
L
IN

U
X

 P
R

O
 M

A
G

A
Z

IN
E

    IS
S

U
E

 2
3

0

W W W . L I N U X P R O M A G A Z I N E . C O M

7
25274

58049
1

0
1

Issue 230 
Jan 2020 
US$ 15.99 
CAN$ 18.50

Mozilla WebThings
An open platform  
for IoT

Make Alexa talk 
to a Raspberry Pi

PXE Boot
Breathe new life into your legacy PC

J
A

N
U

A
R

Y
 2

0
2

0
A

utom
ation Tricks        A

lexa Skills     W
ebThings      FH

EM
      PXE B

oot      Sym
phytum

      Pyro

Building custom solutions 
for the intelligent home

bpftrace
Watching the 
Linux Kernel

Double-Sided DVD

INSIDE!

G
otify      Calibre      M

astodon

• Push notifications with Gotify
• maddog calls for more women coders
• Managing ebooks with Calibre

Tutorial
•  Build your own 

Mastodon client

FOSSPicks
•  Blender 2.8
• Amass security tool
•  Cookbook recipe 

manager

J A N U A RY  2 0 2 0

FREE 
  DVD

Symphytum
Simple database for 
everyday things

Fun with Python
Build a giant 
electronic scoreboard

AUTOMATION 
TRICKS

AUTOMATION 

TRICKS

FLATPAK RISES 
New age package system 

reaches the desktop





We in Linux publishing have spent a lot of time holding Mi-
crosoft accountable for all the FUD and monkey business 
they have subjected us to through the years, so it is only fair 
to acknowledge them when they take a positive step. Micro-
soft has actually been doing better recently – I have written 
about Redmond’s newfound support for Linux and their 
open sourcing of core development tools. This month the 
big news is the announcement that Microsoft will “honor 
California’s new privacy rights throughout the United States.”

A little over a year ago, the State of California passed the 
California Consumer Privacy Act (CCPA), which will take 
effect on January 1, 2020. The CCPA is a landmark bill that 
takes on the pertinent and perplexing issue of data privacy 
in the Internet age. The act establishes the following rights 
for residents of California:

•  The right to know what personal information is collected, 
used, shared, or sold, both as to the categories and specific 
pieces of personal information;

•  The right to delete personal information held by busi-
nesses and, by extension, a business’s service provider;

•  The right to opt-out of the sale of personal information. 
Consumers are able to direct a business that sells personal 
information to stop selling that information. Children 
under the age of 16 must provide opt-in consent, with a 
parent or guardian consenting for children under 13;

•  The right to non-discrimination in terms of price or service 
when a consumer exercises a privacy right under CCPA.

The law could have big implications on how Internet compa-
nies capture and market user data. California is too big of a 
market for the big companies to ignore, so they will be forced 
to comply with it – at least for California residents. Compa-
nies that wish to restrict the new rules to only California 
viewers will need some way of sorting out who is or isn’t 
from California and offering two different web pages for the 
California and non-California views, a layer of complication 
that could cause other companies to join Microsoft in simply 
applying the rules for everyone, but companies that are 
heavily dependent on selling data might find it difficult to 
give up the revenue.

According to Microsoft VP Julie Brill, “We are strong sup-
porters of California’s new law and the expansion of privacy 
protections in the United States that it represents. Our ap-
proach to privacy starts with the belief that privacy is a fun-
damental human right and includes our commitment to 
provide robust protection for every individual. This is why, 
in 2018, we were the first company to voluntarily extend the 
core data privacy rights included in the European Union’s 

General Data Protection Regulation (GDPR) to customers 
around the world, not just to those in the EU who are cov-
ered by the regulation. Similarly, we will extend CCPA’s 
core rights for people to control their data to all our cus-
tomers in the U.S.”

CCPA isn’t perfect and doesn’t solve all the problems re-
lated to data privacy. For instance, it only applies to large 
companies and companies that derive over half their reve-
nue from selling consumer information. The companies 
that it does apply to are probably out there right now de-
veloping workarounds. Still, the CCPA is a significant step 
back in a world that has recently witnessed a continual 
march to fewer restrictions and more data mining.

At some level, everything that goes on in the business 
world is about business. This is all good press for Micro-
soft, but beyond the PR benefits, it is also an interesting 
chess move for a company that was left a little behind by 
the Internet giants. Google, Facebook, and other Internet ti-
tans are built from the ground up around the dubious en-
deavor of extracting value from their users’ lives. Microsoft 
is a bit of a newcomer in this space. Anything Microsoft can 
do to shake up the market and force competitors out of 
their comfort zones is good for Microsoft – and also good 
for us in this case.

I have a feeling the last chapter in the story of the search for 
user privacy hasn’t been written yet. The CCPA could prove 
unworkable, which will strengthen the hand of industry 
lobbyists, who will certainly be looking to dial up their 
game. A backlash could flash, which would require con-
sumer advocates to really bear down to get what they want. 
And maybe, just maybe, in all the smoke and dust (full dis-
closure: I’m an optimist), the U.S. 
Congress will actually step up to 
their responsibilities and pass 
some meaningful privacy legisla-
tion at the national level.

In the meantime, I commend 
Microsoft for getting this 
one right.

CALIFORNIA DREAMING

Joe Casad,  
Editor in Chief

Dear Reader,

3

EDITORIAL

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Welcome



  NEWS          COVER STORIES        

08 News
•  Microsoft Edge Coming to Linux
•  Open Invention Network Backs 

Gnome Project Against Patent Troll
• Fedora 31 Released
•  openSUSE OBS Can Now Build 

Windows WSL Images
•  Sudo Vulnerability
•  Hetzner Launches New Ryzen-Based 

Dedicated Root 
Servers

•  IBM Joins the 
Mayflower 
Autonomous 
Ship Project

12 Kernel News
• Trusted Computing and Linux
• Load Balancer Improvements
• New Random Number Handling

16 Alexa Skills
Want to add voice activation to your IoT 
environment? Create an Alexa skill.

23 WebThings
The smart home is gaining momentum, 
and Mozilla joins the fray. Mozilla 
WebThings is billed as an open platform 
for managing IoT devices. We decided to 
investigate.

26 FHEM
If you want to equip your home with 
smart technology, you will need to 
deal with a variety of providers and 
incompatible standards. FHEM is a free 
integration platform that keeps the 
building blocks under one roof and 
offers visually appealing interfaces. 

32 Z-Wave
The RaZberry daughter board for your 
Raspberry Pi unlocks the power of the 
Z-Wave home automation environment.

 3 Comment
 6 DVD
96 Featured Events
97 Call for Papers
98 Preview

  SERVICE        

Home automation is no longer the 
stuff of science fiction. This month 
we explore some versatile tools for 
Linux users who are interested in IoT 
but don’t want to surrender the 
freedom of open platforms and open 
source. Elsewhere inside:

•  PXE Boot with TinyCore – 
Your old computer can live on 
even without a hard drive. Boot 
across the network with PXE 
(page 44).

•  Symphytum – Create a simple 
and practical database for your 
notes, recipes, or pine cone 
collection (page 48).

Turn to MakerSpace for a real-world 
project with the Python Remote 
Objects Library (Pyro), and check out 
LinuxVoice for a look at the Gotify 
push notification tool.

  WHAT'S INSIDE        

LINUX MAGAZINE
JANUARY 2020

4 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



38  Command Line – Vim Plugin 
Managers
A plugin manager can help you corral 
your growing collection of Vim plugins.

44 PXE Boot with TinyCore
Implementing PXE boot with TinyCore 
Linux lets you boot a computer over the 
network – a great solution for revitalizing 
old computing hardware.

48 Symphytum
From a simple task list to a collection that 
keeps tabs on your books, Symphytum 
lets you easily build databases for storing 
and working with any type of data.

51 Charly – urlwatch
Experienced system administrators attach 
great importance to always being up to 
date when it comes to information 
technology. Urlwatch is a command-line 
tool that presents the latest news from 
websites that do not offer RSS feeds.

52 Flatpak
Flatpak’s development may have been 
prompted by container development, but 
its future depends on the desktop.

56  Programming Snapshot – 
bpftrace
Which process opens the most files and 
how many bytes is it reading or writing? 
Mike Schilli pokes inside the kernel to 
answer these questions with bpftrace and 
its code probes. 

75 Welcome
This month in Linux Voice.

77 Doghouse – Women in Tech
Maddog ponders how the number 
of women in programming has 
changed over the course of his 
career and is pleased to see more 
women coming back into the tech 
workspace.

78 Gotify
Replace proprietary cloud-based 
push notification services with a 
self-hosted open source notification 
solution.

82 Calibre
Calibre can help manage your ebooks 
by bulk converting files, adding 
metadata, and making content 
available across all your devices.

86 FOSSPicks
This month Graham explores 
Blender 2.8, Amass, Cookbook, 
Mangl, Cawbird, Chiaki, and more!

92 Tutorial – Mastodon
Creating your own clients to 
interact with your friends in the 
Fediverse is easy. A bit of Python 
and an off-the-shelf module will 
do the trick.

  IN-DEPTH        

60 Python Remote Objects Library
Pyro allows multiple hardware devices 
to interact as if they are all on a local 
machine.

70 Open Hardware – Inkplate 6
Combining open firmware with 
recycled hardware, Inkplate launches 
a crowdfunding campaign for an open 
source e-paper display.

72 Simulated Pi Hardware
Python and tk_tools let you create 
software versions of Raspberry Pi mini-
displays, LED keypads, and NeoPixel 
hardware.

  MAKERSPACE        

LINUX MAGAZINE
JANUARY 2020

5LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

TWO TERRIFIC 
DISTROS

DOUBLE-SIDED 
DVD!

SEE PAGE 6 FOR DETAILS



On the DVD

[1]  Ubuntu: https://  ubuntu.  com/

[2]  Ubuntu Documentation:  
https://  help.  ubuntu.  com/

[3]  Ubuntu Wiki: https://  help.  ubuntu.  com/ 
 community/  CommunityHelpWiki

[4]  Fedora Workstation:  
https://  getfedora.  org/  en/  workstation/

[5]  Fedora Documentation: https://  docs. 
 fedoraproject.  org/  en‑US/  fedora/  f31/

Additional Resources

Ubuntu 19.10 “Eoan Ermine”
The latest Ubuntu release includes an updated Linux 5.3 ker-
nel, with faster boot times, updated themes, and new ZFS 
filesystem support. The Gnome 3.34 desktop offers better 
performance and many application updates. This Ubuntu 
19.10 short-term release version is supported until July 2019.

Fedora 31 Workstation
The community-based (and Red-Hat-sponsored) Fedora proj-
ect tries to stay current and is often one of the first distros to 
implement new applications and updates. The latest Fedora 
Workstation release includes Gnome 3.34, improvements to 
the audio system, expanded Flatpak features, and more.

Defective discs will be replaced. Please send an email to subs@linux‑magazine.com.

Although this Linux Magazine disc has been tested and is to the best of our 
knowledge free of malicious software and defects, Linux Magazine cannot be held 
responsible, and is not liable for any disruption, loss, or damage to data and computer 
systems related to the use of this disc. 

6 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

DVD
This Month’s DVD

TWO TERRIFIC 
DISTROS

DOUBLE-SIDED 
DVD!

https://ubuntu.com/
https://help.ubuntu.com/
https://help.ubuntu.com/community/CommunityHelpWiki
https://help.ubuntu.com/community/CommunityHelpWiki
https://getfedora.org/en/workstation/
https://docs.fedoraproject.org/en-US/fedora/f31/
https://docs.fedoraproject.org/en-US/fedora/f31/




  Microsoft Edge Coming to Linux
For the longest time, any Linux user needing to work with a Microsoft browser had 
few options. There was always IEs4Linux, but that option tended to install out-of-
date, buggy versions of the software. Users could also run a version of Windows 
within a virtual machine, but that meant actually running Windows.

All of that changes in 2020, when Microsoft Edge comes to Linux. In the "State 
of the Browser: Microsoft Edge" session at Ignite 2019, it was finally announced 
that Microsoft was, in fact, bringing their new browser to Linux (https://myignite.
techcommunity.microsoft.com/sessions/79341?source=sessions ).

The new Microsoft browser is built around the open source Chromium browser 
(https://www.chromium.org/ ), but this won’t simply be a rebuild and rebrand. Micro-
soft plans on being actively involved as a contributor to Chromium’s open source 
development. That means any development work done for Edge could find its way 
to Chromium. So, even if users don’t opt to install Edge Chromium on Linux, if they 
use Chromium they will benefit from Microsoft-contributed work.

Of course, one looming question remains: Will Linux users give Microsoft’s 
browser a chance? Only time will tell. The official release of Edge Chromium for 
Windows and macOS is January 15. As of now, there is no definitive release date, 
nor any indication as to how Edge Chromium will be installed on Linux (be it official 
packages, snaps or flatpaks, or some other method).

  
Open Invention Network Backs  
Gnome Project Against Patent Troll

The Gnome Project was recently sued by a company called Rothschild Patent Imaging 
for a patent related to the Shotwell photo manager. The Gnome community has just 
announced that it is counter-suing Rothschild, which they refer to as a patent troll 
(https://www.gnome.org/news/2019/10/gnome-files-defense-against-patent-troll/). 

Keith Bergelt, OIN’s CEO, said (https://www.zdnet.com/article/open-invention-
network-comes-to-gnomes-aid-in-patent-troll-fight/) in his keynote at Open Source 
Summit, Europe, “Rothschild is a bad company. This is an entity that’s antithetical 
to the goals of innovation. It will sue founda-
tions. It will sue not for profits. It will sue indi-
viduals. It will sue corporations. Their playbook 
is to establish a pattern of wins through rela-
tively modest settlements,” which can get 
other businesses to pay up without a fight.

Gnome turned down the offer to settle for a five-
figure sum in order to sue Rothschild and challenge 
the patent. The Gnome community has established 
the “Gnome Patent Troll Defense Fund” (https://se-
cure.givelively.org/donate/gnome-foundation-inc/
gnome-patent-troll-defense-fund) to raise money 
for this suit and similar attacks.

08	 •  Microsoft Edge Coming to 
Linux

 •  Open Invention Network 
Backs Gnome Project 
Against Patent Troll

09	 •  Fedora 31 Released
 •  openSUSE OBS Can  

Now Build Windows  
WSL Images

10	 •  Sudo Vulnerability
 •  Hetzner Launches New 

Ryzen-Based Dedicated 
Root Servers

 •  IBM Joins the Mayflower 
Autonomous Ship Project

© Daniele Carabini, 123RF

8 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools 

https://myignite.techcommunity.microsoft.com/sessions/79341?source=sessions
https://myignite.techcommunity.microsoft.com/sessions/79341?source=sessions
https://www.chromium.org/
https://www.gnome.org/news/2019/10/gnome-files-defense-against-patent-troll/
https://www.zdnet.com/article/open-invention-network-comes-to-gnomes-aid-in-patent-troll-fight/
https://www.zdnet.com/article/open-invention-network-comes-to-gnomes-aid-in-patent-troll-fight/
https://secure.givelively.org/donate/gnome-foundation-inc/gnome-patent-troll-defense-fund
https://secure.givelively.org/donate/gnome-foundation-inc/gnome-patent-troll-defense-fund
https://secure.givelively.org/donate/gnome-foundation-inc/gnome-patent-troll-defense-fund


 Fedora 31 Released
The Red-Hat-sponsored Fedora community has announced the release of Fedora 31, 
the latest version of Red Hat’s community distribution (https://www.redhat.com/en/
about/press-releases/fedora-31-now-generally-available).

Fedora comes in many different editions – each targeting a different workload.  
Fedora Workstation and Fedora Server are aimed at developers using Fedora for de-
velopment and then testing their apps on servers. Other editions include Fedora 
CoreOS, Fedora IoT and Fedora Silverblue.

Fedora Workstation is among the most popular distributions and is reportedly the 
preferred distro of Linus Torvalds. Fedora 31 Workstation comes with Gnome 3.34 
and many tools and features for general users as well as developers. Gnome 3.34 
brings significant performance enhancements, which will be especially noticeable 
on lower-powered hardware.

Fedora 31 Workstation also expands the default uses of the Wayland graphics 
system, including allowing Firefox to run natively on Wayland under Gnome instead 
of the XWayland backend.

According to Matthew Miller, the Fedora Project Leader, “The Fedora Project 
aims to bring leading-edge innovation to our users, and Fedora 31 delivers on 
that by bringing some of the latest advancements in open source technology to 
the operating system.”

One of the reasons Torvalds and many other developers use Fedora is the fact 
that it is often one of the earliest distributions to introduce new libraries and pack-
ages, which developers can test against their own projects.

Fedora 31 comes with updated compilers and languages, including NodeJS 12, 
Perl 5.30, and Golang 1.13. Additionally the “python” command will now refer to 
Python 3.

It also comes with support for Cgroupsv2, bringing kernel-level support for 
the latest features and functionality around cgroups in the base packages of 
Fedora 31.

Fedora 31 also adds support for RPM 4.15, the latest version of the RPM Package 
Manager for enhanced performance and stability across all versions of Fedora.

All editions of Fedora are available for free. You can download them here 
(https://getfedora.org/).

  openSUSE OBS Can Now 
Build Windows WSL Images

As Windows Subsystem for Linux (WSL) is becoming a critical piece of Microsoft’s 
cloud and data-center audience, openSUSE is working on technologies that help devel-
opers use distributions of their choice for WSL. Users can run the same WSL distribu-
tion that they run in the cloud or on their servers.

The core piece of openSUSE’s WSL offering is the WSL appx files, which are 
basically zip files that contain a tarball of a Linux system (like a container) and a 
Windows exe file, the so called launcher.

An openSUSE blog explains (https://lizards.open-
suse.org/2019/10/09/opensuse-wsl-images-in-obs/) 
that “building a container is something SUSE’s 
Open Build Service (OBS) can already do fully auto-
matic by means of Kiwi. The launcher as well as the 
final appx however is typically built on a Windows 
machine using Visual Studio by the developer.”

As a result of this work, OBS can actually 
build the WSL appx from sources. Anyone can 
build their WSL distribution. However, since the 
files are signed by openSUSE and not Micro-
soft, you will need additional steps to run them 
on Windows 10 machines.

ADMIN HPC
http://www.admin-magazine.com/HPC/

High-Performance Python – Distributed 
Python • Jeff Layton
As the last few articles have pointed out, 
Python is becoming an important language 
in HPC and is arguably the most important 
language in data science.

ADMIN Online
http://www.admin-magazine.com/

Test JavaScript programs with Karma  
Tim Schürmann
Web developers can test increasingly complex 
JavaScript applications in multiple browsers 
with the Karma testing environment. 

Static code analysis finds avoidable errors  
Tobias Eggendorfer
Static code analysis tools like JSLint, Splint, 
RATS, and Coverity help you find code 
vulnerabilities. 

DNSSEC-aware DNS caching with Unbound  
Hans-Cees Speel
If you don’t have access to a DNSSEC-aware 
name server, you can set up your own with 
Unbound. 

© Sergei Popov, 123RF

Linux Magazine
www.linux-magazine.com

Linux News

9

NEWS

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

MORE ONLINE

https://www.redhat.com/en/about/press-releases/fedora-31-now-generally-available
https://www.redhat.com/en/about/press-releases/fedora-31-now-generally-available
https://getfedora.org/
https://lizards.opensuse.org/2019/10/09/opensuse-wsl-images-in-obs/
https://lizards.opensuse.org/2019/10/09/opensuse-wsl-images-in-obs/
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/
http://www.linux-magazine.com


  Sudo Vulnerability
‘sudo’ is one of the most useful Linux/UNIX commands, allowing users without root 
privileges to manage administrative tasks. However, a new vulnerability was discov-
ered in sudo that gives users root privileges.

“When sudo is configured to allow a user to run commands as an arbitrary user 
via the ALL keyword in a Runas specification, it is possible to run commands as 
root by specifying the user ID -1 or 4294967295,” according to the sudo advisory 
(https://www.sudo.ws/alerts/minus_1_uid.html).

The vulnerability allows users with sudo privileges to run commands as root even if 
the Runas specification explicitly disallows root access as long as the ALL keyword is 
listed first in the Runas specification.

Sudo developers have already released a patch to fix the vulnerability. Update your 
systems now.

  
Hetzner Launches New Ryzen-Based  
Dedicated Root Servers

Hetzner is an internet hosting company and data center operator out of Germany that 
provides dedicated hosting, shared web hosting, virtual private servers, managed serv-
ers, domain names, SSL certificates, storage, and cloud solutions. Recently the com-
pany announced the launch of a new line of Ryzen-based dedicated root servers that 
offer a significant boost in performance for customers across all of their services.

According to Tommy Giesler, Product Manager for Dedicated Root Servers at Hetzner 
Online, “All four servers are built to handle applications that have high multithreading re-
quirements.” He  continued that “they’re also great as general entry level servers for 
people with heavy workloads.”

The new lineup consists of the AX41 and AX41-NVME, which are based on the 
Ryzen 5 3600 CPU (with 6 cores and 12 threads), and can be combined with either 
two 2TB HDDs or two 512GB NVMe SSDs. Each of those servers has 64GB of 
DDR4 RAM. The AX41 and AX41-NVMe start at $39 a month, with a one-time setup 
fee of $39. Customers can opt to upgrade the memory on those servers to ECC 
RAM for just $5 a month for increased data integrity.

A step up from the base models are the AX51 and AX51-NVMe. These servers are 
based on the Ryzen 7 3700X (with 8 cores and 16 threads), and can be combined with 
either two 8TB HDDs or two 1024GB NVMe SSDs. Both models include 64GB of DDR4 
ECC RAM. The AX51 and AX51-NVMe are available starting at $59 a month plus a one-
time setup fee of $59.

For more information visit https://www.hetzner.com/dedicated-rootserver/matrix-ax.

  
IBM Joins the Mayflower Autonomous  
Ship Project

IBM has announced that it is joining the Mayflower Autonomous Ship project. The May-
flower project, led by the marine research organization ProMare, has the goal of building 
and sailing an autonomous ship across the Atlantic from Plymouth, England to Plym-
outh, Massachusetts, to commemorate the 400th anniversary of the Pilgrims who 
landed in America in 1620. IBM will provide AI for the mission and will use its expertise 
to help the new Mayflower “navigate autonomously and avoid ocean hazards.”

According to the press release, “Putting a research ship to sea can cost tens of thou-
sands of dollars or pounds a day and is limited by how much time people can spend on-
board – a prohibitive factor for many of today’s marine scientific missions,” said Brett 
Phaneuf, a Founding Board Member of ProMare and Co-Director of the Mayflower Au-
tonomous Ship project (together with fellow Board Member Fredrik Soreide). “With this 
project, we are pioneering a cost-effective and flexible platform for gathering data that 
will help safeguard the health of the ocean and the industries it supports.”

If successful, this will be the first self-navigating, full-sized vessel to cross the Atlantic.

10 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Linux News

NEWS

https://www.sudo.ws/alerts/minus_1_uid.html
https://www.hetzner.com/dedicated-rootserver/matrix-ax




12 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

NEWS
Kernel News

key signing and verification process. In 
particular, she wanted to know if the 
TPM’s secret key, which it used for gen-
erating all the other keys, could ever be 
accessed by the user. Sumit replied no 
that this wasn’t possible. The key was 
permanently locked into the TPM chip 
and represented part of the system-on-a-
chip (SoC) service offered by the com-
pany producing the TPM device.

Sumit’s code was split into several 
patches, and these were examined in-
dependently.

The first two patches enabled register-
ing shared memory with the Trusted Ex-
ecution Environment (TEE). The TEE is 
the environment that needs to be created 
by the various TPM devices, such that it 
has control over the movement of all 
data, to ensure that nothing happens 
that goes against the controlling compa-
ny’s policies. If a fully isolated environ-
ment cannot be created, the company 
can’t verify its own control.

The third patch added support for 
blocking user access to the TEE to obtain 
the TPM’s trusted keys. If the users could 
access those trusted keys, they could po-
tentially violate the integrity of the TEE.

And Sumit’s remaining several 
patches added support for the TEE’s 
trusted keys.

Janne Karhunen remarked that he had 
implemented something similar to this. 
However, instead of supporting an exter-
nal controlling company, he said, “my 
thought was to support any type of trust 
source. Remote, local, or both. Just hav-
ing one particular type of locally bound 
‘TEE’ sounded very limited, especially 
when nothing from the TEE execution 
side is really needed for supporting the 
kernel crypto. What you really need is 
the seal/ unseal transaction going some-
where and where that somewhere is 
does not matter much. With the user 
mode helper in between, anyone can 
easily add their own thing in there.”

Sumit pointed out that a generic TEE, 
of the sort Janne had described, was al-
ready in the Linux kernel and pointed to 
Documentation/tee.txt for reference.

Trusted Computing and 
Linux
Sumit Garg posted a new version of the 
Trusted Keys subsystem for the Linux 
kernel, essentially targeting support for 
Trusted Platform Module (TPM) devices. 

The general idea behind TPM technol-
ogy is that the TPM chip manages access 
to a given device by encrypting its firm-
ware and creating a corresponding hash 
value that is stored on a central server. 
When the system tries to use the device, 
the TPM hashes the firmware and com-
pares it with what’s on the central 
server. If they match, the user can use 
the device. Otherwise, they can’t.

The goal is to prevent computer sys-
tem owners from controlling their own 
systems and to give control to large 
companies such as Microsoft, who can 
then make decisions about what soft-
ware is or is not allowed to be used on 
that system.

The benefits are enormous! For exam-
ple, streaming copyrighted content can 
be handled without fear of piracy, be-
cause the large company can prevent pi-
rating software from running on the sys-
tem. That’s the theory.

The drawback is that users can’t con-
trol their own computers, and they get 
locked into a dependent relationship 
with whichever company controls their 
system. Naturally, there is a lot of 
money and energy being put into get-
ting these types of patches through the 
gauntlet of kernel maintainers and up 
through Linus Torvalds, for inclusion in 
the main kernel tree.

Linus has traditionally been willing to 
accept Trusted Platform patches, but 
only to the extent that they helped, 
rather than hindered, users’ abilities to 
control their own systems. You can 
imagine the debates between developers 
trying to implement features to wrest 
control of users’ systems, and Linus 
cherry-picking only those aspects of 
those patches that actually kept control 
in the hands of users.

In the current discussion, Mimi Zohar 
asked for more information about the 

Zack’s Kernel News

Chronicler Zack Brown reports 
on the latest news, views, 
dilemmas, and developments 
within the Linux kernel 
community. 
By Zack Brown

The Linux kernel mailing list comprises 
the core of Linux development activities. 
Traffic volumes are immense, often 
reaching 10,000 messages in a week, and 
keeping up to date with the entire scope 
of development is a virtually impossible 
task for one person. One of the few brave 
souls to take on this task is Zack Brown.

Author



Kernel News

13LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

NEWS

Sumit also mentioned that his patches 
supported arbitrary “trust sources,” so 
long as they implemented a few special 
library functions.

But Sumit also questioned some of 
Janne’s statement – particularly the idea 
of having a user-mode helper standing in 
the middle of the trusted network. Sumit 
said, “Isn’t actual purpose to have 
trusted keys is to protect user-space from 
access to kernel keys in plain format? 
Doesn’t user mode helper defeat that 
purpose in one way or another?”

Janne remarked in reply, “CPU is in 
the user mode while running the code, 
but the code or the secure keydata being 
[used] is not available to the ‘normal’ 
userspace. It’s like microkernel service/ 
driver this way. The usermode driver is 
part of the kernel image and it runs on 
top of a invisible rootfs.” Janne contin-
ued, “I chose the userspace plugin due 
to this; you can use userspace aids to 
provide any type of service. Use the 
crypto library you desire to do the magic 
you want.”

The debate continued in very polite 
terms, but the battle lines were, once 
again, clearly drawn. Janne under-
scored the issue in a subsequent email, 
saying, “Does the TEE you work with 
actually support GP [Global Platform 
standards] properly? Can I take a look 
at the code?” The Global Platform TEE 
standard is an open framework for mul-
tiple service providers to work together 
to include their separate products in the 
secured TEE environment.

Janne continued, “Normally the TEE 
implementations are well-guarded se-
crets and the state of the implementa-
tion is quite random. In many cases 
keeping things secret is fine from my 
point of view, given that it is a RoT 
[Root of Trust] after all. The secrecy is 
the core business here. So, this is why I 
opted the userspace ‘secret’ route – no 
secrets in the kernel, but it’s fine for the 
userspace.”

That’s the key debate: “No secrets in 
the kernel” means the human owner of 
the computer has control of the system 
and can implement anything they want 
in conjunction with the TEE.

Janne also remarked, “The fundamen-
tal problem with these things is that 
there are infinite amount of ways how 
TEEs and ROTs can be done in terms of 
the hardware and software. I really 

doubt there are 2 implementations in ex-
istence that are even remotely compati-
ble in real life. As such, all things TEE/ 
ROT would logically really belong in the 
userland.”

From the perspective of the corporate 
control advocates, however, giving the 
machine owner this level of control re-
duces the TEE’s security. As Sumit put it:

“In our case TEE is based on ARM 
TrustZone which only allows TEE com-
munications to be initiated from privi-
leged mode. So why would you like to 
route communications via user-mode 
(which is less secure) when we have 
standardized TEE interface available in 
kernel?”

He asked Janne to “elaborate here 
with an example regarding how this 
user-mode helper will securely commu-
nicate with a hardware based trust 
source with other user-space processes 
denied access to that trust source?”

Janne explained, “The other user 
mode processes will never see the device 
node to open. There is none in existence 
for them; it only exists in the ramfs 
based root for the user mode helper.”

Janne added, “Layered security is gen-
erally a good thing, and the userspace 
pass actually adds a layer, so not sure 
which is really safer?”

As I read this exchange, Janne is at-
tempting to goad Sumit into affirming 
that the additional security he wants is 
exactly the elimination of the machine 
owner’s ability to keep control. Janne is 
apparently essentially saying, “Security 
issues? What security issues?” And invit-
ing Sumit to say that it’s still possible for 
the machine owner to insert whatever 
they want into the TEE pipeline, which, 
of course, is exactly what Linux itself is 
supposed to be able to do.

But Janne got more and more ex-
plicit as the conversation proceeded. 
At one point he said, “The fundamen-
tal problem with the ‘standardized ker-
nel tee’ still exists – it will never be ge-
neric in real life. Getting all this [patch 
submission] in the kernel will solve 
your problem and sell this particular 
product, but it is quite unlikely to help 
that many users.”

And, even more explicitly, Janne re-
marked, “there is no way to convince 
op-tee or any other tee to be adopted by 
many real users. Every serious user can 
and will do their own thing, or at very 

best, buy it from someone who did their 
own thing and is trusted. There is zero 
chance that samsung, huawei, apple, 
nsa, google, rambus, payment system 
vendors … would actually share the tee 
(or probably even the interfaces). It is 
just too vital and people do not trust 
each other anymore.”

The discussion petered out shortly af-
terwards. However, Sumit did not give 
up and submitted more patches later. 
Again, the owner-friendly elements were 
seen as acceptable, while the rest was 
seen as still problematic.

In this kind of debate, I ask myself if 
these sorts of features are inevitable in 
Linux. Will Linux definitely some day 
support the kind of Trusted Computing 
platform that could lock users out of 
controlling their own system? In other 
words, is there some sort of conceivable 
scenario in which these companies 
sneak a certain set of features through 
the development process and then Linus 
finds himself unable to undo those 
changes, because it would break too 
much user space that has already come 
to depend on it?

Another way of putting it might be: 
What if we discovered, today, that a 
basic element of networking could be 
used to implement this kind of Trusted 
Computing in Linux? Would Linus be 
willing to remove that element, knowing 
that it was generally regarded as essen-
tial? Or would he accept as inevitable the 
creation of these Linux-based Trusted 
Computing features?

Load Balancer 
Improvements
Vincent Guittot pointed out that the 
Linux load balancer had gotten a bit 
out of whack recently. Various im-
provements had made certain heuris-
tics pointless, but those heuristics had 
not yet been removed. He also pointed 
out that not all CPU imbalances were 
based on load, while the load balancer 
calculated everything based on load. 
Consequently, Vincent felt there was 
room for further improvement along 
those lines.

He posted some patches to clean up 
things. Among other things, he consoli-
dated the balancing logic into only three 
functions – one to identify the busiest 
group of processes, another to check if 
there’s an imbalance, and a third to de-



14 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Kernel News

NEWS

fresh random number to start with, and 
therefore a truly unpredictable stream of 
random numbers.

However, as Andy pointed out, you 
don’t always want this. Sometimes a bit 
of code wants random numbers, but not 
because they need to be cryptographi-
cally secure. Sometimes it just wants 
something, anything, so long as it is dif-
ferent than what came before. Andy’s 
code would guarantee that it would pro-
vide a “best effort” at obtaining entropy, 
without actually requiring anything like 
true entropy.

The point of this is that the Linux ker-
nel would normally wait for enough en-
tropy to build up in the system, before 
allowing one of these entropy requests to 
return to the calling routine. And this is 
definitely still important for various 
cases. But in the cases where it’s not, 
Andy’s patches speed things up by not 
forcing the user code to wait for the 
build up of a suitable amount of entropy.

Andy added reassuringly, “This series 
should not break any existing programs. 
/dev/urandom is unchanged. /dev/random 
will still block just after booting, but it 
will block less than it used to. geten-
tropy() with existing flags will return 
output that is, for practical purposes, 
just as strong as before.”

Theodore Y. Ts’o remarked that this 
was actually a really big change. He felt 
that the timing was not right in the de-
velopment cycle for a patch “of this 
magnitude.” He added, “The reason for 
this is because at the moment, there are 
some PCI compliance labs who believe 
that the ‘true randomness’ of /dev/ ran-
dom is necessary for PCI compliance and 
so they mandate the use of /dev/ random 
over /dev/ urandom’s ‘cryptographic ran-
domness’ for that reason. A lot of things 
which are thought to be needed for PCI 
compliance that are about as useful as 
eye of newt and toe of frog, but nothing 
says that PCI compliance (and enter-
prise customer requirements :-) have to 
make sense.”

Ted added, “It may be that what we 
might need to really support people (or 
stupid compliance labs) who have a fe-
tish for ‘true randomness’ [is] to get a 
better interface for hardware random 
number generators than /dev/hwrng. Spe-
cifically, one which allows for a more 
sane way of selecting which hardware 
random number generator to use if there 

cide which processes to move in order to 
balance the load better.

Peter Zijlstra was very happy to see 
these patches; he and Valentin Schneider 
offered technical suggestions and docu-
mentation fixes. The three of them went 
back and forth for awhile, without dis-
putes or controversies. It was a very for-
ward-moving collaboration.

This is no guarantee that the code will 
go into the kernel. Yes, it’s excellent to 
make the load balancer more meaningful 
and remove arbitrary logic and so on. 
And it’s excellent to see unidirectional 
progress in the mailing list discussion. 
However, there are still obstacles that 
might arise between Vincent’s patch set 
and inclusion in the main kernel tree – 
security issues and whatnot.

The main problem, especially with 
something like the load balancing code, is 
simply the impossibility of knowing how 
people use their systems. Obviously, if 
the kernel knew exactly how the system 
would be used, it would be trivial to bal-
ance out all of those processes between 
the various CPUs. But since use cases 
vary from person to person, we can never 
have such knowledge. And often the final 
obstacle to improving the load balancer is 
simply that, regardless of the intelligence 
behind a given patch, there is simply no 
way to know if it’s actually better than 
what was there previously. So, to be ac-
cepted, a load balancer patch might need 
to make a large, clearly noticeable im-
provement, when, ironically, more subtle 
and delicate changes might in fact be the 
better way to go.

New Random Number 
Handling
Andy Lutomirski submitted some 
patches to improve the Linux kernel’s 
random number generation routines. 
First, he added a getentropy() function 
to provide a little entropy for use in gen-
erating a stream of random numbers. 
The idea is that entropy is itself a bit of 
randomness, taken from, for instance, 
the time delays between keyboard key 
presses. Then that number can be fed 
into a random number generator that 
will produce a stream of random num-
bers based on it. If you feed the same en-
tropy in each time, you get the same 
stream of “random” numbers – not so 
random anymore. But if you have a good 
source of entropy, you can always have a 

are multiple available, and also one 
where we mix in some CRNG as a whit-
ening step just [in] case the hardware 
number generator is busted in some 
way. (And to fix the issue that at the mo-
ment, if someone evil fakes up a USB de-
vice with the USB manufacturer and 
minor device number for a ChosKey de-
vice that generates a insecure sequence, 
it will still get blindly trusted by the ker-
nel without any kind of authentication of 
said hardware device.)”

Ted’s idea was to find a way to hook 
/dev/random into any available hard-
ware random number generator to sat-
isfy those users who needed truly ran-
dom numbers.

But Andy thought this might not be a 
kernel issue at all. He saw no reason 
why the PCI folks couldn’t be satisfied 
by a userspace source of randomness. 
He remarked, “it should be straightfor-
ward to write a little CUSE program that 
grabs bytes from RDSEED or RDRAND, 
TPM, ChaosKey (if enabled, with a usb 
slot selected!), and whatever other 
sources are requested and, configurable 
to satisfy whoever actually cares, mixes 
some or all with a FIPS-compliant, prov-
ably-indistinguishable-from-random, 
definitely not Dual-EC mixer, and spits 
out the result. And filters it and checks 
all the sources for credibility, and gener-
ally does whatever the user actually 
needs. And the really over-the-top audi-
tors can symlink it to /dev/random.”

