Industrial Raspberry Pi

ComfilePi

The ComfilePi is a touch panel PC designed with high-tolerant components and no moving parts for industrial applications. It features a water-resistant front panel, touchscreen, color LCD (available in various sizes), RS-232, RS-485, Ethernet, USB, I2C, SPI, digital IO, battery-backed RTC (real-time clock), and piezo buzzer.

Use the rear-panel 40-pin GPIO header to expand its features and capabilities with additional I/O boards. The ComfilePi is UL Listed and employs Raspberry Pi Compute Module.

Visit www.comfiletech.com © copyright COMFILE Technology, Inc. ALL RIGHTS RESERVED
This month, for those who celebrate, is the Cambridge Beer Festival. The team at Raspberry Pi are all excited and ready to impart their craft-based brewing wisdom. Beer making may be an age-old art, but that doesn’t mean it can’t be brought into the modern age with a little Raspberry Pi smarts (page 32).

We get that not everybody drinks, let alone wants to brew their own beer, so our second feature this month is Master Linux & Command Line (page 60). Learning the command line changes how you use computers forever, and I really can’t recommend it enough for all technology enthusiasts.

There are some amazing tutorials this month. Sean McManus has created Bedtime Stories (page 40) that uses ChatGPT and Stable Diffusion to create surreal dreamlike stories. Stewart Watkins explores electronics with NeoPixel LEDs (page 46), and David Plowman takes us on a tour of still image capture with how the Camera Module works (page 50).

The MagPi is a labour of love, even if it’s a beer-infused one. Actually, probably moreso this month than usual. Cheers!
PROFESSIONAL CONTROL SYSTEM DEVELOPMENT TOOL

Home projects made easy.

CDP Studio, a great software development tool for your home projects. Build systems for Raspberry Pi, use C++ or NoCode programming, open source libraries, out of the box support for GPIO, I2C, MQTT, OPC UA and more. Create beautiful user interfaces. Built for industrial control system development, **FREE for home projects.**

cdpstudio.com
Tel: +47 990 80 900 • info@cdptech.com
CDP Technologies AS // Hundsværgata 8, 6008 Ålesund, Norway
Contents

Issue 130 June 2023

Cover Feature

32 Raspberry Pi Micro Brewery

Regulars

28 Case Study: Remote learning
90 Your Letters
92 Community Events Calendar
97 Next Month
98 The Final Word

Project Showcases

08 Love Machine ChatGPT
12 PiFinder
14 MCM/70 Reproduction
16 Refurbished Vending Machine
20 RAD Expansion Unit
22 Antarctic PiCam
CONTENTS

Tutorials

40 AI-generated bedtime stories
46 Make colour-changing LEDs
50 Taking images on Camera Module
54 Build a conversational AI

The Big Feature

60 Master the Linux command line

Reviews

68 Argon Pod System
70 EPD 3.70 touchscreen
72 Iono RP / RP D16
74 Products in stock
80 10 amazing lighting projects
82 Learn MicroPython

Community

84 Brian Corteil interview
86 This Month in Raspberry Pi

WIN 1 OF 3 PICO BRICKS BASE KIT

DISCLAIMER: Some of the tools and techniques shown in The MagPi magazine are dangerous unless used with skill, experience, and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you are responsible for your own safety and understanding the limits of yourself and your equipment. Children should be supervised. Raspberry Pi Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in The MagPi magazine. Laws and regulations covering many of the topics in The MagPi magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some manufacturers place limits on the use of their hardware which some projects or suggestions in The MagPi magazine may go beyond. It is your responsibility to understand the manufacturer’s limits.
INSPIRATION STARTS HERE

From millions of in-stock parts to cutting-edge technical resources—we've got everything you need to turn inspiration into innovation.

Get inspired at digikey.co.uk or call 0800 587 0991.
A regular fixture in the security software PR calendar is the annual survey that finds 70–plus percent of people quizzed by complete strangers at a train station are more than happy to hand over their essential passwords and memorable information in return for nothing more than a winning smile and perhaps a bar of chocolate.

Despite these alarmist news items gaining media coverage every single year for more than a decade, we punters just don’t seem to wise up to such confidence tricks. Tech entrepreneurs Kakapo Labs set about a more benign riff, on the idea that Joe Public loves a bit of flattery, using clever verbal flummery generated by AI darling ChatGPT, creating a Love Machine that dishes out compliments and chocolates in equal measure (magpi.cc/chatgptgumball). So far, the gentle love-bombing experiment doesn’t seem to have a hidden agenda.

Sweet nothings
Will and India, from London-based Kakapo Labs, have backgrounds in electronics engineering and graphic design, respectively, and are interested in “building fun, positive things that cross the boundary between the internet and real-world objects.” As with the password insecurity mentioned above, Will notes that behavioural psychology research shows that it’s pretty clear people are highly motivated by small rewards. “We were interested in what people might do to get a small reward and how much they’d enjoy it. ChatGPT was in the news a lot around the time we started this project, but mainly related to its impact on work. “We thought instead we could try to use it to make some fun” – hence the AI cutey sporting a designer fluffy red skirt and matching glowing red LED matrix heart.

They chose Pico W for this ChatGPT Love Machine “because it’s powerful but also simple, low-cost, and small but, at the same time, can run a full wireless stack which is easy to use.” Kakapo Labs has more than a decade’s experience of using wireless microcontrollers, and often found them complicated to use “as the trade-offs needed to squeeze an internet stack into an environment without a full operating system, and limited resources meant it always felt like a bit of an awkward fit.” However, Will says that, with MicroPython on Pico W, things work painlessly and the development time is short.

Fiddling about
The Love Machine was originally a gum ball dispenser that Kakapo bought online for less than £100, replacing its 20p coin-operated mechanism with one they designed in Inkscape and laser-cut themselves. This involved several stacked-up pieces sandwiched together, plus a retractable gear wheel attached to a stepper motor. With lots of fiddly parts to connect up, Will and India realised they could simplify access by removing the vending machine’s base and upending it. They boosted its power using a voltage converter but tried not to over-egg things and cause jams that could damage the mechanical cogs. A stirrer used to push gum balls towards the dispensing slot was not needed; removing this made things work more reliably. They also used brass inserts
Wi-Fi hotspot access via the makers’ phones means the Love Machine can be complimentary to strangers in all sorts of unexpected places.

An upended, adapted gum ball dispenser bought for £75 from eBay now doles out compliments and chocolates to deserving passers-by.

Using Raspberry Pi Pico W and Pimoroni’s phew server the OpenAI (ChatGPT) API converses over WhatsApp and “judges whether people are sending compliments”.

Who wouldn’t want to be chatted up in an AI-generated chat by a cute fluffy-skirted minx?

Quick FACTS

- The Love Machine first appeared on Valentine’s Day.
- …and soon dispensed its stash of Lindt mini eggs.
- But not to anyone who insults it.
- When provoked by a team member’s partner…
- …it dispensed hilarious insults rather than compliments.

PROJECT SHOWCASE

Love Machine ChatGPT compliment giver
Cute, approachable, accessible tech is a great way to attract people to a fun and rewarding career or pastime.

Pushed into the acrylic sheet, instead of nuts, reducing “the number of hands/fingers/things to hold simultaneously and [making] assembly and disassembly quicker and easier.”

Pimoroni’s ‘phew’ web server provides an access point to the software and allows the team to control access and connect the ChatGPT Love Machine to Wi-Fi via their phones. The Love Machine is controlled using a web socket including, on the client side, the ‘micropython_async_websocket_client’ library for which WSS (Secure WebSocket) support was so recent that its code hadn’t yet been merged into the main library. Using the AWS API gateway keeps running costs down as there’s no need to have a server instance constantly handling requests.

This technology is hidden behind the Love Machine’s greeting board which tells passers-by...
how to interact. Users send WhatsApp messages to the compliment machine, configured using Twilio, and ChatGPT “provides the conversation and judges whether people are sending compliments,” says Will.

With a company named after David Attenborough’s favourite breed of parrot, it was important to the Kakapo team that the build was fast to complete and fun, making it an ideal project that would catch people’s imagination and then discover that they could create similar ones.

ChatGPT provides the conversation and judges whether people are sending compliments

“We think getting people to have a go with tech when they’re young is really important! Making things can be very rewarding and is the ideal career for some people. They are also diversity advocates – opening up the chance to have a go can help people who didn’t realise ‘someone like me can do this’.”

Hello, sweetie!

A second-hand confectionery dispenser was retrofitted with a new gearing system, stepper motor, and easy stepper motor board. Aligning the dispensing mechanism was a challenge!

The Pico-powered AI bot connects to a convenient Wi-Fi hotspot to process WhatsApp chats and deliver its responses (and possibly some chocolate).

A voltage converter allows everything to run from a 5V power input. Raspberry Pi Pico W is attached via USB and runs MicroPython and Thonny IDE with data via Amazon Web Services. Messages are shown on an Adafruit I2C LED matrix.

ChatGPT is used to communicate with users via WhatsApp and Twilio, and judge whether the conversationalist is worthy of a chocolate-based reward.
PiFinder

Richard Sutherland doesn’t need to stab around in the dark any more – his all-in-one astronomy positioning device will point the way, as David Crookes explains.

Wh en stargazing, amateur astronomers need to know what their telescope is looking at in the vast darkness of space, yet this is easier said than done. “Finding very small and dim objects in the night sky can be challenging, historically requiring paper charts and a good working knowledge of the constellations,” Richard Sutherland explains.

There are, however, newer ways to determine a telescope’s position and find objects. “There are computerised pointing systems that rely on rotary encoders mounted securely to a telescope mount,” Richard continues. “They monitor a telescope’s movement and extrapolate where it is pointing from this information, but they can be difficult to add to a telescope and require accurate alignment information to work well.”

As such, Richard decided to create his own system. “I was seeing articles and forum posts describing electronic finders (devices that use a camera and computer to determine absolute telescope pointing),” he says. “So I decided to see if I could build something I’d be happy using and sharing.”

Scoping the sky

Richard has based his project – called PiFinder – around a Raspberry Pi 4 computer and a Raspberry Pi High Quality Camera, with the idea being to create a device that would take images of the night sky to determine where a telescope is pointing by analysing the pattern of stars.

“I wanted PiFinder to be easily added to any type of telescope, requiring no setup aside from a clear view of the sky to indicate where the telescope is pointing,” Richard says. “I wanted to combine this ability to know where the telescope is pointed with an extensive catalogue of thousands of object locations to help an observer find objects in the sky with simple guidance on which way to push the telescope.” He achieved all of these things and more.

By having the camera constantly taking images, the PiFinder can get to work. “So long as the on-board Inertial Measurement Unit indicates the telescope is static, the camera is snapping images and feeding them to the solving algorithm,” Richard explains. “Depending on sky conditions and which camera is being used, it can take anywhere from 0.25 to 1.5 seconds to capture an exposure which contains enough stars to solve.”

Stars in his eyes

After an image has been taken, it’s processed using code released by the European Space Agency called Tetra3. “It implements a very fast system for extracting stars from an image and using distances between multiple sets of four stars in the image to produce a hash,” Richard says. “This hash can be quickly matched against a pre-computed database of star patterns to find candidate positions. Each potential position is then checked using other stars in the same image to verify the correct solution.”

Extracting stars from the image on a Raspberry Pi 4B computer takes just 100 milliseconds, while solving the image takes 44 ms. “This is all done on a separate thread so the next image can be acquired while the previous image is being solved,” Richard says.

“In practice, this means that the PiFinder can usually achieve one capture/solve per second. If using the Raspberry Pi Global Shutter Camera, it can achieve more than two captures/solves per second due to its much larger pixel size and low-light sensitivity.”
The on-board GPS determines location and time, sharing that information with the software on Raspberry Pi for more accurate pointing.

Images taken by the camera are used to determine where the telescope is pointing by ‘solving’ the pattern of stars in the image.

The project uses an extensive database of celestial objects, allowing users to pinpoint a particular one.

Quick FACTS
- The build cost is about $210
- It took Richard seven months to create
- Richard has written a user manual
- The screen can be dimmed down to completely dark
- It’s a self-contained device with 17 keys

I wanted PiFinder to be easily added to any type of telescope.

By cycling through several astronomical catalogues and even typing in the ID of a specific celestial body, users can use PiFinder to locate objects in the night sky, receiving simple guidance on which way to push the telescope in order to view them. Richard says it’s working well, which is why he released it to the public after seven months’ work. “I’ll continue to focus on making it as simple to replicate and build as possible as I get more feedback from others,” he reveals.
Michael Gardi’s reproductions of classic computers have featured in The MagPi’s pages on several occasions. A proud Canadian, he enjoys spotlighting “Canada’s contributions to the personal computer revolution.”

Confident that he “had a pretty good handle on all of the machines available in the 1960s and 1970s”, he was somewhat flabbergasted when he came across the MCM/70, a “beautiful and innovative” Canadian-built personal computer that he’d never heard of. Even more so because it was conceived and made in Kingston, Ontario, very near to where Michael lives.

Hardware challenges
Keen to build his own repro version, Michael began to source components. While obtaining a keyboard was straightforward, from Dave at osiweb.org, he wasn’t sure how to reproduce the MCM/70’s unique APL keycaps. After considering making his own, he discovered a helpful UK supplier of custom keycaps, kromekeycaps.com.

Michael used Inkscape to create SVG versions of the legends that could be scaled to fit the keycaps. Detail is crucial in his reproductions, as he reflects: “With the ‘inside’ of the machine being emulated, it is very important to me for the outside to look as much as possible like the original. I want my reproductions to be clearly recognised, and operate the same as the originals they replicate.”

Michael spent some time looking for a suitable replacement for the original MCM/70’s plasma display that’s no longer manufactured, and eventually found the high-performance Broadcom HCMS-2972 dot matrix display which offered a close match. “Packaged as eight 5×7 dot matrix arrays, these modules operate at a nice safe 3.3V and can be cascaded together side by side to create the 32×1 character display desired here.”

The aesthetically pleasing casing took Michael many hours to 3D-print, and he added two placebo cassette decks for an authentic look: “Virtually all of the online images of the MCM/70 feature the two tape deck model.”

Retro Raspberry Pi
Following a research visit to the York University Computer Museum (YUCoM), Toronto, Michael decided to use the YUCoM working MCM/70 software emulator in his project, which has “high historical accuracy” – important if his version was to work just like the original. “Thanks to the hard working folks at York University, I have a great head start with this project.”

To complement that, he needed a solution with a fairly powerful CPU to run the emulator. After first trying it on a Raspberry Pi 2 he had to hand, he found it only executed at about 33% the speed of an original MCM/70. “When I moved the project to a Raspberry Pi 4B, the emulator ran at twice the speed of the original,” he reveals.

Raspberry Pi’s large number of GPIO pins also allowed Michael to wire the emulator to interact with the display, keyboard, and cassette deck. Plus, he needed “a target system with a Linux-based OS to build and run the emulator (which was written in C). In fact, the emulator built easily on Raspberry Pi OS after a couple of required libraries were loaded.”
Custom keycaps were sourced and SVG versions of the original key symbols created to label them.

In place of the original machine’s discontinued plasma display, Michael used a dot matrix display.

Although the tape decks don’t actually work, “you can slide a cassette into them and use the release lever to eject the cassettes.”

