
ESSENTIALS

MUSIC
WITH

LIVE CODE & CREATE AMAZING SOUNDS
ON

YOUR Raspberry Pi
Written by Sam Aaron

CODE

2 [Chapter One]

EDITORIAL
Managing Editor: Russell Barnes
russell@raspberrypi.org
Features Editor: Rob Zwetsloot
Sub Editors: Laura Clay, Phil King, Lorna Lynch

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay
Illustrator: Sam Alder

This book is published by Raspberry Pi (Trading) Ltd., Mount Pleasant House, Cambridge, CB3
0RN. The publisher, editor and contributors accept no responsibility in respect of any omissions or
errors relating to goods, products or services referred to. Except where otherwise noted, content
in this product is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London
EC1A 9PT | +44 (0)207 429 4000

SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337, Bournemouth
BH1 9EH | +44 (0)1202 586 848
magpi.cc/Subs1

onic Pi is a powerful new kind of musical
instrument. Instead of strumming strings
or whacking things with sticks, you write

code… live. We call it live coding.
Sonic Pi comes pre-installed on your Raspberry

Pi, but is also available to download for Mac and PC
for free at sonic-pi.net.

I have written this book to complement
Sonic Pi’s built-in tutorial and to help you
jump-start your live-coding career. It’s packed full
of fun, instantly rewarding examples to highlight
many of the new things Sonic Pi will enable you to
do. By the time you’ve finished it you’ll be able to
code up some phat bass, sparkling synth leads and
start practicing for your first live-coding gig.

Remember, with live coding there are no
mistakes - only opportunities!

Sam Aaron

Creator of Sonic Pi

WELCOME TO

S

CODE MUSIC
WITH SONIC PI

mailto:russell%40raspberrypi.org?subject=Hi
http://www.criticalmedia.co.uk
http://www.raspberrypi.org/magpi/
http://www.raspberrypi.org/magpi/
http://magpi.cc/Subs1
http://sonic-pi.net

 [CODE MUSIC WITH SONIC PI]

3[Don’t Panic] 3[Contents]

CONTENTS

ESSENTIALS

[SAM

AARON]

Sam Aaron is a live

coder exploring

the intersection

between

code, art, and

education. He sees

programming as

performance, and

builds systems to

lower the barrier

for people to

have a creative

experience

with code.
By day, Sam

is a Research

Associate at

the University

of Cambridge

Computer

Laboratory; by

night, he makes

people dance by

live coding in clubs

and events all over

the world, using

Sonic Pi running on

a Raspberry Pi.

04 [CHAPTER ONE]
LIVE CODING
Master live loops

10 [CHAPTER TWO]
CODED BEATS
Build drum breaks

16 [CHAPTER THREE]
SYNTH RIFFS
Compose melodies

22 [CHAPTER FOUR]
ACID BASS
Use squelchy basslines

28 [CHAPTER FIVE]
MUSICAL MINECRAFT
Control Minecraft from Sonic Pi

34 [CHAPTER SIX]
BINARY BIZET
Code classic music

40 [CHAPTER SEVEN]
SURFING RANDOM
STREAMS
Make random riffs and loops

46 [CHAPTER EIGHT]
CONTROLLING YOUR SOUND
Alter sounds as they’re playing

52 [CHAPTER NINE]
BECOME A MINECRAFT VJ
Create an audiovisual feast

58 [CHAPTER TEN]
QUICK REFERENCE
Lots of useful information

4

ESSENTIALS

[Chapter One]

[CHAPTER ONE]
LIVE CODING

Digital musician and Cambridge Computer Lab researcher
Sam Aaron starts off his Sonic Pi tutorial series
by introducing the art of live coding

ESSENTIALS

4 [Chapter One]

5

 [CODE MUSIC WITH SONIC PI]

5

he laser beams sliced through the wafts of smoke as the
subwoofer pumped bass deep into the bodies of the crowd.
The atmosphere was rife with a heady mix of synths and

dancing. However, something wasn’t quite right in this nightclub.
Projected in bright colours above the DJ booth was futuristic text,
moving, dancing, flashing. This wasn’t fancy visuals; it was merely
a projection of Sonic Pi running on a Raspberry Pi. The occupant of
the DJ booth wasn’t spinning discs; she was writing, editing, and
evaluating code. Live. This is Live Coding.

This may sound like a far-fetched story from the future, but
coding music like this is a growing trend and is often described as
live coding (toplap.org). One of the recent directions this approach
to music-making has taken is the Algorave (algorave.com) - events
where artists like myself code music for people to dance to. However,
you don’t need to be in a nightclub to live-code; with Sonic Pi v2.9+,
you can do it anywhere you can take your Raspberry Pi and a pair of
headphones or some speakers. Once you reach the end of this article,
you’ll be programming your own beats and modifying them live.
Where you go afterwards will only be constrained by your imagination.

T

[Live Coding]

Below The new Dark theme is lovely!

6

ESSENTIALS

[Chapter One]6 [Chapter One]

Live loop
The key to live coding with Sonic Pi is mastering the live_loop.
Let’s look at one:

live_loop :beats do

 sample :bd_haus

 sleep 0.5

end

There are four core ingredients to a live_loop. The first is its
name. Our live_loop above is called :beats. You’re free to call
yours anything you want. Go crazy. Be creative. I often use names
that communicate something about the music they’re making to the
audience. The second ingredient is the do word, which marks where
the live_loop starts. The third is the end word, which marks where
the live_loop finishes. Finally, there is the body of the live_loop,
which describes what the loop is going to repeat – that’s the bit
between the do and end. In this case, we’re repeatedly playing a bass
drum sample and waiting for half a beat. This produces a nice regular
bass beat. Go ahead: copy it into an empty Sonic Pi buffer and hit Run.
Boom, boom, boom!

Redefining on-the-fly
OK, so what’s so special about the live_loop? So far it just seems
like a glorified ‘loop’! Well, the beauty of live_loops is that you can
redefine them on-the-fly. This means that while they’re still running,
you can change what they do. This is the secret to live coding with
Sonic Pi. Let’s have a play:

live_loop :choral_drone do

 sample :ambi_choir, rate: 0.4

 sleep 1

end

Now hit the Run button or press ALT+R. You’re now listening to
some gorgeous choir sounds. Now, while it’s still playing, change
the rate from 0.4 to 0.38. Hit Run again. Whoa! Did you hear the
choir change note? Change it back up to 0.4 to return to how it was.

7

 [CODE MUSIC WITH SONIC PI]

Now, drop it to 0.2, down to 0.19, and then back up to 0.4. See how
changing just one parameter on-the-fly can give you real control
of the music? Now play around with the rate yourself - choose your
own values. Try negative numbers, really small numbers, and large
numbers. Have fun!

Sleeping is important
One of the most important lessons about live_loops is that they need
rest. Consider the following live_loop:

live_loop :infinite_impossibilities do
 sample :ambi_choir

end

If you try running this code, you’ll immediately see Sonic Pi
complaining that the live_loop did not sleep. This is a safety
system kicking in! Take a moment to think about what this code is
asking the computer to do. That’s right, it’s asking the computer to
play an infinite amount of choir samples in zero time. Without the
safety system, the poor computer will try to do this and crash and burn
in the process. So remember- your live_loops must contain a sleep.

Combining sounds
Music is full of things happening at the same time. Drums at the same
time as bass at the same time as vocals at the same time as guitars...
In computing we call this concurrency, and Sonic Pi provides us with an

[Live Coding]

Image by Claire Quigley

Below Sam Aaron headlining an Algorave at the Glasgow School of Art

 [CODE MUSIC WITH SONIC PI]

8

ESSENTIALS

[Chapter One]8 [Chapter One]

amazingly simple way of playing things at the same time. Simply use
more than one live_loop!

live_loop :beats do

 sample :bd_tek

 with_fx :echo, phase: 0.125, mix: 0.4 do

 sample :drum_cymbal_soft, sustain: 0, release: 0.1

 sleep 0.5

 end

end

live_loop :bass do

 use_synth :tb303

 synth :tb303, note: :e1, release: 4, cutoff: 120,

 cutoff_attack: 1

 sleep 4

end

Here, we have two live_loops: one looping quickly, making beats;
another looping slowly, making a crazy bass sound. One of the interesting
things about using multiple live_loops is that they each manage their
own time. This means it’s really easy to create interesting polyrhythmical
structures and even play with phasing, Steve Reich style. Check this out:

Steve Reich’s piano phase

notes = (ring :E4, :Fs4, :B4, :Cs5, :D5, :Fs4,

 :E4, :Cs5, :B4, :Fs4, :D5, :Cs5)

live_loop :slow do

 play notes.tick, release: 0.1

 sleep 0.3

end

live_loop :faster do

 play notes.tick, release: 0.1

 sleep 0.295

end

9

 [CODE MUSIC WITH SONIC PI]

[Live Coding]

Bringing it all together
In each of these tutorials, we’ll end with a final example in the form
of a new piece of music which draws from all of the ideas introduced.
Read this code and see if you can imagine what it’s doing. Then, copy
it into a fresh Sonic Pi buffer and hit Run and actually hear what it
sounds like. Finally, change one of the numbers, or comment and
uncomment things out. See if you can use this as a starting point for
a new performance – and most of all, have fun!

with_fx :reverb, room: 1 do

 live_loop :time do

 synth :prophet, release: 8, note: :e1, cutoff: 90, amp: 3

 sleep 8

 end

end

live_loop :machine do

 sample :loop_garzul, rate: 0.5, finish: 0.25
 sample :loop_industrial, beat_stretch: 4, amp: 1

 sleep 4

end

live_loop :kik do

 sample :bd_haus, amp: 2

 sleep 0.5

end

with_fx :echo do

 live_loop :vortex do

 # use_random_seed 800

 notes = (scale :e3, :minor_pentatonic, num_octaves: 3)

 16.times do

 play notes.choose, release: 0.1, amp: 1.5

 sleep 0.125

 end

 end

end

 [CODE MUSIC WITH SONIC PI]

10

ESSENTIALS

[Chapter One]

[CHAPTER TWO]
CODED BEATS

By playing sample loops, it’s possible to recreate some of the
most influential drum breaks in music history

ESSENTIALS

10 [Chapter Two]

11

 [CODE MUSIC WITH SONIC PI]

11

ne of the most exciting and revolutionary technical
developments in modern music was the invention of
computer-based samplers in the late 1970s. These

electronic boxes of tricks allowed you to record any sound into
them and then manipulate and play back those sounds in many
interesting ways. For example, you could take an old record, find
a drum solo (or break), record it into your sampler, and then play
it back on repeat at half-speed to provide the foundation for
your latest beats. This is how early hip-hop music was born, and
today it’s almost impossible to find electronic music that doesn’t
incorporate samples of some kind. Using samples is a really great
way of easily introducing new and interesting elements into your
live-coded performances.

So where can you get a sampler? Well, you already have one:
it’s your Raspberry Pi! The built-in live-coding app Sonic Pi has
an extremely powerful sampler built into its core. Let’s play with it!

O

[Coded Beats]

Below The Akai MPC 2000, a classic early sampler

12

ESSENTIALS

[Chapter One]12 [Chapter Two]

The Amen Break
One classic and immediately recognisable drum break sample is called
the Amen Break. It was first performed in 1969 in the song Amen Brother
by The Winstons, as part of a drum break. However, it was when it was
discovered and sampled by early hip-hop musicians in the 1980s that it
started being heavily used in a wide variety of other musical styles such
as drum and bass, breakbeat, hardcore techno, and breakcore.

I’m sure you’re excited to hear that it’s also built right into Sonic Pi.
Clear up a buffer and throw in the following code:

sample :loop_amen

Hit Run and boom! You’re listening to one of the most influential
drum breaks in the history of dance music. However, this sample wasn’t
famous for being played as a one-shot: it was built for being looped.

Beat stretching
Let’s loop the Amen Break by using our old friend the live_loop,
introduced in chapter 1:

live_loop :amen_break do

 sample :loop_amen

 sleep 2

end

OK, so it is looping, but there’s an annoying pause every time
round. That is because we asked it to sleep for 2 beats; however, with
the default BPM of 60, the :loop_amen sample only lasts for 1.753
beats. We therefore have a silence of 2 - 1.753 = 0.247 beats. Even
though it’s short, it’s still noticeable.To fix this issue, we can use the
beat_stretch: opt to ask Sonic Pi to stretch (or shrink) the sample
to match the specified number of beats.

Sonic Pi’s sample and synth functions give you a lot of control

via optional parameters such as amp:, cutoff:, and release:.

However, the term ‘optional parameter’ is a real mouthful,

so we just call them opts to keep things nice and simple.

13

 [CODE MUSIC WITH SONIC PI]

[Coded Beats]

live_loop :amen_break do

 sample :loop_amen, beat_stretch: 2

 sleep 2

end

Now we’re dancing! Although, perhaps we want speed it up or slow
it down to suit the mood.