Pavel Machek also replied to Andy’s 
original post, asking for some better 
justification of the patches than Andy 
had given. And Andy explained, “The 
random code is extremely security sen-
sitive, and it’s made considerably more 
complicated by the need to support the 
blocking semantics for /dev/random. My 
primary argument is that there is no 
real reason for the kernel to continue to 
support it.”

There was no further discussion, but 
Ted was right that Andy’s patch would 
be a big change – not necessarily to the 
behavior of the kernel at all, but just to 
the resources offered by the kernel to 
user code. Depending on how much 
time Linus Torvalds wanted to give users 
to adapt their code to this new random-
ness situation, Andy’s patches would 
have to be timed carefully, to appear 
early in the development cycle leading to 
the next official kernel release.  nnn





I f you want to control your own home automa-
tion environment with Amazon Alexa using nat-
ural language, you have two options. Either resort to a 
prebuilt Alexa skill, as offered by the vendors of some auto-

mation components, or write a skill of your own.
If you can find a prebuilt skill that performs the task you want to automate, you 

can accomplish the automation with just 
a few short steps; however, the possibili-
ties are limited to the set of options that 
have already been provided by third-
party programmers. If you want to reach 
other devices – or even if you just want 
to execute a series of actions that don’t 
fall easily within Alexa’s existing skill 
set, you need to write the skill yourself.

This article shows how to build the 
front end of your Alexa automation by 
getting Alexa to communicate with a 
Raspberry Pi. Once you establish the 
link to the RaspPi device, you can train 
the Pi to perform any number of basic 
functions on your IoT home network.

Before you jump out and start from 
scratch, however, it pays to take a care-
ful look at the prebuilt options. Alexa 
supports a number of prebuilt skills that 
provide easy access to existing automa-
tion systems.

Prebuilt Skills
Alexa’s built-in skills are the fastest and 
easiest way to automate – if you can 
find a skill that does what you need. 
Many prebuilt skills tie in with existing 
automation systems and IoT environ-
ments. (See the box entitled “Alexa in 
Harmony.”)

Prebuilt Alexa Skills are also available 
for wireless socket outlets, but only for 

Using voice-controlled interfaces via Amazon Alexa

 Listening to  
the Word
Want to add voice activation to your IoT environment?  
Create an Alexa skill. By Jens-Christoph Brendel and Martin Mohr

One example of a ready-made skill is 
Logitech’s Harmony universal remote 
control with its hub. The hub is a central 
transmitter that sends signals via infra-
red, Bluetooth, or WLAN to the devices 
that the user wants to operate. The re-
mote control you hold in your hand no 
longer talks directly to the TV, stereo, or 
video player, but to the hub, which in 
turn talks to the devices. Thanks to an 
Alexa skill, this hub can now be operated 
by voice, which gives you the ability to 
talk to a wide and diverse range of home 
electronics devices.

The basic switch-on and switch-off com-
mands can be combined to create ac-
tions. For example, if – as a TV viewer – 
you use a sound bar for better sound 
quality or surround sound, you can al-
ways switch it on and off along with the 
TV set by linking the virtual on/ off 
switches of both devices in a single se-
quence (Figure 1).

These actions can then be triggered 
again using an Alexa voice command; in 
other words, a terse “Alexa, good night” 
is enough to switch off the TV and sound 
bar, dim the lights, lower the blinds, and 
lock the apartment door.

What do you need to do to achieve this? 
The first step is to define the actions in 
the Harmony app on your smartphone or 
tablet. The app is available for Android 
and iOS. Harmony controls over 270,000 
different devices from most major manu-

facturers, including Bose, Philips, Denon, 
Sonos, Hue, and Deutsche Telekom. The 
actions can also be assigned to buttons 
on the remote control, so that pressing a 
button triggers a whole cascade of com-
mands. In this example, however, Alexa 
will trigger the actions.

You can obtain the Harmony skill from 
the Amazon Alexa App Store in the 
Alexa app on your smartphone or tablet. 
The skill sports a blue logo. Watch out! 
An older version of this skill with a red 
logo named Harmony Second Hub is no 
longer recommended because it forced 
you to say the words “with Harmony” 
with all commands.

After you download, you need to enable 
the skill and log in with the same creden-
tials that you use for your Logitech ac-
count. The Alexa skill then automatically 
gathers information about the Harmony 
actions.

If you want, you can fine-tune the pre-
stored wording for the voice commands 
or the device name, but this is not abso-
lutely necessary. Voice commands like 
“Alexa, switch on the TV” or “Alexa, 
switch on the Xbox” will work – provided 
you previously defined a corresponding 
action in the Harmony app. You can say 
“Alexa, switch to channel 3” or “Alexa, 
turn up the volume by four increments” 
and so on.

Alexa in Harmony

16

COVER STORY

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Alexa Skills



certain manufacturers. For example, 
there is a skill for the Kasa device series 
(wireless socket outlets, cameras, lamps) by TP-Link. You first 
need to set up the socket outlet in a TP-Link Kasa app and as-
sign a name. You can then select the device and add it to the 
Alexa app. If you named the socket outlet “reading lamp” in 
the first step because it operates the standard lamp next to 
your comfortable armchair, you can then turn on the lights by 
saying “Alexa, reading lamp on.”

The setup for a prebuilt skill is usually simple and conve-
nient. If you are happy with the basic functions of popular de-
vices, you will not be motivated to become a skilled program-
mer yourself. At times, however, you might want to combine 
several actions or use functions that are not included in the 
repertoire of ready-made skills. In this case, you will have to 
program a skill yourself.

Keep in mind that, if you don’t trust Alexa when it comes to 
data protection, self-programming will not help much. 
Whether you use a prebuilt skill or program the skill yourself, 
everything you tell Alexa is routed through the Amazon server 
and stored there.

DIY Alexa Skill
The skill programmer faces two quite different challenges: 
First, you need to ensure that the computer that will execute 
the actions, a Raspberry Pi in this example, receives and in-
terprets the voice command from Alexa and learns what to 
do. In addition to the RaspPi, one of Amazon’s smart Echo 
series speakers is also needed to receive the spoken instruc-
tions and forward them to the servers.

Secondly, you need to program the action that you want 
carried out. The example in this article only looks at step 1. 
Communication between Alexa and your RaspPi is the foun-
dation; from there, you can program your Pi to perform any 
task that makes sense for your network. In this example, the 
Raspberry Pi will switch on one of its eight LEDs to indicate 
that it has received and understood an instruction (Figure 2).

A first generation Raspberry Pi is powerful enough for the 
experiment; it runs the latest version of Raspbian “Stretch” 
Lite. The Lite version of the operating system does without a 
graphical user interface and therefore copes particularly well 
despite the frugal hardware resources. A GUI is not necessary 
for this project anyway. The Lite version of Raspbian lacks 
some libraries and tools that need to be installed before you 

Figure 1: Two screens of the Harmony app to define a start sequence 
for the TV set and sound bar.

Figure 2: The schematic for the eight LEDs.

17

COVER STORY
Alexa Skills

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



takes some time – this might be a good time for you to take a 
coffee break.

Tunnel Builder
The Raspberry Pi still lacks a tool for building a secure tunnel be-

tween the RaspPi and the Amazon servers. This is 
where the Ngrok tunneling service comes in. Ngrok is 
very easy to install and configure. With the free version 
of Ngrok, however, the URL of the tool changes after 
each restart. If this is too much of an annoyance for 
you, you have to bite the bullet and go for a commer-
cial version. The basic cost is around $5 per month.

To install the program, download the Linux ARM 
version from the Ngrok website and transfer the zip 
archive to the Raspberry Pi. Then unpack the ar-
chive and call Ngrok directly in a terminal (Listing 
1, Lines 5 and 6). The options of the command in 
Line 6 tell Ngrok to forward port 5000 from localhost 
and listen for HTTP requests there. The output 
should be similar to Figure 3.

Each time a connection is established, Ngrok gen-
erates new random URLs. You need to make a note 
of the address marked red in the figure: you will 
need it later on as a communication endpoint in the 
Alexa skills.

Control Program
Since the running Ngrok server is now blocking 
the current terminal, it makes sense to open a sec-

can install the Flask web framework (written in Python), 
which is required for this example.

These installations are handled by the commands in the 
first four lines of Listing 1, including the installation of Flask 
via Pip, the Python module management tool. The process 

01  $ sudo apt update

02  $ sudo apt upgrade

03  $ sudo apt install python2.7‑dev python‑dev python‑pip wiringpi

04  $ sudo pip install flask‑ask

05  $ unzip /home/pi/ngrok‑stable‑linux‑arm.zip

06  $ ./ngrok http 5000

Listing 1: Setting up Flask and Ngrok

Figure 3: The output from Ngrok. The HTTPS URL is required 
later on.

01  # house.py

02

 03  import logging

04  import time

05  import RPi.GPIO as GPIO

06  from flask import Flask, render_template

07  from flask_ask import Ask, statement, question, session

08

 09  GPIO.setmode(GPIO.BCM)

10  app = Flask(__name__)

11  ask = Ask(app, "/")

12  logging.getLogger("flask_ask").setLevel(logging.DEBUG)

13

 14  @ask.launch

15  def greeting():

16  GPIO.setup(17, GPIO.OUT) # GPIO 0

17  GPIO.setup(18, GPIO.OUT) # GPIO 1

18  GPIO.setup(27, GPIO.OUT) # GPIO 2

19  greeting = render_template('greeting')

20  return question(greeting)

21

 22  @ask.intent("TVIntent",mapping={'status': 'status'})

23  def TV(status):

24  print 'test=>{}'.format (status)

25  if status == "on":

26  print 'ON'

27  GPIO.output(17, GPIO.HIGH) # GPIO 0

28  if status == "off":

29  print 'OFF'

30  GPIO.output(17, GPIO.LOW) # GPIO 0

31  status = render_template('TV', status=status)

32  return question(status)

33

 34  @ask.intent("LampIntent",mapping={'status': 'status'})

35  def lamp(status):

36  if status == "on": GPIO.output(18, GPIO.HIGH) # GPIO 1

37  if status == "off": GPIO.output(18, GPIO.LOW) # GPIO 1

38  status = render_template('lamp', status=status)

39  return question(status)

40

 41  @ask.intent("SocketIntent")

42  def socket(status):

43  if status == "on": GPIO.output(27, GPIO.HIGH) # GPIO 2

44  if status == "off": GPIO.output(27, GPIO.LOW) # GPIO 2

45  status = render_template('socket', status=status)

46  return question(status)

47

 48  if __name__ == '__main__':

49  app.run(debug=True)

Listing 2: house.py

18

COVER STORY
Alexa Skills

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



ond terminal window. In it, create a 
text file named house.py with the con-
tents from Listing 2. This Python pro-
gram calls the Alexa skill later on. The 
program provides a server that controls 
three devices: a TV set, a lamp, and a 
socket outlet.

For each of the three devices, the pro-
gram has what is known as an intent, 
which controls exactly this one function. 
The corresponding decorators @ask.in-
tent() define the functions that the intent 
then executes as an action when called.

Say Hello!
The @ask.launch() decorator displays a 
friendly greeting text. In this example, 
the Australian “Gooday” is used, a greeting that would be 
appropriate at any time of day.

In the functions, the commands necessary for controlling the 
GPIOs are executed. The Flask framework abstracts the com-

plexity behind a skill very well. Further data can be found in the 
templates.yaml resource file. The file must reside in the same di-
rectory as the Python program that communicates with the skill. 
This file contains texts that the skill will use. This makes it easier 

01  greeting: Gooday

02  TV: TV is {{status}}

03  light: Light is {{status}}

04  socket: Socket is {{status}}

Listing 3: templates.yaml

Figure 4: The (still empty) list of Alexa skills on an Amazon Web 
Services account.

Alexa Skills

COVER STORY



Setting up an Alexa Skill
For the next step when programming an Alexa skill, the Echo 
device you use must be activated. You first need an Amazon 
Web Services (AWS) account, which can be obtained free of 
charge on the AWS homepage. All you need is a credit card and 
a mobile phone connection.

You can now create a new Alexa skill via the AWS ac-
count. The easiest way to get there is via the list of current 
Alexa skills, which is empty for a new user account (Fig-
ure 4). There the user clicks on the Create Skill button to 

create a new skill.
The skill should then be given a de-

scriptive name and a desired language. A 
mouse click on the Next button takes 
you directly to the next step of choosing 
the Custom model: it offers the highest 
degree of flexibility.

Another click on the button Create 
Skill closes the wizard. Now the homep-
age belonging to the new skill appears 
(Figure 5). Here you can set further pa-
rameters of the skill. The video under 
"How to get started" at the top of the 
page helps you to get started with the 
subtleties of skill creation.

Skills in Detail
To understand more exactly how an 
Alexa skill is composed, it is worth tak-
ing a look at its individual compo-
nents. The skill describes an interac-
tion model that summarizes all behav-
iors and components. The interaction 
model itself consists of a number of 
components.

The invocation is the name of the 
Alexa skill and serves as a keyword for 
its activation. You’ll need to follow some 
rules when assigning names – the Alexa 
website explains them in detail.

An intent describes an action that the 
user wants to perform within the skill. 
The individual intents require at least 
one defined keyword (sample utterance), 
which starts the action. If required, sev-
eral sample utterances can be stored for 
each intent – for example, the variants 
“affirmative,” “exactly,” and “yeah” for 
the simple “yes.” The more meaningful 
the utterances for an intent, the more re-
liable the skill becomes.

The slot types are self-defined data 
types that are used within the skills. The 
idea behind the slot types is similar to 
the enumeration data types known from 
almost all programming languages. For 
example, when asking for a car brand, 
the slot type could be car brand and con-
tain values such as BMW, Audi, or Ford.

to adjust the speech output if necessary, for example to change 
the greeting or to enter other devices. The quite compact re-
source file for the example from this article is shown in Listing 3.

The shell python house.py command starts the Python 
server. Ngrok and the Python program simply keep running 
after that. Of course, you cannot close any of the terminal 
windows afterwards. You need to make sure that Ngrok is 
running when the Python server enters the scene, otherwise 
the connection between the Echo skill and the server program 
cannot be established.

Figure 6: Finally, you define the activation keyword for the skill.

Figure 5: The web page for the newly created skill.

20

COVER STORY
Alexa Skills

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



With the JSON editor, a simple text editor, the user edits 
the individual components of the skill directly in the inter-
face. Although this task requires appropriate know-how, it 
makes it easier to keep track of complex skills.

In the Interfaces section, the user integrates multimedia con-
tent directly into an Alexa skill. Currently you will find three 

interfaces: Audio Stream, Video Stream, 
and Display Interface.

The endpoints determine which services 
the Alexa skill should communicate with 
on the Internet. In the present case, Rasp-
berry Pi, which is linked to the skill via the 
Ngrok service, acts as the endpoint.

The sample skill needs to control 
three devices: a TV set, the light, and a 
socket outlet. To implement this, you 
create an intent for each of the three 
devices. Each intent supports the com-
mands that name the corresponding 
device and transmit its status. The 
House command acts as the keyword. 
Define it below Invocation and then 
press the Save Model button (Figure 6). 
From experience, I can only advise 
readers to save more often than you 
might think necessary, rather than 
wondering later on why the skill does 
not work as it should.

Slots and Intents
A slot type named GPIO transmits the 
status of the individual devices. GPIO 
can assume one of two values: on and 

off. The slot type can already be created at this point. Press 
Add to the right of the Slot Types entry in the sidebar.

When you get there, select a custom slot type and assign the 
name of GPIO (Figure 7). Then, on the following page, assign 
the on and off values. To save the values, remember to press 
Save Model at the top.

On top of this, you now create the in-
tents. You could do this manually by 
clicking your way through the individual 
dialog boxes. However, to reach this goal 
far faster, simply copy the content from 
Listing 4 to the interaction model using 
the JSON editor.

Make sure that the intents in the inter-
action model use the same names as in 
the Python program, otherwise you can 
expect trouble later on when you try to 
execute the skill.

In addition, the skill must be saved 
after each change to the interaction model 
and then rebuilt by clicking on Build 
Model. If you forget this step, nothing 
happens and you keep the old model.

Now only the communication between 
the skill and the Python program is miss-
ing. Click on Endpoint and select the 
HTTPS option. In the Default Region 
field, enter the URL currently used by 
Ngrok. In the drop-down box below, also 
enable the option labeled My develop-
ment endpoint is a subdomain of a do-
main that has a wildcard certificate from 

Figure 7: Create a slot type via the interface.

Figure 8: Creating an endpoint.

21

Alexa Skills

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

COVER STORY



Controlling this with Amazon Echo should work the same 
way: The Start house voice command loads the skill, then the 
TV on command switches on the TV set.

Conclusion
Alexa provides an easy path for adding voice activation to 
your Raspberry Pi automations, but you’ll need to set up a 
tunnel and do a little basic programming. This article offers 
a simple example for how to get Alexa talking to your 
RaspPi. Once you have established a communication chan-
nel, the possibilities for your voice-activated Raspberry Pi 
are endless.  nnn

a certificate authority (Figure 8). A click on Save Endpoints in 
the dialog header saves the changes.

After all configuration work has been completed, you need 
to build the skill for the first time. The Build Model switch ap-
pears on all pages where the model can be changed. Click on 
Invocation and then on Build Model.

For an initial test, change to the tab labeled with the name of 
the skill. Test mode can be enabled using the slider below the 
tab bar. Then enter the activation keyword, House, in the text 
box. The skill should then immediately welcome you in Austra-
lian. The connected devices can then be switched. The LEDs 
on the Raspberry Pi’s GPIO prove that the skill works.

01  # intents.json

02  {

03   "languageModel": {

04       "invocationName": "house",

05       "intents": [

06         {

07           "name": "AMAZON.CancelIntent",

08           "slots": [],

09           "samples": []

10         },

11         {

12           "name": "AMAZON.HelpIntent",

13           "slots": [],

14           "samples": []

15         },

16         {

17           "name": "AMAZON.StopIntent",

18           "slots": [],

19           "samples": []

20         },

21         {

22           "name": "TVIntent",

23           "slots": [

24             {

25               "name": "status",

26               "type": "GPIO"

27             }

28           ],

29           "samples": [

30             "TV {status}",

31             "tv {status}"

32           ]

33         },

34         {

35           "name": "LampIntent",

36           "slots": [

37             {

38               "name": "status",

39               "type": "GPIO"

40             }

41           ],

42           "samples": [

43             "lamp {status}"

44           ]

45         },

46         {

47           "name": "SocketIntent",

48           "slots": [

49             {

50               "name": "status",

51               "type": "GPIO"

52             }

53           ],

54           "samples": [

55             "socket {status}"

56           ]

57         }

58       ],

59       "types": [

60         {

61           "name": "GPIO",

62           "values": [

63             {

64               "id": "",

65               "name": {

66                 "value": "aus",

67                 "synonyms": []

68               }

69             },

70             {

71               "id": "",

72               "name": {

73                 "value": "on",

74                 "synonyms": []

75               }

76             }

77           ]

78         }

79       ]

80     }

81   }

Listing 4: Intents

22

COVER STORY
Alexa Skills

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



M any Internet of Things (IoT) solutions are pro-
prietary tools that limit choice and compro-
mise user privacy. As one might expect, 
the open source community, which 

has always prized freedom and openness, 
has been hard at work on solutions that 
would avoid the many problems associ-
ated with vendor lock-in.

The Mozilla project recently added a 
promising new technology to the IoT mix. 
Mozilla’s WebThings [1] is an implementa-
tion of the Web of Things architecture, which 
attempts to build the IoT around proven and 
well known Internet technologies, such as 
REST, HTTP, and JSON.

According to Mozilla’s website, WebThings 
consists of two primary components:
• WebThings Gateway [2] – a software distribu-

tion for smart home gateways focused on privacy, 
security, and interoperability. The gateway acts as an 
interface between the IoT network and the Internet or 
local network.

• WebThings Framework [3] – a collection of reusable software com-
ponents to help developers build their own web things .

WebThings, which is open source and freely available on GitHub [4] supports a num-
ber of home automation protocols, including Zigbee [5], which has been under devel-
opment for more than 15 years, and Z-Wave [6].

An open platform for IoT with multiple protocol support is a very promising 
development – but does WebThings work now with real-world IoT devices? We 
decided to find out.

Hardware
WebThings Gateway runs on a conventional Raspberry Pi (models 1 to 4) with a modi-
fied Raspbian operating system. Mozilla also offers an image for the Turris Omnia 
WLAN router [7], and the WebThings developers are working on a version for Open-
WRT-based devices. Users control devices with the Things graphical user interface.

To enable communication between the computers on the network and Zigbee or 
Z-Wave IoT devices, you’ll also need to plug a suitable gateway device into the 
Raspberry Pi. For our tests, we used the ConBee II Zigbee [8] USB stick. UZB, a Z-Wave 
USB stick, is also available [9].

Linux lab: Mozilla’s WebThings Gateway

Crash Landing
The smart home is gaining momentum, and Mozilla joins the 
fray. Mozilla WebThings is billed as an open platform for 
managing IoT devices. We decided to investigate.  
By Erik Bärwaldt

23

COVER STORY

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

WebThings



First Contact
We used a Raspberry Pi 4B as our gateway computer. As end 
devices, we used several Zigbee-capable lamps by manufactur-
ers Aurora, Enlite, Müller-Licht, and Philips. We also added a 
switchable OSRAM socket to the Zigbee network.

To build the WebThings Gateway system for the Raspberry Pi, 
download the image from the project website and unpack the ar-
chive. Then transfer the resulting image to a MicroSD card, 
which acts as the boot medium. (See the instructions on the 
Mozilla WebThings website [10].) Then plug the ConBee II stick 
into the Raspberry Pi and start the system.

Next set up a WLAN named WebThings Gateway nnnn, 
where nnnn is a random string of characters and digits. Users 
will connect to this WLAN hotspot on other computers. Open 
a web browser and type http://gateway.local in the address 
bar; this opens a list of available wireless networks. Select 
your WLAN from the list and associate your Rasp Pi with the 

desired WLAN by entering the 
WPA2 key (Figure 1).

Then log in to this WLAN on 
your computer and call the http://
gateway.local URL once again. In 
the browser, Mozilla’s gateway cre-
ates a subdomain that allows ac-
cess to the gateway from the Inter-
net. The keys for secure access to 
the gateway using the HTTPS pro-
tocol are generated in the back-
ground (Figure 2). You may have to 
forward the gateway IP address 
and port on the router.

In the next step, create a new 
user account in the browser. Enter 
the desired name, password, and 
email address. You are then taken 
to an almost empty screen that 
prompts you to search for new 
equipment. To start the search, 
press the plus button bottom right.

The system now searches the local 
network for connected Zigbee de-
vices and lists them in the browser 
window. Alternatively, you can use 
the Add by URL link to manually in-
tegrate smart devices on the WLAN 
via their IP addresses.
The system settings can be 
accessed by opening the menu hid-
den behind the hamburger icon top 
left in the browser window. In the 
Settings submenu, first change the 
system settings. Use the system set-
tings to create additional users and 
integrate other devices, which 
Mozilla refers to as Things, into the 
system. In addition, you can modify 
the WLAN or the subdomain con-
figuration (Figure 3).

Modules
To operate most devices, you will need to retroactively install 
add-ons. Right from the start, only the WebThings, Z-Wave, 
and Zigbee modules are active. The WebThings module is used 
to integrate smart end devices that can be addressed via WLAN 
into Mozilla’s home automation software. You can install addi-
tional modules later to access terminal devices, communicate 
via Bluetooth, and more (Figure 4).

Clicking on the plus button in the bottom right corner of the 
add-ons list display takes you to a list of additional modules. Click 
on the + Add button to integrate the module with the system.

Protocols
The protocol function in the Settings menu lets you obtain use-
ful information such as the energy consumption data.

The Logs item opens a new view. Select one of the de-
vices integrated into the system for the protocol function 

Figure 1: WLAN detection already works reliably with Mozilla’s WebThings 
Gateway.

Figure 2: Thanks to a separate subdomain, WebThings allows access via 
the Internet.

24

COVER STORY
WebThings

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



and logically structured, there are 
only a few modules – often for de-
vices that are no longer manufac-
tured. Some of the devices do not 
even exist in Europe.

In our lab, we were unable to con-
trol even one of the half dozen end 
devices by manufacturers Aurora 
Lighting, Enlite, Müller-Licht, Philips, 
and OSRAM with WebThings. 
Mozilla’s compatibility list does at 
least support Philips lamps and 
OSRAM socket adapters [11].

Hue lighting by Philips will only 
harmonize with WebThings if you 
reset the lamps to the factory set-
tings. But to do this, you need a 
Philips control unit. Many popular 
vendors on today’s home automa-
tion market are simply missing from 
the WebThings compatibility list.

Conclusions
WebThings has a promising ap-
proach to making the smart home ac-
cessible to users who do not want to 
transfer their data to the cloud. In 
addition, Mozilla’s new project sup-
ports a number of different protocols 
and also controls WLAN and Blue-
tooth systems.

However, the project still suffers 
from a massive lack of development 
work in the field of add-ons for end 
devices. At this point, it is hardly 
possible to integrate today’s de-
vices, such as intelligent lamps or 
motion and temperature sensors, 
into WebThings. WebThings seems 
to be miles away from a solution 

for end users that is suitable for everyday use.  nnnby clicking the plus button. In this dialog, you can also de-
cide how long WebThings should store the logs. You can 
also create a floor plan of your home using the Floorplan 
dialog in the Settings menu. Enter the locations of all end 
devices in the floor plan. If you have a large number of in-
tegrated devices, the floor plan will definitely help you 
maintain an overview.

Defining Rules
Using the entry Rules in the Settings menu, you can define 
rules for controlling terminal devices. Define rules by dragging 
and dropping components from the device list. For instance, 
you can switch a terminal device on or off at a predefined time 
with just a few mouse clicks. To create new rules, press the 
plus button bottom right in the window.

Catastrophic
In our hands-on session, Mozilla’s WebThings gave us a cata-
strophic first impression. Although the user interface is intuitive, 

Figure 3: The WebThings Settings dialog offers several options.

Figure 4: Add-on modules let you add additional devices to the network.

[1]  WebThings: https://  iot.  mozilla.  org

[2]  WebThings Gateway: https://  iot.  mozilla.  org/  gateway

[3]  WebThings Framework: https://  iot.  mozilla.  org/  framework/

[4]  WebThings on GitHub: https://  github.  com/  mozilla‑iot/

[5]  Zigbee protocol: https://  en.  wikipedia.  org/  wiki/  ZigBee

[6]  Z-Wave protocol: https://  en.  wikipedia.  org/  wiki/  Z‑Wave

[7]  Turris Omnia: https://  www.  turris.  cz/  en/  omnia/

[8]  ConBee II: http://  phoscon.  de/  en/  conbee2

[9]  UZB: https://  z‑wave.  me/  uzb/

[10]  Documentation: https://  iot.  mozilla.  org/  docs/ 

 gateway‑getting‑started‑guide.  html

[11]  Compatibility list: https://  github.  com/  mozilla‑iot/  wiki/  wiki/ 

 Supported‑Hardware#  adapters

Info

25

WebThings

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

COVER STORY

https://iot.mozilla.org
https://iot.mozilla.org/gateway
https://iot.mozilla.org/framework/
https://github.com/mozilla-iot/
https://en.wikipedia.org/wiki/ZigBee
https://en.wikipedia.org/wiki/Z-Wave
https://www.turris.cz/en/omnia/
http://phoscon.de/en/conbee2
https://z-wave.me/uzb/
https://iot.mozilla.org/docs/gateway-getting-started-guide.html
https://iot.mozilla.org/docs/gateway-getting-started-guide.html
https://github.com/mozilla-iot/wiki/wiki/Supported-Hardware#adapters
https://github.com/mozilla-iot/wiki/wiki/Supported-Hardware#adapters


F HEM [1] is an open source server for home automation. Your FHEM 
system can control Internet of Things (IoT) devices, such as lamps, ther-
mostats, shutters, audio equipment, and all the other gadgets that populate a 
smart home. You can interact with FHEM through a smartphone front end or 

even over the web.
FHEM supports several different home automation protocols and has a number of 

different interfaces for the user to interact with directly or through a script. The mod-
ular architecture currently includes more than 430 modules.

The quality of an open platform depends on the commitment and skills of the com-
munity backing it. That commitment is evident in the case of FHEM. The FHEM 
Forum, the official contact point for enthusiasts, now has more than 20,000 members.

Although the number of available software modules was quite small just a few 
years ago, experienced users can now turn to countless modules to integrate not only 
Homematic (the classic wireless standard), but also widely used standards in the 
smart home sphere, such as Zigbee (used by Philips Hue and Ikea Trådfri, among 
others) or Z-Wave. Cable-based standards such as OneWire, DMX, or the KNX profes-
sional standard are also supported.

Using the official Tesla API, you can even read out your electric vehicle’s status values, 
such as the current battery charge level. As soon as the battery is fully charged, FHEM 
can then trigger speech output to say, via a Sonos speaker, “Your Tesla is ready to go.”

Setting Up
FHEM is based on the Perl programming language and is therefore genuinely light-
weight when it comes to hardware requirements. In the early days, FHEM would 
even run on a FRITZ!Box router until the vendor, AVM Software, put a stop to this – 
officially for security reasons.

The popular, single-board Raspberry Pi is a worthy successor with more than suffi-
cient resources. On a basic system, FHEM can be installed with just a few commands 
at the console. Start by importing the required repository key and adding the reposi-
tory (Listing 1, lines 1 and 2).

Then update the package sources and install FHEM (lines 3 and 4). Depending on 
the configuration, you may need to run the commands with sudo to have the neces-
sary system permissions. Occasionally, the repository does not work properly, in 
which case, you will need to manually install Perl and FHEM [2].

First Steps
Once the installation is complete, you can access the FHEM web interface on port 8083 

by typing http://<RaspPi_IP_address>:8083 in 
a web browser. The FHEM interface (Figure 
1) uses a simple, unpretentious, and func-
tional design – don’t bother looking for 
graphical components. This simple approach 
is an advantage for experienced users, but it 
does raise the bar for newcomers.

FHEM: Setup, practical use, and alternative interfaces

At Your Service
If you want to equip your home with smart technology, you will need to deal with a 
variety of providers and what are often incompatible standards. FHEM is a free 
integration platform that houses the building blocks under one roof and offers visually 
appealing interfaces. By Jörg Hofmann

01 $ wget ‑qO ‑ http://debian.fhem.de/archive.key | apt‑key add ‑

02 $ echo "deb http://debian.fhem.de/nightly/ /" >> /etc/apt/sources.list

03 $ apt‑get update

04 $ apt‑get install fhem

Listing 1: Installing FHEM

26

COVER STORY

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

FHEM



The central element in the stan-
dard interface is the white bar at 

the top, where the user can enter 
commands. You can issue commands 

to configure and manage the system. 
FHEM even comes with a very useful 

syntax check that has been available for 
some time and that the community is con-

stantly improving.
Use the define command to add a new device 

to the configuration. A command based on the 
syntax of Listing 2, for example, integrates the 

popular Harmony Hub, which can control your TV 
and AV receivers via a built-in infrared transmitter 

module and a Bluetooth transceiver.
define is followed by the desired FHEM device name 

(HarmonyHub in Listing 2). In the case of the Harmony 
Hub, FHEM then requires the login data in the form of 

user_name:password. Finally, enter the device’s IP address and 
press the Enter key.

The configuration will become sec-
ond nature after you have added a 
couple of devices. But be careful: 
Every configuration change to FHEM 
has to be confirmed by pressing the 
Save config button in the web inter-
face. This step adds the new settings 
to the fhem.cfg file.

As soon as you have successfully in-
tegrated the Harmony Hub, you can 
click on the HarmonyHub FHEM device 
and view the values that appear in the 
DeviceOverview window (Figure 2). 
These values are known as internals 
and readings in FHEM speak.

The readings are of interest for au-
tomation rules, which I will discuss 
later. In the case of the Harmony 
Hub, the readings are fairly terse, but 
interesting nonetheless. For example, 
the currentActivity reading provides 
information on the current activity. 
You can see, for example, whether 
television mode is enabled or 
whether the controllable devices are 
in standby mode.

Conversely, you can send switch-
ing commands from FHEM to the 
Harmony Hub via the set com-
mands, which are also displayed au-
tomatically and can be selected via 
drop-down menus. In this way, you 
can simulate input from the Har-
mony Remote.

Getting Started with 
Automation
The whole thing becomes exciting as 
soon as you start using the available Figure 2: The FHEM module used for integrating the Harmony Hub.

define HarmonyHub harmony <I>User<I>:<I>Password<I> <I>IP_Address<I>

Listing 2: Integrate Harmony Hub

Figure 1: The simple FHEM web interface can be reached on the default 
port 8083.

27

COVER STORY
FHEM

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



In addition to notify 
and doif, there is also 
the at command, which 
you can use to start a 
certain action at a cer-
tain time every day. The 
FHEM console com-
mand from line 3 of 
Listing 3, for example, 
starts the Harmony Hub 
Television activity daily 
at 8 pm. The TV then 
switches to channel 1.

Alternative 
Interfaces
The user interface, 
which is fairly frugal in 
the eyes of many users, 
has been hotly debated 
within the FHEM scene 
for years. Rudolf Koenig, 
the founder of FHEM, 
was never really inter-
ested in creating a sexy 
user interface. Besides 
changing the foreground 
and background colors, 
and changing the logo, 
you have very few op-
tions for customizing the 
user interface.

A Floorplan extension (Figure 3) was created to map out 
FHEM objects on a 2D floor plan, visualize status messages, 
and let users output switching commands. As the use of mo-
bile devices grew, however, Floorplan was marginalized due to 
its less than responsive design.

smartVISU
FHEM supports smartVISU, the intelligent “visualization 
framework for better home experience,” which was originally 
designed to create HTML-based visualizations for home auto-
mation based on the commercial KNX system.

You can map many simple elements, such as dimmers or 
buttons, but also more complex components, such as a com-
prehensive heating control system. Users can create individual 
pages for rooms using standard HTML expressions. The smart-
VISU framework provides tags that are embedded in an HTML 
structure to establish a connection between the visualization 
and the smart home devices set up in FHEM.

In order for FHEM integration to work, some preparations 
have to be made on the software side. These preparations in-
clude installing the required packages – including a web server, 

readings to trigger other devices. The currentActivity reading, 
which reacts in real time to changes in the Harmony Remote’s 
selected activity, is useful for triggering actions. To enable 
FHEM to also use this reading for automation purposes later 
on, you still need an attribute. The FHEM console command 
from line 1 of Listing 3 enables the Harmony Hub device to ac-
tually trigger an activity when changes to the state and cur‑
rentActivity readings occur.

Some readings can already possess this attribute by default, 
although this is not always the case. It is best to use a self-as-
signed attribute value to define which reading is allowed to 
perform an activity. But beware: Manually defined attribute 
values override a device’s default values.

The FHEM console command from line 2 of Listing 3 can be 
used to automatically switch off the FHEM Living room lamp 
device with an off command as soon as the current Harmony 
Hub activity switches to starting.Apple.

The notify command performs the notification, but you can 
also use the doif, doelseif, and doelse options to add condi-
tional branching.

If you are wondering about the dots in line 2 of Listing 3: 
Spaces are always written as dots in order 
to be interpreted correctly by the Perl en-
gine working in the background.

All events starting up in FHEM can be 
viewed in the Event monitor in the FHEM 
user interface.

01 attr HarmonyHub event‑on‑change‑reading state,currentActivity

02 define LampSwitchOff notify HarmonyHub.currentActivity:.starting.Apple set Living room lamp off

03 define News at *20:00:00 set HarmonyHub activity Television;; set HarmonyHub command TV Number 1

Listing 3: FHEM console commands

Figure 3: The FHEM floor plan offers users a 2D visualization.

01 $ apt‑get update

02 $ apt‑get ‑y install php5 libapache2‑mod‑php5 apache2 git

03 $ git clone https://github.com/herrmannj/smartvisu‑cleaninstall.git

Listing 4: Preparing to Use smartVISU

28

COVER STORY
FHEM

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



which is usually Apache 2 (Listing 4, lines 1 and 2). In addi-
tion, you need to download smartVISU (line 3), install the files 
in the /var/www/smartvisu/ directory, and set the required user 
permissions. At the FHEM command line, you can then finally 
install the module and transfer it to the configuration with a 
define command (Listing 5).

Now you need to look at the visualization elements that rep-
resent the devices contained on the room pages. For each 
room, you create an HTML file, which in turn is stored in the 
rooms_menu.html file (Figure 4). The individual devices are then 
entered in rooms.html as the block content. The syntax is 
shown in Figure 5 using a switch as an example.

It takes some hard 
work to map the de-
sired objects from 
FHEM to smartVISU. 
Anyone who is not de-
terred by this, and is 
also prepared to tackle 
smartVISU’s installa-
tion and configuration 
overhead, will be re-
warded with a smart 
user interface. The in-
terface even works ex-
tremely well on mobile 
devices. Step-by-step 
instructions (in Ger-
man) are available on 
the web [3].

TabletUI
Meanwhile, TabletUI 
(Figure 6), another ex-
tensive visualization 
environment based on 
HTML, is enjoying in-
creasing popularity. 
Similar to smartVISU, 
TabletUI lets users map 
information in a smart 
way. The GUI’s focus, 

01 update force https://raw.githubusercontent.com/herrmannj/fronthem/master/controls_fronthem.txt

02 define fronthem fronthem

Listing 5: Setting up the smartVISU Module

Figure 4: The smartVISU files have to be included in rooms_menu.html.

