

Using your ODROID-XU4 as a Bluetooth A2DP Speaker or HFP
Handsfree Unit With Your iPhone
 December 1, 2017

The �rst is to stream audio via Bluetooth A2DP from an iPhone to an ODROID-XU4, and the second is to use the ODROID-
XU4 as an HFP Handsfree Unit for the iPhone during calls.

Custom Status Display For The ODROID CloudShell and CloudShell 2
 December 1, 2017

This article is not written to be a step-by-step guide on creating custom status display, but instead focuses on a general
approach.

Stereo Boom Bonnet: A Great Way To Enjoy Music On Your ODROID
 December 1, 2017

The I2S 2Watt Stereo Boom Bonnet Kit (https://goo.gl/1mXXVH) is a compact speaker system for the ODROID-XU4 and
ODROID-C1+/C2. It uses I2S as digital sound standard for audio output. It is very easy to install, and you’ll be rockin’ out in 15
minutes. To connect it to your ODROID, follow these

Boom Box: Sound Engineering a Better Speaker
 December 1, 2017

To improve the sound of Hardkernel’s Stereo Boom Bonnet (https://goo.gl/TrDU8u), I went to my local hobby shop and got
an “assortment pack” of styrene which happened to have some .080mil sheets and some tubing in it. I also purchased a little
styrene solvent for welding. I did everything by eye,

Home Assistant: Using Infrared, Motors, and Relays
 December 1, 2017

In this article, we are going to combine ODROIDs with a little bit of hardware and Home Assistant, so that we can start
converting non-smart appliances to “smart” appliances. We’ll be working with wires, doing a bit of soldering, connecting
relays, and in some cases working with mains voltage, so

Android Gaming: Stranger Things, Pocket Morty, and Streets of
Rage
 December 1, 2017

It’s easy to chill with your ODROID because there are so many Android gaming options for the Android operating system. In
this article, we’ll explore three new releases: Stranger Things: The Game, Pocket Morty’s, and Streets of Rage. Stranger
Things: The Game Straight from the hit TV show, here comes

Running YOLO On ODROID: YOLODROID
 December 1, 2017

This guide tells you how to get TinyYOLO installed and running on your ODROID-XU4.

Linux Gaming: Need for Speed II Second Edition
 December 1, 2017

Need for Speed II Second Edition (NFS2SE) was released with 3DFX support, more tracks and cars, along with mirror mode
and backward track mode, making it quite an improvement over the original Need for Speed II.

Exploring Software-De�ned Storage with GlusterFS on the ODROID-
HC1: Part 2 – Client Performance
 December 1, 2017

I am going to show you how to setup NFS and Samba clients to access the GlusterFS volume and compare the performance
of the di�erent clients.

Meet An ODROIDian: Andrea Cole, Assistant Editor of ODROID
Magazine
 December 1, 2017

Please tell us a little about yourself. I’m currently a sales admin for Lab Manager, an industry-focused publication for the
scienti�c community. I’ve been a part of their parent company, LabX Media Group, for over 10 years, and have been working
speci�cally in the Lab Manager division for four years.

Using your ODROID-XU4 as a Bluetooth A2DP Speaker or HFP
Handsfree Unit With Your iPhone
 December 1, 2017 By Dennis Chang ODROID-XU4, Tinkering

Two use cases are presented in this article that are of
special interest to those building car computers using
ODROIDs. The �rst is to stream audio via Bluetooth A2DP
from an iPhone to an ODROID-XU4, and the second is to
use the ODROID-XU4 as an HFP Handsfree Unit for the
iPhone during calls. We will be using the Bluez 5 bluetooth
stack, the oFono mobile application development
framework and the PulseAudio sound system software for
this project. Although I have not tested it, this procedure
should work with an Android phone.

A2DP is very easy to setup and is completed on the way to
setting up handsfree. HFP is more di�cult to setup
because it requires building PulseAudio 11 from source
and replacing the PulseAudio 8 package preinstalled in
Ubuntu MATE. I have divided this article into two sections
so that those of you only interested in A2DP can avoid the
more di�cult steps in getting HFP to work. If you are only
interested in the Bluetooth speaker functionality, you can
use the ODROID-XU4’s built-in audio out over the HDMI
port instead of the C-Media CM108-based USB audio
adapter. To keep things simple, this article assumes you
will be using the USB audio adapter listed below.

Before you start, note that documentation and discussions
for the latest versions of Bluez 5, oFono, and PulseAudio
are somewhat sparse. Most of everything I found online
for this project’s use case was too old, discussing prior
versions of each software. If you run across a problem
trying out this project, there is a fairly high chance you will
not �nd anyone knowledgeable enough to help, myself
included! I advise you to not stray too far from these
instructions and hardware selection until you have gotten

your setup working properly, then you can get creative
knowing you have a working baseline to go back to.

Phase 1: A2DP
A2DP can be accomplished using the packages preinstalled
with Ubuntu 16.04.3 MATE: Bluez 5.37, oFono 1.17, and
PulseAudio 8. Start with an ODROID-XU4 running the
o�cial Ubuntu 16.04.3 with 4.9 kernel MATE image and
run all the OS updates before starting this project. I used
the ubuntu-16.04.3-4.9-mate-odroid-xu4-20170824.img
image �le. You are probably better o� choosing the
ODROID-XU4 instead of the ODROID-XU4Q, since the extra
CPU performance may help reduce call audio latency or
improve audio quality if you decide to go further and
optimize PulseAudio’s resampling.

The speci�c devices I used for this project are:

iPhone 5S

Cambridge Silicon Radio Bluetooth USB adapter:
http://bit.ly/2gNybJW.

Sanwu Audio SW-HF07 USB audio adapter (with a
C-Media CM108 chipset that is known to work on
ARM LINUXes with the built-in driver):
http://bit.ly/2zEBIWZ.

Headset with separate 3.5mm microphone and
headphone plugs for testing

Figure 1 – Closeup of the USB bluetooth and audio adapters

Insert the USB Bluetooth and audio adapters into available
USB ports on the ODROID-XU4, then insert the headset’s
headphone and microphone plugs into the corresponding
jacks on the audio USB adapter.

Selecting the correct audio interface
Log in to the MATE desktop as the default user “odroid”.
This step is important because PulseAudio is setup to run
in per-user mode by default, so it will start automatically
after you log in but is not running when the logon screen is
being displayed. We will not be setting up PulseAudio to
run in system-wide mode in this article, as it introduces
extra challenges.

Test the audio using the built-in Sound Preferences
application in MATE. Change and save the con�guration as
necessary, testing the sound as needed. Since I am using a
C-Media USB audio adapter, I had to select it as the default
Input and Output device as opposed to the ODROID-XU4’s

http://bit.ly/2gNybJW
http://bit.ly/2zEBIWZ

built-in audio (output through the HDMI port). Leave the
Sound Preferences application open so that PulseAudio is
running in your user session.

Figure 2 – Selecting the USB Audio Device as input in the Sound
Preferences control panel

Figure 3 – Selecting the USB Audio Device as output in the Sound
Preferences control panel

In the /home/odroid/.con�g/pulse directory, look for the
�les ending in “-default-sink” and “-default-source” and
write down the �lenames and their contents. You should
see something like this:

dc87f36fc06c441a85ff7269baabcdefdefault

sink:

 alsa_output.usbC

Media_Electronics_Inc._USB_Audio_Device

00.analogstereo

dc87f36fc06c441a85ff7269baabcdefdefault

source:

 alsa_input.usbC

Media_Electronics_Inc._USB_Audio_Device

00.analogmono

You want the selected device in both �les to be the audio
interface that has the microphone, which is typically not
the built-in HDMI audio output. Use the Sound application
to test the audio input and output before moving on to the
next step.

Bluetooth pairing with your iPhone
Bluez 5.x is already preinstalled in the Ubuntu 16.04.3
MATE image, so all we have to do is pair your iPhone to the
ODROID-XU4. We will use the included bluetoothctl
command, which must be run with root privileges, or it will
error out:

$ sudo s

bluetoothctl

 [bluetooth]# show

You should see something like this:

Controller 00:AA:BB:CC:DD:11

 Name: odroid

 Alias: odroid

 Class: 0x1c0000

 Powered: yes

 Discoverable: no

 Pairable: yes

 UUID: Headset AG (00001112000010008000

###########)

 UUID: Generic Attribute Profile (00001801

000010008000###########)

 UUID: A/V Remote Control (0000110e0000

10008000###########)

 UUID: OBEX File Transfer (000011060000

10008000###########)

 UUID: Generic Access Profile (00001800

000010008000###########)

 UUID: OBEX Object Push (0000110500001000

8000###########)

 UUID: PnP Information (0000120000001000

8000###########)

 UUID: A/V Remote Control Target (0000110c

000010008000###########)

 UUID: IrMC Sync (00001104000010008000

###########)

 UUID: Audio Sink (0000110b000010008000

###########)

 UUID: Audio Source (0000110a00001000

8000###########)

 UUID: Vendor specific (0000500500001000

8000###########)

 UUID: Message Notification Se.. (00001133

000010008000###########)

 UUID: Phonebook Access Server (0000112f

000010008000###########)

 UUID: Message Access Server (000011320000

10008000###########)

 Modalias: usb:v1D6Bp0246d0525

 Discovering: no

If PulseAudio was not running, the list of pro�les would be
much shorter.

If “Powered” is not “yes”, type the following command:

power on

Now, let us start pairing by scanning for nearby devices:

scan on

On your iPhone, go to Settings > Bluetooth and make sure
it is turned on and discoverable. You will eventually see
your iPhone show up in the scan by its Bluetooth MAC
address. Write this MAC address down as you will use it
repeatedly in place of [MAC] below.

scan off

agent KeyboardOnly

defaultagent

pair [MAC]

This might fail; try again until it succeeds in initiating the
pairing and asks for the passkey. Look on your iPhone for
the passkey and input it when it says:

Attempting to pair with [MAC]

 [CHG] Device [MAC] Connected: yes

 Request passkey

 [agent] Enter passkey (number in 0999999):

connect [MAC]

trust [MAC]

info

You should see details on your iPhone and its Bluetooth
pro�les. On your iPhone, it should show that the device
called “odroid” is connected.

exit

Figure 4 – Connecting the ODROID in the iPhone Bluetooth settings

At this point, you should be able to send audio playback
from your iPhone’s iTunes app to the ODROID-XU4 over
Bluetooth. If you cannot, you should go into the iPhone’s
Bluetooth preferences and force the reconnect to “odroid,”
even if it is already connected.

Figure 5 – Sending audio playback via Bluetooth from iTunes to the
ODROID-XU4

It is also possible to hear the dialing when using the Phone
app, but because we have not yet set up the ODROID-XU4
with HFP, it will not receive the audio once the Phone app
connects the call.

Phase 2: HFP
The next step is to install Ofono 1.17.x for the handsfree
Bluetooth pro�le, since it is not preinstalled with the OS
image. Assuming that we are still in the same “sudo -s”
session, type the following command:

aptget install ofono

Check to see that the Bluetooth pro�le has been added:

bluetoothctl

 [bluetooth]# show

Controller 00:AA:BB:CC:DD:11

 Name: odroid

 Alias: odroid

 Class: 0x3c0000

 Powered: yes

 Discoverable: no

 Pairable: yes

 UUID: Headset AG (00001112000010008000

###########)

 UUID: Generic Attribute Profile (00001801

000010008000###########)

 UUID: A/V Remote Control (0000110e0000

10008000###########)

 UUID: OBEX File Transfer (000011060000

10008000###########)

 UUID: Generic Access Profile (00001800

000010008000###########)

 UUID: OBEX Object Push (0000110500001000

8000###########)

 UUID: PnP Information (0000120000001000

8000###########)

 UUID: A/V Remote Control Target (0000110c

000010008000###########)

 UUID: IrMC Sync (00001104000010008000

###########)

 UUID: Audio Sink (0000110b000010008000

###########)

 UUID: Audio Source (0000110a00001000

8000###########)

 UUID: Handsfree (0000111e000010008000

###########)

 UUID: Vendor specific (0000500500001000

8000###########)

 UUID: Message Notification Se.. (00001133

000010008000###########)

 UUID: Phonebook Access Server (0000112f

000010008000###########)

 UUID: Message Access Server (000011320000

10008000###########)

 Modalias: usb:v1D6Bp0246d0525

 Discovering: no

Note that we now have the Handsfree pro�le (5th from the
bottom of the UUID section of the list). Next, quit
bluetoothctl:

exit

At this point, it is possible to start a phone call with the
iPhone Phone app and select the “odroid” device as the
handsfree audio, and you will hear the keypad tones as
you dial the call, but as soon as the call starts, the ODROID-
XU4 will drop the audio and cause the iPhone to switch
from “odroid” to its internal speaker and internal
microphone.

