related to managed devices in Zenoss
revolves around classes. With classes, you can create an infi-
nite number of systems, processes or service classifications to
monitor. To begin adding devices, we need to set our SNMP
community strings at the top-level /Devices class. SNMP com-
munity strings are like passphrases used to authenticate traffic
between devices. If one device wants to communicate with
another, they must have matching community names/strings.
In many deployments, administrators use the default commu-
nity name of public (and/or private), which creates a security
risk. I recommend changing these strings and making them
into a short phrase. You can add numbers and characters to
make the community name more complex to guess/crack, but
I find phrases easier to remember.

Click on the Devices link on the navigation menu on the
left, so that /Devices is listed near the top of the page. Click
on the zProperties tab and scroll down. Enter an SNMP

Zenoss and the Art of
Network Monitoring
If a server goes down, do you want to hear it? JERAMIAH BOWLING

http://www.linuxjournal.com
http://192.168.142.6:8080

1 8 | www. l inux journa l .com

SYSTEM ADMINISTRATION

community string in the zSNMPCommunitiy field. For our test
environment, I used the string whatsourclearanceclarence. You
can use different strings with different subclasses of systems or
individual systems, but by setting it at the /Devices class, it will
be used for any subclasses unless it is overridden. You also
could list multiple strings in the zSNMPCommunities under the
/Devices class, which allows you to define multiple strings for
the discovery process discussed later. Make sure your commu-
nity string (zSNMPCommunity) is in this list.

Installing Net-SNMP on Linux Clients
Now, let’s set up our Linux systems so they can talk to the
Zenoss server. After installing and configuring the operating
systems on our other Linux servers, install the Net-SNMP
package on each using the following command on the
Ubuntu server:

sudo apt-get install snmpd

And, on the Fedora server use:

yum install net-snmp

Once the Net-SNMP packages are installed, edit out any
other lines in the Access Control sections at the beginning of
the /etc/snmp/snmpd.conf, and add the following lines:

sec.name source community

com2sec local localhost whatsourclearanceclarence

com2sec mynetwork 192.168.142.0/24 whatsourclearanceclarence

group.name sec.model sec.name

group MyROGroup v1 local

group MyROGroup v1 mynetwork

group MyROGroup v2c local

group MyROGroup v2c mynetwork

incl/excl subtree mask

view all included .1 80

context sec.model sec.level prefix read write notif

access MyROGroup "" any noauth exact all none none

Do not edit out any lines beneath the last Access Control
Sections. Please note that the above is only a mildly restrictive
configuration. Consult the snmpd.conf file or the Net-SNMP
documentation if you want to tighten access. On the Ubuntu
server, you also may have to change the following line in the
/etc/snmp/default file to allow SNMP to bind to anything other
than the local loopback address:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid'

Installing SNMP on Windows
On the Windows server, access the Add/Remove Programs
utility from the Control Panel. Click on the Add/Remove
Windows Components button on the left. Scroll down
the list of Components, check off Management and
Monitoring Tools, and click on the Details button. Check
Simple Network Management Protocol in the list, and click
OK to install. Close the Add/Remove window, and go into
the Services console from Administrative Tools in the
Control Panel. Find the SNMP service in the list, right-click
on it, and click on Properties to bring up the service prop-
erties tabs. Click on the Traps tab, and type in the commu-
nity name. In the list of Trap Destinations, add the IP
address of the Zenoss server. Now, click on the Security
tab, and check off the Send authentication trap box, enter
the community name, and give it READ-ONLY rights. Click
OK, and restart the service.

Return to the Zenoss management Web page. Click the
Devices link to go into the subclass of /Devices/Servers/Windows,
and on the zProperties tab, enter the name of a domain admin
account and password in the zWinUser and zWinPassword
fields. This account gives Zenoss access to the Windows
Management Instrumentation (WMI) on your Windows
systems. Make sure to click Save at the bottom of the page
before navigating away.

Adding Devices into Zenoss
Now that our systems have SNMP, we can add them into
Zenoss. Devices can be added individually or by scanning the
network. Let’s do both. To add our Ubuntu server into Zenoss,
click on the Add Device link under the Management naviga-
tion section. Enter the IP address of the server and the com-
munity name. Under Device Class Path, set the selection to
/Server/Linux. You could add a variety of other hardware, soft-
ware and Zenoss information on this page before adding a
system, but at a minimum, an IP address name and community
name is required (Figure 1). Click the Add Device button, and
the discovery process runs. When the results are displayed,
click on the link to the new device to access it.

Figure 1. Adding a Device into Zenoss

Available for most Linux distributions,
Zenoss builds on the basic operation
of SNMP and uses a comprehensive
interface to manage even the largest
and most diverse environment.

http://www.linuxjournal.com

www.l inux journa l .com | 1 9

To scan the network for devices, click the Networks link
under the Browse By section of the navigation menu. If your
network is not in the list, add it using CIDR notation. Once
added, check the box next to your network and use the drop-
down arrow to click on the Select Discover Devices option.
You will see a similar results page as the one from before.
When complete, click on the links at the bottom of the results
page to access the new devices. Any device found will be
placed in the /Discovered class. Because we should have
discovered the Fedora server and the Windows server,
they should be moved to the /Devices/Servers/Linux and
/Devices/Servers/Windows classes, respectively. This can be
done from each server’s Status tab by using the main drop-
down list and selecting Manage→Change Class.

If all has gone well, so far we have a functional SNMP
monitoring system that is able to monitor heartbeat/availability
(Figure 2) and performance information (Figure 3) on our sys-
tems. You can customize other various Status and Performance
Monitors to meet your needs, but here we will use the default
localhost monitors.

Figure 2. The Zenoss Dashboard

Figure 3. Performance data is collected almost immediately
after discovery.

Creating Users and Setting E-Mail Alerts
At this point, we can use the dashboard to monitor the man-
aged devices, but we will be notified only if we visit the site.
It would be much more helpful if we could receive alerts via
e-mail. To set up e-mail alerting, we need to create a separate
user account, as alerts do not work under the admin account.
Click on the Setting link under the Management navigation
section. Using the drop-down arrow on the menu, select Add
User. Enter a user name and e-mail address when prompted.
Click on the new user in the list to edit its properties. Enter a
password for the new account, and assign a role of Manager.
Click Save at the bottom of the page. Log out of Zenoss, and
log back in with the new account. Bring the settings page
back up, and enter your SMTP server information. After setting
up SMTP, we need to create an Alerting Rule for our new user.
Click on the Users tab, and click on the account just created in
the list. From the resulting page, click on the Edit tab and
enter the e-mail address to which you want alerts sent. Now,
go to the Alerting Rules tab and create a new rule using the
drop-down arrow. On the edit tab of the new Alerting Rule,
change the Action to email, Enabled to True, and change the
Severity formula to >= Warning (Figure 4). Click Save.

Figure 4. Creating an Alert Rule

Figure 5. Zenoss alerts are sent fresh to your mailbox.

http://www.linuxjournal.com

2 0 | www. l inux journa l .com

SYSTEM ADMINISTRATION

The above rule sends alerts when any Production server
experiences an event rated Warning or higher (Figure 5). Using
a filter, you can create any number of rules and have them
apply only to specific devices or groups of devices. If you want
to limit your alerts by time to working hours, for example, use
the Schedule tab on the Alerting Rule to define a window. If
no schedule is specified (the default), the rule runs all the time.
In our rule, only one user will be notified. You also can create
groups of users from the Settings page, so that multiple
people are alerted, or you could use a group e-mail address
in your user properties.

Services and Processes
We can expand our view of the test systems by adding a
process and a service for Zenoss to monitor. When we refer
to a process in Zenoss, we mean an active program, usually a
dæmon, running on a managed device. Zenoss uses regular
expressions to monitor processes.

To monitor Postfix on the mail server, first, let’s define
it as a process. Navigate to the Processes page under the
Classes section of the navigation menu. Use the drop-down
arrow next to OS Processes, and click Add Process. Enter
Postfix as the process ID. When you return to the previous
page, click on the link to the new process. On the edit tab
of the process, enter master in the Regex field. Click Save
before navigating away. Go to the zProperties tab of the

process, and make sure the zMonitor field is set to True.
Click Save again. Navigate back to the mail server from the
dashboard, and on the OS tab, use the topmost menu’s
drop-down arrow to select Add→Add OSProcess. After the
process has been added, we will be alerted if the Postfix
process degrades or fails. While still on the OS tab of the

Figure 6. Zenoss comes with a plethora of predefined Windows services
to monitor.

http://www.linuxjournal.com
http://shop.linuxjournal.com

www.l inux journa l .com | 2 1

server, place a check mark next to the new Postifx process,
and from the OS Processes drop-down menu, select Lock
OSProcess. On the next set of options, select Lock from
deletion. This protects the process from being overwritten
if Zenoss remodels the server.

Services in Zenoss are defined by active network ports
instead of running dæmons. There are a plethora of services
built in to the software, and you can define your own if you
want to. The built-in services are broken down into two cate-
gories: IPServices and WinServices. IPservices use any port from
1-65535 and include common network apps/protocols, such
as SMTP (Port 25), DNS (53) and HTTP (80). WinServices are
intended for specific use with Windows servers (Figure 6).

Adding a service is much simpler than adding a process,
because there are so many predefined in Zenoss. To moni-
tor the HTTP service on our Web server, navigate to the
server from the dashboard. Use the main menu’s drop-
down arrow on the server’s OS tab arrow, and select
Add→Add IPService. Type HTTP in the Service Class Field.
Notice that the field begins to prefill with matches as you
type the letters. Select TCP as the protocol, and click OK.
Click Save on the resulting page. As with the OSProcess
procedure, return to the OS tab of the server and lock the
new IPService. Zenoss is now monitoring HTTP availability
on the server (Figure 7).

Only the Beginning
There are a multitude of other features in Zenoss that space
here prevents covering, including Network Maps (Figure 8), a
Google Maps API for multilocation monitoring (Figure 9) and
Zenpacks that provide additional monitoring and performance-
capturing capabilities for common applications.

In the span of this article, we have deployed an enterprise-
grade monitoring solution with relative ease. Although it’s
surprisingly easy to deploy, Zenoss also possesses a deep
feature set. It easily rivals, if not surpasses, commercial
competitors in the same product space. It is easy to manage,
highly customizable and supported by a vibrant community.

Although you may not achieve the silent mind as long as
you work with networks, with Zenoss, at least you will be able
to sleep at night knowing you will hear things when they go

down. Hopefully, they won’t be trees.�

Jeramiah Bowling has been a systems administrator and network engineer for more than ten
years. He works for a regional accounting and auditing firm in Hunt Valley, Maryland, and holds
numerous industry certifications, including the CISSP. Your comments are welcome at
jb50c@yahoo.com.

Resources

Zenoss: www.zenoss.com

Zenoss SourceForge Downloads Page: sourceforge.net/
project/showfiles.php?group_id=163126

NET-SNMP: net-snmp.sourceforge.net

CentOS: www.centos.org

CentOS 5 Mirrors: isoredirect.centos.org/centos/5/isos/i386

Figure 7. Monitoring HTTP as an IPService Figure 8. Zenoss automatically maps your network for you.

Figure 9. Multiple sites can be monitored geographically with the
Google Maps API.

http://www.linuxjournal.com
mailto:jb50c@yahoo.com
http://www.zenoss.com
http://www.centos.org
http://sourceforge.net/project/showfiles.php?group_id=163126
http://net-snmp.sourceforge.net
http://isoredirect.centos.org/centos/5/isos/i386

2 2 | www. l inux journa l .com

In the 1970s and 1980s, the ubiquitous model of corporate
and academic computing was that of many users logging in
remotely to a single server to use a sliver of its precious pro-
cessing time. With the cost of semiconductors holding fast to
Moore’s Law in the subsequent decades, however, the next
advances in computing saw desktop computing become the
standard as it became more affordable.

Although the technology behind thin clients is not revolu-
tionary, their popularity has been on the increase recently. For
many institutions that rely on older, donated hardware, thin-
client networks are the only feasible way to provide users with
access to relatively new software. Their use also has flourished
in the corporate context. Thin-client networks provide cost-
savings, ease network administration and pose fewer security
implications when the time comes to dispose of them. Several
computer manufacturers have leaped to stake their claim on
this expanding market: Dell and HP Compaq, among others,
now offer thin-client solutions to business clients.

And, of course, thin clients have a large following of hob-
byists and enthusiasts, who have used their size and flexibility
to great effect in countless home-brew projects. Software
projects, such as the Etherboot Project and the Linux
Terminal Server Project, have large and active communities
and provide excellent support to those looking to experiment
with diskless workstations.