FHEM

COVER STORY



FHEM project also faces a number of (minor) problems. In par-
ticular, any enthusiast wanting to provide a new module can 
do so – assuming they follow a couple of rules. Accordingly, 
both the syntax and quality of the software can vary from mod-
ule to module. It is not always easy for beginners to understand 
what commands need to look like.

The FHEM command reference [4] attempts to help by doc-
umenting the official modules. However, there are often de-
lays before module changes appear in the command refer-
ence, or, in the worst case, changes may only be discussed on 
the FHEM forum. In case of problems, browsing through 
multi-page forum threads in the search for a solution may be 
your only hope.

In order to leverage the enormous possibilities that FHEM of-
fers, it can also be useful to turn to commercial software. 
FHEM, with its wide range of modules, acts as a gateway be-
tween the third-party systems to be integrated on the one hand 
and a central control unit on the other. Sophisticated logic 
functions can often be implemented more easily with graphical 
solutions such as Node-RED or Loxone. FHEM is exclusively 
text-based, and Perl as programming language limits the possi-
bilities in some cases.

Anyone who has ever failed to get a module to work in 
FHEM will understand the criticism being levied at the fact 
that users must resolve the software dependencies them-
selves. Resolving the dependencies sometimes results in 
unbelievably long-winded terminal commands needed to 
integrate the appropriate software versions into the basic 
system.

When you install a new system, you can quickly lose track of 
which dependencies have to be manually resolved, since the 
backup usually only contains the central FHEM configuration 
files. An automatic installation of the required resources, as in 

the case of Node-RED or openHAB, 
would be the easier approach for most 
users. But when it comes to depth of in-
tegration, you would be hard-pressed to 
find a system that matches FHEM.  nnn

which can display a multitude of functions simultaneously, is – 
as the name suggests – tablets.

If you want to use TabletUI, first update the FHEM packages 
using the FHEM console (Listing 6, line 1) and then import the 
TabletUI module (line 2). You now need to define all the de-
sired elements in an HTML file. The ./www/tablet/index.html 
file is primarily used for these element definitions.

The sample file index‑example.html, which you can copy and 
save as index.html, is conveniently located in the same directory. 
This makes it possible to test the functionality more precisely.

Familiarize yourself with the syntax in order to establish the 
necessary links with the elements you wish to integrate from 
FHEM. In particular, the widgets in the TabletUI user interface 
need to be populated with the desired values (data‑get), and 
the switching commands need to be sent to FHEM (data‑set).

What’s Next?
With its various modules and an active community, FHEM has 
become an important tool for open source IoT. However, the 

Figure 5: This code visualizes a switch in smartVISU.

Figure 6: TabletUI offers an attractive alternative user interface.

01 update all

02 define TabletUi HTTPSRV ftui/ ./www/tablet/ TabletUI

Listing 6: Installing TabletUI

[1]  FHEM: https://  fhem.  de

[2]  Setting up FHEM: https://  www. 

 meintechblog.  de/  2016/  05/  fhem‑ 

 server‑  auf‑  dem‑  raspberry‑  pi‑  in‑ 

 vweniger‑  als‑  einer‑  stunde‑  einrichten/ 

(German only)

[3]  Setting up smartVISU: https://  www. 

 meintechblog.  de/  2015/  06/  smartvisu‑ 

 mit‑  fhem‑  die‑  perfekte‑  visualisierung‑ 

 teil‑1‑  basics/ (German only)

[4]  FHEM command reference:  

https://  fhem.  de/  commandref.  html

Info

30

COVER STORY
FHEM

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

https://fhem.de
https://www.meintechblog.de/2016/05/fhem-server-auf-dem-raspberry-pi-in-vweniger-als-einer-stunde-einrichten/
https://www.meintechblog.de/2016/05/fhem-server-auf-dem-raspberry-pi-in-vweniger-als-einer-stunde-einrichten/
https://www.meintechblog.de/2016/05/fhem-server-auf-dem-raspberry-pi-in-vweniger-als-einer-stunde-einrichten/
https://www.meintechblog.de/2016/05/fhem-server-auf-dem-raspberry-pi-in-vweniger-als-einer-stunde-einrichten/
https://www.meintechblog.de/2015/06/smartvisu-mit-fhem-die-perfekte-visualisierung-teil-1-basics/
https://www.meintechblog.de/2015/06/smartvisu-mit-fhem-die-perfekte-visualisierung-teil-1-basics/
https://www.meintechblog.de/2015/06/smartvisu-mit-fhem-die-perfekte-visualisierung-teil-1-basics/
https://www.meintechblog.de/2015/06/smartvisu-mit-fhem-die-perfekte-visualisierung-teil-1-basics/
https://fhem.de/commandref.html




S everal vendors compete in the field of home automation. The solutions differ 
in price and also in terms of openness and interoperability: Many smart 
home solutions only work within the limits set by the manufacturer, and the 
devices only collaborate with a controller from the same company.

The Z-Wave Alliance [1] takes a different approach: The underlying system’s proto-
col is open, and many manufacturers now offer Z-Wave-compatible devices or ser-
vices. In addition to Z-Wave founder Sigma Designs, several hundred companies now 
belong to the consortium [2]. Among them are numerous well-known IT names, such 
as D-Link, devolo, Logitech, and Zyxel; large electronics groups, such as Bosch, LG, 
and Panasonic; and many lesser well-known companies. Certification ensures com-
pliance with compatibility standards.

Z-Wave for the Rasp Pi
One of the most attractive features for home users is the fact that a Raspberry Pi is 
all you need for a Z-Wave control center – all you have to do is teach your Rasp Pi 
the Z-Wave protocol. You can do this either with the UZB [3], a Z-Wave-ready USB 
stick suitable for Linux, Mac OS X, and Windows, or with the additional RaZberry 
board [4], which I will describe in this article.

The RaZberry is a small daughter board that fits over the Rasp Pi’s GPIO pins. One 
advantage of the RaZberry board is that the board is so small that it usually fits into 

standard Rasp Pi packages without any components protruding. The USB 
ports also remain free for further expansion. In addition, the EUR50 

RaZberry is half as expensive as the EUR100 UZB. One disadvantage 
of the RaZberry board is that it only works with a Raspberry Pi. 

The UZB, on the other hand, can connect to other single board 
computers (SBCs) and even conventional PCs.

Install the RaZberry on the first 10 pins of the Rasp-
berry Pi GPIO. The board is powered directly 

via the GPIO pins. The board is a bit lower 
than the USB ports on the Rasp Pi, so the 

Rasp Pi and RaZberry can be mounted in any 
standard case. You will want to use a plastic 

case – metal cases screen off radio signals.

Z-Way on the Rasp Pi
Z-Wave opens many doors when it comes to hard-

ware selection and also offers alternatives when it 
comes to software. As a counterpart to the open source 
software for home automation FHEM presented in this 

issue, the RaZberry manufacturer Z-Wave.Me offers its 
own Z-Way [5] software. To use Z-Way, you’ll need a li-

cense, which the RaZberry module already includes. UZB is 
available with or without license. If necessary, you can al-

ways purchase the license later.
If you want to install Z-Way, you have to log in from a freshly in-

stalled Raspbian system based on a RPi2 or RPi3, either via SSH or 
locally, and execute the command shown in Listing 1. If you don’t 

Setting up a smart home command center with Z-Wave

Connecting Worlds
The RaZberry daughter board for your Raspberry Pi unlocks the power of the Z-Wave home 
automation environment. By Christoph Langner

32

COVER STORY

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Z-Wave



want to install manually, you can alternatively reinstall the mem-
ory card of the Rasp Pi with the image provided by Z-Wave.Me.

Before you install, keep in mind that the Raspberry Pi has to 
learn the correct time zone for its location via:

sudo raspi‑config 5 Internationalisation Options | U
  2 Change Timezone

Otherwise, the system may react incorrectly to time-controlled 
actions later on, even though the web interface displays the 
correct time (Figure 1).

In addition, you’ll need to reconfigure the serial port of the 
Raspberry Pi. In the default setting, the serial port operates as a 
terminal port for operating the Rasp Pi directly. In this case, 
FHEM will use the serial port to control the RaZberry. You will 
need to open the Rasp Pi’s configuration tool by typing sudo 
raspi‑config and answer No to the question Would you like a 
login shell to be accessible over serial? below 9 Advanced Op‑
tions | A8 Serial (Figure 2).

Installing Z-Way
The command from Listing 1 loads an installation script from 
the Internet and immediately calls it with root privileges. After 
confirming the terms of use, the installer automatically imports 
any missing dependencies into the system and creates start-
stop scripts so that the service starts together with the com-
puter. Finally, the routine offers to register you with the Z-
Wave.Me email distribution list.

The installation routine sets up the program and also updates 
it. To complete the installation, you need to run the script again 
with the same command. After setting up the software, you can 
access the interface in a browser via port 8083. If name resolu-
tion on the network works properly and only one active Rasp Pi 
is on the network, http://raspberrypi:8083 should also work.

If you work directly on the Rasp Pi system, you need to ad-
dress localhost instead, i.e., 127.0.0.1:8083. In case of difficul-
ties finding the Rasp Pi, a help page from Z-Way [6] automati-
cally searches for the Rasp Pi and links directly to the web in-
terface of the Z-Way system discovered on the net.

Since the FHEM developers are continuously developing im-
provements for various modules of the Smart Home system, 
you need to be sure to update FHEM by entering the update 
command at the FHEM console.

Registering Z-Wave Devices
It is advisable to set up a password for the administrative user 
admin on the Z-Wave interface. The system then automatically 
forwards the user to the initially empty dashboard. The inter-
face speaks English by default, although you can change the 
language using My Settings.

To teach new devices, you then open the gear menu again 
and switch to the menu item Devices | Add new. Z-Way lists 
a number of manufacturers of Z-Wave compatible devices. It 
is very likely that your device will not be listed; instead, 
press Add and automatically identify new Z‑Wave device at 
the top of the page.

Now you can put the first Z-Wave device into operation. For 
example, you can plug a switchable socket into a socket on the 
wall or insert batteries into a Z-Wave thermostat mounted on a 
heater. Then switch the device to connection mode. With some 
products, this happens automatically in the unconfigured state; 
with others, you have to press a button for a few seconds until 
a flashing LED signals connection mode. For additional infor-
mation, see the device’s instruction manual of the device.

While the RaZberry module is in teach-in mode, its red LED 
is lit continuously (Figure 3). The adjacent green LED indicates 
successful data transmissions to a connected Z-Wave device. 
As soon as the light indicates success, press Start teach‑in (in-
clusion) in the next dialog and wait until the teach-in process 

Figure 1: Users have to be careful to set Raspian to the 
correct time zone with the configuration tool. Other-
wise, time-controlled actions will not work correctly.

Figure 2: To enable FHEM to integrate the RaZberry 
module, you’ll need to deactivate the terminal func-
tion of the serial interface.

 $ wget ‑q ‑O ‑ razberry.z‑wave.me/install | sudo bash

 Do you accept Z‑Wave.Me licence agreement?

 Please read it on ZWave.Me web site:  
http://razberry.z‑wave.me/docs/

 ZWAYEULA.pdf

 yes/no: yes

 z‑way‑server new installation

 Installing additional libraries

 OK

 http://archive.raspberrypi.org jessie InRelease

 OK

 http://mirrordirector.raspbian.org jessie InRelease#

 [...]

Listing 1: Installer

33

COVER STORY
Z-Wave

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



Expert Interface
If the settings options at this point do 
not meet the requirements, the URL 
http://RasPi‑IP_address:8083/expert will 
call up an extended user interface (Fig-
ure 7). In addition to the individual 
switching options and sensor data, the 
user interface offers a great deal of addi-
tional information on the integrated de-
vices. This includes, for example, details 
of the firmware version and the SDK pro-
tocol. As a rule, however, the standard 
interface is sufficient.

The dashboard and the device over-
view now let you control and read out 
the integrated Z-Wave devices, but still 
nothing happens automatically in your 
house. To set up an automation, you 
first have to define your own rules or 
scenarios via the Applications item in 

the web interface’s gear menu and, if necessary, set up ex-
ternal applications.

is completed (Figure 4). In Z-Wave jargon, the control center 
now interviews the device.

In the dialog that follows, you can enter 
the name of the new device and the des-
ignations of the various control variables, 
sensors, and actuators – with a thermo-
stat, for example, the variables might in-
clude the target temperature, the actual 
temperature, or the brightness of the dis-
play lighting (Figure 5). The device can 
also be assigned to a room if a room has 
already been defined. However, this as-
signment can also be defined later.

Dashboard
The Z-Way web interface is divided into 
four different tabs. Clicking on the house 
icon takes you to the dashboard, which 
is still empty in the beginning – more on 
this later. In the second tab, the Z-Wave 
devices registered with the system can 
be sorted by rooms, named as desired, 
and illustrated with your own photos.

The third tab lists all the actuators and 
sensors (Figure 6). The gear symbol dis-
played on each device takes you to the 
configuration. Here you can hide the de-
vice, add it to a room, rename it, or inte-
grate it into the dashboard. This gives 
you quick access to the most important 
devices in your home without having to 
search for a long time. For a better over-
view, you can sort or filter the list by ele-
ments, tags, or chronological order.

The list can be used both to manage 
the individual devices and to read off 
their sensor values (such as tempera-
tures or current power consumption) or 
to control the actuator of the device.

Figure 3: If the red LED on the RaZberry board is continuously lit as 
shown here, then the module is currently in teach-in mode.

Figure 4: To teach new Z-Wave devices, switch them to connection 
mode and launch the inclusion function in the Z-Way interface.

 $ sudo service z‑way‑server status

 * z‑way‑server.service ‑ LSB: RaZberry Z‑Wave service

 Loaded: loaded (/etc/init.d/z‑way‑server)

 Active: active (running) since Fri 2016‑04‑08 13:11:03 UTC; 43s ago

 Process: 1054 ExecStop=/etc/init.d/z‑way‑server stop (code=exited,

 status=0/SUCCESS)

 Process: 1058 ExecStart=/etc/init.d/z‑way‑server start (code=exited,

 status=0/SUCCESS)

 CGroup: /system.slice/z‑way‑server.service

 |?1061 z‑way‑server

Listing 2: Server Status

34

COVER STORY
Z-Wave

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



Z-Way breaks the view down into three tabs: Local contains 
the existing apps. Below this, the program accepts simple IF/ 
THEN rules, schedules, or actions, such as dispatching email 
or push messages via external services such as Pushover [7] or 
Pushbullet [8].

The Server tab contains a kind of app store, which you can use 
to install further features, including, say, an astronomy module 
that lets you discover where the sun is in the sky, and control a 
blind accordingly, and a camera module for the Rasp Pi’s webcam. 
You can also use this tab to update previously installed modules.

Note that both tabs initially list only a 
few featured apps. A complete overview 
can be obtained by changing the filter to 
the right of the search field to All Apps. 
Clicking on New App lets you set up the 
selected function. You can add exten-
sions that have not yet been installed to 
the system by clicking Download.

The best way to explain how the apps 
work is to use an example: A schedule is 
created as a new app for time-controlled 
switching of an electrical socket outlet. 
In the next dialog, the app is given a 
name, the weekdays for the action are 
selected, and finally a time is entered.

After this, you can define actions, such 
as setting a dimmer, operating a motor, 
or setting a thermostat. In the case of a 
power outlet, you simply set the appro-
priate switch to On or Off. Click Save to 
complete the configuration. The app 
should then appear in the Active tab and 
should switch the device as defined at 
the appropriate time.

As your home automation system 
grows, so does the scope of the rules and 
regulations. Anyone installing many Z-
Wave-compatible sensors, such as motion 
detectors, window and door sensors, 
brightness and humidity meters, smoke 
detectors, automated roller shutters, aw-
nings, or even door locks will invest a lot 
of time in designing the rules. You there-
fore have the option to save the rules on a 
computer via the cogwheel menu’s Man‑
agement item and reload them if neces-
sary. The same menu also provides the 
opportunity to create new users, update 
the RaZberry’s firmware, or remotely ac-
cess the Z-Way configuration interface.

Controlling the Z-Way 
Server
During the installation of the Z-Way soft-
ware on the Raspberry Pi, the installer im-
ports a service into the system. If the 
Z-Way configuration interface cannot be 
reached or the service reports an error, you 
can query the status of this service via the 

terminal in Debian-typical style (Listing 2). If required, the service 
can also be stopped or started in the same way (Listing 3).

The start-stop script proved to be important during the test. 
Although the service launched after rebooting the Raspberry Pi 
(you could log into the web front end), it did not list any de-
vices, even though they were still present before rebooting. As 
soon as you restart the service while Rasp Pi is running (re‑
start), Z-Way lists the lost devices again.

In order to analyze problems that cannot be solved at first 
glance, it is always worth taking a look at the service logfile 

Figure 5: After teaching, assign intuitive names to the new device, the 
sensors, and the actuators.

Figure 6: In the overview, the Z-Way interface lists all devices connected 
to the Z-Wave network. You can also carry out actions manually.

35

Z-Wave

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

COVER STORY



Conclusions
If you want to use a Raspberry Pi as 
your home control center and integrate 
Z-Wave devices into the installation, 
you will need the RaZberry board or 
the UZB stick. The RaZberry is particu-
larly well-suited, because the installa-
tion requires hardly any time or effort, 
the costs are kept within limits, and 
the USB ports remain free for other ap-
plications. The UZB offers the advan-
tage that the GPIO of the Raspberry Pi 
remains usable for other tasks, and the 
stick also works well on conventional 
computers.

The Z-Way server is an easy way to get 
started, since the software can be in-
stalled without a great deal of Linux 
knowledge and even more complex tasks 
can be easily configured in the web in-
terface. For this, however, you have to be 
satisfied with Z-Wave devices only – in-
tegrating devices from other Smart Home 

standards is not possible with Z-Way.
In case of problems, you can get help either from the official 

support or from the Z-Wave.Me forum. Developers will find 
good and detailed documentation for the module and the APIs 
provided by Z-Way on the RaZberry homepage.

In addition to FHEM, there are other open source home 
automation solutions that support the RaZberry and Z-Way 
as interfaces. These solutions include OpenRemote and 
Freedomotic. However, for anyone who values the broadest 
possible support for a variety of services and protocols, as 
well as a broad and committed community, it makes sense 
to integrate the RaZberry with FHEM.  nnn

z‑way‑server.log in the /var/log/ directory (Listing 4). The log 
contains numerous bits of information about events during 
start-up and operation – including incorrect login data for ex-
ternal services, the failure of Z-Wave devices, or bugs in the 
program itself. In addition, the aforementioned Expert user in-
terface is useful for finding errors.

Z-Way Apps
You don’t necessarily want to start the PC for every action in 
your home, especially considering that you always have a com-
puter at hand in the form of your smartphone or tablet. In the 
Android and iOS app stores, you will also find various apps 
that are based on the extensively documented Z-Way API and 
enable you to control your smart home via your mobile phone. 
In addition to the two official apps, Z-Way for Android users 
and ZWay Home Control for iOS users, there are a number of 
alternative applications, including the Z-Way Control app, for 
example.

In our test, however, the Android apps in particular did not 
make a convincing impression. At the time of testing, the offi-
cial Z-Way app for Android was unable to log on to the server 
software due to a change in the authentication method. Despite 
correct access data, the app only reported Can't connect!.

The alternative app Z-Way Control made it possible to log on, 
but this app only displays the web interface used on the PC in a 
web view. The advantage of the applica-
tion is that it loads parts of the website lo-
cally and saves data volume during ac-
cess via a mobile Internet connection.

Figure 7: The Expert UI provides important information for problem 
solving. Experienced users will also find more detailed configuration 
options here.

 $ sudo service z‑way‑server start

 $ sudo service z‑way‑server stop

 $ sudo service z‑way‑server

 restart

Listing 3: Restart

 $ tail ‑f /var/log/z‑way‑server.log

 [2016‑04‑08 13:11:03.334] [I] [core] Executing script: exit()

 [2016‑04‑08 13:11:03.700] [I] [core] Executing script: /*** Z‑Way Home

 Automation Engine main executable ***************************** ...

 [2016‑04‑08 13:11:03.702] [I] [core] Executing script: // Comon

 utilities and functions ...

 [2016‑04‑08 13:11:03.707] [I] [core] Executing script: // This script

 transforms old formats to new ...

Listing 4: z-way-server.log

[1]  Z-Wave Alliance: https://  z‑wavealliance.  org

[2]  Z-Wave member companies: https://  z‑wavealliance.  org/ 
 z‑wave_alliance_member_companies

[3]  UZB: https://  z‑wave.  me/  uzb

[4]  RaZberry: https://  z‑wave.  me/  products/  razberry

[5]  Z-Way: https://  z‑wave.  me/  z‑way

[6]  Find page: http://  find.  zwave.  me

[7]  Pushover: https://  pushover.  net

[8]  Pushbullet: https://  www.  pushbullet.  com

Info

36

COVER STORY
Z-Wave

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

https://z-wavealliance.org
https://z-wavealliance.org/z-wave_alliance_member_companies
https://z-wavealliance.org/z-wave_alliance_member_companies
https://z-wave.me/uzb
https://z-wave.me/products/razberry
https://z-wave.me/z-way
http://find.zwave.me
https://pushover.net
https://www.pushbullet.com




Like many that were created after it, 
Pathogen rearranges the Vim directory 
structure, providing a separate directory 
for the files for each plugin, an innova-
tion that makes installation, upgrading, 
and deletion more efficient (Figure 1). 
However, unlike some other managers, 
Pathogen does not automatically up-
grade or delete plugins.

N ew users of the Vim text editor 
may be content to use it as in-
stalled from their distribution’s 
repositories. However, Vim has 

hundreds of plugins, and installing one 
often leads to adding more out of curi-
osity. However, multiple plugins can 
quickly become a management night-
mare, because unadorned Vim dumps 
plugins into one directory, which makes 
file management difficult.

As a result, a variety of Vim plugin 
managers have been released over the 
years. Several begin by installing each 
plugin to a separate directory to simplify 

file management. Most involve creating 
and editing a ~.vimrc file in your home 
directory. Some are plugins themselves, 
while a few operate at least partly out-
side of Vim’s structure. Many are housed 
on GitHub, with instructions specialized 
for that site.

Listed here are some of the most com-
mon Vim plugins that run from the com-
mand line. Each 
makes its own as-
sumptions about 
its users’ knowl-
edge or prefer-
ences. Only basic 
instructions are 
given, but most of 
the managers are 
well-documented 
online.

Pathogen
Pathogen [1] is 
the oldest man-
ager that runs 
from within Vim. 

Choosing a Vim Plugin Manager

Vim Housekeeping
A plugin manager can help you corral your growing collection of Vim plugins. Choosing one depends 
on your personal preferences. By Bruce Byfield

Bruce Byfield is a computer journalist and 
a freelance writer and editor specializing 
in free and open source software. In 
addition to his writing projects, he also 
teaches live and e-learning courses. In his 
spare time, Bruce writes about Northwest 
coast art (http://  brucebyfield.  wordpress. 
 com). He is also co-founder of Prentice 
Pieces, a blog about writing and fantasy at 
https://prenticepieces.com/.

Author

Figure 1: Pathogen’s major innovation is to give Vim 
an orderly directory structure, with a separate 
directory for each plugin. Le

ad
 Im

ag
e 

©
 D

an
ila

 K
ry

lo
v,

 1
23

R
F.

co
m

38

IN-DEPTH

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Command Line – Vim Plugin Managers

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/


To install Pathogen, enter the follow-
ing at the command line:

mkdir ‑p ~/.vim/autoload ~/.vim/bundle U

  && curl ‑LSso U

  ~/.vim/autoload/pathogen.vim U

  https://tpo.pe/pathogen.vim

Users will also need to add lines to their 
.vimrc file to start Pathogen before any 
other plugin, so that it can manage the rest:

execute pathogen#infect()

syntax on

filetype plugin indent on

These lines are the minimum required to 
use Pathogen, but you may also enable 
automatic updates by adding the lines:

call pathogen#runtime_append_all_U

  bundles()

call pathogen#helptags() "

Note, though, that this option can signif-
icantly extend Vim’s startup time if you 
have a lot of plugins.

Other plugins can be added from 
GitHub, by running from within ~/.vim/
bundle the command:

git clone git://github.com/[WRITER]/ U

  [PLUGIN PATH] U

  ~/.vim/bundle/[PLUGIN PATH]

GitHub is a useful source, because many 
Vim plugins are housed there.

Despite Pathogen’s age, many users 
continue to favor Pathogen for its sim-
plicity and order. Since updates can 
sometimes go wrong, some also appreci-
ate being able to avoid automatic up-
dates.

If you are managing multiple remote 
plugins, have a look at vim-pandemic 
[2], which is designed to work alongside 
Pathogen.

Vundle
Vundle [3] is an enhancement of 
Pathogen. Originally, Vundle referred 
to plugins as “bundles,” making its 
name an abbreviation for “Vim bun-
dles.” To Pathogen’s rationalized direc-
tory structure, Vundle adds several 
utilities (Figure 2).

On Windows, Vundle has a graphical 
interface. To install Vundle on Linux, 
run:

git clone https://github.com/U

  VundleVim/Vundle.vim.git U

  ~/.vim/bundle/Vundle.vim

In other words, Vundle is installed to a 
subdirectory of .vim/bundle, just like any 
other plugin.

To update plugins automatically with 
Vundle, add to the following lines to 
.vimrc:

set nocompatible

filetype off

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

Plugin 'VundleVim/Vundle.vim'

These lines set the run-time path to 
Vundle, initiate it, and set Vundle to 
manage itself. Below the last line, add 
the other plugins that Vundle manages, 

Figure 2: Vundle is a popular second-generation plugin manager.

if &compatible

  set nocompatible

endif

" Add the dein installation directory into runtimepath

set runtimepath+=~/.cache/dein/repos/github.com/Shougo/dein.vim

if dein#load_state('~/.cache/dein')

  call dein#begin('~/.cache/dein')

  call dein#add('~/.cache/dein/repos/github.com/Shougo/dein.vim')

  call dein#add('Shougo/deoplete.nvim')

  if !has('nvim')

    call dein#add('roxma/nvim‑yarp')

    call dein#add('roxma/vim‑hug‑neovim‑rpc')

  endif

  call dein#end()

  call dein#save_state()

endif

filetype plugin indent on

syntax enable

Listing 1: Dein.vim Code for .vimrc

IN-DEPTH
Command Line – Vim Plugin Managers

39LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



vim-plug
Vim-plug [6] is a minimalist plugin man-
ager, designed to be quickly installed 
and edited (Figure 4). To install, run the 
command:

curl ‑fLo ~/.vim/autoload/plug.vim U

  ‑‑create‑dirs

  https://raw.githubusercontent.com/U

  junegunn/vim‑plug/master/plug.vim

To automatically update plug.vim, place 
Listing 2 in .vimrc before the line that 
starts with call plug#begin().

To install new plugins, below the line 
that starts with call plug#begin, add one 
plugin per line in the format Plug <PATH>, 
much like in dein.vim. To borrow the ex-
ample from the vim-plug tutorial, if your 
plugin source is GitHub, enter:

call plug#begin('~/.vim/plugged')

" Declare the list of plugins.

Plug 'tpope/vim‑sensible'

Plug 'junegunn/seoul256.vim'

"

Note the double quotation marks around 
the list.

When the list is complete, restart Vim 
and run :PlugUpdate to complete the pro-
cess. You can either review the changes 
by pressing D in the window or by run-
ning :PlugDiff. Should another plugin 
no longer work or interfere with another, 
you can see the latest changes with 
:PlugDiff. Scroll to the plugin’s line and 

one per line, each starting with Plugin. 
For example:

Plugin 'tpope/vim‑fugitive'

The GitHub Vundle page gives examples 
of how to list other sources that you 
might use.

Installing Vundle also installs four util-
ities:
• :PluginList, which lists configured 

plugins
• :PluginInstall, which installs or up-

dates plugins
• :PluginSearch, which searches for a 

plugin
• :PluginClean, which removes plugins 

with a confirmation message
The last three are completed with the 
name of a plugin.

Vundle is an intermediate Vim man-
ager, kept simple by having utilities 
that are run manually. It is a solid 
choice for constant Vim users who are 
always tinkering with their Vim instal-
lations, adding and updating their pl-
ugins.

Dein.vim and NeoBundle
A few years ago, a Vundle modifica-
tion was released called NeoBundle 
[4]. NeoBundle’s creator, Shougo 
Matsushita, went on to write dein.vim 
[5] to replace NeoBundle. Much like 
NeoBundle when first released, dein.vim 
has minimal English documentation. 
The documentation that is available as-
sumes a strong knowledge of Vim and 
the use of plugins.

Like NeoBundle, dein.vim supports 
the Mercurial and Subversion version 
control systems, as well as Git. It can be 
set to use a specific Vim release, a fea-
ture that can keep an update from break-
ing Vim and its plugins. It differs from 
NeoBundle in that it uses system calls 
rather than utilities.

In addition, dein.vim itself is opti-
mized for speed – although it is only 100 
milliseconds or so faster than NeoBun-

dle. Much of this speed is obtained by 
concurrent loading, which can make 
pinpointing a misbehaving plugin diffi-
cult at times.

To install dein.vim, enter:

mkdir ~/.vim/bundle

curl https://raw.githubusercontent.com/U

  Shougo/dein.vim/master/bin/U

  installer.sh > installer.sh

Then add the code in Listing 1 to .vimrc.
Install dein.vim with:

:call dein('PLUGIN‑PATH')

Plus add similar lines for other plugins 
to run at startup. To decrease startup 
time, other plugins can be set to be 
“lazy-loaded” – that is, loaded after 
startup by pressing a designated key-
stroke (Figure 3).

Dein.vim is an advanced manager, 
ideal for those with a dozen or more 
plugins, who want to get every last bit 
of speed from their installation. For 
those who want a better-documented, 
advanced plugin-manager, NeoBundle 
is still available.

Figure 3: Adding a plugin with dein.vim: First, load dein.vim into .vimrc 
followed by two plugins loaded at startup. The final plugin is lazy-
loaded, to be started by pressing the Tab key.

Figure 4: A shot from the vim-plug homepage, showing one of the 
manager’s advantages: Installing multiple plugins at the same time.

if empty(glob('~/.vim/autoload/plug.vim'))

  silent !curl ‑fLo ~/.vim/autoload/plug.vim ‑‑create‑dirs

    \ https://raw.githubusercontent.com/junegunn/vim‑plug/master/plug.vim

  autocmd VimEnter * PlugInstall ‑‑sync | source $MYVIMRC

endif

Listing 2: Code to Auto Update plug.vim

40

Command Line – Vim Plugin Managers

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



roll back the changes by scrolling to its 
entry and pressing the X key. To remove 
a plugin, delete its .vimrc entry and run 
:PlugClean.

Vim-plug is a popular manager, be-
cause it offers many of the same features 
as more complex managers, but with an 
elegant simplicity. If I was recommend-
ing a single manager for all user levels, it 
would be vim-plug.

vim-addon-manager
Properly speaking, vim-addon-man-
ager [7] is not a Vim plugin. Instead, 
it is an ordinary Linux package that is 
installed with a second package that 
contains over 20 classic Vim add-ons. 
Each of these add-ons has a status of 
installed, removed, disabled, broken, 
or unavailable. Using the command 
structure

vim‑addon‑manager install ADD‑ON

users can install multiple add-ons, using 
a space-separated list (Figure 5).

Vim-addon-manager is useful as an 
introduction to Vim extensions. In ad-
dition, it places extension management 
into general package management, 
simplifying system administration. Its 
main drawback is 
the limited selec-
tion. However, 
the selection can 
be extended by 
placing other 
add-ons in /usr/
share/vim/addons 
– a matter of file 
management 
rather than edit-

ing configuration 
files.

Volt
First released in 
2015, Volt [8] uses 
the go-git library 
in its operations, a 
basic implementa-
tion of git’s “por-
celain” or high-
level, user-friendly 
options, operating 
partly outside of 
Vim. It can be in-
stalled with:

go get github.com/vim‑volt/volt

Then, to make Volt functional, set the 
environment variables by adding to 
.vimrc:

$HOME/volt/rc/default/vimrc.vim U

  (installed to: $HOME/.vim/vimrc)

Another profile can replace default, 
using the online instructions [9]. If nec-
essary, change the path to match your 
preference (Figure 6).

Plugins can be installed using the 
command:

volt get U

https://github.com/CREATOR/PLUGIN

The command can be shortened to start 
with GitHub or even omit it, so long as 
GitHub is the source. The full command 
has the advantage of using what you 
copy and paste.

All plugins can be updated with:

volt get ‑l ‑u

Individual plugins can be updated with:

volt get ‑u /CREATOR/PLUGIN

Similarly, Volt itself can be updated with 
the command volt self‑upgrade.

Volt is ideal for users familiar with git, 
or those who, while familiar with the 
command line, are only moderately com-
fortable with Vim and only occasionally 
use it.

Making a Choice
These are not the only choices for Vim 
plugins. Another whole subset are 
clones of Janus, which describes itself 
as a distribution with its own limited 
selection of available plugins. Increas-
ingly, there are also managers for GUIS 
like GVim.

However, you don’t have to go be-
yond the command line to find choices 
for several different backgrounds and 
levels of expertise. I would recommend 
vim-plug to practically anyone, but I 
would also suggest stating with Patho-
gen and then experimenting with its de-
scendants Vundle, NeoBundle, and 
dein.vim until you find the level of 
complexity that best suits you. However 
you experiment, be careful to back up 
your .vimrc files, labelling the backups 
so you can revert to one if disaster 
strikes.

Like much of Vim, the plugin managers 
can appear complex at first. However, 
once you understand each one’s basic 
premise, most of them become easier to 
use. Each can also help to reduce com-
plexity as your collection of other plugins 
grows – as it almost certainly will.  nnn

Figure 5: Vim-addon-manager edits Vim plugins 
from outside of Vim.

Figure 6: Volt supports multiple profiles. All profiles 
begin with a listing of repositories.

[1]  Pathogen: https://  github.  com/  tpope/ 
 vim‑pathogen

[2]  vim-pandemic: https://  github.  com/ 
 jwcxz/  vim‑pandemic

[3]  Vundle: https://  github.  com/  VundleVim/ 
 Vundle.  vim

[4]  NeoBundle: https://  github.  com/ 
 Shougo/  neobundle.  vim

[5]  dein.vim:  
https://  github.  com/  Shougo/  dein.  vim

[6]  vim-plug: https://  github.  com/ 
 junegunn/  vim‑plug

[7]  vim-addon-manager: https://  github. 
 com/  MarcWeber/  vim‑addon‑manager

[8]  Volt: https://  github.  com/  vim‑volt/  volt

[9]  Volt profile: https://  github.  com/ 
 vim‑volt/  volt#  switch‑  set‑  of‑  plugins‑ 
 profile‑  feature

Info

Command Line – Vim Plugin Managers

41LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

IN-DEPTH

https://github.com/tpope/vim-pathogen
https://github.com/tpope/vim-pathogen
https://github.com/jwcxz/vim-pandemic
https://github.com/jwcxz/vim-pandemic
https://github.com/VundleVim/Vundle.vim
https://github.com/VundleVim/Vundle.vim
https://github.com/Shougo/neobundle.vim
https://github.com/Shougo/neobundle.vim
https://github.com/Shougo/dein.vim
https://github.com/junegunn/vim-plug
https://github.com/junegunn/vim-plug
https://github.com/MarcWeber/vim-addon-manager
https://github.com/MarcWeber/vim-addon-manager
https://github.com/vim-volt/volt
https://github.com/vim-volt/volt#switch-set-of-plugins-profile-feature
https://github.com/vim-volt/volt#switch-set-of-plugins-profile-feature
https://github.com/vim-volt/volt#switch-set-of-plugins-profile-feature






1.  The client device issues a broadcast 
request for available DHCP servers.

2.  If there is an available DHCP server, it 
will respond to the client indicating 
that it is available.

3.  The client sends a request to the 
DHCP server.

4.  The server responds with the configu-
ration data for the client device.
The data returned to the client in 

Step 4 is where DHCP’s power lives. 
Although the host configuration por-
tion of the response contains the client 
IP address and gateway address (along 
with a few other pieces of data), the 
response also includes a section con-
taining other configuration options. 
Depending on the DHCP server config-
uration, this step can be used to pro-
vide many other pieces of client con-
figuration data, including DHCP lease 
information, router addresses, DNS 
servers, the time server, the TFTP 
server address, and many other pa-
rameters. The PXE hardware on most 
computers has the ability to perform 
the preceding steps to obtain configu-
ration data from a DHCP server. At 
this point, the client can begin loading 

O ne of my passions is enabling 
the reuse of older computer 
hardware that others consider 
obsolete. I picked up a used 

laptop at a local university’s surplus 
equipment sale for $15. It was a pretty 
decent little thing – an older 32-bit 
dual core CPU with 1-2GB of memory – 
but my thought was that it would be a 
great laptop for my kids. The problem: 
It had no hard drive. My initial thought 
was to put Linux on a USB drive and 
boot to that. This worked wonderfully 
for the first few days – until my kids 
failed to remember to shut it down 
properly, which hosed the USB filesys-
tem. To their sadness and my frustra-
tion, the computer sat for a few 
months. Then one day an idea popped 
into my head: PXE boot the laptop. 
Preboot eXecution Environment (PXE) 
is a standard for booting computers 
across the network. I knew it used 
DHCP, but that was the extent of my 
knowledge. This is the story of what I 
learned about PXE boot, how I imple-
mented it using TinyCore Linux [1], 
and how I found the coolest, geekiest 
solution for my kids.