Playing with time
OK, so what if we want to change styles to old-school hip-hop or
breakcore? One simple way of doing this is to play with time or, in
other words, to mess with the tempo. This is super-easy in Sonic Pi:
just throw a use_bpm into your live loop…

live_loop :amen_break do

 use_bpm 30

 sample :loop_amen, beat_stretch: 2

 sleep 2

end

Whilst you’re rapping over those slow beats, notice that we’re still
sleeping for 2 and our BPM is 30, yet everything is in time. This is
because the beat_stretch opt uses the current BPM to make sure
everything just works.

Now, here’s the fun part. Whilst the loop is still live, change the
30 in the use_bpm 30 line to 50. Whoa, everything just got faster yet
kept in time! Try going faster: up to 80...to 120...now go crazy and
punch in 200!

Filtering
Now we can live-loop samples, let’s look at some of the most fun opts
provided by the sample synth. First up is cutoff:, which controls the
cutoff filter of the sampler. This is disabled by default, but you can
easily turn it on:

 [CODE MUSIC WITH SONIC PI]

14

ESSENTIALS

[Chapter One]14 [Chapter Two]

live_loop :amen_break do

 use_bpm 50

 sample :loop_amen, beat_stretch: 2, cutoff: 70

 sleep 2

end

Go ahead and change the cutoff: opt. For example, increase it to
100, hit Run, and wait for the loop to cycle round to hear the change in
the sound. Notice that low values like 50 sound mellow and bassy, and
high values like 100 and 120 are more full-sounding and raspy. This
is because the cutoff: opt will chop out the high-frequency parts of
the sound, just like a lawnmower chops off the top of the grass. The
cutoff: opt is like the length setting, determining how much grass is
left over.

Slicing
Another great tool to play with is the slicer FX. This will chop (slice) the
sound up. Wrap the sample line with the FX code like this:

live_loop :amen_break do

 use_bpm 50

 with_fx :slicer, phase: 0.25, wave: 0, mix: 1 do

 sample :loop_amen, beat_stretch: 2, cutoff: 100

 end

 sleep 2

end

Notice how the sound bounces up and down a little more. (You can
hear the original sound without the FX by changing the mix: opt
to 0). Now, try playing around with the phase: opt. This is the rate
(in beats) of the slicing effect. A smaller value like 0.125 will slicer
faster and larger values like 0.5 will slice more slowly. Notice that
successively halving or doubling the phase: opt value tends to always
sound good. Finally, change the wave: opt to one of 0, 1, or 2 and hear
how it changes the sound. These are the various wave shapes. 0 is a

15

 [CODE MUSIC WITH SONIC PI]

[Coded Beats]

saw wave, (hard in, fade out), 1 is a square wave (hard in, hard out),
and 2 is a triangle wave (fade in, fade out).

Bringing it all together
Finally, let’s revisit the early Bristol drum and bass scene. Don’t worry
too much about what all this code means; just type it in, hit Run, then
start live-coding it by changing opt numbers and see where you can
take it. Please do share what you create!

use_bpm 90

use_debug false

live_loop :amen_break do

 p = [0.125, 0.25, 0.5].choose

 with_fx :slicer, phase: p, wave: 0, mix: rrand(0.7, 1),

 reps: 4 do

 r = [1, 1, 1, -1].choose

 sample :loop_amen, beat_stretch: 2, rate: r , amp: 2

 sleep 2

 end

end

live_loop :bass_drum do

 sample :bd_haus, cutoff: 70, amp: 1.5

 sleep 0.5

end

live_loop :landing do

 bass_line = (knit :e1, 3, [:c1, :c2].choose, 1)

 with_fx :slicer, phase: [0.25, 0.5].choose,

 invert_wave: 1, wave: 0 do

 s = synth :square, note: bass_line.tick, sustain: 4,

 cutoff: 60

 control s, cutoff_slide: 4, cutoff: 120

 end

 sleep 4

end

 [CODE MUSIC WITH SONIC PI]

16

ESSENTIALS

[Chapter One]

[CHAPTER THREE]
SYNTH RIFFS

Here we take a look at synth riffs, coding
their timbre, melody, rhythm

ESSENTIALS

16 [Chapter Three]

17

 [CODE MUSIC WITH SONIC PI]

17

hether it’s the haunting drift of rumbling oscillators or the
detuned punch of saw waves piercing through the mix, the
lead synth plays an essential role on any electronic track. In

chapter 2, we covered how to code our beats. In this tutorial we’ll cover
how to code up the three core components of a synth riff - the timbre,
melody, and rhythm.

OK, so power up your Raspberry Pi, crack open Sonic Pi v2.9+, and
let’s make some noise!

Timbral possibilities
An essential part of any synth riff is changing and playing with the
timbre of the sounds. We can control the timbre in Sonic Pi in two
ways - choosing different synths for a dramatic change, and setting

W

[Synth Riffs]

We can control the timbre
in Sonic Pi in two ways...

18

ESSENTIALS

[Chapter One]18 [Chapter Three]

the various synth opts for more subtle modifications. We can also use
FX, but that’s for another tutorial...

Let’s create a simple live loop where we continually change the
current synth:

live_loop :timbre do

 use_synth (ring :tb303, :blade,

 :prophet, :saw, :beep, :tri).tick

 play :e2, attack: 0, release: 0.5, cutoff: 100

 sleep 0.5

end

Take a look at the code. We’re simply ticking through a ring of
synth names (this will cycle through each of these in turn, repeating
the list over and over). We pass this synth name to the use_synth
fn (function), which will change the live_loop’s current synth. We
also play note :e2 (E at the second octave), with a release time of 0.5
beats (half a second at the default BPM of 60) and with the cutoff:
opt set to 100.

Hear how the different synths have very different sounds, even
though they’re all playing the same note. Now experiment and have
a play. Change the release time to bigger and smaller values. For
example, change the attack: and release: opts to see how different
fade in/out times have a huge impact on the sound. Finally, change
the cutoff: opt to see how different cutoff values also massively
influence the timbre (values between 60 and 130 are good). See how
many different sounds you can create by just changing a few values.
Once you’ve mastered that, just head to the Synths tab in the Help
system for a full list of all the synths and all the available opts each
individual synth supports, to see just how much power you have under
your coding fingertips.

Timbre is just a fancy word describing the sound of a sound. If you
play a the same note with different instruments such as a violin,
guitar, and piano, the pitch (how high or low it sounds) would be the
same, but the sound quality would be different. That sound quality
- the thing which allows you to tell the difference between a piano
and a guitar – is the timbre.

19

 [CODE MUSIC WITH SONIC PI]

[Synth Riffs]

Melodic composition
Another important aspect to our lead synth is the choice of notes we
want to play. If you already have a good idea, then you can simply
create a ring with your notes in and tick through them:

live_loop :riff do

 use_synth :prophet

 riff = (ring :e3, :e3, :r, :g3, :r, :r, :r, :a3)

 play riff.tick, release: 0.5, cutoff: 80

 sleep 0.25

end

In this example, we have defined our melody with a ring, which
includes both notes such as :e3 and rests, represented by :r. We are
then using .tick to cycle through each note to give us a repeating riff.

Auto melody
It’s not always easy to come up with a nice riff from scratch. Instead,
it’s often easier to ask Sonic Pi for a selection of random riffs and
to choose the one you like the best. To do that, we need to combine
three things: rings, randomisation, and random seeds. Let’s look
at an example:

live_loop :random_riff do

 use_synth :dsaw

 use_random_seed 3

 notes = (scale :e3, :minor_pentatonic).shuffle
 play notes.tick, release: 0.25, cutoff: 80

 sleep 0.25

end

There’s a few things going on - let’s look at them in turn. First, we
specify that we’re using random seed 3. What does this mean? Well,
The useful thing is that when we set the seed, we can predict what the
next random value is going to be - it’s the same as it was last time we
set the seed to 3 (see ‘Pseudo Randomisation’ box below). Another
useful thing to know is that shuffling a ring of notes works in the same
way. In the example above, we’re essentially asking for the ‘third

 [CODE MUSIC WITH SONIC PI]

20

ESSENTIALS

[Chapter One]

shuffle’ in the standard list of shuffles - which is also the same every
time, as we’re always setting the random seed to the same value right
before the shuffle. Finally, we’re just ticking through our shuffled notes
to play the riff.

Now, here’s where the fun starts. If we change the random seed value
to another number, say 3000, we get an entirely different shuffling of
the notes. So now it’s very easy to explore new melodies. Simply choose
the list of notes to shuffle (scales are a great starting point), then the
seed to shuffle with. If you don’t like the melody, just change one of
those two things and try again. Repeat until you like what you hear!

Pseudo randomisation
Sonic Pi’s randomisation is not actually random – it’s what’s called
pseudorandom. Imagine if you were to roll a dice 100 times and
write down the result of each roll onto a piece of paper. Sonic Pi has
the equivalent of this list of results, which it uses when you ask for
a random value. Instead of rolling an actual dice, it just picks the
next value from the list. Setting the random seed is just jumping
to a specific point in that list.

Finding your rhythm
Another important aspect to our riff is the rhythm - when to play a
note and when not to. As we saw above, we can use :r in our rings
to insert rests. Another very powerful way is to use spreads. Today,
however, we’ll use randomisation to help us find our rhythm. Instead
of playing every note, we can use a conditional to play a note with a
given probability. Let’s take a look:

live_loop :random_riff do

 use_synth :dsaw

 use_random_seed 30

 notes = (scale :e3, :minor_pentatonic).shuffle
 16.times do

 play notes.tick, release: 0.2, cutoff: 90 if one_in(2)

 sleep 0.125

 end

end

20 [Chapter Three]

21

 [CODE MUSIC WITH SONIC PI]

[Synth Riffs]

A really useful fn to know is one_in, which will give us a true or
false value with the specified probability. Here, we’re using a value of
2, so on average, one time every two calls to one_in it will return true.
Using higher values will make it return false more often, introducing
more space into the riff.

Notice that we’ve added some iteration in here with 16.times. This
is because we only want to reset our random seed value every 16 notes,
so our rhythm repeats every 16 times. This doesn’t affect the shuffling,
as that is still done immediately after the seed is set. We can use the
iteration size to alter the length of the riff. Try changing the 16 to 8
or even 4 or 3 and see how it affects the rhythm of the riff. Finally,
experiment with different seed values!

Bringing it all together
OK, so let’s combine everything we’ve learned together into one final
example. See you in the next chapter!

use_debug false

live_loop :random_riff do

 # uncomment and hit Run to bring in:

 # synth :blade, note: :e4, release: 4, cutoff: 100, amp: 1.5

 use_synth :dsaw

 use_random_seed 30030

 notes = (scale :e3, :minor_pentatonic, num_octaves: 2).shuffle.take(8)
 8.times do

 play notes.tick, release: rand(0.5),

 cutoff: rrand(60, 130) if one_in(2)

 sleep 0.125

 end

end

live_loop :drums do

 use_random_seed 500

 16.times do

 sample :bd_haus, rate: 2, cutoff: 110 if rand < 0.35

 sleep 0.125

 end

end

live_loop :bd do

 sample :bd_haus, cutoff: 100, amp: 3

 sleep 0.5

end

 [CODE MUSIC WITH SONIC PI]

22

ESSENTIALS

[Chapter One]

[CHAPTER FOUR]

ACID BASS
Yes, you can turn your Raspberry Pi
into a TB-303 for the infamous acid
house bass sound

ESSENTIALS

22 [Chapter Four]

23

 [CODE MUSIC WITH SONIC PI]

23

t’s impossible to look through the history of electronic dance
music without seeing the enormous impact of the tiny Roland
TB-303 synthesiser. It’s the secret sauce behind the original

acid bass sound. Those classic squealing and squelching TB-303 bass riffs
can be heard from the early Chicago House scene through to more recent
electronic artists such as Plastikman, Squarepusher, and Aphex Twin.

Interestingly, Roland never intended for the TB-303 to be used in dance
music. It was originally created as a practice aid for guitarists. Roland
imagined that people would program the TB-303 to play basslines to
jam along to. Unfortunately, there were a number of problems: it was a
little fiddly to program, didn’t sound particularly good as a bass-guitar
replacement, and was pretty expensive to buy. Opting to cut its losses,
Roland stopped making the TB-303 after 10,000 units were sold. After
a number of years sitting on guitarists’ shelves, many ended in the
windows of second-hand shops. These discarded TB-303s were waiting
to be discovered by a new generation, which started experimenting and
using them to create new crazy sounds. Acid house was born.

While getting your hands on an original TB-303 isn’t so easy, you’ll be
pleased to know that you can turn your Raspberry Pi into one using the
power of Sonic Pi. Just put this code into an empty buffer and hit Run:

use_synth :tb303

play :e1

Instant acid bass! Let’s play around...