Connecting the thin clients to a server always has been
done using Ethernet; however, things are changing. Wireless
technologies, such as Wi-Fi (IEEE 802.11), have evolved
tremendously and now can start to provide an alternative
means of connecting clients to servers. Furthermore, wireless
equipment enjoys world-wide acceptance, and compatible
products are readily available and very cheap.

In this article, we give a short description of the setup of a
thin-client network, as well as some of the tools we found to
be useful in its operation and administration. We also describe
a test scenario we set up, involving a thin-client network that
spanned a wireless bridge.

What Is a Thin Client?
A thin client is a computer with no local hard drive, which
loads its operating system at boot time from a boot server. It is
designed to process data independently, but relies solely on its
server for administration, applications and non-volatile storage.

Following the client’s BIOS sequence, most machines with
network-boot capability will initiate a Preboot EXecution
Environment (PXE), which will pass system control to the local
network adapter. Figure 1 illustrates the traffic profile of the

boot process and the various different stages, which are num-
bered 1 to 5. The network card broadcasts a DHCPDISCOVER
packet with special flags set, indicating that the sender is try-
ing to locate a valid boot server. A local PXE server will reply
with a list of valid boot servers. The client then chooses a
server, requests the name of the Linux kernel file from the
server and initiates its transfer using Trivial File Transfer
Protocol (TFTP; stage 1). The client then loads and executes
the Linux kernel as normal (stage 2). A custom init program is
then run, which searches for a network card and uses DHCP
to identify itself on the network. Using Sun Microsystems’
Network File System (NFS), the thin client then mounts a direc-
tory tree located on the PXE server as its own root filesystem
(stage 3). Once the client has a non-volatile root filesystem, it
continues to load the rest of its operating system environment
(stage 4)—for example, it can mount a local filesystem and
create a ramdisk to store local copies of temporary files.
The fifth stage in the boot process is the initiation of the X
Window System. This transfers the keystrokes from the thin
client to the server to be processed. The server in return sends
the graphical output to be displayed by the user interface
system (usually KDE or GNOME) on the thin client.

The X Display Manager Control Protocol (XDMCP) provides
a layer of abstraction between the hardware in a system and
the output shown to the user. This allows the user to be
physically removed from the hardware by, in this case, a
Local Area Network. When the X Window System is run on
the thin client, it contacts the PXE server. This means the
user logs in to the thin client to get a session on the server.

In conventional fat-client environments, if a client opens a
large file from a network server, it must be transferred to the
client over the network. If the client saves the file, the file
must be transmitted over the network again. In the case of
wireless networks, where bandwidth is limited, fat client
networks are highly inefficient. On the other hand, with a

Thin Clients Booting over a
Wireless Bridge
How quickly can thin clients boot over a wireless bridge, and how far apart can
they really be? RONAN SKEHILL, ALAN DUNNE AND JOHN NELSON

SYSTEM ADMINISTRATION

Figure 1. LTSP Traffic Profile and Boot Sequence

http://www.linuxjournal.com

thin-client network, if the user modifies the large file, only mouse
movement, keystrokes and screen updates are transmitted to
and from the thin client. This is a highly efficient means, and
other examples, such as ICA or NX, can consume as little as
5kbps bandwidth. This level of traffic is suitable for transmitting
over wireless links.

How to Set Up a Thin-Client Network with
a Wireless Bridge
One of the requirements for a thin client is that it has a
PXE-bootable system. Normally, PXE is part of your network
card BIOS, but if your card doesn’t support it, you can get
an ISO image of Etherboot with PXE support from ROM-o-matic
(see Resources). Looking at the server with, for example, ten
clients, it should have plenty of hard disk space (100GB),
plenty of RAM (at least 1GB) and a modern CPU (such as an
AMD64 3200).

The following is a five-step how-to guide on setting up an
Edubuntu thin-client network over a fixed network.

1. Prepare the server. In our network, we used the
standard standalone configuration. From the command line:

sudo apt-get install ltsp-server-standalone

You may need to edit /etc/ltsp/dhcpd.conf if you change
the default IP range for the clients. By default, it’s configured
for a server at 192.168.0.1 serving PXE clients.

Our network wasn’t behind a firewall, but if yours is,
you need to open TFTP, NFS and DHCP. To do this, edit
/etc/hosts.allow, and limit access for portmap, rpc.mountd,
rpc.statd and in.tftpd to the local network:

portmap: 192.168.0.0/24

rpc.mountd: 192.168.0.0/24

rpc.statd: 192.168.0.0/24

in.tftpd: 192.168.0.0/24

Restart all the services by executing the following
commands:

sudo invoke-rc.d nfs-kernel-server restart

sudo invoke-rc.d nfs-common restart

sudo invoke-rc.d portmap restart

2. Build the client’s runtime environment. While con-
nected to the Internet, issue the command:

sudo ltsp-build-client

If you’re not connected to the Internet and have Edubuntu
on CD, use:

sudo ltsp-build-client --mirror file:///cdrom

Remember to copy sources.list from the server into
the chroot.

3. Configure your SSH keys. To configure your SSH
server and keys, do the following:

sudo apt-get install openssh-server

sudo ltsp-update-sshkeys

4. Start DHCP. You should now be ready to start your
DHCP server:

sudo invoke-rc.d dhcp3-server start

If all is going well, you should be ready to start your
thin client.

5. Boot the thin client. Make sure the client is connected
to the same network as your server.

Power on the client, and if all goes well, you should see a
nice XDMCP graphical login dialog.

Once the thin-client network was up and running correctly,
we added a wireless bridge into our network. In our network,
a number of thin clients are located on a single hub, which is
separated from the boot server by an IEEE 802.11 wireless
bridge. It’s not an unrealistic scenario; a situation such as this
may arise in a corporate setting or university. For example, if
a group of thin clients is located in a different or temporary
building that does not have access to the main network, a
simple and elegant solution would be to have a wireless link
between the clients and the server. Here is a mini-guide in
getting the bridge running so that the clients can boot over
the bridge:

� Connect the server to the LAN port of the access point.
Using this LAN connection, access the Web configuration
interface of the access point, and configure it to broadcast
an SSID on a unique channel. Ensure that it is in
Infrastructure mode (not ad hoc mode). Save these set-
tings and disconnect the server from the access point,
leaving it powered on.

� Now, connect the server to the wireless node. Using its
Web interface, connect to the wireless network advertised
by the access point. Again, make sure the node connects to
the access point in Infrastructure mode.

� Finally, connect the thin client to the access point. If there
are several thin clients connected to a single hub, connect
the access point to this hub.

We found ad hoc mode unsuitable for two reasons. First,
most wireless devices limit ad hoc connection speeds to
11Mbps, which would put the network under severe strain to
boot even one client. Second, while in ad hoc mode, the wire-
less nodes we were using would assume the Media Access
Control (MAC) address of the computer that last accessed its
Web interface (using Ethernet) as its own Wireless LAN MAC.
This made the nodes suitable for connecting a single computer
to a wireless network, but not for bridging traffic destined
to more than one machine. This detail was found only after
much sleuthing and led to a range of sporadic and often
unreproducible errors in our system.

The wireless devices will form an Open Systems
Interconnection (OSI) layer 2 bridge between the server and
the thin clients. In other words, all packets received by the
wireless devices on their Ethernet interfaces will be forwarded
over the wireless network and retransmitted on the Ethernet

www. l inux journa l .com | 2 3

file:///cdrom
http://www.linuxjournal.com

adapter of the other wireless device. The bridge is transparent
to both the clients and the server; neither has any knowledge
that the bridge is in place.

For administration of the thin clients and network, we used
the Webmin program. Webmin comprises a Web front end
and a number of CGI scripts, which directly update system
configuration files. As it is Web-based, administration can be
performed from any part of the network by simply using a
Web browser to log in to the server. The graphical interface
greatly simplifies tasks, such as adding and removing thin
clients from the network or changing the location of the
image file to be transferred at boot time. The alternative is to
edit several configuration files by hand and restart all dæmon
programs manually.

Evaluating the Performance of a Thin-Client
Network
The boot process of a thin client is network-intensive, but once
the operating system has been transferred, there is little traffic
between the client and the server. As the time required to
boot a thin client is a good indicator of the overall usability of
the network, this is the metric we used in all our tests.

Our testbed consisted of a 3GHz Pentium 4 with 1GB of
RAM as the PXE server. We chose Edubuntu 5.10 for our
server, as this (and all newer versions of Edubuntu) come
with LTSP included. We used six identical thin clients:
500MHz Pentium III machines with 512MB of RAM—plenty
of processing power for our purposes.

Figure 2. Six thin clients are connected to a hub, and in turn, this is con-
nected to wireless bridge device. On the other side of the bridge is the
server. Both wireless devices are placed in the Azimuth chamber.

When performing our tests, it was important that the
results obtained were free from any external influence. A large
part of this was making sure that the wireless bridge was not
affected by any other wireless networks, cordless phones
operating at 2.4GHz, microwaves or any other sources of
Radio Frequency (RF) interference. To this end, we used the
Azimuth 301w Test Chamber to house the wireless devices
(see Resources). This ensures that any variations in boot times
are caused by random variables within the system itself.

The Azimuth is a test platform for system-level testing
of 802.11 wireless networks. It holds two wireless devices
(in our case, the devices making up our bridge) in separate
chambers and provides an artificial medium between them,
creating complete isolation from the external RF environ-
ment. The Azimuth can attenuate the medium between

the wireless devices and can convert the attenuation in
decibels to an approximate distance between them. This
gives us the repeatability, which is a rare thing in wireless
LAN evaluation. A graphic representation of our testbed is
shown in Figure 2.

We tested the thin-client network extensively in three
different scenarios: first, when multiple clients are booting
simultaneously over the network; second, booting a single thin
client over the network at varying distances, which are simu-
lated by altering the attenuation introduced by the chamber;

2 4 | www. l inux journa l .com

SYSTEM ADMINISTRATION

Figure 3. A Boot Time Comparison of Fixed and Wireless Networks with
an Increasing Number of Thin Clients

Figure 4. The Effect of the Bridge Length on Thin-Client Boot Time

Figure 5. Boot Time in the Presence of Background Traffic

http://www.linuxjournal.com

and third, booting a single client when
there is heavy background network
traffic between the server and the
other clients on the network.

Conclusion
As shown in Figure 3, a wired network
is much more suitable for a thin-client
network. The main limiting factor in
using an 802.11g network is its lack of
available bandwidth. Offering a maxi-
mum data rate of 54Mbps (and actual
transfer speeds at less than half that),
even an aging 100Mbps Ethernet easily
outstrips 802.11g. When using an
802.11g bridge in a network such as
this one, it is best to bear in mind its
limitations. If your network contains
multiple clients, try to stagger their boot
procedures if possible.

Second, as shown in Figure 4, keep
the bridge length to a minimum. With
802.11g technology, after a length of
25 meters, the boot time for a single
client increases sharply, soon hitting the
three-minute mark. Finally, our test
shows, as illustrated in Figure 5, heavy
background traffic (generated either by
other clients booting or by external
sources) also has a major influence on
the clients’ boot processes in a wireless
environment. As the background traffic
reaches 25% of our maximum through-
put, the boot times begin to soar.
Having pointed out the limitations with
802.11g, 802.11n is on the horizon,
and it can offer data rates of 540Mbps,
which means these limitations could

soon cease to be an issue.
In the meantime, we can recom-

mend a couple ways to speed up the
boot process. First, strip out the
unneeded services from the thin clients.
Second, fix the delay of NFS mounting
in klibc, and also try to start LDM as
early as possible in the boot process,
which means running it as the first service
in rc2.d. If you do not need system logs,
you can remove syslogd completely
from the thin-client startup. Finally, it’s
worth remembering that after a client
has fully booted, it requires very little
bandwidth, and current wireless technol-
ogy is more than capable of supporting
a network of thin clients.

Acknowledgement
This work was supported by the
National Communications Network
Research Centre, a Science
Foundation Ireland Project, under
Grant 03/IN3/1396.�

Ronan Skehill works for the Wireless Access Research Centre
at the University of Limerick, Ireland, as a Senior Researcher.
The Centre focuses on everything wireless-related and has
been growing steadily since its inception in 1999.

Alan Dunne conducted his final-year project with the Centre
under the supervision of John Nelson. He graduated in 2007
with a degree in Computer Engineering and now works with
Ericsson Ireland as a Network Integration Engineer.