The result of his hard work is impressive and Michael has already put it to good use. “I’ve been using the MCM/70 Reproduction to learn APL by working my way through the MCM/70 User’s Guide. Mind you, I won’t be writing any APL programs any time soon, but I would like to get a good feel for the language.”

He has also generously shared a detailed description of his project on Instructables (magpi.cc/mcm7orepro). It’s well worth a read, illustrating his enthusiasm for his retro subject, and taking you through how you can create your own version.

Held in a 3D-printed caddy (bottom right), Raspberry Pi 4 is connected to the dot matrix display, and to the keyboard via an encoder board.

Quick FACTS

- Michael worked on the MCM/70 for about a year
- He estimates that it cost him around $750 CAD to create
- The eight separate case pieces each took 8–10 hours to 3D-print
- The cassette desks/display frame took an additional 25 hours to print
- The project is powered by a standard 5V 3A Raspberry Pi PSU.

PROJECT SHOWCASE
If you can think of it, “you can probably do it on a Raspberry Pi,” believes 17-year-old Fady Faheem, who saw a broken vending machine for sale online and decided to give it a tech upgrade. Fady wanted to use his tech chops to benefit his community in Fort Worth, Texas, and the refurbished vending machine seemed an ideal gift to his local church – “the best place I knew” – which could do some micro fundraising too. The project has kick-started his career: “If I didn’t do this, I wouldn’t be where I am today, working as a software engineer at 17.”

Feeling blessed

Task one was the discover whether the vending machine was fixable. Buying it for so little, “knowing it was broken and the motherboard fried, I wasn’t sure what I was walking into,” reveals Fady.

Even so, having learned Java and programming since his freshman year, he felt sure he had the power to accomplish it. He became interested in Raspberry Pi because it can be used for “just about any project”, noting the range of different-sized models, “different ways to utilise it, low energy, and overall simplicity.”

Raspberry Pi would become the heart of his vending machine, connecting everything: communicating with the dollar bill acceptor, sending data to relays to activate them, and handling power between all devices. There was little to no space to put a machine or full-size computer behind the vending machine screen, so the diminutive Raspberry Pi was “the ultimate solution to all my problems,” he says. “I had a small corner to run the hardware. If it could fit in my hand, I knew it would fit in the machine.” Fady’s refurbished vending machine originally used a 3B+, but he recently upgraded...
Proceeds from the Raspberry Pi 4-controlled vending machine now benefit his local church.

Fady had only two years’ experience of coding when he bought a broken vending machine to fix.

Replacing the dollar bill acceptor with a new board he could code in Java was the main headache.

Fady says time was the biggest challenge.

He “walked into this project as a clueless 16-year-old”...

...with a year or two of programming experience.

He’s now a full-time iOS developer...

...thanks to hands-on experience gained via this project.

Quick FACTS

- Refurbished Vending Machine
Raspberry Pi 4 now handles the logic and electronics and interfaces with the selection database.
Back in service

01 Having received the machine he bought online, Fady removed the control panels to reveal outdated, underpowered coin and note mechanisms.

02 Fady installed a replacement bill acceptor board that was sufficiently powerful for his needs and that worked smoothly with the Java code, database, and libraries he chose.

03 At the ‘heart’ of the vending machine a Raspberry Pi 4 controls everything, alongside an Arduino connected to relays to fulfill customer selections.

it to Raspberry Pi 4 for performance on start-up, should he ever need to pull the plug and restart.

Money makers
Fady began to tackle the project by researching how other people were able to use a specific combination of dollar bill acceptor and a circuit board to run Java. For the first version, Fady used a Pyramid Apex 5400, but later switched to the Apex 7400 bill acceptor, resulting in better support and handling through Java. Vending machine selections are handled by the MariaDB database and Raspberry Pi using a number of libraries Fady found on GitHub. Meanwhile an Arduino connected to Raspberry Pi via the vending machine’s printer cable, and accessed using Java, handles the signals to the relays and the relays themselves.

“At the end of the day, all the work that went into it was designed and 3D–printed by me,” he says proudly.

If I didn’t do this, I wouldn’t be where I am today, working as a software engineer at 17.
RAD Expansion Unit

Want to get the most out of old tech? David Crookes looks at one device which boosts the Commodore 64 so much, it’s capable of playing Doom.

Considering Doom was once thought impossible on the Commodore Amiga, running it on an 8-bit Commodore 64 would appear to be sheer fantasy. But, thanks to the efforts of maker Carsten, such an achievement has become reality.

Having previously created a multifunctional cartridge called Sidekick64 for various Commodore 8-bit computers which emulated memory expansions, sound devices, freezer carts and much more, Carsten saw that many people in the retro community still wanted a replacement for the official RAM Expansion Unit (REU) which was released in 1986 and discontinued four years later.

For those unaware, the REU plugged into the C64’s expansion port and added extra memory while also allowing for direct memory access (DMA) transfers – something the Sidekick64 couldn’t do. This meant data could be transferred to and from the main system memory whole bypassing the MOS Technology 6510/8500 CPU. “My RAD Expansion Unit was designed to do these transfers,” Carsten says. It’s a major triumph!

Radical thinking

There are many benefits to having the RAD Expansion Unit, which boosts the amount of available memory from the standard 64kB to as much as 16MB. “It helps to run Geos [a C64 OS] and it makes some tasks less annoying, such as copying disks in one go. It also functions as a RAM disk to accelerate working with the system,” Carsten says.

In order to create the project, then, two PCBs were produced: one to fit Raspberry Pi 3A+/3B+ and another to fit Raspberry Pi Zero 2 W (the latter creating a less expensive unit). “I didn’t want the glue logic that facilitates the bus communication with the available GPIOs to get too extensive and I wanted to avoid Complex Programmable Logic Devices and such which would prevent many people from building their own RAD,” Carsten says.

Indeed, the project was designed so that the RAD contains the glue logic to interface Raspberry Pi with the C64 bus. “You simply put it on to Raspberry Pi like a HAT and plug it into the expansion port of the Commodore 64,” Carsten continues. “The combination of a fast SoC and a decent number of GPIOs was great.”

An explosive result

There were challenges, of course. “The biggest was getting the bit banging right,” Carsten says. “Most of the communication has to happen within a time window of less than 500 nanoseconds – most often there’s significantly less time between all signals being read and putting data on the bus.”

To make the device run smoothly, Carsten had to use multiplexers. “More signals on the expansion port need to be read/written to than Raspberry Pi has GPIOs,” he explains. The correct data had to be put on the bus at the right time to prevent memory corruption and, in the worst case, random instructions being executed by the CPU, causing a crash. “In general, to get the timing right, I needed to hit intervals at a spacing of approximately tens of nanoseconds, which I did using CPU cycle counters.”

With all that in place, it was time to chill and RAD-Doom proved a great way to do so. Most of the processing is being done by Raspberry Pi (‘it’s essentially a CPU replacement where the new CPU
is a one-core ARM running at 1.4GHz with its own 512MB RAM,” Carsten says). But the important thing is that the tech demo uses the C64’s VIC-II graphics chip – and works! Sound is also streamed to the iconic SID chip.

“It makes some tasks less annoying, such as copying disks in one go.”

“I wanted to see how the C64/C128’s VIC-II and SID performed if CPU power and memory was not an issue,” Carsten says. “I also wanted to experiment with real-time colour dithering for the VIC-II.” By making use of Doom to output graphics and sound, he’s certainly managed to achieve that.
Way back in issue 74 (magpi.cc/74), we wrote about PiCam Marine, little monitoring devices for cold water coral deployed by submarine. We like to think the projects we publish in the magazine can act as inspiration, and this one did...

“A couple of years ago, we started designing and using Raspberry Pi-based camera systems for under-sea research work,” Dr Autun Purser tells us. He’s a research scientist for the Alfred Wegener Institute of Polar and Marine Research. “These cheap, programmable platforms allow us to place many cameras on the sea-floor, for the same costs as one ‘off the shelf’ marine camera. We had an article on these cameras in The MagPi magazine and Oliver contacted us, a student then at the International School Bremen, Germany, who wanted to design and program his own camera.”

“[I really] wanted to see what laid in the river outside of my house,” Oliver explains. “After I first deployed the camera, I told Autun, who said that he could take it with him to Antarctica on his next mission.” With the camera tested, Autun stood by his word, took it on the RV Polarstern, a research icebreaker ship, and deployed it during two helicopter missions.

Plumbing the depths

The solution for the watertight camera ended up being nice and simple.

“Oliver made the camera housing out of robust plastic, and used an interesting plumbing seal to close one end,” Autun says. “You put a Raspberry Pi in, turn on the power, and turn a nut to close the housing... the nut presses two plastic pieces together to expand a rubber seal – very effective, quick, and robust. The front of the housing is a simple acrylic sheet, against which a standard Raspberry Pi Camera Module 2 was placed. This was connected to a Raspberry Pi 3, attached to a wood mounting block. Below the block, a simple USB power bank was placed to power the system.”

Oliver’s original version also had a little bait container to try and lure fish closer. “The program is written entirely in Python, simply takes a 30-minute recording, and after the 30 minutes, it automatically shuts off,” Oliver elaborates. According to Autun, this 30-minute length of the
Raspberry Pi is mounted onto a simple wooden base which can be easily slid into the waterproof housing.

30 minutes of footage is taken by the Camera Module 2, which is able to see just fine through the acrylic window.

Quick FACTS

- Antarctica holds 70% of the world’s fresh water.
- The water in Antarctica can get as low as -2°C.
- Oliver wants to take his camera to other bodies of water near him to test it more.
- The RV Polarstern ship is over 40 years old.
- ...and means ‘pole star’ in German.

The script was enough for what they had planned: lower from a helicopter, let the video record, and then retrieve it. It was deployed five times during the mission, mainly through ice cracks. “We even slid it from the helicopter down the flank of a large iceberg and down onto a shelf of ice 10m or so below the waterline,” Autun mentions.

Icy depths

“The results from the camera have been really good,” Olive tells us. “It’s able to capture decent...
footage, and I can clearly make out everything that it captures. Raspberry Pi is relatively low on power usage, and the battery has enough capacity that, theoretically, the camera could run for a couple of hours.”

Autun sent us some amazing images from under the ice to prove it, and is planning to use similar cameras for a future trip on the RV Polarstern, although this time up to the Arctic and the North Pole.

“Within our working group, we are very happy to support the development of environmental
Getting cold snaps

Getting to the Antarctic takes a special kind of ship – in this case, an icebreaker. Load it up with people and helicopters and you’re ready to go.

01

02

03

Scrubbing through the video once the camera has been retrieved helps with scientific study of the icy waters near the poles.

The nut presses two plastic pieces together to expand a rubber seal - very effective, quick, and robust.

Every year to the Arctic and/or Antarctic and we can gladly discuss taking your devices with us for testing and scientific use – the scientific community can definitely benefit from the development of systems and coding by enthusiastic makers. You can email [me] at autun.purser@awi.de if you have an idea of something you would like to see above or below the polar ice!
SUBSCRIBE TODAY FOR JUST £10

Get 3 issues + FREE Pico W

Subscriber Benefits

- FREE Delivery
 Get it fast and for FREE
- Exclusive Offers
 Great gifts, offers, and discounts
- Great Savings
 Save up to 23% compared to stores

Subscribe for £10

- Free Pico W
- 3 issues of The MagPi
- Free delivery to your door
- £10 (UK only)

Subscribe for 6 Months

- Free Pico W
- 6 issues of The MagPi
- Free delivery to your door

<table>
<thead>
<tr>
<th>UK</th>
<th>USA</th>
<th>EU</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>£30</td>
<td>$43</td>
<td>€43</td>
<td>£45</td>
</tr>
<tr>
<td>£43</td>
<td>$45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subscribe by phone: 01293 312193
Subscribe online: magpi.cc/subscribe

Email: magpi@subscriptionhelpline.co.uk

Subscribe for £10 is a UK only offer. The subscription will renew at £15 every three months unless cancelled. A free Pico W is included with a 6-month subscription in USA, Europe and Rest of World.
SUBSCRIBE TODAY AND GET A FREE Raspberry Pi Pico W

Subscribe in print today and get a FREE development board

- A brand new RP2040-based Raspberry Pi Pico W development board
- Learn to code with electronics and build your own projects
- Make your own home automation projects, handheld consoles, tiny robots, and much, much more

WORTH $6

Buy now: magpi.cc/subscribe

SUBSCRIBE on app stores
From £2.29

This is a limited offer. Not included with renewals. Offer subject to change or withdrawal at any time.
When the pandemic hit, nursing and midwifery students training for vital front-line roles had to switch to remote learning for some of their studies, but many lacked equipment at home to access online material. Wisenet (wisenet.co) stepped in to help by donating computers: the compact desktop Raspberry Pi 400 was the ideal choice.

People around the world had to adapt to working and studying from home when measures to tackle the COVID-19 pandemic meant that educational organisations and workplaces needed to shut their doors. For a remote model to work, organisations need the right equipment, software, and practices; and so do individuals. However, access to computing equipment at home is far from universal, and for many people the lack of a computer suitable for working presented a huge obstacle.

THE CHALLENGE
Nursing schools across Kenya and Malawi worked hard to provide remote learning opportunities for their students when the COVID-19 pandemic hit. With a number of offices across Africa, education management software provider Wisenet (a division of Adapt IT, adaptit.com) was well-placed to help with the response to the challenge. They
partnered with a charity, the Medical Benevolence Foundation (MBF), to provide online courses across a group of schools that host 2500 nursing and midwifery students across the region, using the open-source learning platform Moodle. However, while faculty reported a high level of satisfaction with the way the new platform allowed them to create course content and customise it for different student groups, they discovered that some learners didn’t have the equipment they needed to access this content at home.

THE SOLUTION

Wisenet began donating Raspberry Pi 400 compact desktop computers to MBF-supported nursing colleges, so that their students can use the devices for online learning. Students can use Raspberry Pi 400 to access remote learning resources, as well as for general computing. To extend the reach of the programme as far as possible, Wisenet also committed to matching donations of Raspberry Pi 400 by their customers and by other organisations.

WHY RASPBERRY PI?

Raspberry Pi 400 is these students’ only computer, so a key feature is that it offers a complete desktop experience while being straightforward to set up and use. A fast processor, USB 3.0 ports, and 4GB of RAM are all built into a compact, high-quality keyboard, keeping setup simple for students so they can focus on learning. Its low cost and

Kenya and Malawi nursing schools | magpi.cc | 29
extend beyond home study: in addition to enabling students to learn at home, some of the computers are used within institutions to increase access to in-service training.

“Wisenet is incredibly proud to be associated with MBF and the schools,” says Ben Hamilton, its CEO and co-founder: “We know these devices will help learners reach new heights. Having access to this technology provides the schools with the opportunity to do incredible things.”

Lisa Alianiello, director of the Centre for Global Nursing Development, is heading up the initiative for the MBF. “Our partnership with Wisenet assists in putting the most current nursing education information directly in the hands of faculty and students,” Alianiello reports. “As a result, new nursing graduates are ready to help provide much-needed medical care in their countries.”

The optimised version of the Chromium web browser means students can use web-based resources easily and quickly, including essential everyday applications like Gmail and Zoom.

