
ODROID
SWI Prolog • ODROID-VU • Linux Gaming • Adafruit • Cryptomining

Magazine

Android on the
ODROID-C2:

A Beginner’s Guide

Artificial
Intelligence

Experience
the future
with your
ODROID:

Migrating From
Ubuntu Mate to
Lubuntu

ODROID Year Four
Issue #44
Aug 2017

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the
quality and sophistication that is the hallmark of
our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and ODROID-XU4 devices to
EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Artificial intelligence is one of the most exciting computing
frontiers of the 21st century. Technology such as Amazon
Alexa, Google Assistant, and Microsoft Cortana are com-

pact, affordable and useful personal assistants, but they all use
closed-source proprietary code, which raises privacy concerns.

A solution for ensuring that the user
has complete control over the infor-
mation that is shared and stored is
to use open-source applications

such as Mycroft and Prolog. Compiling
the code yourself and installing it on an

ODROID is an easy, inexpensive way to build
a personal assistant to fit your exact needs

while also protecting your privacy.
Another emerging application of advanced technology is crypto-

currency mining. Hardkernel engineers built a ODROID-XU4 demon-
stration cluster to show the stability of Kernel 4.9 and calculate the financial viability
of long-term mining. Tobias discusses whether he is a Nintendo fanboy, Jörg shows us
how to control the display backlight in Android, Miltiadis helps us migrate from Ubuntu
MATE to Lubuntu, Dennis demonstrates a project using the Adafruit OLED display, and
we present a guide to getting started with Android on the ODROID-C2.

http://magazine.odroid.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Andrea Cole, Assistant Editor
I live in Ontario, Canada, and while relatively new to the ODROID, I have ten years of experience in online publish-
ing under my belt. I currently have has single-board computers--programmed by my partner--running our media
center, a game emulator, and my music library. In my spare time, I’m an artist, writer, and musician. I plan to incor-
porate some of the knowledge I gain into some interactive, mixed-media artwork.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
a number of ODROID-U3’s, and Xu4’s, and looks forward to using the latest technologies for both personal and

business endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Is still taking care of the dog, and yes, he did get a Playstation 4. As for the PDF version of ODROID Magazine, it was a

great 44 issue journey. Onward to the new frontier of the HTML interactive version!

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
http://bit.ly/1fsaXQs

INDEX

Meet An ODROIDIAn - 30

BRIghtness COntROl - 14

lInUX gAMIng - 20

CRYptOCURRenCY MInIng - 27

leD COntROl - 26

gettIng stARteD wIth AnDROID - 28

AI pROgRAMMIng - 12

ADAFRUIt OleD - 24

MYCROFt - 6

lUBUntU - 22

Ever since KITT made its appearance as a talking car back
in the 1980s, everybody dreamed about the day when
they would have their own personal talking assistant.

The good news is that we are almost there. The bad news is
that there is a high cost associated with the lack of privacy and
data mining done by big companies. It would be nice to have
a voice-controlled assistant that does not share its data with the
cloud. Unfortunately, we are probably still 10 years away from
that point, but we are making progress in the right direction.
In this article, we are going to install an open-source artificial
intelligence platform that runs on your ODROID called My-
croft (https://mycroft.ai/).

Mycroft consists of several interconnected components that
handle speech acquisition, keyword recognition (done locally),
speech to text translation (currently done through a Google
service), and skills engine and text to speech (done locally by
mimic). Mycroft communicates with several entities on the
Internet, using its own cloud to store and retrieve settings and
API keys for various services and incorporating Google speech-
to-text services. In addition to this, the skills engine may com-
municate with online services to retrieve data for the end user.

From the start, people will compare Mycroft with other per-
sonal assistants such as Amazon Echo, Alexa, and Google As-
sistant. However, they are quite different. Mycroft is built to
be open and non-intrusive, while all the other assistants are in
constant contact with your profile data and can respond to re-

OPEN SOURCE AI

MYCROFT
OpEn SOuRCE ARTIFICIAL InTELLIGEnCE
by Adrian popa

quests involving your personal data, such as your contact list or
personal calendar. By default, Mycroft does not have access to
that information and is mostly used to query public informa-
tion sources, such as the weather, Wikipedia and Wolfram Al-
pha (https://www.wolframalpha.com/). Some may think this is
limiting, but if you value your privacy, then you know it is not.
A lot of advanced functionality can be enabled by the end user
by activating certain skills, such as Google account integration.
In terms of AI complexity, Mycroft is simpler than the other AI
voice assistants, which run completely in the cloud and benefit
from complex recurrent neural networks.

One major privacy concern is having a visible or hidden de-
vice constantly listening to conversation. Analyzing what data
is leaked about you by your personal assistant should be high
on everyone’s priority list (http://bit.ly/2gY9qKG). The open-
source advantage of Mycroft is that, the network queries are
logged and easily consulted by the average user, so you can actu-
ally see what the device is actually doing behind the interface.

Mycroft could track what you speak in their cloud, but
network logs show that they do not save a transcript of what
you speak. The speech data is sent to Google servers to be con-

Figure 1 - Mycroft architecture

ODROID MAGAZINE 6

https://mycroft.ai/
https://www.wolframalpha.com/
http://bit.ly/2gY9qKG

OPEN SOURCE AI

verted to text, because speech to text is still a difficult problem
which generally requires the use of neural networks (http://bit.
ly/2eGLJJz). Theoretically, Google can still track what you are
saying, and can link it to your IP address, which compromises
privacy. The Mycroft team has started work on an open speech-
to-text engine to solve this issue, but it will realistically take a
long time before this can be run locally (https://openstt.org/).

So, If you want a voice activated personal assistant, and are
comfortable with the security implications of having one, let’s
see how we can get Mycroft running on the ODROID.

Installation
If you have an ODROID-U3, you can skip everything

and install a Mycroft-enabled Debian image created by forum
user @nold, available at http://bit.ly/2tT2Hq1. However, if
you do not want to dedicate an ODROID for a single task,
you can install Mycroft on a general-purpose ODROID-C2
which runs the Hardkernel-provided Ubuntu 16.04 image.
You can use the same steps to install on a different ODROID
model, such as C1 or XU4.

The first thing you are going to need, independent of your
ODROID model, is swap space. The installation process needs
to compile the text-to-speech component called Mimic, and
this takes up a lot of memory. You should also do a clean re-
boot to free up any used memory in case your ODROID has
been up for a long time.

To create a temporary 4GB swap file on your SD/EMMC
run the following commands:

$ sudo dd if=/dev/zero of=/swapfile bs=1M count=4096

$ sudo mkswap /swapfile

$ sudo swapon /swapfile

You can test that swap has been activated with the following
command:

$ free -m | grep Swap

To do the actual installation, you may want to read the docu-
mentation located at https://docs.mycroft.ai/. We will be go-
ing with the git clone install method (http://bit.ly/2eGAp05).
Mycroft will be installed inside a python virtual environment
inside your user home directory, typically /home/odroid. It will
also run as a regular user. For the installation and compilation
steps, you will need about 2.5 GB of free space.

$ cd ~

$ sudo apt-get install git

$ sudo git clone https://github.com/MycroftAI/my-

croft-core.git

$ cd mycroft-core/

$ sudo ./build_host_setup_debian.sh

$ sudo chown -R `whoami`:`whoami` .

$./dev_setup.sh

The dev_setup.sh step will create the virtual environment,
set up the Python modules needed and then will compile
Mimic. After Mimic has been compiled, which takes about
three and a half hours using an ODROID-C2 @1.75GHz, you
may be prompted with this error while compiling pygtk:

configure: error: cannot guess build type; you must

specify one

make: *** No targets specified and no makefile found.

Stop.

make: *** No rule to make target ‘install’. Stop.

This is an inconsequential error and can safely be ignored.
It indicates that there is a desktop integration component that
has failed to build, but we are not going to use it. In the future,
if you want to update Mycroft, you can redo the installation
steps (especially the git clone step), but run dev_setup.sh -sm
to skip the Mimic build step.

If the build went well, we can do some cleanup and free up
some disk space. The following commands turn off swap and
reclaim 4 GB of disk space:

$ sudo swapoff /swapfile

$ sudo rm -f /swapfile

We can also cleanup about 500 MB worth of mimic tempo-
rary files by running the following commands:

$ cd mimic

$ make clean

Unfortunately, Mimic is installed within its source directo-
ries, so it’s difficult to separate it and clean it up further.

Startup
Mycroft does not come with a systemd startup unit, but

we can create one around its startup script. Mycroft’s start-
up script is located in ~/mycroft-core/mycroft.sh. It accepts
parameters such as start and stop, and manages 4 screen in-
stances, which each run a key Mycroft component. To create
a systemd startup unit, run the following commands, making
sure to adjust the username and paths if you are not running
as the “odroid” user:

$ sudo vi /etc/systemd/system/mycroft.service

ODROID MAGAZINE 7

http://bit.ly/2eGLJJz
http://bit.ly/2eGLJJz
https://openstt.org/
http://bit.ly/2tT2Hq1
https://docs.mycroft.ai/
http://bit.ly/2eGAp05
https://github.com/MycroftAI/mycroft-core.git
https://github.com/MycroftAI/mycroft-core.git

[Unit]

Description=Mycroft personal AI

After=pulseaudio.service

[Service]

User=odroid

WorkingDirectory=/home/odroid/mycroft-core

ExecStart=/home/odroid/mycroft-core/mycroft.sh start

ExecStop=/home/odroid/mycroft-core/mycroft.sh stop

Type=forking

Restart=always

RestartSec=3

[Install]

WantedBy=multi-user.target

To start up Mycroft on every boot, and to manually start it
up now, type the following commands:

$ sudo systemctl enable mycroft

$ sudo systemctl start mycroft

If the default sound settings are working, you should see
Mycroft complaining that it is not paired with its cloud, and
it should offer a pairing code. However, let us assume that
you do not have sound yet, or maybe you did not understand
what Mycroft indicated. We will need to get accustomed to the
backend processes.