Laying the Groundwork
Almost all of us have seen the PXE or 
Network boot option on our BIOS screen. 
PXE uses the network interface to load 
the operating system and necessary con-
figuration files over a network. This is ac-
complished using two particular network 
protocols: Dynamic Host Configuration 
Protocol (DHCP) and Trivial File Transfer 
Protocol (TFTP). DHCP is used to request 
client configuration data before any oper-
ating system is loaded. Once the client 
has network access, files are downloaded 
via TFTP and are loaded into memory on 
the client machine. Once the files are 
loaded, the operating system will boot on 
the client completely in memory without 
requiring any local storage. Knowing a lit-
tle about these two components will im-
prove the ability to properly implement a 
PXE environment.

One of the key components of a PXE 
boot environment is a DHCP server. 
DHCP allows a client configuration to be 
requested and delivered over a network. 
When a client device connects to a net-
work, a series of requests and responses 
must take place to complete a DHCP ses-
sion using the following steps:

Breathe new life into an old computer 
with PXE boot and TinyCore Linux

 Boot Story
Implementing PXE boot with TinyCore Linux lets you boot a computer over the network – a great 
solution for revitalizing old computing hardware. By Andy Carlson

Le
ad

 Im
ag

e 
©

 E
vg

en
y 

A
ta

m
an

en
ko

, 1
23

R
F.

co
m

44

IN-DEPTH

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

PXE Boot with TinyCore



the operating system and prepare the 
boot environment.

To complete the loading of the boot 
environment, PXE will request the nec-
essary files from a TFTP server. TFTP 
allows for discrete transferring of files 
over a network without the authentica-
tion or filesystem browsing overhead of 
other protocols, such as FTP. This mini-
mal functionality means a small mem-
ory footprint, making it ideal for a PXE 
environment. In order to create the boot 
environment, the PXE firmware for the 
operating system must be loaded onto 
the client device. The firmware, along 
with other boot files and the TFTP path 
to download additional files, is speci-
fied in the DHCP response, along with 
other client configuration options.

Back to the project involving my kids' 
laptop: While the network boot envi-
ronment provided the resiliency of 
being able to reboot and attain a clean 
running operating system, I also wanted 
a limited environment allowing my kids 
to do specific tasks like send email or 
browse the web. Having played with Ti-
nyCore Linux in the past, I looked at it 
first. Its small memory footprint made it 
incredibly desirable for the PXE envi-
ronment. For a bit of context, the Ti-
nyCore ISO image for the command-line 
and GUI desktop environments are 
11MB and 16MB respectively. While it 
does not measure up to a mature distri-
bution like Debian or CentOS, it does 
provide a repository of popular software 
packages. All of the software I wanted 
to run (such as Thunderbird, Firefox, 
Gimp, and AbiWord) are all available 
through the TinyCore repository.

I have identified all of the high-level 
moving parts of this custom PXE envi-
ronment. The implementation will re-
quire the installation and configuration 
of a DHCP server and a TFTP server. It 
will also involve customizing Ti-
nyCore’s out-of-the-box distribution, 
which will involve installing the desired 
applications and reconfiguring the GUI. 
This approach will not only provide a 
stable and functional environment to do 
various tasks, but it will provide a plat-
form to easily deploy new applications 
that can be delivered via PXE boot.

Preparing the Base Files
To boot my PXE environment, all of the 
required files will come from two 

places: the Syslinux Project [2] and the 
TinyCore ISO image [1]. The Syslinux 
Project contains bootloaders for Linux, 
including ones designed for network 
booting (PXELINUX) and CD-ROM 
booting (ISOLINUX). For now, I will 
focus on PXELINUX as the bootloader; 
ISOLINUX will be referenced later in 
this article. The PXE bootloader file is 
named pxelinux.0. While it is techni-
cally possible to build this file from the 
Syslinux source, an older version is 
available on the Syslinux website that 
contains a pre-built binary version of 
pxelinux.0, which will work nicely. To 
download the Syslinux package and ex-
tract the necessary file, run the following 
command:

curl ‑s https://mirrors.U

  edge.kernel.org/U

  pub/linux/utils/boot/syslinux/U

  syslinux‑4.04.tar.gz | tar ‑zxvf U

  ‑ syslinux‑4.04/core/pxelinux.0

This will create the syslinux‑4.04 folder 
in the current working directory, which 
in turn contains a folder named core and 
within that folder is the pxelinux.0 firm-
ware file. To make this file available to a 
PXE client, it will need to reside within 
the TFTP root folder, which you create 
with the following command:

mkdir ‑p /opt/lib/tftp/boot

For this example, I have set the TFTP 
root directory to /opt/lib/tftp, and the 
PXE firmware should be placed in the 
boot folder within the TFTP root.

Next, I will complete the file configu-
ration with the TinyCore ISO image. For 
this project, I am opting to go with the 
16MB ISO containing the GUI environ-
ment. Since the process of preparing the 
TinyCore specific files is quite involved, 
it will be divided into two steps: prepar-
ing the base operating system and add-
ing new applications.

The initial setup of the base system re-
quires the /boot folder’s contents to be 
extracted for further customization. This 
can be accomplished using the following 
template script:

sudo mount U

  ‑o loop TINYCORE.ISO /mnt/cdrom

cp ‑R /mnt/cdrom/boot/* U

  /opt/lib/tftp/boot

In this script, TINYCORE.ISO should be 
replaced with the path to the TinyCore 
ISO image. All of the files mentioned in 
this section (PXE firmware, kernel, init 
ramdisk, and boot folder contents) will 
need to be located within the TFTP 
root. Leave the ISO image mounted as 
more files will be needed later in the 
process. Once extracted, the target 
folder will contain three items: vmlinuz 
(the kernel), core.gz (the init ram-
disk), and isolinux (the folder contain-
ing the boot menu configuration). The 
kernel file will not be modified and 
will remain in the boot folder in the 
TFTP root. The init ramdisk file, core.
gz, will be modified to contain all of 
the files necessary to run the GUI envi-
ronment. To modify the contents of 
core.gz, it must be extracted to a 
folder. This can be done using the fol-
lowing template script:

mkdir /tmp/initrd‑contents

cd /tmp/initrd‑contents

gzip ‑cd /opt/lib/tftp/boot/core.gz | U

  cpio ‑i

In this example, the contents of the init 
ramdisk are located in /tmp/initrd‑con‑
tents. Note that the cpio command is 
available for all popular distributions, 
but it may need to be installed. As men-
tioned earlier, the whole desktop envi-
ronment will be copied onto the init 
ramdisk. To accomplish this, the file 
will need to be copied from the ISO 
image to a folder on the init ramdisk 
with the following template script:

mkdir ‑p /tmp/initrd‑contents/usr/local/U

  share/install‑base

cp /mnt/cdrom/cde/optional/*tcz U

  /tmp/initrd‑contents/usr/local/share/U

  install‑base

The files that were copied with the TCZ 
file extension will be installed at boot 
time. Since TinyCore is a single-user 
distribution, this can be accomplished 
by editing the script located in /etc/
profile to install the files and start X 
windows. The following lines will be 
added to the end of the /etc/profile file 
in the init ramdisk:

tce‑load U

  ‑i /usr/local/share/install‑base/*tcz

startx

IN-DEPTH
PXE Boot with TinyCore

45LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



menu. The environment with the base 
init ramdisk image should look like this:

LABEL tc

MENU LABEL TinyCore Base

KERNEL /boot/vmlinuz

INITRD /boot/core.gz

The Firefox environment will look the 
same as this base configuration with the 
exception of the INITRD configuration, 
which will have a value of /boot/
core‑firefox.gz. This completes the con-
figuration of the available PXE environ-
ments into which you can boot. The re-
maining step involves configuring the 
network services that power the PXE 
boot environments: DHCP and TFTP.

Configuring DHCP and TFTP
Not wanting to set up a whole new 
server for DCHP and TFTP, I opted to 
use a Raspberry Pi I had on my network 
to host them. Luckily for this project 
there is a single application that will 
run both of these services: dnsmasq [4]. 
Dnsmasq is a server application that 
provides, among other services, DHCP, 
DNS, and TFTP. Since services are 
being delivered over the network, the 
server OS distribution is not important. 
Luckily dnsmasq is available for most 
popular Linux distributions. The first 
step is configuring the DHCP server 
portion of dnsmasq. Enter a basic DHCP 
configuration into the /etc/dnsmasq.conf 
file as shown in Listing 2.

Line 1 of Listing 2 uses the interface di-
rective to set the network interface on 
which the DHCP service will be listening 
(in this case, eth0). Line 2 uses the 
dhcp‑range directive to specify the range 
of IP addresses that will be available for 
client use and the DHCP lease length. In 

At this point, the init ramdisk content is 
configured to boot into the default out-
of-the-box GUI configuration. This is a 
great time to repackage the init ramdisk 
as a base boot image. This can be done 
using the following script template:

cd /tmp/initrd‑contents

find . | cpio ‑H newc ‑o > U

  /opt/lib/tftp/boot/core

gzip ‑f /opt/lib/tftp/boot/core

Note that running this script will over-
write the init ramdisk in the boot folder 
under the TFTP root folder. This final-
izes the creation of the init ramdisk 
image. To automate the process of cus-
tomizing the init ramdisk the inity.sh 
scrip can be used [3]. Now that a base 
image has been created, the Firefox ap-
plication will be added and saved as a 
new init ramdisk image. This will be ac-
complished by modifying the above 
commands that were added to the /etc/
profile script to the following:

tce‑load U

  ‑i /usr/local/share/install‑base/*tcz

tce‑load ‑w ‑i firefox‑esr.tcz

startx

This modification will allow the Firefox 
package to be installed after the base 
system has been installed. It should be 
noted that the larger an application is 

the longer it will take to install and 
therefore boot the environment. This is 
now ready to be repackaged into a new 
init ramdisk image, which can be accom-
plished with the following template 
script:

cd /tmp/initrd‑contents

find . | cpio ‑H newc ‑o > U

  /opt/lib/tftp/boot/core‑firefox

gzip ‑f /opt/lib/tftp/boot/core‑firefox

Note that the name of the new init ram-
disk will be core‑firefox.gz. The last 
step of our process is to modify the boot 
menu to display two boot options: the 
base image and the new Firefox image. 
The boot menu is contained in the /opt/
lib/tftp/boot/isolinux/isolinux.cfg 
file. This file has three main sections 
separated by empty lines. The first sec-
tion contains general configuration 
items, such as DEFAULT, UI, PROMPT, and 
so on. The second section contains con-
figurations beginning with MENU, which 
will be used to configure the boot 
menu’s look and feel. The third section 
contains multiple line-separated groups 
of configurations that correspond to 
menu items. The first line in each group 
of configurations should begin with a 
LABEL statement. All of the entries in the 
third section may be removed for this 
project. After removing the existing 
menu entries, the file will look similar 

to Listing 1.
There might be 

minor differences 
depending on the 
TinyCore version 
being used. Now 
the new PXE envi-
ronments will be 
added to the 

DEFAULT tc

UI menu.c32

PROMPT 0

TIMEOUT 600

ONTIMEOUT tc

F1 f1

F2 f2

F3 f3

F4 f4

MENU TITLE TinyCore

MENU MARGIN 10

MENU VSHIFT 5

MENU ROWS 5

MENU TABMSGROW 14

MENU TABMSG  Press ENTER to boot, TAB to edit, or press F1 

for more information.

MENU HELPMSGROW 15

MENU HELPMSGENDROW ‑3

MENU AUTOBOOT BIOS default device boot in # second{,s}...

Listing 1: Modified Boot Menu

01  interface=eth0

02  dhcp‑range=192.168.1.100,192.168.1.200,12h

03  dhcp‑option=3,192.168.1.1

Listing 2: A Basic DHCP Configuration

01  dhcp‑boot=/opt/lib/tftp/boot/pxelinux.0,192.168.1.10

02  dhcp‑option‑force=209,/boot/isolinux/isolinux.cfg

03  dhcp‑option‑force=210,/

04  dhcp‑option‑force=66,192,168.1.10

05  enable‑tftp

06  tftp‑root=/opt/lib/tftp

Listing 3: Configuring Custom DHCP Parameters

46

PXE Boot with TinyCore

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



this case, the IP addresses between 
192.168.1.100 and 192.168.1.200 will be 
available and will be leased for 12 hours. 
Line 3 uses the dhcp‑option directive to set 
a DHCP option 3, which corresponds to 
the default gateway address (192.168.1.1). 
Once this has been completed, you can 
configure the custom DHCP parameters to 
enable PXE boot. This will involve adding 
Listing 3 to the /etc/dnsmasq.conf file.

Line 1 of Listing 3 uses the dhcp‑boot 
directive to specify the full path of the 
PXE firmware on the TFTP server along 
with the TFTP server IP address. The 
next three lines are setting specific DHCP 
options. Option 209 on line 2 is the rela-
tive path (within the TFTP root) to the 
PXELINUX configuration file. Since the 
configuration file was copied from the 
TinyCore ISO image, it is named iso‑
linux.cfg, which corresponds to the Sys-
linux type that was used to boot the CD. 
Since both types are based on Syslinux, 
this will not be an issue for this project. 
Option 210 on line 3 sets the directory to 
look for PXELINUX boot files (the ker-
nel, the init ramdisk, etc.), which like 
option 209 is relative to the TFTP root 
path. Option 66 on line 4 sets the TFTP 
server’s IP address. All of these options 
will be returned in the DHCP response 
packet. Lines 5 and 6 are configuring the 
TFTP server. Line 5 uses the enable‑tftp 
directive to enable listening for TFTP 
connections. Line 6 uses the tftp‑root 
directive to specify the full path where 
files that will be available over TFTP will 
be located.

The PXE environment configuration is 
now complete and is ready to boot cli-
ents over a LAN. If your network already 
uses a DHCP server, this could cause 
problems as there is no assurance which 
DHCP server will respond to the client 
first. Consequently, this configuration 
should be deployed either on a network 
segment where DHCP is currently not 
running or configured to work with the 
existing DHCP service. When I imple-
mented this solution, I was running DD-
WRT on my router, which uses dnsmasq 
as its DNS and DHCP. So, I added the ad-
vanced DHCP options above to my DD-
WRT instance and used my Raspberry Pi 
as the TFTP server only.

Retro PXE Functionality
Another really cool feature that can be 
implemented with my PXE environment 

is the ability to boot legacy raw disk im-
ages over PXE. This is accomplished 
using another component available 
within the Syslinux package: MEM-
DISK. Within the Syslinux archive that 
was downloaded earlier, this file is lo-
cated in the /syslinux‑4.04/memdisk 
folder. To enable booting a floppy disk 
over the network, there are three steps. 
First, the MEMDISK file must be placed 
in the TFTP root (preferably in the boot 
folder). Second, the floppy disk image 
to be booted must be placed in the 
TFTP server root. A folder off of the 
TFTP root named floppy could be cre-
ated, and the disk image placed there. I 
would encourage playing with Menue-
tOS [5], a floppy disk OS with a GUI 
and many fun applications. Finally, a 
menu item must be configured to en-
able booting of the floppy disk. The 
menu item should look like this:

LABEL menuet

MENU LABEL MenuetOS

KERNEL /boot/memdisk

INITRD /floppy/menuet.img

Note that the MEMDISK file is refer-
enced as the kernel to be used and the 
floppy disk image is referenced as the 
init ramdisk. This could also be config-
ured to boot a larger disk image; how-
ever, this could impact load time and 
possibly performance.

Conclusion
This project was a success. My kids 
enjoy being able to use the Internet, 
email grandma and grandpa, and play a 
few old legacy games that I’ve put on 
floppy disks. I enjoy not having to re-im-
age the laptop when it gets shut down 
incorrectly. The system’s resilience is a 
great asset, plus it’s an excellent solution 
for breathing life into old computing 
hardware.  nnn

[1]  TinyCore Linux:  
http://  www.  tinycorelinux.  net/

[2]  Syslinux: https://  wiki.  syslinux.  org/

[3]  inity.sh (manipulate init ramdisks): 
http://  git.  andydoestech.  com/  git/ 
 scripts/  .  git/  tree/  shell/  inity.  sh

[4]  dnsmasq: http://  www.  thekelleys.  org. 
 uk/  dnsmasq/  doc.  html

[5]  MenuetOS: http://  www.  menuetos.  net

Info

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM 

http://www.tinycorelinux.net/
https://wiki.syslinux.org/
http://git.andydoestech.com/git/scripts/.git/tree/shell/inity.sh
http://git.andydoestech.com/git/scripts/.git/tree/shell/inity.sh
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.menuetos.net


chmod +x Symphytum‑x86_64.AppImage

and then double-click on the file to 
launch Symphytum.

Before you create your first database, 
you might want to tweak a few settings. 
Unlike any other regular desktop appli-
cation, Symphytum doesn’t create a lot 
of separate files. Instead, each applica-
tion in Symphytum is just a separate 
table of the data.db database. This file, 
along with the files you attach to indi-

Y ou rarely need a full-blown rela-
tional database if you only want 
to store recipes, notes, tasks, and 
other simple pieces of data. 

What you need is a tool that makes it 
possible to quickly create simple, easy-
to-use, database-powered applications 
with a minimum of effort and technical 
knowledge. Enter Symphytum [1]. You’ll 
be hard-pressed to find a more straight-
forward and user-friendly application for 
creating personal databases. With abso-
lutely no knowledge of database theory 
and design, you can build databases for 
pretty much any purpose. More impor-
tantly, the resulting databases feature a 
polished interface that doesn’t require a 
degree in computer science to use.

Getting Started
Symphytum uses SQLite as its database 
engine. Being lightweight, robust, and 
mature, SQLite is a popular choice for 
powering database-driven applications. 
However, Symphytum hides all the tech-
nical intricacies behind a user-friendly 
interface, so you are never exposed to 
the scary database underbelly.

The project’s GitHub site offers pack-
aged versions for popular Linux distri-
butions. You’ll also find an AppImage 

self-contained executable. It’s larger 
than the packages for specific distribu-
tions, and it might run slightly slower 
on your machine. But it requires no in-
stallation and comes with all required 
dependencies. As such, it offers the 
easiest and fastest way to run Symphy-
tum on practically any Linux system. 
Grab the latest AppImage file from the 
project’s Releases page, make the 
downloaded file executable using the 
command

From a simple task list to a collection that keeps tabs on your books, Symphytum lets you quickly 
and easily build databases for storing and working with any type of data imaginable. By Dmitri Popov

Figure 1: Symphytum in all its beautiful simplicity. Le
ad

 Im
ag

e 
©

 W
o

m
u

e,
 F

o
to

lia
.c

o
m

Databases Made Simple

 Personal Database

48

IN-DEPTH

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Symphytum



vidual records, is stored in a separate 
folder. By default, this folder is hidden in 
your home directory, and you might 
want to choose another location for it to 
make backup easier. To do this, choose 
Tools | Preferences, switch to the General 
section, and specify the desired path and 
directory name. While you are at it, you 
might want to change the default font 
and font size. Switch to the Appearance 
section and specify the font and size you 
want in the appropriate fields. Finally, 
switch to the Advanced section, and en-
able the option that improves perfor-
mance by caching images. This option 
requires more RAM, but as it signifi-
cantly improves performance, it’s worth 
enabling in most situations.

Although Symphytum is a single-user 
application, it does support synchroniza-
tion. With this functionality enabled, you 
can access your data from any other ma-
chine running Symphytum. To activate 
and configure the synchronization fea-
ture, switch to the Cloud Sync section, se-
lect Enabled from the Status drop-down 
list, and press Close. This launches a sim-
ple wizard that guides you through the 
process of setting up syncing. Symphy-
tum supports the Dropbox and MEGA 
synchronization services. Before you can 
use the latter, you need to install and con-
figure the MEGAcmd [2] command-line tool. 
If you prefer to enable and set up syn-
chronization later, you can do it by choos-
ing Tools | Cloud synchronization in the 
main toolbar. You can use any other syn-
chronization service, too. You just have to 
configure your preferred cloud syncing 
tool to synchronize Symphytum’s work-
ing directory.

Working with Collections
Databases in Symphytum are called col-
lections, and the application comes with 
an example collection for you to explore. 
Each collection can contain a number of 
fields of different types and two views: 
Form and Table. You can use the appro-
priate buttons in the main toolbar to 
browse through the existing collection en-
tries, as well as create, duplicate, and re-
move records. The Table view (Figure 2) 
allows you to sort records in ascending or 
descending order by clicking on the de-
sired field heading. For example, to sort 
all records in the example database alpha-
betically, click on the Name field heading. 
Click on it again to reverse the order.

Need to find a specific record? Start 
typing the desired search criteria in the 
Search field to see the list of matching re-
cords. The search feature is a one-trick 
pony: It searches through all available 
fields, and that’s all it can do.

Building a collection from scratch in 
Symphytum is straightforward. If you 
travel a lot, you might want to set up a 
collection to keep track of the cities you 
have visited (Figure 3). Press the New 
Collection button in the main toolbar, or 
choose File | New | New Collection to cre-
ate a new collection. Replace the default 
collection name with a more descriptive 
title, and the blank collection is ready.

The first order of business is to add at 
least one field to the collection. In this 
case, you can start by creating a text 
field to store the name of the city. Press 
the appropriate button in the main work-

ing area, select Text from the list of avail-
able field types, give the field a name (it 
will appear as the field’s label in the 
Form view), and press Next (Figure 4). 
You can enable the Required field option 
if you want to make the field mandatory 
(i.e., it must not be empty). Press Finish 
to add the field. Switch then to the Form 
view using the appropriate button. To 
adjust the field’s size and position, click 
on the field’s label to select the field. Ad-
just the field’s width and height by drag-
ging the selection points with the mouse. 
To move the field, click and hold the 
field’s label and drag the field to the de-
sired position. Using the New Field but-
ton in the main toolbar (or the 
Ctrl+Shift+N keyboard shortcut), you 
can add as many fields as you like.

With Symphytum, you are not lim-
ited to text fields. If you want to add 

Figure 2: The Table view lets you view records as a list and sort them by 
column name.

Figure 3: Despite its simplicity, Symphytum offers everything you need 
to build databases that accommodate practically any type of data.

IN-DEPTH
Symphytum

49LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



isting collection using File | Export. 
The import and export functionality in 
Symphytum does have a serious limita-
tion: It cannot import and export files 
and images (since they are stored as 
references and not inserted directly 
into records). If you need to move data 
from one Symphytum instance to an-
other, you can use the backup and re-
store feature instead (Figure 6). 
Choose File | Backup and follow the 
guide to export Symphytum data into a 
single .syb file. You can then import it 
into Symphytum running on another 
machine via File | Backup and choos-
ing the restore option.

Conclusion
Symphytum won’t rival advanced data-
base applications like LibreOffice Base 
and Kexi. But what it lacks in functional-
ity, it makes up for in ease of use. And 
honestly, unless you are building com-
plex relational databases, you’ll hardly 
ever need more than what Symphytum 
has to offer.  nnn

the dates on which you visited the 
city, create two date fields: one for the 
arrival date and another for the depar-
ture date. When adding a date field, 
Symphytum allows you to choose a 
date format. Symphytum also lets you 
enable the reminder option for the 
date field, so the application will dis-
play a reminder when the date in the 
date field is reached. This simple op-
tion can come in useful when working 
with collections containing deadlines 
(e.g., a simple task list). Symphytum 
even has a dedicated view for listing 
all upcoming reminders (View | Date 
reminder list).

Symphytum supports other field 
types, too. The Image field type makes 
it possible to insert images into records. 
Symphytum can handle most popular 
image formats, including PNG, JPEG, 
GIF, TIFF, and even vector-based SVG. 
Keep in mind that when you add an 
image to a record, Symphytum doesn’t 
insert the image file into the record. In-
stead, the application saves the image 
file in the dedicated files directory in-
side Symphytum’s working folder and 
then creates a reference to this file in 
the record. Why is this important? Be-
cause if you want to keep images in 
your collection safe, you have to make 
sure that you back up the entire content 
on Symphytum’s working folder, in-
cluding the files directory.

The File List field type allows you to 
add multiple files to a record. To add a 
file or multiple files, you can either 
drop them onto the File List field in the 
Form view or use the dedicated button 

below the field. 
The Remove but-
ton lets you delete 
individual files, 
while the Export 

button can come in handy when you 
need to save a file in the record to a 
local directory.

If you want to add a drop-down list 
containing a list of predefined entries, 
the Combobox field type is what you 
need. Finally, the Checkbox field type al-
lows you to add options that can be tog-
gled, while the Progress field type makes 
it possible to add an adjustable progress 
bar to the record. Combined, these three 
field types are ideal for creating collec-
tions that can help you to manage tasks 
and keep tabs on your projects. Add to 
this a Date field with the reminder op-
tion enabled, and you have a simple way 
to keep track of your deadlines.

Symphytum doesn’t distinguish be-
tween the design mode (where you add 
fields and design forms) and the work 
mode (where you manage records and 
populate them with data). While this is 
convenient, this also means that you 
may sometimes select a field instead of 
focusing the cursor on it and even inad-
vertently resize or move the field. To 
prevent this from happening, Symphy-
tum lets you lock the Form view using 
the Lock button in the main toolbar. 
There is another creature comfort: the 
Tools | Database | Free unused space 
command can clean up and optimize the 
underlying database to reduce its size.

If you already have data in the 
comma-separated (CSV) format, Sym-
phytum allows you to import them and 
create a new collection on-the-fly. To 
import existing data, choose File | Import 
and follow the import guide. You can 
also export data (Figure 5) from the ex-

Figure 4: Symphytum supports a wide range of field 
types.

Figure 6: You can use Symphy-
tum’s backup and restore func-
tionality to keep your data safe.

Figure 5: Symphytum can export existing data to 
other applications.

[1]  Symphytum: https://  github.  com/ 
 giowck/  symphytum

[2]  MEGAcmd: https://  mega.  nz/  cmd

Info

50

Symphytum

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH

https://github.com/giowck/symphytum
https://github.com/giowck/symphytum
https://mega.nz/cmd


pology.org [2]; 
DIY enthusiasts 
can use 
GitHub [3]. For 
example, I in-
structed urlwatch 
to keep an eye on the online news page 
for Linux Magazine (Listing 1) – point-
lessly, because it actually still offers RSS.

In my home directory below .config/
urlwatch/, urlwatch has now created a 
configuration file named urls.yaml (List-
ing 2). So far, so good – but I want to be 
sure that I am only notified when a new 
news ticker post is published. I want url-
watch to ignore any other changes to the 
website.

To do this, I briefly immersed myself 
in the website’s HTML source code and 
discovered that every news ticker entry 
is introduced by a div tag that contains 
the specification "td_module_9 td_mod-
ule_wrap" as its class specification. This 
prompted me to append the following 
line to the configuration in urls.yaml:

filter: element‑by‑id:td_module_9

Now urlwatch only alerts me when a new 
ticker entry appears on the website. There 
is a rich selection of alerting types; I opted 
for plain old email. All I have to do is enter 
the appropriate mail server, as well as the 
sender and recipient addresses, below 
.config/urlwatch/ in the urlwatch.yaml 
configuration file’s report section. And, lo 
and behold, the electronic mailman was 
soon ringing the bell (Figure 1).  nnn

S ome years ago, I reported on the 
Miniflux RSS feed aggregator [1] 
in this column, and I still use it. 
Miniflux is lean, fast, and easy 

to use. The media have been predicting 
the death of RSS feeds for what feels 
like an eternity, but it still has not hap-
pened. However, some websites simply 
don’t offer feeds. I have to do some-
thing different here. What I need is a 
tool that alerts me when a particular 
website changes.

That’s far more complicated than it 
sounds at first. Using a web service for 
this purpose (there are countless num-
bers of them) is out of the question for 
reasons of data economy. However, the 
biggest problem is something else. 
Things on websites that I don’t find 
relevant are constantly changing. For 
example, a daily newspaper that I regu-
larly read displays job ads that change 
with every reload. If I was notified 
every time, it would drive me crazy. 
There has to be a better way – and 
there is: urlwatch.

Written in Python 3, urlwatch is in-
cluded in most popular distributions. If 
you want to know exactly if and which 
version of urlwatch is available in your 
favorite distro, you can find out on Re-

The sys admin’s daily grind: urlwatch

What’s New Pussycat?
Experienced system administrators attach great importance to always being up to date when it 
comes to information technology. Urlwatch is a command-line tool that presents the latest news 
from websites that do not offer RSS feeds by email. By Charly Kühnast

Charly Kühnast manages 
Unix systems in a data 
center in the Lower Rhine 
region of Germany. His 
responsibilities include 
ensuring the security 
and availability of 
firewalls and the DMZ.

Author

Figure 1: Urlwatch immediately notifies Charly by email when news is 
posted on his favorite websites.

[1]  “The Sys Admin’s Daily Grind: Mini-

flux” by Charly Kühnast, Linux Maga‑

zine, issue 164, July 2014,  

http://  www.  linux‑magazine.  com/ 

 Issues/  2014/  164/  Charly‑s‑Column‑ 

Miniflux/  (language)/  eng‑US

[2]  urlwatch packages:  

https://  repology.  org/  project/  urlwatch/ 

 versions

[3]  urlwatch on GitHub:  

https://  github.  com/  thp/  urlwatch

Info

01 $ urlwatch ‑‑add url=http://www.linux‑magazine.com/Online/News,name=LinMag

Listing 1: Monitoring Websites

01 kind: url

02 name: LinMag

03 url: http://www.linux‑magazine.com/Online/News

Listing 2: urls.yaml

51LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

IN-DEPTH
Charly’s Column – urlwatch

http://www.linux-magazine.com/Issues/2014/164/Charly-s-Column-Miniflux/(language)/eng-US
http://www.linux-magazine.com/Issues/2014/164/Charly-s-Column-Miniflux/(language)/eng-US
http://www.linux-magazine.com/Issues/2014/164/Charly-s-Column-Miniflux/(language)/eng-US
https://repology.org/project/urlwatch/versions
https://repology.org/project/urlwatch/versions
https://github.com/thp/urlwatch


Kernel namespaces were also used to ex-
ecute unprivileged containers.

Container DNA
Flatpak uses the same building blocks 
and mechanisms that are used in con-
tainer systems such as Docker or LXC. 
This includes the previously mentioned 
function of kernel namespaces. How-
ever, the basis for Flatpaks is one or 
more runtime environments that provide 
basic functions for the Flatpaks via li-
braries and interpreters. In contrast to 
the container formats mentioned earlier, 
Flatpak sandboxes are unprivileged; they 
do not need root.

Bubblewrap [8] is used to run Flatpak 
applications in the user context. In princi-
ple, the software works like a chroot [9], 

A lternative systems for distribut-
ing software are on the rise. In 
2018, everyone was talking 
about Flatpak and Snap. In addi-

tion, AppImage, which does not require 
any basic installation, offers completely 
self-sufficient packages.

Flatpak [1], developed by Fedora 
under the leadership of Alexander Lars-
son, is compatible with desktop applica-
tions. It lets you package software so 
that the same package works on all dis-
tributions. The only requirement is a 
matching Flatpak runtime environment.

Origins
Flatpak, which reached version 1.0 in 
mid-2018, is now considered mature 
enough for production use. The current 
version is 1.50. The origin of the format 
dates back to 2007, when Red Hat em-
ployee Larsson was experimenting with 
klik [2], AppImage’s predecessor. How-
ever, he did not like some of the techni-
cal details. In the same year, he released 
Glick, which was based on FUSE [3], 
due to the lack of container APIs, which 
had not yet been invented.

Glick 2 relied on the newly introduced 
kernel namespaces in 2011, which again 
aroused Larsson’s interest in alternative 
packaging. Larsson published a long ar-
ticle on his blog explaining why he did 
not consider the existing packaging sys-
tems to be ideal and why he preferred 
bundling software. This early article al-
ready outlined the basics of OSTree [4], 
Atomic Host [5], and Silverblue [6].

Around 2013, kernel support for con-
tainers evolved, and Docker was 
launched. Larsson’s task was to get Red 
Hat Enterprise Linux (RHEL) ready for 
Docker. At a Gnome hackfest in the same 
year, more concrete ideas on runtime, 
sandboxing, and the modules known as 
portals for controlled access to the actual 
system’s resources were developed.

Lennart Poettering and Greg Kroah-
Hartman joined Larsson in the discus-
sion, which led to a manifesto [7], re-
sulting in the birth of Flatpak (whose 
name derives from IKEA’s method of 
flattening DIY furniture).

The project initially was dubbed xdg-
app before being renamed Flatpak. This 
forerunner already used OSTree to down-
load, store, and deduplicate applications. 

Flatpak integration with desktop systems

The Future of Flatpak
Flatpak’s development may have been prompted by container development, but its future depends 
on the desktop. By Ferdinand Thommes

Figure 1: In addition to Firefox installed via the filesystem, you can 
install a nightly build of the browser that uses its own profile. It is 
installed in the user context here. Le

ad
 Im

ag
e 

©
 V

ik
to

r 
G

m
yr

ia
. 1

23
R

F.
co

m

52

IN-DEPTH

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Flatpak



but relies on unprivileged user 
namespaces [10]. A process flag also pre-
vents the software from being granted 
new privileges that might allow it to 
break out of the sandbox.

On top of this, the developers secure 
the sandbox with seccomp [11]. In this 
way, they try to prevent potentially risky 
system calls from reaching the outside 
world. By default, the application in the 
sandbox is only able to write to some of 
the home directory’s subdirectories.

Installing Software
Flatpak is now preinstalled on many dis-
tributions, with the exception of Ubuntu, 
which uses Snap to propagate its own 
variant of an alternative package system. 
Flatpaks are well integrated from the us-
er’s point of view: In addition to tools for 
the command line (Figure 1), there are 
now management applications for desk-
top environments. Software can be in-
stalled in this way in the user or system 
context (Figure 2).

This is at least true of Gnome (Figure 3) 
and KDE (Figure 4). Applications for pack-
age management such as Gnome Software 
or Plasma Discover integrate Flatpaks and 
automatically display existing updates. 
However, there is still room for improve-
ment here.

Flathub [12] is a central repository 
with currently more than 400 packages. 
Developers can post their apps here, and 
users can install them with a single click 
(Figure 5).

Since the principle of repositories is al-
ready anchored in Flatpak’s source code, 
creating and offering your own archives 
in this format requires very little over-
head [13].

Developer Criticism
The desire for a uniform package deliv-
ery system under Linux is not new. For a 
long time, criticism (mainly from devel-
opers) has been levied at the distribu-
tions’ conventional approaches. A pack-
age format for all distributions would re-
sult in faster delivery of developments to 
users and thus accelerate the work on 
many programs in general.

The army of critics even includes 
Linus Torvalds, who took a stand on the 
subject at a Debian conference [14]. De-
spite the desire for a uniform package 
management system, there is criticism of 
Flatpak from several sides, which also 

Figure 2: Apps installed in the user context are connected to the system 
via the hidden .var/app/ folder in the home directory.

Figure 3: In Gnome Software, Fedora offers several apps in native format 
and as Flatpaks. For example, Gnome tags the Polari Flatpak as 3rd party.

Figure 4: In addition to Flatpak apps, Plasma Discover offers the basic 
Flatpak components for installation.

IN-DEPTH
Flatpak

53LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



Package Maintainers at Risk
Another point of criticism is that appli-
cation developers should not decide 
alone what is delivered with their pack-
age. This task is currently handled by 
the respective distribution’s package 
maintainer, who adapts the application 
to the system’s needs and guidelines. 
The maintainer also serves as a contact 
and intermediary for both developers 
and users.

If there were only alternative package 
systems like Flatpak, the role of main-
tainers would be obsolete. Kyle Keen, 
who works as a maintainer at Arch 
Linux, described this dilemma in his 
much-acclaimed article “Maintainers 
Matter” [15] in 2016. Basically, distribu-
tions are already barely able to take on 
staff; letting a maintainer handle packag-
ing would save resources.

Sandbox Security
Last year, Flatkill.  org [16] caused a sensa-
tion for a short time. It tried to demon-
strate, in the style of the well-known sys-
temd criticism, that Flatpak is a nightmare 
when it comes to sandbox security. The 
critics attacked the way Flatpak handles 
permissions. However, with a few excep-
tions, the accusations no longer applied by 
the time the criticism was published.

The criticism was directed against 
apps based on GTK2. Applications based 
on GTK3 and Qt 5 use the previously 
mentioned portals [17] for D-Bus-based 
access to the filesystem and other re-
sources, such as printers, from inside the 
sandbox (Figure 7).

Since the stable version 1.0, Flatpak 
has seen additional improvements. Note-
worthy are support for multiple Nvidia 
devices, the introduction of the user-
name flatpak and of a custom fuse file-
system to enhance security in the home 
context. Flatpak can also handle web-
cams through the new Screencast portal, 
which makes use of Pipewire. Overall, 
Flatpak offers better control over the life-
cycle of individual versions and an im-
proved platform for regression testing.

Moving forward, major versions will 
appear every three months, supple-
mented by snapshots in between re-
leases. For a deeper understanding of 
Flatpak’s technical background, see 
Larsson’s presentation from the All Sys-
tems Go conference in Berlin in Septem-
ber 2018 [18].

generally applies to other alternative 
package management systems.

Deduplication
From the beginning, Flatpak and similar 
approaches were thought to waste too 
much space on hard disks by duplicating 
runtime environments and libraries. This 
accusation is not easy to deny, because 
setting up a package as a Flatpak, Snap, 
or AppImage often requires a download 
of several hundred megabytes, whereas 
the distribution maintainer’s version 
may just be a few kilobytes or megabytes 
(Figure 6).