Learners are able to use their Raspberry Pi 400s to attend virtual classes

THE RESULTS

Learners are able to use their Raspberry Pi 400s to attend virtual classes and access study materials, as well as to interact with tutors and other students in online forums, giving them easy access to the help they need. The impacts extend beyond home study: in addition to enabling students to learn at home, some of the computers are used within institutions to increase access to in-service training.

“Wisenet is incredibly proud to be associated with MBF and the schools,” says Ben Hamilton, its CEO and co-founder: “We know these devices will help learners reach new heights. Having access to this technology provides the schools with the opportunity to do incredible things.”

Lisa Alianiello, director of the Centre for Global Nursing Development, is heading up the initiative for the MBF. “Our partnership with Wisenet assists in putting the most current nursing education information directly in the hands of faculty and students,” Alianiello reports. “As a result, new nursing graduates are ready to help provide much-needed medical care in their countries.”
Meet the WIZnet Pico family

Experience the Power of Connectivity with WIZnet

- 3-in-1: TCP/IP Stack + MAC +PHY
- Industrial grade operation range
- RPi Pico pin-compatible

COMING SOON
WIZnet Pico PoE

- IEEE802.3af compliant
- Mode A(Endspan), Mode B(Midspan)
- Circuit Protection (OV,OC)

Reseller suggestions and inquiries direct@wiznet.io
Available at WIZnet online store eshop.wiznet.io
Brew beer better with the power of a Raspberry Pi
Brewing beer is an ancient practice and not a huge amount has changed with it in thousands of years. Ingredients may have changed a bit, technology may have made it easier, but it’s essentially the same process humans have been performing for most of recorded history.

Thanks to this, we know a lot about what makes beer good, and part of that is sensing temperature and liquid density – things we can do with Raspberry Pi! This makes controlling your brew better, cheaper, and easier; just in time for those summer BBQs.

Tools and ingredients

Everything you need to start brewing

Raspberry Pi
You’ll need a Raspberry Pi model with built-in Wi-Fi and Bluetooth – this includes Raspberry Pi 3, 3B+, 4, Zero W, and Zero 2 W. You’ll be using it headless (without a monitor), so you just need a power supply and an appropriate case.

Tilt hydrometer | tilthydrometer.com
Hydrometers were one of the early technological advancements brought to beer brewing. This device measures density and specific gravity of the liquid it’s in. Tilt is a very fancy wireless version that works with Raspberry Pi for more accurate beer brewing, and also senses the temperature of the brew as well.

30-litre beer brewing bucket | magpi.cc/brewbucket
You need to make sure it comes with a lid, grommet, and airlock. You might need to buy the airlock separately if you get a different one.

Siphon | magpi.cc/siphon

Home brew steriliser | magpi.cc/steriliser

Bottles, or other form of storage

Mixing paddle | magpi.cc/paddle
Beer brewing guide

Time to make some Raspberry Pi-powered beer

Get your Tilt Pi ready

01 Installing Tilt Pi

You’ll need to install Tilt Pi from another computer with an SD card slot (or USB adapter). You can grab the SD card image for Tilt Pi from magpi.cc/tiltpi and, with Raspberry Pi Imager (magpi.cc/imager) you can burn it to the SD card.

Once you’ve burnt the image to the card, navigate to the SD card on your system (it should be named ‘boot’) and open the SETUP.html file in your browser. From here, you can enter Wi-Fi settings and an email address for the system to send your cloud login to monitor your Tilt, along with a link to the Tilt Pi dashboard.

02 Connecting Tilt

Power-on your Tilt, put it in a glass of water, and then put the SD card into your Raspberry Pi and boot it up. After a couple of minutes, it will detect your Tilt and then send you the email link mentioned before. From here, you can set names and change some of the other settings that show up on the cloud dashboard. You can also maintain a local log file on Raspberry Pi which you can download any time.

Get brewing

01 Sterilise, sterilise, sterilise

Everything you’re going to use in the brewing process needs to be sterilised thoroughly, apart from the pan you’re going to use to warm up the malt can in the next step. Follow the recommended instructions on the sterilising agent before wiping down all of the bucket and its lid, grommet, and airlock, and even the outside of your Tilt hydrometer.

You don’t need to be NASA clean-room thorough, but it does help with the home brewing kits – if you plan to go from scratch, you can get a little more leeway (see page 39 for more on that.)

02 Prepare the ingredients

When using a brew kit, you’ll get a can of malt to add to the mix. Before emptying it into the bucket, you’ll need to warm it up first so that it softens. Do this by placing it into a container of hot water, such as a pan, for about 20 minutes. It shouldn’t be boiling – about 65–70°C should do the trick.
Once it’s warmed up, pour it into the bucket. If some malt remains, rinse it with hot water to get the rest out – you’ll be adding more water to it soon anyway, so it’s perfectly fine to do this.

“You’ll get a can of malt to add to the mix.”

03 Fill up the bucket

Depending on your brewing kit, you may need to add some sugar at this step for the yeast – check the instructions on your specific kit. Once that’s done, top up the rest of the bucket with water, with the final temperature of the current mix being about 25°C.

If you need to maintain the 25°C temperature with a heating element, refer to the ‘Maintain Temperature’ box (overleaf) for how to do this with Raspberry Pi or a separate Raspberry Pi Pico.

Stir the mixture well, and then add the yeast to the bucket before stirring again.

04 Add Tilt

At this point, you can immerse your Tilt into the mix. You can keep an eye on its readings using Tilt Pi that was set up earlier – they should

BEER BREWING BASICS

The easiest way to get brewing is to make use of a beer brewing kit – it comes with all the necessary ingredients to get started pretty quick, and you can choose the kind of beer you like as well, without having to get into the deep beer science.

You can find these online or in stores that specialise in gifts. They’ll include instructions that might slightly differ from this article, so make sure to keep that in mind when brewing.
change now it's out of the glass of water it was sitting in. You can use Tilt to keep an eye on the temperature of the water as well as the density. Once that's done, you can replace the lid and make sure the airlock is filled halfway with clean water.

05 Good things...

Beer brews by means of fermentation by the yeast in the mix. Fermentation is not a quick process, so at this point you're going to need to leave your bucket of soon-to-be beer in a place where the ambient temperature is around 21–27°C (or keep the mix heated to that temperature, see the ‘Maintain Temperature’ box for more) for about five to seven days.

A cooler temperature means the fermentation will take longer; warmer, and it goes faster. If the airlock is bubbling a lot, then it may be too warm – you don’t want it to try and ferment too fast. Now put your feet up and wait…

Get bottling

01 ...come to those who wait

Your beer will be brewed once Tilt reads around 1.010 and the bubbles in the airlock have stopped. With analogue hydrometers, you would need to keep a reminder of the initial reading along with regular checks of the brew in a separate container. However, Tilt puts all this data online for you in a cloud database.

With these readings, you can also calculate the ABV of the beer using the simple formula:

\[(\text{Initial Gravity} - \text{Final Gravity}) \times 131.25\]

You can implement this formula in the spreadsheet with the data quite easily.
02 Prepare storage
Whether you plan to put your brew in a barrel or into some bottles, you’ll need to add some priming sugar, as per the instructions on your brew kit – it can be something like half a teaspoon of granulated sugar per pint.

Use the siphon to get the beer from the brew bucket to your storage vessels – you can use the one we listed on page 33 or do it the old-fashioned way with a small hose and lung power. Seal the barrel/bottles and keep them in a warm place for two to three days.

03 Optional additions
Before sealing, you can add extra bits at this stage to change the flavour and final product. This includes hop extract to enhance the hoppy smell and taste of the beer, heading agents so the head of the beer lasts longer, or a beer fining agent to make the clearing process faster – which we discuss in the next step.

04 Clearing and sampling
The beer will need to go through a process of clearing and maturing before you can drink it – this is referred to as the secondary. Move the beer to a cool place and let it sit for two to four weeks – bottles will clear faster than a barrel.

Now you can sample the fruits of your labour. A layer of sediment will have formed at the bottom of the bottles and barrel.

For the barrel, sediment can build up near the tap, and the first pour can be quite high pressure, so be prepared to fill up about half a pint of a glass quickly before disposing. Then you can pour a full glass and see how you did. Enjoy!
Advanced brewing
Tweak your ingredients for your preferred beer

CHANGE THE FLAVOUR

Different hops
There are many different varieties of hops you can use for brewing, all with different tasting notes and aromas that can really change the beer.

Keep an eye on the alpha acid percent (AA%) of any different hops you buy, though – a higher percentage means it can make the beer more bitter. A more bitter hop means you’ll need less to create your wort – the bitterness scales linearly, though, so if you’re using 50g of 5% hops normally, but get 10% hops for a new brew, you’ll need 25g.

Different yeast
The strain of yeast can change the flavour and is used in different styles of beer brewing – some yeast is better for ale and others for lager. It’s a good idea to look at how your favourite commercial beers are made to get an idea of how yeast might change up the flavour.

Filter your beer
The idea of sediment in your beer might not be quite to your liking, and we understand. After the clearing process of your beer in a barrel, you can filter it to another barrel, and this results in a cleaner and clearer beer. You will need to force-carbonate any beer that’s been filtered though, which is an extra process of adding CO₂ to your barrel.

Add fruits, spices, and more
You can really jazz up your beer by adding any number of weird and wonderful ingredients while boiling your wort, or as you’re bottling them. Berries, figs, cherries, cinnamon, ginger, vanilla, coconut; you can go wild so long as you think the flavours will go together.

You get a mellower taste by adding these extras to the last five minutes of the boil (which will also helpfully sterilise them), or during the secondary phase while it’s clearing, after soaking them in little vodka or other spirit.
MALT EXTRACT BREWING

Ingredients
- 13 l water
- 1 kg malt extract, magpi.cc/malt
- 55 g dried hops, magpi.cc/hops
- 750 g sugar
- Brewer’s yeast, magpi.cc/brewersyeast

In a large stock pot, bring half the water to boil and pour in the malt extract. This needs to be on the boil for 30 minutes before you throw in the dried hops, and then boil for another 30 minutes. This process not only extracts the flavours but also sterilises the brew, so you don’t need to be as thorough with any sterilising agent. This creates what is called a wort.

After the 30 minutes are up, after adding the hops, strain the wort into the brewing bucket and add the rest of the water. Allow it to cool to about 25°C as before, and then add the yeast, stir, and add your Tilt. Follow the same method as before to allow it to brew, bottle, and clear.

“There are many different varieties of hops you can use for brewing, all with different tasting notes.”
Tell Bedtime Stories who’s the hero and where it happens, and the program creates an illustrated tale for you, using the magic of artificial intelligence.

Once upon a time there were two artificial intelligences, who were famed throughout the land. ChatGPT was an inventive storyteller, while Stable Diffusion was an ace illustrator. Together, they made up children’s stories, which Raspberry Pi read aloud while showing the pictures. Listeners could put themselves, or their friends, in the stories, and decide where they should take place. Sometimes the stories were strange, and the pictures even more so. But as an art experiment, Bedtime Stories was a revelation. Anyone spying on the code could discover how to use ChatGPT and Stable Diffusion to create text and pictures from Python.

01 Get your DeepAI API key

DeepAI aims to make artificial intelligence (AI) accessible to new developers. The company provides an online text-to-image tool, accessed through an application programming interface (API). You send it a prompt (a request) and it sends you back an image. The API has been around since 2016 and its latest version uses the Stable Diffusion image generation software. Visit deepai.org to create your account. You can buy credit for 100 API calls for $5. On your Profile page, change the settings to allow unfiltered content. The filtered API rejected requests that included terms such as ‘hand in hand’ or ‘creepy’, resulting in incomplete stories.

02 Install Python modules

We’ll need three Python modules for this project. OpenAI’s ChatGPT is used to create the story text and the image prompts for DeepAI. An image prompt is a description of the image we’d like the AI software to make for us. The requests module is used to access Stable Diffusion through the DeepAI API. The pyttsx3 module reads the stories aloud. Using speech in this project makes it feel like a friendly robot is reading you a bedtime story, but also means we can dedicate the screen to the story images. Open a terminal window and enter these instructions to install the Python modules and text-to-speech software. You may see some warnings about OpenAI not being on PATH, but you can safely ignore them.

pip install pyttsx3 requests openai
sudo apt install espeak mopidy
03 Create the ChatGPT prompt

This project has two parts: Bedtime Story Maker (story_maker.py), and Bedtime Story Reader (story_reader.py). Stories are created and saved by the Maker and loaded and read by the Reader. Take a look at story_maker.py. When you run the program, it asks you to enter the character names and types, location, and genre for the story. It then builds them into a string called story_prompt that is used to ask ChatGPT to make the story. The story prompt also asks for an image prompt for every paragraph, starting with ‘Image Prompt:’. The story prompt tells ChatGPT to suggest a book illustrator for each picture.

04 Using the ChatGPT API

Lines 33 to 39 send ChatGPT the story prompt. Add your own ChatGPT API key. We’ve told ChatGPT it is a children’s author. Hints like this help to guide it to the best responses, based on the vast amount of online content it’s been exposed to. The response comes in as a single piece of text, which should alternate between story paragraphs and image prompts. Lines 42 to 46 split that response into a list of image prompts and story paragraphs. Sometimes ChatGPT fails to return any image prompts, so the while loop keeps asking ChatGPT for stories until it also sends some image prompts.

05 Saving the story and image prompts

The story paragraphs and image prompts are saved to text files using the write_list() function. It accepts a list and a file name and saves each list item using the file name with a number on the end (e.g. story-0.txt, story-1.txt). They’re saved in a folder named with the time, from the year to the second, such as ‘Story 2023-04-10-09-34-52’. Saving the stories means you can play them on demand, without waiting for them to generate, as often as you like. It also enables you to study what worked well, and what didn’t. ChatGPT wrote the first version of this function for us, by the way. It’s good at basic Python programming, as long as you know how to guide it. We used the online front-end to ChatGPT for that at chat.openai.com.

06 Generate Stable Diffusion images

Next, the program goes through the list of image prompts and sends each one to DeepAI’s API. You’ll need to add your own DeepAI API key in line 59. To make the images more consistent, the program adds something to each prompt to clarify who the characters are and where the story

⚠️ Alert! Strange images

Stable Diffusion may produce images that are unsettling for young children, such as distorted faces.

Top Tip

Watch your wallet

The DeepAI API requests are inexpensive, but if you make a lot of stories, it adds up fast.

TUTORIAL
Build an AI bedtime storyteller with Stable Diffusion
takes place. We’ve also added a negative prompt to provide some hints that can help improve image quality. We asked for images that are 720×720, to match the size of the HyperPixel display you are using. Valid values are between 128 and 1536, but you might get odd results below 256 and above about 700. DeepAI returns your image as a URL, so the program downloads the file and saves it for you. It also displays the URL, so you can download the image (you’ve paid for!) manually if something goes wrong. You can find a simple version of the code to generate and download an image at magpi.cc/seandeepai.

