
ODROID
Magazine

Year One
Issue #4
Apr 2014

DO IT YOURSELF EDITION

Off-Roading with an ODROID Truck PC

A MINECRAFT
SERVER

A HEAVY DUTY
TABLET

CUSTOM ANDROID BUILD

GET STEP BY STEP TUTORIALS ON HOW TO CREATE:

What we stand for.

We strive to symbolize the edge technology,

future, youth, humanity, and engineering.

Our philosophy is based on Developers.

And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality

and sophistication that is the hallmark of our products.

Simple, modern and distinctive.

So you can have the best to accomplish

everything you can dream of.

ODROID MAGAZINE 3

EDITORIAL

Linaro 12.11, which is reaching its end of life this month, was the
last version of Ubuntu to offer the Unity 2D desktop environ-
ment, which is popular with both beginners and experts be-

cause of its friendly icons, unique desktop customization options,
and easy-to-use interface. However, its predecessor and close

relative, Linaro 12.04, is still alive and
well, and comes with Unity 2D. 12.04
is the most recent Long Term Service
(LTS) release, and will be supported

for 3 more years, until April 2017. If you’re
looking for an extremely stable version of
Ubuntu, Linaro 12.04 is your best bet.

However, the 12.04 version of Ubuntu isn’t
available as a pre-built from Hardkernel. Why?

Because, as the ODROID box says, you can Do It Your-
self! The ODROID family of computers are primarily intended for

developers, who love to build everything from scratch for two reasons:
1) they usually get paid by the hour, and 2) they spend days constructing long,

intensive build scripts that take hours to finish, so that they can go make sand-
wiches and drink coffee while they wait for the build to be done!

This month, Mauro shows us how to build a custom Ubuntu image from
scratch, so you can amaze your friends at your next party, and show that you are
a true Linux hacker, worthy of their adoration and free jelly donuts.

We also are very proud to present an emerging trend in the automobile world:
a fully functional computer installed in your car’s dashboard! Known as Car PCs,
several large computer companies have recently contracted with major car manu-
facturers to include their hardware as high-priced options in certain high end mod-
els.

But who says that Car PCs have to be expensive? Our feature article, the
Truck PC, is a guide to building your own onboard computer, as an affordable
alternative to supergluing an iPad to your dashboard. Requiring less than 5W
of power, the ODROID CarPC and its battery can be charged straight from your
electrical system, or by using a small solar panel mounted on the roof. The future
of truly mobile computing is here today, and ODROID line of micro-computers are
once again proven to be ahead of their time.

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.

based single board computer.

http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE 4

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I am a computer
programmer liv-

ing and working in
Silicon Valley, CA, USA,

designing and building websites such
as Vevo, Hi5, Dolby Laboratories
and Hyundai. My primary languages
are jQuery, Angular JS and HTML5/
CSS3. I also develop pre-built operat-
ing systems, custom kernels and opti-
mized applications for the ODROID
platform based on Hardkernel’s official
releases, for which I have won several
Monthly Forum Awards. I own a lot of
ODROIDs, which I use for a variety of
purposes, including media center, web
server, application development work-
station, and gaming console.

Bo
Lechnowsky,
Editor

I am President of
Respectech, Inc., a

technology consultancy
in Ukiah, CA, USA that I founded in
2001. From my background in elec-
tronics and computer programming, I
manage a team of technologists, plus
develop custom solutions for compa-
nies ranging from small businesses to
worldwide corporations. ODROIDs
are one of the weapons in my arsenal
for tackling these projects. My favor-
ite development languages are Rebol
and Red, both of which run fabu-
lously on ARM-based systems like the
ODROID-U2. I have deep experience
with many unique operating systems.

Bruno Doiche,
Art Editor

Went a little crazier
than usual while stu-

ding again how a color
blind person sees, and

missed having a colorblind coworker as
when he worked on EGM Brazil in his
old gaming magazine editing days.

News from Art Editor Bruno:
You will notice a few changes in this

issue. The first is that we are now using
a color-coded system at the top of each
article to show the level of technical de-
tail. This expands our color palette, and
as a bonus, we are mixing our content and
including shorter articles on subjects such
as Linux Tips and Android Gaming.

We are also changing the format of some
of the more technical articles, by including
text in two columns when necessary.

Why? well it was a bum-
-mer when we need-
-ed to type a longer str-
-ing of code and it was cut.
This means that, in some cases, we are

changing the style from three columns,

and my art editing teacher would remind
me to keep the layout consistent. How-
ever, the articles will be much more com-
prehensive for you to follow the code,
which is the main point!.

From now on, we are going to leave some
space at the end of the technical articles, so
that any future revisions will have room to
grow. Once an article is published, we do a
lot of tweaking based on user feedback, and
if the technical articles are too tight, the ad-
ditions can be difficult to adjust.

Finally, we now have a Table of Con-
tents, which you can see on the next
page! Cool, huh? Now you won’t be
caught in my little in-jokes like on the
last edition, not that I won’t try to put
some humor here and there!

ODROID MAGAZINE 5

INDEX
BUILD ANDROID ON ODROID U3 -6

TURN YOUR ODROID TO AN ITUNES AIRPORT AUDIO STATION - 8

PORTABLE IMAGE BACKUP - 9

RENAME YOUR FILES - 10

PARANOID FILE EDITING - 10

BUILD YOUR OWN UBUNTU FROM SCRATCH -11

INSTALL THE ORACLE JDK VERSION 8 - 14

USING ODROIDS IN HIGH PERFORMANCE COMPUTING - 16

VECTOR - PARKOUR PACKED ACTION - 17

HOW TO SETUP A MINECRAFT SERVER - 18

LEARN REBOL - 22

BE HEARD WITH ÜBERCASTER - 27

ODROID U3 I2C COMMUNICATION - 29

HEAVY-DUTY PORTABLE LINUX TABLET - 32

HOW I BUILT A TRUCK PC - 34

MEET AN ODROIDIAN - 38

DOWNLOAD YOUTUBE VIDEOS TO WATCH OFFLINE - 20

ODROID MAGAZINE 6

TECHNICAL ARTICLE

In this tutorial, I will discuss how
to build the Android operating sys-
tem for the ODROID-U3 from

source, including the kernel. The An-
droid build system is robust, but also
a bit complicated if you haven’t used it
before. There are steps that need to be
done properly in order to have a work-
able and repeatable build system. By
the end of this article, you will hope-
fully have sufficient knowledge and un-
derstanding of how it all works.

Build Hardware
and Environment

I won’t go into details in terms of set-
ting up your build server for building
Android since Google’s own Android
page has lots of information at http://
source.android.com/source/

initializing.html. If you are hav-
ing problems installing JDK 6, follow the
steps in this link: http://askubuntu.
com/questions/67909/how-do-i-

install-oracle-jdk-6.
Building the Android source code is

a big task and requires a powerful ma-
chine. To give you an idea, my comput-
er has the following specification:

32GB RAM
i5 Intel Processor
2 x 256GB SSD Drive

Android build systems do a lot of writ-
ing and reading, and this in turns requires
constant I/O operations. Even with an
SSD drive, you still have to spend a good

25-35 minutes waiting time for the build
to complete, and this can be very time-
consuming if you have to constantly work
with Android on a daily basis. Make sure
to have as much free disk space as pos-
sible, with the minimum requirement
around 100GB. There is another trick to
speed up the building process and this is
the use of ccache project. In the next sec-
tion I will outlined on how to use it.

If your hardware is not as powerful
as i5 or i7 and you are using a normal
hard drive than make sure you have your
coffee ready !

Download Source
The Android source code for version

4.1.2 (JellyBean) that I used in this ar-
ticle can be downloaded from droid.
com website at http://dn.odroid.
com/4412/Android/4.1.2_Jan-

15-2014/BSP/. There are a couple
files that you need to download from
that link, as shown in below:

Download the 2 files android.tgz
and kernel.tgz, and extract them to a
directory in your local drive. Put the

Android and Kernel source code

by Nanik Tolaram and Fabien Robert

http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/

ODROID MAGAZINE 7

TECHNICAL ARTICLE

kernel files inside the kernel/ directory
under the Android root directory as
shown above.

The main reason to place the kernel
inside the Android directory is to facili-
tate the creation of the build script, since
the build system revolves around files in-
side the main Android source directory.

I created a set of patch files for this ar-
ticle on GitHub at https://github.
com/nanikjava/odroid-u-patch.
This patch allows you to build Android
and the kernel at the same time. Run
the command:

git apply --stat ./odroid-

u-patch/fix-build-odroid-
u3.patch

and you will see the output as shown
at the bottom of the page.

There are 3 new file and 2 modifica-
tions for this patch. Make sure you are
inside your Android directory and apply
the patch by running the following com-
mand:

git apply ./odroid-u-patch/

fix-build-odroid-u3.patch

You will get the following messages
which can be safely ignored:

./odroid-u-patch/fix-build-
odroid-u3.patch:171: trail-

ing whitespace.

./odroid-u-patch/fix-build-
odroid-u3.patch:173: trail-

ing whitespace.

 ccache =

warning: 2 lines add

whitespace errors.

One additional file required for the
build process is Makefile, which should
be copied to the kernel/drivers/media/
video/samsung/tvout directory.

ccache and script
modification

I mentioned using ccache to speed up
the compilation process, and now I will
walk you through setting it up. First,
you must remember that ccache require
some free disk space, and in this case, we
are going to set it up to use only 10GB,
which will be more that sufficient.

Create a directory anywhere in your
drive, then initialize the environment
variable and run both of the following
ccache commands to initialize it:

export CCACHE_DIR=\
<your_ccache_directory>

<your__Android_directory>/

prebuilts/misc/linux-x86/
ccache/ccache -M 10G

You can verify whether ccache has
been successfully initialized by inspect-
ing the cache directory as shown at the
upper right on the page.

The last step is to modify the buil-
dOdroid.sh script to change the ccache
directory to point it to you local direc-
tory like the following:

source build/envsetup.sh

lunch odroidu-eng

export USE_CCACHE=1
export CCACHE_DIR=\
<your_ccache_directory>

/usr/bin/time -f “\n%E
elapsed,\n%U user,
\n%S system,\n%M memory,\n%x
status” make -j8

Kernel Modification
There is an unnecessary file that needs

to be removed from the kernel/ di-
rectory, which has to do with build-
ing the Broadcom 4330, which is not
needed for the ODROID-U. Delete the
file Android.mk inside the kernel/
drivers/net/wireless/bcm4330/

src/ directory as shown below.

Git stat of the patch

The cache directory and its subdirectories,
numbered in Hex from 0 to F

Kernel directory inside Android

Ready… Set… Go!
Once you have finished the above

steps, you are done with the initial pre-
build setup. Navigate to the Android
source directory, and follow these steps
to start building Android:

Run source build/envsetup.

sh. You will get output as shown next.

https://github.com/nanikjava/odroid-u-patch
https://github.com/nanikjava/odroid-u-patch

ODROID MAGAZINE 8

TECHNICAL ARTICLE

Run lunch and you wil be shown se-
lection as shown below. Select the 7th
option.

Inform ccache of the directory that it
will use to cache the compiled file, and
also an environment variable to inform
the build process that we want to use
ccache.

export USE_CCACHE=1
export CCACHE_DIR=<your_cca-
che_directory>

The final step is to execute the build
process by typing make -j4.

I’ve created a script called buildOdroid.
sh that you can use to build Android, but
it’s good if you can go through the above
steps to get a flavour of the build steps.

After completing all the above steps,
you will see the build process run, which
will take some time to build. On my
machine, with caching enabled, it took
on average 18 minutes. At bottom we

show what you should be seeing when
you get successful compilation.

Image files
After the build is completed, the re-

sulting binaries and image files (.img)
are found inside the directory out/
target/product/odroidu/ .

There are several different .img
files that you will need for your
ODROID-U:

Cleaning up
If you run into a problem during the

compilation, make sure to “clean” the
directories using the make clobber com-
mand before restarting the build process.
This will delete all of the binary/com-
piled objects that are produced during
the compiling/linking stage.