Backend and debugging
When Mycroft starts up, it creates 4 screen instances, where

it runs processes for voice, skills, command-line interface, and
services. You can list and connect to these screen instances with
the following command:

$ screen -list

There are screens on:

 5705.mycroft-cli (07/13/17 13:50:28)

(Detached)

 5690.mycroft-voice (07/13/17 13:50:28)

(Detached)

 5675.mycroft-skills (07/13/17 13:50:28)

(Detached)

 5640.mycroft-service (07/13/17 13:50:28)

(Detached)

If you connect to the mycroft-voice screen, you will be able
to see if there are any errors with audio input or output (such
as - there is no default audio output device). To connect and
interact with a screen session you can run the following com-
mand:

$ screen -r 5690.mycroft-voice

Note that the number is the process PID and will change
on Mycroft restart. You should identify it with screen -list, as
shown above. To detach from a screen session without termi-
nating the screen process, use the key combination CTRL+A
D. See the screen manual at http://bit.ly/2tsC4ZF for more
key bindings.

Regular text logs from these services are also saved in ~/
mycroft-core/scripts/logs/ and can be consulted with regular
tools such as “grep” or “tail -f ”.

Mycroft also comes with a debugging mode where it starts
only the engine, skills, and CLI components, so you can debug
various problems. To start Mycroft in debug mode, type:

$ ~/mycroft-core/mycroft.sh start -d

Configuration
Mycroft’s primary configuration file is located at ~/mycroft-

core/mycroft/configuration/mycroft.conf. You should not edit
this, but instead make a copy at ~/.mycroft/mycroft.conf, to
avoid the settings being overridden on Mycroft upgrade:

$ cp ~/mycroft-core/mycroft/configuration/mycroft.conf

~/.mycroft/

The configuration file contains general settings, such as the
language (I tested using English), units, location, as well as spe-
cific skill parameters for default skills. These will likely move
to different configuration files in the future. At this point you
can edit the file at ~/.mycroft/mycroft.conf and set your pre-
ferred settings, including location, so that the answers are rel-
evant to you. For example, if you leave the default location of
Lawrence, Kansas, when you ask for the time or weather, you
will get the time and weather from Lawrence, Kansas. Some
of these settings can also be set from the Mycroft cloud after
pairing the device.

OPEN SOURCE AI

Debug view

ODROID MAGAZINE 8

http://bit.ly/2tsC4Z

Audio
If you are running a desktop image with sound output via

HDMI and a microphone, it is like that sound will work fine
without manual intervention. However, if you are running a
server image without a desktop environment, or if you have
multiple microphones/sound outputs, you may want to manu-
ally configure Mycroft to use a specific sound device.

Although Mycroft supports both ALSA and PulseAudio, we
are going to use PulseAudio as a sound backend, because it’s
more flexible. For instance, it’s easier for multiple processes to
use the microphone at the same time.

Usually, PulseAudio runs as a user process and starts when
you log in to your desktop environment. This is not compat-
ible with having Mycroft start as a service at startup, since there
would be no PulseAudio to connect to. We need to run Pulse-
Audio as a system service instead. More details are available at
http://bit.ly/2vzTOnj.

$ sudo apt-get install pulseaudio

$ sudo vi /etc/systemd/system/pulseaudio.service

[Unit]

Description=PulseAudio Daemon

[Install]

WantedBy=multi-user.target

[Service]

Type=simple

PrivateTmp=true

ExecStart=/usr/bin/pulseaudio --system --real time

--disallow-exit --no-cpu-limit

In order to allow user processes to communicate with a root
PulseAudio, we need to edit the configuration located at /etc/
pulse/system.pa. You will need to add the following lines to
the configuration:

#allow localhost connections

load-module module-native-protocol-tcp auth-ip-

acl=127.0.0.1

Before we run PulseAudio as a service, we need to identify
the microphone (input) and the speakers (sink) that we want to
use. For this, we will need to run PulseAudio as a user:

$ pulseaudio -D

Next, we can get a list of output devices (sinks) that Mycroft
can play to. The idea is that if your ODROID has both HDMI
connected and a USB sound card, you can have Mycroft use
the soundcard for output, so that you can hear it even when

the TV is off.

$ pacmd list-sinks | egrep “index|name:”

 index: 0

 name: <alsa_output.usb-0d8c_C-Media_USB_Head-

phone_Set-00.analog-stereo>

 * index: 1

 name: <alsa_output.platform-odroid_hdmi.

analog-stereo>

In the output above you can see that the HDMI output
is the default sound output. We will want to tell Mycroft to
use card 0 (or better, we can index it by name) for sound. To
do this, edit ~/.mycroft/mycroft.conf and change the following
line:

play_wav_cmdline”: “aplay %1

to

play_wav_cmdline”: “paplay -d alsa_output.usb-0d8c_C-

Media_USB_Headphone_Set-00.analog-stereo %1

This change will route all voice messages generated by My-
croft to the USB soundcard.

Some skills will play podcasts, or mp3 content like the
news, so if you want to hear that over a different sound output,
you need to change the following setting as well. Change the
following line:

play_mp3_cmdline”: “mpg123 %1

to

play_mp3_cmdline”: “mplayer -ao pulse::alsa_output.

usb-0d8c_C-Media_USB_Headphone_Set-00.analog-stereo

%1

The issue is that mpg123 does not have a switch for select-
ing a PulseAudio sink, so we need to exchange it with mplayer,
which needs to be installed in your system:

$ sudo apt-get install mplayer

One last thing to do is to set a default microphone. In my
case, I have three microphone inputs: one from the sound card
(not connected), one from my webcam, and one from HDMI.

$ pacmd list-sources | egrep “index|name:”

 index: 1

 name: <alsa_input.usb-Sonix_Technology_Co.__

OPEN SOURCE AI

ODROID MAGAZINE 9

http://bit.ly/2vzTOnj

Ltd._USB_2.0_Camera-02.analog-mono>

 index: 2

 name: <alsa_output.usb-0d8c_C-Media_USB_Head-

phone_Set-00.analog-stereo.monitor>

 * index: 3

 name: <alsa_input.usb-0d8c_C-Media_USB_Head-

phone_Set-00.analog-mono>

 index: 4

 name: <alsa_output.platform-odroid_hdmi.

analog-stereo.monitor>

 index: 5

 name: <alsa_input.platform-odroid_hdmi.

analog-stereo>

I want to use my webcam’s microphone for Mycroft input,
so I will set it as the default option in /etc/pulse/system.pa:

#set default microphone

set-default-source alsa_input.usb-Sonix_Technology_

Co.__Ltd._USB_2.0_Camera-02.analog-mono

Save the file, and you are ready to start the service:

$ sudo systemctl enable pulseaudio

$ killall pulseaudio

$ sudo systemctl start pulseaudio

Pairing and interacting
with Mycroft

Right now we can restart the whole system, and Mycroft
should start after PulseAudio has started. The microphone
should work as expected and so should audio output. You are
now ready to register Mycroft. To have Mycroft process your
speech, you should start your questions with “Hey Mycroft!”.
To get a pairing code, ask “Mycroft, register my device”. My-
croft should then speak its registration code which usually con-
sists of 6 characters. If you cannot hear the code or cannot un-
derstand it, you can find it in the mycroft-skills.log located at
~/mycroft-core/scripts/logs. You will need to register at http://
home.mycroft.ai and navigate to Devices -> Add device.

You should now be ready to use Mycroft. You can go ahead
and ask it for various information, such as:

Hey Mycroft, what’s the time?
Hey Mycroft, what day is today?
Hey Mycroft, wiki European Union.
Hey Mycroft, tell me about Abraham Lincoln.
Hey Mycroft, tell me a joke.
Hey Mycroft, why is 6 afraid of 7?
Hey Mycroft, sing me a song!
Hey Mycroft, what is 2+5?

Hey Mycroft, tell me the news.
Hey Mycroft, set a reminder for 5 minutes.
Hey Mycroft, what’s the weather?
Hey Mycroft, what’s the forecast for tomorrow?

To know what you can ask for, consult the basic skills docu-
mentation page at http://bit.ly/2uourGy. You can also review
the mycroft-skills.log file and can see what keywords are regis-
tered when a skill is loaded. For example, the joke skill regis-
ters the following key phrases: joke, make me laugh, brighten
my day, tell me joke.

It is all about the skills
The basic skills of Mycroft are quite useful, but you can

do so much more with it by using third party skills, available
from the official repository at http://bit.ly/2tsEYh1. Keep in
mind that the quality of the skills may vary depending on the
implementation.

In the example below, we will be adding support for diag-
nostics, such as having Mycroft tell you CPU usage, free space,
and Home Assistant integration, so that Mycroft can read val-
ues from Home Assistant or control switches with your voice.

Third party skills can be installed in /opt/mycroft/skills,
and will be automatically loaded on Mycroft restart. To add
the diagnostics skill, simply clone it from its GitHub link:

$ cd /opt/mycroft/skills

OPEN SOURCE AI

Registering online

ODROID MAGAZINE 10

http://home.mycroft.ai
http://home.mycroft.ai
http://bit.ly/2uourGy
http://bit.ly/2tsEYh1

$ git clone http://bit.ly/2uOP4N1

The skill can be configured to run a user-defined script and
read its output. The path to the user-defined script needs to be
configured inside ~/.mycroft/mycroft.conf. Note that the lo-
cation of third-party configuration is bound to change in new
Mycroft releases, so consult the official documentation for the
correct location and syntax.

 “DiagnosticSkill”: {

 “script”: “/home/odroid/bin/usbreset.sh”

 }

Next, restart Mycroft:

$ sudo service mycroft restart

After the service re-launches, you will be able to use que-
ries such as “Hey Mycroft, what is the current CPU usage per-
cent?”, “Hey Mycroft run diagnostics”, which runs your cus-
tom script, or “Hey Mycroft, what’s your uptime?”

Similarly, we can install the Home Assistant skill and inte-
grate Mycroft with a running Home Assistant instance. This
skill has some external dependencies which need to be installed
as well:

$ cd /opt/mycroft/skills

$ git clone http://bit.ly/2gVOojm

$ workon mycroft

$ cd HomeAssistantSkill

$ pip install -r requirements.txt

Also, you will need to edit ~/.mycroft/mycroft.conf and add
the following lines:

 “HomeAssistantSkill”: {

 “host”: “hass.mylan.net”,

 “password”: “mysupersecrethasspass”,

 “ssl”: true|false

 }

After restarting Mycroft, you can now query the state of
your Home Assistant entities by asking things like “Hey My-
croft, turn on air conditioning power” to activate the “Air Con-
ditioning Power” switch, or “Hey Mycroft, ask home assistant
what is kids room temperature?” to query a sensor called “Kids
room temperature”. The skill will try to match what you say
against the names of Home Assistant’s entities so that you can
control Home Assistant with your voice! I personally think this
is the coolest skill! For further skill examples, check out the

YouTube video at http://bit.ly/2vfh90H.