Top Tip

Flip the images

If your display is upside down, you can flip your images by inserting this before line 29 in Story Reader:

```python
image_to_show = pygame.transform.flip(image_to_show, True, True)
```

07 Do your quality control

Use the Run button in Thonny to run `story_maker.py` a few times to make some stories. When it finishes, the story folder should contain story files (e.g. `story-0.txt`, `story-1.txt`), image prompt files (`prompt-0.txt`, `prompt-1.txt`); and an image file for each prompt (`1.jpg`, `2.jpg`, etc.). The Reader reads you the story paragraph aloud while it shows you the related image, so there should be the same number of image and story files. Sometimes there’s an extra story file because ChatGPT adds a title, and the Reader can handle that. Occasionally, ChatGPT doesn’t send enough image prompts, so there aren’t enough pictures. In that case, you can still read the story and enjoy the illustrations yourself, but the Reader won’t work. Find a valid story folder you want to play and copy its folder name.

08 Set up Bedtime Story Reader

Now you’ve made some stories, let’s use the Bedtime Story Reader (`story_reader.py`) to enjoy them. Add the name of the folder where your story is stored in line 3 of the program.

09 Discovering the story files

After it’s set up the Pygame window for displaying images, and the voice for reading them, the program indexes the story and image files. Their file names go into the `story_files` and `image_files` lists, which are then sorted into the correct order. If there are more story files than image files, the `story_has_title` variable is set to True.

10 Displaying the picture

The program goes through the `story_files` list and displays the associated image for each story paragraph. If the story has a title, the folder will be one image file short because there is no image prompt for the title. In that case, the first image needs to be shown for both the title and the first paragraph. Line 24 ensures this happens.

![The AI image generation software does particularly well with sci-fi images](image)

![It's common for characters in AI-generated images to have odd-shaped heads, distorted faces, and an unconventional number of limbs. It all adds to the surreal effect](image)
```python
001. # Story Maker - by Sean McManus - www.sean.co.uk
002. import os, openai, requests, datetime, random, time
003.
004. def write_list(list_to_write, filename):
005.     for number, paragraph in enumerate(list_to_write):
006.         filepath = os.path.join(directory, f"{filename}-{number}.txt")
007.         with open(filepath, "w") as file:  
008.             file.write(paragraph)
009.
010.     date_time_str = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
011.     directory = f"Story {date_time_str}"
012.     os.mkdir(directory)
013.     image_prompts, story_paragraphs = [], []
014.     character1_name = input("What is your main character's name? ")
015.     character1_type = input("What kind of a character is that? ")
016.     character2_name = input("What is your second character's name? ")
017.     character2_type = input("And what kind of a character is that? ")
018.     venue = input("Where does the story take place? (e.g. in a castle, on Mars) ")
019.     genre = input("What is your story genre? ")
020.     story_prompt = f"Please write me a short {genre} 
021.         story. In this story, {character1_name} is a 
022.         {character1_type} and {character2_name} is a 
023.         {character2_type}. The story takes place 
024.         {venue}."
025.     image_prompts, story_paragraphs = [], []
026.     for number, paragraph in enumerate(image_prompts):
027.         image_prompt = f"{character1_name} is 
028.         {character1_type} and {character2_name} is 
029.         {character2_type}. They are {venue}."
030.         print(f"Generating image {number}"
031.             r = requests.post(  
032.                 "https://api.deepai.org/api/text2img",
033.                 data={'text': image_prompt,  
034.                     'width': "720", 'height': "720",  
035.                     'grid_size': "1"},
036.             headers={'api-key': 'YOUR API KEY'})
037.         image_url = r.json()['output_url']
038.         print(f"Image {number} is at {image_url}.
039.         Saving now...
040.             print(f"Your files are in {directory}.
041. 
042.     if paragraph.startswith("Image Prompt"):
043.         image_prompts.append(paragraph)
044.     else:
045.         story_paragraphs.append(paragraph)
046.     write_list(story_paragraphs, "story")
047.     write_list(image_prompts, "prompt")
048.
049.     for number, image_prompt in enumerate(image_prompts):
050.         image_prompt = f"{character1_name} is 
051.         {character1_type} and {character2_name} is 
052.         {character2_type}. They are {venue}."
053.         print(f"Generating image {number}"
054.             r = requests.post(  
056.                 data={'text': image_prompt,  
057.                     'width': "720", 'height': "720",  
058.                     'grid_size': "1"},
059.             headers={'api-key': 'YOUR API KEY'})
060.             image_url = r.json()['output_url']
061.             print(f"Image {number} is at {image_url}.
062.             Saving now...
063.             print(f"Your files are in {directory}.
064.             
065.             print(f"Making ChatGPT request")
066.             openai.api_key = "YOUR API KEY" >>> PUT YOUR API KEY HERE
067.             ChatGPT_output = openai.ChatCompletion.create(  
068.                 model="gpt-3.5-turbo",
069.                 messages=[  
070.                     {"role": "system",  
071.                         "content": "You are a children's author."},
072.                     {"role": "user",  
073.                         "content": story_prompt}
074.                 ] )  
075.             new_story = ChatGPT_output.choices[0].
076.             message["content"]
077.             print(new_story)
078.             for paragraph in new_story.split("\n\n"):
079.                 if paragraph.startswith("Image Prompt"):
080.                     image_prompts.append(paragraph)
081.                 else:
082.                     story_paragraphs.append(paragraph)
083.     write_list(story_paragraphs, "story")
084.     write_list(image_prompts, "prompt")
085.
```

story_reader.py

Here, Stable Diffusion has created a bright, colourful image that matches the look of a preschool book.

It turns the list indices 0,1,2,3... into 0,0,1,2... and ensures we don’t run out of images. If we had four story paragraphs (numbered 0 to 3) and three images (0 to 2), the last image and the last paragraph would coincide as they should. Images are scaled to fit the display. Although images are requested at 720×720, they come through at 768×768 because image sizes are accurate to the nearest multiple of 64.

Read out the story paragraph

Lines 32 to 35 open the text file for the story paragraph, read it in to the variable `story` and then use the text-to-speech module to read it aloud. For tips on customising the voice, see Raspberry Radio in issue 122 (magpi.cc/122).

Run the code

You can run Bedtime Story Reader using any display and in the desktop. Here we are using the HyperPixel Square display. To make the images fill the display, we boot to the command line and run the program using:

```
python story_reader.py
```

There is lots you can do to build on this project. You could add a menu for selecting stories, transitions between images or background music. The code shows you how to use AI to make text and images for any project, opening up a world of adventures.
English not your mother tongue?
The MagPi is also available in German!

Subscribe to the German edition of The MagPi and get a Raspberry Pi Pico with headers and a cool welcome box FOR FREE!

Use the coupon code 115PicoDE on www.magpi.de/115
In the world of computers, data is stored as digital values with electronic switches that turn on and off. The real world is analogue, with different levels of brightness throughout the day or different temperatures. This tutorial will show one of the ways of taking analogue values from the real world and converting them to a digital signal that a Pico microcontroller can understand.

Knowing the value of the analogue inputs, these can then be converted into colour values which are used to light up NeoPixel LEDs.

Part 04

01 Potentiometers

Potentiometers are a type of variable resistor, a resistor that changes in value. They have three terminals and often have a shaft that can be turned to change the resistance. You can also get miniature potentiometers which can be adjusted using a screwdriver.

Inside the potentiometer there is a resistive track with a slider that moves along it. As the slider moves towards terminal 1, the resistance between terminal 1 and terminal 2 decreases, and the resistance between terminal 2 and terminal 3 increases. A photo and schematic symbol are shown in Figure 3 (overleaf).

02 Voltage divider

A common way of using a potentiometer is as a voltage divider. Connecting the voltage divider across the power supply, the output voltage will change as you turn the shaft. To understand how this works, we can imagine the potentiometer as two separate resistors, as shown in Figure 2. One resistor goes from terminal 1 to terminal 2 (R1), the other from terminal 2 to terminal 3 (R2). Connect terminal 1 to ground and terminal 3 to the supply voltage. The voltage output is proportional to the ratio between R1 and R2. For a 3.3V power supply, with the wiper towards terminal 1, the output will be 0V; with the wiper towards terminal 2, the output will be 3.3V; and halfway between, the output will be 1.65V. This provides an analogue output voltage.

03 Analogue to digital converter

If we want to use the analogue voltage as an input to a microcontroller, it needs to go through an analogue-to-digital converter (ADC). Fortunately, there are three inputs on the Pico which have built-in analogue-to-digital converters. These are physical pin 31 (ADC0), pin 32 (ADC1), and pin 34 (ADC2). These pins sample the voltage and provide a digital value for it. In
MicroPython this is represented as a value between 0 and 65,536 (although the resolution of the ADC is 12 bits and not 16 bits as the range suggests).

Sampling the analogue value

To see this in action, connect the potentiometer to the Pico between pin 33 (GND) and pin 36 (3.3V output). Then connect the centre wiper pin to pin 31 of the Pico (ADC0). With just three lines of MicroPython code, you can query the value of the ADC port.

```
from machine import ADC, Pin
adc = ADC(Pin(26))
print (str(adc))
```

Running this will show a number representing the value at the pin. It’s unlikely it will cover the full range, but you should be able to get a reasonable range starting at about 300 upwards.

If you divide the value received by 19,859 (roughly 65,535÷3.3), you should get a fairly accurate representation of the voltage.

Adding more potentiometers

The colours we see on a computer screen are created using three primary colours: red, green, and blue. These are referred to as ‘RGB’. To be able to represent different colours, we use three potentiometers, one for each of these colours. The potentiometers used for this can be plugged into a breadboard, but there isn’t enough space on a single breadboard. Breadboards are designed to be joined, so you can use two breadboards connected (as in the Figure 1 wiring diagram) or one full-size breadboard.

Alternatively, you can use potentiometers with wires connected to them, in which case they can be connected to the appropriate pin using just one breadboard.

Addressable RGB LEDs

To represent the colour output, we will be using addressable RGB LEDs. These are also known by their model number, such as WS2182B, or Adafruit refers to them as NeoPixels. These are often found on long strips, or made into rings, but you can also get them as individual pixels which can be connected to a breadboard. You can individually set the colour of each of the individual LEDs, but this example uses just two LEDs which will be set to the same colour.

To control the NeoPixels, you need to set the RGB colours, providing each value in the range 0 to 255. This can be achieved by dividing the ADC output by 257.

```
from machine import ADC, Pin
adc = ADC(Pin(26))
print (str(adc))
```

We will be using addressable RGB LEDs 🌈

individually set the colour of each of the individual LEDs, but this example uses just two LEDs which will be set to the same colour.

To control the NeoPixels, you need to set the RGB colours, providing each value in the range 0 to 255. This can be achieved by dividing the ADC output by 257.

How addressable RGB LEDs work

Addressable RGB LEDs are the combination of multicolour LED (with elements for red, green, and blue) and an integrated circuit used to determine the colour. The LED is often mounted directly on top of the integrated circuit (IC), making these appear as a single unit. The microcontroller sends a long string of values

```
from machine import ADC, Pin
adc = ADC(Pin(26))
print (str(adc))
```

Top Tip 💡

From 3.3V to 5V

To increase the data voltage for the NeoPixels, you can use a voltage level shifter, such as the Adafruit bidirectional logic level converter.
Top Tip

Other variable resistors

Swap the potentiometers for other variable resistors to detect the environment. A light-dependent resistor (LDR) with a 470 Ω fixed resistor is a good starting point.

representing the desired colour for each LED. The IC reads the first value for setting its own LED and then passes the rest of the colour values along to the next LED. The microcontroller needs to generate precise timing for sending the values.

8 Wiring up the NeoPixels

The LEDs shown in Figure 4 are Adafruit breadboard NeoPixels. The input of the first NeoPixel (labelled ‘In’) needs to be connected to an output pin of the microcontroller – in this case, Pico’s GPIO 6 (physical pin 9). The output from the first LED (labelled O) then needs to go to the input of the second LED. To make the wiring easier, you can alternate the direction in which the NeoPixels are mounted so that the output of the first is on the same side of the breadboard as the input to the second NeoPixel.

9 Powering the NeoPixels

The potentiometers are connected to the 3.3 V output of Pico (pin 36). This is important, as exceeding that could damage the input pins on Pico. To provide normal brightness levels the NeoPixels needs to be powered with 5 V, so they need to be connected to VSYS (pin 40) on Pico.

The data input for the NeoPixels should ideally be 5 V but, using Pico’s GPIO pins, it will be 3.3 V. When the NeoPixels are physically close to Pico, that works fine, but if they were positioned further away then it may be necessary to buffer the signal first.

10 Controlling the NeoPixels

To control the NeoPixels from your Pico, the signal needs precise timings. We don’t need to get involved in the details, as the hard work of generating the correct signals is already included in a Raspberry Pi example program that can be found at magpi.cc/neopixelrgb.

The supplied code uses the Programmable Input Output (PIO) feature included in Pico. To use it, you just need to copy the appropriate functions into your own code, which is what has been done for the supplied code in neopixel_rgb.py.

11 How the code works

The first part of the code imports the required libraries and sets the values for the pin and number of LEDs. It then defines the three ADC inputs from the potentiometers.

The code to read the values from the potentiometers and to then set the colours of the NeoPixels is contained within the while True loop. The three values are read separately and divided by 257 to convert them to 8-bit values. This is then combined into a tuple which is used to fill the LEDs with that colour. The pixels_show function is used to send the new values to the NeoPixels.

12 Other uses

The potentiometers could be changed for other devices that can measure the environment. This includes light-dependent resistors whose value changes based on the amount of light, or thermistors whose value changes based on the temperature (Figure 5). These would be wired as a voltage divider, replacing R1 with the variable resistor and R2 with a fixed resistor.

You could add more NeoPixels and set their values individually using the pixels_set function. You will need an external power supply when adding more NeoPixels.
Set RGB values based on analogue inputs
import array, time
from machine import ADC, Pin
import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS = 2
PIN_NUM = 6
brightness = 0.2
red_adc = ADC(Pin(28))
green_adc = ADC(Pin(27))
blue_adc = ADC(Pin(26))

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW,
out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True,
pull_thresh=24)
def ws2812():
 T1 = 2
 T2 = 5
 T3 = 3
 wrap_target()
 label("bitloop")
 out(x, 1) .side(0) [T3 - 1]
 jmp(not_x, "do_zero") .side(1) [T1 - 1]
 jmp("bitloop") .side(1) [T2 - 1]
 label("do_zero")
 nop() .side(0) [T2 - 1]
 wrap()

Create the StateMachine with the ws2812 program, outputting on pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000,
sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])

def pixels_set(i, color):
def pixels_fill(color):
 for i in range(len(ar)):
 pixels_set(i, color)
def pixels_show():
 dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
 for i,c in enumerate(ar):
 r = int(((c >> 8) & 0xFF) * brightness)
g = int(((c >> 16) & 0xFF) * brightness)
b = int((c & 0xFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b
 sm.put(dimmer_ar, 8)
 time.sleep_ms(10)

while True:
 red = red_adc.read_u16() / 257
 green = green_adc.read_u16() / 257
 blue = blue_adc.read_u16() / 257
 # Get a single value
 color_value = (int(red), int(green), int(blue))
 pixels_fill(color_value)
 pixels_show()
 time.sleep(0.25)

Figure 5 The light-dependant resistor and thermistor can be used to measure analogue light and temperature levels.
Image encoders and file formats

Images are normally encoded in some way (often they are compressed so that they aren’t so large) and then saved to a standard file format on the disk.