Here is where a little experimentation is required. The
Ubuntu-packaged PulseAudio 8 apparently has a bug or is
missing a feature that causes the call audio to drop and
�lls /var/log/syslog with these error messages (visible if
you set PulseAudio to debug logging):

D: [bluetooth] moduleloopback.c: Requesting

rewind due to end of underrun.

I: [alsasinkbcm2835 ALSA] module

loopback.c: Could not peek into queue

The solution is to uninstall PulseAudio 8 and then build
and install PulseAudio 11.1 (the latest version as of this
writing) from source code, as detailed below.

You should still be in the same “sudo -s” session after
running bluetoothctl. If not, type the following command:

$ sudo s

You might want to make a backup of the PulseAudio
autostart �le here to be reused later:

cp /etc/xdg/autostart/pulseaudio.desktop ~

aptget remove pulseaudio

aptget autoremove

dpkg purge pulseaudio

It might be a good idea to remove the old PulseAudio
con�g folder:

rm fr /etc/pulse

PulseAudio 8 has now been removed, so now we get and
build and install PulseAudio 11.1:

aptget builddep pulseaudio

aptget install git

exit

$ cd ~

Get the source code with git using one of the two
commands below:

$ git clone

git://anongit.freedesktop.org/pulseaudio/pul

seaudio

or:

$ git clone

http://anongit.freedesktop.org/git/pulseaudi

o/pulseaudio.git

PulseAudio is also released in compressed archives if you
do not want the development version in the git repository.

$ cd pulseaudio

$ export CFLAGS=fomitframepointer

$./autogen.sh

$ make

The build will take about 15 minutes and will issue a lot of
warnings, but should end without any major errors. If the
build went well, and it should, you may install PulseAudio.

$ sudo make install

Note that PulseAudio built from source places its con�g
�les in /usr/local/etc/pulse, not in /etc/pulse as the
Ubuntu-provided PulseAudio does.

There is one setting we will enable in PulseAudio’s con�g
�le to allow the mono microphone to be remixed to
stereo. If not done, the microphone audio will be
discarded.

$ sudo vi /usr/local/etc/pulse/daemon.conf

Uncomment the following line by deleting the semicolon in
front of it and save the �le:

enableremixing = yes

You must reboot the ODROID-XU4 and log back in as the
odroid user now, otherwise PulseAudio will misbehave and
cause crackling on the microphone audio. Rebooting will
cause the iPhone to lose its Bluetooth connection to the
ODROID. Next, you can start PulseAudio (without the
bene�t of the scripts that automatically started it on
logon):

pulseaudio start D

At this point, you should be able to route the call audio to
the ODROID. Reconnect your iPhone to the “odroid” device
by going to Settings > Bluetooth and tapping “odroid” in
the list of paired devices.

Start by playing some music using the iPhone’s iTunes.
Then, place a call and hear the audio from the call through
the ODROID. The �nal test is to speak through the
microphone and have the other side con�rm they can hear
you.

Figure 6 – Testing the microphone during a phone call using the
iPhone

Finishing up
Note that some of the features of the Ubuntu-provided
Sound panel are now broken because we built and
installed PulseAudio from scratch. Notably, the “Test
Speakers” utility on the Hardware tab does not seem to
work any more, and you will not hear MATE UI sound
e�ects. Yet, I was still able to visually monitor the
microphone input on the Input tab and adjust the volume
using the Volume slider in the system tray. Setup
PulseAudio to start automatically in per-user mode by
creating this �le (or copy the old one back in place, a
process I did not test):

/etc/xdg/autostart/pulseaudio.desktop

[Desktop Entry]

 Version=1.0

 Name=PulseAudio Sound System

 Comment=Start the PulseAudio Sound System

 Exec=startpulseaudiox11

 Terminal=false

 Type=Application

 Categories=

 GenericName=

 XGNOMEAutostartPhase=Initialization

 XKDEautostartphase=1

 NoDisplay=true

Reboot the ODROID-XU4 and log in as the “odroid” user,
then make sure PulseAudio is running before reconnecting
your paired iPhone.

Troubleshooting
The above procedure has been tested carefully several
times, so I did not cover a lot of troubleshooting here. If

something does go wrong, I have found that these simple
steps often work to set things right:

1) Reboot the ODROID-XU4 (remembering to start
PulseAudio if you are not starting it automatically)

2) Go into iOS Settings > Bluetooth and make sure the
“odroid” device is connected. If it is, then disconnecting it
and reconnecting is a good idea.

3) In the worst case, having the iPhone forget the device
and the redoing the pairing almost always �xes things.

For any other errors, your best bet is to watch the logs
with the following command:

$ sudo tail f /var/log/syslog | grep

'bluetooth\|ofono\|pulse'

Bluez 5, oFono, and PulseAudio are each very complex, so
you should focus on searching for forum discussions
about exactly the error messages you see in the log, if you

get any. It is possible to con�gure each one to increase
their logging level. I have found that changing log-level =
debug in PulseAudio’s /usr/local/etc/pulse/daemon.conf is
enough. It was usually not necessary for me to watch
oFono or Bluez debug logs while troubleshooting.

Keep in mind that the audio input and output volume
levels are not controlled by the iPhone. They are controlled
by PulseAudio, and the easiest controls to use are the
volume setting slider in Ubuntu MATE’s system tray and
the input slider in the Sound application. Also, some USB
audio adapters and wired microphones have very low
input gain. Even with the PulseAudio input volume cranked
all the way up, they might be too quiet for your needs. You
can always try a di�erent microphone, di�erent USB audio
adapter, or use a small analog ampli�er in between the
mic and the USB audio adapter. If you are unhappy with
the audio quality, it is possible to tweak PulseAudio to
improve its performance and quality. That is a vast subject
area and is not covered here.

Finally, I noticed that the iPhone does not aggressively
reconnect to the ODROID-XU4 via Bluetooth like it does
with my o�-the-shelf Bluetooth speaker, which is also
Cambridge Silicon Radio chipset-based. There are probably
some settings within Bluez that can change the way it
connects to paired devices. That is also not covered here.

Conclusion
If you follow the instructions above and stick as closely to
the hardware selection as possible, you will have your
ODROID-XU4 working properly as an A2DP Bluetooth
speaker or HFP Handsfree unit for your car computer
project. You are encouraged to build on top of this
foundation, such as writing or porting an app that uses
oFono’s comprehensive API to control the iPhone via a
touchscreen UI on your car computer. If you do �gure this
next project out, please share your �ndings with the
ODROID community by writing about it for this magazine.

Custom Status Display For The ODROID CloudShell and
CloudShell 2
 December 1, 2017 By Mike Partin CloudShell, ODROID-XU4

This article is not written to be a step-by-step guide on
creating custom status display, but instead focuses on a
general approach. To follow along, you will need a basic
level of programming knowledge. Familiarity with any
programming language will do, as I will look into where
and how to �nd the information we need for our goal. That
being said, I also included is a link to the project I wrote
along this article, which is written in the Go language.

If you have a ODROID CloudShell or CloudShell 2 case, you
most likely have been using the cloudshell-lcd package,
and have seen how useful that information display is. My
problem came from wanting more information to be
displayed, and from the small text being hard to read on
the CloudShell from across the room. I wanted something
more visual that could be read quickly and instantly
understood. Progress bars, seemed like a good enough
answer, so there I went. Most of the information necessary
can be gathered by reading �les in /proc on Linux, this
could be accomplished with the linproc �lesystem.

CPU Usage
Knowing that I wanted CPU, RAM, swap, networking, and
disk statistics, I had a good place to start. Linux has made
CPU usage, and most other stats, pretty easy as the
information available in ‘/proc/stat’. More information is
available at http://bit.ly/2jGKrRd. The �rst line gives us an
aggregation of all the core statistics, with the following
�elds represented:

* user: Time spent in user mode
* nice: Time spent in user mode with low priority (nice)
* system: Time spent in system mode
* idle: Time spent in the idle task.

* iowait: Time waiting for I/O to complete. However,
unreliable see the proc(5) man page for details.
* irq: Time servicing interrupts
* softirq: Time servicing softirqs
* steal: Stolen time, time spent in other operating systems,
in virtualization workloads
* guest: Time spent running a virtual CPU for guest OS’s
(virtual workloads)
* guest_nice: Time spent running a niced guest (virtual
workloads)

Since space is at a premium on our display, we’re only
worrying about the �rst line, since it gives us our total
stats. The following command will print out only the �rst
line from ‘/proc/stat’.

$ head n1 /proc/stat

 cpu 817905 909158 818680 133949276 2463 0

11128 0 0 0

To gather our statistics, we need a delta, that mean we
need to read the value, wait for a period of time, for
instance 1 second, and then read another. The di�erence
between these values tells us how busy the system was for
that second. The numbers will be odd, they won’t seem like
timestamps, and there is a good explanation for that, since
they aren’t. They’re a counter for what’s called “ji�es”. For
�ner grained measurements, such as actual processor
time spent on each attribute, one would need to �nd the
static value HZ from the kernel. This command should get
that value.

$ zgrep i hz /proc/config.gz

This value is roughly the number of ticks per second, which
is 1000 on most intel compatible platforms, but embedded
systems often use 100. For our purposes, we can just get a
measurement of process vs work time:

$ head n1 /proc/stat ; sleep 1; head n1

/proc/stat

 cpu 885034 1050588 935349 152731137 2546 0

12670 0 0 0

 cpu 885039 1050588 935350 152731533 2546 0

12670 0 0 0

$ tot1=$((885034 + 1050588 + 935349 +

152731137 + 2546 + 12670))

$ wrk1=$((935349 + 152731137 + 2546 +

12670))

$ tot2=$((885039 + 1050588 + 935350 +

152731533 + 2546 + 12670))

$ wrk2=$((935350 + 152731533 + 2546 +

12670))

$ tot3=$((${tot2} ${tot1}))

$ wrk3=$((${wrk2} ${wrk1}))

$ python c "print((${wrk3}.0 / ${tot3}.0) *

100.0)"

RAM and Swap Usage
RAM statistics can be pulled from multiple sources. For
instance, one could read them from ‘/proc/meminfo’.
However, I chose not to because the values are in kilobytes
instead of bytes. I chose a direct syscall rather than
opening a �le with the resulting �le processing. Below is a
small program written in Go using CGO instead of the
syscall package, which I did for simplicity. It uses

http://bit.ly/2jGKrRd

“sysconf(3)”, which can gather quick memory statistics, for
more information, visit http://bit.ly/2jBNXfI.

package main

// #include

 import "C"

 import "fmt"

func main() {

 maxRam := int64(C.sysconf(C._SC_PHYS_PAGES)

* C.sysconf(C._SC_PAGE_SIZE))

 freeRam :=

int64(C.sysconf(C._SC_AVPHYS_PAGES) *

C.sysconf(C._SC_PAGE_SIZE))

 usedRam := (maxRam freeRam)

 ramPercUsed := (float64(usedRam) /

float64(maxRam)) * 100.0

 fmt.Println("total =", maxRam)

 fmt.Println("free =", freeRam)

 fmt.Println("used =", usedRam)

 fmt.Println("(used / total) * 100 =",

ramPercUsed)

 }

This method gives you both the amount of used and
available memory pages. This, multiplied by the system’s
page size constant _SC_PAGE_SIZE, gives us the amount of
used and available memory. This statistic was easy, and
with less “moving parts” than the CPU usage.