Mycroft’s future
Mycroft started as a simple AI, but with the support of

the community, it is evolving into something bigger. For
now it works in a question/answer pattern, without keep-
ing the state of a conversation, but work is being done to
change that in the future, so you will eventually be able to
have a conversation with Mycroft (http://bit.ly/2w7L6MH).
In terms of performance and used resources, since it was
designed to run on a Raspberry Pi, it has no problem run-
ning on ODROIDs, even on a C1). On my ODROID-
C2, with other background processes running, Mycroft
uses about 20% CPU on 2 cores with the governor keeping
the CPU frequency at 500 MHz when idle.

Currently, Mycroft might be at best mildly useful and
not really a personal assistant, but it has potential. You
could compare it to MS-DOS back in the 1980s, which
was clunky, but got the job done. The concern is that
all personal assistants make mistakes, and sometimes with
funny consequences (http://bit.ly/2uXQTbg). I think that
in 10 to 20 years, the personal assistant will evolve to some-
thing that is hard to predict, like Skynet in the Terminator
movies, but I hope that the personal assistant of the future
will be community-based and open-sourced. In the event
that you get stuck or have further questions, please consult
the support thread at http://bit.ly/2tt3crC or the Mycroft
community forums at https://community.mycroft.ai/.

OPEN SOURCE AI

ODROID MAGAZINE 11

http://bit.ly/2vfh90H
http://bit.ly/2w7L6MH
http://bit.ly/2uXQTbg
http://bit.ly/2tt3crC
https://community.mycroft.ai/

Implementation of a Prolog
program

Let us create a Prolog file named family.pl. This file de-
scribes the relationship of a family with facts and rules:

%fact

sex(lea, female).

sex(dan, male).

sex(jay, male).

sex(esther, female).

sex(irene, female).

sex(praise, female).

sex (william, male).

parent(lea, jay).

parent(dan, jay).

parent(dan, esther).

parent(jay, praise).

parent(jay, irene).

parent(lea, william).

%rules

offspring(Y,X) :- parent(X,Y).

mother(X, Y):-parent(X,Y),female(X).

father(X, Y):-parent(X,Y),male(X).

grandparent(X,Z):-parent(X,Y),parent(Y,Z).

sister(X,Y):-parent(Z,X),parent(Z,Y),female(X),diffe

rent(X,Y).

different(X,Y):-X=Y, !, fail.

different(_,_).

Predecessor(X,Z):-parent(X,Z).

Predecessor(X,Z):-parent(X,Y),predecessor(Y,Z).

The family.pl file consists of facts and rules. Facts show
data that are always true. For example, sex(lea, female) is a

Researchers in Artificial Intelligence (AI), have studied
problem solving skills used by humans and implement-
ed those skills on a machine. This research showed that

people tend to infer solutions of a problem using facts and the
relations between those facts. Prolog is a programming lan-
guage that was invented in order to perform the inference nec-
essary to solve problems involving facts and rules.

Installing Prolog
Recently, IBM announced that their AI system partially de-

pends on the Prolog programming language. Using Prolog, we
are going to build a simple intelligent machine on ODROID-
XU4. If your XU4 is running Ubuntu, you can install SWI-
Prolog on your machine with following commands:

$ sudo apt-get update

$ sudo apt-get install swi-prolog

If you want to install SWI-Prolog on your machine that has
a different OS, such as Windows or MacOS, visit the website
www.swi-prolog.org. You can get more information related to
installation. Figure 1 shows the first page of SWI-Prolog site.

Once SWI-Prolog is installed on your system, it is time to
get into AI programming.

ARTIFICIAL InTELLIGEnCE
pROGRAMMInG
uSInG pROLOG wITH An ODROID-Xu4
by Birmsoo Kim

AI PROGRAMMING

Figure 1 - swI-prolog home page

ODROID MAGAZINE 12

www.swi-prolog.org

can find that the parent of Irene is Jay,
and the parents of Jay are Dan and Lea.

Running a Prolog
program

You can start the prolog interpreter
with the “swipl” command:

$ swipl

When the family.pl file is ready, run
consult(filename) or [file name] to load
the family.pl file on the system. As
shown in Figure 3, the system responded
“yes” to show that the Prolog file was up-
loaded successfully.

?-consult(family)

?- [family]

Now, you can give a question to about
the family relation. If you want to know
who is the father of Irene, a parent(X,
Irene) query will show the answer. X is
variable that will match and return the
name of irene’s dad. The prolog inter-
preter search the given facts and finds

fact that is used to describe the gender of
Lea as female. As you expect, sex(dan,
male) is another fact that Dan is male.
Other facts such as parent(lea, jay) and
parent(dan, jay) show the relation of Jay
to Lea and Dan. These facts represent
that both of them are the parents of Jay.

Rules are also described in this file.
The rule “grandparent(X, Z) :- parent(X,
Y) ,parent(Y, Z)” describes the condition
of being a grandparent of someone. The
conclusion part is on the left side, and
the condition part is on the right side.

This rule is represented by a condi-
tion as follows:

For all X and Z, X is grandparent of
Z if

 X is a parent of Y and
 Y is a parent of Z. [1]
Two rules below are representing

mother and father. To be the father of
Y, the Y should be the parent and male:

mother(X, Y):-parent(X,Y), sex(X,
female).

father(X,Y):-parent(X,Y), sex(X, ma
le).

Figure 2 shows the relation of family
in family.pl. The higher position is the
parent of a lower position. Therefore, we

AI PROGRAMMING

jay as the return value of X as shown in
Figure 4.

You can figure out who is a grandpar-
ent of Irene by grandparent(X, Irene).
You will get the solution with facts and
rules. The rule grandparent(X, Z) :-
parent(X, Y) ,parent(Y, Z) will use facts
parent(lea, jay), parent(dan, jay), and
parent(jay, irene) as conditions. When
the two conditions are satisfied, there
will be a solution. The grandparents of
Irene are Lea and Dan.

Future Work
ODROID-XU4 shows the possibil-

ity for you to have your own intelligent
server. In the next article, we are going
to extend the ability of this intelligent
system so that it can work with a sensor.

References
http://www.swi-prolog.org/

Ivan Bratko. Prolog programming
for artificial intelligence, 2nd ed. Ad-
dison Wesley, J. Cassell, S. Prevost, J.
Sullivan, and E. Churchill.

Figure 2 - Family tree

Figure 3 - swipl and upload

Figure 4 - parent of Irene

Figure 5 - grandparents

ODROID MAGAZINE 13

http://www.swi-prolog.org/

Android will recognize the driver
while booting. To enable this, the “boot.
ini” must be edited in the following sec-
tion.

Backlight HAL driver source code
“lights.c”:

/* Copyright (C) 2011 The Android

Open Source Project

 *

 * Original code licensed under

the Apache License, Version 2.0

(the “License”);

 * you may not use this software

except in compliance with the

License.

 * You may obtain a copy of the

License at

 *

 * http://www.apache.org/li-

censes/LICENSE-2.0

 *

 * Unless required by applicable

law or agreed to in writing,

software

 * distributed under the License

is distributed on an “AS IS” BA-

SIS,

 * WITHOUT WARRANTIES OR CONDI-

TIONS OF ANY KIND, either express

or implied.

 * See the License for the spe-

cific language governing permis-

sions and

This guide shows you how to build
the backlight Hardware Abstrac-
tion Layer (HAL) driver and the

needed modifications in order to control
the backlight of different displays. The
driver is actually included in the latest
ODROID-C2 Android image. This
guide will show you how to modify the
driver to build it for another board. Be-
fore following this guide, please ensure
that you’re using the latest Android
NDK and the Android source tree.

Make a project directory wherever
you like, but the preferred location
would be inside NDK/samples. Make
a subdirectory called “jni” and copy the
“lights.c” code shown below into it.

Modify the “LOCAL_C_IN-
CLUDES” in Android.mk to be the
correct path of the Android source tree,
then modify the “LOCAL_MODULE”
in Android.mk to your board’s name.
Open a terminal window and navigate to
the “jni” folder. Execute the command
“path/to/ndk-build”, typically in the di-
rectory where the NDK is installed.

You will find the library “liblights.
odroidc.so” in folder “lib/armeabi/”. Us-
ing adb, you can copy the library to the
ODROID’s folder “/system/lib/hw/”:

adb remount

adb push ../libs/armeabi/lib-

lights.odroidc.so /system/lib/hw/

adb reboot

 * limitations under the License.

 *

 * This implements a lights

hardware library for the Android

emulator.

 * the following code should be

built as a shared library that

will be

 * placed into /system/lib/hw/

lights.goldfish.so

 *

 * It will be loaded by the

code in hardware/libhardware/

hardware.c

 * which is itself called from

 * ./frameworks/base/services/

jni/com_android_server_Hardware-

Service.cpp

 *

 * Modified by J. Wolff

 * Support of backlight control

on Odroid board via pwm on pin

33.