JPEG files

The default file format used by libcamera-still is JPEG because of the very wide support that it has, combined with a useful level of compression. Usually, JPEG files are given the extension .jpg, or sometimes .jpeg, as we have already seen.

JPEG is a lossy compression format, meaning that the result of loading your JPEG file is no longer identical to the image that you started from, though the differences are arranged to be ones that you will least notice. In return, you get to specify a quality factor indicating how much compression you want. At very low values your image will indeed deteriorate, but at very high values the JPEG process will be visually lossless; that is, it really will look as good as the original camera image.

The quality factor ranges from 1 to 99, and if you don’t give one it will choose the value 93, which equates informally to ‘quite high quality’.

To save a JPEG at a different quality level, use the `-q` (or equivalently `--quality`) parameter like this:

```
libcamera-still -q 80 -o test.jpg
```

Experiment with quality values like 10 and 50 to see what you get!

PNG files

PNG (or ‘Portable Network Graphic’) is another file and compression format which enjoys wide support. PNG is a lossless compression format,
By default, libcamera-still will capture images at the maximum available resolution. It is possible to adjust the capture resolution in software.

DNG files
DNG, or ‘Digital NeGative’, files are quite different from PNG files. As the full name suggests, they’re somewhat analogous to the ‘negatives’ we had from film cameras before developing them into photos. In our case, the DNG file stores the raw numbers received from the image sensor before the hardware on Raspberry Pi ‘develops’ it into a viewable (JPEG or PNG) image. DNG files are saved alongside the ‘developed’ JPEG or PNG version of the same image. To save a DNG file, use the -r (or --raw) parameter:

```
libcamera-still -r test.jpg
```

Note that libcamera-still will automatically replace .jpg by .dng in the DNG file name, giving both test.dng and test.jpg in this case.

Many third-party software programs exist to ‘develop’ these DNG files interactively – a rather complex procedure beyond the scope of this guide.

By default, libcamera-still will capture images at the maximum available resolution.
Time-lapse captures
A time-lapse capture is where we capture an image at regular intervals, perhaps every minute, hour or day, and then reassemble them into a video where we play them back at a much faster rate. libcamera-still is all set up to capture the images we need out of the box.

We need to introduce the `--timelapse` option and we’ll review a couple that we’ve seen before.

- `-t` or `--timeout`. The length of time in milliseconds for which to perform a capture. In the case of timelapse, libcamera-still will run capturing images in total for this duration. You can pass the value 0 which means ‘run indefinitely’ (you will have to stop libcamera-still manually, for example by pressing CTRL+C on the keyboard).
- `--timelapse`. The length of time, again in milliseconds, between each of the time-lapse captures.
- `-o` or `--output`. The name of the output file or files. For time-lapse captures, we can’t give all the images the same name so we use a special

syntax that includes an image counter. For example, `-o capture_%04d.jpg` means that all the files are named ‘capture_’, followed by a counter, and then .jpg. `%04d` specifies how the counter is formatted, in this case the 0 means to add leading zeroes to the number and the 4 means ‘so that every number has at least 4 digits’. This is useful so that listing your image files will return them to you in chronological order.

Let’s try an example.

```
libcamera-still -o capture_%04d.jpg
--timelapse 5000 -t 30000 --width 1024 --height 768
```

This will run for 30 seconds, capturing an image every 5 seconds, and they’ll be called `capture_0000.jpg` through to `capture_0004.jpg`.

Note how we’ve reduced the resolution of the images to something that is more appropriate to the final video that we want to create.

Assembling your Images into a Video
There’s a handy tool called FFmpeg which is capable of turning your sequence of still images into a video. We can use it like this:

```
ffmpeg -r 2 -i capture_%04d.jpg
--timelapse 5000 -t 30000 --width 1024 --height 768
```

Note how we format the name of the input files with the special `%` syntax in the same way as we did for libcamera-still. The `-r` parameter gives the frame rate of the output video, 2 frames per second in this case. We’ve chosen the output file to have the MP4 format and called it `video.mp4`.

FFmpeg is a highly versatile tool that we recommend learning about.

Capturing when a key is pressed
Rather than doing regular captures, we can also do them in response to an event, or a key press. There are a couple of new option parameters to learn.

- `--datetime`. Use this instead of `-o` to name the output file after the current date and time. The format will be `MMDDhhmmss.jpg`, where MM and DD are the month and date number, and hh, mm and ss are hours, minutes and seconds.
- `-k` or `--keypress`. Capture an image when ENTER is pressed on the keyboard. Type X and press ENTER to quit.
It’s also possible to turn off autofocus and set the focus position of the lens necessary to maintain optimal focus on the centre part of the image, and this is probably what most users will want most of the time.

It’s also possible to turn off autofocus and set the focus position of the lens manually. To do this, use the `--lens-position` parameter, and pass it a value measured in dioptres, meaning the reciprocal of the focus distance. Thus, to focus at a very close distance of about 0.1 m, pass in the value 10 (which is 1 / 0.1). To focus at infinity, pass in 0 (informally, the value of 1 / infinity). You can pass in non-integer values too. For example:

```
libcamera-still --lens-position 0 -o infinity.jpg
```

…will set the focus position to infinity and not move the lens again.

High Dynamic Range imaging

The Camera Module 3 supports High Dynamic Range (HDR) imaging. To use it, specify the `--hdr` option on the command line, for example:

```
libcamera-still --hdr -o hdr.jpg
```

Note that non-HDR captures can be performed at a maximum resolution of 4608×2592 pixels, but HDR captures, because of the special nature of the sensor required to support HDR, are limited to 2304×1296 pixels (exactly half the width and height of the non-HDR mode).

Capturing in response to a signal

For those familiar with Linux signals, an alternative to pressing a key is to send a signal instead. To do this, simply use `-s` or `--signal` instead of `--keypress`.

To send a capture signal to `libcamera-still`, first start it and then type the following into another terminal window:

```
killsigUSR1 `pidof libcamera-still`
```

And you can force `libcamera-still` to quit with:

```
killsigUSR2 `pidof libcamera-still`
```

Autofocus and High Dynamic Range

Autofocus and High Dynamic Range imaging are supported at the time of writing only on Raspberry Pi Camera Module 3.

Autofocus

When using the Camera Module 3, autofocus is enabled automatically in continuous mode. This means that the camera lens will move whenever necessary to maintain optimal focus on the centre part of the image, and this is probably what most users will want most of the time.

It’s also possible to turn off autofocus and set the focus position of the lens manually. To do this, use the `--lens-position` parameter, and pass it a value measured in dioptres, meaning the reciprocal of the focus distance. Thus, to focus at a very close distance of about 0.1 m, pass in the value 10 (which is 1 / 0.1). To focus at infinity, pass in 0 (informally, the value of 1 / infinity). You can pass in non-integer values too. For example:

```
libcamera-still --lens-position 0 -o infinity.jpg
```

…will set the focus position to infinity and not move the lens again.

High Dynamic Range imaging

The Camera Module 3 supports High Dynamic Range (HDR) imaging. To use it, specify the `--hdr` option on the command line, for example:

```
libcamera-still --hdr -o hdr.jpg
```

Note that non-HDR captures can be performed at a maximum resolution of 4608×2592 pixels, but HDR captures, because of the special nature of the sensor required to support HDR, are limited to 2304×1296 pixels (exactly half the width and height of the non-HDR mode).
Run an open-source conversational AI

Host your own local conversational AI using an 8GB Raspberry Pi and Stanford University’s Alpaca model

Last month, we built a chatbot interface using OpenAI’s gpt-3.5-turbo model. This is effective, but there are numerous problems in using OpenAI’s models. Despite the ‘OpenAI’ moniker, the company is highly proprietary, and most users aren’t allowed to download a copy of the model to use on their own hardware, or even to examine the source code or training data. It’s a black box, and this is an intentional decision on OpenAI’s part. So now we’ve got to grips with

Open-source LLM resources

Once you escape OpenAI’s walled garden, you’ll have a wealth of choices when it comes to LLMs (Large Language Models – the text–token predictors used for conversational chatbots and text generation engines). You’ll find a number of these on open-source AI platform, Hugging Face (huggingface.co), along with plenty of documentation, community forums, courses, and both free and paid–for hosting for your machine learning applications. Of course, you’ll also find open–source machine learning models, tools, and applications hosted on the usual platforms such as GitHub, GitLab, and Codeberg.

What we’re looking for in a bot

For a chatbot, there are a few obvious candidates when it comes to open–source LLMs. Ideally, both source code and tensor weights should be publicly available. Finally, although it’s

You’ll Need

> llama.cpp
 magpi.cc/llamacpp
> Alpaca LLM model
 magpi.cc/alpaca

▲ We don’t need a GUI where we’re going. Open Preferences > Raspberry Pi Configuration and set Raspberry Pi to boot to CLI to free some resources.
03 Choose your fighter
EleutherAI’s GPT-J–6B is a fantastic conversational AI, but unless you happen to have a workstation or server packing some of the most powerful GPU hardware on the market, you’ll need to host it elsewhere. KoboldAI, designed to help you create fantasy scenarios, is open, great fun, and a little easier on resources than GPT–J, but requires a GPU and x86 CPU architecture. Meta AI’s LLaMA (Large Language Model Meta AI) is significantly more efficient, but although it is licensed under GPL v3, you currently have to apply (magpi.cc/metaairequest) to gain access to the model, and Meta is in no hurry to answer its emails. Fortunately, Stanford university has released Alpaca (magpi.cc/alpacagit), a fine-tuned version of the model, optimised for conversation, available for anyone to download.

For a chatbot, there are a few obvious candidates when it comes to open-source LLMs

04 Run Alpaca on your CPU
Georgi Gerganov, developer of the whisper.cpp port we used for the transcriber we built in issue 128, has created llama.cpp, an inference system that allows users to interact with a tuned LLM. It’s written in C++ and, critically for our purposes, uses the CPU, rather than requiring a GPU to run. All you have to do is drop in the models you want to use, appropriately converted to work with llama.cpp. Gerganov provides Python-based conversion tools models that you can use to make Meta’s Llama models work correctly once you’ve got them. You can also download ready-to-use models for various other models, including Alpaca (magpi.cc/alpacaggml).

05 System requirements and expectation management
llama.cpp and Alpaca are efficient, but running a conversational LLM is still a big ask of a single-board computer – we got about one token per second. Ensure that you’re running a 64-bit OS. For an easy life, you’ll want a Raspberry Pi 4 with 8GB RAM. If you’re using a 4GB model, you’ll have to increase your swap size, but be aware that this can dramatically reduce the lifespan of your microSD card. If this is your situation, increase swap by opening a terminal, turning off the swapfile, editing its configuration to give yourself both a SWAPSIZE and MAXSWAP of 4096, and re-enabling it at the terminal, thus:

```
sudo dphys-swapfile swapoff
sudo nano /etc/dphys-swapfile
sudo dphys-swapfile setup
```

How was it trained?
LLaMA (and by extension Alpaca)’s training corpus only includes open-source material. Read more in Meta’s paper at magpi.cc/llamapaper.

▲ Alpaca can summarise even rather obscure information from its training corpus for you, but model 7B can be an extremely unreliable narrator

Top Tip
"The -color option differentiates between your queries, in green, a pre-loaded prompt, in yellow, and our conversational bot’s responses, in white"
Install llama.cpp

We’ve used the latest release at the time of writing, master–8944a13 (magpi.cc/llama8944a13), which we’ve confirmed functional on Raspberry Pi 4 8GB hardware running Raspberry Pi OS 64-bit. We can also confirm that version master–0f07cac is functional on Raspberry Pi 4 and 400 hardware. However, llama.cpp is seeing new releases several times a day, so we recommend choosing the latest from its GitHub release page (magpi.cc/llamareleases).

Open a terminal and run the following to download and make llama.cpp, optionally substituting the latest release where we’ve used master–8944a13:

```
sudo apt install g++ build-essential
wget https://github.com/ggerganov/llama.cpp/archive/refs/tags/master-8944a13.tar.gz
tar -xzf master-8944a13.tar.gz
cd llama.cpp-master-8944a13/
made -j4
```

Download Alpaca

We’re going to use Stanford’s Alpaca model. A version of the 4GB 7B model has already been converted into a format appropriate for llama.cpp. If you need to convert your own model, for example because you’ve been granted access to Meta’s LLaMA models, follow the conversion instructions at magpi.cc/llamarun. For speed reasons, you can carry this out on a faster computer than Raspberry Pi and then copy over to your models directory. For the moment, return to your terminal emulator and:

```
cd models
wget https://huggingface.co/Sosaka/Alpaca-native-4bit-ggml(resolve/main/ggml-alpaca-7b-q4.bin
cd ..
./main -m models/ggml-alpaca-7b-q4.bin
--color -f prompts/alpaca.txt -ins --n_parts 1 --ctx_size 2048 --n_predict 1024
```

Options and parameters

Notice that we’re using the -m option to select the model we wish to use; -color to colour the text to make it easier to differentiate between user and LLM text; --ins uses ‘instruct mode’, which Alpaca favours, prompting the user to provide instructions for the chatbot to follow. -f prompts/alpaca.txt tells it to load a supplied prompt file optimised for Alpaca’s manner of interaction. --n_predict determines the maximum allowed response length, and --ctx_size is the
09 How to address Alpaca

Alpaca can answer questions, give you lists of information, and follow directions. It responds particularly well to prompts asking it to list items and tell you about things. We’ve had particular luck with prompts asking it to ‘tell me a story’ about something, and it’ll even have a decent stab if you ask it to ‘write me a poem’. The more detail you provide in your prompt, the more you’ll generally get back.

llama.cpp doesn’t give your chatbot a memory by default. Like gpt-3.5-turbo last month, you’d have to implement a method of returning previous questions and responses to it as part of every prompt, but that adds to its processing load.

10 Performance

On our Raspberry Pi 4 8GB, after initial processing time for the prompt, llama.cpp with Alpaca 7B was returning about one token per second or our initial at default clock speeds, with arm_boost=1 enabled in boot/config.txt to set its clock speed to 1.8GHz. This slightly improved when we overclocked it, editing config.txt to add:

```
arm_freq=2000
over_voltage=6
```

You may be able to further overclock your Raspberry Pi. See our guide at magpi.cc/overclock to learn more.

11 Licensing limitations

Both LLaMA and Alpaca are designed for academic research purposes only: LLaMA (and thus Alpaca) is distributed under a non-commercial licence. A non-commercial licence is fine for the purposes of this tutorial and personal experimentation, but if you’re hoping to develop your own customer service chatbot, look elsewhere. Alpaca’s instruction data is based on OpenAI’s text-davinci-003 – the T&Cs for that ban using it for the development of models that compete with OpenAI. Finally, Stanford warns that “we have not designed adequate safety measures, so Alpaca is not ready to be deployed for general use”, which means that Alpaca may generate disturbing or harmful responses.