John Nelson is a senior lecturer in the Department of Electronic
and Computer Engineering at the University of Limerick.
His interests include mobile and wireless communications,
software engineering and ambient assisted living.

Resources

Linux Terminal Server Project (LTSP): ltsp.sourceforge.net

Ubuntu ThinClient How-To: https://help.ubuntu.com/community/
ThinClientHowto

Azimuth WLAN Chamber: www.azimuth.net

ROM-o-matic: rom-o-matic.net

Etherboot: www.etherboot.org

Wireshark: www.wireshark.org

Webmin: www.webmin.com

Edubuntu: www.edubuntu.org

http://www.azimuth.net
http://www.etherboot.org
http://www.wireshark.org
http://www.webmin.com
http://www.edubuntu.org
http://www.linuxjournal.com/giftsub
http://ltsp.sourceforge.net
https://help.ubuntu.com/community/ThinClientHowto
http://rom-o-matic.net

2 6 | www. l inux journa l .com

It’s funny how automation evolves as system administrators
manage larger numbers of servers. When you manage only a
few servers, it’s fine to pop in an install CD and set options
manually. As the number of servers grows, you might realize
it makes sense to set up a kickstart or FAI (Debian’s Fully
Automated Installer) environment to automate all that
manual configuration at install time. Now, you boot the
install CD, type in a few boot arguments to point the
machine to the kickstart server, and go get a cup of coffee
as the machine installs.

When the day comes that you have to install three or
four machines at once, you either can burn extra CDs or
investigate PXE boot. The Preboot eXecution Environment
is an open standard developed by Intel to allow machines
to boot over a network instead of from local media, such
as a floppy, CD or hard drive. Modern servers and newer
laptops and desktops with integrated NICs should support
PXE booting in the BIOS—in some cases, it’s enabled by
default, and in other cases, you need to go into your BIOS
settings to enable it.

Because many modern servers these days offer built-in

remote power and remote terminals or otherwise are
remotely accessible via serial console servers or networked
KVM, if you have a PXE boot environment set up, you can
power on remotely, then boot and install a machine from
miles away.

If you have never set up a PXE boot server before, the
first part of this article covers the steps to get your first
PXE server up and running. If PXE booting is old hat to
you, skip ahead to the section called PXE Menu Magic.
There, I cover how to configure boot menus when you PXE
boot, so instead of hunting down MAC addresses and
doing a lot of setup before an install, you simply can boot,
select your OS, and you are off and running. After that, I
discuss how to integrate rescue tools, such as Knoppix and
memtest86+, into your PXE environment, so they are avail-
able to any machine that can boot from the network.

PXE Setup
You need three main pieces of infrastructure for a PXE
setup: a DHCP server, a TFTP server and the syslinux soft-
ware. Both DHCP and TFTP can reside on the same server.
When a system attempts to boot from the network, the
DHCP server gives it an IP address and then tells it the
address for the TFTP server and the name of the bootstrap
program to run. The TFTP server then serves that file,
which in our case is a PXE-enabled syslinux binary. That
program runs on the booted machine and then can load
Linux kernels or other OS files that also are shared on the
TFTP server over the network. Once the kernel is loaded,
the OS starts as normal, and if you have configured a kick-
start install correctly, the install begins.

Configure DHCP
Any relatively new DHCP server will support PXE booting, so
if you don’t already have a DHCP server set up, just use your
distribution’s DHCP server package (possibly named dhcpd,
dhcp3-server or something similar). Configuring DHCP to suit
your network is somewhat beyond the scope of this article,
but many distributions ship a default configuration file that
should provide a good place to start. Once the DHCP server is
installed, edit the configuration file (often in /etc/dhcpd.conf),
and locate the subnet section (or each host section if you
configured static IP assignment via DHCP and want these
hosts to PXE boot), and add two lines:

next-server ip_of_pxe_server;

filename "pxelinux.0";

The next-server directive tells the host the IP address of
the TFTP server, and the filename directive tells it which file
to download and execute from that server. Change the
next-server argument to match the IP address of your TFTP
server, and keep filename set to pxelinux.0, as that is the
name of the syslinux PXE-enabled executable.

In the subnet section, you also need to add dynamic-bootp
to the range directive. Here is an example subnet section after
the changes:

subnet 10.0.0.0 netmask 255.255.255.0 {

range dynamic-bootp 10.0.0.200 10.0.0.220;

next-server 10.0.0.1;

filename "pxelinux.0";

}

PXE Magic: Flexible Network
Booting with Menus
Set up a PXE server and then add menus to boot kickstart images, rescue disks and
diagnostic tools all from the network. KYLE RANKIN

SYSTEM ADMINISTRATION

When the day comes that you have
to install three or four machines at
once, you either can burn extra CDs
or investigate PXE boot.

http://www.linuxjournal.com

Install TFTP
After the DHCP server is configured and running, you are
ready to install TFTP. The pxelinux executable requires a
TFTP server that supports the tsize option, and two good
choices are either tftpd-hpa or atftp. In many distributions,
these options already are packaged under these names, so
just install your distribution’s package or otherwise follow
the installation instructions from the project’s official site.

Depending on your TFTP package, you might need to add
an entry to /etc/inetd.conf if it wasn’t already added for you:

tftp dgram udp wait root /usr/sbin/in.tftpd

/usr/sbin/in.tftpd -s /var/lib/tftpboot

As you can see in this example, the -s option (used for
tftpd-hpa) specified /var/lib/tftpboot as the directory to contain
my files, but on some systems, these files are commonly stored
in /tftpboot, so see your /etc/inetd.conf file and your tftpd
man page and check on its conventions if you are unsure.
If your distribution uses xinetd and doesn’t create a file in
/etc/xinetd.d for you, create a file called /etc/xinetd.d/tftp
that contains the following:

default: off

description: The tftp server serves files using

the trivial file transfer protocol.

The tftp protocol is often used to boot diskless

workstations, download configuration files to network-aware

printers, and to start the installation process for

some operating systems.

service tftp

{

disable = no

socket_type = dgram

protocol = udp

wait = yes

user = root

server = /usr/sbin/in.tftpd

server_args = -s /var/lib/tftpboot

per_source = 11

cps = 100 2

flags = IPv4

}

As tftpd is part of inetd or xinetd, you will not need to
start any service. At most, you might need to reload inetd or
xinetd; however, make sure that any software firewall you
have running allows the TFTP port (port 69 udp) as input.

Add Syslinux
Now that TFTP is set up, all that is left to do is to install
the syslinux package (available for most distributions, or
you can follow the installation instructions from the pro-
ject’s main Web page), copy the supplied pxelinux.0 file
to /var/lib/tftpboot (or your TFTP directory), and then create
a /var/lib/tftpboot/pxelinux.cfg directory to hold pxelinux
configuration files.

PXE Menu Magic
You can configure pxelinux with or without menus, and many

administrators use pxelinux without them. There are com-
pelling reasons to use pxelinux menus, which I discuss below,
but first, here’s how some pxelinux setups are configured.

When many people configure pxelinux, they create con-
figuration files for a machine or class of machines based on
the fact that when pxelinux loads it searches the pxelinux.cfg
directory on the TFTP server for configuration files in the
following order:

� Files named 01-MACADDRESS with hyphens in between
each hex pair. So, for a server with a MAC address of
88:99:AA:BB:CC:DD, a configuration file that would target
only that machine would be named 01-88-99-aa-bb-cc-dd
(and I’ve noticed it does matter that it is lowercase).

� Files named after the host’s IP address in hex. Here,
pxelinux will drop a digit from the end of the hex IP and
try again as each file search fails. This is often used
when an administrator buys a lot of the same brand of
machine, which often will have very similar MAC
addresses. The administrator then can configure DHCP
to assign a certain IP range to those MAC addresses.
Then, a boot option can be applied to all of that group.

� Finally, if no specific files can be found, pxelinux will look
for a file named default and use it.

One nice feature of pxelinux is that it uses the same syntax
as syslinux, so porting over a configuration from a CD, for
instance, can start with the syslinux options and follow with
your custom network options. Here is an example configura-
tion for an old CentOS 3.6 kickstart:

default linux

label linux

kernel vmlinuz-centos-3.6

append text nofb load_ramdisk=1 initrd=initrd-centos-3.6.img

�network ks=http://10.0.0.1/kickstart/centos3.cfg

Why Use Menus?
The standard sort of pxelinux setup works fine, and many
administrators use it, but one of the annoying aspects of it
is that even if you know you want to install, say, CentOS
3.6 on a server, you first have to get the MAC address. So,
you either go to the machine and find a sticker that lists
the MAC address, boot the machine into the BIOS to read
the MAC, or let it get a lease on the network. Then, you
need to create either a custom configuration file for that
host’s MAC or make sure its MAC is part of a group you
already have configured. Depending on your infrastructure,
this step can add substantial time to each server. Even if
you buy servers in batches and group in IP ranges, what

www. l inux journa l .com | 2 7

You need three main pieces of
infrastructure for a PXE setup: a
DHCP server, a TFTP server and
the syslinux software.

http://10.0.0.1/kickstart/centos3.cfg
http://www.linuxjournal.com

happens if you want to install a different OS on one of the
servers? You then have to go through the additional work
of tracking down the MAC to set up an exclusion.

With pxelinux menus, I can preconfigure any of the dif-
ferent network boot scenarios I need and assign a number
to them. Then, when a machine boots, I get an ASCII menu
I can customize that lists all of these options and their
number. Then, I can select the option I want, press Enter,
and the install is off and running. Beyond that, now I have
the option of adding non-kickstart images and can make
them available to all of my servers, not just certain groups.

With this feature, you can make rescue tools like Knoppix
and memtest86+ available to any machine on the network
that can PXE boot. You even can set a timeout, like with
boot CDs, that will select a default option. I use this to
select my standard Knoppix rescue mode after 30 seconds.

Configure PXE Menus
Because pxelinux shares the syntax of syslinux, if you have any
CDs that have fancy syslinux menus, you can refer to them
for examples. Because you want to make this available to
all hosts, move any more specific configuration files out of
pxelinux.cfg, and create a file named default. When the
pxelinux program fails to find any more specific files, it then
will load this configuration. Here is a sample menu configu-
ration with two options: the first boots Knoppix over the
network, and the second boots a CentOS 4.5 kickstart:

default 1

timeout 300

prompt 1

display f1.msg

F1 f1.msg

F2 f2.msg

label 1

kernel vmlinuz-knx5.1.1

append secure nfsdir=10.0.0.1:/mnt/knoppix/5.1.1

�nodhcp lang=us ramdisk_size=100000 init=/etc/init

�2 apm=power-off nomce vga=normal

�initrd=miniroot-knx5.1.1.gz quiet BOOT_IMAGE=knoppix

label 2

kernel vmlinuz-centos-4.5-64

append text nofb ksdevice=eth0 load_ramdisk=1

�initrd=initrd-centos-4.5-64.img network

�ks=http://10.0.0.1/kickstart/centos4-64.cfg

Each of these options is documented in the syslinux
man page, but I highlight a few here. The default option
sets which label to boot when the timeout expires. The
timeout is in tenths of a second, so in this example, the

timeout is 30 seconds, after which it will boot using the
options set under label 1. The display option lists a mes-
sage if there are any to display by default, so if you want
to display a fancy menu for these two options, you could
create a file called f1.msg in /var/lib/tftpboot/ that contains
something like:

----| Boot Options |-----

| |

| 1. Knoppix 5.1.1 |

| 2. CentOS 4.5 64 bit |

| |

<F1> Main | <F2> Help

Default image will boot in 30 seconds...

Notice that I listed F1 and F2 in the menu. You can
create multiple files that will be output to the screen when
the user presses the function keys. This can be useful if
you have more menu options than can fit on a single
screen, or if you want to provide extra documentation
at boot time (this is handy if you are like me and create
custom boot arguments for your kickstart servers). In this
example, I could create a /var/lib/tftpboot/f2.msg file and
add a short help file.

Although this menu is rather basic, check out the syslinux
configuration file and project page for examples of how to
jazz it up with color and even custom graphics.

Extra Features: PXE Rescue Disk
One of my favorite features of a PXE server is the addition
of a Knoppix rescue disk. Now, whenever I need to recover
a machine, I don’t need to hunt around for a disk, I can
just boot the server off the network.