Swap statistics, on the other hand, can easily, reliably, and
with no additional calculation overhead, be read out of the
“/proc/swaps” �le. It looks like this:

$ cat /proc/swaps

 Filename Type Size Used Priority

 /dev/sda2 partition 8388604 0 1

 ...

This is pretty self explanatory, and the size and used
columns are both measured in bytes.

Network Usage
This one can be fun. First, you need to know what network
device you want to measure. You can �nd this list in
multiple ways. One way would be to parse “ifcon�g -a” or
“ip addr” output. This is a bit cumbersome when compared
to other methods such as listing the contents of
“/sys/class/net/”. On my system, this returns “eth0”, “lo”,
and “wlan0”. Getting the interface speed is as simple as
using the following command:

$ cat /sys/class/net/eth0/speed

 1000

The next step is to measure our throughput. We will take
periodic values like we used for measuring CPU usage. In
this article, I’ll be focusing on the eth0 interface, and the
data I’m after can be found in
“/sys/class/net/eth0/statistics/rx_bytes” and
“/sys/class/net/eth0/statistics/tx_bytes”. They have a
format like the following, which easily gives us basic
network metrics:

$ cat

/sys/class/net/eth0/statistics/rx_bytes

 324429106

Disk Usage
There are two kinds of disk usage we might want to
measure here: throughput and capacity. The �rst can be
pulled similarly to many of the other statistics we’ve
gathered so far from the “/proc” directory. The �le
“/proc/diskstats” will contain data similar to the following:

8 0 sda 52410 323 1699276 29193 450364

121816 4772512 41466 0 19286 70376

 8 1 sda1 101 0 6594 93 1 0 8 0 0 70 93

 8 2 sda2 46 0 4424 43 0 0 0 0 0 33 43

 8 3 sda3 52238 323 1686170 29020 448708

121816 4772504 41316 0 19113 70040

 8 16 sdb 81 0 4184 33 0 0 0 0 0 16 33

The �elds are de�ned in the Linux kernel source tree in the
�le “Documentation/iostats.txt”:

Major number

Minor number

Device name

Reads completed

Reads merged

Sectors read

Time spent reading (in ms)

Writes completed

Writes merged

Sectors written

Time spent writing (in ms)

Iops currently in progress

Time spent in iops (in ms)

Weighted time spent in iops (in ms)

It’s easy to see how to �nd the throughput measurements,
but what about disk capacity? One way to do it is with a bit
of C (or Go, Rust, Nim, Python, Ruby, or whatever else that
can interface to C) and the “statfs(2)” syscall. Go has a
syscall package, as I mentioned earlier, that I’m going to
use again for this particular example:

package main

import (

 "fmt"

 "syscall"

)

func main() {

 stat := &syscall.Statfs_t{}

 syscall.Statfs("/", stat)

 fmt.Println("Total space:", (stat.Blocks *

uint64(stat.Bsize)))

 fmt.Println("Free space :", (stat.Bfree *

uint64(stat.Bsize)))

 }

Saving that code to �le as “disk.go” and running it will give
you:

$ go run disk.go

 Total space: 87352057856

 Free space : 35807154176

The new LCD status display on the CloudShell

This project was a fun one, since I got to play with several
new things like CGO! I hope you’ve gotten something out
of it as well. The project I alluded to in the beginning can
be found on GitHub at http://bit.ly/2hEUa6B.

http://bit.ly/2jBNXfI
http://bit.ly/2hEUa6B

Stereo Boom Bonnet: A Great Way To Enjoy Music On Your
ODROID
 December 1, 2017 By Justin Lee Tinkering

The I2S 2Watt Stereo Boom Bonnet Kit
(https://goo.gl/1mXXVH) is a compact speaker system for
the ODROID-XU4 and ODROID-C1+/C2. It uses I2S as digital
sound standard for audio output. It is very easy to install,
and you’ll be rockin’ out in 15 minutes. To connect it to
your ODROID, follow these steps:

Plug 2 x 2 Watt 4 ohm stereo speakers to the
connector on the Boom Bonnet board and
attach them with glue

Connect the GPIO ribbon cable one side to the
boom bonnet board and the other side to
ODROID board

Update the OS to the latest version

You can easily adjust the audio output level with a
potentiometer on the board. It will deliver adequate
�delity sound, but may include some low-grade system
noise and is not a replacement for a high �delity speaker
system. The package includes:

Stereo Boom Bonnet board

2 x 2W / 4 ohm mini speakers (28mm diameter,
11.5mm thickness)

3 x 5mm PCB spacers

3 x 5mm screws

200mm 7-pin GPIO ribbon cable (200mm) for the
ODROID-C1+/C2 or a 12-pin version for the
ODROID-XU4

Figure 1 – Annotated diagram of the Stereo Boom Bonnet

Figure 2 – The Stereo Boom Bonnet includes speakers, spacers, and
your choice of ribbon cable

Figure 3 – The Stereo Boom Bonnet easily mounts to the ODROID-
VU7

Figure 4 – The Stereo Boom Bonnet speakers can also be separated
and attached anywhere with a small amount of glue

Installation
Connect the stereo boom bonnet to ODROID-C1+/ C2 using
an I2C cable, attach a USB keyboard, USB mouse and
HDMI monitor, then power up the system, then update the
system:

https://goo.gl/1mXXVH

$ sudo apt update && sudo apt distupgrade

Figure 5 – Attaching the Stereo Boom Bonnet to an ODROID-C1+/C2

Figure 6 – Attaching the Stereo Boom Bonnet to an ODROID-XU4

Next, ensure that the stereo boom bonnet kernel modules
are loaded:

$ aplay l

**** List of PLAYBACK Hardware Devices ****

card 0: ODROIDHDMI [ODROIDHDMI], device 0:

I2S.27 dithifi0 []

 Subdevices: 0/1

 Subdevice #0: subdevice #0

odroid@odroid64:~$

odroid@odroid64:~$ sudo modprobe sndsoc

pcm5102

odroid@odroid64:~$ sudo modprobe sndsoc

odroiddac

odroid@odroid64:~$ aplay l

**** List of PLAYBACK Hardware Devices ****

card 0: ODROIDHDMI [ODROIDHDMI], device 0:

I2S.27 dithifi0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: ODROIDDAC [ODROIDDAC], device 0:

I2S.27 pcm51020 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

Then, navigate to Applications → Sound & Video → Sound
→ Hardware Tab & Output Tab and select “ODROID-DAC”.
If you have to load the driver every time whenever your
ODROID-C1+/C2 starts, you can register the driver into
/etc/modules and reboot:

$ su

Password: (root password is "odroid")

echo "sndsocpcm5102" >> /etc/modules

echo "sndsocodroiddac" >> /etc/modules

exit

After the reboot, check the driver with the following
command:

$ aplay l

**** List of PLAYBACK Hardware Devices ****

card 0: ODROIDHDMI [ODROIDHDMI], device 0:

I2S.27 dithifi0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: ODROIDDAC [ODROIDDAC], device 0:

I2S.27 pcm51020 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

Figure 7 – Adding an RCA connector for line out to the Stereo Boom
Bonnet

Schematics are available at https://goo.gl/pxTTd9, and
detailed information may be found on the Wiki page at
https://goo.gl/JY1Y7B.

https://goo.gl/pxTTd9
https://goo.gl/JY1Y7B

Boom Box: Sound Engineering a Better Speaker
 December 1, 2017 By @Technicavolous Tinkering, Tutorial

To improve the sound of Hardkernel’s Stereo Boom
Bonnet (https://goo.gl/TrDU8u), I went to my local hobby
shop and got an “assortment pack” of styrene which
happened to have some .080mil sheets and some tubing
in it. I also purchased a little styrene solvent for welding. I
did everything by eye, so some of the corners are not
square, but this is intended to go into another cabinet,
with only the face plate showing through. When it’s
complete, I’ll glue a piece of cloth over the front and
remount the speaker with hex head screws exposed. The
boxes will be for acoustics and vibration control. If I were
to do this as a standalone cabinet, I would probably make
it about half as deep, but I chose this size because of the
depth of the housing cabinet. I don’t think there would be
much sound di�erence with a longer tube.

One thing not shown in the pictures is shredded cotton
balls. When the project is complete, I’ll have the wires
extend to a connector on the back, and the entire box will
be loosely stu�ed with pulled cotton to make a ba�e, in
order to prevent a “hollow box” sound.

I am deliberately leaving out measurements, since they
don’t matter much. I think it would be better to replace the
tube with a simple �at sheet spaced up from the bottom
about a quarter diameter of the speaker and spaced from
the back about the same length. You can �nd designs all
over the Internet for various chamber designs and ideas if
you want to go more in-depth.

Figure 1 – I just set the little board over my cut panel and marked
it with a sharpie

Figure 2 – Closeup of the tube attached

https://goo.gl/TrDU8u

Figure 3 – Another view

Figure 4 – Top view with the front panel in the almost complete
box

Figure 5 – The project ends up a sweet looking and great sounding
box

Do something like this with any speaker, including the
Stereo Boom Bonnet, and it will instantly sound better. To
experiment with the sound, I inserted the front panel in
backwards since I haven’t extended the wires yet, and the
sound was amazing. It tries to do a little bass, not much
below 100Hz,but if I put my �nger over the tube most of
the bass goes away, so the chamber appears to be working
like it should. Once the wires are extended out the back
and the tube is in the box properly, it should give a tiny bit
more bass.

Figure 6 – Inserting the front panel backwards improved the bass
response

For comments, questions and suggestions, please visit the
original post at https://goo.gl/yyp22n.

https://goo.gl/yyp22n

Home Assistant: Using Infrared, Motors, and Relays
 December 1, 2017 By Adrian Popa Tinkering

In this article, we are going to combine ODROIDs with a
little bit of hardware and Home Assistant, so that we can
start converting non-smart appliances to “smart”
appliances. We’ll be working with wires, doing a bit of
soldering, connecting relays, and in some cases working
with mains voltage, so be careful!

Converting an air conditioning unit into an IoT AC
If you have an older air conditioning (AC) unit, or if you’re
planning on buying a new model, you might want to be
able to control it from anywhere. For example, you could
turn on the AC from your phone when you’re leaving work
or when returning from a long vacation. You could get a
WiFi-enabled AC, but those are about $200 more
expensive than a non-WiFi unit. Instead, we’re going to
turn a non-WiFi AC, LG P12RL.NSB, into a smart one. This
will be done by controlling the AC unit through an
ODROID-XU4, an infrared (IR) blaster, and Home Assistant.
The IR blaster can be used to control any device that has a
remote control, not just an AC unit.

Figure 1 – Original AC remote (model AKB73456113)

The �rst thing you need to consider is how will the remote
control communicate with the AC unit? There are two
methods: the �rst is when pressing a button on the remote

the whole state is sent via IR (temperature, fan speed,
power state, etc). The other option is pressing a button
only the current action is sent (increase temperature, turn
on fan, etc). You can check this, for instance, by sending a
command to turn on the fan to max speed, then turning
o� the fan, but with the remote out of range of the device,
followed by issuing a di�erent temperature change
command. If the fan remains blowing at full speed, then
the remote is not sending the full state. In case it is
sending the full state, the project at http://bit.ly/2AcpKAW
might help you decode the state information being sent. In
my case, the IR remote sends only the current key being
pressed, with the exception of the power-on message,
which sends also the temperature and fan state.

The hardware
Designing and building an IR blaster for an ODROID board
is relatively simple and is already documented on the wiki
at http://bit.ly/2A6HHmR. I wanted my implementation to
work on either an ODROID-XU4 or an ODROID-C2, so I
needed to be able to power it from the 5V line and drive a
transistor from the GPIO. The �nal assembly and circuit is
shown in Figure 2.