12 Alpacas have personality

You’ll notice that Alpaca has a rather different tone to its expression than the gpt-3.5-turbo chatbot model we used last month. It’s less hyper-enthusiastic, less insistent of its own correctness, and generally feels less like it’s writing a LinkedIn post about the startup grinds and hustle life. It’s better at telling stories than ChatGPT, with an intimate tone that may reflect the quantity of public domain literature from Project Gutenberg in LLaMA’s training data. It can answer direct, fact-based questions, sometimes correctly, but – especially if you’re using the smallest Alpaca 7B model – usually not. In any given answer, especially lengthy ones, there’s likely to be at least one error. Larger models may produce better results, but also require both more disk space and more RAM than we have readily to hand.
Retro Gaming with Raspberry Pi shows you how to set up a Raspberry Pi to play classic games. Build your own games console or full-size arcade cabinet, install emulation software and download classic arcade games with our step-by-step guides. Want to make games? Learn how to code your own with Python and Pygame Zero.

- Set up Raspberry Pi for retro gaming
- Emulate classic computers and consoles
- Learn to code your own retro-style games
- Build a console, handheld, and full-size arcade machine

BUY ONLINE: magpi.cc/store
Master the Linux command line interface
Discover the adventure of learning Linux and the command line with Raspberry Pi OS. By Lucy Hattersley

Linux and Raspberry Pi form a powerful combination and learning to use Linux, and especially the command-line interface (CLI), is a vital computing skill.

In this feature, we’re going to delve into the CLI. This is the text-based input and output system that sits underneath the more commonly used graphical user interface (GUI).

Mastering the command line gives you increased control over your computer, allowing you to automate tasks, manipulate files with ease, and troubleshoot issues. Linux skills are always in high demand because they make such a valuable asset in the tech industry.

Raspberry Pi serves as the perfect tool for navigating Linux and the command line. It is a low-cost computer and Raspberry Pi OS is built on top of a recent version of Debian Linux. Furthermore, the Raspberry Pi community is incredibly supportive, offering a wealth of resources and tutorials online to help you throughout your journey.

Let’s get ready to unlock your potential as a Linux master.
The Linux command line, also known as the command-line interface (CLI), is a powerful and efficient tool for interacting with your computer. The command line enables users to perform tasks quickly and precisely using text-based commands that can be chained together and scripted. This feature will cover the basics of using the CLI, including basic Linux commands, file management, piping commands, and accessing the command line remotely. To get started, you’ll need to access the command-line interface. Typically you will use the Terminal application, but you can also use a full-screen teletype (tty) interface. Here are the ways to access the command line:

- Click on the black Terminal icon in the menu bar
- Choose Accessories > Terminal from the menu icon
- Press CTRL+ALT+T on the keyboard
- Press CTRL+ALT+F1-F6 on the keyboard (full screen tty interface. Press CTRL+ALT+F7 to return to Raspberry Pi OS interface)
- Access your Raspberry Pi remotely using SSH

Typically, when you start out, you’ll use the Terminal app. This makes it easier to combine the Terminal with the more user–friendly Raspberry Pi OS graphical user interface (GUI). Click on the black Terminal icon in the menu bar to get started.

Basic Linux commands

When starting out with the CLI, it’s essential to become familiar with a few basic commands. First, you should see something similar to this:

```
pi@raspberrypi:~ $```

The ‘pi’ is your username; after the @ symbol is the hostname of your computer. The ‘~’ symbol is your current location (‘~’ is a short cut for your home directory, more on that later). Finally, the ‘$’ symbol signifies the part where you can enter commands.

These commands help you navigate and manipulate your files and directories. Some common commands are:

- `pwd` (print working directory): This command displays the current directory you are in
- `ls` (list): This command lists the contents of a directory
- `cd` (change directory): This command helps you navigate between directories
- `cp` (copy): This command copies files or directories
- `mv` (move): This command moves files or directories to a new location

### Understanding your location

Understanding file paths is essential for navigating and manipulating files and directories in the CLI.

There are two types of path that can lead to our report in the command line: ‘absolute’ and ‘relative’.

Here is an absolute path to a file called `report.txt`:

```
/your/home/directory/report.txt```

Top Tip!

Directories

Folders are called ‘directories’ in Linux, although they mean the same thing.
Notice the slash ‘/’ character at the start. The slashes are similar to folders in the File Manager, and the very first slash is the ‘root directory’ that sits at the very base of your storage. The path then leads through the home directory into pi and into Documents before identifying the file (each ‘/’ indicating a new folder).

A relative path indicates the location of a file or directory relative to the current working directory. For example, if your current working directory is /home/pi (the home directory), the relative path to report.txt would be:

```
Documents/report.txt
```

Notice the lack of a ‘/’ at the start of the relative path.

Changing the file path

To locate this report.txt file in the File Manager, we would typically start in the pi folder and double click on Documents to open that folder.

To change the file path in CLI we use the cd (change directory) command. You can navigate using absolute or relative paths, depending on your preference. For example:

```
/home/pi/Documents/report.txt
```

The Linux command-line interface is a powerful and efficient tool for interacting with your computer

- **Navigate to an absolute path:**

  ```
  cd /home/pi/Documents
  ```

- **Navigate to a relative path:**

  ```
  cd Documents
  ```

 When navigating with relative paths, you can use the following shortcuts:

 - ‘.’ (single dot): Represents the current directory. For example, cd ./Documents would navigate to the Documents subdirectory in the current directory
 - ‘..’ (double dots): Represents the parent directory. For example, cd .. would move you up one level from the current directory

You will use cd, ls, and cd .. frequently to navigate around the file system

Moving back to the home directory

The home directory is the default directory for a user. To quickly navigate back to your home directory, you can use one of these commands:

- `cd ..`
- `cd ~`
cd (without any arguments): This command will take you back to your home directory

cd ~ (the tilde (‘~’) symbol represents the home directory): This command is equivalent to the previous one

Understanding file paths is crucial for efficient navigation and file management in the Linux environment.

File management

Creating, deleting, and moving files and directories are also fundamental tasks you’ll perform on the command line. Some important commands for file management are:

- **touch**: This command creates an empty file
- **mkdir (make directory)**: This command creates a new directory
- **rm (remove)**: This command deletes a file or directory. Use `rm -r` for directories (the `-r` option stands for ‘recursive’)
- **cp (copy) and mv (move)**: These commands copy and move files and directories, respectively

You’ll use these commands with paths and file names. For example, to create a `reports.txt` file in the Documents folder, you would enter:

```
touch Documents/reports.txt
```

If you wanted to move it to a new directory in your home location, called ‘Work’ you would first create the directory:

```
mkdir Work
```

Then move the file using `mv` and both a source and destination paths.

```
mv Documents/reports.txt Work/reports.txt
```

You also use `mv` to rename a file as you are moving it from one file name to another.

Piping and redirection

Piping and redirection are techniques used to control the flow of data between commands and files. Some common operators include:

- **(pipe)**: This operator sends the output of one command as input to another command and is used to chain commands together. In the home directory, enter `ls | grep D`. This lists list all files and directories starting with ‘D’: **Desktop, Documents, Downloads**.
- **> (redirect output)**: This operator sends the output of a command to a file, overwriting its
contents. For example, enter `ls > filelist.txt`. This saves the list of files outputted by `ls` to the file `filelist.txt`. You can use `cat filelist.txt` to view the contents of the text file.

- **>> (append output):** This operator appends the output of a command to a file. For example, `ls >> filelist.txt`. Adds the list of files to the existing `filelist.txt` without overwriting its contents.

- **< (redirect input):** This operator sends the contents of a file as input to a command. For example, `sort < filelist.txt` would sort the contents of `filelist.txt`.

Command-line text editors

Editing files directly on the command line can be efficient with the right tools. Two popular text editors are:

- **nano:** A beginner-friendly, easy-to-use text editor. Open a file with `nano filename.txt`, edit the contents, and save with `CTRL+O`, followed by `CTRL+X` to exit.

- **vi:** An advanced text editor with powerful features and an extremely strange interface. Open a file with `vi filename.txt`, switch to insert mode by pressing `I`, edit the contents, and save by pressing `ESC` followed by `:wq` and `ENTER`.

"Understanding networking and remote access is essential when working with Linux systems"

Networking and remote access

Understanding networking and remote access is essential when working with Linux systems, especially when using devices like the Raspberry Pi which are often deployed around the network and accessed remotely. Raspberry Pi OS uses the ‘dhcpcd’ (Dynamic Host Configuration Protocol Client Daemon) to manage network configurations. Find out your Raspberry Pi’s current IP (internet protocol) address using either the hostname or your IP address.

```
hostname -I
```

It should return two addresses: a short IPv4 containing four digits separated by dots, and a much longer IPv6. Like this:

```
192.168.1.63 2a02:6b61:9897:0:6fb:19d3:1ee3:1281
```

Normally the shorter IPv4 (in this case, 192.168.1.63) is the one we will use. Your
To access your Raspberry Pi remotely, choose Preferences > Raspberry Pi Configuration from the menu and click on Interface. Switch on SSH and click OK.

You can now connect to your Raspberry Pi from another computer using the `ssh` command on another Linux or macOS machine, or PuTTY on Windows (putty.org). Use the following command, replacing ‘your_username’ with your Raspberry Pi username and ‘your_ip_address’ with your Raspberry Pi’s IP address:

```
ssh your_username@your_ip_address
```

You can also use the hostname and ‘.local’ to access the Raspberry Pi, which is useful if the IP address has dynamically changed:

```
ssh pi@raspberrypi.local
```

The first time you log in via ssh will produce a warning, enter ‘yes’ to connect. You can now enter CLI commands from your remote computer. To return to the CLI on your machine use `exit`.

Set a static IP

You can set a static IP address for your Raspberry Pi by editing the `dhcpcd.conf` file located in the `/etc` directory. This ensures that your router does not dynamically change the IP address, causing you to lose access to your Raspberry Pi. Enter:

```
nano /etc/dhcpcd.conf
```

Edit the following lines to the file, removing the ‘#’ at the start and replacing ‘X’ and ‘Y’ with your desired values:

- `static ip_address=192.168.X.Y/24`
- `static routers=192.168.X.1`
- `static domain_name_servers=192.168.X.1`

Press `CTRL+O` to save the file and `CTRL+X` to exit nano. Now restart the dhcpcd service:

```
sudo systemctl restart dhcpcd
```

Top Tip!

File transfer

Secure File Transfer Protocol (SFTP) enables you to transfer files securely between your computer and Raspberry Pi. Many FTP clients, like FileZilla (filezilla-project.org), support SFTP. To connect, use the same credentials as your SSH connection.

Raspberry Pi is an ideal environment for learning Linux and the command-line environment.
Discover the limitless potential of Raspberry Pi and the Linux environment

Package management and software installation

Package management involves the process of installing, updating, and removing software packages on a Linux system. Packages are pre-compiled software applications, along with their dependencies, configuration files, and documentation. Use the Advanced Package Tool (APT) system for package management. Some common apt commands include:

- `sudo apt update`: Updates the package list from repositories
- `sudo apt upgrade`: Upgrades installed packages to their latest versions
- `sudo apt install package_name`: Installs a package by its name
- `sudo apt remove package_name`: Removes an installed package

To ensure your system and installed software are up-to-date and secure, regularly run the following commands:

```
sudo apt update
sudo apt upgrade
```

These commands update the package list and upgrade all installed packages to their latest versions.

There is more, much more, to the CLI than this and as you venture into new projects and expand your skills, you’ll discover the limitless potential of Raspberry Pi and the Linux environment. From scripting, to automating tasks and troubleshooting projects. Keep exploring, learning, and creating!
Over the past few years, Argon 40’s range of Raspberry Pi cases has raised the game but, until now, the humble yet powerful Zero 2 W has been left out in the cold. No more! Not only has Argon released an aluminium case for the Zero, but also a range of modular add-ons that can be used to create your ideal solution. So, are they worth the investment?

Firstly, there is the case itself (£10/$10). Those familiar with the Flirc case will notice more than a passing resemblance. A solid metal case with plastic covers on the top and bottom provides an industrial-capable enclosure on its own. Thoughtfully, Argon provides a colour-coded, 40-pin header that you can solder on to your Zero. Although it is compatible with all Zero models, for the Zero 2 W Argon includes a thermal paste pad that provides heat dissipation between the large SoC and the case. Four screws ensure a tight connection between the Zero body and the case; everything else ‘snaps’ together. Clear instructions are provided.

The first add-on module, USB/HDMI (£12/$12), connects directly to mini-HDMI and micro-USB ports, breaking them out into full-sized equivalents and separating the power, freeing up another USB port. Installation is as simple as lining up the connectors and pushing together, with no drivers required. Underneath, a header and power connector are exposed that are used to connect other modules, so you may require this module for compatibility.

But wait, there’s more!

Need some more USB ports? How about Ethernet? The USB/LAN module (£20/$20) does both. A ‘full-size’ module, it sits below our current setup, connecting via an exposed header on the USB/HDMI module. Easily snapping together, you now get an additional four USB connectors (two on the front, two on the back) and an Ethernet connector for hard-wired networking. Again, a one-minute install and Raspberry Pi OS recognises all peripherals without any additional software.

Argon POD System for Raspberry Pi Zero 2 W

Turn your Raspberry Pi Zero 2 W into a custom hardware powerhouse with this modular system. PJ Evans plugs in
Now it’s show-time. The Display Module (£30/$30) is a 2.8-inch capacitive touchscreen that plugs into Zero’s GPIO. Framed in an attractive black bezel, with four programmable buttons, it transforms Zero into a stand-alone unit opening up the potential for makes. Drivers are required to get the screen running, which we found easy to install. A simple configuration system allows the buttons to be preprogrammed with common functions such as power off or reboot. Provided documentation explains how to take control of them yourself using GPIO. The screen is perfectly adequate, although you’ll need a stylus for meaningful use of the touch capabilities.

All in all, this is a great collection of add-on gadgets for your Zero. The modular nature means you can keep costs (and size) down. Argon has also teased future modules for further expansion. One slight niggle was a lack of access to GPIO and camera connectors, although this can be overcome with USB devices. It would also be interesting if documentation was provided on how you could make your own modules using the through-module header.

A great collection of add-on gadgets for your Zero

Verdict

Easier GPIO and camera access would be nice, but the exquisite design, tough materials, and sensible pricing more than make up for that. The Argon POD has seriously impressed.

9/10
When we last looked at the display and extension board that makes up Pervasive Displays’ line of Pico development kits, we quite liked the customisability of the display and its code (magpi.cc/121). However, we were concerned with the amount of space it took up. As a development kit for making product with a Pico, it’s not too much of an issue as you’re likely going to have everything be a little more compact in a final product. Hobbyists not as much, though.

The newer EXT3-1 expansion board, along with the 3.70˝ touchscreen display, have shrunk down in the right areas, making them far more appealing to hobbyists. The display itself is very cool and almost wafer-thin, while still having great contrast, and even capacitive touch capabilities. It’s limited to black and white but that’s not too unusual still for e-ink displays.

Hooking it all up is quite simple – if you’ve ever added a Raspberry Pi Camera Module to a Raspberry Pi, the ribbon and connector will be familiar to you. These cannot be directly plugged into Pico, so once you’ve installed the screen to the extension board, you’ll need to connect to Pico using GPIO pins and wires. You can prototype easily on a breadboard, but eventually you’ll need to break out the soldering iron.