First, get a Knoppix disk. I use a Knoppix 5.1.1 CD for this
example, but I’ve been successful with much older Knoppix
CDs. Mount the CD-ROM, and then go to the boot/isolinux
directory on the CD. Copy the miniroot.gz and vmlinuz files to
your /var/lib/tftpboot directory, except rename them something
distinct, such as miniroot-knx5.1.1.gz and vmlinuz-knx5.1.1,
respectively. Now, edit your pxelinux.cfg/default file, and add
lines like the one I used above in my example:

label 1

kernel vmlinuz-knx5.1.1

append secure nfsdir=10.0.0.1:/mnt/knoppix/5.1.1 nodhcp

�lang=us ramdisk_size=100000 init=/etc/init 2

�apm=power-off nomce vga=normal

�initrd=miniroot-knx5.1.1.gz quiet BOOT_IMAGE=knoppix

Notice here that I labeled it 1, so if you already have a
label with that name, you need to decide which of the two
to rename. Also notice that this example references the
renamed vmlinuz-knx5.1.1 and miniroot-knx5.1.1.gz files.
If you named your files something else, be sure to change
the names here as well. Because I am mostly dealing with
servers, I added 2 after init=/etc/init on the append line, so
it would boot into runlevel 2 (console-only mode). If you
want to boot to a full graphical environment, remove 2

2 8 | www. l inux journa l .com

SYSTEM ADMINISTRATION

With pxelinux menus, I can
preconfigure any of the different
network boot scenarios I need
and assign a number to them.

http://10.0.0.1/kickstart/centos4-64.cfg
http://www.linuxjournal.com

from the append line.
The final step might be the largest

for you if you don’t have an NFS
server set up. For Knoppix to boot
over the network, you have to have
its CD contents shared on an NFS
server. NFS server configuration is
beyond the scope of this article, but
in my example, I set up an NFS share
on 10.0.0.1 at /mnt/knoppix/5.1.1. I
then mounted my Knoppix CD and
copied the full contents to that direc-
tory. Alternatively, you could mount a
Knoppix CD or ISO directly to that
directory. When the Knoppix kernel
boots, it will then mount that NFS
share and access the rest of the files
it needs directly over the network.

Extra Features: Memtest86+
Another nice addition to a PXE envi-
ronment is the memtest86+ program.
This program does a thorough scan
of a system’s RAM and reports any
errors. These days, some distributions
even install it by default and make
it available during the boot process
because it is so useful. Compared
to Knoppix, it is very simple to add
memtest86+ to your PXE server,
because it runs from a single
bootable file. First, install your
distribution’s memtest86+ package
(most make it available), or otherwise
download it from the memtest86+
site. Then, copy the program
binary to /var/lib/tftpboot/memtest.
Finally, add a new label to your
pxelinux.cfg/default file:

label 3

kernel memtest

That’s it. When you type 3 at
the boot prompt, the memtest86+
program loads over the network
and starts the scan.

Conclusion
There are a number of extra features
beyond the ones I give here. For
instance, a number of DOS boot flop-
py images, such as Peter Nordahl’s NT
Password and Registry Editor Boot
Disk, can be added to a PXE environ-
ment. My own use of the pxelinux
menu helps me streamline server kick-
starts and makes it simple to kickstart
many servers all at the same time.
At boot time, I can not only indicate

which OS to load, but also more
specific options, such as the type of
server (Web, database and so forth)
to install, what hostname to use, and
other very specific tweaks. Besides
the benefit of no longer tracking
down MAC addresses, you also can
create a nice colorful user-friendly
boot menu that can be documented,
so it’s simpler for new administrators
to pick up. Finally, I’ve been able

to customize Knoppix disks so that
they do very specific things at boot,
such as perform load tests or even
set up a Webcam server—all from
the network.�

Kyle Rankin is a Senior Systems Administrator in the San
Francisco Bay Area and the author of a number of books,
including Knoppix Hacks and Ubuntu Hacks for O’Reilly
Media. He is currently the president of the North Bay Linux
Users’ Group.

www.l inux journa l .com | 2 9

We are all very excited to let

you know that LinuxJournal.com

is optimized for mobile viewing.

You can enjoy all of our

news, blogs and articles from

anywhere you can find a data

connection on your phone or

mobile device.

We know you find it diffi-

cult to be separated from your

Linux Journal, so now you can

take LinuxJournal.com every-

where. Need to read that

latest shell script trick right

now? You got it.

Go to m.linuxjournal.com

to enjoy this new experience,

and be sure to let us know how

it works for you.

— K AT H E R I N E D R U C K M A N

New LinuxJournal.com Mobile

Resources

tftp-hpa: www.kernel.org/pub/software/network/tftp

atftp: ftp.mamalinux.com/pub/atftp

Syslinux PXE Page: syslinux.zytor.com/pxe.php

Red Hat’s Kickstart Guide: www.redhat.com/docs/manuals/enterprise/
RHEL-4-Manual/sysadmin-guide/ch-kickstart2.html

Knoppix: www.knoppix.org

Memtest86+: www.memtest.org

http://www.kernel.org/pub/software/network/tftp
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/ch-kickstart2.html
http://www.knoppix.org
http://www.memtest.org
http://www.linuxjournal.com
http://syslinux.zytor.com/pxe.php
http://ftp.mamalinux.com/pub/atftp
http://LinuxJournal.com
http://LinuxJournal.com
http://m.linuxjournal.com

3 0 | www. l inux journa l .com

VPN (Virtual Private Network) is a technology that provides
secure communication through an insecure and untrusted
network (like the Internet). Usually, it achieves this by authenti-
cation, encryption, compression and tunneling. Tunneling is a
technique that encapsulates the packet header and data of
one protocol inside the payload field of another protocol. This
way, an encapsulated packet can traverse through networks it
otherwise would not be capable of traversing.

Currently, the two most common techniques for creating
VPNs are IPsec and SSL/TLS. In this article, I describe the fea-
tures and characteristics of these two techniques and present
two short examples of how to create IPsec and SSL/TLS tunnels
in Linux and verify that the tunnels started correctly. I also
provide a short comparison of these two techniques.

IPsec and Openswan
IPsec (IP security) provides encryption, authentication and
compression at the network level. IPsec is actually a suite of
protocols, developed by the IETF (Internet Engineering Task
Force), which have existed for a long time. The first IPsec
protocols were defined in 1995 (RFCs 1825–1829). Later, in
1998, these RFCs were depreciated by RFCs 2401–2412. IPsec
implementation in the 2.6 Linux kernel was written by Dave
Miller and Alexey Kuznetsov. It handles both IPv4 and IPv6.
IPsec operates at layer 3, the network layer, in the OSI
seven-layer networking model. IPsec is mandatory in IPv6 and
optional in IPv4. To implement IPsec, two new protocols were
added: Authentication Header (AH) and Encapsulating Security

Payload (ESP). Handshaking and exchanging session keys are
done with the Internet Key Exchange (IKE) protocol.

The AH protocol (RFC 2404) has protocol number 51, and
it authenticates both the header and payload. The AH protocol
does not use encryption, so it is almost never used.

ESP has protocol number 50. It enables us to add a
security policy to the packet and encrypt it, though
encryption is not mandatory. Encryption is done by the
kernel, using the kernel CryptoAPI. When two machines
are connected using the ESP protocol, a unique number
identifies this connection; this number is called SPI
(Security Parameter Index). Each packet that flows between
these machines has a Sequence Number (SN), starting
with 0. This SN is increased by one for each sent packet.
Each packet also has a checksum, which is called the ICV
(integrity check value) of the packet. This checksum is
calculated using a secret key, which is known only to these
two machines.

IPsec has two modes: transport mode and tunnel mode.
When creating a VPN, we use tunnel mode. This means each
IP packet is fully encapsulated in a newly created IPsec packet.
The payload of this newly created IPsec packet is the original
IP packet.

Figure 2 shows that a new IP header was added at the
right, as a result of working with a tunnel, and that an ESP
header also was added.

There is a problem when the endpoints (which are some-
times called peers) of the tunnel are behind a NAT (Network

Creating VPNs with IPsec
and SSL/TLS
How to create IPsec and SSL/TLS tunnels in Linux. RAMI ROSEN

SYSTEM ADMINISTRATION

Figure 1. A Basic VPN Tunnel

http://www.linuxjournal.com

Address Translation) device. Using NAT is a method of con-
necting multiple machines that have an “internal address”,
which are not accessible directly to the outside world. These
machines access the outside world through a machine that
does have an Internet address; the NAT is performed on this
machine—usually a gateway.

When the endpoints of the tunnel are behind a NAT, the
NAT modifies the contents of the IP packet. As a result, this
packet will be rejected by the peer because the signature is
wrong. Thus, the IETF issued some RFCs that try to find a
solution for this problem. This solution commonly is known
as NAT-T or NAT Traversal. NAT-T works by encapsulating
IPsec packets in UDP packets, so that these packets will be
able to pass through NAT routers without being dropped.
RFC 3948, UDP Encapsulation of IPsec ESP Packets, deals
with NAT-T (see Resources).

Openswan is an open-source project that provides an
implementation of user tools for Linux IPsec. You can create a
VPN using Openswan tools (shown in the short example
below). The Openswan Project was started in 2003 by former
FreeS/WAN developers. FreeS/WAN is the predecessor of
Openswan. S/WAN stands for Secure Wide Area Network,
which is actually a trademark of RSA. Openswan runs on many
different platforms, including x86, x86_64, ia64, MIPS and
ARM. It supports kernels 2.0, 2.2, 2.4 and 2.6.

Two IPsec kernel stacks are currently available: KLIPS
and NETKEY. The Linux kernel NETKEY code is a rewrite
from scratch of the KAME IPsec code. The KAME Project
was a group effort of six companies in Japan to provide a
free IPv6 and IPsec (for both IPv4 and IPv6) protocol stack
implementation for variants of the BSD UNIX computer
operating system.

KLIPS is not a part of the Linux kernel. When using KLIPS,
you must apply a patch to the kernel to support NAT-T. When
using NETKEY, NAT-T support is already inside the kernel, and
there is no need to patch the kernel.

When you apply firewall (iptables) rules, KLIPS is the easier
case, because with KLIPS, you can identify IPsec traffic, as this
traffic goes through ipsecX interfaces. You apply iptables rules
to these interfaces in the same way you apply rules to other
network interfaces (such as eth0).

When using NETKEY, applying firewall (iptables) rules is
much more complex, as the traffic does not flow through
ipsecX interfaces; one solution can be marking the packets
in the Linux kernel with iptables (with a setmark iptables
rule). This mark is a member of the kernel socket buffer
structure (struct sk_buff, from the Linux kernel networking
code); decryption of the packet does not modify that mark.

Openswan supports Opportunistic Encryption (OE), which
enables the creation of IPsec-based VPNs by advertising and
fetching public keys from a DNS server.

OpenVPN
OpenVPN is an open-source project founded by James Yonan.
It provides a VPN solution based on SSL/TLS. Transport Layer
Security (TLS) and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols that provide secure communica-
tions data transfer on the Internet. SSL has been in existence
since the early ’90s.

The OpenVPN networking model is based on TUN/TAP
virtual devices; TUN/TAP is part of the Linux kernel. The first

TUN driver in Linux was developed by Maxim Krasnyansky.
OpenVPN installation and configuration is simpler in com-

parison with IPsec. OpenVPN supports RSA authentication,
Diffie-Hellman key agreement, HMAC-SHA1 integrity checks
and more. When running in server mode, it supports multiple
clients (up tp 128) to connect to a VPN server over the same
port. You can set up your own Certificate Authority (CA) and
generate certificates and keys for an OpenVPN server and
multiple clients.

OpenVPN operates in user-space mode; this makes it easy
to port OpenVPN to other operating systems.

www. l inux journa l .com | 3 1

Figure 2. An IPsec Tunnel ESP Packet

When you apply firewall (iptables)
rules, KLIPS is the easier case,
because with KLIPS, you can
identify IPsec traffic, as this traffic
goes through ipsecX interfaces.

http://www.linuxjournal.com

Example: Setting Up a VPN Tunnel with
IPsec and Openswan
First, download and install the ipsec-tools package and the
Openswan package (most distros have these packages).

The VPN tunnel has two participants on its ends, called left
and right, and which participant is considered left or right is
arbitrary. You have to configure various parameters for these
two ends in /etc/ipsec.conf (see man 5 ipsec.conf). The
/etc/ipsec.conf file is divided into sections. The conn section
contains a connection specification, defining a network
connection to be made using IPsec.

An example of a conn section in /etc/ipsec.conf, which
defines a tunnel between two nodes on the same LAN,
with the left one as 192.168.0.89 and the right one as
192.168.0.92, is as follows:

...

conn linux-to-linux

#

Simply use raw RSA keys

After starting openswan, run:

ipsec showhostkey --left (or --right)

and fill in the connection similarly

to the example below.

left=192.168.0.89

leftrsasigkey=0sAQPP...