 */

#include <android/log.h>

#include <stdint.h>

#include <string.h>

#include <unistd.h>

#include <errno.h>

#include <fcntl.h>

#include <pthread.h>

#include <sys/ioctl.h>

#include <sys/types.h>

#include <stdbool.h>

ODROID-Vu
BACKLIGHT BRIGHTnESS
COnTROL On AnDROID
by Jörg wolff

BACKLIGHT

ODROID MAGAZINE 14

#define BACKLIGHT_PWM_INV

“invert”

static pthread_once_t g_init =

PTHREAD_ONCE_INIT;

static pthread_mutex_t g_lock =

PTHREAD_MUTEX_INITIALIZER;

char * env_backlight;

bool invert, enable;

void init_globals(void)

{

 LOGD(“in: %s”, __FUNCTION__

);

 // init the mutex

 pthread_mutex_init(&g_lock,

NULL);

 if (enable) {

 //pwm-meson

 int fd = open(“/sys-

tem/lib/modules/pwm-meson.ko”,

O_RDONLY);

 struct stat st;

 fstat(fd, &st);

 size_t image_size =

st.st_size;

 void *image =

malloc(image_size);

 read(fd, image, image_

size);

 close(fd);

 if (init_module(image,

image_size, “”) != 0) {

 LOGE(“error load-

ing pwm-meson.ko”);

 return;

 }

 free(image);

 //pwm-ctrl

 fd = open(“/system/lib/

modules/pwm-ctrl.ko”, O_RDONLY);

 fstat(fd, &st);

 image_size = st.st_

size;

 image = malloc(image_

size);

#include <hardware/lights.h>

#include <hardware/hardware.h>

#include <assert.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/syscall.h>

#include <stdlib.h>

#define LOG_TAG “lights.

odroidc”

/* Set to 1 to enable debug mes-

sages to the log */

#define DEBUG 0

#if DEBUG

#define LOGD(...) __android_

log_print(ANDROID_LOG_DEBUG,LOG_

TAG,__VA_ARGS__)

#else

define LOGD(...) do{}while(0)

#endif

#define LOGI(...) __android_log_

print(ANDROID_LOG_INFO,LOG_TAG,__

VA_ARGS__)

#define LOGW(...) __android_log_

print(ANDROID_LOG_WARN,LOG_TAG,__

VA_ARGS__)

#define LOGE(...) __android_

log_print(ANDROID_LOG_ERROR,LOG_

TAG,__VA_ARGS__)

#define BACKLIGHT “/sys/devices/

platform/pwm-ctrl/duty0”

#define BACKLIGHT_EN “/sys/devic-

es/platform/pwm-ctrl/enable0”

#define BACKLIGHT_FREQ “/sys/de-

vices/platform/pwm-ctrl/freq0”

#define init_module(mod, len,

opts) syscall(__NR_init_module,

mod, len, opts)

#define delete_module(name, flags)

syscall(__NR_delete_module, name,

flags)

#define BACKLIGHT_PWM

“backlight_pwm”

#define BACKLIGHT_PWM_YES

“yes”

#define BACKLIGHT_PWM_NO

“no”

BACKLIGHT

 read(fd, image, image_

size);

 close(fd);

 if (init_module(image,

image_size, “”) != 0) {

 LOGE(“error load-

ing pwm-ctrl.ko”);

 return;

 }

 free(image);

 char value[20];

 int nwr, ret;

 fd = open(BACKLIGHT_

FREQ, O_RDWR);

 if (fd > 0) {

 nwr =

sprintf(value, “%d\n”, 1000);

 ret = write(fd,

value, nwr);

 close(fd);

 }

 fd = open(BACKLIGHT_EN,

O_RDWR);

 if (fd > 0) {

 nwr =

sprintf(value, “%d\n”, 1);

 ret = write(fd,

value, nwr);

 close(fd);

 }

 }

 LOGD(“leaving %s”, __FUNC-

TION__);

}

static int

is_lit(struct light_state_t

const* state)

{

 return state->color &

0x00ffffff;

}

/* set backlight brightness by

LIGHTS_SERVICE_NAME service. */

static int

set_light_backlight(struct

light_device_t* dev, struct

light_state_t const* state)

ODROID MAGAZINE 15

/** Close the lights device */

static int

close_lights(struct light_

device_t *dev)

{

 free(dev);

 if (delete_module(“pwm-me-

son”, O_NONBLOCK) != 0) {

 LOGE(“delete_module pwm-

meson”);

 return EXIT_FAILURE;

 }

 if (delete_module(“pwm-ctrl”,

O_NONBLOCK) != 0) {

 LOGE(“delete_module pwm-

ctrl”);

 return EXIT_FAILURE;

 }

 return 0;

}

/**

 * module methods

 */

/** Open a new instance of a

lights device using name */

static int

open_lights(const struct hw_

module_t* module, char const

*name,

 struct hw_device_t **de-

vice)

{

 void* set_light;

 if (0 == strcmp(LIGHT_ID_

BACKLIGHT, name)) {

 set_light = set_light_

backlight;

 //check the bootargs

for backlight_pwm

 FILE * fp;

 char * line = NULL;

 char * list;

 char * value;

 size_t len = 0;

static int

set_light_battery(struct light_

device_t* dev, struct light_

state_t const* state)

{

 /* @Waiting for later imple-

mentation. */

 LOGD(“%s: Not implemented.”,

__FUNCTION__);

 return 0;

}

static int

set_light_keyboard(struct light_

device_t* dev, struct light_

state_t const* state)

{

 /* @Waiting for later imple-

mentation. */

 LOGD(“%s: Not implemented.”,

__FUNCTION__);

 return 0;

}

static int

set_light_notifications(struct

light_device_t* dev, struct

light_state_t const* state)

{

 /* @Waiting for later imple-

mentation. */

 LOGD(“%s: Not implemented.”,

__FUNCTION__);

 return 0;

}

static int

set_light_attention(struct

light_device_t* dev, struct

light_state_t const* state)

{

 /* @Waiting for later imple-

mentation. */

 LOGD(“%s: Not implemented.”,

__FUNCTION__);

 return 0;

}

{

 int nwr, ret = -1, fd;

 char value[20];

 int light_level;

 if (!enable) {

 LOGD(“%s: Not implement-

ed.”, __FUNCTION__);

 return 0;

 }

 pthread_mutex_lock(&g_lock);

 light_level = state-

>color&0xff;

 light_level = light_level <<

2;

 if (light_level > 0) light_

level += 3;

 if (invert) light_level =

1023 - light_level;

 LOGD(“level: %d”, light_lev-

el);

 fd = open(BACKLIGHT, O_RDWR);

 if (fd > 0) {

 nwr = sprintf(value,

“%d\n”, light_level);

 ret = write(fd, value,

nwr);

 close(fd);

 }

 pthread_mutex_unlock(&g_

lock);

 return ret;

}

static int

set_light_buttons(struct light_

device_t* dev, struct light_

state_t const* state)

{

 /* @Waiting for later imple-

mentation. */

 LOGD(“%s: Not implemented.”,

__FUNCTION__);

 return 0;

}

BACKLIGHT

ODROID MAGAZINE 16

 *device = (struct hw_

device_t*)dev;

 return 0;

}

static struct hw_module_methods_t

lights_module_methods = {

 .open = open_lights,

};

/*

 * The emulator lights Module

 */

struct hw_module_t HAL_MODULE_

INFO_SYM = {

 .tag = HARDWARE_MODULE_TAG,

 .version_major = 1,

 .version_minor = 0,

 .id = LIGHTS_HARDWARE_MOD-

ULE_ID,

 .name = “Odroid lights Mod-

ule”,

 .author = “Amlogic”,

 .methods = &lights_module_

methods,

};

Android.mk:

Copyright (C) 2011 The Android

Open Source Project.

#

Original code licensed under

the Apache License, Version 2.0

(the “License”);

you may not use this software

except in compliance with the

License.

You may obtain a copy of the

License at

#

http://www.apache.org/licens-

es/LICENSE-2.0

#

Unless required by applicable

law or agreed to in writing,

software

distributed under the License

is distributed on an “AS IS” BA-

SIS,

WITHOUT WARRANTIES OR CONDI-

false; }

 }

 } else if (0 == strcmp(

LIGHT_ID_KEYBOARD, name)) {

 set_light = set_light_

keyboard;

 } else if (0 == strcmp(

LIGHT_ID_BUTTONS, name)) {

 set_light = set_light_

buttons;

 } else if (0 == strcmp(

LIGHT_ID_BATTERY, name)) {

 set_light = set_light_

battery;

 } else if (0 == strcmp(

LIGHT_ID_NOTIFICATIONS, name)) {

 set_light = set_light_no-

tifications;

 } else if (0 == strcmp(

LIGHT_ID_ATTENTION, name)) {

 set_light = set_light_at-

tention;

 } else {

 LOGD(“%s: %s light isn’t

supported yet.”, __FUNCTION__,

name);

 return -EINVAL;

 }

 pthread_once(&g_init, init_

globals);

 struct light_device_t *dev

= malloc(sizeof(struct light_

device_t));

 if (dev == NULL) {

 return -EINVAL;

 }

 memset(dev, 0, sizeof(*dev)

);

 dev->common.tag = HARDWARE_

DEVICE_TAG;

 dev->common.version = 0;

 dev->common.module = (struct

hw_module_t*)module;

 dev->common.close = (int (*)

(struct hw_device_t*))close_

lights;

 dev->set_light = set_light;

 fp = fopen(“/proc/cmd-

line”, “r”);

 if (fp != NULL) {

 getline(&line,

&len, fp);

 list = strtok

(line, “ “);

 while (list !=

NULL)

 {

 LOGD

(“%s\n”,list);

 if (0 ==

strncmp(BACKLIGHT_PWM, list, 13))

{

 env_

backlight = strtok(list, “=”);

 env_

backlight = strtok(NULL, “=”);

 break;

 }

 list =

strtok (NULL, “ “);

 }

 }

 enable = false;

 invert = false;

 if (env_backlight !=

NULL) {

 LOGD(“backlight_pwm

: %s”, env_backlight);

 if (0 == strncmp(

BACKLIGHT_PWM_YES, env_backlight,

3)) {

 enable =

true;

 } else if (0 ==

strncmp(BACKLIGHT_PWM_NO, env_

backlight, 2)) {

 //enable =

false;

 //return -EIN-

VAL;

 } else if (0 ==

strncmp(BACKLIGHT_PWM_INV, env_

backlight, 6)) {

 enable =

true;

 invert = true;

 } else { enable =

BACKLIGHT

ODROID MAGAZINE 17

console=ttyS0,115200n8 no_con-

sole_suspend vdaccfg=${vdac_con-

fig} logo=osd1,loaded,${fb_

addr},${outputmode},full

hdmimode=${hdmimode}

cvbsmode=${cvbsmode}

hdmitx=${cecconfig} vout=${vout_

mode} disablehpd=${disablehpd}

${disableuhs} androidboot.

serialno=${fbt_id#} ir_

remote=${ir_remote} usbcore.

autosuspend=-1 ${selinuxopt} sus-

pend_hdmiphy=${suspend_hdmiphy}}

backlight_pwm=${backlight_pwm}”

VU5 & VU7
The tinkering for these are identical

to the VU7+. For the VU5 and VU7,
we must change a few settings in the
“boot.ini” file:

setenv hdmimode “800x480p60hz”

setenv vout_mode “dvi”

setenv backlight_pwm “yes”

setenv bootargs “root=/

dev/mmcblk0p2 rw

console=ttyS0,115200n8 no_con-

sole_suspend vdaccfg=${vdac_con-

fig} logo=osd1,loaded,${fb_

addr},${outputmode},full

hdmimode=${hdmimode}

cvbsmode=${cvbsmode}

hdmitx=${cecconfig} vout=${vout_

mode} disablehpd=${disablehpd}

${disableuhs} androidboot.

serialno=${fbt_id#} ir_

remote=${ir_remote} usbcore.

autosuspend=-1 ${selinuxopt} sus-

pend_hdmiphy=${suspend_hdmiphy}}

backlight_pwm=${backlight_pwm}”

$ echo 100 > /sys/devices/pwm-

ctrl.43/freq0

This can be useful if you like to ex-
periment with the ADJ pin of a CCFL
inverter, which is used with old LCD
screens.