Code differently

While many Pico kits and products use MicroPython or variations on it like CircuitPython, here Pico uses Arduino code, which is much closer to C++. While this may be different to some, the way the display is programmed is easy to understand thanks to the example code provided – and the very readable way most of the PDLS library is set out. The documentation is pretty good too, especially if you plan to use the whole system for development. Wireless capabilities are not currently included in the Pico build, though, so you’ll need it to interact with something else if you want to do something networked.

The whole thing runs very smoothly once all set up and coded, with the sort of response time
The whole thing runs very smoothly once all set up and coded, with the sort of response time you might expect from an e-ink display.

you might expect from an e-ink display – so not as quick to refresh as an LCD or LED display, but good enough for the kind of functions you’d want with e-ink. One thing we will add: we mentioned it’s quite a thin display and, while the contrast is good, putting it right in front of a strong light source may see some of that light come through. In such use cases, you can always reverse the black and white pixels on the display. However, that still isn’t a perfect solution.

We do like the Pervasive Displays kits, and the expanding range of display sizes is making them more and more attractive for both commercial and hobby projects. We need to find a way to permanently use this screen now.

Verdict
A great display that has some quite powerful code backing it, even if it is more unique code than other Pico products.

8/10
The Iono RP and RP D16 are industrial-grade programmable logic controllers (PLCs) based around the RP2040 SoC, as used in Raspberry Pi Pico. A key advantage of this is the ability to program them with familiar languages such as MicroPython and C++, rather than the esoteric ones – such as Ladder Logic – typically used for PLCs.

A programmable logic controller is an I/O module used to operate industrial equipment such as motors, pumps, lights, and other machinery. As such, it needs to be rugged enough to deal with an industrial setting. The Iono RP PLC models come in a tough plastic, DIN rail-mountable case. They can also handle operating temperatures between -20 and +60°C.

Inputs and outputs
Along the top and bottom of each Iono unit are rows of screw terminal block connectors for inputs/outputs, along with power, ground, and an RS-485 interface.

The standard Iono RP model features four digital relay outputs, set to normally open by default. While we’ve covered relay boards for Pico and Raspberry Pi before, most have a fairly limited maximum voltage and current. The Iono RP's relays can handle loads of up to 6A at 250V AC, or 3A at 30V DC. So it should be able to drive a wide range of machinery.

In addition, the Iono RP has four multi-mode inputs for analogue (voltage or current) or digital signals – higher levels are converted down to safe
0–3.3 V for the RP2040 – along with two dedicated digital inputs which can also be used as general-purpose TTL-level (0–5 V) inputs/outputs. There’s also a single 0–10 V analogue output.

The Iono RP D16 model lacks relays and instead offers a larger array of 16 digital inputs/outputs. The inputs are current-sinking 24 V, while the 640 mA 24 V outputs can be configured as high-side switches or push-pull drivers for high-speed switching.

Familiar coding

Both models require a 12–24 V DC power supply, although they can be programmed without it connected. As on Raspberry Pi Pico, coding can be done via a USB or SWD (Serial Wire Debug) connection to a computer.

On the Iono RP, removing the front panel gives easy access to the unpopulated SWD and micro-USB port. On the RP D16, however, you need to dismantle the case to access them, which is simple enough but a little annoying.

To start programming in MicroPython, you’ll need to install the Pico UF2 firmware. This entails holding down the BOOTSEL button. You can then start programming in Thonny. For this you’ll also need to download the Iono RP GitHub repo (magpi.cc/ionorpgh) containing libraries and a couple of code examples. So it’s fairly easy to get started for anyone who has already done any Pico programming.

This familiarity should prove a key benefit for some industrial customers, along with makers looking to control higher-voltage/current equipment from a more robust, Pico-style microcontroller. While the Iono RP and D16 lack the immediate control of a button or touchscreen interface found in some PLCs, and there’s no wireless connectivity, they’re reasonably priced for their level of functionality.

“The Iono RP PLC models come in a tough plastic, DIN rail-mountable case”

Verdict

They may seem expensive to hobbyists, but these are industrial-grade PLCs with higher-capacity I/Os while offering a familiar coding environment.

8/10
Yes, you can buy these products - they are in stock...for now!

Products that, at the time of writing, were in stock

By Marc de Vinck @devinck

Stock levels. It’s been an issue for all of us for a while now. Cars, appliances, and anything that has some kind of electronics, especially microcontrollers, seem to have experienced a supply chain issue at some point over the last few years. But, then again, even paper towels or general commodities have been hard to come by at times. It’s been a rough few years trying to acquire parts for your projects, but that seems to be getting a bit better.

All is not lost, especially if you are looking for microcontrollers, rather than a single-board computer. Raspberry Pi started selling the RP2040 integrated circuits to manufacturers so they can continue to support, develop, and innovate in that ecosystem, and it’s been great! And the most important spec: they are in stock!

In this roundup, we’ll be looking at a few new boards and products, but also featuring a few that we have seen before. The key theme being that, at least at the time of these reviews being written, they are all in stock, and they all look like they should continue to be in stock. So, if you have plans for making a cool new IoT device, robot, or so many other DIY electronic projects, don’t worry about stock levels: there are some options out there.

And yes, you may not be able to do all the things you imagined, but you can still do a lot, and you can still have fun!
The ESP32-S3-DevKitC-1, designed by Espressif Systems and available from Adafruit, is an entry-level development board for the ESP32-S3-WROOM-1. It features an ESP32-S3, an Xtensa 32-bit LX7 CPU that operates at up to 240MHz, Wi-Fi, and Bluetooth LE with an on-board PCB antenna, and 8MB flash memory and 8MB PSRAM.

That’s a lot of power and memory! There are a few variations of the board that are available, so be sure to check out the link to the product page. Just keep in mind, programming these types of integrated circuits can be more difficult than something like an Arduino, but you also typically get a lot more features.

How can you go wrong with the Raspberry Pi Pico? It’s the original microcontroller based on the RP2040 and made by Raspberry Pi Ltd itself. Not only is it very affordable, but it also features a dual-core Arm Cortex-M0+ processor with 264kB internal RAM. You can do a lot with that combo! Since its launch, we have seen a lot of boards featuring the RP2040, but the classic Pico W with built-in Wi-Fi is still an excellent choice, especially if you are just getting started. And if you don’t want to solder anything, be sure to check out the Pico WH variation with its header pins already soldered on, for just about a dollar more. It’s great value!
A programmable badge with fast updating e-ink display! What’s not to love? The Badger 2040 W features a Raspberry Pi Pico W and couples it with a beautiful and simple e-ink display. Don’t think this is just a conference badge: it’s an RP2040 with e-ink. You can use it in so many projects. Ignore the optional lanyard! But sure, it makes for a great badge too!

On the front of the Badger 2040 is a black and white 2.9” e-paper screen, five buttons, and a slot to clip it onto a lanyard. On the back of the board there is a battery breakout connector, a reset button, and a convenient Qwiic/STEMMA QT connector, making the board very versatile for other projects. Conference or not, this is a great Pico W-powered board.

VERDICT

9/10

RASPBERRY PI DEBUG PROBE

Got a Raspberry Pi Pico? Check out the Raspberry Pi Debug Probe by the creators at Raspberry Pi, and available at Pimoroni. The Debug Probe allows you to easily hook Pico’s debug pins up to any computer via USB for debugging. It’s also very handy to have for troubleshooting other microcontrollers and microprocessors. You can use it with either the processor serial debug interface or industry-standard UART. Both interfaces use a 3-pin debug connector and make debugging affordable and accessible. Check out the website for more information on this powerful little device.
The Feather ecosystem continues to grow, and the Adafruit Feather RP2040 still stands strong amongst all the variations of Feather boards. The board features an RP2040 32-bit Cortex-M0+ dual core running at ~125MHz, perfectly packaged into the Feather form factor. This allows you to add dozens of different shields and accessories with ease. Or, you can just design your own circuits and use up the 21 GPIO pins that feature four 12-bit ADCs, two I2C, two SPI, and two UART peripherals. It also has 16 PWM outputs that you can use for servos or LEDs. It's an impressive board, and a great choice for most projects.

VERDICT
Adafruit Feather RP2040
A great addition to the Feather ecosystem.

10/10

So, how about any single-board computers that are in stock and ready to ship? Not all variants of Raspberry Pi are easy to get at the moment (though hopefully the situation will be improving by the time you read this), but the 3A+ is usually the most available. It's smaller than the model B, and it doesn't have the latest processor. However, for many embedded options, it's a great choice. The smaller size and lower power requirements mean it's more portable, and it's still got enough processing grunt for a huge range of tasks than microcontrollers struggle with. While it seems a bit unusual to recommend a board that's not the latest model, this really is a capable little computer.

VERDICT
Raspberry Pi 3A+
Powerful and readily available single-board computer.

10/10
Adafruit QT Py RP2040

Adafruit QT Py RP2040 is ridiculously small and amazingly powerful too! The board features the popular RP2040 microcontroller and couples it with the growing ecosystem of STEMMA QT-compatible accessories. You get a reset and bootloader button, an RGB NeoPixel LED, and 13 GPIO pins. You can do a lot with this board. If your project needs to be small, yet powerful, check out the Adafruit QT Py RP2040.

INKY IMPRESSION

Admittedly I took a little liberty when including this in the ‘it’s available’, as the Inky Impression from Pimoroni is available for pre-order and not in stock just yet. Although that will change once this is published, and I hope it stays in stock. I had to include this new display because of just how amazing it looks. No, it’s not super-high definition, but it does have high pixel density, especially for a low power e-ink display. It’s also fairly large at 7.3”, which is great for e-ink. But the real reason I had to include it in the roundup is because it’s also a seven-colour display. Most e-ink displays are two or three colours – this one really shines at seven.

If you have a Raspberry Pi, this should be on your list of accessories.
“The Computers That Made Britain is one of the best things I’ve read this year. It’s an incredible story of eccentrics and oddballs, geniuses and madmen, and one that will have you pining for a future that could have been. It’s utterly astonishing!”

- Stuart Turton, bestselling author and journalist

Buy online: wfmag.cc/ctmb
Let there be light with these incredibly illuminating projects

Lighting an LED may be a simple beginner project for Raspberry Pi and Raspberry Pi Pico coders, but that doesn’t make it any less cool. There’s so much you can do with an LED when it’s connected to a computer. Here are just some of the ways a Raspberry Pi project focussed on lights has wowed us.

▲ PiHue
Automated lights
Control Phillips Hue-brand lights with this little Raspberry Pi hack, and take full control of the living room lighting.

▲ Sunrise Lamp
SAD no more
Waking up to natural sunlight is apparently a good thing for the body and, towards the end of the year, these kind of sunlamps become very welcome.

▲ Dinner klaxon
Teenage alert
Want to make sure the kids know to come down for dinner? This traffic light indicator and an alarm, controlled by a phone, will let them know.

▲ Raspberry Pi Beret
Stand clear, vehicle reversing
This fancy-looking beret has some very clever code that lets creator Sean control it from his smartphone, so people know when he’s turning left or right.
▶ NeoPixel LED Mirror

You, simplified

Magic mirror? Nah. A mirror made up of giant pixels so that you get an abstract representation of yourself is where it’s at.

magpi.cc/ledmirror

▶ Eye of Sauron

Spooky, scary

Keep an eye out for hobbits, elves, dwarves, and other fantasy creatures on Halloween with this roving ocular display.

magpi.cc/sauroneye

▶ Temperature-controlled stairlights

Visual indicator

Lorraine Underwood’s smart stairs let you know how hot or cold it is outside before you even get to the front door.

magpi.cc/tempstairs

▶ POV Display

Not a trick

This illusion uses a very similar process to film, showing you images quickly enough that it fools your eyes into thinking there’s movement. In this case, it’s an LED stick spinning really fast.

magpi.cc/povdisplay

▶ Odyssey Lights

Blackpool illuminated

Lorraine is back again, this time trading in the stairs for giant interactive displays at the famous Blackpool Illuminations.

magpi.cc/odyssey

▶ Cosplay vacuum

Ghostbusting with Luigi

Using a 3D-printed vacuum and some tactically inserted NeoPixels, you too can be Luigi this Halloween (or Comic Con).

magpi.cc/poltertutorial
It may be straightforward by programming standards, but it’s mighty powerful, says Rosie Hattersley.

MicroPython is a version of the Python computer language optimised to run on microcontrollers such as Raspberry Pi Pico and other devices that use the RP2040. As the title implies, Raspberry Pi’s very own guide to exploring MicroPython provides an ideal introduction to the programming language you are likely to use if you have Raspberry Pi Pico, Pico W, or any sort of RP2040 microcontroller. Rather than using a GUI, you program the microcontroller directly from another computer, like Raspberry Pi. So MicroPython is a case of typing in the code and letting it run. Specify input/output pins and MicroPython will control lights, send messages to an LCD matrix, produce on-screen images, or generate sounds. This detailed guide walks you through the essentials of coding with MicroPython for Pico, along with some interactive projects to try.

Getting Started With MicroPython on Raspberry Pi Pico

Raspberry Pi Press

Price: £10

magpi.cc/picobook

AUTHOR

Getting Started With MicroPython on Raspberry Pi Pico

ELECTRONIC HOURGLASS

A Pico, MicroPython code, and the rotary encoder from Elecrow’s Raspberry Pi Pico Starter Kit (magpi.cc/elecrowpicokit) are used to replicate a sand and glass hourglass. This satisfying project involves setting the time using the encoder and then measuring subsequent intervals. Results are displayed on a TM1637 4-digit LED.

➡️ magpi.cc/picohourglass

TRUNDLEBOT EDUCATIONAL ROBOT

Deservedly winning Electromaker’s PCB project design contest, this super robot provides an excellent introduction to programming with Pico and MicroPython and has both parts lists for DIY makers and alternatives if you want to focus on the code. Step-by-step guidance and ready-to-use code means a really rewarding build becomes achievable, even if you are new to coding.

➡️ magpi.cc/trundlebot

DRAWING FILLED CIRCLES AND TRIANGLES WITH MICROPYTHON

Add a Waveshare screen to Raspberry Pi Pico, enter some colour and location variables in MicroPython, and you can get some wonderful visual effects, as this remarkable tutorial demonstrates. Once you’ve got the hang of things, you can even make merry with photos you import.

➡️ magpi.cc/drawingpico

Videos

MicroPython and Pico in action
We are focusing on MicroPython here, and RP2040 on Pico is the microcontroller you’ll almost certainly learn to program. As this tutorial explains, there’s some MicroPython firmware you may need to install the first time you use your Pico to code with it. Once set up, you’ll learn how to make LEDs blink and change their brightness levels, plus how to make use of Pico’s GPIO input/output pins to add sensors and other components. The companion ‘Introduction to Raspberry Pi Pico’ guide (magpi.cc/picointro) will then show you how to use potentiometers, switches, dials, buzzers, and more.

Udemy does some great online courses, and this Internet of Things–focused series, featuring eight hours of video instructions, is ideal for getting to grips with both your Pico board and coding to add smarts to your home and life.