The remote user.

#

right=192.168.0.92

rightrsasigkey=0sAQON...

type=tunnel

auto=start

...

You can generate the leftrsasigkey and rightrsasigkey on
both participants by running:

ipsec rsasigkey --verbose 2048 > rsa.key

Then, copy and paste the contents of rsa.key into
/etc/ipsec.secrets.

In some cases, IPsec clients are roaming clients (with
a random IP address). This happens typically when the
client is a laptop used from remote locations (such clients
are called Roadwarriors). In this case, use the following
in ipsec.conf:

right=%any

instead of:

right=ipAddress

The %any keyword is used to specify an unknown IP address.
The type parameter of the connection in this example is

tunnel (which is the default). Other types can be transport,
signifying host-to-host transport mode; passthrough, signi-
fying that no IPsec processing should be done at all; drop,
signifying that packets should be discarded; and reject,
signifying that packets should be discarded and a diagnostic

ICMP should be returned.
The auto parameter of the connection tells which

operation should be done automatically at IPsec startup.
For example, auto=start tells it to load and initiate the
connection; whereas auto=ignore (which is the default)
signifies no automatic startup operation. Other values for
the auto parameter can be add, manual or route.

After configuring /etc/ipsec.conf, start the service with:

service ipsec start

You can perform a series of checks to get info about IPsec
on your machine by typing ipsec verify. And, output of
ipsec verify might look like this:

Checking your system to see if IPsec has installed and started correctly:

Version check and ipsec on-path [OK]

Linux Openswan U2.4.7/K2.6.21-rc7 (netkey)

Checking for IPsec support in kernel [OK]

NETKEY detected, testing for disabled ICMP send_redirects [OK]

NETKEY detected, testing for disabled ICMP accept_redirects [OK]

Checking for RSA private key (/etc/ipsec.d/hostkey.secrets) [OK]

Checking that pluto is running [OK]

Checking for 'ip' command [OK]

Checking for 'iptables' command [OK]

Opportunistic Encryption Support [DISABLED]

You can get information about the tunnel you created
by running:

ipsec auto --status

You also can view various low-level IPSec messages in the
kernel syslog.

You can test and verify that the packets flowing between
the two participants are indeed esp frames by opening an
FTP connection (for example), between the two participants
and running:

tcpdump -f esp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

You should see something like this:

IP 192.168.0.92 > 192.168.0.89: ESP(spi=0xd514eed9,seq=0x7)

IP 192.168.0.89 > 192.168.0.92: ESP(spi=0x3a1563b9,seq=0x6)

IP 192.168.0.89 > 192.168.0.92: ESP(spi=0x3a1563b9,seq=0x7)

IP 192.168.0.92 > 192.168.0.89: ESP(spi=0xd514eed9,seq=0x8)

Note that the spi (Security Parameter Index) header is the
same for all packets; this is an identifier of the connection.

If you need to support NAT traversal, add
nat_traversal=yes in ipsec.conf; nat_traversal=no
is the default.

The Linux IPsec stack can work with pluto from Openswan,
racoon from the KAME Project (which is included in ipsec-tools)
or isakmpd from OpenBSD.

3 2 | www. l inux journa l .com

SYSTEM ADMINISTRATION

http://www.linuxjournal.com

Example: Setting Up a VPN Tunnel
with OpenVPN
First, download and install the OpenVPN package (most distros
have this package).

Then, create a shared key by doing the following:

openvpn --genkey --secret static.key

You can create this key on the server side or the client side,
but you should copy this key to the other side in a secured
channel (like SSH, for example). This key is exchanged
between client and server when the tunnel is created.

This type of shared key is the simplest key; you also can
use CA-based keys. The CA can be on a different machine
from the OpenVPN server. The OpenVPN HOWTO provides
more details on this (see Resources).

Then, create a server configuration file named server.conf:

dev tun

ifconfig 10.0.0.1 10.0.0.2

secret static.key

comp-lzo

On the client side, create the following configuration file
named client.conf:

remote serverIpAddressOrHostName

dev tun

ifconfig 10.0.0.2 10.0.0.1

secret static.key

comp-lzo

Note that the order of IP addresses has changed in the
client.conf configuration file.

The comp-lzo directive enables compression on the
VPN link.

You can set the mtu of the tunnel by adding the tun-mtu
directive. When using Ethernet bridging, you should use dev
tap instead of dev tun.

The default port for the tunnel is UDP port 1194 (you can
verify this by typing netstat -nl | grep 1194 after starting
the tunnel).

Before you start the VPN, make sure that the TUN interface
(or TAP interface, in case you use Ethernet bridging) is
not firewalled.

Start the vpn on the server by running openvpn server.conf
and running openvpn client.conf on the client.

You will get output like this on the client:

OpenVPN 2.1_rc2 x86_64-redhat-linux-gnu [SSL] [LZO2] [EPOLL] built on

Mar 3 2007

IMPORTANT: OpenVPN's default port number is now 1194, based on an official

port number assignment by IANA. OpenVPN 2.0-beta16 and earlier used 5000

as

the default port.

LZO compression initialized

TUN/TAP device tun0 opened

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 local 10.0.0.2 peer 10.0.0.1

UDPv4 link local (bound): [undef]:1194

UDPv4 link remote: 192.168.0.89:1194

Peer Connection Initiated with 192.168.0.89:1194

Initialization Sequence Completed

You can verify that the tunnel is up by pinging the server
from the client (ping 10.0.0.1 from the client).

The TUN interface emulates a PPP (Point-to-Point) network
device and the TAP emulates an Ethernet device. A user-space
program can open a TUN device and can read or write to
it. You can apply iptables rules to a TUN/TAP virtual device
in the same way you would do it to an Ethernet device
(such as eth0).

IPsec and OpenVPN—a Short Comparison
IPsec is considered the standard for VPN; many vendors (including
Cisco, Nortel, CheckPoint and many more) manufacture devices
with built-in IPsec functionalities, which enable them to connect
to other IPsec clients.

However, we should be a bit cautious here: different manu-
facturers may implement IPsec in a noncompatible manner on
their devices, which can pose a problem.

OpenVPN is not supported currently by most vendors.
IPsec is much more complex than OpenVPN and

involves kernel code; this makes porting IPsec to other
operating systems a much heavier task. It is much easier
to port OpenVPN to other operating systems than IPsec,
because OpenVPN runs entirely in user space and is not
involved with kernel code.

Both IPsec and OpenVPN use HMAC (Hash Message
Authentication Code) to authenticate packets.

OpenVPN is based on using the OpenSSL library; it can run
over UDP (which is the default and preferred protocol) or TCP.
As opposed to IPsec, which runs in kernel, it runs in user
space, so it is heavier than IPsec in terms of performance.

Configuring and applying firewall (iptables) rules in
OpenVPN is usually easier than configuring such rules with
Openswan in an IPsec-based tunnel.

Acknowledgement
Thanks to Mr Ken Bantoft for his comments.�

Rami Rosen is a computer science graduate of Technion, the Israel Institute of Technology, located
in Haifa. He works as a Linux and Open Solaris kernel programmer for a networking startup, and
he can be reached at ramirose@gmail.com. In his spare time, he likes running, solving cryptic
puzzles and helping everyone he knows move to this wonderful operating system, Linux.

www.l inux journa l .com | 3 3

Resources

OpenVPN: openvpn.net

OpenVPN 2.0 HOWTO: openvpn.net/howto.html

RFC 3948, UDP Encapsulation of IPsec ESP Packets:
tools.ietf.org/html/rfc3948

Openswan: www.openswan.org

The KAME Project: www.kame.net

mailto:ramirose@gmail.com
http://www.linuxjournal.com
http://www.openswan.org
http://www.kame.net
http://openvpn.net
http://openvpn.net/howto.html
http://tools.ietf.org/html/rfc3948

3 4 | www. l inux journa l .com

Stored procedures (or stored routines, to use the official
MySQL terminology) are programs that are both stored and
executed within the database server. Stored procedures have
been features in closed-source relational databases, such as
Oracle, since the early 1990s. However, MySQL added stored
procedure support only in the recent 5.0 release and, conse-
quently, applications built on the LAMP stack don’t generally
incorporate stored procedures. So, this is an opportune time to
consider whether stored procedures should be incorporated
into your MySQL applications.

Stored Procedures in the Client-Server Era
Database stored programs first came to prominence in the late
1980s and early 1990s, during the client-server revolution. In
the client-server applications of that time, stored programs had
some obvious advantages:

� Client-server applications typically had to balance processing
load carefully between the client PC and the (relatively)
more powerful server machine. Using stored programs
was one way to reduce the load on the client, which
might otherwise be overloaded.

� Network bandwidth was often a serious constraint on
client-server applications; execution of multiple server-
side operations in a single stored program could reduce
network traffic.

� Maintaining correct versions of client software in a client-
server environment was often problematic. Centralizing at
least some of the processing on the server allowed a
greater measure of control over core logic.

� Stored programs offered clear security advantages because,
in those days, application users typically connected directly
to the database, rather than through a middle tier. As I
discuss later in this article, stored procedures allow you to
restrict the database account only to well-defined procedure
calls, rather than allowing the account to execute any and
all SQL statements.

With the emergence of three-tier architectures and Web
applications, some of the incentives to use stored programs
from within applications disappeared. Application clients are
now often browser-based, security is predominantly handled
by a middle tier, and the middle tier possesses the ability to
encapsulate business logic. Most of the functions for which

stored programs were used in client-server applications
now can be implemented in middle-tier code (PHP, Java,
C# and so on).

Nevertheless, many of the traditional advantages of stored
procedures remain, so let’s consider these advantages, and
some disadvantages, in more depth.

Using Stored Procedures to Enhance Database
Security
Stored procedures are subject to most of the security restric-
tions that apply to other database objects: tables, indexes,
views and so forth. Specific permissions are required before
a user can create a stored program, and, similarly, specific
permissions are needed in order to execute a program.

What sets the stored program security model apart from
that of other database objects—and from other programming
languages—is that stored programs may execute with the
permissions of the user who created the stored procedure,
rather than those of the user who is executing the stored
procedure. This model allows users to perform actions via
a stored procedure that they would not be authorized to
perform using normal SQL.

This facility, sometimes called definer rights security, allows
us to tighten our database security, because we can ensure
that a user gains access to tables only via stored program code
that restricts the types of operations that can be performed on
those tables and that can implement various business and data
integrity rules. For instance, by establishing a stored program
as the only mechanism available for certain table inserts or
updates, we can ensure that all of these operations are
logged, and we can prevent any invalid data entry from
making its way into the table.

In the event that this application account is compromised
(for instance, if the password is cracked), attackers still will be
able to execute only our stored programs, as opposed to being
able to run any ad hoc SQL. Although such a situation consti-
tutes a severe security breach, at least we are assured that
attackers will be subject to the same checks and logging as
normal application users. They also will be denied the opportu-
nity to retrieve information about the underlying database
schema (because the ability to run standard SQL will be grant-
ed to the procedure, not the user), which will hinder attempts
to perform further malicious activities.

Another security advantage inherent in stored programs is
their resistance to SQL injection attacks. An SQL injection
attack can occur when a malicious user manages to “inject”
SQL code into the SQL code being constructed by the applica-

MySQL 5 Stored Procedures:
Relic or Revolution?
Stored procedures bring the legacy advantages and challenges to MySQL. GUY HARRISON

SYSTEM ADMINISTRATION

http://www.linuxjournal.com

tion. Stored programs do not offer the only protection against
SQL injection attacks, but applications that rely exclusively
on stored programs to interact with the database are largely
resistant to this type of attack (provided that those stored
programs do not themselves build dynamic SQL strings
without fully validating their inputs).

Data Abstraction
It is generally a good practice to separate your data access code
from your business logic and presentation logic. Data access
routines often are used by multiple program modules and are
likely to be maintained by a separate group of developers. A
very common scenario requires changes to the underlying data
structures while minimizing the impact on higher-level logic.
Data abstraction makes this much easier to accomplish.

The use of stored programs provides a convenient way of
implementing a data access layer. By creating a set of stored
programs that implement all of the data access routines
required by the application, we are effectively building an API
for the application to use for all database interactions.

Reducing Network Traffic
Stored programs can improve application performance radically
by reducing network traffic in certain situations.

It’s commonplace for an application to accept input from
an end user, read some data in the database, decide what
statement to execute next, retrieve a result, make a decision,
execute some SQL and so on. If the application code is written
entirely outside the database, each of these steps would
require a network round trip between the database and the
application. The time taken to perform these network trips
easily can dominate overall user response time.