Console
output of
envsetup.sh

Android has
been built
successfully!
Good job!

You shouldn’t need to think that 7 is a
number to pick just to get lucky, it is in
fact the correct option here.

by Bruno Doiche

Got an old stereo with amazing
speakers in need of a little mp3
action? Plug a regular Stereo

Male to 2-RCA from your odroid to
the AUX ports on the Stereo and do
the following on your Linux terminal:

sudo apt-get install\
avahi-utils libmodule-build-perl\
libio-socket-inet6-perl libao-dev\
libssl-dev libcrypt-openssl-rsa-perl\
libwww-perl pkg-config

git clone https://github.com/

njh/perl-net-sdp.git perl-net-sdp

cd perl-net-sdp/

perl Build.PL

sudo ./Build

sudo ./Build test

sudo ./Build install

cd ..

git clone https://github.com/

hendrikw82/shairport.git
cd shairport

make

./shairport.pl -a name

TIPS AND TRICKS

Goonix, what a cute hostname for a
machine… But wait!? Isn’t that the same
computer used to do the PS3 media server
in the last issue? Such versatility!

ODROID MAGAZINE 9

PORTABLE IMAGE BACKUP

Once you’ve got your ODROID
set up the way that you like,
it’s important to make sure that

you can restore your system quickly and
easily. If you enjoy experimenting with
Linux or Android, need to install your
OS on several ODROIDs, or want to
keep a backup in case of disk failure, you
can do so by making an image of your
SD card or eMMC module. An image
file is an exact bit-for-bit copy of the
original disk, complete with bootloader,
kernel, root file system, and user files.

To begin, power down the ODROID
and remove the eMMC or SD card that
you’d like to backup. Using another
Linux host computer with an SD card
to USB adapter, plug the SD card or
eMMC adapter into the USB port. If
using an eMMC module, attach the
SD card adapter that came with your
ODROID before inserting it into the
SD card slot. Depending on which op-
erating system your host is running, the
procedure for backing up your disk to an
image file will be somewhat different.

Windows
H a r d k e r n e l

publishes an im-
proved version
of Win32 Dis-
kImager that au-
tomatically fills
the disk with zeroes
before writing the image. It’s available
for free download at http://bit.
ly/1lYQ7MF, and is very easy to use.

Simply select the USB drive in the drop-
down, choose the image file destina-
tion using the folder button, and press
“Read”.

Depending on the size of your SD
card or eMMC module, the backup pro-
cess may take anywhere from 15 - 60
minutes. The resulting .img file will end
up being the exact size of the disk that
was copied, so make sure to have enough
disk space available first. Note that the
image backup should be done on an
NTFS partition, since DiskImager will
be unable to write a file larger than 4GB
to a FAT32 disk.

After the image has completed, we
can make it more portable by compress-
ing the file using the xz utility, which
has the advantage of very high com-
pression ratios. If xzip is not already
installed, download and unzip the pre-
built Windows binaries at http://
tukaani.org/xz/, then copy the ap-
propriate version of xz.exe to the same
directory as your backup file. Type the
following command into a Windows
command prompt, after navigating to

the correct directory:

xz -z mybackup.img

This step will also take some time
to complete. After the compression is
done, a file called mybackup.img.xz will
replace the original .img file. This can
shrink the file up to 80%, depending on
the amount of data stored on the origi-
nal operating system. Make backups of
your backup by storing several copies on
different disks, in order to ensure that
you won’t lose your valuable data.

When it’s time to recover the backup
image by writing it back to an SD card
or eMMC module, use the xz command
again to decompress the backup file:

xz -dk mybackup.img.xz

This will recreate the original .img
file by reversing the compression algo-
rithm. Note that the -k option preserves
the original .img.xz file, so that it may be
reused later to do another recovery.

Finally, go back to Win32DiskIm-

Good backup habits will
keep you safe from bad luck,
evil pets, and especially
your own hubris

Ugh.. Windows

by Rob Roy, Chief Editor

ODROID MAGAZINE 10

PORTABLE IMAGE BACKUP

ager and select the destination disk for
writing the image from the dropdown,
choose the .img file with the file ex-
plorer, and press “Write”. Note that it
must be at least the same size or larger
than the original disk. After the process
completes, the selected disk will be an
exact copy of the your original operating
system. Insert the new disk into your
ODROID, power it on and enjoy!

Linux
In true Linux fash-

ion, image backups
are done entirely from
the command line. If
the xz binaries are not
yet available on your
system, type sudo apt-get install
xz-utils to install them. Then, mount
the SD card or eMMC module by dou-
ble-clicking on the USB adapter’s desktop
icon. Type df -h in the Terminal win-
dow and make note of the device name,
which will be in the format /dev/sdX.

Navigate to the directory where the
image file is to be stored, then type the
following command, substituting the
device name of the USB adapter noted
in the previous step for /dev/sdX:

sudo dd if=/dev/sdX bs=1M

of=./mybackup.img

Just like Windows, after the Read op-
eration is completed, xz is used to com-
press and decompress the image file for
portability:

Compress an image file using xz

xz -z mybackup.img

Decompress a zipped image file
using xz

xz -dk mybackup.img.xz

When writing the decompressed image
to a new card, use the same dd command
as the Read operation with the input file
(if) and output file (of) options reversed:

sudo dd of=/dev/sdX bs=1M

if=./mybackup.img

Mac OSX
The procedure

for creating an im-
age file using OSX
is similar to Linux,
with three small
differences. First,
instead of using
apt-get to install xz,
download the xz-
utils package from the same website
mentioned in the Windows instruc-
tions above, making sure to select the
OSX binaries (http://tukaani.
org/xz/). The other differences are
that the block size (bs) parameter for
the dd command is in lowercase, and
the USB adapter’s device name is in
the format /dev/diskX:

Read from the original disk to an image
file using OSX

sudo dd if=/dev/diskX bs=1m

of=./mybackup.img

Write from an image file to a new disk
using OSX

sudo dd of=/dev/diskX bs=1m

if=./mybackup.img

It’s a good idea to make a backup of
your system before a major upgrade is
attempted, a challenging configuration
is completed, or a large set of software
packages have been installed. In case
the original disk becomes corrupted,
a compressed image backup will also
get you back on track quickly, without
needing to take the time to reinstall
and reconfigure the entire system.

If your data is important enough, It’s
also a good idea to keep a backup archive
as well as some offsite copies for safe-
keeping. You can never have too many
backups!

Yeah Linux baby!

We may not talk
often about Macs,
but the magazine
art is made on OSX

by Bruno Doiche

E ver needed to organize the files
in your directories, but have a
bunch of misfits that need to be

renamed to comply to your so dreamed
orderly database of files? Sure, when
they are few, you just issue the mv com-
mand and resolve. But what if they
come in hundreds?
Issue the following syntax on your Ter-
minal:

for i in *; do mv $i $(echo $i

| tr [:upper:] [:lower:]); done

It’s that easy!

Whenever you are editing sys-
tem files on your text editor,
do you go to superuser mode

using sudo or su ? Break this dangerous
habit of exposing yourself to an acciden-
tal file deletion, move or reboot by creat-
ing a script that will keep your environ-
ment safe. Let’s call it autosudo.sh

#!/bin/bash

 FILE=$1
Check Write Permission
 if [-w $FILE]
then

 /usr/bin/vim $FILE
else

Sudo If We Dont Have Write
Permissions

 sudo /usr/bin/vim $FILE
fi

Give it executable pemissions with
chmod +x , copy it to /bin run sys-
temwide and then edit like this:
autosudo.sh yourfile_to_edit

TIPS AND TRICKS

ODROID MAGAZINE 11

BUILD YOUR UBUNTU FROM SCRATCH

by Mauro Ribeiro

Setting up
the environment

$ cd ~

$ mkdir ubuntu-guide

$ cd ubuntu-guide

$ export GUIDE=`pwd`
$ export SDCARD=/dev/sdX

Make sure to replace X with the
correct letter of your SDCard.

Downloading all
the necessary
components

This article won’t cover bootload-
er building because nothing changes
over the pre-built bootloader pro-
vided on the Hardkernel developer
website.

$ wget odroid.in/guides/\
 ubuntu-lfs/boot.tar.gz

$ git clone --depth 1 \
 https://github.com/\
 hardkernel/linux.git -b \
 odroid-3.8.y odroid-3.8.y

In this guide, I’m using GCC 4.7.2
from Archlinux ARM as my toolchain. I
like this toolchain given the known sta-
bility of this version.

$ wget odroid.in/guides/\
 ubuntu-lfs/arm-unknown-\
 linux-gnueabi.tar.xz

I chose to use Linaro’s rootfs because
it comes easily packed as a .tgz file, and
will work very well for this guide. At the
moment of this writing, Linaro’s 13.12 is
what was available, and any other rootfs
should work just fine.

Soon, Ubuntu stores will be the favorite hangout spot for a future ODROIDian society.

A major advantage of open-source
operating systems such as Linux
is having the option to down-

load the source code and compile it
yourself. You can add patches, tweak
the code, and inspect it for bugs with-
out needing to wait for an official release
or update. The ODROID platform can
run many different operating systems,
and some of them are not available as
pre-compiled ARM images. Taking the
time to learn how to build your system
from scratch enables you to download
newly developed operating systems and
try them out. In this example, Linaro’s
version of Ubuntu will be used to dem-
onstrate how easy it is to take control of
your OS at the most basic level.

General Notes

over.
-

ODROID MAGAZINE 12

BUILD YOUR UBUNTU FROM SCRATCH

$ wget http://releases.\
 linaro.org/13.12/ubuntu/\
 arndale/linaro-saucy-\
 server-20131216-586.tar.gz

5. Compilation tools
U-Boot tools comes with a tool called

mkimage we need that to create a boot.
scr.

$ sudo apt-get install

u-boot-tools build-essential

libqt4-dev perl python git

pkg-config ncurses-dev uuid-
runtime lib32z1 ia32-libs

lib32ncurses5 lib32bz2-1.0

Building the Image
1. Emptying your card.

I like to start with a clean SD card.

$ sudo dd if=/dev/zero \
 of=$SDCARD bs=1M

2. Installing bootloaders

$ tar zxvf boot.tar.gz
$ cd boot

$ chmod +x sd_fusing.sh
$ sudo ./sd_fusing.sh \
 $SDCARD

3. Create Partitions
We use two partitions, one for

kernel+initrd(if used) and one for rootfs.
The kernel+initrd partition is a FAT32
type, and the rootfs is a ext4 partition
with no journal and no “atime as mount”
option.

It’s also important on this step that the
first partition starts at least 3072 sectors
later, since this is the bootloader space.

$ sudo fdisk $SDCARD
n

p

1

3072

+64M

n

p

2

134114

<just press entere here>

t

1

c

w

This can be slightly cryptographic
for some users, but it’s quite simple:

-

After all this, call partprobe to get the
new partitions recognized by the kernel:

$ sudo partprobe

4. Format and mount the partition
We need to format the partitions and

change the UUID so later on you can
use the kernel-update script:

$ mkfs.vfat -n boot \
 $SDCARD”1”
$ mkfs.ext4 -L rootfs \
 $SDCARD”2”

Now that the partitions are format-
ted, let’s change the UUID of the ext4
partition:

$ tune2fs $SDCARD”2” -U \

 e139ce78-9841-40fe-8823-
96a304a09859

Then, disable journaling to prevent
excessive wearing of the card:

$ tune2fs -O ^has_journal \
 $SDCARD”2”

Then, mount the partitions:

$ mkdir rootfs && mkdir boot

$ sudo mount $SDCARD”1” boot
$ sudo mount $SDCARD”2” \
 rootfs

5. Install the rootfs on our sdcard
Decompressing the rootfs and copy-

ing it to the card is very simple:

$ sudo tar -zxf linaro-\
 saucy-server-*.tar.gz

$ sudo mv binary/* rootfs

6. Building the kernel
 This a guide on how to cross-com-

pile the kernel for your board too.
First, decompress the toolchain:

$ tar -Jxf arm-unknown-\
 linux-gnueabi.tar.xz

We already have the kernel sources
that we downloaded earlier.