VU7+
To use the driver with your LCD

screen, here are some examples. First,
to connect the pwm signal from pin 33
of ODROID, a little tinkering is needed
on the backside of the VU7+. The best
practice is to use a wired resistor of about
330 Ohms, which should be glued to the
board with superglue and soldered to
pin 4 of the PT4103, or alternatively to
the 10k smd resistor, marked with 103.

Note that it would work also without
a resistor by using a direct connection.
However, be careful and not burn our
beloved hardware due to a human error,
so we use a resistor.

For the VU7+, the following settings
must be used in “boot.ini”:

setenv hdmimode “1024X600p60hz”

setenv vout_mode “dvi”

setenv backlight_pwm “yes”

setenv bootargs “root=/

dev/mmcblk0p2 rw

TIONS OF ANY KIND, either express

or implied.

See the License for the specific

language governing permissions

and

limitations under the License.

LOCAL_PATH := $(call my-dir)

HAL module implemenation, not

prelinked and stored in

hw/<LIGHTS_HARDWARE_MODULE_

ID>.<ro.hardware>.so

include $(CLEAR_VARS)

LOCAL_C_INCLUDES += /path/to/an-

droid/source/tree/core/include

LOCAL_C_INCLUDES += /path/to/

android/source/tree/hardware/lib-

hardware/include

LOCAL_SRC_FILES := lights.c

LOCAL_PRELINK_MODULE := false

LOCAL_LDLIBS := -llog

LOCAL_SHARED_LIBRARIES := libcu-

tils

LOCAL_MODULE := lights.odroidc

LOCAL_MODULE_TAGS := optional

include $(BUILD_SHARED_LIBRARY)

Application.mk:

NDK_TOOLCHAIN_VERSION=clang

APP_ABI := armeabi

APP_PLATFORM := android-24

The code can be found on Github at
http://bit.ly/2tshhFx. Note that the
frequency of the pwm is coded to 1KHz.
You can modify the frequency in this
code snippet:

fd = open(BACKLIGHT_FREQ, O_

RDWR);

if (fd > 0) {

 nwr = sprintf(value, “%d\n”,

1000);

 ret = write(fd, value, nwr);

 close(fd);

}

It is also possible to overwrite the fre-
quency at runtime:

Figure 1 - Zoomed in view of VU7 changes

Figure 2 - VU7+ connection to C1

Figure 3 - VU5 Modifications

BACKLIGHT

ODROID MAGAZINE 18

http://bit.ly/2tshhFx

The following snippet reads the ac-
tual brightness value:

//Get the current system bright-

ness

try

{

 Settings.System.SCREEN_

BRIGHTNESS_MODE_MANUAL);

 int savedBright-

ness = Settings.System.

getInt(getContentResolver(),

 Settings.System.SCREEN_

BRIGHTNESS);

}

catch (Settings.SettingNotFound-

Exception e)

{

 Log.e(“Error”, “Cannot access

system brightness”);

 e.printStackTrace();

}

Next, write the new brightness value:

int brightness = 50 // (0 … 100)

Settings.System.

putInt(getContentResolver(), Set-

tings.System.SCREEN_BRIGHTNESS,

brightness);

For more information please, please
visit the forum thread at http://bit.
ly/2uSpczG, and the Wiki page at
http://bit.ly/2vTKSbG.

Controlling
brightness with Java

To control the brightness from Java
code, here are some code snippets. Be
sure to add the necessary permission in
AndroidManifest.xml file first. First, ask
for permission <WRITE_SETTINGS>
on Android Marshmallow:

<uses-permission

android:name=”android.permission.

WRITE_SETTINGS” />

In code we can control it with the
following snippet:

if (Build.VERSION.SDK_INT >=

Build.VERSION_CODES.M) {

 if (!Settings.System.canWrite

(getApplicationContext())) {

 Intent intent = new

Intent(android.provider.Settings.

ACTION_MANAGE_WRITE_SETTINGS);

 intent.setData(Uri.

parse(“package:” + getPackage-

Name()));

 intent.addFlags(Intent.

FLAG_ACTIVITY_NEW_TASK);

 startActivity(intent);

 }

}

VU8
The VU8 already has a connector for

the pwm signal. For the VU8, the fol-
lowing settings must be used in “boot.
ini”:

setenv hdmimode “1024X768p60hz”

setenv vout_mode “dvi”

setenv backlight_pwm “invert”

setenv bootargs “root=/

dev/mmcblk0p2 rw

console=ttyS0,115200n8 no_con-

sole_suspend vdaccfg=${vdac_con-

fig} logo=osd1,loaded,${fb_

addr},${outputmode},full

hdmimode=${hdmimode}

cvbsmode=${cvbsmode}

hdmitx=${cecconfig} vout=${vout_

mode} disablehpd=${disablehpd}

${disableuhs} androidboot.

serialno=${fbt_id#} ir_

remote=${ir_remote} usbcore.

autosuspend=-1 ${selinuxopt} sus-

pend_hdmiphy=${suspend_hdmiphy}}

backlight_pwm=${backlight_pwm}”

Note that here “invert” on the VU8
is inverted, which means 100% duty
translates to the backlight being off.

Figure 4 - VU8 connection

BACKLIGHT

ODROID MAGAZINE 19

http://bit.ly/2uSpczG
http://bit.ly/2uSpczG
 http://bit.ly/2vTKSbG
 http://bit.ly/2vTKSbG

When it comes to retro gaming enthusiasts, there
are generally two factions: Nintendo fanboys and
SEGA fanboys. Back in the 80s and 90s, these were

the two major players in the market. There were, however,
a few other companies who also developed a fan base around
their products, such as Atari, Commodore, and NEC. I’d like
to take a personal look into these fan bases to see if I can iden-
tify myself with one or more of them in order to see what kind
of fanboy I really am.

Nintendo Hardware
Nintendo is probably the biggest player from the past. If

you think about it, they’re probably the last console manufac-
turer from the 1980s that is still around and operating as a
console manufacturer. There’s no denying that Nintendo is a
well-known company who made, and continues to make, good
products. However, if someone was to ask if I was a Nintendo
fanboy, I’d probably say “Nope, I never was.” That’s probably
true, but why? Is it actually true?

Growing up in East Germany in the early 1980s, we did
not have all the technical advantages of West Germany or other
countries. Consoles were somewhat rare, and when they started
becoming available in 1989 and into the early 1990’s, only a few
people had access to them. There was no hype around getting
whatever console came first, since both the Nintendo Entertain-
ment System (NES) and the SEGA Master System were already
well established during that time. People just picked whichever
one they wanted. While I didn’t know too many people who
owned consoles at that time, one of my uncles did indeed have
an NES, which I was lucky enough to play every now and then.

So which games did I like to play? Super Mario Bros was okay,
but I never got deeply into it. Did I enjoy it? More than likely,
since I was a child, but it definitely was not my favorite game.

What was my favorite, then? Nintendo World Cup was a lot of
fun for me as a child, and still is today. As a soccer game it had very
few rules. You could tackle your enemies, make them fall down,
do trick shots etc. It was fun, the controls were easy, and you
soon figured out how to beat the enemy. It was a lot of fun just
knocking out all of the opposing players and watching them try to
pass balls to players laying on the ground. It also had an awesome
soundtrack, which is probably one of the best in the entire NES

LINUX GAMING

LInuX GAMInG
FAnBOY pART 1 – AM I A nInTEnDO FAnBOY?
by tobias schaaf

library. Like I said, I never played a lot of NES games and may
have missed some good ones as a child. But there are good reasons
for my saying that I’m not a Nintendo fanboy.

I recently discovered that one of my first consoles, or, more
accurately, handheld games, was actually from Nintendo as
well, although only a few would recognize it as an NES game.
“Egg” was part of Nintendo’s Game & Watch series. Game &
Watch was a series of handhelds that operated as both alarm
clock and gaming device, although I highly doubt anyone real-
ly ever used it as a clock. This game was very simple: just four
directional buttons that players used to catch eggs as they fell.

As we all know, Nintendo created a lot of consoles
and handhelds, such as the Game Boy. Although I knew
some people at school who had a Game Boy, I never re-
ally found it interesting. It had no colors, no backlight,
and the graphics were not very sharp. I saw one guy who
had a Sega Game Gear. It had colors, and you could play
your SEGA Master System games on it, and it had a TV
receiver. I’m sorry, what was that Game Boy thing you
were talking about?

I didn’t know anybody with a “good” Nintendo device
back then. I’ve never known anyone with a Super Nin-
tendo, and I’ve never seen a Game Boy Color. I never even
heard of the Game Boy Advance until much later. When it
came to Nintendo, I missed everything between the NES/
Game Boy and the Nintendo DS. That’s probably a big
reason why I don’t consider myself a Nintendo fanboy,

“egg”, a game & watch game from nintendo

ODROID MAGAZINE 20

LINUX GAMING

with the exception of the Nintendo 64, which had a dem-
onstration console in our local shopping mall. As a child,
I’d play N64 games while my parents shopped. It was fun,
even if you had to share with children you didn’t know, but
I never actually owned the console and there were not a lot
of games on display except for Super Mario 64.