Consider a typical interaction between a bank customer
and an ATM machine. The user requests a transfer of funds
between two accounts. The application must retrieve the bal-
ance of each account from the database, check withdrawal
limits and possibly other policy information, issue the relevant
UPDATE statements, and finally issue a commit, all before
advising the customer that the transaction has succeeded.
Even for this relatively simple interaction, at least six separate
database queries must be issued, each with its own network
round trip between the application server and the database.
Figure 1 shows the sequences of interactions that would be
required without a stored program.

On the other hand, if a stored program is used to imple-
ment the fund transfer logic, only a single database interaction
is required. The stored program takes responsibility for check-
ing balances, withdrawal limits and so on. Figure 2 shows the
reduction in network round trips that occurs as a result.

Network round trips also can become significant when an
application is required to perform some kind of aggregate pro-
cessing on very large record sets in the database. For instance,
if the application needs to retrieve millions of rows in order to
calculate some sort of business metric that cannot be comput-
ed easily using native SQL, such as average time to complete
an order, a very large number of round trips can result. In such
a case, the network delay again may become the dominant
factor in application response time. Performing the calculations
in a stored program will reduce network overhead, which
might reduce overall response time, but you need to be sure

to take into account the differences in raw computation
speed, which I discuss later in this article.

Creating Common Routines across Multiple
Applications
Although it is commonplace for a MySQL database to be at
the service of a single application, it is not at all uncommon
for multiple applications to share a single database. These
applications might run on different machines and be written in

www. l inux journa l .com | 3 5

Figure 1. Network Round Trips without Stored Procedure

Figure 2. Network Round Trips with Stored Procedure

http://www.linuxjournal.com

different languages; it may be hard, or impossible, for these
applications to share code. Implementing common code in
stored programs may allow these applications to share critical
common routines.

For instance, in a banking application, transfer of funds
transactions might originate from multiple sources, including a
bank teller’s console, an Internet browser, an ATM or a phone
banking application. Each of these applications could conceiv-
ably have its own database access code written in largely
incompatible languages, and without stored programs we
might have to replicate the transaction logic, including log-
ging, deadlock handling and optimistic locking strategies, in
multiple places and in multiple languages. In this scenario,
consolidating the logic in a database stored procedure can
make a lot of sense.

Not Built for Speed?
It would be terribly unfair of us to expect the first release of
the MySQL stored program language to be blisteringly fast.
After all, languages such as Perl and PHP have been the sub-
ject of tweaking and optimization for about a decade, while

the latest generation of programming languages—.NET and
Java—has been the subject of a shorter, but more intensive
optimization process by some of the biggest software
companies in the world. So, right from the start, we might
expect that the MySQL stored program language would
lag in comparison with the other languages commonly
used in the MySQL world.

Still, it’s important to get a sense of the raw performance
of the language. First, let’s see how quickly the stored program
language can crunch numbers. The first example compares a
stored procedure calculating prime numbers against an identical
algorithm implemented in alternative languages.

In this computationally intensive trial, MySQL performed
poorly compared with other languages—five times slower
than PHP or Perl, and dozens of times slower than Java, .NET
or C (Figure 3).

Most of the time, stored programs are dominated by
database access time, where stored programs have a natural
performance advantage over other programming languages
because of their lower network overhead. However, if you are
writing a number-crunching routine, and you have a choice

3 6 | www. l inux journa l .com

SYSTEM ADMINISTRATION

Figure 3. Stored procedures are a poor choice for number crunching.

Figure 4. Stored procedures outperform when the network is a factor.

http://www.linuxjournal.com

between implementing it in the stored program language or in
another language, such as PHP or Java, you may wisely decide
against using the stored program solution.

If the previous example left you feeling less than enthusias-
tic about stored program performance, this next example
should cheer you right up. Although stored programs aren’t
particularly zippy when it comes to number crunching, it is
definitely true that you don’t normally write stored programs
simply to perform math; stored programs almost always pro-
cess data from the database. In these circumstances, the dif-
ference between stored program and PHP or Java performance
is usually minimal, unless network overhead is a big factor.
When a program is required to process large numbers of rows
from the database, a stored program can substantially outper-
form programs written in client languages, because it does not
have to wait for rows to be transferred across the network—
the stored program runs inside the database. Figure 4 shows
how a stored procedure that aggregates millions of rows can
perform well even when called from a remote host across the
network, while a Java program with identical logic suffers from
severe network-driven response time degradation.

Logic Fragmentation
Although it is generally useful to encapsulate data access logic
inside stored programs, it is usually inadvisable to “fragment”
business and application logic by implementing some of it in
stored programs and the rest of it in the middle tier or the
application client.

Debugging application errors that involve interactions
between stored program code and other application code may
be many times more difficult than debugging code that is com-
pletely encapsulated in the application layer. For instance, there
is currently no debugger that can trace program flow from the
application code into the MySQL stored program code.

Also, if your application relies on stored procedures, that’s
an additional skill that you or your team will have to acquire
and maintain.

Object-Relational Mapping
It’s becoming increasingly common for an Object-Relational
Mapping (ORM) framework to mediate interactions between
the application and the database. ORM is very common in Java
(Hibernate and EJB), almost unavoidable in Ruby on Rails
(ActiveRecord) and far less common in PHP (though there
are an increasing number of PHP ORM packages available).
ORM systems generate SQL to maintain a mapping between
program objects and database tables. Although most ORM
systems allow you to overwrite the ORM SQL with your own
code, such as a stored procedure call, doing so negates
some of the advantages of the ORM system. In short, stored
procedures become harder to use and a lot less attractive
when used in combination with ORM.

Are Stored Procedures Portable?
Although all relational databases implement a common set of
SQL syntax, each RDBMS offers proprietary extensions to this
standard SQL, and MySQL is no exception. If you are attempt-
ing to write an application that is designed to be independent
of the underlying database, you probably will want to avoid
these extensions in your application. However, sometimes

you’ll need to use specific syntax to get the most out of the
server. For instance, in MySQL, you often will want to employ
MySQL hints, execute non-ANSI statements, such as LOCK
TABLES, or use the REPLACE statement.

Using stored programs can help you avoid RDBMS-depen-
dent code in your application layer while allowing you to con-
tinue to take advantage of RDBMS-specific optimizations. In
theory, stored program calls against different databases can be
made to look and behave identically from the application’s per-
spective. You can encapsulate all the database-dependent code
inside the stored procedures. Of course, the underlying stored
program code will need to be rewritten for each RDBMS, but at
least your application code will be relatively portable.

However, there are differences between the various
database servers in how they handle stored procedure calls,
especially if those calls return result sets. MySQL, SQL Server
and DB2 stored procedures behave very similarly from the
application’s point of view. However, Oracle and Postgres calls
can look and act differently, especially if your stored procedure
call returns one or more result sets.

So, although using stored procedures can improve the
portability of your application while still allowing you to
exploit vendor-specific syntax, they don’t make your appli-
cation totally portable.

Other Considerations
MySQL stored programs can be used for a variety of tasks in
addition to traditional application logic:

� Triggers are stored programs that fire when data modification
language (DML) statements execute. Triggers can automate
denormalization and enforce business rules without requiring
application code changes and will take effect for all applica-
tions that access the database, including ad hoc SQL.

� The MySQL event scheduler introduced in the 5.1 release
allows stored procedure code to be executed at regular
intervals. This is handy for running regular application
maintenance tasks, such as purging and archiving.

� The MySQL stored program language can be used to create
functions that can be called from standard SQL. This allows
you to encapsulate complex application calculations in a
function and then use that function within SQL calls. This
can centralize logic, improve maintainability and, if used
carefully, improve performance.

You Decide!
The bottom line is that MySQL stored procedures give you
more options for implementing your application and, there-
fore, are undeniably a “good thing”. Judicious use of stored
procedures can result in a more secure, higher performing and
maintainable application. However, the degree to which an
application might benefit from stored procedures is greatly
dependent on the nature of that application. I hope this article
helps you make a decision that works for your situation.�

Guy Harrison is chief architect for Database Solutions at Quest Software (www.quest.com). This
article uses some material from his book MySQL Stored Procedure Programming (O’Reilly 2006;
with Steven Feuerstein). Guy can be contacted at guy.harrison@quest.com.

www.l inux journa l .com | 3 7

http://www.quest.com
mailto:harrison@quest.com
http://www.linuxjournal.com

3 8 | www. l inux journa l .com

In every work environment with which I have been involved,
certain servers absolutely always must be up and running for
the business to keep functioning smoothly. These servers pro-
vide services that always need to be available—whether it be a
database, DHCP, DNS, file, Web, firewall or mail server.

A cornerstone of any service that always needs be up with
no downtime is being able to transfer the service from one
system to another gracefully. The magic that makes this
happen on Linux is a service called Heartbeat. Heartbeat is
the main product of the High-Availability Linux Project.

Heartbeat is very flexible and powerful. In this article, I
touch on only basic active/passive clusters with two members,
where the active server is providing the services and the
passive server is waiting to take over if necessary.

Installing Heartbeat
Debian, Fedora, Gentoo, Mandriva, Red Flag, SUSE, Ubuntu
and others have prebuilt packages in their repositories. Check
your distribution’s main and supplemental repositories for a
package named heartbeat-2.

After installing a prebuilt package, you may see a
“Heartbeat failure” message. This is normal. After the
Heartbeat package is installed, the package manager is trying
to start up the Heartbeat service. However, the service does

not have a valid configuration yet, so the service fails to start
and prints the error message.

You can install Heartbeat manually too. To get the most
recent stable version, compiling from source may be necessary.
There are a few dependencies, so to prepare on my Ubuntu
systems, I first run the following command:

sudo apt-get build-dep heartbeat-2

Check the Linux-HA Web site for the complete list of
dependencies. With the dependencies out of the way,
download the latest source tarball and untar it. Use the
ConfigureMe script to compile and install Heartbeat. This
script makes educated guesses from looking at your environ-
ment as to how best to configure and install Heartbeat. It also
does everything with one command, like so:

sudo ./ConfigureMe install

With any luck, you’ll walk away for a few minutes, and
when you return, Heartbeat will be compiled and installed on
every node in your cluster.

Configuring Heartbeat
Heartbeat has three main configuration files:

� /etc/ha.d/authkeys

� /etc/ha.d/ha.cf

� /etc/ha.d/haresources

The authkeys file must be owned by root and be chmod
600. The actual format of the authkeys file is very simple; it’s
only two lines. There is an auth directive with an associated
method ID number, and there is a line that has the authentica-
tion method and the key that go with the ID number of the
auth directive. There are three supported authentication
methods: crc, md5 and sha1. Listing 1 shows an example.
You can have more than one authentication method ID, but
this is useful only when you are changing authentication
methods or keys. Make the key long—it will improve security
and you don’t have to type in the key ever again.

The ha.cf File
The next file to configure is the ha.cf file—the main Heartbeat
configuration file. The contents of this file should be the same
on all nodes with a couple of exceptions.

Heartbeat ships with a detailed example file in the docu-
mentation directory that is well worth a look. Also, when
creating your ha.cf file, the order in which things appear
matters. Don’t move them around! Two different example
ha.cf files are shown in Listings 2 and 3.

The first thing you need to specify is the keepalive—the
time between heartbeats in seconds. I generally like to have
this set to one or two, but servers under heavy loads might
not be able to send heartbeats in a timely manner. So, if
you’re seeing a lot of warnings about late heartbeats, try

Getting Started with
Heartbeat
Your first step toward high-availability bliss. DANIEL BARTHOLOMEW

SYSTEM ADMINISTRATION

Listing 1. The /etc/ha.d/authkeys File

auth 1

1 sha1 ThisIsAVeryLongAndBoringPassword

Sometimes, there’s only one way to
be sure whether a node is dead,
and that is to kill it. This is where
STONITH comes in.

http://www.linuxjournal.com

increasing the keepalive.
The deadtime is next. This is the time to wait without

hearing from a cluster member before the surviving members
of the array declare the problem host as being dead.

Next comes the warntime. This setting determines how
long to wait before issuing a “late heartbeat” warning.

Sometimes, when all members of a cluster are booted
at the same time, there is a significant length of time
between when Heartbeat is started and before the net-
work or serial interfaces are ready to send and receive
heartbeats. The optional initdead directive takes care of
this issue by setting an initial deadtime that applies only
when Heartbeat is first started.