$ cd odroid-3.8.y
$ export ARCH=arm
$ export CROSS_COMPILE=../\
 arm-unknown-linux-gnueabi/\
 bin/arm-unknown-linux-\
 gnueabi-

$ make ARCH=arm \
 odroidu_defconfig

The last line is for the U3, and if you
are doing this for the X2, just replace it
with odroidx2_defconfig.

Building the kernel will take a while
depending on your machine.

$ make -j8

ODROID MAGAZINE 13

BUILD YOUR UBUNTU FROM SCRATCH

I use -j8 because my computer is a
quad-core with hyperthreading, so 8
threads are available. You should con-
figure the number to match your com-
puter’s processor.

7. Install the kernel and modules that we
just built

First, install just the kernel image.

$ sudo cp arch/arm/boot/\
 zImage ../boot

Next, install the modules:

$ sudo make ARCH=arm \
INSTALL_MOD_PATH=../rootfs \
modules_install

$ cd ..

Once the modules are installed, the
kernel is ready!

8. Create an initial Boot Script for the first
boot

$ cd boot

$ cat << __EOF__ | \
 sudo tee boot.txt
setenv initrd_high “0xffffffff”
setenv fdt_high “0xffffffff”
setenv bootcmd “fatload mmc

0:1 0x40008000 zImage; bootm
0x40008000”
setenv boot-

args “console=tty1

console=ttySAC1,115200n8
root=/dev/mmcblk0p2 rootwait

rw mem=2047M”

boot

__EOF__

$ sudo mkimage -A arm -T \
 script -C none -n boot -d \
 ./boot.txt boot.scr
$ cd ..

This creates the boot.txt file, and the
sudo mkimage line creates the boot.scr.

9. Unmount and clean-up

sudo umount boot

sudo umount rootfs

sync

First Boot
Now, we are ready to do our first

boot. Remove the card from your com-
puter and connect to your board.

1. Configuring your network card.

$ cd /etc/network/\
 interfaces.d

cat << __EOF__ >> eth0
auto eth0

iface eth0 inet dhcp

__EOF__
$ reboot

2. Configuring FSTAB

$ mount -t devtmpfs \
 devtmpfs /dev

cat << __EOF__ >> /etc/fstab
UUID=e139ce78-9841-40fe-
8823-96a304a09859 / ext4
errors=remount-ro,noatime 0

1

/dev/mmcblk0p1 /media/boot

vfat defaults,rw,owner,flush,
umask=000 0 0

tmpfs /tmp tmpfs

nodev,nosuid,mode=1777 0 0

__EOF__

$ mkdir -p /media/boot

$ mount /media/boot

3. Running the kernel update script

$ apt-get install \
 u-boot-tools

$ wget builder.mdrjr.net/\
 tools/kernel-update.sh

$ chmod +x kernel-update.sh
$ sudo ./kernel-update.sh

Running this step is important to

create a uinitrd as well add all the other
boot.scr files for different monitors and
resolutions.

Everything below this is just regu-
lar Linux usage that you can find on
Google and Linux Forums, and is
intended only for those who want a
Graphical environment.

Install Xubuntu
Before starting the downloading,

make sure that you have at least 450MB
of disk space available.

$ sudo apt-get install \
 xubuntu-desktop

1. Installing Mali Drivers

$ cd ~

$ mkdir mali

$ cd mali

2. Downloading the Mali dependencies

$ wget http://builder.mdrjr.

net/tools/mali.txz
$ wget http://malideveloper.

arm.com/downloads/drivers/

DX910/r3p2-01rel4/DX910-SW-
99003-r3p2-01rel4.tgz

$ apt-get build-dep xserver-
xorg-video-armsoc
$ apt-get install mesa-utils

mesa-utils-extra libgles2-
mesa-dev libgles2-mesa

libgles1-mesa-dev libgles1-

mesa libegl1-mesa libegl1-

mesa-dev

3. Installing Blobs and Headers

$ tar zxf DX910-SW-99003-\
 r3p2-01rel4.tgz

$ tar Jxf mali.txz
$ mv /usr/lib/arm-linux-\
 gnueabihf/mesa-egl ~

$ cp -aR blobs/* /usr/lib
$ cp -aR include/* \
 /usr/include

$ ldconfig

ODROID MAGAZINE 14

4. Building and Installing the X11 Driver

$ cd DX910-SW-99003-r3p2-\
 01rel4/x11/xf86-video-\
 mali-0.0.1

$./autogen.sh

$ cd src

$ rm -rf compat-api.h

$ wget \
http://cgit.freedesktop.\
org/~cooperyuan/compat-api/\
plain/compat-api.h

$ cd ..

$ make -j4

$ make install

$ mv /usr/local/lib/xorg/\
 modules/drivers/mali* \
 /usr/lib/xorg/modules/\
 drivers

5. Configuring Xorg.conf to use Mali

$ cat << __EOF__ >> \

 /etc/X11/xorg.conf
Section “Device”
Identifier “Mali-Fbdev”
 Driver “mali”
 Option “fbdev” “/

dev/fb1”

 Option “DRI2”
“true”

 Option “DRI2_PAGE_FLIP”
“true”

 Option “DRI2_WAIT_VSYNC”
“true”

 Option “UMP_CACHED”
“true”

 Option “UMP_LOCK”
“false”

EndSection

Section “Screen”

 Identifier “Mali-Screen”
 Device “Mali-Fbdev”
 DefaultDepth 24
EndSection

Section “DRI”
 Mode 0666

EndSection
__EOF__

6. Create a udev rule to change mali
permission in order for a regular user
to use it

$ cat << __EOF__ >> /etc/\
 udev/rules.d/10-mali.rules

KERNEL==”mali”,SUBSYSTEM==”m
isc”,MODE=”0777”
KERNEL==”ump”,SUBSYSTEM==”um
p”,MODE=”0777”
__EOF__

Congratulations.. You made it!

BUILD YOUR UBUNTU FROM SCRATCH

J ava is one of the most popular
programming languages for both
application and web develop-

ment. It has the advantage of true cross-
platform compatibility, which means
that code written in Java will run on any
Java Virtual Machine regardless of the
processor, computer, operating system,
or other hardware. Oracle publishes a
free Development Kit, which is also avail-
able as an ARMHF binary, which means
that the ODROID family can easily run
the vast library of Java software. The lat-
est version available as of April 2014 is
JDK8, which can be installed alongside
previous versions of Java, and provides a

by Robert Raehm, Edited by Venkat Bommakanti

Even though this issue is designed to highlight
several DIY projects, you could also call it the
“Cute Mascot” edition!

rich platform for development, includ-
ing significant speed improvements over
previous versions.

Requirements

MicroSD

Download the tarball
To begin, backup your personal files

from your Ubuntu installation if necessary.
On the Ubuntu desktop, create a folder to
receive the downloaded package.

http://forum.odroid.com

ODROID MAGAZINE 15

INSTALL JDK VERSION 8

Mount the Java
installation

On Linux systems, Java is typically
installed in the system directory at /
usr/lib/jvm

when using an automatic installer.
However, since we are manually install-
ing the package, the uncompressed files
will need to be moved to the correct di-
rectory from the Terminal window.

$ sudo mv jdk1.8.0 \
/usr/lib/jvm

Update the PATH
environment variable

Your original Linux installation may
have come with a prepackaged version of
the Java Development Kit, and the loca-
tion of that installation will most likely
be specified in the PATH environment
variable. The PATH variable specifies
certain directories to search when a com-
mand is typed into the Terminal win-
dow, so that packages may be invoked
from any directory.

After installing JDK 1.8.0 with the
above steps, we need to ensure that the
1.8 version is used as the default virtual
machine going forward. To do so, up-
date the PATH environment variable to
include the new version:

$ export PATH=/usr/lib/jvm/
jdk1.8.0/bin:$PATH

The $PATH at the end of the com-
mand appends the current PATH envi-
ronment variable to the new one. Since
the $PATH string is searched for the first
occurrence of a program, once a match
is found, the system ignores the rest of
the $PATH string, thereby bypassing
any previous Java installs that may also
be included.

Complete
the installation

Typically, when programs are in-
stalled in Linux using installation utili-

The examples in this article use the
March 13th, 2014 version of Oracle JDK.
You can download the latest version by
visiting the Oracle website at https://
jdk8.java.net/download.html
by clicking the link for the most re-
cent package labelled Linux ARMv6/7
VFP, HardFP ABI. As the time of this
writing, the latest version available was
jdk-8-fcs-b132-linux-arm-vfp-
hflt-03_mar_2014.tar.gz.

After agreeing to the Terms and Con-
ditions and downloading the file, it is
good practice to check the md5-check-
sum of the package to make sure that it
was transferred correctly. This is done by
using the md5sum utility:

$ md5sum jdk-8-fcs-b132-
linux-arm-vfp-hflt-03_
mar_2014.tar.gz

The result should be compared to the
contents of the checksum file located in
the same directory as the package down-
load. For this example, the md5sum
file was located at http://www.java.
net/download/jdk8/archive/
b132/binaries/jdk-8-fcs-
b132-linux-arm-vfp-hflt-03_
mar_2014.md5.

My downloaded file had the check-
sum of c17b5194214b8ea9ad8e6f-
c302fe078. If the file that you down-
loaded has a different checksum than
the one located on the server, discard it,
restart the download and compare the
checksums again.

Unpack the tarball
In the terminal window, change di-

rectories (cd) to the designated down-
load folder and unpack the file:

$ tar -zxvf jdk-8-fcs-
b132-linux-arm-vfp-hflt-03_
mar_2014.tar.gz

This creates a new subdirectory called
jdk1.8.0 in the download directory.

ties, certain symbolic links are created.
We will need to manually update those
symlinks using the following 4 com-
mands:

sudo update-alternatives

--install /usr/bin/javac\
javac /usr/lib/jvm/jdk1.8.0/
bin/javac 1

sudo update-alternatives

--install /usr/bin/java\
java /usr/lib/jvm/jdk1.8.0/
bin/java 1

sudo update-alternatives

--config javac

sudo update-alternatives

--config java

Verify
the installation

As a final step, we need to ensure that
JDK8 was installed properly, and that
the appropriate components are being
used. To do so, run the java binary us-
ing the version parameter to report the
current default version:

$ java -version

The output should look similar to
this, indicating that JDK8 is the default:

java version “1.8.0”
Java(TM) SE Runtime Environ-
ment (build 1.8.0-b132)
Java HotSpot(TM) 32-Bit
Server VM (build 25.0-b70,
mixed mode)

For additional information or ques-
tions, please visit the original forum
thread at http://forum.odroid.

com/viewtopic.php?f=52&t=204.

http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://forum.odroid.com/viewtopic.php?f=52&t=204
http://forum.odroid.com/viewtopic.php?f=52&t=204

ODROID MAGAZINE 16

HPC IN THE HOME

We have been comparing dif-
ferent kernels and their re-
spective performance on

the XU (see http://tinyurl.com/
XUBench1 and http://tinyurl.
com/XUBench2). It was interesting
to see the differences between the ker-
nels you get with Rob Roy’s Particle
and Whisper images (3.4.67 was the
last update we did before we ran the
benchmarks) versus the 3.13 kernel
you get with the experimental Linaro
14.02 distro.

For those of you who worked with
the Calxeda Highbank or Midway ar-
chitectures, which are reflected in the
openbenchmarking URLs referenced
above and at http://tinyurl.

com/ApacheOnARM, you will not
be surprised at the Quad-Core ARM
Cortex-A9 performance when deliver-
ing pages via httpd. Indeed, most tra-
ditional ISPs don’t need to do much
math to serve up lots of web pages, so
an A9 class processor with a shorter
NEON extension than the Cortex-
A15 should work just fine.

It is interesting to see how the XU
outperforms the quad-core A9 using
the Apache benchmark, and also sur-

by Kurt Keville, MIT

prising how much better the 3.13 ker-
nel is on the same benchmark as the
3.4 kernel on the Exynos 5410. The
XU wins the race, likely because the
A15 cores were being fully utilized and
the A7 cores were quiesced, giving us
the ideal power vs. performance ratio
for that benchmark.