As an adult, I got an Nintendo DSi XL, and it is a very
fun handheld system. I also got a Nintendo Wii, and while
that was great for casual gaming with friends or alone, even
the sports games, the graphics were really not all that great.
I actually enjoyed, and still greatly enjoy, the Nintendo
DS. There are a lot of fun games including RPGs, adven-
ture, and strategy games which I really like, and the graph-
ics are good enough. It’s a very fun handheld.

I also enjoyed games like Time Hollow, the Ace Attorney series,
Another Code:Two Memories, Advance Wars, the Cooking Mama
series, the Final Fantasy series, the Luminous Arc series (I love this
one), several Dragon Ball Z games, Bleach the 3rd Phantom (one
of my favorite games), Summon Night: Twin Age, Suikoden Tier-
kreis, the Shin Megami Tensei series, Infinite Space, and so much
more. There are so many awesome games on the Nintendo DS
that it’s really hard to pick out just a few favorites.

The Wii had some nice games I enjoyed playing; mostly the
Rayman Raving Rabbids series, which is amazing as a party
game, but also some more serious games, such as de Blob 1
and 2, Resident Evil 4, Mario Kart Wii (which is much better
than the N64 version), MadWorld, Xenoblade Chronicles, Red
Steel 2, Overlord, No More Heroes, The Last Story, Pandora’s
Tower, and many more.

Nintendo emulation on ODROID
When I started working with emulation on the ODROID

back in 2012, the possibilities were rather limited. There was
no 3D support, Lakka did not exist, and RetroArch was still
mostly unheard of at that time.

There were a couple of standalone emulators based on Sim-
ple DirectMedia Layer (SDL) that more or less worked, but
the big breakthrough came with Mednafen. Mednafen is a
multi-system emulator that allowed you to emulate all kinds
of consoles and handhelds at amazing speeds. Still, it had its
downsides. Super Nintendo wouldn’t run at a decent speed
and neither would PlayStation games, but many other plat-
forms worked fine.

While I still wasn’t into NES games, I found my passion
for the Game Boy Advance playing games like Riviera: The
Promised Land, different Dragon Ball Z games, Advance Wars,
Medabots, Summon Night 1 and 2, and more. Even later,
when the 3D GPU driver was available and Super Nintendo
emulation was finally working, I was not particularly interested
in Super Nintendo games. Up to that point, I only played a
few games for the Super Nintendo. I personally like the Game

Boy Advance better than the Super Nintendo. Aside from the
resolution, the Game Boy Advance is much better than the
Super Nintendo in any field.

Many games from the Super Nintendo also got released
for the Game Boy Advance, often with improved graphics and
sounds. Therefore, I usually played Game Boy Advance ver-
sions of a game, since they often were better than the Super
Nintendo version, in my opinion.

 I really enjoyed the Game Boy Advance, and some of
my favorite games of all time are either Game Boy Advance
games, or games I played for the first time on the Game Boy
Advance. There are a few Super Nintendo games that I like
a lot, such as E.V.O.: Search for Eden, but when it comes to
Nintendo, I usually end up choosing games for the Game
Boy Advance.

There are also other Nintendo consoles and handhelds
available for emulation on ODROID, including Virtual Boy,
Nintendo 64, Nintendo DS, and more. These emulators work
quite well, but none of them get near the amount of play time
as the time I play the Game Boy Advance emulators.

There are a few interesting games for the Nintendo 64, but
overall, I’m not a fan. I really enjoy the Nintendo DS, but using
a mouse or gamepad instead of a touch input means that the
experience using the NDS emulator is quite different from the
“real thing”. However, there are some games on the Nintendo
DS that are worth playing on ODROID, and I would say it’s
probably my second-favorite emulator for the ODROID. The
emulation is not perfect, since it has some speed issues, which
hopefully can be solved at some point in the future, but it is
still fun, especially on the ODROID-XU3/XU4.

Final thoughts
Although I’ve had some good experiences with the Game

Boy Advance and Nintendo DS and, to a lesser extent, the N64
and the Wii, I still don’t consider myself a Nintendo fanboy.
This could be due to having little exposure to Nintendo as a
child, but I feel also like I’ve just had better, or at least different,
options available.

This doesn’t mean that Nintendo doesn’t deserve credit. On
the contrary, the Game Boy Advance and Nintendo DS are
really great machines. Current consoles like the Wii U and
Switch will likely have a positive impact on the gaming indus-
try. Unfortunately, I’m not familiar with the GameCube, but I
feel I could could get some enjoyment out of it as well.

Still, options for Nintendo emulation on ODROID remain
limited to Game & Watch, Game Boy and Game Boy Color,
NES, Virtual Boy, Super Nintendo, Game Boy Advance, Nin-
tendo 64, and Nintendo DS. That is quite a number of con-
soles, but not many that I’m eager to play. In conclusion, I stand
with my original premise: I like Nintendo, but I’m not a fanboy.

ODROID MAGAZINE 21

After the first boot, you will receive
a message that reads “The RootFS Auto-
resize feature has changed!!! Once ev-
erything is done after auto-reboot, the
power will turn off. Wait a couple of
minutes. Please press the power button
if the blue LED is off.”

As soon as this image is booted up,
login in with the following access cre-
dentials, as shown in Figure 1:

$ user/root: odroid

$ password: odroid

Wait for a few seconds for the system

Hardkernel provides excellent
releases for every board it pro-
duces. The latest image for

the ODROID-XU4 (http://bit.
ly/2utQxEE) is Ubuntu 16.04 with the
Mate desktop as a graphical user inter-
face (GUI). For the last couple of years,
the company has preferred to provide
public releases of Linux/Ubuntu to users
with the Mate desktop. This is no acci-
dent, since Mate is a great GUI environ-
ment thanks to the hard work work done
by its development team. Nevertheless,
as good as it gets, occasionally users need
a change of pace. This simple guide pro-
vides exactly that: a brief, step-by-step
description of how to switch from the
Mate desktop to its LXDE equivalent,
transforming Ubuntu to a fully-func-
tional Lubuntu variant. Let’s take a look
at how to make this happen.

Installation
First, download the Software Release

for Linux/Ubuntu (v2.0) Kernel 4.9
XU3/XU4 from Hardkernel’s excellent
XU4 wiki page (http://bit.ly/2utQxEE)
and write it to an eMMC or microSD
card. The main features of this release
include:

•	 Linux Kernel LTS 4.9.27
•	 Ubuntu 16.04.2
•	 Updated Mali GPU driver to the

latest version (r17p0)

to load your newly made Mate desktop
environment, as shown in Figure 2.

First things first: it’s a good idea to
update/upgrade your system. It’s also
very easy. Open a terminal window
(Ctrl+Alt+T) and type the following
Linux commands, one by one, allowing
the system time to finish each step before
moving on to the next:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get dist-upgrade

Before rebooting, you will also need
to update the Kernel software:

$ sudo apt-get install \

 linux-image-xu3

$ sudo reboot

After rebooting, login again and then
open a terminal window (Ctrl+Alt+T).
Install the Lubuntu desktop by typing
the following command, as shown in
Figure 3.

MIGRATInG FROM
uBunTu MATE TO
LuBunTu
A STEp-BY-STEp GuIDE FOR
SwITCHInG TO An LXDE DESKTOp
by Miltiadis Melissas

LUBUNTU

Figure 1 - login screen

Figure 2 - Mate desktop environment

Figure 3 - Installing the lubuntu desktop

ODROID MAGAZINE 22

http://bit.ly/2utQxEE
http://bit.ly/2utQxEE
http://bit.ly/2utQxEE

also easy. From the Start menu, select
Preferences > Language Support and in-
stall the appropriate languages for your
system. English is installed as the default
language.

Add keyboard
layouts

If you are going to use Lubuntu as a
fully operational desktop, you will need
to select a keyboard layout, especially
if English is not your native language.
The process is a bit different this time.
Right-click on the panel and select Add/
Remove Panel Items. From there, click
Add and choose Keyboard Layout Han-
dler, as shown in Figures 8 and 9.

Add panel items
This last step is mainly for cosmetic

purposes. You can add a “Keyboard

$ sudo apt-get install lubuntu-

desktop

At this point, it’s a good idea to have
a drink or a satisfying snack while the
Lubuntu desktop is downloaded and
installed onto your system. As soon as
the installation is complete, reboot your
computer.

$ sudo reboot

It is now time to customize your new
Lubuntu desktop, as shown in Figure 4.

Modify time and date
Access the Start menu by clicking

on the LXDE icon, then select System
Tools > Time and Date. In the new win-
dow, set the appropriate time and day, as
shown in Figures 5 and 6.

Install languages
Installing the system’s languages is

LUBUNTU

LEDs” indicator to make your life a
bit easier by right-clicking the panel
and again choosing Add/Remove Panel
Items. From there, select Keyboard
LEDs and check each box to enable all
the LEDs, as shown in Figure 10

Notes
I hope you enjoyed this simple step-

by-step guide to transforming Ubuntu
to Lubuntu, and now it’s time for you
to give it a try. I would love to receive
your comments on my twitter account
(@Miltos01). Changes in life are always
necessary and important to keep it inter-
esting, and the same goes for Ubuntu!

Figure 4 - lubuntu desktop environment

Figure 6 - setting the time and day

Figure 5 - Opening the lubuntu
system tools

Figure 7 - english is the default
language for lubuntu

Figure 9 - Choosing the keyboard layout

Figure 8 - Opening the Add/Re-
move panel Items feature

Figure 10 - enabling the keyboard leDs

ODROID MAGAZINE 23

For testing, I did not bother pushing
the headers fully together, as shown in
Figure 1. If I had, the bonnet would sit
just 1mm above level with the tops of
the USB port shields, and the male pins
of the stacking header would be pushed
through the bonnet to be exposed and
accessible on top. It would be possible
to avoid using the stacking header if I
desoldered the SMT low-profile header
on the 3531 and put a standard-height
or extended-height female header in its
place.