This is due to its universal applica-
bility: Flatpak bundles all necessary 

additional programs and installs them 
with the actual software. This is partic-
ularly noticeable if a bug occurs in a li-
brary that is used in many programs: If 
not every Flatpak maintainer ex-
changes this version, a faulty version 
remains on the system. The problem 
does not arise with the maintainer ver-
sion, since the distributor replaces the 
library.

Recently, the situation has improved 
slightly, because the libostree library 
now lets you deduplicate. As for hard 
disk space, it is cheaper today than ever 
before. If you adhere to a minimalist ap-
proach, Flatpak is hardly the right choice 
for you anyway.

Figure 5: Flathub now offers over 400 applications.

Figure 6: Installing the Spotify client as a Flatpak means downloading 
more than 300MB including a runtime. The package size in DEB format 
is around 40MB.

54

Flatpak

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



The Middle Ground
Flatpak and other alternative systems 
have found their way into the Linux in-
frastructure and are not likely to 
quickly disappear. Each of the ap-
proaches received both praise and criti-
cism: Some critics see the demise of 
Linux coming; some proponents wish 
that distributions could predominantly 
consist of Flatpaks or Snaps. Fedora is 
currently implementing this in the Sil-
verblue project, for example. As is so 
often the case, the middle ground 
makes the most sense.

Flatpaks offer advantages – and, de-
pending upon your point of view, also 
cause disadvantages. The advantages 
are especially important for stable dis-
tributions and LTS versions. While, for 
reasons of stability, only older versions 
of software are available on LTS, 
Flatpak offers users the option of in-
stalling current software in a way that 

does not clash with the version pro-
vided by the actual package manager.

If you run several distributions in paral-
lel, you only need to download a Flatpak 
once to use the software everywhere. 
Flatpaks are therefore completely inde-
pendent of the distribution update cycle.

Conclusions and Outlook
Flatpak has arrived on the desktop with 
varying responses. Developers use 
Flatpak to serve all distributions with a 
single package. Fedora is enthusiastic 
about the new format and sees it as the 
future of distribution.

An informal survey of friends and 
family shows that Flatpaks are used 
moderately by some advocates, with the 
number of applications rarely exceeding 
a dozen.

As for the future, Flatpak will only live 
as long as the desktop does. If the influ-
ence of web apps continues to increase, 

the desktop’s function may at some 
point be mainly to launch the browser. 
And that would probably be the end of 
Flatpak.  nnn

Figure 7: Portals form the interface between the app in the sandbox 
and the underlying system. They ensure two-way communication via 
D-Bus and regulate access to resources.

[1]  Flatpak: https://  github.  com/  flatpak/ 
 flatpak/  releases

[2]  Klik: https://  en.  wikipedia.  org/  wiki/ 
 AppImage#  klik

[3]  Glick:  
https://  people.  gnome.  org/  ~alexl/  glick/

[4]  OSTree: https://  ostree.  readthedocs.  io/ 
 en/  latest/  manual/  introduction/

[5]  Atomic: https://  www.  projectatomic.  io

[6]  Silverblue:  
https://  silverblue.  fedoraproject.  org

[7]  Manifesto: https://  docs.  google.  com/ 
 document/  d/  1QTgxakyUVFMkvr‑ 
 xFY2Xg9lYjcJLd6kPTl3Ij5_  dL7Q/  edit

[8]  Bubblewrap: https://  github.  com/ 
 projectatomic/  bubblewrap

[9]  chroot:  
https://  en.  wikipedia.  org/  wiki/  Chroot

[10]  User namespaces:  
https://  lwn.  net/  Articles/  532593/

[11]  Seccomp:  
https://  en.  wikipedia.  org/  wiki/  Seccomp

[12]  Flathub: https://  flathub.  org/  home

[13]  Hosting a repository:  
http://  docs.  flatpak.  org/  en/  latest/ 
 hosting‑a‑repository.  html

[14]  Torvalds’ criticism: https://  www.  reddit. 
 com/  r/  programming/  comments/ 
 47z3kx/  linus_  torvalds_  on_  linux_ 
 application_  packaging/

[15]  “Maintainers Matter”: http://  kmkeen. 
 com/  maintainers‑matter/ 
 2016‑06‑15‑11‑51‑16‑472.  html

[16]  Flatkill: http://  flatkill.  org

[17]  Portals: https://  github.  com/  flatpak/ 
 flatpak/  wiki/  Portals

[18]  Presentation from All Systems Go: 
https://  www.  youtube.  com/  watch? 
 v=K0bkapSpzzk

Info

Flatpak

IN-DEPTH

https://github.com/flatpak/flatpak/releases
https://github.com/flatpak/flatpak/releases
https://en.wikipedia.org/wiki/AppImage#klik
https://en.wikipedia.org/wiki/AppImage#klik
https://people.gnome.org/~alexl/glick/
https://ostree.readthedocs.io/en/latest/manual/introduction/
https://ostree.readthedocs.io/en/latest/manual/introduction/
https://www.projectatomic.io
https://silverblue.fedoraproject.org
https://docs.google.com/document/d/1QTgxakyUVFMkvr-xFY2Xg9lYjcJLd6kPTl3Ij5_dL7Q/edit
https://docs.google.com/document/d/1QTgxakyUVFMkvr-xFY2Xg9lYjcJLd6kPTl3Ij5_dL7Q/edit
https://docs.google.com/document/d/1QTgxakyUVFMkvr-xFY2Xg9lYjcJLd6kPTl3Ij5_dL7Q/edit
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://en.wikipedia.org/wiki/Chroot
https://lwn.net/Articles/532593/
https://en.wikipedia.org/wiki/Seccomp
https://flathub.org/home
http://docs.flatpak.org/en/latest/hosting-a-repository.html
http://docs.flatpak.org/en/latest/hosting-a-repository.html
https://www.reddit.com/r/programming/comments/47z3kx/linus_torvalds_on_linux_application_packaging/
https://www.reddit.com/r/programming/comments/47z3kx/linus_torvalds_on_linux_application_packaging/
https://www.reddit.com/r/programming/comments/47z3kx/linus_torvalds_on_linux_application_packaging/
https://www.reddit.com/r/programming/comments/47z3kx/linus_torvalds_on_linux_application_packaging/
http://kmkeen.com/maintainers-matter/2016-06-15-11-51-16-472.html
http://kmkeen.com/maintainers-matter/2016-06-15-11-51-16-472.html
http://kmkeen.com/maintainers-matter/2016-06-15-11-51-16-472.html
http://flatkill.org
https://github.com/flatpak/flatpak/wiki/Portals
https://github.com/flatpak/flatpak/wiki/Portals
https://www.youtube.com/watch?v=K0bkapSpzzk
https://www.youtube.com/watch?v=K0bkapSpzzk


preter or via a JIT compiler in native 
code, directly inside the kernel.

Status: Improving
The bpftrace programming language is 
very reminiscent of scripting with Unix 
veteran Awk, but it’s still incomplete, 
and programmers sometimes struggle to 
complete even the simplest of tasks.

The bpftrace parser (implemented via 
the Unix veterans Lex and Yacc) is in a 
sorry state that doesn’t even come close 
to the functionality of Awk – but maybe 
it will at some point. Netflix engineer 
Brendan Gregg and some open source 
friends are working on fixing it. Bren-
dan’s book on BPF [2] will be published 
in December 2019 (a preview is already 
available).

Back to the task at hand: How do you 
enable a probe in the kernel that outputs 
a message each time any userspace pro-
gram calls the open() function to open a 
file? With this function, you’ll be able to 
monitor in real time processes of active 
files. Turns out this is really easy to do. 
Listing 1 [3] shows the program code; 
Figure 1 shows the program output.

Compact Code
The actual work starts in line 8 with the 
definition of the kprobe:do_sys_open 
probe; the following block contains in-
structions to be executed when the 
probe triggers. When triggering it, the 
kernel tells the probe which file the 
open() system call wants to open. In the 

I f you are tasked with discovering 
the cause of a performance prob-
lem on a Linux system that has 
slowed down to a crawl, you will 

typically turn to tools such as iostat, 
top, or mpstat to see exactly what is 
throwing a spanner in the works [1]. 
Not enough RAM? Lame hard disk? CPU 
overloaded? Or is network throughput 
the bottleneck?

Although a tool like top shows you the 
running processes, it cannot detect 
short-lived instances that start and end 
again immediately. Periodically querying 
the process list only makes sense to vi-
sualize long-running processes.

Fortunately, the Linux kernel already 
contains thousands of test probes known 
as Kprobes and tracepoints. Users can 
inject code, log events, or create statis-
tics there. One totally hot tool for doing 
this is bpftrace. With simple one-liners, 
it injects into the kernel scripts that de-
termine in real time metrics like bytes 
heading off into the network or onto the 

hard drive, or lists which processes open 
or close which files.

BPF stands for Berkeley Package Filter 
and testifies to the origin of the corre-
sponding tool from the BSD world as a 
tracing tool for network packets. The 
practice of scattering probes throughout 
the code that are usually tacit, but run 
small snippets of code when triggered, 
proved so practical that it soon entered 
the Linux world as eBPF.

Once there, it lost its ties to network 
packets and conquered wide areas of the 
kernel code as a generic tracing concept. 
Good naming is hard work that engi-
neers often shy away from, so the author 
of eBPF changed the name of his now 
popular work back to BPF. Of course, 
that complicates things for authors writ-
ing tutorials like this one, who are hard 
pressed to find an explanation as to why 
the BPF name has lost all meaning with 
respect to the product as it is today.

The approach of distributing dynami-
cally deployable probes in kernel code 
came from the Sun world. For a long 
time, Solaris was the only operating sys-
tem that allowed administrators to use 
DTrace to activate small pieces of D lan-
guage code at strategic points, such as the 
system call entry point, and fire off coun-
ters or timers for performance analysis.

BPF on newer Linux kernels works in 
a similar way to DTrace, but has been re-
written (also for patent reasons). It exe-
cutes instructions assigned to the probes 
in the BPF language, either in an inter-

Who is constantly creating the new processes that are paralyzing the system? Which process opens 
the most files and how many bytes is it reading or writing? Mike Schilli pokes inside the kernel to 
answer these questions with bpftrace and its code probes. By Mike Schilli

Mike Schilli works as a 
software engineer in the 
San Francisco Bay area, 
California. Each month 
in his column, which has 
been running since 1997, 
he researches practical applications of 
various programming languages. If you 
email him at mschilli@perlmeister.  com 
he will gladly answer any questions.

Author

Le
ad

 Im
ag

e 
©

 Z
o

ya
 F

ed
o

ro
va

, 1
23

R
F.

co
m

Watching activity in the kernel  
with the bpftrace tool

Open Heart  
Surgery

56 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH
Programming Snapshot – bpftrace



bpftrace language does not offer for 
loops or similar constructs for which it 
cannot predict with certainty whether 
they will stop running in the foreseeable 
future.

Huge Selection
There’s plenty of choice of probes in the 
kernel. From vfs_read (the function that 
reads bytes from disk and can pass a 
count to a probe), through do_exe_cve 
(for monitoring newly created Unix pro-
cesses), to trace_pagefault_reg (which is 
triggered when a memory page is re-
loaded), users can inspect the kernel’s 
workings at will and discover in real 
time what’s going on and where the bot-
tlenecks are.

Figure 2 lists the probes that bpftrace 
prints when called with the ‑l switch. 
BPF distinguishes between kprobes, 
which track important kernel functions 
by name, and tracepoint probes, which 
the kernel maintainers manually main-
tain at a slightly higher logical level and 
which are thus more resilient to changes 
in the kernel. In contrast to userspace-
facing kernel APIs, the kernel’s internal 
functions are by no means guaranteed to 
be stable.

Potential for More
How about a script that outputs all 
newly created processes on the system 
in real time, including the command that 
was used to start them and their parame-
ters? Listing 2 shows a one-liner that ac-
tivates the sys_enter_execve tracepoint 
and prints its argument list argv in the 
args structure.

Here you can see that the range of func-
tions in bpftrace still has potential for 
more. For example, there is the join() 
function, which uses spaces to join and 

block, the printf() instruction outputs 
the Unix command of the triggering Unix 
process stored in the comm variable along 
with the first argument arg1, which car-
ries the name of the file to be opened. 
Because printf() expects a string, but 
BPF saves arg1 as a character pointer, 
the standard str() function converts the 
pointer appropriately.

The code for the interval:s:5 event 
starting in line 3 is just some optional 
feature that cancels the program after 
five seconds. The event defines an in-
terval of five seconds at which bpftrace 
jumps into the code block. The call to 
exit(), which shuts down the program, 
occurs here as soon as the block has 
been accessed for the first time. Tracing 
tools often use intervals like this to out-
put consolidated statistics every few 
seconds. Once bpftrace has been in-
stalled on a Ubuntu system like this:

$ sudo apt‑get update

$ sudo apt‑get install bpftrace

all you need to do is run Listing 1 with 
sudo. It launches in the blink of an eye 
and keeps showing you which pro-
cesses on the system are currently at-
tempting to open which files. Before 
you get too excited, however, please 
note that bpftrace only works on rela-
tively new kernels. Its creators recom-
mend at least version 4.9, and prefera-
bly a series 5 kernel.

It is a very powerful tool. Astonished 
users will rub their eyes in amazement 
thinking about what just happened be-
hind the scenes during the inconspicu-

ous call: Bpftrace 
activated the do_
sys_open kprobe in 
the kernel and 
translated the 
printf() state-
ment into an inter-
nal format. It then 
installed the com-
piled code on the 
probe, causing it 
to display a mes-
sage every time 
the kernel passes 
the probe. When 
the bpftrace call 
terminates, it de-
activates the 
probe in the ker-

nel and removes the injected code.

Full Tilt While Idle
How does this work inside the kernel? It 
would obviously be devastating for ker-
nel performance if it had to check 
whether each probe is currently active 
and then carry on normally in the pro-
gram in almost 100 percent of the cases 
when the probe is inactive. There are al-
ways very few, if any, probes active from 
thousands of possible ones.

Instead, the BPF technology, just like 
DTrace under Solaris, uses a trick: Nor-
mally, when the probe is inactive, it in-
serts a 5 byte no-op instruction into the 
code, which the processor skips with 
practically no impact at run time. If the 
user activates the probe, for example by 
calling bpftrace, BPF replaces the no-op 
instruction in the kernel with a jump ad-
dress to the interpreter that executes the 
desired code.

No doubt, the CPU will consume time 
when executing the BPF instructions, 
which will slow down the kernel a 
bit. But since the processor stays in 
kernel mode and doesn’t have to 
switch to user space every time, the 
probe can quickly refresh the desired 
statistics – then the flow continues with 
the actual kernel code.

However, if the infiltrated code were to 
block the kernel, the result would be 
devastating: The entire system would 
stop, which is tantamount to a computer 
crash. That’s why BPF verifies the code 
before it is introduced and only inserts it 
if the analysis shows that it will termi-
nate relatively quickly. This is why the 

Figure 1: The code from Listing 1 reports in real time 
which processes are trying to open which files.

01 #!/usr/bin/bpftrace

02

03 interval:s:5

04 {

05   exit();

06 }

07

08 kprobe:do_sys_open

09 {

10   printf("%s %s\n", comm, str(arg1));

11 }

Listing 1: sys-open.bt

57

Programming Snapshot – bpftrace

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

IN-DEPTH



Who Is Writing What?
To find out which processes are writing 
the most data bytes to disk, Listing 4 at-
taches to the sys_exit_write tracepoint 
and uses the /args‑>ret > 0/ filter to limit 
probe activity to successful writes only.

The code construct in line 6 grabs the 
number of written bytes from args‑>ret, 
saves it to the unnamed map @ under the 
key for the process name, and uses sum() 
to process new values by adding them to 
previously existing ones.

By default, at the end of the program, 
bpftrace displays the content of all non-
empty maps – in this case, after the user 
has pressed the Ctrl+C keyboard short-
cut. This is why Figure 3 shows a map of 
all actively writing processes, as well as 
the number of bytes written. Alterna-
tively, you could use an END block with 
print(@) to output the nameless map.

Slice by Slice
What about the average length of the 
data blocks being written? If you in-
structed bpftrace to log the length of 
each write operation in bytes, the result 
would be unreadable due to the sheer 

output elements of a command line in 
args‑>argv. It cannot return the result as a 
string, however, so you could format the 
output with printf(). Hopefully, upcom-
ing versions will resolve this issue.

The BEGIN block from line 3 simply 
provides entertainment for the user. If 
you want the script to display a message 
or initialize a variable right at startup, 
this happens in the BEGIN block as shown 
in Listing 2, based on the Awk program-
ming model.

In the Thick of It
However, things become more compli-
cated if a probe that detects a problem 
cannot output the desired data because 
it is located somewhere else. For exam-
ple, to look at processes that try to open 
files that do not exist (or to which they 
have no access), Listing 3 taps into the 
sys_exit_openat tracepoint, which the 
kernel runs through when the open() 
system call returns.

Using the condition args‑>ret < 0, 
Bpftrace checks whether the return code 
from the system call was negative, which 
indicates that the desired file could not 
be opened. If so, we want the code to 
output the name of the process in ques-
tion and the file name at this point. How-
ever, the exit tracepoint does not have 
access to the file name, which was only 
present when the kernel previously ran 
the open() function, tied to the sys_
enter_openat tracepoint (notice the subtle 

difference between 
enter versus exit).

The solution in 
this case is to have 
bpftrace create a 
data structure dur-
ing the open() call 
and somehow 
carry it over to 
exit, which then 

extracts the filename from it and reports 
the error with the desired context. For 
this to happen, the script stores all names 
of opened files in a Map type data struc-
ture when entering open() (i.e., in the 
sys_enter_openat tracepoint), under the 
key of the current kernel thread ID, which 
is present in the predefined tid variable. 
If the file fails to open later on, the sys_
exit_openat tracepoint can look up the 
name of the file in question in the map 
and notify the user of this and even tell it 
the command of the process in comm that 
experienced the error.

The filter set in line 9 of Listing 3 is 
/ @filename[tid] /, and it ensures that 
the probe executes the following code if 
the kernel thread has previously set a file 
name in the map. If the 
call came from else-
where than the sys_
enter_openat tracepoint 
defined above, the map 
entry won’t exist, and the 
filter lets bpftrace ignore 
the event.

After reporting the inci-
dent, the code proceeds to 
line 14, which calls delete 
to remove the map entry. If 
it forgot to do that, the map 
would grow indefinitely 
and eventually consume 
too much memory if the 
bpftrace script were to run 
for a longer period of time.

Figure 2: Bpftrace can tap into a selection of trace-
points and Kprobes.

01 #!/usr/bin/bpftrace

02

03 BEGIN

04 {

05   printf("New processes with arguments\n");

06 }

07

08 tracepoint:syscalls:sys_enter_execve

09 {

10   join(args‑>argv);

11 }

Listing 2: procs-new.bt

01 #!/usr/bin/bpftrace

02

03 tracepoint:syscalls:sys_enter_openat

04 {

05   @filename[tid] = args‑>filename

06 }

07

08 tracepoint:syscalls:sys_exit_openat

09   / @filename[tid] /

10 {

11   if ( args‑>ret < 0 ) {

12     printf("%s %s\n", comm, str(@filename[tid]));

13   };

14   delete(@filename[tid]);

15 }

Listing 3: opens-failed.bt

58

Programming Snapshot – bpftrace

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

IN-DEPTH



volume of individual data. In addition, 
each time bpftrace encounters a printf() 
statement, it has to wait until the slow 
terminal has absorbed the written text. 
This takes an eternity by kernel stan-
dards. To avoid slowing down the kernel 
too much, in this thrashing mode, the 
probes occasionally let an event pass 
without processing, notifying the user by 
a Skipped <xxx> events message. Fortu-
nately, BPF provides statistical pro-
cessing routines at the kernel level, 
such as hist() in Listing 5.

The hist() function assigns the indi-
vidual byte sizes of tracked write events 
to buckets of increasing size and prints 
the Map type storing variable as a histo-
gram at the end of the program. Figure 4 
shows that the length of the written data 
blocks varies from 1 byte to 256KB, and 
that the most common block lengths are 
between 8 and 16 bytes and 128 and 
256KB. On the far left, the ASCII diagram 

explore this some more, all variables and 
commands for bpftrace can be found in 
its documentation [4] and in a practical 
cheat sheet [5].

With bpftrace, there’s a powerful new 
tool available for those who are running a 
fairly recent kernel and are not afraid of 
the project’s lack of polish. Even as it is 
right now, it pretty much outshines every-
thing that has been done before when it 
comes to quickly getting to the bottom of 
system-related bottlenecks on Linux serv-
ers. And it’ll just keep getting better!  nnn

lists the size windows, from minimum to 
maximum size of the bucket. In the cen-
ter, it shows the number of entries in the 
bucket; on the right, it shows the graphi-
cal animation of the counter.

Histograms of this kind are also suit-
able for displaying mean values and any 
outliers in time measurements, you 
could just as well track package run 
times over the network, bpftrace could 
instead determine the time delta be-
tween an enter-exit tracepoint pair by 
buffering the current nanosecond value 
in the nsecs variable when it occurs and 
by calculating the difference from the 
current nsecs value at the exit trace-
point.

The graphical representation can be 
used to determine whether Service Level 
Agreements were met or how often the 
set targets were missed. If you’d like to 

[1]  “Measuring performance with the 
perf kernel tool” by Paul Menzel, 
Linux Magazine, issue 221, April 2019, 
p. 20-23, http://  www.  linux‑magazine. 
 com/  Issues/  2019/  221/  perf/

[2]  Gregg, Brendan. BPF Performance 
Tools. Addison-Wesley, 2019, https:// 
 www.  amazon.  com/  BPF‑  Performance‑ 
 Tools‑  Brendan‑  Gregg/  dp/  0136554822

[3]  Listings for the article:  
ftp://  ftp.  linux‑magazine.  com/  pub/ 
 listings/  linux‑magazine.  com/  230/

[4]  bpftrace Reference Guide:  
https://  github.  com/  iovisor/  bpftrace/ 
 blob/  master/  docs/  reference_guide.  md

[5]  BPF Cheat Sheet: http://  brendangregg. 
 com/  BPF/  bpftrace‑  cheat‑  sheet.  html

Info

01 #!/usr/bin/bpftrace

02

03 tracepoint:syscalls:sys_exit_write

04   /args‑>ret > 0/

05 {

06   @[comm] = sum(args‑>ret)

07 }

Listing 4: bytes-by-process.bt

Figure 3: Listing 4 counts the 
number of bytes written for each 
process. Figure 4: Listing 5 sorts the writes by block size.

01 #!/usr/bin/bpftrace

02

03 tracepoint:syscalls:sys_exit_write

04   /args‑>ret > 0/

05 {

06   @ = hist(args‑>ret)

07 }

Listing 5: writes-by-size.bt

Programming Snapshot – bpftrace

59LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

IN-DEPTH

http://www.linux-magazine.com/Issues/2019/221/perf/
http://www.linux-magazine.com/Issues/2019/221/perf/
https://www.amazon.com/BPF-Performance-Tools-Brendan-Gregg/dp/0136554822
https://www.amazon.com/BPF-Performance-Tools-Brendan-Gregg/dp/0136554822
https://www.amazon.com/BPF-Performance-Tools-Brendan-Gregg/dp/0136554822
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/230/
ftp://ftp.linux-magazine.com/pub/listings/linux-magazine.com/230/
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://brendangregg.com/BPF/bpftrace-cheat-sheet.html
http://brendangregg.com/BPF/bpftrace-cheat-sheet.html


their controller in Python and commu-
nicated between the different screens 
with Pyro [1].

Each Pi runs a Raspbian Lite distro 
and a custom Python script. After 
flashing the SD card with Raspbian, 
the only special configuration was to 
connect to the WiFi network and in-
stall the Pyro library. Python is in-
stalled by default with Raspbian, and 
the PyGame library, also a default, pro-
vided the graphics. PyGame can drive 
the Pi framebuffer directly, so the 
graphical desktop isn’t needed.

Elements of a Pyro System
To begin, I’ll look at the three parts of a 
Pyro system and the network individu-
ally. Usually, all parts run on separate 
hardware, but that’s not a requirement; 
they will happily coexist on a single 
computer for testing, or if it best fits 
your application. Figure 2 shows how a 
Pyro network is laid out.

Network
For Pyro to work, physical devices 
must be able to talk across the net-
work. As long as everything is on the 
same router (either wired or WiFi), 
you should be in good shape. To check 
for basic connectivity between de-
vices, use ip a and ping (see the 
“Checking Network Connectivity” box 
for more details). If everything is run-
ning on a single computer, you’re also 
in good shape.

technology, here, I’ll focus on the Python 
remote objects (Pyro) library.

My most recent project that fell in 
this category was a set of scoreboards 
for my church’s Vacation Bible School. I 
integrated four large LCD TVs into the 
set design (Figure 1) and dedicated a 
Raspberry Pi to each one. Also, I 
wanted the ability to update each 
team’s score in real time from a central-
ized console. To accomplish this, I 
wrote the code for the scoreboards and 

Le
ad

 Im
ag

e 
©

 F
er

n
an

d
o

C
o

rt
es

, 1
23

R
F.

co
m

MakerSpace
Pyro – Networking made simple

One for All
Pyro allows multiple hardware devices to interact as if they are all on a local machine by 
hiding the networking. By Scott Sumner

S everal of my projects have re-
quired multiple Raspberry Pis 
working in tandem to accom-
plish an ultimate goal, such as 

driving multiple independent displays or 
integrating a device with a dedicated con-
trolling computer. Sometimes the setup 
had unique hardware (e.g., sensors); 
other times distance made it easier to use 
a remote system and WiFi rather than a 
lot of cabling. Although you can choose 
from many approaches to distributed 

Figure 1: The four monitors as seen from the audio console. Also 
shown are two screens for Nintendo Entertainment Systems (center) 
and worship center projector screens (top). The computer barely visible 
in the bottom left corner accesses the web manager.

60 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Python Remote Objects Library



Daemons
In Linux, daemons are processes that run 
in the background to take care of services 
like printing, checking email, serving web 
pages, and myriad other tasks. Pyro uses 
the term “daemon” to describe its work-
ers. A Pyro daemon provides data (class 
properties) and things it can do (class 
methods) on the Pyro network. The Py-
thon that you write in each daemon 
makes the provided task happen. Pseudo-
code looks something like:

@Pyro4.expose

def ringBell():

  bellPin = 17

  GPIO.out ( bellPin , True )

  time.wait ( 1 )

  GPIO.out ( bellPin , False )

  Return "Bell rang for 1 second"

If this looks familiar, you’re right! The 
code to implement your task works just 
like any other Python code you might 
write to accomplish a task. The only dif-
ference is the decorator on the first line, 
which lets Python know that it is a Pyro 
function accessible to the outside world. 
More on that later.

Controllers
Now that you have a set of daemons 
out on the network ready to do your 
bidding, you need a controller (or two 
or 10) to direct those tasks. Here is 
where Pyro starts to shine through. 
After a few lines of configuration, you 
call a daemon as if it’s a local function. 
All of the networking, routing, connec-
tions, packets, and data transfer hap-
pens behind the scenes. The code to 
ring the bell would be:

message = remoteBell.ringBell()

If the remote function returns any data, it 
is passed back over the network and re-
turns normally. A Pyro network can have 
multiple controllers, and each controller 
can connect to multiple daemons. You 
can start to see how this arrangement can 
simplify an otherwise complex system.

Name Server
The name server, similar to its web 
counterpart, is the “phone operator” of 

the system. Daemons connect to the 
nameserver and say something like, 
“My service is called ‘bell’ and I can 
ring a bell.” Controllers connect to the 
name server and ask, “Where can I find 
a service named ‘bell’?” The name 
server consults its phone book and re-
turns a URI for the bell daemon. After 
that, the two are free to communicate 
directly, even if the name server goes 
offline. Just like a telephone system, if 
you know the URI of your desired dae-
mon, you can connect to it directly 
without a name server.

Starter Example
The first example is a complete Pyro 
system with a Python daemon that 
draws a colored square on a screen with 
the PyGame library. The controller asks 
for user input and then draws the 
square as requested. The two scripts 
talk via Pyro and a name server. Every-
thing is set up to run on a single com-
puter, and you should run each script in 
its own terminal.

Before you begin, install Pyro (see the 
“Installing Pyro” box for instructions 
and testing) and open three terminals. In 
terminal 1, start a name server (Figure 3, 
top terminal):

python ‑m Pyro4.naming

The ‑m tells Python to run this module as 
a script. In this case, Pyro will start a 
name server. The name server doesn’t 
say much, but it is very efficient at its 
job and lets all of the scripts communi-
cate with each other seamlessly.

In terminal 2, start the receiver (Fig-
ure 3, bottom left):

python receive.py

Nothing will happen until the transmit-
ter initiates a connection, so in terminal 
3, start the transmitter (Figure 3, bottom 
right):

python transmit.py

Once the transmitter starts, it initiates the 
Pyro connection, and the receiver, in this 
example, draws a square on the screen; 
then, the transmitter asks for input. It un-
derstands the commands RED, GREEN, and 
BLUE or three numbers (0-255) separated 
by commas. If Python can split the three 

Figure 2: A typical Pyro network and the flow of a request through the 
system.

First you’ll need to know the IP address 
of the device on which your daemon 
will run. You might already know this 
information if you’ve logged in over 
SSH, but, if not, open a terminal on the 
“remote” system and type ip a. Then 
look through the output for inet fol-
lowed by an IP address. Note that entry 
0 is usually localhost, so you’re looking 
for an address that doesn’t start with 

127.0 ….

Once you have the IP address, go back 
to your “controller” computer and 
open a terminal there. You should be 
able to type

ping <IP address from above>

and start seeing replies. If not, make 
sure that both computers are on the 
same network or router. For larger net-
works, you might also need to adjust 
your subnet mask. 

A mask of 255.255.255.0 requires the 
first three numbers of the address to be 
the same. You can change the mask to 
255.255.0.0 and require only the first 
two numbers to be the same. Make this 
change, reboot both systems, and try 
your ping again.

Checking Network Connectivity

61LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Python Remote Objects Library MAKERSPACEMAKERSPACE



Common Pyro decorators for functions 
include:
• @Pyro4.expose: Exposing specific 

methods inside classes is the pre-
ferred method of making class meth-
ods available to the Pyro network. 
Pyro handles the movement of all of 
the data across the network, and you 
call the method as if it were running 
locally.

• @Pyro4.oneway: Tells Pyro to return im-
mediately rather than wait for a re-
sponse, which is preferred if you’re 
going to do something that takes a 
long time. The downside is that you 
can’t return a value to the controller. 
Any calls to this method return imme-
diately to the controller, and the pro-
cess is handled in its own thread on 
the daemon.

• @property: Tells Pyro to treat the 
method as a read-only property. In this 
case, it is accessible through remoteOb‑
ject.timeValue:

@property

def timeValue ( self ):

  return self.value

• attr.setter: Tells Pyro to treat the 
method as a writable property:

numbers successfully, it treats them as an 
RGB value and sets the square color ap-
propriately (e.g., 200,200,200 colors the 
box gray). After I’ve shown you how to 
set up the code with Pyro later in this ar-
ticle, you can try setting the box color a 
few times and then use TIME to see how 
long you’ve been playing with the system 
(Figure 3, bottom right).

Converting Python to Pyro
In many cases, Python classes you’ve al-
ready written can be converted directly 
to Pyro objects just by adding a few dec-
orators. Decorators are Python’s way of 
extending the functionality of a class or 
function without explicitly modifying it. 

The following are some of the most com-
mon Pyro decorators on the class:
• @Pyro4.behavior(instance_

mode="single"): Tells Pyro to use a 
single instance of the class regard-
less of how many controllers connect 
to the daemon. When you’re dealing 
with a finite resource (displays, 
bells, pixels), this mode helps pre-
vent resource conflicts. You can also 
specify percall for the instance 
mode, which creates a new version 
of the daemon for every call, regard-
less of where it originates. Once the 
call is finished, the instance is dis-
carded. If you don’t specify an in-
stance mode, Pyro uses session. A 
new instance of the daemon will be 
created for each unique controller 
that connects. Each controller can 
see changes it has made to its spe-
cific daemon, but multiple control-
lers will not share data.

• @Pyro4.expose: Exposes an existing 
class to the Pyro network. When put 
above a class definition, every class 
method and property is then available 
to any controller that connects, which 
is handy if you can’t modify the class 
itself; however, it can also introduce 
some security holes.

The Pyro library isn’t installed by de-

fault, so you need to open a terminal 

and type

sudo pip3 install Pyro4

to download and install Pyro. You can 

confirm that it is installed with:

python3

>>> import Pyro4

If you get another Python prompt and 

no error messages, you are good to go!

Installing Pyro

Figure 3: Calling three Pyro scripts for the name server (top), the receiver (bottom left), and the transmitter 
(bottom right). The colored square is the “remote” object being drawn by receive.py but controlled by 
transmit.py.

62 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Python Remote Objects LibraryMAKERSPACE



@attr.setter

def editableTime ( self , newValue ):

  self.value = newValue

  In this case, remoteObject.editableTime 
= 25.

Colorsquare Example
The Colorsquare example has two 
parts: a transmitter and a receiver. I’ll 
look at receive.py (Listing 1) first. 
Pyro is imported just like any other li-
brary, and I import PyGame and time, as 
well (lines 3-5).

Lines 8-16 initialize the Pyro class. 
The first Pyro decorator in line 8 tells 
Pyro to create a single instance of the 
class and use it for all requests. If you 
were to leave this out, each controller 

that connected to the class would spawn 
a separate instance of the class.

Line 11 defines the __init__ function, 
which works as expected, with one ca-
veat – it is only called when something 
connects to the Pyro object. If nothing 
ever connects, then __init__ never runs. 
Lines 13 and 14 initialize PyGame, 
which draws the square onscreen, and 
line 16 stores the start time of the pro-
cess, so run time can be calculated later.

The Pyro function appears in lines 22-
28. @Pyro4.expose in line 22 tells Pyro 
that this function can be called by a con-
nected controller. Class methods without 
this decorator won’t be accessible with 
Pyro calls.

Lines 24 and 25 change the color of the 
square on the screen and then redraw the 

display so the new color is visible. As 
with most functions, return is found at 
the end (line 28). Pyro takes care of get-
ting the return value back across the net-
work to wherever the call initiated.

The other functions in lines 30-34, 36-
40, and 42-46 all work exactly the same 
way. The only difference is a hard-coded 
color value. The getTime in lines 48-50 
doesn’t change the display; it simply re-
turns how long the daemon has been 
running.

Now the code sets up Pyro and goes 
from just a class to a remote object (lines 
52-61). To start, line 53 creates a dae-
mon; then, the class is registered with 
the daemon (line 55) and returns its own 
URI. You can then save the URI in a da-
tabase, write it to a temp file, or (as done 

01  #  Nothing different here, just import the Pyro4 library 
along with whatever else you need

02  

03  import Pyro4

04  import pygame

05  import time

06  

07  #  Tell Pyro to use a single instance of the class 
regardless of where the request originates

08  @Pyro4.behavior(instance_mode="single")

09  class colorSquare:

10     #  __init__ runs like normal, the only difference is it 
won't get called until something requests the Pyro 
object

11     def __init__ ( self ):

12        # Standard PyGame init

13        pygame.display.init()

14        se lf.window = pygame.display.set_mode ( ( 256 ,  
256 ) )

15        # Bookmark the start time

16        self.start = time.time()

17  

18     #  Pyro4.expose makes this function accessible to the 
outside world

19     # Anything without expose is private

20     # You can also expose the entire class if you want

21     #  Or declare @Pyro4.oneway which will make the call 
return None immediately and allow the remote process 
to run for as long as it needs to

22     @Pyro4.expose

23     def setColor ( self , color ):

24        self.window.fill ( color )

25        pygame.display.flip()

26        #  Whatever you return will get passed back to the 
remote caller

27        # All python types and simple classes are supported

28        return "CUSTOM"

29  

30     @Pyro4.expose

31     def setRed ( self ):

32        self.window.fill ( ( 255 , 0 ,0 ) )

33        pygame.display.flip()

34        return "RED"

35  

36     @Pyro4.expose

37     def setGreen ( self ):

38        self.window.fill ( ( 0 , 255 , 0 ) )

39        pygame.display.flip()

40        return "GREEN"

41  

42     @Pyro4.expose

43     def setBlue ( self ):

44        self.window.fill ( ( 0 , 0 , 255 ) )

45        pygame.display.flip()

46        return "BLUE"

47  

48     @Pyro4.expose

49     def getTime ( self ):

50        return time.time() ‑ self.start

51  

52  #  Create a daemon ‑‑ Pyro's worker class to serve an 

object

53  daemon = Pyro4.Daemon()

54  # Get the URI of the daemon

55  uri = daemon.register ( colorSquare )

56  # Find the nameserver on the network

57  ns = Pyro4.locateNS()

58  #  Let the nameserver know what we answer to and where to 

find us

59  ns.register ( "square" , uri )

60  # Listen for and handle requests

61  daemon.requestLoop()

Listing 1: receive.py

63LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Python Remote Objects Library MAKERSPACE



object, then the __init__ method will 
not be called.

Lines 11, 14, 19, 23, and 40 print sta-
tus messages that I can monitor from the 
terminal from which I launch each dae-
mon (Figure 4). Lines 12 and 13 initial-
ize PyGame and set up a window in 
which to draw. The pygame.FULLSCREEN 
removes all window decoration and 
maximizes the window to take over the 
entire desktop.