Future ARM clusters like SpiNNa-
ker will have hundreds of thousands of
cores, so every minor power efficien-
cy improvement will be important.
Many performance improvements also
quite virtuously represent power re-
ductions. For instance, if you remove
much of your local media, in the form
of SD cards or SATA drives, you can
use the various tricks associated with
tftp or PXE booting and ramdisks to
speed up operations and reduce the list
of devices that you are powering. Net-
booting and NFSroot are high on the
list of power reduction techniques.

The path to energy-efficiency in
the ODROID-centric Datacenter can
be facilitated through simple kernel
and user space fixes. They don’t make
a great difference on their own but
they add up. These are some of the
more fruitful examples.

The operation not performed is the
most energy-efficient.

In application code you can take full
advantage of the capabilities of your
chip. Using a fused multiply-add gets
you those 2 operations for the same
clock cycles of running those operations
separately.

Implement HPC maintainer / user be-
havior modifications.

By this we mean queueing. If you
use something like PowerNap or Power-
Wake, you can save considerable power
over the lifetime of your gear. This func-
tionality was described in my article in
Issue 2 (February 2014) of ODROID
Magazine.

Categorize and maximize things that
lend themselves to consolidation and
distribution to leverage hybrid archi-
tectures.

Put your writeable directories on
the NFS shares so you don’t need jour-
naling filesystems or checkpointing on
your (read-only) directories on the client
nodes. It saves time and energy.

Find a way to effectively utilize idle
cycles for computation.

We used a profiling tool to cal-
culate the ideal communication vs.
computation overlap strategy to grab
the appropriate amount of data for an
operation, so that we never get into

The A15 is designed with advanced power reduction tech-
niques, and powers our flagship XU, so get the most of it!

http://tinyurl.com/XUBench1
http://tinyurl.com/XUBench1
http://tinyurl.com/XUBench2
http://tinyurl.com/XUBench2
http://tinyurl.com/ApacheOnARM
http://tinyurl.com/ApacheOnARM

ODROID MAGAZINE 17

ANDROID GAMING

a data-starved or CPU-starved situa-
tion. If a data-starved environment
is unavoidable we can go to a lower
ACPI power state to dial to power
back while we are waiting for the
transfer to complete.

Compile code locally to maximize re-
source usage.

The package GCC 4.8 on the XU
seems to give us the best, smallest binary.

Use the most numerically efficient ap-
proach.

Here again, this has most to do with
application code, since you can often
represent your floating point numbers in
a number of levels of precision.

Give the big problems their due em-
phasis, but also solve the lots of little
problems.

There are quite a few little fixes that
we recommend. It will come as no
surprise to the ODROID kernel hack-
ers out there, that there is considerable
flexibility in what resources you can
exercise and emphasize in your pro-
duction application, and in what you
can turn off in the kernel with little to
no adverse effect.

Conclusion
To get the best performance out of

your ODROID, you can turn on ex-
actly what you want and turn off ev-
erything else. Make sure you are just
running the single app you want to
run (in our case a benchmark). You
can’t use 100% of your processor in
your production app if you are busy
responding to interrupts, so kill off (or
don’t start) unnecessary daemons.

You can drop down to single-user
mode (init 2) if you wanted to be sure you
were not losing resources to unwanted
apps, including anything you didn’t turn
off in the kernel, like USB and video.
There are a few additional tips and tricks,
such as the tickless kernel described at
http://tinyurl.com/XULess-
Watts . Enjoy the journey!

by Ronaldo Andrade

Vector is an exciting, ar-
cade-style game featur-
ing you as the exception-

al free runner who won’t be held
down by the system. The game
opens with a view into a totali-
tarian world where freedom and
individually is nothing more
than a distant dream. But the
heart of a freerunner is strong,
and you soon break free. Run,
vault, slide and climb using ex-
traordinary techniques based on
the urban ninja sport of Parkour
all while being chased by “Big
Brother” whose sole purpose is
to capture you and bring you
back.

Inspired by the practice and
principles of Parkour, Vector’s
intuitive controls accommodate
players of all levels, and sophisti-
cated level designs challenge the
most demanding players with
fast-paced timing puzzles as the
traceur “flows” over the dystopian
rooftops.

Overall, this is an awesome
game from Nekki, a Russian de-
velopment company. If you ever
watched Parkour and found it in-

teresting, you will love this game.
The action is fluid and the com-
mands simple, making it fun to
play. But don’t let these words
fool you, the challenge the game
presents is above average. There
are three different stages which
you can play on the full version,
each more beautifully constructed

and challenging than the last.
The main objective here is

to escape from the guards that
are after you, but in order to
get three stars, you will have to
collect holo-cubes and perform
every trick, there is also some
bonus money scattered through
the levels, but they are not nec-
essary to get 3 stars.

On the ODROID, you can
use your keyboard and your
mouse to control the player, or
a joystick as well.

-

-

less time.

http://tinyurl.com/XULessWatts
http://tinyurl.com/XULessWatts

ODROID MAGAZINE 18

When your hear creepers making the
Sssss… noise, there’s only one thing to do:

RUN!

HOW TO SETUP A MINECRAFT SERVER

A lmost everyone loves playing
games, especially Minecraft! It’s
been enjoyed by over 14 mil-

lion people worldwide for its addictive
gameplay and customizable maps. Al-
though the official package from Mojang
Software is closed-source, several open-
source Java versions of Minecraft Server
are also available for the ODROID plat-
form. Programming a virtual world us-
ing a free Minecraft Server package such
as Spigot, Bukkit or BungeeCord is also
a great way to learn Java while having
fun too!

This article details how to install a ba-
sic Minecraft server on your ODROID,
so that you can play online games with
a few of your friends in a world of your
own creation. Using the ODROID as
an inexpensive sandbox is also a great
way to test out maps, upgrades and
modifications before uploading them to
a public server.

Requirements
1. An ODROID from the X, U

or XU series
2. An 8+ GB eMMC or Class

10+ MicroSD

by @qkpham

Edited by Venkat Bommakanti

3. A custom Ubuntu, Debian
or similar image (13.04 or higher),
available from the ODROID Fo-
rums (http://forum.odroid.
com)

4. Java version 1.8 (OpenJDK8
or Oracle JDK8)

5. Local Area Network (LAN)
connection, including a router with
port-forwarding feature

Install Java
If Java version 1.8 isn’t already in-

stalled on your system, please refer to
the article in this issue of ODROID
Magazine called Installing Oracle JDK8.
Mojang publishes a Java version of the
Minecraft software for compatibility
with other operating systems such ARM
Linux.

Install Minecraft
First, download the latest Minecraft

Server software from the official site at
https://minecraft.net/download,
making sure to get the Java-based .tar
version.

Create a minecraft directory in your
home directory for storing the down-

loaded minecraft_server.jar. Once the
tarball is downloaded, type the following
commands to start the server:

$ cd ~/minecraft

$ java -Xms1536M -Xmx1536M
-jar minecraft_server.jar

nogui

The Minecraft server should be up
and running now! The final step is to get
the server’s IP address so that our play-
ers can connect to it via their Minecraft
clients.

Obtain the internal
IP address

Find out the internal (local) IP ad-
dress of your server by typing ifconfig in
the Terminal window and locating the
tag inet addr. On my ODROID, the
IP address was listed as 192.168.1.10.
Make sure this address has a long lease
issued by the local DHCP server or rout-
er in order to avoid frequent configura-
tion updates.

http://forum.odroid.com
http://forum.odroid.com
https://minecraft.net/download

ODROID MAGAZINE 19

HOW TO SETUP A MINECRAFT SERVER

Setup port
forwarding

Minecraft uses the TCP port 25565,
which should be forwarded to the serv-
er’s IP address by your local router us-
ing port forwarding. Refer to the user
manual for assistance with setting up the
router to forward port 25565 to the IP
address obtained in the previous step.

Obtain the external
IP address

The public IP address that identifies
your LAN to the outside world can be dis-
covered by visiting http://www.wha-
tismyip.com. The address will be in the
form aaa.bbb.ccc.ddd, which means
that the fully-qualified URL for connecting
to the Minecraft Server on your LAN would
be http://aaa.bbb.ccc.ddd:25565.
Note the additionof the relevant TCP port
at the and of the URL.

If your external IP is dynamic (typically
changed periodically by your ISP), you can
use services like No-IP. You can create an
account on their website, then download
and install the Dynamic DNS Update
Client (DUC) at http://www.noip.
com/download. Detailed instructions
on setting up Dynamic DNS can be found
at http://bit.ly/1ggmo2n. In this
case, the fully-qualified Minecraft Server
address would be http://youra-

cctusername.no-ip.com:25565.
To make sure everything’s working,

you can test that your server is visible on-
line by going to http://www.canyou-
seeme.org. You can also quickly check
its status at http://dinnerbone.com/
minecraft/tools/status/.

System performance will be ac-
ceptable under normal wireless ether-
net conditions, but a wired connec-
tion will decrease latency and increase
game responsiveness.

Joining the Game
Start your Minecraft client on a

Windows or OSX machine by enter-
ing the public IP address from the pre-
vious step (http://aaa.bbb.ccc.

ddd:25565) when adding a new serv-
er to the client’s server list. At the time
of this writing, the Minecraft Client
software unfortunately does not yet
run on the ODROID platform. There
is a Minecraft Pocket Edition avail-
able for Android, but it is not compat-
ible with the full version of Minecraft
Server.

A successful connection to the
ODROID Minecraft Server will
bring the user into our virtual world
as seen above.

Additional Server
Configuration

The server options in Minecraft are
configured by editing the server.properties
file located at /home/yourusername/
minecraft/server.properties:

#Minecraft server properties

#Mon Dec 24 09:23:18 EST
2012

#

generator-settings=

level-name=world

enable-query=false

allow-flight=false
server-port=25565

level-type=DEFAULT
enable-rcon=false

level-seed=

server-ip=

max-build-height=256
spawn-npcs=true

white-list=false

spawn-animals=true

hardcore=false

texture-pack=
online-mode=true

pvp=true

difficulty=1
gamemode=0

max-players=20
spawn-monsters=true

generate-structures=true

view-distance=10

motd=A Minecraft Server

The three settings useful in changing
maps and improving performance
include:

level-name
If you want to add another

map or world to your server, just
unpack the world file inside your
minecraft folder and then change
the level-name setting to the name
of that folder. For example, if your
extracted world folder is odroid
then change the level-name value
to odroid instead of the default
world value.
view-distance

Can be reduced to 7 to improve
server responsiveness
max-players

Performs best when set between
2 and 5

http://www.whatismyip.com
http://www.whatismyip.com
http://aaa.bbb.ccc.ddd:25565
http://www.noip.com/download
http://www.noip.com/download
http://bit.ly/1ggmo2n
http://www.canyouseeme.org
http://www.canyouseeme.org
http://dinnerbone.com/minecraft/tools/status/
http://dinnerbone.com/minecraft/tools/status/

ODROID MAGAZINE 20

HOW TO SETUP A MINECRAFT SERVER

Please note that Minecraft relies
heavily on floating point operations.
Unlike x86 architecture based CPUs,
ARM based SOCs are not optimized for
floating point operations, so the server
options need to be tuned down to com-
pensate for the heavier load.

If you’d like to further improve
performance, several open-source ver-
sions of Minecraft Server are available
that significantly decrease the server’s
computations, providing a smoother
experience and allowing more players
to join the game.