You can send heartbeats over serial or Ethernet links—
either works fine. I like serial for two server clusters that
are physically close together, but Ethernet works just as
well. The configuration for serial ports is easy; simply spec-
ify the baud rate and then the serial device you are using.
The serial device is one place where the ha.cf files on each
node may differ due to the serial port having different
names on each host. If you don’t know the tty to which
your serial port is assigned, run the following command:

setserial -g /dev/ttyS*

If anything in the output says “UART: unknown”, that
device is not a real serial port. If you have several serial ports,
experiment to find out which is the correct one.

If you decide to use Ethernet, you have several choices of
how to configure things. For simple two-server clusters, ucast
(uni-cast) or bcast (broadcast) work well.

The format of the ucast line is:

ucast <device> <peer-ip-address>

Here is an example:

ucast eth1 192.168.1.30

If I am using a crossover cable to connect two hosts
together, I just broadcast the heartbeat out of the appropriate
interface. Here is an example bcast line:

bcast eth3

There is also a more complicated method called mcast. This
method uses multicast to send out heartbeat messages. Check
the Heartbeat documentation for full details.

Now that we have Heartbeat transportation all sorted out,
we can define auto_failback. You can set auto_failback either
to on or off. If set to on and the primary node fails, the
secondary node will “failback” to its secondary standby state

www. l inux journa l .com | 3 9

Listing 2. The /etc/ha.d/ha.cf File on Briggs & Stratton

keepalive 2

deadtime 32

warntime 16

initdead 64

baud 19200

On briggs the serial device is /dev/ttyS1

On stratton the serial device is /dev/ttyS0

serial /dev/ttyS1

auto_failback on

node briggs

node stratton

use_logd yes

Listing 3. The /etc/ha.d/ha.cf File on Deimos & Phobos

keepalive 1

deadtime 10

warntime 5

udpport 694

deimos' heartbeat ip address is 192.168.1.11

phobos' heartbeat ip address is 192.168.1.21

ucast eth1 192.168.1.11

auto_failback off

stonith_host deimos wti_nps ares.example.com erisIsTheKey

stonith_host phobos wti_nps ares.example.com erisIsTheKey

node deimos

node phobos

use_logd yes

http://www.linuxjournal.com
http://linuxjournal.com/live

when the primary node returns. If set to off, when the primary
node comes back, it will be the secondary.

It’s a toss-up as to which one to use. My thinking is
that so long as the servers are identical, if my primary
node fails, then the secondary node becomes the primary,
and when the prior primary comes back, it becomes the
secondary. However, if my secondary server is not as
powerful a machine as the primary, similar to how the
spare tire in my car is not a “real” tire, I like the primary
to become the primary again as soon as it comes back.

Moving on, when Heartbeat thinks a node is dead, that
is just a best guess. The “dead” server may still be up. In
some cases, if the “dead” server is still partially functional,
the consequences are disastrous to the other node mem-
bers. Sometimes, there’s only one way to be sure whether
a node is dead, and that is to kill it. This is where STONITH
comes in.

STONITH stands for Shoot The Other Node In The Head.
STONITH devices are commonly some sort of network power-
control device. To see the full list of supported STONITH device
types, use the stonith -L command, and use stonith -h
to see how to configure them.

Next, in the ha.cf file, you need to list your nodes. List each
one on its own line, like so:

node deimos

node phobos

The name you use must match the output of uname -n.
The last entry in my example ha.cf files is to turn

on logging:

use_logd yes

There are many other options that can’t be touched on
here. Check the documentation for details.

The haresources File
The third configuration file is the haresources file. Before con-
figuring it, you need to do some housecleaning. Namely, all
services that you want Heartbeat to manage must be removed
from the system init for all init levels.

On Debian-style distributions, the command is:

/usr/sbin/update-rc.d -f <service_name> remove

Check your distribution’s documentation for how to do the
same on your nodes.

Now, you can put the services into the haresources file.

As with the other two configuration files for Heartbeat,
this one probably won’t be very large. Similar to the
authkeys file, the haresources file must be exactly the same
on every node. And, like the ha.cf file, position is very
important in this file. When control is transferred to a
node, the resources listed in the haresources file are start-
ed left to right, and when control is transfered to a differ-
ent node, the resources are stopped right to left. Here’s
the basic format:

<node_name> <resource_1> <resource_2> <resource_3> . . .

The node_name is the node you want to be the primary
on initial startup of the cluster, and if you turned on
auto_failback, this server always will become the primary node
whenever it is up. The node name must match the name of
one of the nodes listed in the ha.cf file.

Resources are scripts located either in /etc/ha.d/resource.d/
or /etc/init.d/, and if you want to create your own resource
scripts, they should conform to LSB-style init scripts like those
found in /etc/init.d/. Some of the scripts in the resource.d folder
can take arguments, which you can pass using a :: on the
resource line. For example, the IPAddr script sets the cluster
IP address, which you specify like so:

IPAddr::192.168.1.9/24/eth0

In the above example, the IPAddr resource is told to set up
a cluster IP address of 192.168.1.9 with a 24-bit subnet mask
(255.255.255.0) and to bind it to eth0. You can pass other
options as well; check the example haresources file that ships
with Heartbeat for more information.

Another common resource is Filesystem. This resource is for
mounting shared filesystems. Here is an example:

Filesystem::/dev/etherd/e1.0::/opt/data::xfs

The arguments to the Filesystem resource in the example
above are, left to right, the device node (an ATA-over-Ethernet
drive in this case), a mountpoint (/opt/data) and the filesystem
type (xfs).

4 0 | www. l inux journa l .com

SYSTEM ADMINISTRATION

Fortunately, with logging enabled,
troubleshooting is easy, because
Heartbeat outputs informative
log messages.

Listing 4. A Minimalist haresources File

stratton 192.168.1.41 apache2

Listing 5. A More Substantial haresources File

deimos \

IPaddr::192.168.12.1 \

Filesystem::/dev/etherd/e1.0::/opt/storage::xfs \

killnfsd \

nfs-common \

nfs-kernel-server

http://www.linuxjournal.com

For regular init scripts in /etc/init.d/, simply enter them by
name. As long as they can be started with start and stopped
with stop, there is a good chance that they will work.

Listings 4 and 5 are haresources files for two of the
clusters I run. They are paired with the ha.cf files in Listings 2
and 3, respectively.

The cluster defined in Listings 2 and 4 is very simple, and it
has only two resources—a cluster IP address and the Apache 2
Web server. I use this for my personal home Web server clus-
ter. The servers themselves are nothing special—an old PIII
tower and a cast-off laptop. The content on the servers is stat-
ic HTML, and the content is kept in sync with an hourly rsync
cron job. I don’t trust either “server” very much, but with
Heartbeat, I have never had an outage longer than half a
second—not bad for two old castaways.

The cluster defined in Listings 3 and 5 is a bit more
complicated. This is the NFS cluster I administer at work.
This cluster utilizes shared storage in the form of a pair of
Coraid SR1521 ATA-over-Ethernet drive arrays, two NFS
appliances (also from Coraid) and a STONITH device.
STONITH is important for this cluster, because in the event
of a failure, I need to be sure that the other device is
really dead before mounting the shared storage on the
other node. There are five resources managed in this clus-
ter, and to keep the line in haresources from getting too
long to be readable, I break it up with line-continuation
slashes. If the primary cluster member is having trouble,
the secondary cluster kills the primary, takes over the IP
address, mounts the shared storage and then starts up
NFS. With this cluster, instead of having maintenance
issues or other outages lasting several minutes to an hour
(or more), outages now don’t last beyond a second or
two. I can live with that.

Troubleshooting
Now that your cluster is all configured, start it with:

/etc/init.d/heartbeat start

Things might work perfectly or not at all. Fortunately, with
logging enabled, troubleshooting is easy, because Heartbeat
outputs informative log messages. Heartbeat even will let you
know when a previous log message is not something you have
to worry about. When bringing a new cluster on-line, I usually
open an SSH terminal to each cluster member and tail the
messages file like so:

tail -f /var/log/messages

Then, in separate terminals, I start up Heartbeat. If there
are any problems, it is usually pretty easy to spot them.

Heartbeat also comes with very good documentation.
Whenever I run into problems, this documentation has
been invaluable. On my system, it is located under the
/usr/share/doc/ directory.

Conclusion
I’ve barely scratched the surface of Heartbeat’s capabilities
here. Fortunately, a lot of resources exist to help you learn
about Heartbeat’s more-advanced features. These include

active/passive and active/active clusters with N number of
nodes, DRBD, the Cluster Resource Manager and more. Now
that your feet are wet, hopefully you won’t be quite as intimi-
dated as I was when I first started learning about Heartbeat.
Be careful though, or you might end up like me and want to
cluster everything.�

Daniel Bartholomew has been using computers since the early 1980s when his parents
purchased an Apple IIe. After stints on Mac and Windows machines, he discovered Linux
in 1996 and has been using various distributions ever since. He lives with his wife and
children in North Carolina.

www.l inux journa l .com | 4 1

Resources

The High-Availability Linux Project: www.linux-ha.org

Heartbeat Home Page: www.linux-ha.org/Heartbeat

Getting Started with Heartbeat Version 2:
www.linux-ha.org/GettingStartedV2

An Introductory Heartbeat Screencast: linux-ha.org/
Education/Newbie/InstallHeartbeatScreencast

The Linux-HA Mailing List: lists.linux-ha.org/mailman/
listinfo/linux-ha

The 1994–2007 Archive CD,
back issues, and more!

www.LinuxJournal.com/ArchiveCD

Archive CD
1994–2007

™

http://www.linuxjournal.com
http://www.linux-ha.org
http://www.linux-ha.org/Heartbeat
http://www.linux-ha.org/GettingStartedV2
http://www.LinuxJournal.com/ArchiveCD
http://linux-ha.org/Education/Newbie/InstallHeartbeatScreencast
http://lists.linux-ha.org/mailman/listinfo/linux-ha

4 2 | www. l inux journa l .com

In most enterprise networks today, centralized authenti-
cation is a basic security paradigm. In the Linux realm,
OpenLDAP has been king of the hill for many years, but
for those unfamiliar with the LDAP command-line interface
(CLI), it can be a painstaking process to deploy. Enter the
Fedora Directory Server (FDS). Released under the GPL in
June 2005 as Fedora Directory Server 7.1 (changed to ver-
sion 1.0 in December of the same year), FDS has roots in
both the Netscape Directory Server Project and its sister
product, the Red Hat Directory Server (RHDS). Some of
FDS’s notable features are its easy-to-use Java-based
Administration Console, support for LDAP3 and Active
Directory integration. By far, the most attractive feature of
FDS is Multi-Master Replication (MMR). MMR allows for
multiple servers to maintain the same directory information,
so that the loss of one server does not bring the directory
down as it would in a master-slave environment.

Getting an FDS server up and running has its ups and
downs. Once the server is operational, however, Red Hat
makes it easy to administer your directory and connect native
Fedora clients. In addition to providing network authentica-
tion, you easily can extend FDS functionality across other
applications, such as NFS, Samba, Sendmail, Postfix and
others. In this article, we focus solely on using FDS for
network authentication and implementing MMR.

Installation
To begin, download a Fedora 6 ISO readily available from one
of the many Fedora mirrors. FDS has low hardware require-
ments—500MHz with 256MB RAM and 3GB or more space. I
recommend at least a 1GHz processor or above with 512MB
or more memory and 20GB or more of disk space. This config-
uration should perform well enough to support small business-
es up to enterprises with thousands users. As for supported
operating systems, not surprisingly, Red Hat lists Fedora and
Red Hat flavors of Linux. HP-UX and Solaris also are supported.
With your bootable ISO CD, start the Fedora 6 installation pro-
cess, and select your desired system preferences and packages.
Make sure to select Apache during installation. Set your host
and DNS information during the install, using a fully qualified
domain name (FQDN). You also can set this information post-
install, but it is critical that your host information is configured
properly. If you plan to use a firewall, you need to enter two

ports to allow LDAP (389 default) and the Admin Console
(default is random port). For the servers used here, I chose
ports 3891 and 3892 because of an existing LDAP installation
in my environment. Fedora also natively supports Security-
Enhanced Linux (SELinux), a policy-based lock-down tool, if
you choose to use it. If you want to use SELinux, you must
choose the Permissive Policy.