Figure 2 – Breadboard view of IR blaster

Figure 3 – Circuit diagram of IR blaster

I used an existing IR extender from my Samsung TV for the
IR leds. After opening it up, I found out it had 5 LEDs wired
in parallel, but I had no speci�cations for the LEDs. I
estimated that each diode could pass a peak current of
around 30 – 50mA (based on a common datasheet at
http://bit.ly/1trG4ZM), so 5 of them could pass between
150 – 250mA. This is why I would need a resistor of about
82Ω to limit the current from the ODROID. If you’re using

http://bit.ly/2AcpKAW
http://bit.ly/2A6HHmR
http://bit.ly/1trG4ZM

fewer IR LEDs, you will need a larger resistor. Sadly, such
low resistors are hard to �nd, so I wired 4 330Ω resistors,
from the C tinkering kit, in parallel instead (R1/R4). The
transistor is controlled by pin 24 on the XU4, and will be
used to modulate the signal. When the GPIO is turned on,
the current �ows and the IR LEDs turn on, and when the
GPIO is o�, the transistor shuts down the circuit. Resistor
R5 is there to protect the GPIO.

Once you manage to build this, you can test the hardware
by manually toggling GPIO 24 via sysfs and using a phone
camera to �lm the leds. IR light should be visible on the
camera and has a blue-ish hue. You can build it without a
breadboard and you can even �t the transistor and
resistors inside the XU4 case, but it will be a bit of a
struggle. I broke the solder points twice while trying to �t it
inside the case. The following piece of code can manually
toggle GPIO pin 24:

$ sudo su

cd /sys/class/gpio/

echo 24 > export

cd gpio24

echo out > direction

echo 1 > value

echo 0 > value

LIRC integration
Now, we need to tell LIRC that it can use the IR blaster to
send data. To do this, use the following instructions in the
wiki: http://bit.ly/2A6HHmR

$ sudo aptget install lirc

$ sudo vi /etc/lirc/hardware.conf

#Chosen IR Transmitter

TRANSMITTER="ODROID blaster"

TRANSMITTER_MODULES="lirc_odroid lirc_dev"

TRANSMITTER_DRIVER=""

TRANSMITTER_DEVICE="/dev/lirc0"

TRANSMITTER_SOCKET=""

TRANSMITTER_LIRCD_CONF=""

TRANSMITTER_LIRCD_ARGS=""

Before restarting LIRC, we need to pass the correct
parameters to the lirc_ODROID module. We can do this by
creating the �le /etc/modprobe.d/lirc.conf with the
following contents:

options lirc_odroid gpio_out_pin=24

softcarrier=1 invert=0

Try restarting LIRC and monitor dmesg for any errors:

$ sudo systemctl enable lirc

$ sudo service lirc restart

In case dmesg shows errors like below, it means that some
other driver has claimed GPIO PIN 24.

[25.322482] lirc_dev: IR Remote Control

driver registered, major 245

[25.336230] lirc_odroid: module is from

the staging directory, the quality is

unknown, you have been warned.

[25.346335] lirc_odroid: cant claim gpio

pin 24

[25.350461] lirc_odroid: init port fail!

[25.353337] lirc_odroid[lirc_ODROID_exit]

In my case, it was the 1wire module, which can be disabled
by adding the following lines to /etc/modprobe.d/blacklist-
odroid.conf and rebooting:

1 wire

blacklist w1_gpio

blacklist wire

Getting the remote control codes
Once the transmitter seems to be ready, it’s time to get the
remote control codes for your remote. The codes consist
of a series of intervals when the signal is on or o�

measured in microseconds. You can get these codes from
various online sources, or you can record them with LIRC
and an IR receiver. I used the IR receiver on a C2 to record
each code to a di�erent �le, pressed CTRL+C to exit
mode2, and cleaned it up by deleting the �rst row. When I
was done, I added entries to lircd.conf:

c2$ sudo aptget install lirc

c2$ sudo service lirc stop

c2$ sudo mode2 m d /dev/lirc0 | tee power

on

c2$ sudo sed i '1d' poweron

This can get tedious, because I had to record the codes for
power-on/o�, temperature-18 through temperature-30,
fan-low, fan-med, fan-high, swing-on/o�, jet-on/o�, ionizer-
on/o�. However, once I did, I merged them to a con�g �le
(/etc/lirc/lircd.conf) as demonstrated at
http://bit.ly/2A9MK3r. You can restart LIRC and test that
you are able to send the codes with irsend:

$ sudo service lirc restart

$ irsend LIST lgirplus.conf ""

$ irsend SEND_ONCE lgirplus.conf poweron

$ irsend SEND_ONCE lgirplus.conf poweroff

In case the last irsend command fails/times-out, you may
have run into a LIRC/driver bug. The quick �x is to restart
LIRC before injecting each command.

Integration in Home Assistant
If the LIRC blaster is connected to the same device where
you have Home Assistant installed, you could use the Shell
Command component (http://bit.ly/2vOFnhe) to issue IR
commands from HA. In my case, LIRC was running on a
di�erent system than HA, so I developed a Python script
that talks to HA through MQTT and issues the irsend
commands.

The complete code for this MQTT agent is available at
http://bit.ly/2Ax8SYz. The code gets con�guration data
from /etc/ir-ac-mqtt-agent.yaml, then connects with MQTT
to the broker. For a guide on setting up the broker and
Home Assistant, refer to the ODROID magazine article at
http://bit.ly/2A6ql9I. It also de�nes two callback functions:

on_connect – registers to a list of MQTT topics to
listen for commands

on_message – gets called each time a MQTT
message is received for the registered topics.

The script also keeps an internal dictionary with the
current state, as such power-on and temperature. This
allows it to better react to incoming commands. For
instance, if it receives a power o� command, but the
power is already o�, it will ignore the command to avoid
the AC unit from beeping.

The logic inside tries to simulate what the physical remote
does by ignoring commands unless the power is on, and
also setting the temperature to 18C and fan to full when
enabling “Jet Mode”. There were some simpli�cations done
as well, such as when sending the power-on command, the
temperature is set to 21C and the fan to high because the
power-on signal encodes some of the state of the remote.
The agent script listens to commands issued on topics
such as ha/lg_ac/ionizer/set and sends feedback on
ha/lg_ac/ionizer/get, so that the web interface has
feedback that the command was received.

To install the MQTT agent, you can use these commands:

$ sudo wget O /usr/local/bin/iracmqtt

agent.py

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/externalscripts/ir

acmqttagent.py

$ sudo chmod a+x /usr/local/bin/iracmqtt

agent.py

$ sudo aptget install pythonpip python

yaml

$ sudo pip install pahomqtt

$ sudo wget O /etc/iracmqttagent.yaml

https://github.com/madady/homeassistant

customizations/blob/master/external

scripts/iracmqttagent.yaml

$ sudo wget O /etc/systemd/system/irac

mqttagent.service

https://github.com/madady/homeassistant

customizations/blob/master/external

scripts/iracmqttagent.service

Take your time to make the necessary changes to /etc/ir-
ac-mqtt-agent.yaml, then enable and start the service:

$ sudo systemctl enable iracmqttagent

$ sudo systemctl start iracmqttagent

On the Home Assistant side, we will con�gure several
MQTT switches (http://bit.ly/2AwtDUd) to handle Power,
Jet mode, Ionizer, Swing, an input_select
(http://bit.ly/2zEfgNA), to select fan speed mode and an
input_number (http://bit.ly/2k0vfOY), to hold the desired
temperature. The switches communicate their state with
the backend script via MQTT directly, while the other
components make use of automation to trigger MQTT
messages on changes. Here is the component
con�guration:

switch:

 platform: mqtt

 command_topic: 'ha/lg_ac/power/set'

 state_topic: 'ha/lg_ac/power/get'

 payload_on: 'ON'

 payload_off: 'OFF'

 name: 'AC Power'

 retain: false

 platform: mqtt

 command_topic: 'ha/lg_ac/ionizer/set'

 state_topic: 'ha/lg_ac/ionizer/get'

 payload_on: 'ON'

 payload_off: 'OFF'

 name: 'AC Ionizer'

 retain: false

 platform: mqtt

 command_topic: 'ha/lg_ac/jet/set'

 state_topic: 'ha/lg_ac/jet/get'

 payload_on: 'ON'

 payload_off: 'OFF'

 name: 'AC Jet'

 retain: false

 platform: mqtt

 command_topic: 'ha/lg_ac/swing/set'

 state_topic: 'ha/lg_ac/swing/get'

 payload_on: 'ON'

 payload_off: 'OFF'

 name: 'AC Swing'

 retain: false

input_select:

 lg_ac_fan_mode:

 name: Fan mode

 options:

 cycle

 low

 med

 high

 initial: 'low'

input_number:

 lg_ac_temperature:

 name: AC Temperature

 initial: 22

 min: 18

 max: 30

 step: 1

We can group all of these elements in a separate view:

http://bit.ly/2A6HHmR
http://bit.ly/2A9MK3r
http://bit.ly/2vOFnhe
http://bit.ly/2Ax8SYz
http://bit.ly/2A6ql9I
http://bit.ly/2AwtDUd
http://bit.ly/2zEfgNA
http://bit.ly/2k0vfOY

group:

…

 lg_ac:

 name: Air Conditioning

 view: yes

 icon: mdi:snowflake

 entities:

 group.lg_ac_group

 lg_ac_group:

 name: LG AC

 entities:

 switch.ac_power

 input_number.lg_ac_temperature

 input_select.lg_ac_fan_mode

 switch.ac_jet

 switch.ac_ionizer

 switch.ac_swing

And after restarting Home Assistant, it should look like
Figure 4.

Figure 4 – Basic support for air conditioning

 action:

 alias: LG AC MQTT Set Temperature

 data:

 payload_template: '{{

states.input_number.lg_ac_temperature.state

}}'

 qos: 0

 retain: true

 topic: ha/lg_ac/temperature/set

 service: mqtt.publish

 alias: LG AC Set IR temperature

 id: '1499081218012'

 trigger:

 entity_id:

input_number.lg_ac_temperature

 platform: state

 action:

 alias: LG AC MQTT Set Fan

 data:

 payload_template: '{{

states.input_select.lg_ac_fan_mode.state }}'

 qos: 0

 retain: true

 topic: ha/lg_ac/fan/set

 service: mqtt.publish

 alias: LG AC Set IR Fan

 id: '1499152161'

 trigger:

 entity_id: input_select.lg_ac_fan_mode

 platform: state

 action:

 alias: LG AC Set temperature slider

 service: input_number.set_value

 data_template:

 entity_id:

input_number.lg_ac_temperature

 value: '{{trigger.payload}}'

 alias: LG AC Read temperature via MQTT

 id: '1499423002'

 trigger:

 platform: mqtt

 topic: ha/lg_ac/temperature/get

 action:

 alias: LG AC Set fan combo box

 service: input_select.select_option

 data_template:

 entity_id: input_select.lg_ac_fan_mode

 option: '{{trigger.payload}}'

 alias: LG AC Read temperature via MQTT

 id: '1499423003'

 trigger:

 platform: mqtt

 topic: ha/lg_ac/fan/get

The �rst two automations push the values for the
temperature and fan components via MQTT on state
change, while the last two automations receive
temperature and fan data through MQTT to update the
web interface. Restarting again should give you a
functional AC system controlled by Home Assistant. Here’s
a video of an early prototype of it in action:
https://youtu.be/zGRlhILVRCQ.

Adding a start & stop timer
The original AC remote has an option to start and stop the
AC on a timer. We can also model that inside Home
Assistant with a few automations and some extra
components.
Ideally you would use the input_datetime component
(http://bit.ly/2A8Mmoc), to allow the user to select the
start and stop times, but at the time of writing this article,
the component is not fully working. On HA 0.56, so we will
be using input_text instead (http://bit.ly/2i8lcXI), with a
regular expression that allows the typing of a time. There
are also two input_booleans (http://bit.ly/2Bnd4Yj), that
look like switches and allows the user to enable/disable
the functionality. Here is the con�guration that goes into
con�guration.yaml:

input_text:

 lg_ac_on_timer:

 name: LG AC on timer

 initial: '16:00'

 pattern: '^[09]{1,2}:[09]{1,2}$'

 lg_ac_off_timer:

 name: LG AC off timer

 initial: '18:00'

 pattern: '^[09]{1,2}:[09]{1,2}$'

input_boolean:

 ac_on_timer_active:

 name: Activate AC On timer

 initial: off

 icon: mdi:calendar

 ac_off_timer_active:

 name: Activate AC Off timer

 initial: off

 icon: mdi:calendar

group:

…

 lg_ac:

…

 entities:

…

 group.lg_ac_timer

 lg_ac_timer:

 name: AC Timer

 entities:

 input_boolean.ac_on_timer_active

 input_text.lg_ac_on_timer

 input_boolean.ac_off_timer_active

 input_text.lg_ac_off_timer

The end result after restarting Home Assistant looks like
Figure 5.