Craftbukkit
Create a folder for Craftbukkit by

typing mkdir ~/craftbukkit in a
Terminal window, then visit https://
dl.bukkit.org/downloads/

craftbukkit/ to download the latest
version of Craftbukkit to the newly cre-
ated directory. Once the download has
completed, run the server to build your
world.

java -Xms1536M -Xmx1536M
-jar craftbukkit.jar

cd ~/craftbukkit/plugins

wget http://dev.bukkit.org/

media/files/674/323/NoLagg.
jar

wget http://dev.bukkit.org/

media/files/665/783/PTweaks.
jar

wget http://dev.bukkit.org/

media/files/586/974/NoSpawnC-
hunks.jar

Spigot
An alternative to Craftbukkit is

Spigot, which provides more configura-
tion options and is optimized for perfor-
mance and speed. Following the same
procedure as listed above, downloading
the Spigot package instead, found at
http://www.spigotmc.org.

mkdir ~/spigot

cd spigot

wget http://ci.md-5.net/job/

Spigot/lastSuccessfulBuild/

artifact/Spigot/target/spig-

ot.jar

java -Xms1536M -Xmx1536M
-jar spigot.jar

Spigot is very stable, and since it is
based on Craftbukkit, the Bukkit plugins
NoLagg, PTweaks and NoSpawnChunks
above will also work with Spigot.

MineOS
MineOS is a Web-based admin-

istrative panel that offers easy man-
agement of Minecraft servers. It can
handle Vanilla, Bukkit, Tekkit and Ca-
nary by default, but you can install any
other server system and configure it to
automatically download a new version
whenever available.

Copying your server
to an external
hosting service

Using an open-source version of
Minecraft allows you to change any as-
pect of the server, including fixing bugs
and installing addons. Since Minecraft
for ODROID is written in Java, it’s easy
for beginners and experts alike to im-
prove the software and customize it to
their own needs.

Once you have your world ready, you
can migrate your Minecraft creation to a
high-traffic server so that it can accom-
modate more players. Simply upload
all of the server files from the minecraft,
spigot or craftbukkit directory on the
ODROID via the web hosting service’s
administration panel.

Enjoy your new ODROID Mine-
craft Server, and remember to stay out of
the lava! For additional information or
questions, please visit the original forum
thread at http://forum.odroid.

com/viewtopic.php?f=52&t=84.

by Bruno Doiche

W e are now leaving in a con-
nected world, but from time
to time, we need to go to

places where there is no kind of net-
work connectivity. Well, pack up a sur-
vival kit with whichever you like from
youtube with youtube-dl!

To install, just type the following at
the terminal:

sudo pip install --upgrade

youtube_dl

Now you can download any video
that you want from youtube, just do:

youtube_dl <youtubevideo_url>

What you say? you just want the
music from the videos and the audio
from the podcasts and want to save
space?

Ok, let’s create a simple script to
solve this then

echo “ffmpeg -i $1 -acodec
libmp3lame -ac 2 -ab 128 -vn -y
$2” > mp3zator.sh

Turn it to an executable with:

chmod + X mp3zator.sh

And execute it like this:

mp3zator <your_video_.mp4>
<your_audio.mp3>

Alright, get all you need and get
lost without fear of not having your
beloved movies, videos and music to
consume while you code in a far far
away land.

TIPS AND TRICKS

https://dl.bukkit.org/downloads/craftbukkit/
https://dl.bukkit.org/downloads/craftbukkit/
https://dl.bukkit.org/downloads/craftbukkit/
http://www.spigotmc.org
http://forum.odroid.com/viewtopic.php?f=52&t=84
http://forum.odroid.com/viewtopic.php?f=52&t=84

ODROID MAGAZINE 21

CREATE A PAPERCRAFT DOLL TO GO ALONGSIDE YOUR MINECRAFT SERVER

When we meant a DIY edition, we meant
business! Take the time to print this page
and make your own creeper papercraft doll
to go alongside your Minecraft ODROID
server. Cut, fold, glue and have fun!

ODROID MAGAZINE 22

By Nick Antonaccio and Bohdan Lechnowsky

LEARN REBOL

In the first installment of Learn Rebol, we discussed the
motivation behind Rebol and learned how easy it is to cre-
ate a GUI-based program in Rebol on Android. We ex-

panded on these examples in last month’s issue. This month,
we delve even deeper into what can be done with Rebol3 on
ODROID and other platforms.

In this installment, we’ll list the web addresses of where
to get the most up-to-date version of Rebol for different plat-
forms. The non-ARM binaries are listed so you can try your
Rebol 3 programs on your laptop and desktop computers as
well (note, not all Rebol 3 binaries have the graphical compo-
nent available yet).

It’s also my pleasure to announce that the current Rebol 3
builds for Linux ARM hard-float are being compiled and tested
on ODROID computers!

And remember, you can run any app you create in Rebol
3 for ODROID on your Android-powered phone or tablet as
well!

Installation

Open a web browser and navigate to
http://development.saphirion.com/experimental/
builds/android/

Download r3-droid.apk (amazingly smaller than 2MB).
When finished, double-click on the download icon

(usually by the clock) and grant permissions to install.
Go to the apps list and click the icon for R3/Droid.

Open a web browser and download the ARM version
(currently titled “

”) from http://atro-
nixengineering.com/downloads.html.

Perform the following commands in the terminal emu-
lator in the directory where you downloaded r3:

sudo mv r3-armv7hf-view-linux r3
sudo chmod +x r3

sudo ./r3

http://atronixengineering.com/downloads.html
or http://rebolsource.net *

http://atronixengineering.com/downloads.html
-

http://rebolsource.net *

(* These builds do not contain the graphical compo-
nents yet)

Writing More Programs in Rebol
The focus of these examples is not to teach programming

in Rebol, but rather to show how much is possible with how
little. For further learning resources, see the end of this article.

Here’s a little web chat app running at http://respect-
ech.com/odroid/chat.cgi, complete with a simple verifi-
cation system to make it harder for the spambots to post. The
verification system uses a feature of Rebol where data and code
are interchangeable. This makes doing things like a verification
system much simpler:

#!./rebol3 -cs

REBOL [title: “Group Chat”]

;The following line is required as the first
line in cgi output

print {content-type: text/html^/}

;Define where the chat messages are stored
url: %./chat.txt

http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/
http://atronixengineering.com/downloads.html
http://atronixengineering.com/downloads.html
http://atronixengineering.com/downloads.html
http://rebolsource.net
http://atronixengineering.com/downloads.html
http://rebolsource.net
http://respectech.com/odroid/chat.cgi
http://respectech.com/odroid/chat.cgi

ODROID MAGAZINE 23

LEARN REBOL

;Initialize the username
username: copy “”

;Read the POST string to see if there is data
to be processed

if attempt [

 submitted: parse (to string! read system/

ports/input) “&=”

][

 ;Only process the following lines if POST
data was submitted

 ;In POST data, spaces are replaced by “+”,
so change them back to

 ; spaces

 foreach item submitted [replace/all item

“+” “ “]

 ;If there was some data to process and the
verification question was
 ; correctly answered, add the message to

the end of the chat file
 if all [

 submitted/2 <> none

 ;The “load” statement takes the ordi-
nal value picked at random

 ; (e.g. The word “first”) and converts
it to a Rebol word.
 ; The “do” statement tells Rebol to
evaluate what follows it,

 ; in the case of this example, the
command “first”, which picks
 ; the first item out of a series.
 submitted/6 = do load submitted/5

parse “cat dog pig hen cow” “”

][

 write/append url mold rejoin [

 now “ (“ submitted/2 “): “

submitted/4 “^/^/”

]

 username: submitted/2

]

]

;Convert the chat file into plain text, includ-
ing any new message that was

; just added above. Display it in reverse or-
der so the newest messages

; stay on top, right after the input section.

notes: head reverse load dehex copy read/
string url

;Generate the pivotal part of the verification
question

random/seed now/time/precise

ordinal: to-string pick [first second third
fourth fifth] random 5

;Output the HTML page
print rejoin [

 {<FORM METHOD=”POST”>
 Name:

 <input type=text size=”65”
name=”username” value=”} username {“>

 Message:

 <textarea name=messwage rows=5
cols=50></textarea>

 What is the } ordinal { animal in this
list: cat dog pig hen cow?

<input type=text name=”} ordinal
{“>

 <input type=”submit” name=”submit”

value=”Submit”>

 </FORM>}
 “<pre>” notes “</pre>”

]

Important Note: In order to allow more efficient execution of
the examples from now on, we are going to download the r3-gui.
r3 graphic dialect definition to the local storage of your device
instead of downloading it each time. We can do this from within
Rebol itself. On your device, simply type the following:

ODROID MAGAZINE 24

LEARN REBOL

write %r3-gui.r3 read/string
http://www.atronixengineering.com/r3/r3-gui.r3

If you get an error when running any of the example scripts
below on your device, try this instead:

write %r3-gui.r3 read/string http://
development.saphirion.com/resources/r3-gui.r3

Rebol 3 is open source, and there are several groups work-
ing on enhancements. This leads to having different versions
for different devices in slightly different states at any given
time. This will solidify and these issues will go away as time
moves on.

Doing the above will speed up execution greatly as the r3-
gui dialect doesn’t need to be downloaded each time. However,
on most non-rooted Android tablets and phones, superuser ac-
cess is not allowed, so you won’t be able to write to the root
directory and the above command will fail. This shouldn’t be
a problem on your ODROID running Android. In this case,
either continue to use load-gui or write r3-gui.r3 to another
location, like the sdcard, with a command like this:

write %/sdcard/r3-gui.r3 read/string
http://.../r3-gui.r3

(Replace the “…” with one of the URL paths from the ex-
amples above.)

I’ve modified the examples on the website to check for r3-
gui.r3 in the current directory and the root of the sdcard, and
if it doesn’t exist in either location, then it uses load-gui. I did
this by replacing the load-gui in the following examples with
this code:

foreach cmd [[do %r3-gui.r3][do %/sdcard/r3-
gui.r3][load-gui]][

 if attempt [do probe cmd][break]

]

Basically, there are three different ways to load the r3-gui
dialect specified, and it tries each one until one works without
error.

To run the examples off the website instead of typing them
in, just type:

do http://respectech.com/odroid/learnrebol/

file.r

Replace file.r with the filename in the Rebol header (leave
off the “%” though).

Here’s a small graphic sliding tile game, and no complex GUI
builder tool was required to create this code. It’s simple and read-
able enough that a text editor and the built in help facilities of
Rebol are all you need. The actual layout code is 5 lines. Have
you ever seen code this simple used to create a game for Android
(or even a desktop machine)? No IDE, SDK or build scripts are
needed either - just download the small R3 interpreter to your
Android device or your PC, click the plain text code file, and it
runs the same on every platform, with graphics, touch events
and all, without any changes to the code:

REBOL [title: “Sliding Tile Puzzle” file:
%sliding-tile-game.r]
load-gui

sz: 120x120
fontize [

 p: button [font: [size: 60]]

]

stylize [

 p: button [

 facets: [text-style: ‘p init-size: sz
max-size: sz]
 actors: [

 on-action: [

 t: reduce [face/gob/offset x/
gob/offset]
 face/gob/offset: t/2 x/gob/
offset: t/1
]

]

]

]

view/options [

 hgroup [

 p “8” p “7” p “6” return
 p “5” p “4” p “3” return

 p “2” p “1” x: box sz white
]

] [bg-color: white]

While on the topic of games, it should be noted that R3
allows you to draw graphics and create animations very easily.
Here’s a quick example:

REBOL [title: “3D Box” file: %3d-box.r]
load-gui

bck: make image! 400x220
view/no-wait [image bck]

draw bck to-draw [

 fill-pen 200.100.90
 polygon 20x40 200x20 380x40 200x80

ODROID MAGAZINE 25

LEARN REBOL

 fill-pen 200.130.110
 polygon 20x40 200x80 200x200 20x100
 fill-pen 100.80.50
 polygon 200x80 380x40 380x100 200x200
] copy []

do-events

Here’s a complete arcade game with image animation, col-
lision detection, keyboard event controls, score keeping, and
more. Try to catch the falling fish. Be careful, it gets faster as
you go!