Next, I set up the fonts (lines 16-18); 
The init() starts the PyGame font 
module, and then pygame.font.Font 
loads a font from disk. The second ar-
gument specifies the font size in pix-
els. Each instance of a font object has 
the font itself and the size it should be 
rendered. If I want to use the same 
font in different sizes, I have to initial-
ize it multiple times.

To set up the background image (lines 
21-23), I load it from disk then add 
.convert() to the end to store it inter-
nally in the same format as my initial-
ized display; self.screen.blit then 
draws it on the display.

The next group of lines that begin 
with self set default values for scores, 
team names, drawing color, and timers, 
with the timer status. I also set up some 
variables for blitting the background 
back onto itself to erase portions of the 
display.

The next lines (37-38) set up the GPIO – 
in this case, one input pin. The pull_up_
down entry gives the input pin the elec-
tronic equivalent of a default value. In the 
absence of a signal, the pull up will make 

here) use it to register with the name 
server. Line 57 finds the name server 
and line 59 registers it and lets it know 
how the service should be known. Now 
you can start listening and respond to 
calls as they arrive (line 61).

Setting up the controller is even easier 
(Listing 2). To begin, import Pyro 
(line 1) and find the name server 
(line 4), as in the receiver code. Next, 
search for the daemon to which you 
want to connect (line 6). Finally, create a 
proxy to the remote object (line 8).

These steps can be repeated as needed 
to connect to as many daemons as you 
like. Afterward, you can treat everything 
as if it is local.

The rest of the script asks for the user 
input (line 13) described earlier (Fig-
ure 3, bottom right) and then processes 
it. If it is a color known by name, the 
script calls that color’s function (lines 
16-18). If TIME has been requested, it is 
calculated and returned (line 19); other-
wise, the program tries to parse the input 
as three comma-separated numbers 
(lines 22-26). The try/except exception 
handler (lines 22-25) will display a mes-
sage if it can’t find three numbers sepa-
rated by commas.

Scoreboards
Each scoreboard runs identical code, 
with the exception of the Pyro name reg-
istered with the name server. To start the 
program on each Rasp Pi, I logged in via 
SSH from my desktop and started the Py-
thon script directly from the terminal. 
Each Rasp Pi had a separate tab, so any 

problems with connectivity or other er-
rors could be checked from the console 
to see what’s happening. My desktop 
was running the Python name server 
and controller, as well.

Each scoreboard had three major func-
tions: updating the team name, updating 
the score, and displaying a timer. Once 
started, the timer mode was exited by 
pushing a stop button. Each button was 
wired to the Rasp Pi’s GPIO via twisted 
pair wire. A simple header was con-
nected to GPIO14 (physical pin 8, trans-
mit) [2], which was selected because of 
the adjacent ground connection.

In the code walkthrough, I’ll focus on 
the Pyro functions, although the major-
ity of the code is actually for the graph-
ics. As with any Python program, you 
have to start by importing libraries 
(Listing 3). In this case I import Pyro, 
pygame, time, and RPi.GPIO. Next, I set 
the mode of the GPIO pin numbering to 
the Broadcom SoC channel number, not 
the pin number on the board. Although 
I’m only using one GPIO pin, this is the 
pin numbering I’m used to.

The @Pyro4.behavior decorator (line 8) 
sets the instance_mode to single, so the 
class will be instantiated once, and all 
calls will use the same instance.

The __init__ method is standard, but 
remember that Pyro will not instantiate a 
class until it is actually called from a 
controller, which can make your first call 
seem a little sluggish as everything gets 
set up. Response times will improve af-
terward. As mentioned before, if nothing 
ever connects to the associated Python 

01  import Pyro4

02  

03  # Find the nameserver

04  ns = Pyro4.locateNS()

05  #  Ask the nameserver for the URI to the remote object we 
want

06  uri = ns.lookup ( "square" )

07  # Create a connection to the remote object

08  remoteSquare = Pyro4.Proxy ( uri )

09  

10  # Repeat as necessary for multiple remote objects

11  

12  while 1:

13     request = raw_input ( "What color? " )

14     # Treat the remote object above as if it is local

15     #  The return value (just printed here) is whatever the 
remote function wants to send back (if anything)

16     if request == "RED": print ( remoteSquare.setRed() )

17      el if request == "GREEN": print (  

remoteSquare.setGreen() )

18     elif request == "BLUE": print ( remoteSquare.setBlue() )

19     el if request == "TIME": print ( "The square has been 

running for " + str ( remoteSquare.getTime() ) + " 

seconds" )

20     else:

21        #  fail gracefully if we can't decode 3 numbers 

separated by commas

22        try:

23           RGB = request.split ( "," )

24           print (  remoteSquare.setColor ( ( int ( RGB [ 0 

] ) , int ( RGB [ 1 ] ) , int ( RGB [ 2 

] ) ) ) )

25        except:

26           print ( "Couldn't parse an R,G,B argument" )

Listing 2: transmit.py

64 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Python Remote Objects LibraryMAKERSPACE



001  import Pyro4

002  import pygame

003  import time

004  import RPi.GPIO as GPIO

005  

006  GPIO.setmode ( GPIO.BCM )

007  

008  @Pyro4.behavior(instance_mode="single")

009  class scoreboard:

010      def __init__ ( self ):

011          print "Starting Scoreboard"

012          pygame.display.init()

013          se lf.screen = pygame.display.set_mode  
( ( 1280 ,720 ) , pygame.FULLSCREEN )

014          print "Setting full screen 1280x720"

015  

016          pygame.font.init()

017          se lf.scoreFont = pygame.font.Font  
( "00TT.TTF" , 300 )

018          se lf.titleFont = pygame.font.Font  
( "00TT.TTF" , 400 )

019          print "Fonts initialized"

020  

021          se lf.background = pygame.image.load  
( "pu1280x720.png" ).convert()

022          self.screen.blit ( self.background , ( 0 , 0 ) )

023          print "Background loaded"

024  

025          self.scoreGoal = 0

026          self.currentScore = 0

027  

028          self.teamName = "ARTS"

029          self.titleColor = ( 250 , 218 , 94 )

030  

031          self.oldRect = None

032  

033          self.startTime = None

034          self.endTime = None

035          self.running = False

036  

037          GP IO.setup  
( 14 , GPIO.IN , pull_up_down=GPIO.PUD_UP )

038          GP IO.add_event_detect  
( 14 , GPIO.FALLING , callback=self.bumpPoints )

039  

040          print "Done with init"

041  

042      def bumpPoints ( self , channel ):

043          self.updateScore ( 10 )

044  

045      @Pyro4.oneway

046      def updateTitle ( self , name ):

047          self.teamName = name

048          self.screen.blit ( self.background , ( 0 , 0 ) )

049  

050          self.drawTitle()

051          self.drawScoreLocal()

052          pygame.display.flip()

053  

054      @Pyro4.expose

055      def timerRunning ( self ):

056          return self.running

057  

058      @Pyro4.oneway

059      def drawTitle ( self ):

060          ti tle = self.titleFont.render  
( self.teamName , True , self.titleColor )

061          X =  self.screen.get_width() / 2 ‑ title.get_
width() / 2

062          self.screen.blit ( title , ( X , 10 ) )

063          print "Draw Title"

064  

065      @Pyro4.oneway

066      def drawScore ( self ):

067          self.drawScoreLocal()

068          print "Draw Score"

069  

070      def drawScoreLocal ( self ):

071          sc ore = self.scoreFont.render ( str  
( self.currentScore ) , True , ( 255 , 255 , 
255 ) )

072          sh adow = self.scoreFont.render ( str  
( self.currentScore ) , True , ( 0 , 0 , 0 ) )

073  

074          X =  self.screen.get_width() / 2 ‑ score.get_
width() / 2

075  

076          blitArea =  pygame.rect.Rect  
( 0 , 400 , 1280 , 300 )

077          self.screen.blit (  self.background , blitArea , 
blitArea )

078  

079          self.screen.blit ( shadow , ( X + 5 , 405 ) )

080          self.screen.blit ( score , ( X , 400 ) )

081          pygame.display.update ( [ blitArea ] )

082          print "Draw score local"

083  

084      @Pyro4.oneway

085      def updateScore ( self , scoreDelta ):

086          self.scoreGoal += scoreDelta

087          nextUpdate = time.time() + .01

088  

089          while self.scoreGoal != self.currentScore:

090              if time.time() < nextUpdate: continue

091              nextUpdate = time.time() + .01

092  

093              print self.scoreGoal , self.currentScore

094  

095              if self.scoreGoal < self.currentScore:

096                  self.currentScore ‑= 5

097                  self.drawScoreLocal()

098              elif self.scoreGoal > self.currentScore:

099                  self.currentScore += 5

100                  self.drawScoreLocal()

101          print "Update score"

102  

103      @Pyro4.oneway

104      def startTimer ( self ):

105          self.startTime = time.time()

106          self.running = True

107          self.updateTimer()

108  

109      def updateTimer ( self ):

110          nextUpdate = time.time() + .01

111          while self.running == True:

112              if time.time() < nextUpdate: continue

113              nextUpdate = time.time() + .01

114  

115              elapsed = time.time() ‑ self.startTime

116              score =  self.scoreFont.render  
( "{0:03.3f}".format ( elapsed ) , 

Listing 3: display.py

65LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Python Remote Objects Library MAKERSPACE



calculates a horizontal center point 
(line 61), and then draws it onscreen 
(line 62). Because Python was having 
locking problems when updating the 
score, drawing locally instead of in an-
other thread spun off by Pyro solved the 
problem. Therefore, the drawScore func-
tion exposed to Pyro (line 66) calls the in-
ternal function drawScoreLocal, which does 
the work. This local function renders the 
score twice: once in black (line 71) and 
once in white (line 72).

The next task is to calculate the hori-
zontal center (line 74), define the 
bounding box of the score display in a 
PyGame Rect (line 76), and then blit 
only that portion of the background 
image to clear the score (line 77). The 
shadow color is blitted first (line 79) fol-
lowed by the score rendered in white 
(line 80). Finally, I call the update func-
tion and pass blitArea as a list, which 
tells PyGame to update only that region 
of the screen, rather than the entire 
thing. Updating the screen in this way 
aids in performance, because drawScore‑
Local will be called quite often.

To update the score (lines 84-101), the 
updateScore function works a little differ-
ently from drawScore, in that it incre-
ments the score five points at a time. 
Line 86 updates self.scoreGoal, which is 
the score to be displayed, and line 87 
adds 1/ 100th of a second to the current 
time for the next display update. The 
while loop (line 89) first checks the cur-
rent time and, if it is not time to update, 
simply checks again until it is time. This 
loop continues until the currently dis-
played score and the goal score match. 
Lines 95-100 increment or decrement the 

the pin read 1, or HIGH. The add_event_
detect sets up a trigger so that when the 
GPIO pin falls (i.e., a button is pressed), a 
class method is called (self.bumpPoints). 
The timer functions will read the GPIO di-
rectly, but this allows calling the method 
in the background.

On the last day of camp, we intro-
duced an Easter Egg into the scoreboard 
program. The buttons along the front of 
the stage allowed campers to add points 
to their team total. Once discovered, 
campers staged elaborate plans to keep 
pressing their buttons to run the scores 
up. Internally, these button presses call 
self.updateScore (line 43), awarding the 
team 10 points with each press.

Updating the Screens
The @Pyro4.oneway decorator (line 45) 
tells Pyro not to wait for a response, but 
to run this method in its own thread so 

the main program doesn’t block. In this 
way, the controller isn’t waiting for each 
display to update before returning to 
monitor the GUI.

The title is the team name displayed at 
the top of the screen. After storing the 
new team name in the class (line 47), 
line 48 blits the background image onto 
the entire display to erase it. Next, I call 
drawTitle and drawScoreLocal to redraw 
all of the information for the scoreboard. 
Finally, pygame.display.flip draws ev-
erything to the screen to make the 
changes visible.

The sole purpose of the utility function 
timerRunning (line 55) is to allow the con-
troller to check whether the timer is still 
being displayed by returning self.running. 
I could have done this with a property, but 
this method works just as well.

The drawTitle function under the one‑
way decorator renders the title (line 60), 

True , ( 255 , 255 , 255 ) )

117              shadow =  self.scoreFont.render  
( "{0:03.3f}".format ( elapsed ) , 
True , ( 0 , 0 , 0 ) )

118  

119              X =  self.screen.get_width() / 2 ‑ score.get_
width() / 2

120  

121              bl itArea = pygame.rect.Rect  
( 0 , 400 , 1280 , 300 )

122              se lf.screen.blit  
( self.background , blitArea , blitArea )

123  

124              se lf.screen.blit ( shadow , ( X + 5 ,  
405 ) )

125              self.screen.blit ( score , ( X , 400 ) )

126              pygame.display.update ( [ blitArea ] )

127  

128              if  GPIO.input ( 14 ) == 0:  
self.running = False

129          print "update Timer"

130  

131  

132      @Pyro4.oneway

133      def update ( self ):

134          pygame.display.flip()

135          print "update"

136  

137  

138  Pyro4.config.HOST = "172.16.71.227"

139  Pyro4.Daemon.serveSimple ( {

140      scoreboard: "scoreboard2"

141      } , ns=True

142      )

Listing 3: display.py (continued)

Figure 4: Displays, Raspberry Pis, controllers, and daemons all talk to 
each other across various formats and protocols.

66 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Python Remote Objects LibraryMAKERSPACE



score and then call drawScoreLocal to 
show it onscreen.

Timers
The startTimer function block switches 
the display into timer mode by recording 
the current time (line 105), setting the 
self.running flag (line 106), and calling 
self.updateTimer (line 107).

The updateTimer function block draws 
the timer onscreen until the button is 
pressed (GPIO goes LOW). Line 110 cal-
culates the time 1/ 100th of a second in 
the future, and the while loop (line 111) 
runs for as long as the self.running flag 
is True. If it is not, it continues checking 
until it is (line 112). Line 113 updates the 
time for the next pass through the loop, 
and line 115 calculates the elapsed time.

The next three lines render the current 
elapsed time in both a shadow and fore-
ground color and calculate the horizon-
tal center. Lines 121 and 122 blit a small 
portion of the background over the pre-
vious timer entry to erase it, and then 
lines 124 and 125 blit the shadow and 
foreground surfaces before line 126 draws 
the update to the screen. Finally, line 128 
checks the GPIO input, and if it is 0 
(LOW), the self.running flag is set to False 
to exit the loop. The update method allows 
the controller to force a screen refresh.

For the daemon to receive commands 
across the network, line 138 defines its IP 
address. Without it, the daemon will only 
listen on localhost. Line 139 uses Pyro’s 
serveSimple utility function to start a dae-
mon. I provide a dictionary of the class I 
want to serve (line 140, left of the colon) 
and what it should be called (score‑
board2, right of the colon). The final argu-
ment (line 141) asks Pyro to register this 
daemon with the name server.

Web Manager
The Web Manager controls everything. 
At any given time, it was usually loaded 
on my cell phone, an iPad, and a com-
puter at the media station. The web 
manager (Figure 5) uses CherryPy [3] to 
serve a web page with JavaScript, which 
returns user requests via Ajax. When the 
Ajax calls are received, the manager 
script calls remote Pyro functions to con-
trol the scoreboard.

For the manager (Listing 4), I needed 
two libraries: cherrypy to act as a web 
server and Pyro4 to talk to the Pyro ob-
jects already discussed.

CherryPy oper-
ates by taking a 
Python class and 
exposing certain 
methods as web 
addresses. For in-
stance, http:// web-
Manager.
local:8080/ update-
Title calls the asso-
ciated self.upda‑
teTitle class 
method. Any POST 
or GET variables 
show up as named 
arguments. Just as 
in Pyro, only 
methods with the 
@cherrypy.expose 
decorator are ac-
cessible via HTTP, 
so the __init__ 
class that sets up 
all of the Pyro ob-
jects can’t be ac-
cessed from a web 
server.

Unlike Pyro, CherryPy calls the __init__ 
method regardless of whether anything 
has connected or not, so line 6 creates a 
list of screens, and lines 7-10 ask Pyro to 
go find the addresses of the named ob-
jects from the name server and append 
them to the screen list; the initial graph-
ics then are displayed on all four screens 
(lines 12-14).

Just like index.html in Apache, the 
index function here is the default desti-
nation if no specific address is specified. 
In this case, lines 18-166 define the man-
ager web page. Although the HTML and 
JavaScript are beyond the scope of this 
article, the following is a brief summary.

Each of the JavaScript functions (e.g., 
adjustScore, lines 22-31) defines a func-
tion that can be called by a button or Ja-
vaScript event on the manager web page. 
The obj created in line 24 contains the 
POST variables (i.e., screen, the screen 
to update, and delta, how much to 
change the score).

jQuery then posts the request to ad‑
justScore (line 28), which is defined in 
the next line. The inline function is 
called when the Ajax call completes and 
receives data, which is anything that the 
Python function that follows returns.

The updateTitle function (lines 169-
170) is exposed by CherryPy and called 

by jQuery, as described above. The ar-
gument screen is used as an index for 
self.screens, and updateTitle is called 
again on the remote object via Pyro. All 
of that happens behind the scenes, 
though, so the Python code here doesn’t 
look any different. The same thing hap-
pens with adjustScore (lines 173-174).

The startTimers function loops over 
the self.screens list (line 178) and starts 
the timer on all screens (line 179). This 
remote Pyro call runs on each Raspberry 
Pi. The function then sits in a loop (lines 
182-186) calling screen.timerRunning on 
each Pi until one returns False (line 
184). That screen’s title is updated to 
show WINNER and a flag is set that first 
place has been found (line 186).

Setting the socket_host to 0.0.0.0 in 
line 189 tells CherryPy to respond to all 
requests regardless to which network 
adapter or address they arrive. The final 
line uses CherryPy’s quickstart function 
to start serving the application from 
web()< at address "/".

Conclusion
As I’ve walked through the code, 
you’ve probably noticed that the ma-
jority of it is not related to Pyro at all; 
rather, the code does whatever your 
application would normally do. Pyro is 
just an overlay that allows multiple 

Figure 5: The web manager is a bare-bones inter-
face, because it is only accessed by the crew. The 
“Vince Casey” and “Casey Vince” buttons changed 
the displays to show the names of the emcees as 
they came on stage. If they switched places, the 
names would follow.

67LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Python Remote Objects Library MAKERSPACE



hardware devices to interact as if they 
are all on a local machine by hiding all 
of the networking, so you don’t have to 
worry about it.

Another application I set up was con-
nected to a sound system, so any calls for 
sound effects were directed to the Pyro 

server. Other Pyro daemons controlled 
four scoreboard screens similar to the ap-
plication described here. Another one ran 
a high score display on a fifth monitor. 
Pyro hid all of the networking code, so all I 
had to do was call things like sound.play‑
Buzzer() and highScore.addTeam().  nnn

001  import cherrypy

002  import Pyro4

003  

004  class web:

005      def __init__ ( self ):

006          self.screens = list()

007          se lf.screens.append ( Pyro4.Proxy (  
"PYRONAME:scoreboard1" ) )

008          se lf.screens.append ( Pyro4.Proxy (  
"PYRONAME:scoreboard2" ) )

009          se lf.screens.append ( Pyro4.Proxy (  
"PYRONAME:scoreboard3" ) )

010          se lf.screens.append ( Pyro4.Proxy (  
"PYRONAME:scoreboard4" ) )

011  

012          for screen in self.screens:

013              screen.drawTitle()

014              screen.update()

015  

016      @cherrypy.expose

017      def index ( self ):

018          html = """

019             <head>

020                <s cript src="https://ajax.googleapis.com/ 
ajax/libs/jquery/3.4.1/jquery.js"> 
</script>

021                <script>

022                   function adjustScore ( screen )

023                   {

024                      obj = new Object();

025                      obj.screen = screen;

026                      ob j.delta = $ ( "#scoreInput" +  
screen ).val();

027  

028                      $. post ( "adjustScore" , obj ,  
function ( data ) {

029                         $  ( "#scoreInput" + screen ).val(  
"" );

030                      } );

031                   }

032  

033                   function adjustTitle ( screen )

034                   {

035                      obj = new Object();

036                      obj.screen = screen;

037                      ob j.name = $ ( "#titleInput" +  
screen ).val();

038  

039                      $. post ( "updateTitle" , obj ,  
function ( data ) {

040                         $  ( "#titleInput" + screen ).val(  
"" );

041                      } );

042                   }

043  

044                   function resetTitles()

045                   {

046                      obj = new Object();

047                      obj.screen = 1;

048                      obj.name = "LEADERS";

049  

050                      $. post ( "updateTitle" , obj ,  
function ( data ) {

051                      } );

052  

053                      obj = new Object();

054                      obj.screen = 2;

055                      obj.name = "ARTS";

056  

057                      $. post ( "updateTitle" , obj ,  
function ( data ) {

058                      } );

059  

060                      obj = new Object();

061                      obj.screen = 4;

062                      obj.name = "SPORTS";

063  

064                      $. post ( "updateTitle" , obj ,  
function ( data ) {

065                      } );

066  

067                      obj = new Object();

068                      obj.screen = 3;

069                      obj.name = "PRE‑K";

070  

071                      $. post ( "updateTitle" , obj ,  
function ( data ) {

072                      } );

073  

074                   }

075  

076                   function caseyVince()

077                   {

078                      obj = new Object();

079                      obj.screen = 1;

080                      obj.name = "";

081  

082                      $. post ( "updateTitle" , obj ,  
function ( data ) {

083                      } );

084  

085                      obj = new Object();

086                      obj.screen = 2;

087                      obj.name = "VINCE";

088  

089                      $. post ( "updateTitle" , obj ,  
function ( data ) {

090                      } );

091  

092                      obj = new Object();

093                      obj.screen = 4;

094                      obj.name = "CASEY";

095  

Listing 4: webManager.py

[1]  Pyro: https://  pythonhosted.  org/  Pyro4/

[2]  GPIO pin numbering:  

https://  www.  raspberrypi.  org/  forums/ 

 viewtopic.  php?  p=1239056

[3]  CherryPy: https://  cherrypy.  org/

Info

68 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Python Remote Objects LibraryMAKERSPACE

https://pythonhosted.org/Pyro4/
https://www.raspberrypi.org/forums/viewtopic.php?p=1239056
https://www.raspberrypi.org/forums/viewtopic.php?p=1239056
https://cherrypy.org/


096                      $. post ( "updateTitle" , obj ,  
function ( data ) {

097                      } );

098  

099                      obj = new Object();

100                      obj.screen = 3;

101                      obj.name = "";

102  

103                      $. post ( "updateTitle" , obj ,  
function ( data ) {

104                      } );

105  

106                   }

107  

108                   function vinceCasey()

109                   {

110                      obj = new Object();

111                      obj.screen = 1;

112                      obj.name = "";

113  

114                      $. post ( "updateTitle" , obj ,  
function ( data ) {

115                      } );

116  

117                      obj = new Object();

118                      obj.screen = 2;

119                      obj.name = "CASEY";

120  

121                      $. post ( "updateTitle" , obj ,  
function ( data ) {

122                      } );

123  

124                      obj = new Object();

125                      obj.screen = 4;

126                      obj.name = "VINCE";

127  

128                      $. post ( "updateTitle" , obj ,  
function ( data ) {

129                      } );

130  

131                      obj = new Object();

132                      obj.screen = 3;

133                      obj.name = "";

134  

135                      $. post ( "updateTitle" , obj ,  
function ( data ) {

136                      } );

137  

138                   }

139  

140                   function startTimers()

141                   {

142                      $.post ( "startTimers" );

143                   }

144                </script>

145             </head>

146  

147             <h3>Adjust Score</h3>

148             <d iv>Leaders <input type='text'  
id='scoreInput1'><input type='button' 
onclick='adjustScore ( 1 )' 
value='Adjust'></div>

149             <d iv>Arts <input type='text'  
id='scoreInput2'><input type='button' 
onclick='adjustScore ( 2 )' 
value='Adjust'></div>

150             <d iv>Pre‑K <input type='text'  
id='scoreInput3'><input type='button' 
onclick='adjustScore ( 3 )' 
value='Adjust'></div>

151             <d iv>Sports <input type='text'  
id='scoreInput4'><input type='button' 
onclick='adjustScore ( 4 )' 
value='Adjust'></div>

152  

153             <h3>Adjust Title</h3>

154             <d iv>Leaders <input type='text'  
id='titleInput1'><input type='button' 
onclick='adjustTitle ( 1 )' 
value='Adjust'></div>

155             <d iv>Arts <input type='text'  
id='titleInput2'><input type='button' 
onclick='adjustTitle ( 2 )' 
value='Adjust'></div>

156             <d iv>Sports <input type='text'  
id='titleInput4'><input type='button' 
onclick='adjustTitle ( 4 )' 
value='Adjust'></div>

157             <d iv>Pre‑K <input type='text'  
id='titleInput3'><input type='button'  
onclick='adjustTitle ( 3 )'  
value='Adjust'></div>

158  

159             <d iv><input type='button' value= 
'Reset Titles' onclick='resetTitles()'> 
</div>

160             <d iv><br><br><input type='button' value= 
'Start Timers' onclick='startTimers()'> 
</div>

161             <d iv><br><br><input type='button' value= 
'Vince Casey' onclick='vinceCasey()'></div>

162             <d iv><br><br><input type='button' value= 
'Casey Vince' onclick='caseyVince()'></div>

163  

164  

165          """

166          return html

167  

168      @cherrypy.expose

169      def updateTitle ( self , screen , name ):

170          se lf.screens [ int ( screen ) ‑ 1 ].updateTitle  
( str ( name ) )

171  

172      @cherrypy.expose

173      def adjustScore ( self , screen , delta ):

174          se lf.screens [ int ( screen ) ‑ 1 ].updateScore  
( int ( delta ) )

175  

176      @cherrypy.expose

177      def startTimers ( self ):

178          for screen in self.screens:

179              screen.startTimer()

180  

181          firstPlace = False

182          while firstPlace == False:

183              for screen in self.screens:

184                  if screen.timerRunning() == False:

185                      screen.updateTitle ( "WINNER" )

186                      firstPlace = True

187  

188  

189  cherrypy.server.socket_host = "0.0.0.0"

190  cherrypy.quickstart ( web() , "/" )

Listing 4: webManager.py (continued)

69LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Python Remote Objects Library MAKERSPACE



board named for the fact that it was 
manufactured in Croatia. Today, e-radi-
onica.com offers 70 Arduino-compatible 
boards, all of which are open hardware. 
“Since openness enabled my creation of 
the first board,” Zovko says, “I have 
committed that all my maker projects 
will be open source.”

E-paper (aka electronic paper or 
e-ink) is a display technology that imi-
tates the look and resolution of ink on 
paper (Figure 1). Unlike the typical 
computer monitor, e-paper reflects light, 
just like paper. As a result, e-paper not 
only reduces eye strain and has a wider 
viewing angle, but it is readable in direct 
sunlight without appearing to fade. Al-
though e-paper color displays have ex-
isted for close to a decade, the majority 
of e-paper is currently grayscale. The 
most popular use of e-paper is in e-read-
ers like the Kindle or the Kobo, but 
other uses include arrival and departure 
displays in airports, electronic bill-
boards, and smartphone displays.

“E-papers have always been a fascina-
tion to me,” Zovko says. “They look 
pretty neat and use no power to show 
contents on the screen. [However], after 
trying some of the displays available to 
makers, I didn’t find them simple 
enough to use, and some features were 
missing. After finding that there are recy-
cled Kindle displays, one thing led to an-
other and the Inkplate was made.”

F rom the start, open hardware 
has repurposed used technol-
ogy. Companies like Minifree 
and Technoethical have based 

their entire business plans around such 
recycling. By the time you read this arti-
cle, these companies will have been 
joined by a crowdfunding campaign for 
Inkplate 6 [1], an e-paper display that 
combines open source firmware with 
parts from used Kindle e-readers.

Inkplate 6 is developed by e-radionica.
com [2], a company started by David 
Zovko when he was 16. The company’s 
first product was the Croduino Basic mi-
crocontroller, an Arduino-compatible 

Le
ad

 Im
ag

e 
©

 L
o

re
ly

n
 M

ed
in

a,
 1

23
R

F.
co

m

MakerSpace
Open source e-paper

Recycled E-Ink
Combining open firmware with recycled hardware, Inkplate 
launches a crowdfunding campaign for an open source 
e-paper display. By Bruce Byfield

Figure 1: E-paper, like the Inkscape 6 screen shown here, features a 
high resolution and a more readable screen.

70 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Open Hardware – Inkplate 6



Inkplate Features and 
Audience
Zovko goes on to explain that “Inkplate 
6 is a display designed to make using e-
paper extremely simple. Simplicity is 
achieved in both hardware and software. 
Just plug in a USB cable or battery, open 
the Arduino IDE, and change what’s on 
the screen with a few lines of code. No 
connecting extra cables or complicated 
code. The product is based on the pow-
erful ESP32 microcontroller (Figure 2), 
which has WiFi and Bluetooth connec-
tivity. There’s a battery charger, GPIO 
ports for extra tinkering, an SD card for 
image and book storage, and three 
touch-buttons below the screen.”

Other features will include:
• A recycled 6-inch Kindle e-paper dis-

play with a resolution of 800x600 
pixels

• Low power consumption
• Arduino libraries that enable simple 

customizations: A few lines of code 
is all you need to display text and 
images, change grayscale settings, 
or enable partial updates for faster 
refresh cycles

• A 3D-printable enclosure
Like other devices built with an open 
source microcontroller, the Inkplate 6 is 
designed to have flashable firmware. 
“You can customize any part of the 
screen using the Arduino IDE or Micro-
Python. You can show custom text, im-
ages, and even greyscale images. In the 
Arduino, it’s compatible with the well-
known Adafruit GFX library. So, you can 
put any contents you can imagine on it.”

“The product is made for makers, if 
that’s not too vague to say,” Zovko says, 
speaking of the do-it-yourself commu-
nity that overlaps with the open source 
movement. “It’s completely open and 
customisable, so anyone can make it 
into what they want. That might be a 
desktop planner, which includes today’s 
calendar events, the latest emails and 
weather reports, and is updated auto-
matically. Or it might be a meeting room 
sign, which shows who’s having meet-
ings in a room at which time, or even an 
e-book reader. We hope that everyone 
will have a specific idea, although we 
will provide examples.”

Development Challenges
Recycling hardware can be a shortcut to 
market. “We had the option to pick be-

tween new and recycled displays,” 
Zovko says, “and recycled ones just 
seemed like a natural option. Why not 
use something that still works?” How-
ever, Zovko notes that recycling can cre-
ate its own problems. “There were a few 
major ones,” he says, “the biggest being 
that documentation was not available. 
With no proper datasheet or information 
on how to drive the display, it was quite 
the challenge to get it working properly, 
especially the greyscale mode. But with 
a lot of salvaging from the Internet and 
reverse-engineering of the Kindle device 
with that specific display, we have come 
to a working product.”

At the same time, the number of recy-
cled Kindle displays is limited. “Right 
now, there are a few thousand available 
screens, and that’s a really fair concern. 
[But] that should be enough for quite 
some time.”

Upcoming Crowdfunding 
Campaign
At the time of writing, the Inkplate 
campaign page is limited to basic in-
formation and a link to a mailing list. 
However, once the Inkplate campaign 
begins in December 2019, Zovko antici-
pates no trouble in raising a hundred 
backers. Already, five hundred names 

are on the mailing list, so, as Zovko re-
marks, the target probably “will be 
quite easy to surpass.” The Inkplate is 
already designed, so the challenge 
after the funding campaign will be 
manufacturing. Zovko anticipates ship-
ping the Inkplate by early March 2020 
at the latest.

In the future, the limited number of re-
cycled Kindles will sooner or later mean 
that Inkplate will need to be redesigned 
for other devices. Meanwhile, Zovko 
says, “Inkplate 6 is a good starting point 
for us to get known to the market and 
find out what customers are looking for. 
There are many possible uses, and with 
feedback from this campaign, we hope 
that Inkplate will become a series of 
products with different screen sizes and 
features while keeping simplicity of use 
as a main feature.”

If all goes as planned – and there is lit-
tle reason to doubt that it will – Inkplate 
seems likely to fill one of the gaps in 
open hardware and encourage the re-
lease of still other open devices.  nnn

[1]  Inkplate 6: https://  www.  crowdsupply. 
 com/  e‑radionica/  inkplate‑6

[2]  e-radionica.com:  
https://  e‑radionica.  com/  en/

Info

Figure 2: The Inkplate 6 is based on the ESP32 microcontroller, a versa-
tile choice that can be used for multiple purposes.

71LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Open Hardware – Inkplate 6 MAKERSPACEMAKERSPACE

https://www.crowdsupply.com/e-radionica/inkplate-6
https://www.crowdsupply.com/e-radionica/inkplate-6
https://e-radionica.com/en/


a seven-segment wired display, an LCD 
keypad, and a NeoPixel string.

Seven-Segment Display
A seven-segment display uses seven 
horizontal and vertical bars, familiar in 
clocks, meters, and other electronic de-
vices, to represent numbers and letters. 
The displays are often based on the 
HT16K33 [2] or TM1637 [3] chipset 
(Figure 1).

The tk_tools Python library [1] contains 
a soft component for a seven-segment 
display that can save you writing code 
from scratch. To install the module, enter:

pip install tk_tools

The tk_tools seven-segment component 
can function like a TM1637 or HT16K33 
display component, with support for 
various heights, digit colors, and back-
ground color. Listing 1 is an example 

R aspberry Pis have some great 
hardware options for display-
ing information or accepting 
input. You can use either spe-

cialty plates that mount directly on top 
of the Rasp Pi or a variety of wired 
components.

Although nothing beats using real 
hardware for projects, if you’re missing 

the hardware or 
you’d like to du-
plicate a value re-
motely, then a 
soft version of the 
hardware can be 
very useful. In 
this article, I look 
at three examples 
of hardware simu-
lated with the 
help of Python 
and the tk_tools 
Python library [1]: 

Simulate Raspberry Pi 
add-on hardware

Soft Pi
Python and tk_tools let you create software versions of 
Raspberry Pi mini-displays, LED keypads, and NeoPixel 
hardware. By Pete Metcalfe

Figure 1: HT16K33 (left) and TM1637 (right) seven-
segment displays.

01  import tkinter as tk

02  import tk_tools

03  

04  root = tk.Tk()

05  root.title("CPU Temp")

06  

07  #  Create a 7 segment display that is yellow on black with 
5 digits

08  ss =  tk_tools.SevenSegmentDigits(root, digits=5, 
background='black', digit_color='yellow', height=100)

09  ss.grid(row=0, column=1, sticky='news')

10  

11  # Update the Pi CPU Temperature every 1 second

12  def update_gauge():

13      # Get the Raspberry CPU Temp

14      tFile = open('/sys/class/thermal/thermal_zone0/temp')

15      # Scale the temp from milliC to C

16      thetemp = int(float(tFile.read())/1000)

17      # Show the CPU temp on the 7 segment display

18      ss.set_value(str(thetemp))

19      root.after(1000, update_gauge)

20  

21  root.after(1000, update_gauge)

22  root.mainloop()

Listing 1: Show Pi CPU Temperature

Le
ad

 Im
ag

e 
©

 A
u

th
o

r, 
12

3R
F.

co
m

MakerSpace

72 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

MAKERSPACEMAKERSPACE Simulated Pi Hardware



that displays the Rasp Pi’s CPU tempera-
ture (Figure 2). After creating the seven-
segment display object (line 8), simply 
call set_value (line 18) to display the up-
dated Pi temperature value.

LCD Keypad
LCD keypad plates [4] have five or six 
configurable buttons and a 2x16-char-
acter LCD display. These keypads are 
ideal in small projects for which you 
want some local control. My daughters 
and I have used the LCD keypad plates 
on a number of Pi projects, such as FM 
radios (Figure 3) and streaming music 
players.

The tk_tools library doesn’t have an 
LCD keypad component, but I found 
that it is easy to simulate with the stan-
dard Python Tkinter library. For my ex-
ample, I tried to replicate the look and 
feel of the Pi plate that I had, but you 
could enhance or change it to meet 
your requirements.

Listing 2 is a Python LCD keypad ex-
ample that displays key presses (Figure 
4). Lines 13-17 create a single label with 
white on blue text. The grid’s rowspan 
and columnspan properties (line 18) cre-
ate a label two lines high that spans the 
entire window. The label automatically 
handles the line wrap to the second line, 
or a new line character (\n) forces text to 
the second line.

A common function, myfunc (line 4), 
is called when a button is pushed. In 

this example, the buttons pass their 
button text to myfunc, which then 
shows the cus-
tom text message 
in the two-line 
display.

NeoPixels
NeoPixels [5] are 
addressable full-
color RGB LEDs 
that come in a va-
riety of arrange-
ments, such as 
LED strings (Fig-
ure 5), matrix ar-
rays, Pi plates, 
and a variety of 

sewable components that can be used 
on wearable products. NeoPixels were 

Figure 2: Simulated seven-seg-
ment display.

Figure 3: LCD keypad used on a Raspberry Pi FM 
radio project.