Figure 5 – AC controls with timers

To make it work, you will need to add the following two
automations in automations.yaml. The �rst automation
turns on AC, Jet mode and also turns o� the Activate AC On
timer, so that it is a one-shot event. It checks every minute
to see if the ac_on_timer_active is on and if the current
time is the same as the string inside lg_ac_on_timer. The
second automation does a similar thing for the o� timer,
but with di�erent actions.

 action:

 service: switch.turn_on

 entity_id:

 switch.ac_power

 service: switch.turn_on

 entity_id:

 switch.ac_jet

 service: input_boolean.turn_off

 entity_id:

 input_boolean.ac_on_timer_active

 alias: Turn On AC on timer

 id: '1502194970'

 trigger:

 platform: time

 minutes: /1

 seconds: 0

 condition:

 condition: state

 entity_id:

input_boolean.ac_on_timer_active

 state: 'on'

 condition: template

 value_template: '{{

now().strftime("%H:%M") ==

states.input_text.lg_ac_on_timer.state

 }}'

 action:

 service: switch.turn_off

 entity_id:

 switch.ac_power

 service: input_boolean.turn_off

 entity_id:

 input_boolean.ac_off_timer_active

 alias: Turn Off AC on timer

 id: '1502194971'

 trigger:

 platform: time

 minutes: /1

 seconds: 0

 condition:

 condition: state

 entity_id:

input_boolean.ac_off_timer_active

 state: 'on'

 condition: template

 value_template: '{{

now().strftime("%H:%M") ==

states.input_text.lg_ac_off_timer.state

 }}'

After restarting Home Assistant once again, you should
have a complete “Smart” AC system which you can enjoy
during heat waves. Although the automations above are
pretty basic, you can add more logic – like adding a
thermostat (http://bit.ly/2Ay6kJN), and monitor the
outside weather either from a sensor, or from the weather
forecast, so you can turn on or of your AC when the
outside weather is over a threshold. In fact, we will play
with such a thermostat for our next project.

http://bit.ly/2A8Mmoc
http://bit.ly/2i8lcXI
http://bit.ly/2Bnd4Yj
http://bit.ly/2Ay6kJN

Controlling a gas heater with a Home Assistant
Thermostat
Since for many readers it’s winter, you may be interested
in having a smart heater. We are going to control a natural
gas boiler connected to the central heating, a Viessman
Vitopend 100 (http://bit.ly/2Bd9X4d). The heater, if turned
on, will try to keep a constant water temperature for the
water that �ows through the heating elements in the
house, but this can be wasteful if nobody is home or if the
house is well insulated. Instead, you should use a
thermostat to turn the heater on or o� based on the
ambient temperature. My gas heater had a thermostat,
Salus 091FLRF (http://bit.ly/2AbcnkC). My thermostat does
the job, but it has some big drawbacks. For starters, it
would reset in the middle of the night and lose the
con�guration, leaving me in the cold. An equivalent
Internet-enabled thermostat is at least $100, so a DIY
approach pays o�.

The advantage of the external thermostat is that it had a
relay connected to the gas heater and I didn’t have to open
it up. If you do have to open up your heater, make sure
you call a specialized technician, or you could get in
trouble with your natural gas provider.

After analyzing the thermostat schematics, it became
apparent that communication with the heater is done by
closing or opening a relay on a 220V line. If we add a
second relay in parallel with the �rst one I can close either
of them to turn the heater on or o�. Why do you need a
relay? So that you don’t fry your ODROID board! The plan
is to use a Sainsmart 2 Channel relay
(http://bit.ly/2A5WEFF), to connect the ODROID to the
220V line that goes into the heater. Even if the relay is
rated for 5V, it can be safely used with an ODROID-C1 or
C2’s 3.3V GPIOs.

Figure 6 – SainSmart 2 Channel Relay

Since you will be working with mains voltage, make sure
you either get a certi�ed electrician or comply to the laws
in your country. Also always disconnect all appliances from
mains when working with these lines. The schematic we’re
going to implement is pretty simple as shown in Figure 7.

Figure 7 – Implementation details

There is only one complication with this setup. Instead of
using the 40 pin GPIO connectors on the C2 (J2 header), I
used some pins from the I2S header (J7) instead. The
reason is, in my case the J2 header was used by
HardKernel’s 3.5″ display shield
(http://www.hardkernel.com/main/products/prdt_info.php
?g_code=G147435282441).

In order to convert the I2S pins into GPIO pins, you will
need to edit the DTB loaded with the kernel. Follow the
instructions below to edit the DTB, and also make the
changes persistent when you upgrade the kernel through
apt, as discussed at http://bit.ly/2AyrWWz.

$ sudo aptget install devicetreecompiler

$ sudo fdtput

/media/boot/meson64_ODROIDc2.dtb /I2S status

disabled

$ sudo fdtput

/media/boot/meson64_ODROIDc2.dtb

/i2s_platform status disabled

$ sudo vi /etc/kernel/postinst.d/i2sdisable

#!/bin/bash

echo "Disabling I2S support from the device

tree"

/usr/bin/fdtput

/media/boot/meson64_ODROIDc2.dtb /I2S status

disabled

/usr/bin/fdtput

/media/boot/meson64_ODROIDc2.dtb

/i2s_platform status disabled

Once you reboot, the J7 header will have only GPIO pins
that you can use.

Controlling the relay through MQTT
Since it is not the ODROID that runs Home Assistant, we
will need to be able to control it over the network, with
MQTT. The agent code listens for ON/OFF messages on a
speci�c topic and turns the GPIO on or o�. Normally, we
would have used wiringPI (http://bit.ly/2zBMm0F), but in
this case the J7 connector is not mapped to wiringPI, so we
will be using sysfs instead. The methods pinMode and
digitalWrite emulate their wiringPI counterparts to make
the code easier to understand. The code is available at
http://bit.ly/2jofKfN. For brevity the code is not included
here. To install it on your system, follow these steps:

$ sudo wget O /usr/local/bin/heatermqtt

agent.py

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/external

scripts/heatermqttagent.py

$ sudo chown a+x /usr/local/bin/heatermqtt

agent.py

$ sudo wget O /etc/heatermqttagent.yaml

https://github.com/madady/homeassistant

customizations/blob/master/external

scripts/heatermqttagent.yaml

$ sudo wget O /etc/systemd/system/heater

mqttagent.service

https://github.com/madady/homeassistant

customizations/blob/master/external

scripts/heatermqttagent.service

$ sudo aptget install pythonpip python

yaml

$ sudo pip install pahomqtt

Edit the con�guration �le at /etc/heater-mqtt-agent.yaml,
set your MQTT details, then start the agent with:

$ sudo systemctl enable heatermqttagent

$ sudo systemctl start heatermqttagent

You can monitor messages from the agent with the
following command:

$ sudo journalctl f u heatermqttagent

Home Assistant integration
To make use of this agent inside Home Assistant, you can
con�gure a MQTT Switch and add it inside its own group:

switch:

…

 platform: mqtt

 command_topic: 'ha/heater/set'

 state_topic: 'ha/heater/get'

 payload_on: 'ON'

 payload_off: 'OFF'

 name: 'Heater'

 retain: true

group:

...

 heater:

 name: Gas heater

 view: yes

 icon: mdi:fire

 entities:

 switch.heater

Figure 8 – A switch for your heater

Having a switch that you can toggle is nice, but you
probably want a thermostat. A thermostat tries to keep a
temperature between certain levels, and Home Assistant
requires a temperature sensor and a switch
(http://bit.ly/2Ay6kJN). The temperature sensor could be
any sensor, including the outside temperature, but in our
case we may want to use data from sensors in multiple
rooms. I have two DS18b20 temperature sensors in two
rooms already integrated into Home Assistant, as
described in my previous ODROID article at
http://bit.ly/2A6ql9I. However, the thermostat can act only
on one temperature sensor. We will need to combine the
two sensors into one sensor, which returns the minimum
temperature between the two. This can be easily extended
to multiple sensors, so that the thermostat heats the
coldest room to the desired temperature. We can do this
with a template sensor (http://bit.ly/2wPQLeY) inside
con�guration.yaml:

sensor:

…

 platform: template

 sensors:

…

 house_temperature:

 friendly_name: Minimum house

temperature

 unit_of_measurement: '_C'

 value_template: '{{

(states.sensor.temperature_rest_python.state

, states.sensor.temperature_via_mqtt.state)

| min }}'

group:

…

 weather:

…

 entities:

…

 sensor.house_temperature

Adding the thermostat is now an easy task
(con�guration.yaml):

climate:

 platform: generic_thermostat

 name: Heater thermostat

 heater: switch.heater

 target_sensor: sensor.house_temperature

 min_temp: 15

 max_temp: 30

 target_temp: 24

 min_cycle_duration:

 minutes: 5

http://bit.ly/2Bd9X4d
http://bit.ly/2AbcnkC
http://bit.ly/2A5WEFF
http://bit.ly/2AyrWWz
http://bit.ly/2zBMm0F
http://bit.ly/2jofKfN
http://bit.ly/2Ay6kJN
http://bit.ly/2A6ql9I
http://bit.ly/2wPQLeY

 tolerance: 0.3

group:

…

 heater:

…

 entities:

…

 climate.heater_thermostat

Figure 9 – Thermostat

The thermostat con�guration will turn on the heat when
the temperature is below target_temp – tolerance, will
keep the heater on for at least min_cycle_duration, then
will turn it o� when the temperature is above target_temp
+ tolerance. You can use a similar thermostat with the AC
we’ve built before, but you need to con�gure it with
ac_mode: true so that it is a cooling device.

You can manually control/set the thermostat, but the fun
part is that you can use automations to control the
thermostat. A simple use case is to set di�erent target
temperatures based on presence detection or time of day.
The following automations set the target temperature to
23C during the day and 25.5C during the night
(automations.yaml):

 action:

 alias: climate.set_temperature

 data:

 entity_id: climate.heater_thermostat

 temperature: 23

 service: climate.set_temperature

 alias: Thermostat set low

 condition: []

 id: '1506943539788'

 trigger:

 at: 07:00

 platform: time

 action:

 alias: climate.set_temperature

 data:

 entity_id: climate.heater_thermostat

 temperature: 25.5

 service: climate.set_temperature

 alias: Thermostat set high

 condition: []

 id: '1506943638481'

 trigger:

 at: '19:00'

 platform: time

Controlling a window blind with Home Assistant
One more physical item we can integrate into Home
Assistant is a motorized window blind. In my case, the
motors were controlled by a three-way physical switch.

When in the up position, the blind raises. In the middle
position, the motors are o�, and in the down position it
lowers. I wanted to use a relay and take over the slide
operation when the physical switch is in the middle
position, but also to allow manual operation with the
regular switch. After a long discussion on the forum
(http://bit.ly/2AwFCBb), I settled on the physical
implementation shown in Figure 10.

Figure 10 – Controlling a window blind motor

Apart from the ODROID-C1+ and the 2-module relay
board, we also need to use a couple of snubbers. The
snubbers are RC circuits which have to discharge the
reactive energy that builds up in the motors during
switching, otherwise transient power spikes will brown-out
your relay contacts when they try to discharge, I damaged
a relay before realizing this. I used the types of snubbers
described at http://bit.ly/2A58tf4 in my build.