I started with my trusty ODROID

There are many small I2C or SPI
OLED display boards on the
market, but most of them are tar-

geted at the Arduino market, and thus
have pin ordering inconvenient for use
on ODROIDs. At the time of this ar-
ticle, I have only seen three I2C OLED
display boards on the market designed
specifically to fit directly on the Rasp-
berry Pi GPIO header pins. All three of
them are monochrome and based on the
SSD1306 OLED/PLED driver chip.

Since fellow ODROID forum mem-
ber @eudoxos had a bad experience
with an Adafruit 128x32 monochrome
OLED display breakout board, I did not
want to take a chance on the two of the
three choices that are based on the same
128x32 display. A few forum mem-
bers had confirmed that a generic I2C
128x64 OLED display worked, so I fig-
ured Adafruit’s 128x64 OLED Bonnet/
pHat (product ID 3531) would work. It
does, and here is how.

Like most bonnets or pHats, the
Adafruit 3531 has a low-profile pass-
through SMT 5mm female 2x20 head-
er on the bottom. This is about 2mm
too short for the 3531 to fit securely if
placed directly onto the GPIO pins on
my ODROID C1+ because of the height
of the heatsink. I had to use a stacking
2x20 header as an extension to raise the
3531 above the heatsink.

C1+, re-imaged with Ubuntu 16.04
minimal and running in headless mode.
To get the Adafruit 3531 display work-
ing, I used the same driver library that
others confirmed to be working, which
is the Luma.OLED (http://bit.
ly/2tSA5gP).

Note that I did not actually build
from source. I read the installation in-
structions at http://bit.ly/2gVUCj2 and
figured out what works:

$ sudo -s

$ apt-get install python-dev

uSInG THE ADAFRuIT
128X64 OLED BOnnET On
An ODROID-C1+
pROGRAMMInG wITH LuMA.OLED AnD wIRInGpI
by Dennis Chang (@dchang0)

OLED

Figure 1 - Adafruit 3531 mounted on the ODROID-C1+

ODROID MAGAZINE 24

http://bit.ly/2tSA5gP
http://bit.ly/2tSA5gP
http://bit.ly/2gVUCj2

lowing source code as testdisplay.py:

from luma.core.interface.serial

import i2c, spi

from luma.core.render import

canvas

from luma.oled.device import

ssd1306, ssd1325, ssd1331, sh1106

rev.1 users set port=0

substitute spi(device=0,

port=0) below if using that in-

terface

serial = i2c(port=1,

address=0x3C)

substitute ssd1331(...) or

sh1106(...) below if using that

device

device = ssd1306(serial)

with canvas(device) as draw:

 draw.rectangle(device.

bounding_box, outline=”white”,

fill=”black”)

 draw.text((30, 30), “Hello

ODROID”, fill=”white”)

raw_input()

python-pip libfreetype6-dev

libjpeg-dev

$ pip install --upgrade pip

$ pip install mock

$ pip install pytest

$ pip install --upgrade luma.oled

The install went well, and mock and
pytest are installed as prerequisites for
Luma.OLD. Make sure to stay in the
sudo -s session for the rest of the steps in
this article.

Type the following command to en-
able I2C:

$ modprobe aml_i2c

$ echo “aml_i2c” | sudo tee /etc/

modules

You can optionally install and use
i2cdetect to scan the I2C bus for the dis-
play:

$ apt-get install i2c-tools

$ i2cdetect -y 1

This is how the Adafruit 3531 shows
up in the scan (as address 0x3c):

 0 1 2 3 4 5 6 7 8 9

a b c d e f

00: -- -- -- -- -- -- --

-- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- --

-- -- 3c -- -- --

40: -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- --

-- -- -- -- -- --

70: -- -- -- -- -- -- -- --

I immediately tested the display with
this simple Python code from the in-
structions at:

http://bit.ly/2tsEQ10. Save the fol-

OLED

To run the above program, type the
following command:

$ python testdisplay.py

A big plus is that the Adafruit 3531
includes two buttons and a 5-way joy-
stick, something I really needed for a
battery-powered, portable C1+-based
project that needed a simple menu in-
terface. The ODROID 3.2 TFT touch-
screen consumed too much power and
was too hard to operate while walking
about, but the buttons and joystick
would have been perfect.

To get the joystick and buttons work-
ing, I used HardKernel’s port of wiringPi
to the ODROID. Install Git if it is not
already available:

$ apt-get install git

Install swig3.0 and python-dev:

$ apt-get install python-dev

python-setuptools

$ apt-get install swig3.0

Get and build HardKernel’s wiringPi
2 for Python:

Figure 2 - Demo wiringpi project running on the ODROID-C1+

ODROID MAGAZINE 25

http://bit.ly/2tsEQ10

R_pin = 4

C_pin = 7

U_pin = 0

D_pin = 3

A_pin = 21

B_pin = 22

buttons = [0, 2, 3, 4, 7, 21, 22]

wpi.wiringPiSetup()

for x in buttons:

 wpi.pinMode(x, INPUT)

 wpi.pullUpDnControl(x, PUD_

UP)

 wpi.digitalWrite(x, 0)

while True:

 time.sleep(0.05)

 for x in buttons:

 print “x: %d state:

%d” % (x, wpi.digitalRead(x))

Pressing and holding buttons will
change the state from 1 to 0. The fol-
lowing output is with the joystick held
right:

x: 0 state: 1

x: 2 state: 1

x: 3 state: 1

x: 4 state: 0

x: 7 state: 1

x: 21 state: 1

x: 22 state: 1

The above output verifies that the
code works! The buttons and joystick
pin numbers are listed in the source code
above.

$ git clone https://github.com/

hardkernel/WiringPi2-Python.git

$ cd WiringPi2-Python

$ git submodule init

$ git submodule update

$ swig3.0 -python -threads

wiringpi.i

$ python setup.py build install

Through trial and error, I discovered
the correct pin numbers for the Adafruit
3531’s buttons and joystick. They are
very different from the pin numbers pro-
vided by Adafruit for use with wiringPi
for the Raspberry Pi.

Here is the source code for the dem-
onstration of the buttons, which should
be saved as hello.py:

from luma.core.interface.serial

import i2c, spi

from luma.core.render import

canvas

from luma.oled.device import

ssd1306, ssd1325, ssd1331, sh1106

import wiringpi2 as wpi

import time

rev.1 users set port=0

substitute spi(device=0,

port=0) below if using that in-

terface

serial = i2c(port=1,

address=0x3C)

substitute ssd1331(...) or

sh1106(...) below if using that

device

device = ssd1306(serial)

with canvas(device) as draw:

 draw.rectangle(device.

bounding_box, outline=”white”,

fill=”black”)

 draw.text((30, 30), “Hello

ODROID”, fill=”white”)

INPUT = 0

PUD_UP = 2

L_pin = 2

OLEDTIPS AND TRICKS

ODROID-Xu4
LED COnTROL
edited by Rob Roy

We previously featured an ar-
ticle on how to control the
LEDs on the ODROID-

U3 (http://bit.ly/2vpLLNj). You
can have similar control on the XU4
blue LED using a trigger node in the
/sys directory. The red LED is hard-
wired to the power input rail and so
is not able to be controlled via soft-
ware.

1. turn off the blue leD:

$ su -

$ echo none > /sys/class/leds/

blue\:heartbeat/trigger

2. turn on the blue leD:

$ su -

$ echo default-on > /sys/

class/leds/blue\:heartbeat/

trigger

3. show a heartbeat on the blue leD
(factory setting):

$ su -

$ echo heartbeat > /sys/class/

leds/blue\:heartbeat/trigger

There are many other trigger modes,
although not all of them are enabled.
They can be listed using the follow-
ing command:

$ cat /sys/class/leds/

blue\:heartbeat/trigger

To make the change take effect on
every boot, add a line to /etc/rc.local.
For example, to turn off the blue
LED permanently, add the following
snippet to /etc/rc.local:

echo none > /sys/class/leds/

blue\:heartbeat/trigger

ODROID MAGAZINE 26

http://bit.ly/2vpLLNj

COMMUNITY SPOTLIGHT

CRYpTOCuRREnCY MInInG
A VIABILITY pROjECT AnD STABILITY TEST
FOR KERnEL VERSIOn 4.9 On An
ODROID-Xu4 HIGH pERFORMAnCE
COMpuTInG CLuSTER
edited by Rob Roy

Hardkernel used crypto currency mining to test the XU4 Kernel 4.9.27
stability earlier this year. Twenty XU4 boards, set up as a supercomput-
ing cluster, have been running the Verium coin (VRM) mining software

to utilize all 160 CPU cores and 40GB RAM as much as possible. After two
weeks of intensive testing, Hardkernel can confidently say that the Kernel 4.9
LTS on XU4 is quite stable. Check out the demo video at https://youtu.be/
wbffhvn_J4E.

We had to reboot all of them two times to update the Kernel when 4.9.28 and
4.9.30 were released. A couple of units had to be manually reset because of 5V
DC cable issue, so we added some more power wires to reinforce the power rails.
Other than that, there was no other issues.

The cost of setting up a cluster is detailed below, for a total of approximately
USD $1500:

20 x XU4 = UsD$1,180
20 x 8g microsD cards = UsD$160
20 x lAn cable = UsD$10
1 x 5V/80A psU (http://amzn.to/2vkKjus) = UsD$45
1 x 24 port network switch (http://amzn.to/2vfKQyc) = UsD$41
Cables, plugs, and pCB spacers = $30
Optional AC power gauage meter = $30

We measured the power rate, and its accumulated power is 65KWh and
monthly power consumption could be 130 KWh. The estimated monthly elec-
tricity cost will be around USD$15. We earned only 100 VRM in two weeks.
If we consider some exchange fees for changing VRM to BTC to US currency,
its actual value is $90 at this moment. Our estimated monthly income will be
USD$90 x 2 - USD$15 = USD$165. We have to keep running this the test
equipment for about 9 months to get an even return on investment (ROI).