01  import tkinter as tk

02  

03  # myfunc will show show on the screen the button that is pushed

04  def myfunc(action):

05     print ("Requested action: ",action)

06     Line1.config(text = "Requested action: \n" + action)

07  

08  root = tk.Tk()

09  root.title("LCD Keypad Shield")

10  root.configure(background='black')

11  

12  # Create a 2 line label that spans the window

13  Line1 = tk.Label(root,

14       text="ADC key testing     \nRight Key OK        ",

15       fg = "white",

16       bg = "blue",

17       font = "Courier 45", borderwidth=4, relief="raised")

18  Line1.grid(row = 0, column = 0, columnspan =15, rowspan = 2)

19  

20  # Create 5 buttons and have them call myfunc to show some reback text

21  selectB = tk.Button(root, width=10,text= "SELECT",bg='silver',  
command = lambda: myfunc("SELECT"), relief="raised")

22  selectB.grid(row = 3,column = 0)

23  

24  leftB = tk.Button(root, width=10,text= "LEFT", bg='silver',  
command = lambda: myfunc("LEFT"), relief="raised")

25  leftB.grid(row = 3,column = 1)

26  

27  topB = tk.Button(root, width=10, text= "UP", bg='silver',  
command = lambda: myfunc("UP"), relief="raised")

28  topB.grid(row = 2,column = 2)

29  

30  rightB = tk.Button(root, width=10,text= "DOWN", bg='silver',  
command = lambda: myfunc("DOWN"), relief="raised")

31  rightB.grid(row = 3,column = 3)

32  

33  bottomB = tk.Button(root, width=10,text= "RIGHT", bg='silver',  
command = lambda: myfunc("RIGHT"), relief="raised")

34  bottomB.grid(row = 4,column = 2)

35  

36  root.mainloop()

Listing 2: Simulated Pi LCD Keypad

73LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020

Simulated Pi Hardware MAKERSPACEMAKERSPACE



Listing 3 is a Python Tkinter example 
that simulates 10 NeoPixels in a string 
arrangement (Figure 6). The array ob-
ject ledstrip (line 10) becomes a num-
ber of colored Tkinter labels (line 13), 
which are placed sequentially in a grid 
to form a string (line 14). However, 
you could also arrange the labels into a 
matrix or a circle. An LED color is set 
with the configure(background= 'red') 
command (line 17).

Summary
As I mentioned at the top of the article, 
nothing beats using real hardware. 
However, if you’re on a budget or you 
just want to do some playing around, 
then creating Python soft components is 
a great option.  nnn

first available only for Arduino projects, 
but now, Python libraries for Raspberry 
Pis are available, as well.

[1]  tk_tools: https://  github.  com/ 
 slightlynybbled/  tk_tools

[2]  Adafruit Python HT16K33 hardware 
driver: https://  pypi.  org/  project/ 
 adafruit‑circuitpython‑ht16k33

[3]  Raspberry Pi Python TM1637 LED 
hardware driver: https://  pypi.  org/ 
 project/  raspberrypi‑python‑tm1637/

[4]  Pi LCD keyboard plate: https://  learn. 
 adafruit.  com/  adafruit‑16x2‑character‑ 
 lcd‑plus‑keypad‑for‑raspberry‑pi

[5]  NeoPixels: https://  learn.  adafruit.  com/ 
 neopixels‑on‑raspberry‑pi

[6]  More projects by Pete:  
https://  funprojects.  blog/

Info

You can investigate more neat projects 
by Pete Metcalfe and his daughters at 
https://  funprojects.  blog.

Author

Figure 4: Simulated Raspberry Pi 
LCD keypad.

Figure 5: Some NeoPixel hardware.

Figure 6: Simulated (bottom) and real (middle) NeoPixels.

01  import tkinter as tk

02  

03  root = tk.Tk()

04  root.title("Soft NeoPixel Strip")

05  

06  numleds = 10 # Have 10 neopixels in the strip

07  

08  # Create an array object that can be used as Tkinter labels

09  

10  ledstrip = ['' for i in range(numleds)]

11  

12  for i in range(numleds):

13      ledstrip[i] = tk.Label(root,relief='raised',width=5,height=2,background='white')

14      ledstrip[i].grid(row = 0, column = i) # position the labels in a horizontal row

15  

16  # As an example, set one 'neopixel' red

17  ledstrip[5].configure(background= 'red')

18  

19  root.mainloop()

Listing 3: Simulated NeoPixels

74 JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Simulated Pi HardwareMAKERSPACE

https://github.com/slightlynybbled/tk_tools
https://github.com/slightlynybbled/tk_tools
https://pypi.org/project/adafruit-circuitpython-ht16k33
https://pypi.org/project/adafruit-circuitpython-ht16k33
https://pypi.org/project/raspberrypi-python-tm1637/
https://pypi.org/project/raspberrypi-python-tm1637/
https://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi
https://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi
https://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi
https://learn.adafruit.com/neopixels-on-raspberry-pi
https://learn.adafruit.com/neopixels-on-raspberry-pi
https://funprojects.blog/
https://funprojects.blog


LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 75

LINUX VOICEINTRODUCTION

Push notification services are a popular option for 
users who want to receive updates and stay informed. A 
cloud-based push service receives push requests and 
forwards the notices to a client app running on an An-
droid or iPhone. But what if you don’t want to depend on 
the cloud – for reasons of privacy or reliability? Gotify is 
a push notification tool that helps you keep it local. Set 
up the Gotify server on your Linux system, and you can 
use it to forward notices to a client 
app on your Android phone.

And speaking of local, you 
don’t really need to pay homage 
to Amazon in order to enjoy 
the convenience of ebooks. 
The Calibre ebook manager 
is a free tool for organiz-
ing and managing your 
ebook collection – and 
it’s all open source!

Doghouse – Women in Tech 77
Jon “maddog” Hall
maddog ponders how the numbers of 
women in programming has changed over 
the course of his career and is pleased to 
see more women coming back into the 
tech workspace.

Gotify 78
Dmitri Popov
Replace proprietary cloud-based push 
notification services with a self-hosted 
open source notification solution.

Calibre 82
Nate Drake
Calibre can help manage your ebooks by 
bulk converting files, adding metadata, 
and making content available across all 
your devices.

FOSSPicks 86
Graham Morrison
This month Graham explores Blender 2.8, 
Amass, Cookbook, Mangl, Cawbird, Chiaki, 
and more!

Tutorials – Mastodon 92
Paul Brown
Creating your own clients to interact with 
your friends in the Fediverse is easy. A bit 
of Python and an off-the-shelf module will 
do the trick.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m





“Mamas don’t let your babies grow up to 
be cowboys”

 – Waylon Jennings and Willie Nelson
“It’s a girl my lord in a flatbed Ford …”

– Eagles “Take It Easy”

I ’ve been thinking about these two 
songs, one of which has been play-
fully rewritten to be “coders” instead 

of “cowboys,” and the other which, seemed 
to show astonishment that a female 
would be driving a “flatbed Ford” truck 
through the streets of Winslow, Arizona.

I have always loved both songs, but they 
seem a little out of date by modern stan-
dards. Today we would not be surprised to 
see cowgirls as well as cowboys out on the 
range or women driving flatbed trucks. But 
what about the programming profession?

When I started working with comput-
ers many programmers were women. 
Perhaps it was the fact that many math-
ematicians were women, and they natu-
rally fit into the math-oriented world of 
computational logic, but by my estimate, 
40 percent of the programmers back in 
those days were women.

At my first job, we had many women 
programmers and middle managers, per-
haps because Aetna Life and Casualty 
was a progressive company even then, 
and we had a fairly diverse group of em-
ployees for 1973.

When I started teaching at Hartford 
State Technical College from 1977 to 
1980, about 40 percent of the students 
were women, including a woman who en-
rolled in her late fifties, Florence Grebe.

Ms. Grebe had taken courses every time 
her husband, a military man, had been 

transferred, and by the time she met me 
she had three shoeboxes full of transcripts. 
I realized that she was two courses away 
from a BS in math, two courses from a BS 
in physics, and two courses away from a 
BS in business. With my recommendation, 
she took two courses at the University of 
Connecticut, got her BS in math, and then 
enrolled for an MSCS at the Hartford Grad-
uate Center. She went from no degree to an 
MSCS in a little over one year.

When I went to Bell Laboratories in 
North Andover, Massachusetts, in 1980, I 
also found women programmers, re-
searchers, operators, and supervisors. 
My hiring supervisor at Bell was a very 
smart woman named Beatrice Fink, and I 
respected her greatly.

It was in 1983 when I went to Digital 
Equipment Corporation that the percent-
age of women started to drop, with the 
added division of men as “developers” and 
women as “documentation people.” Like-
wise there were a lot of women product 
managers, but fewer in middle manage-
ment above that.

I was never able to put my finger on the 
reason for the drop off until recently. It is 
suggested that when the home PC and 
gaming systems came out that boys 
were given the PCs and gaming systems 
and girls were given dolls and “girl things.” 
Of course this was not always true, but it 
fits a lot of what I saw.

I was lucky enough to meet Rear Admi-
ral Grace Murray Hopper, generally known 
as the first modern-day programmer. She 
was brilliant and a true leader. I still trea-
sure the foot-long wire she gave me as a 
representation of a “nanosecond.”

A few years ago, I started going to 
“Campus Party” computer technology 
events, which started in Spain and have 
now spread through Latin America and 
the rest of Europe. At first, these events 
drew mostly male attendees with a smat-
tering of women, but over time, more and 
more females came. Today I am happy to 
say that the mix is almost 50/50, and 
hopefully these young people will flow 
out into the tech workplace.

Not meaning to sound prejudiced, but 
some of my best managers were 
women. Most of the time they would 
just point me in a direction and not try 
to micromanage me. They would listen 
to what I had to say and trust that I 
knew what I was talking about. I am 
very glad to see more women come 
back into the tech workspace.

Recently, I was at a conference in Bue-
nos Aires, Argentina, called Nerdear.la and 
there were several women- and diversity-
oriented groups there, including Linux-
Chix, which tries to get women into tech 
areas, and Women Who Code, which spe-
cifically tries to get women to program.

Around 1995, a friend of mine started 
LinuxChix and created the website of linux-
chix.org. She realized that someone had 
registered the top-level domain (TLD) of 
linuxchix.com and had set up a porn site, 
which (of course) was distressing to her.

Fortunately Linux International had 
just won a legal settlement where the 
Linux trademark was assigned to Linus. 
After one short telephone call to Linus 
and one short letter from our attorney, 
that website disappeared forever.

Now you know the rest of the story …  nnn

MADDOG’S  
DOGHOUSE
Maddog ponders how the number of women in programming has 
changed over the course of his career and is pleased to see more 
women coming back into the tech workspace.  BY JON “MADDOG” HALL

Jon “maddog” Hall is an author, 
educator, computer scientist, 
and free software pioneer 
who has been a passionate 
advocate for Linux since 1994 
when he first met Linus Torvalds 
and facilitated the port of 
Linux to a 64-bit system. He 
serves as president of Linux 
International®.In Support of Women Programmers

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 77

LINUX VOICEDOGHOUSE – WOMEN IN TECH



1  Install and configure the Gotify server.
2  Install the Gotify Android app on your device.
3  Use the Gotify command-line interface (CLI) 

tool or cURL to send push notifications.
The server component of Gotify is written in Go, 
and the project’s website [2] provides Linux bi-
naries for the 386, AMD64, ARM7, and ARM64 
architectures. This means that you can run the 
server on practically any Linux machine, includ-
ing Raspberry Pi. Distributed as a single self-
contained executable, the Gotify server requires 
no installation. To deploy the server on a Rasp-
berry Pi, use the commands in Listing 1 to grab 
the latest binary from the releases section, un-
pack the downloaded archive, make the binary 
file executable, and then execute the server.

By default, the Gotify server runs on port 80 
(that’s why you need to run it with sudo). If you al-
ready have another server running on this port, 
you need to reconfigure Gotify. To do this, grab 
the config.yml example file using the command:

wget ‑O config.ymlU

  https://raw.githubusercontent.com/gotify/U

  server/master/config.example.yml

Open the downloaded file, and replace the de-
fault port number with the desired one (e.g., 
8080). Save the changes and place the file 
where the Gotify server executable is located. 
Then start the Gotify server and access its web 
UI by pointing a browser to the IP address and 
port of the machine on which Gotify runs. Log 
in using the default admin/ admin username and 
password.

P ush notifications can come in useful in 
many situations – from informing you 
that a backup job has been completed 

successfully to reminding you of upcoming 
deadlines. A push notification system usually 
consists of two parts: a cloud-based service 
and a client. The service receives and processes 
push notification requests received through the 
service’s API and then sends them to the client 
app running on an Android or iOS device. Using 
any of the popular cloud-based push notifica-
tion services brings a familiar set of problems. 
You are relying on a third party for processing 
your data, you remain at the mercy of a for-
profit enterprise, and usually you have to pay for 
the services rendered.

But if you are willing to host your own notifica-
tion system, Gotify [1] has got you covered. This 
open source solution allows you to roll out your 
own notification service with a minimum of effort 
and zero cost.

Installing Gotify
Gotify is based on the server/ client model, and 
there are three pieces of the puzzle you need to 
take care of:

BY DMITRI POPOV

Replace proprietary cloud-based push notification services with a self-hosted 
open source notification solution.

Get push notifications with Gotify  

Push Yourself

01  wget https://github.com/gotify/server/

releases/download/v2.0.6/

gotify‑linux‑arm‑7.zip

02  unzip gotify‑linux‑arm‑7.zip

03  chmod +x gotify‑linux‑arm‑7.zip

04  sudo ./gotify‑linux‑arm‑7

Listing 1: Gotify on a Raspberry Pi

Figure 1: You can set up 
multiple applications, or 
profiles, in Gotify.

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM78

LINUX VOICE GOTIFY



Using Gotify
Gotify’s web UI is pretty bare-bones, so finding 
your way around it is not particularly difficult. The 
first thing you might want to do is to remove the 
default user and add a new one. Switch to the 
Users section, press the Create User button, spec-
ify the desired username and password, and en-
able the has administration rights option. Press 
Create, and you are done. You can then delete the 
default admin user.

The next step is to create an application. A 
Gotify application is a profile that makes it pos-
sible to identify the source of push notifications 
via a unique token. For example, if you have a 
backup shell script running on your server, and 
this script sends a push notification when a 
backup job is successfully completed, you can 
create a profile in Gotify for this specific script. 
To do this, switch to the Apps section, press 
Create application, then provide a name and a 
short description. Press Create and note the 
generated token. Gotify also allows you to re-
place the default app icon with a custom one. 
This can be particularly useful if you have multi-
ple apps, as it lets you visually identify each app 
(Figure 1). For each app, Gotify creates an entry 
in the left sidebar, so you can easily view notifi-
cations for a specific app.

With the Gotify server up and running, you are 
ready to send your first notification. There are 
several ways to do this. The most straightfor-
ward one is to use the cURL tool. Since practi-
cally all mainstream Linux distributions come 
with this tool preinstalled, you don’t need to in-
stall and configure any additional software for 
sending notifications. More importantly, using 
cURL makes it easier to integrate push notifica-
tion functionality into shell scripts.

Pushing a notification with cURL is a matter of 
running the following command (replace 
IPADDRESS:PORT with the actual IP address and 
port of the Gotify server and TOKEN with the token 
of the app you created on the Gotify server):

curl ‑X POST U

"https://IPADDRESS:PORT/message?token=TOKEN" U

  ‑F "title=This is a title" ‑F U

  "message=Message goes here"

If everything works, you should see the received no-
tification in the web UI (Figure 2). Of course, check-
ing for new notifications using Gotify’s web UI is not 
particularly practical. In most scenarios, you’d want 
to receive notifications instantly on your Android de-
vice. For that, you need to install the Gotify Android 
client either from the Google Play Store or F-Droid 
(just search for Gotify). Launch the Android app, 
enter the IP address of the Gotify server, provide 
your username and password, and press the Login 

button (Figure 3). To prevent Android from killing the 
app, disable the battery optimization for the Gotify 
app. With the Gotify app running, you can receive 
and manage notifications on your Android device 
(Figure 4).

cURL is not the only tool that you can use to 
send notifications. In fact, the Gotify project pro-
vides a dedicated CLI tool for the job. Similar to 

Figure 3: The Gotify Android app connects to the Gotify 
server.

Figure 2: You can view and 
manage incoming notifica-
tions using Gotify’s web UI.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 79

GOTIFY LINUX VOICE



the server component, the CLI utility is distributed 
as a self-contained binary that requires no instal-
lation. Simply grab the latest release of the tool 
from the project’s website [3], make the binary ex-
ecutable, and move it to the usr/ bin directory 
using the command:

mv gotify /usr/bin/gotify

With the Gotify CLI tool, you don’t have to specify the 
required information (IP address, port, and token) 
every time you send a notification. Instead, run the 
gotify init command, and the tool will guide you 
through a simple process of creating a configura-
tion file containing all the necessary information. 
Once you’ve done that, sending a notification is as 
easy as running:

gotify push "Message goes here"

The Gotify CLI tool supports piping, so you can send 
a command’s output as a notification message. The 
following example fetches weather conditions using 
the wttr.in service [4] for the specified city and pipes 
the output to the Gotify tool that pushes the data as 
a notification.

Figure 4: The Android app lets you view and manage 
notifications.

01  <?php

02      $data = [

03      "title"=> $argv[1],

04      "message"=> $argv[2],

05          "extras" => [

06          "client::display" => [

07              "contentType" => "text/markdown"

08          ]

09      ]

10  ];

11  

12  $data_string = json_encode($data);

13  

14  $url = "http://127.0.0.1:8080/message?token=AQiPyW7ATHGWgZg";

15  

16  $headers = [

17      "Content‑Type: application/json; charset=utf‑8"

18  ];

19  

20  $ch = curl_init();

21  curl_setopt($ch, CURLOPT_URL, $url);

22  curl_setopt($ch, CURLOPT_POST, 1);

23  curl_setopt($ch, CURLOPT_HTTPHEADER, $headers );

24  curl_setopt($ch, CURLOPT_RETURNTRANSFER, true );

25  curl_setopt($ch, CURLOPT_POSTFIELDS, $data_string);

26  

27  $result = curl_exec($ch);

28  $code = curl_getinfo($ch, CURLINFO_HTTP_CODE);

29  

30  curl_close ($ch);

31  

32  switch ($code) {

33  case "200":

34          echo "Message submitted";

35          break;

36      case "400":

37          echo "Bad request";

38          break;

39      case "401":

40          echo "Unauthorized error: invalid token";

41          break;

42      case "403":

43          echo "Forbidden";

44          break;

45      case "404":

46          echo "API URL not found";

47          break;

48      default:

49          echo "Something went wrong or HTTP status code is missing";

50  }

51  ?>

Listing 2: PHP Push Notifications

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM80

GOTIFYLINUX VOICE



curl wttr.in/Tokyo?format="%l:+%c+%t+%w+%m" U

  | gotify push

Want to send notifications directly from within the 
Firefox browser? The aptly named Gotify for 
Firefox add-on [5] allows you to do just that. Better 
still, you can use the add-on to send the currently 
viewed page as a notification.

Since pushing a notification to Gotify is done 
using a standard HTTP request, you can easily 
integrate notification functionality into scripts 
written in your preferred scripting language. The 
example in Listing 2 demonstrates how to send 
notifications using PHP. The astute reader will 
probably notice that this PHP script sends 
Markdown-formatted notifications. To see the 
script in action, paste the code in the listing into 
a text file, replace the default value of the $url 
variable with the actual IP address and token, 
and then save the file under the gotify.php 
name. Make sure that PHP and the php-curl 
package are installed on your system. You can 
then send a push notification using the follow-
ing command as an example:

php gotify.php "Markdown!" U

  "**Yes**, Markdown formatting _is_ supported."

With a little bit of tweaking, you can embed this 
example PHP code into your own PHP-based web 
application.

In Conclusion
Gotify is a perfect replacement for existing 
commercial push notification services. It re-
quires no installation, it has modest require-
ments, and its web UI makes it easy to admin-
ister the server component and manage re-
ceived notifications. The fact that you can use 
any tool or scripting language capable of send-
ing HTTP requests to send notifications means 
that you can add the notification functionality 
to your scripts and applications with a mini-
mum of effort.  nnn

[1]  Gotify: https://  gotify.  net/

[2]  Gotify server:  
https://  github.  com/  gotify/  server/

[3]  Gotify CLI tool: https://  github.  com/  gotify/  cli

[4]  wttr.in: https://  github.  com/  chubin/  wttr.  in

[5]  Gotify for Firefox: https://  addons.  mozilla.  org/ 
 firefox/  addon/  gotify‑for‑firefox/

Info

GOTIFY LINUX VOICE

https://gotify.net/
https://github.com/gotify/server/
https://github.com/gotify/cli
https://github.com/chubin/wttr.in
https://addons.mozilla.org/firefox/addon/gotify-for-firefox/
https://addons.mozilla.org/firefox/addon/gotify-for-firefox/


your ebook collection. The latest version of Cali-
bre available at this writing (4.1) boasts all new 
content server capabilities and a much-improved 
ebook viewer [1].

Setup
Calibre is free and open source software (FOSS), 
making it available for a number of platforms. You 
can use it to convert a variety of formats, such as 
EPUB, MOBI, PDF, DOCX, ODT, PRC, PDB, PML, RB, 
and RTF, among others.

Linux users benefit from an auto install script, 
which you can load by opening a terminal and 
running

sudo ‑v && wget ‑nv ‑O‑ U

  https://download.calibre‑ebook.com/U

  linux‑installer.sh | sudo sh /dev/stdin

On first launch, the Calibre Welcome Wizard ap-
pears. Start by choosing where you would like 
your books to be stored on your computer. If you 
are unhappy with the default settings, click 
Change to edit. Once you have chosen your pre-
ferred location, just click Next. The following 
screen asks you to choose your e-reader, for ex-
ample, Amazon Kindle Oasis 3. Select Generic 
under Device and Manufacturer. Once this is done, 
Calibre is ready to use.

Add Your Books
Although Calibre doesn’t support DRM pro-
tected content, it can open and convert a wide 
variety of ebook formats. There are a huge num-
ber of public domain books no longer under 
copyright available from websites such as Proj-
ect Gutenberg [2] and Internet Archive [3]. How-
ever, copyright varies from jurisdiction to juris-
diction. For example, George Orwell’s 1984 is no 
longer under copyright in Australia, but it is still 
protected in the US.

To add books already on your computer, simply 
click Add Books at the top left of the screen. Scroll 
through your folders to select the books you want 

I n July 2009, thousands of Amazon’s Kindle 
users logged into their devices to find that 
their purchased copies of George Orwell’s 

1984 had been erased. Internet pundits quickly 
drew comparisons between the corporate gi-
ant’s move and that of “Big Brother” in Orwell’s 
dystopian imagining of England. More recently, 
in April of this year, Microsoft announced the 
closure of their own ebook store. Customers 
lost access to their book collections but were 
offered a full refund.

The abundance of e-reader devices such as 
the Amazon Kindle and the Barnes & Noble 
NOOK has made a lasting impact: In 2018, 
electronic books made up 25.8 percent of book 
sales worldwide. Most reading devices are de-
signed to sell content for specific platforms, 
which has resulted in a number of differing, in-
compatible ebook formats. For instance, an 
EPUB book purchased from Barnes & Noble 
cannot be transferred and opened automati-
cally on an Amazon Kindle. While Kindles sup-
port open format MOBI books, Amazon stores 
your Kindle ebook purchases in its own proprie-
tary AZW. Although the formidable PDF format 
is compatible with a number of e-readers, it 
doesn’t always work with their features, such 
as highlighting or sharing text.

It’s unlikely the e-publishing industry as a 
whole will embrace a universal, open format 
anytime soon. In the meantime, the developer 
Kovid Goyal has addressed this problem by cre-
ating Calibre, a one-stop utility for all your ebook 
management.

Calibre is compatible with a huge number of de-
vices and most crucially can convert from one 
ebook to another. This means that if you ex-
change or upgrade your device you can copy any 
non-DRM protected books straight over to a new 
e-reader. The software also supports scraping the 
Internet for book metadata like blurb and cover 
images. Readers with multiple devices will enjoy 
discovering Calibre’s library feature that allows 
other machines on your local network to access 

BY NATE DRAKE

Calibre can help manage your ebooks by bulk converting files, adding metadata, 
and making content available across all your devices.

Manage your ebooks  

Easy Reading

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM82

LINUX VOICE CALIBRE



to upload (Figure 1). Click on the item, and it will 
be added to Calibre’s library. It can now be located 
on Calibre’s main screen.

Missing Metadata
The program automatically displays any exist-
ing book metadata, such as title, author, and 
cover illustrations. However metadata can often 
be missing or incomplete. You can rectify this 
by clicking on the Edit Metadata button at the 
top of the screen. You can now edit the author’s 
name, book title, and series (Figure 2). If you 

wish, you can also change the book’s rating, the 
tags associated with this particular novel, and 
publication dates. The book cover can also be 
incorrect, which can be changed from this 
screen. You can browse for new covers; trim or 
delete the current cover; and download or up-
load a new cover.

If you have a number of books that need updat-
ing, instead of entering the information manually, 
choose Edit Metadata | Download Metadata. Calibre 
will now search websites such as Google and Am-
azon for your chosen titles. In most cases, you’ll 

Figure 1: Scroll through your folders and select books to add to Calibre’s library.

Figure 2: Edit or add metadata to your titles, such as author, rating, and publication dates.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 83

CALIBRE LINUX VOICE



each. Not only will prices appear from sellers in 
different currencies, Calibre will also show you the 
DRM status of each book.

Your Device
When you connect your e-reader to your com-
puter, Calibre detects and displays it at the top 
right of your screen. Click on Device to see the 
contents of your e-reader’s library. If you want to 
add books from your Calibre library to your device, 
just click on the item you want to move and drag 
and drop over the Device icon. If your book isn’t in 
the right format, Calibre will ask if you want to 
Auto convert the following books before uploading to 
the device. Click Yes to begin conversion. The ro-
tating spinner on the bottom right of the Calibre 
screen lets you see how far your book is into the 
conversion process.

Calibre’s main screen shows which books are 
on the device and/ or on Calibre. Books that are on 
both are indicated by a green tick. To add books 
from your device’s library, just right click on the 
item and choose Add to Library.

News Updates
Calibre has another neat little feature that lets 
you keep up to date with the news (Figure 4). 
Click on the Fetch News icon. A pop-up box 
called Schedule News Download will now appear. 
On the left-hand side pane there is a list of all 
the different news sources arranged by lan-
guage and country. For example, when you click 
on English you can see a list of English lan-
guage news sources. When you click on a news 
source, you can either choose to download now 
or schedule a download. If you choose to 

see different editions of the same book. Choose 
the match that seems most relevant to you and 
click Next. You can select from a number of book 
covers that Calibre scrapes from various online 
book sellers. Choose your preferred cover and 
click OK.

Convert Books
Calibre supports conversion to and from a num-
ber of ebook formats. Choose the title you wish 
to convert, and then click on the Convert Books 
icon at the top of the screen. The pop-up box 
that appears displays all the information for the 
book you are converting (Figure 3). This in-
cludes the input format, title, author, publisher, 
and tags (if any). Select the output format by 
clicking on the drop-down button at the top right 
of the screen. The left-hand side of the screen 
displays options you may wish to edit, such as 
metadata, page setup, table of contents, heuris-
tic processing, etc.

There may be times where you need to convert 
a lot of different books to the same output format. 
You don’t have to go through this process for each 
book manually. Use your mouse to select all your 
chosen titles, and then click on the drop-down 
button beside the Convert Books icon. Choose Bulk 
Convert to start the conversion process. Jobs cur-
rently being processed can be viewed via the spin-
ning wheel at the bottom right-hand side of the 
app window.

Get Books
Calibre can search through all the websites that 
sell ebooks and will not only find the books you 
want, but also will show the different prices for 

Figure 3: You can bulk convert ebooks into a number of file formats.

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM84

CALIBRELINUX VOICE



schedule a download, you must leave Calibre 
running in order for this to take place.

Content Sharing
If you use several e-readers, syncing new content 
manually from Calibre will become tedious very 
quickly. You can make things much simpler by 
turning Calibre into a content server. This will 
make all your content available across all your de-
vices. You can even upload new content to your 
Calibre library from each device.

To do this, click on the Connect/ Share icon at 
the top right of the app. Select Start Content 
Server. Your IP address and port number will now 
be visible. Make a note of this and go to your de-
vice. In your device’s browser, enter your IP ad-
dress and port number. The contents of your Cali-
bre library are now visible.

Splitting Large Volumes
You may have some rather voluminous novels, 
or some large reference books that you would 
rather have split into sections. Also, larger vol-
umes take longer to download, and this can 
cause problems if you are using a slower con-
nection or are not in a WiFi zone. Calibre has a 
solution to this, you can use the EpubSplit and 
EpubMerge plugins to split your books. To get 
started, click on Preferences, select Get plugins 
to enhance Calibre. Scroll to EpubSplit and 
choose Install. Select the toolbars/ menus you 
want the plugin to be added to and click OK. Re-
peat the same process for EpubSplit.

Once this is completed, click on the book you 
want to split or merge and select the necessary 
plugin. After this, you just need to choose the 

sections you want split or merged. This feature 
can only be used on books in the EPUB format.

Calibre Conundrums
Sometimes the conversion process may not go 
as smoothly as desired. One of the common 
reasons is converting to PDF. This is because 
they are in a fixed size and text template place-
ment format, making it very difficult to deter-
mine where one paragraph ends and another 
starts. Where possible, try to avoid converting 
out of or into a PDF format. The best formats 
are those specifically designed for display on e-
readers such as MOBI, LIT, AZW, and EPUB, 
among others.

Calibre offers users a chance to become part 
of its development community [4]. You can 
also contribute financially to its development 
by clicking on the button at the top right of its 
web page.  n

Figure 4: Not just for books, Calibre lets you choose a news source and schedule article downloads.

[1]  Download Calibre:  
https://  calibre‑ebook.  com/  download

[2]  Project Gutenberg:  
http://  www.  gutenberg.  org/

[3]  Internet Archive: https://  archive.  org/

[4]  Get Involved:  
https://  calibre‑ebook.  com/  get‑involved

Info

Nate Drake is a freelance journalist 
specializing in cybersecurity and retro tech.

The Author

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 85

CALIBRE LINUX VOICE

https://calibre-ebook.com/download
http://www.gutenberg.org/
https://archive.org/
https://calibre-ebook.com/get-involved


 FOSSPicks
This issue’s copy was almost late after Graham rediscovered just how immersive and addictive the 1997 
game, Blade Runner, can be when recreated on the latest release of ScummVM.  BY GRAHAM MORRISON

Sparkling gems and new  
releases from the world of  
Free and Open Source Software

B lender really needs no in-
troduction. It’s one of the 
best known open source 

projects in the world. By showing 
open source’s capabilities, re-
gardless of platform, it has be-
come a flag bearer for the entire 
movement. All of this is a long 
way from the uncertainty of 
2002’s Free Blender campaign, 
which raised over $100,000 to re-
lease the formerly proprietary 
source code. Blender is now a 3D 
platform to be reckoned with. In 
recent months, the project has 

been given grants worth millions 
of dollars by Epic Games and 
NVidia and is celebrating this 
huge milestone release of 
Blender 2.8. It has features that 
compete with some of the best 
commercial offerings. In some 
cases, like its functional 3D view-
port, it even surpasses them.

Version 2.8 has been a long time 
coming. So long, that we’ve already 
looked at some of its features, such 
as the Principled BSDF shader 
(issue 203, October 2017), through 
their long gestation in Blender 2.7. 

But it’s the GUI overhaul that’s 
going to get the most atten-
tion. The old GUI was func-
tional but arcane. In the past, 
right-click select objects, and 
users needed to frequently 
remember keyboard com-
mands when the GUI made it 
difficult to understand which 
mode you were working in. 
All of this made learning to 
use Blender harder than it 
should have been, and many 
casual users would mention 
this difficulty in relation to its 
user interface.

When you launch 2.8, you 
immediately notice the huge 
UI improvements. Not only 
has the iconography been 
redesigned, it’s now colorful! 
The scene collection pops in 
green and orange, and the 
various properties actually 
look tabbed.. The viewport 
has a brilliant little x, y, and z 
indicator in red, green, and 
blue that can be dragged to 
rotate the view. This means 
you no longer need to use a 
keyboard’s number pad for 
setting the view, which is es-
pecially useful for those of 
us with keyboards that lack 
one. But the main visual up-
grade is the toolbar on the 
left of the viewport. This 
changes according to con-
text and lets you explore 
what’s possible from your 
current state. In Object 

mode, for instance, there are 
icons for moving and trans-
forming. Switch to Texture 
Paint for paint and mask. 
Switch to Sculpting mode 
and you realize how many 
options you never knew ex-
isted. It makes Blender 
much more discoverable 
and easier to learn.

Another huge feature for 
this release is the Eevee ren-
dering engine. What makes 
it so different is that it builds 
scenes on your GPU in real 
time, much like a game en-
gine. The results are abso-
lutely stunning and are eas-
ily the equivalent of a long 
render time from just a few 
years ago, but you can now 
play with the scene, layout, 
animation, and objects with 
output good enough for 
most animations. If you still 
want to render with the Cy-
cles renderer, you can 
switch to this without 
changing any further config-
uration in the scene. It’s 
seamless, and we’ve only 
scratched the surface of 
what this amazing new re-
lease has to offer. If you’ve 
ever been put off using 
Blender because of its per-
ceived complexity, now is 
the time to try it again.

3D designer/ editor/ renderer

Blender 2.8

1. Colors: All the old icons have been redesigned and injected with a little contextual 
color. 2. Toolbar: At last! There’s now an easily navigable tool palette. 3. 3D navigation: 
Easily drag the viewport angle and attitude without using the number pad. 4. Layers: 
The grouping code has been completely overhauled. 5. Viewport upgrades: Many 
tasks can now be accomplished purely from the main viewport view. 6. Mouse But-
tons: Left mouse click now selects an object! 7. Eevee: With a decent graphics card, 
the Eevee renderer can push almost movie-like output to the viewport in real time, 
which is perfect for editing, animation and material design.

Project Website
https://  blender.  org

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM86

LINUX VOICE FOSSPICKS

https://blender.org


I t’s a little surprising that while 
there are battles being fought 
on the distro for which pack-

aging format to use, the same rev-
olution hasn’t really affected the 
GUIs used to install them. Gnome’s 
Software Center and KDE’s Discov-
ery are slowly incorporating new 
features, but they’ve changed very 
little in recent years. Distro-specific 
applications like elementary’s Ap-
pCenter and Ubuntu’s package and 
Snap stores can feel a little more 
like “app stores,” but there’s still 
plenty of room for other applica-
tions to innovate. And Arch Linux, 
with its multifarious packaging for-
mats and its incredible user pack-
age repository, is one of the best 
places to try out any new ideas, es-
pecially one that aims to bridge the 
brave new worlds of Flatpak, Snap, 
and the AUR itself.

Bauh (pronounced ba-oo, ap-
parently) attempts to do this by 
wrapping support for Flatpak, 
Snap, and AUR packaging types 
within its own simple discovery 
and package management UI. 
The best thing about Bauh is that 
it’s very easy to use, and it makes 
a refreshing change to the com-
mand line or a package manager 
that has its origins in the crazy 
world of Debian or RPM depen-
dencies. This is mostly thanks to 
its excellent design, which will first 
check and list any installed pack-
age for updates before letting you 
easily switch between whichever 
back end you prefer, as well as 
searches for installed and unin-
stalled packages. Packages can 
be installed with a simple click; 
the clean design always makes it 
clear whether you’re installing a 

Flatpak, Snap, or AUR package, all 
of which are handled automati-
cally and can be disabled individu-
ally if you’d rather not have results 
littered with AUR packages, for in-
stance. It’s obviously early days, 
but if this simple design continues 
while the application becomes 
more complex, Bauh is going to 
be a brilliant package manager.

Project Website
https://  github.  com/  vinifmor/  bauh

T he Open Web Applica-
tion Security Project’s 
Amass project (also 

known as OWASP Amass) is a 
serious tool that’s been devel-
oped to help security experts 
analyze network traffic to and 
from a specific domain and its 
subdomains. It includes data 
gathering techniques built 
around open source information 
gathering that can be used to 
scan any domain and help iden-
tify potential targets, obviously 
in the hope you can fix them be-
fore anyone else uses Amass on 
your own sites. Its capabilities 
include basic enumeration and 
reverse DNS sweeping, certifi-
cate tracking, online API use, 
and access to web archives. A 
session will typically start with 
the intel argument, which you 

can use to find out more infor-
mation about your selected do-
main. You can then get specific 
details using enum and generate 
images for analysis with viz. 
With that done, you can monitor 
changes in your analysis with 
the track command.

All of this control comes from 
the command line and the amass 
command. At its simplest, you 
can use amass with the enum ar-
gument for DNS enumeration 
against a domain name. This 
will return all the subdomains 
for a given domain. Similarly, 
you can use the net argument 
to effectively scan a network 
range using a CIDR for a slice 
of the same kind of information 
across a set of IP addresses. 
You don’t need to be a security 
expert to get some value from 

all of this, because Amass can 
help you probe and better un-
derstand all kinds of domain in-
frastructure. It will also let you 
go deep into what systems 
might be exposed and where in 
a way that isn’t otherwise easily 
achievable, especially with a 
single tool.

Project Website
https://  github.  com/  OWASP/  Amass

Package manager

Bauh

One great little feature of 
Bauh is that it attaches 
itself to the system tray, 
so you can quickly 
ascertain whether any of 
your third-party pack-
ages need updating.

Online security

Amass

The HTML visualizations 
generated by Amass use 
the D3 JavaScript frame-
work to create complex, 
beautiful, and bouncily 
interactive output.