Squelch that bass
First, let’s build a live arpeggiator to make things fun. In chapter 3, we
looked at how riffs can just be a ring of notes that we tick through one
after another, repeating when we get to the end. Let’s create a live loop
that does exactly that:

use_synth :tb303

live_loop :squelch do

 n = (ring :e1, :e2, :e3).tick

 play n, release: 0.125, cutoff: 100, res: 0.8, wave: 0

 sleep 0.125

end

I

[Acid Bass]

24

ESSENTIALS

[Chapter One]24 [Chapter Four]

Take a look at each line…

 On the first line, we set the default synth to be tb303 with the
use_synth function.

 On line two, we create a live loop called :squelch, which will
just loop round and round.

 Line three is where we create our riff – a ring of notes (E in octaves
1, 2, and 3), which we simply tick through with .tick. We define
n to represent the current note in the riff. The equals sign just
means to assign the value on the right to the name on the left.
This will be different every time round the loop. The first time
round, n will be set to :e1. The second time round, it will be :e2,
followed by :e3, and then back to :e1, cycling round forever.

 Line four is where we actually trigger our :tb303 synth.
We’re passing a few interesting opts here: release:, cutoff:,
res:, and wave:, which we will discuss below.

 Line five is our sleep – we’re asking the live loop to loop
round every 0.125 seconds, which works out at eight times
a second at the default BPM of 60.

 Line six is the end to the live loop. This just tells Sonic Pi where
the end of the live loop is.

Whilst you’re still figuring out what’s going on, type in the code
above and hit the Run button. You should hear the :tb303 kick into
action. Now, this is where the action is: let’s start live coding.

Whilst the loop is still live, change the cutoff: opt to 110. Now
hit the Run button again. You should hear the sound become a little
harsher and more squelchy. Dial in 120 and hit Run. Now 130. Listen
how higher cutoff values make it sound more piercing and intense.
Finally, drop it down to 80 when you feel like a rest. Then repeat as
many times as you want. Don’t worry, I’ll still be here...

Another opt worth playing with is res:. This controls the level of
resonance of the filter. A high resonance is characteristic of acid bass

25

 [CODE MUSIC WITH SONIC PI]

[Acid Bass]

sounds. We currently have our res: set to 0.8. Try cranking it up to
0.85, then 0.9, and finally 0.95. You might find that a cutoff such as
110 or higher will make the differences easier to hear. Now, go crazy
and dial in 0.999 for some insane sounds. At a res: this high, you’re
hearing the cutoff filter resonate so much that it starts to make sounds
of its own!

Finally, for a big impact on the timbre, try changing the wave: opt
to 1. This is the choice of source oscillator. The default is 0, which is a
sawtooth wave. 1 is a pulse wave and 2 is a triangle wave.

Of course, try different riffs by changing the notes in the ring or
even picking notes from scales or chords. Have fun with your first acid
bass synth.

Deconstructing the TB-303
The design of the original TB-303 is actually pretty simple. There are
only four core parts. First is the oscillator wave – the raw ingredients
of the sound. For instance, this could be a square wave. Next, there’s
the oscillator’s amplitude envelope, which controls the amp of the
square wave through time. These are accessed in Sonic Pi by the
attack:, decay:, sustain:, and release: opts, along with their
level counterparts. For more information, read Section 2.4, ‘Duration
with Envelopes’, of the built-in tutorial. We then pass our enveloped
square wave through a resonant low-pass filter. This chops off the
higher frequencies, as well as having that nice resonance effect.
Now this is where the fun starts. The cutoff value of this filter is also
controlled by its own envelope! This means we have amazing control
over the timbre of the sound by playing with both of these envelopes.
Let’s take a look:

use_synth :tb303

with_fx :reverb, room: 1 do

 live_loop :space_scanner do

 play :e1, cutoff: 100, release: 7, attack: 1,

 cutoff_attack: 4, cutoff_release: 4

 sleep 8

 end

end

 [CODE MUSIC WITH SONIC PI]

26

ESSENTIALS

[Chapter One]26 [Chapter Four]

For each standard envelope opt, there’s a cutoff_ equivalent opt in
the :tb303 synth. So, to change the cutoff attack time, we can use the
cutoff_attack: opt. Copy the code above into an empty buffer and
hit Run. You’ll hear a crazy sound warble in and out. Now start to play
around with it. Try changing the cutoff_attack: time to 1 and then
0.5. Now try 8.

Above The internal design of

Sonic Pi’s TB303 synth. Note

that there are two separate

envelopes – one for the

amplitude of the sound and

another for the filter’s cutoff

27

 [CODE MUSIC WITH SONIC PI]

[Acid Bass]

Notice that I’ve passed everything through a :reverb FX for extra
atmosphere – try other FX to see what works!

Bringing it all together
Finally, here’s a piece I composed using the ideas in this tutorial.
Copy it into an empty buffer, listen for a while, and then start live-
coding your own changes. See what crazy sounds you can make with it!
See you next time...

use_synth :tb303

use_debug false

with_fx :reverb, room: 0.8 do

 live_loop :space_scanner do

 with_fx :slicer, phase: 0.25, amp: 1.5 do

 co = (line 70, 130, steps: 8).tick

 play :e1, cutoff: co, release: 7, attack: 1,

 cutoff_attack: 4, cutoff_release: 4

 sleep 8

 end

 end

 live_loop :squelch do

 use_random_seed 3000

 16.times do

 n = (ring :e1, :e2, :e3).tick

 play n, release: 0.125, cutoff: rrand(70, 130),

 res: 0.9, wave: 1, amp: 0.8

 sleep 0.125

 end

 end

end

 [CODE MUSIC WITH SONIC PI]

28

ESSENTIALS

[Chapter One]

[CHAPTER FIVE]

MUSICAL
MINECRAFT

Sonic Pi can be used to make much
more than just music – you can even
code it to control Minecraft!

ESSENTIALS

28 [Chapter Five]

29

 [CODE MUSIC WITH SONIC PI]

29

n the previous tutorials, we’ve focused purely on the music
possibilities of Sonic Pi, which can turn your Raspberry Pi
into a performance-ready musical instrument. So far, we’ve

learned how to:

• Live-code, changing the sounds on-the-fly
• Code some huge beats

• Generate powerful synth leads

• Recreate the famous TB-303 acid-bass sound

There’s so much more to show you (which we will explore later.
However, this time, let’s look at something Sonic Pi can do that you
probably didn’t realise: control Minecraft.

Hello Minecraft World
OK, let’s get started. Boot up your Raspberry Pi, fire up Minecraft Pi,
and create a new world in it. Now start up Sonic Pi, and resize and
move your windows so that you can see both Sonic Pi and Minecraft Pi
at the same time.

I

[Musical Minecraft]

Below Send messages to Minecraft!

30

ESSENTIALS

[Chapter One]30 [Chapter Five]

In a fresh buffer, type the following:

mc_message “Hello Minecraft from Sonic Pi!”

Now, hit Run. Boom! Your message appeared in Minecraft! How easy
was that? Now, stop reading this for a moment and play about with
your own messages. Have fun!

Sonic teleporter
Now let’s do some exploring. The standard option is to reach for the
mouse and keyboard and start walking around. That works, but it’s
pretty slow and boring. It would be far better if we had some sort of
teleport machine. Well, thanks to Sonic Pi, we have one. Try this:

mc_teleport 80, 40, 100

Crikey! That was a long way up. If you weren’t in flying mode, then

you would have fallen back down all the way to the ground. If you
double-tap the space bar to enter flying mode and teleport again,
you’ll stay hovering at the location you zap to.

Now, what do those numbers mean? We have three numbers which
describe the coordinates of where in the Minecraft world we want to go.
We give each number a name: x, y, and z:

• x – how far left and right (80 in our example)

• y – how high we want to be (40 in our example)

• z – how far forward and back (100 in our example)

By choosing different values for x, y, and z, we can teleport anywhere
in our world. Try it! Choose different numbers and see where you can
end up. If the screen goes black, it’s because you’ve teleported yourself
under the ground or into a mountain. Just choose a higher y value to
get back out above land. Keep on exploring until you find somewhere
you like.

Using the ideas so far, let’s build a Sonic teleporter that makes a fun
teleport sound whilst it whizzes us across the Minecraft world:

31

 [CODE MUSIC WITH SONIC PI]

[Musical Minecraft]

mc_message “Preparing to teleport....”

sample :ambi_lunar_land, rate: -1

sleep 1

mc_message “3”

sleep 1

mc_message “2”

sleep 1

mc_message “1”

sleep 1

mc_teleport 90, 20, 10

mc_message “Whoooosh!”

Magic blocks
Now you’ve found a nice spot, let’s start building. You could do what
you’re used to and start clicking the mouse furiously to place blocks
under the cursor. Or you could use the magic of Sonic Pi. Try this:

x, y, z = mc_location

mc_set_block :melon, x, y + 5, z

Now look up: there’s a melon in the sky! Take a moment to look at the
code. What did we do? On line one we grabbed the current location of
Steve as the variables x, y, and z. These correspond to our coordinates
described above. We use these coordinates in the function mc_set_block,
which will place the block of your choosing at the specified coordinates.
In order to make something higher up in the sky, we just need to increase
the y value, which is why we add 5 to it. Let’s make a long trail of them:

live_loop :melon_trail do

 x, y, z = mc_location

 mc_set_block :melon, x, y-1, z

 sleep 0.125

end

Now, jump over to Minecraft, make sure you’re in flying mode
(double-tap the space bar if not) and fly all around the world. Look
behind you to see a pretty trail of melon blocks! See what kind of twisty
patterns you can make in the sky.

 [CODE MUSIC WITH SONIC PI]

32

ESSENTIALS

[Chapter One]32 [Chapter Five]

Live-coding Minecraft
Those of you that have been following the tutorials in the previous
chapters will probably have your minds blown at this point. The trail of
melons is pretty cool, but the most exciting part of the previous example
is that you can use live_loop with Minecraft! For those who don’t know,
live_loop is Sonic Pi’s special magic ability that no other programming
language has. It lets you run multiple loops at the same time and allows
you to change them whilst they run. They are incredibly powerful, and
amazing fun. I use live_loop to perform music in nightclubs with Sonic
Pi: DJs may use discs, but I use live_loop instead! However, today we’re
going to be live-coding both music and Minecraft.

Let’s get started. Run the code above and start making your melon
trail again. Now, without stopping the code, just simply change :melon
to :brick and hit run. Hey presto, you’re now making a brick trail.
How simple was that! Fancy some music to go with it? Easy. Try this:

live_loop :bass_trail do

 tick

 x, y, z = mc_location

 b = (ring :melon, :brick, :glass).look

 mc_set_block b, x, y -1, z

 note = (ring :e1, :e2, :e3).look

 use_synth :tb303

 play note, release: 0.1, cutoff: 70

 sleep 0.125

end

Right Live

coding with

Minecraft is

easier than you

might think

33

 [CODE MUSIC WITH SONIC PI]

Now, whilst that’s playing, start changing the code. Change the
block types: you could try :water, :grass, or your favourite block
type. Also, try changing the cutoff value from 70 to 80 and then up
to 100. Isn’t this fun?

Bringing it all together
Let’s combine everything we’ve seen so far with a little extra magic.
We’ll combine our teleportation ability with block placing and music to
make a Minecraft music video. Don’t worry if you don’t understand it all:
just type it in and have a play by changing some of the values whilst it’s
running live. Have fun, and see you next time...

live_loop :note_blocks do

 mc_message “This is Sonic Minecraft”

 with_fx :reverb do

 with_fx :echo, phase: 0.125, reps: 32 do

 tick

 x = (range 30, 90, step: 0.1).look

 y = 20

 z = -10

 mc_teleport x, y, z

 ns = (scale :e3, :minor_pentatonic)

 n = ns.shuffle.choose
 bs = (knit :glass, 3, :sand, 1)

 b = bs.look

 synth :beep, note: n, release: 0.1

 mc_set_block b, x+20, n-60+y, z+10

 mc_set_block b, x+20, n-60+y, z-10

 sleep 0.25

 end

 end

end

live_loop :beats do

 sample :bd_haus, cutoff: 100

 sleep 0.5

end

[Musical Minecraft]

 [CODE MUSIC WITH SONIC PI]

34

ESSENTIALS

[Chapter One]

[CHAPTER SIX]

We’re going to bring a classical operatic dance
piece straight into the 21st century, using the
awesome power of code

ESSENTIALS

34 [Chapter Six]

BINARY
BIZET

35

 [CODE MUSIC WITH SONIC PI]

35

et’s jump into a time machine and head back to the year 1875.
A composer called Bizet had just finished his latest opera,
Carmen. Unfortunately, like many exciting and disruptive

new pieces of music, people initially didn’t like it at all because it was
too outrageous and different. Sadly, Bizet died ten years before the
opera gained huge international success and became one of the most
famous and frequently performed operas of all time. In sympathy
with this tragedy, let’s take one of the main themes from Carmen and
convert it to a modern format of music that is also too outrageous and
different for most people in our time: live-coded music!