REBOL [title: “Catch Game” file: %catch-game.r]
load-gui

fish: load http://learnrebol.com/r3book/fish2.
png

s: 0 p: 3 random/seed now/time

stylize [

 paddle: box [facets: [max-size: 50x10]]
 img: image [facets: [max-size: 50x20 min-
size: 50x20]]

]

view/no-wait/options [

 t: text”ARROW KEYS” y: img 50x20 (fish) pad
z: paddle blue

 return

 arrow left 120x120 arrow right 120x120
] [

 shortcut-keys: [

 left [z/gob/offset/1: z/gob/offset/1 -
50 draw-face z]

 right [z/gob/offset/1: z/gob/offset/1 +
50 draw-face z]

]

 min-hint: 600x440 bg-color: white
]

forever [

 wait .02

 y/gob/offset/2: y/gob/offset/2 + p draw-face
y show-now y

 if inside? y/gob/offset (z/gob/offset -
49x0) (z/gob/offset + 49x10)[
 y/gob/offset: random 550x-20 s: s + 1
set-face t form s p: p + .3

]

 if y/gob/offset/2 > 425 [alert join “Score:
“ s unview unview break]

]

Here’s an R3 version of a program found in virtually every
GUI instructional text - a basic calculator. Blink, and you’ll
miss the code for this one. There are no other files, layout tem-
plates, initialization scripts, or tools required to run this app
on any platform. This is the entire, completely portable pro-
gram. As you can imagine, with so little code, there’s a short
learning curve to fully understand how examples like this
work. Compare this code to C++ (http://afsalashya-

http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html

ODROID MAGAZINE 26

LEARN REBOL

na.blogspot.com/2012/06/gui-simple-calculator-

visual-c-source.html), Visual Basic (http://archive.
msdn.microsoft.com/spektrum1calculator), or even
the simplest possible RFO Basic example (http://rfobasic.
com/#section-12.2). That last example was written by the
author of this text to demonstrate the nearest comparably easy and
productive Android development tool available - and each of those
examples runs only on a single operating system. Here’s a minimal
HTML5 example (http://thecodeplayer.com/walk-
through/javascript-css3-calculator). It requires mul-
tiple pages of HTML, CSS and Javascript code. All those examples
just scratch the surface of complexities found in other development
environments:

REBOL [title: “Calculator” file: %calc.r]
load-gui

sz: 100x100
fontize [btn: button [font: [size: 60 color:

black]]]

stylize [

 btn: button [

 facets: [text-style: ‘btn init-size:
sz max-size: sz]
 actors: [on-action:[set-face f join

get-face f get-face face]]

]

 field: field [
 facets: [text-style: ‘btn init-size:
415x60 max-size: 415x60]
]

]

view [

 hgroup [

 f: field return
 btn “1” btn “2” btn “3” btn “ + “

return

 btn “4” btn “5” btn “6” btn “ - “

return

 btn “7” btn “8” btn “9” btn “ * “
return

 btn “0” btn “.” btn “ / “ btn “=”

on-action [

 attempt [set-face f form do get-

face f]

]

]

]

Resources
Online Chat and Help:
StackOverflow.com:

There are currently over 1100 questions (and answers) re-
lated to Rebol on StackOverflow.com (http://stackover-
flow.com/search?q=rebol).

20 Points are required to chat on StackOverflow.com
(http://chat.stackoverflow.com/rooms/291/re-
bol-and-red). If you don’t have 20 points (or an account
at all for that matter), come on by anyway and look up [Rebol
and Red] under the chat rooms. We are usually one of the
most active. We’ll help you get the 20 points you need to chat.

AltME:
To join the Rebol-powered AltME world, send an email to

user bo at the domain respectech.com asking to be invited. We
are a closed community to avoid spam. Don’t be shy, we’ve
been called the friendliest software development community

on the planet.

https://www.facebook.com/groups/rebol/

http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html
http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html
http://archive.msdn.microsoft.com/spektrum1calculator
http://archive.msdn.microsoft.com/spektrum1calculator
http://rfobasic.com/#section-12.2
http://rfobasic.com/#section-12.2
http://thecodeplayer.com/walkthrough/javascript-css3-calculator
http://thecodeplayer.com/walkthrough/javascript-css3-calculator
http://stackoverflow.com/search?q=rebol
http://stackoverflow.com/search?q=rebol
http://chat.stackoverflow.com/rooms/291/rebol-and-red
http://chat.stackoverflow.com/rooms/291/rebol-and-red
https://www.facebook.com/groups/rebol/

ODROID MAGAZINE 27

BE HEARD WITH ÜBERCASTER

The Ubercaster, build on the ODROID platform,
is a 21st century way to listen to live music
through your smartphone without having to
push up to the front of the crowd.

 by K.J Yoo of Echos Design (www.echosdesign.com)

he year was 2010. On the
streets of the altstadt in Mar-
burg, Germany, I was playing

the violin as street musician. Some
found my music distracting and yet
some found it beautiful. As a curious
engineering student, I thought about
a better medium to present my music
so that only those who were interest-
ed may hear what I played seamlessly.
After realizing FM transmitter sys-
tems were quite expensive, bulky, old
and simply not practical. I decided
to take matters into my own hands.
The solution was simple: Broadcast
audio to people’s favorite device: the
smartphone.

Design Goal
I wanted anyone to easily plug in

any audio into the Übercaster; wheth-
er it came from an instrument, TV,
iPod or microphone, it didn’t mat-
ter. The Übercaster starts broadcast-
ing the sound locally. Then multiple
listeners would use their smartphone
devices to connect to the Übercaster
like a wifi hotspot to “tune-in.” I also
wanted the Übercaster to be an ele-
gant and intuitive device in-line with
Dieter Ram’s 10 Principles of Good
Design.

Development
I have been developing the Über-

caster with ODROID X2/U2/U3 de-
velopment boards since August 2013,

and it consists of device and client
mobile apps.

Essentially, the Übercaster device is
an ODROID U3 running Hostap. (For
those of you who are not familiar with
Hostap, check out Mauro Ribeiro’s ar-
ticle from the February issue “Using
an ODROID-XU as a WiFI Router”.)
The device is running Ubuntu 13.06
with a custom ODROID-3.8.y ker-
nel. The Übercaster application cap-
tures audio with ALSA, encodes the
captured audio with OPUS (http://
www.opus-codec.org) and then
packetizes the raw OPUS packets for
UDP-based multicasting. This pro-
cess takes on average 8ms and requires
about 6-9% of the CPU. I will admit
the ODROID U3 might be overkill
for what I am doing, but I was not able
to find a small dev board with a high
quality audio codec.

So the ODROID works perfectly,
and kudos to Hardkernel!

Via Hostap, wifi capable devices

such as smartphones, tablets and
computers can connect to the Über-
caster device, which is running isc-
dhcp-server to handle all the clients.
As soon as a connection is estab-
lished, the Übercaster mobile client
app can be used to listen to whatever
the Übercaster device is broadcast-
ing. The app listens to the broadcast
IP address on the device, receives the
packets, decodes it, and plays back
the sound.

Now at a first glance, it seems like a
basic streaming application like VLC
or Icecast. However, Übercaster of-
fers real-time performance. Real-time
is relative and subjective depending
on the applications, but for the Über-
caster system, the goal is to have the
total audio latency below 25ms. How
I measure audio latency is the delay
between the time audio goes into the

http://www.opus-codec.org
http://www.opus-codec.org

ODROID MAGAZINE 28

BE HEARD WITH ÜBERCASTER

Übercaster device and when it plays
back on an iPhone 5S. (iOS has a
lower audio latency than Android de-
vices.) 25ms audio latency is not an
arbitrary number, but rather the sup-
posed maximum audio latency before
a person is able to perceive the delay.
Currently, the audio latency is < 50ms
on iOS devices and on Android devic-
es it varies significantly from device
to device. On the Google Nexus 7
(2013), the latency is 80ms. I have
tested the Übercaster with multiple
participants and even though the to-
tal latency is currently double of my
goal and the latency varies between
iOS and Android devices, 95% of the
listeners were not able to perceive any
delay when watching TV or a movie.

So how many clients can the Über-

caster support? I have tested up to 25
clients. However, it is theoretically
possible to have many more. After
the server-client relationship is es-
tablished, the Übercaster is basically
a one-way system. The Übercaster
broadcasts UDP-based packets and
the clients merely tune in on an IP
address. That is it. However, there
is a trade off: UDP isn’t always reli-
able. The trade off is that UDP deliv-
ers packets faster and more efficiently
than TCP because it uses non-ack.
This is why the Übercaster trans-
mits using small packet frame sizes to
hedge against high packet loss rate,
which gives smoother playback.

Demonstration
Video

Please view the following demon-
stration of the Übercaster.

vimeo.com/85006122

vimeo.com/88467399

Dealing with Issues
1. To minimize frequency inter-

ference, I am mainly using 802.11n
at the 5Ghz band. The 2.4Ghz never
works even in a moderately crowded
area. While using the 5Ghz band,
the range is shorter and requires a
bit more power, but it is very stable.

So, at CES 2014 in Las Vegas, I had
no problem giving a demonstration
in the middle of the densely packed
South Hall. (It will be very interest-
ing to work with an 802.11ac module
very soon!)

2. In order to reduce latency, I
use OPUS, SPSC Circular Queue
and a custom protocol that is based
on UDP. I tried RTMP, RTSP and
HTTP, but these really didn’t work
out for me. Originally, I wanted to
use VLC or another RTSP client to
stream content on client devices, but
the latency was very high. This is why
I chose to go with native apps, which
are very light. I am currently creating
an API that makes it very easy for mo-
bile developers to integrate the Über-
caster stream function. A quick tip
concerning Android: it is important
to match the sample rate and buffer
size for minimum latency. Check out
this interesting talk from Google I/O
2013 about High Performance Audio
on Android: https://www.you-

tube.com/watch?v=d3kfEeMZ65c.

The Application
Übercaster started with a simple

question: how can individuals have
complete freedom and seamless con-
trol of what they hear in a local sur-
rounding? Or, how can individuals
have complete freedom to seamlessly
and easily broadcast sound to audience
members in the local surrounding?

An early 3D printed prototype of the Uber-
caster device, not to be confused with a head-
phone-ready bar of soap.

Using a minimum of hardware, the Ubercaster
delivers high-fidelity sound while consuming
only 8W of power

The Ubercaster has evolved into a sleek, sexy machine
from its early tape-and-chewing-gum prototype.

ODROID MAGAZINE 29

BE HEARD WITH ÜBERCASTER

It turns out that places like gyms,
restaurants, tour guides, music ven-
ues, sports bars and airports have been
thinking of innovative ways to broad-
cast sound. There have been attempts
at using FM and infrared, however it
didn’t prove to be practical, and is ex-
pensive and complicated to use.

From the very beginning, mobile
was at the heart of the product. Cur-
rently 65% of all mobile phone us-
ers in the US use a smartphone. It
is widely adopted and it is growing at
a staggering rate. So everyone essen-
tially has Übercaster-capable receiver
devices already.

Imagine going into a sports bar
and listening to any TV or tuning
into the breaking news while you wait
for the flight to Frankfurt or listening
with perfect clarity to the street mu-
sician playing guitar 50 feet away or
experiencing a tour of Rome through
your smartphone.

Übercaster not only offers a richer
and higher audio quality than current
products, but it also makes an in-
credible seamless experience for both
those transmitting and those listen-
ing. Übercaster simplifies, reduces
and enhances local audio broadcast-
ing into just a single device.

The Vision
Sound is a stepping-stone for me

to test if local public content distribu-
tion works. I want to broadcast video
in real-time. I think of the future a
lot, and it is clear that the frequency
bands are getting crowded; people
want more bandwidth and faster in-
formation. I think that in public
spaces, there are too many data/bit
redundancies. If a lot of people in a
public area are interested in knowing
more about something like the Real
Madrid game, it is redundant for
their devices to access information

from the same server a thousand miles
away in Texas or California. TVs in
a public area are in essence a form of
local broadcast. People within 50 feet
see the TV. However I am not satis-
fied with how it works currently. So
my goal is local distribution of con-
tent. Let’s say someone sees a TV in
the airport broadcasting CNN with
a breaking news story. They should
be able to have access to the sound
at a minimum -- eventually real-time
HD video streaming to their phone
at a local distance and also addition-
al web content relating to that news
that is constantly aggregating on the
Übercaster device for distribution. It
is more efficient; people get informa-
tion more quickly and seamlessly.