We also learned how much faster the XU4 is than the Raspberry Pi 3. The
average hash rate (Hashes per minute) on XU4 is 390H/min, while the RPi3 is
only 110H/min, which means that the XU4’s computing power is 3.5x higher
than the RPi3. For further reading about the mining software setup and internal
algorithms, please refer to the following articles: CPU Mining is back! A complete
how to guide and profit analysis for Verium mining on a farm of single board com-
puters - Part 1: https://goo.gl/XM5ype, Part 2a: https://goo.gl/c38MWj, Part 2b:
https://goo.gl/4Gi8ax

wallet download: http://www.vericoin.info
Miner: https://github.com/effectsToCause/veriumMiner

For comments, questions, and suggestions, please visit the original thread at
http://bit.ly/2uh0ncy.

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE 27

https://youtu.be/wbffhvn_J4E
https://youtu.be/wbffhvn_J4E
http://amzn.to/2vkKjus
http://amzn.to/2vfKQyc
https://goo.gl/XM5ype
https://goo.gl/c38MWj
https://goo.gl/4Gi8ax
http://www.vericoin.info
https://github.com/effectsToCause/veriumMiner
http://bit.ly/2uh0ncy
http://www.reddit.com/r/odroid

in order to install Android OS to the memory card. An instruc-
tional video is available at https://youtu.be/9Zi2_OTSl_I and
https://youtu.be/NyQif1j2WkA. Note that the Smart Power 2
power supply (http://bit.ly/2j3hhcv) is used in the video.

First, download the Android operating system from the
Hardkernel website at http://bit.ly/2vkGwgX. Make sure to
wait for the complete download. To install, or “flash”, Android
to the memory card, we recommend using Etcher, as described
at http://bit.ly/2f61k5x. You can download etcher from
https://etcher.io/. Etcher works on Mac OS, Linux and
Windows, and is the easiest option for most users. Etcher also
supports writing OS images directly from the zip file, with-
out any unzipping required. To install the OS on an eMMC
module, you will need an eMMC module reader (http://bit.
ly/2ugIKK8) and a USB multi reader (http://bit.ly/2vpTv1y)
to connect it to your PC.

To install Android on an eMMC, follow the instructional
video at https://youtu.be/XfJY4KxLxps. If using a microSD
card, watch https://youtu.be/SnrqyoUBry4.

When OS installation is complete on the memory card,
connect the HDMI cable to your ODROID-C2, then plug

GETTInG STARTED
wITH AnDROID On THE
ODROID-C2
A BEGInnER’S GuIDE
edited by Rob Roy

ODROID-C2

There are two options for installing Android on an
ODROID-C2. Hardkernel offers a pre-installed
eMMC or microSD card, which would only require in-

stalling Google Play. Alternatively, the Android OS may be
downloaded from the Hardkernel website and installed manu-
ally onto the eMMC or microSD card. The required materials
for running Android on an ODROID-C2 are listed below:

• ODROID-C2 (http://bit.ly/1oTJBya)
• 5V/2A Power supply (US: http://bit.ly/2ugY0Xe, eU:
http://bit.ly/1X0bgdt, worldwide: http://bit.ly/

OhMyWx)
• Memory card pre-installed with an operating system
(eMMC: http://bit.ly/2vq2TCq, microsD card: http://
bit.ly/2u1fM5I)
• HDMI cable: http://bit.ly/2uSu3Ay
• Monitor or TV with an HDMI port

Watch the video https://youtu.be/fEyeMTS3idU at to see
how easy it is to get started! If you do not have a memory card
pre-installed with an operating system, please follow instruc-
tions below to install it onto the memory card.

In addition to all the items listed above, you will need a PC

ODROID MAGAZINE 28

https://youtu.be/9Zi2_OTSl_I
https://youtu.be/NyQif1j2WkA
http://bit.ly/2j3hhcv
http://bit.ly/2vkGwgX
http://bit.ly/2f61k5x
https://etcher.io/
http://bit.ly/2ugIKK8
http://bit.ly/2ugIKK8
http://bit.ly/2vpTv1y
https://youtu.be/XfJY4KxLxps
https://youtu.be/SnrqyoUBry4
http://bit.ly/1oTJBya
http://bit.ly/2ugY0Xe
http://bit.ly/1X0bgdt
http://bit.ly/OhMyWx
http://bit.ly/OhMyWx
http://bit.ly/2vq2TCq
http://bit.ly/2u1fM5I
http://bit.ly/2u1fM5I
http://bit.ly/2uSu3Ay
https://youtu.be/fEyeMTS3idU

the power supply. After a few seconds, you will see the home
screen of Android. For more information, please visit the orig-
inal Wiki article at article at http://bit.ly/2uhhlrj.

Installing Google Play
To install Google Play onto an ODROID-C2, the follow-

ing items are required:
ODROID-C2 (http://bit.ly/1oTJBya)
Internet connected via Ethernet cable (http://bit.

ly/2vg6v9I) or WiFi module (http://bit.ly/22nyxra)
If you want to download the Google Play to a PC and

transfer it to the C2, you will need to connect the C2 to PC
via an OTG cable (http://bit.ly/2vqf6H5).

An instructional video is available at https://youtu.be/
PKO8ZKJM_0c. The images below highlight the main steps in the
video. Open the browser on ODROID-C2 and visit http://
opengapps.org. We recommend using the “pico” version, but
the ODROID-C2 also supports micro and nano versions.

The video at
https://youtu.be/

wOhAgkkWnjI shows
how to login to
your Google ac-
count and open
Google Play.

For more infor-
mation, please visit
the original Wiki
article at http://

bit.ly/2vqgz0c.

ODROID-C2

ODROID MAGAZINE 29

http://bit.ly/2uhhlrj
http://bit.ly/1oTJBya
http://bit.ly/2vg6v9I
http://bit.ly/2vg6v9I
http://bit.ly/22nyxra
http://bit.ly/2vqf6H5
https://youtu.be/PKO8ZKJM_0c
https://youtu.be/PKO8ZKJM_0c
http://opengapps.org
http://opengapps.org
https://youtu.be/wOhAgkkWnjI
https://youtu.be/wOhAgkkWnjI
http://bit.ly/2vqgz0c
http://bit.ly/2vqgz0c

Please tell us a little about yourself.
I am 39 years old and was born in Sant Celoni, a town

50km north of Barcelona in Catalonia. I am married to my
wife Fiona and have 2 children, Joan and Ferran, who are 8 and
6 years old. We all live in Santa Maria de Palautordera, which
is a small village next to Sant Celoni. Fiona is a teacher at a
school of students with different levels of disability.

Since I was very young, I have had a great passion for elec-
tronics and programming, and once I finished my basic school,
I decided to study electronics and earned a degree in electronics
Engineering from the Universidad Politècnica de Catalunya in
2001. I later earned a senior electronics engineering degree
from the Universitat Autònoma de Barcelona in 2004.

As a result of different experiences in the field of machine vi-
sion, I founded the company OnTrace (www.on-trace.com) with
Josep Mesado, who was a colleague of mine at University. The
reason for creating the company was that we detected a market
need related to the analytics of people behavior in physical spac-
es. Taking into consideration high precision and operation in dif-
ferent environments as a main factors, we designed a 3D stereo-
scopic camera. That is when we started to work with ODROID
computing devices as a component of our smart cameras.

MEET An ODROIDIAn
MARTí BOnAMuSA, REAL-TIME
3D DATA AnALYTICS EnTREpREnEuR
edited by Rob Roy (@robroy)

MEET AN ODROIDIAN

Martí repairing a television in 2001

the scatron game got Martí started with electronics

Martí’s Family: Fiona, Joan and Ferran

How did you get started with computers?
My passion for electronics started at a very early age, and at

9 years old, I started making my first inventions with a game
called “Scatron”. When I was 12, my parents bought me a
Spectrum ZX as a gift to play games, but it allowed me to start
programming. By the time I was 15 years old, I had already
done several programs with BASIC.

At the age of 16, when I started studying electronics, I dis-
covered microcontrollers and started playing with them, espe-
cially with the PIC and 8031, and programming in assembler
was fascinating for me.

ODROID MAGAZINE 30

www.on-trace.com

top: people Counter 3D device)
Bottom: people Counter graph analyzing a busy area

Martí built fully functioning stereos using an ODROID-X2
(above) and an ODROID-XU4 (below)

MEET AN ODROIDIAN

What attracted you to the ODROID platform?
I started looking for embedded platforms, and mainly fo-

cusing on low power consumption and high performance, and
here is where I discovered the ODROID platform. We first
tested the X2, and came to the conclusion that it fit our needs.

We evolved from the X2 to the XU4 which offered higher
performance, and now with the new C2, it permits us to really
improve our devices and guarantee our market needs. Great
support and forums are also very useful and important to us.

How do you use your ODROIDs?
Currently we have several different products, with three of

them based on ODROIDs as a computing device:
A people counting device based on 3D camera and the XU4

(image: people counter3d.jpg)
A face recognition device using the ODROID-C1
A new version of 3D camera with PoE connectivity using

the ODROID-C2

Which ODROID is your favorite and why?
I have tested different ODROIDs: the X2, U2, U3, XU4,

C1 and C2, all with good results, but I had the best feeling and
experience with the U3. I am now working with the XU4, and
apart from having a very good performance, I think the power
consumption is excessive for our purposes. Although it is the
model that we are using now, it may not be the best option.
That’s why we are currently testing the new C2 and trying to
upgrade our devices to use it.
What innovations would you like to see in future Hardkernel prod-

ucts?
I’ve always missed having USB 2.0 connectivity in some of

the pin connectors. Other things would be an internal WiFi,
and on the C2 board, to have RTC on the device instead of
through the RTC Shield module as it is now.

What hobbies and interests do you have apart from computers?
I like sports in general, especially football and Formula 1

racing. I still play football at Sant Celoni’s veterans football
club. I also like trekking with my family, to take advantage of
the beautiful place where I live.

What advice do you have for someone wanting to learn more about
programming?

Beyond programming in assembler at University time, I
have never taken any programming courses and have taught
myself everything. Personally, what made me feel passionate
about programming was to see that I wrote some sentences
and the machine did exactly what I said. The first step is to feel
interest and curiosity about programming, and the next step
must be an internal desire to expand and improve the func-
tionalities of the program. Continue searching and testing,
and in the end it becomes easier. These days, the Internet puts
everything in our hands to do just about anything. It’s simply
about searching, filtering, and applying until you find the key.

ODROID MAGAZINE 31