Decoding the Habanera
Trying to live-code the whole opera would be a bit of a challenge
for this tutorial, so let’s focus on one of the most famous parts:
the bassline to the Habanera.

This may look extremely unreadable to you if you haven’t yet studied
music notation. However, as programmers we see music notation as
just another form of code, only it represents instructions to a musician
instead of a computer. We therefore need to figure out a way of
decoding it.

L

[Binary Bizet]

36

ESSENTIALS

[Chapter One]36

Notes
The notes are arranged from left to right, like the words in this
magazine, but also have different heights. The height on the score
represents the pitch of the note. The higher the note on the score, the
higher the pitch of the note.

In Sonic Pi, we already know how to change the pitch of a note: we
either use high or low numbers such as play 75 and play 80, or we
use the note names such as play :E and play :F. Luckily, each of the
vertical positions of the musical score represents a specific note name,
as shown here…

Rests
Music scores are an extremely rich and expressive kind of code, capable
of communicating many things. It therefore shouldn’t come as much
of a surprise that musical scores can not only tell you what notes to
play, but also when not to play notes. In programming, this is pretty
much equivalent to the idea of ‘nil’ or ‘null’ – the absence of a value.
In other words, not playing a note is like the absence of a note.

If you look closely at the score, you’ll see that it’s actually a
combination of black dots with lines which represent notes to play,
and squiggly things which represent the rests. Luckily, Sonic Pi (v2.7+)
has a very handy representation for a rest – :r. So if we run play :r,
it actually plays silence! We could also write play :rest, play nil,
or play false, which are all equivalent ways of representing rests.

Rhythm
Finally, there’s one last thing to learn how to decode in the notation:
the timings of the notes. In the original notation, you’ll see that the

[Chapter Six]

37

 [CODE MUSIC WITH SONIC PI]

notes are connected with thick lines called beams. The second note
has two of these beams, which means it lasts for a 16th of a beat.
The other notes have a single beam, which means they last for an 8th
of a beat. The rest have two squiggly beams, which means they also
represent a 16th of the beat.

When we decode and try to understand new things, a handy trick
is to try to make everything as similar as possible to attempt to spot
any relationships or patterns. When we rewrite our notation purely in
16ths, you can see that our notation just turns into a nice sequence of
notes and rests…

Recoding the Habanera
We’re now in a position to start translating this bassline to Sonic Pi.
Let’s encode these notes and rests in a ring:

(ring :d, :r, :r, :a, :f5, :r, :a, :r)

Let’s see what this sounds like. Throw it in a live loop and tick
through it:

live_loop :habanera do

 play (ring :d, :r, :r, :a, :f5, :r, :a, :r).tick

 sleep 0.25

end

Fabulous: that instantly recognisable riff springs to life through
your speakers. It took a lot of effort to get here, but it was worth it.
High-five!

[Binary Bizet]

 [CODE MUSIC WITH SONIC PI]

38

ESSENTIALS

[Chapter One]38

Moody synths
Now we have the bassline, let’s recreate some of the ambience of
the operatic scene. One synth to try out is :blade, which is a moody
1980s-style synth lead. Let’s try it with the starting note :d, passed
through a slicer and reverb:

live_loop :habanera do

 use_synth :fm

 use_transpose -12

 play (ring :d, :r, :r, :a, :f5, :r, :a, :r).tick

 sleep 0.25

end

with_fx :reverb do

 live_loop :space_light do

 with_fx :slicer, phase: 0.25 do

 synth :blade, note: :d, release: 8, cutoff: 100, amp: 2

 end

 sleep 8

 end

end

Now, try the other notes in the bassline: :a and :f5. Remember, you
don’t need to hit Stop; just modify the code while the music is playing
and hit Run again. Also, try different values for the slicer’s phase:,
such as 0.5, 0.75, and 1.

Bringing it all together
Finally, let’s combine all the ideas so far into a new remix of the
Habanera. You might notice that I’ve included another part of the
bassline as a comment. Once you’ve typed it all into a fresh buffer,
hit Run to hear the composition. Now, without hitting Stop, uncomment
the second line by removing the # and hit Run again; how marvellous
is that? Now, start mashing it around yourself and have fun!

[Chapter Six]

39

 [CODE MUSIC WITH SONIC PI]

use_debug false

bizet_bass = (ring :d, :r, :r, :a, :f5, :r, :a, :r)

#bizet_bass = (ring :d, :r, :r, :Bb, :g5, :r, :Bb, :r)

with_fx :reverb, room: 1, mix: 0.3 do

 live_loop :bizet do

 with_fx :slicer, phase: 0.125 do

 synth :blade, note: :d4, release: 8,

 cutoff: 100, amp: 1.5

 end

 16.times do

 tick

 play bizet_bass.look, release: 0.1

 play bizet_bass.look - 12, release: 0.3

 sleep 0.125

 end

 end

end

live_loop :ind do

 sample :loop_industrial, beat_stretch: 1,

 cutoff: 100, rate: 1

 sleep 1

end

live_loop :drums do

 sample :bd_haus, cutoff: 110

 synth :beep, note: 49, attack: 0,

 release: 0.1

 sleep 0.5

end

[Binary Bizet]

 [CODE MUSIC WITH SONIC PI]

40

ESSENTIALS

[Chapter One]

[CHAPTER SEVEN]

In this guide, we demonstrate the incredible power of
randomisation in live-coded music

ESSENTIALS

40 [Chapter Seven]

SURFING
RANDOM
STREAMS

41

 [CODE MUSIC WITH SONIC PI]

41

]

[Surfing Random Streams]

ack in chapter four, we looked at randomisation while coding
some sizzling synth riffs. Since randomisation is an important
part of my live-coding DJ sets, I thought it would be useful to

cover the fundamentals in detail. So get your lucky hat on; let’s surf
some random streams!

There is no random
The first surprise when playing with the randomisation functions is
that they’re not random. What does this mean? Let’s try some tests.
Imagine a number in your head between 0 and 1, but don’t tell me.
Now let me guess... was it 0.321567? No? I’m no good at this. Let me
try again, but let’s ask Sonic Pi to choose a number. Start Sonic Pi v2.9+
and ask it for a random number, but don’t tell me:

print rand

Now for the reveal... was it 0.75006103515625? Yes! I can see you’re
sceptical; it was a lucky guess. Let’s try again. Press the Run button
again and see what we get... The same again? This clearly can’t be
random! You’re right, it’s not.

B

42

ESSENTIALS

[Chapter One]

What’s going on? The fancy computer science term is determinism.
This means that nothing is by chance and everything is destined
to be. Sonic Pi is destined to always return 0.75006103515625 in
the program above. It may sound useless, but in fact it’s one of the
most powerful parts of Sonic Pi. If you persevere, you’ll learn how
to rely on the deterministic nature of Sonic Pi’s randomisation as
a fundamental building block to your compositions and live-coded
DJ sets.

A random tune
When Sonic Pi boots, it actually loads into memory a sequence
of 441,000 pre-generated random values. When you call a
random function such as rand or rrand, this random stream
is used to generate your result. Each call to a random function

uses a value from this stream, so the tenth call to a random function
will use the tenth value from the stream. Also, every time you
press Run, the stream is reset for that run. That’s why I could
predict the result to rand and why the ‘random’ tune was the same
every time. Everybody’s version of Sonic Pi uses the same random
stream, which is important when we start sharing our pieces
with each other.

Let’s use this knowledge to generate a repeatable random tune:

8.times do

 play rrand_i(50, 95)

 sleep 0.125

end

Type this into a spare buffer and press Run. You’ll hear a tune
consisting of ‘random’ notes between 50 and 95. When it’s ended,
press Run again to hear exactly the same tune again.

42 [Chapter Seven]

What’s going on? The fancy computer
science term is determinism

43

 [CODE MUSIC WITH SONIC PI]

Resetting the stream
While repeating a sequence of notes is essential for replaying a riff on
the dance floor, it might not be the one you want. Wouldn’t it be great
if we could try a number of different riffs and choose the one we liked
best? This is where the real magic starts.

We can manually set the stream with the function
use_random_seed. In computer science, a random seed is the starting
point for a new stream of random values. Let’s try it:

use_random_seed 0

3.times do

 play rrand_i(50, 95)

 sleep 0.125

end

Great, we get the first three notes of our tune above: 84, 83, and 71.
We can now change the seed to something else, like this:

use_random_seed 1

3.times do

 play rrand_i(50, 95)

 sleep 0.125

end

We get 83, 71, and 61. You may spot that the first two numbers are
the same as the last two numbers before – no coincidence.

The random stream is just a giant list of ‘pre-rolled’ values. Using
a random seed simply jumps us to a point in that list. Imagine a
big deck of pre-shuffled cards. Using a random seed is cutting the
deck at a particular point. The great part of this is that it’s this
ability to jump around the random list which gives us power when
making music.

Let’s revisit our random eight-note tune with this new power,
and also add a live loop so we can experiment live while it’s playing:

[Surfing Random Streams]

 [CODE MUSIC WITH SONIC PI]

44

ESSENTIALS

[Chapter One]44 [Chapter Seven]

live_loop :random_riff do

 use_random_seed 0

 8.times do

 play rrand_i(50, 95), release: 0.1

 sleep 0.125

 end

end

While it’s still playing, change the seed value from 0 to something
else. Try 100, or 999. Try your own values and experiment – see which
seed generates the riff you like best.

Handy randomisation functions

Sonic Pi comes with a number of useful functions for working
with the random stream. Here are some of the most useful:

> rand Simply returns the next value in the random stream

> rrand Returns a random value within a range

> rrand_i Returns a random whole number within a range

> one_in Returns true or false with the given probability

> dice Imitates rolling a dice and returns a value between 1 and 6

> choose Chooses a random value from a list

Check out their documentation in the Help system for detailed
information and examples.

45

 [CODE MUSIC WITH SONIC PI]

[Surfing Random Streams]

Bringing it all together
This tutorial has been quite a technical dive into the workings of Sonic
Pi’s randomisation functionality. Hopefully, it’s explained how it
works and how you can start using randomisation reliably to create
repeatable patterns in your music. Crucially, you can use repeatable
randomisation anywhere: the amplitude of notes, the timing of the
rhythm, amount of reverb, current synth, the mix of an FX, etc. In
the future we’ll take a close look at these, but for now I’ll end with
a short example.

Type the code below into a spare buffer, press Run, then change the
seeds. Press Run again while it’s playing, and explore the different
sounds, rhythms, and melodies you can make. When you find a nice
one, note the seed number so you can return to it. Once you’ve found
a few seeds you like, put on a live-coded performance by simply
switching between your favourite seeds to make a full piece.

live_loop :random_riff do

 use_random_seed 10300

 use_synth :prophet

 s = [0.125, 0.25, 0.5].choose

 8.times do

 r = [0.125, 0.25, 1, 2].choose

 n = (scale :e3, :minor).choose

 co = rrand(30, 100)

 play n, release: r, cutoff: co

 sleep s

 end

end

live_loop :drums do

 use_random_seed 2001

 16.times do

 r = rrand(0.5, 10)

 sample :drum_bass_hard, rate: r, amp: rand

 sleep 0.125

 end

end

 [CODE MUSIC WITH SONIC PI]

46

ESSENTIALS

[Chapter One]

[CHAPTER EIGHT]
CONTROLLING
YOUR SOUND

Shape and sculpt your sounds by automatically altering
various parameters while they’re playing

ESSENTIALS

46 [Chapter Eight]

47

 [CODE MUSIC WITH SONIC PI]

47[Controlling Your Sound]

o far, we’ve focused on triggering sounds. We’ve discovered
that we can trigger the many synths built into Sonic Pi with
play or synth, and pre-recorded samples with sample. We’ve

also looked at how we can wrap these triggered sounds within studio
FX such as reverb and distortion, using with_fx. Combine this with
Sonic Pi’s incredibly accurate timing system and you can produce a
vast array of sounds, beats, and riffs. However, once you’ve carefully
selected a particular sound’s options and triggered it, there’s no ability
to mess with it whilst it’s playing, right? Wrong! Today you’ll learn
something very powerful: how to control running synths.

A basic sound
Let’s create a nice simple sound. Fire up Sonic Pi and, in a fresh buffer,
type the following:

synth :prophet, note: :e1, release: 8, cutoff: 100

Now press the Run button at the top left to hear a lovely rumbling
synth sound. Go ahead, press it again a few times to get a feel for it.
OK, done? Let’s start controlling it!