If you are interested in knowing
more about the Übercaster or have in-
terest in the technology, please email
me at KJ@EchosDesign.com.

After ordering my ODROID-U3
specifically for I2C communica-
tion with several slave devices,

I was unable to find a comprehensive
guide explaining the process of how to
set everything up. In the interest of shar-
ing with others what I’ve learned, I put
together my own guide for setting up an
I2C system on the ODROID platform.

The goal of this article is to intro-
duce you to I2C communication us-
ing the ODROID-U3 as a master. We
will communicate with an LED matrix
from Adafruit. I initially planned to
write this tutorial on communicating
with an MSP430 microprocessor from

2

by John Taylor

Texas Instruments, which I have suc-
cessfully set up. I decided, however,
that the materials and additional pro-
gramming needed for that project are
beyond the scope of this article.

Gathering
the Equipment

http://www.

adafruit.com/products/1049

http://www.adafruit.com/

products/757?gclid=CI-
NsJL057wCFURk7AodZkAArg

Setting up the
ODROID-U3

We need to install i2c-tools so that
we can probe the I2C bus. This is eas-
ily done by running the following com-
mand in terminal, which will take a few
minutes to install:

sudo apt-get install i2c-

tools

Now that we have the i2c-tools pack-
age, we need to load the i2c-dev module
so that we can use it. You can do this
using with the modprobe command, but
every time the ODROID is reset we will

http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg
http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg
http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg

ODROID MAGAZINE 30

ODROID U3 I2C COMMUNICATION

have to reload the module. To avoid this annoyance, we will
add i2c-dev to the list of modules that are loaded at startup.
Open the /etc/modules file with your favorite text editor
such as nano, and add i2c-dev to the list.

nano /etc/modules

Once you have saved the file, reboot the ODROID and
make sure that when you type the following command you get
a similar result to Figure below.

i2cdetect -l -y

This command tells the computer to detect and list (-l)
all of the I2C ports available. If you don’t use the –y flag the
computer will ask you if you are sure you want to perform this
action and warn you of possible damages that can be done by
messing with I2C busses.

The bus that is mapped to the 8-pin connector is i2c-4. We
will cover its usage after we connect a slave device to it.

Wiring
Now that we have our ODROID set up to do I2C com-

munication, we can connect our slave device. The device that
we will be using is an LED matrix from Adafruit Industries.
Since the ODROID-U3 is a 1.8V device and our LED matrix
is a 5V device, we will use an I2C-safe level shifter, also from
Adafruit Industries.

Communicating
We now want to make sure that we have connected ev-

erything correctly. Luckily, we can do this easily using i2c-
tools. After everything is connected execute the following
command:

i2cdetect -y 4

This command tells the ODROID to list all of the I2C de-
vices connected to bus 4. As you can see from the following
figure, our LED matrix shows up at address 70.

If you do not see a device at address 70, double-check the
wiring.

C code
Once we know that everything is connected properly, we

can write some simple C code to control the LED matrix. The
code shown below initializes the LED Matrix and sequentially
lights every LED.

After you compile and run this code on the ODROID, you

The /etc/modules file being edited using
Nano.

A list of I2C ports available on the ODROID-
U3.

A simple high-level diagram of the interaction
between the U3 and the I2C LED Matrix.

A matrix of I2C peripherals, showing the
ODROID’s I2C device at address 70.

ODROID MAGAZINE 31

ODROID U3 I2C COMMUNICATION

will see output similar to the video shown at http://bit.
ly/1fMOyMt. The code can be easily can be modified to dis-
play other patterns/shapes on the LED Matrix.

#include <stdlib.h>

#include <unistd.h>

#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <sys/ioctl.h>

#include <fcntl.h>

#include <string.h>

#include <stdio.h>

int i = 0;

int j = 0;

int k = 0;

int main(void)

{

char recieveBuffer[32]; //The Buffer that will
hold onto recieved data

 char transferBuffer[32]; //The buffer that
holds data that we will send

 int address = 0x70; //The address of
the LED matrix
 int tenBitAddress = 0; //variable that

says we aren’t using 10-bit

 //addressing

 //Initialize the I2C channel
 int i2cHandle = open(“/dev/i2c-4”,O_
RDWR);

//Tell the I2C channel we aren’t using ten bit
addressing

 ioctl(i2cHandle,I2C_
TENBIT,tenBitAddress);

//Tell the I2C channel we have a slave at Ad-
dress 70

 ioctl(i2cHandle,I2C_SLAVE,address);

//make sure there is no data in our buffers
memset(recieveBuffer, 0 , sizeof(recieveBuffer)
);

memset(transferBuffer,0,sizeof(transferBuffer));

//start internal oscillator on the LED matrix
by sending 0x21 command
transferBuffer[0] = 0x21;
write(i2cHandle, transferBuffer, 1);

//enable display and turn blink off by sending
0x81
transferBuffer[0] = 0x81;
write(i2cHandle, transferBuffer,1);

//set brightness to max by sending 0xEF
transferBuffer[0] = 0xEF;
write(i2cHandle, transferBuffer,1);

//top level loop keeps track of which column

we are on

for(i = 0; i<16;i=i+2)

{

for(j = 0; j<9;j++)

 {

//we send two bytes in this case, so we load

the

//transfer buffer with 2 bytes
//and set the first Byte to transfer to the
column number

transferBuffer[0] = i;

//set the second Byte to transfer to the

lights to turn on

transferBuffer[1] = 0x01 << j;
write(i2cHandle, transferBuffer,2);

//wait a while

for(k = 0; k < 5000000;k++);

}

//make sure a column is completely off before
leaving it

transferBuffer[1] = 0x00;
write(i2cHandle, transferBuffer,2);
}
}

http://bit.ly/1fMOyMt
http://bit.ly/1fMOyMt

ODROID MAGAZINE 32

I wanted to build a ODROID-based tab-
let computer that was durable, rugged,
and built of readily available compo-

nents. A list of the hardware that I used is
shown below the image to the right:

Now
for the Software

The software part of this project gave
me the most headache! During my first
tests with Ubuntu 13.10, I couldn’t con-
nect to the LTE network and was stuck
with 3G, but I couldn’t figure out why.
It took me a while to discover that the
ModemManager version on Ubuntu
13.10 is slightly out of date and didn’t
properly support LTE. Updating
ModemManager by itself is nearly im-
possible since it’s wired to NetworkMan-
ager and it has a lot of dependencies, so I
needed something newer. My best option
was to use ArchLinux ARM, which al-
ways contains the latest package releases.

Once I got ArchLinux ARM running,
I needed a nice user interface that would
play well with the touchscreen, since I
don’t have a keyboard or mouse connect-
ed to this. I tested a few UIs, including
KDE Plasma Active, but then I saw some
news about Mate 1.8 and decided to give
it a try. It worked very nicely.

However, I still couldn’t use my Mo-
dem to send or receive SMS, and I need-
ed something to monitor the connection
health. At first, my idea was to put all
of those features on a custom app, but I

 is made from a combina-
tion of aluminum and wood and mea-
sures 21x13x6cm, which I purchased
at a local office supply store.

 is a 9” touch screen
LCD. Now, I know that everyone
will want to know where I got this,
and I have some good news for you!
The screen is a prototype for a kit that
Hardkernel will be selling very soon:
a 9” HDMI monitor with a built-in
touchscreen.

I’ve opted to use an
mainly because of power consumption
concerns. I wanted to keep that low
since the screen and the LTE dongle
also draw power. The LTE dongle uses
nearly 500ma of current on its own!

For the battery, I used 6 Li-Ion cells
wired together as two banks of 3 cells,
which yields a possible 11.1V(12.3V)

and 5000mAh. I salvaged them from
a laptop battery.

A converter (aka Buck
regulator). I’m using a pre-made
LM2596 kit. This IC can handle 2A
without a heatsink, so its enough for
our project.

 was included for
free from my mobile service carrier. It’s
a Huawei E3276 CAT 4 adapter and
can reach a max speed of 150Mbps.

 is based on the
Realtek 8192CU chipset, which is
very common. As an example, the
one that I used is the TP-Link model
TL-WN821N.

 is from Aliexpress.
It is a 3x3 LED matrix rated at
10W. I’m using it only at 0.5W to
illuminate the internals.

by Mauro Ribeiro

HEAVY DUTY PORTABLE LINUX TABLET

ODROID MAGAZINE 33

mentation about it online, so I took the
hard path! I connected the modem to a
Windows computer, installed a serial port
sniffer, and used the application provided
with the modem to control it. Once I
knew the commands, I finished my app.

In case you are curious, the commands
for my HUAWEI Modem are:

AT^SYSCFGEX=”00”,3fffffff,1,2,5
a,””,””

AT^SYSCFGEX=”01”,3fffffff,1,2,5
a,””,””

AT^SYSCFGEX=”02”,3fffffff,1,2,5
a,””,””

AT^SYSCFGEX=”03”,3fffffff,1,2,5
a,””,””

Those commands are sent to a “con-
trol” serial port that the modem creates.
Some modems (like mine) even have AT
commands to allow grabbing its internal
temperature! They provide a lot of good
information that you can extract to learn
the quality of your connection/signal.

Another issue I had to deal with was
NetworkManager. You can’t start hostapd
to create a wifi network if NetworkMan-
ager is managing an interface. Even if you
are disconnected from the wifi network,
it’s still possible to tell NetworkManager
not to manage that interface.

You just add the following line to [Ed-
itor’s note: need filename]:

[keyfile]
unmanaged-devices=\
mac:xx:xx:xx:xx:xx:xx

Where xx:xx:xx:xx:xx:xx is the mac ad-
dress of the device that you don’t want to
manage. I then added another feature to
my application for turning AP on and off.

Tell NetworkManager to not
manage my wifi adapter.

Start hostapd to create my wifi
network.

Create a single iptables rules to
setup NAT (share the Internet con-
nection).

Start DNSMASQ to provide
DHCP and DNS server.

Kill DNSMASQ
Clear firewall rules
Stop hostapd
Tell NetworkManager to manage

my wifi again.

You may wonder, why not leave it
unmanaged all the time? Because I still
want to use the wifi as a client when I’m
at home, so I can perform package up-
grades and poke around.

Another feature required for the tablet
was to install an on-screen keyboard on
Linux, which is available in both Ubuntu
13.10 and ArchLinux via a package called
onboard. Onboard is a highly configurable
and customizable on-screen keyboard with
many features. It works very well!

Finally, I needed to enable right but-
ton emulation while using the touch-
screen. This is done by adding the follow-
ing configuration to the /etc/X11/org.
conf file, or to a new configuration file in
the directory /etc/X11/xorg.conf.d.

Section “InputClass”
 Option “EmulateThirdBut-
ton” “1”

 Option “EmulateThirdBut-
tonTimeout” “750”
 Option “EmulateThirdBut-
tonMoveThreshold” “30”
EndSection

The EmulateThirdButtonTimeout
is the amount of time in milliseconds
that you need to keep the touchscreen
pressed in order to be identified as
a right click. EmulateThirdButton-
MoveThreshold is the amount of pixels
that your finger can move and still be
considered as the same position.

With all of that done, you now have
a Linux-powered touch screen tablet,
that also functions as an LTE router,
enabling you to tether to a 4G network
from anywhere!

RED is the buck controller at-
tached to the battery.

 is the ODROID-U3
GREEN is the WiFi Dongle
Two marks are the HDMI-

>LVDS board and the On-Screen
display board.

 is the USB Touchscreen
controller.

 is the External USB port
with the LTE Dongle connected.

 is a 10W LED running
at only 0.5W to light the internals in
case we are in the dark.

ORANGE is the battery
The 6-cell battery is wired as

shown in the image. This gives me
11.1V and 5000mAh.

Charging Li-Ion batteries isn’t
complicated, but it does require
some small knowledge.

Each Li-Ion cell must be charged
with 0.4V more than its rated volt-
age (3.7V) and you can only feed
half of its rated current as charging
current.