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 87

FOSSPICKS LINUX VOICE

https://github.com/vinifmor/bauh
https://github.com/OWASP/Amass


C ookbook is a surprisingly 
geeky pastime. Of course, 
it’s a form of chemistry, but 

it’s also a great way of spending 
time with other people and avoid-
ing the screen. Anything that can 
help make this easier is surely a 
good thing, right? Even if that 
means more screen time? Cook-
book is a command-line tool for 
managing your own recipes. While 
it does mean more screen time, 
it’s simple enough to not add any 
additional distractions. This is 
what makes Cookbook better than 
following recipes on something 
like YouTube, where you’re be-
holden to Google’s addictive-by-de-
sign further watching suggestions 
that suck hours from your life and 
potentially lead to burnt cake.

Cookbook includes a selection 
of recipes to get you started. 

You can see these with the list_
recipes command, and they in-
clude things like Japanese Res-
taurant Style Ginger Dressing and 
Vietnamese green soup. As with 
any recipes you eventually add 
yourself, you can use these as 
the source of a menu for an eve-
ning’s entertainment, combining 
them together with the add_menu 
command. The advantage with 
this is that the shop command 
can then be used to list all the in-
gredients you need to buy for 
every course on a single menu, 
which is a brilliant idea. When it 
comes to cooking, simply use 
the cook command to see the in-
structions for your entire meal. 
Of course, all of this depends on 
the quality of the recipes you 
have access to, and fortunately, 
Cookbook’s best feature is its 

clear and concise YAML 
template, which is used to 
import your own recipes. 
This is a simple text file 
with a name, source, tags, 
notes, a list of ingredients, 
and the steps to follow. It’s 
a great way of describing 
everything you need for a 
meal without over-elabo-
rating. It’s missing specific 

time metadata, which 
may be useful for each 
step, but that’s something 
that can either be added 
manually or added as a 
worthwhile patch for a fu-
ture release.

Project Website
https://  github.  com/  cproctor/ 
 cookbook

A little while ago, we looked 
at a keyboard configura-
tion utility called Chrysa-

lis that lets you modify the key-
board layout and layer functional-
ity of Kaleidoscope-powered open 
source keyboards. It’s a brilliant 
tool for people who type a lot, but 
its effectiveness is restricted to a 
small set of keyboards, including 
the Keyboardio Model 01, the 
Atreus, Dygma’s Raise, the Ergo-
Dox EZ, and other keyboards 
wired like the original ErgoDox. 
KMonad is another keyboard con-
figuration tool, only this time tar-
geting keyboards using the super-
powerful and more populous 
Quantum Mechanical Keyboard 
Firmware. It even includes sup-
port for the aforementioned Ergo-
Dox EZ. While it officially supports 
only a handful of keyboards (pun 

intended), the community main-
tains support for dozens more.

You’ve probably guessed by 
now that KMonad isn’t a KDE ap-
plication. It actually takes its name 
from the minimal window man-
ager, xmonad, with the implication 
being that KMonad manages your 
keyboard rather than your X win-
dows. This kind of DIY attitude to-
ward both the hardware and the 
firmware obviously requires some 
serious commitment, which is just 
as well. KMonad is written in 
Haskell and requires some serious 
installation patience to build from 
source, which is currently the only 
way to get hold of it. The tool itself 
is equally minimal on the com-
mand line. With the binary in your 
path, you run it with a single argu-
ment pointing to a configuration 
file. KMonad will then sit between 

the raw keyboard inputs 
and the kernel, so you’re 
able to almost completely 
manipulate and transform 
the input events before 
they’re passed to your user-
level operating system. 
There’s an excellent syntax 
document included with 
the package that explains 
everything you can do with 

the configuration file, which 
includes aliases, layers, and 
macros. It’s powerful and 
tricky but capable of build-
ing almost any keyboard 
configuration you can 
imagine.

Take complete control over your keyboard by changing its layout, 
triggering macros, and replacing characters.

Recipe manager

Cookbook

It’s simple, but Cookbook is a great management interface for your 
own recipes and cooking ideas from the command line.

Keyboard configurator

KMonad

Project Website
https://  github.  com/ 
 david-janssen/  kmonad/

FOSSPICKSLINUX VOICE

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM88

https://github.com/cproctor/cookbook
https://github.com/cproctor/cookbook
https://github.com/david-janssen/kmonad/
https://github.com/david-janssen/kmonad/


B efore all the information 
was a simple search 
away, you were depen-

dent on the tools you were 
using to properly document 
their own usage. This meant 
using the man command to read 
the documentation that was al-
ways installed alongside an ex-
ecutable, and consequently, the 
humble Unix man page has 
been around for a long time. 
The first was reportedly written 
by Dennis Ritchie and Ken 
Thompson at the insistence of 
their manager in 1971. Since 
then, especially when first 
learning about Linux or after in-
stalling a new command, typing 
man followed by a command 
name has been a right of pas-
sage for many of us. But in the 
age of Stack Overflow and 

Google, many of us have forgot-
ten just how useful man pages 
can be, especially when it 
comes to providing some in-
sight into why a certain com-
mand works a certain way. 
Which is why anything that 
makes your catalog of man 
pages more accessible and 
readable is definitely a good 
thing, and that’s what mangl 
does.

When first launched, mangl 
shows nothing but a search box, 
but as soon as you start typing, a 
dynamic list of results appears, 
updating to reflect the page name  
you’re looking for. It’s like a private,  
concise suggest mode. The num-
bers after the names of the pages 
represent the manual sections 
where each page has been placed, 
such as 1 for user commands, 3 

for C library functions and 6 
for NetHack. Selecting a 
page will present the same 
man page you can see on 
the command line, but it all 
feels so much more civilized 
through its own minimal 
GUI application. You can 
still use Vim navigation 
keys, or your mouse, but 
pressing Escape will quit 

the application. This is be-
cause it’s designed to be a 
quick replacement to man on 
the command line, rather 
than a book you can work 
through. And it does a 
rather more interesting job.

Project Website
https://  github.  com/  zigalenarcic/ 
 mangl

Despite all the fear and 
loathing on social media, 
especially Twitter, it can 

still be an informative and in-
sightful platform, especially if 
you take care to only follow peo-
ple who interest you. This is par-
ticularly true of open source and 
free software luminaries, many 
of whom are still happy to share 
their wisdom in 280 characters 
or less. The web interface to 
Twitter is also perfectly accept-
able, such as its advanced 
TweetDeck web UI for the multi-
column view required by power 
users, but it’s always good to see 
a new native client for the Linux 
desktop being released. Cawbird 
is a new client, but it’s not an en-
tirely new application. That’s be-
cause it’s a fork of the already 
well-established Corebird, which 

fell victim to Twitter removing its 
User Stream API and replacing it 
with the new Accounts Activity 
API. Cawbird forked and suc-
cessfully made this transition, 
bringing a slick and modern 
GTK+ native Twitter client to 
your Linux desktop.

Cawbird behaves much like 
any other Twitter client. Its use 
of Gnome means it has very lit-
tle window decoration and very 
few configuration options, al-
though you can change the ava-
tars from their default squares 
to a circle. It also feels more 
quick and responsive than ei-
ther of the web UIs we men-
tioned, and this means you can 
fly around your timeline and 
conversations much more ef-
fectively than with a web 
browser. You can also create 

lists, web filters, and 
block lists from the icon 
tabs that appear at the 
top of the window. While 
it would be great to see 
multicolumn support, this 
is a rare feature for a 
desktop client. While 
we’re wishing for features, 
we’d love to see a dark 
mode, too. Fortunately, 

there is excellent spell-
checking and even emoji 
support when you do de-
cide to tweet these re-
quests to the developers.

Project Website
https://  github.  com/  IBBoard/ 
 cawbird

Man page viewer

Mangl

It’s easy to forget there’s a huge set of brilliant documentation 
already installed on your Linux box – all thanks to the man page.

Twitter client

Cawbird

Until Mastodon can take over the world, Twitter still has its uses.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 89

https://github.com/zigalenarcic/mangl
https://github.com/zigalenarcic/mangl
https://github.com/IBBoard/cawbird
https://github.com/IBBoard/cawbird


O rca is something spe-
cial. But before you real-
ize this, you need to 

overcome a serious learning 
curve. Even in the esoteric 
world of music sequencers, 
Orca is unique. It’s a console 
application that bills itself as a 
“programming language de-
signed to create procedural se-
quencers,” and there are defi-
nitely elements that could be 
described as being a program-
ming language. There are oper-
ands, loops, counters, condi-
tionals, and registers, for exam-
ple. But each of these is repre-
sented by a single character on 
your keyboard, from a all the 
way through to z, with * and # 
thrown in for good measure. A 
few more special characters 
are used to handle input and 
output, and Orca can talk to 
both MIDI- and OSC-compatible 
software and hardware devices.

However, you don’t type any 
of these character objects into 
a text editor, save the file, and 
run it through an interpreter/ 
compiler. Instead, Orca is also a 
kind of visual development en-
vironment for its own language. 
It starts with a cursor that you 

move across the default blank 
canvas of the background. The 
+ symbols on the background 
break this canvas into smaller 
grids, and you move the cursor 
around these too break down 
into smaller squares, with dots 
marking the magnified grid in 
the background. You can effec-
tively zoom in and out of this 
grid using the square and curly 
brackets. You then use any of 
the aforementioned keys to cre-
ate the object you want at the 
cursor position, using the grid 
as a reference to help you posi-
tion things in musically mean-
ingful places.

A sequence starts with the 
creation of an operator by 
pressing its designated key. 
The letter D is a good place to 
start. This is a delay function. 
When it’s created, dots appear 
in positions to its left, right, and 
bottom. In Orca, these direc-
tions are known as west, east, 
and south, respectively. If you 
press the spacebar, a counter 
on the lower screen border 
starts continually increment-
ing. Each value here is a frame, 
or click, where an event can be 
triggered. At this point, the 

delay operator’s south position 
will start showing a * every 
eight clicks. This asterisk is 
known as a bang, and it’s the 
character used to generate 
output. To change its timing 
frequency, you enter a single 
digit in the operator’s east po-
sition, and you can use any hex 
value. The operator uses the 
modulo of this to generate the 
bang. The position to the west 
of the operator is used as a 
modulation source from other 
operators, so you can build 
huge chains of operators and 
even encapsulate these into 
functions that you can copy 
and paste across the canvas – 
all running concurrently and 
generating output.

The final step is to add an 
output operator east of the 
bang being generated south of 
the delay. The colon (:) sends a 
MIDI note. When you create 
this, five dots appear to its 
right, which hold values for 
channel, octave, velocity, note, 
and length. Don’t worry, you 
don’t need to memorize all 
these special locations, as 
there’s always a hint at the bot-
tom to explain where your cur-
sor is. Provide values for these, 
and your MIDI synthesizer will 
play something. Congratula-
tions! We’ve made a sound, but 
barely scratched the surface. 
Which is why Orca really is 
something special.

Project Website
https://  hundredrabbits.  itch.  io/  orca

Procedural sequencer

Orca

Your entire performance 
can be saved or even 
inserted into a com-
pletely new project.

Orca feels like the evil musical hybrid of an assembler language, NetHack, and 
Conway’s Game of Life.

FOSSPICKSLINUX VOICE

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM90

https://hundredrabbits.itch.io/orca


S cummVM is a little like 
Blender, in that it’s been 
around for a long time, 

and most people are aware of 
it. It’s the game engine that first 
allowed us to replay those old 
8- and 16-bit era LucasArts 
games like Monkey Island 2: Le-
Chuck’s Revenge and Maniac 
Mansion. In fact, the SCUMM in 
ScummVM represents the orig-
inal games engine used to write 
these games, the Script Cre-
ation Utility for Maniac Mansion 
(SCUMM). But if you don’t fol-
low the project closely, you 
won’t realize just how many 
games, and gaming platforms, 
it’s grown to support in the al-
most two decades since its first 
release. There are dozens, in-
cluding the entire King’s Quest 
and Space Quest series, Simon 

the Sorcerer, Discworld, Star-
ship Titanic, Zork Nemesis, Eye 
of the Beholder, Broken Sword, 
and Myst.

This release is no different, but 
it does add support for a very 
special PC Windows game that 
dates all the way to 1997. It’s the 
game Blade Runner, which was a 
point-and-click adventure in-
spired by the famous film and 
developed by Westwood Studios 
while it took a sabbatical from its 
Command & Conquer franchise. 
But the game was far more than 
a rehash of Ridley Scott’s clas-
sic. It was a game that ran in par-
allel to the original storyline, and 
was figuratively drenched in the 
same atmosphere and philo-
sophical duplicity of the film, 
thanks to its wonderful graphics, 
reinterpreted Vangelis 

soundtrack, in-game AI, 
and compelling multifac-
eted endings. But it also 
expanded on the film’s 
themes to add new as-
pects to the story, all 
within what felt like a liv-
ing and breathing dysto-
pian future vision of Los 
Angeles 2019 as seen 
from 1982. It was also a 

game that remained very 
difficult to play on mod-
ern hardware, thanks to it 
being a Windows-only 
title. But that limitation is 
finally over – thanks 
ScummVM!

Project Website
https://  www.  scummvm.  org/

S ony has announced the 
PlayStation 5, but it’s 
some way off, and the 

PlayStation 4 (PS4) still has 
plenty of life in it. In many ways, 
this late stage of a console’s life 
cycle is often the best, with de-
velopers knowing how to get the 
best out of the hardware and a 
huge, stable number of players 
to sell games to. It’s also a 
stage where small tools come 
out of left field that can really 
upgrade your experience, and 
that’s what Chiaki does. It’s a re-
mote client for accessing your 
PS4 across a network on your 
Linux box. The idea isn’t new, 
and Sony has been offering its 
own remote play functionality to 
accomplish the same thing 
from the now defunct Vita hand-
held and PlayStation TV, as well 

as later clients for Windows and 
macOS. But there are obviously 
huge advantages for getting 
this feature natively, not least 
because the cooling fans on the 
PS4 sound like a runway at 
Heathrow, and it’s better if you 
can get as far away from the 
console as you can to play your 
games in quiet.
The client can be easily built or 
run from an AppImage. When 
first started, it will hunt around 
your network for a console, 
which will hopefully soon ap-
pear in the discovered list. To 
connect to your console, you 
need to run a Python script that 
extracts a unique identifier con-
nected to your PSN account 
from a new web-based account 
login. You then need to register 
a new device on your PS4 to 

get an eight-digit pin and enter 
all this into the Chiaki client. 
Fortunately, you only need to 
do this once. Your remote 
screen will then open on your 
Linux box, and you can then 
use your keyboard or controller 
to navigate around your Play-
Station and play your favorite 
games. It works brilliantly!

Project Website
https://  github.  com/  thestr4ng3r/ 
 chiaki

Old games emulator

ScummVM 2.1

It’s fitting that in the year the film Blade Runner was set, ScummVM 
has added support for this hugely enjoyable and influential PC game.

PlayStation remote client

Chiaki

If you have a PS4, Chiaki 
lets you stream games 
to your Linux box at 
60hz/ 720p. Pro users 
can push this to 1080p.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 91

https://www.scummvm.org/
https://github.com/thestr4ng3r/chiaki
https://github.com/thestr4ng3r/chiaki


Line 3 pulls in the bits of the mastodon module 
you need. Lines 5 through 10 registers the app, 
giving it a name the server can identify it by 
(readtoots on line 6). On line 7, you tell the server 
what sort of actions it will be able to carry out 
(in this case only 'read' – other actions are 
'write', 'follow', and 'push'). The api_base_url 
on line 8 tells the application what instance of 
Mastodon you want to go through. This is the 
address of a Mastodon server – you would usu-
ally use the instance where you have your ac-
count for this. Finally, the to_file argument tells 
readtoots_register.py where to store the cre-
dentials information the server will send back 
down the line for the application.

Save the file as readtoots_register.py, make it 
executable with

chmod a+x readtoots_register.py

and run it with:

./readtoots_register.py

After running it for the first time, nothing appar-
ently happens, but you will find a new .secrets file 
in your app’s directory. If you look inside, you will 
see something similar to Listing 2.

The Mastodon.create_app() function shown in 
Listing 1 not only registers the application, it 
also returns a client_id (line 1 in Listing 2) and 
a client_secret (line 2 in Listing 2) that you will 
be able to use to identify your application each 
time it has to interact with the Mastodon in-
stance. It also kindly adds the address of the in-
stance the app is registered with, making it 
super convenient as you will see later on.

A lthough there are plenty of Mastodon [1] 
clients out there (as we saw in the prior in-
stallment [2]), sometimes you just want 

that something special to satisfy your needs. For-
tunately, Mastodon’s API is open and well-orga-
nized and there is a Python wrapper [3] that makes 
it even easier.

Registration
First, you need to  install the Mastodon.py wrapper. 
The easiest way to do this is by using pip:

pip install Mastodon.py

or, if pip complains about permissions:

sudo pip install Mastodon.py

Next you want to register your application with the 
Mastodon network. You can do this from the 
Mastodon website where you have opened your 
account. We talked about how to do this in Linux 
Magazine, issue 227 [4].

Or you could do it all from the comfort of your 
command line with something like what you see 
in Listing 1.

Line 1 of Listing 1 just sets the interpreter you 
want to use to run this script (your default Python 
interpreter).

Creating your own clients to interact with your friends in the Fediverse is easy. A 
bit of Python and an off-the-shelf module will do the trick.

BY PAUL BROWN

Build your own Mastodon client  

Status Quo

01  #!/usr/bin/env python

02  

03  from mastodon import Mastodon

04  

05  Mastodon.create_app(

06    'readtoots',

07    scopes=['read'],

08    ap i_base_url =  

'https://your.mastodon.server',

09      to_file = '.secrets'

10  )

Listing 1: readtoots_register.py

01  53eM1n9lyHR4nd0mUnUMB3r5vAN6G133TeR5X4g

02  KM0r340FdTh3p54M3A60nTnUkKN0WC0hweMigLcng6U

03  https://your.mastodon.server

Listing 2: .secrets

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM92

LINUX VOICE TUTORIAL – MASTODON



You will only need to run readtoots_register.py 
once, and, when you’re done, you can crack on 
with readtoots.py proper.

Reading Toots
Let’s build a command-line Mastodon client 
that reads, by default, the toots of the account 
you log into, but that will also let you read toots 
from any federated account you pass as a pa-
rameter to the script.

As you will also need login credentials to ac-
cess an account, you are going to need at least 
three options on the command line. As com-
mand line arguments tend to pile up as you add 
features, let’s keep things organized and use the 
optparse Python module to keep things tidy.

Take a look at Listing 3 to see how it all works.
Once you have imported the modules you need 

(lines 3 and 4) and set up the OptionParser() to 
manage your command line arguments (lines 8 
through 13), it is time to activate your application 
(lines 15 through 17).

See how convenient this is: If you hadn’t regis-
tered and stored the credentials and the address 
of the Mastodon instance in .secrets, you would 
have had to hard code them in with the client_se‑
cret, client_id, and api_base_url option when you 
instantiate the Mastodon class.

Next, you log into your account (lines 19 
through 24). This is not always necessary. In the-
ory, you can have an application read public toots 
from public accounts without having to log in, but 
this only works on some Mastodon servers. Turns 
out mine is not one of them.

Whether logging in is necessary or not will de-
pend on the version of the Mastodon software the 
server is running and how the administrator has 
configured it. To be on the safe side, always log in, 
and your application will not fail.

The logging in itself is straightforward: pass the 
username and password collected from the com-
mand line to Mastodon.py’s log_in() function and 
you will get an access token in return (which you 
can store in a file for when you need it – line 22).

For some reason not explained in Mastodon’s 
API documentation, my server also required the 
application’s scope as defined when registering it 
(see Listing 1, line 7). Oh well! I added it on line 23  
of Listing 3, and everything worked.

Next you get the id of the account you want to 
read. The id is not the same as the name of the 
account (@someusername@some.mastodon.in-
stance), but a unique numerical value assigned to 
each account. There is no easy way to discover 
an account’s id on a Mastodon website, but you 
can discover what yours is with Mastodon.py’s me() 
function (line 27).

The me() function returns a Mastodon user dic-
tionary. A user dictionary contains information 
about the account. It includes, among other 
things, the display_name, the username, when it was 
created, how many followers it has, and, yes, the 
account’s id.

In case the user has decided to peruse the 
statuses of another account, you can use the 
app.account_search() to find the account passed 
on by the ‑a option on the command line. As app.
account_search() returns a list of user dictionar-
ies, you have to pick the first one (line 30).

01  #!/usr/bin/env python

02  

03  from mastodon import Mastodon

04  from optparse import OptionParser

05  

06  if __name__ == '__main__':

07  

08    parser = OptionParser ()

09    pa rser.add_option ('‑u', '‑‑username',  

help = 'your email', dest = 'maUser')

10    pa rser.add_option ('‑p', '‑‑password',  

help = 'your password',  

dest = 'maPassword')

11    pa rser.add_option ('‑a', '‑‑account',  

help = 'account you want to read',  

dest = 'sosAccount', default = 'me')

12  

13    (options, args) = parser.parse_args()

14  

15    app=Mastodon (

16      client_id = '.secrets'

17      )

18  

19    app.log_in (

20      username = options.maUser,

21      password = options.maPassword,

22      to_file = '.token',

23      scopes = ['read']

24      )

25  

26    if (options.sosAccount == 'me'):

27      maId = app.me ()['id']

28  

29    else:

30      ma Id = app.account_search ( 

options.sosAccount)[0]['id']

31  

32    maToots = app.account_statuses (maId)

33  

34    for status in maToots:

35      pr int ('====================  

Status ' + str (status['id']) +  

' ====================')

36      print (status['content'])

Listing 3: readtoots.py

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 93

TUTORIAL – MASTODON LINUX VOICE



an account identified by maId (line 32). You then 
loop through them (lines 34 through 36), extract 

the content field (line 36), and print 
it to the command line.

Save the file as readtoots.py and 
make it executable with:

chmod a+x readtoots.py

You can then run it like this:

./readtoots.py ‑u your@email.com ‑p U

  "Your secret password"

where your@email.com is the email 
you used when you registered for 
your Mastodon account and "Your 
secret password" is the password 
you use to log into your account.

This will output your account’s 20 
latest toots to the command line (Fig-
ure 1). It doesn’t look pretty, but it 
works.

In the first run, you don’t specify any 
account, so the application goes with 
the default ("me") and prints out the sta-
tuses of the account it is logged in to.

The account_statuses() function returns a list 
of toot dictionaries containing all the toots of 

Figure 1: Outputting toots to the command line using your custom-made Mastodon client.

01  #!/usr/bin/env python

02  

03  from mastodon import Mastodon

04  from optparse import OptionParser

05  

06  if __name__ == '__main__':

07  

08    parser = OptionParser ()

09    parser.add_option ( '‑u', '‑‑username',  help = 'your 

email',     dest = 'maUser')

10    parser.add_option ( '‑p', '‑‑password',  help = 'your 

password',  dest = 'maPassword')

11    parser.add_option ( '‑a', '‑‑account',   help = 'account 

you want to read', dest = 

'sosAccount', default = 'me')

12  

13    (options, args) = parser.parse_args()

14  

15    app=Mastodon (

16      client_id = '.secrets'

17      )

18  

19    app.log_in (

20      username = options.maUser,

21      password = options.maPassword,

22      to_file = '.token',

23      scopes = ['read']

24      )

25  

26    if (options.sosAccount == 'me'):

27      maId = app.me ()['id']

28  

29    else:

30      ma Id = app.account_search (options.sosAccount)[0]

['id']

31  

32    maMaxId = None

33    wannaRepeat = "Y"

34  

35    while (wannaRepeat in "YyYesyesYeahyeah"):

36  

37      maToots = app.account_statuses ( maId, max_id = 

maMaxId)

38  

39      for status in maToots:

40        print ( '==================== Status ' + str 

(status['id']) + ' ====================')

41        print (status['content'])

42  

43      maMaxId = status['id']

44      print ('========================================')

45      print ("More?")

46      wannaRepeat = input()

Listing 4: readtoots.py (better version)

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM94

TUTORIAL – MASTODONLINUX VOICE



If you run readtools.py like this:

./readtoots.py ‑u your@email.com ‑pU

 "Your secret password" ‑a U

 @kde@mastodon.technology

you will see the latest 20 toots from 
the KDE community account.

I have mentioned several times that, 
by default, all you get is the 20 latest 
statuses. You can push up that limit to 
a maximum of 40 by adding limit = 40 
as an argument in account_statuses() 
on line 32, but that is still a paltry feed if 
ever there was one. Who posts only 40 
statuses and stops there? Incidentally, 
this is a limitation of the Mastodon API, 
not of Mastodon.py. You can get past 
this limitation, however. Take a look at 
Listing 4.

The trick is using account_
statuses()’s max_id argument 
(line 37). All you have to do is put the 
for loop inside a while loop (lines 35 
through 46) and collect the last sta-
tus id after the for loop exits (line 43). 
Then you ask the user if they want to continue 
(lines 45 and 46) and, if they say Yes (line 35), use 
the status id in account_statuses() and start over.

When you run readtoots.py now, it prints out the 
20 latest toots and then prints More?; if the user 
enters Y, Yes, or Yeah, it prints out the next 20 
toots and asks again. If the user types in No, the 
application exits (Figure 2).

Improvements
You will immediately notice that statuses come 
laced with HTML tags. To make them more 
readable, you could strip them out. Or, even bet-
ter, use the HTML to format the text as the au-
thor intended. Modern terminal emulators ac-
cept colored, bold, and highlighted text, even 
emojis. Most also allow for “live” links the user 
can click.

Another thing is that images, videos, and 
other media files included in toots are lost. To 
be able to see them, you would have to design a 
client with a graphical interface, with boxes that 
display pictures and clips. Implementing a cli-
ent with these features goes well beyond the 
scope of this article.

Conclusion
As mentioned elsewhere, creating a basic Mast-
odon reader is dirt simple with Mastodon.py. Mak-
ing it attractive is another matter, but that is like 
everything: Your mileage will vary according to 
how far you want to go and how many features 
you want to pack into your client.

However, there is one thing you must always 
be aware: Different nodes in the Mastodon net-
work implement different versions of the Mast-
odon server software. And different versions 
implement slightly different features or imple-
ment similar features in slightly different ways. 
Check what version your instance is running with 
Mastodon.py’s Mastodon.instance() function [5].

Also bear in mind that the administrator can en-
able or lock down certain features, so don’t expect 
all the API’s features to work everywhere.

In the next issue, we’ll see how to build an appli-
cation that lets you post toots and even schedule 
toots for later posting. See you then!  nnn

Figure 2: Scroll through the whole shebang with the new and improved readtoots.py!

[1]  Mastodon: https://  joinmastodon.  org/

[2]  “Tutorial – Mastodon Clients” by Paul Brown, 
Linux Magazine, issue 228, November 2019, 
pp. 92-95

[3]  Mastodon.py documentation:  
https://  mastodonpy.  readthedocs.  io/  en/ 
 stable/  index.  html

[4]  “Welcome to the Fediverse” by Paul Brown, 
Linux Magazine, issue 227, October 2019, pp. 
90-94: http://  www.  linux‑magazine.  com/ 
 Issues/  2019/  227/  Tutorial‑Fediverse

[5]  Mastodon.instance:  
https://  mastodonpy.  readthedocs.  io/  en/ 
 stable/  index.  html#  reading‑data‑instances

Info

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020 95

TUTORIAL – MASTODON LINUX VOICE

https://joinmastodon.org/
https://mastodonpy.readthedocs.io/en/stable/index.html
https://mastodonpy.readthedocs.io/en/stable/index.html
http://www.linux-magazine.com/Issues/2019/227/Tutorial-Fediverse
http://www.linux-magazine.com/Issues/2019/227/Tutorial-Fediverse
https://mastodonpy.readthedocs.io/en/stable/index.html#reading-data-instances
https://mastodonpy.readthedocs.io/en/stable/index.html#reading-data-instances


FEATURED 
EVENTS

Im
ag

es
 ©

 A
le

x 
W

h
it

e,
 1

23
R

F.
co

m

IT Tage 2019 December 9-12 Frankfurt, Germany https://www.ittage.informatik-aktuell.de/
Node+JS Interactive 2019 December 11-12 Montreal, Canada https://events19.linuxfoundation.org/events/ 
    nodejs-interactive-2019/
Kubernetes Forum Sydney 2019 December 12-13 Sydney, Australia https://events19.linuxfoundation.org/events/ 
    nodejs-interactive-2019/
Open Source Forum 2019 December 16 Tokyo, Japan https://events19.linuxfoundation.org/events/ 
    open-source-forum-2019/
36C3 - Chaos Communication  December 27-30 Leipzig, Germany https://events.ccc.de/ 
Congress
FOSDEM 2020 February 1-2 Brussels, Belgium https://fosdem.org/2020/
Kubernetes Forum Bengaluru February 17-18 Bengaluru, India https://events19.linuxfoundation.org/events/ 
    kubernetes-forum-bengaluru-2020/
Kubernetes Forum Delhi February 20-21 Delhi, India https://events19.linuxfoundation.org/events/ 
    kubernetes-forum-delhi-2020/
Software Architecture Conference February 23-26 New York, New York https://conferences.oreilly.com/ 
    software-architecture/sa-ny
SCaLE 18x March 5-8 Pasadena, California https://www.socallinuxexpo.org/scale/18x
AI Hardware Summit March 10-11 Munich, Germany https://www.aihardwaresummiteu.com/events/ 
    ai-hardware-summit-europe
Cloud Expo Europe March 11-12 London, United Kingdom https://www.cloudexpoeurope.com/
CloudFest 2020 March 14-19 Europa-Park, Germany https://www.cloudfest.com/
Artificial Intelligence Conference March 15-18 San Jose, California https://conferences.oreilly.com/
    artificial-intelligence/ai-ca
Strata Data Conference March 15-18 San Jose, California https://conferences.oreilly.com/ 
    artificial-intelligence/ai-ca

     Events

 36C3 - Chaos 
Communication Congress 
Date: December 27-30, 2019

Location:  Leipzig, Germany

Website:  https://events.ccc.de/

The Chaos Computer Club e. V. (CCC) is 
Europe's largest association of hackers. 
For the 36th time, the CCC will host the 
Chaos Communication Congress 
between Christmas and New Year’s Eve. 
Around 17,000 participants are expected 
from December 27-30, 2019, including 
more than 2,000 volunteers.

 FOSDEM '20 
Date: February 1-2, 2020

Location: Brussels, Belgium

Website:  https://fosdem.org/2020/ 

FOSDEM is a free and non-commercial 
event organized by the community for 
the community to promote the wide-
spread use of free and open source 
software. Join thousands of develop-
ers from all over the world for this 
two-day event. 

 SCaLE 18x 
Date: March 5-8, 2020

Location: Pasadena, California

Website:  https://www.socallinuxexpo.
org/scale/18x

SCaLE is the largest community-run, 
open source and free software confer-
ence in North America. It is held annu-
ally in the greater Los Angeles area. 
SCaLE 18x expects to host 150 exhibi-
tors, along with nearly 130 sessions, 
tutorials, and special events.

Users, developers, and vendors meet at Linux events around the world.  
We at Linux Magazine are proud to sponsor the Featured Events shown here. 

For other events near you, check our extensive events calendar online at  
http://linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar, 
please send a message with all the details to events@linux-magazine.com.

96

SERVICE
Events

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM



We are always looking for good articles on Linux and the 
tools of the Linux  environment. Although we will consider 
any topic, the following themes are of special  interest:

• System administration

• Useful tips and tools

• Security, both news and techniques

• Product reviews, especially from real-world experience

• Community news and projects

If you have an idea, send a proposal with an  outline, an esti-
mate of the length, a description of your background, and 
 contact information to edit@ linux-magazine.com.

The  technical level of the article should be consistent with 
what you  normally read in Linux Magazine. Remember 
that Linux Magazine is read in many  countries, and your 
article may be translated into one of our  sister publica-
tions. Therefore, it is best to avoid using slang and idioms 
that might not be understood by all readers    . 

Be careful when referring to dates or events in the future. 
Many weeks could pass between your manuscript sub-
mission and the final copy reaching the reader’s hands. 
When submitting proposals or manuscripts, please use a 
 subject line in your email message that helps us identify 
your message as an article proposal. Screenshots and 
other supporting materials are always welcome. 

Additional information is available at:  
http://www.linux-magazine.com/contact/write_for_us.

CALL FOR PAPERS

NOW PRINTED ON recycled paper from 100% post-consumer 
waste; no chlorine bleach is used in the production process.

Erik Bärwaldt 23

Swapnil Bhartiya 8

Jens-Christoph Brendel 16

Paul Brown 92

Zack Brown 12

Bruce Byfield 38, 70

Andy Carlson 44

Joe Casad 3

Mark Crutch 75

Nate Drake 82

Jon “maddog” Hall 77

Jörg Hofmann 26

Charly Kühnast 51

Christoph Langner 32

Vincent Mealing 75

Pete Metcalfe 72

Martin Mohr 16

Graham Morrison 86

Dmitri Popov 48, 78

Mike Schilli 56

Scott Sumner 60

Ferdinand Thommes 52

Jack Wallen 8

Authors

Editor in Chief 
 Joe Casad, jcasad@linux-magazine.com
Copy Editors 
 Amy Pettle, Megan Phelps
News Editor 
 Swapnil Bhartiya and Jack Wallen
Editor Emerita Nomadica 
  Rita L Sooby
Managing Editor 
  Lori White
Localization & Translation 
  Ian Travis
Layout 
 Dena Friesen, Lori White
Cover Design 
 Lori White
Cover Image 
 © andreysuslov, 123RF.com
Advertising 
 Brian Osborn, bosborn@linuxnewmedia.com  
 phone  +49 89 3090 5128
Marketing Communications 
 Gwen Clark, gclark@linuxnewmedia.com 
 Linux New Media USA, LLC  
 2721 W 6th St, Ste D  
 Lawrence, KS 66049 USA
Publisher 
 Brian Osborn
Customer Service / Subscription 
 For USA and Canada: 
 Email: cs@linuxpromagazine.com 
 Phone: 1-866-247-2802  
 (Toll Free from the US and Canada)

 For all other countries: 
 Email: subs@linux-magazine.com

www.linuxpromagazine.com – North America
www.linux-magazine.com – Worldwide

While every care has been taken in the content of 
the  magazine, the publishers cannot be held respon-
sible for the accuracy of the information contained 
within it or any  consequences arising from the use of 
it. The use of the disc provided with the magazine or 
any material provided on it is at your own risk.

Copyright and Trademarks © 2019 Linux New 
Media USA, LLC.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the  publishers. It is assumed that all cor-
respondence sent, for  example, letters, email, 
faxes, photographs, articles,  drawings, are sup-
plied for publication or license to third  parties on 
a non-exclusive worldwide basis by Linux New 
Media USA, LLC, unless otherwise stated in writing.

Linux is a trademark of Linus Torvalds.

All brand or product names are trademarks 
of their respective owners. Contact us if we 
haven’t credited your copyright; we will always 
correct any oversight.

Printed in Nuremberg, Germany by hofmann 
infocom GmbH on recycled paper from 100% 
post-consumer waste; no chlorine bleach is 
used in the production process.

Distributed by Seymour Distribution Ltd, United 
Kingdom

LINUX PRO MAGAZINE (ISSN 1752-9050) is 
published monthly by Linux New Media USA, LLC, 
2721 W 6th St, Ste D, Lawrence, KS, 66049, USA. 
Periodicals Postage paid at Lawrence, KS and 
additional mailing offices. Ride-Along Enclosed. 
POSTMASTER: Please send address changes to 
Linux Pro Magazine, 2721 W 6th St, Ste D, 
Lawrence, KS 66049, USA.

Published monthly in Europe as Linux Magazine 
(ISSN 1471-5678) by: Sparkhaus Media GmbH, 
Zieblandstr. 1, 80799 Munich, Germany.

     Contact Info

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM ISSUE 230 JANUARY 2020



 Approximate 
UK / Europe Jan 04
USA / Canada Jan 31
Australia Mar 02

 On Sale Date 

Sc
re

en
sh

o
ts

 h
tt

p
s:

//
re

g
o

lit
h

-l
in

u
x.

o
rg

Regolith Linux combines a tiling window mana-
ger with Gnome system management tools for 
a unique user experience that “ditches the cruft 
of Windows and Mac knockoffs 
to provide a productive and 
beautiful place to get work 
done.” Stay tuned next month 
for a look at an innovative new 
approach to the Linux user 
experience. 

Issue 231 – February 2020

Regolith Linux

98

NEXT MONTH
Issue 231

JANUARY 2020 ISSUE 230 LINUX-MAGAZINE.COM  |  LINUXPROMAGAZINE.COM

Preview Newsletter
The Linux Magazine Preview is a monthly email 
newsletter that gives you a sneak peek at the next 
issue, including links to articles posted online. 

Sign up at: https://bit.ly/Linux-Update






	Linux Magazine 230
	Welcome
	Table of Contents
	On the DVD
	News
	Kernel News
	Alexa Skills
	WebThings
	FHEM
	Z-Wave
	Command Line – Vim Plugin Managers
	PXE Boot with TinyCore
	Symphytum
	Charly’s Column – urlwatch
	Flatpak
	Programming Snapshot – bpftrace
	Python Remote Objects Library
	Open Hardware – Inkplate 6
	Simulated Pi Hardware
	Linux Voice Introduction
	Doghouse – Women In Tech
	Gotify
	Calibre
	FOSSPicks
	Tutorial Mastodon
	Events / Authors