S

48

ESSENTIALS

[Chapter One]48 [Chapter Eight]

Synth nodes
A little-known feature in Sonic Pi is that the fns play, synth, and
sample return something called a ‘SynthNode’, which represents
a running sound. You can capture one of these ‘SynthNodes’ using
a standard variable and then control it at a later point in time. For
example, let’s change the value of the cutoff: opt after one beat:

sn = synth :prophet, note: :e1, release: 8, cutoff: 100

sleep 1

control sn, cutoff: 130

Let’s look at each line in turn…
Firstly, we trigger the :prophet synth using the synth fn, as normal.

However, we also capture the result in a variable called sn. We could have
called this variable something completely different, such as ‘synth_node’ or
‘jane’ - the name doesn’t matter. However, it’s important to choose a name
that’s meaningful to you for your performances and for people reading your
code. We chose sn as it’s a nice short mnemonic for synth node.

On line 2 we have a standard sleep command. This does nothing
special – it just asks the computer to wait for one beat before moving
onto the next line.

Line 3 is where the control fun starts. Here, we use the control fn
to tell our running ‘SynthNode’ to change the cutoff value to 130. If
you hit the Run button, you’ll hear the :prophet synth start playing as
before, but after one beat it will shift to sound a lot brighter.

Multiple changes
Whilst a synth is running, you’re not limited to changing it only once –
you’re free to change it as many times as you like. For example, we can
turn our :prophet into a mini arpeggiator with the following:

notes = (scale :e3, :minor_pentatonic)

sn = synth :prophet, note: :e1, release: 8, cutoff: 100

sleep 1

16.times do

 control sn, note: notes.tick

 sleep 0.125

end

49

 [CODE MUSIC WITH SONIC PI]

Modulatable options

Most of Sonic Pi’s synths and FX opts may be changed after being

triggered. However, this isn’t the case for all of them. For example,

the envelope opts attack:, decay:, sustain:, and release: can

only be set when triggering the synth. Figuring out which opts can

and can’t be changed is simple – just head to the documentation

for a given synth or FX, then scroll down to the individual option

documentation and look for the phrases ‘May be changed whilst

playing’ or ‘Can not be changed once set’. For example, the

documentation for the :beep synth’s attack: opt makes it clear

that it’s not possible to change it:

> Default: 0
> Must be zero or greater
> Can not be changed once set
> Scaled with current BPM value

[Controlling Your Sound]

In this snippet of code, we just added a couple of extra things.
Firstly, we defined a new variable called notes, which contains the
notes we’d like to cycle through (an arpeggiator is just a fancy name
for something that cycles through a list of notes in order). Secondly,
we replaced our single call to control with an iteration calling it 16
times. In each call to control, we .tick through our ring of notes,
which will automatically repeat once we get to the end (thanks to the
fabulous power of Sonic Pi’s rings). For a bit of variety, try replacing
.tick with .choose and see if you can hear the difference.

Note that we are able to change multiple opts simultaneously.
Try changing the control line to the following and then listen for
the difference:

control sn, note: notes.tick, cutoff: rrand(70, 130)

 [CODE MUSIC WITH SONIC PI]

50

ESSENTIALS

[Chapter One]

Sliding
When we control a ‘SynthNode’, it responds exactly on time and
instantly changes the value of the opt to the new one, as if you’d
pressed a button requesting the change. This can sound rhythmical
and percussive – especially if the opt controls an aspect of the timbre,
such as cutoff:. However, sometimes you don’t want the change to
happen instantaneously. Instead, you might want to smoothly move

from the current value to the new one, as if you’d moved a slider or
dial. Of course, Sonic Pi can also do this too using _slide: opts.

Each opt that can be modified also has a special corresponding
_slide: opt that allows you to specify a slide time. For example,
amp: has amp_slide:, and cutoff: has cutoff_slide:. These
slide opts work slightly differently from all the other opts in that
they tell the synth note how to behave next time they are controlled.
Let’s take a look:

sn = synth :prophet, note: :e1, release: 8, cutoff: 70,

 cutoff_slide: 2

sleep 1

control sn, cutoff: 130

Note how this example is the same as before, except with the
addition of cutoff_slide:. This is saying that next time this synth
has its cutoff: opt controlled, it will take two beats to slide from
the current value to the new one. Therefore, when we use control,
you can hear the cutoff slide from 70 to 130. It creates an interesting

Sometimes you don’t want the
change to happen instantaneously

50 [Chapter Eight]

51

 [CODE MUSIC WITH SONIC PI]

dynamic feel to the sound. Now, try reducing the cutoff_slide:
time to 0.5, or increasing it to 4, to see how it changes the sound.
Remember, you can slide any of the modifiable opts in this way,
and each _slide: value can be totally different, so you can have
the cutoff sliding slowly, the amp sliding fast, and the pan sliding
somewhere in between if you like.

Bringing it all together
Let’s look at a short example which demonstrates the power of
controlling synths after they’ve been triggered. Note that you can
also slide FX just like synths, but with a slightly different syntax.
Check out section 7.2 of the built-in tutorial for more information
on controlling FX.

Copy the code into a spare buffer and listen. Don’t stop there,
though - play around with the code. Change the slide times, the
notes, the synth, the FX, and the sleep times and see if you can turn it
into something completely different!

live_loop :moon_rise do

 with_fx :echo, mix: 0, mix_slide: 8 do |fx|

 control fx, mix: 1

 notes = (scale :e3, :minor_pentatonic,

 num_octaves: 2).shuffle
 sn = synth :prophet , sustain: 8, note: :e1,

 cutoff: 70, cutoff_slide: 8

 control sn, cutoff: 130

 sleep 2

 32.times do

 control sn, note: notes.tick, pan: rrand(-1, 1)

 sleep 0.125

 end

 end

end

[Controlling Your Sound]

 [CODE MUSIC WITH SONIC PI]

52

ESSENTIALS

[Chapter One]

[CHAPTER NINE]

Use Sonic Pi with Minecraft to create amazing visuals
for your music as you perform it!

ESSENTIALS

52 [Chapter Nine]

BECOME A
MINECRAFT VJ

53

 [CODE MUSIC WITH SONIC PI]

53[Become a Minecraft VJ]

veryone has built amazing structures, designed cunning traps,
and even created elaborate cart tracks in Minecraft. How many
of you have performed with Minecraft? We bet you didn’t

know that you could use Minecraft to create amazing visuals, just like a
professional VJ.

As noted in the fifth chapter, you can program Minecraft with Sonic Pi
as well as with Python, which makes the coding not only easy but also
incredibly fun. In this chapter, we’ll be showing you some of the tips
and tricks that we’ve used to create performances in nightclubs and
music venues around the world.

Enter a new world in Minecraft and open Sonic Pi. When we’re using
Minecraft to create visuals, we try to think about what will both look
interesting and also be easy to generate from code. One nice trick is to
create a sandstorm by dropping sand blocks from the sky. For that, all
we need are a few basic functions:

• sleep - for inserting a delay between actions

• mc_location - to find our current location

• mc_set_block - to place sand blocks at a specific location

• rrand - to allow us to generate random values within a range

• live_loop - to allow us to continually make it rain sand

E

54

ESSENTIALS

[Chapter One]

Let’s make it rain a little first, before unleashing the full power of
the storm. Grab your current location and use it to create a few sand
blocks up in the sky nearby:

x, y, z = mc_location

mc_set_block :sand, x, y + 20, z + 5

sleep 2

mc_set_block :sand, x, y + 20, z + 6

sleep 2

mc_set_block :sand, x, y + 20, z + 7

sleep 2

mc_set_block :sand, x, y + 20, z + 8

When you press Run, you might have to look around a little, as the
blocks may start falling down behind you depending on which direction
you’re currently facing. Don’t worry: if you missed them, just press
Run again for another batch of sand rain – just make sure you’re
looking the right way!

Let’s quickly review what’s going on here. On the first line, we
grabbed Steve’s location as coordinates with the fn mc_location and
placed them into the vars x, y, and z. Then, on the next lines, we used

Below The rrand

function is used to

generate blocks in

random positions

54 [Chapter Nine]

55

 [CODE MUSIC WITH SONIC PI]

the mc_set_block fn to place some sand at the same coordinates as
Steve, but with some modifications. We chose the same x coordinate,
a y coordinate 20 blocks higher, and then successively larger z
coordinates so the sand dropped in a line away from Steve.

Why don’t you take that code and start playing around with it
yourself? Try adding more lines, changing the sleep times, try
mixing :sand with :gravel, and choose different coordinates. Just
experiment and have see what happens!

Live loops unleashed
OK, it’s time to get the storm raging by unleashing the full power of
Sonic Pi’s magical ability, the live_loop, which unleashes the full
power of live coding: changing code on the fly while it’s running!

live_loop :sand_storm do

 x, y, z = mc_location

 xd = rrand(-10, 10)

 zd = rrand(-10, 10)

 co = rrand(70, 130)

 synth :cnoise, attack: 0, release: 0.125, cutoff: co

 mc_set_block :sand, x + xd, y+20, z+zd

 sleep 0.125

end

Now we’re looping round pretty quickly (eight times a second), and
during each loop we’re finding Steve’s location like before, but then
generating three random values:

• xd - the difference for x, which will be between -10 and 10

• zd - the difference for z, also between -10 and 10

• co - a cutoff value for the low pass filter, between 70 and 130

[Become a Minecraft VJ]

Try adding more lines,
changing the sleep times

 [CODE MUSIC WITH SONIC PI]

56

ESSENTIALS

[Chapter One]

We use those random values in the fns synth and mc_set_block,
giving us sand falling in random locations around Steve, along with a
percussive rain-like sound from the :cnoise synth.

Now things can get really interesting, as we get stuck into live
coding. While the code is running and the sand is pouring down, try
changing one of the values, perhaps the sleep time to 0.25 or the
:sand block type to :gravel. Now press the Run button again. Hey
presto! Things have changed without the code even stopping. This
is your gateway to performing like a real VJ. Keep practising and
changing things around. How different can you make the visuals
without stopping the code?

Epic block patterns
Finally, another great way of creating interesting visuals is to
generate huge patterned walls to fly towards and get close to.
For this effect, we’ll need to move from placing the blocks randomly
to placing them in an ordered manner. We can do this by nesting
two sets of iteration; press the Help button and navigate to section
5.2 of the tutorial, ‘Iteration and Loops’, for more background
on iteration. The funny |xd| after the do means that xd will be
set for each value of the iteration. So, the first time it will be 0,

Above Generate

large patterned

walls with Sonic

Pi code

56 [Chapter Nine]

57

 [CODE MUSIC WITH SONIC PI]

then 1, then 2 and so on. By nesting two lots of iteration together
like this, we can generate all the coordinates for a square. We can
then randomly choose block types from a ring of blocks for an
interesting effect:

x, y, z = mc_location

bs = (ring :gold, :diamond, :glass)

10.times do |xd|

 10.times do |yd|

 mc_set_block bs.choose, x + xd, y + yd, z

 end

end

Pretty neat. Whilst we’re having fun here, try changing bs.choose
to bs.tick to move from a random pattern to a more regular one. Try
changing the block types: the more adventurous among you might
want to try sticking this within a live_loop so that the patterns keep
changing automatically.

Now, for the VJ finale. Change the two 10.times to 100.times
and press Run. Kaboom!… A gigantic wall of randomly placed bricks.
Imagine how long it would take you to build that manually with your
mouse! Double-tap SPACE to enter fly-mode and start swooping
by for some great visual effects. Don’t stop here, though – use your
imagination to conjure up some cool ideas and then use the coding
power of Sonic Pi to make it real. When you’ve practised enough,
dim the lights and put on a VJ show for your friends!

Help with functions

If you’re unfamiliar with any of the built-in fns such as rrand,

just type the word into your buffer, click on it, and then press the

keyboard combo CTRL+I to bring up the built-in documentation.

Alternatively, you can navigate to the ‘lang’ tab in the Help system

and then look up the fns directly, along with all the other exciting

things you can do.

[Become a Minecraft VJ]

 [CODE MUSIC WITH SONIC PI]

58

ESSENTIALS

[Chapter One]

[CHAPTER TEN]

You can find the full reference within Sonic Pi itself,
but here are some of the most important for Synths,
FX and Samples…

ESSENTIALS

58 [Chapter Ten]

QUICK
REFERENCE

59

 [CODE MUSIC WITH SONIC PI]

59[Quick Reference]

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound.

Typically a value between 0 and 1.

Higher amplitudes may be used,

but won’t make the sound louder,

they will just reduce the quality of all

the sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound to

reach full amplitude (attack_level). A

short attack (i.e. 0.01) makes the initial

part of the sound very percussive like a

sharp tap. A longer attack (i.e 1) fades

BLADE RUNNER
STYLE STRINGS

use_synth :blade

Straight from the 70s, evoking the mists of Blade Runner, this
simple electro-style string synth is based on filtered saw waves
and a variable vibraton.