Once your Fedora 6 server is up, download and install the
latest RPM of Fedora Directory Server from the FDS site (it is
not included in the Fedora 6 distribution). Running the RPM
unpacks the program files to /opt/fedora-ds. At this point,
download and install the current Java Runtime Environment
(JRE) .bin file from Sun before running the local setup of
FDS. To keep files in the same place, I created an /opt/java
directory and downloaded and ran the .bin file from there.
After Java is installed, replace the existing soft link to Java
in /etc/alternatives with a link to your new Java installation.
The following syntax does this:

cd /etc/alternatives

rm ./java

ln -sf /opt/java/jre1.5.0_09/bin/java java

Next, configure Apache to start on boot with the
chkconfig command:

chkconfig -level 345 httpd on

Then, start the service by typing:

service httpd start

Now, with the useradd command, create an account
named fedorauser under which FDS will run. After creating the
account, run /opt/fedora-ds/setup/setup to launch the
FDS installation script. Before continuing, you may be present-
ed with several error messages about non-optimal configura-
tion issues, but in most cases, you can answer yes to get past
them and start the setup process. Once started, select the
default Install Mode 2 - Typical. Accept all defaults during
installation except for the Server and Group IDs, for which we
are using the fedorauser account (Figure 1), and if you want to
customize the ports as we have here, set those to the correct

Fedora Directory Server:
the Evolution of Linux
Authentication
Check out Fedora Directory Server to authenticate your clients without licensing fees.
JERAMIAH BOWLING

SYSTEM ADMINISTRATION

http://www.linuxjournal.com

numbers (3891/3892). You also may want to use the same
passwords for both the configuration Admin and Directory
Manager accounts created during setup.

When setup is complete, use the syntax returned from
the script to access the admin console (./startconsole -u
admin http://fullyqualifieddomainname:port) using the
Administrator account (default name is Admin) you specified
during the FDS setup. You always can call the Admin console
using this same syntax from /opt/fedora-ds.

At this point, you have a functioning directory server.
The final step is to create a startup script or directly edit
/etc/rc.d/rc.local to start the slapd process and the admin
server when the machine starts. Here is an example of a
script that does this:

/opt/fedora-ds/slapd-yourservername/start-slapd

/opt/fedora-ds/start-admin &

Directory Structure and Management
Looking at the Administration console, you will see server
information on the Default tab (Figure 2) and a search utility
on the second tab. On the Servers and Applications tab,
expand your server name to display the two server consoles
that are accessible: the Administration Server and the Directory
Server. Double-click the Directory Server icon, and you are
taken to the Tasks tab of the Directory Server (Figure 3). From
here, you can start and stop directory services, manage certifi-
cates, import/export directory databases and back up your
server. The backup feature is one of the highlights of the FDS
console. It lets you back up any directory database on your
server without any knowledge of the CLI. The only caveat is
that you still need to use the CLI to schedule backups.

On the Status tab, you can view the appropriate logs to
monitor activity or diagnose problems with FDS (Figure 4).
Simply expand one of the logs in the left pane to display its
output in the right pane. Use the Continuous Refresh option
to view logs in real time.

From the Configuration tab, you can define replicas (copies
of the directory) and synchronization options with other
servers, edit schema, initialize databases and define options for

www. l inux journa l .com | 4 3

Figure 1. Install Options Figure 2. Main Console

Figure 3. Tasks Tab

Figure 4. Main Logs

http://fullyqualifieddomainname:port
http://www.linuxjournal.com

logs and plugins. The Directory tab is laid out by the domains
for which the server hosts information. The Netscape folder is
created automatically by the installation and stores information
about your directory. The config folder is used by FDS to
store information about the server’s operation. In most
cases, it should be left alone, but we will use it when we
set up replication.

Before creating your directory structure, you should carefully
consider how you want to organize your users in the directory.
There is not enough space here for a decent primer on directory
planning, but I typically use Organizational Units (OUs) to
segment people grouped together by common security
needs, such as by department (for example, Accounting).
Then, within an OU, I create users and groups for simplifying

permissions or creating e-mail address lists (for example,
Account Managers). FDS also supports roles, which essentially
are templates for new users. This strategy is not hard and fast,
and you certainly can use the default domain directory struc-
ture created during installation for most of your needs (Figure
5). Whatever strategy you choose, you should consult the Red
Hat documentation prior to deployment.

To create a new user, right-click an OU under your domain
and click on New→User to bring up the New User screen
(Figure 5). Fill in the appropriate entries. At minimum, you
need a First Name, Last Name and Common Name (cn), which
is created from your first and last name. Your login ID is created
automatically from your first initial and your last name. You also
can enter an e-mail address and a password. From the options
in the left pane of the User window, you can add NT User
information, Posix Account information and activate/de-activate

the account. You can implement a Password Policy from the
Directory tab by right-clicking a domain or OU and selecting
Manage Password Policy. However, I could not get this feature
to work properly.

Replication
Setting up replication in FDS is a relatively painless process. In
our scenario, we configure two-way multi-master replication,
but Red Hat supports up to four-way. Because we already have
one server (server one) in operation, we need another system
(server two) configured the same way (Fedora, FDS) with
which to replicate. Use the same settings used on server one
(other than hostname) to install and configure Fedora 6/FDS.
With both servers up, verify time synchronization and name
resolution between them. The servers must have synced time
or be relatively close in their offset, and they must be able to
resolve the other’s hostname for replication to work. You can
use IP addresses, configure /etc/hosts or use DNS. I recom-
mend having DNS and NTP in place already to make life easier.

The next step is creating a Replication Manager account to
bind one server’s directory to the other and vice versa. On the
Directory tab of the Directory Server console, create a user
account under the config folder (off the main root, not your
domain), and give it the name Replication Manager, which
should create a login ID (uid) of RManager. Use the same
password for the RManager on both servers/directories. On
server one, click the Configuration tab and then the Replication
folder. In the right pane, click Enable Changelog. Click the
Use Default button to fill in the default path under your
slapd-servername directory. Click Save. Next, expand the
Replication folder and click on the userroot database. In the
right pane, click on enable replica, and select Multiple Master
under the Replica Role section (Figure 6). Enter a unique Replica
ID. This number must be different on each server involved in
replication. Scroll down to the update section below, and in the
Enter a new supplier DN: textbox, enter the following:

uid=RManager,cn=config

Click Add, and then the Save button at the bottom. On

4 4 | www. l inux journa l .com

SYSTEM ADMINISTRATION

In addition to providing network
authentication, you easily can extend
FDS functionality across other
applications, such as NFS, Samba,
Sendmail, Postfix and others.

Figure 5. User Screen Figure 6. Setting Up Replica

http://www.linuxjournal.com

server two, perform the same steps as just completed
for creating the RManager account in the config folder,
enabling changelogs and creating a Multiple Master
Replica (with a different Replica ID).

Now, you need to set up a replication agreement back
on server one. From the Configuration tab of the Directory
Server, right-click the userroot database, and select New
Replication Agreement. A wizard then guides you through
the process. Enter a name and description for the agree-
ment (Figure 7). On the Source and Destination screen
under Consumer, click the Other button to add server
two as a consumer. You must use the FQDN and the
correct port (3891 in our case). Use Simple Authentication
in the Connection box, and enter the full context
(uid=Rmanager,cn=config) of the RManager account and
the password for the account (Figure 8). On the next
screen, check off the box to enable Fractional Replication
to send only deltas rather than the entire directory
database when changes occur, which is very useful over
WAN connections. On the Schedule screen, select Always

keep directories in sync to keep. You also could choose to
schedule your updates. On the Initialize Consumer screen,
use the Initialize Now option. If you experience any diffi-
culty in initializing a consumer (server two), you can use
the Create consumer initialization file option and copy the
resulting ldif folder to server two and import and initialize
it from the Directory Server Tasks pane. When you click
next, you will see the replication taking place. A summary
appears at the end of the process. To verify replication
took place, check the Replication and Error logs on the
first server for success messages. To complete MMR, set
up a replication agreement on the server, listing server one
as the consumer, but do not initialize at the end of the
wizard. Doing so would overwrite the directory on server
one with the directory on server two. With our setup
complete, we now have a redundant authentication
infrastructure in place, and if we choose, we can add
another two Read-Write replicas/Masters.

Authenticating Desktop Clients
With our infrastructure in place, we can connect our desktop
clients. For our configuration, we use native Fedora 6 clients
and Windows XP clients to simulate a mixed environment.
Other Linux flavors can connect to FDS, but for space con-
straints, we won’t delve into connecting them. It should be
noted that most distributions like Fedora use PAM, the
/etc/nsswitch.conf and /etc/ldap.conf files to set up LDAP
authentication. Regardless of client type, the user account
attempting to log in must contain Posix information in the
directory in order to authenticate to the FDS server. To connect
Fedora clients, use the built-in Authentication utility available
in both GNOME and KDE (Figure 9). The nice thing about the
utility is that it does all the work for you. You do not have to
edit any of the other files previously mentioned manually.
Open the utility and enable LDAP on the User Information
tab and the Authentication tabs. Once you click OK to
these settings, Fedora updates your nsswitch.conf and
/etc/pam.d/system-auth files immediately. Upon reboot, your
system now uses PAM instead of your local passwd and shadow
files to authenticate users.

www. l inux journa l .com | 4 5

Figure 7. Enter a name and password.

Figure 8. Enter information for the RManager account.

Figure 9. The Built-in Authentication Utility

http://www.linuxjournal.com

During login, the local system pulls the LDAP account’s
Posix information from FDS and sets the system to match
the preferences set on the account regarding home directory
and shell options. With a little manual work, you also can
use automount locally to authenticate and mount network
volumes at login time automatically.

Connecting XP clients is almost as easy. Typically,
NT/2000/XP users are forced to use the built-in MSGINA.dll

to authenticate to Microsoft networks only. In the past,
vendors such as Novell have used their own proprietary
clients to work around this, but now the open-source
pgina client has solved this problem. To connect 2000/XP
clients, download the main pgina zipfile from the project
page on SourceForge, and extract the files. For this article,
I used version 1.8.4 as I ran into some dll issues with

version 1.8.8. You also need to download and extract the
Plugin bundle. Run the x86 installer from the extracted
files, accepting all default options, but do not start the
Configuration Tool at the end. Next, install the LDAPAuth
plugin from the extracted Plugin bundle. When done
installing, open the Configuration Tool under the Pgina
Program Group under the Start menu. On the Plugin tab,
browse to your ldapauth_plus.dll in the directory specified
during the install. Check off the option to Show authenti-
cation method selection box. This gives you the option of
logging locally if you run into problems. Without this, the
only way to bypass the pgina client is through Safe Mode.
Now, click on the Configure button, and enter the LDAP
server name, port and context you want pgina to use to
search for clients. I suggest using the Search Mode as your
LDAP method as it will search the entire directory if it can-
not find your user ID. Click OK twice to save your settings.
Use the Plugin Tester tool before rebooting to load your
client and test connectivity (Figure 10). On the next login,
the user will receive the prompt shown in Figure 11.

Conclusions
FDS is a powerful platform, and this article has barely
scratched the surface. There simply is not room to squeeze
all of FDS’s other features, such as encryption or AD syn-
chronization, into a single article. If you are interested in
these items or want to know how to extend FDS to other
applications, check out the wiki and the how-tos on the
project’s documentation page for further information.
Judging from our simple configuration here, FDS seems
evolutionary, not revolutionary. It does not change the way
in which LDAP operates at a fundamental level. What it
does do is take the complex task of administering LDAP
and makes it easier while extending normally commercial
features, such as MMR, to open source. By adding pgina
into the mix, you can tap further into FDS’s flexibility and
cost savings without needing to deploy an array of services
to connect Windows and Linux clients. So, if you are look-
ing for a simple, reliable and cost-saving alternative to
other LDAP products, consider FDS.�

Jeramiah Bowling has been a systems administrator and network engineer for more than
ten years. He works for a regional accounting and auditing firm in Hunt Valley, Maryland,
and holds numerous industry certifications including the CISSP. Your comments are welcome
at jb50c@yahoo.com.

4 6 | www. l inux journa l .com

SYSTEM ADMINISTRATION

Setting up replication in FDS is a
relatively painless process.

Figure 11. Login Prompt

Figure 10. Plugin Tester Tool

Resources

Main Fedora Site: fedora.redhat.com

Fedora ISOs: fedora.redhat.com/Download

Fedora Directory Server Site: directory.fedora.redhat.com

Main pgina Site: www.pgina.org

pgina Downloads: sourceforge.net/project/
showfiles.php?group_id=53525

mailto:jb50c@yahoo.com
http://www.linuxjournal.com
http://www.pgina.org
http://fedora.redhat.com
http://fedora.redhat.com/Download
http://directory.fedora.redhat.com
http://sourceforge.net/project/showfiles.php?group_id=53525