Please note that while my design minimizes the number of
components used, it’s more risky because it operates at
220V. Forum user @Jojo proposed an alternate design
which changes the physical switch’s voltage to 5V and uses
digital circuits to drive the relay, which should be safer
(http://bit.ly/2Bf2txo).

MQTT agent for blind operation
As you’ve grown accustomed already, we need a script
running on the ODROID that listens to commands for the
blinds, sent through MQTT, then executes the commands
by triggering the relay and reports back the status. The
di�erence from previous code shown is that this time we
will have to use threads, more speci�cally timers. The
simple way the code can operate is:

A message to OPEN or CLOSE the blind is sent from Home
Assistant
The script turns on the �rst relay and assumes control of
the motors, then uses the second relay to control the
direction the blind operates (up or down)
The script waits for a set number of seconds so that the
blind can fully open or close, which takes 17 seconds in my
case
When the time expires, the relay is reset to manual mode
and a status update is sent via MQTT back to Home
Assistant

The complication comes if you want to stop the blind
midway, or at an arbitrary location. To do this, Home
Assistant can send a STOP command, or a desired
position, but if the script is single-threaded, it is stuck
waiting for the motor to �nish before processing the STOP
command.
By using timers, after the motor is started, a timer is
scheduled to stop the motor in 17 seconds, and the code
goes back to listening for MQTT messages. If a STOP
message comes before the timer expires, it will cancel the
timer and run the stopBlinds() command immediately.
Additionally, the script keeps an internal state of the blind
position and the direction of the motor, so that if the blind
is midway, and you want to open it 70%, it will be able to
calculate for how long it needs to run the motor and in

which direction. The code is available at
http://bit.ly/2A88Ohk and can be installed with:

$ sudo wget O /usr/local/bin/blindcover

mqttagent.py

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/external

scripts/blindcovermqttagent.py

$ sudo chown a+x /usr/local/bin/blindcover

mqttagent.py

$ sudo wget O /etc/systemd/system/blind

covermqttagent.service

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/external

scripts/blindcovermqttagent.service

$ sudo wget O /etc/blindcovermqtt

agent.yaml

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/external

scripts/blindcovermqttagent.yaml

$ sudo aptget install pythonpip python

yaml

$ sudo pip install pahomqtt

In addition to this, you will need to install wiringPi library
and its Python bindings (http://bit.ly/2AwVQui). You will
need to edit /etc/blind-cover-mqtt-agent.yaml and input
your MQTT details, then you can enable and start the
agent:

$ sudo systemctl enable blindcovermqtt

agent

$ sudo systemctl start blindcovermqtt

agent

You will be able to view debug messages with the following
command:

$ sudo journalctl f u blindcovermqtt

agent

Home Assistant con�guration
Home Assistant comes with a MQTT cover component
(http://bit.ly/2jmAIf7), which provides a basic interface for
the cover. You can con�gure it with this con�guration
inside con�guration.yaml:

cover:

 platform: mqtt

 name: "Blinds"

 state_topic: "ha/blind_cover/get"

 command_topic: "ha/blind_cover/set"

 set_position_topic:

"ha/blind_cover/position"

 assumed_state: true

 payload_open: 'OPEN'

 payload_close: 'CLOSE'

 payload_stop: 'STOP'

 state_open: 'open'

 state_close: 'closed'

group:

…

 blinds:

 name: Blinds

 view: yes

 icon: mdi:blinds

 entities:

 cover.blinds

After restarting Home Assistant, the blind control will look
like Figure 11:

http://bit.ly/2AwFCBb
http://bit.ly/2A58tf4
http://bit.ly/2Bf2txo
http://bit.ly/2A88Ohk
http://bit.ly/2AwVQui
http://bit.ly/2jmAIf7

Figure 11 – Standard blind controls

At https://youtu.be/MIhuELv1244, you can see a demo of
the blinds. As I mentioned before, is there a way to set an
arbitrary position for the blind? There is a way to tweak the
blind component to display a slider next to the blind
component that allows you to control its position. To do
this, you will need to install the Home Assistant custom UI,
downloaded from http://bit.ly/2AcqDJE, and type the
following commands:

$ sudo su homeassistant

$ cd .homeassistant/

$ curl o updatecustomui.sh

"https://raw.githubusercontent.com/andrey

git/homeassistantcustom

ui/master/update.sh?raw=true"

$ chmod a+x updatecustomui.sh

$./updatecustomui.sh

The con�guration needs to be tweaked a bit to load the
customized blind control. First, you will need to activate
the custom UI controls by making these changes to
con�guration.yaml:

customizer:

 custom_ui: local

Use the customize section to specify that

all covers should use the new UI (inside

configuration.yaml):

homeassistant:

 customize_glob:

 cover.*:

 custom_ui_state_card: statecard

customui

By default, the cover will look the same as the old one, so
we need to manually enable the slider (under the
customize section in con�guration.yaml):

homeassistant:

 customize:

 cover.blinds:

 state_card_mode: breakslider

 stretch_slider: true

After restarting Home Assistant, the user interface will look
like Figure 12.

Figure 12 – Cover with slider

As you can see, with a bit of work you can turn your
ordinary house into a smart house with the help of
ODROIDs and Home Assistant. For feedback and
discussions, please visit the original thread at
http://bit.ly/2s13GbB.

http://bit.ly/2AcqDJE
http://bit.ly/2s13GbB

Android Gaming: Stranger Things, Pocket Morty, and Streets of
Rage
 December 1, 2017 By Bruno Doiche Android, Gaming

It’s easy to chill with your ODROID because there are so
many Android gaming options for the Android operating
system. In this article, we’ll explore three new releases:
Stranger Things: The Game, Pocket Morty’s, and Streets
of Rage.

Stranger Things: The Game
Straight from the hit TV show, here comes a game with an
unique feel. The feeling that when there is someone
backing up a game studio, you will have the best fun
without in-app purchases, advertisements or those pesky
banners!

Stranger Things: The Game has a color palette that is reminiscent
of a classic SNES box

But let us talk about the game itself, which is a bucket of
references from the 1980s, although the game itself looks
like it has been pulled from the classic 1990s adventures
that we played over and over on our VGA PCs or Amigas of
old. You control a bunch of characters from the series
going around the town of Hawkins to solve the big mystery
hidden in it, each with unique skills that you will be
certainly using to solve puzzles and defeat enemies. The
controls are the simplest possible, so there are no worries

about having them working on your ODROID touchscreen
or your USB controller. You can map the controls to work
with the keyboard, but I didn’t test that feature.

The game follows a freestyle approach from the series

With various chapters, if you are the average player, you
will take from �ve to ten hours to complete if you don’t get
stuck on a weird side quest. But if this is too easy for you,
you can go for the classic mode, which describes itself as
1980s hard, which is a little bit of a stretch since back in
the 1980s, you would use a passcode to go throughout the
chapters. Usually 1980s games only o�ered 3 hit points, 2
lives and, if the game was benevolent, a couple of
continues! Nevertheless, the game is super catchy and fun.
You will have a blissful time collecting items and essentially
having a pretty decent game based on a TV show, which is
a rarity nowadays.

The later chapters are no picnic, but if I can make it through, you
can too

Above all, Stranger Things: The Game makes me fond of an
era when the way that you would keep enjoying your
favorite shows was to have an NES cartridge and play it
back and forth with your friends during your vacations,
which was the best!

Pocket Mortys
Straight out of the gate, remember when Pokémon Go was
all the rage, and we had to teach you guys how to to spoof
the location of your ODROID in order to be able to play
that game more easily? What if you could play a similar
game, without having to disappoint yourself by losing
EVERY SINGLE TIME trying to do Gym battles and walking
through your city having your hopes dashed by that pesky
thousandth zubat? Pocket Mortys is the game that
captures the original Pokémon spirit in a package that
expands on the greatest, shiniest, and wildest cartoon that
resonates with viewers like a neutron bomb this year.

https://stranger-things-the-game.en.uptodown.com/android
https://play.google.com/store/apps/details?id=com.turner.pocketmorties&hl=en
https://play.google.com/store/apps/details?id=com.mnavidm.streetsofrage

Have you ever seen such a glorious moustache? No? Then �ght
him Morty!

The super original plot? You will play a Pokémon game, but
with Rick and Morty characters. You capture and collect
di�erent versions of Morty, the co-protagonist of Rick and
Morty, from the many alternate dimensions, leveling up
them to get your portal gun back and for the fun of
collecting Mortys. It is so close to Pokémon that I really
advise you to get this game before Nintendo’s lawyers
�gure out that it is a 1 to 1 reproduction. And you of
course can enjoy it, for as simple as it may appear, it is in
fact quite complicated to have a good Pokémonesque
game. It is mischievously smart for a free-to-play game.

The game is so well designed that you will swear that you have
seen the characters sporting those out�ts in the show

Absurdly rewarding despite the rock-paper-scissors
gameplay, this is a game that capture the feel from the TV
show so well that we can almost say that with this game
you can pretty much not get to watch the show! (Which is a
lie; you should watch this show over and over and over)

The funnest part of this game, if you snap out of it, is seeing you
are handling a gadget within a gadget, which is super meta

Streets of Rage: Android Edition
I really shouldn’t have to present this game for anyone that
is reading this I believe, but, come on, this is Streets of
Rage. If you lived through the magical era of the early
1990s, when 16-bit gaming roamed the earth, you surely
played this game. Of course, you can emulate this on your
ODROID using RetroArch, but what if you are unable to
�nd this ROM for your emulator? Well, now you are in luck!

Playing with multiple characters was the best thing in the 1990s

In the vein of what was the brawling beat-em-up games of
the era, you have the archetype of the corrupt city that
needed cops to do justice with their bare hands in order to
defeat the city ma�a and restore the safety of the
population.

This start screen song and splash screen is etched on every 1990s
gamer mind

With what is considered a masterpiece of fun game play
and with Yuzo Koshiro’s unforgettable soundtrack, this
game is by itself the blueprint of what every retro gaming
indie developers try to recreate when doing games.

Nothing was more satisfying than hitting the boss with the backup
bazooka

Running YOLO On ODROID: YOLODROID
 December 1, 2017 By Tom Jacobs Tinkering

YOLO (https://pjreddie.com/darknet/yolo/) is a neural
network model that is able to recognise everyday objects
very quickly from images. There’s also TinyYOLO
(http://machinethink.net/blog/object-detection-with-
yolo/), which runs well on mobile devices. This guide tells
you how to get TinyYOLO installed and running on your
ODROID-XU4. To follow along, login to your ODROID, and
run the commands show in the sections below.