SECTION 01 - SYNTHS

PARAMETERS

 [CODE MUSIC WITH SONIC PI]

60

ESSENTIALS

[Chapter One]60 [Chapter Ten]

the sound in gently. Full length of sound

is attack + decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound is

attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

61

 [CODE MUSIC WITH SONIC PI]

DETUNED
SAW WAVE
A pair of detuned saw waves passed through a low pass filter. Two saw waves with
slightly different frequencies generates a nice thick sound which is the basis for a lot
of famous synth sounds. Thicken the sound by increasing the detune value, or create
an octave-playing synth by choosing a detune of 12 (12 MIDI notes is an octave).

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

vibrato_rate:
Number of wobbles per second. For

realism this should be between 6

and 8, maybe even faster for really

high notes.

Default: 6

Must be a value greater than or equal

to 0.0,must be a value less than or

equal to 20.0

May be changed whilst playing

vibrato_depth:
Amount of variation around the

central note. 1 is the sensible

maximum (but you can go up to 5 if

you want a special effect), 0 would

mean no vibrato. Works well around

0.15 but you can experiment.

Default: 0.15

Must be a value greater than or equal

to 0.0,must be a value less than or

equal to 5.0

May be changed whilst playing

vibrato_delay:
How long in seconds before

the vibrato kicks in.

Default: 0.5

Must be zero or greater

Can not be changed once set

vibrato_onset:
How long in seconds before the vibrato

reaches full power.

Default: 0.1

Must be zero or greater

Can not be changed once set

use_synth :dsaw

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

62

ESSENTIALS

[Chapter One]

PARAMETERS

62

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a

value of 1 puts the sound in the right

ear. Values in between -1 and 1 move

the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

[Chapter Ten]

63

 [CODE MUSIC WITH SONIC PI]

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present in

the sound. A low value like 30 makes

the sound round and dull, a high

value like 100 makes the sound buzzy

and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

detune:
Distance (in MIDI notes) between

components of sound. Affects

thickness, sense of tuning and

harmony. Tiny values such as 0.1

create a thick sound. Larger values

such as 0.5 make the tuning sound

strange. Even bigger values such as 5

create chord-like sounds.

Default: 0.1

May be changed whilst playing

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

64

ESSENTIALS

[Chapter One]64

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will just

reduce the quality of all the sounds

currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a value

of 1 puts the sound in the right ear.

Values in between -1 and 1 move the

sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

BASIC FM
SYNTHESIS
A sine wave with a fundamental frequency which is modulated
at audio rate by another sine wave with a specific modulation,
division and depth. Useful for generating a wide range of sounds
by playing with the divisor and depth params. Great for deep
powerful bass and crazy 70s sci-fi sounds.

use_synth :fm

PARAMETERS

[Chapter Ten]

65

 [CODE MUSIC WITH SONIC PI]

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

66

ESSENTIALS

[Chapter One]66

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present

in the sound. A low value like 30

makes the sound round and dull, a

high value like 100 makes the sound

buzzy and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

divisor:
Modifies the frequency of the

modulator oscillator relative to the

carrier. Don’t worry too much about

what this means - just try

different numbers out!

Default: 2

May be changed whilst playing

depth:
Modifies the depth of the carrier

wave used to modify fundamental

frequency. Don’t worry too much

about what this means - just try

different numbers out!

Default: 1

May be changed whilst playing

HOOVER

use_synth :hoover

Classic early 90’s rave synth - ‘a sort of slurry chorussy synth line like
the classic Dominator by Human Resource’. Based on Dan Stowell’s
implementation in SuperCollider and Daniel Turczanski’s port to Overtone.
Works really well with portamento (see docs for the ‘control’ method).

PARAMETERS
note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

[Chapter Ten]

67

 [CODE MUSIC WITH SONIC PI]

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0.05

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

68

ESSENTIALS

[Chapter One]68

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present

in the sound. A low value like 30

makes the sound round and dull, a

high value like 100 makes the sound

buzzy and crispy.

Default: 130

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0.1

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

SYNTHPIANO
A basic piano synthesiser. Note that due to the plucked nature of
this synth the envelope opts such as attack:, sustain: and release:
do not work as expected. They can only shorten the natural length
of the note, not prolong it. Also, the note: opt will only honour
whole tones.

[Chapter Ten]

69

 [CODE MUSIC WITH SONIC PI]

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3.

Note that the piano synth can only

play whole tones such as 60 and does

not handle floats such as 60.3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

PARAMETERS

use_synth :piano

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

vel:
Velocity of keypress.

Default: 0.2

Must be a value between

0 and 1 inclusively

Can not be changed once set

attack:
Amount of time (in beats) for sound to

reach full amplitude (attack_level). A short

attack (i.e. 0.01) makes the initial part

of the sound very percussive like a sharp

tap. A longer attack (i.e 1) fades the sound

in gently. With the piano synth, this opt

can only have the effect of shortening the

attack phase, not prolonging it.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the sound to

move from full amplitude (attack_level) to

the sustain amplitude (sustain_level). With

the piano synth, this opt can only have the

effect of controlling the amp within the

natural duration of the note and can not

prolong the sound.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

70

ESSENTIALS

[Chapter One]70

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. With the piano synth, this opt

can only have the effect of controlling

the amp within the natural duration

of the note and can not prolong

the sound.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in

a click). A longer release (i.e 1) fades

the sound out gently. With the piano

synth, this opt can only have the effect

of controlling the amp within the

natural duration of the note and can

not prolong the sound.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after

decay phase and immediately

before sustain phase. Defaults to

sustain_level unless explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

hard:
Hardness of keypress.

Default: 0.5

Must be a value between

0 and 1 inclusively

Can not be changed once set

stereo_width:
Width of the stereo effect (which makes

low notes sound towards the left, high

notes towards the right). 0 to 1.

Default: 0

Must be a value between

0 and 1 inclusively

Can not be changed once set

[Chapter Ten]

71

 [CODE MUSIC WITH SONIC PI]

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a value

of 1 puts the sound in the right ear.

Values in between -1 and 1 move the

sound accordingly.

Default: 0

THE PROPHET

use_synth :prophet

PARAMETERS

Dark and swirly, this synth uses Pulse Width Modulation (PWM)
to create a timbre which continually moves around. This effect
is created using the pulse ugen which produces a variable width
square wave. We then control the width of the pulses using a variety
of LFOs - sin-osc and lf-tri in this case. We use a number of these LFO
modulated pulse ugens with varying LFO type and rate (and phase in
some cases) to provide the LFO with a different starting point. We then
mix all these pulses together to create a thick sound and then feed it through
a resonant low pass filter (rlpf). For extra bass, one of the pulses is an octave
lower (half the frequency) and its LFO has a little bit of randomisation thrown
into its frequency component for that extra bit of variety.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

72

ESSENTIALS

[Chapter One]72

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

[Chapter Ten]

73

 [CODE MUSIC WITH SONIC PI]

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values: [1,

2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 110

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0.7

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will just

reduce the quality of all the sounds

currently being played

PULSE WAVE

use_synth :pulse

A simple pulse wave with a low pass filter. This defaults to a square
wave, but the timbre can be changed dramatically by adjusting the
pulse_width arg between 0 and 1. The pulse wave is thick and heavy
with lower notes and is a great ingredient for bass sounds.

PARAMETERS

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

74

ESSENTIALS

[Chapter One]74

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a value

of 1 puts the sound in the right ear.

Values in between -1 and 1 move the

sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound to

reach full amplitude (attack_level). A

short attack (i.e. 0.01) makes the initial

part of the sound very percussive like a

sharp tap. A longer attack (i.e 1) fades

the sound in gently. Full length of sound

is attack + decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

[Chapter Ten]

75

 [CODE MUSIC WITH SONIC PI]

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can ot be changed once set

cutoff
MIDI note representing the highest

frequencies allowed to be present

in the sound. A low value like 30

makes the sound round and dull, a

high value like 100 makes the sound

buzzy and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

pulse_width:
The width of the pulse wave as a value

between 0 and 1. A width of 0.5 will

produce a square wave. Different

values will change the timbre of the

sound. Only valid if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

PULSE WAVE
WITH SUB
A pulse wave with a sub sine wave passed through a low pass filter.
The pulse wave is thick and heavy with lower notes and is a great
ingredient for bass sounds - especially with the sub wave.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

76

ESSENTIALS

[Chapter One]76

use_synth :subpulse

PARAMETERS
note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a value

of 1 puts the sound in the right ear.

Values in between -1 and 1 move the

sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

[Chapter Ten]

77

 [CODE MUSIC WITH SONIC PI]

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately

before release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 100

Must be zero or greater,must be a

value less than 131

May be changed whilst playing

pulse_width:
The width of the pulse wave as a value

between 0 and 1. A width of 0.5 will

produce a square wave. Different

values will change the timbre of the

sound. Only valid if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

78

ESSENTIALS

[Chapter One]78

sub_amp:
Amplitude for the additional

sine wave.

Default: 1

May be changed whilst playing

sub_detune:
Amount of detune from the note for

the additional sine wave. Default is -12

Default: -12

May be changed whilst playing

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound to

reach full amplitude (attack_level). A

short attack (i.e. 0.01) makes the initial

part of the sound very percussive like a

SUPERSAW
use_synth :supersaw

Thick swirly saw waves sparkling and moving about
to create a rich trancy sound.

PARAMETERS

[Chapter Ten]78 [Chapter Ten]

79

 [CODE MUSIC WITH SONIC PI]

sharp tap. A longer attack (i.e 1) fades

the sound in gently. Full length of sound

is attack + decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack phase

and immediately before decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

80

ESSENTIALS

[Chapter One]80

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 130

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0.7

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

TB-303
EMULATION

use_synth :tb303

Emulation of the classic Roland TB-303 Bass Line synthesiser. Overdrive
the res (i.e. use very large values) for that classic late 80s acid sound

PARAMETERS

[Chapter Ten]

81

 [CODE MUSIC WITH SONIC PI]

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

82

ESSENTIALS

[Chapter One]82

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

Must be one of the following values:

[1, 2, 3, 4, 6, 7]

Can not be changed once set

cutoff:
The maximum cutoff value

as a MIDI note.

Default: 120

Must be a value less than

or equal to 130

May be changed whilst playing

cutoff_min:
The minimum cutoff value.

Default: 30

Must be a value less than

or equal to 130

May be changed whilst playing

cutoff_attack:
Attack time for cutoff filter. Amount

of time (in beats) for sound to reach

full cutoff value. Default value is set to

match amp envelope’s attack value.

Default: attack

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

cutoff_decay:
Decay time for cutoff filter. Amount of

time (in beats) for sound to move from

full cutoff value (cutoff attack level)

to the cutoff sustain level. Default

value is set to match amp envelope’s

decay value.

Default: decay

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

cutoff_sustain:
Amount of time for cutoff value to

remain at sustain level in beats.

Default value is set to match amp

envelope’s sustain value.

Default: sustain

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

cutoff_release:
Amount of time (in beats) for sound

to move from cutoff sustain value

to cutoff min value. Default value

is set to match amp envelope’s

release value.

[Chapter Ten]

83

 [CODE MUSIC WITH SONIC PI]

Default: release

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

cutoff_attack_level:
The peak cutoff (value of cutoff at peak

of attack) as a value between 0 and 1

where 0 is the :cutoff_min and 1 is the

:cutoff value.

Default: 1

Must be a value between

0 and 1 inclusively

Can not be changed once set

cutoff_decay_level:
The level of cutoff after the decay

phase as a value between 0 and 1

where 0 is the :cutoff_min and 1

is the :cutoff value.

Default: cutoff_sustain_level

Must be a value between

0 and 1 inclusively

Can not be changed once set

cutoff_sustain_level:
The sustain cutoff (value of cutoff at

sustain time) as a value between 0 and

1 where 0 is the :cutoff_min and 1

is the :cutoff value.

Default: 1

Must be a value between

0 and 1 inclusively

Can not be changed once set

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0.9

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

wave:
Wave type - 0 saw, 1 pulse, 2

triangle. Different waves will produce

different sounds.

Default: 0

Must be one of the following values:

[0, 1, 2]

May be changed whilst playing

pulse_width:
The width of the pulse wave as a value

between 0 and 1. A width of 0.5 will

produce a square wave. Different

values will change the timbre of the

sound. Only valid if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

84

ESSENTIALS

[Chapter One]84

note:
Note to play. Either a MIDI number

or a symbol representing a note. For

example: 30, 52, :C, :C2, :Eb4, or :Ds3

Default: 52

Must be zero or greater

May be changed whilst playing

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and

how much is in the right ear. With a

value of -1, the sound is completely

in the left ear, a value of 0 puts the

sound equally in both ears and a value

of 1 puts the sound in the right ear.

Values in between -1 and 1 move the

sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Amount of time (in beats) for sound

to reach full amplitude (attack_level).