This course covers soldering headers to Pico, connecting sensors, and interfacing with LDR, LM35, DHT22, and DS18B20 sensors. Then you move on to cloud services with ThingSpeak (thingspeak.com) to send and receive temperature and humidity data. Finally, it explains MQTT (mqtt.org), which is a standard messaging protocol for IoT devices. This course is a great way to move on from the basics.
Brian Corteil
The new event runner for CamJam is an old face in the community

Brian Corteil has been in The MagPi many times – over the years we’ve both shared his projects as showcases or screenshots in #MagPiMonday, and he’s even written a few articles. He’s a long-term member of the community who has taken on a new role recently.

“I am part of the team that has taking over organising CamJam from Mike Horne and Tim Richardson,” Brian tells us. “[They] organised the last couple of CamJams before 2020. Early this year, I had realized that it had been over three years since the last CamJam and I decided to it was time for CamJam to return, and the only way it would happen is if I organised it. So, I pitched the idea to hold the jam at Cambridge’s Makespace to both Mike, Tim, and Makespace. Luckily, everyone thought it was a great idea.”

You can see some pictures from the success of the new CamJam on page 88.

What is your history with making?
I’ve really been making all my life; I have always enjoyed the journey of making something. I have been making since I was a child, starting off with wooden building blocks, then Meccano and LEGO. One of the earliest things I remember making was a zip wire for my Action Man, and I made a retrieval system from garden wire to rescue...
I have always enjoyed the journey of making something

Star Wars: A New Hope came out when I was about 8-years-old. It jump-started a love of robots and computers. I started programming when my dad brought me a ZX80, then various other 1980s computers including an Acorn Electron. I returned to programming in the early 2000s when I started an OU Computer studies degree. The last 15 years, I have been making projects with Arduinos and Raspberry Pi. I got into digital making via the video console hacking scene where I first heard about Arduinos.

What was your first Raspberry Pi project?
The first project I can remember making was an internet-connected Giraffe Mood Lamp. It was built on top of a Raspberry Pi model A, way back in 2012. I removed the base of a LED night light, mounted it on top of an array of RGB LEDs, and it could be controlled over the internet.

What are some of your favourite projects you’ve made?
My ‘Naughty or Nice’ Machine – it scans your hand and gives you a naughtiness rating. It tips the scales so little kids are less naughty than their parents. Tiny 4WD robot, which I designed for a robotics feature I wrote for The MagPi (magpi.cc/51) and have taken to events like Micro Pi Noon (I nicked the idea for Micro Pi Noon from the Pi Wars Pi Noon challenge). Face-plant, my Pi Wars balance bot, and Zoey, a zoetrope made from 15 Pimoroni Badgers, two Raspberry Pi, six USB hubs, a flat bed scanner to scan in cell sheets, and a Pico.
MagPi Monday

Amazing projects direct from our Twitter!

Every Monday we ask the question: have you made something with a Raspberry Pi over the weekend? Every Monday, our followers send us amazing photos and videos of the things they have made.

Here’s a selection of some of the awesome things we got sent this month – and remember to follow along at the hashtag #MagPiMonday!

01. We’re concerned that this seems to be a robotic Dullahan
02. As great poet once said: magnets, how do they work?
03. The idea of Pico super-computers warms our papery hearts
04. A great and fun project making good use of online APIs
05. We do love a good, over-engineered birthday card
06. We really like this! There’s plenty of game add-ons you could probably integrate like this
07. This could be a great little office robot, delivering your stuff
08. An excellent start on this big arcade cabinet
09. This watering system just gets better and better
THIS MONTH IN RASPBERRY PI

03

Extreme Electronics

@DavidMcLennan

The PicoCray 9 picoS in a cluster for distributed computing...

04

GraemeJ

@GraemeJ

We completed a project where we show you how one of our subscribers connects to our web server which is running on a Raspberry Pi Pico W from his home and controls our MongooseIoT project running on our Raspberry Pi Pico W in his home. https://youtu.be/5Gg1JN9tM5E

05

Greg Hyman

@GregHyman

Happy #MagPiMonday!
This weekend I created a Pico Powered Birthday Card! It has a touch screen, a buzzer to play Happy Birthday and a sliding display to scroll text.

Read more about it here:
https://www.bbc.com/blog/pi-5077
#piandstem
#raspberrypi
#pirobot

06

Paolo Ciampi

@paolocampi

Working on a game console docking station using a Pico that shows some user data about the user on a Raspberry Pi

07

Peter Pracitus

@PeterPracitus

Finished testing the solar power supply to the latest iteration of my @Raspberry_Pi Pico plant watering monitor - and the build video:
https://youtu.be/QhMv7EezQyY
#MagPiMonday #RaspberryPi #BankHolidayWeekend

08

Just a video game cabinet...

09
Events in pictures: CamJam returns!

Community and official events in the wild

CamJam is one of the oldest Raspberry Jams still running, and the veteran event came back after three years at Makespace Cambridge to huge success. Check out some pictures from the day...

01. The Makespace was full of people checking out projects and workshops
02. Talks on various subjects were given throughout the event
03. Games are a great way to inspire makers of all ages
04. CamJam started Pi Wars, so of course there had to be a robot royal rumble

FIND OUT ABOUT NEXT MONTH’S EVENTS AND POP-UP ON PAGE 92.
Best of the rest!
Other great things we saw this month

Pico W MQTT automation

Camilo Sanchez showed us his project of controlling a relay using MQTT and a Raspberry Pi Pico W, and it seemed quite neat.

“The idea of making this project started when arriving home from work, or elsewhere, in winter and waiting for the house to warm up,” Camilo tells us. “Although setting a timer on the thermostat control could be the solution, I wanted something fancy and efficient. So I decided to make my own boiler control. After researching on alternatives to port forwarding, MQTT met the requirements. So after this, it was time to test the MQTT API for MicroPython on Raspberry Pico W, where I was able to communicate with a cloud MQTT server system from Adafruit (Adafruit IO) using feeders/topics.”

He also created an Android app that communicates with it and displays data. Be exceptionally careful if you plan to recreate this project though – boilers and relays shouldn’t be messed with so lightly.

▶ magpi.cc/picowiot

Together we can make a difference

Give young people the opportunity to learn about technology

The Raspberry Pi Foundation enables young people to realise their full potential through the power of digital technologies, but we can't do this work without your help. Your support helps us give young people the opportunities they need in today's world. Together we can offer thousands more young people across the globe the chance to learn to create with digital technologies.

Generous donations from organisations and individuals who share our mission make our work possible.

Donate today to make a difference: rpf.io/magpidonate
Monday emails

This is my entry for #MagPiMonday. As I don’t have Twitter, or the like, I need to email it to you.

It is my Pico experiment board that I have just made bigger. It is based on my small board that I made for my 12 Projects of Codemas advent calendar I received last year.

If it is good enough to make it in, it would make my year.

Moss via email

We welcome any kind of entry for #MagPiMonday, especially if it’s as cool as this. You can email us at magpi@raspberrypi.com or, Rob directly, at rob@raspberrypi.com. We love to see them!

Weather build

I’m interested in building a Raspberry Pi-based weather station that can collect and transmit data to a central server. I’d like to be able to monitor temperature, humidity, barometric pressure, and anything else that would be suitable. Are there any tutorials or guides available for this kind of project?

Irma via Facebook

The Raspberry Pi Foundation’s project site (magpi.cc/projects) has a good tutorial on building a weather station based around a special kit that they produced around 2016. It’s quite an involved build, so if you’re looking to measure just about everything you can, it’s a great place to start. Check it out at magpi.cc/weatherstation.
Error in printing

I had issue 129 of The MagPi magazine delivered to me this week and there is a misprint in it. Page 35 is not correct – it is a duplicate of page 37. I don’t have the ‘Getting started with Home Assistant’ page.

I have verified this by downloading the pdf version.

Simon via email

Unfortunately there was an error during printing we were unable to catch before the issues were sent out, and some readers like yourself may have noticed how page 37 was printed twice. The correct page 35 can be found in the free PDF, which you can download at magpi.cc/129.

Apologies for this inconvenience.
Community Events Calendar

Find out what community-organised Raspberry Pi-themed events are happening near you...

01. Hybrid Raspberry Pint
- Tuesday 30 May
- Microsoft Reactor (London), London, UK
- magpi.cc/pint129
Raspberry Pint is a meetup for sharing digital making experiences. Most presentations are about building personal or professional projects with Raspberry Pi and other maker technology. You can also learn skills and techniques such as website design, PCB design, software development, 3D printing, and soldering.

02. Melbourne Raspberry Pi Meetup
- Sunday 4 June
- Docklands Makerspace and Library, Melbourne, AUS
- magpi.cc/mrpm130
This meetup is open to everyone with an interest in electronics, robotics, home automation, 3D printing, laser cutting, amateur radio, high altitude balloons, space tech, etc. Makers are invited to bring along their projects and project ideas, and come connect with other makers. Get your questions answered, show off the work you are doing, and get support to resolve nagging issues.

03. Cornwall Tech Jam
- Saturday 10 June
- Fraddon Village Hall, St Columb Major, UK
- magpi.cc/ctm130
Cornwall Tech Jams are run by volunteers working in IT and education throughout Cornwall. They are supported by Software Cornwall, its members, and other local businesses. Our volunteers give their own time and expertise to plan each Cornwall Tech Jam and to the regular maintenance of all our equipment.

04. Riverside Raspberry
- Monday 12 June
- 3600 Lime St, Riverside, CA, USA
- magpi.cc/riverside
Riverside Raspberry is a California-based enthusiast group that’s been meeting up for almost a decade. This group will appeal to thinkers and tinkerers, the scientifically curious, software developers looking to get into embedded development, or anyone young or old that has a knack for tech in general.

FULL CALENDAR
Get a full list of upcoming community events here: magpi.cc/events
At this Raspberry Pi Store pop-up in Leeds, you can experience and buy Raspberry Pi products. Explore some of the things you can do with a Raspberry Pi, discover our accessories and books, and get your hands on limited edition exclusives.

magpi.cc/popup2023leeds
HackSpace
TECHNOLOGY IN YOUR HANDS

THE MAGAZINE FOR THE MODERN MAKER

SUBSCRIBE AND SAVE UP TO 35% ON THE COVER PRICE

ISSUE #67
OUT NOW

hsmag.cc
WIN

ONE OF THREE

PICO BRICKS
BASE KITS

IN ASSOCIATION WITH

We reviewed Pico Bricks last issue, and thought it was a great way to experiment with electronics and other projects that are powered by Raspberry Pi Pico. It includes loads of different components, including a tiny screen, and we have three to give away!

Head here to enter: magpi.cc/win
Learn more: magpi.cc/picobricks

Terms & Conditions
Competition opens on 24 May 2023 and closes on 29 June 2023. Prize is offered to participants worldwide aged 13 or over, except employees of Raspberry Pi Ltd, the prize supplier, their families, or friends. Winners will be notified by email no more than 30 days after the competition closes. By entering the competition, the winner consents to any publicity generated from the competition, in print and online. Participants agree to receive occasional newsletters from The MagPi magazine. We don’t like spam: participants’ details will remain strictly confidential and won’t be shared with third parties. Prizes are non-negotiable and no cash alternative will be offered. Winners will be contacted by email to arrange delivery. Any winners who have not responded 60 days after the initial email is sent will have their prize revoked. This promotion is in no way sponsored, endorsed or administered by, or associated with, Instagram, Facebook, Twitter or any other companies used to promote the service.
NEXT MONTH

THE MAGPI #131
ON SALE 29 JUNE

RASPBERRY PI
ROBOTICS
ROLL YOUR OWN ROBOT

DON’T MISS OUT!
magpi.cc/subscribe

TWITTER @TheMagPi
FACEBOOK fb.com/MagPiMagazine
EMAIL magpi@raspberry.pi.com
A retro world tour

Back in the day, local makers built a range of diverse computers with fresh new ideas. We could learn from the past. By Lucy Hattersley

Ah, the good old days of computing. The 1980s were a vibrant time, and the computer revolution was just starting to spin. This month, thanks to the MCM/70 Reproduction (page 14), I’ve been reminded of the astonishing amount of variety in retro computing. Before this month, I’d never even heard of the MCM/70 and it’s wonderful to encounter it, thanks to the efforts of Canadian Raspberry Pi maker Michael Gardi.

It reminds me that each country, and often each region within a country, had its own computing startups, and their products reflected the unique cultural and technological idiosyncrasies of the time and place.

Around the world

The MCM/70, produced by the Canadian company Micro Computer Machines, holds a special place in the annals of computing history as one of the first, if not the first, personal computers. Introduced in 1973, it boasted an Intel 8008 processor, 4KB of RAM, and an APL (A Programming Language) operating system: another thing I’ve never heard of before.

The MCM/70’s unique design, including a twin cassette deck and a built-in segmented LED display, reminds me of a modern cyberdeck.

It’s a pleasure to see a reproduction of this iconic machine today. In the US, the Apple II was a revelation when it was launched in 1977. It was the first computer many Americans ever saw (here in the UK, mine was a Dragon 32). The Apple II’s role in popularizing the concept of the personal computer cannot be overstated. I preferred the Commodore 64, with its powerful multimedia capabilities. It became a beloved home computer, and also a favourite platform for game developers. It’s still my favourite.

Each country, and often each region within a country, had its own computing startups.

Moving to the UK, the ZX Spectrum and the BBC Micro were pivotal in the country’s computing history. I had a ZX Spectrum, and despite its rubbery keyboard and modest specifications, it was a revolution in the home computing market due to its affordability. The BBC Micro, on the other hand, was a staple in schools, providing many British children with their first taste of computing. Over in Japan, the NEC PC-8801 and Sharp X1 series were leading the pack. I don’t think I ever saw one until visiting computing museums as an adult. Down under, the Microbee, an Australian-built computer, had a cult following. In the Soviet Union, locally produced machines like the Agat and the Electronika BK series were reverse-engineered Western designs.

Today, the world of computing can seem homogenous, dominated by a few large corporations. A MacBook is a MacBook all over the world. We use devices with eerily similar designs and identical operating systems. But in the 1980s, computers were wonderfully diverse. They were local, they were personal.

One of the most fascinating aspects of the Raspberry Pi is its ability to emulate retro computers. This enables enthusiasts to experience the computing past first hand, and younger generations to discover the rich history of personal computing.

Lucy Hattersley

Lucy has been shipped a copy of Zelda: Tears of the Kingdom a day early on press deadline day and it’s like she touched a monkey’s paw.

magpi.cc/lucyhattersley
HIGHPI PRO

The new case from the HiPi.io team

- Rapid tool-free assembly and disassembly
- Large internal volume for HATs
- Compatible with Pi 2/3/4
- Multiple lid options
- Passive & Active Cooling options
- Secure microSD card cover
- VESA mount support
- Molding-configurable output ports customizable for volume orders
- Printed logo for your branding

Available at these great Pi stores:

PiShop.us PiShop.ca PiShop.mx ThePiHut PiShop.ch Welectron.

Contact your favorite Pi store if it’s not listed here
PiKVM

Manage your servers or workstations remotely

A cost-effective solution for data-centers, IT departments or remote machines!

Pre-Assembled version

PiKVM HAT for DIY and custom projects

- Real-time clock with rechargeable super capacitor & flash drive
- OLED Display
- Serial console
- Open-source API & integration
- Bootable virtual CD-ROM
- Open-source software

Available at the main Raspberry Pi resellers

Reseller suggestions and inquiries: wholesale@hipi.io