Install TensorFlow
First, we make sure everything is up to date:

$ sudo aptget update

$ sudo aptget upgrade y

$ sudo aptget distupgrade y

$ sudo reboot

Get some swap
Bazel won’t build without using swap memory on the
ODROID-XU4. Pop in a blank 8GB USB drive, which will get
erased, and run the following command:

$ sudo blkid

Check the device name, usually /dev/sda1, and with that
name, run:

$ sudo mkswap /dev/sda1

$ sudo swapon /dev/sda1

$ sudo swapon

Install the requirements
We’ll need real Oracle Java, instead of OpenJDK. I tried
OpenJDK, built Bazel with it, but it failed to SHA-1 hash
downloads, and so was useless. So, we need to install the
following packages:

$ sudo aptget install pkgconfig zip g++

zlib1gdev unzip

$ sudo aptget install gcc4.8 g++4.8

$ sudo updatealternatives install

/usr/bin/gcc gcc /usr/bin/gcc4.8 100

$ sudo updatealternatives install

/usr/bin/g++ g++ /usr/bin/g++4.8 100

$ sudo aptget install pythonpip python

numpy swig pythondev

$ sudo pip install wheel

$ sudo addaptrepository

ppa:webupd8team/java

$ sudo aptget update

$ sudo aptget install oraclejava8

installer

$ sudo aptget install oraclejava8set

default

$ java version

Install Bazel build system
Google builds things using Bazel. TensorFlow is from
Google. Thus, we need to build Bazel �rst. This takes about
a half an hours, go get some lunch while it runs:

$ wget

https://github.com/bazelbuild/bazel/releases

/download/0.5.4/bazel0.5.4dist.zip

$ unzip d bazel bazel0.5.4dist.zip

$ cd bazel

$ sudo ./compile.sh

Now, Java will run out of heap here, so we need to do the
following modi�cations:

$ sudo vi scripts/bootstrap/compile.sh

Find the line with “run” on it, and add some memory �ags,
change it to the following:

run “${JAVAC}” JXms256m JXmx384m

classpath “${classpath}” sourcepath

“${sourcepath}”

Then, compile again:

$ sudo ./compile.sh

$ sudo cp output/bazel /usr/local/bin/bazel

Download and con�gure TensorFlow
Now we can actually download and con�gure TensorFlow:

$ git clone recursesubmodules

https://github.com/tensorflow/tensorflow.git

$ cd tensorflow

I couldn’t get the latest version of TensorFlow to install,
since it had BoringSSL C99 compile issues. To �x this,
checkout version 1.4.0, and con�gure:

$ git checkout tags/v1.4.0

$./configure

Say no to most things, including OpenCL, as shown in
Figure 1.

https://pjreddie.com/darknet/yolo/
http://machinethink.net/blog/object-detection-with-yolo/

Figure 1 – Con�guring TensorFlow

Build TensorFlow
Next, we need to build Tensor�ow. If you thought Bazel
took a long time to build, then you haven’t built software
before. Hold onto your hats, because we’re in for a ride
here:

$ bazel build c opt copt="mfpu=neon

vfpv4" copt="funsafemathoptimizations"

copt="ftreevectorize" copt="fomit

framepointer" local_resources

8192,8.0,1.0 verbose_failures

tensorflow/tools/pip_package:build_pip_packa

ge

 Building…

 1,900 / 4,909 files… error.

Oops, NEON doesn’t work. Ok, let’s turn that o�. But, we’ll
want to �x it later:

$ bazel build c opt copt="funsafemath

optimizations" copt="ftreevectorize"

copt="fomitframepointer"

local_resources 8192,8.0,1.0

verbose_failures

tensorflow/tools/pip_package:build_pip_packa

ge

 3,700 / 4,622 files… error.

 In file included from

tensorflow/compiler/xla/service/llvm_ir/llvm

_util.cc:30:0:

 ./tensorflow/core/lib/core/casts.h: In

instantiation of 'Dest

tensorflow::bit_cast(const Source&) [with

Dest = long long int; Source = void (*)

(const char*, long long int)]':

 tensorflow/compiler/xla/service/llvm_ir/llv

m_util.cc:400:67: required from here

 ./tensorflow/core/lib/core/casts.h:91:3:

error: static assertion failed: Sizes do not

match

In this case, XLA is causing problems. It’s new, and not
needed, so let’s drop it for now and recon�gure and
rebuild without it:

2,345 / 3,683 �les…
3,112 / 3,683 �les…
3,682 / 3,683 �les…

Target //tensor�ow/tools/pip_package:build_pip_package
up-to-date:
bazel-bin/tensor�ow/tools/pip_package/build_pip_package

Next, install it:

$ bazel

bin/tensorflow/tools/pip_package/build_pip_p

ackage /tmp/tensorflow_pkg

$ sudo pip2 install

/tmp/tensorflow_pkg/tensorflow1.4.0cp27

cp27mulinux_armv7l.whl upgrade ignore

installed

At �rst when I ran the following command, it ran using
python 3 and failed to install, so after some googling and
learning about pip �lename rules, I �gured it out and just
used pip2 instead:

$ sudo pip install

/tmp/tensorflow_pkg/tensorflow1.4.0cp27

cp27mulinux_armv7l.whl upgrade ignore

installed

Then, the most fun issue was when I �rst ran “import
tensor�ow”, when I got this message:

>>> import tensorflow

 Traceback (most recent call last):

 File “”, line 1, in

 File “tensorflow/__init__.py”, line 24, in

 from tensorflow.python import *

 File “tensorflow/python/__init__.py”, line

49, in

 from tensorflow.python import

pywrap_tensorflow

 File

“tensorflow/python/pywrap_tensorflow.py”,

line 25, in

 from tensorflow.python.platform import

self_check

 ImportError: No module named platform

I googled the issue, and it seemed to be about locales, as
shown at
https://github.com/tensor�ow/tensor�ow/issues/36. So, I
set a locale �rst, after also seeing that it needed to be
capital US (http://bit.ly/2ifyle4), and rebuilt, and it still
gave me the same issue:

$ export LC_ALL=en_US.UTF8

$ export LANG=en_us.UTF8

The next day, with fresh googling powers, revealed that
actualy, it was just that I was just running it in the build
directory! It has a directory called tensor�ow in it, and
python was looking up into that to �nd things. So just
changing directories to another �xed the issue.

$ python2

 >>> import tensorflow

 >>> print(tensorflow.__version__)

 1.4.0

It looks like everything is working, so onto YOLOing.

Running YOLO
I’m sure there are a few implementations of YOLO out
there by now, so let’s pick one from
https://github.com/experiencor/basic-yolo-keras:

$ git clone

https://github.com/experiencor/basicyolo

keras.git

$ cd basicyolokeras

Get weights from
https://1drv.ms/f/s!ApLdDEW3ut5fec2OzK4S4RpT-SU, or
raccoon from
https://1drv.ms/f/s!ApLdDEW3ut5feoZAEUwmSMYdPlY

$ wget /tiny_yolo_features.h5

$ wget /tiny_yolo_raccoon.h5

Next, edit the con�guration �le, and change the model to
“Tiny Yolo”:

$ vi config.json

Download a picture of a racoon:

$ wget

https://upload.wikimedia.org/wikipedia/commo

ns/b/be/Racoon_in_Vancouver.jpg

Then, run the script:

$ python2 predict.py c config.json i

Racoon_in_Vancouver.jpg w

tiny_yolo_raccoon.h5

It’s missing the imgaug package, so we’ll add it and its
dependencies:

$ sudo pip2 install imgaug

$ sudo pip2 install keras

$ sudo pip2 install h5py

Both h5py and scipy take a little while to install. Can it �nd
the raccoon in Figure 2?

Figure 2 – A test image of a raccoon

$ python2 predict.py c config.json i

Racoon_in_Vancouver.jpg w

tiny_yolo_raccoon.h5

Yes, now that’s a detected raccoon!

Figure 3 – YOLO has detected the image of the raccoon

For comments, questions and suggestions, please visit the
original article at
https://medium.com/@TomPJacobs/running-yolo-on-
odroid-yolodroid-5a89481ec141.

http://bit.ly/2ifyle4
https://medium.com/@TomPJacobs/running-yolo-on-odroid-yolodroid-5a89481ec141

Linux Gaming: Need for Speed II Second Edition
 December 1, 2017 By Tobias Schaaf Gaming, Linux

In 1997, racing games were quite popular. One particular
series that is well-known today was still quite new, though
people were starting to know it and like it more and more.
Need for Speed II Second Edition (NFS2SE) was released
with 3DFX support, more tracks and cars, along with mirror
mode and backward track mode, making it quite an
improvement over the original Need for Speed II. In some
countries, such as Germany, it was even included free with
the purchase of a 3DFX accelerator card.

Figure 1 – Need For Speed II Second Edition

NFS2SE was a really good game by 1997 standards, as 3D
graphics were just starting to get into people’s homes and
3D racing games were still in their beginning stages.
Having a decent 3D racing game with actual 3DFx Voodoo
support was still rare at the time.

Along with the 3D graphics, this game had a lot to o�er.
One feature was full motion video (FMV) which could be
seen in the intro as well as showcase videos for each car.
There, you could see cars racing around di�erent tracks
and towns, or just out in the open. It o�ered lots of videos

for the many cars that were featured in the game. Unlike
modern Need for Speed titles, NFS2SE didn’t have any
storyline, so there was no story video to follow. Still, there
was a good amount of video content as compared to other
games of the time.

Figure 2 – Full motion video cut-scenes in NFS2SE

Figure 3 – Full motion video cut-scenes in NFS2SE

In fact, the game had quite a bit of extra content. The CD
was packed with many pictures, videos, and information
about the cars, and o�ered many di�erent tracks and cars
to play with.

Figure 4 – Select a showcase to see information, look at pictures,
and watch videos for each car

Figure 5 – A video of the selected car from the showcase

Need for Speed II Second Edition on the ODROID
I recently found a open source project that aims to
recreate the NFS2SE engine for modern systems using the
3D capabilities of current systems, including OpenGL ES
2.0 and SDL2, which would allow us to play on the
ODROID. The re-creation orientates itself on the Glide
(3DFx) version of the game, giving it a similar look to the
original while allowing us to play on 1080P or other
resolutions thanks to the scaling capabilities of SDL2.

So far the game looks good and seems to be fully playable.
Even network multiplayer mode seems to work �ne. I
tested it on the ODROID-XU3 and the ODROID-U3, and it
was running �ne at full speed on both devices. Since the
game runs in SDL2 with OpenGL ES 2.0, it is fully 3D
accelerated and runs rather well, although I ran into some
issues with speed if I ran the game in single thread mode.

Figure 6 – Starting a new race in NFS2SE

(Figure 6 – Starting a new race in NFS2SE)

The game o�ers di�erent kinds of environment e�ects:
rain drops, fog, and even bugs to obscure your view. Other
areas o�er nice ambient lighting e�ects.

Figure 7 – Entering a foggy rainforest

Figure 8 – Red glowing ambient light in a cave full of lava

Aside from that, NFS2SE for the ODROID o�ers joystick
support and even uses force feedback (rumble support) so
if you hit an object or a di�erent road surface, the
gamepad will rumble to emulate that sensation. I also
tested the multiplayer mode on the two di�erent ODROIDs
and it worked well. I haven’t tried splitscreen yet, but I am
willing to bet that it will likely work also, meaning you will
be able to easily play with a friend, or up to 8 players over
the network.

Figure 9 – This landing will surely make the controller vibrate in
your hand and trigger “force feedback”

So far, the only thing I’ve found that wasn’t working
correctly is the in-game menu. Here you can change
volume to increase and decrease the sounds and music,
but nothing else seems to works, not even continue or
restart. For some reason I’m not able to select these menu
points at all. I can only exit the menu using the ESC key.
However, this shouldn’t stop you from enjoying the game
as is.

Figure 10 – The in-game menu seems to be partly broken as you
can only get in and out using the ESC key

How to install the game
As usual, the game is available on my repository for
Debian Jessie and Debian Stretch. Because the game is 32-
bit only, ARM64 boards like the ODROID-C2 won’t support
the game. You can install it from my repository with:

$ aptget install nfs2seodroid

When you �rst run the game, you will need to install the
game �les from the original Need For Speed II SE CD. You
will be asked to either point to a CD/Folder which includes
the required folder (i.e. gamedata, fedata). If you’re using
my GameStation Turbo image, you can either plug-in a CD
drive via USB and select the CD, or you can use CDEmu
(Virtual CD) to mount most images formats. If you happen
to have an .iso �le you can select that instead and the
setup will try to extract the �les from there. After the �les
are copied, you should be able to go ahead and enjoy your
game.

Figure 11 – Congratulations! You’re now able to play Need For
Speed II SE on your ODROID

Final Thoughts
Need For Speed II Second Edition might not be the best
racing game out there, nor have top-notch technology and
graphics by today’s standard, but it’s still a fun game to
play, and the ability to race against each other over a
network is something that isn’t seen often on the ODROID.
This game is well worthy of being part of the ODROID
library. I hope you’ll enjoy it just as much as I do.

Exploring Software-De�ned Storage with GlusterFS on the
ODROID-HC1: Part 2 – Client Performance
 December 1, 2017 By Andy Yuen ODROID-HC1

In my previous article, I described how to setup a
Distributed Replicated GlusterFS Volume as well as a
simple Replicated Volume. I also described how to use the
GlusterFS Native Client to access the volumes. In this part, I
am going to show you how to setup NFS and Samba clients
to access the GlusterFS volume and compare the
performance of the di�erent clients.