A short attack (i.e. 0.01) makes

the initial part of the sound very

percussive like a sharp tap. A longer

attack (i.e 1) fades the sound in gently.

Full length of sound is attack + decay +

sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

ZAWA

use_synth :pulse

Saw wave with oscillating timbre. Produces moving saw waves
with a unique character controllable with the control oscillator
(usage similar to mod synths).

PARAMETERS

[Chapter Ten]

85

 [CODE MUSIC WITH SONIC PI]

decay:
Amount of time (in beats) for the

sound to move from full amplitude

(attack_level) to the sustain amplitude

(sustain_level).

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

sustain:
Amount of time (in beats) for sound

to remain at sustain level amplitude.

Longer sustain values result in longer

sounds. Full length of sound is attack +

decay + sustain + release.

Default: 0

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

release:
Amount of time (in beats) for sound

to move from sustain level amplitude

to silent. A short release (i.e. 0.01)

makes the final part of the sound very

percussive (potentially resulting in a

click). A longer release (i.e 1) fades the

sound out gently. Full length of sound

is attack + decay + sustain + release.

Default: 1

Must be zero or greater

Can not be changed once set

Scaled with current BPM value

attack_level:
Amplitude level reached after

attack phase and immediately before

decay phase.

Default: 1

Must be zero or greater

Can not be changed once set

decay_level:
Amplitude level reached after

decay phase and immediately before

sustain phase. Defaults to sustain_

level unless explicitly set.

Default: sustain_level

Must be zero or greater

Can not be changed once set

sustain_level:
Amplitude level reached after decay

phase and immediately before

release phase.

Default: 1

Must be zero or greater

Can not be changed once set

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

86

ESSENTIALS

[Chapter One]86

Smaller values produce less resonance.

Default: 0.9

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

phase:
Phase duration in beats

of timbre modulation.

Default: 1

Must be greater than zero

May be changed whilst playing

Scaled with current BPM value

phase_offset:
Initial phase offset of the sync wave

(a value between 0 and 1).

Default: 0

Must be a value between

0 and 1 inclusively

Can not be changed once set

wave:
Wave shape controlling freq sync saw

wave. 0=saw wave, 1=pulse, 2=triangle

wave and 3=sine wave.

Default: 3

Must be one of the following values:

[0, 1, 2, 3]

May be changed whilst playing

invert_wave:
Invert sync freq control waveform

(i.e. flip it on the y axis). 0=uninverted

wave, 1=inverted wave.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

range:
Range of the associated sync saw

in MIDI notes from the main note.

Modifies timbre.

Default: 24

Must be a value between

0 and 90 inclusively

May be changed whilst playing

disable_wave:
Enable and disable sync control

wave (setting to 1 will stop timbre

movement).

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

pulse_width:
The width of the pulse wave

as a value between 0 and 1. A width

of 0.5 will produce a square wave.

Different values will change the

timbre of the sound. Only valid

if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

[Chapter Ten]

87

 [CODE MUSIC WITH SONIC PI]

SECTION 02 - FX

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

BITCRUSHER

with_fx :bitcrusher do play 50 end

Creates lo-fi output by decimating and deconstructing the
incoming audio by lowering both the sample rate and bit depth.
The default sample rate for CD audio is 44100, so use values less
than that for that crunchy chip-tune sound full of artefacts and
bitty distortion. Similarly, the default bit depth for CD audio is 16,
so use values less than that for lo-fi sound.

PARAMETERS

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

88

ESSENTIALS

[Chapter One]88

sample_rate:
The sample rate the audio will be

resampled at. This represents the

number of times per second the audio

is sampled. The higher the sample rate,

the closer to the original the sound

will be, the lower the more low-fi it

will sound. The highest sample rate is

44100 (full quality) and the lowest is

~100 (extremely low quality). Try values

in between such as 1000, 3000, 8000…

Default: 10000

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

bits:
The bit depth of the resampled audio.

Lower bit depths make the audio sound

grainy and less defined. The highest bit

depth is 16 (full quality) and the lowest

is 1 (lowest quality).

Default: 8

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 0

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

Has slide parameters to shape changes

COMPRESSOR

with_fx :compressor do play 50 end

PARAMETERS

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

Compresses the dynamic range of the incoming signal. Equivalent to
automatically turning the amp down when the signal gets too loud and then

back up again when it’s quiet. Useful for ensuring the containing signal
doesn’t overwhelm other aspects of the sound. Also a general purpose

hard-knee dynamic range processor which can be tuned via the opts
to both expand and compress the signal.

[Chapter Ten]

89

 [CODE MUSIC WITH SONIC PI]

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between 0 and 1

inclusively

May be changed whilst playing

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

threshold:
Threshold value determining the

break point between slope_below and

slope_above.

Default: 0.2

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

clamp_time:
Time taken for the amplitude

adjustments to kick in fully (in seconds).

This is usually pretty small (not much

more than 10 milliseconds). Also known

as the time of the attack phase

Default: 0.01

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

slope_above:
Slope of the amplitude curve above

the threshold. A value of 1 means that

the output of signals with amplitude

above the threshold will be unaffected.

Greater values will magnify and

smaller values will attenuate

the signal.

Default: 0.5

May be changed whilst playing

Has slide parameters to shape changes

slope_below:
Slope of the amplitude curve below

the threshold. A value of 1 means that

the output of signals with amplitude

below the threshold will be unaffected.

Greater values will magnify and

smaller values will attenuate

the signal.

Default: 1

May be changed whilst playing

Has slide parameters to shape changes

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

90

ESSENTIALS

[Chapter One]90

relax_time:
Time taken for the amplitude

adjustments to be released. Usually

a little longer than clamp_time. If

both times are too short, you can get

some (possibly unwanted) artefacts.

Also known as the time of the

release phase.

Default: 0.01

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

ECHO
Standard echo with variable phase duration (time between echoes) and
decay (length of echo fade out). If you wish to have a phase duration longer
than 2s, you need to specify the longest phase duration you’d like with the
arg max_phase. Be warned, echo FX with very long phases can consume
a lot of memory and take longer to initialise.

with_fx :echo do play 50 end

PARAMETERS

[Chapter Ten]

91

 [CODE MUSIC WITH SONIC PI]

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

phase:
The time between echoes in beats.

Default: 0.25

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

decay:
The time it takes for the echoes

to fade away in beats.

Default: 2

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

max_phase:
The maximum phase duration in beats.

Default: 2

Must be greater than zero

Can not be changed once set

FLANGER
Mix the incoming signal with a copy of itself which has a rate
modulating faster and slower than the original. Creates a
swirling/whooshing effect.

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means that

only the FX is heard (typically the

with_fx :flanger do play 50 end

PARAMETERS

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

92

ESSENTIALS

[Chapter One]92

default) and a mix of 0.5 means that half

the original and half of the FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input signal

immediately before it is passed to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

phase:
Phase duration in beats

of flanger modulation.

Default: 4

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

phase_offset:
Initial modulation phase offset (a value

between 0 and 1).

Default: 0

Must be a value between 0 and 1

inclusively

Can not be changed once set

wave:
Wave type - 0 saw, 1 pulse, 2 triangle,

3 sine, 4 cubic. Different waves will

produce different flanging

modulation effects.

Default: 4

Must be one of the following values:

[0, 1, 2, 3, 4]

May be changed whilst playing

invert_wave:
Invert flanger control waveform (i.e.

flip it on the y axis). 0=uninverted

wave, 1=inverted wave.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

stereo_invert_wave:
Make the flanger control waveform

in the left ear an inversion of the

control waveform in the right ear.

0=uninverted wave, 1=inverted wave.

This happens after the standard wave

inversion with param :invert_wave.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

delay:
Amount of delay time between original

and flanged version of audio.

Default: 5

May be changed whilst playing

Has slide parameters to shape changes

max_delay:
Max delay time. Used to set internal

buffer size.

Default: 20

[Chapter Ten]

93

 [CODE MUSIC WITH SONIC PI]

Must be zero or greater

Can not be changed once set

depth:
Flange depth - greater depths produce

a more prominent effect.

Default: 5

May be changed whilst playing

Has slide parameters to shape changes

decay:
Flange decay time in ms

Default: 2

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

feedback:
Amount of feedback.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

invert_flange:
Invert flanger signal. 0=no inversion,

1=inverted signal.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

KRUSH
with_fx :krush do play 50 end

Krush that sound!

PARAMETERS
amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played (due to

compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

94

ESSENTIALS

[Chapter One]94

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

gain:
Amount of crushing to serve.

Default: 5

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 100

Must be zero or greater,must be a

value less than 131

May be changed whilst playing

Has slide parameters to shape changes

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

Has slide parameters to shape changes

LOW PASS FILTER
Dampens the parts of the signal that are higher than the cutoff point

(typically the crunchy fizzy harmonic overtones) and keeps the lower
parts (typically the bass/mid of the sound). Choose a higher cutoff to

keep more of the high frequences/treble of the sound and a lower
cutoff to make the sound more dull and only keep the bass.

with_fx :lpf do play 50 end

[Chapter Ten]

95

 [CODE MUSIC WITH SONIC PI]

PARAMETERS
amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means that

only the FX is heard (typically the

default) and a mix of 0.5 means that half

the original and half of the FX is heard.

Default: 1

Must be a value between 0 and 1

inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

cutoff:
MIDI note representing the highest

frequencies allowed to be present in the

sound. A low value like 30 makes the

sound round and dull, a high value like

100 makes the sound buzzy and crispy.

Default: 100

Must be zero or greater,

must be a value less than 131

May be changed whilst playing

Has slide parameters to shape changes

PAN
Specify where in the stereo field the sound should be heard. A value
of -1 for pan will put the sound in the left speaker, a value of 1 will put
the sound in the right speaker and values in between will shift the
sound accordingly.

with_fx :pan do play 50 end

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

96

ESSENTIALS

[Chapter One]96 [Chapter Ten]

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

PAN SLICER

with_fx :panslicer do play 50 end

Slice the pan automatically from left to right. Behaves similarly to slicer
and wobble FX but modifies stereo panning of sound in left and right

speakers. Default slice wave form is square (hard slicing between left
and right) however other wave forms can be set with the wave: opt.

97

 [CODE MUSIC WITH SONIC PI]

PARAMETERS
amp:
The amplitude of the resulting effect.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between 0 and 1

inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

phase:
The phase duration (in beats)

of the slices.

Default: 0.25

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

pan_min:
Minimum pan value (-1 is the left

speaker only.)

Default: -1

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pan_max:
Maximum pan value (+1 is the right

speaker only)

Default: 1

Must be a value between

-1 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pulse_width:
The width of the pulse wave as a value

between 0 and 1. A width of 0.5 will

produce a square wave. Different values

will change the timbre of the sound. Only

valid if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

Has slide parameters to shape changes

phase_offset:
Initial phase offset.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

98

ESSENTIALS

[Chapter One]98

Default: 0

Must be a value between

0 and 1 inclusively

Can not be changed once set

wave:
Control waveform used to modulate

the amplitude. 0=saw, 1=pulse,

2=tri, 3=sine

Default: 1

Must be one of the following values:

[0, 1, 2, 3]

May be changed whilst playing

invert_wave:
Invert control waveform (i.e. flip it

on the y axis). 0=uninverted wave,

1=inverted wave.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

probability:
Probability (as a value between 0 and

1) that a given slice will be replaced by

the value of the prob_pos opt (which

defaults to 0, i.e. silence)

Default: 0

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

prob_pos:
Position of the slicer that will be

jumped to when the probability test

passes as a value between 0 and 1

Default: 0

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

seed:
Seed value for rand num generator

used for probability test.

Default: 0

Can not be changed once set

smooth:
Amount of time in seconds to

transition from the current value to

the next. Allows you to round off harsh

edges in the slicer wave which may

cause clicks.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_up:
Amount of time in seconds to

transition from the current value to

the next only when the value is going

up. This smoothing happens before

the main smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_down:
Amount of time in seconds to

transition from the current value to

the next only when the value is going

[Chapter Ten]

99

 [CODE MUSIC WITH SONIC PI]

down. This smoothing happens before

the main smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

REVERB
Make the incoming signal sound more spacious or distant as if it
were played in a large room or cave. Signal may also be dampened
by reducing the amplitude of the higher frequencies.

with_fx :reverb do play 50 end

PARAMETERS
amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t

make the sound louder, they will

just reduce the quality of all the

sounds currently being played

(due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 0.4

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

100

ESSENTIALS

[Chapter One]100

room:
The room size - a value between 0 (no

reverb) and 1 (maximum reverb).

Default: 0.6

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

damp:
High frequency dampening - a value

between 0 (no dampening) and 1

(maximum dampening).

Default: 0.5

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

SLICER

awith_fx :slicer do play 50 end

Modulates the amplitude of the input signal with a specific control wave and phase
duration. With the default pulse wave, slices the signal in and out, with the triangle
wave, fades the signal in and out and with the saw wave, phases the signal in and
then dramatically out. Control wave may be inverted with the arg invert_wave for
more variety.