So for my case, since I’m using 3
cells in series (3.7 x 3 = 11.1V + 3x
0.4V = 1.2V = 12.3V), my charg-
ing voltage is 12.3V. Since I know
that the total capacity is 5000mAh
(~800mAh per battery), I won’t use a
charger rated over 2.5A. So I ended
up using a 13V 2A PSU to charge
the batteries.

I used a Dremel to make the ex-
ternal holes for USB, Power Con-
nector, Power switch, USB, LVDS
Cable and Touch cable.

ended up finding Modem Manager GUI
(http://linuxonly.ru/cms/page.php?7)
that does all of that. However, there was
still one missing feature! I needed to con-
trol the modem so I could lock it to a cer-
tain network type (2G/3G/4G).

So, I made a custom app. I chose QT
5, since QT Creator makes Linux appli-
cation development very easy. I needed
to know what commands the modem
required in order to force it to a certain
network type. I couldn’t find any docu-

HEAVY DUTY PORTABLE LINUX TABLET

http://linuxonly.ru/cms/page.php?7

ODROID MAGAZINE 34

This ODROID PC navigation system keeps Jer-
emy’s truck on the road and out of the mud!

ars with high-end navigation sys-
tems are becoming more com-
mon as in-vehicle technology

improves. However, the main issues that
many CarPC units have is that 1) the
map updates are expensive, and 2) you are
limited on functions and software. There
are a number of Android-powered head
units available now, but they generally
run outdated versions of Android, and are
consequently slow. So, I wanted to install
a CarPC in my truck with the most bang
for my buck, and chose the ODROID-
U3 as the platform for my project.

My goal was to have the following
functions available through my Truck
PC:

Here are the parts I used to build
my system:

by Jeremy Leesmann (Killer Turtle)

A list of applications that I installed
on the ODROID:

Anycut (Gives access to Quick

-

Arduino IDE

Setting up
the Arduino as a
Keyboard

The first task is getting the Arduino to
emulate a USB HID keyboard. Start by
building the code for the Arduino, which
is included at the end of this article.

Once the code is built and uploaded,
go to http://hunt.net.nz/users/darran/
and follow the directions for putting the
Arduino into DFU program mode, and
program it to be a USB HID Keyboard.
For reference, here is a map of all the key-
board codes: http://www.usb.org/devel-
opers/devclass_docs/Hut1_11.pdf.

I wired all the buttons to a common
ground, and then each one to its respective
pin on the Arduino. Then, all I needed to do
was connect the Arduino to the ODROID.

BUILD A TRUCK PC WITH ODROID

http://www.usb.org/developers/devclass_docs/Hut1_11.pdf
http://www.usb.org/developers/devclass_docs/Hut1_11.pdf

ODROID MAGAZINE 35

The Arduino Uno, when combined with an ODROID-U3, makes con-
necting interface buttons as easy as connecting the dots.

Setting up the ODROID
First, install the custom kernel for your touchscreen. For de-

tailed instructions, please refer to the February issue of ODROID
Magazine’s Giant Android Tablet cover article.

Next, install GApps in order to get access to the Play Store,
or you can install Amazon Appstore. [Editor’s note: There are
several posts on the ODROID forums explaining how to install
GApps on your ODROID. The simplest way is to use the An-
droid Epic Loot Software Collection, available for free download
from the forums, which includes a one-click Gapps installer app
for Android versions 4.1.2 and 4.2.2]

For my home screen, I installed Nova Launcher because it
looks great, but you can use any similar application to custom-
ize the desktop. To get the Arduino buttons to work as hotkeys
for opening apps, go to the Play Store and install Anycut. After
it’s installed, add a shortcut, click activity, and choose the first
Quick Launch that are shown (there are most likely 3 of them).
This will place a shortcut on your home screen for the “Quick

Launch” settings. Open the settings and assign the first four to
your choice of apps. My Quick Launch icons are Waze, Pan-
dora, and Play Music, with the last button going back to the
Home screen.

Next, install a third-party keyboard. I have a Swiftkey, but
any virtual keyboard will work. Once the keyboard is working,
go to Settings, and Language and input, click on Default, and
turn off Hardware keyboard. This will allow the virtual key-
board to work while a physical keyboard is attached.

Now, attach your GPS. If you get the one I have (BU-
353-S4), follow these instructions: http://bit.ly/1gzbAXr. Com-
plete the software installation by installing any other apps that
you may find useful, such as Skype or Google Hangouts.

Installing the ODROID in your
vehicle

For my truck, I installed a 12V plug connected to a switched
12V line to run both the screen and USB hub. My PSU has a
USB port rated up to 2.1 Amps which I use for powering the
ODROID itself. I also installed a 400W 4-channel amp, con-
nected everything up to the original stereo connections, and
ran an RCA-to-headphone cord from the Audio Out on the
ODROID to the input on the amp.

The ODROID connects to the Internet via a Wifi hotspot on
my phone. You may need to mount the GPS receiver on the roof
(or some other area with an unobstructed upward view) using a
USB cord extension in order to ensure a stable connection. In
my case, everything works great now, and I was able to build a
fast, reliable Truck PC using an inexpensive ODROID-U3.

/* Arduino USB Keyboard HID for ODroid
* Made by Jeremy Leesmann aka Killer Turtle
*/

#define KEY_LEFT_CTRL 0x01
#define KEY_LEFT_SHIFT 0x02
#define KEY_RIGHT_CTRL 0x10
#define KEY_RIGHT_SHIFT 0x20
#define KEY_LEFT_GUI 0xE3

uint8_t buf[8] = { 0 }; /* Keyboard report
buffer */
#define PIN_VolP 7
#define PIN_VolM 8
#define PIN_Enter 5
#define PIN_Escape 6
#define PIN_Up 9
#define PIN_Down 10
#define PIN_Left 11
#define PIN_Right 12
#define PIN_A 0

BUILD A TRUCK PC WITH ODROID

ODROID MAGAZINE 36

This TruckPC is ready for a non-stop Pandora
party on the beach.

The GPS interface makes sure you can pick up your
date on time for a romantic off-road adventure.

Why go through traffic when you can drive
over it with your monster truck tires?

#define PIN_B 2
#define PIN_C 3
#define PIN_D 4
#define PIN_Space 13

int state = 1;

void setup()

{

Serial.begin(9600);

pinMode(PIN_VolP, INPUT);
pinMode(PIN_VolM, INPUT);
pinMode(PIN_Enter, INPUT);
pinMode(PIN_Escape, INPUT);
pinMode(PIN_Up, INPUT);
pinMode(PIN_Down, INPUT);
pinMode(PIN_Left, INPUT);
pinMode(PIN_Right, INPUT);
pinMode(PIN_A, INPUT);
pinMode(PIN_B, INPUT);
pinMode(PIN_C, INPUT);
pinMode(PIN_D, INPUT);
pinMode(PIN_Space, INPUT);
// Enable internal pull-ups
digitalWrite(PIN_VolP, 1);
digitalWrite(PIN_VolM, 1);
digitalWrite(PIN_Enter, 1);
digitalWrite(PIN_Escape, 1);
digitalWrite(PIN_Up, 1);
digitalWrite(PIN_Down, 1);
digitalWrite(PIN_Left, 1);
digitalWrite(PIN_Right, 1);
digitalWrite(PIN_A, 1);
digitalWrite(PIN_B, 1);
digitalWrite(PIN_C, 1);
digitalWrite(PIN_D, 1);
digitalWrite(PIN_Space, 1);
delay(200);

}
void loop() {

state = digitalRead(PIN_VolP);
if (state != 1) {

buf[2] = 128; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_VolM);
if (state != 1) {

buf[2] = 129; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Enter);
if (state != 1) {

buf[2] = 40; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Escape);
if (state != 1) {

buf[2] = 41; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Up);
if (state != 1) {

buf[2] = 82; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}

BUILD A TRUCK PC WITH ODROID

ODROID MAGAZINE 37

state = digitalRead(PIN_Down);
if (state != 1) {

buf[2] = 81; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Left);
if (state != 1) {

buf[2] = 80; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Right);
if (state != 1) {

buf[2] = 79; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_A);
if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key
buf[2] = 4; // Letter a

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_B);
if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key
buf[2] = 5; // Letter a

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_C);
if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key
buf[2] = 6; // Letter a

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_D);
if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key
buf[2] = 7; // Letter a

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
state = digitalRead(PIN_Space);
if (state != 1) {

buf[2] = 44; // Vol +
//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable
Serial.write(buf, 8);// Ssend keypress
releaseKey();
}
}
void releaseKey()
{

buf[0] = 0;

buf[2] = 0;

Serial.write(buf, 8);// Release key
delay(500);

}

The ODROID TruckPC goes anywhere in style,
including your favorite grassy hilltop.

––––

ODROID MAGAZINE 38

MEET AN ODROIDIAN

Please tell us a little about yourself.
I am a computer science research fel-

low currently living in Adelaide, Austra-
lia, working at the Teletraffic Research
Centre, Adelaide University. Originally
from Romania, I did my undergraduate
studies in computer science in Bucharest,
and then PhD at National University of
Singapore.

How did you get started with computers?
As a kid, I saw a Spectrum ZX at a

family friend and liked the games. I am
still very fond of many of those games, like
Saboteur, Dizzy, Elite or Chuckie Egg. I
had the opportunity to join a special sec-
ondary school class where the BASIC pro-
gramming language was taught, and also
joined the (small) local computer club.
The high school that I went at also had an
informatics degree program. Growing up

in a communist country, import of tech-
nology was prohibited, so Spectrum was
all I grew up with; I saw my first PC when
I started high school. What types of projects have you done

with your Odroid?
I initially got the ODROID U2 for

a low-power HTPC, as my Raspberry Pi
was too sluggish. From all the ARM A9-
based boards at the time, the ODROID
was the only quad core that had pros-
pects for getting Open GLES working in
Linux. I actually helped out a bit with
this and with getting XBMC working,
and won the ODROID XU as a monthly
forum award. Currently, I am using the
XU for more than just HTPC - it’s also
a home server (Apache, MySQL, SSH),
download box, and home monitoring
system (motion detection and tempera-

edited by Rob Roy

Visiting Arapiles - Australia.

Journeying through Nepal at 5000M high.

ODROID MAGAZINE 39

Climbing 4000M high at malaysian mountains. Exploring exotic beaches at Thailand.

ture logging). I am working now on
adding more functions - I want to use it
to control my cat feeder, control the air
conditioning unit, and the garage door.
Also planned is integration of all of this
functionality with SiriProxy, to get all
this control on my phone via the Inter-
net.

What other hobbies and interests do you
have?

I love travelling, mountaineering,

climbing and bouldering. Living in Sin-
gapore gave me the opportunity to visit
a lot of places in southeast Asia, Thailand
being the perfect place where you can
enjoy sport climbing right on a beautiful
beach. Adelaide, where I currently live,
is also close to the Grampians National
Park and Mount Arapiles, two landmark
places for bouldering and traditional
climbing. In terms of mountaineering, I
am currently planning my second trip to
Nepal - a visit to the Everest base camp.

What do you like most about
the ODROID community?

It’s the community itself
that I like. If you are work-
ing on a project, you can ask
for advice and people will go
out of their way to help and
give you valuable advice. If
you have issues, you can raise
them on the forums and, if a
solution does not exist, a fix
will be provided.

6. Are you involved with any
other software or hardware
projects in addition to the
ODROID?

Besides work, my projects

on the ODROID take up most of my
time. So the answer is no. My old Rasp-
berry Pi was completely replaced by the
XU. Whatever project I do for myself,
I open up and describe for others too -
there are several HowTo’s I contributed
on the forum, a couple of articles in the
ODROID Magazine, and the charting
library that I created, which exports data
from RRDs to highcharts. Most of the
things there are general and should work
on any platform, and aren’t specific to
the ODROID platform.

From Nepal’s high mountains to its hidden
valleys, we just hope Marian had the chance
to use his ODROID to capture video of his
spectacular travels.

Rock climbing at Thailand,
enjoying the nature and the
adrenaline that comes with it.

MEET AN ODROIDIAN