NFS Client
A NFS server is automatically set up when we install
GlusterFS and create a Distributed Replicated volume.
However, if your installation is like mine, when you execute
the following command, you will �nd that the NFS servers
are all o�ine, as shown in Figure 1.

$ gluster volume status

Figure 1 -nfs-o�ine

It is likely due to rpcbind not running, as evident in the
/var/log/glusterfs/nfs.log shown in Figure 2.

Figure 2 – rpc-error

Executing the following commands on all GlusterFS servers
will start the NFS servers, where gvolume0 is the GlusterFS
Distributed Replicated volume I created in Part 1:

$ sudo /etc/init.d/rpcbind start

$ sudo gluster volume set gvolume0

nfs.disable off

$ sudo gluster volume stop gvolume0

$ sudo gluster volume start gvolume0

$ sudo gluster volume status gvolume0

Figure 3 – nfs-online-all

I then setup a NFS client on one of the machines on my
ODROID-MC1 namely, xu4-master,where xu4-gluster0 is
one of the GlusterFS servers:

$ sudo aptget update

$ sudo aptget install nfscommon

$ sudo mkdir /mnt/nfs

$ sudo mount t nfs o vers=3,mountproto=tcp

xu4gluster0:/gvolume0 /mnt/nfs

Now, you can access the GlusterFS volume on xu4-master.
You can issue the following command on the list of 50 �les
we created in Part 1:

$ ls /mnt/nfs/testdir

SAMBA Client
The simplest way to access a GlusterFS volume is to export
the Gluster mount point as the samba export and mount it

https://magazine.odroid.com/article/exploring-software-defined-storage-glusterfs-odroid-hc1-part-1-server-setup/

using CIFS protocol. Of course, you need to install the
Samba and CIFS packages �rst:

$ sudo aptget update

$ sudo aptget install samba smbfs cifs

Then, you have to set up a password for samba,

$ sudo smbpasswd a odroid

Edit the /etc/samba/smb.conf �le with the following
settings:

[global]

 security = user

 #guest account = nobody

 [gvolume0]

 guest ok = yes

 path = /mnt/gfs

 read only = no

 valid users = odroid

 admin users = root

Next, restart Samba and mount the share:

$ sudo /etc/init.d/samba restart

$ sudo mount t cifs

ouser=odroid,password=odroid

//192.168.1.80/gvolume0 /mnt/samba

To mount on the NFS share instead of Gluster share,
simply unmount Samba, modify the /etc/samba/smb.conf
�le, restart Samba and mount the �le system as follows:

[global]

 security = user

 #guest account = nobody

 [gvolume0]

 guest ok = yes

 path = /mnt/nfs

 read only = no

 valid users = odroid

Restart samba and mount the share:

$ sudo /etc/init.d/samba restart

$ sudo mount t cifs

ouser=odroid,password=odroid

//192.168.1.80/gvolume0 /mnt/samba

Client Performance
To compare the performance of the various clients, we
need a baseline and the baseline is the native �le system
performance, i.e., a partition mounted locally on a server.
This implies that we have 5 di�erent clients to compare.
They include:

1. Native File System – performance test is running
on a server where a local disk partition is
mounted

2. GlusterFS Native Client – mounted on a machine
which is not a GlusterFS server using the
GlusterFS Native Client

3. Gluster NFS client – mounted on a machine
which is not a GlusterFS server using the
GlusterFS NFS Client

4. Samba client based on GlusterFS Native Client –
CIFS share of the GlusterFS Native Client �le
system

5. Samba client based on GlusterFS NFS Client –
CIFS share of the GlusterFS NFS Client �le system

The �le system performance benchmark tool used is
iozone, which is not in the Ubuntu software repository, but
can be downloaded from http://bit.ly/2BnxxfA. It
generates and measures a variety of �le operations. We
are using the following 4 benchmarks to compare client

performances: Single-Thread Write, 8-Thread Write, Single-
Thread Read, 8-Thread Read.

Single-Thread Write
The iozone command used in the test is:

$ iozone w c e i 0 +n C r 64k s 1g

t 1 F path/f0.ioz

The options used are:
-c Include close()
-e Include �ush in time calculations. (-c -e options are used
together to measure the time it takes for data to reach
persistent storage)
-w Do not unlink temporary �les when �nished using them
-i 0=write, 1=read (we only used 0 and 1 in these tests
-+n Save time by skipping re-read and re-write tests
-C Show how much each thread participated in the test
-r data transfer size
-s per thread �le size
-t number of threads
-F List of �les

The command is run for every client. The output of the
command is shown in Figure 4, and the result is
summarized in the bar chart in Figure 5.

Figure 4 – native-w1

Figure 5 – 1ThreadWrite

Native is the fastest, followed by NFS and GlusterFS native
clients. As expected, the Samba clients are the slowest in
our con�guration because they rely on the underlying
GlusterFS native and NFS clients.

8-Thread Write
The command used is:

$ iozone w c e i 0 +n C r 64k s 1g

t 8 F path/f{0,1,2,3,4,5,6,7,8}.ioz

The output is shown in Figure 6, and the result graphics
are shown in Figure 7.

Figure 6 – native-w8

Figure 7 – 8ThreadWrite

In the multithreading write benchmark, the Native result is
the fastest, followed by the NFS and Samba client using
NFS. Note that the Samba client using NFS is faster than
the NFS client itself, for which I do not have a clear
explanation.

Single-Thread Read
The cache is cleared before the read benchmark:

$ sync

$ echo 1 > /proc/sys/vm/drop_caches

$ iozone w c e i 1 +n C r 64k s 1g

t 1 F path/f0.ioz

The resultant results’ graphic are shown in Figure 8.

Figure 8 – 1ThreadRead

The result is consistent in that the Native result is the
fastest, followed by NFS-based clients and then GlusterFS
native client-based clients. Again, I have no explanation as
to why the Samba client using NFS is faster than the NFS
client itself.

8-thread Read
Finally, run the multithread read benchmark using the
following commands:

$ sync

$ echo 1 > /proc/sys/vm/drop_caches

$ iozone w c e i 1 +n C r 64k s 1g

t 8 F path/f{0,1,2,3,4,5,6,7,8}.ioz

The result is shown in Figure 9.

Figure 9 – 8ThreadRead

The performance is quite di�erent here, since the
GlusterFS native client is the fastest, likely due to
distribution. Files are stored on di�erent servers, which
adds parallelism in retrieval, unlike writes, which adds
overhead in writing data to multiple servers.

Auto-Failover and high availability clients
Of all the clients tested, only the GlusterFS Native Client
provides auto-failover and high availability capability. This
means that if the GlusterFS server that speci�ed in the
mount command fails, it will automatically switch over to
use another Gluster server in our Replicated or Distributed
Replicated Volume.

The NFS and Samba clients used do not have such
capabilities. If you want that capability for NFS, you have to
disable the GlusterFS NFS server and install the NFS-
Ganesha server (http://bit.ly/2BuH9Ek).

Similarly, for Samba/CIFS, you have to install the Samba
VFS Plugin from http://bit.ly/2i7gMjI. In addition to
providing high availability and auto-failover, it also uses
libgfapi to avoid the performance penalty to go between
user and kernel mode which happens in our Samba client
based on GlusterFS Native Client used in our test.

Note that the plugin for gluster is absent in the Ubuntu
package samba-vfs-modules. I encourage you to look into
them if you want high availability and auto-failover for
your NFS and Samba clients.

Conclusion
I have shown you how to setup GlusterFS Replicated and
Distributed Replicated Volumes using ODROID-HC1
devices, and how to access them using GlusterFS Native
Client, NFS and Samba clients. I have also shown you their
performance in charts for easy comparison. You now have

http://bit.ly/2BnxxfA
http://bit.ly/2BuH9Ek
http://bit.ly/2i7gMjI

su�cient information to select the the appropriate client.
Personally, I think it is a good enterprise technology that

lends itself to easy home use. ODROID-HC1s are more
economical and �exible than o�-the-shelf NAS systems, in

my opinion. I hope you will share my enthusiasm in using
them at home.

Meet An ODROIDian: Andrea Cole, Assistant Editor of ODROID
Magazine
 December 1, 2017 By Meet an ODROIDian

Please tell us a little about yourself.
I’m currently a sales admin for Lab Manager, an industry-
focused publication for the scienti�c community. I’ve been
a part of their parent company, LabX Media Group, for
over 10 years, and have been working speci�cally in the
Lab Manager division for four years. I live in Canada, a
couple hours north of Toronto, Ontario, in a small town
situated on the shores of Georgian Bay.

I have a bachelor of arts degree in Sociology from
Laurentian University. I had originally started out pursuing
a degree in Psychology, but after taking a few sociology
classes and realizing that I was enthusiastically pouring all
my energy into these classes and neglecting my psych
classes, I decided switching majors was probably a smart
move.

I currently live with my two daughters who are still in high
school, and my partner, who had previously worked in the
IT industry, but now keeps to more horticultural work
since, as he puts it, “working in the industry was ruining a
perfectly good hobby.” He’s the one that got me interested
in electronics.

Figure 1 – Andrea enjoys spending time with her two
daughters

How did you get started with computers?
As a kid, my family had the occasional home computer, but
it was mostly a work computer used for word processing,
so I didn’t take to much of an interest in it. When the
Internet became more popular, I had a lot more exposure
to computers, but mainly used them as a tool for accessing
the Internet. I spent a lot of time on a few online forums,
and as a budding musician I was a frequent visitor to the
On-Line Guitar Archive (OLGA). However, it wasn’t until my
current job that I began to pick up some basic
programming knowledge. Since part of my job description
involves email marketing, I have picked up enough HTML
and CSS to do some basic web design. For a long time I

was working with a web crawler, and from that I developed
a basic understanding of regular expressions. Overall, I’m
still pretty new to this, su�ce it to say.

How do you use your ODROIDs?
I have been using the ODROID-C2s mostly to replace the
older C1 and Raspberry Pi, in our entertainment setup that
has grown into almost every room in the house, thanks to
the ODROIDS and a partner that can’t be trusted not to
add extra functionality to almost everything in the house.
For example, I came home one day to discover that my
1960s cabinet record player now has WiFi, a web interface,
and the ability to stream music from the Internet.

Which ODROID is your favorite and why?
I can’t say I’ve really thought about my favorite, as I’ve
really only had experience with the ODROID-C1 and
ODROID-C2, and limited experience with the ODROID-XU4.
Given that my next Hardkernel order will likely contain at
least a half-dozen ODROID-C2s, I’d probably go with that.
We’ve got more possible uses for the ODROID-C2 than any
other boards currently available.

Whom do you admire in the world of technology and why?
Is Tony Stark real? No? Dang. [Editor’s Note: Elon Musk is
as close as we have to a real Tony Stark]

What bene�ts do you see in helping others learn more about
ODROIDs?
Single-board computing using resources such as the
ODROID has the bene�t of helping people understand the
technologies that are becoming more and more
embedded in their everyday lives. It’s important that
people learn about what powers their tech, so they can de-
mystify the magic little boxes in their lives and empower

themselves to create their own devices that will do what
they want, how they want, without being limited by pro�t-
driven corporate ideals.

What hobbies and interests do you have apart from
computers?
I’ve had an avid interest in music since my early teen years.
I also have a capacity for an almost in�nite amount of
useless pop culture trivia. 10 years ago, I took up painting
as a hobby, and in recent years I’ve put an increased e�ort
into honing that craft. My artwork can be found at
https://andrea-cole.pixels.com/.

Figure 2 – Artwork by Andrea called A Tragically Hip
Mountain Goat”

Figure 3 – Artwork by Andrea called Victoria Harbour Town
Dock”

What advice do you have for others who wish to learn more
about computers?
Look into online programming courses that you can take in
your spare time. Some of these o�erings are more on-the-
ball than others, but if you know people who are already
knowledgeable on the subject, they may be able to provide
guidance towards reputable sites for online learning. Try
not to be overwhelmed by the seemingly immense
amount of information. After that, it’s a matter of making a
commitment to carve out the time for yourself and just do
it.