PARAMETERS

amp:
The amplitude of the resulting effect.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

[Chapter Ten]

101

 [CODE MUSIC WITH SONIC PI]

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

phase:
Phase duration (in beats) of the slices.

Default: 0.25

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

amp_min:
Minimum amplitude of the slicer.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

amp_max:
Maximum amplitude of the slicer.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

pulse_width:
The width of the pulse wave as a value

between 0 and 1. A width of 0.5 will

produce a square wave. Different values

will change the timbre of the sound. Only

valid if wave is type pulse.

Default: 0.5

Must be a value between

0 and 1 exclusively

May be changed whilst playing

Has slide parameters to shape changes

phase_offset:
Initial phase offset.

Default: 0

Must be a value between

0 and 1 inclusively

Can not be changed once set

wave:
Control waveform used to modulate

the amplitude. 0=saw, 1=pulse,

2=tri, 3=sine

Default: 1

Must be one of the following values:

[0, 1, 2, 3]

May be changed whilst playing

invert_wave:
Invert control waveform (i.e. flip it

on the y axis). 0=uninverted wave,

1=inverted wave.

Default: 0

Must be one of the following values:

[0, 1]

May be changed whilst playing

probability:
Probability (as a value between 0 and

1) that a given slice will be replaced by

the value of the prob_pos opt (which

defaults to 0, i.e. silence.)

Default: 0

Must be a value between

0 and 1 inclusively

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

102

ESSENTIALS

[Chapter One]102

May be changed whilst playing

Has slide parameters to shape changes

prob_pos:
Position of the slicer that will be jumped

to when the probability test passes as a

value between 0 and 1

Default: 0

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

seed:
Seed value for rand num

generator used for probability test.

Default: 0

Can not be changed once set

smooth:
Amount of time in seconds to transition

from the current value to the next.

Allows you to round off harsh edges in

the slicer wave which may cause clicks.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_up:
Amount of time in seconds to transition

from the current value to the next

only when the value is going up. This

smoothing happens before the main

smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_down:
Amount of time in seconds to transition

from the current value to the next only

when the value is going down. This

smoothing happens before the main

smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

WOBBLE

with_fx :wobble do play 50 end

Versatile wobble FX. Will repeatedly modulate a range of filters (rlpf, rhpf)
between two cutoff values using a range of control wave forms (saw,

pulse, tri, sine). You may alter the phase duration of the wobble, and the
resonance of the filter. Combines well with the dsaw synth for crazy

dub wobbles. Cutoff value is at cutoff_min at the start of phase

[Chapter Ten]

103

 [CODE MUSIC WITH SONIC PI]

amp:
The amplitude of the sound. Typically

a value between 0 and 1. Higher

amplitudes may be used, but won’t make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

mix:
The amount (percentage) of FX present

in the resulting sound represented as

a value between 0 and 1. For example,

a mix of 0 means that only the original

sound is heard, a mix of 1 means

that only the FX is heard (typically

the default) and a mix of 0.5 means

that half the original and half of the

FX is heard.

Default: 1

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

pre_amp:
Amplification applied to the input

signal immediately before it is passed

to the FX.

Default: 1

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

phase:
The phase duration (in beats) for filter

modulation cycles.

Default: 0.5

Must be greater than zero

May be changed whilst playing

Has slide parameters to shape changes

Scaled with current BPM value

cutoff_min:
Minimum (MIDI) note that filter will

move to whilst wobbling. Choose

a lower note for a higher range of

movement. Full range of movement

is the distance between cutoff_max

and cutoff_min.

Default: 60

Must be zero or greater,

must be a value less than 130

May be changed whilst playing

Has slide parameters to shape changes

cutoff_max:
Maximum (MIDI) note that filter will

move to whilst wobbling. Choose

a higher note for a higher range of

movement. Full range of movement is

the distance between cutoff_max and

cutoff_min.

Default: 120

Must be zero or greater,

must be a value less than 130

May be changed whilst playing

Has slide parameters to shape changes

PARAMETERS

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

104

ESSENTIALS

[Chapter One]104

res:
Filter resonance as a value between

0 and 1. Large amounts of resonance

(a res: near 1) can create a whistling

sound around the cutoff frequency.

Smaller values produce less resonance.

Default: 0.8

Must be zero or greater,

must be a value less than 1

May be changed whilst playing

Has slide parameters to shape changes

phase_offset:
Initial modulation phase offset

(a value between 0 and 1).

Default: 0

Must be a value between

0 and 1 inclusively

Can not be changed once set

wave:
Wave shape of wobble. Use 0 for saw

wave, 1 for pulse, 2 for triangle wave

and 3 for a sine wave.

Default: 0

Must be one of the following values:

[0, 1, 2, 3]

May be changed whilst playing

invert_wave:
Invert control waveform (i.e. flip it

on the y axis). 0=uninverted wave,

1=inverted wave.

Default: 0

Must be one of the following

values: [0, 1]

May be changed whilst playing

pulse_width:
Only valid if wave is type pulse.

Default: 0.5

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

filter:
Filter used for wobble effect. Use

0 for a resonant low pass filter or 1

for a resonant high pass filter.

Default: 0

Must be one of the following

values: [0, 1]

May be changed whilst playing

probability:
Probability (as a value between 0 and 1)

that a given wobble will be replaced by

the value of the prob_pos opt (which

defaults to 0, i.e. min_cutoff)

Default: 0

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

prob_pos:
Position of the wobble that will be

jumped to when the probability test

passes as a value between 0 and 1

Default: 0

Must be a value between

0 and 1 inclusively

May be changed whilst playing

Has slide parameters to shape changes

[Chapter Ten]

105

 [CODE MUSIC WITH SONIC PI]

seed:
Seed value for rand num generator

used for probability test

Default: 0

Can not be changed once set

smooth:
Amount of time in seconds to

transition from the current value to

the next. Allows you to round off harsh

edges in the slicer wave which may

cause clicks.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_up:
Amount of time in seconds to transition

from the current value to the next only

when the value is going up.

This smoothing happens before

the main smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

smooth_down:
Amount of time in seconds to transition

from the current value to the next only

when the value is going down. This

smoothing happens before the main

smooth mechanism.

Default: 0

Must be zero or greater

May be changed whilst playing

Has slide parameters to shape changes

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

106

ESSENTIALS

[Chapter One]106 [Chapter Ten]

SECTION 03 - SAMPLES
amp:
The amplitude of the sound.

Typically a value between 0 and 1. Higher

amplitudes may be used, but won't make

the sound louder, they will just reduce

the quality of all the sounds currently

being played (due to compression.)

Default: 1

must be zero or greater

May be changed whilst playing

pan:
Position of sound in stereo. With

headphones on, this means how much

of the sound is in the left ear, and how

much is in the right ear. With a value of

-1, the sound is completely in the left

ear, a value of 0 puts the sound equally

in both ears and a value of 1 puts the

sound in the right ear. Values in between

-1 and 1 move the sound accordingly.

Default: 0

must be a value between

-1 and 1 inclusively

May be changed whilst playing

attack:
Duration of the attack phase

of the envelope.

Default: 0

must be zero or greater

decay:
Duration of the decay phase

of the envelope.

Default: 0

must be zero or greater

sustain:
Duration of the sustain phase of the

envelope. When -1 (the default) will

auto-stretch.

Default: -1

must either be a positive value or -1

release:
Duration of the release phase

of the envelope.

Default: 0

must be zero or greater

attack_level:
Amplitude level reached after attack

phase and immediately before

decay phase.

Default: 1

must be zero or greater

decay_level:
Amplitude level reached after decay

phase and immediately before sustain

phase. Defaults to sustain_level unless

explicitly set.

Default: sustain_level

must be zero or greater

sustain_level:
Amplitude level reached

after decay phase and immediately

 before release phase.

Default: 1

must be zero or greater

107

 [CODE MUSIC WITH SONIC PI]

env_curve:
Select the shape of the curve between

levels in the envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

must be one of the following values:

[1, 2, 3, 4, 6, 7]

cutoff_attack:
Attack time for cutoff filter. Amount

of time (in beats) for sound to reach full

cutoff value. Default value is set to match

amp envelope's attack value.

Default: attack

must be zero or greater

cutoff_decay:
Decay time for cutoff filter. Amount of

time (in beats) for sound to move from

full cutoff value (cutoff attack level) to

the cutoff sustain level. Default value is

set to match amp envelope's decay value.

Default: decay

must be zero or greater

cutoff_sustain:
Amount of time for cutoff value to

remain at sustain level in beats.

When -1 (the default) will auto-stretch.

Default: sustain

must either be a positive value or -1

cutoff_release:
Amount of time (in beats) for sound to

move from cutoff sustain value to cutoff

min value. Default value is set to match

amp envelope's release value.

Default: release

must be zero or greater

cutoff_attack_level:
The peak cutoff (value of cutoff

at peak of attack) as a MIDI note.

Default: cutoff

must be a value between

0 and 130 inclusively

cutoff_decay_level:
The level of cutoff after the decay

phase as a MIDI note.

Default: cutoff

must be a value between

0 and 130 inclusively

cutoff_sustain_level:
The sustain cutoff (value of cutoff

at sustain time) as a MIDI note.

Default: cutoff

must be a value between

0 and 130 inclusively

cutoff_env_curve:
Select the shape of the curve between

levels in the cutoff envelope. 1=linear,

2=exponential, 3=sine, 4=welch,

6=squared, 7=cubed

Default: 2

must be one of the following values:

[1, 2, 3, 4, 6, 7]

cutoff_min:
The minimum cutoff value.

Default: 30

must be a value less than or equal

to 130 May be changed whilst playing

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

108

ESSENTIALS

[Chapter One]

rate:
Rate with which to play back - default

is 1. Playing the sample at rate 2 will

play it back at double the normal

speed. This will have the effect of

doubling the frequencies in the sample

and halving the playback time. Use

rates lower than 1 to slow the sample

down. Negative rates will play the

sample in reverse.

Default: 1

must not be zero

start:
A fraction (between 0 and 1)

representing where in the sample to

start playback. 1 represents the end of

the sample, 0.5 half-way through etc.

Default: 0

must be a value between 0 and 1

inclusively

finish:
A fraction (between 0 and 1)

representing where in the sample to

finish playback. 1 represents the end of

the sample, 0.5 half-way through etc.

Default: 1

must be a value between 0 and 1

inclusively

res:
Filter resonance as a value between 0

and 1. Only functional if a cutoff value is

specified. Large amounts of resonance (a

res: near 1) can create a whistling sound

around the cutoff frequency. Smaller

values produce less resonance.

Default: 0

must be zero or greater,

must be a value less than 1

May be changed whilst playing

cutoff:
MIDI note representing the highest

frequencies allowed to be present

in the sound. A low value like 30

makes the sound round and dull, a

high value like 100 makes the sound

buzzy and crispy.

Default: 0

must be zero or greater,

must be a value less than 131

May be changed whilst playing

norm:
Normalise the audio (make quieter

parts of the sample louder and louder

parts quieter) - this is similar to the

normaliser FX. This may emphasise

any clicks caused by clipping.

Default: 0

must be one of the following values:

[0, 1]

window_size:
Pitch shift works by chopping the input

into tiny slices, then playing these slices

at a higher or lower rate. If we make the

slices small enough and overlap them,

it sounds like the original sound with

the pitch changed. The window_size is

the length of the slices and is measured

in seconds. It needs to be around

0.2 (200ms) or greater for pitched

sounds like guitar or bass, and needs

108 [Chapter Ten]

109

 [CODE MUSIC WITH SONIC PI]

to be around 0.02 (20ms) or lower for

percussive sounds like drum loops. You

can experiment with this to get the best

sound for your input.

Default: 0.2

must be a value greater than 5.0e-05

May be changed whilst playing

pitch_dis:
Pitch dispersion - how much random

variation in pitch to add. Using a low

value like 0.001 can help to "soften up"

the metallic sounds, especially on drum

loops. To be really technical, pitch_

dispersion is the maximum random

deviation of the pitch from the pitch

ratio (which is set by the pitch param.)

Default: 0.0

must be a value greater than

or equal to 0

May be changed whilst playing

time_dis:
Time dispersion - how much random

delay before playing each grain (measured

in seconds). Again, low values here like

0.001 can help to soften up metallic

sounds introduced by the effect. Large

values are also fun as they can make

soundscapes and textures from the

input, although you will most likely lose

the rhythm of the original. NB - This

won't have an effect if it's larger than

window_size.

Default: 0.0

must be a value greater than

or equal to 0

May be changed whilst playing.

[Quick Reference]

 [CODE MUSIC WITH SONIC PI]

ESSENTIALS

raspberrypi.org/magpi

